

PYTHON FOR BEGINNERS

2 books in 1:

CODING FOR BEGINNERS USING PYTHON + PYTHON CRASH COURSE

Mark Matthes and Eric Lutz

book 1

CODING FOR BEGINNERS USING PYTHON:

A Hands-On, Project-Based Introduction to Learn Coding with Python

Mark Matthes and Eric Lutz

Copyright 2020 - All rights reserved.

The content contained within this book may not be reproduced, duplicated, or transmitted without direct written permission from the author or the publisher.

Under no circumstances will any blame or legal responsibility be held against the publisher, or author, for any damages, reparation, or monetary loss due to the information contained within this book. Either directly or indirectly.

Legal Notice:

This book is copyright protected. This book is only for personal use. You cannot amend, distribute, sell, use, quote or paraphrase any part, or the content within this book, without the consent of the author or publisher.

Disclaimer Notice:

Please note the information contained within this document is for educational and entertainment purposes only. All effort has been executed to present accurate, up to date, and reliable, complete information. No warranties of any kind are declared or implied. Readers acknowledge that the author is not engaging in the rendering of legal, financial, medical, or professional advice. The content within this book has been derived from various sources. Please consult a licensed professional before attempting any techniques outlined in this book.

By reading this document, the reader agrees that under no circumstances is the author responsible for any losses, direct or indirect, which are incurred as a result of the use of the information contained within this document, including, but not limited to, — errors, omissions, or inaccuracies.

Table of Contents

Introduction

Chapter 1-
 ​
 What Is Python and His History and Why Learn Python

Chapter 2-
 ​
 Getting Started with Python

Chapter 3-
 ​
 Variables and Operators

Chapter 4-
 ​
 Basic Operators

Chapter 5-
 ​
 Data Types in Python

Chapter 6-
 ​
 Type Casting and Type Conversion In Python

Chapter 7-
 ​
 List

Chapter 8-
 ​
 How to Organize a List?

Chapter 9-
 ​
 How to Make Your Program Interactive

Chapter 10
 -

 Making Choices and Decisions

Chapter 11
 -

 Functions, Conditional Statements and Loops

Chapter 12
 -

 Python And The Data

Chapter 13
 -

 Data Analysis with Python

Conclusion

Introduction

It will not take long for you to work with the Python language before you are able to see some of the benefits that are available when it comes to working with this kind of language. In fact, you may already know some of the benefits that are present, and you may already have a list of your own reasons as to why you would like to choose this language as the one that you choose to work with. Some of the different benefits that come with working on the Python language will include:

Python is one of the best languages for beginners to learn about. If you have ever wanted to get into coding and learning how to write some of your own programs then the Python language is one of the best to help you get this done. You will quickly find that this is a language that is simple to learn how to use, even though it does come with a lot of power along the way. For those who might have been afraid in the past to try something new, it won’t take long to see the benefits that come with Python, and why it is such a good coding language to get you started.

You are able to use and make modifications to the Python program for free because it is open-sourced. This is great news because it means that you will be able to go to the Python website and download the version of Python that you want, for whatever operating system you would like as well, without having to pay anything. Python is open-sourced so you will be able to write some of the codes that you want, and get it all taken care of, without a lot of hassle along the way either.

There are a lot of resources out there that will help you to take charge of your programs. This is due to the fact that there is a large community of programmers out there who are willing to answer your questions, show you new ways to do some of the codings, and so much more. Because Python has so many benefits and is such a good coding language to work with, there are a ton of developers out there who know how to use this language, and they are found all throughout the world.

As a beginner, it is likely that you are going to run into some trouble
 with the coding on occasion, or have some questions. And the fact that there are so many other programmers and coders who know how to use Python and who are active online is going to be good news for you. These individuals will be able to help you with any of the programming problems that you have, making it easier for you to get the results in no time.

It is easy to read this language and it is likely that without even starting, you will have a good idea of what is found in some of the codes in this guidebook already. Take a look at some of the codes that are further down in this guidebook and see if you are able to read through and understand some of them for your own needs. Python was designed to be easy not only to use but also to read as well. This makes it possible for us to really work on some of the codes that we would like and will ensure that we are going to see some of the best results with this in no time.

Python is also going to work well with some of the other coding languages that are out there. This can be good news when you want to work with some of the more complicated parts of coding along the way. when you are able to work with this language and combine it with some of the other options that are out there, especially during machine learning and data analysis, you are going to get some amazing results in the process as well.

There is a lot of power that is available with the Python language. We have spent some time talking about the Python language and how it is designed to help out with some of the different parts that you would like as a beginner. But this doesn’t mean that you are going to have to sacrifice the power and the functionality of this language, just because it works well for those who are just starting out with the coding.

There is actually some good power behind this language, which is going to make it the perfect option to use for those who are just beginning on this process. You will find that this language is able to handle a lot of the more complex parts of coding that you would like to focus on, and it works well no matter what kind of coding you would like to focus your attention on at the time. Don’t be fooled by
 hearing that this is a language for beginners. The Python language works well whether you are a beginner or you are more advanced in coding, and it can definitely help you to get your work done in no time.

The standard library that comes with Python will help you to get a ton of things done no matter what your level of coding may be.

Chapter 1-

 What Is Python and His History and Why Learn Python

What Is Python?

Python, created in 1990 by Guido van Rossu, is a general-purpose, high-level programming language. It has become trendy over the past decade, thanks to its intuitive nature, flexibility, and versatility. Python can be used on a wide variety of operating systems. It’s clean, readable code style makes it relatively beginner-friendly, while not as fast as other languages, such as C++ or JAVA, Python code is often much shorter and simpler than other languages.

Python also supports several packages and modules created by other developers to make the development of Python applications quicker and easier.

Why Learn Python?

There are hundreds of different programming languages out there in the world, with Wikipedia listing over 700 notable languages. Given how many languages you could potentially learn, why learn Python?

Python has seen an explosion in popularity in recent years, driven by several aspects that make it an incredibly versatile and intuitive language. A huge selling point of Python is the cleanliness and readability of its syntax and structure. Commands in Python can often be carried out using simple English keywords, which makes the language much more intuitive than many other languages. Python is also quite versatile in the sense that it supports both structured programming and object-oriented programming approaches. Python even allows the use of certain aspects of functional programming.

Python is supported by many different operating systems, including Windows, Mac, and Linux platforms. Since Python is an interpreted programming language, Python programs can be run on multiple platforms without being recompiled.

Python comes with a robust standard library of modules, functions,
 and tools. Every module that comes with Python is a powerful tool you can use without creating additional code. Python comes pre-packaged with modules that assist in the creation of various web services, manipulating strings, and working with the operating system’s interface. Python also makes it easy for users to create their libraries and frameworks, meaning that there is a large, open-source Python community continually creating a wide variety of applications. These applications can significantly speed up/simplify the development of your application.

Despite its simplicity, Python is also sturdy and robust enough to carry out sophisticated scientific and mathematical tasks. Python has been designed with features that drastically simplify the visualization and analysis of data, and Python is also the go-to choice for the creation of machine learning models and artificial intelligence.

For all of these reasons, Python is one of the fastest-growing and most in-demand computer programming skills.

A Note on Python Versions

There are various versions of Python available for use. It is highly recommended that you use version 3.7 or advanced when following along with this book. While Python 2 remains popular in some communities, support for Python 2 will end in 2020, meaning that security issues will not be resolved, and additional improvements won’t be made to it. Once Python 2 is officially retired, only Python 3.5 and advanced will see continued support. Python 2’s syntax is a little different from Python 3’s syntax, and this will not teach Python 2 because its retirement is impending.

Definitions: Interpreter, Terminal, Shell, IDE

Early on in this book, and as you continue to program with Python, you will see many references to concepts like “interpreter,” “terminal,” “shell,” and “IDE.” These concepts can be somewhat confusing for a beginner, so to make things simpler, let’s define these concepts here.

	
	

	
	
[image:]

	
	

An “interpreter” in the computer science/programming sense is a computer program that can execute code, carrying out the written instructions specified by a programming or scripting language. An interpreter carries out code immediately and directly. In contrast, a “compiler” is a program that translates instructions into efficient machine code. Meanwhile, a “shell” is a wrapper or environment whose primary function is to run other programs and the word shell is often used to refer to the command-line of the OS. The command line takes in commands centered on the name of applications the user wishes to interact with. The interface you see above is an example of the Python shell, and it is running an interpreter.

Python has its shell; an interactive interpreter specialized for running Python commands. It lets the user immediately execute Python code and see the result as soon as the user enters the command. The Python shell that can be accessed through the command-line is an example of a “terminal,” which is simply the environment that allows the user to input text and receives outputs. For the purpose of this book, the terms “shell” and “terminal” may be used interchangeably in reference to an instance of the Python interpreter accessed through the command line.

The Python Interpreter

There are two main ways to work with Python: with the interpreter and command line or with an Integrated Development Environment (IDE).

We will be doing the majority of our programming in an IDE, but first, let’s make sure you understand how to work with Python in the terminal.

	
	

	
	
[image:]

	
	

Let’s start by opening the terminal/command prompt and checking that Python is installed correctly by just typing the command “python.” If Python is properly installed, the command prompt should transition you to an instance of the Python interpreter/shell. This interpreter allows you to create and run Python code. For instance, if you copied this line of code into the terminal, you’d get “Using the terminal interpreter!” printed back out:

print ("Using the terminal interpreter!")

The command print() is responsible for printing out to the terminal whatever is specified inside the parentheses.

Most programming is done in an IDE, but it is still a good idea to learn how the Python interpreter works because there may be occasions where you may have to do some programming in it. With that in mind, let’s take a few moments to familiarize ourselves with the Python interpreter.

As mentioned, the Python interpreter can typically be invoked from the command line only by entering the command “Python,” or perhaps the specific Python version you want to run:

python3.8

The interpreter can typically be exited with the quit command: exit() - or depending on the version you are running - quit().

The help() command is an incredibly helpful command that you will always want to remember because it shows you all the various commands and functions that you can use in the interpreter.

When you enter a command by hitting the return key, the statement will be evaluated for correct syntax. If there is a syntax error, the error will be displayed.

Python is waiting for a command if you see the “primary prompt,” which is often indicated by the presence of three greater-than signs (>>>). If you are on the second line of an input, these greater than signs will instead be replaced with three periods.

Using an IDE

I wanted to make you aware of the Python interpreter in the terminal’s existence, but most of our programming will be done in an IDE. If you experimented with the terminal a little bit, you’d quickly find a significant disadvantage of using the terminal, and it is that you can’t preserve many lines of code on the same screen. In addition, whenever you enter a line of code, and it contains any errors, a syntax error will be thrown immediately. IDEs make the process of learning a language simpler because they will often highlight syntax errors for you. Other benefits of using an IDE include auto-completion for specific key phrases and functions, more accessible collaboration with other programmers, and the ability to make changes to a script even while an instance of the programming is running.

You can try out the code examples found in this either the terminal or in an IDE. However, most of the examples presented in this will be presented in an IDE. One excellent IDE is PyCharm (https://www.jetbrains.com/pycharm
), an open-source IDE designed from the ground up for use with Python. PyCharm highlights syntax errors enables easy refactoring/renaming of files and comes with an integrated debugger. PyCharm also has an integrated terminal, and when you run programs in PyCharm, the results of the program’s execution will be displayed in the terminal at the bottom of the IDE.

Using PyCharm

Let’s go over some of the functions in PyCharm in greater detail, so that you are familiar with how to use it.

After installing PyCharm and setting it up for the first time, you may be slightly intimidated by all the options, but don’t worry, you won’t be using most of these options for the exercises in this book.

	
	

	
	
[image:]

	
	

As you can see in the image above, when you open PyCharm and are confronted with the interface, you can navigate up to the file option in the top left corner. Opening the file drop-down menu will let you either open an existing project or create a new project. Opening an existing project enables you to reopen projects you’ve already started and saved or even open the projects that other people have worked on and which you have downloaded/cloned. For now, just create a new project for the exercises through the “File” option in the top left.

The New Project dialog box may look slightly different depending on which version of PyCharm you are using, but it should ask you to select a project interpreter. The default virtual environment (virtualenv) is beautiful for now, and it should automatically detect your base Python interpreter if it is correctly installed on your computer.

After this, you can create a folder to hold the scripts you create by right-clicking in the project frame and choosing the “New” option from the drop-down menu. To create a new Python script, just right-click on the folder you’ve created and navigate to “New” and then the “Python File” option. Now just enter a name for your new file Python file.

After you create a new Python file, it should automatically open in the editor panel to the right. You can now enter code into the editor. If, for some reason, the editor didn’t automatically open the file, just double click on the file to open it up in the editor.

PyCharm should automatically save changes to the file, which means you don’t need to worry about manually saving them. If for some reason, the file doesn’t auto-save, or you just want to be sure it has saved, you can right-click on the file to be presented with a drop-down menu that should contain the option to save the file. You can also press Ctrl + S to save all the files currently open in PyCharm.

Once you’ve written some code and want to try running it, you can either navigate up to the “Run” tab on the top toolbar and select “Run (Current file name here),” or press Shift + F10. The image above shows a program has finished its run in PyCharm’s compiler. Note that the results of the program are printed to the built-in terminal.

	
	

	
	
[image:]

	
	

Chapter 2-

 Getting Started with Python

How to Install the Interpreter

Python comes with two important ‘programs’: Python’s runtime environment and command line interpreter. The Python installer you download from its website contains both. Installing them is easy, particularly in Windows.

All you need to do is download the file and click open to let it run the setup. You will need to follow a few simple step-by-step instructions, click a few buttons here and there and Python will be available on your computer.

Note that there will be a point during the installation that you will need to select the packages and features that you want to be installed in your system. Make sure that you check all of them.

Note that tcl/tk installs TkInter, which is a Graphic User Interface (GUI) toolkit you need if you plan to create windows for your programs. The Integrated Development and Learning Environment (IDLE) require and depend on TkInter since it is a Python program with a GUI.

Also, for now, check the Python test suite feature. You will need it later. Finally, PIP is an optional feature that allows you to download Python packages later.

If you believe you do not need some of them, just make sure that the checkbox for IDLE and Python Test Suite are selected.

How to Use Python Shell and IDLE

There are two ways to run a Python program. And that is using its runtime environment or using the command line interpreter. The command line interpreter has two forms. The first one is the regular Python shell. The second one is IDLE or Integrated Development and Learning Environment.

The regular Python shell uses the familiar command line interface (CLI) or terminal look while IDLE is a Python program encased in a regular graphical user interface (GUI) window. IDLE is full of easy to access menu, customization options, and GUI functions while the
 Python shell is devoid of those and only offer a command prompt (i.e. the input field in a text-based user interface screen).

One of the beneficial functions of IDLE is its syntax highlighting. The syntax highlighting function makes it easier for programmers or scripters to identify between keywords, operators, variables, and numeric literals.

Also, you can customize the highlight color and the font properties displayed on IDLE. With the shell, you only get a monospaced font, white font color, and black background.

All of the examples in this book are written in the Python shell. However, it is okay for you to write using IDLE. It is suited for beginners since they do not need to worry about indentation and code management. Not to mention that the syntax highlighting is truly beneficial.

Writing Your First Program

To get you started, code the below Hello World program. It has been a tradition for new programmers to start their learning with this simple program. Just write this line in the shell or IDLE and press Enter.

>>> print("Hello World!")

Hello World!

>>> _

Shell, IDLE, and Scripts Syntax

Programming languages, just like a regular human language like English, have grammar/writing rules or syntax. Syntax rules in programming languages are simple but strict.

Unlike humans, the computer and computer programs like compilers and interpreters cannot understand context. They require precise and proper statements to know what you want. A simple syntax error can stop your program from functioning or make the
 computer put a stop on your program.

Prompt

The Python Shell and IDLE has a prompt, which looks like this: >>>. You generally start writing your code after the prompt in the Python Shell and IDLE. However, remember that when you write code in a file, py script, or module, you do not need to write the prompt.

For example:

Class thisClass():

def function1():

x = 1

print(x)

def function2():

pass

That is valid code.

Indentation

When programming, you will encounter or create code blocks. A code block is a piece of Python program text (or statement) that can be executed as a unit, such as a module, a class definition or a function body. They often end with a colon (:).

By default and by practice, indentation is done with four spaces. You can do away with any number of spaces as long as the code block has a uniform number of spaces before each statement. For example:

def function1():

x = 1

print(x)

def function2()
 :

y = "Sample Text"

print("Nothing to see here.")

That is perfectly valid code. You can also use tab, but it is not recommended since it can be confusing and you will get an error if you mix using tabs and spaces. Also, if you change the number of spaces for every line of code, you will get an error. Here is an example in the shell. Note the large space before print(x) on line 2.

>>> x = 1

>>> print(x)

File "<stdin>", line 1

print(x)

^

IndentationError: unexpected indent

>>> _

By the way, a statement is a line of code or instruction.

Indentation Prompt

When using the Python Shell, it will tell you when to indent by using the prompt (...). For example:

>>> def function1():

x = 1

print(x)

>>> def function2():

y = "Sample Text"

print("Nothing to see here.")

>>> _

In IDLE, indentation will be automatic. And to escape an indentation or code block, you can just press Enter or go to the next line.

Python Shell Navigation

You cannot interact using a mouse with the Python Shell. Your mouse will be limited to the window’s context menu, window commands such as minimize, maximize, and close, and scrolling.

Also, you can perform marking (selecting), copying, and pasting, but you need to use the windows context menu for that using the mouse. You can also change the appearance of the window and shell by going through the properties menu.

Most of the navigation you can do in the shell is moving the navigation caret (the blinking white underscore). You can move it using the navigation keys (left and right arrow keys, PgUp, PgDn, Home, End, etcetera). The up and down arrow keys’ function is to browse through the previous lines you have written.

IDLE Navigation

The IDLE window is just like a regular GUI window. It contains a menu bar where you can access most of IDLE’s functionalities. Also, you can use the mouse directly on IDLE’s work area as if you are using a regular word processor.

You might need to take a quick look at the menu bar’s function for you to familiarize yourself with them. Unlike the Python shell, IDLE provides a lot more helpful features that can help you with programming.

Primarily, IDLE is the main tool you can use to develop Python programs. However, you are not limited to it. You can use other development environment or word processors to create your scripts.

Troubleshooting Installation Issues

First of all, make sure that you download the installation file from the website: https://www.python.org

 . Next, make sure that you chose the proper installation file for your operating system. There are dedicated installation files for Windows, MacOSX, and other UNIX based operating system.

If your computer is running on Windows XP, the latest release of Python will not work on it. You must install and use Python 3.4. Also, remember that there are two versions of each release: a 32-bit and a 64-bit version. If you are unsure if your computer is running on 32 or 64-bit, then just get the 32-bit version. Normally, the recommended installer that the site will provide contains both and will automatically detect which installer it will use.

Normally, you do not need to go to Python’s website to download the installation file if you are using a Linux distribution as an operating system. You can just use your system’s package manager.

Before installing Python, make sure that you have at least 100 MB free disk space. You can also edit the installation location of Python. However, take note of the location you type it if you wish to install Python in a different folder.

If the installer did not provide shortcuts for you, you can just create them. The Python shell is located in the root folder of your Python installation.

<Python installation folder>\python.exe

For example:

"C:\Python37\python.exe"

For IDLE, you can use its batch file located in

<Python installation folder>\Lib\idlelib\idle.bat

For example:

"C:\Python37\Lib\idlelib\idle.bat"

If you cannot find the idlelib folder inside the Python Lib folder, reinstall Python and make sure that IDLE is checked.

Practice Exercise

For now, familiarize yourself with the Python shell and IDLE. Try to discover the things you can do with them. Look at all the messages that it may send you as you enter information on it.

When it comes to IDLE, try to customize it (e.g. change the color theme from the default IDLE Classic to IDLE Dark). Explore all the other features and functions you can change. Have fun!

Summary

At this point, you are already a few steps away from writing code and creating programs. Remember that you need Python 3.x while learning the contents of this book. You also need to make sure that you have IDLE and the test suite.

With regards to the coding environment, you have two options: use the shell or IDLE. It is recommended that you use the latter. But if you want to do this intimately and be challenged a bit, you can choose the shell.

Chapter 3-

 Variables and Operators

Variables

When writing complex codes, your program will demand data essential to conduct changes when you proceed with your executions. Variables are, therefore, sections used to store code values created after you assign a value during program development. Python, unlike other related language programming software, lacks the command to declare a variable as they change after being set. Besides, Python values are undefined like in most cases of programming in other computer languages.

Variation in Python is therefore described as memory reserves used for storing data values. As such, Python variables act as storage units, which feed the computer with the necessary data for processing. Each value comprises of its database in Python programming, and every data are categorized as Numbers, Tuple, Dictionary and List, among others. As a programmer, you understand how variables work and how helpful they are in creating an effective program using Python. As such, the tutorial will enable learners to understand declare, re-declare, and concatenate, local and global variables as well as how to delete a variable.

Variable vs. Constants

Variables and constants are components used in Python programming but perform different functions. Variables, as well as constants, utilize values used to create codes to execute during program creation. Variables act as essential storage locations for data in the memory, while constants are variables whose value remains unchanged. In comparison, variables store reserves for data while constants are a type of variable files with consistent values written in capital letters and separated by underscores.

Variables vs. Literals

Variables also are part of literals which are raw data fed on either variable or constant with several literals used in Python programming. Some of the common types of literals used include Numeric, String, and Boolean, Special and Literal collections such as
 Tuple, Dict, List, and Set. The difference between variables and literals arises where both deal with unprocessed data but variables store the while laterals feeds the data to both constants and variables.

Variables vs. Arrays

Python variables have a unique feature where they only name the values and store them in the memory for quick retrieval and supplying the values when needed. On the other hand, Python arrays or collections are data types used in programming language and categorized into list, tuple, set, and dictionary. When compared to variables, the array tends to provide a platform to include collectives functions when written while variables store all kinds of data intended. When choosing your charming collection, ensure you select the one that fits your requirements henceforth meaning retention of meaning, enhancing data security and efficiency.

Naming Variables

The naming of variables remains straightforward, and both beginners and experienced programmers can readily perform the process. However, providing titles to these variables accompany specific rules to ensure the provision of the right name. Consistency, style, and adhering to variable naming rules ensure that you create an excellent and reliable name to use both today and the future. The rules are:

	Names must have a single word, that is, with no spaces

	Names must only comprise of letters and numbers as well as underscores such as (_)

	The first letter must never be a number

	Reserved words must never be used as variable names

When naming variables, you should bear in mind that the system is case-sensitive, hence avoid creating the same names within a single program to prevent confusion. Another important component when naming is considering the style. It entails beginning the title with a lowercase letter while using underscores as spaces between your words or phrases used. Besides, the program customarily prevents
 starting the name with a capital letter. Begin with a lowercase letter and either mix or use them consistently.

When creating variable names, it may seem so easy, but sometimes it may become verbose henceforth becoming a disaster to beginners. However, the challenge of creating sophisticated names is quite beneficial for learned as it prepares you for the following tutorials. Similarly, Python enables you to write your desired name of any length consisting of lower- and upper-case letters, numbers as well as underscores. Python also offers the addition of complete Unicode support essential for Unicode features in variables.

Specific rules are governing the procedure for naming variables; hence adhere to them to create an exceptional name to your variables. Create more readable names that have meaning to prevent instances of confusion to your members, especially programmers. A more descriptive name is much preferred compares to others.

Methods of Creating a Multi-Name for Python Variables

- Pascal case: this method entails the first, second, and subsequent words in the name as capitalized to enhance readability. For example, ConcentrationOfWhiteSmoke.

- Camel case: the second and subsequent words of the name created remains capitalized. For example, the ConcentrationofWhiteSmoke.

- Snake case: snake method of creating variable names entails separator of words using an underscore as mentioned earlier. For example, concentration_of_white_smoke.

Operators

Python is considered a high-level programming language with less complexity when it comes to using the basic operators in the code. It is built to read and implement computer language easily. Python provides various types of operators for performing tasks.

Assignment Operators

These kinds of operators are used to assign several values to the
 variables. Let’s check the different types of assignment operators.

	
Operator

	
Description of the operator

	
Example

	
Equal (=)

	
This operator will assign values from right side operand to left side operand.

	
c = a + b;

	
Add AND (+=)

	
This operator will add the right operand with left operand and assigns the sum to the left operand.

	
c += a à it is equivalent to c = c + a;

	
Subtract AND (-=)

	
This operator will subtract the right operand from the left operand and assigns the subtraction to the left operand.

	
c -= a à it is equivalent to c = c - a;

	
Multiply AND (*=)

	
This operator will multiply the right and left operand and assigns the multiplication to the left operand.

	
c *= a à it is equivalent to c = c * a;

	
Divide AND (/=)

	
This operator will divide the left operand with the right operand and assigns division to the left operand.

	
c /= a à it’s equivalent to c = c/a;

	
Modulus AND (%=)

	
This operator takes modulus by using both sides’ operand and assigns the outcome to left operand.

	
c %= a à it’s equivalent to c = c % a;

	
Exponent AND (**=)

	
Does ‘to the power’ calculation and assigns the outcome to the left operand.

	
c **= a à it’s equivalent to c = c**a

	
Floor division AND (//=)

	
It does floor division and assigns the outcome to the left operand.

	
c //= a à it’s equivalent to c = c // a;

Let’s see an example:

	
#!/usr/bin/Python3

a = 15

b = 20

c = 0

c = a + b

print(“value of c is”, c)

c += a

print(“value of c is”, c)

c *= a

print(“value of c is”, c)

c %= a

print(“value of c is”, c)

Output: 35, 50, 525, 5 are the outputs of the operators respectively.

Python Bitwise Operators

Bitwise operators are used to perform bit operations. All the decimal values will be converted in the binary format here.

Let’s suppose:

a = 0101 1010

b = 0001 1000

Then, it will be

(a & b) = 0001 1000

(a | b) = 0101 1010

(a ˆ b) = 0100 0010

(~a) = 1010 0101

Note: There is an in-built function [bin ()] in Python that can obtain the binary representation of an integer number.

Types of Bitwise Operators: [a = 0001 1000, b = 0101 1010]

	
Operators

	
Description of the operator

	
Example

	
Binary AND (&)

	
This operator executes a bit if it exists in both operands.

	
(a & b) is 0001 1000

	
Binary OR (|)

	
This operator executes a bit if it exists in one of the operands.

	
(a | b) is 0101 1010

	
Binary XOR (^)

	
This operator executes a bit if it is fixed in one operand but not in both

	
(a ^ b) is 0100 0010

	
Binary one’s complement (~)

	
This operator executes just by flipping the bits.

	
~a = 1110

~b = 0110

	
Binary left shift (<<)

	
This operator executes by moving left operand’s value more left. It’s specified by the right operand.

	
a << 100 (means 0110 0000)

	
Binary right shift (>>)

	
This operator executes by moving left operand’s value right. It’s specified by the right operand.

	
a >> 134 (means 0000 0110)

Let’s see an example:

	
#!/usr/bin/Python3

a = 50 # 50 = 0011 0010

b = 17 # 17 = 0001 0001

print(‘a=’, a, ‘:’, bin(a), ’b=’, b, ‘:’, bin(b))

c = 0

c = a & b; # 16 = 0001 0000

print(“result of AND is”, c, ‘:’, bin(c))

c = a | b; # 51 = 0011 0011

print(“result of 0R is”, c, ‘:’, bin(c))

c = a ^ b; # 66 = 0100 0010

print(“result of XOR is”, c, ‘:’, bin(c))

c = a>> 2; # 96 = 0110 0000

print(“result of right shift is”, c, ‘:’, bin(c))

Output:

Result of AND is 16 à 0b010000

Result of OR is 51 à 0b110011

Result of XOR is 66 à 0b01000010

Result of right shift is 96 à 0b01100000

Chapter 4-

 Basic Operators

Arithmetic Operators

These are operators that have the ability to perform mathematical or arithmetic operations that are going to be fundamental or widely used in this programming language, and these operators are in turn subdivided into:

Sum Operator: its symbol is (+), and its function is to add the values of numerical data. Its syntax is written as follows:

> 6 + 4

® 10

Subtract Operator: its symbol is the (-), and its function is to subtract the values of numerical data types. Its syntax can be written like this:

> 4 – 3

® 1

Multiplication Operator: Its symbol is (*), and its function are to multiply the values of numerical data types.

Its syntax can be written like this:

> 3 * 2

® 6

Division Operator: Its symbol is (/); the result offered by this operator is a real number. Its syntax is written like this:

> 3.5 / 2

® 1.75

Module Operator: its symbol is (%); its function is to return the rest of the division between the two operators. In the following example, we have that division 8 is made between 5 that is equal to 1 with 3 of rest, the reason why its module will be 3.

Its syntax is written like this:

> 8 % 5

® 3

Exponent Operator: its symbol is (**), and its function is to calculate the exponent between numerical data type values. Its syntax is written like this:

> 3 ** 2

® 9

Whole Division Operator: its symbol is (//); in this case, the result it returns is only the whole part.

Its syntax is written like this:

> 3,5 // 2

® 1.0

However, if integer operators are used, the Python language will determine that it wants the result variable to be an integer as well, this way you would have the following:

> 3 / 2

> 3 // 2

If we want to obtain decimals in this particular case, one option is to make one of our numbers real. For example:

> 3.0 / 2

Comparison Operators

The comparison operators are those that will be used to compare values and return; as a result, the True or False response as the case may be, as a result of the condition applied.

Operator Equal to: its symbol is (= =), its function is to determine if two values are exactly the same.

For example:

> 3 = = 3

® True

> 5 = = 1

® False

Operator Different than: its symbol is (! =); its function is to determine if two values are different and if so, the result will be True. For example:

> 3 ! = 4

® True

> 3 ! = 3

® False

Operator Greater than: its symbol is (>); its function is to determine if the value on the left is greater than the value on the right and if so, the result it yields is True. For example:

> 5 > 3

® True

> 3 > 8

® False

Operator Less than: its symbol is (<); its function is to determine if the left value is less than the right one, and if so, it gives True result. For example:

> 3 < 5

® True

> 8 < 3

® False

Operator (> =), its function is to determine that the value on the left is greater than the value on the right, if so the result returned is True. For example:

> 8 > = 1

® True

> 8 > = 8

® True

> 3 > = 8

® False

Operator (< =), its function is to evaluate that the value on its left is less than the one on the right, if so the result returned is True. For example:

> 8 < = 10

® True

> 8 < = 8

® True

> 10 < = 8

® False

Logical Operators

Logical operators are the and, or, not. Their main function is to check if two or more operators are true or false, and as a result, returns a True or False. It is very common that this type of operator is used in conditionals to return a Boolean by comparing several elements.

Making a parenthesis in operators, we have that the storage of true and false values in Python are of the bool type, and was named thus by the British mathematician George Boole, who created the Boolean algebra. There are only two True and False Boolean values, and it is important to capitalize them because, in lower cases, they are not Boolean but simple phrases.

The semantics or meaning of these operators is similar to their English meaning, for example, if we have the following expression:

X > 0 and x < 8, this will be true if indeed x is greater than zero and less than 8.

In the case of or, we have the following example:

> N=12

> N % 6 = = 0 or n % 8 = = 0

® True

It will be true if any of the conditions is indeed true, that is, if n is a
 number divisible by 6 or by 8.

In the case of the logical operator not, what happens is that it denies a Boolean expression, so, if we have, for example:

not (x < y) will be true if x < y is false, that is, if x is greater than y.

Chapter 5-

 Data Types in Python

Numbers

As indicated, Python accommodates floating, integer and complex numbers. The presence or absence of a decimal point separates integers and floating points. For instance, 4 is integer while 4.0 is a floating point number.

On the other hand, complex numbers in Python are denoted as r+tj where j represents the real part and t is the virtual part. In this context the function type() is used to determine the variable class. The Python function instance() is invoked to make a determination of which specific class function originates from.

Example:

Start IDLE.

Navigate to the File menu and click New Window.

Type the following:

number=6

print(type(number)) #should output class int

print(type(6.0)) #should output class float

complex_num=7+5j

print(complex_num+5)

print(isinstance(complex_num, complex)) #should output True

Important: Integers in Python can be of infinite length. Floating numbers in Python are assumed precise up to fifteen decimal places.

Integers

These are numbers that without decimal parts, such as -2, -1, -4, 0, 8, 6 etc.

In declaring an integer, write variableName = initial value

Example:

userAge = 20

mobileNumber = 12398724

Number Conversion

This segment assumes you have prior basic knowledge of how to manually or using a calculate to convert decimal into binary, octal and hexadecimal. Check out the Windows Calculator in Windows 10, Calculator version Version 10.1804.911.1000 and choose programmer mode to convert automatically.

Programmers often need to convert decimal numbers into octal, hexadecimal and binary forms. A prefix in Python allows denotation of these numbers to their corresponding type.

Number System Prefix

Octal ‘0O’ or '0o'

Binary ‘0B' or '0b'

Hexadecimal '0X or '0x'

Example

print(0b1010101) #Output:85

print(0x7B+0b0101) #Output: 128 (123+5)

print(0o710) #Output:710

Practice Exercise

Write a Python program to display the following:

	0011 11112

	747

	9316

Type Conversion

Sometimes referred to as coercion, type conversion allows us to change one type of number into another. The preloaded functions such as float(), int() and complex() enable implicit and explicit type conversions. The same functions can be used to change from strings.

Example:

Start IDLE.

Navigate to the File menu and click New Window.

Type the following:

int(5.3) #Gives 5

int(5.9) #Gives 5

The int() will produce a truncation effect when applied to floating numbers. It will simply drop the decimal point part without rounding off. For the float() let us take a look:

Start IDLE.

Navigate to the File menu and click New Window.

Type the following:

float(6) #Gives 6.0

ccomplex(‘4+2j’) #Gives (4+2j)

Practice Exercise

Apply the int() conversion to the following:

ü 4.1

ü 4.7

ü 13.3

ü 13.9

Apply the float() conversion to the following:

ü 7

ü 16

ü 19

Decimal in Python

Example

Start IDLE.

Navigate to the File menu and click New Window.

Type the following:

(1.2+2.1)==3.3 #Will return False, why?

Discussion

The computer works with finite numbers and fractions cannot be stored in their raw form as they will create infinite long binary sequence.

Fractions in Python

The fractions module in Python allows operations on fractional numbers.

Example

Start IDLE.

Navigate to the File menu and click New Window.

Type the following:

import fractions

print(fractions.my_fraction(2.5)) #Output 5/2

print(fractions.my_fraction(4)) #Output 5

print(fractions.my_fraction(2,5)) #output 2/5

NOTE

Creating my_fraction from float can lead to unusual results due to the misleading representation of binary floating point.

Mathematics in Python

To carry out mathematical functions, Python offers modules like random and math.

Start IDLE.

Navigate to the File menu and click New Window.

Type the following:

import math

print(math.pi) #output:3.14159….

print(math.cos(math.pi)) #the output will be -1.0

print(math.exp(10)) #the output will be 22026.4….

print(math.log10(100)) #the output will be 2

print(math.factorial(5)) #the output will be 120

Practice Exercise

Write a python program that uses math functions from the math module to perform the following:

ü Square of 34

ü Log1010000

ü Cos 45 x sin 90

ü Exponent of 20

Before tackling flow control, it is important we explore logical operators.

Comparison operators are special operators in Python programming language that evaluate to either True or False state of the condition.

Program flow control refers to a way in which a programmer explicitly species the order of execution of program code lines. Normally, flow control involves placing some condition (s) on the program code lines.

Chapter 6-

 Type Casting and Type Conversion In Python

Type Conversion refers to the process of changing the value of one programming data type to another programming data type. Think of dividing two integers that lead to decimal numbers. In this case, it is necessary to convert force the conversion of an integer into a float number. Python programming language has two types of conversion: implicit type conversion and explicit conversion.

Implicit Conversion Type

In this case, Python automatically changes one data type to another data type, and the process does not require user involvement. Implicit type conversion is mainly used with the intent of avoiding data loss.

Example

Conversion of Integer to Float

Start IDLE.

Navigate to the File menu and click New Window.

Type the following:

number_int=451

number_flo=4.51

number_new=number_int+number_flo

print(“the type of data of number_int-“, type(number_int))

print(“the type of data of number_flo-“, type(number_flo))

print(“value of number_new-“number_new)

print(“type of data of number_new-“, type(number_new))

The programming is adding two variables one of data type integer and the other float and storing the value in a new variable of data type float. Python automatically converts small data types into larger data types to avoid prevent data loss. This is known as implicit
 type conversion.

Python programming language cannot, however, convert numerical data types into string data type or string data type into numerical data type implicitly. Attempting such a conversion will generate an error.

Example:

Start IDLE.

Navigate to the File menu and click New Window.

Type the following:

number_int=432 #lower data type

number_str=”241” #higher data type

print(“The type of data of number_int-“, type(number_int))

print(“The type of data of number_str-“, type(number_str))

print(number_int+number_str)

Challenge: Can you guess why this is occurring? Python interpreter is unable to understand whether we want concatenation or addition precisely. When it assumes the concatenation, it fails to locate the other string. When it assumes the addition approach, it fails to locate the other number. The solution to the error above is to have an explicit type conversion.

Explicit Conversion

Here, programmers convert the data type of a named programming object to the needed data type. Explicit conversion is attained through the functions float(), int(), and str() among others.

The syntax for the explicit conversion is:

(needed_datatype) (expression)

Illustration

Summing of a string and integer using by using explicit conversion

Example:

Start IDLE.

Navigate to the File menu and click New Window.

Type the following:

number_int=431

number_str=”231”

print(“Type of data of number_int-“, type(number_int))

print(“Type of data number_str prior to Type Casting-“, type(number_str))

number_str=int(number_str)

number_sum=number_int+number_str

print(“Addition of number_int and number_str-“, number_sum)

print(“Type of data of the sum-“, type(number_sum))

One thing that we need to remember here is that running this program will display the data types and sum and display an integer and string.

In the above program, we added a number_str and number_int variable. We then converted number_str from string(higher data type) to integer(lower data type)type using int() function to perform the summation. Python manages to add the two variables after converting number_str to an integer value. The number_sum value and data type are an integer data type.

The conversion of the object from one data type to another data type is known as type conversion. The python interpreter automatically performs implicit type conversion. Implicit type conversion intends to enable Python to avoid data loss. Typecasting
 or explicit conversion happens when the data types of objects are converted using the predefined function by the programmer. Unlike implicit conversion, typecasting can lead to data loss as we enforce the object to a particular data type.

The previous explicit conversion/typecasting can be written as:

number_int=431 #int data type

number_str=”231” #string data type

number_str=int(number_str) #int function converting string into int data type

number_sum=number_int+number_str #variable number_sum

print(“Addition of number_int and number_str-“, number_sum)

Note: Explicit conversion/Type casting requires some practice to master, but it is easy. The trick is that the variable name to convert=predefined function for the desired data type (variable name to convert)

Follow up work:

Use the knowledge of typecasting/explicit data conversion to write a program to compute the sum of:

a. score_int=76

score_str=”61”

b. count_str=231

count_str=”24”

Use the knowledge of typecasting/explicit data conversion to write a program find the product of:

c. number_int=12

number_str=”5”

d. odds_int=6

odds_str=”2”

e. minute_int=45

minute_str=”7”

Formatting Output

It may become necessary to play around with the layout of the output to make it appealing, formatting. The str.format() method is used to format output and is visible/accessible to any string object.

Example:

Start IDLE.

Navigate to the File menu and click New Window.

Type the following:

lucy=3; brian= 7

print(‘The age of lucy is {} and brian is {}’.format(lucy,brian))

Note: The expected output is “The age of lucy is 3 and brian is 7”.

Giving it a try

Given print(‘She studies {0} and {1}’.format(‘Health’, ‘ICT’))

a.
 Rewrite the Python program to display “She studies ICT and Health”.

b.
 Rewrite the Python program to display “She studies Health and Health”

c.
 Rewrite the Python program to display “She studies ICT and ICT”.

Challenge: of was in real life the concept above (tuple index/specifying order of display) may be useful where you don’t have to rewrite entire lines of codes. For instance, think of a website that asks users to register for an account but begins with asking surname before the first name.

Now assume that the ICT team has recommended that the users should be asked their first name first before the surname. Write a simple Python simulation program to demonstrate how the tuple index concept can increase efficiency, readability, and maintainability of code.

Input in Python

So far our Python programs have been static meaning that we could not key in as everything was given to the variable before running the program. In real life, applications allow users to type in values to a program and wait for it to act on the values given. The input function (input()) is used to accept the information of benefits from the user.

Syntax/way of using it in Python

variable name=input(‘option to include a message to the user on what is happening/can leave it out’).

Example:

For this example, we are going to work on a program that accepts numerals from users

number=input(‘Type your number here:’) #Will display: Type a name here:

Python interpreter at this stage will treat any numbers entered as a string. For Python interpreter to interpret the keyed-in number as the number, we must convert the number using type conversion
 functions for names which are int() and float().

To convert the number into an integer, after input from the user does the following:

int(‘number’)

To convert the number into afloat, after input from the user does the following:

float(‘number’)

Giving it a try

a.
 Write a Python program to accept numerical data from users for their age, to capture the age of a user

b.
 Use explicit type conversion to convert the string entered into a floating value in a.

c.
 Write a Python program to accept salary figure input from users.

d.
 Use explicit type conversion to convert the string into a floating value in c.

e.
 Write a program to accept the count of students/number of students’ in a class from users.

f.
 Use explicit type conversion to convert the string entered into an integer data type in e.

Import in Python

The programs we have run so far are small, but in reality, an application can be hundreds to ten thousand lines of code. In this case, an extensive program is broken into smaller units called modules. These modules are related but on different files usually ending with the extension .py.

Python allows the importing of a module to another module using
 the keyword import. Analogy: You probably have some of your certificates scanned and stored in your Google drive, have your notebook in your desk, have a passport photo in your phone external storage, and a laptop in your room. When writing an application for an internship, you will have to find a way of accessing all these resources, but in normal circumstances, you will only work with a few even though all of them are connected. The same is true for programs.

Example:

Assume we need to access the math pi that is a different module. The following program will illustrate:

Start IDLE.

Navigate to the File menu and click New Window.

Type the following:

import.math #referencing to the contents of math module

print(math.pi) #Now utilizing the features found in that referenced math

Namespace in Python

When we start the Python interpreter, a namespace containing all inbuilt names is created as long the workspace remains application is active. Inbuilt functions such as print() and id() exist throughout the program.

Built-in Namespace: These are functions, methods, and associated data that immediately accessible as soon the Python interpreter loads and as such are available to each instance and area of the workspace.

	Global Namespace: This involves the contents of a module that are accessible throughout the module. Modules can
 have several functions and methods.

	Local Namespace: Mostly for user-defined functions, a local namespace is restricted to the particular service and outside the function access is not implicitly possible.

Variable Scope

Even though there might be several unique namespaces specified, it may not be possible to access all of the namespaces given because of scope. The concept of range refers to a segment of the program from where we access the namespace directly without any prefix. The following are the scope types:

i.
 Extent containing local names, current function.

ii.
 Scope containing global names, the range of the module.

iii.
 Scope containing built-in names of the outermost scope.

Type Conversion refers to the process of changing the value of one data type to another data type. Think of dividing two integers that lead to decimal numbers. In this case, it is necessary to convert force the conversion of an integer into a float number. Python programming language has two types of conversion: implicit type conversion and explicit conversion. In Python input and output (I/O) tasks are performed by inbuilt functions. The print() performs output/display, while input() performs input tasks.

Chapter 7-

 List

Lists

You can make lists of objects from the data types you’ve learned about so far. A list is also considered a data type.

Lists are indicated by brackets and you can separate list elements with commas:

[1,5,6,4,8]

["hi", "hello", "hey"]

["hi", 5, "hello", 8,"hey"]

Notice that the output for each list object is the list itself.

List Operations

You can perform operations on lists. Take note of what happens when you use the addition operator.

[1,2,3] + [4,5,6]

a = [1,2,3]

b = [4,5,6]

c = a+b

c

a+[4,5,6]

List Methods

You can add and remove single elements from lists. Here we start with an empty directory and add and remove items.

a = []

a.append("Hey")

a.append("Hi")

a

a.remove("Hey")

a

A method is a function that belongs to a specific object type. In this
 case, the append and remove methods can generally be applied to list objects. These two methods modify list a.

Indexing

You can access elements in a list by referencing the index of the element.

a = ["Hi","Hello","Hey","Howdy"]

“Hi” is in index 0.

“Hello” is in index 1.

“Hey” is in index 2.

“Howdy” is in index 3, and so on.

Compare the following. Notice that the ‘#’ begins the comment section of each line and will not show in your output.

a[0] # first element of list a

a[0:1] # index 0 through 1, not including 1

a[0:2] # index 0 through 2, not including 2

a[:2] # up to index 2, not including 2

a[1:3] # index 1 through 3, not including 3

a[-1] # last element of list a

a[-3:-1] # start at 3rd from end, not including last

a[-3:] # start at 3rd from end, including last

Note that the datatype of a[0] is an integer while the datatype of a[0:1] is a list.

You can find the index of the first occurrence of an element using the index method.

a = [1,2,3,8,8]

a.index(8)

Exercise 2

Create any list b. Use indexing to define a list c that contains only the last two elements of list b.

Nested Lists

Since a list is also considered a data type, you can create lists of files, with each list object as an element of the outer list.

[[1,2,3], [4,5,6], [7,8,9]]

a = [1,2,3]

b = [4,5,6]

c = [7,8,9]

d = [a,b,c]

d

You can access the first element in list b from list d through indexing.

Start by indexing list d to find the second element of list d to access list b.

d[1] # the same as list b

Then index list b to find the first element of list b.

d[1][0]

Exercise 3

Access the second element in list a from list d.

String Indexing

String indexing works similarly to list indexing.

a = "Hello, how are you?"

a[0]

a[0:5]

a[0:5] + a[-5:]

Exercise 4

a = ["hi","hello","hey","howdy"]

Using list indexing, create a string b that combines the first two letters of each string element in list a.

If Statements and For Loops

If Statements

An if statement is used to run commands only when conditions are met. The colon and indentation are necessary to indicate what to run when the indicated output from the Boolean operation is True.

a = 2

b = 4

if a == b:

print(a)

You won’t be able to run the if line by itself. You will need to run the entire block together by running the indented lines of code with the if statement. You can do this by highlighting both lines and using Run selection.

Notice here that the print statement above does not get run and therefore there is no output.

Exercise 1

Modify the code above so that the if condition is met and the output gives us a.

Use else to state which command should run when the condition is not met. You will need the run the entire block of code below together using Run selection.

if a == b:

print(a)

else:

print("Not equal")

Exercise 2

a = 1

b = 2

c = 3

if a > b:

a = a + b

print(a)

else:

print(b)

print(a)

Determine what the output will be if you run the lines above.

In some cases, you want to check multiple alternative conditions. For this, you use elif. It allows you to create one or more alternative conditions to the if condition.

When the if condition is met, only the commands under the if statement will run. When the if condition is not met but the elif condition is met, only the commands under the elif statement will run. When neither the if condition nor the elif conditions are met, only the commands under the else statement are run. Run the following block of code together.

if a == b:

print(a+b)

elif a < b:

print(a)

else:

print(b)

For Loops

For loops are used to perform the same commands on a list’s elements. Just as with if statements, you will need to run everything indented under the for statement along with the for statement.

Run the following for loops:

a = [1,2,3,4,5,6]

for i in a:

print(i)

for i in a:

print(i + 2)

Exercise 3

Create a for loop that prints only the first 3 elements of list a above. Hint: Use list indexing.

You can combine if statements and for loops to pick out and run commands on select elements in a list.

for i in a:

if i > 2:

print(i)

b = [4,5]

for i in a:

if i not in b:

print(i)

Exercise 4

a = [1,2,3,"Hello",4,5,"Hi",6]

Use a for loop and if statement to print out only the strings in list a. Hint: You will need to use a Boolean operator to check the object types of each element.

Exercise 5

Create an empty list b. Use a for loop and if statement to add all string elements in list a above to list b. Hint: Use a list operation.

Exercise 6

Add one line to the output from Exercise 5 to also remove all string elements from list a.

Dictionaries

With dictionaries, you can reference data based on a key rather than an integer as you would in a list. A dictionary element is organized as a key-value pair that is separated by a colon. Pair elements are separated by commas.

pets = {'cat': 'feline', 'dog': 'canine'}

Take a look at the keys and values in the pets dictionary.

pets.keys()

pets.values()

Unlike a list, a dictionary is unordered or does not use numbers for indexing. Instead, the key is used to find an associated value.

pets['cat']

Dictionaries are statistics sorts inside the Python programming language that is much just like a listing of sure gadgets contained in a selected collection. Let us project into some of the similar characteristics and variations that lists and dictionaries share, which will get the basic concept of what dictionaries are all approximately. Same traits of those two information types include: They are both mutable, for this reason because of any moving at any unique moment of time, they're dynamic. They are able to change in a manner that they're to grow and shrink for the duration of any episodes and a dictionary is able to containing any other dictionary in it, and a list is too ready to incorporate some other list in it consequently concluding that those statistics types may be nested. The only difference between those two facts types comes from how the information values are accessed. Lists are typically obtained with the aid of numerous indexing operations while dictionaries are primarily accessed with the assistance of the use of multiple sorts of keys.

Dictionaries basically consist of a few key-price pairs that usually are the vital thing to a targeted associated fee. We outline a dictionary in Python with the aid of first enclosing the whole listing the usage of curly brackets, setting a complete colon that separates the critical thing pairs to the associated value located, and lastly with the aid of the usage of a comma mark in isolating the numerous styles of key
 pairs which might be available in the dictionary. Another manner in which dictionaries may be constructed inside the Python world is through the use of dict() feature within the program. This one works in a way that the price of the argument inside the dict() feature includes the keys and the respective values which have been paired in conjunction with it. Kindly recollect that square brackets are commonly used to comprise the key-price pairs inside the application in question. Once dictionaries have been described, it's far viable to display its contents where they get displayed simply the identical manner they were described in a structural way.

Dictionaries are accessed via specifying its relevant key inside rectangular brackets symbol, and in a case wherein a certain key does now not exist

in a particular dictionary, an exception is raised right away as an error made. It is then possible to feature an individual entry in a specific dictionary in which a brand new key with its price is assigned in the software. In updating a selected access, an original cost is just attached to an existing key. During the delete of an entry operation, a del assertion is usually used specifying the real key to delete.

Lastly, strategies and diverse operations are usually applied in dictionaries so various tasks may be achieved. For example, if a developer has the purpose of copying a particular dictionary, he or she is obligated to apply the copy() method of the Python programming language.

Some of the opposite strategies include:

¾ Clear method - this method clears all of the forms of elements which can be present in the dictionary.

¾ Get approach - this one offers the fee of the key that has been certain within the dictionary.

¾ From keys - this kind of method gives out a specific quantity of keys and values from the dictionary.

¾ Keys - outputs a list that entails the keys in the dictionary.

¾ Pop - this technique eliminates the elements with the required keys. Value approach – this approach gives out a collection of all the values which can be present in a positive dictionary.

Chapter 8-

 How to Organize a List?

Sorting your list whilst practicing Python can be tough sometimes, right? Python makes use of the listing. Sort () technique that allows you to arrange your list in unique approaches inclusive of in:

¾ Ascending order.

¾ Descending order.

You can also use a built-in approach sorted () that generates a sorted list from any iterable. Most of the Python beginners have troubles when deciding on which technique to implement in the course of the listing enterprise. You are recommended to use the list generally. Sort () method because of numerous reasons:

¾ List.Sort () technique is much quicker than the different approach. It masses the listing first accompanied with the aid of the method that calls the characteristic without any arguments compared to the sorted () method that draws the functions the use of the listing as the arguments.

¾ List.Sort () method works with the list in place, and therefore, does now not must make a duplicate of the list. Contrarily, the sorted () method has to make copies of the list and works with any iterable. This creates a list. Sort () approach more efficient.

¾ However, both the list. Sort () method and sorted () techniques arrange the records in ascending via default. This section guides you on the various approaches of how to prepare your Python lists. It will tackle documents containing numbers, strings, tuples, and additionally items.

¾ Numbers: Sorting numerical in Python is a walk within the park. The listing containing binary in Python is the simple one to prepare. Below is an instance supplied on how to organize your binary list. L can be used to represent the name of the listing.

Ascending order

L=[67, 3, 16, 74, 2]

L.sort()

print (L)

Output=[2, 3, 16, 67, 74]

Descending order.

L=[67, 3, 16, 74, 2] L.sort (reverse=True) print (L)

Output=[74, 67, 16, 3, 2]

If you want to implement on the sorted () method, here is how to do it:

Ascending order. L=[67, 3, 16, 74, 2]

sorted_list= sorted (L)

L

[67, 3, 16, 74, 2] sorted_list

Output= [2, 3, 16, 67, 74]

Sorted () approach does not require definition in view that it is a constructed-in function discovered on every hooked up Python.

It does not contain any extra arguments due to the fact it's miles organizing the values in L from the smallest to the largest.

This technique does not trade the authentic values of L in place.

Strings

A string is a set of characters. In a state of affairs wherein you are supplied with lines and not numerical, here is a guide on how to do your organization the usage of both of the strategies.

Let’s say you are supplied with a listing F.

Ascending order

F= [“guava”, “mango”, “pineapple”, “avocado”]

F. sort ()

F Output= [‘avocado’, ‘guava’, ‘mango’, ‘pineapple’]

Descending order using sorted () method.

F=[“guava”, “mango”, “pineapple”, “avocado”] sorted (F,
 reverse=True)

Output= [‘pineapple’, ‘mango’, ‘guava’, ‘avocado’]

In a specific scenario in which your list of strings is composed of each uppercase and lowercase strings, the output will differ from the rest mentioned above. Uppercase strings in Python are commonly dealt with as decrease characters than the lowercase lines. Here is an example to help you apprehend better.

Let’s say you've got a listing R, beneath will be the output.

Ascending order.

R=[“town”, “country”, “Kenya”, “home”]

R. sort ()

R Output= [‘Kenya’, ‘country’, ‘home’, ‘town’]

Case insensitive lists may be sorted via using a positive parameter known as key that is utilized by both the kind and the sorted technique. It assists in specifying the function to be called from the objects in a listing. Take an eager appearance at the example below.

R=[“town”, “country”, “Kenya”, “home”]

R. sort (key=str.lower)

R Output= [‘country’, ‘home’, ‘Kenya’, ‘town’]

The str.lower has instructed the kind technique to carry out the sorting on all of the lowercase strings. The parameter has enabled you to outline the customized characteristic.

Tuples

When it comes to tuples, the first detail is the one underneath evaluation that makes it much like how strings are carried out. Both of the sorting strategies may be used while organizing lists in tuples. Take a glance at the instance given under.

Sorted ([(5, 4), (3, 3), (4, 8)]) Output= [(3, 3), (4, 8), (5, 4)] However, this might not be the case in all conditions. Some scenarios might have a tuple whose first detail indicates a call at the same time as the second detail suggests the age of an man or woman. Such conditions will force you to implement the important thing
 parameter again to be able to prepare the tuple with the aid of age.

You will personalize the sorting via defining the important thing function. You can reap that by doing the following:

#define the custom sort for your list

#return the numerical value of the tuple

L=[(“Eva”, 21), (“John”, 53), (“Mary”, 14), (“Reddington”, 45)]

#call on the function #run the L list print (L)

#The result will be

[(‘Mary’, 14), (‘Eva’, 21), (‘Reddington’, 45), (‘John’, 53)] ✓

 Objects.

This is the final sort of list in Python you are going to learn on this section. In a state of affairs in which you're handling gadgets, you may arrange them using the vital thing parameter. Let’s say you have a Person elegance with attributes of name and age, that is how you may prepare it in Python. elegance Person:

#Define the variables used def _init_ (self, name, age)

#Declare the variable name #Declare the variable age self. age= age

Try creating objects of the class Person and insert them to a list L. This is how it can be done.

Mary= Person (‘Mary’, 14)

John=Person (‘John’, 53)

Eva= Person (‘Eva’, 21)

Reddington= Person (‘Reddington’, 45) L= [Eva, John, Mary, Reddington]

You can arrange the objects of the magnificence by the usage of the attributes which you prefer.

When you are making up your mind to apply its call attribute, that is how it's miles done.

#assign the key parameter used to a lambda

#run the names of the items in the list #The result of the code will be:

Output= [‘Eva’, ‘John’, ‘Mary’, ‘Reddington’]

This is how it is done when you decide to organize the objects by the age attribute.

#assign the key parameter to a lambda

#print the names of the elements according to the attribute

#The result of the code will be:

Output= [‘Mary’, ‘Eva’, ‘Reddington’, ‘John’]

Custom sort definition on any object in Python is a piece of cake.

Good success with that.

Chapter 9-

 How to Make Your Program Interactive

Inputs ()

So far, we’ve only been writing programs that only use data we have explicitly defined in the script. However, your applications can also take in input from a user and utilize it. Python lets us solicit contributions from the user with a very intuitively named function - the input() function. Using the input() function enables us to prompt the user to enter information, which we can further manipulate. For example, we can take the user’s input and save it as a variable, print it straight to the terminal, or do anything else we might like.

When we use the input function, we can pass in a string. The user will see this string as a prompt, and their response to the prompt will be saved as the input value. For instance, if we wanted to query the user for their favorite food, we could write the following:

favorite_food = input("What is your favorite food?: ")

If you ran this code example, you would be prompted to input your favorite food. You could save multiple variables this way and print them all at once using the print() function along with print formatting, as we covered earlier. To be clear, the text that you write in the input function is what the user will see as a prompt; it isn’t what you are inputting into the system as a value.

When you run the code above, you’ll be prompted for an input. After you type in some text and hit the enter/return key, the text you wrote will be stored as the variable favorite_food. The input command can be used along with string formatting to inject variables into the text prompt that the user will see. For instance, if we had a variable called user_name that stored the name of the user, we could structure the input statement like this:

favorite_food = input("What is {}’s favorite food?: ").format("user name here")

Print ()

In order to prevent a long string from running across the screen, we
 can use triple quotes to surround our string. Printing with triple quotes allows us to separate our print statements onto multiple lines. For example, we could print like this:

print('''By using triple quotes we can

Divide our print statement onto multiple

Lines, making it easier to read.''')

Formatting the print statement like that will give us:

By using triple quotes we can

Divide our print statement onto multiple

Lines, making it easier to read.

What if we need to print characters that are equivalent to string formatting instructions? For example, if we ever needed to print out the figures “%s“or “%d“, we would run into trouble. If you recall, these are string formatting commands, and if we try to print these out, the interpreter will interpret them as formatting commands.

Here’s a practical example. As mentioned, typing “/t” in our string will put a tab in the middle of our line. Assume we type the following:

Print ("We want a \t here, not a tab.")

We’d get back this:

We want a here, not a tab.

By using an escape character, we can tell Python to include the characters that come next as part of the string’s value. The escape character we want to use is the “raw string” character, an “r” before the first quote in a series, like this:

print(r"We want a \t here, not a tab.")

So, if we used the raw string, we’d get the format we want back:

We want a \t here, not a tab.

The “raw string” formatter enables you to put any combination of characters you’d like within the string and have it be considered as part of the string’s value.

However, what if we did want the tab in the middle of our string? In
 that case, using special formatting characters in our string is referred to as using “escape characters.” “Escaping” a string is a method of reducing the ambiguity in how characters are interpreted. When we use an escape character, we escape the typical way that Python uses to explain certain aspects, and the roles we type are understood to be part of the string’s value. The escape primarily used in Python is the backslash (\). The backslash prompts Python to listen for a unique character to follow that will be translated to a specific string formatting command.

We already saw that using the “\t” escape character puts a tab in the middle of our string, but there are other escape characters we can use as well and they are shown below:

\n - Starts a new line

\\- Prints out a backslash itself

\" - Prints out a double quote instead of a double quote marking the end of a string

\' - Like above, but prints out a single quote

Input and Formatting Exercise

Let’s do another exercise that applies what we’ve covered in this section. You should try to write a program that does the following:

	Prompts the user for answers to several different questions

	Prints out the answers on different lines using a single print statement

Give this a shot before you look below for a solution to this exercise prompt.

If you’ve given this a shot, your answer might look something like this:

favorite_food = input("What's your favorite food? :")

favorite_animal = input("What about your favorite animal? :")

favorite_movie = input("What's the best movie? :")

print("Favorite food is: " + favorite_food + "\n" +

"Favorite animal is: " + favorite_animal + "\n" +

"Favorite movies is: " + favorite_movie)

Triple Quotes

If we want displaying a long message with the use of the print function, we may use the triple-quotes symbol (“or”) in order to span over multiple lines in our message.

Example:

print ('''Hi World.

My name is Christopher and

I am 21 years old.''')

This will give us:

Hi World.

My name is Christopher and

I am 21 years old.

This help and increase the readability of the message.

Escape Characters

Sometimes, we also need to have some special “unprintable” characters printed. In order to do that, we need the \ (backslash) character to escape the characters that have different meaning otherwise.

Example, in printing a tab, we will type the backlash character before letter t: \t. if the \ character will be removed, the letter t will be printed. By doing that, a tab will be printed, in other words, if you will type print (‘Hi\tWorld’) you’ll get Hi World

The other uses of the backlash character will be shown:

>>> will show the command & the next lines be showing the output.

\n (Prints a newline)

>>> print ('Hello\nWorld')

Hello

World

\\ (Prints the backslash character itself)

>>> print ('\\')

\

\" (Prints double quote, so that the double quote does not signal the end of the string)

>>> print ("I am 5'9\" tall")

I am 5'9" tall

\' (Print single quote, so that the single quote does not signal the end of the string)

>>> print ('I am 5\'9" tall')

I am 5'9" tall

If you don’t want the characters to be preceded by the \ character to be interpreted as special characters, you may use raw strings and this can be used if you will add an r on the first quote. And if you don’t want \t to be interpreted as a tab, you must type print (r’Hi\tWorld’). You must get Hi \tWorld as the output.

Chapter 10-

 Making Choices and Decisions

Your Choices and Decisions in Python Versions

As a type of interpreted language, Python does have a lot of advantages over the other programming languages. One of these advantages is that it has the ability to grow and make changes as your computing needs change. Like your desktop applications, the fact that Python is continually developed will allow for new features to be added to the language, and you will see a lot of refinements added to Python to make it easier to use.

Throughout the years, there have been various versions of the Python language released, each one providing different features and benefits compared to the one before. Some of the different options you can choose when it comes to working with Python include:

The first version of Python that we need to take a look at here is going to be Python 2. This was the version of Python that was released in 2000, but there have been a few versions of this that were released over time. The latest version of this one, Python 2.7 was released in 2010 and is likely to be the last of the Python 2 family that developers are going to work on since focus has moved over to working with Python 3.

While most programmers are going to work with Python 3 because it is the newer version out of the two, you will find that if this version is already on your computer, you will be able to complete a lot of the coding that you want. And it is an accessible version to work with, providing us with many of the features that we need to complete Python coding, without all of the extras that seem neat, but tend to slow down the system

There are also times when the programming requirements for your company, such as ones that maybe have a little bit older technology, will benefit more from the Python 2 version that is available. For example, if you are working on a company that has some policies in place that discourage or ban the installation of unapproved software from other sources, then you may find that Python 2 will fit the bill a bit better. This is because the Python 2 version is pre-installed on
 many computers ahead of time, so you won’t have to worry about doing this yourself.

In addition, there are many third-party libraries and packages that are used to help extend what capabilities the 2.X version can handle, and some of them are not present in the newer 3.X version. If you want to work with a specific library for your application, you may find that it is only available in the 2.X release. You would need to download this version to get it to work for you.

If you do decide that this version is the best one, you should still take a look at the 3.X release. There are some differences in the best programming practices of each and you may even be able to make slight modifications to your code on the 2.X version and get it to work on the newer version.

Then you have the option of working with the Python 3 library. Many people who decide to work with Python are going to take some time to look at how they can work with Python 3 because it is the newest and the one that the Python developers are working on right now. This is the version that was initially released in 2008. There are several versions that have come out since that time so you are able to pick the one that works the best for you.

Since Python 3 is the most current version of this language, most of the examples and the codes that we are going to talk about in this guidebook will be based on this version. You will find that there are many benefits that work with Python 3 because it has a lot of add-ons that we need, has the latest libraries, and since it is the version that developers are working on right now, it will get the latest in features, developments, and updates as time goes on.

Chapter 11-

 Functions, Conditional Statements and Loops

Functions

A function in Python is a group of statements that take input, perform certain calculations, and generate output. The idea is to combine everyday tasks to perform a specific function, with the aim of calling the service instead of writing the same code multiple times for different inputs. Python comes with built-in functionalities, but developers can still add their own purposes, commonly referred to as user-defined functions.

An example of a simple Python function to check whether a certain value is an even number or an odd number is:

	def evenOdd(x):

	if (x % 2 ==0):

	print "even"

	else:

	print "odd"

	# Driver code

	evenOdd(2)

	evenOdd(3)

Developers should understand that, in Python, the name of every variable is a reference. Therefore, when they pass a variable to a particular function, they will create a new reference to the object. Essentially, it is Python's version of reference passing in Java.

Functions in Python are essential when it comes to data analysis and machine learning. They save time and effort applied in coding. In other words, they allow developers to reuse a specific subset of code in their program whenever they need to. A primary function contains the following things:

1. Code that the developer wants certain functions to run whenever they call it

2. Function name to use when calling a particular function

3. Def keyword to let the program know when developers are adding their own functions

Essentially, when developers want to use a certain function, they simply call it using its name followed by parenthesis, i.e., function name (), for example, if the aim of the function is to print the word 'Thanks' with the name of the user, the developer can use the following code:

def func(name):

print("Thanks" +" " + name)

Whenever the developer needs to call this function, all he/she needs to do is pass its name as a parameter in string format, which will generate the desired output. For example, func("Paul") will return "Thanks Paul."

On the other hand, if a developer wants a function to generate a value, he/she can define it as follows:

	def square(value):

	new_value = value ** 2

	return new_value

	Output-

	number = square(4)

	print(number)

	16

Developers can also define default arguments to return the predefined default values if someone does not assign any value for that argument.

It is normal to wonder why it is essential to use functions for machine learning when using Python. Sometimes, developers may be trying to solve a problem where they need to analyze different models of machine learning to achieve better accuracy or any other metric, and then plot their results using different data visualization packages.

In such situations, they can write the same code multiple times, which is often frustrating and time-consuming, or simply create a function with certain parameters for each model and call it whenever needed. Obviously, the last option is more simple and efficient.

In addition, when a dataset contains tons of information and features, the amount of work and effort required will also increase. Therefore, after analyzing and engineering different data and features, developers can easily define a function that combines various tasks or elements and create plots easily and automatically.

Substantially, when developers define a function, they will drastically reduce the complexity and length of their code, as well as the time and resources required to run it efficiently. In other words, it will help them automate the whole process.

Python also allows for a defined function in the program to call itself, also known as function recursion. This programming and mathematical concept allow developers to loop through data to achieve a specific result. However, they should be cautious with this function because it is possible to code a service that uses too much processing power and memory, or one that never terminates. When done correctly, however, it can be an elegant and efficient approach to programming.

Conditional Statements

The world is a complicated place; therefore, there is no reason why coding should be secure, right? Often, a program needs to choose between different statements, execute certain statements multiple times, or skip over others to complete. This is why there is a need for control structures, which direct or manage the order of statement execution within a program.

To function in the real world, people often have to analyze information or situations and choose the right action to take based on what they observe and understand. In the same way, in Python, conditional statements are the tool developers use to code the decision-making process.

Controlled by IF statements in Python, conditional statements perform various actions and computations depending on whether a particular constraint is true or false. Primarily, a conditional statement works as a decision-making tool and runs the body of code only when it is true. Developers use this statement when they want to justify one of two conditions.

On the other hand, they use the 'else condition, when they need to judge one statement based on another. In other words, if one condition is not real, then there should be a condition justifying this logic. However, sometimes, this condition might not generate the expected results; instead, it gives the wrong result due to an error in the program logic, which often happens when developers need to justify more than two conditions or statements in a program.

In its most basic form, the IF statement looks as follows:

1.
 If <expr>:

2.
 <statement>

In this case, if the first part of the statement is true, then the second part will execute. On the other hand, if the first one is false, the program will skip the second one or not execute the statement at all. That said, the colon symbol following the first part is necessary. However, unlike most other programming languages, in Python, developers do not need to enclose the first part of the statement in parentheses.

There are situations where a developer may want to evaluate a particular condition and do several things if it proves to be true. For example:

If the sun comes out, I will:

1. Take a walk

2. Weed the garden

3. Mow the lawn

If the sun does not come out, then I will not perform any of these functions.

In most other programming languages, the developer will group all
 three statements into one block, and, if the first condition returns true, then the program will execute all three statements in the block. If it returns false, however, none will execute.

Python, on the other hand, follows the offside rule, which is all about indentation. Peter J Landin, a computer scientist from Britain, coined this term taken from the wrong law in soccer. The relatively few machine languages that follow this rule define these compound statements or blocks using indentation.

In Python, indentation plays a vital function, in addition to defining blocks. Python considers contiguous statements indented to the same level to constitute the same compound statement. Therefore, the program executes the whole block if the report returns true, or skips it if false. In Python, a suite is a group of accounts with the same level of indentation level.

Most other machine languages, on the other hand, use unique tokens to identify the beginning and end of a block, while others use keywords. Beauty, however, is in the eye of the beholder. On the one hand, the use of indentation by Python is consistent, concise, and clean.

On the other hand, in machine languages that do not adhere to the offside rule, code indentation is independent of code function and block definition. Therefore, developers can write indent their code in a way that does not match how it executes, which can create a wrong impression when someone looks at it. In Python, this type of mistake cannot happen. The use of indentation to define compound statements forces developers to remain true to their standards of formatting code.

Sometimes, while evaluating a certain condition, developers might want to perform a certain function if the condition is true, and perform an alternative function if it turns out to be false. This is where the 'else' clause comes in. for example:

	if <expr>:

	<statement/statements>

	else:

	<statement/statements>

If the first line of the statement returns true, the program executes the first statement or group of statements and skips the second condition. On the other hand, if the first condition returns false, the program skips the first condition and executes the second one. Whatever happens, however, the program resumes after the second set of conditions.

In any case, indentations define both suits of statements. As opposed to machine languages that use delimiters, Python uses indentation; therefore, developers cannot specify an empty block, which is a good thing.

Other types of conditional statements supported by Python that developers need to look into include:

1. Python's ternary operator

2. One line IF statements

3. The PASS statement

4. While statement

5. For statement

Conditional statements are essential when it comes to writing a more complex and powerful Python code. These control statements or structures allow for the facilitation of iteration, which is the execution of a block or single account repeatedly.

Loop

Traditionally, developers used loops when they needed to repeat a block of code a certain number of times. Every vital activity in life needs practice to be perfect. In the same way, machine-learning programs also need repetition to learn, adapt, and perform the desired functions, which means looping back over the same code or block of law multiple times.

Python supports several ways of executing loops. While all these ways offer the same basic functionality, they are different when it comes to their condition checking time and syntax. The main types of loops in Python are:

	While loop

	For in loop

The first type of loop repeats as long as certain conditions return true. Developers use this loop to execute certain blocks of statements until the program satisfies certain conditions. When this happens, the line or code following the look performs. However, this is a never-ending loop unless forcefully terminated; therefore, developers need to be careful when using it

Fortunately, developers can use a 'break statement' to exit the loop, or a 'continue statement' to skip the current block and return to the original statement. They can also use the 'else' clause if the 'while' or 'for' statement fails.

On the other hand, developers use for loops to traverse an array, string, or list. These loops repeat over a specific sequence of numbers using the 'xrange' or 'range' functions. The difference between these two ranges is that the second one generates a new series with the same field, while the first one creates an iterator, making it more helpful and efficient.

Other types of loops developers need to look into include:

1. Iterating by the index of elements

2. Using else-statements with for in loops

3. Nested loops

4. Loop control statements

When Guido van Rossum released Python back in 1991, he had no idea that it would come to be one of the most popular and fastest-growing computer learning languages on the market. For many developers, it is the perfect computer language for fast prototyping because of its readability, adaptability, understandability, and flexibility.

Chapter 12-

 Python And The Data

Data In The Era Of Data Science

Data science has many facets but its main characteristic remains the processing of the data. This data is the raw material on which the data scientist must work on. Knowing the information is essential.

A datum is a basic description of reality. This data, which we have the reflex to imagine in the form of a table, does not have a fixed format. An image, a video, a statement at time t, an annual average of production are all data. It's up to you to define the data and it's the first vital work. You have to be able to answer the question: how can I describe the reality around me? In this process, there is a lot of subjectivity involved. For example, when you decide to measure the number of visitors to a website, you will store data. These data are stored as lines.

Depending on what you have decided, a line can be associated with:

an individual who arrives on the site,

a number of individuals per hour,

a time of presence per individual on the site.

Depending on the data you have selected, you will be asked to answer different questions. So why not store everything? Because for this it is necessary to completely define all the information related to a visitor, which in the case of a website is feasible but will become impossible for complex systems.

The data that you will have is the result of a selection process that must be as neutral as possible (if no purpose is predefined), or to answer a specific question. However, there are three types of data:

structured data,

semi-structured data,

unstructured data

The Type of Data

Structured data

This is the data in which it is customary to treat it as structured. They are usually organized as databases with columns and lines. They are composed of numerical values ​​
 for quantitative data or textual values ​​
 for qualitative data (expectation they should not be confused with textual data).

Most data processing algorithms are now based on structured data. One of the tasks of the data scientist is to transform unstructured data in structured data. This task is greatly simplified by Python. It is therefore expected to have one line per statistical individual and one column per variable in a mathematical sense (not to be confused with variables in Python). An individual statistical variable can be a visitor to a website but also an activity during a given time (number of clicks per hour) or a transaction.

Unstructured data

These are data that do not have a standard structure, they are easily understandable for us but not by a machine. The most classic examples are:

textual data,

images,

videos, sounds ...

All these sources are central today in understanding the world around us and the work of the data scientist will be transforming them in order to process them automatically.

Semi-structured data

This data is halfway between the structured and non-structured data. This category includes data of the JSON type, pages, HTML, XML data. They are not organized in rows/columns but have beacon systems that can transform them quite directly into structured data

The Data Preparation Work

The preparation of the data is divided into many crucial stages like,

recovery,

structuring,

transformation.

Python will help you with these three steps. We will start with ourselves to tighten the structures that will allow us to store the data: the arrays of NumPy and the DataFrame of Pandas.

The Numpy Arrays

The development of Python-related data has mostly been done thanks to a package absolutely central for Python. This is NumPy (an abbreviation of Numerical Python). NumPy makes it possible to transform a very classical programming language in a numerical oriented language. It has been developed and improved for many years and now offers an extremely well-organized system of data management.

The central element of NumPy is the array that stores values ​​
 in a structure supporting all types of advanced calculations. The strength of NumPy lies mainly in the fact that it is not coded directly in Python but in C, which gives it an unequaled processing speed with the "classic" Python code. The goal of the NumPy developers is to provide a simple, fast and comprehensive tool to support the various developments in the field of digital processing. NumPy is often presented at the same time as SciPy, a package for scientific computing based on structure from NumPy.

NumPy is useful for both novice and seasoned developers seasoned. ndarray, which are n-dimensional structures, are used by all Python users to process the data. Moreover, the tools allowing interfacing Python with other languages ​​such as C or Fortran are not used only by more advanced developers.

The Numpy ndarray

An ndarray object is an n-dimensional structure that stores data. Only one type of data is stored in an ndarray. We can have ndarray objects with as many dimensions as necessary (a dimension for a vector, two sizes for a matrix ...).

Ndarray objects are a "minimal" format for storing data. Ndarray objects have specific optimized methods that allow you to do
 calculations extremely fast. It is possible to store ndarray in files to reduce the necessary resources. The ndarray has two essential attributes: the type and the shape. When creating an ndarray, we can define the brand and the way or let Python infer these values.

To use NumPy, we always use the same method: import numpy as np. From now on, we use the term array to designate a ndarray object.

3.2.2 Building An Array

The simplest way to build an array is to use the function of

NumPy: np.array ()

We can create an array from a list with:

array_de_liste np.array = ([1,4,7,9])

This function takes other parameters including the type, that is to say, the typical elements of the array. The types are very varied in NumPy. Outside of classical types such as int, float, boolean or str, there are many types in NumPy.

We can create an array from a series of numbers with the function range () which works like the Python range () function.

In []: array_range = np.arange (10)

print (array_range)

[0123456789]

Apart from the arrange () function of NumPy, we can use the linspace () function which will return numbers in an interval with a constant distance from one to the other:

In []: array_linspace = np.linspace (0,9,10) print (array_linspace)

[0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]

We see that 0 is the lower bound, 9 is the upper bound and we divide into 10 values. We can specify each time the dtype = in each function. From specific formats, there are functions to generate arrays.

The Type Of Data In The Arrays

The type of the array is inferred automatically but it can also be specified. So if we want to define an array filled with integers of type int, we will be able to do it with:

arr1 = np.array ([1,4,7,9], dtype = int)

In this case, the floats of my array are automatically transformed into integers. There are many types, here is a non-exhaustive list:

int: integers

float: decimal numbers

bool: booleans

complex: complex decimal numbers

bytes: bytes

str: strings

number: all types of numbers

The arrays, therefore, use the advantage of Python with automatic typing but also allow fixed typing, which can be useful in many cases.

The Properties Of An Array

We will use a NumPy function to generate arrays of random numbers, from a reduced normal centered distribution:

arr_norm np.random.randn = (100000)

If we want information on this array, we will use:

In []: print (arr_norm.shape, arr_norm.dtype, arr_norm.ndim, arr_norm. Size, arr_norm.itemsize, sep = "\ n")

(100000)

oat64

1

100000

8

We have thus displayed the shape of our array, the type of data stored and the number of dimensions. The form is stored in a tuple,
 even for the case at a size. NumPy works like this so as not to differentiate the type of output. The shape attribute to the number of aspects of the processed array.

Accessing Elements Of An Array

Access to elements of an array is effortless, exactly as in a list for a one-dimensional array:

mon_array [5:]

This gives access to the last elements of the array. We can nevertheless go a little further with this principle:

my_array [start: n: not]

Moreover, if you want to access elements that are not glued to each other, we can use lists of values:

In []: arr_mult = np.arange (100) .reshape (20.5)

arr_mult [: [0.4]] shape.

Out []: (20, 2)

In []: arr_mult [:, 0: 4] .shape

Out []: (20, 4)

We create here an array with integers between 0 and 99 that we transform into a matrix of 20 rows and 5 columns. The second line allows us to extract all rows from columns 0 and 4. On gets an array with 20 rows and 2 columns. In the second part of the code, columns are extracted from 0 to 3 using the two dots. If we want to extract lines, we can proceed in the same way:

In []: list_ind = [2,5,7,9,14,18]

arr_mult [list_ind,:] shape.

Out []: (6, 5)

Individuals whose indices are in the list_ind list are extracted. We display the size of the array obtained.

Chapter 13-

 Data Analysis with Python

In 2001, Gartner defined Big data as “Data that contains greater variety arriving in increasing volumes and with ever higher velocity.” This led to the formulation of the “three V’s.” Big data refers to an avalanche of structured and unstructured data that is endlessly flooding and from a variety of endless data sources. These data sets are too large to be analyzed with traditional analytical tools and technologies but have a plethora of valuable insights hiding underneath.

The “Vs” of Big data

Volume – To be classified as big data, the size of the given data set must be substantially larger than traditional data sets. These data sets are primarily composed of unstructured data with limited structured and semi structured data. The unstructured data or the data with unknown value can be collected from input sources such as web pages, search history, mobile applications, and social media platforms. The size and customer base of the company is usually proportional to the volume of the data acquired by the company.

Velocity – The speed at which data can be gathered and acted upon the first to the velocity of big data. Companies are increasingly using combination of on premise and cloud-based servers to increase the speed of their data collection. The modern day “Smart Products and Devices” require real-time access to consumer data, in order to be able to provide them a more engaging and enhanced user experience.

Variety – Traditionally a data set would contain majority of structured data with low volume of unstructured and semi-structured data, but the advent of big data has given rise to new informal data types such as video, text, audio that require sophisticated tools and technologies to clean and process these data types to extract meaningful insights from them.

Veracity – Another “V” that must be considered for big data analysis is veracity. This refers to the “trustworthiness or the quality” of the
 data. For example, social media platforms like Facebook and Twitter with blogs and posts containing hashtags, acronyms and all kinds of typing errors can significantly reduce the reliability and accuracy of the data sets.

Value – Data has evolved as a currency of its own with intrinsic value. Just like traditional monetary currencies, the ultimate cost of the big data is directly proportional to the insight gathered from it.

History of Big Data

The origin of large volumes of data can be traced back to the 1960s and 1970s when the Third Industrial Revolution had just started to kick in, and the development of relational databases had begun along with construction of data centers. But the concept of big data has recently taken center stage primarily since the availability of free search engines like Google and Yahoo, free online entertainment services like YouTube and social media platforms like Facebook. In 2005, businesses started to recognize the incredible amount of user data being generated through these platforms and services, and in the same year and opensource framework called “Hadoop,” was developed to gather and analyze these astronomical data dumps available to the companies. During the same period nonrelational or distributed database called “NoSQL,” started to gain popularity due to its ability to store and extract unstructured data. “Hadoop” made it possible for the companies to work with big data with high ease and at a relatively low cost.

Today with the rise of cutting edge technology, not only humans but machines also generating data. The smart device technologies like “Internet of things” (IoT) and “Internet of systems” (IoS) have skyrocketed the volume of big data. Our everyday household objects and smart devices are connected to the Internet and able to track and record our usage patterns as well as our interactions with these products and feeds all this data directly into the big data. The advent of machine learning technology has further increased the volume of data generated on a daily basis. It is estimated that by 2020, “1.7 MB of data will be generated per second per person.” As the big data will continue to grow, it usability still has many horizons to cross.

Importance of big data

To gain reliable and trustworthy information from a data set, it is essential to have a complete data set which has been made possible with the use of big data technology. The more data we have, the more information and details can be extracted out of it. To gain a 360 view of a problem and its underlying solutions, the future of big data is auspicious. Here are some examples of the use of big data:

Product development – Large and small e-commerce businesses are increasingly relying upon big data to understand customer demands and expectations. Companies can develop predictive models to launch new products and services by using primary characteristics of their past and existing products and services and generating a model describing the relationship of those characteristics with commercial success of those products and services. For example, a leading fast manufacturing commercial goods company Procter & Gamble extensively uses big data gathered from the social media websites, test markets and focus groups in preparation for their new product launch.

Predictive maintenance – To besides leave project potential mechanical and equipment failures, a large volume of unstructured data such as error messages, log entries, and average temperature of the machine must be analyzed along with available structured data such as make and model of the equipment and year of manufacturing. By examining this big data set using the required analytical tools, companies can extend the shelf life of their equipment by preparing for scheduled maintenance ahead of time and predicting future occurrences of potential mechanical failures.

Customer experience – The smart customer is aware of all of the technological advancements and is loyal only to the most engaging and enhanced user experience available. This has triggered a race among the companies to provide unique customer experiences analyzing the data gathered from customers’ interactions with the company’s products and services. Providing personalized recommendations and offers to reduce customer churn rate and effectively kind words prospective leads into paying customers.

Fraud and compliance – Big data helps in identifying the data patterns and assessing historical trends from previous fraudulent transactions to detect and prevent potentially fraudulent transactions effectively. Banks, financial institutions, and online payment services like PayPal are continually monitoring and gathering customer transaction data to prevent fraud.

Operational efficiency – With the help of big data predictive analysis. companies can learn and anticipate future demand and product trends by analyzing production capacity, customer feedback, and data about topselling items and product Will result in to improve decision-making and produce products that are in line with the current market trends.

Machine learning – For a machine to be able to learn and train on its own it requires humongous volume of data, i.e. big data. A robust training set containing structured, semi-structured and unstructured data will help the machine to develop a multidimensional view of the real world and the problem it is engineered to resolve.

Drive innovation – By studying and understanding the relationships between humans and their electronic devices as well as the manufacturers of these devices, companies can develop improved and innovative products by examining current product trends and meeting customer expectations.

“The importance of big data doesn’t revolve around how much data you have, but what you do with it. You can take data from any source and analyze it to

find answers that enable 1) cost reductions, 2) time reductions, 3) new product development and optimized offerings, and 4) smart decision making.”

- SAS

The functioning of big data

There are three important actions required to gain insights from big data:

Integration – The traditional data integration methods such as ETL
 (Extract, Transform, Load) are incapable of collating data from a wide variety of unrelated sources and applications that are you at the heart of big data. Advanced tools and technologies are required to analyze big data sets that are exponentially larger than traditional data sets. By integrating big data from these disparate sources, companies are able to analyze and extract valuable insight to grow and maintain their businesses.

Management – Big data management can be defined as “the organization, administration, and governance of large volumes of both structured and unstructured data.” Big data requires efficient and cheap storage, which can be accomplished using servers that are on-premise, cloud-based or a combination of both. Companies are able to seamlessly access required data from anywhere across the world and then processing this is data using required processing engines on as-needed basis. The goal is to make sure the quality of the data is high-level and can be accessed easily by required tools and applications. Big data gathered from all kinds of Dale sources including social media platforms, search engine history and call logs. The big data usually contains large sets of unstructured data and semi-structured data, which are stored in a variety of formats. To be able to process and store this complicated data, companies require more powerful and advanced data management software beyond the traditional relational databases and data warehouse platforms.

Analysis – Once the big data has been collected and is easily accessible, it can be analyzed using advanced analytical tools and technologies. This analysis will provide valuable insight and actionable information. Big data can be explored to make new discoveries and develop data models using artificial intelligence and machine learning algorithms.

Big Data Analytics

The terms of big data and big data analytics are often used interchangeably, going to the fact that the inherent purpose of big data is to be analyzed. “Big data analytics” can be defined as a set of qualitative and quantitative methods that can be employed to examine large amounts of unstructured, structured, and
 semistructured data to discover data patterns and valuable hidden insights. Big data analytics is the science of analyzing big data to collect metrics, key performance indicators, and Data trends that can be easily lost in the flood of raw data, buy using machine learning algorithms and automated analytical techniques. The different steps involved in “big data analysis” are:

Gathering Data Requirements – It is important to understand what information or data needs to be gathered to meet the business objective and goals. Data organization is also very critical for efficient and accurate data analysis. Some of the categories in which the data can be organized are gender, age, demographics, location, ethnicity, and income. A decision must also be made on the required data types (qualitative and quantitative) and data values (can be numerical or alphanumerical) to be used for the analysis.

Gathering Data – Raw data can be collected from disparate sources such as social media platforms, computers, cameras, other software applications, company websites, and even third-party data providers. The big data analysis inherently requires large volumes of data, majority of which is unstructured with a limited amount of structured and semi structured data.

Conclusion

Thank you for making it to the end. The basics of Python programming have been explained in this book. First of all I tried to explain why programming is useful and why (in my opinion) we should all be able to do it. After introducing this concept, in my fundamental opinion, I explained how to install Python on your computer and I introduced you to the basic concepts.

Naturally it will change the syntax and the potential of the language, but with a basic knowledge, like the one I have provided you with in this book, you will be able to learn much faster.

Python is a programming language that has gained popularity in the last few years due to its simple and flexible syntax and the highly efficient functions and tools that come with it. As an object-oriented scripting language, Python can be used for coding of both web pages and applications algorithms or codes. It is applied in many fields and used by web developers and scientists around the world. It is easy to understand and therefore does require a lot of technical knowhow by the users. This is unlike other programming languages such as Java which are a little technical. Python tools and functions include: Working with Inheritance in Python, Working with Iterators in Python, Python Generators, Itertools in the Python language, and Closure in Python.

These tools and functions make Python language suitable for complex and simple coding projects since it is clean and the length of the codes is short compared to others. Moreover, it is exciting to work in Python because it enables you to focus on the challenge instead of the syntax.

Itertools in the Python language are modules that implement iterator building blocks. The work of itertools is to produce complex iterators. Working with iterators in Python require skills and focus. Python generators are used to create iterators. There are numerous overheads that exists in creating iterators in Python. Python generators handle all the overhead. In simple terms, a generator is used to return objects (iterators) that can be iterated. It is easy to
 create a generator in Python once you understand how it works. The generator function is one of the best and notable features of the Python programming language. You can find several articles on the Internet that describe the benefits of using generators in Python, including speed, memory efficiency, and scalability.

However, there is limited information on how the generator function works. What many writers do not tell you is that generators work well in Python. The best part of the generator feature is that it can be paused and resumed later, unlike other functions. When the function is paused, the local state is kept intact until the user is ready to resume functions again. Generators are written functions using the yield statement instead of the return statement. It is an effective tool for implementing iterators.

One of the distinctive properties of generators is the ability to connect with other generators and generator expressions to form a long chain of data processing pipeline. Pipelining of data is a critical organizational process that allows for processing of large amounts of data for strategic decision making. When connected, a chain of generators works efficiently to process complex sequences into a single match, each at a time, with the output from the previous generator becoming the input for the next generator.

Moreover, it is convenient and easy to implement because it facilitates the evaluation of elements, unlike regular functions. The generator is preferred because it takes less memory. List comprehensions form part of functional programming in Python language. It allows users to create lists using a for-loop. Generator expressions are limited and one can only do so much with them.

However, this does not mean that you cannot do interesting things with generator expressions Closures are preferred by many because they avoid the use of global variables. In cases where there are few methods in class, opt for closures. You can make a Python closure and a nested loop to make functions and get numerous multiplication functions by employing closures. Moreover, you can use closures to make multiply with 5 () easily. Using closures in Python makes learning fun and exciting. Closures are mostly used
 when the person. Several documentations about closures and programming focus on front-end development. A function is the most popular unit of scope, and every function declared results in an individual scope.

Happy Coding!

book 2

PYTHON CRASH COURSE:

A Complete Beginner’s Guide to Learn Python and Coding Quickly

Mark Matthes and Eric Lutz

Table of Contents

Introduction

Chapter 1
 -

 Functions and Modules

Chapter 2
 -

 Defining Your Own Functions

Chapter 3
 -

 Working with Your Own Module

Chapter 4
 -

 Working with Files

Chapter 5
 -

 Using A for Loop to Write and Read Text Files

Chapter 6
 -

 Object Oriented Programming

Chapter 7
 -

 Data Science Tips and Tricks

Chapter 8
 -

 Looking at Machine Learning and How This Fits In

Chapter 9
 -

 Learn Programming within the Shortest Time

Chapter 10
 -

 Essential Libraries for Machine Learning in Python

Chapter 11
 -

 Python Debugging

Conclusion

Introduction

The introduction of technologies, especially computers, has influenced our behavior differently. Some people spend most of their time on computers that create programs and websites to make a living, while others mess around with computers to try to
 understand many different things about how machines work. Programming is one of the areas in networks that most people in the world focus on as a source of income. They can work in a company or computer repair to protect computers from attacks such as hackers or viruses.

However, nothing is easy when it comes to computer technology. Before working on a computer program, it is essential that you focus more on the basic things, including the correct codes and language, as this will allow you to deliver the correct program. With the availability of many cording creation options such as C ++, Python and Java, you can choose a method that you are expert in and that will also facilitate your work. In this book, we will focus on Python and why it is good than other programming languages.

One of the most advanced programming tools is Python because anyone, including beginners or experts, can easily use and read it. The secret to using Python is that you can read it because it contains syntax, which allows you as a programmer to express your concepts without necessarily creating a coding page. This is what makes Python easier to use and read than the other codes, including C ++ and Java. Overall, Python is the best language for you because of its usability and readability. We are therefore confident that it will be easy for you to read and understand all the codes you enter while creating your first program during and after this course.

Features of the Python

Python has the following characteristics:

• Large library: it works with other programming projects such as searching for texts, connecting to the web servers and exchanging files.

• Interactive: Using the Python is very simple because you can easily test codes to determine if they work.

• It is free software; so you can always download it from the internet with your computer.

• Python programming language can be extended to other modules such as C ++ and C.

• Has an elegant syntax that makes it easy for beginners to read and use.

• Has several basic data types to choose from.

History of the Python

Python programming was discovered by Guido Van Rossum in 1989 while he was carrying out a project at the Dutch research institute CWI, but it was later discontinued. Guido has successfully used a number of basic languages, the so-called ABC language, to work on the Python. According to Van Rossum, the strength of the python language is that you can either keep it simple or extend it to more platforms to support many platforms at once. The design allowed the system to communicate with the libraries and various file formats easily.

Since its introduction, many programmers now use Python in the world, and in fact, many tools are included to improve operation and efficiency. Many programmers have taken various initiatives to educate everyone about using python programming language and how it can help ease the fear of complex computer codes.

However, the Python was made open source by Van Rossum a few years ago to allow all programmers access and even make changes to it. This has changed a lot in the field of programming. For example, there was a release of the Python 2.0. Python 2.0 was community-oriented, making it transparent in the development process. While many people don't use Python, there are still some programmers and organizations that use part of the version.

The Python 3, a unique version, was released in 2008. Although the version has many different functions, it is completely different from the first two versions and it is not easy to update the program. While this version is not backwards compatible, it has a small creator to show what needs to be changed when uploading the files.

Why you should use Python

There are many types of computer coding programs in the world, each with its advantages and disadvantages. However, Python has proven to be the best option for a variety of reasons, such as
 readability, and can be used on many platforms without changing things. Using Python has the following advantages;

• Readability

Since it is designed in the English language, a beginner will find it easy to read and us. There are also a number of rules that help the programmer understand how to format everything, and this makes it easy for a programmer to create a simple code that other people can follow when using their projects with it.

• Community

Today, there are many workshops for Python worldwide. A beginner can visit online, offline or both to learn more or even seek clarification on Python. Also, online and offline workshops can improve your understanding of Python, as well as your socialization skills. It is best for the personal computer as it works successfully on many different platforms. In fact, all beginners find it easy to code or learn from the expert.

• Libraries

For over 25 years, programmers have been using Python to teach the beginners how to use different codes written with it. The system is very open to programmers and they can use the available codes indefinitely. In fact, a student can download and install the system and use it for their personal use, such as writing your codes and completing the product.

General terms in the Python

Understanding the standard terms used in Python is essential to you. It makes everything easy to know when you get started. Following are the most common terms in the Python programming language;

v Function: refers to a code block that is called when a programmer uses a calling program. The goal is also to provide free services and accurate calculation.

v Class: a template used for developing user-defined objects. It is friendly and easy to use by everyone including the beginners.

Ver Immutable: refers to an object with a fixed value and is
 contained within the code. These can be numbers, strings, or tuples. Such an object cannot be changed.

St Docstring: Refers to a string that is displayed in the function, class definition, and module. This object is always available in the documentation tools.

v List: refers to the data type built into the Python and contains values ​​
 sorted. Such values ​​
 include strings and numbers.

LE IDLE: Stands for an integrated development environment that allows the users to type the code while interpreting and editing it in the same window. Best suited for beginners because it is an excellent example of code.

v Interactive: Python has become the most suitable programming language for beginners due to its interactive nature. As a beginner, you can try out many things in the IDLE (interpreter to see their response and effects).

Qu Triple Quoted String: The string helps an individual to have single and double quotes in the string, making it easy to go through different lines of code.

v Object: it refers to all data in a state such as attitudes, methods, defined behaviors or values.

Type: refers to a group of data categories in the programming language and differences in properties, functions and methods.

Tuple: Refers to the datatype built into the Python and is an unchanging set of values, although it contains some changeable values.

Chapter 14-

 Functions and Modules

Functions

Creating and calling a function is easy. The primary purpose of a function is to allow you to organize, simplify, and modularize your code. Whenever you have a set of code that you will need to execute in sequence from time to time, defining a function for that set of code will save you time and space in your program. Instead of repeatedly
 typing code or even copy pasting, you simply define a function.

We began with almost no prior knowledge about Python except for a clue that it was some kind of programming language that is in great demand these days. Now, look at you; creating simple programs, executing codes and fixing small-scale problems on your own. Not bad at all! However, learning always comes to a point where things can get rather trickier.

In quite a similar fashion, Functions are docile looking things; you call them when you need to get something done. But did you know that these functions have so much going on at the back? Imagine every function as a mini-program. It is also written by programmers like us to carry out specific things without having us to write lines and lines of codes. You only do it once, save it as a function and then just call the function where it is applicable or needed.

The time has come for us to dive into a complex world of functions where we don’t just learn how to use them effectively, but we also look into what goes on behind these functions, and how we can come up with our very own personalized function. This will be slightly challenging, but I promise, there are more references that you will enjoy to keep the momentum going.

How to define and call function?

To start, we need to take a look at how we are able to define our own functions in this language. The function in Python is going to be defined when we use the statement of “def” and then follow it with a function name and some parentheses in place as well. This lets the compiler know that you are defining a function, and which function you would like to define at this time as well. There are going to be a few rules in place when it comes to defining one of these functions though, and it is important to do these in the proper manner to ensure your code acts in the way that you would like. Some of the Python rules that we need to follow for defining these functions will include:

1.
 Any of the arguments or input parameters that you would like to use have to be placed within the parentheses so that the compiler knows what is going on.

2.

 The function first statement is something that can be an optional statement something like a documentation string that goes with your function if needed.

3.
 The code that is found within all of the functions that we are working with needs to start out with a colon, and then we need to indent it as well.

4.
 The statement return that we get, or the expression, will need to exit a function at this time. We can then have the option of passing back a value to the caller. A return statement that doesn’t have an argument with it is going to give us the same return as none.

Before we get too familiar with some of the work that can be done with these Python functions, we need to take some time to understand the rules of indentation when we are declaring these functions in Python. The same kinds of rules are going to be applicable to some of the other elements of Python as well, such as declaring conditions, variables, and loops, so learning how this work can be important here.

You will find that Python is going to follow a particular style when it comes to indentation to help define the code because the functions in this language are not going to have any explicit begin or end like the curly braces in order languages to help indicate the start and the stop for that function. This is why we are going to rely on the indentation instead. When we work with the proper kind of indentation here, we are able to really see some good results and ensure that the compiler is going to know when the function is being used.

Understanding Functions Better

Functions are like containers that store lines and lines of codes within themselves, just like a variable that contains one specific value. There are two types of functions we get to deal with within Python. The first ones are built-in or predefined, the other are custom-made or user-created functions.

Either way, each function has a specific task that it can carry out.
 The code that is written before creating any function is what gives that function an identity and a task. Now, the function knows what it needs to do whenever it is called in.

When we began our journey, we wrote “I made it!” on the console as our first program? We used our first function there as well: the print() function. Functions are generally identified by parentheses that follow the name of the function. Within these parentheses, we pass arguments called parameters. Some functions accept a certain kind of parenthesis while others accept different ones.

Let us look a little deeper and see how functions greatly help us reduce our work and better organize our codes. Imagine, we have a program that runs during a live streaming of an event. The purpose of the program is to provide our users with a customized greeting. Imagine just how many times you would need to write the same code again and again if there were quite a few users who decide to join your stream. With functions, you can cut down on your own work easily.

In order for us to create a function, we first need to ‘define’ the same. That is where a keyword called ‘def’ comes along. When you start typing ‘def’ Python immediately knows you are about to define a function. You will see the color of the three letters change to orange (if using PyCharm as your IDE). That is another sign of confirmation that Python knows what you are about to do.

Float

This function is used to convert a value to a floating point number. Recall that a floating point value is simply a decimal number. Let’s look at an example of this function.

The following program showcases the float function.

	
This program looks at string functions

a=1

print(a)

print(float(a))

This program’s output will be as follows:

1

1.0

Modules

What are the Modules?

In Python, a module is a portion of a program (an extension file) that can be invoked through other programs without having to write them in every program used. Besides, they can define classes and variables. These modules contain related sentences between them and can be used at any time. The use of the modules is based on using a code (program body, functions, variables) already stored on it called import. With the use of the modules, it can be observed that Python allows simplifying the programs a lot because it allows us to simplify the problems into a smaller one to make the code shorter so that programmers do not get lost when looking for something in hundreds of coding lines when making codes.

How to Create a Module?

To create a module in Python, we don't need a lot; it's very simple.

For example: if you want to create a module that prints a city, we write our code in the editor and save it as "mycity.py".

Once this is done, we will know that this will be the name of our module (omitting the .py sentence), which will be assigned to the global variable __city__.

But, beyond that, we can see that the file "mycity.py" is pretty simple and not complicated at all, since the only thing inside is a function called "print_city" which will have a string as a parameter, and what it will do is to print "Hello, welcome to", and this will concatenate with the string that was entered as a parameter.

Importing Modules

The keyword import is used to import.

Example

Import first

The dot operator can help us access a function as long as we know the name of the module.

Example

Start IDLE.

Navigate to the File menu and click New Window.

Type the following:

first.add(6,8)

Chapter 15-

 Defining Your Own Functions

Python functions are a good way of organizing the structure of our code. The functions can be used for grouping sections of code that are related. The work of functions in any programming language is to improve the modularity of code and make it possible to reuse code.

Python comes with many in-built functions. A good example of such a function is the “print()” function which we use for displaying the contents on the screen. Despite this, it is possible for us to create our own functions in Python. Such functions are referred to as the “user-defined functions”.

To define a function, we use the “def” keyword which is then followed by the name of the function, and then the parenthesis (()).

The parameters or the input arguments have to be placed inside the parenthesis. The parameters can also be defined within parenthesis. The function has a body or the code block and this must begin with a colon (:) and it has to be indented. It is good for you to note that the default setting is that the arguments have a positional behavior. This means that they should be passed while following the order in which you defined them.

Example:

#!/usr/bin/python3

def functionExample():

print('The function code to run')

bz = 10 + 23

print(bz)

We have defined a function named functionExample. The parameters of a function are like the variables for the function. The parameters are usually added inside the parenthesis, but our above function has no parameters. When you run above code, nothing will happen since we simply defined the function and specified what it should do. The function can be called as shown below:

#!/usr/bin/python3

def functionExample():

print('The function code to run')

bz = 10 + 23

functionExample()

It will print this:

[image:]

That is how we can have a basic Python function.

Function Parameters

You can dynamically define arguments for a function. Example:

#!/usr/bin/python3

def additionFunction(n1,n2):

result = n1 + n2

print('The first number is', n1)

print('The second number is', n2)

print("The sum is", result)

additionFunction(10,5)

The code returns the following result:

 [image:]

We defined a function named addFunction. The function takes two
 parameters namely n1 and n2. We have another variable named result which is the sum of the two function parameters. In the last statement, we have called the function and passed the values for the two parameters. The function will calculate the value of variable result by adding the two numbers. We finally get the result shown above.

Note that during our function definition, we specified two parameters, n1 and n2. Try to call the function will either more than two parameters, or 1 parameter and see what happens. Example:

#!/usr/bin/python3

def additionFunction(n1,n2):

result = n1 + n2

print('The first number is', n1)

print('The second number is', n2)

print("The sum is", result)

additionFunction(5)

In the last statement in our code above, we have passed only one argument to the function, that is, 5. The program gives an error when executed:

[image:]

The error message simply tells us one argument is missing. What if we run it with more than two arguments?

#!/usr/bin/python3

def additionFunction(n1,n2):

result = n1 + n2

print('The first number is', n1)

print('The second number is', n2)

print("The sum is", result)

additionFunction(5,10,9)

We also get an error message:

[image:]

The error message tells us the function expects two arguments but we have passed 3 to it.

In most programming languages, parameters to a function can be passed either by reference or by value. Python supports parameter passing only by reference. This means if what the parameter refers to is changed in the function; the same change will also be reflected in the calling function. Example:

#!/usr/bin/python3

def referenceFunction(ls1):

print ("List values before change: ", ls1)

ls1[0]=800

print ("List values after change: ", ls1)

return

Calling the function

ls1 = [940,1209,6734]

referenceFunction(ls1)

print ("Values outside function: ", ls1)

The code gives this result:

[image:]

What we have done in this example is that we have maintained the reference of the objects which are being passed and then values have been appended to the same function.

In next example below, we are passing by reference then the same reference will be overwritten inside the same function which has been called:

#!/usr/bin/python3

def referenceFunction(ls1):

ls1 = [11,21,31,41]

print ("Values inside the function: ", ls1)

return

ls1 = [51,91,81]

referenceFunction(ls1)

print ("Values outside function: ", ls1)

The code gives this result:

 [image:]

Note that the “ls1” parameter will be local to the function “referenceFunction”. Even if this is changed within the function, the “ls1” will not be affected in any way. As the output shows above, the function helps us achieve nothing.

Function Parameter Defaults

There are default parameters for functions, which the function creator can use in his or her functions. This means that one has the choice of using the default parameters, or even using the ones they need to use by specifying them. To use the default parameters, the parameters having defaults are expected to be last ones written in function parameters. Example:

#!/usr/bin/python3

def myFunction(n1, n2=6):

pass

In above example, the parameter n2 has been given a default value unlike parameter n1. The parameter n2 has been written as the last
 one in the function parameters. The values for such a function may be accessed as follows:

#!/usr/bin/python3

def windowFunction(width,height,font='TNR'):

printing everything

print(width,height,font)

windowFunction(245,278)

The code outputs the following:

[image:]

The parameter font had been given a default value, that is, TNR. In the last line of the above code, we have passed only two parameters to the function, that is, the values for width and height parameters. However, after calling the function, it returned the values for the three parameters. This means for a parameter with default, we don’t need to specify its value or even mention it when calling the function.

However, it’s still possible for you to specify the value for the parameter during function call. You can specify a different value to what had been specified as the default and you will get the new one as value of the parameter. Example:

#!/usr/bin/python3

def windowFunction(width,height,font='TNR'):

printing everything

print(width,height,font)

windowFunction(245,278,'GEO')

The program outputs this:

[image:]

Above, the value for parameter was given the default value “TNR”. When calling the function in the last line of the code, we specified a different value for this parameter, which is “GEO”. The code returned
 the value as “GEO”. The default value was overridden.

Chapter 16-

 Working with Your Own Module

Modules, also known as packages, are a set of names. This is usually a library of functions and object classes that are made available to be used within different programs. In order to use modules in a Python program, the following statements are used: import, from, reload. The first one imports the whole module. The second allows import only a specific name or element from the module. The third one, reload, allows reloading a code of a module while Python is running and without stopping in it. Before digging into their definition and development, let’s start first by the utility of modules or packages within Python.

Modules Concept and Utility within Python

Modules are a very simple way to make a system component organized. Basically, modules allow reusing the same code over and over. So far, we were working in a Python interactive session. Every code we have written and tested is lost once we exit the interactive session. Modules are saved in files that make them persistent, reusable, and sharable. You can consider modules as a set of files where you can define functions, names, data objects, attributes, and so on. Modules are a tool to group several components of a system in a single place. In Python programming, modules are among the highest-level unit. They point to the name of packages and tools. In addition, they allow the sharing of the implemented data.

You only need one copy of the module to be able to use across a large program. If an object is to be used in different functions and programs, coding it as a module allows share it with other programmers.

To have a sense of the architecture of Python coding, we go through some general structure explanation. We have been using so far in this book very simple code examples that do not really have high-level structure. In large applications, a program is a set of several Python files. By Python files, we mean files that contain Python code
 and have a .py extension. There is one main high-level program and the other files are the modules. The high-level file consists of the main code that dictates the control flow and executes the application. Module files define the tools that are needed to process elements and components of the main program and maybe elsewhere. The main program makes use of the tools that are specified in the modules.

In their turn, modules make use of tools that are specified in other modules. When you import a module in Python, you have access to every tool that is declared or defined in that specific module. Attributes are the variables or the functions associated with the tools within a module. Hence, when a module is imported, we have access to the attributes of the tools as well to process them. For instance, let’s consider we have two Python files named file1.py and file2.py where the file1.py is the main program and file2.py is the module.

In order to use this function in the main program, we should define code statements in the file1.py as follows:

Import file2

A = file2.Xfactorial (3)

The first line imports the module file2.py. This statement means to load the file file2.py. This gives access to the file1.py to all tools and functions defined in file2.py by the name file2. The function Xfactorial is called by the second line. The module file2.py is where this function is defined using the attributes’ syntax. The line file2.Xfactorial() means fetch any name value of Xfactorial and lies within the code body of file2. In this example, it is a function that is callable. So, we have provided an input argument and assigned the output result to the variable A. If we add a third statement to print the variable A and run the file file1.py, it would display 6 which is the factorial of 3. Along Python, you will see the attribute syntax as object.attribute. This basically allows calling the attributes that might be a function or data object that provides properties of the object.

Note that some modules that you might import when programming
 with Python are available in Python itself. As we have mentioned at the beginning of this book, Python comes with a standard large library that has built-in modules. These modules support all common tasks that might be needed in programming from operating system interfaces to graphical user interface. They are not part of the language. However, they can be imported and comes with a software installation package. You can check the complete list of available modules in a manual that comes with the installation or goes to the official Python website: www.Python.org. This manual is kept updated every time a new version of Python is released.

Chapter 17-

 Working with Files

The data can be stored using either a database or a file. The database maintains the integrity and relevance of the data and makes the data safer and more reliable. Using files to store data is very simple and easy to use, and there is no need to install database management systems and other operating environments.

Files are usually used to store application software parameters or temporary data. Python's file operation is very similar to Java's file operation. Python provides modules such as os and os.path to process files.

Files and streams

Common Operation of Files

Files are usually used to store data or application system parameters. Python provides os, os.path, shutil, and other modules to process files, including functions such as opening files, reading and writing files, copying and deleting files.

Creation of Files

In Python3, the global file () function has been removed, and the open () function has been retained. The function open () can be used to open or create files. This function can specify the processing mode and set the open file to read-only, write-only, or read-write status.

The declaration of open () is as follows:

open(file, mode='r', buffering=-1, encoding=None,

errors=None, newline=None, closefd=Trueopener=None) -> file object

[Code Description]

The parameter file is the name of the opened file. If the file does not exist, open () creates a file named name and then opens the file. The parameter mode refers to the open mode of the file. Parameter buffering sets the cache mode. 0 means no cache; 1 indicates line buffering. If it is greater than 1, it indicates the size of the buffer, in bytes.

Here, open () returns a file object, which can perform various operations on the file.

Opening Mode of Files notes that "B" mode must be used for reading and writing files such as pictures and videos.

The file class is used for file management. It can create, open, read and write, close files, etc.

File processing is generally divided into the following 3 steps:

1) Create and open a file and use the file () function to return a file object.

2) Call read (), write () and other methods of the file object to process the file.

3) Call close () to close the file and release the resources occupied by the file object.

Note that the close () method is necessary. Although Python provides a garbage collection mechanism to clean up objects that are no longer used, it is a good habit to release resources that are no longer needed manually. It also explicitly tells Python's garbage collector that the object needs to be cleaned.

The following code demonstrates the creation, writing, and closing of files.

01 # Create File

02 context='''This is countryside'''

03 f=open('rod.txt', 'w') # open file

04 f.write(context) # write string to file

Close () # close file

[Code Description]

The third line of code calls open () to create the file hello.txt and sets the access mode of the file to "W." Open () returns file object f.

The fourth line of code writes the value of the variable context into the file hello.txt

Line 5 calls the close () method of object f to release the resources occupied by object f.

Reading of Text Files

There are many ways to read a file. You can use readline (), readlines (), or Read () functions to read a file. The implementation method of reading files by these functions will be introduced one by one.

1. readline ()

Readline () reads one line of the file at a time, and the file needs to be read cyclically using a permanent true expression. However, when the file pointer moves to the end of the file, there will be an error reading the file using readline (). Therefore, a judgment statement needs to be added to the program to judge whether the file pointer moves to the end of the file, and the loop is interrupted by the statement. The following code demonstrates the use of readline ().

01 # Use readline () to Read Files

02 f=open("rod.txt")

03 while True:

04 line=f.readline()

05 if line:

06 print (line)

07 else:

08 break

09 f.close()

[Code Description]

The code in line 3 uses "True" as the loop condition to form a permanent true loop.

Line 4 calls readline () to read every line of the hello.txt file. Each cycle outputs the following results in turn.

This is countryside

Line 5 code, judge whether the variable LINE is true. If true, the content of the current line is output; otherwise, exit the loop. If the fourth line of code is changed to the following statement, the reading method is slightly different, but the reading content is exactly the same.

line=f.readline(2)

This line of code does not mean that only 2 bytes are read per line, but that each line reads 2 bytes at a time until the end of the line.

2. Multi-line reading method readlines ()

To read a file using readlines (), you need to return the elements in the list by looping through readlines (). The readlines () function reads multiple lines of data in a file at once.

The following code demonstrates how readlines () reads a file.

01 # use readlines () to read files

02 f=file('rod.txt')

03 lines=f.readlines()

04 for line in lines: # read multiple lines at once

05 print (line)

06 f.close()

[Code Description]

The third line of code calls readlines () to store all the contents of the file rod.txt in the list lines.

The fourth line of code loops through the contents of the list lines.

Line 5 code output list lines for each element

01 f=open("rod.txt")

02 context=f.read(5) # reads the first 5 bytes of the file

03 print (context)

04 print (f.tell()) # returns the current pointer position of the file object

05 context=f.read(5) # continue reading 5 bytes of content

06 print (context)

07 print (f.tell()) # output file current pointer position

08 f.close()

[Code Description]

The second line of code calls read(5) to read the contents of the first 5 bytes in the hello.txt file and store it in the variable context. At this point, the pointer of the file moves to the 5th byte.

The third line of code outputs the result of the variable context and the output is "hello."

Line 4 calls tell () to output the current file

Line 5 code calls read(5) again to read the contents of bytes 6 to 10.

The output of line 6 is "world."

Line 7 code outputs the current file pointer position: 10.

Note that the location of the file pointer will be recorded inside the file object for the next operation. As long as the file object does not execute the close () method, the file pointer will not be released.

Writing a Text File

The implementation of file writing also has many methods. You can use the write (), writelines () methods to write files. It uses the write () method to write strings to files, while the writelines () method can write the contents stored in the list to files.

The following code demonstrates how to write elements in the list to a file.

01 # use writelines () to write files

02 f=file("rod.txt,” "w+")

03 li=["hello country side\n,” "hello city\n"]

04 f.writelines(li)

05 f.close()

[Code Description]

The second line of code uses the "w+" mode to create and open the file hello.txt

Line 3 defines a list Li. Li stores 2 elements, each representing 1 line in the file, and "\n" is used for line feed.

The fourth line of code calls writelines () to write the contents of list li into the file.

The contents of the document are as follows.

hello countryside

hello City

The above two methods will erase the original contents of the file before writing and rewrite the new contents, which is equivalent to "overwriting." If you need to keep the original contents of the file and just add new contents, you can open the file using mode "a+.”

The following code demonstrates the join operation of the file.

01 # Joins New Content to File

02 f=file("rod.txt,” "first+") # is written by joining a+

03 new_context="It is over"

04 f.write(getdetails)

05 f.close()

[Code Description]

The second line of code uses the mode "first+" to open the file hello.txt

The fourth line of code calls the write () method, the original contents of the hello.txt file remain unchanged, and the contents of the variable getdetails are written to the end of the rod.txt file. Txt is
 as follows.

hello countryside

hello City

goodbye

Writing files using writelines () is faster. If there are too many strings to write to a file, you can use writelines () to improve efficiency. If only a small number of strings need to be written, write () can be used directly.

Deleting Files

The deletion of files requires the use of os modules and os.path modules. Os module provides operating system-level interface functions for system environment, files, directories, etc. File Handling Functions Commonly Used in os Modules Note that the use of the OS module's open () function is different from that of the built-in open () function.

The removal of the file needs to be implemented by calling the remove () function. Before deleting a file, it is necessary to determine whether the file exists or not, if so, delete the file; otherwise, nothing will be done.

The following code demonstrates the deletion of the file:

01 import os

03 file("rod.txt,” "w")

04 if os.path.exists("rod.txt"):

05 os.remove("rod.txt")

[Code Description]

Line 3 code creates the file hello.txt

The fourth line of code calls the existing () of os.path module to determine whether the file hello.txt exists.

Line 5 calls remove () to delete the file hello.txt

Renaming Files

The function rename () of the os module can rename files or
 directories. The following code demonstrates the file renaming operation. If there is a file named hello.txt in the current directory, rename it hi.txt; if there is a hi.txt file, rename it hello.txt.

01 # Modify File Name

02 import os

03 li=os.listdir(.”")

04 print (li)

05 if "hello.txt" in li:

06 os.rename("hello.txt,” "hi.txt")

07 elif "hi.txt" in li:

08 os.rename("hi.txt,” "hello.txt")

[Code Description]

The third line of code calls listdir () to return the file list of the current directory, where .”" indicates the current directory.

Opening, Reading and Writing Binary Files

Binary files are any files that are non-text, example of this are images or videos. In working with binary files, we will use the “rb” or “wb” mode. To do that, you must copy a file, a jpeg file to be specific on your desktop and rename it with myimage.jpg. Change the first two lines and edit the program.

inputFile = open ('myfile.txt', 'r')

outputFile = open ('myoutputfile.txt', 'w')

to

inputFile = open ('myimage.jpg', 'rb')

outputFile = open ('myoutputimage.jpg', 'wb')

Make that you will also change the statement outputFile.write(msg + '\n') back to outputFile.write(msg).

After that, you may now run the program. Always remember that you should have an additional image file that is named as myoutputimage.jpg. on your computer. Take note that when opening the image; the image file should look like myimage.jpg

Chapter 18-

 Using A for Loop to Write and Read Text Files

Another important topic to explore when we are working with the Python coding language is the idea of the loop. These are important to a lot of the codes that you will need to write and read, and sometimes, they can help with those conditional statements as well. One of the best things about these loops is that they can get a lot of information into a few lines, which helps to clean up your code and makes it powerful without having to write out a lot of information.

Often, you will start to bring up these loops any time when you are writing out a code where you would like to have a particular program repeat something. Even if it is a few times, this can work as well, but you don’t want to mess up the code or waste your time writing that part out a few times. While it may not seem like a big deal to write out that part of the code two or three times to get it to repeat, there could potentially be times when you want to write out the code a hundred times or more. Instead of writing out a hundred lines, or multiple lines a hundred times, you would be able to utilize these loops and get it done in just a few lines. A loop is what you need to handle this work, and you will like how easy and clean it looks.

For example, you may be working on a code, and then you get to a point where you would like to have the numbers listed out from one to ten for you. Of course, this can take up a lot of code and space if you tried to write this out each time you wanted a number listed. But with a loop, you would be able to set it to continue counting up until it reached the conditions that you set ahead of time.

This sounds like it is hard, and as a beginner, you may be worried about how you would be able to do it for yourself. These loops are going to tell your compiler that it needs to repeat the same line or lines of code over and over again until the inserted conditions are met. If you would like to get the code to count from one to ten, then you would tell the compiler that the condition is when the output is higher than ten. Don’t worry about this being too confusing; we are going to show you a few examples of how this can work in a moment.

Of course, when you are writing out the loop codes, you must make sure that you put in some condition that will end the loop. Beginners can often forget to set up this condition to end the program, and then they end up in some trouble. The code will keep going through the loop, getting stuck because it doesn’t know when it is supposed to stop. You must make sure that you add in a break or a condition to the code so that it knows when it should stop and move on to some of the other things that should be done in the code.

With some of the other methods of traditional coding that we have talked about, or that you may have used in the past, you would have to avoid these loops and write out each line of the code. Even if there were some parts of the code that were similar, or you were retrying the same piece of code to make a pattern show up, this is how a beginner would have to do the work to get it done. This is a tedious process that takes a lot of time, and it is hard to do.

The good news is that you can get these loops and put them to work, ensuring that you can combine a few lines of code and get the compiler to read through it again until conditions are met, rather than having you rewrite the code that many times. This means that instead of writing out potentially hundreds of lines of code, you can write out a few and have the compiler read through it again until it is done.

Each of these loops is going to be helpful and can be used in different circumstances based on what you are trying to get done in the code. The three main types of loops that we are going to explore through the rest of this guidebook include the while loop, the for loop, and the nested loop.

Working with Our While Loop

So, out of the three loops that we can work with, we will start with the while loop in the Python language. The while loop is a good choice to make if you have a predetermined number of times you would like the code to cycle through that line. You can set this up ahead of time, and ensure that the loop goes through it that many times, no more and no less.

When you use the while loop, the goal here is not to allow the code to
 go through the cycle as many times as it wants, or an indefinite number of times, but you do want to make sure that it goes through five, or six, or however, many times are needed. If you want the program to count from one to ten, for example, then you would set up the loop to do its work ten times. It also makes sure that the loop happens one time, and then checks the conditions before doing it again. With this option, the loop will put the number one on the screen, check the conditions, and then do number two through to ten.

This is a lot to take in and may be hard to understand. The sample code below is a good way to see what the while loop is all about and checks what is going to happen when you try to write it out in your compiler

Counter = 1

while(counter <= 3):

principal = int(input(“Enter the principal amount:”))

numberofyeras = int(input(“Enter the number of years:”))

rateofinterest = float(input(“Enter the rate of interest:”))

simpleinterest = principal * numberofyears * rateofinterest/100

print(“Simple interest = %.2f” %simpleinterest)

#increase the counter by 1

counter = counter + 1

print(“You have calculated simple interest for 3 time!”)

Before we move on, take this code and add it to your compiler and let it execute this code. You will see that when this is done, the output is going to come out in a way that the user can place any information that they want into the program. Then the program will do its computations and figure out the interest rates, as well as the final amounts based on whatever numbers the user placed into the system.

With the completed example, we can set up a loop that would go through its iterations three times. This means that the user can get the results they want before the system decides to move on. As the
 computer programmer, you can go through this and add in more iterations, and have the loop repeat itself more if you want it to base on what is the best option for your program.

Understanding the for Loop

It is going to be a great option any time that you would like to work with a loop, and often it is the only choice that you need. But, there will be some times when this loop is not going to be quite right, and you will need to change it up a little bit. The for loop is the option that you should choose here. This is considered the traditional method for loops so that you can use it in many different situations.

When you bring out the for loop, you have to make sure that it is set up in a way that the user isn’t the one that has to provide the program with information on when to stop the loop. Instead, this loop is going to be set up in a way that it goes over the iteration in the order that things show up in the statement. And then, as it reads through the statement, this information is going to show up on the screen. This can nicely work because it isn’t going to need any outside force or any outside user to input information in. A good example of how this code is going to loop when you write it out includes:

Measure some strings:

words = [‘apple,’ ‘mango,’ ‘banana,’ ‘orange’]

for w in words:

print(w, len(w))

When you work with the for above loop example, you can add it to your compiler and see what happens when it gets executed. When you do this, the four fruits that come out on your screen will show up in the exact order that you have them written out. If you would like to have them show up in a different order, you can do that, but then you need to go back to your code and rewrite them in the right order, or your chosen order. Once you have then written out in the syntax and they are ready to be executed in the code, you can’t make any changes to them.

Opening and Reading Text Files by Buffer Size

There are times that we want to open and read text files by buffer size so that our program will not use much memory resources. And in order to do that, use the read () function which will allow us to specify the amount of buffer size we want.

Try the following program:

inputFile = open ('
 myfile.txt'
 , 'r')

outputFile = open ('
 myoutputfile.txt'
 , 'w')

msg = inputFile.read(10)

while len(msg):

outputFile.write(msg)

msg = inputFile.read(10)

inputFile.close()

outputFile.close()

First, we open two files, the inputFile.txt and outputFile.txt files for reading and writing respectively.

Next, we use the statement msg = inputFile.read(10) and a while loop to loop through the file 10 bytes at a time. The value 10 in the parentheses tells the read() function only to read 10 bytes. The while condition while len(msg): checks the length of the variable msg. As long as the length is not zero, the loop will run.

Within the while loop, the statement outputFile.write(msg) writes the message to the output file. After writing the message, the statement msg = inputFile.read(10) reads the next 10 bytes and keeps doing it until the entire file is read. When that happens, the program closes both files.

When you run the program, a new file myoutputfile.txt will be created. When you open the file, you’ll notice that it has the same content as your input file myfile.txt. To prove that only 10 bytes is read at a time, you can change the line outputFile.write(msg) in the program to outputFile.write(msg + '\n'). Now run the program
 again. myoutputfile.txt now contains lines with at most 10 characters. Here’s a segment of what you’ll get.

Learn Pyth

on in One

Day and Le

arn It Wel

Chapter 19-

 Object Oriented Programming

Python is an object-oriented programming language. In fact, most modern languages are. But what exactly does this mean? We’ve spoken in vague terms of objects and classes but we haven’t really established quite what this actually means in in any certain terms one way or another.

An object is an instance of a class. Most things you’ll deal with in Python are objects. Earlier, when we worked with file input and output, we created instances of a file class. Every instance has built in methods that it can access that are derived from the class definition itself. So what exactly is a class?

A class is a way of defining objects. This sounds terribly vague, but let’s look at it this way.

You likely have or have had a pet, right? Let’s say there’s a dog, and his name is Roscoe.

Well, Roscoe is an animal. Animals have broad, generally defined characteristics, but they’re all animals, much like Roscoe is an animal. Get comfy with Roscoe, because we’re going to be talking him a lot while we talk about the relations between classes and the relations between classes and objects.

We’ve established that Roscoe is most certainly an animal. He fits the definition of an animal. In this manner, Roscoe is a specific instance of the animal class. If you were writing a simulation of life, and you
 had people and animals, you would define Roscoe as an instance of animal, just as you declared variable file1 as an instance of file, or you declared tonguetwister as an instance of string.

Now, we need to talk about how we actually define a class and an object within Python.

Create a new file to work with, I’m calling mine pursuitOfRoscoe.py.

Within this file, we’re going to start right out the bat by defining a class.

To declare a class, you follow the following template:

class name(parent)

Let’s just make our animal class. Every class which isn’t deriving from another class has “object” as its parent, so let’s put that.

class Animal(object):

We’re on our way to defining Roscoe, now. We need a way to define an animal. Let’s think about what most animals have. Most animals have legs, that’s a start. Animals also have Latin names. Let’s work with those two. If your class stores data, you generally need to have an initializer function within your class. It’s not a necessity, but it is very common practice.

class Animal(object):

def __init__(self, legs, name):

self.legs = legs

self.name = name

Perfect. Since Roscoe’s a dog, he’ll have 4 legs, and his species is Canis Lupus Familiaris.

With that in mind, we now have a definition for animal classes that can be used amongst many animals, not just Roscoe. That’s the entire idea behind classes: creating reusable data structures for any given object so that the code is more readable, easy to understand, cleaner, and portable, among other buzzword adjectives that are surprisingly very, very true.

How do we declare an instance of this class now? Like anything else!

roscoe = Animal(4, “Canis Lupus Familiaris”)

We can go in and change these variables too. Canis lupus is so formal, and Roscoe’s our buddy, so let’s change that to Roscoe.

roscoe.name = “Roscoe”

There we go. Much better.

Hopefully, this makes the distinction between classes and objects much clearer.

Roscoe is a dog, and an animal. Thus he takes from the common concept of being an animal. Since he’s an instance of an animal, he automatically receives the traits that all animals have. How cool is that?

Let’s go a bit further, and incorporate some functions. What’s something that every animal does? Sleep. Every single animal sleeps, aside from Ozzy Osborne.

Let’s give animals a function so that they can sleep.

Below our initializer, create a new function called sleep that takes the arguments of self and hours. Then print out a line of text that says the animal’s name and how long it’s sleeping for. My code ended up looking a bit like this, and hopefully yours will as well.

def sleep(self, hours):

print “%s is sleeping for %d hours!” % (self.name, hours)

Then below our declaration of Roscoe, let’s go ahead and run the “sleep” function with the argument of 4 hours.

roscoe = Animal(4, “canis lupus familiaris”)

roscoe.name = “Roscoe”

roscoe.sleep(4)

Save this and run it. If all goes well, it should print out “Roscoe is sleeping for 4 hours!”.

More on Object-Oriented Programming and Classes

There are four primary concepts within object-oriented
 programming that we need to discuss more in-depth. These are inheritance, polymorphism, abstraction, and encapsulation. Python provides for all of these, and very well at that.

Inheritance is the notion of deriving a class and things from within that class into another child class. There’s a very simple way to explain this concept. Classes can break down into other more specific classes. For example, Roscoe is an animal. But he’s also a dog. A dog is a type of animal. Shouldn’t Roscoe be a dog and not an animal? Isn’t he both? How do we handle this?

Think of it this way: every dog is an animal, but not every animal is a dog. So we can break down the animal class even further. The way that we derive one class from another is by inheritance. Here’s how we’d declare a dog class which extends the animal class. All dogs have 4 legs aside (for the most part), so we can declare that ahead of time and manually change it if a dog ever doesn’t have 4 legs.

class Dog(Animal):

def __init__(self, name):

self.name = name

self.legs = 4

The way that this works is that the Dog class is an extension of the Animal class. The Dog class receives all the functions and variables of the dog class, so we don’t have to redefine them.

This also means that if we were to erase our first line and re-declare Roscoe more accurately as a dog, we could still declare sleep. Observe.

roscoe = Dog(“Roscoe”)

roscoe.sleep(4)

It should go without a hitch. However, the cool thing about child classes is that you can also give them their own functions that their parent can’t use. For example, animals don’t bark - dogs do. Let’s create a bark function in our dog class for practice’s sake.

def bark(self):

“%s says: Bark!” % self.name

Now let’s try to declare bark via Roscoe.

roscoe.bark()

It should print out exactly what we entered. To illustrate further, create an instance of parent class Animal, let’s call it “lion”:

lion = Animal(4, “panthera leo”)

Try to call the method bark by way of Lion.

lion.bark()

There should be an error. Why is this? Well, it’s because - as we said - every dog is an animal, but not every animal is a dog. The bark() function was defined in the Dog class but not in the Animal class, so instances of the Animal class can’t access this method at all.

The next concept of object-oriented programming is called “polymorphism”. This means that something has the property of being able to perform the same task as something else, but in a different way. There are two ways of achieving this: function overloading (performing a similar function/method but with different parameters) and function overriding (rewriting a function of a parent class so that it works better for your own class).

To illustrate this, let’s go back to our bark method. Under our bark method, we’re going to create another bark method, declared like this:

def bark(number):

print “%s just barked, %d times! How cute.” % (self.name, number)

Now we have two different forms of the bark function. If you declare

roscoe.bark()

You’re going to see “Roscoe says: Bark!”

But, if you declare

roscoe.bark(3)

You’ll see “Roscoe just barked, 3 times! How cute.”

This is the basic idea of function overloading and polymorphism in essence: giving multiple ways to do a similar thing.

This program is already adorable, but we can make it even more adorable while also learning more about Python coding and string manipulation. Go back to your bark(number) method, and change it so it looks like this:

barkString = “Bark! “ * number

print “%s just barked, %d times. How cute. %s) (self.name, number, barkString)

Now save and run. You can repeat a string multiple times by simply using the multiplication and giving how many times to multiply!

The next major concept of object-oriented programming languages is abstraction. This is the idea of hiding internal details and functionality, to be more forward and more safe for both the programmer and end user. Python shows this by having a very abstract interface compared to other languages and providing a large amount of functionality for you so you never have to get down to the nitty-gritty of what your computer is actually doing behind the scenes.

The last major concept of object-oriented languages is called encapsulation, wherein code and data is wrapped together into a single unit. The primary way that we can display this is by the notion of having a class - not only in Python, but anywhere. Using a class automatically wraps important data and functions together in one easily accessible and usable place. Other datas have something called access control where you can actually dictate what classes can and can’t access the data that you’re putting in your class. Class data in Python is by default public.

All in all, object-oriented programming isn’t very tough to grasp, but it’s full of concepts that stand for much bigger and larger things, and these are the concepts that can be difficult to understand and implement in the end.

Chapter 20-

 Data Science Tips and Tricks

One of the major strengths of Data Scientists is a strong background in Math and Statistics. Mathematics helps them create complex analytics. Besides this, they also use mathematics to create Machine Learning models and Artificial Intelligence. Similar to software engineering, Data Scientists must interact with the business side.

This involves mastering the domain so that they can draw insights. Data Scientists need to analyze data to help a business, and this calls for some business acumen. Lastly, the results need to be assigned to the business in a way that anyone can understand.

This calls for the ability to verbally and visually communicate advanced results and observations in a manner that a business can understand as well as work on it.

Therefore, it is important for any wannabe Data Scientists to have knowledge about Data Mining.

Data Mining describes the process where raw data is structured in such a way where one can recognize patterns in the data via mathematical and computational algorithms.

Below are five mining techniques that every data scientist should know:

MapReduce

The modern Data Mining applications need to manage vast amounts of data rapidly. To deal with these applications, one must use a new software stack. Since programming systems can retrieve parallelism from a computing cluster, a software stack has a new file system called a distributed file system.

The system has a larger unit than the disk blocks found in the normal operating system. A distributed file system replicates data to enforce security against media failures.

In addition to such file systems, a higher-level programming system has also been created. This is referred to as MapReduce. It is a form of computing which has been implemented in different systems such as Hadoop and Google’s implementation.

You can adopt a MapReduce implementation to control large-scale
 computations such that it can deal with hardware faults. You only need to write three functions. That is Map and Reduce, and then you can allow the system to control parallel execution and task collaboration.

Distance Measures

The major problem with Data Mining is reviewing data for similar items. An example can be searching for a collection of web pages and discovering duplicate pages. Some of these pages could be plagiarism or pages that have almost identical content but different in content. Other examples can include customers who buy similar products or discover images with similar characteristics.

Distance measure basically refers to a technique that handles this problem. It searches for the nearest neighbors in a higher dimensional space. For every application, it is important to define the meaning of similarity. The most popular definition is the Jaccard Similarity. It refers to the ratio between intersection sets and union. It is the best similarity to reveal textual similarity found in documents and certain behaviors of customers.

For example, when looking for identical documents, there are different instances for this particular example. There might be very many small pieces of one document appearing out of order, more documents for comparisons, and documents that are so large to fit in the main memory.

To handle these issues, there are three important steps to finding similar documents.

· Shingling: This involves converting documents into sets.

· Min-Hashing: It involves converting a large set into short signatures while maintaining similarity.

· Locality Sensitive Hashing: Concentrate on signature pairs that might be from similar documents.

The most powerful way that you can represent documents assets is to retrieve a set of short strings from the document.

· A k-Shingle refers to any k characters that can show up in a
 document.

· A min-hash functions on sets.

· Locality-Sensitive Hashing.

Link Analysis

Traditional search engines did not provide accurate search results because of spam vulnerability. However, Google managed to overcome this problem by using the following technique:

· PageRank: It uses simulation. If a user surfing a web page starts from a random page, PageRank attempts to congregate in case it had monitored specific outlines from the page that users are located. This whole process works iteratively meaning pages that have a higher number of users are ranked better than pages without users visiting.

· The content in a page was determined by the specific phrases used in the page and linked with external pages. Although it is easy for a spammer to modify a page that they are administrators, it is very difficult for them to do the same on an external page which they aren’t administrators.

In other words, PageRank represents a function which allocates a real number to a web page. The intention is that a page with a higher page rank becomes more important than a page that does not have a page rank. There is no fixed algorithm defined to assign a page rank, but there are of different variety.

For powerfully connected Web Graphs, PageRank applies the principle of transition matrix. This principle is useful for calculating the rank of a page.

To calculate the behavior of a page rank, it simulates the actions of random users on a page.

There are different enhancements that one can make to PageRank. The first one is called Topic-Sensitive PageRank. This type of improvement can weigh certain pages more heavily as a result of their topic. If you are aware of the query in a particular page, then it
 is possible to be biased on the rank of the page.

Data Streaming

In most of the Data Mining situations, you can’t know the whole data set in advance. There are times when data arrives in the form of a stream, and then gets processed immediately before it disappears forever.

Furthermore, the speed at which data arrives very fast, and that makes it hard to store in the active storage. In short, the data is infinite and non-stationary. Stream management, therefore, becomes very important.

In the data stream management system, there is no limit to the number of streams that can fit into a system. Each data stream produces elements at its own time. The elements should then have the same data rates and time in a particular stream.

Streams can be archived into a store, but this will make it impossible to reply to queries from the archival store. This can later be analyzed under individual cases by using a specific retrieval method.

Furthermore, there is a working store where summaries are placed so that one can use to reply to queries. The active store can either be a disk or main memory. It all depends on the speed at which one wants to process the questions. Whichever way, it does not have the right capacity to store data from other streams.

Data streaming has different problems as highlighted below:

· Sampling Data in a Stream

To create a sample of the stream that is used in a class of queries, you must select a set of attributes to be used in a stream. By hashing the key of an incoming stream element, the hash value can be the best to help determine whether all or none of the items in the key belong to the sample.

· Filtering Streams

To accept tuples that fit a specific criterion, accepted tuples should go through a separate process of the stream while the rest of the
 tuples are eliminated. Bloom filtering is a beautiful technique that one can use to filter streams to allow elements in a given set to pass through while foreign details are deleted.

Members in the selected set are hashed into buckets to form bits. The bits are then set to 1. If you would like to test an element of a stream, you must hash the item into a set of bits using the hash function.

· Count Specific Elements in a Stream

Consider stream elements chosen from a universal set. If you wanted to know the number of unique features that exist in a stream, you might have to count from the start of the stream. Flajolet-Martin is a method which often hashes details to integers, described as binary numbers. By using a lot of the hash functions and integrating these estimates, you finally get a reliable view.

Frequent Item – Set Analysis

The market-basket model features many relationships. On one side, there are items, and on the opposite side, there are baskets. Every basket contains a set of questions. The hypothesis created here is that the number of questions in the basket is always smaller than the total number of items. This means that if you count the items in the basket, it should be high and broad to fit in memory. Here, data is similar to a file that has a series of hoops. In reference to the distributed file system, baskets represent the original file. Each basket is of type “set of items”.

As a result, a popular family technique to characterize data depending on the market-basket model is to discover frequent item-sets. These are sets of items that reveal the most baskets.

Market basket analysis was previously applied in supermarket and chain stores. These stores track down the contents of each market basket that a customer brings to the checkout. Items represent products sold by the store while baskets are a set of items found in a single basket.

That said, this same model can be applied in many different data types such as:

· Similar concepts: Let items represent words and baskets documents. Therefore, a report or basket has words or things available in the report. If you were to search for words that are repeated in a text, sets would contain the most words.

· Plagiarism: You can let the items represent documents and baskets to be sentenced.

Properties of Frequent-Item Sets to Know

· Association rules: These refer to implications in case a basket has a specific set of items.

· Monotonicity: One of the most essential properties of item-sets is that if a set is frequent, then all its subsets are numerous.

Chapter 21-

 Looking at Machine Learning and How This Fits In

While we are on this topic, we need also to spend some time looking at machine learning and how it is able to fit in with the problems of deep learning and our data analysis. Machine learning is another topic that is getting a lot of attention throughout the business world, no matter which industry you spend your time in, and learning how to make this happen, and the importance of machine learning and other parts of artificial intelligence in your project and the models that you create.

When you start diving into all of the advancements that are present with artificial intelligence it sometimes seems a bit overwhelming. But if you are just interested in learning some of the basics for now, you can boil down a lot of the innovations that come with artificial intelligence into two main concepts that are equally as important. These two concepts are going to include the deep learning that we have already spent some time on, and machine learning as well.

These are two terms that have garnered a lot of attention over the years, and because of the buzz that comes with them, it is likely that many business owners assume that these words can be used interchangeably. But there are some key differences that occur between machine learning and deep learning, and it is definitely essential to know the differences and how these two methods relate
 to each other

With that in mind, we are going to take some time to explore more about machine learning and how it is able to fit into the model that we are creating. There are a lot of examples of both deep learning and machine learning, and we use both of these topics on a regular basis. So, let’s dive right in and see a bit more about the differences and similarities between machine learning and deep learning.

What Is Machine Learning?

The first thing that we need to take a look at here is the basics of machine learning. This is going to include a lot of algorithms that are able first to parse the data we have, learn from that data, and then apply what they were able to learn from that data over to make a more informed decision. Basically, it is a process we can use in order to teach our machines and programs on how to learn and make important decisions on their own.

Let’s take a look at an example of how this is meant to work. An excellent example of this process would be a streaming service for on-demand music. For this service to stick with some decisions about which artists or songs to recommend to one of their listeners, the algorithms of machine learning will be hard at work. These algorithms are able to associate the preferences of the user with other listeners who have a similar taste in music. This technique, which is often given the generic name of artificial intelligence, is going to be used in many of the other services that are able to offer us recommendations in an automatic manner.

Machine learning is going to fuel all sorts of tasks that are automated and that can span across many industries. This could start out with some firms for data security, who will hunt down malware and turn it off before it infects a lot of computers. And it can go to finance professionals who want to prevent fraud and make sure they are getting the alerts when there are some excellent trades they can rely on.

We are able to take some of the algorithms that come with artificial intelligence and program them in a manner that makes them learn on a constant basis. This is going to be done in a way that stimulates
 the actions of a virtual personal assistant, and you will find that the algorithms are able to do these jobs very efficiently.

Machine learning is going to be a sophisticated program to work with, and often it takes the right coding language, such as Python, and some of the best libraries out there to get things done. The algorithms that you can create will involve a lot of complex coding and math that can serve as a mechanical function. This function is similar to what we may see a screen on a computer, a car or a flashlight do for us.

When we say that something such as a process or a machine, is able to do “machine learning” this basically means that it’s something that is able to perform a function with the data you provide over to it, and then it can also get progressively better at doing that task as time goes on. Think of this as having a flashlight that is able to turn on any time that you say the words “it is dark,” so it could recognize the different phrases that have the word dark inside of them, and then knows to continue on with the action at hand.

Now, the way that we can train these machines to do the tricks above, and so much more, can be exciting. And there is no better way to work with this than to add in a bit of neural networking and deep learning to the process to make these results even more prevalent overall.

Machine Learning Vs. Deep Learning

Now we need to take a look at how machine learning and deep learning are going to be the same, and how they can be different. When we look at this in practical terms, deep learning is merely going to be a subset that we see with machine learning. In fact, one reality that we see with this is that deep learning is technically going to be a type of machine learning, and it will function in a manner that is similar. This is why so many people who haven’t been able to work with either of these topics may assume that they are the same thing. However, it is essential to understand that the capabilities between deep learning and machine learning are going to be different.

While the basic models that come with machine learning are going to become steadily better what the function you are training them to
 work with, they are still going to rely on some guidance from you as well. If the algorithm gives you a prediction that is inaccurate, then the engineer has to step in and make sure that the necessary adjustments are done early on. With a model that relies on deep learning though, the algorithm can determine, without any help, whether the prediction that it made is accurate. This is done with the help of a neural network.

Let’s go back to the example that we did with the flashlight earlier. You could program this to turn on any time that it can recognize the audible cue of someone when they repeat the word “dark.” As it continues to learn, it might then turn on with any phrase that has that word as well. This can be done with just a simple model out of machine learning.

But if we decide to add in a model from deep learning to help us get this done, the flashlight would then be able to turn on with some other cues. Instead of just waiting for the word “dark” to show up, we would see it work when someone said a phrase like “the light switch won’t work” or “I can’t see” which shows that they are in need of a light right then. A deep learning model is going to be able to learn through its own method of computing, which is going to be a technique that helps the system act in a manner that seems like it has its own brain.

Adding in the Deep Learning to the Process

With this in mind, a model of deep learning is going to be designed in a manner that can continually analyze data with a logic structure, and this is done in a manner that is similar to the way that a human would look at problems and draw conclusions. To help make this happen, the application of deep learning is going to work with an artificial neural network, which is going to be basically a layered structure of algorithms that we can use for learning.

The design of this kind of network can seem a bit confusing in the beginning, but it is designed to work similar to the biological neural network that we see in the human brain. This is an excellent thing for the machine learning and deep learning that you want to do because it can lead us over to a process of knowledge that will be more
 capable of hard and complicated than what the standard models with machine learning can do.

Of course, there are going to be times when it is tricky to ensure that the model of deep learning isn’t going to draw some conclusions that are incorrect. We want it to be able to work on its own to get results, but we have to make sure that we are not getting the wrong answers out of the model. And we need to catch these issues as quickly as possible. If the model is able to continue on and learn the wrong outputs and information, then it is not going to be incorrect the whole time and will not do the work that we want.

Just like with some of the other examples that we are able to use with artificial intelligence, it is going to require a lot of training to make sure that we can see the learning processes turn out the right way. but when this is able to work the way that it should, the functional deep learning is going to be seen ore as a scientific marvel that can be the backbone of true artificial intelligence.

An excellent example that we can look at right now for deep learning is the AlphaGo product from Google. Google worked on creating a computer program that worked with a neural network. In this computer program, the system was able to learn how to play the board game that is known as Go, which is one of those games that needs a lot of intuition and intellect to complete.

This program started out by playing against other professional players of Go, the model was able to learn how to play the game and beat out some of these professionals, beating a level of intelligence in a system that had never been seen before. And all of this was done without the program being told at all when it should make a specific move. A model that followed the standard machine learning requirements would need this guidance. But this program is going to do it all on its own.

Chapter 22-

 Learn Programming within the Shortest Time

Do you want to venture into coding, but you have more questions than answers on how to start it? You may be worried about what you need to learn and how to identify bugs as well as fix them. Starting may seem to be a daunting task, but with determination and strong will, you will be able to learn. The good news is, there are plenty of resources online that can help you to master coding. The following are some of our best tips that can set you off on the right foot.

1.
 Your reasons for learning to code

Before starting, you need to ask yourself why you want to learn to code. Assess the real reasons as to why you want to venture into coding. Do you want to make a career change? Do you want to develop apps? Do you want to start a company for building websites or a tech startup? The answers to these questions will determine which programming languages you need to master and the amount of time you need to learn the language.

Think about your end goal so that you do not find yourself wandering. If you would like to create system software, then you will need to learn C++ along with data structures and algorithms. If you want to shift your career to tech-related fields that require knowledge of coding, then you can attend short-term coding boot camps. You can get useful coding information from interactive tutorials or online courses that you could access free or pay a few dollars.

2.
 Choose the right programming language

After establishing your end goal for learning how to code, it will be easier for you to know which programming language you will go for. Although all programming languages are functional, some are more user-friendly and easier to learn like HTML, JavaScript, and CSS. These are good if you want to learn how to develop basic websites.

If you want to generate websites that incorporate payment systems and databases, you should consider learning SQL, JavaScript, PHP, and Python. Learning Java can help you in creating android apps. If you want to be flexible and fit in different fields, you can consider learning JavaScript and Python. The good news is that once you learn the basics of programming you can learn any language of your
 choice, so start with one and learning the rest will be easier for you.

3.
 Pick a plan on how you will learn

You can decide to take online courses like Udacity or attend coding boot camp classes. You can also learn by yourself using the various tutorials available online. However, the problem with online tutorials is that they are too many that you may get confused in deciding which one is the best. Just pick one and stick to it instead of jumping from one to another. You can take advantage of the free online courses to learn the basics of programming before moving to paid internships for advanced knowledge.

You can also acquire a book that can take you through from the basics to real coding. There are different programming e-books that you can find on the Internet. Most of these books offer good guide practices from project design to debugging code. Interactive tutorials are also useful because they give you examples in action and this makes it easier to understand as a self-taught person. They simplify the coding concepts and give you relevant exercises to tackle before going to another topic.

4.
 Learn by hands-on coding do not just read

The best way to learn to code is by doing it practically. Once you have learned the basics, you should try to use the knowledge to build something. You can start by tackling the exercises that come with tutorials or online courses. Therefore, make a project as you continue learning. No matter how much you learn, your coding skills will show in your project.

Use the knowledge you gain or you risk losing it. For example, if you want to develop a website, you can practice using HTML and CSS. Create the underlying HTML codes and run the program. What happens? Modify the systems and see what happens again. Remember practice makes perfect and there is no shortcut in coding. You can start small but think bigger.

Although you may not be the best in the first few weeks, you need to be proud of the small progress that you make and be patient with yourself. Strive to write few code lines that are error-free and
 logically correct. This is a great achievement for someone new in programming. If you are stuck at some errors, you can Google your errors by copying and pasting the error message with quotation marks on Google search box.

5.
 Do not ignore the basics

Remember that you cannot run before you learn how to walk! It is particularly important to master the basics of any programming language because the advanced concepts start building from the basics that you have learned. Therefore, you need to put much focus on the basics so that you are not stuck when you reach the back-end programming.

6.
 Code by hand since it sharpens your proficiency

You should learn to write code on paper then dry run it before transferring it into the computer. Since you would not be able to check if the syntax is correct, you will be concentrating on what you are writing. This method will sharpen your skills in becoming a sound developer. Most job interviews will ask you to write the code on paper.

7.
 Get a Mentor

Another great way to learn to code is by getting the guidance of an expert. You can ask for help from a person who is good at programming and this will make your learning more comfortable and faster. He/she can help you with code feedback or advice. You can find a mentor online or a local coding meets up.

8.
 Learn incrementally

You should not try to learn several languages at once, start with the basic ones like HTML then you move gradually to complex ones like PHP, Python or C#. Stay committed, disciplined and focused. After learning something, you can involve someone to look at your project and accept the feedback and improve.

Web Development Projects a Learner Should Begin With

The most excellent way to learn and understand web development is
 by designing projects. Going through tutorials is not enough if you are not going to implement what you read in them. Therefore, read the tutorials and let those ideas come into reality.

Good projects are those that help you in solving your problems. If you wish to work on projects that will significantly inspire you, we have a list of good projects that you can start with.

1.
 The quiz app

A beginner can do this excellent project. The app works by requesting you to answer the questions in the app to determine your knowledge on the topic. You can also create this app to test the coding skills of other developers.

User interface

	The user can start by clicking on a button displayed "Take Quiz" or "Start".

	The user then sees a display of multiple-choice questions and the user is supposed to choose one or more answers from the choices given.

	After the user selects the required choices, he/she clicks a button displayed as "Next" until he/she reaches the last page.

	Finally, the user lands on a page that displays the results he/she has gotten from the quiz (passed or failed).

This app can allow the user to create an account where he/she can save the scores. It can also enable the user to add more quizzes to the app.

2.
 Calculator app

A calculator is a powerful tool since it makes calculations easier for humans. You can use JavaScript to create a calculator app that can solve simple arithmetic calculations like addition, multiplication and division using integers.

User Interface

	The user interacts with a page that shows the current number the user has entered or results from the last
 calculations.

	The interactive page displays an entry pad that has buttons consisting of numbers 0-9 and operation signs "+", "-", "/", "*", "=", and a "C" button for clear.

	The user can enter numbers by clicking on the names and then click on the arithmetic operator to display the result of the operation.

	The user can click on the "C" button to delete the last number or the previous operation.

3.
 Christmas Lights

You need to be creative enough to come up with this light display app. You will draw seven-colored circles in a row then you will use a timer to change the intensity of every ring. It works by brightening a colored circle then the next color circle on line goes back to its average strength. This will form a causal sequence of colored lights like the Christmas lights.

User interface

	The user clicks on a button displayed as "START" to start the display or "STOP" to end the show.

	The user can alter the time interval as well as the color intensity and he/she can choose the colors to fill every circle

	The app allows the user to customize the size of the circles, and the number of rows to display.

4.
 Conversion of Roman Numbers to Decimal Numbers

This app will help you to convert the roman numbers to decimal. You can start with seven symbols and assign them some fixed integer values. For example:

	I can represent number 1 then;

	V = 5

	X=10

	L=50

	C=100

	D=500

	M=1000

The User Interface

	The user is required to enter a roman number into the input field and clicks on the "convert button".

	The result of the roman number converted to decimal number displays on an output field and the user can see it.

	If the user enters a wrong symbol, then the app displays an error message

	The user can convert from decimal to roman and vice-versa

5.
 To-Do List app

This app can allow you to write down all the things that you want to do and your end goals.

The User Interface

	The user can see a display with an input field where he/she can type the "to-do" item.

	After typing the "to-do" item, the user can click the enter button or submit button then the question is added onto the "to-do" list where the user can see.

	When the user accomplishes a task, he/she should tick against the "to-do" list to show that the job is complete.

	The user can also delete an item by pressing on delete or remove button.

	The user can make changes on the "to-do" list.

	The user can see all the completed tasks as well as those that are active.

	The date of creation of the "to-do" list should also be visible.

	The app saves all the "to-do" items and the updates and it
 allows the user to retrieve them.

6.
 Create a Library management system website

This website will automate all the daily work of the library and the website has two sections, the admin's part, and the students/teachers section. Anyone who intends to use the site should register first.

Chapter 23-

 Essential Libraries for Machine Learning in Python

Many developers nowadays prefer the usage of Python in their data analysis. Python is not only applied in data analysis but also statistical techniques. Scientists, especially the ones dealing with data, also prefer using Python in data integration. That's the integration of Webb apps and other environment productions.

The features of Python have helped scientists to use it in Machine Learning. Examples of these qualities include consistent syntax, being flexible and even having a shorter time in development. It also can develop sophisticated models and has engines that could help in predictions.

As a result, Python boasts of having a series or a set of very extensive libraries. Remember, libraries refer to a series of routines and sorts of functions with different languages. Therefore, a robust library can lead to tackling more complex tasks. However, this is possible without writing several code lines again. It is good to note that Machine Learning relies majorly on mathematics. That's mathematical optimization, elements of probability and also statistical data. Therefore, Python comes in with a rich knowledge of performing complex tasks without much involvement.

The following are examples of essential libraries being used in our present.

Scikit – Learn

Scikit learn is one of the best and a trendy library in Machine Learning. It has the ability to supporting learning algorithms,
 especially unsupervised and supervised ones.

Examples of Scikit learn include the following.

	k-means

	decision trees

	linear and logistic regression

	clustering

This kind of library has major components from NumPy and SciPy. Scikit learn has the power to add algorithms sets that are useful in Machine Learning and also tasks related to data mining. That's, it helps in classification, clustering, and even regression analysis. There are also other tasks that this library can efficiently deliver. A good example includes ensemble methods, feature selection, and more so, data transformation. It is good to understand that the pioneers or experts can easily apply this if at all, they can be able to implement the complex and sophisticated parts of the algorithms.

TensorFlow

It is a form of algorithm which involves deep learning. They are not always necessary, but one good thing about them is their ability to give out correct results when done right. It will also enable you to run your data in a CPU or GPU. That's, you can write data in the Python program, compile it, then run it on your central processing unit. Therefore, this gives you an easy time in performing your analysis. Again, there is no need for having these pieces of information written at C++ or instead of other levels such as CUDA.

TensorFlow uses nodes, especially the multi-layered ones. The nodes perform several tasks within the system, which include employing networks such as artificial neutral, training, and even set up a high volume of datasets. Several search engines such as Google depend on this type of library. One main application of this is the identification of objects. Again, it helps in different Apps that deal with the voice recognition.

Theano

Theano too forms a significant part of Python library. Its vital tasks here are to help with anything related to numerical computation. We can also relate it to NumPy. It plays other roles such as;

	Definition of mathematical expressions

	Assists in the optimization of mathematical calculation

	Promotes the evaluation of expressions related to numerical analysis.

The main objective of Theano is to give out efficient results. It is a faster Python library as it can perform calculations of intensive data up to 100 times. Therefore, it is good to note that Theano works best with GPU as compared to the CPU of a computer. In most industries, the CEO and other personnel use Theano for deep learning. Also, they use it for computing complex and sophisticated tasks. All these became possible due to its processing speed. Due to the expansion of industries with a high demand for data computation techniques, many people are opting for the latest version of this library. Remember, the latest one came to limelight some years back. The new version of Theano, that’s, version 1.0.0, had several improvements, interface changes, and composed of new features.

Pandas

Pandas is a library that is very popular and helps in the provision of data structures that are of high level and quality. The data provided here is simple and easy to use. Again, it’s intuitive. It is composed of various sophisticated inbuilt methods which make it capable of performing tasks such as grouping and timing analysis. Another function is that it helps in a combination of data and also offering filtering options. Pandas can collect data from other sources such as Excel, CSV, and even SQL databases. It also can manipulate the collected data to undertake its operational roles within the industries. Pandas consist of two structures that enable it to perform its functions correctly. That's Series, which has only one dimension and data frames that boast of two dimensional. The Pandas library
 has been regarded as the most robust and powerful Python library over the time being. Its primary function is to help in data manipulation. Also, it has the power to export or import a wide range of data. It is applicable in various sectors, such as in the field of Data Science.

Pandas is useful in the following areas:

	Splitting of data

	Merging of two or more types of data

	Data aggregation

	Selecting or subsetting data

	Data reshaping

Diagrammatic explanations

Series Dimensional

	
A

	
7

	
B

	
8

	
C

	
9

	
D

	
3

	
E

	
6

	
F

	
9

Data Frames dimensional

	
	
A

	
B

	
C

	
D

	
*0

	
0

	
0

	
0

	
0

	
*1

	
7

	
8

	
9

	
3

	
*2

	
14

	
16

	
18

	
6

	
*3

	
21

	
24

	
27

	
9

	
*4

	
28

	
32

	
36

	
12

	
*5

	
35

	
40

	
45

	
15

Applications of pandas in a real-life situation will enable you to perform the following:

	You can quickly delete some columns or even add some texts found within the Dataframe

	It will help you in data conversion

	Pandas can reassure you of getting the misplaced or missing data

	It has a powerful ability, especially in the grouping of other programs according to their functionality.

Matplotlib

This is another sophisticated and helpful data analysis technique that helps in data visualization. Its main objective is to advise the industry where it stands using the various inputs. You will realize that your production goals are meaningless when you fail to share them with different stakeholders. To perform this, Matplotlib comes in handy with the types of computation analysis required. Therefore, it is the only Python library that every scientist, especially the ones dealing with data prefers. This type of library has good looks when it comes to graphics and images. More so, many prefer using it in creating various graphs for data analysis. However, the technological world has completely changed with new advanced libraries flooding the industry.

It is also flexible, and due to this, you are capable of making several graphs that you may need. It only requires a few commands to perform this.

In this Python library, you can create various diverse graphs, charts of all kinds, several histograms, and even scatterplots. You can also make non-Cartesian charts too using the same principle.

Diagrammatic explanations

 [image:]

The above graph highlights the overall production of a company within three years. It demonstrates explicitly the usage of Matplotlib in data analysis. By looking at the diagram, you will realize that the production was high as compared to the other two years. Again, the company tends to perform in the production of fruits since it was leading in both years 1 and 2 with a tie in year 3. From the figure, you realize that your work of presentation, representation and even analysis has been made easier as a result of using this library. This Python library will eventually enable you to come up with excellent graphics images, accurate data and much more. With the help of this Python library, you will be able to note down the year your production was high, thus, being in a position to maintain the high productivity season.

It is good to note that this library can export graphics and can change these graphics into PDF, GIF, and so on. In summary, the following tasks can be undertaken with much ease. They include:

	Formation of line plots

	Scattering of plots

	Creations of beautiful bar charts and building up of histograms

	Application of various pie charts within the industry

	Stemming the schemes for data analysis and computations

	Being able to follow up contours plots

	Usage of spectrograms

	Quiver plots creation

Seaborn

Seaborn is also among the popular libraries within the Python category. Its main objective here is to help in visualization. It is important to note that this library borrows its foundation from Matplotlib. Due to its higher level, it is capable of various plots generation such as the production of heat maps, processing of violin plots and also helping in age of time series plots.

Diagrammatic Illustrations

	
	

	
	
[image:]

	
	

The above line graph clearly shows the performance of different machines the company is using. Following the diagram above, you
 can eventually deduce and make a conclusion on which devices the company can keep using to get the maximum yield. On most occasions, this evaluation method by the help of the Seaborn library will enable you to predict the exact abilities of your different inputs. Again, this information can help for future reference in the case of purchasing more machines. Seaborn library also has the power to detect the performance of other variable inputs within the company. For example, the number of workers within the company can be easily identified with their corresponding working rate.

NumPy

This is a very widely used Python library. Its features enable it to perform multidimensional array processing. Also, it helps in the matrix processing. However, these are only possible with the help of an extensive collection of mathematical functions. It is important to note that this Python library is highly useful in solving the most significant computations within the scientific sector. Again, NumPy is also applicable in areas such as linear algebra, derivation of random number abilities used within industries and more so Fourier transformation. NumPy is also used by other high-end Python libraries such as TensorFlow for Tensors manipulation. In short, NumPy is mainly for calculations and data storage. You can also export or load data to Python since it has those features that enable it to perform these functions. It is also good to note that this Python library is also known as numerical Python.

SciPy

This is among the most popular library used in our industries today. It boasts of comprising of different modules that are applicable in the optimization sector of data analysis. It also plays a significant role in integration, linear algebra, and other forms of mathematical statistics.

In many cases, it plays a vital role in image manipulation. Manipulation of the image is a process that is widely applicable in
 day to day activities. Cases of Photoshops and much more are examples of SciPy. Again, many organizations prefer SciPy in their image manipulation, especially the pictures used for presentation. For instance, wildlife society can come up with the description of a cat and then manipulate it using different colors to suit their project. Below is an example that can help you understand this more straightforwardly. The picture has been manipulated:

	
	

	
	
[image:]

	
	

The original input image was a cat that the wildlife society took. After manipulation and resizing the painting according to our preferences, we get a tinted picture of a cat.

Chapter 24-

 Python Debugging

In some cases, a program is developed, but when running, it does not provide the desired outcome or it gets stuck somewhere in the
 workflow. This implies that the application should be scrutinized while it is running on a test to get a sense of where the app should be corrected or where things go wrong. This action is what is named by programmers debugging. This task is actively used to make sure that a program is running as it is supposed to be. We will cover this topic and present the commands that are available to debug Python programs. First, let’s talk in-depth about what is debugging.

What is debugging?

Debugging is simply the process of finding and fixing errors in a program. Debugging verifies the functioning of a plan to fix statements of operations that make the program stack and not running appropriately. The simplest and most obvious way to debug a program is using the print function in order to spot the output of functions or variables. In general, the print allows getting information to have a look inside of the functioning of the program. However, this method has several drawbacks. The major is that you need to add changes to the code several times in order to add the print in places where you need to extract information. These places are commonly known as breakpoints. Then you have to run the program every time. Some advanced debugger tools can be used. These tools mostly are very efficient and allow saving a great amount of time when used compared to debugging with print.

Python has a debugger that comes by default with the software when installed. This debugger is simply a tool that gives ways to get a look at the code while it is running. When using this tool, you can make changes instantly in the code and alter the values of the variables all while you run the code in chunks. The debugger that comes with Python is named pdb. This tool is in the form of a command-line interface. This debugger, as any package, is imported with the import statement to be able to use it.

import pdb, pdb.set_trace.

To be used, the debugger should be imported into the program you wish to debug. When Python interpreter runs this line, you will be redirected to a prompt command on your terminal in which the program is launched. Typically, this is the prompt of Python with
 commands that allows you to evaluate your code.

Python Debugger Commands

Python default debugger has several debugging commands which are presented in the table below. Here we cover the most basic one. The first command, list, allows you to list the line where the control workflow is on. You can check specific parts of your code by passing their first and last lines as arguments to the list command. You can also check the code around a specific line bypassing only the number of this line to the list command.

The up and down commands allow navigating around the code of your program. By using these commands, you can know which statement is calling the function that is currently running or understand reasons why the interpreter is behaving or running certain code parts. The next and step are commands that allow resuming execution of the code line by line. The next command will jump to the following line of the function that is currently running even if it calls another function. On the contrary, the step function allows you to go deeper in the code chain rather than just executing the following line. Finally, the break is a command that enables adding new breakpoints with no requirements to make any modifications in the source code.

List Python debugger commands

	
Debug command

	
Explanation

	
Alias or a

	
allows creating an alias to the command

	
args or rgs

	
allows showing the list of arguments

	
break or b

	
allows setting breakpoints.

	
disable

	
allows disabling breakpoints supplied as a list separated by a space

	
ignore

	
allows setting a count for several breakpoints

	
commands

	
allows specifying a command list for several breakpoints

	
continue or c or cont

	
continue running the code until it reaches a breakpoint

	
exit

	
quit the debugger

	
interact

	
launch an interactive interpreter

	
list or l

	
allows showing the code for specific lines

	
next or n

	
resumes execution until the following line of the function currently running

	
restart

	
allows restarting the program

	
step or s

	
run expression in the current line

	
unalias

	
removes alias

	
where or w

	
displays a trace of the recent last frame

	
down or d

	
goes to the next line down

	
up or you

	
goes to the above line

	
clear or cl

	
allows clearing all breakpoints

	
enable

	
allows enabling breakpoints

	
condition

	
allows setting conditions for breakpoints as a test that should be evaluated to true to set the breakpoint

	
p

	
allows evaluating the expression in the current line

	
help or h

	
If no argument is supplied, displays list of commands, otherwise, displays information about the command passed as an argument

	
jump or j

	
allows setting the number of the line to run next; it allows jumping code parts or running the code from the start

	
longlist or ll

	
allows showing the whole code for the function currently running

	
quit or q

	
exit the debugger and abort the program

	
return or r

	
continue running the code until hits a function return

	
tbreak

	
allows making a temporary breakpoint

	
until or ill

	
if no argument is passed, it continues running the code until a line which has a number superior to the current is reached

	
whatis

	
displays the expression type

Now that you know the concept behind debugging and its basic commands, let’s see a real example. We consider the following code saved in a file named test.py.

def Myfct1 (A):

print ('A by 2 is:', A * 2)

return A * 2

def Myfct2 (B, A):

C = B * A

A = 4

B = 'name'

Myfct2 (B, A)

You can notice that this code does not import Python debugger, the pdb module. Instead, we are going to launch the function in the prompt with Python in a debugger mode with the following command:

C:\Users***\Desktop>Python -m pdb test.py

> c:\users***\desktop\test.py(1)<module>()

-> def Myfct (A):

(Pdb)

As you can see, Python did not return the usual >>> in the prompt but it returned instead (Pdb). This means that the debugger is waiting for debugger commands. Now, let’s test some of the commands listed in Table 9 above to get a sense of how the debugger works. We start by the list command.

(Pdb) list

1 -> def Myfct1(A):

2 print ('A by 2 is:', A * 2)

3 return A * 2

4

5 def Myfct2(B, A):

6 C = B * A

7

8 A = 4

9 B = 'name'

10 Myfct2(B, A)

[EOF]

In this example, we applied the list command with no argument. It returned the content of the file with line numbers. If we pass arguments (i.e. line numbers) to the list command, it will return only the code that shows between these lines. For instance:

(Pdb) list 2, 3

2 print ('A by 2 is:', A * 2)

3 return A * 2

(Pdb)

If we use now the next command it will return, the next line after where the current curser is:

(Pdb) next

> c:\users***\desktop\test.py(5)<module>()

-> def Myfct2(B, A):

(Pdb)

We skip lines in the debugger using the jump command as follows:

(Pdb) jump 8

> c:\users*****\desktop\test.py(8)<module>()

-> A = 4

(Pdb)

If we try to print the variable 'A', Python will display a name error because this statement is not yet executed. The curser is just pointing to this line:

(Pdb) A

*** NameError: name 'A' is not defined

(Pdb)

Now, in order to print variable names, we should run the program with commands that run the program not just show its content. Among these commands is the continue command. So, let’s run now the continue command:

(Pdb) continue

Traceback (most recent call last):

File "C:\Users****\Anaconda3\lib\pdb.py", line 1697, in main

pdb._runscript(mainpyfile)

File "C:\Users****\Anaconda3\lib\pdb.py", line 1566, in _runscript

self.run(statement)

File "C:\Users****\Anaconda3\lib\bdb.py", line 585, in run

exec (cmd, globals, locals)

File "<string>", line 1, in <module>

File "c:\users****\desktop\test.py", line 8, in <module>

A = 4

NameError: name 'Myfct2' is not defined

Uncaught exception. Entering post mortem debugging

Running 'cont' or 'step' will restart the program

> c:\users*****\desktop\test.py(8)<module>()

-> A = 4

Now, here that the continue launched different built-in functions of the debugger. It finally displayed an Error name for the 'Myfct2' because the 'def' statement of this function was not executed. Now, if we try to print the value of the variable ' A ', we get:

(Pdb) A

4

(Pdb)

If we reach the bottom of the file and run, for instance, the next command, Python debugger returns:

(Pdb) next

Post mortem debugger finished. The test.py will be restarted

> c:\users***\desktop\test.py(1)<module>()

-> def Myfct1(A):

The longlist command allows showing the entire code. For instance:

(Pdb) longlist

1 -> def Myfct1 (A):

2 print ('A by 2 is:', A*2)

3 return A * 2

4

5 def Myfct2 (B, A):

6 C = B * A

7

8 A = 4

9 B = 'name'

10 Myfct2(B, A)

(Pdb)

Now, to run a code, we use the command step. For instance, let’s quit the debugger with the command q() and restarted it again to test the command step.

(Pdb) q()

C:\Users****\Desktop>Python -m pdb test.py

> c:\users****\desktop\test.py(1)<module>()

-> def Myfct1 (A):

(Pdb) step

> c:\users****\desktop\test.py(5)<module>()

-> def Myfct2 (B, A):

(Pdb)

As you can notice, when a step command is run, the current line is def Myfct2 (B, A). This means that it is executed the 'def' statement of the first function. We can test that by calling this function:

(Pdb) Myfct1 (3)

A by 2 is: 6

6

(Pdb)

We can also pass an argument to step function to specify which line to run. For instance, we pass as argument Line 8. The debugger will run everything before line 8.

As we can see from the example below, we can both print the variable A and call the function Myfct2 because these statements were both executed.

(Pdb) step 8

> c:\users****\desktop\test.py(8)<module>()

-> B = 'name'

(Pdb) A

4

(Pdb) Myfct2 (5, 3)

(Pdb)

Because we have reached the end of the file, let’s use continue to go back to the beginning of the file and test other commands.

(Pdb) cont

The program finished and will be restarted

> c:\users****\desktop\test.py(1)<module>()

-> def Myfct1 (A):

As you can see when running continue command at the end file, the debugger shows a message that lets you know that the program has finished and it is restarting. Now, we are going to test the whatis
 command:

(Pdb) whatis 2

<class 'int'>

(Pdb)

This command returns the type of the data object of the expression that appears in the Line passed as an argument.

Conclusion

Congratulations on finishing this book, let’s hope it was informative and able to provide you with all of the tools you need to achieve your goals whatever they may be.

Working in Python can be one of the best programming languages for you to choose. There are just so many things that you can do with the Python program, and since you are able to mix it in with some of the other programming languages, there is almost nothing that you can’t do with Python on your side. It is not a problem if you are really limited on what you are able to do when using a programming language. Python is a great way for you to use in order to get familiar and to do some amazing things without having to get scared at how all the code will look. For some people, half the fear of using a programming language is the fact that it is hard to look at with all the brackets and the other issues. But this is not an issue when it comes to using Python because the language has been cleaned up to help everyone read and look at it together.

This guidebook has given you all the tools that you need to hit the more advanced parts of Python. Whether you are looking at this book because you have a bit of experience using Python and you want to do a few more advanced things, or you are starting as a beginner, you are sure to find the answers that you need in no time. So look through this guidebook and find out everything that you need to know to get some great codes while using the Python
 programming.

The next step is to get started with the basics of programming in Python. You will find that even as a beginner or someone who has never done any kind of coding in the past, working with the Python language is easy enough to learn. And we spent some time in this guidebook learning more about how this is going to work, and how we can code in no time.

There are a lot of reasons why people and businesses are going to want to learn how to work with the Python language, and with some of the codes and more that we looked at in this guidebook will show us just how easy working with this kind of language can be overall. It is one of the best coding languages for basic coding all the way up to data analysis and machine learning, so there is always going to be a lot of things that you are able to do with it.

This guidebook took some time to explore more about what Python is able to do for us. We looked at some of the basics, like how to install this language on your computer, and then moved on to some of the different codes that you can write out with the help of this language. And then, we moved on to how we can use this more practically with the help of a good data analysis to push it along and help your business learn from the data and everything it has been able to do overtime.

When it is time for us to explore more about Python programming and what we can do with some simple coding along the way, make sure to read through this guidebook and learn how to get started.

Well, you don’t need to be proficient in Python to conduct data analysis in Python. All you need to do is to master five Python libraries to effectively find a solution to a wide array of data analysis problems. So, you need to start learning these libraries one by one. Remember that you don’t have to be a pro at building great software in Python to conduct data analysis productively.

Don’t forget, Numpy. This is another powerful Python package useful for scientific calculation. Having the correct understanding of Numpy will allow you to use tools such as Pandas. Remember, Pandas feature advanced data structures and manipulation tools to
 simplify data analysis.

That said, one thing that you should avoid doing is trying to learn every tool and library in Python at the same time. When you attempt to learn everything at once, you will spend a lot of time-shifting between different concepts, properties, and getting frustrated, and switching to something else.

So, you should try to concentrate on the following basic steps:

	Master python basics

	Master Numpy

	Learn Pandas

	Understand Matplotlib

From here, you can continue to expand on more topics.

I hope you have learned something!

OEBPS/Image00015.jpg
40000
35000
30000
25000
20000 |
15000 |
10000
5000

——Machine D

—+—Machine A

OEBPS/Image00016.jpg

OEBPS/Image00003.jpg

OEBPS/Image00004.jpg
B3 fe Gt Yew Nmigme Code Betactor Run ook VCS MWiedow Melp PythonTuteril (C\sersiDoiehPythonTutoil - PYCharm.
e

B 00—
o o S
= [T S ——
[yt P
B e Dy
e Cutsnec BEPromn e
Compmaran cropresnnec
0o
e ey Bt e
gz o e B
e s Search Everywhere Doutle S
reomacos.
s b GotoFile CulsshifteN
Glemypon omotes s
o, 5 Recent Files Ctle.
Sl Il G Navigation Bar AltsHome
tomacose Gt <
pts— o Drop fles here t open
vt
Oyt s
W gt
oca sy B
B yonse s
+ compuewn. o
ey 5
O e

Srvvare $2twin

OEBPS/Image00001.jpg
def _del_(se Nt

hasattr(self,

inter(self) 0 N
p‘ﬁ:bigfﬂe.free_fﬂe(pm

requested]

MARK MATTHES iy

(requested) <len(self.names))

6 E R I C L U T Z ":Il[t()[(x, self.names[x])

YIHON

-2BOOKSIN1-

requested]

Bel_(self):

SN CODING FOR BEGINNERS USING

pointer(se1f) None:
Libbigfile. free_file(pointer(self]

e PY THON + PYTHON CRASH
ochics COURSE

(nax(requested)<len(self.nanes))
index_nane_array - [(x, self.names(x])
index_nane_array.sort()

X in request

npoints

 array)
c_index, npoints) ()

OEBPS/Image00002.jpg

OEBPS/Image00010.jpg
List values before change: [940, 1209, 6734]
List values after change: [800, 1209, 6734]
Values outside function: [800, 1209, 6734]

OEBPS/Image00011.jpg
Values inside the function: [11, 21, 31, 41]
Vlaues outside function: [51, 91, 81]

OEBPS/Image00008.jpg
Traceback (most recent call last):
File "main.py”, line 9, in
additionFunction(5)
TypeError: additionFunction() missing 1 required positional argument: 'n2'

OEBPS/Image00000.jpg
def _del_(se Nt

hasattr(self,

inter(self) 0 N
p‘ﬁ:bigfﬂe.free_fﬂe(pm

requested]

MARK MATTHES iy

(requested) <len(self.names))

6 E R I C L U T Z ":Il[t()[(x, self.names[x])

YIHON

-2BOOKSIN1-

requested]

Bel_(self):

SN CODING FOR BEGINNERS USING

pointer(se1f) None:
Libbigfile. free_file(pointer(self]

e PY THON + PYTHON CRASH
ochics COURSE

(nax(requested)<len(self.nanes))
index_nane_array - [(x, self.names(x])
index_nane_array.sort()

X in request

npoints

 array)
c_index, npoints) ()

OEBPS/Image00009.jpg
Traceback (most recent call last):
File "main.py”, line 9, in
additionFunction(5,10,9)
TypeError: additionFunction() takes 2 positional arguments but 3 were given

OEBPS/Image00006.jpg
The function code to run

OEBPS/Image00007.jpg
The first number is 10
The second number is S
The sum is 15

OEBPS/Image00005.jpg
o — [E—

T

OEBPS/Image00014.jpg
500

Year1

Year2

Year3

- mcereals
 Legumes

= Fruits

OEBPS/Image00012.jpg
245 278 TNR

OEBPS/Image00013.jpg
245 278 GEO

