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Introduction
 

How to improve your ranking, become a better Python programmer and a
lateral thinker.

Learn core concepts and the new practices of problem solving. Harness the
immense community knowledge whilst challenging the errors with
expertise. We explore common questions and answers that any coder will
invariably encounter.

Written by scientists and programmers who rank in the top 1% of
contributors on the stackoverflow website and have consistently maintained
this position for a significant period of time. This book demonstrates how
you can achieve the same.

Some of the contributions are work related and others are simply out of
curiosity.

Nevertheless, these are the questions, answers and techniques that will
take you to the top of the stack.

The community embraces you and will enjoy your feedback and
contributions.
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A brief introduction to python
Python is a programming language that lets you work quickly and integrate
systems more effectively.

Python is open source and free to use for anybody that has a computer and
wants to learn.

A formal description from Wikipedia reads like this:

“Python is a high-level, interpreted, general-purpose programming
language. Its design philosophy emphasises code readability with the use of
significant indentation”.

So let’s break this down:

Term What it means

High-level A bit easier for humans to read

Interpreted Runs as it is written

General-purpose A variety of use cases

Indentation Uses indents instead of {}



Background
The language itself was released in the early 90’s. Then around ten years
later a new version which introduced new features came out (version 2.0)
and finally about 8 years after this a newer version came out (version 3.0).

Version 3.0 is not completely backward compatible with version 2.0 which
means that some of the 2.0 code will not work with the 3.0 version. Most
notably, the print statement which gained a set of brackets in the newer
version.

Version 2.0: print “hello world”

Version 3.0: print (“hello world”)

The backward incompatibility can sometimes be annoying and was
considered to be a blunder by some whereas others consider it necessary. In
particular, version 2.0 was sunset, which means it is no longer supported, as
of Jan 2020.

So as time progresses the 3.0 code becomes the main accepted version and
this is what this book focuses on.

When we talk about Python  we talk about Python 3.0 .

Over this time, Python has consistently ranked as one of the top (most
popular) programming languages and in recent years has made a resurgence
due to use cases in the data science field primarily due to an abundance of
modules written by a very competent community of users.

 

Nomenclature
It is invariably necessary to go through some of the terms and phrases that
are commonly talked about.

Pythonic:

Code that is written in python looks both different and similar to other code.
There are also new features (such as list comprehension in place of for
loops) that other languages do not have and using those is considered to be
Pythonic.



Pythonista:

In short, this is someone who uses the python programming language.
Someone who writes in a Pythonic way, which is considered to be concise
and clean, might consider themselves to be a Pythonista.

 

Structure
There are probably three main features that stand out from other
predecessor languages and those are:

1. White space replacing curly braces {}
2. No semicolons ;  at the end of lines
3. Commented lines use #  in place of // .

White space vs indentation:

The most notable feature of this is the use of white space and indents
compared to curly braces {}  in many other languages.

All code to date is written in blocks and the reader has been able to identify
the code blocks with the curly braces. This is one of the key introductions
of python that was unique to its predecessors and in particular at the time
the c  and c++  languages.

Whereas the python version looks like this:



Semicolon line ends:

The reader will also note the semicolon line ends of many languages.
Python does not have this by design as it is intended to be cleaner.

Lines end in python at the end of the line, so the semicolon becomes
unnecessary.

 

A comment is #  compared to // :

Finally, we see that single line  comments in python use #  in place of //
which are common in other languages. There is no particular reason for this
(after extensive google search) so presumably it is aesthetic as well.

There are many other differences, but as this is a basic overview they will
be left to later on to cover those.

What is the stack?
 

A good formal description comes from Wikipedia:

“Stack Overflow is a question and answer website for professional and
enthusiast programmers. It is the flagship site of the Stack Exchange



Network. It was created in 2008. It features questions and answers on a
wide range of topics in computer programming”. There are roughly 14
million users registered on the platform.

The stack rewards and punishes for contribution with up or down votes for
positive and negative contributions respectively.

Or more pythonically put:

The stack rewards and punishes for contribution:

With up or down votes

For positive and negative contributions

Respectively.

 

 

 

 

The basic format is this:

Good question Up vote
Good answer Up vote
Good comment Up vote
Bad question Down vote
Bad answer Down vote

 

The above voting system, whilst sometimes harsh for the beginner, keeps
the community honest by rewarding contributions and punishing
distractions.

Just like any other platform or system, there are specific nuances and ways
of asking and answering questions. The stack is quite direct with “a
Minimal, Reproducible Example” approach.



This basically means that good questions isolate very specific problems in a
“short and concise” manner and helps target solutions quickly. Likewise,
the same is for the answers, “short and concise” wins.

So how does one get to the top of the stack?

Quite simple really, with a thirst to learn and contribute and by being a
“good citizen”.

Who uses the stack?
 

Basically anybody who has ever asked a programming question in any
language has probably visited the stackoverflow website.

The most recent statistics show that there are around 50 million users and
about half of those are professional developers and university students. So
the other half are enthusiasts or novices or some other cohort of people with
an interest in coding.

There are plenty of other excellent resources and websites and also, as for
any programming language, the documents are excellent.

Nevertheless, sometimes it is simply more efficient to look up an answer on
the web. We often “google it” and invariably stackoverflow with its
plethora of completeness (for a whole variety of programming languages)
will rank in or among the top few links.



 

What is a stack overflow?
 

A stack overflow is a type of buffer overflow error that occurs when a
computer program tries to use more memory space in the call stack than has
been allocated to that stack.

One of the most common causes of a stack overflow is the recursive
function, which is a type of function that repeatedly calls itself in an attempt
to carry out specific logic. Each time the function calls itself, it uses up
more of the stack memory. If the function runs too many times it consumes
all the available memory, resulting in a stack overflow. This invariably
leads to corruption of variables and data and is likely to cause the program
to crash.

The term in many ways is suitable for the name of the community website
as this is one of the problems that many of the users are trying to avoid.

The users go to stackoverflow to find out how to prevent a stack overflow.

 

 

 



Let’s get started
 

The journey started long before Python, but the procedure for any language
is the same. Create a hello world  program. From there we can do almost
anything.

 

The code
Each language will have a source and place to download the code. And for
Python this is the same in this regard. All the user has to do in today’s world
is to “google” the word python. This takes the user to the main website
[https://www.python.org] and off they go.

The user may wish to navigate to the appropriate version for the different
operating systems (Windows, MacOS or Linux), but it is basically as simple
as that.

The editor
 



As part of the download for python, the user gets the default package editor
(called IDLE) which is perfectly fine to use but lacks some of the main
features that other editors have.

The IDLE stands for Integrated Development and Learning Environment. It
is an integrated development environment (IDE) for Python and it basically
looks like this:

Whilst this is perfectly fine, the IDLE is rather basic and the market has
developed a number of editors with significantly more features.

At the time of writing, the most widely used editor is visual studio code,
which is more commonly referred to as VS code. VS code is a source-code
editor made by Microsoft for Windows, Linux and macOS. In particular the
features include support for debugging, syntax highlighting, intelligent code
completion and snippets among others. Plus it comes with a plethora of
additional functionality by way of extensions.



Some surveys suggest that VS code is used by 70% of the market, so those
features have proved to be popular. We shall therefore use this editor, but
note that there are many other options.

Again, the download is relatively straightforward by “googling” VS code
and navigating to the website and hitting the download button.

And we are done. So, although we could write a book or endless web pages
on editors, what we have is sufficient to continue for the purpose of a
coding journey with python.

 



Python Basics
 

With Python installed and a suitable text editor in place we are now ready to
code. And the first place to start will be to get a hello world  program
working.

This is a simple way of testing that the environment works.

 

Hello world
The beauty of python, is that this can be done in one line of code. We create
a file and give it a name, most suitably hello_world.py  and off we go.

 



The user can then run the code and it will print to the terminal (or
interactive console) hello world.

The various operating systems, downloads, editors, colour schemes and so
forth are dependent on each individual user's resources and preference, but
whatever that is, we want to get to this point.

Getting to this point is key to everything as we are now able to code!

 

What is available
There is tons of support material and videos on the web and the reader is
advised to use as many of those as necessary, nevertheless any good python
book should run through the basic building blocks of the language.

Believe it or not, most languages, for the most part, are relatively simple to
pick up in the early stages. A bit like a foreign language where there are
some core words that can get a tourist by. For example “how much is this
bread?”, if you know the words for “how much” and “bread” then you have
sufficient tools to ask the shopkeeper for a loaf of bread.

Also, because languages are related, it is also the case that we can share
some words and structure from other languages.

Again the same is true for programming. For example, my journey was
from Basic to Fortran to C to C++ then to Visual basic, then to JavaScript,
then to NodeJs and finally on to Python and along that way also touching
dozens of other languages (like C# and PHP). And although each of those
languages looked different, the core principles were always the same and
the similarity was always over 50%.



So with this comfort, let’s dive in.

Comments
Comments are for humans to read, they do not interfere with the code in
any way. Generally they are used so that we can remember or give hints to
what we have done especially when we come back to the code six months
later or alternatively when somebody else reads the code and wants to know
what is going on or if what we have done is complicated.

There are two types of comments in python. Single line and multiline
(block comments). In python they look like this.

The single line comment starts with a #.
# this is a single line comment
 

The Multiline (block) comment starts with three quotation marks and ends
that way too. So six quotation marks in total.
"""
this is also a block comment
it uses quotation marks "
and is a bit more descriptive
"""
 

Or it can start with three single quotes.
'''
this is a block comment
it uses single quotes '
and is a bit more descriptive
'''
 
 

The multiline comments are often used as doc strings for functions. These
are basically blocks of text explaining how the function works and are very
helpful for other users of the function.

 

The data types



There are 5 main types, string, integer, float, bool and None.

1. String: A string is a character or series of characters.
2. Integer: Any positive or negative whole number
3. Float: A number with a decimal
4. Bool: True or False, but can also be 1 or 0
5. None: Used to define a null value, or no value at all.

s = 'hello world'   # this is a string
i = 100             # this is an integer
f = 10.5            # this is a float
b = True            # starts with a capital
n = None            # starts with a capital
 

Variables
This takes us nicely onto variables. You will notice in the example above
that each datatype was allocated a letter.

I had just chosen those letters because they had meaning in the context (i.e.
“s” for string, “I” for integer and so forth).

But I could have just as well done this:
my_string = 'hello world'   # this is a string
an_int = 100                # this is an integer
a_float = 10.5              # this is a float
boo = True                  # starts with a capital
nothingHere = None          # starts with a capital
 
 

You can think of a variable as a bucket that can be filled with something. In
python we say that a value is assigned to the variable. So an_int  is
assigned the value 100  and boo is assigned  the value True .

Notice that although the “equals to sign” is used, I was careful not to say
equals to. There is a subtle difference and this is how python works.

The “buckets” that were mentioned above are actual parts of the memory
space, so literally physical memory addresses in the processor. And the
values get assigned to those memory spaces which have the given variable
names.



This is a very simplistic overview, so the reader is encouraged to research
more, but a good starting point and sufficient for what we will do.

One of the reasons that python is a bit easier than other languages to pick up
is that the coder does not have to declare a type. In fact, the type is inferred
from the value given and this means that the type of any variable can
change.
# x starts as a string, but then becomes an integer
x = 'hello world'       # x is a string
x = 100                 # now x is an integer
 
 

This has advantages in particular that it is cleaner (less cluttered) and
quicker to write code and disadvantages because the coder may accidentally
change a variable type that structured language might pick up on.

In the example above, python simply allows the user to change the “x”
variable type from a string  to an integer  without warning the user that the
type has been changed.

This could have been an accident on the part of the user or this could be
convenient for the user.

In terms of naming variables, you will notice that I had used different
conventions. The common ones are this:

1. camelCase
2. PascalCase
3. snake_case

The convention in python is to use snake_case for variables and PascalCase
for classes (which we will come to later).

The coder can use numbers in variable names too as long as the numbers do
not precede the name.
# this is allowed
hello_01 = 'hello world'
hello_02 = 'hello mars'
hello99jupiter = 'hello jupiter'
 
# but this is not allowed



99hello = 'hello world'
 
 

There are quite a few more rules for naming variables, but these are the
main ones and it is left for the reader to experiment.

The one thing that the reader should take from this is that variable names
should be meaningful. It is easy to get away with single letter variables in
examples, but imagine code that is 1000 lines in length with many variable
names and lots of complicated work.

Which is clearer: house_value  or hv ?

 

Lists, Dictionaries and Tuples
Variables are extremely useful as they enable the user to do quite a lot
already, but the power of all coding languages is increased with lists.

Notice that the term List is used and not array.

The reason for this is that an  array is a "list of lists" with the length of each
level of list the same.

A list is a data structure consisting of an ordered set of elements, each of
which may be a number, another list, etc. A list is usually denoted (a_1,
a_2, ..., a_n) or {a_1,a_2,...,a_n}, and may also be interpreted as a vector.



In simplistic terms, using the bucket example, a list is like a bigger bucket
that contains all the smaller buckets.

A list might look like this:

Where each item in the list has an index (its position in the list) and a
number which is the value contained at that position.

The list in python is very convenient, because each element (i.e. each
bucket) can actually contain any data type.
list_of_ints = [1, 2, 3, 4, 5, 6]
list_of_strings = ['a', 'b', 'c', 'd', 'e', 'f']
list_of_words = ['hello', 'how', 'are', 'you']
list_of_bools = [True, True, False, True, False, True]
 
# the types in the list can be anything
mixed_list = [1, 'hello', True, 100.5, 'world']
 
 

We can even have an empty list, but just using the square brackets but
adding no elements inside them.
new_list = []
 
 

Not only that, but we can now create Arrays which by the definition above
are lists of lists.
my_array = [list_of_ints, list_of_strings, list_of_bools]
 
 

And we can get really clever by putting lists into lists into lists etc. 3-D
arrays, n-D arrays.



All of a sudden our very basic data types have blossomed into powerful
collections of data in a short space of time.

Moving on from the list, we have the Dictionary. Dictionaries in python
are used to store data values in {key: value}  pairs. A dictionary is a
collection which is unordered, changeable and does not allow duplicate
keys (i.e. the keys in a dictionary are unique).

Because the word dictionary is rather a long one which is used often, we
often shorten this to dict which is in fact the name (or type) of the
dictionary class.

If we go back to the bucket analogy, the only difference between the list and
the dict is that with the dict the buckets now have specific names. So
instead of the indices being the position in the list, the index is now the
specific name (the key) of the bucket element.

An empty dict looks like this:
my_dict = {}
From here we can add items to the list remembering that each item is a
key: value  pair.
my_dict = {'a': 100, 'b':200, 'c':300}
The keys can be anything so long as they are unique. If the coder was to
duplicate an item either accidentally or on purpose, then the last item in the
dict would overwrite the earlier one.
my_fruits = {'apples': 100, 'bananas':200, 'crrts':300}
my_numbers = {0:'hello', 1:'world', 2:'mars', 3:'mars'}
 

Notice how the keys and the values can both be any valid data type (string,
integer, float, bool, none).
random_dict = {0:'c', 1.1:None, 2.5:'d', 3:True}
 

If we go back to the my_numbers  example above, we see that this is in
fact nearly identical to the list because the keys are sorted in numeric order.

So we see that there are strong similarities between lists and dicts. And in
fact we could consider a list to be a special type of dict.



my_list = ['hello', 'world', 'mars', 'mars']
my_dict = {0:'hello', 1:'world', 2:'mars', 3:'mars'}
 

The reason that we can say this is because of how we call the items when
we want to get their values.

To get a specific list item, the coder needs to know its position in the list (its
index). And call it that way. So the first item in the list is called like this:
my_list[0] , the second item my_list[0] , and so forth…

If we look at the dict, this is exactly the same: my_dict[0], my_dict[1], and
so forth...

So we can see how an ordered dict (which starts with the first key = 0) is
identical to the list.

Finally, we have the Tuple. I have left this to last, because in a way it is
covered by the list. The main difference being that a Tuple looks like a list
but the elements cannot change, but has all the same properties. So it is like
a fixed list as we cannot change the values or add or remove elements from
a Tuple in the same way that we can for a list.
my_tuple = ("apple", "banana", "cherry", "apple")
 

This is useful in cases where we know that we do not want to change the
list size, for example in a 2D plane we only want x and y coordinates and
this is best represented with the tuple (x, y) as it will never change its size.

Note, there is also the ‘set’, which is left as an exercise for the reader to
follow up on which also has good use cases (for example sorting), but it
occurs less commonly. So whilst noted we delve into sets less frequently.

In summary these are the 4 collection data types in python with their
common features:

1. List is a collection which is ordered and changeable. Allows
duplicate members.

2. Tuple is a collection which is ordered and unchangeable. Allows
duplicate members.



3. Set is a collection which is unordered, unchangeable, and
unindexed. No duplicate members.

4. Dictionary is a collection which is unordered and changeable.
No duplicate members.

 
How to count
Just a quick not on counting, as this will crop up time and time again. We as
human beings have learnt to count, since we were children on our fingers. It
is pretty easy, right?

1, 2, 3, 4, 5 etc …

Well, the reality is that we have been counting the wrong way for
generations. Especially given that we live in a base 10 world, we should be
starting from 0 and counting to 9. The number 10 is a new line in base 10,
whereas on our fingers it is the end of the first line (our pinky finger).

So by habit we often forget that lists and arrays start at the zeroth element
and this leads to silly bugs and edge cases for nearly all languages.

A list of length 10 is python has 10 elements, which actually range from 0
to 9 like this: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] . It is important to remember this



common pitfall and if you want to score highly on the stack, this is a good
point to learn.

Mutable and immutable
So we have been through the classical types of data: strings , integers ,
floating numbers , Booleans & None’s . And we have taken these
numbers and put them into new types as collections of data called lists ,
dicts , tuples  and sets .

We discussed that a variable is allocated a piece of memory space and drew
an analogy to a bucket. And then we discussed that those buckets could be
put into bigger buckets (the collections) which are also allocated space in
the memory.

So let’s take a simple example.
# %%    the memory location of a variable is mutable
x = 10          # assign x the value of 10
print(id(x))    # print the ID (memory location) of x
x = 11          # assign x the new value of 11
print(id(x))    # print the ID (memory location) of x
 
The result is this:
2863537193488
2863537193520
We see that the memory location of x had changed when its value changed
from (10 to 11). So the memory location of a variable is mutable.

Now let’s do the same with a list.
# %%    the memory location of a variable is immutable
 
x = [1,2,3]     # assign x the value of [1,2,3]
print(id(x))    # print the ID (memory location) of x
x.append(4)     # add an element to the list [1,2,3,4]
print(id(x))    # print the ID (memory location) of x
 
The result is this:
2864017202368
2864017202368
We see that even though we have changed the value of x from [1,2,3] to
[1,2,3,4], the memory location of x remained the same. So the memory



location of a list is immutable.

 

Mutable is a fancy way of saying that the internal state of the object is
changed (i.e. mutated). So, the simplest definition is: An object whose
internal state can be changed is mutable. On the other hand, immutable
doesn't allow any change in the object once it has been created.

At this point we just know from our observations above that memory
addresses for collections like lists  and dicts  are immutable and therefore
behave differently from variables like integers , strings  and Booleans
which are mutable.

But this will become an important point when working with lists or dicts as
sometimes we can use this behaviour to control the efficiency of our code.

We will revisit this feature when we talk about functions which are blocks
of code that take inputs (called arguments) to do a process and return
something back. As it is commonplace to use variables and collection at the
function arguments and the memory address (mutability) will make a
difference to the behaviour of the code.

Basic algebra
Python does all the basic operations out of the box as like any standard
language. In fact the dynamic typing makes it convenient as variables do
not need their types to be assigned before they are used.

It works the same as calculators have done since their invention following
bodmas rules.



So we can do the usual operations conveniently.
a = 5 + 3 - 2           # adding and subrtacting
b = 3 * 5 / 2           # multiplacation and division
c = (3 + 5) / (2 * 2)   # brackets
d = 3**2                # powers
 
print(a,b,c,d)
 
# returns this: 6 7.5 2.0 9
 
 

and basic algebra
z = (a + b) / (c * d)
print (z)
 
# returns this: 0.75
 
So there is now a lot more that we can do.

For and while loops
Some would argue that a lot of the power of computing begins here. One of
the biggest gains of computers over humans is the ability to repeat tasks fast
without making mistakes.
# %% for loops
for i in range(10):
    print(f'hello {i}')
This simple piece of code returns this list in a fraction of a second.
hello 0
hello 1
hello 2
hello 3
hello 4
hello 5
hello 6
hello 7
hello 8
hello 9
 

The reality is that we could print more words than the entire contents of this
book in a fraction of a second. The computer used to type this book can



produce 100,000 hello n  sentences in 0.25 seconds.

This equates to 400,000 operations per second. So we have immense
computing power on a standard device at our fingertips. A decent start.

We will learn to harness this ability.

In other languages like visual basic or c++ , a for-loop  has a structure that
looks like this:
// for loop in c++
 
for (int i = 0; i < 5; i++) {
    // the block of code goes here.
  cout << i << "\n";
}
Where we have a start , stop  and increment  in the parenthesis and the
block of code in the curly braces.

In python, the syntax is cleaner. There are no curly braces which are
replaced by the indentation and the loop actually iterates over an object. We
have used the range()  function which creates a convenient sequence of
numbers range(start, stop, step)  that does all the same things, but in fewer
lines of code, which is convenient and easier to read.

In fact, we will see that python loops are even more convenient in this
manner as we can iterate over any collection such as lists  and dicts .

We do it quickly like this:
# lets make a list
my_list = ['a', 'b', 'c', 'd']
 
# now iterate over the list
for x in my_list:
    print('hello', x)
Which returns this:
hello a
hello b
hello c
hello d
 



The other powerful type of loop is the while  loop. We can say that the for
loop is bounded as it starts at a certain point and goes up to a certain
number and then terminates when it has reached the end. So, we saw that
for i in range(10)   did 10 iterations. It got to the end. If we had set 100 or
1,000,000 it would have done that many loops and then stopped.

On the other hand the while  loop keeps on going, so it is unbounded, until
a condition is met.
x = 0
while x < 10:
    print('hello ' + str(x))
    x = x + 1
 
returns this:
hello 0
hello 1
hello 2
hello 3
hello 4
hello 5
hello 6
hello 7
hello 8
hello 9
 

We have to be a bit more careful with while loops because of their
unbounded nature. For example, in the example above, if the line x = x + 1
was removed or set to x = x – 1 , then the condition that x < 10 would
persist forever and the loop would never finish.

The program would hang.

Quite often we do something like this:
i = 0
x = 0
 
condition = True
while condition:
    x = x + 10
    i = i + 1
 



    if x > 100:
        # the condition changes
        condition = False
 
print(i, 'loops done')
 
The while loop runs when the condition is true , then at some point it
becomes false  and the loop is exited. Again, we need to be careful that the
condition can be exited otherwise the program will remain in the loop
forever (hanging).

 

If else logic
The “ if”  statement comes up everywhere in coding. The format and logic
is rather straightforward:
if x > 10:
    print('x is big')
 
it can be combined with an else statement.
if x > 10:
    print('x is big')
else:
    print('x is small')
 
 

Again, in python the indent indicates the block of code where other
languages would use curly braces.

We can combine if statements or use the elif  keyword.
if x > 10:
    print('x is big')
elif x < 2:
    print('x is small')
else:
    print('x is medium')
 

 
Or this
if x > 10:



    print('x is big')
if x < 2:
    print('x is small')
else:
    print('x is medium')
 

We can also nest if statements
if x < 10:
    if x > 2:
        print('x is medium')
 
the nested if  behaves like an AND  logic operator because two criteria
need to be satisfied for the print statement to be invoked.

Functions
We now come to one of the most important features of all programming. A
function is a block of code which only runs when it is called. You can pass
data, known as parameters, into a function. A function can return data as a
result.

Using this we can break the code up into workable parts, like little modules
and then call those modules as we need.

The function has the same indented block, so looks like this:
def my_function():
    print('hello world')
 
We run the function at any time in the code by calling it.
# define the function
def my_function():
    print('hello world')
 
# call the function
my_function()
 
 

We can call the function as many times as we like as it is a reproducible
block of code:
# define the function
def my_function():



    print('hello world')
 
# call the function 10 times
for i in range(10):
    my_function()
 
returns this:
hello world
hello world
hello world
hello world
hello world
hello world
hello world
hello world
hello world
hello world
 

Just like the ‘ for ’ and ‘ while’  loop and the ‘ if ’ statement, once the block
(defined by the indent) is completed, the function is over.

The function can have inputs called arguments:
name = 'world'              # a variable
 
def my_function(name):      # function takes variable
    print('hello ' + name)  # function uses variable
 
 

The function is often commented with a string, known as the docstring
which describes to the user what the function does:
def my_function(name):      # function takes variable
    ''' prints hello & the name '''
    print('hello ' + name)  # function uses variable
 
 

The function can return something back.
name = 'world'              # a variable
 
def my_function(name):      # function takes variable
    ''' takes a name, returns a string



       
        inputs: name (str)
        returns: s (str)
    '''
 
    s = 'hello ' + name     # concatinates a string
    return s                # function returns a string
 
 

We can get assign the return value back to a variable like this:
def add_numbers(a, b):
    ''' add a an b, returns the answer '''
    return a + b
 
my_sum = add_numbers(1, 3)      # value returned
 
print('the sum is', my_sum)     # print answer
 
Returns this:
the sum is 4
 

Functions can call other functions that have been previously defined, so we
can control the flow of the code nicely in modular blocks.
def add_numbers(a, b):
    ''' add a an b, returns the answer '''
    return a + b

 

def my_name(name):
    ''' takes a name, returns a string
       
        inputs: name (str)
        returns: s (str)
    '''
 
    s = 'hello ' + name
    return s
 

def main():
    ''' calls both the above functions '''
   



    z = add_numbers(7, 8)
 
    if z > 10:
        s = my_name('world')
        print(s)
 
   
# call the main function
main()
 
 

A collection of lots of useful functions can be considered to be a library (or
a module). We could save this module of really useful functions and call it
later (i.e. we can import  the module) in another piece of code.

Classes
Hot on the heels of function are classes. Classes are the foundation of many
object oriented languages. One might consider a class as a user-defined
blueprint or prototype from which objects are created. We will see what this
means.

We will look at an example, but note that there are many examples. Often,
the examples that we see are about people, cars, or animals (a dog is a good
one). In fact anything that has attributes and methods that can be
replicated will perfectly fit into the class system which is why it is so
powerful.

Before we do this, let's see what a class looks like in python. The code
block looks like this.

class MyClass:
    ''' this is a class '''
    pass
 
 

We can add attributes and methods (the functions).

class MyClass:
    ''' this is a class '''
    pass



 
    x = 10      # variable is called an attribute
    y = 100
 
    def add_one(self):
        '''
        this function is a 'method' of the class
        x is incremented by 1
        '''
        self.x = self.x + 1
        return self.x
 
 
 

Here we have added two attributes x  and y  and one method add_one()
which adds 1 to the number that is entered. We also note the convention
(but not a rule) is to use a capital letter to name a class. And we see a new
keyword, self .

The self parameter is an important feature of the class as it refers to itself
and other Object Oriented Programming (OOP) languages use similar terms
(for example nodejs uses the this keyword to refer to itself).

We can create an instance of the class by calling it. This is called
instantiating the class .
x = MyClass()

 

and we can call its attributes and methods easily.

class MyClass:
    ''' this is a class '''
    pass
 
    x = 10      # variable is called an attribute
    y = 100     # here is another attribute
 



    def add_one(self):
        '''
        this function is a 'method' of the class
        x is incremented by 1
        '''
        self.x = self.x + 1
        return self.x
 
# create instance of the class
something = MyClass()   # instantiate class
 
print(something.x)      # this prints 10
print(something.y)      # this prints 100
 
something.add_one()     # execute the method (adds 1)
print(something.x)      # this prints 11
 
 

In a nutshell, the above represents an overview of the majority of what a
class is and how it can be used. Again, for the purpose of the book we stick
just to this description, but noting that one could in fact write an entire book
of classes alone. And it is for the reader to follow up on this.

 

Magic methods
When we look at classes we will notice that some functions begin with a
double underscore __. They are also known as dunder methods which is a
mashup of double and under.

They can help override functionality for built-in functions for custom
classes. Common methods are:

 __str__ :  for strings

__len__ : number of items

__dict__ : dictionary of the item



For classes, we often see, right at the top __init__() : which indicates that
Python will use the method internally. The user should not explicitly call
this method. And since this method is immediately called after creating a
new class, we can use this to initialise the object's attributes.

class Node:
    ''' node for the tree '''
 
    def __init__(self, data):
        ''' construct class '''
        self.left = None
        self.right = None
        self.data = data
 
    def PrintTree(self):
        ''' another function '''
        print(self.data)
 
 

We will not dig deeper into this at this point for two reasons.

1. There is too much to write about in one book.
2. We will certainly run into them later.

So at this point, it is just a heads up about a feature that we should be aware
of.

Importing modules
At the top of nearly every piece of code you will tend to see a bunch of
import commands. It is convention to place all import statements at the
beginning of a module or script.

One reason that we do this is because it helps us (the users or the next
programmer) to remember what we imported externally from the code.
These are external files, called dependencies  as the code will not run
without them that is being imported into the code's ecosystem.

Common modules are: time , datetime ,  math , random , statistics ,
requests , pandas , numpy...



import time # a module of useful time functions
 
t = time.time()
print(t)
 
# the result
# 1660605141.3659403
 
 

In fact the list is nearly endless as there are over 200 standard libraries and
over 137,000 external libraries. This is one of the major attractions of a
language like python which has a massive community with immense
support.

A standard library is one which comes already packaged with python so is
already on the desktop and available to use when python is installed and
there are fewer of these otherwise the download would be very data
consuming.

The external libraries are relatively easy to install with something called a
package manager ( pip  or conda ), which is usually done with one line in a
command prompt.

The modules usually have relevant names that give a clue as to what they
do, but also have the same descriptions and docstrings  so that the user can
verify if they are suitable for the task at hand.

Examples of internal modules:

●      Time: provides various time-related functions
●      Datetime: supplies classes for manipulating dates and times
●      Math: access to the mathematical functions
●      Random: implements pseudo-random number generators for

various distributions
●      Statistics: provides functions for calculating mathematical

statistics

Examples of external modules

●      Requests: a simple, yet elegant, HTTP library.
●      Pandas[1]: powerful Python data analysis toolkit



●      Numpy: the fundamental package for array computing with
Python

●      Scipy: Scientific Library for Python

Two of the most common external libraries are numpy  and pandas  and
here is an example of the install in windows.

In fact pandas  and numpy  are so commonly used that they come installed
with the Anaconda package which describes itself as “The world’s most
popular open-source Python distribution platform”.

Basically in simple terms, we like to keep, use and repeat the good code so
that we don’t continuously waste our time reinventing the wheel.

When the code gets sufficient and complete enough, it becomes worth
packaging this into a library.

Python along with all other modular languages benefit greatly from these
libraries as the user only needs to install the core components that are
relevant to them.



For example, let’s generate a list of random numbers and work out the
min , max , avg  & std  of that list and then see how long it takes to
perform this operation.
# the imports
import time         # module for time
import random       # module for random numbers
import statistics   # statistics module
 

t0 = time.time()                # the start time
 
rand_list = []                  # an empty list
for i in range(100_000):        # loop 1000 times
    r = random.randint(0,100)   # a random integer
    rand_list.append(r)         # add this to the list
 
# print the results
print('min:', min(rand_list))
print('max:', max(rand_list))
print('avg:', statistics.mean(rand_list))
print('std:', statistics.stdev(rand_list))
 
t1 = time.time()                # the end time
time_taken =  round(t1-t0, 2)   # time taken (2dp)
 
print('the time taken is', round(t1-t0, 2), 'seconds')
 
The results look like this:
min: 0
max: 100
avg: 50.10659
std: 29.136766431494777
the time taken is 0.24 seconds
 

So we have generated a random list of 100,000 integers and computed basic
statistics on this random list in less than ¼ of a second. And all of this is
done in less than 20 lines of code.

In fact, with list comprehensions and a bit of tidying up, this could be done
in 10 lines of code. And if we deployed the numpy library, the speed would
have been faster too.

 



# list comprehension replaces for loop
rand_list = [random.randint(0,100) for x in range(1_000_000)]
 
 

Sometimes the library module names can be rather long, for example
random.randint()  is quite lengthy. Or statistics.stdev() . When repeated
many times in the same line, the code gets verbose and cluttered.

Fortunately python offers an alias system so that we can shorthand the
longer names to more convenient names.
import random as rd         # alias is assigned: rd
import statistics as sts    # alias is assigned: sts
 
r = rd.randint(0,100)   # we can use the alias rd
A very popular library is matplotlib  which is used for plotting charts. The
typical module import looks like this:
from matplotlib import pyplot as plt
Which looks like a handful for one line of code, but is in fact quite simple.
Because pyplot  is simply a function that lives inside the matplotlib
module and plt  is just the alias we assign to the thing that we want. We
shall look into this more later on.

Finally, a common pitfall on importing modules. Python allows for
wildcard imports. This means that the user can do this:

from math import *
from os import *
from tkinter import *
 
The wildcard `*` means that all the methods will be imported. So for
example, instead of doing this:

x = math.cos(90)
We can now do this:
y = cos(90)
There is clearly a level of convenience that comes with this as the former is
more longwided than the latter. And actually, for smaller modules this
would be sufficient.



However, the drawback is that without knowing the myriad of methods that
are contained in the module, we could easily overwrite them and
furthermore, it is no longer clear where ` cos() ` came from. Again, for
small pieces of code, we could say that this is easy as ` cos() ` is clearly a
maths function and has come from the maths module, but look at this error.

from PIL import Image, ImageTk
from tkinter import *
The ` tkinter ` module contains a method called ` Image `, but the coder
thinks that the ` Image ` method has been called from the ` PIL`  module[2].

Because Python allows for reassignment the first import of the Image
function is overwritten by the second one without warning and this was
probably unintended.

So it is helpful to be clear with imports and in this case an alias would have
been more suitable and removed the ambiguity:

import tkinter as tk
And this is clear.

 

Logical order
 

We learned earlier that python code is executed line by line in sequential
order.

This means that the order matters. For example we can not use a variable
before it is defined and similarly we cannot use a function before it is
defined.

This takes some getting used to compared to other languages where the
functions are hoisted  which means that with other languages, we can dump
the big bulky functions at the bottom of the code. In python we can not do
this as the need to be read first.

for variables:

x = 10      # define x
print(x)    # this works, x was defined



 
print(y)    # this fails, y is not defined yet
y = 10      # define y, but too late !!
 

We see that this throws a NameError , which means there is an error with
the name. It was not defined at the time it was run.
NameError: name 'y' is not defined

and for functions:

# the function has not been defined
# so it fails
print( add_numbers(1, 2) )
 
 
def add_numbers(a,b):
    return a + b
 
# we can call the function here
print( add_numbers(1, 2) )
 

Because of this, python behaves in a synchronous  way. what comes first
goes first. So the user must be careful of order and can not be casual.

This can sometimes be frustrating as often it can be helpful to put the main
body of code at the top and call the functions later (especially for those who
have come from languages like visual basic and node.js).

However, there is a neat little trick in python which is to wrap the
invocation into a function on its own, and then the user can call that
function at the end.

It looks like this:

import math
 
 
def main():



    '''
    This is the main body of the code
   where the control flow is.
    we like to see the main control at the top.
    '''
 
    print('...lets do many things')
 
    # now call the function
    x = add_three_numbers(10,20,30)
    print(x)
    print('...do more things')
 
    # and call another function
    y = circle_features(x)
    print(y)
 
 
# the functions that we use later go here
 
def add_three_numbers(a,b,c):
    return a + b + c
 
def circle_features(radius):
    area = math.pi * radius**2
    volume = 4 / 3 * math.pi * radius**3
 
    return area, volume
 
 
# we call the main function here.
main()
 
 

Making modules



So we can import modules that we made by the community, for which there
are thousands. These modules were very powerful collections of useful
functions with use case examples and plenty of support.

However, the modules created only serve to assist the user in building their
own project. The project could be one snippet of code in one file of no more
than 20 lines of code or it could be a large meaningful piece of code
spanning many thousands of lines and also have user created modules of its
own.

Python caters well for both of these and in fact makes it very easy for the
user to both create and import their own modules.

Every file that a user creates is saved as a *.py  file and this will live in a
folder. So for example, the “hello_world.py” would have been saved
somewhere on the pc.

Let's assume that it is saved on the C drive (for a windows based computer)
in a folder that we named “code”. Then the full path would look like this:

C:\code\hello_world.py

We can say that the python file is called hello_world.py  and the project
folder is c:\code . Now, if we create another file in the same folder, say
hello_moon.py  then we would have two files in the project folder.

And all we have to do is this:



So we can see that the import statement brings in all the attributes and
methods from one file ( hello_moon.py ) into the other file
( hello_world.py ) in just one line of code.

The rules are very simple too. The imported folder should be in the same
folder or a sub folder of the project folder. That is it.

So we now have the tools necessary to create an entire project which is
broken into useful and meaningful modules.

 

The main module
There is one final part to all of this, which is that we now have a collection
of attributes and functions and collections of modules (the python files) in
various folders (hopefully not too many otherwise the project is
complicated). So how do we determine the starting point in all of this?

There is usually one file which is deemed to be the main file or we could
say the entry point to the code. the file could have any useful or descriptive
name that the user wants.

Having read the magic methods chapter we are aware that all objects in
python have special built in functions which are denoted with the double



underscore. Well, the file object is no different. Here are some of the more
useful ones:

●      __file__: the path name of the file.
●      __doc__: a description of the file.
●      __name__: the name of the file

We could actually get a list of these by typing print(dir())  in a file and
running the code.

The interesting one here is the __name__  attribute as this tells us the name
of the file that was imported. It gets its value depending on how we execute
the containing script. So, the actual main file (which is not imported) is
given the name __main__ .

We often see this at the bottom of the main file in nearly every large project.

if __name__=="__main__":
    # run some code
    print('do something')
 
 

The code inside the if statement  is now only run when the filename is that
of the main file. Our entry point !

As a side note, we could import files from other folders that are not
contained within the project folder by adding an additional path name like
this.
# some_file.py
import sys
# caution: path[0] is reserved for script path (or '' in REPL)
sys.path.insert(1, '/path/to/application/app/folder')
 
import file
 
 

But for the purpose of what we do and best practice we like to keep the
package together in one folder.



 

Coding Techniques
So at this point we have had an overview of python, how to set up the
environment and also an overview of the basics of language itself.

We looked at variables, collections, functions, loops and if statements
among others. Everything that we have seen has been relatively top level as
a deep dive into even just one topic could be a book in itself.

It would be wise for the reader to recap and support their book reading with
actual real world testing on a device. Yes, this means writing code
yourself, starting with the hello_world.py  program. This cannot be
stressed enough, you now have to get your fingers onto a keyboard to
enrich the benefit of this read.

Having said this, it is now time to look at some problems that we tend to
encounter. I am not sure how I will break these down into categories.

The important thing to remember is that these “problems” should be
considered to be fun brain teasers and other interesting cases.

 

What is a coding problem
It is any kind of problem and usually interesting ones that we might not be
able to solve with a pen and paper alone. Initially, when trying to learn, I
took the 100 daily coding questions. That basically, means, every day for
100 days, pick a problem and try to solve that problem in any language.

Initially, I was using node.js  and a friend was using python , so it was
interesting to compare methods. The reality is that both languages
(sometimes referred to as scripting languages) have a >75% similarity.

In fact, if one swaps curly braces for indents and removes the semicolons at
the end of lines, then the languages are even closer.

What is a coding technique
We could consider a technique to be a general form as to how we approach
a problem. We tend to use the same techniques quite often to solve a whole



variety of problems in the same way that a particular tool in a toolbox might
be used to fix many issues.

We have common techniques, like for loops and while loops just in the
same way that we have screwdrivers and spanners in our standard home
toolbox.

And then we have more specialised tools, such as the pandas dataframe
which might be more akin to a sander on the toolbench. These do fewer
things, but much better.

And sometimes we can even use the wrong tool which gets the job done,
like using a screwdriver or knife to open a tin of paint.

Each will have its own merits and downfalls. However, if we can more
often than not pick the right tools, then our code becomes increasingly
efficient. This efficiency is especially important and noticeable when the
data or the number of processes become large.

It could be something as simple as taking static variables outside of the
loop. Have a look at these two snippets of code:

Variables inside the for loop

import time
 
t0 = time.time()
for i in range(1_000_000):
    a = 100
    b = 2
    if i%1000 == 0:
        print(a + b + i, end = "\r")
 
t1 = time.time()
 
print('the time taken was', (t1-t0), 'seconds.')
 
 

Variables outside of the for loop



import time
 
t0 = time.time()
a = 100
b = 2
for i in range(1_000_000):
    if i%1000==0:
        print(a + b + i, end = "\r")
 
t1 = time.time()
 
print('the time taken was', (t1-t0), 'seconds.')
 
 

Which one is quicker and why ?

If we look at the first piece of code, the variables a and b are assigned in
every loop. There were 1 million loops, so 1 million additional passes of
this line. Whereas, in the second piece of code, the variables have been
taken out of the loop saving a massive cost in terms of programming.

We are not punished too badly in this case, because we have a small snippet
of code which, in both cases, runs in less than a second. But if the code was
more intensive or the variables happened to be large functions, then the
code would face efficiency problems.

Here this difference was 90 milliseconds for the efficient method versus
180 milliseconds for the inefficient method.

We could make the easily highlight how bad this can be with the following:

import time
 
n = 3
def n_second_process(n):
    ''' a process that lasts for n seconds '''
    time.sleep(n)
    return 'hello'
 



x = n_second_process(n)
 
for i in range(100):
    print(x + ' world')
 

again this:

import time
 
def n_second_process(n):
    ''' a process that lasts for n seconds '''
    time.sleep(n)
    return 'hello'
 
 
for i in range(100):
    n = 3
    x = n_second_process(n) # this is expensive !!!
    print(x + ' world')
 

Here the first piece of code takes just over 3 seconds whereas the second
snippet takes 5 minutes (100 * 3 seconds) because the time consuming
function was placed inside the loop and it could have been much worse with
just a change in the loop number.

These are the easy wins that the coder needs to be aware of.

 

 

Recursive functions
Recursion is a common mathematical and programming concept. It means
that a function calls itself. This has the benefit of meaning that you can loop
through data and apply logic to reach a result.

This is especially useful when the same pattern repeats itself, although an
unfinished or indefinite recursion could cause a stack overflow. So the



coder needs to make sure that at some point an end condition is met.

The recursion process looks like this in python:

A popular mathematical problem solved by recursion is finding the factorial
of a number, n.

Let's take a look at how the recursion process works in practice:

def recur_factorial(n):
    ''' calculate factorial of n ''' 
    if n == 1: 
        return n 
    else: 
        return n*recur_factorial(n-1)
 
recur_factorial(1000)
 
 

We notice how the recursion function simply keeps returning itself, each
time lowering the value of n  until the condition that n==1  is reached and
the recursion stops returning the final value.

In this example we see that 1000! is computed in a fraction of a second
yielding a monstrous number that had to be shrunk in font size to fit on this
page.
40238726007709377354370243392300398571937486421071463254379991042993851239862902059204420848696940480047

99886101971960586316668729948085589013238296699445909974245040870737599188236277271887325197795059509952

76120874975462497043601418278094646496291056393887437886487337119181045825783647849977012476632889835955

73543251318532395846307555740911426241747434934755342864657661166779739666882029120737914385371958824980



81268678383745597317461360853795345242215865932019280908782973084313928444032812315586110369768013573042

16168747609675871348312025478589320767169132448426236131412508780208000261683151027341827977704784635868

17016436502415369139828126481021309276124489635992870511496497541990934222156683257208082133318611681155

36158365469840467089756029009505376164758477284218896796462449451607653534081989013854424879849599533191

01723355556602139450399736280750137837615307127761926849034352625200015888535147331611702103968175921510

90778801939317811419454525722386554146106289218796022383897147608850627686296714667469756291123408243920

81601537808898939645182632436716167621791689097799119037540312746222899880051954444142820121873617459926

42956581746628302955570299024324153181617210465832036786906117260158783520751516284225540265170483304226

14397428693306169089796848259012545832716822645806652676995865268227280707578139185817888965220816434834

48259932660433676601769996128318607883861502794659551311565520360939881806121385586003014356945272242063

44631797460594682573103790084024432438465657245014402821885252470935190620929023136493273497565513958720

55965422874977401141334696271542284586237738753823048386568897646192738381490014076731044664025989949022

22217659043399018860185665264850617997023561938970178600408118897299183110211712298459016419210688843871

21855646124960798722908519296819372388642614839657382291123125024186649353143970137428531926649875337218

94069428143411852015801412334482801505139969429015348307764456909907315243327828826986460278986432113908

35062170950025973898635542771967428222487575867657523442202075736305694988250879689281627538488633969099

59826280956121450994871701244516461260379029309120889086942028510640182154399457156805941872748998094254

74217358240106367740459574178516082923013535808184009699637252423056085590370062427124341690900415369010
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Having praised the recursive function, we can see that the same can be
achieved in a linear fashion with the for loop.

def ret_factorial(n):
    f = 1
    for i in range(1,n+1):
        f = f * i
    return f
 
 

We note that recursions are elegant to look at and have the advantage that
they can break complex tasks into small simple units.

However, the downside of recursion is that they are expensive in terms of
memory and time. In the above example, the factorial problem works well,



but a value of n > 2000 would have caused a memory issue because each
new function was assigned a new place in memory.

Backtracking
Backtracking is recursive in nature. Backtracking is simply reverting back
to the previous step or solution as soon as we determine that our current
solution cannot be continued into a complete one.

# backtracking
 
def permute(list, s):
   if list == 1:
      return s
   else:
      return [
         y + x
         for y in permute(1, s)
         for x in permute(list - 1, s)
      ]
print(permute(1, ["a","b","c"]))
print(permute(2, ["a","b","c"]))
 
the above code returns this:
['a', 'b', 'c']
['aa', 'ab', 'ac', 'ba', 'bb', 'bc', 'ca', 'cb', 'cc']
 

list comprehension
If we take a look at the backtracking algo, there is something that we have
not seen before. It is a complicated version of a list comprehension .

The ‘ list comprehension ’ offers a shorter syntax when you want to create a
new list based on the values of an existing list and is a convenient method
in python which does not exist in many other languages.

Let’s  do this by example: imagine that we have a list of numbers and we
want to square just the even numbers. This was the old method

my_list = [1,2,3,4,5,6,7,8,9,10]



 
squared_list = []       # create new list
for i in my_list:       # iterate thru list
    if i%2==0:          # check even numbers
        squared_list.append(i**2)   # append list
print(squared_list)     # [4, 16, 36, 64, 100]
 
 

and this is the list comprehension of the same:

my_list = [1,2,3,4,5,6,7,8,9,10]
 
squared_list = [x**2 for x in my_list if x%2==0]
print(squared_list)    # [4, 16, 36, 64, 100]
 
 
 

or lets take all of the vowels out of the words “hello world” and put them
into a new list.

s = 'hello world'
 
v = [x for x in s if x in 'aeiou']
print(v)    # ['e', 'o', 'o']
 

The list comprehension would on other collections like dicts too. Here is
an example of  extracting farmyard animals from a dictionary where the key
is the animal name and the value is how many there are.

d = {'cats':2, 'dogs':5, 'pigs':7, 'sheep':30, 'cows':12}
e = {k:v for k,v in d.items() if v>10}
print(e)    # {'sheep': 30, 'cows': 12}
 

The reason that this is useful is because there a just so many things that go
into collections

Binary Tree



Binary trees are common features of programming as they help make
decisions. The process is to start at the top of the tree, which is often
referred to as the root node  or the parent node , and then traverse down
the tree child nodes  until we reach the end nodes or leaf nodes .

Here is a picture with some of the key terms.

This mathematical tree diagram translates into a real world process like this.



Because each decision eliminates half of the remaining tree, the binary
search is powerful at arriving at a solution. Because of the repetitive nature
of the tree structure, one can use a recursive process to traverse through the
tree nodes or alternatively an iterative search (which we have seen to be
more efficient).

The search runs until we reach some leaf node at which point the final
result is reached.

The binary tree is even more powerful than this as one can traverse down
the tree and then, with a process called backward induction, reverse all
the way back up the tree to the parent node. This is one possible technique
for financial option pricing.



We will now use some of the techniques from the earlier sections to deploy
a binary tree.

In particular, classes. the class structure  is ideal for the repetitive nature of
the tree as we only need one class to be the blueprint for all nodes and in
python the construction looks like this:

class Node:
    ''' node for the tree '''
 
    def __init__(self, data):
        ''' construct class '''
        self.left = None   # a left child
        self.right = None  # a right child
        self.data = data   # data at the note
 
    def PrintTree(self):
        print(self.data)
 
# instantiate node
root = Node(10)     # create instance
root.PrintTree()    # returns 10
 
 

Now that we have a blueprint for a node, we can insert this into the tree by
creating an insert  method in the class. And it should also be pointed out
that we could have set nodes with more than two children (for example we
could have included self.middle ).

class Node:
    def __init__(self, data):
      self.left = None
      self.right = None
      self.data = data
 
    def insert(self, data):
        '''
        a function to Ccmpare the new value with



        the parent node and add this to the tree.
        '''
        if self.data:
            # whatever logic we need
            if data < self.data:
                if self.left is None:
                    self.left = Node(data)
                else:
                    self.left.insert(data)
            elif data > self.data:
                if self.right is None:
                    self.right = Node(data)
                else:
                    self.right.insert(data)
        else:
            self.data = data
 
    # Print the tree
    def PrintTree(self):
        if self.left:
            self.left.PrintTree()
        print( self.data),
        if self.right:
            self.right.PrintTree()
 
root = Node(12)     # create instance
 
# insert some nodes
root.insert(6)
root.insert(14)
root.insert(3)
 
root.PrintTree()    # returns 3, 6, 12, 14
 
 



With the tree now created we can traverse through the tree. There are three
different ways that we can do this.

●      In-order Traversal: the left subtree is visited first, then the root
and later the right subtree.

●      Pre-order Traversal: the root node is visited first, then the left
subtree and finally the right subtree

●      Post-order Traversal:  we traverse the left subtree, then the right
subtree and finally the root node.

This is the additional method that we would add for a pre-order traversal.
def PreorderTraversal(self, root):
    res = []    # empty list to store values
    if root:
        res.append(root.data)
        res = res + self.PreorderTraversal(root.left)
        res = res + self.PreorderTraversal(root.right)
        return res
 
And the result, is this:

print(root.PreorderTraversal(root))  # return [12, 6, 3, 14]
 

Fun problems
This section is about some fun and interesting problems. There are a whole
range of these and to add to that some of the problems have multiple
methods to solve them, so we will only be able to cover a limited amount.

The solutions proposed might not even be the best, so the reader is
encouraged to contact the Author if you feel that you have a better approach
for a particular solution.

 

Perfect numbers
Let’s start with a little fun problem.



A number is considered perfect if its digits sum up to exactly 10. Given a
positive integer n, return the n-th perfect number.

For example, given 1, you should return 19. Given 2, you should return 28,
given 123 you should return 1234.

This is a good first problem, because we get to use a function in anger and
we also get exposed to: types , if statements  and for loops .

Here is one solution:

def ten(number):
    '''
    function takes number and returns the
    compliment number that makes the sum == 10
    '''
    numberstr = str(number)
    total = sum(int(x) for x in numberstr)
    if total == 10:
        return number
    elif total < 10:
        return int(numberstr + str(10 - total))
    else:
        return "Input number has digits that sum to more than 10."
 
# lets test out answers
for x in [3, 6, 142, 53453, 15, 363]:
    print(x, "-->", ten(x))
The result looks like this:
3 --> 37
6 --> 64
142 --> 1423
53453 --> Input number has digits that sum to more than 10.
15 --> 154
363 --> Input number has digits that sum to more than 10.
 
 
Let’s take a look. We have declared a function and called it “ten” because it
seems like a good name for the problem. The function takes one argument
called “number”.



 
The first line converts the number into a string and we assign it to a variable
called “numberstr” using the inbuilt str()  function. We do this because we
know that python can treat strings as lists of characters and we want to get
each character separately, so it is a useful little trick here. We can add all the
single component numbers, which we have converted back to integers using
the int()  function inside of the sum()  function and what we recognise as
something that looks like a list comprehension .
 
That was a mouthful to say, but we can see the power of python's
conciseness which condenses everything into one logical line.

From this point we do some logic checking with the if statement. If the
number is 10, then the function returns the number as there was nothing to
do, else if  the number is less than 10, we calculate the final number and
return this and finally if the number was greater than 10 we return a
message saying so.

The function is done and now we test this over an array of numbers to see
how the output looks. It looks like what we were expecting. Job done.

Let’s test the edge cases. What happens if we insert zero into the list?  the
output would return 10 which is two numbers that sum to 1, so this is a fail.
Can you think of how we can prevent this ?

And could you propose a better or alternative solution?
 

Swap apples for ideas
 
This is a pretty little anecdote which does not contain anything difficult, but
displays the use of classes and the use of swapping variables (tuple swap):
a,b = b,a  And the use of: if __name__==”main__” , which hoists the
function and class.
 
 
“If you swap apples then you don’t gain anything.
but if you swap ideas, then you gain ideas.”
 



def main():
    person1 = Person(5, 3)
    person2 = Person(1, 2)
 
    # swap apples
    person1.apples, person2.apples = person2.apples, person1.apples
 
    # swap ideas
    person1.ideas = person1.ideas + person2.ideas
    person2.ideas = person1.ideas
    print(person1)
    print(person2)
 
 
class Person:
    ''' description of the class '''
 
    def __init__(self, apples, ideas):
        '''
        apples (int): number of apples
        ideas (int): number of ideas
        '''
        self.apples = apples
        self.ideas = ideas
 
 
    def __repr__(self):
        '''represent the class's objects as a string'''
        return f'Person({self.apples},{self.ideas})'
 
if __name__=='__main__':
    ''' This is executed when run from the command line '''
    main()
 
 
 



The code here effectively sums up the ideas of the crowd (there are only 2
people in our crowd, so how could you extend this to n people ?) and just
swaps the apples.
 
The idea of tuple swapping is just another convenience that python offers
compared to its predecessor languages. The equivalent c++ code requires
the introduction of a temporary variable to perform the same swap which
looks like this:
 
#include <iostream>
using namespace std;
 
int main()
{
    int a = 5, b = 10, temp;
 
    cout << "Before swapping." << endl;
    cout << "a = " << a << ", b = " << b << endl;
 
    temp = a;
    a = b;
    b = temp;
 
    cout << "\nAfter swapping." << endl;
    cout << "a = " << a << ", b = " << b << endl;
 
    return 0;
}
 
Python handles (even larger) swaps naturally.
a, b, c = 1, 2, 3
a, b, c = c, a, b
 
print(a,b,c)
 



We see two dunder methods in the Person Class. They are __init__  and
__repl__ . We saw that __init__  was for the initialization of the class since
by default it is the first function that is run.

In Python, __repr__ is a special method used to represent a class's objects
as a string. __repr__ is called by the repr() built-in function. You can
define your own string representation of your class objects using the
__repr__ method.

Rescue boats
An imminent hurricane threatens a coastal town.

If at most two people can fit in a rescue boat, and the maximum weight limit
for a given boat is k, determine how many boats will be needed to save
everyone.

For example, given a population with weights [100, 200, 150, 80] and a
boat limit of 200, the smallest number of boats required will be three.

This is a typical fun question that could be solved with pen and paper for a
small population size, but anything meaningful lends itself well in a
programming language like python.

We want to look at all the combinations of two people from the sample set.
If we can put the pairs (called tuples) into a list then we can determine all
the tuples that satisfy the weight limit.

Python has a module named itertools  which standardises a core set of fast,
memory efficient tools and in particular for this question, deals with things
like combinations and permutations.

We can also sort lists quickly. So in the example, the sorted list looks like
this: [80, 100, 150, 200]. The nice thing about sorting the list before running
the combinations is that the tuples are matched largest with smallest which
just happens to be a feature that we desire (ie. matching two light people
would be a waste of capacity, so we prefer to match heavy people with light
ones).

And we can keep whittling the pairs of people with a recursion  until there
are no pairs left. So the solution will look like this:



import itertools as it

import time

 

# some population cases

population = [30, 100, 200, 150, 80, 40, 100, 100, 100, 100, 90]

population = [10, 10, 10, 10, 10, 180, 180, 180, 180, 180]

population = [100, 200, 150, 80]

boatLimit = 200

 

def rescue(population, boatLimit, numBoats):

    '''

    Take population, limit and return smallest number of boats required

    input:

        population: array on numbers

        limit: number

    return:

        number: smallest number of boats

    '''

    population.sort(reverse=True)

    c = it.combinations(population, 2)

 

    viablePairs = []

    for i in c:

        # find valid pairs

        if i[0]+i[1] <= boatLimit:

            viablePairs.append(i)

 

    print('reductions made:',viablePairs)

 

    if len(viablePairs)==0:

        #print('no viable pairs')

        numBoats = numBoats + len(population)

        print('the number of boats:',numBoats)

 

    else:

        # remove pair

        population.remove(viablePairs[0][0])



        population.remove(viablePairs[0][1])

        numBoats = numBoats + 1

 

        # call function again

        rescue(population, boatLimit, numBoats)

 

 

 

 

t1 = time.time()

rescue(population, boatLimit, 0)

t2 = time.time()

print('time taken:', round(t2-t1, 3), 'seconds')

 
 

 

●      Again, can you do better?
●      Or can you make a general form where more than 2 people, say n

people, can fit into a boat?
●      And how can we switch the recursion for a while loop ?

Just as a side note, we see that the number of boats needed is always greater
than len(population)/2  because of the two person per boat rule. Moreso,
for large random distributions, the solution approaches n/2 because we can
always find pairs of people to fit into the boats. So a statistical approach
might be faster.

Remember, we can create a large random list with the random  module and
list comprehension  very quickly like this.

import random
population = [random.randint(1,200) for x in range(1000)]
 

Bracket Matching
This is an interesting little problem because the linter that you use will
perform this check many times as you write code, which is extremely
useful, but also something that we take for granted. So here it is:



Given a string of round, curly, and square open and closing brackets, return
whether the brackets are balanced (well-formed).

For example, given the string "([])[]({})", you should return true.

Given the string "([)]" or "((()", you should return false.
openers = "{[("

closers = "}])"

 

# some strings for testing

inputstrings = ['([])[]({})',

                '(([{}])){}',

                '[(([{}])){}]',

                '([)]',

                '((()',

                '(()())',

                '())'

                ]

 

# An opener is allowed anywhere but a closer must match the last opener

 

def parse(inputstring):

    # Work from left to right, appending and removing from stack

    # when encountering openers and closers respectively

    stack = []

    print(f"Input is {inputstring}")

 

    for pos, char in enumerate(inputstring):

        if char in openers:

            stack.append(char)

 

        elif char in closers:

            # closer found, check last item in stack is corresponding opener

            # and if so remove it from our stack

            if not stack:

                # stack is empty so no corresponding opener exists

                print(f"Closer '{char}' found without opener at pos {pos}")



                return False

 

            expected_closer = closers[openers.index(stack[-1])]

            if char == expected_closer:

                stack.pop()  # all good

            else:

                # an error is found

                print(f' opener or "{expected_closer}" at pos {pos}, got "{char}"')

                return False

    # End of string reached so stack should be empty

    if stack:

        print(f"Expected opener or '{expected_closer}', got END OF STRING")

        return False

    return True

 

for i in inputstrings:

    print(parse(i))

 

The comments are done inline to save discussion, but the reader should be
able to logically follow through at this stage.

The simple rule of rather basic bracket matching costs about 20 lines of
code. When we consider all of the grammar, spelling and language
functionality that we require it quickly becomes obvious that modules that
handle “corrections” or “suggestions” must be sophisticated and have been
in development for many years. For this, we stand on the shoulders of
giants.

The older readers might remember the “paper clip” which was sometimes
useful, but other times a hindrance.



There are many edge cases, for example a smiley face “ :) ” would create an
additional bracket and throw an unmatched bracket error, whereas we
actually wanted this.

# this is okay   
'print("hello world")'
 
#Closer ')' found without preceding opener at pos 22
'print("hello world :)")'
 

So a good question for the reader is how would we overcome this? And
other similar issues.

 

Collatz Conjecture
The Collatz Conjecture is the simplest maths problem no one can solve. It is
easy enough for almost anyone to understand but notoriously difficult to
solve.

given any number:

●          if odd: n = n*3 + 1



●          if even: n = n/2

The final value is always a [4,2,1] loop.

import matplotlib.pyplot as plt
from numpy import average, std
 
 
def f(n):
    ''' the function itself:
 
    given an input n, what is the next value
    '''
    if n % 2 == 0:
        # have an even number
        v = int(n/2)
        return v
    if n%2 !=0:
        # have an odd number
        v = n * 3 + 1
        return v
 
 
 
 
def number_iterations(n):
    ''' given a number n, how many steps until a solution is reached
 
    '''
    m = [n]  # 4,2,1 loop
 
    for i in range(2):
        # first 3 elements of the loop
        n = f(n)
        m.append(n)
        # print(m)
 
    for i in range(2, 10000):



        # all the other loops
        n = f(n)
        # print(n)
        m.pop(0)
        m.append(n)
        # print(m)
        if m == [4,2,1]:
            return i
 
 
d = {}
for n in range(10_000):
    # n = 22  # initial number
    x = number_iterations(n)
    # print(n, x)
    d[n] = x
 
print(d.values())
 
# how many None's
print('number of nones', len([x for x in d.values() if x==None]) )
number_answers = [x for x in d.values() if x!=None]
print('max', max(number_answers))
print('avg', round(average(number_answers)))
print('std', round(std(number_answers)))
 
plt.plot(d.keys(), d.values())
plt.xlabel('number n')
plt.ylabel('number of iterations')
 
# giving a title to my graph
plt.title('Collatz Conjecture - iterations for n')
plt.show()
 

 



Data Science
Data science combines maths and statistics, specialised programming,
advanced analytics, artificial intelligence and machine learning to uncover
insights hidden in data.

These insights can be used to guide decision making and strategic planning.

We often know what our end game is when it comes to starting a project,
but along the way there are many steps.

●      Data capture
●      Data cleaning
●      Processing
●      More processing
●      Producing coherent results

The challenges are enhanced at every stage usually because of [1] the size
of the data and [2] the processing power and techniques available.



Python has many good tools for data science and it is for this reason that it
has gained popularity in recent years. There is also a significant amount of
material dedicated to data science specifically with python and the reader is
encouraged to read this.

Understanding Data
Data is the basis of everything that is done in this field. It is collected in
many different ways, for example an image on a ccd array in a camera or a
large database of trading data or a list or csv file that is collected via some
research which might be a downloadable excel or csv file or published on a
webpage.

This data collection is sometimes easy as it already comes in a convenient
electronic homogeneous format (like all the trades on a particular stock on
an exchange) and other times rather difficult like a population survey that
is missing lots of data.

The data collection in itself is a programming issue as, however it is
collected, there is a need to turn it into something electronic in order that we
have a starting dataset to work with.

Let’s take three similar large datasets that are collected in different ways.

1. Government Elections
2. Reality show votes
3. Social media polls

We say that the data is similar because it ultimately contains broadly
speaking the same information. A unique person (the voter) and their choice
(or vote).

The unique person might have some additional useful data, for example:
postcode, annual income, age, gender etc. in fact, in python this would fit
perfectly into a class  structure or a dictionary or list .
class Voter:
 
    def __init__(self, vote, postcode, income, age, gender):
        self.vote = vote
        self.postcode = postcode



        self.income = income
        self.age = age
        self.gender = gender
 
# voter instances
v1 = Voter('adam apple', 'abc', 35000, 32, 'male')
v2 = Voter('brenda banana', 'def', 25000, 28, 'female')
 
 
all_voters = {1000001:v1, 1000002:v2}
 
 

However, whilst the resultant collected data is the same, the collection
methods vary widely.

For the election, the votes are collected via ballot papers which are either
posted (and sent a few weeks prior to the election) or by voters going to
private ballot boxes and filling out the ballot forms.

For the reality shows, the voters would already have been pre-registered
on a website or mobile app or alternatively dial in by phone to cast their
vote.

For social media, the voters all have accounts pre-registered setup and this
would be the only way to vote.

We see that government election data is slow and clunky. There is a lot of
human effort and resources (paper and transport and manual reading)
required to collate the information. Voters are not able to change their vote
and those that did not vote properly or could not physically attend are
excluded from the dataset. The turnout is around 65% meaning that 35% of
eligible voters did not vote for a given reason. Nevertheless, the resulting
dataset is large (30 million) as the original pool is roughly 45 million. The
voting forms do not contain what one might consider to be rich data, but
rather just a vote and an area.

On the other hand reality show votes have much richer data. As many of the
users have pre-registered, a lot of information already existed. Aside from



the phone votes, the electronic votes are dynamic, meaning that voters can
change their mind and this could even be real time.

And finally moving into social media data the information is even richer,
often including far more detailed content such as personal or shopping
habits with the results being real time.

Moving to other systems, the data is far more intensive. For example a self
driving car will be continually collecting data via a number of sensors and
feeding into a processing system for real time corrections and guidance.

In such a system, the efficiency of algorithms needs to be such that the
available processing power is maximised. A car has seconds to react
whereas an election cycle is 4 years which is approximately 100 million
times the order or magnitude from a computational perspective. So we will
need to consider all of the above.

 

Data exploration: beginner
Data is contained on physical storage devices such as hard discs, usb drives
and the internet. But it is also held in the computer's memory[3] for faster
processing.

Python is used for accessing and processing both parts.

Let's start with a basic text file. How do we get this data from the hard disc
into the computer RAM.

file_name = "C:/test/helloworld.txt"
 
with open(file_name) as f:



    data = f.read()
 
print(data)
 

This reads the contents of the file into a variable that we named data. If the
contents of the file are “hello world”, then:

data = ‘hello world’

So python is quick and convenient at reading data. All the user needed was
the file path and name . Note that we like to use the builtin ‘ with’
statement as this makes sure that the file is opened and closed properly.

Note the time taken to do this process is 1 to 2 milliseconds and a larger file
size would take longer.

Just like we can read data, we can also write data.

file_name = "C:/test/helloworld.txt"
 
# create a string to write
write_string = ''
for i in range(1000):
    write_string = write_string + 'hello world\n'
 
# write the string
with open(file_name, 'w') as f:
    data = f.write(write_string)
 

On a mid range PC[4], it was possible to write 100,000 lines of “hello world”
or 2 megabytes of data in 15 milliseconds.

As the data gets larger, we need to consider writing chunks of data
( chunking ) in blocks and appending the file with each chunk so as to avoid
memory issues. We can calibrate the chunk size and number of writes to
optimise time.

# create a string to write

write_string = ''



for i in range(10_000):

    write_string = write_string + ' ' + str(i) + ' hello world\n'

 

# write the first block

with open(file_name, 'w') as f:

    data = f.write(write_string)

 

# keep adding blocks (chunks)

for i in range(450):

    print(f'adding chunk {i+1}')

    with open(file_name, 'a') as f:

        data = f.write(write_string)

 

 

Again, on a mid range pc it was possible to write 45 million lines of “hello
world” or 850 megabytes of data in just over 10 seconds. This was one
“ hello world ” for each voter in the entire UK eligible electorate.

 
Data exploration: intermediate
Having understood the fundamentals of data, where it is stored and how we
can read and write something such that our code can now interact with this
data it is time to move on to the popular modules. Namely Pandas; NumPy
and SciPy

We were able to read and write basic data to a text file. We wrote “hello
world” 45 million times quite quickly, which gave us an idea of speed and
capability.

We now look at other data and what we can do.

The most basic way of displaying data is in simple flat file text format. This
already provides the user with plenty of capability. The convention is to
split the rows of a text file into a top row called the header and then each
row below is an additional line of data.

When the data has structure, we split this into parts. Meaning that each row
contains multiple pieces of data about one unique item. We could think of



this as a list of lists or a dictionary where the keys are the headings and the
values are the lists of data. But let’s just start simple and grow.

Imagine that we have this table of voters:

Each person is assigned a unique reference number so that they can only
vote once. We have a first name, area and their vote. This would be
sufficient for collating votes.

We represent this in a text file as follows:

unique ref,first name,area,vote
100001,alice,West Midlands,conservative
100002,bob,London,conservative
100003,clive,Yorkshire,labour
100004,david,London,conservative
100005,emma,London,labour
100006,fred,Yorkshire,liberal democrat
100007,gill,South East,conservative
100008,harry,London,conservative
100009,irene,London,other
 



What we have done is separate each column item with a comma. We could
have used tabs, colons, semi-colons or | for the separation, but commas
were sufficient. If the data had contained commas, we would have elected
to use another method for separating the column data.

This format is known as comma separated values (another popular format is
tab separated values) and has the file extension CSV. It is no more than a
basic text file with rows of data that are separated with commas.

Python has a few ways of reading this data.

1. Text: read the text file and separate the data ourselves with a piece
of code.

2. import csv: use the builtin module to handle the data
3. Import pandas:  a powerful software library that handles data.

There are other methods too, but these are the most common.

The in build csv module that is shipped with python looks like this:

import csv
 
file_name = "C:/test/example_election.txt"
 
data = []
with open(file_name, newline='') as csvfile:
    spamreader = csv.reader(csvfile, delimiter=',')
    for row in spamreader:
        data.append(row)
And generates a list of ists which we have assigned to the variable data.

[['unique ref', 'first name', 'area', 'vote'],
['100001', 'alice', 'West Midlands', 'conservative'],
['100002', 'bob', 'London', 'conservative'],
['100003', 'clive', 'Yorkshire', 'labour'],
['100004', 'david', 'London', 'conservative'],
['100005', 'emma', 'London', 'labour'],
['100006', 'fred', 'Yorkshire', 'liberal democrat'],
['100007', 'gill', 'South East', 'conservative'],
['100008', 'harry', 'London', 'conservative'],



['100009', 'irene', 'London', 'other']]
 

But a more convenient tool is the pandas[5] module. This does all the work
for the user in 2 lines of code.

import pandas as pd
 
df = pd.read_csv("C:/test/example_election.txt")
And pushes the result into an object called a DataFrame  which looks like
this.

The DataFrame has a convenience (ie. fewer lines of code) advantage for
small data, but the real advantage is when the data is large as the elements
are contiguous and concise and can be operated on faster as a result
(especially when vectorised[6]) in many, but not all, cases.

We can do things like filtering the columns (which are like lists) very
conveniently.

x = df['vote']=='conservative' # filter conservatives
x.sum()         # count conservatives
# returns 5



 

So we can work out the percentage of conservative votes in just a few lines
of code:

x = df['vote']=='conservative' # filter conservatives
count_conserv = x.sum()         # count conservatives
count_total = df['unique ref'].count()  # total count
 
percent_conservative = round(count_conserv / count_total * 100, 2)
print('conservative percent is', percent_conservative, '%')
# conservative percent is 55.56 %
 

At this point we have already used Numpy without even knowing. The
reason for this is that Pandas is built on top of NumPy, relying on ndarray
and its fast and efficient array based mathematical functions. For example,
when we did the count of the unique references we did this:

count_total = df['unique ref'].count()  # total count
And if we wanted to find the mean we would have done df['unique
ref'].mean()

The best description of numpy comes from the official website:

NumPy is the fundamental package for scientific computing in Python. It is
a Python library that provides a multidimensional array object[7], various
derived objects (such as masked arrays and matrices), and an assortment of
routines for fast operations on arrays, including mathematical, logical,
shape manipulation, sorting, selecting, I/O, discrete Fourier transforms,
basic linear algebra, basic statistical operations, random simulation and
much more.

The power of NumPy comes from the ndarray  class and how it is laid out
in memory. The ndarray class consists of

1. The data type (all one type).
2. A pointer to a contiguous block of memory.
3. A tuple of the array shape.
4. An array stride.



The shape refers to the dimension of the array (a*b) while the stride is the
number of bytes to step in a particular dimension when traversing an array
in memory. With this NumPy has sufficient information to access all
elements of the array.

Numpy also allows for row or column major, which can add to efficiency
with the keyword order . A good summary looks like this:

The most important feature is the contiguous memory blocks compared to
the standard python list. And also that each block has a single data type.
The data could be of different data types (mixed types), but this would be at
the expense of efficiency as the column becomes an object[8]. And the
memory is now at multiple addresses.

We could delve into NumPy in much greater depth, but for the purpose of
our needs of understanding the efficiency gains, this is sufficient. The
NumPy ndarray is more efficient than the python list.

The most basic example is this:

import numpy as np
a = np.arange(15).reshape(3, 5)
 
print(a)
Which creates an array:

array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14]])



We can get various details quickly.

a.shape         # (3, 5)
a.ndim          # 2
a.dtype.name    # 'int32'
a.itemsize      # 4 (4 bytes)
a.size          # 15
type(a)         # numpy.ndarray
And we can see that this looks like a “special” type of rigid list of integers
with a specified size.

We can access the element of the ndarray like this:
print(a[1,1])   # return 6
print(a[1][1])  # returns 6
 
Although both of the above look the same, the first method is
(approximately) twice as fast because it accesses the numpy API in C.
Whereas method 2 returns a slice at [1]  and then indexes the slice at [1] .

Finally, we look at scipy, which is another module. However, look no
further than the strong relationship between SciPy and NumPy to the extent
that the entire numpy namespace is included into scipy, which can be seen
from this line in the SciPy __init__ method.

from numpy import *
SciPy is built upon NumPy.

 

Data visualisation
Matplotlib; Seaborn;

Up to this point, we have looked at data crunching. We could transform and
output data via the terminal or a pandas dataframe or write to a file.

However, up to this point, we had not done any kind of visualisation. So
let's do this. And we start with Matplotlib.

Matplotlib is a comprehensive library for creating static, animated, and
interactive visualisations in Python. Matplotlib makes easy things easy and



hard things possible.

We will often see Matplotlib come hand in hand with Numpy Pandas or
Scipy. This is because, yet again, like the other modules Matplotlib
leverages the same Numpy ndarray which is fast.

The basic example, just to start quickly, is this:
import matplotlib.pyplot as plt
import numpy as np
 
x = np.linspace(0, 2 * np.pi, 200)
y = np.sin(x)
 
fig, ax = plt.subplots()
ax.plot(x, y)
plt.show()
 
Which quickly produces a sine wave and plots the result conveniently into a
chart.



 

We can change the plot type, like this:

import matplotlib.pyplot as plt
import numpy as np
 
# make data:
np.random.seed(3)
x = 0.5 + np.arange(8)
y = np.random.uniform(2, 7, len(x))
 
# plot
fig, ax = plt.subplots()
 
ax.bar(x, y, width=1, edgecolor="white", linewidth=0.7)
 
ax.set(xlim=(0, 8), xticks=np.arange(1, 8),
       ylim=(0, 8), yticks=np.arange(1, 8))
 
plt.show()
 
Which gives this:

And more complicated data like this:



import matplotlib.pyplot as plt
import numpy as np
 
# make data:
np.random.seed(1)
x = np.random.uniform(-3, 3, 256)
y = np.random.uniform(-3, 3, 256)
z = (1 - x/2 + x**5 + y**3) * np.exp(-x**2 - y**2)
levels = np.linspace(z.min(), z.max(), 7)
 
# plot:
fig, ax = plt.subplots()
 
ax.plot(x, y, 'o', markersize=2, color='lightgrey')
ax.tricontour(x, y, z, levels=levels)
 
ax.set(xlim=(-3, 3), ylim=(-3, 3))
 
plt.show()
Which produces this:

We continue, noting that the list of plots is extensive, so only need to go as
far as to know that the options are vast[9] and that the structure of the code
to produce a plot is roughly 10 to 20 lines of code and is similar each time.



●      Get or create the data
●      Organise the data and how the chart looks
●      Plot the chart (with plt.show() )

We can now begin to do statistical analysis. Imagine that we have x and y
points and we want to find a simple relationship and draw a best fit line.
Combining numpy with matplotlib this can easily be achieved.

import matplotlib.pyplot as plt
import numpy as np
 
# create x and y points
x = np.linspace(0, 10, 50)
y = np.random.random(50) * np.linspace(0,10,50)
 
# fit a linear curve an estimate its y-values and their error.
a, b = np.polyfit(x, y, deg=1)
y_est = a * x + b
 
fig, ax = plt.subplots()
ax.plot(x, y, '.', color='green')
ax.plot(x, y_est, '--', color='red')
 
plt.show()
 
This is the result for 50 and 500 points respectively:



We were able to quickly generate and plot many points and produce lines of
best fit repeatedly (tweaking parameters and colours along the way).

We used one function for the curve (or straight line) fitting, which is
polyfit(x,y, deg=1) . If we had used deg=2  then we would have had a
quadratic and deg=3  for a cubic fit and so forth. And this was all that we
needed. The results are unpacked[10] into the coefficients.

This is the beginning of a long journey into data science and what tools and
techniques we have to describe, interpret and even predict data.

Or become a bit smarter with standard deviations from a fit:

import matplotlib.pyplot as plt
import numpy as np
 
# create x and y points
n = 100
x = np.linspace(0, 10, n)
y = np.random.random(n) * np.linspace(0,10,n)
 
# fit a linear curve an estimate its y-values and their error.
a, b = np.polyfit(x, y, deg=1)
y_est = a * x + b
y_err = np.sqrt(y.std()) # an error estimator
 
fig, ax = plt.subplots()
ax.fill_between(x, y_est - y_err, y_est + y_err, color='yellow', alpha=0.75)
ax.plot(x, y, '.', color='green')
ax.plot(x, y_est, '--', color='red')
 
plt.show()
Which gives this:



A good takeaway is that this is achieved relatively quickly using python and
has use cases in all industries, like finance, engineering, retail, academia
and so forth.

We could have looked at surfaces, 3 dimensions, n-dimensions animations,
so there is plenty of scope for the reader to extend their knowledge.

Machine learning
We could define this as any supervised or unsupervised learning task (that is
not deep learning). Scikit-learn is the main go-to tool module for
implementing classification, regression, clustering and so forth (although
other modules also exist, like OpenCV and TensorFlow).

Machine learning utilises statistical techniques to give computer algorithms
the ability to learn from past experiences and perform specific tasks.

So we touched on data visualisation. We were able to display charts from
various basic statistics. We used a best fit line on a linear random
distribution, but there are many other fits and distributions that we could
have just as easily deployed.

We multiplied numpy arrays (the dot product for vectors) with ease:
y = np.random.random(n) * np.linspace(0,10,n)
To create the independent y-variable and could have easily added a log
normal distribution or other non linear distribution.



import matplotlib.pyplot as plt
import numpy as np
 
# create x and y points
n = 100
x = np.linspace(0, 10, n)
y = np.random.random(n) * x * 100
 
# fit a linear curve an estimate its y-values and their error.
a, b, c = np.polyfit(x, y, deg=2)
y_est = (a * x * x) + (b * x) + c
y_err = y.std()
 
fig, ax = plt.subplots()
ax.fill_between(x, y_est - y_err, y_est + y_err, color='yellow', alpha=0.75)
ax.plot(x, y, '.', color='green')
ax.plot(x, y_est, '--', color='red')
 
plt.show()
 

To get this:

We can create distributions that one fits to the data. Common ones are
normal and lognormal distributions. Which are generated like this:

import math
import numpy as np
from scipy.stats import lognorm



import matplotlib.pyplot as plt
 
#make this example reproducible
np.random.seed(1)
 
#generate log-normal distributed random variable with 1000 values
avg, std = 1, 1
lognorm_values = lognorm.rvs(s=std, scale=math.exp(avg), size=1000)
 
#view first five values
lognorm_values[:50]
 
#create histogram
plt.hist(lognorm_values, density=True, edgecolor='black', bins=100, label='log normal')
plt.legend(loc='best', frameon=False)
plt.show()
 
And produce this



We can look at statistics like mean, standard deviation, quartiles, confidence
levels etc. The data will exist in the main body or it could be classified as an
outlier. For example more than 3 standard deviations from the dataset mean,
which is a regression type model.

We could also have a decision tree type model. We saw the basics of this in
the binary tree where each node of the tree is a decision and more nodes
generally leads to greater accuracy. The sklearn module in python gives us a
whole suite of classification tools. Here for example is a decision tree
classifier on a popular dataset called iris[11] out of the box.

from sklearn.datasets import load_iris
from sklearn.model_selection import cross_val_score
from sklearn.tree import DecisionTreeClassifier
clf = DecisionTreeClassifier(random_state=0)
iris = load_iris()
cross_val_score(clf, iris.data, iris.target, cv=10)
Which returns this list
array([1.        , 0.93333333, 1.        , 0.93333333, 0.93333333,

       0.86666667, 0.93333333, 1.        , 1.        , 1.        ])

The number of inputs (parameters) that could go into the
DecisionTreeClassifier model reflect the potential complexity and this is
one of many models. So what we have just touched the surface.

The documentation allows for the following:
class sklearn.tree.DecisionTreeClassifier(*, criterion='gini', splitter='best', max_depth=None,
min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None,
random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, class_weight=None,
ccp_alpha=0.0)

And the scope of just this problem alone would occupy the rest of the book.
However, the important thing to note is that the (Iris Dataset) data looks like
this:



 



And importantly the model is classifying the type of flower based on the
existing information. For example, given a short sepal length and high sepal
width the model would expect a flower whose type rests among red data
points.

We have shifted into the realms of logistic regression which is similar, but
not to be confused with linear regression. Logistic regression is used to
model the probability of a finite number of outcomes, typically two.



In essence, a logistic equation is created in such a way that the output
values can only be between 0 and 1.

With this we now look at the Support Vector Machine (SVM) which is
another supervised classification technique.

Given two classes of data. A SVM will find a hyperplane or a boundary
between the two classes of data that maximises the margin between the two
classes.

There are many planes that can separate the two classes, but we seek a
single plane that maximises the margin (or distance) between the classes
which are the blue and red points in the diagram.

Unlike supervised learning, unsupervised learning is used to draw
inferences and find patterns from input data without references to labelled
outcomes.

One such method is clustering that involves the grouping, or clustering, of
data points. We had begun to touch on this, but let's take a deeper dive using
the sklearn knn[12] classifier  called the KNeighborsClassifier .



Whichever technique is used, the task is essentially to classify data as best
as possible.



KNN is a very interesting technique. K is the number of nearest neighbours
and this is the core deciding factor. With a simple counting algo, it helps if
k is an odd number given that we do not want a split decision.

There are different and interesting measures for finding the distances such
as:

●      Euclidean distance
●      Hamming distance
●      Manhattan distance
●      Minkowski distance

But essentially each one attempts to achieve the same outcome.

Techniques like KNN perform better with a lower number of features.
When the number of features increases, the amount of data required also
increases. This is known as the curse of dimensionality.

And finally, how do we even decide on the number of nearest neighbours?
These are all considerations and therefore input arguments into the models
that we see.

All of the above shows the complexity that goes into the algo’s, but we are
here for the python implementation and some use cases and examples.

X = [[0], [1], [2], [3]]
y = [0, 0, 1, 1]
 
from sklearn.neighbors import KNeighborsClassifier
neigh = KNeighborsClassifier(n_neighbors=3)
neigh.fit(X, y)
 
print(neigh.predict([[1.1]]))
 
print(neigh.predict_proba([[1.1]]))
 
So let's start with this example using the KNeighborsClassifier method
which returns this:
[0]



[[0.66666667 0.33333333]]
Basically the model returns zero for the given x,y data in the top two rows
of the example code and also the probabilities of such (67% vs 33%)
remembering that the probability space always adds to 100%.

In this next example we construct a NearestNeighbors class from an array
representing our data set and ask who’s the closest point to [1,1,1].

samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
from sklearn.neighbors import NearestNeighbors
neigh = NearestNeighbors(n_neighbors=1)
neigh.fit(samples)
 
print(neigh.kneighbors([[1., 1., 1.]]))
Which returns this:
(array([[0.5]]), array([[2]], dtype=int64))
Telling us that the “distance” is 0.5 and it was the third element in the
samples list (remembering that indexes start from zero).

At the end of all of the theory, it is nice to show good code. And here is a
comparison of 10 classifiers in scikit-learn. The point of this example is to
illustrate the nature of decision boundaries of different classifiers.

# standard imports

import numpy as np

import matplotlib.pyplot as plt

from matplotlib.colors import ListedColormap

 

# import models

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.datasets import make_moons, make_circles, make_classification

 

# import the classifiers

from sklearn.neural_network import MLPClassifier

from sklearn.neighbors import KNeighborsClassifier

from sklearn.svm import SVC

from sklearn.gaussian_process import GaussianProcessClassifier



from sklearn.gaussian_process.kernels import RBF

from sklearn.tree import DecisionTreeClassifier

from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier

from sklearn.naive_bayes import GaussianNB

from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis

from sklearn.inspection import DecisionBoundaryDisplay

 

names = [   # names of classifiers

    "Nearest Neighbors",

    "Linear SVM",

    "RBF SVM",

    "Gaussian Process",

    "Decision Tree",

    "Random Forest",

    "Neural Net",

    "AdaBoost",

    "Naive Bayes",

    "QDA",

]

 

classifiers = [     # models

    KNeighborsClassifier(3),

    SVC(kernel="linear", C=0.025),

    SVC(gamma=2, C=1),

    GaussianProcessClassifier(1.0 * RBF(1.0)),

    DecisionTreeClassifier(max_depth=5),

    RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1),

    MLPClassifier(alpha=1, max_iter=1000),

    AdaBoostClassifier(),

    GaussianNB(),

    QuadraticDiscriminantAnalysis(),

]

 

X, y = make_classification(

    n_features=2, n_redundant=0, n_informative=2, random_state=1, n_clusters_per_class=1

)

rng = np.random.RandomState(2)



X += 2 * rng.uniform(size=X.shape)

linearly_separable = (X, y)

 

datasets = [

    make_moons(noise=0.3, random_state=0),

    make_circles(noise=0.2, factor=0.5, random_state=1),

    linearly_separable,

]

 

figure = plt.figure(figsize=(27, 9))

i = 1

# iterate over datasets

for ds_cnt, ds in enumerate(datasets):

    # preprocess dataset, split into training and test part

    X, y = ds

    X = StandardScaler().fit_transform(X)

    X_train, X_test, y_train, y_test = train_test_split(

        X, y, test_size=0.4, random_state=42

    )

 

    x_min, x_max = X[:, 0].min() - 0.5, X[:, 0].max() + 0.5

    y_min, y_max = X[:, 1].min() - 0.5, X[:, 1].max() + 0.5

 

    # just plot the dataset first

    cm = plt.cm.RdBu

    cm_bright = ListedColormap(["#FF0000", "#0000FF"])

    ax = plt.subplot(len(datasets), len(classifiers) + 1, i)

    if ds_cnt == 0:

        ax.set_title("Input data")

    # Plot the training points

    ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright, edgecolors="k")

    # Plot the testing points

    ax.scatter(

        X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6, edgecolors="k"

    )

    ax.set_xlim(x_min, x_max)

    ax.set_ylim(y_min, y_max)



    ax.set_xticks(())

    ax.set_yticks(())

    i += 1

 

    # iterate over classifiers

    for name, clf in zip(names, classifiers):

        ax = plt.subplot(len(datasets), len(classifiers) + 1, i)

        clf.fit(X_train, y_train)

        score = clf.score(X_test, y_test)

        DecisionBoundaryDisplay.from_estimator(

            clf, X, cmap=cm, alpha=0.8, ax=ax, eps=0.5

        )

 

        # Plot the training points

        ax.scatter(

            X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright, edgecolors="k"

        )

        # Plot the testing points

        ax.scatter(

            X_test[:, 0],

            X_test[:, 1],

            c=y_test,

            cmap=cm_bright,

            edgecolors="k",

            alpha=0.6,

        )

 

        ax.set_xlim(x_min, x_max)

        ax.set_ylim(y_min, y_max)

        ax.set_xticks(())

        ax.set_yticks(())

        if ds_cnt == 0:

            ax.set_title(name)

        ax.text(

            x_max - 0.3,

            y_min + 0.3,

            ("%.2f" % score).lstrip("0"),



            size=15,

            horizontalalignment="right",

        )

        i += 1

 

plt.tight_layout()

plt.show()

 

This produces the following (in less than 3 seconds):

The full code can be found on the scikit-learn website. The plots show
training points in solid colours and testing points semi-transparent. The
lower right shows the classification accuracy on the test set.

What we can garnish from the above is that, just in one section of machine
learning alone the computation volume is immense and this is before we
have transposed ideas onto real world data which is significant.



Finance
Python is a general purpose high level programming language which
lends itself very well to the finance sector primarily because it bridges a
very specific gap somewhere between spreadsheets and lower level
languages.

The syntax is clean and dealing with lists and arrays is relatively straight
forward. The language connects well with other parts of the system.
Accessing databases and reading from and writing to files is easy.

There is a level of automation in python that is beyond that of excel and it is
simpler to use than (more powerful) languages like c++ that have longer
development times.

So python is good for prototyping. For example, let's take a look at the
lognormal distribution which is one of the most common distributions in
finance or infact any  biological system whose distribution has a lower
bound at zero and is random in nature.

 

●      Take a bunch of random variables.
●      Take the log of those: 

We know that the dependent variable, y is some function of x and in the
case of the lognormal distribution some function of the natural logarithm of
x.



Here we set the mean,  , and standard deviation .

If x is normal, then  is also normal as the transformations just
scale the distribution, and do not affect normality, which means that the
logarithm of x is normally distributed.

The lognormal distribution satisfies this:

This is easy to replicate in python.

import math
import numpy as np
import statistics as sts
from matplotlib import pyplot as plt
 
n = 1000                # number of samples
avg, std = 100, 0.2     # avg , std
mu = math.log(avg)
sigma = math.sqrt(std)
y = np.random.lognormal(mean=mu, sigma=sigma, size=n)   
 



print('avg:', round(sts.mean(y), 2))
print('std:', round(sts.stdev(y), 2))
 
 
fig, ax = plt.subplots(1,2)
 
ax[0].plot(y, '+')
# plt.show()
 
ax[1].hist(y, bins=int(n/10), orientation='horizontal')
ax[1].set_yticks([])
plt.show()
 

The imports at the top provide tools to do all the basic maths operations and
the entire distribution is generated by the np.random.lognormal()  function.

We are able to plot this using matplotlib showing 1000 points, but also
plotting a histogram oriented sideways to indicate the frequency of the
plots.



For this particular chart the average was 108.36 and std of 47.59. We could
run this routine many times, which would create many similarly looking
random distributions.

Running simulations many times is a common technique especially with the
increased computing power that is available and is referred to as a monte-
carlo simulation and takes a number of different formats.

Time series
The time series is important because it represents the evolution of a
function (price) with respect to time. In finance, other value metrics are
used, such as bond yields or spreads (which are the differences in yields).

We often see prices dropping and yields rising or spreads widening when
the market is taking off risk and conversely prices rising and yields
dropping or spreads tightening when the market is adding risk.

We can capture this data and measure and analyse it and make various
statistical statements about the systems that we have measured.

There are a few approaches, but let's try these two:

●      generate our own sample data by creating a random walk
●      we could download a common dataset.

The random walk is fun and we can do lots with it, plus it is good for
testing out some of the techniques that we have been through and has real
world applications.

In the simplest case, we start with a price and make it evolve over discrete
intervals of time, such as days. So we can say that the price tomorrow is
some function of the price today or equivalently the next price was
contingent on the previous price and some other input parameters that the
user sets.

For the price of the stock, we might crudely assume that there is an upward
drift and on top of this we could add a random value to represent an
unknown volatility component, so we have this:



Where  is a predefined constant and  is a random number generated at
each step. So we have a drift and a diffusion.

Let's say that over the course of a year, the price should increase by 5%,

with no volatility (so, ). Then the following would be true:

And therefore the term  is equal to 1.05. So we can solve for .

And if we introduce a suitable volatility, say , then it
becomes possible to attempt reasonable walks.

Again, we produce this in 30 lines of code.
import random
from matplotlib import pyplot as plt
 
start_price = 100
number_of_steps = 365
 
# 5% over a 1-year period
drift = pow(1.05, 1/365)
 
def random_walk():
    ''' a random walk function'''
    p = [start_price]
    for i in range(number_of_steps):
        vola = (random.random() - 0.5)/100
        p_next = (drift + vola) * p[i]
        p.append(p_next)



 
    return p
 
# lets do 100 random walks (list comprehension)
walks = [random_walk() for x in range(100)]
 
# plot all the paths
for i in walks:
    plt.plot(i)
 
plt.show()
This is what 10 random walks each of 365 daily steps over the course of 1
year looks like with the model above.

 

 

And this is what 100 walks look like:



We could have simulated many thousands of walks with multivarious
outcomes based on sophisticated parameters and it would be quite common
to see this in other disciplines such as weather forecasting or engineering
problems where the models are complex and intensive.

In particular, if we consider a weather system evolving over time, that the 1-
dimensional time steps that we used in the example become 3 spatial
dimensions evolving over time (so 4 dimensions) and all of a sudden our
365 calculations grows to 3653 (or roughly 50 million calculations).

If we were to take a weather system over the uk which is roughly 240,000
km2 and consider cubes of 1km then the model would require 250 cubes just
for the basic footprint. And if we wanted to increase the accuracy to 1 metre
blocks, this would quickly bifurcate to 240 million volumes for a single
iteration of evolution. All of a sudden the computational systems are
challenged.

Next we look at a common dataset, this could be any, but let's take the ftse
100, which is an index that tracks the top 100 shares by market capital in
the UK.

We have 25 years worth of data which is roughly 6250 data points assuming
250 working days per year. There are 4 data points on each day [open, high,
low, close].



The data comes in two downloadable formats. A CSV file which we have
already discussed in earlier chapters and a JSON[13] file.

With either format, we can quickly download the data into a pandas
dataframe with the pandas.read_csv()  or pandas.read_json()  methods.

An extract of the json format looks like this:

Which we see looks like a list of python dicts. And the actual summary data
when downloaded will look like this:



After light visual inspection this appears to be fine. However, if there was
an error with the data we would be thrown an error.

For example the initial attempt at importing the data frame threw this error:
UnicodeDecodeError: 'utf-8' codec can't decode byte 0xff in position 0: invalid start byte

And we quickly searched stackoverflow to find other users  had corrected
this by changing the encoding type to ‘utf-16’. These are often the kinds of
minor issues that we face.

We pip install a new library ( mplfinance ) specifically for finance charts
and run the following code:

import mplfinance as mpf

import pandas as pd

 

df = pd.read_csv("C:/Users/admin/Downloads/markets_historical_ukx_ind.csv",

    encoding = 'utf-16')

 

# format the data

df['Date']=pd.to_datetime(df['Date'],format='%d/%M/%Y').dt.date

df.index= pd.DatetimeIndex(df['Date'])

df = df.drop(['Date'], axis=1)

 

# https://github.com/matplotlib/mplfinance#usage

mpf.plot(df, type='candle', style='charles', mav=(360),

    warn_too_much_data=10000)

To get this:



Which is the open, high, low, close data with a 360 day moving average.

Cleaning data
After we have gone to the extent of obtaining the data into a format that can
be easily read and transferred into the code we then have the next task.

The least glamorous part of the task is cleaning and formatting the data.
This is because the external world does not see the efforts of the data clean
process which is often far greater than the output.

For example, in the download of the ftse 100 data, we had to get the
original data into a format that is acceptable for the module to read (we
could have opted for a different charting module) which needed to be like
this:



Whilst the format looks very similar to the original data download, there
were issues with:

●      The dataframe index which needed to be a datetime format.
●      The date column which was a series of strings to be converted to

datetimes.
●      The order of the columns.

Each of these was necessary to plot that particular candle chart and without
any item the code would have thrown its respective error. And figuring each
item out one-by-one was time consuming.

Moving averages
The chart that we had offered a keyword argument mav=() which allows the
user to plot a moving average or a series of moving averages.



import pandas as pd

from matplotlib import pyplot as plt

 

df = pd.read_csv("C:/Users/admin/Downloads/markets_historical_ukx_ind.csv",

    encoding = 'utf-16')

df['Date']=pd.to_datetime(df['Date'], format='%d/%m/%Y')

 

df = df.head(365)

df

 

 

fig, ax =  plt.subplots()

 

ax.plot(df['Date'],  df['Open'], '-', color='yellow', label='Open')

ax.plot(df['Date'],  df['High'], '_', color='green', label='high')

ax.plot(df['Date'],  df['Low'], '_', color='red', label='low')

ax.plot(df['Date'],  df['Close'], '-', color='orange', label='Close')

fig.autofmt_xdate()

ax.legend()

 

plt.show()

 



However, we can improve this by adding new columns to the dataframe.
Where for example, we add a moving average column and an exponential
moving average column.

df['ma'] = df['Close'][::-1].rolling(window=5).mean()

df['ema'] = df['Close'][::-1].ewm(com=0.5).mean()

 

fig, ax =  plt.subplots()

 

ax.plot(df['Date'],  df['ma'], '-', color='blue', label='ma')

ax.plot(df['Date'],  df['ema'], '-', color='green', label='ema')

ax.plot(df['Date'],  df['Close'], '_', color='orange', label='Close')

fig.autofmt_xdate()

ax.legend()

 

plt.show()

Meaning that we can plot both against the daily close for example which
looks like this:



 

But in fact, we could do any logical test on the data and flag this on the
chart as a trading signal or point of interest.

The first step for completing such a task is to create a new column of
interest in the dataframe. For example, let's say that we want to find
drawdowns[14] in the market. Then we might set about looking for
differences in rows as a percentage of the exponential moving average.

Then we could do this:
df['ma'] = df['Close'][::-1].rolling(window=5).mean()

df['ema'] = df['Close'][::-1].ewm(com=0.5).mean()

df['diff'] = df['Close'][::-1].diff(periods=5)

df['dd'] = df['diff'] / df['ema']

 

 

fig, ax =  plt.subplots(2)

 

# ax[0].plot(df['Date'],  df['ma'], '-', color='blue', label='ma')

ax[0].plot(df['Date'],  df['ema'], '-', color='green', label='ema')



ax[0].plot(df['Date'],  df['Close'], '_', color='orange', label='Close')

ax[0].legend()

 

ax[1].plot(df['Date'],  df['dd'], '-', color='red', label='drawdown')

ax[1].legend()

 

fig.autofmt_xdate()

 

plt.show()

 
Which produces this:

And then we might set about flagging those values into the system by
seeking those that have passed some kind of threshold level, like a moving
standard deviation or an absolute value.

 
# find dates of interest
dd_dates = df[df['dd']<-0.05]['Date']
for dd in dd_dates:



    ax[1].axvline(x=dd, color='yellowgreen')
ax[1].legend()
 
We find and flag the dates where drawdowns are more than 5% over any 5
day period. Which return this visually and can be passed into the system as
a list or text or json file as per the user requirement.

Or allowing for all 6250 rows data we find all periods where the drawdown
was > 10% over a 10 day period like this:



In summary, we now have a very powerful tool at our fingertips. We can
inspect historical data and we could also do the same in real-time. We can
look for and flag trading signals and even automate the initiation of trades
or other processes based on the information.

Whilst the techniques shown have fallen into the trading section, the
implications are far reaching as we can use similar methods in all industry,
science and engineering.

For example, a response procedure for self-driving cars purely based on
signal inputs collected by a camera ccd array.

 

 

Reading data
We have touched on getting data into our code with the open file method
and the read_csv function in the pandas module.

However, it is quite common to need to read excel files and also json files
which is favoured for human readability and nesting features.



Then there are also xml and html tables from the web and then there are
queries from a whole host of databases that are sql or no-sql.

Each source comes with its own nuanced challenge and the final goal is to
get the data into a python object. From there manipulations can be done.

We can see how JSON differs from CSV in the sense that it permits for the
hierarchy.
{
    "index":
        {"ftse100":{"members":100,"country":"uk"},
        "sp500":{"members":500,"country":"usa"},
        "dax":{"members":40,"country":"germany"},
        "cac":{"members":30,"country":"france"}
        },
    "currency":["gbp","usd","eur"],
    "transaction fee":[
        {"europe":100},
        {"asia":50},



        {"america":{
            "north":100,
            "south":25}}
        ],
    "passcode":123456
}
 
 
The nice part is that we can read the file in the same way that we read text
files.

import json
 
with open('C:/test/test.json') as f:
    d = json.load(f)
And the variable d is type inferred as a dict and assigned the entire content
of the json as the {key, value}  pairs of the dict. So accessing the nested
data is the same as accessing any part of a dict by traversing down the
branches.

d['transaction fee']

# [{'europe': 100}, {'asia': 50}, {'america': {'north': 100, 'south': 25}}]

 

d['transaction fee'][2]

# {'america': {'north': 100, 'south': 25}}

 

d['transaction fee'][2]['america']['south']

# 25

 

d['index']['sp500']['members']

# 500

Whilst it is possible to store the same type of data into a csv file, the format
of the JSON for this task is far more logical.

The user can then edit the dict as they need or even create a new dict and
write the data back in a very similar manner.

# edit the price of asia (existing key)
d['transaction fee'][1]['asia'] = 75
 



# edit number of members in cac (existing key)
d['index']['cac']['members'] = 40
d['index']['dax']['members'] = 30
 
# add a new index (new key:value pair)
d['index']['ta'] = {'members':125,'country':'israel'}
 
# write to file
with open('C:/test/output.json', 'w') as f:
    json.dump(d, f, indent=4)
 
 
Produces a new JSON file that looks like this:

{

    "index": {

        "ftse100": {

            "members": 100,

            "country": "uk"

        },

        "sp500": {

            "members": 500,

            "country": "usa"

        },

        "dax": {

            "members": 30,

            "country": "germany"

        },

        "cac": {

            "members": 40,

            "country": "france"

        },

        "ta": {

            "members": 125,

            "country": "israel"

        }

    },

    "currency": [



        "gbp",

        "usd",

        "eur"

    ],

    "transaction fee": [

        {

            "europe": 100

        },

        {

            "asia": 75

        },

        {

            "america": {

                "north": 100,

                "south": 25

            }

        }

    ],

    "passcode": 123456

}

Whilst the file is larger in size, we can clearly see the advantage and
convenience of the JSON data format with python.

 

 

Cosine similarity
This problem tends to manifest itself in the Natural Language Processing
(NLP) field. In particular Cosine similarity is a metric used to measure how
similar the documents are irrespective of their size. Mathematically, it
measures the cosine of the angle between two vectors projected in a multi-
dimensional space.

However, it has a useful case in finance too and in particular in indices.
Take for example two bond indices which contain, say 1000 bonds in each.
How could we measure the similarity between these two indices?



Well, this is identical to comparing two lists of strings to each other. So if
we can come up with a technique, then we can state the “similarity”.

Basic examples are:

●      [a,b,c] and [a,b,c] are 100% similar
●      [a,b,c] and [d,e,f] are 0% similar 
●      [a,b,c] and [a,j,k] are 33% similar

But what about:

●      [a,b,c] and [c,a,b] which contain the same letters but in a different
order.

●      [a,b,c] and [f,g,a] have one matching letter but in a different
position.

We can say that for indices, the order does not matter, which reduces the
problem to the first three cases.

And what about lists of different sizes ? which pair has a greater similarity:

●      [a,b,c] with [a,b,c,d]
●      [a,b,c] with [a,b,c,d,e,f g]

Again, we might say that the first pair are more similar because more of the
items that do exist reside in both lists compared to the second pair.

We attempt to take a mathematical approach to this and in particular in
python make use of dictionaries and lists or we could use the
cosine_similarity method from the sklearn module.

So we now set out a recipe for how to do this:

1. Find all the unique items in both lists.
2. Compile two side by side vectors (of same length).
3. Perform a cosine measure (dot product).

Let’s create a dict containing two example indices and operations to today
the data up such that we can display a dataframe.
import pandas as pd

 

d = {'first_index_names':['d','c','b','a'],



    'first_index_weights':[0.2, 0.2,0.3,0.3],

    'second_index_names':['a', 'j', 'k', 'd', 'e'],

    'second_index_weights':[0.1, 0.1, 0.1,0.1,0.6]}

 

# combine names and weights

d['first_index']=zip(d['first_index_names'],d['first_index_weights'])

d['second_index']=zip(d['second_index_names'],d['second_index_weights'])

 

# check that the weights sum to 1

if sum(d['first_index_weights'])==1: pass

else: print('normalise first index values')

if sum(d['second_index_weights'])==1: pass

else: print('normalise second index values')

 

# create a unique index list

d['unique_names'] = d['first_index_names'] + d['second_index_names']

d['unique_names'] = list(set(d['unique_names']))

d['unique_names'].sort()

 

# create nulls such that the lists are of the same length

for i in d['unique_names']:

    if i not in d['first_index_names']:

        d['first_index_names'].append(i)

        d['first_index_weights'].append(0)

    if i not in d['second_index_names']:

        d['second_index_names'].append(i)

        d['second_index_weights'].append(0)

 

df = pd.DataFrame(d)

 

# order weights to unique list

df['first_index_weights_sorted']=df['first_index'].apply(lambda x: x[1])

df['second_index_weights_sorted']=df['second_index'].apply(lambda x: x[1])

 

# keep relevant columns

df = df.filter(['unique_names','first_index_weights_sorted',

    'second_index_weights_sorted'], axis=1)



df = df.rename(columns={"first_index_weights_sorted": "first_index",

    "second_index_weights_sorted": "second_index"})

df

 

This is what we get as a result:

We have two side by side indices both on the same length and in the same
order. Any items that don’t contain values are given the value zero so there
are no empty spaces. The task for computing a similarity has become
immensely clearer.

However the data came in, be that via a csv file or a json or via list
construction it is always desirable to reshape the lists to look like the above.

We now consider the mathematics of the Cosine similarity by thinking
about the geometry of vectors.



In particular, two vectors are identical where the cosine of the angle
between them is zero and also the magnitude of the vector (referred to as
the vector Norm or its length) are the same.

The general formula for cosine similarity is this:

Which reduces to:

 



Because the lists are homogeneous we can produce this in a few lines of
code.

import math
aibi = sum(df['first_weight'] * df['second_weight'])
a_norm = math.sqrt(sum(df['first_weight']**2))
b_norm = math.sqrt(sum(df['second_weight']**2))
similarity = aibi / (a_norm * b_norm)
 
print('the similarity is:', similarity)
# result is 0.155
We can now compare any two indices and we could test the code with
logical inputs.

For example, the following two lists have no similarity.
d = {'first_index_names':['a','b','c'],
    'first_index_weights':[0.2, 0.2, 0.6],
    'second_index_names':['d', 'e', 'f'],
    'second_index_weights':[0.1, 0.1, 0.8]}
 

And these lists are 100% similar.

d = {'first_index_names':['a','b','c'],
    'first_index_weights':[0.2, 0.2, 0.6],
    'second_index_names':['c', 'a', 'b'],
    'second_index_weights':[0.6, 0.2, 0.2]}
Which works nicely. And everything in between will be between 0% and
100%.

This is a very useful tool as it becomes possible to predict and explain the
performance of two portfolios or indices prior to performing a historical
price comparison as indices with a high degree of similarity are expected to
be correlated in price.



The web
The web provides a vast assortment of data and a myriad of use cases that
spawns nearly all the information that we are aware of. The Global digital
population as of April 2022 was over 5 billion internet users and nearly 5
billion social media users, but the reality is that in certain parts of the world,
the share of the population using the internet is much closer to 100%.

We can automate the extraction of this resource with nearly any
programming language and python has modules that make this relatively
easy.

We will explore two types of connection. The HTTP request and
WebSockets.

HTTP request
The main module for http requests is aptly named requests . The requests
module allows you to send HTTP requests using Python. The HTTP request
returns a Response Object with all the response data (content, encoding,
status, etc).

There main functions are:

●      get: for getting data
●      post: for sending data



The primary argument requires the url[15] and then there are optional
arguments that can be included, for example auth for authentication and
requires a ('user', 'pass')  tuple or timeout to guarantee that the connection
will be timed out.

The user can send a get request to any website and will receive a response.

import requests
 
r = requests.get('https://w3schools.com')
print(r.status_code)
The response comes with a status code.

There are many status codes categorised as follows:

●      Informational responses (100–199)
●      Successful responses (200–299)
●      Redirection messages (300–399)
●      Client error responses (400–499)
●      Server error responses (500–599)

The main response is: 200. This means the request was successful. Other
common ones are:

●      400: bad request - server cannot process the request
●      401 Unauthorised - needed a password/authenticate
●      403 Forbidden - The client does not have access rights to the

content

We can check requests in a try-except block:
import requests
 
 
try:
    # a site that does NOT exist
    r = requests.get('https://blahblah.com')
    print(r.status_code)
except Exception as e:
    print('failed to connect')



    print(e)
 
 
try:
    # a site that exists
    r = requests.get('https://google.com')
    print(r.status_code)
except Exception as e:
    print('failed to connect')
    print(e)
 
 
 
but given that we know that any given site is valid it is more common to
just look at the response status_code like this:

if r.status_code==200:
    print('proceed with code...')
else:
    print('can not proceed:', r.status_code)
 

Aside from the status code, we can read the content of the server’s
response. This typically comes in 4 types:

1. Text. r.text
2. Binary. r.content
3. JSON. r.json()
4. Raw (less common). r.raw

Generally, the requests module makes educated guesses about the encoding
of the response based on the HTTP headers.

However, the user can find the encoding by doing r.encoding .

 

Websockets
WebSocket is an event-driven protocol, which means you can actually use it
for truly real time communication. Unlike HTTP, where you have to



constantly request updates, with websockets, updates are sent immediately
when they are available.

Take for example a financial exchange which has continually updating
prices for different securities throughout the day. The websocket allows the
user to log in once to the exchange and then listen to the prices for various
securities as and when they happen compared to the HTTP version where
the user would continually have to connect and make requests for prices.

The has the advantage that it pushes messages between the server and the
client on demand as they need them.

So let's look at the basic setup for both sides:

●      Server
●      Client

Here’s a WebSocket server example.
import asyncio

import websockets

 

async def hello(websocket, path):



    name = await websocket.recv()

    print(f"< {name}")

 

    greeting = f"Hello {name}!"

 

    await websocket.send(greeting)

    print(f"> {greeting}")

 

start_server = websockets.serve(hello, "localhost", 8765)

 

asyncio.get_event_loop().run_until_complete(start_server)

asyncio.get_event_loop().run_forever()

And here is the corresponding client example.

import asyncio

import websockets

 

async def hello():

    uri = "ws://localhost:8765"

    async with websockets.connect(uri) as websocket:

        name = input("What's your name? ")

 

        await websocket.send(name)

        print(f"> {name}")

 

        greeting = await websocket.recv()

        print(f"< {greeting}")

 

asyncio.get_event_loop().run_until_complete(hello())

And this was all that we needed to have a server-client connection.

In the example given, both pieces of code are run at the same time. The
server sits and waits for the connection to be made. The client connects to
the server (on localhost:8765  in the example) and               sends the string
name. If the server receives a message, then it sends a reply back. And
finally, the client receives the reply.

So the example did this:



Whilst the example is basic, it contains all that is necessary for both the
client and the server to talk to each other. Processes could be done at either
end and the results sent back to the other one.

This means that we could, for example, send small bits of information from
the client to the server and have the server compute a heavy process (like a
heavy duty cloud server) or alternatively the other way around if we chose
to.

So we could have our functions and modules live on the server. This is, in
fact, the basis for the internet and how our web browsers and mobile
devices interact.

Here is some code where the server sends messages which are accessed by
a browser. In the case of the example it is just sending the current time
every 3 seconds, but similar methods could be used to stream stock prices,
news headlines, security data and any other data that is dynamic.
import asyncio



import datetime
import random
import websockets
 
async def time(websocket):
    while True:
        now = datetime.datetime.utcnow().isoformat() + "Z"
        await websocket.send(now)
        await asyncio.sleep(random.random() * 3)
 
start_server = websockets.serve(time, "127.0.0.1", 5678)
 
asyncio.get_event_loop().run_until_complete(start_server)
asyncio.get_event_loop().run_forever()
 
And this is the HTML page that reads the same data and will open in any
standard browser.

<!DOCTYPE html>

<html>

    <head>

        <title>WebSocket demo</title>

    </head>

    <body>

        <script>

            var ws = new WebSocket("ws://127.0.0.1:5678/"),

                messages = document.createElement('ul');

            ws.onmessage = function (event) {

                var messages = document.getElementsByTagName('ul')[0],

                    message = document.createElement('li'),

                    content = document.createTextNode(event.data);

                message.appendChild(content);

                messages.appendChild(message);

            };

            document.body.appendChild(messages);

        </script>

    </body>

</html>



 

You will notice that the body of the code contains a script tag which
contains javascript which as we are now aware is similar to python in many
ways but gets its syntax of curly braces and semicolons from the c family of
languages.

With this HTML containing javascript, we are able to see the time stream
down the screen every 3 seconds.

Generally speaking, a mobile device, which is low powered, is the client.
On the other hand, the web host, which has a lot of power, is the server. So
our low powered device sends lightweight messages (instructions) to the
hosts server.

And large processes which consume a lot of energy can occur at the server
end. These are then sent back to the mobile device, which means that the
small batteries in mobile phones are sufficient.

 

Asynchronous
In the websockets chapter we came across a function that we have not seen
before. The usual format for a function is as follows.

def normal_function(a, b):
    ''' this is a normal function '''
    c = a + b
    return c
But we now see a function definition preceded by the keyword async  and
we also see the await keyword.

async def normal_function(a, b):
    ''' this is a normal function '''
    c = a + b
    await asyncio.sleep(0)
   return c
Sometimes we want to run routines at the same time. We do not want to
wait for one to finish before starting the next. A real world example of an
asynchronous process might be making a cup of tea. If we switch the kettle
on first then we can prepare the tea cups with bags, milk and sugar whilst



the kettle is boiling. We were able to do two processes at the same time
which saved time.

The await  keyword is where the process can hand over control to another
process and in the case of the tea example, it would logically occur once the
kettle was switched on. We now have two processes running simultaneously
[1] the kettle boiling, [2] the cups being prepared.

These routines that are run at the same time are termed coroutines and
require some use of asynchronous input and output (Async IO) in Python.
Async IO is related to multiprocessing and threading  in the sense that
languages need some kind of process that does not block code execution
whilst other parts of the code run. And this is what python has to offer, so
let’s get a deeper understanding.

 

Async type cpu description

Parallelism
(multiprocessing)

many spreading tasks
over a computer
cpu (or cores)

Concurrency one multiple tasks
have the ability
to run in an
overlapping
manner
(controlled by
code).

Threading one multiple threads
take turns
executing tasks.
One process can
contain multiple
threads.

 



A coroutine is a function that can suspend its execution before reaching
return, and it can indirectly pass control to another coroutine for some time.

Before we get to this point we have to understand that this is a new
technology (python 3.7 and above) which has been built from existing tech
and we are only looking at the top level as a deep dive would require a book
in itself. The components to understand are:

1. The async ecosystem
2. The event loop (all languages)
3. Using coroutines
4. How coroutines work
5. What comes included in the ecosystem
6. Typical web applications
7. Interacting with the blocking world
8. Error handling, testing, debugging

Each of the asynchronous methods has its advantages and disadvantages.
With multiprocessing, the user is able to use multiple processors at any
point in time, but the con is that processors are limited. With threading the
user has an easy way of sharing processes on the same thread but the con is
that the computer takes control of when this happens which can give rise to
race[16] conditions. With asyncio the user can achieve the same as threading
and also keep control, but the con is that the functions need to be defined as
async and there are additional keywords and terminology to use.

Here is a classic example of race conditions in threading which gives rise to
additional implementations being required and ultimately asyncio.

import threading

import time

 

x = 10

 

def increment(by):

    global x

 

    local_counter = x

    local_counter += by



 

    time.sleep(1)

 

    x = local_counter

    print(f'{threading.current_thread().name} inc x {by}, x: {x}')

 

def main():

    # creating threads

    t1 = threading.Thread(target=increment, args=(5,))

    t2 = threading.Thread(target=increment, args=(10,))

 

    # starting the threads

    t1.start()

    t2.start()

 

    # waiting for the threads to complete

    t1.join()

    t2.join()

 

    print(f'The final value of x is {x}')

 

for i in range(10):

    main()

 

 
 

The results look like this:

Thread-56 (increment) inc x 10, x: 20Thread-55 (increment) inc x 5, x: 15
 
The final value of x is 15
Thread-57 (increment) inc x 5, x: 20Thread-58 (increment) inc x 10, x: 25
 
The final value of x is 25
Thread-60 (increment) inc x 10, x: 35Thread-59 (increment) inc x 5, x: 30
 
The final value of x is 30



Thread-61 (increment) inc x 5, x: 35
Thread-62 (increment) inc x 10, x: 40
The final value of x is 40
Thread-64 (increment) inc x 10, x: 50Thread-63 (increment) inc x 5, x: 45
 
The final value of x is 45
Which is inconsistent at each loop and this was caused by the processor
allocating control in an “unexpected” way.

There are ways to address this in threading with the GIL[17] and even better,
using the await  keyword in an async  function for proper handover of the
function and control of the program.

The important thing to note about asynchronous input and output routines is
that the control of the program flow can now be definitely broken down into
linear cycles where a callback function is only invoked once the preceding
function allows for this.



The code, whilst asynchronous, is also systematic and definite in its
objectives.

 

 

 



Graphical user interfaces
The web is by far the go to place and python has its own offerings in the
form of the Django and Flask web frameworks.

Aside from the web, there are bespoke graphical user interfaces (GUI’s)
that allow a user to build local apps on their devices which are
predominantly desktop computers, laptops, tablets and mobile devices.

At the time of writing, at a glance, there were roughly 30 GUI’s which
operate across a variety of operating systems. Each will have its own
specific features and advantages.

However, we will focus on one particular GUI called tkinter[18]. The main
reasons that we focus on tkinter are:

1. It is fast.
2. It comes bundled with Python.
3. The general concepts of using GUI’s are broadly the same. And

we will justify why this general statement is true.

 

Hello world GUI
Let's take a look at a basic hello world implementation using tkinter.

import tkinter as tk
 
# create an instance
root = tk.Tk()
 
# place a label on the root window
message = tk.Label(root, text="Hello, World!")
message.pack()
 
# keeps the window displaying and running until you close it
root.mainloop()
 
Which opens the GUI with the text hello world like this:



So out of the box, we were able to get a result quickly. All we had to do was
this:

1. Import the module
2. Create an instance
3. Create a label with the “hello world” text
4. Pack the label
5. Run the main loop

Typically, we place the call to the mainloop()  method as the last statement
in a Tkinter program.

The components that are added are called “widgets”. We create widgets of
our choice and then pack  them to the container. If we forget to pack the
widget, then it will be created but remain invisible. There are roughly 20
basic widgets to choose from, like scroll bars, checkboxes and entry boxes
etc…

The reason why we said that the general concepts of all GUI’s are the same
is because they tend to follow the same 5 step process as above.

What actually happens with all the drawing packages is that the screen
refreshes itself many times per second (which is usually called the Frames
Per Second, FPS) with the images being created or drawn sequentially one-
by-one. This is more obvious for games modules like pygame where we
might need to be careful to draw the background before the items.

The hello world was great, but let's now extend upon this. We can give the
GUI a title and a position and size on the screen:

root.title('Tkinter Window Demo')
root.geometry('600x400+200+50')
The geometry is made of two components:

●      width * height



●      Position of top left corner relative to the screen

There are more options, but this is sufficient. In fact, omitting the top left
position would leave a suitable default.

If we wanted to position and size the GUI relative to the screen, then we
would need to get the screen dimensions and calibrate.
# get the screen dimension
screen_width = root.winfo_screenwidth()
screen_height = root.winfo_screenheight()
 
# the GUI width and height
window_width = int(screen_width / 3)
window_height = int(screen_height / 3)
We can do other things like:

 



●      Control window size: resizable() ,  minsize() , maxsize()
●      Adjust transparency:  attributes('-alpha',0.5)
●      Stacking order: attributes('-topmost', 1)
●      Default icon: iconbitmap('my_image.ico')

We can implement all of the above.

import tkinter as tk

 

# create an instance

root = tk.Tk()

root.title('Tkinter Window Demo')

 

# get the screen dimension

screen_width = root.winfo_screenwidth()

screen_height = root.winfo_screenheight()

 

# the GUI width and height

window_width = int(screen_width / 3)

window_height = int(screen_height / 3)

 

# the GUI position

window_x_pos = int(screen_width * 0.1)

window_y_pos = int(screen_height * 0.1)

 

root.geometry(f'{window_width}x{window_height}+{window_x_pos}+{window_y_pos}')

 

# transparency

root.attributes('-alpha',0.75)

 

# place a label on the root window

message = tk.Label(root, text="Hello, World!")

message.pack()

 

# keeps the window displaying and running until you close it

root.mainloop()

 



Which gives this 25% transparent window which is positioned 10% from
the top left hand corner of the screen and is ⅓ of the screen size in the x and
y directions:

So we have a GUI which we can customise reasonably well in terms of
position and size etc.

So next, we can add some widgets.

Common widgets are buttons  and entry boxes  although there are many
others. These will be sufficient for creating an example of receiving data
and performing a basic operation.

We will create the button  and entry box  in a similar way that we created
the label. The difference being that the button executes a function, which is
usually referred to as a callback function . Callback[19] functions are very



common in modern programming and we have already seen them in
Asynchronous programming.

Here is the button example, with a callback:

# make a button with a callback

def callback():

    """ this is called when the button is pressed """

    x = message.cget('text') # get current text

    if x == 'good night': message.config(text= 'hello world')

    else: message.config(text='good night')

 

button = tk.Button(root, text='press me', command=lambda: callback())

button.pack()

The button that we have created calls the callback function, which runs a
little routine to toggle the text in the text box from “hello world” to “good
night”.

It could be used for any other much more sophisticated routine in the same
way as all other python functions. Also, we just used the name callback()
for the purpose of illustration, but we could give a more appropriate name,
like change_message_text() .

With the button sorted, we now move on to the entry widget, which allows
the user to enter a single line of text.

# make an entry box
entry = tk.Entry(root)
entry.pack()
This is all that is needed and we can get the text from the box by using the
.get() statement.

my_text = entry.get()
print(my_text)
And print the result straight to the console. We could add this into the
callback  function, so now the function does two things. [1] change the text
label message, [2] print to the console.

Our basic code looks like this:
import tkinter as tk



 

# create an instance

root = tk.Tk()

root.title('Tkinter Window Demo')

 

# get the screen dimension

screen_width = root.winfo_screenwidth()

screen_height = root.winfo_screenheight()

 

# the GUI width and height

window_width = int(screen_width / 6)

window_height = int(screen_height / 3)

 

# the GUI position

window_x_pos = int(screen_width * 0.3)

window_y_pos = int(screen_height * 0.3)

 

root.geometry(f'{window_width}x{window_height}+{window_x_pos}+{window_y_pos}')

 

# place a label on the root window

message = tk.Label(root, text='hello world')

message.pack()

 

# make a button with a callback

def callback():

    """ toggle between 'good night' and 'hello world' """

    x = message.cget('text')

    my_text = entry.get()

    print(my_text)

    if x == 'good night': message.config(text= 'hello world')

    else: message.config(text='good night')

 

button = tk.Button(root, text='press me', command=lambda: callback())

button.pack()

 

# make an entry box

entry = tk.Entry(root)



entry.pack()

 

 

# keeps the window displaying and running until you close it

root.mainloop()
 

And the result looks like this:

There are
many other things that we can do, for example, change the positions of the
widgets in a grid instead of packing them one above the other.

Password entry
Following on from the hello world example, which was nice, but just a
starting point with examples. Here is a use case password sign in GUI
which prompts the user for their email and password and then returns the
result in a windows info box.
import tkinter as tk

from tkinter.messagebox import showinfo

 

# root window

root = tk.Tk()

root.geometry("300x150")

root.resizable(False, False)

root.title('Sign In')

 

# store email address and password



email = tk.StringVar()

password = tk.StringVar()

 

 

def login_clicked():

    """ callback when the login button clicked

    """

    msg = f'You entered email: {email.get()} and password: {password.get()}'

    showinfo(

        title='Information',

        message=msg

    )

 

# Sign in frame

signin = tk.Frame(root)

signin.pack(padx=10, pady=10, fill='x', expand=True)

 

# email

email_label = tk.Label(signin, text="Email Address:")

email_label.pack(fill='x', expand=True)

 

email_entry = tk.Entry(signin, textvariable=email)

email_entry.pack(fill='x', expand=True)

email_entry.focus()

 

# password

password_label = tk.Label(signin, text="Password:")

password_label.pack(fill='x', expand=True)

 

password_entry = tk.Entry(signin, textvariable=password, show="*")

password_entry.pack(fill='x', expand=True)

 

# login button

login_button = tk.Button(signin, text="Login", command=login_clicked)

login_button.pack(fill='x', expand=True, pady=10)

 

 



root.mainloop()

In just 20 lines of code, we have created a login box that can accept
credentials and run a process. And it looks like this:

 

And when the user clicks the “Login” button invokes another piece of code,
via a callback. In the example, the code yields this:

 

Animations
All of the GUI features are nice. They give a user the ability to interact with
the device via a clean and friendly interface via inputs and outputs



provisioned by the numerous widgets.

However, all of this has been rather static in the sense that our application
sits and waits for a user action like a willing dog, but until that point is idle
(although, we could remove the idleness by, say, having the device look at a
share price and set an alert when it was breached).

We now move onto the dynamic part of coding with an example of two
planets moving through space.
import tkinter as tk
import time
 
# by convention constants are in capitals
WIDTH = 500
HEIGHT = 300
velocity_x = 1
velocity_y = 1
 
win = tk.Tk()
win.title("moving planets")
 
canvas = tk.Canvas(win, width=WIDTH, height=HEIGHT)
canvas.pack()
 
photo_space = tk.PhotoImage(file="space.png")
photo_jup = tk.PhotoImage(file="jupiter.png")
photo_sat = tk.PhotoImage(file="saturn.png")
 
image_space = canvas.create_image(0,0,image=photo_space)
image_jup = canvas.create_image(0,0,image=photo_jup)
image_sat = canvas.create_image(450,0,image=photo_sat)
 
t0 = time.time()
while True:
    # plot positions to console
    coords_jup = canvas.coords(image_jup)
    coords_sat = canvas.coords(image_sat)



    print('jup, sat:', coords_jup, coords_sat)
 
    # move the planets
    canvas.move(image_jup, velocity_x, velocity_y)
    canvas.move(image_sat, -velocity_x, velocity_y)
    win.update()
    time.sleep(0.01)
    t1 = time.time()
    if t1-t0 > 5:
        break
 
win.mainloop()
Which gives this moving result:



This was a very short snip of an animation, but here are the general rules for
all similar GUI’s (like pygame):

1. The images and sounds are usually stored in a sub-folder called
“assets”.

2. All images are squares which have transparent backgrounds. The
squares are defined by the top left corner, so to get the centre we
would need to obtain the image width & height and divide by 2.

3. We use the centres and widths to determine collisions with other
objects and also the screen edges (in the example code, the planets
simply disappear off the screen).

4. There is always a loop, which is usually a while loop.
5. We keep redrawing the images in their new positions before

updating the loop win.update() . And importantly, this is the
effect of motion.

There are lots of things that we could do from here, for example we could
assign masses to the two planets and invoke the force of gravity from each
one upon the other.



The force of attraction on each planet (or particle) would be

Where r is the distance between the two:

M is the mass of the other planet (or if more than one planet, it would be the
sum of the system of planets). With this method, not only could we do a
simulation of planetary movements, but we could model entire galaxies or
clusters of thousands of stars colliding.

The processing power of modern day computers, let alone high powered
computers, are more than capable of producing amazing simulations. And
what we would observe is chaotic motion but with broad observable and
rather beautiful patterns.

It would be quite possible to generate and post reasonable code, but this
would take about 200 lines of code.



Maths
We have come a long way at this point and have looked at various
techniques such as recursive functions, backtracking and binary trees which
used classes .

We then touched upon some data science concepts, reading and writing
data, visualisation of the data and finally some machine learning techniques
like decision trees and kth nearest neighbour.

We also looked at some fun problems which let us use a whole variety of
basic techniques up to that point and implement the basic types such as
strings, integers, lists, dictionaries.

The purpose of this section is to look into the mathematics of how we might
consider approaching and solving some more fundamental maths problems
and how this ties into the computation efficiently using python.

 

Fermat's last theorem
In number theory, Fermat's Last Theorem states that no three positive
integers a, b, and c satisfy the equation:

for any integer value of n greater than 2.

However, in the popular cartoon series, Homer Simpson finds an exception
to the case that defeats the calculators (and there are other numbers that do
the same too).



If the user puts these numbers into a calculator, then they find an exception
to fermat's last theorem.

However, on inspection we find this:

x = pow(3987, 12)
y = pow(4365, 12)
z = pow(4472, 12)
 
if x + x == z: print('this works')
else: print('this fails')
 
print('sum of squares:', x + y)
print('the big square:', z)
Which gives these enormous numbers:

sum of squares: 2541210258614589176288669958142428526657
the big square: 2541210259314801410819278649643651567616



And we can actually find where the numbers differ, but adding this piece of
code:

first_number = str(x+y)

second_number = str(z)

 

for i, v in enumerate(first_number):

    if second_number[i]==v: pass

    else:

        print(f'the break is at {i} which gives {second_number[i]} and {v}')

        break

 
So Fermat's last theorem was true after all. And we were able to find out
where and why the old handheld calculators failed.

The rounding of large numbers in old calculators is expressed as
6.39766563e+43 and numbers with accuracy above the 8th decimal place
will be lost.
the break is at index 10 which gives 8 and 9
Notice a couple of tricks that were done.

●      We can iterate through a string as if it was a list of characters.
●      Enumerate : gets the index and values of a list (analogous to the

key:value  pair of a dict).
●      We can terminate loops early with a break statement.

 

Complex numbers
 

Python naturally handles complex numbers. In fact, the complex  type
exists in the same way that int and float do.

Python also provides other related functions with the cmath  module. For a
general Python object x, complex(x)  delegates to x.__complex__() .

Complex numbers often come up in engineering, maths and physics
problems and python provides useful tools to handle them.



The common form of a complex number, Z, is this:

Where a is called the real part, b is the imaginary part.

The term imaginary[20] is rather confusing in the sense that it makes
numbers sound quasi-magical to newcomers of the subject. The reality is
that the imaginary part is an orthogonal axis to the real number line. And if
we consider imaginary numbers to be real orthogonal numbers, then the
per-se “magic or imaginary concept” is removed.

The numbers a and b are real numbers, or in mathematical language we say:
a, b ∈ R which means that a and b belong to the set of real numbers.

Numbers are an abstract concept. They are created to serve a purpose for
human needs and as such have evolved over time as the human
understanding of the world has evolved. Whilst this is rather philosophical
for a coding book, it is useful to gain an insight into numbers and therefore
part of their history and evolution to understand the concept of complex
numbers and their necessity.

Integers:

A raw need to count with fingers for example. Count apples, oranges or
stones.



Negative integers and Zero:

A ledger or balance and the concept of nothing (zero) requires both
negative numbers and zero. In its most basic sense, negative numbers are
necessary for sharing or taking.

 

Real numbers:

Real numbers are all the numbers in between the integer numbers. If we
break 1 into two parts then we have ½ . The square root of two is a number
that exists between 1 and 2 and very close to 1.41. These numbers definitely
exist, but are not the integers that we count on our fingers or have invented
on the conventional number line.

 

Finally, Complex numbers:

Complex numbers came into creation some 400 years ago. They were the
roots of cubic and quadratic equations. In particular it was shown that the
roots of a quadratic equation of the form ax2 + bx + c = 0 are:

Most importantly for complex numbers is the case where:



It is at this point that we are taking the square root of a negative number.
And without the invention of a new type of number or a change in the
accepted numbering system, this simply could not be done.

So a new number was reluctantly created and given the name imaginary, i.
And the definition of i is as follows:

This means that “ i ” takes two values in the same way that all square roots
do as follows.

And the picture of the orthogonal component to the number line, which is
referred to as imaginary numbers, was born. The complex numbers, which
are often denoted with a Z or a C are combinations of pure imaginary (real
orthogonal) and real numbers.



 

At this point, we have gained sufficient understanding to proceed with code.

x = 5 # the real component
y = 3 # the orthogonal component
 
z = complex(x,y)  # construct a complex number
 
print(z)
Returns this:
(5+3j)
The first thing to note is that, in computing, the letter j  is commonly used
to denote the orthogonal component (ie. the imaginary component) in place
of i . The reason that the letter j  is used is because in the fields of
engineering and physics, the letter i  is often used to represent current.



We can create a complex number without the need for the complex
constructor  like this:

z = 10 + 20j
print(type(z))
And this returns the type:

<class 'complex'>
So this fits naturally into the Python framework.

Complex numbers also fit into the popular numpy module along with
many other modules like math  and matplotlib . For numpy it looks like
this:

import numpy as np
 
c = 10 + 1j
 
print(f'real part: {np.real(c)}, orthog part: {np.imag(c)}')
Which returns this:

real part: 10.0, orthog part: 1.0
We incidentally note how the components are both of type float and that a
number precedes the j  to differentiate it from a variable.

To illustrate the point, we can do this:

j = 10
 
c = 10j
d = 10*j
 
if c==d: print('c is the same as d')
else: print('c is different to d')
 
# prints: c is different to d
 

A complex number has a modulus and an argument. The modulus is defined
as:



Python understands this within the context of the abs()  function, so we can
do this.

z = 3 + 4j
print(abs(z))
# prints 5
 

The argument of a complex number is defined as the angle that it makes
with the horizontal (or real) axis in the anticlockwise direction.

We can obtain the argument in two ways:
import cmath
import math



 
z = 4 + 3j
 
# Using cmath module
p = cmath.phase(z)
print('cmath Module:', p)
 
# Using math module
p = math.atan(z.imag/z.real)
print('Math Module:', p)
 
Which both return the same value:

cmath Module: 0.6435011087932844
Math Module: 0.6435011087932844
Note that these numbers are in radians so one needs to convert to degrees if
this is desired using the following factor:

Or by using a function like this:
import math
 
z = 2 + 2j
p = math.atan(z.imag/z.real)
print(math.degrees(p))  # returns 45.0
Finally, we show how complex vectors can be visualised in a polar
coordinate plot (argand[21] diagram).

import numpy as np

from matplotlib import pyplot as plt

 

 



def plot_polar_vector(c, label=None, color=None, start=0, linestyle='-'):

    # plot line in polar plane

    line = plt.polar([np.angle(start), np.angle(c)], [np.abs(start), np.abs(c)],

                        label=label, color=color, linestyle=linestyle)

    # plot arrow in same color

    this_color = line[0].get_color() if color is None else color

    plt.annotate('', xytext=(np.angle(start), np.abs(start)),

                    xy=(np.angle(c), np.abs(c)),

                    arrowprops=dict(facecolor=this_color, edgecolor='none',

                    headlength=12, headwidth=10, shrink=1, width=0))

 

 

c_abs = 1.5

c_angle = 45  # in degree

c_angle_rad = np.deg2rad(c_angle)

a = c_abs * np.cos(c_angle_rad)

b = c_abs * np.sin(c_angle_rad)

c1 = a + b*1j   

c2 = -0.5 + 0.75*1j

 

plt.figure(figsize=(6, 6))

plot_polar_vector(c1, label='$c_1$', color='k')

plot_polar_vector(np.conj(c1), label='$\overline{c}_1$', color='gray')

plot_polar_vector(c2, label='$c_2$', color='b')

plot_polar_vector(c1*c2, label='$c_1\cdot c_2$', color='r')

plot_polar_vector(c1/c2, label='$c_1/c_2$', color='g')

 

plt.ylim([0, 1.8])

plt.legend(framealpha=1)

 

 

Which produces this:



Parametric equations
Parametric equations are groups of equations that depend on the same
parameters: x = f(a,b), y = g(a,b). Quite often, in physics, the common
parameter is time, so we have a position (x,y) which is a function of time: x
= f(t), y = g(t), but x and y are different functions of time because they have
different forces acting upon them.

Another example is cartesian and polar coordinates. While the equation of a
circle in Cartesian coordinates can be given by r2=x2+y2, the parametric
equations for the same circle are given by:



There is a single parameter,  , in our example for which x and y are both
functions of. This happens to be very convenient when moving between
different coordinate systems and in a way we have seen this behaviour with
the representation of complex numbers which exist on a surface.

We can show that both coordinate systems are effectively the same by
substituting the two parametric polar equations directly back into the
cartesian equivalent.

So let's try out a parametric equation in python. For example an equiangular
spiral. If we set the radial coordinate, r to be: r = aebt where a and b are real
constants, then the two equations in their parametric forms will be.

●      x(t) = aebt cos(t)
●      y(t) = aebt sin(t)

We can plot a family of these curves in python using matplotlib.
import math
import matplotlib.pyplot as plt
 
 
a = 1
b1, b2, b3 = 0.1, 0.2, 0.4
times = [x/20 for x in range(0,200,1)]



 
x1, y1 = [], []
x2, y2 = [], []
x3, y3 = [], []
 
for t in times:
    x1.append(a*(math.e**(b1*t)) * math.cos(t))
    y1.append(a*(math.e**(b1*t)) * math.sin(t))
    x2.append(a*(math.e**(b2*t)) * math.cos(t))
    y2.append(a*(math.e**(b2*t)) * math.sin(t))
    x3.append(a*(math.e**(b3*t)) * math.cos(t))
    y3.append(a*(math.e**(b3*t)) * math.sin(t))
 
fig, ax = plt.subplots()
ax.set_title('family of curves')
ax.set_xlabel('x axis')
ax.set_ylabel('y axis')
 
ax.plot(x1, y1, c='red', label='b = 0.1')
ax.plot(x2, y2, c='green', label='b = 0.2')
ax.plot(x3, y3, c='blue', label='b = 0.4')
plt.legend()
plt.show()
Which gives this:



We can easily inspect other curves of the same nature. For example let’s
change, the radial component to be:

, where a is a constant. We adjust the code.

a1, a2, a3, a4 = 1, 2, 4, 8
And we get this:



Or if we set r = sqrt(t) we get this:



The adjustment in the python code is relatively straightforward. We just had
to amend the radial component of the function which occurs in the for loop
to be whatever we wanted.

for t in times:
    r = math.sqrt(t)   # radial component
    x1.append(a1*r * math.cos(t))
    y1.append(a1*r * math.sin(t))
 

Finally, by adding a third component we would create variants of the helix
in a 3d plot. Adding the 3rd dimension entails just 3 steps:

1. Adding an extra list to hold the z components.
2. Populating the z components.
3. Specifying a 3d plot.

Here we add the extra list:

x1, y1, z1 = [], [], []



Here we add the z values:

for t in times:
    r = math.sqrt(t)   # radial component
    x1.append(a1*r * math.cos(t))
    y1.append(a1*r * math.sin(t))
    z1.append(t)
And here we call the new 3D plot:

fig = plt.figure()
ax = plt.axes(projection='3d')
 
ax.set_title('family of curves')
ax.set_xlabel('x axis')
ax.set_ylabel('y axis')
ax.set_zlabel('z axis')
 
ax.plot3D(x1, y1, z1, c='red', label='a = 1')

And with this we can produce the helix family



 

 

Derivatives
Derivatives are hugely important right across the spectrum of subjects. A
derivative is essentially the rate of change of one variable with respect to
another variable.

The general concept is that for any given function y = f(x), we seek the rate
of change of y with respect to x where:

The same concept could be extended to higher dimensions, where: a = f(x,
y, z, t) for example. However, the principals are still the same and in this
case one might differentiate with respect to every independent variable in
the function.

Ultimately, however, this process is done, what we are seeking is a slope
between two points.

The computer version of  is  where:

 and  and these are the discrete calculations
that are done.



Regardless of the shape of the curve, finding the slope is a process of taking
a section of the curve and computing the differences.

A curve in python might be made up of two lists. There are other ways of
creating curves (for example a single list of tuples), but this is convenient.

x = [x for x in range(10)]  # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
y = [x**2 for x in x]  # [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
We could then calculate the slopes.
slopes = []
for i in range(1, len(x)):
    dy = y[i] - y[i-1]
    dx = x[i] - x[i-1]
    slopes.append(dy/dx)
print(slopes)
# [1.0, 3.0, 5.0, 7.0, 9.0, 11.0, 13.0, 15.0, 17.0]
The first thing to note is that the length of the slopes list is 1 less than the
original lists. This is because the slopes are the result of the calculation
between any two points.



In the case of the example, we now have a descriptive calculation for the
way that y varies with x. And we could interpolate values between the
points.

There are a whole number of methods for interpolation, such as straight
line, cubic spline or a polynomial fit each own with its merits and errors.

A straight line interpolation is the easiest method. It works well when the
curvature of the curve that we are trying to interpolate is low or when the
number of datapoints is high.

The calculation for the interpolated point is:

Where xlow is the lower bound of the range and xup is the upper bound of the
range.

Following the recipe in the above picture and given that we have already
computed the slopes, we are able to complete the interpolation process in



Python.

x_list = [x for x in range(10)]

y_list = [x**2 for x in x_list]

 

 

def interp(x_interp: float, known_xs: list, known_ys: list) -> float:

    ''' give point x, return interpolated y '''

 

    slopes = []

    for i in range(1, len(known_xs)):

        dy = known_ys[i] - known_ys[i-1]

        dx = known_xs[i] - known_xs[i-1]

        slopes.append(dy/dx)

 

    # find x low   

    for i, v in enumerate(known_xs):

        if v < x_interp: lower_idx = i

        else: break

 

    y_interp = known_xs[lower_idx] + \

         (x_interp - known_xs[lower_idx])* slopes[lower_idx]

 

    return y_interp

 

y = interp(2.5, x_list, y_list)

print(y)

 

This finds the answer quickly, but there are three points to note:

●      Not the fastest.
●      Convexity error.
●      Out of bounds: extrapolation.

Not the fastest: The method considered above takes a linear approach to
locating the index of x. It simply iterates through the sorted list until it finds
the index whose value is greater than x and then stops. The time complexity



of this is O(n) in computing language, meaning that the longer the list the
longer the finding process takes.

A binary search (also known as half interval search or logarithmic search)
using the bisect module  in python is more optimal. The following diagram
may intuitively explain why this is the case.

 

In particular, we see that the binary search takes fewer iterations to achieve
the result and intuitively this would most certainly be the case, especially
where the list was large. The time complexity for the binary search is O(log
n) compared to O(n) for the linear search.

Here are the two methods:

x_list = [1, 3.5, 5, 9.2, 20, 50.75]
n = 7.5
 
# linear search method
for i, v in enumerate(x_list):
    if v < n: r = i
    else: break
print(r)
 
#binary search method
import bisect
r = bisect.bisect_left(x_list, n)-1
print(r)
 



Convexity error: In the case of the straight line interpolation this is easier
to explain, but it will also be true for other interpolation methods.

In general, whatever method is deployed, there will be an error to the true
value. Some methods are better than others in certain situations, for
example do we select a cubic spline or straight line ? have we overfitted the
data with a cubic spline or under fitted the data with a straight line ?

Given that we know the errors exist we can change methods or make
corrections using pythagoras for example. A change of methods might be
by increasing the order of the polynomial used to fit the curve.

Whilst we have not talked about the mathematics of the quadratic or cubic
splines, the secret to the computation is to ensure that the derivatives
(slopes) of the curve at the points are equal to each other - this ensures a
smoothly fitted curve.

 

Extrapolation:

So we now have a number of options for fitting data. The two most
prominent methods are straight line (simple and intuitive) and cubic spline
(fits curves quite well).

But what approach do we take when the required interpolation point exists
outside of the sample range.



interpolation: 

extrapolation: 

Here are a few immediate options:

1. Give up: Error message that data is out of bounds.
2. All points equal to the last point.
3. Slope continuation.
4. Slope and second derivative continuation.
5. Some other cases to infinity.

We have to know how to treat the data when out of bounds in the sense of
what to expect. For example, is a straight line continuous slope or another
model appropriate ? the extrapolation may only be suitable for a short
period.

Whichever method we use, for the purpose of the code, we would only have
xlow and dx. The final result will depend on the assumed function in the
extrapolated zone.

Maxima, minima & points of inflexion
In standard calculus we have definitions of maximums, minimums and
inflexion points. For example, if we let f be a function defined on an



interval [a,b] or (a,b), and let p be a point in (a,b), i.e., not an endpoint, if
the interval is closed.

●      f has a local minimum at p if f(p) ≤ f(x) for all x in a small
interval around p.

●      f has a local maximum at p if f(p) ≥ f(x) for all x in a small
interval around p.

●      f has an inflection point at p if the concavity of f changes at p, i.e.
if f is concave down on one side of p and concave up on another.

In addition to the above, we can use the first and second derivatives to
understand the shape of the function and therefore determine maxima,
minima and inflection points from this.

Given the function y = f(x), we can find all points where the slope is flat (ie.
zero) using the first derivative dy/dx = 0.

We can then use the second derivative to inspect how the first derivative

changes. So  tells us how the slope is changing. There are
three cases:

●      If  < 0, then the slope is continually decreasing and therefore
we have a maximum point.

●      If  > 0, then the slope is continually increasing and therefore
we have a minimum point.

●      And if If  =0, then the slope is not changing and therefore we
have an inflection point.

 



We can use this type of construct effectively in Python code to determine
such points, although the determination will depend on the type of data and
how it is sampled[22].

To find the slope we needed at least 2 points. And to find the change in the
slope (the second derivative) we need to have two slopes, so therefore need
at least 3 points of data.



The image above simplifies what we seek to complete in order to perform
the analysis.

So now let’s do this in code by setting up a list of prime numbers and
computing the slopes between them. This function generates primes
efficiently.

def gen_primes(n):
    """ Returns  a list of primes < n """
    sieve = [True] * n
    for i in range(3,int(n**0.5)+1,2):
        if sieve[i]:
            sieve[i*i::2*i]=[False]*((n-i*i-1)//(2*i)+1)
    return [2] + [i for i in range(3,n,2) if sieve[i]]
 
n = 1_000_000
prm_list = gen_primes(n)
 

The list of primes is rather linear, with few bumps. So it will be harder
detecting the slopes.



And in fact if we plotted the bigger picture, the result looks like a straight
line.

We then need to compute the slopes between the primes.
x_values = []
prm_slopes = []  # generate prime slopes
for i, v in enumerate(prm_list[1:]):
    prm_slopes.append(v-prm_list[i])
    x_values.append(i)
 

Notice that we were easily able to generate all primes up to 1 million in less
than a second. The algorithm found 78,498 such primes, which is
significantly more than is needed for the exercise.

The distribution of the slipes looks like this:



With the biggest slope between any two primes of up to 1 million being
114. The slopes are always positive because prime numbers increase in
value.



We can find the second derivative in the same way that we found the first
derivative. And we find this more interesting as the second derivative
includes rates of change of the slopes which is the convexity at any point on
the curve.



We can see that the first and second derivatives describe the curve. In this
case, reporting a benign story. So let's oscillate this prime curve with a sine
wave. We can do this with a single line of code:

prm_list = [x*math.sin(x/100) for x in prm_list]
 

Next we plot both the sin adjusted prime curve and both its 1st and 2nd
slopes on a single chart.

 



And finally we can identify the maxima and minima (1st slope = 0) and also
the points of inflection (2nd slope = 0).

In python, we are able to do this in a powerful single line of code for each
list like this:

null_slopes = [i for i,v in enumerate(prm_slopes) if -1<v<1 ]
We were able to do this because of these features:

●      List comprehension: [x for x in list]
●      Enumeration unpacking: i,v in item
●      Chained conditions: -0.5 < v < 0.5

And plot everything onto one chart.



In the above, we have successfully identified all the maxima and minima
(with orange vertical lines) and also the inflection points (yellow lines).
And we note that if we were to now remove the 1st and second slopes, we
would be left with the points of interest.



Interestingly, one signal is missed at the peak of x = 140 and this is because
the derivative moved too fast (from +5 to -5) missing the tighter criteria of
-1 < v < 1 . So a good algo needs to be tweaked to catch all points of
interest (in this case, we could have loosened the conditions).

In general, where the data is discontinuous in nature, such as stock prices
for example, it might be beneficial to smooth the curve by generating a
moving average. On the one hand this has benefits of a now smoothed set of
data, but on the other hand we have lost some accuracy in the smoothing
process.

This type tradeoff (a gain in x vs a detriment in y) exists in nearly every
physical system and it is for the user to find the optimal solution for any
given criteria.

 

Newton raphson
We looked at methods of finding solutions in a manner that is quicker than
an iterative solution. For example, we were able to compare a binary search



with a linear search and show that we could reduce time complexity from
O(n) to O(log n).

We have also looked at functions and derivatives and can numerically
compute the derivative of a function at a given point by using two local
points to work out the slope.

For example, given the function y = f(x), we were able to computationally
achieve dy/dx at the point x=n by taking a neighbour point (n+1) and
working out the slope.

We refer to a function as f(x) and the derivative of the same function as
f’(x). We do this because the notation is cleaner (but still means the same
thing f’(x) = df/dx).

We say: 

And: 

Meaning the derivative at the point x=n.

The newton-raphson formula is iterative in the same sense that the binary
search was. Basically, this means that given an xn we can find the next point
xn+1 and keep on repeating this process until we have iterated a way towards
the final result.

We start with the famous formula:

The geometrical construction of the above formula looks like this:



We see that with this method, the convergence to the solution is fast and if
we know the derivative of the function, that we can achieve the result
quicker than both the binary search and certainly a linear iteration.

If we try this on a well known number like sqrt(2) or any non-square integer
or number, then we can observe the number of iterations that obtains a
satisfactory accuracy.

Let f(x)= x2 - 2

Then f’(x) = 2x

Our iterative formula becomes:

We can implement this directly into python.

def function(x):
    ''' function of x '''
    return x**2 - 2
 
def derivative(x):



    ''' derivative of f(x) '''
    return 2*x
 
def newton_raphson(xn, f, df):
    ''' take xn, a function and its derivative
    return x(n+1)
    '''
    xn1 = xn - f(xn)/df(xn)
    return xn1
 
And we can try to implement our guesses to an accuracy of 1 part in 1
million like this:

# initial guess

initial_guess = 1.5

 

for i in range(10):

    next_guess = newton_raphson(initial_guess, function, derivative)

    if initial_guess - next_guess < 0.000_001:

        print(f'exit at loop {i} with result {next_guess}')

        break

    else:

        initial_guess = next_guess

 

Which returns this:

exit at loop 3 with result 1.4142135623730951
It took only 3 iterations to achieve a level of accuracy that was better than 1
part in 1 million.

Whilst the accuracy and speed is good, it is noted that this method works
well for well behaved functions. If the derivative is close to zero, then the
next guess (the Newton step) will be far away and the method will be slow.
So in summary this method, whilst powerful, should be used selectively.

We will not go into this further aside from noting that python offers good
root solving in the scipy module.

from scipy.optimize import fsolve



 
def f(x): return x**3-100*x**2-x+100
fsolve(f, [2,90])
 
# returns array([  1., 100.])
 

Graph a square
An exercise for the user.

x^2 + y^2 = 1

x^4 + y^4 = 1

x^8 + y^8 = 1



 

Dynamic systems
The computers of today are much better equipped to model evolving
systems that involve many components. We touched upon the idea of a n-
body simulation of galaxy mergers in the animations section. Indeed it
would be very nice to observe the gravitational pull between two colliding
galaxies consisting of thousands of stars.

This concept actually maps over into nearly every aspect of science, such as
fluid dynamics, disease dynamics, the habits of crowd behaviour, small and
large biological systems such as trees and forests and so forth. Each one is
interesting in its own right and we can learn lessons from both the
mathematics and the computer models.



 

Infectious diseases
Infectious diseases is a topical subject in 2022 as we follow the aftermath of
a flu type of virus which was determined to be global.

So let's model and examine how a disease might manifest itself. The first
thing to note is that the dynamics will be sensitive to the rules and initial
conditions that we set. By this we mean that small changes in the rules or
initial conditions might have outsized proportionate effects in the results.
Indeed, it is these very small changes that one might accidentally or
otherwise invoke, that could lead to radical outcomes that lead to a mass
hysteria in the general population, which is in itself another dynamic system
that can be modelled.

Noting the above, the model created here will be similar, but yet different to
other models that are created.

Here are some initial assumptions:

1. At the start n% of the population is sick.
2. A person can move in a defined grid area.
3. Two adjacent people can transmit the disease.
4. The disease persists in a person for t days.
5. A person can be sick, but will survive.

For the purpose of keeping this model concise, we will stick to the basic
rules. But remember that we can easily change the parameters or even think
of and add more criteria or remove other criteria that we deem to be
unsuitable.

The outcomes from all models, including this one, will always have the
same features.

1. Benign: nothing happens.
2. Mass spreading then dissipates.
3. Steady state: persistent existence.

Let's define a person class:

import numpy as np



 
 
class Person:
 
    def __init__(self, id=0, pct_sick=0.01, maxgrid=100):
        self.id = id
        self.sick = int((np.random.random()<pct_sick))
        self.maxgrid = maxgrid
 
        self.immune = False
        self.xpos = np.random.randint(1,self.maxgrid,1)[0]
        self.ypos = np.random.randint(1,self.maxgrid,1)[0]
        self.age = np.random.randint(1,90,1)[0]
        return
 
We then add a method to the class for moving the person and also making
sure that the person exists within the boundary:

    def movePerson(self, step_size):
        # Generate a random integer number [1,2,3,4]
        pos = np.random.randint(1,5,1)[0]
 
        if pos == 1:
            self.ypos += step_size
        elif pos == 2:
            self.ypos -= step_size
        elif pos == 3:
            self.xpos += step_size
        elif pos == 4:
            self.xpos -= step_size
 
        # Check boundaries
        if self.xpos < 0:
            self.xpos = 1
        if self.xpos > self.maxgrid:
            self.xpos =self.maxgrid
 
        if self.ypos < 0:



            self.ypos = 1
        if self.ypos > self.maxgrid:
            self.ypos = self.maxgrid
 
        return
And lastly a method for maintaining the health of a person. This is where
we might set the number of days that a person can carry the virus and also
add immunity (although for example, we know that immunity could fade
away over time).

    def updateHealth(self, boardXY):

        # Neighborhood

        neighxv = np.array([self.xpos, self.xpos+1, self.xpos+1, \

                           self.xpos+1, self.xpos, self.xpos-1, \

                           self.xpos-1, self.xpos-1])

        neighyv = np.array([self.ypos+1, self.ypos+1, self.ypos, \

                           self.ypos-1, self.ypos-1, self.ypos-1, \

                           self.ypos, self.ypos+1])

 

        neighxv[neighxv > self.maxgrid] = self.maxgrid

        neighxv[neighxv < 0] = 0

        neighyv[neighyv > self.maxgrid] = self.maxgrid

        neighyv[neighyv < 0] = 0

 

        neighv = np.zeros(8)

        for i,(x,y) in enumerate(zip(neighxv,neighyv)):

            neighv[i] = boardXY[x,y]

 

        if self.sick > 0:

            self.sick += 1

 

        if self.sick > 14:

            self.sick = 0 # recovered and healthy again

            self.immune = True

 

        # If you bump into a sick person-field, make guy sick

        if ((self.sick == 0) and (np.sum(neighv) > 0)



            and (self.immune == False)):

            self.sick = 1 # newly sick

 

        return

 

Now that a ‘person class’ which gives the basic rules is set up, we need to
make functions that move the people after each round of the simulation and
also we should start by making a function that can plot charts:

def f_plotPeople(nrPeople, persList):

    ''' make interim plots after each simulation round.

    One simulation round represents a day in our setup

    '''

    fig = plt.figure()

    ax = plt.subplot(111, aspect='equal')

    ax.set_title('Healthy vs Sick Population')

 

    xposSickv = np.array([],dtype=int)

    yposSickv = np.array([],dtype=int)

    xposHealthyv = np.array([],dtype=int)

    yposHealthyv = np.array([],dtype=int)

    for i in range(nrPeople):

        person = persList[i]

        if person.sick > 0:

            xposSickv = np.append(xposSickv, person.xpos)

            yposSickv = np.append(yposSickv, person.ypos)

        else:

            xposHealthyv = np.append(xposHealthyv, person.xpos)

            yposHealthyv = np.append(yposHealthyv, person.ypos)

 

 

    ax.plot(xposSickv, yposSickv, marker='s', linestyle = 'None', \

            color = 'red', markersize=5, alpha=0.6)

    ax.plot(xposHealthyv, yposHealthyv, marker='s', linestyle = 'None', \

            color = 'green', markersize=5, alpha=0.6)

    plt.legend(['Infected', 'Healthy'], bbox_to_anchor=(1, 0.75))

    plt.show()



    return

 

Now we create a function for updating the community’s (list of people’s)
health and positions.

def f_update(nrPeople, persList:list[Person], boardXYin, xmax, ymax, step_size):

    '''

    updates the population of people by first allowing

    the person to move according to the step_size variable.

    If step_size equals zero the person self isolates and

    does not move at all.

    '''

    nrSick = 0

    for i in range(nrPeople):

        person = persList[i]

        person.movePerson(step_size)

        person.updateHealth(boardXYin)

 

    # Make new board and mark all the sick fields

    boardXY = np.zeros([xmax+1, ymax+1])

    for i in range(nrPeople):

        person = persList[i]

        if person.sick > 0:

            nrSick += 1

            boardXY[person.xpos, person.ypos] = 1

 

    return nrSick, boardXY

 

 

And lastly a simulation routine which updates the board if a person is sick

def f_simulateCase(nrPeople,step_size,xmax,ymax,maxIter,i_plotBoard):

    persList = []

 

    boardXY = np.zeros([xmax+1, ymax+1])

    nrSickv = np.zeros(maxIter, dtype=int)

 



    # Make person list

    for i in range(nrPeople):

        # Make person

        person_i = Person(id = i, pct_sick=pct_sick, max_grid=xmax)

        # If person is sick update board

        if person_i.sick == True:

            boardXY[person_i.xpos, person_i.ypos] = 1

 

        # Store person in list

        persList.append(person_i)

 

 

    for i_loop in range(maxIter):

        nrSickv[i_loop], boardXY = \

            f_update(nrPeople, persList, boardXY, xmax, ymax, step_size)

 

        if i_loop <10 or i_loop>(maxIter-5):

            print('---------------------------')

            print(f'Round {i_loop} num sick {nrSickv[i_loop]}')

 

        if ((i_loop%10 == 0) and (i_plotBoard == 1)):

            f_plotPeople(nrPeople, persList)

 

    return nrSickv

At this point we are now ready to run the simulation. All we need to do is
set the parameters. This model is relatively simplistic, so all we need is are:

●      The area (maxgrid)
●      The number of people
●      The percentage of sick people to start with
●      And a step_size (how far a person can travel)

# Set random seed

mySeedNumber = 143895784

 

# Maximum days to simulate

maxIter = 70

 



# Size of their world

maxgrid = 40

xmax = ymax = maxgrid

 

# People

pct_sick = 1/100

nrPeople = 400

 

# Case 1: Move a lot (no restrictions)

np.random.seed(mySeedNumber)

i_plotBoard = 1

step_size = 2  # How far they travel (interaction radius)

nrSick1v = f_simulateCase(nrPeople,step_size,xmax,ymax,maxIter,i_plotBoard)

 

With these conditions we get the following output plots (representing a
snapshot of every 10 days in the cycle):

 

 





Even with the most basic assumptions it is clear to see that the number of
sick people quickly increases from 1% of the population to well over 50%
by the 20th day before rapidly declining to zero by day 60.



Factors that affect the rate of growth will be population density (the number
of people per unit area) and internal movements within the community. If
the model included a function that killed a portion of the sick people, then
the disease would fade away quicker too as those people would no longer
be classified as spreaders.

We can illustrate this by increasing the population density (by keeping the
same number of people but changing the area), which would result in a
family of curves that look like this:



If the density is high (small grid area), then the percentage of sick people
jumps to a high percentage quickly and fades away fast and the converse is
true when the density is low.

Likewise, we can do the same type of simulation but this time varying the
step size to get this:



Again, we see that more movement increases the percentage of sick people,
but also shortens the life of the virus.

In many ways we might expect the above features in the same way that
water boils in a pot. As the temperature rises, the internal movement of the
particles increases. This increases the collisions and therefore the
transmission of heat.

In summary, the model shows that we can change the temporal profile of
the virus penetration throughout the population, but ultimately, in order to
gain immunity, all people will need to have contracted the virus in the first
instance.

Rumour dynamics
 

We looked at infectious diseases and how they spread. A virus was carried
from one person to the next by some kind of closest neighbour mechanism.



The model showed that lower population densities and smaller movements
reduces the propagation although ultimately the same number of people
would catch the virus at some point as ultimately immunity needs to be
achieved on the individual basis.

So now we transfer our focus on the mathematics of how a rumour might
propagate through a system. If we consider the rumour itself as a transfer of
information irrespective as to if it is a truth ( True ) or a lie ( False ). For
example, the rumour could have been about the severity of the virus in the
previous section (scaremongering[23]) or some other kind of truth or lie
about a completely unrelated subject.

So what are the rules of the transfer of a rumour?

1. A certain percentage of people start the rumour.
2. Any person that hears the rumour tells their friends.
3. The person no longer tells others and stops caring.

Broadly speaking, with the above rules and our knowledge of the model
results from infectious disease, we might intuitively guess that the
propagation dynamics will in some way be shared.

Our rumour model does not have a physical proximity characteristic
because the various forms of social media mean that the transmission does
not require physical interaction. However, the same proximity characteristic
will manifest itself in the sense that a person tells their closest friends.

The above translates into the mathematics of the connectivity of people. A
more connected system could be perceived to be analogous to a densely
populated system with lots of movement (boiling water in a pot).
Ultimately, the transmission is expected to be high in this scenario.

Knowing that the transmission is high, we now have to be aware of well
connected people (super spreaders). A well connected person (such as a
social influencer or a media channel) will propagate the message faster.

A person who is a super spreader transmits in the same way as a person
who is highly infectious and moves around a lot in the infectious disease
model.



So let's try to set up a model but again respecting many of the inputs that we
could include but have elected not to for the purpose of simplicity.

We start with some initial conditions and set up a person class:

import random
import matplotlib.pyplot as plt
 
# community of size n
num_people = 100_000
community = [x for x in range(num_people)]
community_noifications = []
 
class Person:
 
    def __init__(self, id=0) -> None:
        ''' base conditions of a person to start '''
        self.id = id  # unique id
        self.friends = self.generate_friends()
        self.motivation = 90  # motivation to transmit info
        self.aware = False  # is the person aware
        self.care = False   # if aware, does the person care
        self.notified = 0  # counter for times notified
        self.message_sent = 0  # counter for messages sent
        return
 

These are the attributes that we want, but there are a whole myriad of
options and ways that we can model the rumour.

Examples of parameters that we have elected to omit or bundle into one
parameter.

●      Spreader through media
●      Spreader through verbal communication
●      Communication channel

The parameters here are suitable. In particular:

1. Self.aware: is the person aware of the rumour?



2. Self.care: does the person care to spread the rumour?
3. Self.notified: how many times has the person been notified. If a

person gets too many notifications, then they lose interest.
4. Self.message_sent: if a person has sent too many messages, they

get bored and stop.

Next we define some methods for the class: Firstly we generate a list of
friends.

    def generate_friends(self) -> list:
        ''' generate a list of friends from the community '''
        friends = random.choices(community, k=5)
        friends = list(set(friends))
        return friends
We have made a small list for the purpose of the example, but even with
this small number, the saturation point is reached after only several
iterations.

Next, some rules for updating a person who has received a notification:

    def update_person(self):
        ''' update the persons status '''
        self.notified += 1
        if self.notified > 1:
            self.motivation = self.motivation - 10
 
        if self.aware == False:
            # just heard a rumor, now spread it.
            self.aware = True
            self.care = True
 
        if self.notified > 3:
            # now bored so dont care
            self.care = False
We add logical rules, such as motivation declining and people getting
disinterested in the rumour.

And finally, a method for sending messages to friends.

    def message_friends(self, community_noifications:list):



        ''' message friends making them aware '''
 
        if self.aware == True and self.care== True:
            self.message_sent += 1
            self.motivation = self.motivation - 10
            if self.message_sent > 10:
                # sent enough messages, now bored
                self.care = False
 
            for i in self.friends:
                if self.motivation > random.randint(0,100):
                    community_noifications.append(i)
We use motivation in a probabilistic way. Each person's motivation level
declines which means it is less likely that they will forward on a rumour to
friends in their friends list.

We can now start with the body of the code:

 
# generate a list of people
person = [Person(x) for x in community]
 
# a few people start a rumour
x = random.choices(community, k=3)
for i in x:
    person[i].aware = True
    person[i].care = True
    person[i].notified = 1
 
We use list comprehension to set up all of the people in the community in
one powerful line. This is a specific feature of python that other languages
would need to express verbosely. And from the community, the model
selects three people at random to start the rumour.

Lastly, we can generate the simulation by looping through the process:

# do some loops
who_is_aware = 0
who_cares = 0



community_aware = []
community_care = []
community_motivation = []
 
for i in range(40):
    # each aware person notifies friends
    for j in person:
        j.message_friends(community_noifications)
 
    # the people recieve notifications
    for j in community_noifications:
        person[j].update_person()
 
    # updates complete, so empty the list   
    community_noifications = []
 
    # collect the data from each loop
    who_is_aware = 0
    who_cares = 0
    motivation_level = 0
    for i in person:
        if i.aware == True:
            who_is_aware += 1
        if i.care ==True:
            who_cares += 1
        motivation_level = motivation_level + i.motivation/100
    community_aware.append(who_is_aware)
    community_care.append(who_cares)
    community_motivation.append(motivation_level)
We create lists so that we can plot the data later. The loop itself contains a
cycle of messaging friends and then other friends receiving those messages.

Finally, we can plot the data:

plt.plot(community_motivation, label='community motivation')
plt.plot(community_aware, label='community aware')
plt.plot(community_care, label='community care', linewidth=4)
 



plt.title('who is aware and who cares')
plt.xlabel(' iteration ->')
plt.ylabel('count ->')
plt.legend()
plt.grid()
plt.show()
The three lines we care for are:

1. Community awareness: Here we find a typical s-shaped curve
where there is a steep incline and then saturation.

2. Community care: This is the number of people at any point in
time that care to send on the rumour. Here we see a point of
“peak” interest, before people get bored of the rumour.

3. Community motivation: is an alternative measure for community
care. It represents how motivated in total the community is to
transmit the rumour. We see that this waynes with time.

Our first plot is the standard model.

 



Our second plot is similar to the first, but with the motivation levels
reduced. The reduction of motivation smooths and extends the curve as it
takes longer to reach a saturation point.

In fact, we see that the maximum saturation level is lower when the
motivation levels are reduced. This is because the rumour has died out
before it has reached the entire population (ie. people have gotten too bored
too quickly).

The entire contents of the code was just 120 lines in python and yet
produced extremely powerful computations and results.



 

Fractals
A Fractal is a curve or geometrical figure, each part of which has the same
statistical character as the whole. They are useful in modelling structures in
which similar patterns recur at progressively smaller scales, and in
describing partly random or chaotic phenomena.

Fractals could be said to be part of the dynamic systems. Indeed, if we look
at the world around us, it can quite easily be seen that we are surrounded by
hundreds of fractals often without even knowing it.

Let's create a fractal using the basic turtle module:

import turtle as ttl
 
ttl.shape('turtle')
ttl.speed(0)
 
def tree(size, levels, angle):
    if levels==0:
        ttl.color('green')
        ttl.dot(size)
        ttl.color('black')
        return
 
    ttl.forward(size)
 
    ttl.right(angle)
    tree(size*0.8, levels-1, angle)
 
    ttl.left(angle * 2)
    tree(size*0.8, levels-1, angle)
 
    ttl.right(angle)
    ttl.backward(size)
 
ttl.left(90)
tree(70, 9, 60)



 
ttl.mainloop()
 
 

One of the properties of fractals is the repeated nature and this fits well
computationally with recursive functions.

We touched on recursive functions much earlier and found two convenient
formats. [1] for the function to repeatedly call itself (simple), [2] calling a
function repeatedly in a loop (efficient). In both cases we needed to make
sure that we reach a case case when the function ends otherwise we run into
an infinite loop or get a stack-overflow.

In the code example above, we create a tree by using a recursive function to
repeatedly call itself for the left branches and the right branches.

The base case is set by the if statement where we check if levels =0  and
then draw a leaf (end node) and return without calling the function any
more.

The turtle sets about passing through all of the recursive paths until every
node is reached. This is the result of the code:

 

Part way through

completed

 



We can modify the code to add randomness at certain parts, for example,
setting random angles or changing the colours of the end nodes.
Randomising the colours is done simple by adding the following two lines
of code:

colour_choice = ['red','orange', 'yellow','green', 'blue', 'indigo']

ttl.color(random.choice(colour_choice))

 

This achieves a tree with rainbow coloured leaves as per the diagram below.

 

 

 

Part way through… completed

We can let the angle vary randomly within a predefined constraint which
would achieve a non-symmetric tree that closely resembles the original tree,
but not quite.

We do this by setting:
angle = random.randint(30, 90)
With this line of code, we remove control over where the turtle will go
within the constraints of 30 to 90 degrees and the outcome now looks like
this:



The reality is that nature contains both of the above. Ordered fractals (like a
regular lattice) and unordered fractals (like the coastline of a country).

Interestingly, even though there was some form of chaos, the tuttle in the
code managed to find its way back to the original spot because of the
recursive nature of the code.

We can increase the chaos by widening the boundary conditions from [45,
75] degrees to [30,90] degrees and we can also change the code such that
we colour the wide angled nodes red and the tighter angled nodes green.

        if angle > 60:
            angle_colour = 'red'
        else:
            angle_colour = 'green'
This highlights to the viewer the path taken by the turtle.

 



But even with this simple model, we can do better in terms of replicating
the ordered chaos of nature. Let's say for example that the tree has a
tendency to move in one direction, towards the sunny side, we can include
this into the basic model by changing the probabilities.

In doing so, we will create more leaves of one colour than another by
roughly the same proportion as the bias that we have introduced.

Let's create a skewed list function. For this we can use the scipy module
with the method skewnorn.rvs() .

from scipy.stats import skewnorm
import matplotlib.pyplot as plt
 
def skewed_list(skew, size=1000, x_low=30, x_high=120):
    ''' returns a skewed list between x_low and x_high '''
    data= skewnorm.rvs(skew, size=size)*100
    data = data - min(data)
    data = data / max(data)
    data = data * x_high
    data = [x for x in data if x > x_low]
 
    return data
r = skewed_list(-30, size=1000 ,x_low=30, x_high=120)



 
plt.hist(r, color='green', alpha=0.5)
print(min(r))
 

The list produces a distribution that generically looks like this:

We use the unevenly distributed list for the turtle's angle changes and
therefore its colours will be unevenly distributed (according to the skewed
distribution) too.



What we observe is a random network of mostly red leafs with a generally
wider angle between the branches.

Again, finally, changing the size (which represents the length of each
branch) does this:



And finally, let's plot a cherry tree using angles ranging between 10 and 30
degrees in the final model. This constrains the tree to be upward looking
just as regular trees in nature are. We also switch the colouring such that the
majority of the leaves, based on the uneven probability distribution, are
green. So the resulting picture is this:



In every tree, by use of the recursive function, we were always able to
return the turtle to the original place, no matter what level of complexity
was used either for the branches or the angles.

This code of no more than 60 lines was able to provide the fundamentals for
a whole variety of tree type fractals with the user only needing to change a
few parameters or criteria.

We can also notice that order exists even though each branch and path was
completely random in both length and angle. The nodes end up in a
beautiful semi-circle like pattern almost as if by design and if we were to
keep on redrawing the trees we would get similar, but not identical patterns,
just like human fingerprints are similar, but not identical.



 

In fact, just like we grow single trees in a loop, we could construct a forest
of trees in the same way, with a short adjustment to the code by moving it
into a for loop.

for i in range(7):

    # draw several trees

    ttl.left(90)

    tree_size = random.choice(skewed_list(-30, x_low=50, x_high=80))

    tree_levels = random.choice([5,6,7,8,9,10])

    tree(tree_size, tree_levels)

    # move to new random location

    ttl.right(90)

    ttl.penup()

    n = random.randint(0,360)

    ttl.right(n)



    ttl.forward(random.randint(1,5)*10 + 60)

    ttl.left(n)

    ttl.pendown()

 

 



 

Mandelbrot set
Interesting because they combine complex numbers with fractals and also,
we learn about stability, which is actually true for all iterative processes.
The stability is beautifully highlighted in the mandelbrot set.

Interestingly, this highly complicated pattern is produced by the most
simple formula:

Where Zn are complex numbers.

The way that the mandelbrot set changes is also the hallmark of chaos
theory. In the finalised version beautiful patterns are produced and the
colouring is often used to represent the stability of any given number (the
likelihood of a number blowing up) and this rapid change in stability near
the edges is chaotic.

The mandelbrot set originated in the 1970’s and by the 1980’s the first
visualisations were done. However, the computing power was nowhere near
the capabilities of today, so the creators were restricted to the mathematics
and what computing resource that they had at the time. So this is what they
produced:



Our sets, knowledge and capabilities far exceed those of the 1980’s by
orders of magnitude as per moore's law[24] and we will look into the
fundamentals of the behaviour of complex numbers within the context of an
iterative (or recursive) process.

Before we consider complex numbers, let’s think about what happens to
regular numbers on the number line and their stability. So let’s look at Xn+1

= Xn
2 + c where X are real numbers.



An initial basic inspection can be done with a table. 

We see that there is some kind of convergence zone with the boundary at xn

= 1. All numbers with magnitude < 1 converge to zero and are said to be
stable and numbers > 1 shoot off to infinity and are said to be unstable.

The convergence zone (or radius of convergence) for real numbers is best
described by the number line below.

We use this analogy to extend into the complex plane. Extending xn to zn

means that xn
2 becomes zn

2. And we know that zn = an + i*bn where a and b
are real numbers.



When we translate this to polar coordinates (as we did in the complex
numbers section), this translates into a circle with radius sqrt(an

2 + bn
2).

So the zone of convergence becomes a radius on convergence and looks
like this:

The above is simplistic, but highlights in part what we might expect to
happen for zn+1 = zn

2. Extending the same concept to the mandelbrot
equation by adding a constant c produced something that was unexpected,
but when explored partly intuitive.

So, let's get down to the code:

We have used the pygame module, but note that we could have used tkinter
(or even turtle) to display the image.

import pygame

import ctypes

import time

 



# to use pygame's functionality.

pygame.init()

 

# screen dimensions

user32 = ctypes.windll.user32

width = user32.GetSystemMetrics(0)

height = user32.GetSystemMetrics(1)

width, height = int(width/1.1),int(height/1.1)

win = (width, height)

screen = pygame.display.set_mode(win)

 

# set the pygame window name

pygame.display.set_caption('Mandelbrot Program')

 

xaxis = width/2 + 100

yaxis = height/2

scale = 200 # Mandelbrot size

iterations = 20 # the more iterations you make the better resolustion you'll get

 

 

Initially, we have just set the main screen parameters as a function of our
actual screen size (so that the code works on any size screen). The y-axis is
half of the screen height because the image is the same both above and
below the axis.

We define a main function which will do two things:

1. The iteration of the loops
2. Allow the user some basic control

def main():
    ''' main code for Mandelbrot '''   
    the_iteration()
    the_loop()
 
 



We then set about doing the main iteration. This is where the formula
zn+1=zn

2+c is invoked.

 

def the_iteration():   

    for iy in range(int(height/2+1)):

        for ix in range(width):

            z = 0+0j

            c = complex(float(ix-xaxis)/scale, float(iy-yaxis)/scale)

 

            for i in range(iterations):

 

                z = z**2+c  # Mandelbrot equation

                if abs(z) > 2:

                    v = 765*i/iterations

                    if v > 510:

                        color = (255, 255, v%255)

                    elif v > 255:

                        color = (100,v%255 , 255)

                    else:

                        color = (0, 0, v%255)

                    break

                else:         

                    color = (0, 0, 0)

 

            screen.set_at((ix, iy), color)

            screen.set_at((ix, height-iy), color)

 

    # text labels

    font = pygame.font.Font('freesansbold.ttf', 20)

    text_iter = font.render(f'iterations (<-|->): {iterations}',

                            True, (255,200,200), (10,10,10))

    textRect_iter = text_iter.get_rect()

    textRect_iter.topleft = (width//10, height//10)

    screen.blit(text_iter, textRect_iter)

    text_scale = font.render(f'scale (up/dwn): {scale}',

                            True, (255,200,200), (10,10,10))



    textRect_scale = text_scale.get_rect()

    textRect_scale.topleft = (width//10, height//10 + 30)

    screen.blit(text_scale, textRect_scale)

 

    pygame.display.update()

 

Most of the code around the main iteration is for human visualisation, such
as the colour scales and the text boxes with user info, so there is only one
essential line:

                z = z**2+c  # Mandelbrot equation

 

 

The colour part of the loop is necessary in the sense that it describes to us,
the stability of the sequence at each point. Black points are the most stable
and are found with this line:

                if abs(z) > 2:
And all the other colours are generated in between this depending on how
many iterations it takes for the points to become stable.

The last part of the code allows the user to adjust the number of iterations
and also the scale.

def the_loop():
    global iterations
    global scale
 
    run = True
    while run:
        for event in pygame.event.get():
            if event.type == pygame.QUIT:
                run = False
        keys = pygame.key.get_pressed()
        if keys[pygame.K_LEFT]:
            time.sleep(0.1)
            print('iterations before:', iterations)
            iterations -= 5



            if iterations < 1:
                iterations = 2
            the_iteration()
            print('iterations after:', iterations)
 
        if keys[pygame.K_RIGHT]:
            time.sleep(0.1)
            print('iterations before:', iterations)
            iterations += 5
            the_iteration()
            print('iterations after:', iterations)
 
        if keys[pygame.K_UP]:
            time.sleep(0.1)
            print('scale before', scale)
            scale += 50
            the_iteration()
            print('scale after', scale)
 
        if keys[pygame.K_DOWN]:
            time.sleep(0.1)
            print('scale before', scale)
            scale -= 50
            the_iteration()
            print('scale after', scale)
 
    pygame.quit()
 

Every time a button is pressed a calculation is done and the screen is
redrawn via  pygame.display.update() . We are already aware of this
redrawing of the screen feature in other GUI modules.

And finally to run all the modules (via the main module) we use the
common hoisting method:
if __name__ == "__main__":
    main()



 

We can now run the code to generate the mandelbrot set with a given
number of iterations.

If we use a low number of iterations, then the result is rather boring. Here
we have used just 2 iterations:

But as we increase the number of iterations, we start to see what appears to
be a mundane inner circle, transformed into a different shape with inner
features and also the colouring begins to change, which represents the
stability of zn+1.



And as the iterations increase more we get this:



And we can keep on going:

All of a sudden at just 20 iterations we begin to see a lot of structure around
the edges of the shape.



And this keeps on going indefinitely.

A note to the calculation:. On a standard laptop, there are typically 1920 *
1080 pixels so we are looking at the order of 2 million pixels to be
computed prior to the loops required. So if we do 20 loops, this takes the
process to 40 million calculations.

There are various tricks to reduce the calculation volume and the first one is
to use a smaller proportion of the screen as the number of pixels is
proportional to the square of the sides.

The research into the mandelbrot set is vast and would take weeks to cover
the topic so we have reached a natural stopping point, but what is
interesting is the mathematics around the edges, because we find that we
can zoom into these points indefinitely and they keep on producing new
fractals in a rather chaotic and unpredictable way.



 

Double pendulum
The double pendulum comes directly from the concept of the single pendulum.

The single pendulum is known to be an excellent timekeeper due to the fact that the
time taken for a given swing from end to end (a tick-tock in a clock) is constant
whatever amplitude the single pendulum is started at. In fact we are able to prove from
first principles that the constant time taken, T, follows this formula.

Where L is the length of the pendulum  and g is the force of gravity (which is constant
on the surface of the Earth). We see that the only physical factor that we can control
that determines the period T is the length of the pendulum L.

We can do all of the above knowing the basic forces that act upon the pendulum and
Newton's laws of motion.

However, the double pendulum is a classic Physics problem that gives rise to an
example of chaotic motion where one might have otherwise expected order. In
particular, because the setup of the double pendulum looks rather similar to its sibling.



The mathematics behind the problem are lengthy, but essentially we have positions
and velocities for each of the pendulum bobs.

Positions:

●      

●      

Velocities:

●      

●      

Where  and  

From the above we can work out the potential energy and kinetic energy of both
pendulum bobs knowing that:

 and 



And we know that energy is conserved, such that:

, which is the total energy in the system known by
Hamiltonian mechanics

However, for the purpose of the double pendulum, one uses Lagrangian mechanics
which is ke - pe and represents the difference in the energies. So we say that:

L = ke - pe

And this fits into the euler-lagrange equation:

Which yields the equation of motion of the system without needing to consider the
individual forces in the system.

After some calculus and  algebra we are left with two lengthy equations that involve
second derivatives. But since we know that the second derivative is a derivative on the
first derivative, we can put this into the code.

We start with imports that we intend to use:

from numpy import sin, cos
import numpy as np
import matplotlib.pyplot as plt
import scipy.integrate as integrate
import matplotlib.animation as animation
 

and set the initial conditions.

G = 9.8  # acceleration due to gravity, in m/s^2
L1 = 1.0  # length of pendulum 1 in m
L2 = 1.0  # length of pendulum 2 in m
M1 = 1.0  # mass of pendulum 1 in kg
M2 = 1.0  # mass of pendulum 2 in kg
 

Next we need a function to deal with the derivatives in a given state.

def derivs(state, t):

 

    dydx = np.zeros_like(state)



    dydx[0] = state[1]

 

    delta = state[2] - state[0]

    den1 = (M1+M2) * L1 - M2 * L1 * cos(delta) * cos(delta)

    dydx[1] = ((M2 * L1 * state[1] * state[1] * sin(delta) * cos(delta)

                + M2 * G * sin(state[2]) * cos(delta)

                + M2 * L2 * state[3] * state[3] * sin(delta)

                - (M1+M2) * G * sin(state[0]))

               / den1)

 

    dydx[2] = state[3]

 

    den2 = (L2/L1) * den1

    dydx[3] = ((- M2 * L2 * state[3] * state[3] * sin(delta) * cos(delta)

                + (M1+M2) * G * sin(state[0]) * cos(delta)

                - (M1+M2) * L1 * state[1] * state[1] * sin(delta)

                - (M1+M2) * G * sin(state[2]))

               / den2)

 

    return dydx

 

We then need to set a range of times for the simulation and also the starting angles and
angular velocities.

# create a time array from 0..100 sampled at 0.05 second steps
dt = 0.05
t = np.arange(0, 20, dt)
print(t)
 
# th1 and th2 are the initial angles (degrees)
# w10 and w20 are the initial angular velocities (degrees per second)
th1 = 120.0
w1 = 0.0
th2 = -10.0
w2 = 0.0
 
# initial state
state = np.radians([th1, w1, th2, w2])
 
 



We then use the scipy module to integrate the ordinary differential equation that we
originally derived.

# integrate your ODE using scipy.integrate.
y = integrate.odeint(derivs, state, t)
 

For each value of t we have one state. So we produce the y values which is a list of
lists and looks like this:

[[ 2.0943951   0.         -0.17453293  0.        ]
[ 2.08189245 -0.49983043 -0.18037987 -0.23120247]
[ 2.04447081 -0.99609112 -0.19711468 -0.43005342]
...
[-0.25507841  4.38151899 -3.8135224   3.26796836]
[-0.04126843  4.14049477 -3.67188173  2.37875988]
[ 0.15636407  3.74412399 -3.57692326  1.41412786]]
Both the length of t and states are the same.

We have effectively stored, for each t, both of the angles and the angular speeds.

It is now trivial to plot the (x1,y1) and (x2, y2) positions given that we know the angles
(θ1, θ2) and the lengths (L2, L2) of the pendulums at each point in time.

x1 = L1*sin(y[:, 0])
y1 = -L1*cos(y[:, 0])
 
x2 = L2*sin(y[:, 2]) + x1
y2 = -L2*cos(y[:, 2]) + y1
 

So we can now set about plotting the data. In fact, was can actually plot the moving
simulation of the double pendulum with this:

fig = plt.figure()

ax = fig.add_subplot(111, autoscale_on=False, xlim=(-2, 2), ylim=(-2, 2))

ax.set_aspect('equal')

ax.grid()

 

line, = ax.plot([], [], 'o-', lw=2)

time_template = 'time = %.1fs'

time_text = ax.text(0.05, 0.9, '', transform=ax.transAxes)

 

 

def init():



    line.set_data([], [])

    time_text.set_text('')

    return line, time_text

 

 

def animate(i):

    thisx = [0, x1[i], x2[i]]

    thisy = [0, y1[i], y2[i]]

 

    line.set_data(thisx, thisy)

    time_text.set_text(time_template % (i*dt))

    return line, time_text

 

 

ani = animation.FuncAnimation(fig, animate, range(1, len(y)),

                              interval=dt*1000, blit=True, init_func=init)

plt.show()

 

 

Which gives this moving animation series:

 

But for the purpose of this exercise, we can also plot the path taken by the pendulums
and in particular, the second pendulum.



We see that the first pendulum is an orderly curve and this must be the case given that
there is only 1 degree of freedom θ1 and the length is fixed, L1.

However, the second pendulum follows an unpredictable and chaotic path. The second
pendulum is constrained within certain constraints, for example it cannot reach further
than |L1| + |L2| and cannot be shorter than |L1| - |L2|. However, within these constraints,
we cannot tell where the pendulum bob will be at any given point in time.

We can show how the pendulums move with time by reducing both plots to scatter
plots like this:

 

cmap1 = plt.colormaps['Blues']
cmap2 = plt.colormaps["Reds"]
 
sp1 = ax.scatter(x1, y1, c=t, marker='.' , cmap=cmap1)
sp2 = ax.scatter(x2, y2, c=t, marker='.' , cmap=cmap2)
ax.set_xlabel('x values -->')
ax.set_ylabel('y values -->')
fig.colorbar(sp1, label='time')
fig.colorbar(sp2, label='time')



 
plt.show()
 

Which

The interesting aspect is to note what happens to the path of the second pendulum
when any of the parameters is changed by a small amount.

So we set a new initial state (called delta) like this:

# initial state
state = np.radians([th1, w1, th2, w2])
state_delta = np.radians([th1, w1+0.01, th2, w2])
And we can use this to generate new y values like this:

# integrate your ODE using scipy.integrate.
y = integrate.odeint(derivs, state, t)
y_delta = integrate.odeint(derivs, state_delta, t)
 

And from this small change ( w1  → w 1 + 0.01 ) we generate a completely different
plot.



In fact, we can compare the two plots for the second pendulum bobs side by side (we
remove the upper pendulum bob for clarity as these will overlap for the same L1).

And we can keep on introducing new plots even with the smallest changes, for
example a third state this time by amending θ1 → θ1  + 0.01.



# initial state
state = np.radians([th1, w1, th2, w2])
state_delta = np.radians([th1, w1+0.01, th2, w2])
state_delta_2 = np.radians([th1+0.01, w1, th2, w2])
 
We get a third completely different plot

 

Other than being retained within certain boundaries, we have shown by computer
simulation that the double pendulum is sensitive to initial conditions and chaotic in
motion.



 

Three body problem
The three body problem is interesting in the sense that it represents another
type of chaotic problem where slight changes in the initial conditions
produce dramatically different outcomes.

At the same time, there is a level of predictability as each of the bodies in
the problem follow a pre-described pattern of motion which is the force of
gravity.

In an arbitrary coordinate system of our choosing.

And the fact that the acceleration of a body is proportionate to the force
exerted upon it.



And combining the equations yields the equation of motion of each body.

 

In fact, we know that 2-bodies behave in an orderly way and sometimes
display beautiful behaviour. We could call these orderly patterns, the stable
states. They are predictable and the solution deviates towards them just like
we saw in the mandelbrot set, where there are areas of convergence.

For the 2-body problem, the stable states are the elliptic (or circular) orbits
that the model predicts and that we commonly observe. So it is the
introduction of a third body that throws the system into chaos.

It is important to note that our use of the word chaos means outcomes which
are sensitive to initial conditions. There will be boundary conditions and
positions that the chaos cannot produce in the same way that when we
looked at the double pendulum, even though we would struggle to predict
the position of the lower pendulum at any point in time, we still knew that it
exists at a distance < L1 + L2 from the attachment point which was
guaranteed by the length of the pendulum rods.

So we might expect something similar to be the case for the 3-bodies. So
let’s get into the code.

We first set up the initial conditions. Our force of gravity, g, the masses of
the 3 bodies along with their starting positions and velocities. The only
modules needed were matplotlib and numpy .

 

# imports

import numpy as np

import matplotlib.pyplot as plt

 



# gravity

g = 9.8

 

# masses

m_1 = 10

m_2 = 20

m_3 = 30

 

# starting coordinates

p1_start = np.array([-10, 10, -11])

v1_start = np.array([-3, 0, 0])

 

p2_start = np.array([0, 0, 0])

v2_start = np.array([0, 0, 0])

 

p3_start = np.array([10, 10, 12])

v3_start = np.array([3, 0, 0])

 

 

Next we make a function that takes the positions and returns back the
accelerations. These are taken directly from the laws of motion above.
def accelerations(p1, p2, p3):

def accelerations(p1, p2, p3):

    """

    A function to calculate the derivatives of x, y, and z

    given 3 object and their locations according to Newton's laws

    """

    p_1_dv = -g * m_2 * (p1 - p2)/(np.sqrt((p1[0] - p2[0])**2

                    + (p1[1] - p2[1])**2 + (p1[2] - p2[2])**2)**3) - \

               g * m_3 * (p1 - p3)/(np.sqrt((p1[0] - p3[0])**2

                    + (p1[1] - p3[1])**2 + (p1[2] - p3[2])**2)**3)

 

    p_2_dv = -g * m_3 * (p2 - p3)/(np.sqrt((p2[0] - p3[0])**2

                    + (p2[1] - p3[1])**2 + (p2[2] - p3[2])**2)**3) - \

               g * m_1 * (p2 - p1)/(np.sqrt((p2[0] - p1[0])**2

                    + (p2[1] - p1[1])**2 + (p2[2] - p1[2])**2)**3)



 

    p_3_dv = -g * m_1 * (p3 - p1)/(np.sqrt((p3[0] - p1[0])**2

                    + (p3[1] - p1[1])**2 + (p3[2] - p1[2])**2)**3) - \

               g * m_2 * (p3 - p2)/(np.sqrt((p3[0] - p2[0])**2

                    + (p3[1] - p2[1])**2 + (p3[2] - p2[2])**2)**3)

 

    return p_1_dv, p_2_dv, p_3_dv

 

 

 

 

Whilst this looks messy, it is actually quite systematic. Each particle’s
acceleration is calculated based on the mass and position of the other
particles in the system.

It is actually at this point where we could extend the same rule to n-bodies.
In fact, a problem like this lends itself very well to classes, which arguably
would have been a cleaner and more scalable approach. However, for the
purpose of the article, we take an explicit approach.

We then set the number of steps and the arrays to contain the data for the
steps.

 

# parameters
delta_t = 0.01
steps = 10_000
 
# initialize trajectory array
p1 = np.array([[0.,0.,0.] for i in range(steps)])
v1 = np.array([[0.,0.,0.] for i in range(steps)])
 
p2 = np.array([[0.,0.,0.] for i in range(steps)])
v2 = np.array([[0.,0.,0.] for i in range(steps)])
 
p3 = np.array([[0.,0.,0.] for i in range(steps)])
v3 = np.array([[0.,0.,0.] for i in range(steps)])



 
We can set the starting positions as follows:

# starting point and velocity
p1[0], p2[0], p3[0] = p1_start, p2_start, p3_start
v1[0], v2[0], v3[0] = v1_start, v2_start, v3_start
And then we are ready to run the simulation and populate the lists which
contain the positions and velocities.

# evolution of the system
for i in range(steps-1):
    # calculate derivatives
    dv1, dv2, dv3 = accelerations(p1[i], p2[i], p3[i])
 
    v1[i + 1] = v1[i] + dv1 * delta_t
    v2[i + 1] = v2[i] + dv2 * delta_t
    v3[i + 1] = v3[i] + dv3 * delta_t
 
    p1[i + 1] = p1[i] + v1[i] * delta_t
    p2[i + 1] = p2[i] + v2[i] * delta_t
    p3[i + 1] = p3[i] + v3[i] * delta_t
 
This is the bulk of the computation process and it takes less than 1 second
to process 10,000 steps and likewise 7 seconds for 100,000 steps.

Finally, we are able to see the results of the process with a matplotlib  plot.

# plot the chart

ax = plt.figure(figsize=(8, 8)).add_subplot(projection='3d')

 

plt.plot([i[0] for i in p1], [j[1] for j in p1], [k[2] for k in p1] ,

            '.', color='red', lw = 0.05, markersize = 0.1)

plt.plot([i[0] for i in p2], [j[1] for j in p2], [k[2] for k in p2] ,

            '.', color='green', lw = 0.05, markersize = 0.1)

plt.plot([i[0] for i in p3], [j[1] for j in p3], [k[2] for k in p3] ,

            '.', color='blue', lw = 0.05, markersize = 0.1)

 

ax.set_xlabel('X --->')

ax.set_ylabel('Y --->')



ax.set_zlabel('Z --->')

 

plt.show()

 

Which initially produces this:

Each particle is represented by a colour and we can see that two particles
(or planets) co-rotate off with each other whilst the third particle moves in a
completely different direction.

The above was for 100,000 loops and some predictability was born out of
the chaos, but if we looked at a shorter timescale of the same initial
conditions, it would have been difficult to predict that this would have been
the case.



One nice feature of the plot, that we essentially get for free, is that high
velocities are indicated by lighter lines because the points are further apart
from each other.

Let's look at what happens if we change the initial conditions by a fraction
amount. For example we make this small change to the starting coordinate
of particle 1 with no other changes.
p1_start = np.array([-10, 10, -11])
p1_start = np.array([-10, 10, -10])
And the resulting short term (10,000 points) chart is completely different:



With the longer term chart being radically different. In particular, the red
particle is ejected from the system whilst the green and blue co-rorate in



location.

With just the three bodies alone, we can create a huge variety of initial
conditions, each one with a completely different outcome. In fact, in writing
this, hours were spent in trying to obtain predictable patterns, such as one
significantly heavy body with two light ones where we might expect the
smaller particles to rotate around the larger one, but in fact we often get
ejections from the system.

 



Here is a system where the red particle mass is 1000 compared to the blue
and the green whose masses are 10. We see that the green particle is ejected
from the system.

Just changing the speed of the green particles by 1 metre per second vastly
changes the system and it took a lot of care to get a three body pattern like
this.



Strangely enough, if we were to increase the number of particles in the
system, we would actually introduce some kind of measurable statistical
order. Probably the subject of a second book !

 



 

Predator vs prey cycles
We have spent the last few chapters looking at chaotic systems. We started
with the mandelbrot set and then moved into the double pendulum and then
onto the three body problem each one producing unpredictable squiggles in
both two and three dimensions.

With the predator-prey cycle we expect to see more order. In fact, the
behaviour might capture some of the dynamics of diseases and rumours
where there is a self dampening effect, although we might expect this to
oscillate.

Before we delve into the mathematics, let's consider an overview of a
predator prey system. For example foxes and rabbits.

The populations of each component of the system depend on the other
population. So more rabbits equates to more food for the foxes which gives
rise to an increasing fox population, but more foxes kill the rabbits reducing
the rabbit population. This in turn reduces the supply of food for the foxes
and subsequently reduces the fox population. Less foxes mean more rabbits
… and so the cycle continues.



The above logic gives rise to the following mathematics:

Where x and y are the number of prey and predators respectively.

The parameters �� and �� are interesting as they represent the species
dynamics without interaction. So positive �� describes a prey population
that naturally increases whilst negative �� describes the opposite for the
predators.

This dynamic tends to always be the case as, left alone without predators
culling the population, the prey tends to multiply fast. Likewise, left alone
essentially with no food, the predator population would decline.

In a similar fashion the connected, xy, terms have the opposite effect on
both the populations where we can see that a large xy is positive for the
predator population but negative for the prey population.

This is very much the basic mathematics of natural selection in an ongoing
ecosystem because if any of those parameters were reversed, then the
system would become unstable and at least one of the species would
become extinct.

Since we know that:

We can combine the two equations above to get:



And rearranging this gives this:

Whilst the mathematics was interesting to note, we can actually produce the
code from the first two equations. So let's do that.

We start with the standard imports and defining some global parameters.

import matplotlib.pyplot as plt

import numpy as np

import random

 

timestep = 0.0001  # determines the accuracy

 

amp = 0.00  # amplitude of noise term

end_time = 50  # time simulation ends

t = np.arange(0,end_time,timestep)  # times vector

 

# initialise prey (x) and predator (y) vectors

x = []

y = []

Next, setting the four coefficients and also the initial conditions for the
numbers of predators and prey, making sure that there is sufficient prey,
otherwise the system would risk extinction of the prey and therefore
collapse.
a = 1  # birth rate of prey
b = 0.1  # death rate of prey due to predation
c = 0.5  # natural death rate of predator
d = 0.02  # consumed prey that give rise to predator
 
# initial conditions at time=0
x.append(100) # prey (x)
y.append(20)  # predator (y)
We then do the number crunching:

# forward euler method of integration



for index in range(1,len(t)):
    # evaluate the current differentials
    xd = x[index-1] * (a - b*y[index-1])
    yd = -y[index-1]*(c - d*x[index-1])
 
    # evaluate the next value of x and y
    next_x = x[index-1] + xd * timestep
    next_y = y[index-1] + yd * timestep
 
    # add the next value of x and y
    x.append(next_x)
    y.append(next_y)
 
At this point we have created and filled the arrays with the population data
that we required for the predator and prey populations.

 

 

 

So we can set about plotting the charts.

# predator-prey same axis vs time
plt.plot(t, x)
plt.plot(t, y)
plt.xlabel('Time -->')
plt.ylabel('Population Size  -->')
plt.legend(('Prey', 'Predator'))
plt.title('Preddator vs Prey')
plt.show()
Which gives this:



We can see how the cycles for predator and prey are out of phase with each
other. Predator lags prey by ¼ of a cycle or ��/2 radians or 90o.

 

And then:

 
# predator vs prey cycle
plt.plot(x,y)
plt.xlabel('predators Population  -->')
plt.ylabel('Prey Population  -->')
plt.title('Predator-Prey cycle')
plt.show()
 



Which gives this:

By plotting predator and prey populations on different axes we can clearly
see the cyclical relationship between the two. In particular, when one
population is high, the other is low and vice versa.

We can also see how, in both populations the peak to trough variation is
quite dramatic and this explains why a difficult period could upset the
balance of the ecosystem.

A natural system has stochastic volatility, so we need to introduce this into
the model and we can do this with the following code to introduce noise
into the system:
def StochasticTerm(amp):
    return (amp * random.uniform(-1,1))
We can use this noise to perturb the differential equations by amending the
coefficients in the for loop as follows:

for index in range(1,len(t)):
 
    # stochastic parameters
    a = a + StochasticTerm(amp)



    b = b + StochasticTerm(amp)
    c = c + StochasticTerm(amp)
    d = d + StochasticTerm(amp)
 
    # evaluate the current differentials
    xd = x[index-1] * (a - b*y[index-1])
    yd = -y[index-1]*(c - d*x[index-1])
 
    # evaluate the next value of x and y
    next_x = x[index-1] + xd * timestep
    next_y = y[index-1] + yd * timestep
 
    # add the next value of x and y
    x.append(next_x)
    y.append(next_y)
By changing the amp value we are now able to affect the coefficients. A
small change in the amplitude ( amp ) from zero to 10 parts in 1 million
(0.000001) has this effect.

At 50 parts in 1 million we get this:



And, finally, if the volatility gets too large, the system is unable to repair its
steady state and subsequently breaks down.

Just like with the three body problem, there are hundreds of examples and
cases to explore and lessons that the models can teach us alongside the
mathematics.

And for the purpose of the book, we stop here leaving the rest of the
exploring as an exercise for the reader noting just one thing: that
ecosystems have many species x, y, z . . .

 



 

Conway Game of life
The game of life is a zero player game, meaning that its evolution is
determined by its initial state, requiring no further input.

The user can set the initial state and thereafter the simulation continues
indefinitely.

The rules of the game are as follows:

●      Each of which is in one of two possible states, live or dead (on or
off or 1 or 0).

●      Every cell interacts with its eight neighbours

At each step in time, the following is calculated for the next iteration.

1. Any live cell with fewer than two live neighbours dies, as if by
underpopulation.

2. Any live cell with two or three live neighbours lives on to the next
generation.

3. Any live cell with more than three live neighbours dies, as if by
overpopulation.

4. Any dead cell with exactly three live neighbours becomes a live
cell, as if by reproduction.

So the evolution of a cell is contingent on the neighbouring cells in all
cases.

We can set up these rules in python and create an animation in matplotlib:
import numpy as np

import matplotlib.pyplot as plt

import matplotlib.animation as animation

 



# globals

OFF, ON = 0, 1

vals = [ON, OFF]

 

def main():

    ''' main function '''

    N = 100  # set grid size

    updateInterval = 100  # set animation update interval

 

    # declare grid

    grid = np.array([])

    grid = randomGrid(N)

 

    for i in range(5):

        addGlider(np.random.randint(2,N-2),

                np.random.randint(2,N-2), grid)

 

    # set up animation

    fig, ax = plt.subplots()

    img = ax.imshow(grid, interpolation='nearest')

    ani = animation.FuncAnimation(fig, update,

                        fargs=(img, grid, N, ), frames = 10,

                        interval=updateInterval,save_count=50)

 

    plt.show()

 

 

def randomGrid(N):

    """returns a grid of NxN random values"""

    pyes=0.04

    pno=1-pyes

    return np.random.choice(vals, N*N, p=[pyes, pno]).reshape(N, N)

 

 

def addGlider(i, j, grid):

    """adds a glider with top left cell at (i, j)"""

    glider = [[0,0,1],[1,0,1],[0,1,1]]



    grid[i:i+3, j:j+3] = glider

 

 

def update(frameNum, img, grid, N):

    # copy grid since we require 8 neighbors

    newGrid = grid.copy()

    for i in range(N):

        for j in range(N):

 

            # compute 8-neighbor sum (x and y wrap around)

            total = int(grid[i, (j-1)%N] + grid[i, (j+1)%N] +

                      grid[(i-1)%N, j] + grid[(i+1)%N, j] +

                      grid[(i-1)%N, (j-1)%N] + grid[(i-1)%N, (j+1)%N] +

                      grid[(i+1)%N, (j-1)%N] + grid[(i+1)%N, (j+1)%N])

 

            # apply Conway's rules

            if grid[i, j] == ON:

                if (total < 2) or (total > 3):

                    newGrid[i, j] = OFF

            else:

                if total == 3:

                    newGrid[i, j] = ON

 

    # update data

    img.set_data(newGrid)

    grid[:] = newGrid[:]

    return img

 

# call main

if __name__ == '__main__':

    main()

There are a huge number of variants and twists that one could add to this
most simple of games, but before we consider those, let's take a look at the
output of the code.



The resulting observation is continually evolving patterns with some
common features that have been investigated over the years.

In particular, the following three stand out:

●      Still lifes - never change (unless collided with)
●      Oscillators - don't move, but flip between states.
●      Spaceships - Oscillators that travel in a constant direction.

Conceptualising the above shapes is comparatively easy when the size is
small. Here are some base examples:

 

 

 

Still life oscillator spaceship

block blinker Glider

 

We were able to make a simple glider with this block of code:



def addGlider(i, j, grid):

    """adds a glider with top left cell at (i, j)"""

    glider = [[0,0,1],[1,0,1],[0,1,1]]

    grid[i:i+3, j:j+3] = glider

There are many more intricate shapes of this nature such as guns which
produce gliders and a lot of work has been done into what appeared to be a
rather trivial game initially.

In another separate piece of code, displaying different techniques (pygame
in place of matplotlib animation) we are able to see an example of a gun.

import pygame

import numpy as np

 

col_about_to_die = (100, 200, 225)

col_alive = (255, 255, 215)

col_background = (10, 10, 40)

col_grid = (30, 30, 60)

 

def update(surface, cur, sz):

    nxt = np.zeros((cur.shape[0], cur.shape[1]))

 

    for r, c in np.ndindex(cur.shape):

        num_alive = np.sum(cur[r-1:r+2, c-1:c+2]) - cur[r, c]

 

        if cur[r, c] == 1 and num_alive < 2 or num_alive > 3:

            col = col_about_to_die

        elif (cur[r, c] == 1 and 2 <= num_alive <= 3) or \

                        (cur[r, c] == 0 and num_alive == 3):

            nxt[r, c] = 1

            col = col_alive

 

        col = col if cur[r, c] == 1 else col_background

        pygame.draw.rect(surface, col, (c*sz, r*sz, sz-1, sz-1))

 

    return nxt

 

def init(dimx, dimy):



    cells = np.zeros((dimy, dimx))

    pattern = np.array([

      [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0],

        [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0],

        [0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0],

        [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0],

        [1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],

        [1,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,1,1,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0],

        [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0],

        [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],

        [0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]])

    pos = (3,3)

    cells[pos[0]:pos[0]+pattern.shape[0],

            pos[1]:pos[1]+pattern.shape[1]] = pattern

    return cells

 

def main(dimx, dimy, cellsize):

    pygame.init()

    surface = pygame.display.set_mode((dimx*cellsize, dimy*cellsize))

    pygame.display.set_caption("Game of Life")

 

    cells = init(dimx, dimy)

 

    while True:

        for event in pygame.event.get():

            if event.type == pygame.QUIT:

                pygame.quit()

                return

 

        surface.fill(col_grid)

        cells = update(surface, cells, cellsize)

        pygame.display.update()

 

if __name__ == "__main__":

    main(120, 90, 8)

 



Whilst this is just a game, it allows the user to try out a number of
techniques, indeed, we could have used tkinter (or even turtle) for the GUI
with similar implementation.

We note the different colouration for cells which are about to die, which are
those that will be removed in the next iteration.

We also note that the starting grid is explicitly defined where the pattern of
the glider cannon (the gun) is saved in the variable named pattern.

The output is an animation, but the pattern for the gun is static:

A follow up of the game of life is left to the reader…

 

The Lorenz Attractor
 

An exercise for the reader.

 



Digital Image Processing
A huge amount of work has been done over the past 25 year with respect to
image processing and the growth of the subject and technologies arising
from such have been tremendous.

Image processing can often be processor intensive and as such has greatly
benefitted from the increase in processing power over the same period.

Python has proved to be a popular language for image processing and
comes with a number of libraries that intrinsically contain the techniques
that this section will be looking at. In particular, it is Python's ability to
harness and leverage the much faster C++ algo’s that has provided this
popularity.

One of the more popular modules that Python, called opencv , was
originally written in C++. Whilst there are a number of other modules, we
will focus on this one.

In this chapter we will attempt to understand a number of the processes
leading up to and finally including face detection or other interesting digital
equivalents. We will start at the beginning here:

●      Read images, videos, webcams
●      Basic functions
●      Resizing and cropping

 

Introduction to images
Even though we might not be able to see this with the naked eye, computer
images that we see on our screens, monitors or other devices are made up
from many small points called pixels. When we zoom into the images this
becomes noticeable as the image becomes more and more pixelated.



  

So we can consider an image as a series of squares.

And we can keep on zooming in to those squares until we reach the
resolution of the pixels themselves. So imagine that we wanted to draw the
number “3”, it would look something like this:



All the black boxes are given the value 0 and all of the white boxes are
given the value 1. The image itself is 8x8 squares (or pixels) width and
height. So 64 pixels in total.

Screen sizes are understood to be in terms of ( width x height ) where each
parameter represents the number of pixels in each dimension. Typical
screen sizes are:

●      VGA: 640 x 480
●      HD: 1280 x 720
●      4k: 3840 x 2160

So an HD display has 1280 pixels going across and 720 pixels in the
vertical direction. So there are 921,600 pixels in this display. Since the
human eye cannot resolve each dot of the nearly 1 million dots in a VGA
image, this is sufficiently sharp for highly detailed images to be displayed.

The image above is a binary image. It can either contain a black square or a
white square, but no other colour.

●      0 = Black
●      1 = white



But we could improve this by allowing for different numbers to create a
grayscale in place of the basic black and white images.

The different shades of grey make the image clearer. The scales go up in
powers of 2 (because they are binary) and the current number of levels that
gives a good image is 28 which is 256 levels.

A colour image is made up in exactly the same way as grayscale images
with the only difference being that there are 3 scales: red + green + blue.
And the sum of these gives the image that we see. We know this as RGB.

 

Grayscale red + green + blue

 



So a coloured HD image is now 1280 x 730 x 3 (a pixel for each colour).
Each one of these 921,600 pixels is made up from a sum of 3 colours each
with 256 levels of intensity.

Reading images and videos
Now that we have a basic understanding of how images are made we can
begin to move a bit deeper into the process.

One of the nice things about Python is the ease of use that it provides.
Importing an image is done with the opencv-python  module which is a
third party module like the pandas and numpy modules and is quickly
installed with the package manager ( pip install opencv-python ).

With this module it is easy to read an image:

import cv2
 
img = cv2.imread('assets/apple_colour.png')
cv2.imshow('Output', img)
cv2.waitKey(0)
The entire image is read into the memory and then displayed on the screen.

We can inspect the contents of the image like this:

print(img)
print('columns:', len(img))
print('rows:', len(img[0]))
print('colours:', len(img[0][0]))
And we see this:
[[[ 64 104 129]

  [ 64 104 129]

  [ 64 104 129]

  ...

  [ 88  73  70]

  [ 88  73  70]

  [ 88  73  70]]

  ...

  ...

  [194 194 178]

  [193 193 175]



  [192 192 174]]]

 

columns: 1204

rows: 1164

colours: 3

This is a list of lists (an array) with each sub list containing the RGB values.
So, our example image (of the coloured apple) contained a list of 1204
elements (the height) x 1164 elements (the width) x 3 elements (the red,
green and blue values). So describing this image was over 4 million values.
Whilst we don't get to appreciate the brilliance of the image in a book, the
blown up image on a HD screen is spectacular.

Importantly, we now have the data in just a few lines of code and this is
valuable.

Swiftly moving on from images, we can capture a video (by creating a
video capture object) like this:
import cv2
 
cap = cv2.VideoCapture('assets/sample_video.mkv')
 
while True:
    done, img = cap.read()
    if done == False:
        break
    cv2.imshow('Video', img)
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break
The first thing that we note is that a video is made up of a series of images.
The cap.read()  function returns a tuple with the first value being if the
image was read successfully and the second value the image file itself. We
have seen list unpacking before (in the data science chapter) and this is now
a convenient feature.

The complicated waitkey(1)  line is essentially waiting for the escape key
or the letter “q” to be pressed and could be replaced by this:

    key = cv2.waitKey(1)



    if key == 27 or key == 113:
        break
We like to keep things simple.

So, we were able to read and display an image file, then we were able to
read and display a video file which was a series of images. Our last
technique is to capture a video from the device webcam. So this is a real-
time video as opposed to a pre-stored video.

Reading data from the webcam exactly the same as the video with the
exception of 1 line of code changing into 3 lines:
cap = cv2.VideoCapture(0)
cap.set(3,640)  # width
cap.set(4,480)  # height
The VideoCapture() function reads zero as the default web camera of the
device. And the two set()  functions are the image size (width and height)
that we want to return.

 

Basic functions
In the above section, we were able to:

●      Read an image file and display the picture.
●      Read a video file and display the video.
●      Read the device camera and display the video.

The cv2 module in python offers a lot of image processing functions out of
the box. We will try to understand them first and then implement a few.

The general rule for image processing is to send a scanning square across
the image. With this we can do a lot of features such as blurring and edge
enhancements, sharpening etc. we could even do colour filters and so forth.

If we wanted to blur or smooth the image then we could take an average of
all of the pixels in the square and assign the average to the central pixel.



In the example above the average of all of the 9 pixels in the scanning
square are 6 rounded to the nearest integer. We assign this value to the
central pixel, so its value changes from 2 to 6. And as we move this square
across the image in the i and j direction in a nested for loop  or list
comprehension , averages are generated for all of the pixels in the image.
We have smoothed the image. There are a few things to note in the process.

●      The size of the scanning square (smoothing and processing time)
●      The average at the edges (information loss).
●      Different types of averaging (different effects and complexities).

Likewise, it is possible to do edge enhancements by comparing adjacent
columns of pixels in the list.

There are many applications ranging from fashion, media and fun to
military and industrial equipment.

Blur image:

The process for blurring images is effectively to take an average of the
pixels in the array around the target pixel. The cv2 module offers a
Gaussian blur which would be different to a simple average type process.

Here is the code:



import cv2
img = cv2.imread('assets/apple_colour.png')
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img_blur = cv2.GaussianBlur(img_gray, (49,49), 0)
 
cv2.imshow('Gray image', img_gray)
cv2.imshow('Blur image', img_blur)
 
cv2.waitKey(0)
And this is the result:

Normal image Blurred image

In the code we did two processes:
1. Convert the image to grey (we could have retained colour).
2. Blurred the image.

An interesting side note is that the opencv module refers to colours as BGR
(Blue, Green, Red) in place of the well known convention of RGB. This is
the elephant in the room for opencv whose core modules were created in the
early days and the BGR convention has stuck, so we have to get used to
this.

Edge detector:

For edge detection we need just two additional lines of code:

img_edge = cv2.Canny(img_gray,150,200)
cv2.imshow('Edge image', img_edge)
And if we want to enhance the enges more, then we can dilate the image.
With this extra code:



import numpy as np
kernel = np.ones((5,5), np.uint8)
img_dilation  =cv2.dilate(img_edge, kernel, iterations=2)
cv2.imshow('dialated image', img_dilation)
 

 

 

Edge detected Edge Enhanced

We can see how we are not able to see the sides of an object and even
enhance these. This could be useful for avoiding bumping into a chair or
staying in the centre of a road.

As a final note, it is possible to do the reverse of a dilation, which is known
as erosion like this:

img_eroded = cv2.erode(img_dilation, kernel, iterations=2)
cv2.imshow('eroded image', img_eroded)
cv2.waitKey(0)
And erosion of iterations=2 is not equal to a dilation of the same order in an
analogous way to 90% not being the opposite to 110% (think about that for
a second). To undo an operation, it is cleaner to return to the previous
operation.

 

Resizing and cropping
Images in opencv and other similar applications tend to define the
coordinate system from the top left hand corner of the screen. That means



that the top left is the point of origin (x=0, y=0) .

This is different from the standard cartesian coordinate system that we are
used to which has the origin in the bottom left hand corner and can also
have negative values.

Cartesian
coordinates

Screen coordinates

Negative numbers are “off the screen”. Also numbers greater than width
and height  exist outside the boundary of the visible screen, so would not
be drawn or shown.

Most drawing packages tend to follow the same coordinate system and we
have already experienced the same in the GUI sections (for turtle, tkinter
and pygame).

Now that we understand how to represent an image, we can dive into the
code with our example image:

import cv2
 
img = cv2.imread('assets/apple_colour.png')
 
h, w, c = img.shape
print(img.shape)
print(f'height: {h}, width: {w}, colours: {c}')
We are able to get the shape using the shape  property, which returns a
tuple containing the height, width and number of colours (BGR) in our
case.

Our code returned this:

(1204, 1164, 3)



height: 1204, width: 1164, colours: 3
So now we have the dimensions of the picture.

We can now use the resize()  method to change the dimensions of the
image, such as shrinking or stretching it by adding the following code:

 
img_resize = cv2.resize(img, (100,100))
img_stretch = cv2.resize(img, (500,200))
 
cv2.imshow('resized image', img_resize)
cv2.imshow('resized image', img_stretch)
 
cv2.waitKey(0)
Noting that the resize takes a tuple (width, height) which was a different
order to the shape property of (height, width, colour).

So with opencv, we need to be careful of the order of the dimensions and
colours.

Here is the resulting image:



After resizing (stretching) and image, we may also want to crop and image.
This is useful when the user wants just one particular area of interest from a
much larger image, for example a face of one individual from a crowd of
people or a licence plate of a car amid the traffic etc.

For cropping, we do not require a method in the module because we can
take advantage of our knowledge that an image is a matrix (which is a list
of lists), so we can just extract the area of interest by slicing the list.

Python natively offers a useful feature for lists called slicing which works
as follows:

x = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']
x[3:6]
 
# returns this: ['d', 'e', 'f']
Given a list, we can extract a portion (called a slice) of a list from a start
index (remembering that indices start from zero) to an end index (but not
including the end index itself).



So in the example above x[3:6] returns the letters in index positions 3, 4 and
5. Which are ‘d’, ‘e’, ‘f’.

So using this convenient and pythonic method would just need this:

img_cropped = img[350:1050, 200:975]
cv2.imshow('cropped image', img_cropped)
Here we have cropped (by slicing) elements 350 to 1050 in the vertical
direction (y-axis) and elements 200 to 975 in the horizontal direction (x-
axis). Which results in selecting only the apple from the original image.

The resulting image is also smaller in size by virtue of a new smaller height
and width.



Shapes and text
This section covers the basics of adding various lines and shapes to an
image. We recall that the image is just a matrix of numbers.

We can create a square image of 512 x 512 and assign each element of the
image with a zero value remembering that zero represents black (no
colour).

Inside this square black image we create a long purple (purple is blue mixed
with red) rectangle.
import cv2
import numpy as np
 
img = np.zeros((515, 512, 3)) # black square
 
# purple rectangle, height=200, width=20
img[100:300, 200:220] = (255,0,255)
 
cv2.imshow('image', img)
cv2.waitKey(0)
We use the same slicing technique as we used from the cropping section to
create the rectangle.

To this image, we add a green line starting at the origin (0,0) and going to
the bottom right corner (512,512).

# green diagonal line
cv2.line(img, (0,0), (512, 512), color=(0,255,0), thickness=2)
We then add an yellow rectangle

# yellow rectangle

cv2.rectangle(img, (100,50), (250,250),

 color=(0,255,255), thickness=10)

The rectangle is defined in a similar way to the line. All the user was
required to do was input the coordinates of the top left and bottom right
ordinates of the rectangle shame.

Next we add a white circle remembering that white is a maximum of all the
colours mixed (255,255,255). We also need to know that the ordinates that



we enter define the centre of the circle and its radius. When there are lots of
arguments, it is sometimes clearer to use the keywords that the arguments
are assigned to.

# white circle
cv2.circle(img, center=(350,350), radius=100,
    color=(255,255,255), thickness=50)
And finally adding some text in red saying “hello world”:

# add some text in red
cv2.putText(img, text='Hello World', org=(200,100),
    fontFace=cv2.FONT_HERSHEY_PLAIN,
    fontScale=3, color=(0,0,255), thickness=2)
And the entire combination of all of the above components look like this:

At this point we have sampled some of the basics of what we can do to
append an image and it is left as an exercise for the reader to be creative
with this.



Warp perspective
This is a useful technique for changing the perspective of an image so that
we can get a birds eye view of the flattened image. Imagine for example
that we take a picture of a document at an angle, but we want to see its true 
rectangular shape.

Or in our example case above, we have some playing cards scattered on the
table and we want to get the king of spades. We would need to know the
coordinates of the corners of the card to do this which we can get by
hovering over the image.
import cv2

import numpy as np

 

img = cv2.imread('assets/cards.jpg')

 

width, height = 200, 300

points = np.float32([[82,157],[212,134],[115,356],[264,323]])



new_pts = np.float32([[0,0], [width,0], [0,height], [width,height]])

matrix = cv2.getPerspectiveTransform(points, new_pts)

img_warp = cv2.warpPerspective(img, matrix, (width, height))

 

cv2.imshow('output image', img_warp)

cv2.waitKey(0)

Using the old points and the new points one can produce the transformation
matrix. This is done in the cv2 module with the function
getPerspectiveTransform()  and using this matrix one can then proceed to
perform the warp retaining the perpendicular flattened image.

Colour detection
When it comes to colour detection, the logical step would be to select
colours by their RGB (or BGR) tuple values. For example, if we wanted to
pick blues, then these would be all tuples where the blue value was
relatively high compared to the other values.

So (200, 50, 50) in the opencv module would be predominantly blue. We
could therefore, by this logic, select all colours that were blue in nature. The



blue ordinate > 200 would be sufficient.

However, whilst this logic could be used, the preferred method is to convert
the image to HSV or Hue Saturation Value which is used to separate image
luminance from colour information. This makes it easier when we are
working on or need luminance of the image/frame. HSV is also used in
situations where colour description plays an integral role.

In the HSV representation of colour, hue determines the colour you want,
saturation determines how intense the colour is and value determines the
lightness of the image.

So we up with a transformation that looks like this:

 

There are other similar representations of the same, but with this type of
model, the colours are split into their categories in a more convenient way.
For example one can obtain all the reds which include the light and dark
reds, but seeking a hue that is close to 0 degrees, say <30% and > 330% on
the polar scale.

In OpenCV, Hue has values from 0 to 180, Saturation and Value from 0 to
255. Thus, OpenCV uses HSV ranges between (0-180, 0-255, 0-255).

So with our original apple image we could transform the BRG image to an
HSV image. With the HSV image we then create a mask image and finally
and extract the reds from this using the mask as follows:

import cv2



 
img = cv2.imread(base_path + 'assets/apple_colour.png')
img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
hue_low, hue_high = 160, 180  # hugh for reds
img_mask = cv2.inRange(img_hsv, (hue_low,0,0), (hue_high, 255,255))
img_result = cv2.bitwise_and(img, img, mask=img_mask)
 
cv2.imshow('image', img)
cv2.imshow('hsv image', img_hsv)
cv2.imshow('mask image', img_mask)
cv2.imshow('result image', img_result)
cv2.waitKey(0)
 
And here are the resulting images.



Original → hsv → mask → reds

Original

Hsv

mask reds
 

We see that the HSV technique was convenient in extracting the reds from
the red apple picture.

 

Shape detection
In order to detect shapes, it is useful to have a method for detecting edges.
Fortunately we have touched upon such methods in the previous sections
and in particular in the basic functions we were able to produce a crude
edge enhancement for the apple image.

The opencv module provided some useful functions for the above:

●      GaussianBlur() → smoothing
●      Canny()[25] → edge detection
●      Dilate() → edge enhancement



The above enabled a smoothing of the original image with the
GaussianBlur , and then edge detection with the Canny()  function and
finally, enhancement of the edges with the Dilate()  function.

import numpy as np

import matplotlib.pyplot as plt

import cv2

 

img = cv2.imread('assets/shapes.jpg')

 

# blur the image

img_blur = cv2.medianBlur(img, 5)

 

# convert to grayscale

img_gray = cv2.cvtColor(img_blur, cv2.COLOR_BGR2GRAY)

 

# perform edge detection

img_edge = cv2.Canny(img_gray, 30, 100)

 

# detect lines in the image using hough lines technique

img_line = cv2.HoughLinesP(img_edge, 1, np.pi/180, 60, np.array([]), 50, 5)

 

# # finds the circles in the grayscale image using the Hough transform

img_crcl = cv2.HoughCircles(image=img_gray,

method=cv2.HOUGH_GRADIENT, dp=0.9, minDist=80,

param1=110, param2=39, maxRadius=70)

 

 

# iterate over the output lines and draw them

for line in img_line:

    for x1, y1, x2, y2 in line:

        cv2.line(img, (x1, y1), (x2, y2), (20, 100, 20), 10)

 

# iterate over circles

for co, i in enumerate(img_crcl[0, :], start=1):

    # draw the outer circle in green

    cv2.circle(img,(int(i[0]),int(i[1])),int(i[2]),(0,255,0),5)



    # draw the center of the circle in red

    cv2.circle(img,(int(i[0]),int(i[1])),2,(255,0,0),10)

 

 

# show the image

plt.imshow(img)

plt.show()

 

 

It was necessary to detect (and draw) the lines and circles using different
techniques:

●      HoughLinesP
●      HoughCircles

But otherwise, it was possible to perform shape detection of different shape
types in less than 50 lines of code. So let's create an image with a circle,
square and triangle and then invoke the above routine.

 

Original image Shape detection

We were able to identify the various shapes successfully with the python
opencv module. Note that it was also possible to show the locations and
dimensions of the shapes as well as the type of shape and even its colour.

 

Facial recognition



Facial recognition relies on all that we have learnt above in the previous
chapters. We will need [1] shape detection to recognise where faces might
be and [2] an AI solution with some form of trained data that contains faces
(and not faces).

Interestingly, the code run on a face image does have some crude
performance even though it is light on code. This is the result.

 

Original image Shape detection

In the above, there is a detection of the eyes via the circ;e detection method
and although not completely accurate (by visual inspection), there is even
an attempt at the centre of the eye.

So with the above, we have hope that the methods deployed are leading us
down the correct path towards a solution.

Fortunately, the opencv module provides a file which is pre-trained for
faces, so the user does not need to run a training file beforehand as would
otherwise have been necessary in absence of such data.

In fact opencv has provided a number of default cascades that can detect
different things such as number plates, eyes, or even full bodies. Using the
cascades leaves the code clean:

 
import cv2
 
img = cv2.imread('assets/author_02.jpg')



 
# Load the cascade
face_cascade = cv2.CascadeClassifier(
            "haarcascade_frontalface_default.xml")
 
# Convert into grayscale
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
 
# Detect faces
faces = face_cascade.detectMultiScale(img_gray, 1.1, 4)
 
# Draw rectangle around the faces
for (x, y, w, h) in faces:
    cv2.rectangle(img, (x, y), (x+w, y+h), (0, 0, 255), 10)
 
# show the image
cv2.imshow('result', img)
cv2.waitKey(0)
And the result is clear cut for a single facial image.

In fact we can make a complicated image by adding random items and a
background and perform the same test.

Before After



It is observed that the algo is also good for different sizes and also rotations
of the faces (of upto 20 degrees) whilst eliminating all the background
items.

 

Virtual painting
So we have come a huge way on the journey of image processing. The start
was to identify an array of white and black squares and then we did various
basic functions to change the image features and finally ended up with
facial recognition.

There are a multitude of applications that one could conceive, but let's try a
virtual painting application where we can hold up any pen colour to the
camera and draw an image on the screen.

For this task, we will need to find colours of our pens using the webcam
and subsequently place points on the screen at the tip of the pen so that we
can draw a virtual image.

We will use some of our existing knowledge and code to assist with the task
at hand.

The first thing that we need to know is the HSV range for selecting colours.
The alternative method is to use colour pickers to detect the colour of our
pens.

The general range is this:



So we can establish greens to be greens to have a hue-range of 40 to 80 and
blues to have a hue-range of 100 to 140. This will be enough to pick our
pens. If we wanted red, then we would need two ranges with huge = 0 to 10
for the orangey reds (lighter reds) and 170 to 180 for purple reds (darker
reds).

So knowing how to deploy a video capture method and now knowing how
to select colours for our pens we can generate this code:

import cv2

import numpy as np

 

print('starting video capture...')

cap = cv2.VideoCapture(0)

 

# screen dimensions

w, h = cap.get(3), cap.get(4)

print('video shape', w, h)

 

# calibrated from a color picker.

lower_blue = np.array([100,150,0])

upper_blue = np.array([140,255,255])

lower_green = np.array([40,150,0])

upper_green = np.array([80,255,255])

 



my_colors = {'blue':{'lower':lower_blue, 'upper':upper_blue},

            'green':{'lower':lower_green, 'upper':upper_green}}

 

def find_color(img, my_colors:dict):

    img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)

    for color in my_colors.keys():

        lower = np.array(my_colors[color]['lower'])

        upper = np.array(my_colors[color]['upper'])

        mask = cv2.inRange(img_hsv, lower, upper)

        cv2.imshow('image:'+color, mask)

    return

 

while True:

 

    # break at the end

    done, img = cap.read()

    if done == False:

        break

 

    find_color(img, my_colors)

    cv2.imshow('Video', img)

 

    # break if 'esc' or 'q' is pressed

    key = cv2.waitKey(1)

    if key==27 or key==113:

        break

Notice that the code allows for the main image and each colour that we
elect to add to the mask. So three windows will open.



 

Blue mask Green mask

For each of the masks that we have detected, we need to find where the
object is in the image. For this we need to find the contours and
approximate a bounding box around it so that we can find the location of
the object.

For this, we can create a contours function like this:

def get_contours(img):

    contours, hierachy = cv2.findContours(img,

                        cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)

    for cnt in contours:



        area = cv2.contourArea(cnt)

        print(area)

        if area>500:

            cv2.drawContours(img_result, cnt, -1, (255,0,0), 3)

            peri = cv2.arcLength(cnt, True)

            approx = cv2.approxPolyDP(cnt, 0.02*peri, True)

            x,y,w,h = cv2.boundingRect(approx)

 

This basically enables us to show contours around the pen colours.

The result appears to be satisfactory as we can see the pens highlighted with
the red borders. So the next task is to identify the tops of the areas as this is
where we intend to draw on the screen.

We can do this by adding a return value to the contour function that we
created earlier with this line of code.

return x+w//2, y + h//10
The  x + w/2  is the top left + half the width, which is the centre point
across. Likewise for the vertical we use y and one tenth of the height so that



we are near the tip. (remembering that the height starts from the top going
downwards in most of the drawing modules).

And we can parse these returned values back into the find_color() function
and draw circles at these points by adding this code:

        x, y = get_contours(mask)

        cv2.circle(img_result, (x,y), 10 , (0,0,255), cv2.FILLED)

Which again yields a satisfactory result.

The next stage is to change the red circles to the colours of the pens. And
the easiest way to do this is to extend the my_colors dictionary to include a
colour for each pen.

my_colors = {'blue':

    {'lower':lower_blue, 'upper':upper_blue, 'value':[255,0,0]},

            'Green':

    {'lower':lower_green, 'upper':upper_green, 'value':[0,255,0]}}

This means that we have conveniently parsed the values back into the
find_color()  function as part of the dictionary. Dictionaries are an excellent
tool for this type of use as they are extendable and fast.



The final task is to capture these dots into a list so that we can store and
draw them onto the screen. The list will need to contain the (x, y) position
on the screen and also its colour. So each item in the list will be a tuple like
this: (x, y, colour).

And we will need to create a draw function to draw the items that are stored
in the list onto the canvas which is done with this function:
def draw_on_canvas(my_points):

    for p in my_points:

        cv2.circle(img_result, (p[0], p[1]), 10, p[2], cv2.FILLED)

For completeness we show the entire code which is less than 80 lines in
length.

import cv2

import numpy as np

 

print('starting video capture...')

cap = cv2.VideoCapture(0)

 

# screen dimensions

w, h = cap.get(3), cap.get(4)

print('video shape', w, h)



 

# calibrated from a color picker.

lower_blue = np.array([100,150,0])

upper_blue = np.array([140,255,255])

lower_green = np.array([40,150,0])

upper_green = np.array([80,255,255])

 

my_colors = {

    'blue':{'lower':lower_blue, 'upper':upper_blue, 'value':[255,0,0]},

    'green':{'lower':lower_green, 'upper':upper_green, 'value':[0,255,0]}}

 

my_points = []

 

def find_color(img, my_colors:dict):

    img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)

    new_points = []

    for color in my_colors.keys():

        lower = np.array(my_colors[color]['lower'])

        upper = np.array(my_colors[color]['upper'])

        mask = cv2.inRange(img_hsv, lower, upper)

        x, y = get_contours(mask)

        c = my_colors[color]['value']

        cv2.circle(img_result, (x,y), 10 , c, cv2.FILLED)

        if x!=0 and y!=0:

            new_points.append([x,y,c])

        # cv2.imshow('image:'+color, mask)

    return new_points

 

 

def get_contours(img):

    contours, hierachy = cv2.findContours(img,

                        cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)

    x,y,w,h = 0,0,0,0

    for cnt in contours:

        area = cv2.contourArea(cnt)

        print(area)

        if area>500:



            cv2.drawContours(img_result, cnt, -1, (0,0,255), 3)

            peri = cv2.arcLength(cnt, True)

            approx = cv2.approxPolyDP(cnt, 0.02*peri, True)

            x,y,w,h = cv2.boundingRect(approx)

    return x+w//2, y + h//10

 

def draw_on_canvas(my_points):

    for p in my_points:

        cv2.circle(img_result, (p[0], p[1]), 10, p[2], cv2.FILLED)

 

 

 

 

while True:

 

    # break at the end

    done, img = cap.read()

    if done == False:

        break

 

    img_result = img.copy()

    new_points = find_color(img, my_colors)

    if len(new_points)!=0:

        for newp in new_points:

            my_points.append(newp)

    if len(my_points)!=0:

        draw_on_canvas(my_points)

    cv2.imshow('Video', img_result)

 

    # break if 'esc' or 'q' is pressed

    key = cv2.waitKey(1)

    if key==27 or key==113:

        break

And here is the result:



A rather fun looking virtual painting application !

We have come to the end of the digital image processing section where the
journey began with some 1’s and 0’s and extended to face recognition and
virtual painting. We could have included other projects such as a document
scanner or number plate detection. But these are left to the reader…

 

 

 

 

Number plate recognition

Detect movement

Object detection

 

 



Web scraping
At this point, we have significant computing power. We also have methods
of communicating between devices. And now we have knowledge of
asynchronous methods for i/o connections which can cause bottlenecks.

Various systems push data into the ecosystem which is the web and the
systems can extract the data. So for example, we can browse the web with a
device, but we also have tools for automation.

We already looked at the requests  module, which enabled the user to
retrieve data as text, JSON or binary, which is good in many cases.

We can also connect via an Application Programming Interface (API) and
collect the data a bit more efficiently.

However, there are powerful alternative methods with modules such as
selenium and beautiful soup. We will take an overview of these methods
and when we may or may not prefer one mechanism over the other and
consider the “whoops, they redesigned” problem.

 

 



 

Selenium
According to the official website “selenium automates browsers. That’s it.
What you do with that power is entirely up to you”.

The first thing that we want to try is the equivalent of hello world in the
selenium module. So let’s try to open a web page:
from selenium import webdriver
from selenium.webdriver.chrome.service import Service
from webdriver_manager.chrome import ChromeDriverManager
import time
 
service=Service(ChromeDriverManager().install())
driver = webdriver.Chrome(service=service)
 
url = "http://www.spacegoo.com/solar_system/"
 
driver.get(url)
time.sleep(30)
The first thing to note is that the selenium package requires more imports
than other packages that we have seen before.

This is because the Selenium module needs to take into account all of the
browsers that are available on the market (chrome, firefox, edge etc.) as
well as all of the different versions that the browsers come in. So this in
itself is a large task and hence a prime example of a use case for a module.

 

In fact the hello world example required 3 imports:

1. Selenium - the selenium module
2. Service - selects the chrome browser
3. ChromeDriverManager - gets latest version

The first is the webdriver tool itself. The second and third imports steps
select which browser to automate and a convenient tool for the latest
version of the selected browser.



Prior to the introduction of the manager tool (which was introduced in
selenium version 4), the user was required to point to the driver file path on
the pc and when an upgrade of the browser took place, the code needed to
be updated to point to the new version, which was rather cumbersome given
that many users tend to automatically upgrade to the latest version.

So the user effectively does an install the latest compatible browser at each
run of the code and the result is ultimately assigned to the driver variable.

From this point, opening a browser with a website is simply a case of
calling the same URL string that the user would have typed into the browser
and then running the driver.get()  function.

Once the user has arrived at a web page, it is often the case that they may
want to do something in particular, like download a file, click on a link or
press a button. And this is the automation part.

We will pause at this point because there are other automation processes
that we should be considering before proceeding.

The hint for selenium is that its primary use case is automation and this is
where user actions are required prior to accessing a web page.

https://www.selenium.dev/

 

 

https://www.selenium.dev/


 

Beautiful soup
Beautiful Soup is a library that makes it easy to scrape information from
web pages. It sits atop an HTML or XML parser, providing Pythonic idioms
for iterating, searching, and modifying the parse tree.

This module is designed for quick turnaround projects like screen-scraping.
In particular the following three features:

1. a few simple methods and Pythonic idioms for navigating,
searching, and modifying a parse tree.

2. automatically converts incoming documents to Unicode[26] and
outgoing documents to UTF-8. So the user does not need to think
about encodings.

3. sits on top of popular Python parsers like lxml and html5lib.

We can get of to a quick start with the bs4 module:

from bs4 import BeautifulSoup
soup = BeautifulSoup("<p>Some<b>bad<i>HTML")
print(soup.prettify())
All the user needs to do is import the module and then parse any HTML
string or document into the package.

And this is the output:

GuessedAtParserWarning: No parser was explicitly specified, so I'm using the best available HTML parser for this system

("lxml"). This usually isn't a problem, but if you run this code on another system, or in a different virtual environment, it may use

a different parser and behave differently.

 

To get rid of this warning, pass the additional argument 'features="lxml"' to the BeautifulSoup constructor.

 

  soup = BeautifulSoup("<p>Some<b>bad<i>HTML")

<html>

<body>

  <p>

   Some

   <b>

    bad



    <i>

     HTML

    </i>

   </b>

  </p>

</body>

</html>

We even get thrown the convenient error message of how to fix this error.
We don't yet know what this error means other than it is to do with the
structure of the document.

Like all code, we are expecting a properly structured (or well written)
document, but this is not always the case, so a useful module like bs4 is
designed to help with this issue.

We know how to download documents using the requests module in the
HTTP request section of the book. So these modules usually come hand in
hand [first the request, then the reading of the data].

Again, just like with selenium we will pause to consider the other
automation processes.

SQLite (Database)
The database section of the book could have been included into a number of
the chapters and most notably the data types and the data science sections.

There are many different databases on the markets and these are broadly
categorised into two sections.

●      SQL
●      No SQL

SQL and NoSQL differ in whether they are relational (SQL) or non-
relational (NoSQL), whether their schemas are predefined or dynamic, how
they scale, the type of data they include and whether they are more fit for
multi-row transactions or unstructured data.

Python offers SQLite out of the box as one of the core modules and this was
the case since version 2.5 (so prior to the existence of version 3).



“SQLite is an in-process library that implements a self-contained,
serverless, zero-configuration, transactional SQL database engine”.

The terms in the description above are basically telling us that SQLite is a
relatively simple database to work with. And it is the most widely deployed
and used database engine which has found its way into every major
operating system and also every web browser along with a host of major
products and companies using it.

For this reason, it is suitable to use SQLite as the example case as it has the
potential to provide use cases for both beginners and advanced users.

The key difference between SQLite and most other databases is that SQLite
does not have a separate server process. SQLite reads and writes directly to
ordinary disk files.

In general, databases are faster than file systems and SQLite claims to be
approximately 35% faster than a standard file. One main reason for this is
that the open() and close() system calls are invoked only once for databases.

Most SQL database engines use static, rigid typing. So each column is
effectively given a type at the outset.

These are the types that SQLite offers:

●      NULL. The value is a NULL value.
●      INTEGER. The value is a signed[27] integer.
●      REAL. The value is a floating point value.
●      TEXT. The value is a text string.
●      BLOB. The value is a blob of data, stored exactly as it was input.

So the Python language has good familiarity with the types with the
introduction of the “blob”.

SQLite does not offer the boolean data type, but this is handled with 1
(True) & 0 (False).

SQLite also does not have a Date and Time Datatype, so handles this as the
Text, Real or Integer types. For example the integer as Unix time
represents the number of seconds since 1970-01-01 00:00:00 UTC.



We have discussed a lot, so let's get into the code. We make a database like
this:

import sqlite3
 
conn = sqlite3.connect('employee.db')  # makes a database file
c = conn.cursor()  # make a cursor
 
# start running sql commands
c.execute(""" CREATE TABLE employees (
    first text,
    last text,
    pay integer
    ) """)
 
conn.commit()  # commit data to the database & close
conn.close()
With the sqlite3 module we are able to create a database with just a few
lines of code. In fact, we could create an in memory database by replacing
“employee.db” with the string  :memory:  but for the purpose of the
example we created a file.

The process for most of the database functions in python (and other
languages) is similar.

1. Connect to a database
2. Execute SQL commands (to receive or send data).
3. close the connection.

In the example, “employee.db” contains some data on employees salary.
The first two columns for the names are text and the next column for salary
was an integer.

We can data to the database like this:

c.execute('insert into employees VALUES ("alice", "apple", 50000)')

c.execute('insert into employees VALUES ("bob", "banana", 75000)')

And view the results in vscode with the SQlite extension.



We can access the same statement in python with the select statement:

c.execute('SELECT * FROM employees WHERE last="apple"')
result = c.fetchall()
print(result)
Which gives this:

[('alice', 'apple', 50000)]
Which is what we were expecting. There are in fact 3 fetch commands:

●      fetchone()  - returns the next row
●      fetchmany(n)  - return the next n rows
●      fetchall()  - return all rows

So, at this point we are able to set up, populate and retrieve (query) data
with a database in python in just a few lines of code.

The advantage of accessing the database via code is that we can
programmatically add data from lists, dicts or even classes or variables like
this:

employee_3 = {'first':'clive', 'last':'banana', 'pay':60000}

c.execute('insert into employees VALUES (:first, :last, :pay)',

    employee_3)

 

Note that we avoid using string formatting which is vulnerable to SQL
injection attacks and instead pass the object (we used a dict) directly into
the database with the colon notation representing the database columns.

The same method as above can be extended to queries:



c.execute('SELECT * FROM employees WHERE last=:last',
                                    {'last':'banana'})
result = c.fetchall()
print(result)
Which now returns a list of tuples because there were two employees of the
same name (banana).

[('bob', 'banana', 75000), ('clive', 'banana', 60000)]
So, again we are confident in the result.

One useful feature of databases in python is that we can pull all the data
into a pandas dataframe in a similar way that we were able to for text and
csv files using the read_sql()  method in just one line of code.

For the purpose of completeness, we will cover one other aspect of python
with databases which is using functions and also context managers (the
with statement) to conveniently operate on the database.

Insert a new employee:

def insert_emp(emp:dict):

    with conn:

        c.execute('insert into employees VALUES (:first, :last, :pay)',

        emp)

Retrieve an employee:

def get_emps_by_name(lastname):

    c.execute('SELECT * FROM employees WHERE last=:last',

                                    {'last':lastname})   

    return c.fetchall()

Update an employees salary:

def update_pay(emp:dict, new_pay:int):

    with conn:

        c.execute('''UPDATE employees SET pay = :pay

            WHERE first = :first AND last = :last''',

            {'first':emp.first, 'last':emp.last, 'pay':new_pay})

Remove an employee
def remove_emp(emp:dict):

    with conn:



        c.execute('''DELETE from employees

        WHERE first = :first AND last = :last''',

        {'first':emp.first, 'last':emp.last})

So we now have convenient functions to operate on the database in an easy
format.

And we can call the functions to perform operation is a user friendly way:

employee_01 = {'first':'dave', 'last':'cucumber', 'pay':100000}

employee_02 = {'first':'elle', 'last':'Dates', 'pay':125000}

 

insert_emp(employee_01)  # add employee

insert_emp(employee_02)  # add employee

 

update_pay(employee_02, 95000)  # update pay

remove_emp(employee_01)  # remove employee

 

emps = get_emps_by_name('banana')  # get data

print(emps)

 

 

And with this we are now able to add, remove and update the pay of
salaries.



As well as being able to make queries.

There are a whole host of other things that one can do with SQLite, so it is
left as an exercise for the reader to explore this.



 

Automation processes
Getting data is important. Infact, aside from setting up the environment it is
the first task that a process usually has whether that is in data science or any
other field.

There are some key aspect of data acquisition that one needs to consider:

●      Quantity of data
●      Speed (latency) of transfer
●      Complexity of the data
●      Easy of access
●      Evolution of the source

The above are some headline considerations, but can be further broken
down which is why it was prudent to pause on the selenium and beautiful
soup modules.

Quantity:

Some pieces of data might only be a few lines. For example  the price of a
particular item in a supermarket. This might be in the form of a web query
where we would use the requests module.

We might also have light data in the form of the price of a particular stock,
but this would be continuously changing throughout the course of the day,
which would be more suited to a websocket.

 

Speed:

Aside from the volume of data requested, various sources take different
lengths of time to be acquired into the system. For example reading a csv
file via the pandas or csv modules is a relatively fast process compared to
an http request via the web.

If a user was to make many http requests, then they would need to consider
asynchronous methods (such as asyncio, threading or multiprocessing) such
that the requests do not block each other.



We call this “speed” the latency of the network which involves the round
trip of the data request and receiving the data pursuant to the request.

 

So reading a file is low latency whereas reading a web page is high latency.

complexity:

Next we need to consider the complexity of the data. This will encompass
factors like which format does the data come in, for example text, csv or
json and also how structured in the data.

A flat csv file will read very quickly into a pandas dataframe, whereas a
json file is larger, but may contain richer content such as many nested
levels.

We also need to consider encoding of the data and if omitted it would break
or mean something different in the selenium and bs4 modules than we may
otherwise have expected.

Ease of access:

This aspect might seem trivial, but there are a whole host of features which
prevent simple data transfer. This could be as simple as access to a database
or a password or link or forwarded page in an html document where the



user logs into one page and is sent elsewhere to a second or third page to
get the data that they need.

Sometimes, the method of access will change when the system is updated.
Like an upgraded API.

The other issue is that some web hosts are averse to openly sharing data in a
machine readable format or be scraped by bots and have measures in place
to prevent this. The user would then have to resort to alternative measures
such as a headless browser.

Evolution of the source:

The internet, databases and other sources such as the likes of ccd arrays (ie.
web cameras) are continually evolving. Most prominently the evolution and
format of web pages. It is quite common to create a crawler that works very
well for a significant period of time, but then breaks when the formatting of
the web page changes.

This is because a typical html document is made up from elements and with
a refactoring of the website a number of the terms will change, just like a a
refactoring of code might prompt the coder to modify their variable names
even if it is for a simple reason like clarity.

Nevertheless, if the scraping code is searching an HTML page for an
element or xPath[28] that no longer exists and relies on this data, then the
scraping code will be compromised.

And this is the curse of the “whoops, they redesigned” problem.

 

The optimal tool:

Finally, with a more complete knowledge of the products available, let's
explore various data sources and the appropriate Python tool for completing
the task.

Content
type

method

files ●      Read and write with



context managers.
●      Read csv, pandas.read_csv
●      Read json

database Database tools like SQlite

Web page
 

●      With basic text: requests,
beautiful soup

●      Tables: pandas read_html()
●      with data file: requests,

selenium
●      With clicks / navigation:

selenium

Peripherals treat as files

Note that there are many ways to skin the cat, but the above table provides
some useful guidelines.



 

Others
Other ideas that are not yet complete.

 

My first problem
This was actually probably not my first ever problem, but it was the first
time that I was stumped enough to have the need to go to the stack to ask a
question for Python as previously I had been using Node.JS  which is
another popular scripting language (and one which uses curly braces ,
semicolons  and //  for comments).

The process of asking a good question, which we can define as one in
which the community will give you up votes instead of down votes is a
rather lengthy process.

There is actually a specific format that was alluded to earlier which we will
adhere to time and time again. This is the Minimal, Reproducible
Example.

At this point I am concerned enough to ask the question in such a way that
the community can see that I have:

●      researched the issue sufficiently
●      provided enough code that others can replicate the problem

quickly
●      made an attempt at what I consider to be a solution
●      clearly state what I do and don’t understand
●      very specific in what the desired output should be

If the user has not done these basic things, then they risk being downvoted.

So, let’s get back to the point, my problem was this:

HTTPError: Forbidden



This was something very specific and annoying at the time. Whilst I was
able to use a specific library (in this case the requests  module). I was
unable to navigate beyond the first press of a button on the website.

I was trying to do something rather simple, let the code navigate a web page
for me, but was getting stuck early on and the web page in question
required the user to click a radio box button and if they did not, then they
would get this Forbidden  error.

I provided the code that I had done:



This particular question got 79 views and nobody posted any answers
whatsoever.

However, one person posted a comment.

You can try using selenium  to simulate the radio button selection and
button click. I now look back, some 4 years later, to find yet another user
who was much better than I was (with double my stack score) who had
pointed me to a relatively popular package that I had not come across
before.

Basically, what he was saying was “you are using a spanner to open a tin,
why don’t you try using a tin opener?”

The point being that I was using completely the wrong tool for the job.

At this point, I could go into the specifics of the selenium package that he
was referring to, but this would defeat the purpose. The principle of coding,
like all other aspects in life, is using the right or at least the best tools for
the job.

A good coder will generally know what these are, just like a carpenter will
have specific tools for slicing and dicing wood or an electrician for fixing
wires.

The answer somehow required a package (of the many thousands available)
that was capable of quickly navigating the web browser and until I had this
particular tool, I would always struggle.

 



 

My first answer
Before I go into this, I note that I have answered 3 times as many questions
as I have asked. I don’t know what this means other than I might be a net
contributor into the system as I continually struggle with problems and
would have thought that the balance would have actually been the other
way around.

So maybe I don’t ask enough questions?

Nevertheless, let’s look at the question that I answered.

The title was: Run multiple python scripts concurrently

And the question was this:

We can see that it had 61 up votes, so clearly a respectable question in the
sense that many people probably faced the same issue.

And over the years, there have been several answers posted.

I had stumbled upon the same question some 3 years after it was posted,
obviously trying to do the same thing. In fact I faced this problem or at least
a very similar issue with Node.js which is another scripting language so I
posted a solution to how I would do this in node and how the same rules
transfer over to python.



This was one of many solutions and probably not even the best of the
solutions, nevertheless sufficient to solve a problem for a few users with the
same issue in a simple manner.

Again, the point here is not the technicalities of the answer, but that as a
coder we can draw techniques from other similar languages. It is actually
the general rules that we are looking first at as opposed to the specific
details.

The second point to note, which was far more interesting, is that the user
wants to run multiple code concurrently. A massive issue in the coding
world which crops up literally everywhere.



 

100 prisoners
So this problem does not yet exist on the stack, but there is a great video on
youtube of the same. Here we will go through the problem.

There are 100 prisoners and each prisoner has to go into a room. The room
contains 100 boxes. And each box contains a different number. Each
prisoner can pick up to 50 boxes. If the prisoner picks their own number,
then it is a success. If all 100 prisoners get successes, then they are all set
free. If even one of the prisoners fails (more than 50 boxes), then they all
die.

What is the probability that the 100 prisoners survive ?



 

Classes and mutability
 

https://stackoverflow.com/questions/73537529/unexpected-behavior-with-
python-list-of-dictionaries-when-adding-new-key-to-
them/73538560#73538560

Here was the original question:

“I have encountered unexpected behaviour from my python interpreter
during a project. I'm aware that, in certain situations, python uses the
reference to an object, not the object itself. However, I cannot explain why
this problem arises in this piece of code since the elements of the list seem
to be different instances with different object ids. Whenever I add a new
{key:value}  pair to the dictionary, all other dictionaries in that list get
updated.”

class Node():
    def __init__(self, name, neighbors=dict()):
        self.name = name
        self.neighbors = neighbors # a dict {}
 
    def add_neighbor(self, neighbor, value=0):
        self.neighbors[str(neighbor)] = value
 
 
if __name__ == "__main__":
    n_1 = Node(name='node_1')
    n_1.add_neighbor('node_2', value=5)
    n_2 = Node(name='node_2')
 
    node_list = [n_1, n_2]
    for node in node_list:
        print(id(node), node.name, node.neighbors)
 
The result is this:

https://stackoverflow.com/questions/73537529/unexpected-behavior-with-python-list-of-dictionaries-when-adding-new-key-to-them/73538560#73538560


2129022374520 node_1 {'node_2': 5}
2129022374576 node_2 {'node_2': 5}
 

So why did this happen and how do we fix this problem?

The default value for “neighbors” is a single dictionary that is shared across
class instances. This means that every instance points to the same dict. It is
an inherent part of the mutability of lists and dicts (the memory address
does not change when the value changes). This is a useful feature when
used properly, but when overlooked or misunderstood could cause
problems.

So how do we rectify this?

One method would be to just type-hint  of a dict in place of assigning a
dict. Remember, a type-hint in python is exactly that. This then means that
the user could assign their dicts in each instance when creating
(instantiating) the object.

class Node():
    def __init__(self, name, neighbors:dict):  # hint
        self.name = name
        self.neighbors = neighbors # a dict {}
 
    def add_neighbor(self, neighbor, value=0):
        self.neighbors[str(neighbor)] = value
 
 
if __name__ == "__main__":
    n_1 = Node(name='node_1', neighbors={})  # dict a
    n_1.add_neighbor('node_2', value=5)
    n_2 = Node(name='node_2', neighbors={})  # dict b
 
    node_list = [n_1, n_2]
    for node in node_list:
        print(id(node), node.name, node.neighbors)
 

 



 

 

 

 

 

 

 

 

[1] Pandas is derived from the words panel data. It has nothing to do with panda bears.
[2] The PIL library provides fairly powerful image processing capabilities.
[3] Random Access Memory, RAM, is essentially short term memory where data is stored as the
processor needs it.
[4] Hard disk: Seagate BarraCuda Q5 NVMe SSD
RAM: AMD Ryzen 3 4300U
[5] We can install pandas with pip install pandas  from a command prompt.
[6] Vectorisation works best for Numeric code, but less well for strings.
[7] This is known as the ndarray.
[8] a contiguous block of pointers where each pointer references a Python object.
[9] A crude look at the website appears to offer in excess of 1000 basic types.
[10] Unpacking is another convenient feature in python.
a,b = np.polyfit(...) gets both the gradient and intercept variables in one line of code.
[11] The iris flower dataset: The data set consists of 50 samples from each of three species of Iris (Iris
setosa, Iris virginica and Iris versicolor).
[12] KNN stands for Kth Nearest Neighbour.
[13] JSON stands for JavaScript Object Notation.
[14] A drawdown is a sell off in the market to a specified amount.
[15] Uniform Resource Locator, which is effectively the unique web address.
[16] A race condition occurs when two or more threads can access shared data and they try to change
it at the same time. Because the thread scheduling algorithm can swap between threads at any time,
you don't know the order in which the threads will attempt to access the shared data.
[17] The Python Global Interpreter Lock (GIL) is a lock that allows only one thread to hold the
control of the Python interpreter. So only one thread can be in a state of execution at any point in



time. The GIL has no impact on single-threaded programs, but it can be a performance bottleneck in
asynchronous code.
[18] Tkinter originates from Tk which is a free and open-source, cross-platform widget toolkit that
provides a library of basic elements of GUI widgets for building a graphical user interface (GUI) in
many programming languages. The first version was released in 1991.
[19] A callback function is a function passed into another function as an argument, which is then
invoked inside the outer function to complete some kind of routine or action.
[20] Originally coined in the 17th century by René Descartes as a derogatory term and regarded as
fictitious or useless, the concept gained wide acceptance following the work of Leonhard Euler (in
the 18th century) and Augustin-Louis Cauchy and Carl Friedrich Gauss (in the early 19th century).
 
[21] Historically, the geometric representation of a complex number as a point in the plane was
important because it made the whole idea of a complex number more acceptable.
[22] Data sampling is important as it can yield different results. The sampling depends on how
frequently the data is inspected relative to the quantity of the data available..
[23] Scaremongering is one format or rumour propagation. The ‘fear’ in each node (person) is likely
to activate a transmission of data in a proportion relative to the particular nodes ‘fear;’ threshold. We
can refer to this as triggering the activation function.
[24] Moore's law is the observation that the number of transistors in a dense integrated circuit (IC)
doubles about every two years. Moore's law is an observation and projection of a historical trend.
Rather than a law of physics, it is an empirical relationship linked to gains from experience in
production.
[25] The method is named after its creator John F Canny is a popular edge detection algorithm which
uses image gradients.
[26] Everyone in the world should be able to use their own language on phones and computers. The
Unicode Standard allows for consistent encoding, representation, and handling of text expressed in
most of the world's writing systems.
[27] A signed integer is a 32-bit datum that encodes an integer in the range [-2147483648 to
2147483647]. The signed integer is represented in two's complement notation (1,2,3..8 bytes).
[28] XPath stands for XML Path Language. It uses a non-XML syntax to provide a flexible way of
addressing (pointing to) different parts of an XML document.
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