

 Z
	-0 (zero) Python
 option, Python Options
	-00 (zero zero)
 Python option, Python Options
	ZeroDivisionError class, Specific Exceptions Raised
	zip function, Built-in Functions

 Python Pocket Reference

Mark Lutz

[image: image with no caption]

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

 Chapter 1. Python Pocket Reference

 Introduction

Python is a general-purpose, object-oriented,
 and open source computer programming language. It is commonly used for
 both standalone programs and scripting applications in a wide variety of
 domains, by hundreds of thousands of developers.
Python is designed to optimize developer productivity, software
 quality, program portability, and component integration. Python programs
 run on most platforms in common use, including mainframes and
 supercomputers, Unix and Linux, Windows and Macintosh, Java and .NET,
 and more.
This pocket reference summarizes Python types
 and statements, special method names, built-in functions and exceptions,
 commonly used standard library modules, and other prominent Python
 tools. It is intended to serve as a concise reference tool for
 developers and is designed to be a companion to other books that provide
 tutorials, code examples, and other learning materials.
This fourth edition
 covers both Python versions 3.0 and 2.6, and later releases in the 3.X
 and 2.X lines. This edition is focused primarily on Python 3.0, but also
 documents differences in Python 2.6, and so applies to both versions. It
 has been thoroughly updated for recent language and library changes and
 expanded for new language tools and topics.
This edition also incorporates notes about prominent enhancements
 in the imminent Python 3.1 release, which is intended to subsume Python
 3.0 (in this book, Python 3.0 generally refers to the language
 variations introduced by 3.0 but present in the entire 3.X line). Much
 of this edition applies to earlier Python releases as well, with the
 exception of recent language extensions.

 Conventions

The following conventions are used in this book:
	[]
	Items in brackets are usually optional. The exceptions are
 those cases where brackets are part of Python’s syntax.

	*
	Something followed by an asterisk can be repeated zero or
 more times.

	a | b
	Items separated by a bar are often alternatives.

	Italic
	Used for filenames and URLs and to highlight new
 terms.

	Constant width
	Used for code, commands, and command-line options, and to
 indicate the names of modules, functions, attributes, variables,
 and methods.

	Constant width italic
	Used for replaceable parameter names in command syntax.

 Using Code Examples

This book is here to help you get your job done. In general,
 you may use the code in this book in your programs and documentation.
 You do not need to contact us for permission unless you’re reproducing a
 significant portion of the code. For example, writing a program that uses
 several chunks of code from this book does not require permission.
 Selling or distributing a CD-ROM of examples from O’Reilly books does
 require permission. Answering a question by citing this book and quoting
 example code does not require permission. Incorporating a significant
 amount of example code from this book into your product’s documentation
 does require permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 “Python Pocket Reference, Fourth Edition, by Mark
 Lutz. Copyright 2010 Mark Lutz, 978-0-596-15808-8.”
If you feel your use of code examples falls outside fair use or
 the permission given above, feel free to contact us at
 permissions@oreilly.com.

 Safari® Books Online

Note
Safari® Books Online is an on-demand digital library that lets
 you easily search over 7,500 technology and creative reference books
 and videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video
 from our library online. Read books on your cell phone and mobile
 devices. Access new titles before they are available for print, and get
 exclusive access to manuscripts in development and post feedback for the
 authors. Copy and paste code samples, organize your favorites, download
 chapters, bookmark key sections, create notes, print out pages, and
 benefit from tons of other time-saving features.
O’Reilly Media has uploaded this book to the Safari® Books Online
 service. To have full digital access to this book and others on similar
 topics from O’Reilly and other publishers, sign up for free at http://my.safaribooksonline.com.

 Command-Line Options

Command lines are used to launch Python programs from a
 system shell prompt. Command-line options intended for Python itself
 appear before the specification of the program code to be run. Options
 intended for the code to be run appear after the program specification.
 Command lines have the following format:
python [option*]
 [scriptfilename | -c command | -m module | -] [arg*]
Python Options

	-b
	Issues warnings for calling str() with a bytes or bytearray object, and comparing a
 bytes or bytearray with a str. Option -bb issues errors instead.

	-B
	Do not write .pyc or .pyo byte-code files on
 imports.

	-d
	Turns on parser debugging output (for developers of the
 Python core).

	-E
	Ignores Python environment variables described ahead (such
 as PYTHONPATH).

	-h
	Prints help message and exit.

	-i
	Enters interactive mode after executing a script. Useful
 for postmortem debugging.

	-O
	Optimizes generated byte-code (create and use .pyo byte-code files). Currently
 yields a minor performance improvement.

	-OO
	Operates like -O, the
 previous option, but also removes docstrings from
 byte-code.

	-s
	Do not add the user site directory to the sys.path module search path.

	-S
	Do not imply “import site” on initialization.

	-u
	Forces stdout and stderr to be unbuffered and
 binary.

	-v
	Prints a message each time a module is initialized,
 showing the place from which it is loaded; repeats this flag for
 more verbose output.

	-V
	Prints Python version number and exit.

	-W
 arg
	Functions as warning control; arg takes the form
 action:message:category:module:lineno.
 See warnings module
 documentation in the Python Library Reference manual (available
 at http://www.python.org/doc/).

	-x
	Skips first line of source, allowing use of non-Unix
 forms of #!cmd.

Program Specification

	scriptfilename
	Denotes the name of a Python scriptfile to execute as the
 main, topmost file of a program execute (e.g., python main.py). The script’s name is
 made available in sys.argv[0].

	-c
 command
	Specifies a Python command (as a string) to execute (e.g.,
 python -c "print('spam' * 8)"
 runs a print call). sys.argv[0] is set to -c.

	-m
 module
	Runs library module as a script: searches for module on
 sys.path, and runs it as a
 top-level file (e.g., python -m
 profile runs the Python profiler located in a standard
 library directory). sys.argv[0] is set to the module’s
 full path name.

	−
	Reads Python commands from stdin (the default); enters
 interactive mode if stdin
 is a tty (interactive device). sys.argv[0] is set to −.

	arg*
	Indicates that anything else on the command line is passed
 to the scriptfile or command (and appears in the built-in list
 of strings sys.argv[1:]).

If no scriptfilename,
 command, or
 module is given, Python enters interactive
 mode, reading commands from stdin
 (and using GNU readline, if installed, for input).
Besides using traditional command lines at a system shell
 prompt, you can also generally start Python programs by clicking their filenames in a file
 explorer GUI, by calling functions in the Python/C API, by using
 program launch menu options in IDEs such as IDLE, Komodo, Eclipse,
 NetBeans, and so on.
Note
Python 2.6 does not support the -b option, which is related to Python
 3.0’s string type changes. It supports additional options:
	-t issues warnings for
 inconsistent mixtures of tabs and spaces in indentation
 (-tt issues errors instead).
 Python 3.0 always treats such mixtures as syntax errors.

	-Q division-related
 options: -Qold (the default),
 -Qwarn, -Qwarnall, and –Qnew. These are subsumed by the new
 true division behavior of Python 3.0.

	−3 issues warnings
 about any Python 3.X incompatibilities in code.

 Environment Variables

Environment variables are system-wide settings that span programs and
 are used for global configuration.
Operational Variables

	PYTHONPATH
	Augments the default search path for imported module files.
 The format is the same as the shell’s PATH setting: directory pathnames
 separated by colons (semicolons on Windows). On module imports,
 Python searches for the corresponding file or directory in each
 listed directory, from left to right. Merged into sys.path.

	PYTHONSTARTUP
	If set to the name of a readable file, the Python commands
 in that file are executed before the first prompt is displayed
 in interactive mode.

	PYTHONHOME
	If set, the value is used as an alternate prefix directory
 for library modules (or sys.prefix, sys.exec_prefix). The default module
 search path uses sys.prefix/lib.

	PYTHONCASEOK
	If set, ignores case in import statements (on
 Windows).

	PYTHONIOENCODING
	encodingname[:errorhandler]
 override used for stdin,
 stdout, and stderr streams.

Command-Line Option Variables

	PYTHONDEBUG
	If nonempty, same as -d
 option.

	PYTHONDONTWRITEBYTECODE
	If nonempty, same as -B
 option.

	PYTHONINSPECT
	If nonempty, same as -i
 option.

	PYTHONNOUSERSITE
	If nonempty, same as -s
 option.

	PYTHONOPTIMIZE
	If nonempty, same as -O
 option.

	PYTHONUNBUFFERED
	If nonempty, same as -u
 option.

	PYTHONVERBOSE
	If nonempty, same as -v
 option.

 Built-in Types and Operators

Operators and Precedence

Table 1-1 lists
 Python’s expression operators. Operators in the lower cells of this table have higher
 precedence (i.e., bind tighter) when used in mixed-operator
 expressions without parentheses.
Table 1-1. Python 3.0 expression operators and precedence

 Specific Built-in Types

 Specific Built-in Types

This section covers numbers, strings, lists, dictionaries,
 tuples, files, and other core built-in types. Compound datatypes (e.g.,
 lists, dictionaries, and tuples) can nest inside each other arbitrarily
 and as deeply as required. Sets may participate in nesting as well, but
 may contain only immutable objects.
Numbers

This section covers basic number types (integers,
 floating-point), as well as more advanced types (complex, decimals,
 and fractions). Numbers are always immutable (unchangeable).
Literals and creation

Numbers are written in a variety of numeric constant
 forms.
	1234, −24, 0
	Integers (unlimited precision)[1]

	1.23, 3.14e-10, 4E210, 4.0e+210, 1., .1
	Floating-point (normally implemented as C doubles in
 CPython)

	0o177, 0x9ff, 0b1111
	Octal, hex, and binary literals for integers[2]

	3+4j, 3.0+4.0j, 3J
	Complex numbers

	decimal.Decimal('1.33'), fractions.Fraction(4, 3)
	Module-based types: decimal, fraction

	int(), float(), complex()
	Create numbers from other objects, or from strings
 with possible base
 conversion; see Built-in Functions

Operations

Number types support all number operations (see Table 1-6). In mixed-type expressions, Python
 converts operands up to the type of the “highest” type, where
 integer is lower than floating-point, which is lower than complex.
 As of Python 3.0 and 2.6, integer and floating-point objects also
 have a handful of methods and other
 attributes; see Python’s Library Reference
 manual for details.
>>> (2.5).as_integer_ratio() # float attributes
(5, 2)
>>> (2.5).is_integer()
False

>>> (2).numerator, (2).denominator # int attributes
(2, 1)
>>> (255).bit_length(), bin(255) # 3.1+ bit_length()
(8, '0b11111111')

Decimal and fraction

Python provides two additional numeric types in standard
 library modules—decimal is a fixed-precision
 floating-point number, and fraction is a
 rational type that keeps numerator and denominator explicitly. Both
 may be used to address inaccuracies of floating-point
 arithmetic.
>>> 0.1 - 0.3
-0.19999999999999998

>>> from decimal import Decimal
>>> Decimal('0.1') - Decimal('0.3')
Decimal('-0.2')

>>> from fractions import Fraction
>>> Fraction(1, 10) - Fraction(3, 10)
Fraction(-1, 5)

>>> Fraction(1, 3) + Fraction(7, 6)
Fraction(3, 2)
Fractions automatically simplify results. By fixing precision
 and supporting various truncation and rounding protocols, decimals
 are useful for monetary applications. See the Python Library
 Reference for details.

Other numeric types

Python also includes a set type (described in Sets). Additional numeric types such as vectors and matrixes are available as third-party open
 source extensions (e.g., see the NumPy
 package). The third-party domain also includes support for
 visualization, statistical packages, and more.

Strings

The normal str string
 object is an immutable (i.e., unchangeable) array of characters,
 accessed by offset. As of Python 3.0, there are three string types
 with very similar interfaces:
	str, an immutable sequence of characters, used for all
 text, both ASCII and wider Unicode

	bytes, an immutable sequence of short integers, used for
 binary byte data

	bytearray, a mutable variant of bytes

Python 2.X instead has two immutable string types: str, for 8-bit text and binary data, and
 unicode, for Unicode text as described in
 Unicode Strings. Python 2.6 also has the Python 3.0
 bytearray type as a back-port from
 3.0, but it does not impose as sharp a distinction between text and
 binary data (it may be mixed with text strings freely in 2.6).
Most of this section pertains to all string types, but see String methods, Unicode Strings, and
 Built-in Functions for more on bytes and bytearray.
Literals and creation

Strings are written as a series of characters in quotes,
 optionally preceded with a designator character.
	"Python's", 'Python"s'
	Double and single quotes work the same, and each can
 embed unescaped quotes of the other kind.

	"""This is a multiline
 block"""
	Triple-quoted blocks collect lines into a single string,
 with end-of-line markers (\n) inserted between the original
 lines.

	'Python\'s\n'
	Backslash escape code sequences (see Table 1-7) are replaced with the
 special-character byte values they represent (e.g., '\n' is a byte with binary value
 10 decimal).

	"This" "is"
 "concatenated"
	Adjacent string constants are concatenated. May span lines if
 parenthesized.

	r'a raw\string',
 R'another\one'
	Raw strings: backslashes are retained literally
 (except at the end of a string). Useful for regular
 expressions and DOS directory paths: e.g., r'c:\dir1\file'.

The following literal forms make specialized strings described
 in Unicode Strings:
	b'...'
	bytes string literal: sequence of 8-bit byte values
 representing raw binary data. Makes a bytes string in Python 3.0, and a
 normal str string in Python
 2.6 (for 3.0 compatibility). See String methods, Unicode Strings, and Built-in Functions.

	bytearray(...)
	bytearray string construction: a mutable variant of
 bytes. Available in both
 Python 2.6 and 3.0. See String methods,
 Unicode Strings, and Built-in Functions.

	u'...'
	Unicode string literal in Python 2.X only (normal
 str strings support Unicode
 text in Python 3). See Unicode Strings.

	str(), bytes(), bytearray()
	Create strings from objects, with possible Unicode
 encoding/decoding in Python 3.0. See Built-in Functions.

	hex(), oct(), bin()
	Create hex/octal/binary digit strings from numbers. See
 Built-in Functions.

String literals may contain escape sequences taken from Table 1-7 to represent special
 bytes.
Table 1-7. String constant escape codes

 Statements and Syntax

 Statements and Syntax

This section describes the rules for syntax and variable
 names.
Syntax Rules

Here are the general rules for writing Python programs:
	Control flow
	Statements execute one after another, unless control-flow
 statements are used (if,
 while, for, raise, calls, etc.).

	Blocks
	A block is delimited by indenting all of its statements by
 the same amount, with spaces or tabs. A tab counts for enough
 spaces to move the column to a multiple of 8. Blocks can appear
 on the same line as a statement header if they are simple
 statements.

	Statements
	A statement ends at the end of a line, but can continue
 over multiple lines if a physical line ends with a \, an unclosed (), [], or {} pair, or an unclosed, triple-quoted
 string. Multiple simple statements can appear on a line if they
 are separated with a semicolon (;).

	Comments
	Comments start with a #
 (not in a string constant) and span to the end of the
 line.

	Documentation strings
	If a function, module file, or class begins with a string
 literal, it is stored in the object’s __doc__ attribute. See the help() function, and the pydoc module and script in the Python
 Library Reference for automated extraction and display
 tools.

	Whitespace
	Generally significant only to the left of code, where
 indentation is used to group blocks. Blank lines and spaces are
 otherwise ignored except as token separators and within string
 constants.

Name Rules

This section contains the rules for user-defined names (i.e., variables) in
 programs.
Name format

	Structure
	User-defined names start with a letter or underscore
 (_), followed by any number
 of letters, digits, or underscores.

	Reserved words
	User-defined names cannot be the same as any Python
 reserved word listed in Table 1-12.[3]

	Case sensitivity
	User-defined names and reserved words are always
 case-sensitive: SPAM,
 spam, and Spam are
 different names.

	Unused tokens
	Python does not use the characters $ and ? in its syntax, though they can
 appear in string constants and comments, and $ is special in string template
 substitution.

	Creation
	User-defined names are created by assignment but must
 exist when referenced (e.g., counters must be explicitly
 initialized to zero). See the section Namespace and Scope Rules.

Table 1-12. Python 3.0 reserved words

 Specific Statements

 Specific Statements

The following sections describe all Python statements. Each
 section lists the statement’s syntax formats, followed by usage details.
 For compound statements, each appearance of a suite in a statement format stands for one or
 more other statements, possibly indented as a block under a header line.
 A suite must be indented under a header if it contains another compound
 statement (if, while, etc.); otherwise, it can appear on the
 same line as the statement header. The following are both valid constructs:
if x < 42:
 print(x)
 while x: x = x − 1

if x < 42: print(x)
The Assignment Statement

target = expression
target1 = target2 = expression
target1, target2 = expression1, expression2
target1 += expression
target1, target2, ... = same-length-iterable
(target1, target2, ...) = same-length-iterable
[target1, target2, ...] = same-length-iterable
target1, *target2, ... = matching–length-iterable
Assignments store references to objects in targets. Expressions yield
 objects. Targets can be simple names (X), qualified attributes (X.attr), or indexes and slices (X[i], X[i:j]).
The second format assigns an
 expression object to each target. The third
 format pairs targets with expressions, left to right. The last three
 formats assign components of any sequence (or other iterable) to
 corresponding targets, from left to right. The sequence or iterable on
 the right must be the same length but can be any type, unless a single
 starred-name appears in the targets on the left to collect arbitrarily
 many items (Python 3.0 extended sequence assignment, discussed
 ahead):
target1, *target2, ... = iterable
Augmented assignment

A set of additional assignment statement formats, listed in
 Table 1-13, are available.
 Known as augmented assignments,
 these formats imply a binary expression plus an assignment. For
 instance, the following two formats are roughly equivalent:
X = X + Y
X += Y
However, the reference to target X in the second format needs to be
 evaluated only once, and in-place operations can be applied for
 mutables as an optimization (e.g., list1 +=
 list2 automatically
 calls list1.extend(list2),
 instead of the slower concatenation operation implied by +). Classes can overload in-place
 assignments with method names that begin with an i (e.g., __iadd__ for +=, __add__ for +). The format X
 //= Y (floor division) is new as of version 2.2.
Table 1-13. Augmented assignment statements

 Namespace and Scope Rules

 Namespace and Scope Rules

This section discusses rules for name binding and lookup (see also the sections
 Name format and Name conventions).
 In all cases, names are created when first assigned but must already
 exist when referenced. Qualified and unqualified names are resolved differently.
Qualified Names: Object Namespaces

Qualified names (X, in
 object.X) are known as attributes and live in object namespaces. Assignments in some lexical scopes[4] initialize object namespaces (modules, classes).
	Assignment: object.X =
 value
	Creates or alters the attribute name X in the namespace of the object being qualified.

	Reference:
 object.X
	Searches for the attribute name X in the object, then all accessible classes
 above it (for instances and classes). This is the definition of
 inheritance.

Unqualified Names: Lexical Scopes

Unqualified names (X) involve lexical scope rules. Assignments bind such names
 to the local scope unless they are declared global.
	Assignment: X =
 value
	Makes name X local by
 default: creates or changes name X in the current local scope. If
 X is declared global, this creates or changes name
 X in the enclosing module’s
 scope. If X is declared
 nonlocal in Python 3.0, this
 changes name X in an
 enclosing function’s scope. Local variables are stored in the
 call stack at runtime for quick access.

	Reference: X
	Looks for name X in at
 most four scope categories: in the current
 local scope (function); then in the local
 scopes of all lexically enclosing functions
 (if any, from inner to outer); then in the current
 global scope (module); then in the
 built-in scope (which corresponds to module
 builtins
 in Python 3.0, and module __builtin__ in Python 2.X). Local and
 global scope contexts are defined in Table 1-17. global declarations make the search
 begin in the global scope instead, and nonlocal declarations restrict the
 search to enclosing functions.

Table 1-17. Unqualified name scopes

 Object-Oriented Programming

 Object-Oriented Programming

Classes are Python’s main object-oriented programming (OOP) tool.
 They support multiple instances, attribute inheritance, and operator
 overloading.
Classes and Instances

Class objects provide default behavior

	The class statement creates a class object and assigns it to a
 name.

	Assignments inside class statements create class
 attributes, which are inherited object state and behavior.

	Class methods are nested defs, with special first arguments to
 receive the implied subject instance.

Instance objects are generated from classes

	Calling a class object like a function makes a new
 instance
 object.

	Each instance object inherits class attributes and gets
 its own attribute namespace.

	Assignments to attributes of the first argument (e.g.,
 self.X = V) in methods create
 per-instance attributes.

Inheritance rules

	Inheritance happens at attribute qualification time: on object.attribute, if object is a class or instance.

	Classes inherit attributes from all classes listed in
 their class statement header line (superclasses). Listing more
 than one means multiple
 inheritance.

	Instances inherit attributes from the class from which
 they are generated, plus all that class’s superclasses.

	Inheritance searches the instance, then its class, then
 all accessible superclasses, and uses the first version of an
 attribute name found. Superclasses are searched depth-first and
 then left-to-right (but new-style classes search across before
 proceeding up in diamond pattern trees).

Pseudoprivate Attributes

By default, all attribute names in modules and classes are visible
 everywhere. Special conventions allow some limited data-hiding but are
 mostly designed to prevent name collisions (see also the section Name conventions).
Module privates

Names in modules with a single underscore (e.g., _X), and those not listed on the module’s
 __all__ list, are not copied over
 when a client uses from module import
 *. This is not strict privacy, though, as such names can
 still be accessed with other import statement forms.

Class privates

Names anywhere within class statements with two leading
 underscores only (e.g., __X) are
 mangled at compile time to include the enclosing class name as a
 prefix (e.g., _Class__X). The
 added class-name prefix localizes such names to the enclosing class
 and thus makes them distinct in both the self instance object and the class
 hierarchy.
This helps to avoid clashes that may arise for same-named
 methods, and for attributes in the single instance object at the
 bottom of the inheritance chain (all assignments to self.attr anywhere in a framework change
 the single instance namespace). This is not strict privacy, though,
 as such attributes can still be accessed via the mangled
 name.

New Style Classes

In Python 3.0, there is a single class model: all classes are considered
 new-style whether they derive from object or not. In Python 2.X, there are two
 class models: classic (the default), and
 new-style in version 2.2 and later (coded by
 deriving from a built-in type or object—class
 A(object)).
New-style classes (and all classes in Python 3.0) differ from
 classic classes in the following ways:
	Diamond patterns of multiple inheritances have a slightly
 different search order—roughly, they are searched across before
 up, and more breadth-first than depth-first.

	Classes are now types, and types are now classes. The
 type(I) built-in returns the
 class an instance is made from, instead of a generic instance
 type, and is normally the same as I.__class__. The type class may be subclassed to
 customize class creation, and all classes inherit from object.

	The __getattr__ and
 __getattribute__ methods are no
 longer run for attributes implicitly fetched by built-in
 operations. They are not called for __X__ operator
 -overloading method names; the search for such names
 begins at classes, not instances. To intercept and delegate access
 to such method names, they generally must be redefined in
 wrapper/proxy classes.

	New-style classes have a set of new class tools, including
 slots, properties, descriptors, and the __getattribute__ method. Most of these
 have tool-building purposes. See
 the next section for __slots__, __getattribute__, and descriptor
 __get__, __set__, and __delete__ methods; see Built-in Functions for property().

 Operator Overloading Methods

 Operator Overloading Methods

Classes intercept and implement built-in operations by providing
 specially named method functions, all of which start and end with two underscores. These names
 are not reserved and can be inherited from superclasses as usual. Python
 locates and calls at most one per operation.
Python automatically calls a class’s overloading methods when
 instances appear in expressions and other contexts. For example, if a
 class defines a method named __getitem__, and X is an instance of this class, the expression
 X[i] is equivalent to the method call
 X.__getitem__(i).
Overloading method names are sometimes arbitrary: a class’s
 __add__ method need not perform an
 addition (or concatenation). Moreover, classes generally can mix numeric
 and collection methods and mutable and immutable operations. Most
 operator overloading names have no defaults, and the corresponding
 operation raises an exception if its method is not defined.
For All Types

	__new__(cls [,
 args...])
	Called to create and return a new instance of
 class cls. Receives
 constructor arguments passed to the class. If this returns an
 instance of the class, the instance’s __init__ method is invoked with the same constructor arguments.
 Not used in normal classes; intended to allow subclasses of
 immutable types to customize instance creation, and to allow
 custom metaclasses to customize class creation.

	__init__(self [,
 arg]*)
	Invoked on class(args...). This is the
 constructor that initializes the new instance, self. When run for calls to a class
 name, self is provided
 automatically; arg is the
 arguments passed to the
 class name, and may be any function-definition argument form
 (see The Expression Statement and The def Statement). Must return no value, and call
 superclass __init__ manually
 if needed, passing the instance to self.

	__del__(self)
	Invoked on instance garbage collection. This destructor
 method cleans up when an instance is freed. Embedded objects are
 automatically freed when the parent is (unless referenced from
 elsewhere). Exceptions during this method’s run are ignored, and
 simply print messages to sys.stderr. The try/finally statement allows more
 predictable termination actions for a code block.

	__repr__(self)
	Invoked on repr(self),
 and interactive echoes, (and `self` in Python 2.X only). Also
 invoked on str(self) and
 print(self) if there is no
 __str__. This method returns
 a low-level “as code” string representation of self.

	__str__(self)
	Invoked on str(self)
 and print(self) (or uses
 __repr__ as a backup if
 defined). This method returns a high-level “user friendly”
 string representation of self.

	__format__(self,
 formatspec)
	Called by the format()
 built-in function (and by extension, the str.format() method of str strings) to produce a “formatted”
 string representation of an object. See Strings and Built-in Functions.
 New in Python 2.6 and 3.0.

	__hash__(self)
	Invoked on dictionary[self] and hash(self), and other hashed
 collection operations, including those of the set object type.
 This method returns a unique and unchanging integer
 hash-key.

	__bool__(self)
	Called for truth value testing and the built-in bool() function; returns False or True. When __bool__() is not defined, __len__() is called if it is defined
 and designates a true value with a nonzero length. If neither
 __len__() nor __bool__() is defined, all its
 instances are considered true. New in Python 3.0; in Python 2.X,
 this method is named __nonzero__ instead of __bool__, but works the same
 way.

	__call__(self [,
 arg]*)
	Invoked on self(args...), when an instance is
 called like a function. arg
 may take any function-definition argument form (see The Expression Statement and The def Statement). For example, __call__(self, a, b, c, d=5) and
 __call__(self, *pargs,
 **kargs) both match calls self(1, 2, 3, 4) and self(1, *(2,), c=3,
 **dict(d=4)).

	__getattr__(self,
 name)
	Invoked on self.name,
 when name is an undefined
 attribute access (this method is not called if name exists in or is inherited by
 self). name is a string. This method returns
 an object or raises AttributeError.
In Python 3.0, this is no longer run for __X__ attributes implicitly fetched by
 built-in operations; redefine such names in wrapper/proxy
 classes.

	__setattr__(self, name,
 value)
	Invoked on self.name=value (all attribute
 assignments). Hint—assign through __dict__ key to avoid recursive loops:
 self.attr=x statement within
 a __setattr__ calls __setattr__ again, but self.__dict__['attr']=x does not.
 Recursion may also be avoided by calling the superclass version
 explicitly: object.__setattr__(self,
 name, value).

	__delattr__(self,
 name)
	Invoked on del
 self.name (all attribute deletions). Hint: must avoid
 recursive loops by routing attribute deletions through __dict__ or a superclass, much like
 __setattr__.

	__getattribute__(self,
 name)
	Called unconditionally to implement attribute accesses for
 instances of the class. If the class also defines __getattr__, it
 will never be called (unless it is called explicitly). This
 method should return the (computed) attribute value or raise an
 AttributeError exception. To
 avoid infinite recursion in this method, its implementation
 should always call the superclass method with the same name to
 access any attributes it
 needs (e.g., object.__getattribute__(self,
 name).
In Python 3.0, this is no longer run for __X__ attributes implicitly fetched by
 built-in operations; redefine such names in wrapper/proxy
 classes.

	__lt__(self,
 other)
__le__(self,
 other)
__eq__(self,
 other)
__ne__(self,
 other)
__gt__(self,
 other)
__ge__(self,
 other)
	Respectively, used on self <
 other, self <=
 other, self ==
 other, self !=
 other, and self >
 other, self >=
 other. Added in version 2.1, these are known as
 rich comparison methods and
 are called for all comparison expressions in Python 3.0. For
 example, X < Y calls
 X.__lt__(Y) if defined. In
 Python 2.X only, these methods are called in preference to
 __cmp__, and __ne__ is also run for self <> other.
These methods can return any value, but if the comparison
 operator is used in a Boolean context, the return value is
 interpreted as a Boolean result for the operator. These methods
 can also return (not raise) the special object NotImplemented if not supported for
 the operands (which works as though the method were not defined
 at all, and which forces Python 2.X to revert to the general
 __cmp__ method if
 defined).
There are no implied relationships among comparison
 operators. For example, x==y
 being true does not imply that x!=y is false: __ne__ should be defined along with
 __eq__ if the operators are
 expected to behave symmetrically. There are also no right-side
 (swapped-argument) versions of these methods to be used when the
 left argument does not support the operation but the right
 argument does. __lt__ and
 __gt__ are each other’s
 reflection, __le__ and
 __ge__ are each other’s
 reflection, and __eq__ and
 __ne__ are their own
 reflections. Use __lt__ for
 sorting in Python 3.0.

	__slots__
	This class attribute can be assigned a string, iterable,
 or sequence of strings giving the names of attributes of
 instances of the class. If defined in a new-style class
 (including all classes in Python 3), __slots__ reserves space for the
 declared attributes, and prevents the automatic creation of
 __dict__ for each instance
 (unless string '__dict__' is
 included in __slots__, in
 which case instances also have a __dict__ and attributes not named in
 __slots__ may be added
 dynamically).
To support classes with __slots__, tools that generically list
 attributes or access them by string name must use storage-neutral tools such as the
 getattr(), setattr(), and dir(), which apply to both __dict__ and __slots__ attribute storage. Both
 attribute sources may need to be queried.

	__dir__(self)
	Called on dir(self).
 Returns a list of attribute names. New in Python 3.0.

For Collections (Sequences, Mappings)

	__len__(self)
	Invoked on len(self)
 and possibly for truth-value tests. This method returns a
 collection’s size. For Boolean tests, Python looks for __bool__ first, then __len__, and then considers the object
 true (__bool__ is named
 __nonzero__ in Python 2). Zero
 length means false.

	__contains__(self,
 item)
	Invoked on item in self
 for custom membership tests (otherwise, membership uses __iter__, if defined, or __getitem__). This method returns a
 true or false result.

	__iter__(self)
	Invoked on iter(self).
 New in version 2.2, this method is part of the iteration
 protocol. It returns an object with a __next__() method (possibly self). The result object’s __next__() method is then called
 repeatedly in all iteration contexts (e.g., for loops), and should return the
 next result or raise
 StopIteration to terminate
 the results progression.
 See also sections The for Statement and The yield Statement. If no __iter__ is defined, iteration falls
 back on __getitem__. In
 Python 2.X, __next__() is
 named next().

	__next__(self)
	Invoked by the next(self) built-in function, and by
 all iteration contexts to advance through results. See __iter__() for usage details. New in
 Python 3.0; in Python 2.X, this method is named next(), but works the same way.

	__getitem__(self,
 key)
	Invoked on self[key],
 self[i:j:k], x in self, and for x in self (and all iteration
 contexts). This method implements all indexing-related
 operations. Iteration contexts (e.g., in and for) repeatedly index from 0 until
 IndexError, unless __iter__ is defined.
In Python 3.0, this and the following two methods are also
 called for slice operations, in which case key is a slice object. Slice objects
 may be propagated to another slice expression, and have
 attributes start, stop, and step, any of which can be None. See also slice() in Built-in Functions.

	__setitem__(self, key,
 value)
	Invoked on self[key]=value, self[i:j:k]=value. This method is
 called for assignment to a collection key or index, or to a
 sequence’s slice.

	__delitem__(self,
 key)
	Invoked on del
 self[key], del
 self[i:j:k]. This method called is for index/key and
 sequence slice deletion.

	__reversed__(self)
	Called if defined by the reversed() built-in function to
 implement custom reverse iteration. Returns a new iterator
 object that iterates over all the objects in the container in
 reverse order. If no __reversed__ is defined, reversed() expects and uses sequence
 protocol (methods __len__()
 and __getitem__()).

For Numbers (Binary Operators)

If one of those methods does not support the operation with the supplied arguments,
 it should return (not raise) the built-in NotImplemented object (which works as though
 the method were not defined at all).
Basic binary methods

	__add__(self,
 other)
	Invoked on self +
 other for numeric addition or sequence
 concatenation.

	__sub__(self,
 other)
	Invoked on self -
 other.

	__mul__(self,
 other)
	Invoked on self *
 other for numeric multiplication or sequence
 repetition.

	__truediv__(self,
 other)
	Invoked on self /
 other for all division (which retains remainders) in
 Python 3.0. In Python 2.X only, __div__ is called for classic
 division (where integer division truncates).

	__floordiv__(self,
 other)
	Invoked on self //
 other for truncating (always) division.

	__mod__(self,
 other)
	Invoked on self %
 other.

	__divmod__(self,
 other)
	Invoked on divmod(self,
 other).

	__pow__(self, other [,
 modulo])
	Invoked on pow(self, other [,
 modulo]) and self **
 other.

	__lshift__(self,
 other)
	Invoked on self <<
 other.

	__rshift__(self,
 other)
	Invoked on self >>
 other.

	__and__(self,
 other)
	Invoked on self &
 other.

	__xor__(self,
 other)
	Invoked on self ^
 other.

	__or__(self,
 other)
	Invoked on self |
 other.

Right-side binary methods

	__radd__(self,
 other)
__rsub__(self,
 other)
__rmul__(self,
 other)
__rtruediv__(self,
 other)
__rfloordiv__(self,
 other)
__rmod__(self,
 other)
__rdivmod__(self,
 other)
__rpow__(self,
 other)
__rlshift__(self,
 other)
__rrshift__(self,
 other)
__rand__(self,
 other)
__rxor__(self,
 other)
__ror__(self,
 other)
	These are right-side counterparts to the binary
 operators of the prior section. Binary operator methods have a
 right-side variant that starts with an r prefix (e.g., __add__ and __radd__). Right-side variants have
 the same argument lists, but self is on the right side of the
 operator. For instance, self +
 other calls self.__add__(other), but other + self invokes self.__radd__(other).
The r right-side
 method is called only when the instance is on the right and
 the left operand is not an instance of a class that implements
 the operation:
	instance + noninstance runs __add__
	instance + instance runs __add__
	noninstance + instance runs __radd__

If two different class instances that overload the
 operation appear, the class on the left is preferred. __radd__ often converts or swaps
 order and re-adds to trigger __add__.

Augmented binary methods

	__iadd__(self,
 other)
__isub__(self,
 other)
__imul__(self,
 other)
__itruediv__(self,
 other)
__ifloordiv__(self,
 other)
__imod__(self,
 other)
__ipow__(self, other[,
 modulo])
__ilshift__(self,
 other)
__irshift__(self,
 other)
__iand__(self,
 other)
__ixor__(self,
 other)
__ior__(self,
 other)
	These are augmented assignment (in-place) methods.
 Respectively, they are called for the following assignment
 statement formats: +=,
 -=, *=, /=, //=, %=, **=, <<=, >>=, &=, ^=, and |=. These methods should attempt to
 do the operation in-place (modifying self) and return the result (which
 can be self). If a method
 is not defined, then the augmented operation falls back on the
 normal methods. To evaluate X +=
 Y, where X is an
 instance of a class that has an __iadd__, x.__iadd__(y) is called. Otherwise,
 __add__ and __radd__ are considered.

For Numbers (Other Operations)

	__neg__(self)
	Invoked on -self.

	__pos__(self)
	Invoked on +self.

	__abs__(self)
	Invoked on abs(self).

	__invert__(self)
	Invoked on ˜self.

	__complex__(self)
	Invoked on complex(self).

	__int__(self)
	Invoked on int(self).

	__float__(self)
	Invoked on float(self).

	__round__(self [,
 n])
	Invoked on round(self [,
 n]). New in Python 3.0.

	__index__(self)
	Called to implement operator.index(). Also called in other contexts where Python
 requires an integer object. This includes instance appearances
 as indexes, as slice bounds, and as arguments to the built-in
 bin(), hex(), and oct() functions. Must return an
 integer.
Similar in Python 3.0 and 2.6, but not called for hex() and oct() in 2.6 (these require __hex__ and __oct__ methods in 2.6). In Python
 3.0, __index__ subsumes and
 replaces the __oct__ and
 __hex__ methods of Python
 2.X, and the returned integer is formatted automatically.

For Descriptors

The following methods apply only when an instance of a class defining
 the method (a descriptor class) is assigned to a class attribute of
 another class (known as the owner class). These methods are invoked
 for access to the attribute in the owner class whose name is assigned
 to the descriptor class instance.
	__get__(self, instance,
 owner)
	Called to get the attribute of the owner class or of an
 instance of that class. owner
 is always the owner class; instance is the instance the attribute
 was accessed through, or None
 when the attribute is accessed through the owner class directly.
 Return the attribute value or raise AttributeError.

	__set__(self, instance,
 value)
	Called to set the attribute on an instance of the owner
 class to a new value.

	__delete__(self,
 instance)
	Called to delete the attribute on an instance of the owner
 class.

For Context Managers

The following methods implement the context manager protocol, used by the
 with statement (see The with Statement).
	__enter__(self)
	Enter the runtime context related to this object. The
 with statement assigns this
 method’s return value to the target specified in the as clause of the statement (if
 any).

	__exit__(self, exc_type, exc_value,
 traceback)
	Exit the runtime context related to this object. The
 parameters describe the exception that caused the context to be
 exited. If the context exited without an exception, all three
 arguments are None. Return a
 true value to prevent a raised exception from being propagated
 by the caller.

Python 2.X Operator Overloading Methods

Methods in Python 3.0 only

The following methods are supported in Python 3.0 but not Python 2.X:
	__bool__ (use method
 name __nonzero__ in Python
 2.X, or __len__)

	__next__ (use method
 name next in Python
 2.X)

	__truediv__ (available
 in Python 2.X only if true division is enabled)

	__dir__

	__round__

	__index__ for oct(), hex() (use __oct__, __hex__ in Python 2.X)

Methods in Python 2.X only

The following methods are supported in Python 2.X but not
 Python 3.0:
	__cmp__(self, other)
 (and __rcmp__)
	Invoked on self >
 x, x == self,
 cmp(self, x), etc. This
 method is called for all comparisons for which no more
 specific method (such as __lt__) is defined or inherited. It
 returns −1, 0, or 1 for self less than, equal to, or greater
 than other. If no rich
 comparison or __cmp__
 methods are defined, class instances compare by their identity
 (address in memory). The __rcmp__ right-side method is no
 longer supported as of version 2.1.
In Python 3.0, use the more specific comparison methods
 described earlier: __lt__,
 __ge__, __eq__, etc. Use __lt__ for sorting in Python
 3.0.

	__nonzero__(self)
	Invoked on truth-value (otherwise, uses __len__ if defined).
In Python 3.0, this method is renamed __bool__.

	__getslice__(self, low,
 high)
	Invoked on self[low:high] for sequence slicing.
 If no __getslice__ is
 found, and for extended three-item slices, a slice object is created and passed
 to the __getitem__ method
 instead.
In Python 2.X, this and the next two methods are
 considered deprecated but are still supported—they are called
 for slice expressions if defined, in preference to their
 item-based counterparts. In Python 3.0, these three methods
 are removed entirely—slices always invoke __getitem__, __setitem__, or __delitem__ instead, with a slice
 object as its argument. See slice() in Built-in Functions.

	__setslice__(self, low, high,
 seq)
	Invoked on self[low:high]=seq for sequence
 slice assignment.

	__delslice__(self, low,
 high)
	Invoked on del
 self[low:high] for sequence slice deletion.

	__div__(self,
 other) (and __rdiv__, __idiv__)
	Invoked on self /
 other, unless true division is enable with from (in which case __truediv__ is used). In Python 3.0,
 these are always subsumed by __truediv__, __rtruediv__,
 and __itruediv__ because
 / is always true
 division.

	__long__(self)
	Invoked on long(self). In Python 3.0, the
 int type subsumes the
 long type
 completely.

	__oct__(self)
	Invoked on oct(self).
 This method returns an octal string representation. In Python
 3.0, return an integer for __index__() instead.

	__hex__(self)
	Invoked on hex(self).
 This method returns a hex string representation. In Python
 3.0, return an integer for __index__() instead.

	__coerce__(self,
 other)
	Invoked on the mixed-mode arithmetic expression,
 coerce(). This method
 returns a tuple of (self,
 other) converted to a common type. If __coerce__ is defined, it is
 generally called before any real operator methods are tried
 (e.g., before __add__). It
 should return a tuple containing operands converted to a
 common type (or None if it
 can’t convert). See the Python Language Reference (http://www.python.org/doc/) for more on
 coercion rules.

	__metaclass__
	Class attribute assigned to class’s metaclass. In Python
 3.0, use metaclass=M
 keyword argument syntax in the class header line.

 Built-in Functions

 Built-in Functions

All built-in names (functions, exceptions, and so on) exist in the
 implied outer built-in scope, which corresponds to the builtins module (named __builtin__ in Python 2). Because this scope
 is always searched last on name lookups, these functions are always
 available in programs without imports. However, their names are not
 reserved words and might be hidden by assignments to the same name in
 global or local scopes.
	abs(N)
	Returns the absolute value of a number N.

	all(iterable)
	Returns True only if all elements of the iterable are true.

	any(iterable)
	Returns True only if any element of the iterable is true.

	ascii(object)
	Like repr(), returns a string containing a printable
 representation of an object, but escapes the non-ASCII characters
 in the repr() result string
 using \x, \u, or \U escapes. This result is similar to
 that returned by repr() in
 Python 2.X.

	bin(N)
	Convert an integer number to a binary (base 2) digits
 string. The result is a valid Python expression. If argument
 N is not a Python int object, it must define an __index__() method that returns an
 integer. See also int(x, 2) to
 convert from binary, 0bNNN
 binary literals, and the b type
 code in str.format().

	bool([x])
	Converts a value to a Boolean, using the standard truth testing
 procedure. If x is false or
 omitted, this returns False;
 otherwise, it returns True.
 bool is also a class, which is
 a subclass of int. The class
 bool cannot be subclassed
 further. Its only instances are False and True.

	bytearray([arg [, encoding [,
 errors]]])
	Returns a new array of bytes. The bytearray type is a mutable sequence of
 small integers in the range 0...255, which prints as ASCII text
 when possible. It is essentially a mutable variant of bytes, which supports most operations of
 mutable sequences, as well as most methods of the str string type. arg may be a str string with encoding name (and optionally errors) as in str(); an integer size to initialize an
 array of NULL bytes; an iterable of small integers used to
 initialize the array such as a bytes string or another bytearray; an object conforming to the
 memory-view (previously
 known as buffer) interface used to initialize the array; or
 absent, to create a zero-length array.

	bytes([arg [, encoding [,
 errors]]])
	Returns a new bytes object,
 which is an immutable sequence of integers in the range
 0...255. bytes is an immutable version of bytearray. It has the same nonmutating
 string methods and sequence operations. It is commonly used to
 represent 8-bit byte strings of binary data. Constructor arguments
 are interpreted as for bytearray(). bytes objects may also be created with
 the b'ccc' literal.

	chr(I)
	Returns a one-character string whose Unicode codepoint is
 integer I. This is the inverse
 of ord() (e.g., chr(97) is 'a' and ord('a') is 97).

	classmethod(function)
	Returns a class method for a function. A class method
 receives the class as an implicit first argument, just like an
 instance method receives the instance. Use the @classmethod
 function decorator in version 2.4 and later (see the section The def Statement).

	compile(string, filename, kind [,
 flags[, dont_inherit]])
	Compiles string into a
 code object. string is a Python
 string containing Python program code. filename is a string used in error
 messages (and is usually the name of the file from which the code
 was read, or <string> if
 typed interactively). kind can
 be 'exec' if string contains statements; 'eval' if string is an expression; or 'single', which prints the output of an
 expression statement that evaluates to something other than
 None. The resulting code object
 can be executed with exec() or
 eval() built-in function calls.
 The optional last two arguments control which future statements
 affect the string’s compilation; if absent, the string is compiled
 with the future statements in effect at the place of the compile() call (see Python manuals for
 more details).

	complex([real [,
 imag]])
	Builds a complex number object (this can also be done using
 the J or j suffix: real+imagJ). imag defaults to 0. If both arguments
 are omitted, returns 0j.

	delattr(object,
 name)
	Deletes the attribute named name (a string) from object. It is similar to del obj.name, but name is a string, not a variable (e.g.,
 delattr(a,'b') is like del a.b).

	dict([mapping | iterable |
 keywords])
	Returns a new dictionary initialized from a mapping; a
 sequence (or other iterable) of key/value pairs; or a set of
 keyword arguments. If no argument is given, it returns an empty
 dictionary. This is a subclassable type class name.

	dir([object])
	If no arguments, this returns the list of names in the
 current local scope (namespace). With any object with attributes
 as an argument, it returns the list of attribute names associated
 with that object. It works on
 modules, classes, and class instances, as well as built-in objects
 with attributes (lists, dictionaries, etc.). Its result includes
 inherited attributes, and is sorted. Use __dict__ attributes for simple attribute
 lists of a single object (and possibly __slots__ for some classes).

	divmod(X, Y)
	Returns a tuple of (X / Y, X %
 Y).

	enumerate(iterable,
 start=0)
	Returns an iterable enumerate object. iterable must be a sequence, an
 iterator, or some other object that supports iteration. The
 __next__() method of the
 iterator returned by enumerate() returns a tuple containing a
 count (from start, or zero by
 default) and the corresponding value obtained from iterating over
 iterable. This call is useful
 for obtaining an indexed series when both positions and items are
 required in for loops: (0, seq[0]), (1, seq[1]), (2, seq[2]).... Available in version 2.3
 and later.

	eval(expr [, globals [,
 locals]])
	Evaluates expr, which is assumed to be either a
 Python string containing a Python expression or a compiled code
 object. expr is evaluated in
 the namespace scopes of the eval call itself, unless the globals and/or locals namespace dictionary arguments
 are passed. locals defaults to
 globals if only globals is passed. It returns an
 expr result. Also see the
 compile function discussed
 earlier in this section, and the exec() built-in for dynamically running
 statements.

	exec(stmts [, globals [,
 locals]])
	Evaluates stmts, which is
 assumed to be either a Python string containing Python statements
 or a compiled code object. If stmts is a string, the string is parsed
 as a suite of Python statements, which is then executed unless a
 syntax error occurs. If it is a code object, it is simply
 executed. globals and locals work the same as in eval(), and
 compile()
 may be used to precompile to code objects. This is available as a
 statement form in Python 2.X (see Specific Statements).

	filter(function,
 iterable)
	Returns those elements of iterable for which function returns true. function takes one parameter. If
 function is None, this returns all the true
 items.
In Python 2.6 this call returns a list. In Python 3.0, it
 returns an iterable object that generates values on demand and can
 be traversed only once (wrap in a list() call to force results generation
 if required).

	float([X])
	Converts a number or a string X to a floating-point number (or
 0.0 if no argument is passed).
 This is a subclassable type class name.

	format(value [,
 formatspec])
	Converts an object value
 to a formatted representation, as controlled by string formatspec. The interpretation of
 formatspec
 depends on the type of the value argument (a standard formatting
 syntax is used by most built-in types, described for the string
 formatting method earlier in this
 book). format(value,
 formatspec) calls value.__format__(formatspec), and
 is a base operation of the str.format method (e.g., format(1.3333, '.2f') is equivalent to
 '{0:.2f}'.format(1.3333)).

	frozenset([iterable])
	Returns a frozen set
 object whose elements are taken from iterable. Frozen sets are
 immutable sets that have no update methods, and may be nested in
 other sets.

	getattr(object, name [,
 default])
	Returns the value of attribute name (a string) from object. It is similar to object.name, but name is a string, not a variable (e.g.,
 getattr(a,'b') is like a.b). If the named attribute does not
 exist, default is returned if
 provided; otherwise, AttributeError is raised.

	globals()
	Returns a dictionary containing the caller’s global
 variables (e.g., the enclosing module’s names).

	hasattr(object,
 name)
	Returns true if object has an attribute called name (a string); false otherwise.

	hash(object)
	Returns the hash value of object (if it has one). Hash values are
 integers used to quickly compare dictionary keys during a
 dictionary lookup.

	help([object])
	Invokes the built-in help system. (This function is intended
 for interactive use.) If no argument is given, an interactive help
 session starts in the interpreter console. If the argument is a
 string, it is looked up as the name of a module, function, class,
 method, keyword, or documentation topic, and its help text is
 displayed. If the argument is any other kind of object, help for
 that object is generated.

	hex(N)
	Converts an integer number N to a hexadecimal (base 16) digits
 string. If argument N is not a
 Python int object, it must
 define an __index__() method
 that returns an integer.

	id(object)
	Returns the unique identity integer of object (i.e., its address in
 memory).

	__import__(name [, globals [,
 locals [, fromlist [, level]]]])
	Imports and returns a module, given its name as a string at runtime (e.g.,
 mod = __import__("mymod")).
 This call is generally faster than constructing and executing an
 import statement string with
 exec(). This function is called
 by import and from statements internally and can be
 overridden to customize import operations. All arguments but the
 first have advanced roles (see the Python Library Reference). See
 also the imp standard library
 module for related tools.

	input([prompt])
	Prints a prompt
 string if given, then reads a line from the
 stdin input stream (sys.stdin) and returns it as a string.
 It strips the trailing \n at
 the end of the line and raises EOFError at the end of the
 stdin stream. On platforms
 where GNU readline is
 supported, input() uses it. In
 Python 2.X, this function is named raw_input().

	int([number | string [,
 base]])
	Converts a number or string to a plain integer. Conversion of
 floating-point numbers to integers truncates toward 0. base can be passed only if the first
 argument is a string, and defaults to 10. If base is passed as 0, the base is
 determined by the string’s contents; otherwise, the value passed
 for base is used for the base
 of the conversion of the string. base may be 0, and 2...36. The string may be preceded by a
 sign and surrounded by whitespace. If no arguments, returns 0.
 This is a subclassable type class name.

	isinstance(object,
 classinfo)
	Returns true if object is an instance of classinfo, or an instance of any
 subclass thereof. classinfo can
 also be a tuple of classes and/or types. In Python 3.0, types are
 classes, so there is no special case for types. In Python 2.X, the
 second argument can also be a type object, making this function
 useful as an alternative type-testing tool (isinstance(X, Type) versus type(X) is Type).

	issubclass(class1,
 class2)
	Returns true if class1 is derived from class2. class2 can also be a tuple of
 classes.

	iter(object [,
 sentinel])
	Returns an iterator object that can be used to step through
 items in object. Iterator
 objects returned have a __next__() method that returns the next
 item or raises StopIteration to
 end the progression. All iteration contexts in Python use this
 protocol to advance, if supported by object. The next(I) built-in function also calls
 I.__next__() automatically. If
 one argument, object is assumed
 to provide its own iterator or be a sequence; if two arguments,
 object is a callable that is
 called until it returns sentinel. The iter() call can be overloaded in classes
 with __iter__.
In Python 2.X, iterable objects have a method named next() instead of __next__(). For forward compatibility,
 the next() built-in function is
 available in 2.6 and calls I.next() instead of I.__next__() (prior to 2.6, I.next() may be called manually
 instead).

	len(object)
	Returns the number of items (length) in a collection
 object, which may be a sequence
 or mapping.

	list([iterable])
	Returns a new list containing all the items in any iterable object. If
 iterable is already a list, it
 returns a copy of it. If no arguments, returns a new empty list.
 This is a subclassable type class name.

	locals()
	Returns a dictionary containing the local variables of the
 caller (with one key:value entry
 per local).

	map(function, iterable [,
 iterable]*)
	Applies function to each item of any sequence or
 other iterable iterable, and
 returns the individual results. For example, map(abs, (1, −2)) returns 1 and 2. If additional iterable arguments are
 passed, function must take that
 many arguments, and it is passed one item from each iterable on
 every call; iteration stops at the end of the shortest
 iterable.
In Python 2.6, this returns a list of the individual call
 results. In Python 3.0, it instead returns an iterable object that
 generates results on demand and can be traversed only once (wrap
 it in a list() call to force
 results generation if required). Also in Python 2.X (but not
 Python 3), if function is
 None, map collects all the items into a result
 list; if sequences differ in length, all are padded to the length
 of the longest, with Nones.
 Similar utility is available in Python 3.0 in module itertools.

	max(iterable [, arg]* [,
 key])
	With a single argument iterable, returns the largest item of a
 nonempty iterable (e.g., string, tuple, and list). With more than
 one argument, it returns the largest of all the arguments. The
 optional keyword-only key
 argument specifies a one-argument value transform function like
 that used for list.sort() and
 sorted().

	memoryview(object)
	Returns a memory view object created from the given
 argument. Memory views allow Python code to access the internal
 data of an object that supports the protocol without copying the
 object. Memory can be interpreted as simple bytes or more complex
 data structures. Built-in objects that support the memory-view
 protocol include bytes and
 bytearray. See Python manuals;
 memory views are largely a replacement for the Python 2.X
 buffer protocol and built-in function.

	min(iterable [, arg]* [,
 key])
	With a single argument iterable, returns the smallest item of a
 nonempty iterable (e.g., string, tuple, list). With more than one
 argument, it returns the smallest of all the arguments. The key
 argument is as in max().

	next(iterator [,
 default])
	Retrieves the next item from the iterator by calling its __next__() method. If the iterator is exhausted, default is returned if given; otherwise,
 StopIteration is raised.
This is available in Python 2.6 for forward compatibility,
 but it calls iterator.next() instead of iterator.__next__(). In Python 2.X
 prior to 2.6, this call is missing; use iterator.next() manually instead.

	object()
	Returns a new featureless object. object is a base for all new style
 classes, which includes classes explicitly derived from object in Python 2.X, and all classes in
 Python 3.0.

	oct(N)
	Converts a number N to an
 octal (base 8) digits string. If argument N is not a Python int object, it must define a __index__() method that returns an
 integer.

open(…)
open(file [, mode='r'
 [, buffering=None
 [, encoding=None # text mode only
 [, errors=None # text mode only
 [, newline=None # text mode only
 [, closefd=True]]]]]]) # descriptors only
See also Python 2.X open() on
 page 123. Returns a new file object connected to the external file named by
 file, or raises IOError if the open fails. file is usually a string or bytes object
 giving the name (and the path if the file isn’t in the current working
 directory) of the file to be opened. file may also be an integer file descriptor of
 the file to be wrapped. If a file descriptor is given, it is closed when
 the returned I/O object is closed, unless closefd is set to False. All options may be passed as keyword
 arguments.
mode is an optional string that
 specifies the mode in which the file is opened. It defaults to 'r', which means open for reading in text
 mode. Other common values are 'w' for
 writing (truncating the file if it already exists), and 'a' for appending. In text mode, if encoding is not specified, the encoding used
 is platform dependent, and newlines are translated to and from '\n' by default. For reading and writing raw
 bytes, use binary modes 'rb',
 'wb', or 'ab', and leave encoding unspecified.
Available modes that may be combined: 'r' for read (default); 'w' for write, truncating the file first;
 'a' for write, appending to the end
 of the file if it exists; 'b' for
 binary mode; 't' for text mode
 (default); '+' to open a disk file
 for updating (reading and writing); 'U' for universal newline mode (for backward
 compatibility, not needed for new code). The default 'r' mode is the same as 'rt' (open for reading text). For binary
 random access, the mode 'w+b' opens
 and truncates the file to 0 bytes, while 'r+b' opens the file without
 truncation.
Python distinguishes between files opened in binary and text
 modes, even when the underlying operating system does not.[5]
	For input, files opened in binary mode
 (by appending 'b' to mode) return contents as bytes objects without any Unicode decoding
 or line-end translations. In text mode (the default, or when
 't' is appended to mode), the contents of the file are
 returned as str strings after the
 bytes are decoded using either an explicitly passed encoding name or a platform-dependent
 default, and line-ends are translated per newline.

	For output, binary mode expects a
 bytes or bytearray and writes it unchanged. Text
 mode expects a str, and encodes it per encoding and applies line-end translations
 per newline before
 writing.

buffering is an optional integer used to set buffering policy. By default, full buffering is on.
 Pass 0 to switch buffering off
 (allowed in binary mode only); 1 to set line buffering; and an integer
 > 1 for full buffering. Buffered
 data transfers might not be immediately fulfilled (use file.flush to force).
encoding is the name of the encoding used to decode or encode a
 text file’s content on transfers. This should be used in text mode only.
 The default encoding is platform dependent, but any encoding supported
 by Python can be passed. See the codecs module for the list of supported
 encodings.
errors is an optional string that specifies how encoding errors
 are to be handled. This should be used in text mode only. Pass 'strict' to raise a ValueError exception if there is an encoding
 error (the default of None has the
 same effect), or pass 'ignore' to
 ignore errors. Ignoring encoding errors can lead to data loss. See
 codecs.register() for a list of the
 permitted values.
newline controls how universal newlines work, and applies to text
 mode only. It can be None (the
 default), '', '\n', '\r',
 and '\r\n'.
	On input, if newline is None, universal newlines mode is enabled:
 lines may end in '\n', '\r', or '\r\n', and all these are translated to
 '\n' before being returned to the
 caller. If newline is '', universal newline mode is enabled, but
 line endings are returned to the caller untranslated. If it has any
 of the other legal values, input lines are only terminated by the
 given string, and the line ending is returned to the caller
 untranslated.

	On output, if newline is None, any '\n' characters written are translated to
 the system default line separator, os.linesep. If newline is '', no translation takes place. If it is
 any of the other legal values, any '\n' characters written are translated to
 the given string.

If closefd is False, the underlying file descriptor will be
 kept open when the file is closed. This does not work when a file name
 is given as a string and must be True
 (the default) in that case.
	ord(C)
	Returns an integer codepoint value of a
 one-character string C. For
 ASCII characters, this is the 7-bit ASCII code of C; for wider Unicode, this is the
 Unicode code point of a one-character Unicode string.

	pow(X, Y [, Z])
	Returns X to power Y [modulo Z]. It is similar to the ** expression operator.

	print([object,...][, sep=' ']
 [, end='\n'] [, file=sys.stdout])
	Prints object(s) to the stream file, separated by sep and followed by end. sep, end, and file, if present, must be given as
 keyword arguments, and default as shown.
All nonkeyword arguments are converted to strings, like
 str() does, and written to the
 stream. Both sep and end must either be strings, or None (meaning use their default values).
 If no object is given, end is written. file must be an object with a write(string) method, but need not be an
 actual file; if it is not passed or is None, sys.stdout will be used. Print
 functionality is available as a statement form in Python 2.X (see
 Specific Statements).

	property([fget[, fset[, fdel[,
 doc]]]])
	Returns a property attribute for new-style classes (classes
 that derive from object).
 fget is a function for getting
 an attribute value, fset is a
 function for setting, and fdel
 is a function for deleting. This call may be used as a function
 decorator itself, and returns an object with methods getter, setter, and deleter, which may also be used as
 decorators in this role (see The def Statement).

	range([start,] stop [,
 step])
	Returns successive integers between start and stop. With one argument, it returns
 integers from zero through stop-1. With two arguments, it returns
 integers from start through
 stop-1. With three arguments,
 it returns integers from start
 through stop-1, adding step to each predecessor in the result.
 start, step default to 0, 1. range(0, 20, 2) is a list of even
 integers from 0 through 18. This call is often used to generate
 offset lists or repeat counts in for loops.
In Python 2.6 this call returns a list. In Python 3.0, it
 returns an iterable object that generates values on demand and can
 be traversed multiple times (wrap in a list() call to force results generation
 if required).

	repr(object)
	Returns a string containing a printable and potentially
 parseable as-code representation of any object. In Python 2.X (but not Python
 3.0) this is equivalent to `object` (back quotes
 expression).

	reversed(seq)
	Returns a reverse iterator. seq must be an object that has a
 __reversed__() method or
 supports the sequence protocol (the __len__() method and the __getitem__() method with integer
 arguments starting at 0).

	round(X [, N])
	Returns the floating-point value X rounded to N digits after the decimal point.
 N defaults to zero, and may be
 negative to denote digits to the left of the decimal point. The
 return value is an integer if called with one argument, otherwise
 of the same type as X. In
 Python 2.X only, the result is always a floating-point. In Python
 3.0 only, calls X.__round__().

	set([iterable])
	Returns a set whose elements are taken from iterable. The elements must be
 immutable. To represent sets of sets, the nested sets should be
 frozenset objects. If iterable is not
 specified, this returns a new empty set. Available since version
 2.4. See also the section Sets, and the
 {...} set literal in Python
 3.0.

	setattr(object, name,
 value)
	Assigns value to the
 attribute name (a string) in
 object. Like object.name = value, but name is a runtime string, not a variable
 name taken literally (e.g., setattr(a,'b',c) is equivalent to
 a.b=c).

	slice([start ,] stop [,
 step])
	Returns a slice object representing a range, with read-only
 attributes start, stop, and step, any of which can be None. Arguments are the same as for
 range. Slice objects may be
 used in place of i:j:k slice
 notation (e.g., X[i:j] is
 equivalent to X[slice(i,
 j)]).

	sorted(iterable, key=None,
 reverse=False)
	Returns a new sorted list from the items in iterable. The optional keyword arguments
 key and reverse have the same meaning as those
 for the list.sort() method
 described earlier; key is a
 one-argument value transform function. This works on any iterable
 and returns a new object instead of changing a list in-place, and
 is thus useful in for loops to
 avoid splitting sort calls out to separate statements due to
 None returns. Available in
 version 2.4 and later.
In Python 2.X, this has call signature sorted(iterable, cmp=None, key=None,
 reverse=False), where optional arguments cmp, key, and reverse have the same meaning as those
 for the Python 2.X list.sort()
 method described earlier in this book.

	staticmethod(function)
	Returns a static method for function. A static method does not
 receive an implicit first argument, and so is useful for
 processing class attributes that span instances. Use the @staticmethod function decorator in
 version 2.4 and later (see the section The def Statement).

	str([object [, encoding [,
 errors]]])
	Returns a “user-friendly” and printable string version of an
 object. This is also a subclassable type name. Operates in one of
 the following modes:
	When only object is
 given, this returns its nicely printable representation. For
 strings, this is the string itself. The difference with
 repr(object) is that
 str(object) does not always
 attempt to return a string that is acceptable to eval(); its goal is to return a
 printable string. With no arguments, this returns the empty
 string.

	If encoding and/or
 errors are passed, this
 will decode the object, which can either be a byte string or a
 character buffer, using the codec for encoding. The encoding
 parameter is a string giving the name of an encoding; if the
 encoding is not known, LookupError is raised. Error
 handling is done according to errors; if errors is 'strict' (the default), a ValueError is raised for encoding
 errors, while a value of 'ignore' causes errors to be
 silently ignored, and a value of 'replace' causes the official
 Unicode replacement character, U+FFFD, to be used to replace input
 characters that cannot be decoded. See also the codecs module, and the similar bytes.decode() method (b'a\xe4'.decode('latin-1')
 is equivalent to str(b'a\xe4',
 'latin-1')).

In Python 2.X, this call has simpler signature str([object]), and returns a string
 containing the printable representation of object (the first usage mode in Python 3.0).

	sum(iterable [,
 start])
	Sums start and the
 items of an iterable, from left to right, and returns the total.
 start defaults to 0. The
 iterable’s items are normally numbers and are not allowed to be
 strings (to concatenate an iterable of strings, use ''.join(iterable)).

	super([type [,
 object-or-type]])
	Returns the superclass of type. If the second argument is omitted,
 the super object returned is unbound. If the second argument is an object,
 isinstance(obj, type) must be
 true. If the second argument is a type, issubclass(type2, type) must be
 true. Calling super() without
 arguments is equivalent to super(this_class, first_arg). In a
 single-inheritance class hierarchy, this call can be used to refer
 to parent classes without naming them explicitly. This call can
 also be used to implement cooperative multiple inheritance in a
 dynamic execution environment.
This works only for new-style classes in Python 2.X (where
 type is not optional), and for
 all classes in Python 3.0.

	tuple([iterable])
	Returns a new tuple with the same elements as any iterable passed in.
 If iterable is already a tuple,
 it is returned directly (not a copy). If no argument, returns a
 new empty tuple. This is also a subclassable type class
 name.

	type(object | (name, bases,
 dict))
	This call is used in two different modes, determined by
 call pattern:
	With one argument, returns a type object representing
 the type of object. Useful
 for type-testing in if
 statements (e.g., type(X)==type([])), as well as
 dictionary keys. See also module types for preset type objects that
 are not built-in names, and isinstance() earlier in this
 section. Due to the recent merging of types and classes, type(object) is generally
 the same as object.__class__. In Python 2.X, the
 types module also includes
 built-in types.

	With three arguments, serves as a constructor, returning
 a new type object. This is a dynamic form of the class statement. The name string is the class name and
 becomes the __name__
 attribute; the bases tuple
 itemizes the base
 classes and becomes the __bases__ attribute; and the
 dict dictionary is the
 namespace containing definitions for class body and becomes
 the __dict__ attribute.
 class X(object): a = 1 is
 equivalent to X = type('X',
 (object,), dict(a=1)). This mapping is commonly used
 for metaclass construction.

	vars([object])
	Without arguments, returns a dictionary containing the
 current local scope’s names. With a module, class, or class
 instance object as an argument, it returns a dictionary
 corresponding to object’s
 attribute namespace (i.e., its __dict__). The result should not be
 modified. Useful for % string
 formatting.

	zip([iterable [,
 iterable]*])
	Returns a series of tuples, where each
 ith tuple contains
 the ith element
 from each of the argument iterables. For example, zip('ab', 'cd') returns ('a', 'c') and ('b', 'd'). At least one iterable is
 required, or the result is empty. The result series is truncated
 to the length of the shortest argument iterable. With a single
 iterable argument, it returns a series of one-tuples. May also be
 used to unzip zipped tuples: X, Y =
 zip(*zip(T1, T2)).
In Python 2.6, this returns a list. In Python 3.0, it
 returns an iterable object that generates values on demand and can
 be traversed only once (wrap in a list() call to force results generation
 if required). In Python 2.X (but not Python 3), when there are
 multiple argument iterables of the same length, zip is similar to map with a first argument of None.

Python 2.X Built-in Functions

The prior section’s list applies to Python 3. Semantic
 differences between built-ins available in both Python 3.0 and 2.X are
 noted in the prior section.
Python 3.0 built-ins not supported by Python 2.6

Python 2.X does not have the following Python 3.0 built-in
 functions:
	ascii() (this works
 like Python 2’s repr())

	exec() (this is a
 statement form in Python 2.X with similar semantics)

	memoryview()

	print() (present in
 Python 2’s __builtin__
 module, but not directly usable syntactically, as printing is
 a statement form and reserved word in Python 2.X)

Python 2.6 built-ins not supported by Python 3.0

Python 2.X has the following additional built-in functions,
 some of which are available in different forms in Python 3.0:
	apply(func, pargs [,
 kargs])
	Calls any callable object func (a function, method, class,
 etc.), passing the positional arguments in tuple pargs, and the keyword arguments in
 dictionary kargs. It
 returns the func call
 result.
In Python 3.0, this is removed. Use the
 argument-unpacking call syntax instead: func(*pargs, **kargs). This form is
 also preferred in Python 2.6 as it is more general and
 symmetric with function definitions.

	basestring()
	The baseclass for normal and Unicode strings (useful
 for isinstance
 tests).
In Python 3.0, the single str type represents all text (wide
 Unicode and other).

	buffer(object [, offset [,
 size]])
	Returns a new buffer object for a conforming object (see the Python Library
 Reference).
This call is removed in Python 3.0. The new memoryview()
 built-in provides similar functionality.

	callable(object)
	Returns 1 if object is callable; otherwise, returns 0.
This call is removed in Python 3.0. Use hasattr(f, '__call__')
 instead.

	cmp(X, Y)
	Returns a negative integer, zero, or a positive integer
 to designate X < Y,
 X == Y, or X > Y, respectively.
In Python 3.0, this is removed, but may be simulated as:
 (X > Y) - (X < Y).
 However, most common cmp()
 use cases (comparison functions in sorts, and the __cmp__ method of classes) have also
 been removed in Python 3.0.

	coerce(X, Y)
	Returns a tuple containing the two numeric arguments X and Y converted to a common type.
This call is removed in Python 3.0 (its main use case
 was for Python 2.X classic classes).

	execfile(filename [, globals [,
 locals]])
	Like eval, but runs all the code in a file whose string
 name is passed in as filename (instead of an expression).
 Unlike imports, this does not create a new module object for
 the file. It returns None.
 Namespaces for code in filename are as for eval.
In Python 3.0, this may be simulated as: exec(open(filename).read()).

	file(filename [, mode[,
 bufsize]])
	An alias for the open() built-in function, and the
 subclassable class name of the built-in file type.
In Python 3.0, the name file is removed: use open() to create file objects, and
 io module classes to
 customize file operation.

	input([prompt]) (original form)
	Prints prompt, if
 given. Then it reads an input line from the stdin stream (sys.stdin), evaluates it as Python
 code, and returns the result. It is like eval(raw_input(prompt)).
In Python 3.0, because raw_input() was renamed input(), the original Python 2.X
 input() is no longer
 available, but may be simulated as: eval(input{prompt)).

	intern(string)
	Enters string in the table of “interned
 strings” and returns the interned string. Interned strings are
 “immortals” and serve as a performance optimization (they can
 be compared by fast is
 identity, rather than ==
 equality).
In Python 3.0, this call has been moved to sys.intern(). Import module sys to use it.

	long(X [, base])
	Converts a number or a string X to a long integer. base can be passed only if X is a string. If 0, the base is
 determined by the string contents; otherwise, it is used for
 the base of the conversion. It is a subclassable type class
 name.
In Python 3.0, the int integer type supports
 arbitrarily long precision, and so subsumes Python 2’s
 long type. Use int() in Python 3.0.

	raw_input([prompt])
	This is the Python 2.X name of the Python 3.0
 input() function described
 in the prior section.
In Python 3.0, use the input() built-in.

	reduce(func, iterable [,
 init])
	Applies the two-argument function func to successive items from
 iterable, so as to reduce
 the collection to a single value. If init is given, it is prepended to
 iterable.
In Python 3.0, this built-in is still available, as
 functools.reduce(). Import
 module functools to use
 it.

	reload(module)
	Reloads, re-parses, and re-executes an already imported
 module in the module’s
 current namespace. Re-execution replaces prior values of the
 module’s attributes in-place. module must reference an existing
 module object; it is not a new name or a string. This is
 useful in interactive mode if you want to reload a module
 after fixing it, without restarting Python. It returns the
 module object.
In Python 3.0, this built-in is still available as
 imp.reload(). Import module
 imp to use it.

	unichr(i)
	Returns the Unicode string of one character whose
 Unicode code is the integer i (e.g., unichr(97) returns the string
 u'a'). This is the inverse
 of ord for Unicode strings,
 and the Unicode version of chr(). The argument must be in range
 0...65535 inclusive, or ValueError is raised.
In Python 3.0, normal strings represent Unicode
 characters: use the chr()
 call instead (e.g., ord('\xe4') is 228, and chr(228) and chr(0xe4) both return 'ä').

	unicode(string [, encoding [,
 errors]])
	Decodes string using the codec for encoding. Error handling is done
 according to errors. The
 default behavior is to decode UTF-8 in strict mode, meaning
 that encoding errors raise ValueError. See also the codecs module in the Python Library
 Reference.
In Python 3.0, there is no separate type for Unicode—the
 str type represents all
 text (wide Unicode and other), and the bytes type represents 8-bit byte
 binary data. Use normal str
 strings for Unicode text; bytes.decode() or str() to decode from raw bytes to
 Unicode according to an encoding; and normal file objects to
 process Unicode text files.

	xrange([start,] stop [,
 step])
	Like range, but doesn’t actually store the
 entire list all at once (rather, it generates one integer at a
 time). This is useful in for loops when there is a big range
 and little memory. It optimizes space, but generally has no
 speed benefit.
In Python 3.0, the original range() function is changed to
 return an iterable instead of producing a result list in
 memory, and thus subsumes Python 2’s xrange(). Use range() in Python 3.0.

In addition, the file open
 call has changed radically enough in Python 3.0 that individual
 mention of Python 2’s variant is warranted (in Python 2.X, codecs.open has many of the features in
 Python 3’s open):
	open(filename [, mode,
 [bufsize]])
	Returns a new file object connected to the external file
 named filename (a string),
 or raises IOError if the
 open fails. The file name is mapped to the current working
 directory, unless it includes a directory path prefix. The
 first two arguments are generally the same as those for C’s
 fopen function, and the
 file is managed by the stdio system. With open(), file data is always
 represented as a normal str
 string in your script, containing bytes from the file
 (codecs.open() interprets
 file content as encoded Unicode text, represented as unicode objects).
mode defaults to
 'r' if omitted, but can be
 'r' for input; 'w' for output (truncating the file
 first); 'a' for append; and
 'rb', 'wb', or 'ab' for binary files (to suppress
 line-end conversions to and from \n). On most systems, most of these
 can also have a + appended
 to open in input/output updates mode (e.g., 'r+' to read/write, and 'w+' to read/write but initialize
 the file to empty).
bufsize defaults to
 an implementation-dependent value, but can be 0 for
 unbuffered, 1 for line-buffered, negative for system-default,
 or a given specific size. Buffered data transfers might not be
 immediately fulfilled (use file flush methods to force).

[5] In fact, because file mode implies both configuration options
 and string data types, it’s probably best to think of open() in terms of two distinct
 flavors—text and binary, as specified in the mode string. Python
 developers chose to overload a single function to support the two
 file types, with mode-specific arguments and differing content
 types, rather than provide two separate open functions and file
 object types.

 Built-in Exceptions

 Built-in Exceptions

This section describes the exceptions that Python might raise during a
 program’s execution. Beginning with Python 1.5, all built-in exceptions
 are class objects (prior to 1.5 they were strings). Built-in exceptions
 are provided in the built-in scope namespace. Many built-in exceptions
 have associated state information that provides exception
 details.
Superclasses (Categories)

The following exceptions are used only as superclasses for
 other exceptions.
	BaseException
	The root superclass for all built-in exceptions. It is
 not meant to be directly inherited by user-defined classes; use
 Exception for this role
 instead. If str() is called
 on an instance of this class, the representation of the
 constructor argument(s) passed when creating the instance are
 returned (or the empty string if there were no such arguments).
 These instance constructor arguments are stored and made
 available in the instance’s args attribute as a tuple. Subclasses
 inherit this protocol.

	Exception
	The root superclass for all built-in and
 non-system-exiting exceptions. This is a direct subclass of
 BaseException.
User-defined exceptions should inherit (be derived) from
 this class. This derivation is required for user-defined
 exceptions in Python 3.0; Python 2.6 requires this of new-style
 classes, but also allows standalone exception
 classes.
try statements that
 catch this exception will catch all but system exit events,
 because this class is superclass to all exceptions but SystemExit, KeyboardInterrupt, and GeneratorExit
 (these three derive directly from BaseException instead).

	ArithmeticError
	Arithmetic error exceptions category: the superclass of OverflowError, ZeroDivisionError, and FloatingPointError, and a
 subclass of Exception.

	LookupError
	Sequence and mapping index errors: the superclass for
 IndexError and KeyError, and a subclass of Exception.

	EnvironmentError
	The category for exceptions that occur outside Python:
 the superclass for IOError
 and OSError, and a subclass
 of Exception. The raised
 instance includes informational attributes errno and strerror (and possible filename for exceptions involving file
 paths), which are also in args.

Specific Exceptions Raised

The following classes are exceptions that are actually
 raised. In addition, NameError,
 RuntimeError, SyntaxError, ValueError, and Warning are specific exceptions and
 superclasses to other built-in exceptions.
	AssertionError
	Raised when an assert
 statement’s test is false.

	AttributeError
	Raised on attribute reference or assignment failure.

	EOFError
	Raised when the immediate end-of-file is hit by input() (or raw_input() in Python 2). File read
 methods return an empty object at end of file instead.

	FloatingPointError
	Raised on floating-point operation failure.

	GeneratorExit
	Raised when a generator’s close() method is called. This
 directly inherits from BaseException instead of Exception since it is not an
 error.

	IOError
	Raised on I/O or file-related operation failures. Derived from
 EnvironmentError with state
 information described above.

	ImportError
	Raised when an import
 or from fails to find a
 module or attribute.

	IndentationError
	Raised when improper indentation is found in source code.
 Derived from SyntaxError.

	IndexError
	Raised on out-of-range sequence offsets (fetch or
 assign). Slice indexes are silently adjusted to fall in the
 allowed range; if an index is not an integer, TypeError is raised.

	KeyError
	Raised on references to nonexistent mapping keys (fetch).
 Assignment to a nonexistent key creates that key.

	KeyboardInterrupt
	Raised on user entry of the interrupt key (normally
 Ctrl-C or Delete). During execution, a check for interrupts is
 made regularly. This exception inherits directly from BaseException to
 prevent it from being accidentally caught by code that catches
 Exception and thus prevents
 interpreter exit.

	MemoryError
	Raised on recoverable memory exhaustion. This causes a
 stack-trace to be displayed if a runaway program was its
 cause.

	NameError
	Raised on failures to find a local or global unqualified
 name.

	NotImplementedError
	Raised on failures to define expected protocols. Abstract
 class methods may raise this when they require a method to be
 redefined. Derived from RuntimeError. (This is not to be
 confused with NotImplemented,
 a special built-in object returned by some operator-overloading
 methods when operand types are not supported.)

	OSError
	Raised on os module
 errors (its os.error
 exception). Derived from EnvironmentError with state
 information described
 earlier.

	OverflowError
	Raised on excessively large arithmetic operations. This
 cannot occur for integers as they support arbitrary precision,
 and most floating-point operations are not checked
 either.

	ReferenceError
	Raised in conjunction with weak references. See the weakref
 module.

	RuntimeError
	A rarely used catch-all exception.

	StopIteration
	Raised on the end of values progression in iterator
 objects. Raised by the next(X) built-in and X.__next__() methods (X.next() in Python 2).

	SyntaxError
	Raised when parsers encounter a syntax error. This may
 occur during import operations, calls to eval() and exec(), and when reading code in a
 top-level script file or standard input. Instances of this class
 have attributes filename, lineno, offset, and text for access to details; str() of the exception instance
 returns only the message.

	SystemError
	Raised on interpreter internal errors that are not
 serious enough to shut down (these should be reported).

	SystemExit
	Raised on a call to sys.exit(N). If not handled, the
 Python interpreter exits, and no stack traceback is printed. If
 the passed value is an integer, it specifies the system exit
 status (passed on to C’s exit function); if it is None, the exit status is zero; if it
 has another type, the object’s value is printed and the exit
 status is one. Derived directly from BaseException to prevent it from
 being accidentally caught by code that catches Exception and thus prevents
 interpreter exit.
sys.exit() raises this
 exception so that clean-up handlers (finally clauses of try statements) are executed, and so
 that a debugger can execute a script without losing control. The
 os._exit() function exits
 immediately when needed (e.g., in the child process after a call
 to fork()). Also see the
 atexit standard library
 module for exit function specification.

	TabError
	Raised when an improper mixture of spaces and tabs is
 found in source code. Derived from IndentationError.

	TypeError
	Raised when an operation or function is applied to an
 object of inappropriate type.

	UnboundLocalError
	Raised on references to local names that have not yet
 been assigned a value. Derived from NameError.

	UnicodeError
	Raised on Unicode-related encoding or decoding errors; a
 superclass category, and a subclass of ValueError.

	UnicodeEncodeError
UnicodeDecodeError
UnicodeTranslateError
	Raised on Unicode-related processing errors; subclasses
 of UnicodeError.

	ValueError
	Raised when a built-in operation or function receives an
 argument that has the correct type but an inappropriate value,
 and the situation is not described by a more specific exception
 like IndexError.

	WindowsError
	Raised on Windows-specific errors; a subclass of OSError.

	ZeroDivisionError
	Raised on division or modulus operations with 0 on the
 right.

Warning Category Exceptions

The following exceptions are used as warning
 categories:
	Warning
	The superclass for all of the following warning
 categories; it is a direct subclass of Exception.

	UserWarning
	Warnings generated by user code.

	DeprecationWarning
	Warnings about deprecated features.

	PendingDeprecationWarning
	Warnings about features that will be deprecated in the
 future.

	SyntaxWarning
	Warnings about dubious syntax.

	RuntimeWarning
	Warnings about dubious runtime behavior.

	FutureWarning
	Warnings about constructs that will change semantically in
 the future.

	ImportWarning
	Warnings about probable mistakes in module
 imports.

	UnicodeWarning
	Warnings related to Unicode.

	BytesWarning
	Warnings related to bytes and buffer (memory-view) objects.

Warnings Framework

Warnings are issued when future language changes might break
 existing code in a future Python release—and in other contexts.
 Warnings may be configured to print messages, raise exceptions, or be
 ignored. The warnings framework can be used to issue warnings by
 calling the warnings.warn function:
warnings.warn("feature obsolete", DeprecationWarning)
In addition, you can add filters to disable certain warnings.
 You can apply a regular expression pattern to a message or module name
 to suppress warnings with varying degrees of generality. For example,
 you can suppress a warning about the use of the deprecated regex module by calling:
import warnings
warnings.filterwarnings(action = 'ignore',
 message='.*regex module*',
 category=DeprecationWarning,
 module = '__main__')
This adds a filter that affects only warnings of the class
 DeprecationWarning triggered in the
 __main__ module, applies a regular
 expression to match only the message that names the regex module being deprecated, and causes
 such warnings to be ignored. Warnings can also be printed only once,
 printed every time the offending code is executed, or turned into
 exceptions that will cause the program to stop (unless the exceptions
 are caught). See the warnings
 module documentation in version 2.1 and later for more information.
 See also the -W argument in the
 section Command-Line Options.

Python 2.X Built-in Exceptions

The set of available exceptions, as well as the shape of the
 exception class hierarchy, varies slightly in Python 2.6 from the 3.0
 description of the prior section. For example, in Python 2.X:
	Exception is the topmost root class (not BaseException, which is absent in Python
 2).

	StandardError is an additional Exception subclass, and is a root class
 above all built-in exceptions except SystemExit.

See Python 2.6 manuals for full details.

 Built-in Attributes

 Built-in Attributes

Some objects export special attributes that are predefined by Python.
 The following is a partial list because many types have unique
 attributes all their own; see the entries for specific types in the
 Python Library Reference.[6]
	X.__dict__
	Dictionary used to store object X’s writable attributes.

	I.__class__
	Class object from which instance I was generated. In version 2.2 and
 later, this also applies to object types; most objects have a
 __class__ attribute (e.g.,
 [].__class__ == list == type([])).

	C.__bases__
	Tuple of class C’s base
 classes, as listed in C’s class
 statement header.

	X.__name__
	Object X’s name as a
 string; for classes, the name in the statement header; for
 modules, the name as used in imports, or "__main__" for the module at the top
 level of a program (e.g., the main file run to launch a
 program).

[6] As of Python 2.1, you can also attach arbitrary user-defined
 attributes to function objects,
 simply by assigning them values. Python 2.X also supports special
 attributes I.__methods__ and
 I.__members__: lists of method
 and data member names for instances of some built-in types. These
 are removed in Python 3; use the built-in dir() function.

 Standard Library Modules

 Standard Library Modules

Standard library modules are always available but must be imported to be
 used in client modules. To access them, use one of these formats:
	import module, and fetch
 attribute names (module.name)

	from module import name,
 and use module names unqualified (name)

	from module import *, and
 use module names unqualified (name)

For instance, to use name argv
 in the sys module, either use
 import sys and name sys.argv, or use from
 sys import argv and name argv.
There are many standard library modules; the following sections
 are not necessarily exhaustive, and aim to document only commonly used
 names in commonly used modules. See Python’s Library Reference for a
 more complete reference to standard library modules.
In all of the following module sections:
	Listed export names followed by parentheses are functions that
 must be called; others are simple attributes (i.e., variable names
 in modules).

	Module contents document the modules’ state Python 3.0; see
 Python manuals for information on attributes unique to version 2 or
 3.

 The sys Module

 The sys Module

The sys module contains interpreter-related exports. It also
 provides access to some environment components, such as the command
 line, standard streams, and so on.
	argv
	Command-line argument strings list: [command, arguments...]. Like C’s argv array.

	byteorder
	Indicates the native byte-order (e.g., big for big-endian).

	builtin_module_names
	Tuple of string names of C modules compiled into this
 Python interpreter.

	copyright
	String containing the Python interpreter copyright.

	dllhandle
	Python DLL integer handle; Windows only (see the Python
 Library Reference).

	displayhook(value)
	Called by Python to display result values in interactive
 sessions; assign sys.displayhook to a one-argument
 function to customize output.

	excepthook(type, value,
 traceback)
	Called by Python to display uncaught exception details to
 stderr; assign sys.excepthook to a three-argument
 function to customize exception displays.

	exc_info()
	Returns tuple of three values describing the exception
 currently being handled (type,
 value, traceback), where type is the exception class, value is the instance of the exception
 class raised, and traceback is
 an object that gives access to the runtime call stack as it
 existed when the exception occurred. Specific to current thread.
 Subsumes exc_type, exc_value, and exc_traceback in Python 1.5 and later
 (all three of which are removed completely in Python 3.0). See the
 traceback module in the Python
 Library Reference for processing traceback objects, and The try Statement for more on exceptions.

	exec_prefix
	Assign to a string giving the site-specific directory
 prefix where the platform-dependent Python files are installed;
 defaults to /usr/local or a
 build-time argument. Use this to locate shared library modules (in
 <exec_prefix>/lib/python<version>/lib-dynload)
 and configuration files.

	executable
	String giving the full file pathname of the Python
 interpreter program running the caller.

	exit([N])
	Exits from a Python process with status N (default 0) by raising a SystemExit built-in exception (can be
 caught in a try statement and
 ignored). See also SystemExit
 (in Built-in Exceptions) and the os._exit() function (in The os System Module), which exits immediately
 without exception processing (useful in child processes after an
 os.fork()). Also see the
 atexit module for exit function
 specification.

	getcheckinterval()
	Returns the interpreter’s “check interval”; see setcheckinterval,
 later in this list.

	getdefaultencoding()
	Returns the name of the current default string encoding
 used by the Unicode implementation.

	getfilesystemencoding()
	Returns the name of the encoding used to convert Unicode
 filenames into system file names, or None if the system default encoding is
 used.

	getrefcount(object)
	Returns object’s current
 reference count value (+1 for the call’s argument).

	getrecursionlimit()
	Returns the maximum depth limit of the Python call stack;
 see also setrecursionlimit,
 later in this list.

	getsizeof(object [,
 default])
	Returns the size of an object in bytes. The object can be
 any type of object. All built-in objects return correct results,
 but third-party extension results are implementation specific.
 default provides a value that
 will be returned if the object type does not implement the size
 retrieval interface.

	_getframe([depth])
	Returns a frame object from the Python call stack (see the
 Python Library Reference).

	hexversion
	Python version number, encoded as a single integer (viewed
 best with the hex() built-in
 function). Increases with each new release.

	intern(string)
	Enters string in the
 table of “interned” strings and returns the interned string—the
 string itself or a copy. Interning strings provides a small
 performance improvement for dictionary lookup: if both the keys in
 a dictionary and the lookup key are interned, key comparisons
 (after hashing) can be done by comparing pointers instead of
 strings. Normally, names used in Python programs are automatically
 interned, and the dictionaries used to hold module, class, and
 instance attributes have interned keys.

	last_type
last_value
last_traceback
	Type, value, and traceback objects of last uncaught exception (mostly
 for postmortem debugging).

	maxsize
	An integer giving the maximum value a variable of type
 Py_ssize_t can take. It’s
 usually 2**31 − 1 on a 32-bit
 platform and 2**63 − 1 on a
 64-bit platform.

	maxunicode
	An integer giving the largest supported code point for
 a Unicode character. The value of this depends on the
 configuration option that specifies whether Unicode characters are
 stored as UCS-2 or UCS-4.

	modules
	Dictionary of modules that are already loaded; there is one
 name:object entry per module.
 Writable (for example, del sys.modules['name'] forces a
 module to be reloaded on next import).

	path
	List of strings specifying module import search path.
 Initialized from PYTHONPATH
 shell variable, .pth path
 files, and any installation-dependent defaults. Writable (e.g.,
 sys.path.append('C:\\dir') adds
 a directory to the search path within a script).
The first item, path[0],
 is the directory containing the script that was used to invoke the
 Python interpreter. If the script directory is not available
 (e.g., if the interpreter is invoked interactively or if the
 script is read from standard input), path[0] is the empty string, which
 directs Python to search modules in the current working directory
 first. The script directory is inserted before the entries
 inserted from PYTHONPATH.

	platform
	String identifying the system on which Python is running:
 e.g., 'sunos5', 'darwin', 'linux2', 'win32', 'cygwin', 'PalmOS3'. Useful for tests in
 platform-dependent code.
 Hint: 'win32' means
 all current flavors of Windows, or
 test as sys.platform[:3]=='win' or sys.platform.startswith('win').

	prefix
	Assign to a string giving the site-specific directory
 prefix, where platform-independent Python files are installed;
 defaults to /usr/local or a
 build-time argument. Python
 library modules are installed in the directory <prefix>/lib/python<version>;
 platform-independent header files are stored in <prefix>/include/python<version>.

	ps1
	String specifying primary prompt in interactive mode;
 defaults to >>> unless
 assigned.

	ps2
	String specifying secondary prompt for compound statement
 continuations, in interactive mode; defaults to ... unless assigned.

	dont_write_bytecode
	If this is true, Python won’t try to write “.pyc” or
 “.pyo” files on the import of source modules (see also “-B”
 command-line option).

	setcheckinterval(reps)
	Call to set how often the interpreter checks for
 periodic tasks (e.g., thread switches, signal handlers) to
 reps. Measured in virtual
 machine instructions (default is 100). In general, a Python
 statement translates to multiple virtual machine instructions.
 Lower values maximize thread responsiveness but also maximize
 thread switch overhead.

	setdefaultencoding(name)
	Call to set the current default string encoding used by
 the Unicode implementation. Intended for use by the site module and is available during
 start-up only.

	setprofile(func)
	Call to set the system profile function to func: the profiler’s “hook” (not run for
 each line). See the Python Library Reference for details.

	setrecursionlimit(depth)
	Call to set maximum depth of the Python call stack to
 depth. This limit prevents
 infinite recursion from causing an overflow of the C stack and
 crashing Python. The default is 1,000 on Windows, but this may
 vary.

	settrace(func)
	Call to set the system trace function to func: the program location or state
 change callback “hook” used by debuggers, etc. See the Python
 Library Reference for details.

	stdin
	Standard input stream: a preopened file object. Can be
 assigned to any object with read methods to reset input within a
 script (e.g., sys.stdin=MyObj()). Used for interpreter
 input, including the input()
 built-in function (and raw_input() in Python 2).

	stdout
	Standard output stream: a preopened file object. Can be
 assigned to any object with write methods to reset output within a
 script (e.g., sys.stdout=open('log',
 'a')). Used for some prompts and the print() built-in function (and print statement in Python 2).

	stderr
	Standard error stream: a preopened file object. Can be
 assigned to any object with write methods to reset stderr within a script (e.g., sys.stderr=wrappedsocket). Used for
 interpreter prompts/errors.

	__stdin__
__stdout__
__stderr__
	Original values of stdin,
 stderr, and stdout at program start (e.g., for
 restores as a last resort; normally, when assigning to sys.stdout, etc., save the old value and
 restore it in a finally
 clause). Can be None for GUI
 apps on Windows with no console.

	tracebacklimit
	Maximum number of traceback levels to print on uncaught
 exceptions; defaults to 1,000 unless assigned.

	version
	String containing the version number of the Python interpreter.

	version_info
	Tuple containing five version identification components:
 major, minor, micro, release level, and serial. For Python 3.0.1,
 this is (3, 0, 1, 'final', 0)
 (see the Python Library Reference).

	winver
	Version number used to form registry keys on Windows
 platforms (available only on Windows; see the Python Library
 Reference).

 The string Module

 The string Module

The string module defines constants and variables for processing string objects. See also the
 section Strings for a discussion of the string
 template substitution and formatting tools Template and Formatter defined in this module.
Module Functions and Classes

As of Python 2.0, most functions in this module are also
 available as methods of string objects, and method-based calls are preferred and are more efficient.
 See the section Strings for more details and a list
 of all available string methods not repeated here. Only items unique
 to the string module are listed in
 this section.
	capwords(s)
	Split the argument into words using split, capitalize each word using
 capitalize, and join the
 capitalized words using join.
 Replaces runs of whitespace characters by a single space, and
 removes leading and trailing whitespace.

	maketrans(from,
 to)
	Returns a translation table suitable for passing to
 bytes.translate, that will
 map each character in from
 into the character at the same position in to; from and to must have the same length.

	Formatter
	Class that allows creation of custom formatters using the
 same mechanism as the str.format() method described in
 section Strings.

	Template
	String template substitution class (see the section Strings).

Constants

	ascii_letters
	The string ascii_lowercase +
 ascii_uppercase.

	ascii_lowercase
	The string 'abcdefghijklmnopqrstuvwxyz'; not
 locale-dependent and will
 not change.

	ascii_uppercase
	The string 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'; not
 locale-dependent and will
 not change.

	digits
	The string '0123456789'.

	hexdigits
	The string '0123456789abcdefABCDEF'.

	octdigits
	The string '01234567'.

	printable
	Combination of digits,
 ascii_letters, punctuation, and whitespace.

	punctuation
	String of characters that are considered punctuation
 characters in the locale.

	whitespace
	String containing space, tab, linefeed, return, formfeed,
 and vertical tab: '
 \t\n\r\v\f'.

 The os System Module

 The os System Module

The os module is the primary operating system (OS) services
 interface. It provides generic OS support and a standard, platform-independent OS interface. The
 os module includes tools for
 environments, processes, files, shell commands, and much more. It also
 includes a nested submodule, os.path,
 which provides a portable interface to directory processing
 tools.
Scripts that use os and
 os.path for systems programming are
 generally portable across most Python platforms. However, some os exports are not available on all platforms
 (e.g., fork is available on Unix and
 Cygwin, but not in the standard Windows version of Python). Because the
 portability of such calls can change over time, consult the Python
 Library Reference for platform details.
See also related system modules: glob (filename expansion); tempfile (temporary files); signal (signal handling); socket (networking and IPC); threading (multithreading); queue (thread communication); subprocess (spawned command control); multiprocessing (threading-like API for processes); getopt and optparse (command-line processing); and
 others.
Administrative Tools

Following are some miscellaneous module-related exports:
	error
	An alias for the built-in OSError exception. Raised for os module-related errors. The
 accompanying value is a pair containing the numeric error code
 from errno and the
 corresponding string, as would be printed by the C function
 perror(). See the module
 errno in the Python Library
 Reference for names of the error codes defined by the underlying
 OS.
When exceptions are classes, this exception carries two
 attributes: errno, the value
 of the C errno variable;
 and strerror, the corresponding
 error message from strerror(). For exceptions that
 involve a file pathname (e.g., chdir(), unlink()), the exception instance also
 contains the attribute filename, the filename passed
 in.

	name
	Name of OS-specific modules whose names are copied to the
 top level of os (e.g.,
 posix, nt, mac, os2, ce, or java). See also platform in the section The sys Module.

	path
	Nested module for portable pathname-based utilities. For
 example, os.path.split is a
 platform-independent directory name tool that internally uses an
 appropriate platform-specific call.

Portability Constants

This section describes tools for parsing and building
 directory and search path strings portably. They are automatically set
 to the appropriate value for the platform on which a script is running.
	curdir
	String used to represent current directory (e.g., . for Windows and POSIX, : for Macintosh).

	pardir
	String used to represent parent directory (e.g., .. for POSIX, :: for Macintosh).

	sep
	String used to separate directories (e.g., / for Unix, \ for Windows, or : for Macintosh).

	altsep
	Alternative separator string or None (e.g., / for Windows).

	extsep
	The character that separates the base filename from the
 extension (e.g., .).

	pathsep
	Character used to separate search path components, as in
 the PATH and PYTHONPATH shell variable settings
 (e.g., ; for Windows,
 : for Unix).

	defpath
	Default search path used by os.exec*p* calls if there is no
 PATH setting in the
 shell.

	linesep
	String used to terminate lines on current platform (e.g.,
 \n for POSIX, \r for Mac OS, and \r\n for Windows). Do not use this
 when writing lines in text mode files—use the autotranslation of
 '\n'.

Shell Commands

These functions run programs in the underlying operating
 system. In Python 2.X, this module has os.popen2/3/4 calls, which have been
 replaced by subprocess.Popen in
 Python 3.0.
	system(cmd)
	Executes a command string cmd in a subshell process. Returns the
 exit status of the spawned process. Unlike popen, does not connect to cmd’s standard streams via pipes.
 Hints: add an & at the
 end of cmd to run the command in the background on Unix
 (e.g., os.system('python main.py
 &')); use a DOS start command to launch programs
 easily on Windows (e.g., os.system('start
 file.html')).

	startfile(filepathname)
	Starts a file with its associated application. Acts like
 double-clicking the file
 in Windows Explorer or giving the filename as an argument to a
 DOS start command (e.g., with
 os.system('start
 path')). The file is opened in the
 application with which its extension is associated; the call
 does not wait, and does not generally pop up a DOS console
 window. Windows only, new in version 2.0.

	popen(cmd, mode='r',
 buffering=None)
	Opens a pipe to or from the shell command string
 cmd, to send or capture data.
 Returns an open file object, which can be used to either read
 from cmd’s standard output
 stream stdout (mode 'r') or write to cmd’s standard input stream stdin (mode
 'w'). For example, dirlist =
 os.popen('ls −l *.py').read() reads the output of a
 Unix ls command.
cmd is any command string you can type at your system’s
 console or shell prompt. mode
 can be 'r' or 'w' and defaults to 'r'. buffering is the same as in the
 built-in open function.
 cmd runs independently; its
 exit status is returned by the resulting file object’s close method, except that None is returned if exit status is 0
 (no errors). Use readline()
 or iteration to read output line by line.
Python 2.X also has variants popen2, popen3, and popen4 to connect to other streams of
 the spawned command (e.g., popen2 returns a tuple (child_stdin, child_stdout)). In
 Python 3.0, these calls are removed; use subprocess.Popen() instead. The
 subprocess module in version
 2.4 and later allows scripts to spawn new processes, connect to
 their input/output/error pipes, and obtain their return codes.
 See the Python Library Reference.

	spawn*(args...)
	A family of functions for spawning programs and commands.
 See Process Control, as well as the Python
 Library Reference for more details. The subprocess module is a generally
 preferred alternative to these calls.

Environment Tools

These attributes export execution environment and context.
	environ
	The shell environment variable dictionary-like object.
 os.environ['USER'] is the
 value of variable USER in the
 shell (equivalent to $USER in
 Unix and %USER% in DOS).
 Initialized on program
 start-up. Changes made to os.environ by key assignment are
 exported outside Python using a call to C’s putenv and are inherited by any
 processes that are later spawned in any way, as well as any
 linked-in C code.

	putenv(varname,
 value)
	Sets the shell environment variable named varname to the string value. Affects subprocesses started
 with system, popen, spawnv, or fork and execv. Assignment to os.environ keys
 automatically calls putenv
 (but putenv calls don’t
 update environ).

	getcwd()
	Returns the current working directory name as a
 string.

	chdir(path)
	Changes the current working directory for this process to
 path, a directory name
 string. Future file operations are relative to the new current
 working directory.

	strerror(code)
	Returns an error message corresponding to code.

	times()
	Returns a five-tuple containing elapsed CPU time
 information for the calling process in floating-point seconds:
 (user-time,
 system-time,
 child-user-time,
 child-system-time,
 elapsed-real-time). Also see the section The time Module.

	umask(mask)
	Sets the numeric umask
 to mask and returns the prior
 value.

	uname()
	Returns OS name tuple of strings: (systemname,
 nodename,
 release,
 version,
 machine).

File Descriptor Tools

The following functions process files by their descriptors (fd is a
 file-descriptor integer). os module
 descriptor-based files are meant for low-level file tasks and are not
 the same as stdio file objects returned by the built-in
 open() function (though os.fdopen and the file object fileno method convert between the two). File
 objects, not descriptors, should normally be used for most file
 processing.
	close(fd)
	Closes file descriptor fd (not a file object).

	dup(fd)
	Returns duplicate of file descriptor fd.

	dup2(fd, fd2)
	Copies file descriptor fd to fd2 (close fd2 first if open).

	fdopen(fd [, mode [,
 bufsize]])
	Returns a built-in file object (stdio) connected to file descriptor
 fd (an integer). mode and bufsize have the same meaning as in
 the built-in open() function
 (see the section Built-in Functions). A
 conversion from descriptor-based files to file
 objects is normally created by the built-in open() function. Hint: use fileobj.fileno to convert a file
 object to a descriptor.

	fstat(fd)
	Returns status for file descriptor fd (like stat).

	ftruncate(fd,
 length)
	Truncates the file corresponding to file descriptor
 fd so that it is at most
 length bytes in size.

	isatty(fd)
	Returns 1 if file
 descriptor fd is open and
 connected to a tty(-like) device.

	lseek(fd, pos,
 how)
	Sets the current position of file descriptor fd to pos (for random access). how can be 0 to set the position
 relative to the start of the file, 1 to set it relative to the
 current position, or 2 to set it relative to the end.

	open(filename, flags [,
 mode])
	Opens a file descriptor-based file and returns the file
 descriptor (an integer, not an stdio file object). Intended for
 low-level file tasks only; not the same as the built-in open() function. mode defaults to 0777 (octal), and the
 current umask value is first
 masked out. flag is a
 bitmask: use | to combine
 both platform-neutral and platform-specific flag constants
 defined in the os module (see
 Table 1-18).

	pipe()
	See the section Process Control.

	read(fd, n)
	Reads at most n bytes
 from file descriptor fd and
 returns those bytes as a string.

	write(fd, str)
	Writes all bytes in string str to file descriptor fd.

Table 1-18. Sample or-able flags for os.open

 The re Pattern-Matching Module

 The re Pattern-Matching Module

The re module is the standard regular
 expression-matching interface. Regular expression (RE) patterns are
 specified as strings. This module must be imported.
Module Functions

	compile(pattern [,
 flags])
	Compile an RE pattern
 string into a regular expression object, for later matching.
 flags (combinable by bitwise
 | operator) include the
 following available at the top-level of the re module:
	A or
 ASCII or (?a)
	Makes \w,
 \W, \b, \B, \s, and \S perform ASCII-only matching
 instead of full Unicode matching. This is only meaningful
 for Unicode patterns and is ignored for byte patterns.
 Note that for backward compatibility, the re.U flag still exists (as well
 as its synonym re.UNICODE and its embedded
 counterpart, ?u), but
 these are redundant in Python 3.0 since matches are
 Unicode by default for strings (and Unicode matching isn’t
 allowed for bytes).

	I or
 IGNORECASE or (?i)
	Case-insensitive matching.

	L or
 LOCALE or (?L)
	Makes \w,
 \W, \b, \B, \s, \S, \d, and \D dependent on the current
 locale (default is Unicode for Python 3).

	M or
 MULTILINE or (?m)
	Matches to each newline, not whole string.

	S or
 DOTALL or (?s)
	. matches
 all characters, including
 newline.

	U or
 UNICODE or (?u)
	Makes \w,
 \W, \b, \B, \s, \S, \d, and \D dependent on Unicode
 character properties (new in version 2.0, and superfluous
 in Python 3).

	X or
 VERBOSE or (?x)
	Ignores whitespace in the pattern, outside character
 sets.

	match(pattern, string [,
 flags])
	If zero or more characters at start of string match the pattern string, returns a
 corresponding MatchObject
 instance, or None if no
 match. flags as in compile.

	search(pattern, string [,
 flags])
	Scans through string
 for a location matching pattern; returns a corresponding
 MatchObject instance, or
 None if no match. flags as in compile.

	split(pattern, string [,
 maxsplit=0])
	Splits string by
 occurrences of pattern. If
 capturing () are used in
 pattern, occurrences of
 patterns or subpatterns are also returned.

	sub(pattern, repl, string [,
 count=0])
	Returns string obtained by replacing the (first count)
 leftmost nonoverlapping occurrences of pattern (a string or an RE object) in
 string by repl. repl can be a string or a function
 called with a single MatchObject argument, which must
 return the replacement string. repl can also include sequence escapes
 \1, \2, etc., to use substrings that match
 groups, or \0 for all.

	subn(pattern, repl, string [,
 count=0])
	Same as sub but returns
 a tuple (new-string,
 number-of-subs-made).

	findall(pattern, string [,
 flags])
	Returns a list of strings giving all nonoverlapping
 matches of pattern in
 string. If one or more groups
 are present in the pattern, returns a list of groups.

	finditer(pattern, string [,
 flags])
	Returns an iterator over all nonoverlapping matches for
 the RE pattern in string (match objects).

	escape(string)
	Returns string with all
 nonalphanumeric characters backslashed, such that they can be
 compiled as a string literal.

Regular Expression Objects

RE objects are returned by the re.compile function and have the following
 attributes:
	flags
	The flags argument used
 when the RE object was compiled.

	groupindex
	Dictionary of {group-name:
 group-number} in the pattern.

	pattern
	The pattern string from which the RE object was compiled.

	match(string [, pos [,
 endpos]])
search(string [, pos [,
 endpos]])
split(string [,
 maxsplit=0])
sub(repl, string [,
 count=0])
subn(repl, string [,
 count=0])
findall(string [, pos[,
 endpos]])
finditer(string [, pos[,
 endpos]])
	Same as earlier re
 module functions, but pattern
 is implied, and pos and
 endpos give start/end string
 indexes for the match.

Match Objects

Match objects are returned by successful match and search operations, and have the following
 attributes (see the Python Library Reference for additional attributes
 omitted here).
	pos, endpos
	Values of pos and
 endpos passed to search or match.

	re
	RE object whose match
 or search produced
 this.

	string
	String passed to match
 or search.

	group([g1,
 g2,...])
	Returns substrings that were matched by parenthesized
 groups in the pattern. Accepts zero or more group numbers. If
 one argument, result is the substring that matched the group
 whose number is passed. If multiple arguments, result is a tuple
 with one matched substring per argument. If no arguments,
 returns entire matching substring. If any group number is 0,
 return value is entire matching string; otherwise, returns
 string matching corresponding parenthesized group number in
 pattern (1...N, from left to right). Group number arguments can
 also be group names.

	groups()
	Returns a tuple of all groups of the match; groups not
 participating in the match have a value of None.

	groupdict()
	Returns a dictionary containing all the named subgroups of
 the match, keyed by the subgroup name.

	start([group]),
 end([group])
	Indexes of start and end of substring matched by group (or entire matched string, if no
 group). If match object
 M, M.string[M.start(g):M.end(g)]==M.group(g).

	span([group])
	Returns the tuple (start(group),
 end(group)).

	expand(template)
	Returns the string obtained by doing backslash
 substitution on the template string template, as done by the sub method. Escapes such as \n are converted to the appropriate
 characters, and numeric back-references (\1, \2) and named back-references
 (\g<1>, \g<name>) are replaced by the
 corresponding group.

Pattern Syntax

Pattern strings are specified by concatenating forms (see Table 1-19), as well as by character
 class escapes (see Table 1-20).
 Python character escapes (e.g., \t
 for tab) can also appear. Pattern strings are matched against text
 strings, yielding a Boolean match result, as well as grouped
 substrings matched by subpatterns in parentheses:
>>> import re
>>> patt = re.compile('hello[\t]*(.*)')
>>> mobj = patt.match('hello world!')
>>> mobj.group(1)
'world!'
In Table 1-19, C is
 any character, R is any regular expression form
 in the left column of the table, and m and
 n are integers. Each form usually consumes as
 much of the string being matched as possible, except for the nongreedy
 forms (which consume as little as possible, as long as the entire
 pattern still matches the target string).
Table 1-19. Regular expression pattern syntax

 Object Persistence Modules

 Object Persistence Modules

Three modules comprise the object persistence interface.
	dbm (anydbm in Python 2.X)
	Key-based string-only storage files.

	pickle (and
 cPickle in Python 2.X)
	Serializes an in-memory object to/from file streams.

	shelve
	Key-based persistent object stores: pickles objects to/from
 dbm files.

The shelve module implements
 persistent object stores. shelve in
 turn uses the pickle module to
 convert (serialize) in-memory Python objects to byte-stream strings and
 the dbm module to store serialized
 byte-stream strings in access-by-key files.
Note
In Python 2.X, dbm is named
 anydbm, and the cPickle module is an optimized version of
 pickle that may be imported
 directly and is used automatically by shelve, if present. In Python 3.0, cPickle is renamed _pickle and is automatically used by
 pickl