

About This eBook

ePUB is an open, industry-standard format for eBooks. However, support of ePUB and its many
features varies across reading devices and applications. Use your device or app settings to customize
the presentation to your liking. Settings that you can customize often include font, font size, single or
double column, landscape or portrait mode, and figures that you can click or tap to enlarge. For
additional information about the settings and features on your reading device or app, visit the device
manufacturer’s Web site.

Many titles include programming code or configuration examples. To optimize the presentation of
these elements, view the eBook in single-column, landscape mode and adjust the font size to the
smallest setting. In addition to presenting code and configurations in the reflowable text format, we
have included images of the code that mimic the presentation found in the print book; therefore, where
the reflowable format may compromise the presentation of the code listing, you will see a “Click here
to view code image” link. Click the link to view the print-fidelity code image. To return to the
previous page viewed, click the Back button on your device or app.

Sams Teach Yourself Python Programming for
Raspberry Pi® in 24 Hours

Richard Blum
Christine Bresnahan

800 East 96th Street, Indianapolis, Indiana, 46240 USA

Sams Teach Yourself Python Programming for Raspberry Pi® 24
Hours
Copyright © 2014 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of the
information contained herein. Although every precaution has been taken in the preparation of this
book, the publisher and author assume no responsibility for errors or omissions. Nor is any liability
assumed for damages resulting from the use of the information contained herein.

Raspberry Pi is a trademark of the Raspberry Pi Foundation.

ISBN-13: 978-0-7897-5205-5
ISBN-10: 0-7897-5205-0

Library of Congress Control Number: 2013946052
Printed in the United States of America
First Printing: October 2013

Editor-in-Chief
Greg Wiegand

Executive Editor
Rick Kughen

Development Editor
Mark Renfrow

Managing Editor
Kristy Hart

Project Editor
Andy Beaster

Copy Editor
Kitty Wilson

Indexer
Tim Wright

Proofreader
Sarah Kearns

Technical Editor
Jason Foster

Publishing Coordinator
Kristen Watterson

Interior Designer
Mark Shirar

Cover Designer
Mark Shirar

Compositor
Nonie Ratcliff

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use of a
term in this book should not be regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The author(s) and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any loss
or damages arising from the information contained in this book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales. For more information, please contact

 U.S. Corporate and Government Sales
 1-800-382-3419
 corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

 International Sales
 international@pearsoned.com

mailto:corpsales@pearsontechgroup.com
mailto:international@pearsoned.com

Contents at a Glance

Introduction

Part I: The Raspberry Pi Programming Environment

Hour 1 Setting Up the Raspberry Pi

2 Understanding the Raspbian Linux Distribution

3 Setting Up a Programming Environment

Part II: Python Fundamentals

Hour 4 Understanding Python Basics

5 Using Arithmetic in Your Programs

6 Controlling Your Program

7 Learning About Loops

Part III: Advanced Python

Hour 8 Using Lists and Tuples

9 Dictionaries and Sets

10 Working with Strings

11 Using Files

12 Creating Functions

13 Working with Modules

14 Exploring the World of Object-Oriented Programming

15 Employing Inheritance

16 Regular Expressions

17 Exception Handling

Part IV: Graphical Programming

Hour 18 GUI Programming

19 Game Programming

Part V: Business Programming

Hour 20 Using the Network

21 Using Databases in Your Programming

22 Web Programming

Part VI: Raspberry Pi Python Projects

Hour 23 Creating Basic Pi/Python Projects

24 Working with Advanced Pi/Python Projects

Part VII: Appendix

A Loading the Raspbian Operating System onto an SD Card

Index

Table of Contents

Introduction
Programming with Python
Who Should Read This Book?
Conventions Used in This Book

Part I: The Raspberry Pi Programming Environment

Hour 1: Setting Up the Raspberry Pi
What Is a Raspberry Pi?
Acquiring a Raspberry Pi
What Raspberry Pi Peripherals Are Necessary?
Nice Additional Peripherals
Deciding How to Purchase Peripherals
Getting Your Raspberry Pi Working
Troubleshooting Your Raspberry Pi
Summary
Q&A
Workshop

Hour 2: Understanding the Raspbian Linux Distribution
Learning About Linux
Interacting with the Raspbian Command Line
Interacting with the Raspbian GUI
Summary
Q&A
Workshop

Hour 3: Setting Up a Programming Environment
Exploring Python
Checking Your Python Environment
Installing Python and Tools
Learning About the Python Interpreter
Learning About the Python Interactive Shell
Learning About the Python Development Environment Shell
Creating Python Scripts
Knowing Which Tool to Use and When

Summary
Q&A
Workshop

Part II: Python Fundamentals

Hour 4: Understanding Python Basics
Producing Python Script Output
Formatting Scripts for Readability
Understanding Python Variables
Assigning Value to Python Variables
Learning About Python Data Types
Allowing Python Script Input
Summary
Q&A
Workshop

Hour 5: Using Arithmetic in Your Programs
Working with Math Operators
Calculating with Fractions
Using Complex Number Math
Getting Fancy with the math Module
Using the NumPy Math Libraries
Summary
Q&A
Workshop

Hour 6: Controlling Your Program
Working with the if Statement
Grouping Multiple Statements
Adding Other Options with the else Statement
Adding More Options Using the elif Statement
Comparing Values in Python
Checking Complex Conditions
Negating a Condition Check
Summary
Q&A
Workshop

Hour 7: Learning About Loops
Performing Repetitive Tasks
Using the for Loop for Iteration
Using the while Loop for Iteration
Creating Nested Loops
Summary
Q&A
Workshop

Part III: Advanced Python

Hour 8: Using Lists and Tuples
Introducing Tuples
Introducing Lists
Using Multidimensional Lists to Store Data
Working with Lists and Tuples in Your Scripts
Creating Lists by Using List Comprehensions
Working with Ranges
Summary
Q&A
Workshop

Hour 9: Dictionaries and Sets
Understanding Python Dictionary Terms
Exploring Dictionary Basics
Programming with Dictionaries
Understanding Python Sets
Exploring Set Basics
Obtaining Information from a Set
Modifying a Set
Programming with Sets
Summary
Q&A
Workshop

Hour 10: Working with Strings
The Basics of Using Strings
Using Functions to Manipulate Strings

Formatting Strings for Output
Summary
Q&A
Workshop

Hour 11: Using Files
Understanding Linux File Structures
Opening a File
Reading a File
Closing a File
Writing to a File
Summary
Q&A
Workshop

Hour 12: Creating Functions
Utilizing Python Functions in Your Programs
Returning a Value
Passing Values to Functions
Handling Variables in a Function
Using Lists with Functions
Using Recursion with Functions
Summary
Q&A
Workshop

Hour 13: Working with Modules
Introducing Module Concepts
Exploring Standard Modules
Learning About Python Modules
Creating Custom Modules
Summary
Q&A
Workshop

Hour 14: Exploring the World of Object-Oriented Programming
Understanding the Basics of Object-Oriented Programming
Defining Class Methods
Sharing Your Code with Class Modules

Summary
Q&A
Workshop

Hour 15: Employing Inheritance
Learning About the Class Problem
Understanding Subclasses and Inheritance
Using Inheritance in Python
Using Inheritance in Python Scripts
Summary
Q&A
Workshop

Hour 16: Regular Expressions
What Are Regular Expressions?
Working with Regular Expressions in Python
Defining Basic Patterns
Using Advanced Regular Expressions Features
Working with Regular Expressions in Your Python Scripts
Summary
Q&A
Workshop

Hour 17: Exception Handling
Understanding Exceptions
Handling Exceptions
Handling Multiple Exceptions
Summary
Q&A
Workshop

Part IV: Graphical Programming

Hour 18: GUI Programming
Programming for a GUI Environment
Examining Python GUI Packages
Using the tkinter Package
Exploring the tkinter Widgets
Summary

Q&A
Workshop

Hour 19: Game Programming
Understanding Game Programming
Learning About Game Frameworks and Libraries
Setting Up the PyGame Library
Using PyGame
Learning More About PyGame
Dealing with PyGame Action
Summary
Q&A
Workshop

Part V: Business Programming

Hour 20: Using the Network
Finding the Python Network Modules
Working with Email Servers
Working with Web Servers
Linking Programs Using Socket Programming
Summary
Q&A
Workshop

Hour 21: Using Databases in Your Programming
Working with the MySQL Database
Using the PostgreSQL Database
Summary
Q&A
Workshop

Hour 22: Web Programming
Running a Web Server on the Pi
Programming with the Common Gateway Interface
Expanding Your Python Webpages
Processing Forms
Summary
Q&A

Workshop

Part VI: Raspberry Pi Python Projects

Hour 23: Creating Basic Pi/Python Projects
Thinking About Basic Pi/Python Projects
Displaying HD Images via Python
Playing Music
Creating a Special Presentation
Summary
Q&A
Workshop

Hour 24: Working with Advanced Pi/Python Projects
Exploring the GPIO Interface
Using the RPi.GPIO Module
Controlling GPIO Output
Detecting GPIO Input
Summary
Q&A
Workshop

Part VII: Appendix

Appendix A: Loading the Raspbian Operating System onto an SD Card

Windows: Loading Raspbian onto an SD Card
Linux: Loading Raspbian onto an SD Card
Mac: Loading Raspbian onto an SD Card

Index

About the Authors

Richard Blum has worked in the IT industry for over 25 years as a network and systems
administrator, managing Microsoft, Unix, Linux, and Novell servers for a network with more than
3,500 users. He has developed and teaches programming and Linux courses via the Internet to
colleges and universities worldwide. Rich has a master’s degree in management information systems
from Purdue University and is the author of several Linux books, including Linux Command Line and
Shell Scripting Bible (coauthored with Christine Bresnahan, 2011, Wiley), Linux for Dummies, 9th
edition (2009, Wiley), and Professional Linux Programming (coauthored with Jon Masters, 2007,
Wiley). When he’s not busy being a computer nerd, Rich enjoys spending time with his wife, Barbara,
and two daughters, Katie Jane and Jessica.
Christine Bresnahan started working in the IT industry more than 25 years ago as a system
administrator. Christine is currently an adjunct professor at Ivy Tech Community College in
Indianapolis, Indiana, teaching Python programming, Linux system administration, and Linux security
classes. Christine produces Unix/Linux educational material and is the author of Linux Bible, 8th
edition (coauthored with Christopher Negus, 2012, Wiley) and Linux Command Line and Shell
Scripting Bible (coauthored with Richard Blum, 2011, Wiley). She has been an enthusiastic owner of
a Raspberry Pi since 2012.

Dedication

To the Lord God Almighty.

“I am the vine, you are the branches; he who abides in Me and I in him,
he bears much fruit, for apart from Me you can do nothing.”

—John 15:5

Acknowledgments

First, all glory, and praise go to God, who through His Son, Jesus Christ, makes all things possible
and gives us the gift of eternal life.
Many thanks go to the fantastic team of people at Sams Publishing, for their outstanding work on this
project. Thanks to Rick Kughen, the executive editor, for offering us the opportunity to work on this
book and keeping things on track. We are grateful to the development editor, Mark Renfrow, who
provided diligence in making our work more presentable. Thanks to the production editor, Andy
Beaster, for making sure the book was produced. Many thanks to the copy editor, Kitty Wilson, for
her endless patience and diligence in making our work readable. Also, we are indebted to our
technical editor, Jason Foster, who put in many long hours double-checking all our work and keeping
the book technically accurate.
Thanks to Tonya of Tonya Wittig Photography, who created incredible pictures of our Raspberry Pis
and was very patient in taking all the photos we wanted for the book. We would also like to thank
Carole Jelen at Waterside Productions, Inc., for arranging this opportunity for us and for helping us
out in our writing careers.
Christine would also like to thank her student, Paul Bohall, for introducing her to the Raspberry Pi,
and her husband, Timothy, for his encouragement to pursue the “geeky stuff” students introduce her to.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value your opinion
and want to know what we’re doing right, what we could do better, what areas you’d like to see us
publish in, and any other words of wisdom you’re willing to pass our way.
We welcome your comments. You can email or write to let us know what you did or didn’t like about
this book—as well as what we can do to make our books better.
Please note that we cannot help you with technical problems related to the topic of this book.
When you write, please be sure to include this book’s title and author as well as your name and email
address. We will carefully review your comments and share them with the author and editors who
worked on the book.
Email: consumer@samspublishing.com
Mail: Sams Publishing
 ATTN: Reader Feedback
 800 East 96th Street
 Indianapolis, IN 46240 USA

mailto:consumer@samspublishing.com

Reader Services

Visit our website and register this book at informit.com/register for convenient access to any updates,
downloads, or errata that might be available for this book.

http://informit.com/register

Introduction

Officially launched in February 2012, the Raspberry Pi personal computer took the world by storm,
selling out the 10,000 available units immediately. It is an inexpensive credit card–sized exposed
circuit board, a fully programmable PC running the free open source Linux operating system. The
Raspberry Pi can connect to the Internet, can be plugged into a TV, and costs around $35.
Originally created to spark schoolchildren’s interest in computers, the Raspberry Pi has caught the
attention of home hobbyist, entrepreneurs, and educators worldwide. Estimates put the sales figures
around 1 million units as of February 2013.
The official programming language of the Raspberry Pi is Python. Python is a flexible programming
language that runs on almost any platform. Thus, a program can be created on a Windows PC or Mac
and run on the Raspberry Pi and vice versa. Python is an elegant, reliable, powerful, and very popular
programming language. Making Python the official programming language of the popular Raspberry Pi
was genius.

Programming with Python
The goal of this book is to help guide both students and hobbyists through using the Python
programming language on a Raspberry Pi. You don’t need to have any programming experience to
benefit from this book; we walk through all the necessary steps in getting your Python programs up
and running!
Part I, “The Raspberry Pi Programming Environment,” walks through the core Raspberry Pi system
and how to use the Python environment that’s already installed in it. Hour 1, “Setting Up the
Raspberry Pi,” demonstrates how to set up a Raspberry Pi system, and then in Hour 2,
“Understanding the Raspbian Linux Distribution,” we take a closer look at Raspbian, the Linux
distribution designed specifically for the Raspberry Pi. Hour 3, “Setting Up a Programming
Environment,” walks through the different ways you can run your Python programs on the Raspberry
Pi, and it goes through some tips on how to build your programs.
Part II, “Python Fundamentals,” focuses on the Python 3 programming language. Python v3 is the
newest version of Python, and is fully supported in the Raspberry Pi. Hours 4 through 7 take you
through the basics of Python programming, from simple assignment statements (Hour 4,
“Understanding Python Basics”), arithmetic (Hour 5, “Using Arithmetic in Your Programs”), and
structured commands (Hour 6, “Controlling Your Program”), to complex structured commands (Hour
7, “Learning About Loops”).
Hours 8, “Using Lists and Tuples,” and 9, “Dictionaries and Sets,” kick off Part III, “Advanced
Python,” showing how to use some of the fancier data structures supported by Python—lists, tuples,
dictionaries, and sets. You’ll use these a lot in your Python programs, so it helps to know all about
them!
In Hour 10, “Working with Strings,” we take a little extra time to go over how Python handles text
strings. String manipulation is a hallmark of the Python programming language, so we want to make
sure you’re comfortable with how that all works.
After that primer, we walk through some more complex concepts in Python: using files (Hour 11,
“Using Files”), creating your own functions (Hour 12, “Creating Functions”), creating your own

modules (Hour 13, “Working with Modules”), object-oriented Python programming (Hour 14,
“Exploring the World of Object-Oriented Programming”), inheritance (Hour 15, “Employing
Inheritance”), regular expressions (Hour 16, “Regular Expressions”), and working with exceptions
(Hour 17, “Exception Handling”).
Part IV, “Graphical Programming,” is devoted to using Python to create real-world applications.
Hour 18, “GUI Programming,” discusses GUI programming so you can create your own windows
applications, and Hour 19, “Game Programming,” introduces you to the world of Python game
programming.
Part V, “Business Programming,” takes a look at some business-oriented applications that you can
create. In Hour 20, “Using the Network,” we look at how to incorporate network functions such as
email and retrieving data from webpages into your Python programs, Hour 21, “Using Databases in
Your Programming,” shows how to interact with popular Linux database servers, and Hour 22, “Web
Programming,” demonstrates how to write Python programs that you can access from across the Web.
Part VI, “Raspberry Pi Python Projects,” walks through Python projects that focus specifically on
features found on the Raspberry Pi. Hour 23, “Creating Basic Pi/Python Projects,” shows how to use
the Raspberry Pi video and sound capabilities to create multimedia projects. Hour 24, “Working with
Advanced Pi/Python Projects,” explores connecting your Raspberry Pi with electronic circuits using
the General Purpose Input/Output (GPIO) interface.

Who Should Read This Book?
This book is aimed at readers interested in getting the most from their Raspberry Pi system by writing
their own Python programs, including these three groups:

 Students interested in an inexpensive way to learn Python programming.
 Hobbyists who want to get the most out of their Raspberry Pi system.
 Entrepreneurs looking for an inexpensive Linux platform to use for application deployment.

If you are reading this book, you are not necessarily new to programming but you may be new to using
the Python programming

Conventions Used in This Book
To make your life easier, this book includes various features and conventions that help you get the
most out of this book and out of your Raspberry Pi:

This book also uses the following boxes to draw your attention to important or interesting
information:

By the Way
By the Way boxes present asides that give you more information about the current
topic. These tidbits provide extra insights that offer better understanding of the task.

Did You Know
Did You Know boxes call your attention to suggestions, solutions, or shortcuts that are
often hidden, undocumented, or just extra useful.

Watch Out!
Watch Out! boxes provide cautions or warnings about actions or mistakes that bring
about data loss or other serious consequences.

Part I: The Raspberry Pi Programming
Environment

HOUR 1 Setting Up the Raspberry Pi

HOUR 2 Understanding the Raspbian Linux Distribution

HOUR 3 Setting Up a Programming Environment

Hour 1. Setting Up the Raspberry Pi

What You’ll Learn in This Hour:
 What is the Raspberry Pi?
 How to get a Raspberry Pi.
 What peripherals you need for the Raspberry Pi.
 How to get a Raspberry Pi working.
 How to troubleshoot a Raspberry Pi.

This lesson introduces the Raspberry Pi: what it is, its history, and why you should learn how to
program in Python on it. By the end of this hour, you will know what peripherals are needed for a
Raspberry Pi and how to get one up and running.

What Is a Raspberry Pi?
A Raspberry Pi is a very inexpensive, fully programmable computer that is small enough to fit into the
palm of your hand (see Figure 1.1). While the Raspberry Pi is small in size, it is mighty in potential.
You can use it like a regular desktop computer or create a super-cool project with it. For example,
you could use a Raspberry Pi to set up your very own home-based cloud storage server.

FIGURE 1.1 The Raspberry Pi, Model B. Note the paperclip for scale.

Raspberry Pi History
The Raspberry Pi is still a fairly young device. It was created in the United Kingdom by Eben Upton
and a few colleagues. The first commercial version, Model A, was officially offered for sale in early
2012 at the low price of $25.

By the Way: Different Raspberry Pi Names
People use a few different names for the Raspberry Pi. You also will see it called
names such as RPi and just Pi.

Upton created the Raspberry Pi to address a concern that he and others in his field shared: Too few
young people were getting involved in computer science. Offering a cheap, flexible, and small
computing device seemed like a good way to trigger more interest.
Upton formed the Raspberry Pi Foundation, with expected sales around 10,000 units. When the
Raspberry Pi went on sale in February 2012, it sold out immediately. An upgraded model, Model B,
was offered during late summer 2012, and sales continued to skyrocket. While the Pi was originally
created to spark young people’s interest in computers, it has also caught the attention of home
hobbyist, entrepreneurs, and educators worldwide. In just one year, the Raspberry Pi Foundation sold
approximately 1 million Raspberry Pi computers!

Did You Know: Supporting the Raspberry Pi Foundation
The Raspberry Pi Foundation is a charitable organization. It asks that you help support
its cause of sparking young people’s interest in computers, by purchasing a Raspberry
Pi! www.raspberrypi.org

Raspberry Pi owners have used their devices in a variety of really creative projects. People around
the world have used Pi to create fun projects, like voice-controlled garage door openers, weather
stations, and pinball machines. Also, business-oriented projects have been done, such as using the
Raspberry Pi to demonstrate potential computer security threats.

Why Learn to Program Python on a Raspberry Pi?
A common thread in Raspberry Pi projects is the use of the Python programming language. Python
allows a Raspberry Pi owner to increase the field of project possibilities to an incredible size.
Python is an interpreted object-oriented and cross-platform programming language. It is also one of
the most popular programming languages, due to its reliability, clear syntax, and ease of use. Python
is an elegant, powerful language.
The Raspberry Pi offers an incredibly cheap development platform for Python programming. Though
Python can be considered “educational” because it is easy to learn, by no means is Python wimpy.
Armed with Python and Pi, your only limit is your imagination. You can write games in Python and
run them on gaming consoles controlled by your Raspberry Pi. You can write programs to control
robots attached to your Raspberry Pi. Or you could be like Dave Akerman and send your Raspberry
Pi over 39,000 miles above the earth to take incredible pictures (see www.daveakerman.com/?

http://www.raspberrypi.org
http://www.daveakerman.com/?p=592

p=592).

By the Way: Raspberry Pi Already Up and Running?
If you are currently a Pi owner and have your Raspberry Pi up and running, you can
skip the rest of this hour.

Acquiring a Raspberry Pi
Before you purchase a Pi, you need to understand a few things:

 What you get when you buy a Raspberry Pi
 The different Pi models available
 Where you can buy a Raspberry Pi
 What peripherals you’ll need

When you buy a Raspberry Pi, you get an exposed circuit board about the size of your palm, with a
system on a chip (SoC), memory, and ports. Figure 1.2 shows a Raspberry Pi Model B diagram
depicting what you receive. It does not come with an internal storage device, a keyboard, or any
peripherals—so you will want to acquire a few peripherals to get your Pi up and running.

FIGURE 1.2 Diagram of the Raspberry Pi Model B.

Did You Know: What Is a SoC?
A system on a chip (SoC) is a single microchip or integrated circuit (IC) that contains
all the components needed for a system. SoCs are typically found on cell phones and
embedded devices. For the Raspberry Pi, the SoC contains both an ARM processor for
application processing and a Graphics Processing Unit (GPU) for video processing.

Two models of the Pi currently exist. While the two models are similar, you should review their
different features, listed in Table 1.1, to pick which one is right for you.

TABLE 1.1 Model A Versus Model B Raspberry Pi
Model B has more features, and it costs only $10 more than Model A. The focus in this book is on
Model B. However, either model will work fine for learning the Python programming language.

By the Way: Delay in Receiving Your Pi?
Demand for the Raspberry Pi has been so great that you might experience a delay in
getting your Pi. Don’t be surprised if you have to wait from two weeks to nearly two
months after purchase!

Where can you buy a Raspberry Pi? When the Raspberry Pi first came out, there were only a few
places to buy them. Now the following are just a few of the businesses that sell the Raspberry Pi:

 Farnell element14—www.farnell.com
 RS Components—uk.rs-online.com
 Allied Electronics, Inc.—www.alliedelec.com
 Amazon—www.amazon.com

What Raspberry Pi Peripherals Are Necessary?
At this point, you have a decision to make. You can buy the Raspberry Pi with all its necessary
peripherals in a prepackaged kit, or you can buy the Raspberry Pi and its necessary peripherals
separately. A prepackaged kit will save you time but cost you more money. Buying everything
separately will save you money but cost you time. It’s best to look at both options before making your
decision.

Watch Out!: Purchasing Peripherals
Be sure to read the rest of the hour before you purchase a Raspberry Pi and
peripherals. There are several important facts you need to know to avoid wasting time
and money.

The following sections describe the basic peripherals you need to get your Raspberry Pi up and
running:

 An SD card
 Power peripherals
 A television and/or computer monitor with HDMI
 A USB keyboard

http://www.farnell.com
http://uk.rs-online.com
http://www.alliedelec.com
http://www.amazon.com

The following sections provide more information on these necessary peripherals. Later in this hour,
you’ll learn about some nice-to-have additional peripherals.

The SD Card
The Raspberry Pi comes with no internal storage device and no preloaded operating system. The SD
card is used to provide the operating system to the Pi, in order for it to run. You must have an SD card
in order to boot your Raspberry Pi.
Most prepackaged Raspberry Pi kits come with a supported SD card that is preloaded with the
necessary operating system. If you don’t buy a prepackaged kit, you have two choices:

 Buy a supported SD card and load the operating system onto it yourself. (You’ll learn about that
later in this hour.)

 Buy an SD card that has the needed operating system already on it.
elinux.org/RPi_Easy_SD_Card_Setup lists companies that sell these preloaded SD cards.

Watch Out!: Getting the Correct SD Card
Spend some time making sure you are purchasing the right SD card for your Raspberry
Pi as discussed below. The right SD card can make your Raspberry Pi experience
wonderful. The wrong SD card can cause you lots of heartache and pain.

If you decide to get your own SD card and load the operating system yourself, you can’t just run out to
the store and buy any old SD card. You must get one that works with a Raspberry Pi. So how do you
find out which SD card to buy? Fortunately, the good people at the Linux Embedded Wiki page are
here to help. On their RPi SD card page, elinux.org/RPi_SD_cards, various Raspberry Pi enthusiasts
have listed which SD cards will work and which ones won’t. Generally speaking, you need an SDHC
card in the standard physical size with at least 4GB of storage (but 8GB is better).

By the Way: SD Card Size
You are not stuck with only the space on your SD card for storing files and programs.
You can also attach storage via the Raspberry Pi’s USB port. However, you do need
the SD card to boot your Pi.

Power Supply
The Raspberry Pi does not come with a power cord ready to be plugged into the wall. It simply has a
USB micro B female power port. These are the basic power requirements for the Raspberry Pi:

 5 volts
 700mA

You can go over the 700mA. In fact, it is better to have more power because the more peripherals you
add, such as a USB mouse, the more power that will be needed.
You have several options here. The options range from super cheap to very flexible but expensive.
Read on to learn more.
Cheap Power Supplies

If you have a phone charger with a micro B male connector, you may be in luck! Look on the plug end
and see if the volts and mA are listed. If your phone charger provides 5 volts 700mA, then you can
use it to power your Raspberry Pi. Some people have found that other chargers, such as those to
power ebook readers, work as well.

By the Way: The Longer Cable
When finding a cable for your Raspberry Pi, keep in mind that the longer the cable, the
more flexibility you will have. If you use a short cable to connect your Pi to power,
then you will have some limitations on where your Pi can move and be set down. In
general, longer cables equal greater flexibility.

If you happen to live in a modern apartment or home and your wall sockets have USB A ports in them,
you can power your Raspberry Pi through those ports. You will need to purchase a cable with a USB
A male connector on one end and a micro B male connector on the other end. If you don’t already
have these wall sockets, you can have an electrician replace your regular wall sockets with A port
sockets or you can use adapters.
A Middle-of-the-Road Power Supplies

If you do not want to share a charger with your phone or ebook reader, you can buy your Raspberry Pi
its own power peripherals. In this case, you will need a USB power plug that plugs into a wall outlet
with a USB A port. Also, you will need a cable that has a USB A male connector on one end and a
USB micro B male connector on the other. Figure 1.3 shows an example of this.

FIGURE 1.3 The Raspberry Pi power port and USB power plug.

The power plug will allow you to plug into any wall socket for power. And you can use the USB
power plug to power other USB-compatible devices. If you plan on sticking the Raspberry Pi in a
backpack or case for travel, consider getting a USB power plug that has the ability to fold up its
power prongs. This will make the power plug into a nice small cube that is compact and easy to
carry.
Portable Power Supplies

A portable power charger is wonderful, basically giving your Raspberry Pi power wherever it goes
—but it is not cheap! A portable power charger typically contains a lithium ion battery and can be
charged either via a wall socket at home or a USB cable connected to a computer. You can charge
your portable power charger and carry it with you to power your Raspberry Pi when other power is
not available. To be able to power a Raspberry Pi, a portable power charger must be able to provide
the necessary 5 volts and 700mA. More expensive portable power chargers can be powered by
multiple sources, such as your car’s 12-volt power port as well as wall sockets.
You will still need to purchase a cable that has a USB A male connector on one end and a USB micro
B male connector on the other end, in order to connect the Pi to the portable power charger. The nice
thing about this is that you can charge your portable power at the same time you are powering your
Raspberry Pi at home. Just don’t forget to unplug your portable power charger when you remove or
insert peripherals on your Pi!

Output Display
For a very small device, the Raspberry Pi has the ability to display incredible images. It sports an
HDMI port for output and enables Blu-ray-quality playback. The Raspberry Pi also provides
composite output, allowing you the flexibility of using older equipment for output display. Once
again, you get a choice of what you use to get your Raspberry Pi functional.
Working with Older Display Equipment

If you have an old analog television, you can display your Raspberry Pi’s output to it. All you need is
a video composite cable with an RCA connector, typically yellow in color. The Raspberry Pi’s
composite output port is conveniently colored in a matching yellow color.
The composite output port is for video only. To get sound as well, you need an audio cable to plug
into the audio-out port on the Raspberry Pi. The audio cable’s other end is then connected to your
chosen sound output device (for example, external speakers).

Watch Out!: No VGA Support
The Raspberry Pi does not provide VGA support. You can use a DVI-to-VGA
converter with the DVI connection described below. However, this can add an
additional point of failure to your Raspberry Pi setup.

You can also hook up a computer monitor with a DVI port on it. In this case, you need an adapter to
go from HDMI to DVI output. Also, like a composite video cable, DVI does not carry an audio signal.
Thus, you also need an audio cable for your Raspberry Pi’s sound output.
Working with Modern Display Equipment

Using modern display equipment is the easiest way to capture a Raspberry Pi’s video and audio
output. To use this method, purchase an HDMI male–to-male cable, as shown in Figure 1.4. Plug one
end into your Raspberry Pi’s HDMI output port and the other end into either the HDMI input port on a
computer monitor or television. Of course, you should make sure you purchase an HDMI cable that is
long enough to accommodate your needs. HDMI handles both video and audio signals, so you need
just the one cord.

FIGURE 1.4 The Raspberry Pi HDMI port and HDMI cable.

Keyboard
What keyboard to use is the easiest decision you will have to make about Raspberry Pi peripherals.
In order to type in your Python programs and try out various Python commands, you need a keyboard.
The Raspberry Pi Model B has two USB A ports (Model A has one USB port), and you can use one
of them for any USB-connected keyboard. Keep in mind that most prepackaged Raspberry Pi kits do
not include a USB keyboard—but you probably already have one or two of them lying around.

Nice Additional Peripherals
Now that you know what peripherals you absolutely have to have to run your Raspberry Pi, you can

think about a few additional peripherals that will make your life with the Raspberry Pi easier. While
not absolutely necessary, these peripherals are helpful:

 A case for the Raspberry Pi
 A USB mouse
 A self-powered USB hub
 Networking peripherals

Choosing a Case
Your Raspberry Pi will come as an exposed single circuit board in an antistatic bag for protection.
You don’t have to have a case to protect your Pi, but having one is a good idea. Cases for the
Raspberry Pi come in all kinds of shape, sizes, and colors. Figure 1.5 shows a very professional-
looking case with all the ports nicely labeled.

FIGURE 1.5 A professional Raspberry Pi case.

Many Raspberry Pi enthusiasts like using a clear case to protect the Pi’s circuit board but allow it to
be proudly displayed. You need to decide which kind of case meets your needs. You can easily
switch your Raspberry Pi to a different case if you change your mind later!

Watch Out!: Static Electricity
Static electricity and circuit boards do not mix! A small spark from your hand on the
exposed circuit board could permanently damage your Raspberry Pi. This is a good
reason for keeping your Pi in a case.

Using a USB Mouse
If you plan on using the Pi’s graphical user interface, a USB mouse will be very handy. Keep in mind
that a USB mouse and a USB keyboard will draw between 50 and 100mA as well as consume both of
your Model B’s USB ports.

Looking at a Self-Powered USB Hub
If you want to connect a USB keyboard and a USB mouse, how will you connect your other USB
devices at the same time? What if you want to connect an USB external storage device to your
Raspberry Pi? No worries. Just purchase a self-powered USB hub, which gets its power by being
plugged into an electrical outlet.

Watch Out!: Bus-Powered USB Hubs
Make sure you do not get a bus-powered USB hub. A bus-powered USB hub draws the
power it needs from the computer it is connected to. Therefore, it would try to draw
power from your Raspberry Pi.

Typically, a self-powered USB hub can supply up to 500mA to each device connected to it. It has a
USB A cable that allows you to connect it to your Raspberry Pi via a USB port. Thus, you can turn
one of the Raspberry Pi’s USB ports into many!

Using a Network Cable or Wi-Fi Adapter
Having your Raspberry Pi connected to the Internet and/or your local network is very handy. The
Raspberry Pi comes with an RJ45 port for a wired Ethernet connection. Depending on how your local
network is configured, connecting to the network may be as simple as plugging an Ethernet patch
cable into the Raspberry Pi and into the back of your router. In this case, all you need to purchase is
an Ethernet patch cable with two RJ45 connectors.
You can also set up your Raspberry Pi to connect via a wireless network. In this case, you need a
USB wireless network adapter. You can get very small ones that are not too expensive. The downside
of this method is that you need to use one of your Pi’s USB ports. Also, wireless network
configuration is not always very simple. But with a wireless setup, you have much more flexibility.

Deciding How to Purchase Peripherals
Now that you have seen what the Raspberry Pi needs in the way of peripherals, you can decide which
ones will be best for you. You can either buy the Raspberry Pi with its necessary peripherals in a
prepackaged kit or purchase the Raspberry Pi and its necessary peripherals separately.
If you decide to purchase a prepackaged kit, keep in mind the following points:

 You will spend more money on this option than if you buy the Raspberry Pi and peripherals
separately.
 Kits vary, so be sure to buy a kit that has the peripherals you want or be prepared to buy any
that don’t come with the kit.
 Many kits have the operating system preloaded on the SD card. If you get such a kit, you can
skip downloading the operating system and loading it onto your card—and also skip the next
section.

Getting Your Raspberry Pi Working
Once you have made your purchase decisions and received your Raspberry Pi and its necessary
peripherals, you can begin to really have some fun. The first time your Raspberry Pi boots up and you
realize what a powerful little machine you now own, you’ll really be amazed. The following sections
describe what you need to do to prepare your Pi for booting.

Do Your Research
As with many other things in life, if you plan ahead and do your research, getting your Raspberry Pi
up and running should go smoothly and quickly. This up-front time and effort are very worthwhile.

And many excellent resources can help. For example, the book Hacking Raspberry Pi will really
help you have a pleasant Pi experience. Books like this one help you get your Raspberry Pi working
and troubleshoot problems.
Also, there are many sources on the Internet that can assist you in your Raspberry Pi research. One of
the best comes from the Raspberry Pi Foundation. It maintains a website (www.raspberrypi.org)
filled with wonderful tidbits of information, including Frequently Asked Questions (FAQs), help
forums, and a Quick Start Guide. At this site, you can also find software downloads and the latest
news concerning the Raspberry Pi Foundation and the Pi itself. You should start your Raspberry Pi
investigation at this resource.

Choosing the Operating System
Once you have completed your initial research, the next step is to choose and download an operating
system. The Raspberry Pi Foundation’s website, www.raspberrypi.org, offers a choice of several
operating systems.

Did You Know: Preloaded SD Card
If you purchased a Raspberry Pi prepackaged kit, it probably contains an SD card with
the operating system preloaded. If this is the case, you can skip ahead to the section
“Plugging In the Peripherals.”

This book is based on the Raspbian operating system, which is recommended for learning Python, and
for those new to the Raspberry Pi. To download the operating system, open an Internet browser, such
as Mozilla Firefox, and go to www.raspberrypi.org/downloads/, as shown in Figure 1.6.

FIGURE 1.6 The Raspberry Pi operating system downloads page.

Downloading the Operating System
You need an SD card reader on the system where the operating system file will be downloaded to. If
you have different computers, such as a Windows machine and a Linux machine, available to you,
choose the machine you feel the most comfortable using.
After choosing a machine, download the operating system from www.raspberrypi.org/downloads/.
Click either the Raspbian file listed after Image that ends in “.zip” or the Raspbian file listed after

http://www.raspberrypi.org
http://www.raspberrypi.org
http://www.raspberrypi.org/downloads/
http://www.raspberrypi.org/downloads/

Torrent that ends in “.torrent.” These two file are the same, but the “.torrent” file typically downloads
faster. How long it takes to download this file depends, of course, on the speed of your Internet
connection.

By the Way: Need More Help?
If you are feeling overwhelmed by this process, go to
elinux.org/RPi_Easy_SD_Card_Setup, which offers a lot of advice to get you through
the process of downloading the operating system and putting it on your SD card. And
don’t forget that you can buy a preloaded SD card. See
elinux.org/RPi_Easy_SD_Card_Setup under the “Safe/Easy Way” section for a list of
companies who sell these cards.

Moving the Operating System to an SD Card
Once you have downloaded the operating system to your local computer, the next step is to move the
operating system from your computer to the SD card. You will not be able to just copy the file to the
SD card. Instead, you need to use an image writer program or utility to move it.
If you have experience with this, then go ahead and use the image writer program of your choice to
move the operating system file to your SD card. If you have limited experience using an image writer
or feel uncomfortable with the process, don’t worry. Appendix A of this book describes the steps
involved in transferring the Raspbian operating system file to your SD card properly.

Plugging In the Peripherals
Now that you have your Raspberry Pi, all the necessary peripherals, and the SD card loaded with the
Raspbian operating system, you can reap the rewards of your preparations. Go through the following
steps, to make sure everything is working correctly:

1. Put the SD card into the card reader port on the Raspberry Pi, as shown in Figure 1.7.

http://elinux.org/RPi_Easy_SD_Card_Setup
http://elinux.org/RPi_Easy_SD_Card_Setup

FIGURE 1.7 A properly seated SD card.

2. Plug in the power cord to the Raspberry Pi. Do not attach the power cord to a power source
yet.

By the Way: The Missing On/Off Button
The Raspberry Pi does not have an on/off switch. Therefore, when you plug it into the
power source, it automatically boots.

3. Plug your USB keyboard into a USB port on the Raspberry Pi.
4. If using HDMI, plug in the HDMI cable to the Raspberry Pi’s HDMI port. With your monitor or

TV powered off, plug the other end of the cable into it. Turn on the monitor or TV. If you are
using a TV, you may have to tune it to use the HDMI port, so do so now.

If you are using another display output connection other than HDMI, such as video composite or
DVI, then hook it up to the Raspberry Pi and your monitor or TV in a manner similar to the
above.

5. You are now ready for the initial test drive (exciting isn’t it?!). Sit down in front of your
monitor or TV and plug the power cord into a power source.

If nothing happens, go directly to the “Troubleshooting Your Raspberry Pi” section, later in this hour.
If a lot of words go flying by on the screen and you see a menu similar to the one shown in the listing
below, congratulations! Your Raspberry Pi boots!
Click here to view code image

Raspi-config
 info Information about this tool
 expand_rootfs Expand root partition to fill SD card
 overscan Change overscan
 configure_keyboard Set keyboard layout
 change_pass Change password for 'pi' user
 change_locale Set locale
 change_timezone Set timezone
 memory_split Change memory split
 overclock Configure overclocking
 ssh Enable or disable ssh server
 boot_behaviour Start desktop on boot?
 update Try to upgrade raspi-config

 <Select> <Finish>

Press the Tab key until you reach the <Finish> menu item and then press the Enter key. The command
line appears, and it looks like this:

pi@raspberrypi ~ $

Pat yourself on the back. All your hard work has paid off, and you have your Raspberry Pi up and
running.
Type sudo poweroff at the command prompt and press the Enter key to shut down and power off
your Raspberry Pi.

Did You Know: Where Did the Menu Go?
Don’t worry if you do not see the Raspberry Pi configuration menu the next time you
boot your Pi. It is configured to show up only the first time you boot. However, in Hour
2, “Understanding the Raspbian Linux Distribution,” you will learn how to call it up
any time you please.

Whether your Raspberry Pi boots or not, be sure to read through the next section, and then you can
safely proceed to Hour 2.

Troubleshooting Your Raspberry Pi
The following sections discuss the most common areas to check when you are having problems
getting a Raspberry Pi to boot.

Check Your Peripheral Cords

Check Your Peripheral Cords
One of your peripheral cords may not be fully seated in its port. Being “fully seated” means the
connector on the cable is all the way plugged into its port. A cord that’s not fully seated can cause a
peripheral to work some of the time or not at all. To check your peripheral cords, follow these steps:

1. Unplug the power source to your Raspberry Pi.
2. Turn off your monitor or TV.
3. For each cable connector hooked to your Raspberry Pi, unplug it and then plug it back in to the

connector. Take time to make sure the connector is fully seated into the port.
4. For each cable connector hooked to another device from your Raspberry Pi, unplug it and then

plug it back into the device. Take time to make sure the connector is fully seated in the port.
5. Turn on your monitor or TV.
6. Plug the power source back into your Raspberry Pi.

Check Your SD Card
If you Pi doesn’t boot, you might not have used a SD card that works. To ensure that you have a
usable SD card, go to elinux.org/RPi_SD_cards and double-check that a Raspberry Pi can use the SD
card you have.

Did You Know: Using LED Lights for Troubleshooting
The Raspberry Pi has no BIOS in it. Thus, it can only boot off the SD card when it
receives power. There are LED lights on the Raspberry Pi that may help you
troubleshoot your booting problem. If you see the red LED light on, but the green LED
light is not lit and nothing is showing on the display, then you have either a bad SD
card or a bad operating system image on the card. For more LED troubleshooting tips,
see elinux.org/R-Pi_Troubleshooting#Normal_LED_status.

Check Your Operating System Image
If you are using a verified SD card but the Raspberry Pi is still not booting, you may have a bad
operating system image on the SD card. The image may have been damaged during the download, or
it could have been damaged when you moved it to the SD card. You can verify the image by using the
tips at elinux.org/RPi_Easy_SD_Card_Setup.

Check Your Peripherals
If you’ve checked everything listed so far, make sure all your peripherals are verified to work with
the Raspberry Pi. You can find this information at elinux.org/RPi_VerifiedPeripherals.

Summary
In this hour, you learned what the Raspberry Pi is and why it exists, how to purchase one, and the
peripherals you need to get it up and running. You read about the available operating systems for the
Raspberry Pi and how to obtain a copy of Raspbian. You also learned how to get your Raspberry Pi
up and running so you can proceed with learning Python programming. The hour concludes with some
troubleshooting tips to consult if you have problems getting your Pi up and running.

http://elinux.org/RPi_SD_cards
http://elinux.org/R-Pi_Troubleshooting#Normal_LED_status
http://elinux.org/RPi_Easy_SD_Card_Setup
http://elinux.org/RPi_VerifiedPeripherals

In the next hour, you will be learning about the Raspbian operating system, as well as how to navigate
through its interface to the Raspberry Pi.

Q&A
Q. This book has only one hour on setting up my Raspberry Pi. Where can I get more help?
A. You can get additional help from the following sources:

 The Raspberry Pi Foundation and its forums, at www.raspberrypi.org/phpBB3/.
 The Embedded Linux Wiki for Raspberry Pi, at elinux.org/RPi_Hub.
 The book Hacking Raspberry Pi.

Q. What version of Python does this book cover?
A. Python v3. That topic is covered in Hour 3, “Setting Up a Programming Environment.”
Q. Does this book contain a recipe for Raspberry Pie?
A. No, there was not enough room for all the possible recipe variations. However, open up your

favorite web browser and type into your search engine “raspberry pie recipes.” You will find
a lot of links to recipes.

Workshop
Quiz

1. Python is easy to learn but has very little power so can’t be used for complicated programs.
True or false?

2. The Raspberry Pi can use different operating systems. Which one is recommended for those
who are new to the Raspberry Pi?

3. The Raspberry Pi’s on/off switch is hard to see on the circuit board and it is located near the:
a. SoC
b. RJ45 jack
c. Power port

Answers
1. False. Python is an extremely powerful programming language and is not considered wimpy in

any way.
2. The Raspbian operating system is recommended for those starting out with a Raspberry Pi.
3. This is a trick question! The Raspberry Pi does not have an on/off switch. To turn on the

Raspberry Pi, you must plug it into a power source. To turn off the Raspberry Pi, you must
unplug it from the power source.

http://www.raspberrypi.org/phpBB3/
http://elinux.org/RPi_Hub

Hour 2. Understanding the Raspbian Linux Distribution

What You’ll Learn in This Hour:
 What is Linux?
 How to use the Raspbian command line
 The Raspbian graphical user interface

This hour, you will learn about Raspbian, the operating system that runs on your Raspberry Pi and
supports the Python programming environment. By the end of this hour, you should know how to
navigate to and from the Raspbian graphical user interface (GUI), what software comes preinstalled,
and some basic shell commands.

Learning About Linux
Linux is the third most popular desktop operating system in the world, after Microsoft Windows and
Apple OS X. Therefore, the general public tends to be unaware of the Linux operating system.
However, Linux is an incredibly robust and flexible operating system that can run on everything from
large supercomputers all the way down to small embedded devices.

Did You Know: Devices That Use Linux
You might be surprised to learn that the Kindle ebook reader runs on Linux. The IBM
Watson supercomputer, which appeared on the television game show Jeopardy! in
2011, also runs on Linux.

Raspberry Pi’s Raspbian operating system is a distribution of Linux. To understand the concept of a
Linux distribution, think of an automobile. Cars have different features, such as body type, body color,
automatic or manual windows, heated or regular seats, and so on. Different cars have different
features. However, all cars have an engine. The “engine” in the Raspberry Pi’s operating system is
Linux. The various specific “features” are in the Raspbian distribution.
The Raspbian distribution is based on a Linux distribution called Debian. Debian, which was created
in 1993, is a well-respected and stable distribution. It is the basis for many other popular Linux
distributions, such as Ubuntu.

By the Way: Raspbian Software Packages
You can install and use more than 35,000 software packages on your Raspberry Pi, and
many of them are free! You can find a small list of the packages at the Raspberry Pi
store: store.raspberrypi.com.

Because it is based on Debian, Raspbian has the stability of and many of the same benefits as Debian.
This means your little Raspberry Pi uses a very powerful operating system. Raspbian and Pi provide
you with applications such as word processing, powerful 3D Python game graphic programs, and

http://store.raspberrypi.com

more.
You can find documentation and help for the Raspbian Linux distribution at www.raspbian.org. In
addition, because Raspbian is based on the Debian Linux distribution, there is a lot of other
documentation available. Most of the Debian documentation applies to Raspbian as well. The
following are a few excellent references for Debian:

 The Debian Administrator’s Handbook, which is available from debian-handbook.info
 The Debian User Guide, which you can easily access via the Raspbian GUI
 The Debian Project’s website, www.debian.org/doc/, which offers documentation as well as
helpful user forums

Interacting with the Raspbian Command Line
When you first booted your Raspberry Pi, you did not have to provide a username and password.
However, after the initial boot, on all subsequent boots, you see a Raspbian login screen. Listing 2.1
shows how you log in to your Raspberry Pi. By default, you enter the username pi and the password
raspberry. Notice when the password is typed in, nothing appears on the screen. This is normal.

LISTING 2.1 Logging In to the Raspberry Pi

Click here to view code image

Debian GNU/Linux 7.0 raspberrypi tty1
raspberrypi login: pi
Password:
Last login: Wed Apr 17 20:34:50 UTC 2013 on tty1
Linux raspberrypi 3.6.11+ #371 PREEMPT Thu Feb 7 16:31:35 GMT 2013 armv6l
The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
pi@raspberrypi ~ $

Once you have successfully completed the login process, you see the rest of the information shown in
Listing 2.1. The Raspbian prompt looks like this:

pi@raspberrypi ~ $

This is also called the Linux command line. At the command line, you can enter commands to perform
various tasks. In order for a command to work, you must type in the command in the proper case and
then press the Enter key.

Did You Know: What Is the Linux Shell?
When you enter commands at the command-line prompt, you are using a special utility
called a Linux shell. The Linux shell is an interactive utility that allows you to run
programs, manage files, control processes, and so on. There are several variations of
the Linux shell utility. Raspbian uses the dash shell by default.

http://www.raspbian.org
http://www.debian.org/doc/

Listing 2.2 shows how you enter the whoami command. The whoami command displays the name of
the user who entered the command. In this case, you can see that the user pi entered the command.

LISTING 2.2 Entering a Command at the Command Line

Click here to view code image

pi@raspberrypi ~ $ whoami
pi
pi@raspberrypi ~ $

You can do a lot of work at the Linux command line. Table 2.1 lists some commands that will help
you as you start to learn Python programming.

TABLE 2.1 A Few Basic Command-Line Commands
In the following Try It Yourself, you will start to use some commands so you can begin to understand
them better.

Try It Yourself: Log In and Issue Commands at the Command Line
In this section, you will try out a few commands at the Raspbian command line. As
you’ll see in the following steps, contrary to popular belief, using the command line is
not hard at all:

1. Power-up your Raspberry Pi. You will see a lot of startup messages scroll by the
screen. These are informational, and it is a good habit to view the messages as they
scroll by. Don’t worry if you don’t know what they mean. Over time, you will learn.

2. At the raspberrypi login: prompt, type pi and press the Enter key. You
should now see a Password: prompt.

3. At the Password: prompt, type raspbian and press the Enter key. If you are
successful, you see the pi@raspberrypi ~ $ prompt. If you are not successful,
you get the message “Login incorrect,” and you see the raspberry pi login:
prompt again.

By the Way: Blank Passwords
If you have never logged into a Linux command line, you may be surprised by
the fact that nothing is displayed when you type in a password. Normally, in a
graphical user interface environment, you see a large dot or asterisk displayed
for each character you type into the password field. However, the Linux

command line displays nothing as you type a password.

4. At the pi@raspberrypi ~ $ prompt, type the command whoami and press the
Enter key. You should see the word pi displayed and then, on the next line down,
another pi@raspberrypi ~ $ prompt displayed.

5. Now at the prompt, type the command calendar and press the Enter key. You
should see some interesting facts concerning today’s date and the next few days.

By the Way: Exploring Files and Directories
In the next few steps, you will explore files and directories. It is important that
you learn how to do this so you will know how and where to store the Python
programs you create in this book.

6. Type the command ls and press the Enter key. You should see a list of files and
subdirectories that are located in your current location in the directory structure. This
is called your present working directory.

7. Type the command pwd and press the Enter key. This shows you the actual name of
your present working directory. If you are logged into the pi user account, the
displayed present working directory is /home/pi.

8. Type mkdir py3prog and press the Enter key to create a subdirectory called
py3prog. You will use this directory to store all your Python programs and work in
progress.

9. To see if you created the subdirectory, type the command ls and press the Enter
key. Along with the list of files and subdirectories you saw in step 6, you should now
see the py3prog subdirectory.

10. To make your present working directory the newly created py3prog subdirectory,
type cd py3prog and press the Enter key.

11. Make sure you are in the correct directory by typing the command pwd and pressing
the Enter key. You should see the directory name /home/pi/py3prog displayed.

12. Now go back to the pi user home directory by simply typing cd and pressing the
Enter key. Make sure you made it to the home directory by typing the pwd command
and pressing the Enter key. You should now see the directory name /home/pi
displayed because you are back to the home directory.

By the Way: Commands to Manage
Now you will try out a few commands that will help you manage your
Raspberry Pi.

13. (Warning: This next command will not work, and it is not supposed to work!) Type
the command reboot and press the Enter key. You should get the message
reboot: must be superuser., as shown in Listing 2.3.

LISTING 2.3 Attempting a Reboot Without sudo

pi@raspberrypi ~ $ reboot
reboot: must be superuser.
pi@raspberrypi ~

By the Way: Getting to Know sudo
You cannot run some commands unless you have special privileges. For
example, the root user, also called the superuser, is an account that was
originally set up in Linux as an all-powerful user login. Its primary purpose
was to allow someone to properly administer the system. In some ways, the
root account is similar to the administrator account in Microsoft Windows.
Due to security concerns, it is best to avoid logging into the root user account.
On Raspbian, you are not even allowed to log into the root user account!
So how do you run commands for which you need root privileges, such as
installing software or rebooting your Pi? The sudo command helps you here.
sudo stands for “superuser do.” User accounts that are allowed to use sudo
can perform administrative duties. The pi user account on your Raspberry Pi
is, by default, granted access to the sudo command. Therefore, if you are
logged into the pi account, you can put the sudo command in front of any
command that needs superuser privileges.

14. Type the command sudo reboot and press the Enter key. Your Raspberry Pi
should now reboot.

15. At the raspberrypi login: prompt, type pi and press the Enter key. You
should now see the Password: prompt.

16. At the Password: prompt, type raspberry and press the Enter key. If you are
successful, you see the pi@raspberrypi ~ $ prompt. If you are not successful,
you get the message Login incorrect and see the raspberry pi login:
prompt again.

17. To change the password for the pi account from the default to something new, type
in the command sudo raspi-config and press the Enter key. You should see
the text-based menu you saw when you first booted your Raspberry Pi:

Click here to view code image

Raspi-config
 info Information about this tool
 expand_rootfs Expand root partition to fill SD card
 overscan Change overscan
 configure_keyboard Set keyboard layout
 change_pass Change password for 'pi' user
 change_locale Set locale
 change_timezone Set timezone
 memory_split Change memory split
 overclock Configure overclocking
 ssh Enable or disable ssh server

 boot_behaviour Start desktop on boot?
 update Try to upgrade raspi-config
 <Select> <Finish>

18. Press the down-arrow key four times, until you reach the change_pass menu
option. Press the Enter key.

19. You should now be at a screen that states, “You will now be asked to enter a new
password for the pi user.” Press the Enter key.

20. When you see the Enter new UNIX password: at the bottom left of your
display screen, enter a new password for the pi account and press Enter. (Make it at
least eight characters long and a combination of letters and numbers.) Again, as you
type in the new password, you do not see it onscreen.

21. When you see the Retype new UNIX password: prompt at the bottom left of
your screen, again type in your new password for the pi account at the prompt and
press the Enter key. If you typed in the password correctly, you will get a screen that
says Password changed successfully. In this case, press the Enter key to
continue.

22. If you did not type in the password correctly, you get the message There was an
error running do_change_pass. In this case, repeat steps 18–21 until you
succeed.

23. Back at the main Raspbian configuration (raspi-config) menu screen, press the
Tab key to highlight the <Finish> selection and press the Enter key to leave the
menu.

24. In the lower-left corner of the display screen, you should now see that you are back
to the Raspbian prompt. At the Raspbian prompt, type sudo poweroff and press
the Enter key to log out of your Raspberry Pi and gracefully power it down.

Well done! You now know several Linux command-line commands. You can log in,
move to subdirectories, list files that are in those subdirectories, and even do some
management work, such as change your pi account password and reboot your system.

Interacting with the Raspbian GUI
When you boot your Raspberry Pi and log in, by default you go to the Linux command line. But
Raspbian also offers a graphical user interface (GUI).
To reach the GUI, you enter the command startx at the command-line prompt and press the Enter
key. The Lightweight X11 Desktop Environment (LXDE) starts up, providing you with the GUI shown
in Figure 2.1.

FIGURE 2.1 The Raspbian LXDE GUI.

By the Way: Linux Desktop Environments
One of the wonderful things about Linux is that you can change your desktop
environment. You are not stuck with just one! Each desktop environment provides a
unique way to graphically interact with the computer.
These are some of the most popular desktops:

 KDE—A graphical desktop that is similar to the Microsoft Windows environment
 Xfce—A lightweight but fully functional graphical desktop
 GNOME—A historically popular desktop that is the default desktop on many Linux
distributions
 LXDE—A lightweight yet powerful graphical desktop that is specifically designed
for smaller computers

Raspbian uses LXDE by default. This book’s graphical interface descriptions are
based on the LXDE desktop environment.

The LXDE Graphical Interface
On the LXDE graphical interface, you see several icons. And no, that big Raspberry in the middle is
not a desktop icon; it is a background image. The desktop icons are briefly described in Table 2.1.

TABLE 2.1 Desktop Icons
The icons on the desktop behave as you would expect them to behave. You can double-click each one
with your mouse to open it. You can also right-click an icon to open a drop-down menu and then
select Open to open that program.
The LXTerminal icon provides a portal to the command-line interface. You can double-click the
LXTerminal icon to start the program. Once the window is open, you can type in exactly the same
commands as at the command-line prompt. For example, Figure 2.2 shows what happens when you
type the whoami command in the LXTerminal. You can see that LXTerminal allows you to stay in
the GUI and yet, enter command-line commands.

FIGURE 2.2 The LXTerminal command-line interface.

Did You Know: I Just Want My GUI
Because you can reach the command line via the LXTerminal program, you might want
to have your Raspberry Pi boot straight into the GUI. To set this up, follow these steps:

1. At the command prompt, type sudo raspi-config and press the Enter key.
2. In the text-based menu, press the down-arrow key until you reach the
boot_behavior menu option and press the Enter key.

3. When you see a new window and the question Should we boot straight
to the desktop? press Tab until you reach the <Yes> option and then press
Enter.

4. At the configuration menu, press Tab until you get to the <Finish> option and then
press the Enter key.

5. When a new window opens and asks Would you like to reboot now?,
press Tab until you reach the <Yes> option and press Enter. The Raspberry Pi
reboots and takes you to the LXDE GUI. You are not required to provide a login
name or password.

If you change your mind and want to log in to the command line after the Pi boots
again, you can run the LXTerminal program and type in sudo raspi-config to
change your boot behavior configuration option.

The LXPanel
The bottom panel of the LXDE graphical interface, shown in Figure 2.3, includes several noteworthy
items. The bottom panel for the LXDE is called the LXPanel. Its behavior and the various icons on it
can be modified through a pop-up menu that you open by right-clicking anywhere on the panel.

FIGURE 2.3 The icons on the left side of the LXDE LXPanel.

The first icon all the way to the left on the LXPanel is the LXDE Programs Menu icon. The unusual
icon for this menu is a symbol for a fast flying bird. (The LXDE environment is quick and so
lightweight it can fly. Get it?)
When you click this LXDE Programs Menu icon, you get several menu categories and options (see
Table 2.2).

TABLE 2.2 The LXDE Menu
The next LXPanel icon is the File Manager. The File Manager window, shown in Figure 2.4, is
similar to the Microsoft Windows File Manager in that it allows you to graphically navigate through
your files and folders.

FIGURE 2.4 The LXDE File Manager.

After the File Manager icon is an icon to start the Midori web browser. Then comes the Minimize All

Windows icon, which is a handy feature! If you have several windows open on your desktop, you can
minimize them all to the LXPanel by simply clicking this icon.
The last two icons on the left side of the LXPanel, a light gray rectangle and a light blue rectangle, are
the Virtual Desktop icons. The first one is called Desktop 1, and the second one is called Desktop 2.
It is like having two virtual monitors. For example, you can open program windows on Desktop 1 and
then click the Desktop 2 icon and see no open program windows—just an LXDE desktop. You switch
back to Desktop 1 by clicking its icon, and there are your open program windows. Thus, you can have
different program windows running on the different desktops and jump back and forth between them.
This is a really nice feature!
On the far right of the LXPanel, as shown in Figure 2.5, is the Logout Manager icon. This icon opens
the LXDE Logout Manager window, which allows you to log out of the GUI session.

FIGURE 2.5 The icons on the right side of the LXDE LXPanel.

By the Way: The Changing LXDE Logout Manager
Whether you have your Raspberry Pi set up to boot by default into the command line or
into the GUI will affect the appearance of the LXDE Logout Manager.
If you have your Pi set up to boot to the command line, the LXDE Logout Manager will
have only two buttons: Logout and Cancel. The Logout button will dump you—
gracefully, of course—out of the LXDE graphical interface and into the command line.
The Cancel button just cancels the logout request and takes you back to the GUI.
If you have your Pi set up to boot to the GUI automatically, then the LXDE Logout
Manager has two additional buttons: Shutdown and Reboot. As you would expect, the
Shutdown button shuts down the Raspberry Pi, and the Reboot button reboots it.

The next icon to the left of the Logout button on the LXPanel is ScreenLock. ScreenLock allows you
to immediately lock your display screen. After you do this, the only way to get back into the system is
to enter a username and password. However, by default, Raspbian does not come with a screen saver
application installed, so the ScreenLock feature of LXDE does not work. Don’t worry, though: You
will be installing a screen saver in the Try It Yourself section of this hour.
After ScreenLock is the Digital Clock icon, which displays what your Raspberry Pi thinks is the
current time. If you hover the mouse over it, the current date is displayed. You can right-click the
Digital Clock icon to see the current month’s calendar. You can right-click it again to hide the current
month’s calendar.
The rectangle to the left of the Digital Clock icon is the CPU Usage Monitor icon. It gives you a nice
graphical display of how busy your Raspberry Pi currently is in terms of running programs, opening
windows, and so on. If a window is sluggish to open in the GUI, glance over at this graph. You may
see that your Pi is very busy!

Try It Yourself: Explore the LXDE Graphical Interface
Now that you have reviewed the various icons on the LXDE graphical interface and
the features of the LXPanel, it’s time to play with the GUI yourself. In the following
steps, you will get a chance to try out items in both the command line and the LXDE
GUI, as well as fix some potential problems and irritations.

1. If you have not already done so, connect your Raspberry Pi to your network.

Watch Out!: Wired Versus Wi-Fi
In the next few steps, you will update your Raspbian Linux distribution
software. When you do this, it is best to use a wired network connection. A
Wi-Fi connection can be a little fussy and cause you a great deal of
unnecessary work due to software bugs. The safest way to proceed is to
connect to a wired network, update your software, and then attempt to connect
to your Wi-Fi.

2. Power up your Raspberry Pi.
3. At the raspberrypi login: prompt, type pi and press the Enter key. You

should now see a Password: prompt.
4. At the Password: prompt, type raspberry or the password you created in the

last “Try it Yourself” section, and press the Enter key. You should see the
pi@raspberry~$ prompt.

Watch Out!: Did You Change Your Password?
Earlier this hour, you may have changed your password from raspberry to
something else. If you are following along with the Try It Yourself steps, be
sure to enter that password in step 4.

5. At the pi@raspberry~$ prompt, type startx and press the Enter key to start
Raspbian’s LXDE graphical interface.

6. Once you are in the LXDE graphical interface, click the LXTerminal icon to open a
command-line interface. You should see the familiar pi@rasbperry~$ prompt
displayed in the LXTerminal window.

7. Click the LXTerminal window with your mouse to select it. Type whoami and
press the Enter key. You should see the response pi displayed along with another
prompt, just as you saw when you were typing in commands at the command line.

8. To get your Raspbian Linux distribution software up to date, in the same
LXTerminal window, type the command sudo apt-get dist-upgrade and
press the Enter key. You should see several messages concerning the software
update, and then the question Do you want to continue [Y/n]?

9. Type Y and press the Enter key. If your software was already up to date, you will get
a message similar to “0 upgraded, 0 newly installed...” However, if your software
was terribly out of date this may take several minutes! The software update will

continue on its merry way, until the software is all updated.

Watch Out!: Problems Fetching Archives
If your software update ends quickly and you get a message similar to E:
Unable to fetch some archives..., then your Raspberry Pi is not
connected to the network properly or is unable to reach the Internet. In order
for the update to work correctly, you must be able to access the Internet from
your Raspberry Pi.

10. Now that your system is up to date, you will be adding an extra package to your
Raspberry Pi. In order for the ScreenLock on the LXPanel to work correctly, you
need a screen saver software package installed. In the LXTerminal window, type
sudo apt-get install xscreensaver and press the Enter key.

11. You should see several messages concerning the software update and then the
question Do you want to continue [Y/n]? Type Y and then press the
Enter key. When you get the prompt back, your screen saver has been installed.

12. Leave the LXTerminal window open for now and click on the LXDE Programs
Menu icon on the far left of the LXPanel to open the menu.

13. Hover over Preferences in the LXDE menu to open the submenu and then click on
Screensaver. The Screensaver Preferences window appears, as shown in Figure 2.6.

FIGURE 2.6 The LXDE Screensaver Preferences window.

By the Way: Sluggish Windows
Don’t be surprised if the windows in the GUI open a little slowly. Your

Raspberry Pi is working with all its might to get them opened quickly. If a
window seems slow, look at the CPU Monitor Graph on the near right side of
the LXPanel to see if your Pi is busy processing.

14. If you see another window that says The XScreenSaver daemon doesn't
seem to be running on display "o:" Launch it now?, click the
OK button on that window.

15. On the Screensaver Preferences window, make sure the Display Modes tab is
selected, as shown in Figure 2.6.

16. Click the Modes drop-down and select Only One Screen Saver.
17. Still in the Screensaver Preferences window, under the Modes section, scroll

through the different screen savers until you find Fiberlamp and click it to select it.
18. Now click the Preview button in the Screensaver Preferences window and wait a

few seconds. You should see the screen saver in action.
19. Click anywhere on the screen saver window to return to the LXDE graphical

interface.
20. Now close the Screensaver Preferences window by clicking the white X in the

right-hand corner of the window and give it a few seconds to close.
21. Test your screen lock by clicking the ScreenLock icon on the LXPanel. In a few

seconds, the screen saver should appear.
22. Click anywhere on the screen saver window. This time you don’t return to the

LXDE graphical interface. Instead, a new window pops up, stating Please
enter your password.

23. Type in your password and press the Enter key.

Watch Out!: Did You Change Your Password?
Earlier this hour, you may have changed your password from raspberry to
something else. If are following along with the Try It Yourself steps in this
chapter, remember that you changed the password from raspberry to
something else earlier in this chapter! Be sure to enter that password here in
this step 23.

24. When the LXDE graphical interface appears again, click the LXTerminal window to
select it.

25. In the LXTerminal window, type exit and press Enter to close the window.

Good work! Now you know how to use the LXDE graphical interface to change various items to your
liking.

Summary
In this hour, you read about the Raspbian Linux distribution. You can now enter commands at the

Linux command line as well as navigate through the LXDE GUI. You know about various Debian and
Raspbian documentation resources, and you know how to update the software packages on your
Raspberry Pi. Now that you have looked around your Pi, in Hour 3, “Setting Up a Programming
Environment,” you will learn how to set up and explore the Python programming environment.

Q&A
Q. I don’t like entering commands at the Linux command line. Do I have to do this?
A. Nope. The LXDE GUI can handle a lot of the commands you enter at the Linux command line.

However, if you know how to use both the command line and the GUI, you will have the most
flexibility and troubleshooting capabilities.

Q. Can I install a different graphical interface besides LXDE?
A. Yes, you can! Some Raspberry Pi users prefer the Xfce desktop. See

http://www.raspbian.org/RaspbianForums for help on obtaining a new interface.
Q. Does this book focus on Python programming in the command line or the GUI?
A. The book primarily focuses on teaching you Python programming using the GUI. (You can

breathe a sigh of relief now.)

Workshop
Quiz

1. Raspbian is based on the Debian distribution, with Linux at its core. True or false?
2. Which command entered at the Linux command line will reboot your Raspberry Pi?

a. reboot
b. restart
c. sudo reboot

3. Which graphical interface desktop environment comes with Raspbian by default?

Answers
1. True. Raspbian is based on the Debian Linux distribution.
2. To reboot your Raspberry Pi from the command line, enter the command sudo reboot.
3. The Lightweight X11 Desktop Environment (LXDE) graphical interface comes with Raspbian

by default.

http://www.raspbian.org/RaspbianForums

Hour 3. Setting Up a Programming Environment

What You’ll Learn in This Hour:
 Why learn Python?
 How to check your Python environment
 The Python interactive shell
 Using a Python development environment
 How to create and run a Python script

This hour, you will explore the Python programming environment. You will learn about the various
tools that can help as you learn how to program in Python. By the end of this hour, you will be
familiar with the Python interactive shell and a Python development environment, and you will have
written your first line of Python code!

Exploring Python
You would not be reading this book if you were not interested in learning Python! The Python
programming language is an extremely popular language. It is one of the most used programming
languages. Python can be used on a wide variety of platforms, such as Windows, Linux-based
systems, and Apple OS X. One of its best features is that it’s free!
More good news: The Python programming language has easy-to-understand syntax. Syntax refers to
the Python commands, their proper order in a Python statement, and additional characters, such as a
quotation mark ("), needed to make a Python statement work properly. Python’s syntax makes it easy
for a beginner to start programming quickly. Despite its ease of use, Python contains a lot of rich and
powerful features that make it useful for advanced programmers.

A Little Python History
The Python programming language was invented in the early 1990s by Guido van Rossum. The name
Python was based on the popular television show Monty Python’s Flying Circus.
Through the years, the Python programming language has become extremely popular. It also has gone
through some changes.

Python v3 Versus Python v2
Python recently went from version 2 to version 3. Here are a few of the major differences between
the two versions:

 Python v3 is based upon Unicode and provides a more predictable handling of it. Unicode is the
way a computer encodes, represents, and handles individual characters. Python v2 is based on
ASCII, which can handle only English characters. Unicode can handle English characters and
non-English characters.

 Python v3 is a smaller language than Python v2. A favorite saying of Python developers is
“Python fits in your brain.” This sentiment is even more true of Python v3 than of Python v2, so
it is even easier to learn Python quickly now.

 Several changes were made to Python v3 in order to improve its longevity as a programming
language. Therefore, the time you spend learning it now will provide you benefits long into the
future.

Many systems support both Python v2 and Python v3, including Raspbian. Python v2 is provided for
backward compatibility purposes. In other words, you can run Python v2 programs on Raspbian.
However, to move you in the right direction, this book focuses on Python v3.

Checking Your Python Environment
The Raspbian Linux distribution comes with Python v3 and the necessary tools loaded by default. The
following Python items are preloaded:

 A Python interpreter
 An interactive Python shell
 A Python development environment
 Text editors

Even though all you need should be preloaded, it makes sense to double-check all the tools. These
checks take only a few minutes of your time.

Checking the Python Interpreter and Interactive Shell
To check the Python interpreter and interactive shell versions on your system, open the LXTerminal in
the LXDE GUI. Type python3 -V and press Enter, as shown in Listing 3.1.

LISTING 3.1 Checking the Python Version

Click here to view code image

pi@raspberrypi ~ $ python3 -V
Python 3.2.3
pi@raspberrypi ~ $

If you get the message command not found, then for some reason, the Python v3 interpreter is
not installed. Go to the “Installing Python and Tools” section in this hour to remedy this situation.

Checking the Python Development Environment
To see if a Python development environment has been installed, open the LXDE graphical interface
and look for the IDLE 3 icon on the desktop, as shown in Figure 3.1.

FIGURE 3.1 The Python v3 development environment, IDLE.

If you do not see the IDLE 3 icon on the desktop, check in the LXDE menu by clicking on the LXDE
Programs Menu icon and hovering your mouse pointer over the Programming menu option. You
should see the IDLE 3 icon there. If you don’t, go to the “Installing Python and Tools” section of this
hour to remedy this situation.

Checking for a Text Editor
Finally, you should ensure that there is a text editor, called nano, installed. You will learn later in this
hour exactly what a text editor is. Open the LXTerminal in the LXDE graphical interface. To see if
the nano text editor is installed, type nano -V and press Enter (see Listing 3.2).

LISTING 3.2 Checking the nano Version

Click here to view code image

pi@raspberrypi ~ $ nano -V
 GNU nano version 2.2.6 (compiled 16:52:03, Mar 30 2012)
 (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
 2008, 2009 Free Software Foundation, Inc.
 Email: nano@nano-editor.org Web: http://www.nano-editor.org/
 Compiled options: --disable-wrapping-as-root --enable-color --enable-extra
 --enable-multibuffer --enable-nanorc --enable-utf8

pi@raspberrypi ~ $

If you get the message command not found, then for some reason, the nano text editor is not
installed. Go to the “Installing Python and Tools” section in this hour to remedy this situation.
Hopefully, you have found nothing missing from your Python environment and all the tools you need
are loaded onto your Raspberry Pi. If nothing is missing, you can skip the next section and go straight
to “Checking the Keyboard.”

Installing Python and Tools
If you found anything missing from your Python environment, it’s not a big problem. In this section,
you will get everything you need installed very quickly by following these steps:

1. If your Raspberry Pi has a wired connection to the Internet ensure that it is connected to the
Internet and boot up your Pi.

2. Start the LXDE GUI if it is not started automatically. If your Internet connection is wireless,
ensure that it is working.

3. Open the LXTerminal. At the command prompt, type sudo apt-get install
python3 idle3 nano and press Enter.

By the Way: But I Don’t Need All Those Programs!
Don’t worry if the installation command in step 3 includes items that you already have
installed. It will simply get an already installed tool updated, if needed.

You should see several messages concerning the software installs/updates and then the question Do
you want to continue [Y/n]? Type Y and then press Enter. When the installs are
complete, you see a prompt. You should now go back through the “Checking Your Python
Development Environment” section to make sure all is well with your Python environment.

Checking the Keyboard
If you live and work in the United Kingdom, then most likely you can skip this section. For those of
you who live elsewhere, it is highly likely that your keyboard setup is not quite correct.
You probably have been using your keyboard with no problems so far. However, try a little test:
Press the @ key on the keyboard. Do you see a double quote (") instead of the @ symbol? If you do,
you need to work through this section to get your keyboard set up correctly.
If you have a typical U.S. keyboard, follow these steps to get your keyboard working properly for
programming in Python:

1. If it is not already on, boot up your Raspberry Pi and open the LXDE GUI.
2. Double-click the LXTerminal icon to open the LXTerminal window.
3. Type sudo raspi-config and press Enter.
4. In the Raspbi-config window, press the down-arrow key until you get to
configure_keyboard and then press Enter. It may take several seconds for the next
window to open, so be patient!

5. When the next window says Please select the model of the keyboard for
this machine., press Enter to accept the default selection.

6. When the next window says Please select the layout matching the
keyboard for this machine, press the up-arrow key to scroll up the menu until you
get to English (US). Press Enter.

Watch Out!: The Wrong Keyboard
If you are using a special keyboard, such as a Dvorak keyboard, the English (US)
selection will not work for your keyboard, and you will end up having keys on the
keyboard not producing the correct letters. This could prevent you from logging back in
to your Raspberry Pi!
If you have a special keyboard, scroll through the selections in this window and pick
the one that best matches your needs. If something goes wrong and your keyboard acts
funny, don’t worry. You can go back to Hour 1, “Setting Up the Raspberry Pi,” and put
a fresh copy of the Raspbian operating system image onto your SD card to get back to
“normal” keyboard operations.

7. On the next three screens listed, modify the selections or press Enter to accept the defaults:
 Key to function as AltGr screen
 Compost Key screen
 Use Control Alt Backspace screen

8. In the Raspbi-config window, press Tab until you reach the <Finish> selection and
then press Enter.

9. Because the keyboard changes will not take effect until you reboot your system, type sudo
reboot in the LXTerminal window and press Enter.

10. After your Raspberry Pi reboots, test your keyboard. See if pressing the @ key now produces
the symbol @ and pressing the " key produces a double quote (").

Remember that you can fix any disasters here by going back to Hour 1 and putting a fresh copy of the
Raspbian operating system image onto your SD card. Doing so will get you back to “normal”
keyboard operations.

Learning About the Python Interpreter
Python is an interpreted programming language, instead of a compiled one. A compiled programming
language has all its program’s language statements (commands) turned into binary code at once,
before it can be executed (run). With an interpreted programming language, each of its programming
statements, one at a time, is checked for syntax errors, translated into binary code, and then executed.
You can learn about a variety of Python statements and concepts by using different tools that fall into
three primary categories:

 Interactive shell—The interactive shell allows you to enter a single Python statement and have
it immediately checked for errors and interpreted.

 Development environment shell—This tool provides many features to assist in the

development of Python programs. As with the interactive shell, each Python statement is
interpreted as it is entered. However, you can also develop entire Python programs, called
scripts.

 Text editors—A text editor is a program that allows you to create and modify regular text files.
A text editor does not format the text for display on a printed page, like a word processor does.
Python statements are not interpreted as they are entered in a text editor. This tool only helps
you to quickly create a Python script.

By the Way: Running Python Scripts
After a Python script file is created, it is run either using a command at the command
line or via the development environment shell. And even though a script has multiple
Python statements in it, each statement is still interpreted one at a time, as it is
encountered in the file.

Now that you have had a short introduction to the various Python tools, you can start exploring them in
more depth. Learning to use these tools will help you as you learn Python programming.

Learning About the Python Interactive Shell
The Python interactive shell is primarily used to try out Python statements and check syntax. To enter
the interactive Python shell, type in the command python3 at the command line and press Enter.

By the Way: The Python v2 Interactive Shell
If you want to try out old Python v2 statements, you can still access the Python v2
interactive shell on Raspbian. Just type in the command python2 and press Enter.

Figure 3.2 shows the interactive shell. Notice that the top bar of the window displays the Python
interpreter’s version number. After a little helpful information, the prompt is shown as three greater-
than signs, >>>.

FIGURE 3.2 The Python interactive shell.

At this point, you can simply enter a Python statement and press Enter to have the shell interpret it.
The Python interpreter checks the statement’s syntax. If the syntax is correct, the statement is
translated into binary code and executed.

By the Way: GUI or Command Line?
The Python interactive shell examples in this hour are shown using the LXTerminal in

the LXDE GUI. However, you can use the Python interactive shell at the command line,
too.

Figure 3.3 shows a Python statement involving the print function: print ("I love my
Raspberry Pi!"). The Python interactive shell interprets, converts, and executes the command
and then prints I love my Raspberry Pi! to the screen.

FIGURE 3.3 The print function in the Python interactive shell.

To get help using the interactive shell or Python statements, you can type help() and press Enter.
Figure 3.4 shows the interactive shell’s help utility.

FIGURE 3.4 Interactive shell help.

You can type in a Python keyword, module, or topic to get help on it. To exit help on a particular
keyword, module, or topic, press the Q key. To exit the interactive shell’s help utility, press the Ctrl
key and hold it. Then press and release the D key. This combination is written Ctrl+D. Instead, you
can type quit and press Enter.
When you are done using the Python interactive shell, simply type exit () and press Enter. Python
takes you out of the interactive shell and puts you back to the command line.

Try It Yourself: Explore the Python Interactive Shell
This is your chance to try out the interactive shell yourself! Follow these steps to enter
a print function statement into the Python interactive shell and then exit from it:

1. If you have not already done so, power up your Raspberry Pi and log in to the
system.

2. If you do not have the LXDE GUI started automatically at boot, start it now by typing
startx and pressing Enter.

3. Open the LXTerminal by double-clicking the LXTerminal icon.
4. At the command-line prompt, type python3 and press Enter. You are now in the

Python interactive shell.

Watch Out!: Take Time
Before you press that Enter key, take time to review your Python statements. It
is very easy to leave out a quotation mark or use the wrong case on a command
(for example, Print instead of print). Getting into the habit of reviewing
your commands before you press Enter will save you lots of frustration and
time later on.

5. At the >>> prompt, type print ("This is my first Python
statement!") and press Enter. You should see the shell display This is my
first Python statement! Pretty cool! You have taken your first small step
toward lots of great Python programming.

Watch Out!: My Keyboard Doesn’t Work!
When you press the " (double quote) key, if you get an @ symbol instead, then
your keyboard isn’t correctly configured. Go back to the “Checking the
Keyboard” section earlier in this hour.

6. To exit the Python interactive shell, type exit () and press Enter.

Learning About the Python Development Environment Shell
A development environment shell is a single tool for creating, running, testing, and modifying Python
scripts. Often development environments color code key syntax for easier identification of various
statement features. This color coding helps with a script’s testing, modification, and debugging.
Another nice feature is automatic code completion. As you type Python syntax, the development
environment provides screen tips to help you complete your code.
In addition to these features, a development environment shell can provide syntax checking so that you
can find any incorrect Python syntax without having to run the entire Python script. To maintain
consistent indentation within a script, environment tools often provide automatic indentation.
Finally, debugging tools within the environment allow you to step through a Python script to uncover
logic errors. What doesn’t a development environment shell do? Well, it can’t write a Python script

for you, but it can help you accomplish that task.
IDLE is the default Python development environment shell installed on Raspbian, and it is the
environment that this book focuses on. There are dozens of other Python development environment
tools, including the following:

 jEdit—www.jedit.org
 Komodo IDE—www.activestate.com/komodo-ide/
 SPE IDE—pythonide.blogspot.com

The IDLE Development Environment Shell
IDLE stands for Interactive DeveLopment Environment. This development environment provides a
built-in text editor and many features that assist in the creation and testing of Python scripts.
To start up IDLE in the LXDE graphical interface, you just double-click the IDLE 3 icon on the
desktop. You can also find it under the LXDE Programs Menu icon. Figure 3.5 shows the IDLE shell
for Python v3.

FIGURE 3.5 Python v3 IDLE in interactive mode.

The IDLE window’s title bar says Python Shell. Notice that this window uses exactly the same
verbiage as the Python interactive shell. This is because the IDLE environment uses the Python
interactive shell for this development mode, which is called interactive mode.

Did You Know: IDLE Everywhere
One of the great things about learning IDLE is that this development environment is not
just available on Linux. It is also available on Windows and OS X.

http://www.jedit.org
http://www.activestate.com/komodo-ide/
http://pythonide.blogspot.com

Interactive mode has many features that help in the creation and testing of Python scripts. There are
lots of features in IDLE. The following are a few of the most important ones to help you get started in
Python programming:

 Menu-driven options and their matching control keys—For example, to open a new IDLE
window, you can click the File menu option and then select New Window from the drop-down
menu. To use the control keys to open a new IDLE window, instead of using the menu, you can
press the Ctrl+N key sequence.
 Basic text editor—To type a Python script, you can open up a new window from the main
interactive IDLE window to get access to a very basic text editor. The text editor allows you to
take such actions as cut and paste text using menu-driven selections or control keys.
 Code completion—As you type in Python statements, helpful hints appear on the screen, making
recommendations on how to finish the syntax you’ve started.
 Syntax checking—When you enter a command and press Enter, the Python interpreter checks
the syntax of your statement and reports any problems immediately. This is much better than
finding out about syntax errors after an entire script is written.
 Color coding—The IDLE shell color codes syntax as you type it to help you follow the logic of
your Python statements. Table 3.1 shows the color codes it uses.

TABLE 3.1 IDLE Color Codes

 Indentation support—Python requires the use of indentation for some of its constructs. The
IDLE shell recognizes these required indentations and automatically provides them for you.
(For more information on indentation, see Hour 6, “Controlling Your Program.”)
 Debugger features—The term debugging refers to removing incorrect syntax or logic from a
program. With IDLE, the Python interpreter’s syntax checking typically finds syntax errors. You
can uncover logic problems by using the IDLE Debugger, which allows you to step through a
program without adding additional Python statements.
 Help—Because everyone needs a little help, IDLE provides a nice help facility. You can
access the help facility by selecting the Help menu option on the menu bar of the IDLE window
and clicking IDLE Help in the drop-down menu.

Of course, trying out IDLE’s features yourself will help you better learn to use the IDLE tool. The
following Try It Yourself gives you an opportunity.

Try It Yourself: Explore the Python IDLE Tool
In the following steps, you’ll try out a couple of the IDLE tool’s features. Don’t be
overwhelmed by all the bells and whistles of this tool. Follow these steps to test the

basic features and take a look around the environment:
1. If you have not already done so, power up your Raspberry Pi and log in to the

system.
2. If you do not have the LXDE GUI started automatically at boot, start it now by typing
startx and pressing Enter.

3. Open IDLE for Python v3 by double-clicking the IDLE 3 icon or clicking the LXDE
Programs Menu icon; hovering over the Programming menu option; and clicking the
IDLE 3 menu option. You are now in the main IDLE interactive mode window.

By the Way: IDLE 3 Not IDLE
You may notice an IDLE icon and an IDLE menu option alongside the IDLE 3
options. These selections offer the IDLE shell for Python v2. Be sure to select
IDLE 3 to stay on course with this hour.

4. In the IDLE 3 window, at the >>> prompt, type print and then pause and look at
the screen. You should notice that the print command has been colored violet. This is
because the print statement is considered a built-in function in Python. (You will
be learning more about the various built-in functions in the coming hours.) The color
is provided to help you recognize the syntax of your Python statement and assist in the
logic of your scripts. Look back to Table 3.1 for a reminder of the various IDLE
color codes.

5. Press the space bar and type ("This is my first Python" and then pause
again and look at the screen. You should notice that the text This is my first
Python is colored green because Python considers it a string literal. (You will be
learning more about string literals, too, in the coming hours. For now, just notice the
color.)

6. Instead of correctly finishing your Python statement, just press the Enter key. (You
are deliberately trying to generate a syntax error to see how IDLE handles syntactical
problems.) You should get the message Syntax Error: EOL error while
scanning string literal. This is because you did not correctly close the
print function. (Well, actually, you were just following directions.)

7. In the IDLE 3 window, type print (and then pause. You should see a screen tip
appear in your window, similar to the one shown in Figure 3.6. IDLE attempts to
help you by giving guidance via screen tips.

FIGURE 3.6 An IDLE script tip.

8. Finish the Python statement by typing "This is my first Python
statement in IDLE"). Look at your Python statement and make sure it reads
print ("This is my first Python statement in IDLE"). If you
do not have it correct, then modify it by using the left- and right-arrow keys and the
Delete key. When you are sure it is correct, press Enter. You should see output
similar to what is displayed in Figure 3.7. Congratulations! You just correctly
entered your first Python statement in IDLE.

FIGURE 3.7 Output from a Python statement in IDLE.

9. Finally, exit the IDLE shell by pressing the key combination Ctrl+Q. The IDLE
interactive mode window should close.

Did You Know: Exiting IDLE
You can leave the IDLE shell a couple different ways. As you did in step 9,
you can use the key combination Ctrl+Q to exit. Also, you can use the menu
options in IDLE to leave: To do so, click the File menu and then select Exit.

The third way is to enter the Python statement exit (). When you do this,
you get a pop-up window titled Kill? that says The program is still
running! Do you want to kill it? and then you can press the
OK button. This last option is a little violent, but it will get you out of IDLE
and back to the LXDE GUI.
Now that you’ve played with IDLE a bit, its basic features should be more
useful to you. As your experience with Python grows, you might want to try out
some of the IDLE power-user features as well.

By the Way: More IDLE, Please
The official Python website maintains an IDLE document that is worth
exploring for more info on using IDLE. You can find it at
docs.python.org/3/library/idle.html.

Creating Python Scripts
Instead of typing in each Python statement every time you need to run a program, you can create whole
files of Python statements and then run them. These whole files of Python statements are called Python
scripts.
You can run Python scripts from either the Python interactive shell or from IDLE. Listing 3.3 shows a
file called sample.py that contains two Python statements.

LISTING 3.3 The sample.py Python Script

Click here to view code image

pi@raspberrypi ~ $ cat py3prog/sample.py
print ("Here is a sample python script.")
print ("Here is the second line of the sample script.")
pi@raspberrypi ~ $

By the Way: Where Is My samply.py?
You will not find this script, py3prog/sample.py, on your Rapsberry Pi. It was created
for this book. Later in this chapter, you will be learning how to create your very own
Python scripts.

Running a Python Script in the Interactive Shell
To run the sample.py script in the Python interactive shell, at the command line, type python3
py3prog/sample.py and press Enter. Listing 3.4 shows the results you should get. As you can
see, the shell runs the two Python statements without any problems.

LISTING 3.4 The Execution of sample.py

http://docs.python.org/3/library/idle.html

Click here to view code image

pi@raspberrypi ~ $ python3 py3prog/sample.py
Here is a sample python script.
Here is the second line of the sample script.
pi@raspberrypi ~ $

By the Way: Script Storage Location
It is a good idea to store your Python scripts in a standard location. This book uses the
subdirectory /home/pi/py3prog.

Running a Python Script in IDLE
To run the sample.py script in IDLE, start IDLE and in the main interactive mode window, either
press the key combination Ctrl+O or select the File menu and then Open. The Open window appears.
Navigate to the location of the Python script. In this case, sample.py is located in
/home/pi/py3prog, as shown in Figure 3.8. Click the script to select it and then click the Open
button.

FIGURE 3.8 Opening a Python script in IDLE.

When you click the Open button, another IDLE window opens, showing the Python script and its
directory location and name in the window’s title bar (see Figure 3.9).

FIGURE 3.9 A Python script opened in IDLE.

Now, to run the Python script, in the Python script’s window, press the F5 key, or click Run in the
menu bar and then Run Module. The control switches to the originally opened IDLE window (the
IDLE interactive mode window), and the results of the Python script are displayed, as shown in
Figure 3.10.

FIGURE 3.10 A Python script executed in IDLE.

Watch Out!: Where Is My Script Output?
When you first start using IDLE, you might be confused about where the output of the
Python script you are running is displayed. Just remember that output is always
displayed in IDLE’s main interactive mode window. This window has the words
“Python Shell” on the title bar. This is true whether you are running a script or entering

Python statements one by one.

Now that you have seen two methods for running a Python script, it’s time to look at how to create a
Python script. You have two methods to choose from here as well.

Using IDLE to Create a Python Script
Creating a Python script in IDLE is easy. You simply open the IDLE text editor window from the
IDLE interactive mode window by clicking Ctrl+N or by clicking the File menu and selecting New
Window. You see a new window open, with the word “Untitled” on the title bar. You are now in the
basic IDLE text editor. In this mode, when you type in your Python statements, they will not be
interpreted, and no output will be displayed.
In the basic IDLE text editor, type in the Python statements to create your script. When you are all
done, you save the statements to a file.

Did You Know: Editing in IDLE
You are not limited to only using the arrow keys and the Delete key for editing text
files. Take a look at all the options available in the Edit menu. You can undo an edit,
find words, copy and paste, and so on. The text editor in IDLE may be a basic text
editor, but it does offer you a lot of help.

To save the Python script to a file, start by pressing Ctrl+S or by clicking on the File menu and
selecting Save. A Save As window appears, as shown in Figure 3.11. Navigate to the directory
where you want the file to be stored. Type in the name of the file and click the Save button.

FIGURE 3.11 Saving a Python script from IDLE text editor.

Did You Know: The “py” in Python Scripts

Notice in Figure 3.11 that the file has a .py on the end of it. This file extension
identifies files as Python scripts. Thus, all your Python programs should be named
something like filename.py.

Using a Text Editor to Create a Python Script
There are other text editors available to you besides the one in IDLE. Two of them are available by
default on Raspbian. One is Leaf Pad, which is geared toward school-age children. The other is nano.
The nano text editor is small and lightweight, so it is perfect for the Raspberry Pi. Compared to other
more complicated text editors, nano is fairly easy to use. Its biggest advantage over the text editor in
IDLE is that nano can be used in both the GUI and at the command line!
To start the nano text editor at the command line, you just type the command nano and press Enter.
To start the nano text editor in the GUI, you click on the LXDE Programs Menu icon on the far left of
the LXPanel, hover over the Other menu so its submenu is displayed, and then click the Nano menu
selection.
Note that the nano text editor does not perform any syntax checking while you type in Python
statements. It also does not do any color coding while you type statements. And it does not perform
any auto-indentation. nano doesn’t give you any handholding when you’re creating and editing Python
scripts.
Figure 3.12 shows the nano text editor in the GUI. Notice that in the GUI, the LXTerminal is opened,
and the nano editor is being used within it. The title bar of the nano editor program window is the line
where the left side starts with “GNU nano” and the nano editor version number. In the middle of the
title bar are either the words “New Buffer” if you are creating a new file or the name of the file you
are editing.

FIGURE 3.12 The nano text editor.

The nano editor’s middle panel is the editing area. This is where you can add Python statements or
make changes to existing ones.

By the Way: Messages and Questions

Right above the bottom two lines of the nano editor window is a special
messages/questions area. This area is usually blank. However, if nano has a special
message or a question, such as File Name to Write:, this is where it shows up.

The bottom two lines of the nano editor window show the most commonly used keyboard command
sequences. These keyboard sequences are actual nano text editor commands. This window uses the ^
symbol to indicate the Ctrl key. Therefore, the command ^G means use Ctrl+G. Table 3.2 lists some
of the basic nano commands.

TABLE 3.2 A Few Basic nano Commands
If you want to learn more about the nano text editor, you can press Ctrl+G and read through nano’s
help information. Another great source is the nano editor homepage, at www.nano-editor.org.

Knowing Which Tool to Use and When
Now that you have looked at the text editor, the Python interactive shell, and IDLE, you might be
trying to remember where you run Python scripts or which tool you use to test Python statements.
Tables 3.3 through 3.5 help answer those questions and give you a reference point to keep it straight
as you work through the next several hours.

TABLE 3.3 Testing Python Statements

TABLE 3.4 Creating Python Scripts

TABLE 3.5 Running Python Scripts
You should refer to these tables whenever you are not sure which tool to use when. A tool is no help
unless you know when to use it!

http://www.nano-editor.org

Summary
In this hour, you learned about the history of Python, how to ensure that the proper Python tools are
installed, and how to make sure your keyboard is set up correctly. You took a first look at how to use
tools to test Python statements, and you learned how to create and run Python scripts.
Up to this point in the book, you have been setting up and learning about the Python development
environment. Now that hard work is about to pay off. In Hour 4, “Understanding Python Basics,” you
will be typing in some real Python statements.

Q&A
Q. Do I have to use the nano text editor?
A. No. You can use the basic text editor within IDLE rather than nano. You can also try Leaf Pad

or install another text editor, such as gedit. If you are really into pain and suffering, you can
even install and use the vi/vim text editor.

Q. Can I use a word processor to create Python scripts?
A. Yes, you can! However, you must save the files you create as plain text files.
Q. Do I have to use IDLE?
A. No. However, it would be wise to use and learn at least one development environment tool.

As you learn the concepts in this book, the scripts and code segments will be fairly small. But
when you start writing scripts for yourself, they may get rather large! This is where knowing a
development environment will be very helpful.

Workshop
Quiz

1. When you save a Python script, the file extension should be .python. True or false?
2. Where did the Python programming language get its name?

a. Monty Python’s Flying Circus
b. The python snake
c. Mount Python in Greece

3. In IDLE interactive mode, what color indicates a string literal?

Answers
1. False. The file extension for Python scripts is .py.
2. The Python programming language got its name from Monty Python’s Flying Circus.
3. In IDLE interactive mode, the color green indicates a string literal.

Part II: Python Fundamentals
HOUR 4 Understanding Python Basics

HOUR 5 Using Arithmetic in Your Programs

HOUR 6 Controlling Your Program

HOUR 7 Learning About Loops

Hour 4. Understanding Python Basics

What You’ll Learn in This Hour:
 How to produce output from a script
 Making a script readable
 How to use variables
 Assigning value to variables
 Types of data
 How to put information into a script

In this hour, you will get a chance to learn some Python basics, such as using the print function to
display output. You will read about using variables and how to assign them values, and you will gain
an understanding of their data types. By the end of the hour, you will know how to get data into a
script by using the input function, and you will be writing your first Python script!

Producing Python Script Output
Understanding how to produce output from a Python script is a good starting point for those who are
new to the Python programming language. You can get instant feedback on your Python statements
from the Python interactive interpreter and gently experiment with proper syntax. The print
function, which you met in Hour 3, “Setting Up a Programming Environment,” is a good place to focus
your attention.

Exploring the print Function
A function is a group of python statements that are put together as a unit to perform a specific task.
You can simply enter a single Python statement to perform a task for you.

By the Way: The “New” print Function
In Python v2, print is not a function. It became a function when Python v3 was
created.

The print function’s task is to output items. The “items” to output are correctly called an argument.
The basic syntax of the print function is as follows:

print (argument)

Did You Know: Standard Library of Functions
The print function is called a built-in function because it is part of the Python
standard library of functions. You don’t need to do anything special to get this function.
It is provided for your use when you install Python.

The argument portion of the print function can be characters, such as ABC or 123. It can also be

values stored in variables. You will learn about variables later in this hour.

Using Characters as print Function Arguments
To display characters (also called string literals) using the print function, you need to enclose the
characters in either a set of single quotes or double quotes. Listing 4.1 shows using a pair of single
quotes to enclose characters (a sentence) so it can be used as a print function argument.

LISTING 4.1 Using a Pair of Single Quotes to Enclose Characters

Click here to view code image

>>> print ('This is an example of using single quotes.')
This is an example of using single quotes.
>>>

Listing 4.2 shows the use of double quotes with the print function. You can see that the output that
results from both Listing 4.1 and Listing 4.2 does not contain the quotation marks, only the characters.

LISTING 4.2 Using a Pair of Double Quotes to Enclose Characters

Click here to view code image

>>> print ("This is an example of using double quotes.")
This is an example of using double quotes.
>>>

By the Way: Choose One Type of Quotes and Stick with It
If you like to use single quotation marks to enclose string literals in a print function
argument, then consistently use them. If you prefer double quotation marks, then
consistently use them. Even though Python doesn’t care, it is considered poor form to
use single quotes on one print function argument and then double quotes on the next.
This makes the code hard for humans to read.

Sometimes you need to output a string of characters that contain a single quote to show possession or
a contraction. In such a case, you use double quotes around the print function argument, as shown
in Listing 4.3.

LISTING 4.3 Protecting a Single Quote with Double Quotes

Click here to view code image

>>> print ("This example protects the output's single quote.")
This example protects the output's single quote.
>>>

At other times, you need to output a string of characters that contain double quotes, such as for a

quotation. Listing 4.4 shows an example of protecting a quote, using single quotes in the argument.

LISTING 4.4 Protecting a Double Quote with Single Quotes

Click here to view code image

>>> print ('I said, "I need to protect my quotation!" and did so.')
I said, "I need to protect my quotation!" and did so.
>>>

Did You Know: Protecting Single Quotes with Single Quotes
You can also embed single quotes within single quote marks and double quotes within
double quote marks. However, when you do, you need to use something called an
“escape sequence,” which is covered later in this hour.

Formatting Output with the print Function
You can perform various output formatting features by using the print function. For example, you
can insert a single blank line by using the print function with no arguments, like this:

print ()

The screen in Figure 4.1 shows a short Python script that inserts a blank line between two other lines
of output.

FIGURE 4.1 Adding a blank line in script output.

Another way to format output using the print function is via triple quotes. Triple quotes are simply
three sets of double quotes.
Listing 4.5 shows how you can use triple quotes to embed a linefeed character by pressing the Enter
key. When the output is displayed, each embedded linefeed character causes the next sentence to
appear on the next line. Thus, linefeed moves your output to the next new line. Notice that you cannot
see the linefeed character embedded on each line in the code; you can only see its effect in the output.

LISTING 4.5 Using Triple Quotes

Click here to view code image

>>> print ("""This is line one.
... This is line two.
... This is line three.""")
This is line one.
This is line two.
This is line three.
>>>

By the Way: But I Prefer Single Quotes
Triple quotes don’t have to be three sets of double quotes. You can use three sets of
single quotes instead to get the same result!

By using triple quotes, you can also protect single and double quotes that you need to be displayed in
the output. Listing 4.6 shows the use of triple quotes to protect both single and double quotes in the
same character string.

LISTING 4.6 Using Triple Quotes to Protect Single and Double Quotes

Click here to view code image

>>> print ("""Raz said, "I didn't know about triple quotes!" and laughed.""")
Raz said, "I didn't know about triple quotes!" and laughed.
>>>

Controlling Output with Escape Sequences
An escape sequence is a series of characters that allow a Python statement to “escape” from normal
behavior. The new behavior can be the addition of special formatting for the output or the protection
of characters typically used in syntax. Escape sequences all begin with the backslash (\) character.
An example of using an escape sequence to add special formatting for output is the \n escape
sequence. The \n escape sequence forces any characters listed after it onto the next line of displayed
output. This is called a newline, and the formatting character it inserts is a linefeed. Listing 4.7 shows
an example of using the \n escape sequence to insert a linefeed. Notice that it causes the output to be
formatted exactly as it was Listing 4.5, with triple quotes.

LISTING 4.7 Using an Escape Sequence to Add a Linefeed

Click here to view code image

>>> print ("This is line one.\nThis is line two.\nAnd this is line three.")
This is line one.
This is line two.
And this is line three.
>>>

Typically, the print function puts a linefeed only at the end of displayed output. However, the
print function in Listing 4.7 is forced to “escape” its normal formatting behavior because of the
addition of the \n escape sequence.

Did You Know: Quotes and Escape Sequences
Escape sequences work whether you use single quotes, double quotes, or triple quotes
to surround your print function argument.

You can also use escape sequences to protect various characters used in syntax. Listing 4.8 shows the
backslash (\) character used to protect a single quote so that it will not be used in the print
function’s syntax. Instead, the quote is displayed in the output.

LISTING 4.8 Using an Escape Sequence to Protect Quotes

Click here to view code image

>>> print ('Use backslash, so the single quote isn\'t noticed.')
Use backslash, so the single quote isn't noticed.
>>>

You can use many different escape sequences in your Python scripts. Table 4.1 shows a few of the
available sequences.

TABLE 4.1 A Few Python Escape Sequences
Notice in Table 4.1 that not only can you insert formatting into your output, you can produce sound as
well! Another interesting escape sequence involves displaying Unicode characters in your output.

Now for Something Fun!
Thanks to the Unicode escape sequence, you can print all kinds of characters in your output. You
learned a little about Unicode in Hour 3. You can display Unicode characters by using the \u escape
sequence. Each Unicode character is represented by a hexadecimal number. You can find these
hexadecimal numbers at www.unicode.org/charts. There are lots of Unicode characters!
The hexadecimal number for the pi (∏) symbol is 03c0. To display this symbol using the Unicode
escape sequence, you must precede the number with \u in your print function argument. Listing 4.9
displays the pi symbol to output.

LISTING 4.9 Using a Unicode Escape Sequence

http://www.unicode.org/charts

Click here to view code image

>>> print ("I love my Raspberry \u03c0!")
I love my Raspberry π!
>>>

Try It Yourself: Create Output with the print Function
This hour you have been reading about creating and formatting output by using the
print function. Now it is your turn to try out this versatile Python tool. Follow these
steps:

1. If you have not already done so, power up your Raspberry Pi and log in to the
system.

2. If you do not have the LXDE GUI started automatically at boot, start it now by typing
startx and pressing Enter.

3. Open the LXTerminal by double-clicking the LXTerminal icon.
4. At the command-line prompt, type python3 and press Enter. You are taken to the

Python interactive shell, where you can type Python statements and see immediate
results.

5. At the Python interactive shell prompt (>>>), type print ('I learned
about the print function.') and press Enter.

6. At the prompt, type print ('I learned about single quotes.') and
press Enter.

7. At the prompt, type print ("Double quotes can also be used.")
and press Enter.

By the Way: Multiple Lines with Triple Double Quotes
In steps 8 through 10, you will not be completing the print function on one
line. Instead, you will be using triple double quotes to allow multiple lines to
be entered and displayed.

8. At the prompt, type print ("""I learned about things like... and
press Enter.

9. Type triple quotes, and press Enter.
10. Type and displaying text on multiple lines.""") and press

Enter. Notice that the Python interactive shell did not output the Python print
statement’s argument until you had fully completed it with the closing parenthesis.

11. At the prompt, type print ('Single quotes protect "double
quotes" in output.') and press Enter.

12. At the prompt, type print ("Double quotes protect ‘single
quotes’ in output.") and press Enter.

13. At the prompt, type print ("A backslash protects \"double

quotes\" in output.") and press Enter.
14. At the prompt, type print ('A backslash protects \'single
quotes\' in output.') and press Enter. Using the backslash to protect
either single or double quotes will allow you to maintain your chosen method of
consistently using single (or double quotes) around your print function argument.

15. At the prompt, type print ("The backslash character \\ is an
escape character.") and press Enter.

16. At the prompt, type print ("Use escape sequences to \n insert
a linefeed.") and press Enter. Notice how part of the sentence, “Use escape
sequences to,” is on one line and the end of the sentence “insert a linefeed.” is on
another line. This is due to your insertion of the escape sequence \n in the middle of
the sentence.

17. At the prompt, type print ("Use escape sequences to \t\t
insert two tabs or") and press Enter.

18. At the prompt, type print ("insert a check mark: \u2714") and
press Enter.

You can do a lot with the print function to display and format output! In fact, you could
spend this entire hour just playing with output formatting. However, there are
additional important Python basics you need to learn, such as formatting scripts for
readability.

Formatting Scripts for Readability
Just as the development environment, IDLE, will help you as your Python scripts get larger, a few
minor practices will also be helpful to you. Learn these tips early on, so they become habits as your
Python skills grow (and as the length of your scripts grow!).

Long Print Lines
Occasionally you will have to display a very long line of output using the print function. It may be
a paragraph of instructions you have to provide to your script user. The problem with long output
lines is that they make your script code hard to read and the logic behind the script harder to follow.
Python is supposed to “fit in your brain.” The habit of breaking up long output lines will help you
meet that goal. There are a couple of ways you can accomplish this.

By the Way: A Script User?
You may be one of those people who have never heard the term “user” in association
with computers. A user is a person who is using the computer or running the script.
Sometimes the term “end user” is used instead. You should always keep the “user” in
mind when you write your scripts, even if the “user” is just you!

The first way to break up a long output line of characters, is to use something called string
concatenation. String concatenation takes two or more strings of text and “glues” them together, so
they become one string of text. The “glue” in this method is the plus (+) symbol. However, to get this

to work properly, you also need to use the backslash (\) to escape out of the normal print function
behavior of putting a linefeed at the end of a string of characters. Thus, the two items you need are
+\, as shown in Listing 4.10.

LISTING 4.10 String Concatenation for Long Text Lines

Click here to view code image

>>> print ("This is a really long line of text " +\
... "that I need to display!")
This is a really long line of text that I need to display!
>>>

As you can see in Listing 4.10, the two strings are concatenated and displayed as one string in the
output. However, there is an even simpler and cleaner method of accomplishing this!
You can forgo the +\ and simply keep each character string in its own sets of quotation marks. The
characters strings will be automatically concatenated by the print function! The print function
handles this perfectly and it is a lot cleaner looking. This method is demonstrated in Listing 4.11.

LISTING 4.11 Combining for Long Text Lines

Click here to view code image

>>> print ("This is a really long line of text "
... "that I need to display!")
This is a really long line of text that I need to display!
>>>

It is always a good rule to keep your Python syntax simple to provide better readability of the scripts.
However, sometimes you need to use complex syntax. This is where comments will help you. No, not
comments spoken aloud, like “I think this syntax is complicated!” We’re talking about comments that
are embedded in your Python script.

Creating Comments
In scripts, comments are notes from the Python script author. A comment’s purpose is to provide
understanding of the script’s syntax and logic. The Python interpreter ignores any comments.
However, comments are invaluable to humans who need to modify or debug scripts.
To add a comment to a script, you precede it with the pound or hash symbol (#). The Python
interpreter ignores anything that follows the hash symbol.
For example, when you write a Python script, it is a good idea to insert comments that include your
name, when you wrote the script, and the script’s purpose. Figure 4.2 shows an example. Some script
writers believe in putting these type of comments at the top of their scripts, while others put them at
the bottom. At the very least, if you include a comment with your name as the author in your script,
when the script is shared with others, you will get credit for its writing.

FIGURE 4.2 Comments in a Python script.

You can also provide clarity by breaking up sections of your scripts using long lines of the # symbol.
Figure 4.2 shows a long line of hash symbols used to separate the comment section from the main
body of the script.
Finally, you can put comments at the end of a Python statement. Notice in Figure 4.2 that the print
() statement is followed by the comment # Inserts a blank line in output. A
comment placed at the end of a statement is called an end comment, and it provides clarity about that
particular line of code.
Those few simple tips will really help you improve the readability of your code. Putting these tips
into practice will save you lots of time as you write and modify Python scripts.

Understanding Python Variables
A variable is a name that stores a value for later use in a script. A variable is like a coffee cup. A
coffee cup typically holds coffee, of course! But a coffee cup can also hold tea, water, milk, rocks,
gravel, sand...you get the picture. Think of a variable as a “holder of objects” that you can look at and
use in your Python scripts.

By the Way: An Object Reference
Python really doesn’t have variables! Instead, they are “object references.” However,
for now, just think of them as variables.

When you name your coffee cup...err, variable...you need to be aware that Python variable names are
case sensitive. For example, the variables named CoffeeCup and coffeecup are two different
variables. There are other rules associated with creating Python variable names:

 You cannot use a Python keyword as a variable name.
 The first character of a variable name cannot be a number.
 There are no spaces allowed in a variable name.

Python Keywords
The list of Python keywords changes every so often. Therefore, it is a good idea to take a look at the
current list of keywords before you start creating variable names. To look at the keywords, you need
to use a function that is part of the standard library. However, this function is not built -in, like the
print function is built -in. You have this function on your Raspbian system, but before you can use

it, you need to import the function into Python. The function’s name is keyword. Listing 4.12
shows you how to import into Python and determine keywords.

LISTING 4.12 Determining Python Keywords

Click here to view code image

>>> import keyword
>>> print (keyword.kwlist)
 ['False', 'None', 'True', 'and', 'as',
'assert', 'break', 'class', 'continue',
'def', 'del', 'elif', 'else', 'except',
'finally', 'for', 'from', 'global', 'if',
'import', 'in', 'is', 'lambda', 'nonlocal',
'not', 'or', 'pass', 'raise', 'return',
'try', 'while', 'with', 'yield']
>>>

In Listing 4.12, the command import keyword brings the keyword function into the Python
interpreter so it can be used. Then the statement print (keyword.kwlist) uses the keyword
and print functions to display the current list of Python keywords. These keywords cannot be used
as Python variable names.

Creating Python Variable Names
For the first character in your Python variable name, you must not use a number. The first character in
the variable name can be any of the following:

 A letter a through z
 A letter A through Z
 The underscore character (_)

After the first character in a variable name, the other characters can be any of the following:
 The numbers 0 through 9
 The letters a through z
 The letters A through Z
 The underscore character (_)

Did You Know: Using Underscore for Spaces
Because you cannot use spaces in a variable’s name, it is a good idea to use
underscores in their place, to make your variable names readable. For example,
instead of creating a variable name like coffeecup, use the variable name
coffee_cup.

After you determine a name for a variable, you still cannot use it. A variable must have a value
assigned to it before it can be used in a Python script.

Assigning Value to Python Variables

Assigning a value to a Python variable is fairly straightforward. You put the variable name first, then
an equal sign (=), and finish up with the value you are assigning to the variable. This is the syntax:

variable = value

Listing 4.13 creates the variable coffee_cup and assigns a value to it.

LISTING 4.13 Assigning a Value to a Python Variable

Click here to view code image

>>> coffee_cup = 'coffee'
>>> print (coffee_cup)
coffee
>>>

As you see in Listing 4.13, the print function can output the value of the variable without any
quotation marks around it. You can take output a step further by putting a string and a variable
together as two print function arguments. The print function knows they are two separate
arguments because they are separated by a comma (,), as shown in Listing 4.14.

LISTING 4.14 Displaying Text and a Variable

Click here to view code image

>>> print ("My coffee cup is full of", coffee_cup)
My coffee cup is full of coffee
>>>

Formatting Variable and String Output
Using variables adds additional formatting issues. For example, the print function automatically
inserts a space whenever it encounters a comma in a statement. This is why you do not need to add a
space at the end of My coffee cup is full of, as shown in Listing 4.14. There may be
times, however, when you want something else besides a space to separate a string of characters from
a variable in the output. In such a case, you can use a separator in your statement. Listing 4.15 uses the
sep separator to place an asterisk (*) in the output instead of a space.

LISTING 4.15 Using Separators in Output

Click here to view code image

>>> coffee_cup = 'coffee'
>>> print ("I love my", coffee_cup, "!", sep='*')
I love my*coffee*!
>>>

Notice you can also put variables in between various strings in your print statements. In Listing
4.15, four arguments are given to the print function:

 The string "I love my"
 The variable coffee_cup
 The string "!"
 The separator designation '*'

The variable coffee_cup is between two strings. Thus, you get two asterisks (*), one between
each argument to the print function. Mixing strings and variables in the print function gives you a
lot of flexibility in your script’s output.

Avoiding Unassigned Variables
You cannot use a variable until you have assigned a value to it. A variable is created when it is
assigned a value and not before. Listing 4.16 shows an example of this.

LISTING 4.16 Behavior of an Unassigned Variable

Click here to view code image

>>> print (glass)
Traceback (most recent call last):
File "<stdin>", line 1, in <module> Name
Error: name 'glass' is not defined
>>>
>>> glass = 'water'
>>> print (glass)
water
>>>

Assigning Long String Values to Variables
If you need to assign a long string value to a variable, you can break it up onto multiple lines by using
a couple methods. Earlier in the hour, in the “Formatting Scripts for Readability” section, you looked
at using the print function with multiple lines of outputted text. The concept here is very similar.
The first method involves using string concatenation (+) to put the strings together and an escape
character (\) to keep a linefeed from being inserted. You can see in Listing 4.17 that two long lines of
text were concatenated together in the assignment of the variable long_string.

LISTING 4.17 Concatenating Text in Variable Assignment

Click here to view code image

>>> long_string = "This is a really long line of text" +\
... " that I need to display!"
>>> print (long_string)
This is a really long line of text that I need to display!
>>>

Another method is to use parentheses to enclose your variable’s value. Listing 4.18 eliminates the +\
and uses parentheses on either side of the entire long string in order to make it into one long string of
characters.

LISTING 4.18 Combining Text in Variable Assignment

Click here to view code image

>>> long_string = ("This is a really long line of text"
... " that I need to display!")
>>> print (long_string)
This is a really long line of text that I need to display!
>>>

The method used in Listing 4.18 is a much cleaner method. It also helps improve the readability of the
script.

By the Way: Assigning Short Strings to Variables
You can use parentheses for assigning short strings to variables, too! This is especially
useful if it helps you improve the readability of your Python script.

More Variable Assignments
The value of a variable does not have to only be a string of characters; it can also be a number. In
Listing 4.19, the number of cups consumed of a particular beverage are assigned to the variable
cups_consumed.

LISTING 4.19 Assigning a Numeric Value to a Variable

Click here to view code image

>>> coffee_cup = 'coffee'
>>> cups_consumed = 3
>>> print ("I had", cups_consumed, "cups of",
... coffee_cup, "today!")
I had 3 cups of coffee today!
>>>

You can also assign the result of an expression to a variable. The equation 3+1 is completed in
Listing 4.20, and then the value 4 is assigned to the variable cups_consumed.

LISTING 4.20 Assigning an Expression Result to a Variable

Click here to view code image

>>> coffee_cup = 'coffee'
>>> cups_consumed = 3 + 1
>>> print ("I had", cups_consumed, "cups of",
... coffee_cup, "today!")
I had 4 cups of coffee today!
>>>

You will learn more about performing mathematical operations in Python scripts in Hour 5, “Using

Arithmetic in Your Programs.”

Reassigning Values to a Variable
After you assign a value to a variable, the variable is not stuck with that value. It can be reassigned.
Variables are called variables because their values can be varied. (Say that three times fast.)
In Listing 4.21, the variable coffee_cup has its value changed from coffee to tea. To reassign
a value, you simply enter the assignment syntax with a new value at the end of it.

LISTING 4.21 Reassigning a Variable

Click here to view code image

>>> coffee_cup = 'coffee'
>>> print ("My cup is full of", coffee_cup)
My cup is full of coffee
>>> coffee_cup = 'tea'
>>> print ("My cup is full of", coffee_cup)
My cup is full of tea
>>>

Did You Know: Variable Name Case
Python script writers tend to use all lowercase letters in the names of variable whose
values might change, such as coffee_cup. For variable names that are never
reassigned values, all uppercase letters are used (for example, PI = 3.14159).
The unchanging variables are called symbolic constants.

Learning About Python Data Types
When a variable is created by an assignment such as variable = value, Python determines and
assigns a data type to the variable. A data type defines how the variable is stored and the rules
governing how the data can be manipulated. Python uses the value assigned to the variable to
determine its type.
So far, this hour has focused on strings of characters. When the Python statement coffee_cup =
'tea' was entered, Python saw the characters in quotation marks and determined the variable
coffee_cup to be a string literal data type, or str. Table 4.2 lists a few of the basic data types
Python assigns to variables.

TABLE 4.2 Python Basic Data Types
You can determine what data type Python has assigned to a variable by using the type function. In

Listing 4.22, you can see that the variables have been assigned two different data types.

LISTING 4.22 Assigned Data Types for Variables

Click here to view code image

>>> coffee_cup = 'coffee'
>>> type (coffee_cup)
<class 'str'>
>>> cups_consumed = 3
>>> type (cups_consumed)
<class 'int'>
>>>

Python assigned the data type str to the variable coffee_cup because it saw a string of
characters between quotation marks. However, for the cups_consumed variable, Python saw a
whole number, and thus it assigned it the integer data type, int.

Did You Know: The print Function and Data Types
The print function assigns to its arguments the string literal data type, str. It does
this for anything that is given as an argument, such as quoted characters, numbers,
variables values, and so on. Thus, you can mix data types in your print function
argument. The print function will just convert everything to a string literal data type
and spit it out to the display.

Making a small change in the cups_consumed variable assignment statement causes Python to
change its data type. In Listing 4.23, the number assigned to cups_consumed is reassigned from 3
to 3.5. This causes Python to reassign the data type to cups_consumed from int to float.

LISTING 4.23 Changed Data Types for Variables

Click here to view code image

>>> cups_consumed = 3
>>> type (cups_consumed)
<class 'int'>
>>> cups_consumed = 3.5
>>> type (cups_consumed)
<class 'float'>
>>>

You can see that Python does a lot of the “dirty work” for you. This is one of the many reasons Python
is so popular.

Allowing Python Script Input
There will be times that you need a script user to provide data into your script from the keyboard. In
order to accomplish this task, Python provides the input function. The input function is a built-in

function and has the following syntax:
variable = input (user prompt)

In Listing 4.24, the variable cups_consumed is assigned the value returned by the input
function. The script user is prompted to provide this information. The prompt provided to the user is
designated in the input function as an argument. The script user inputs an answer and presses the
Enter key. This action causes the input function to assign the answer 3 as a value to the variable
cups_consumed.

LISTING 4.24 Variable Assignment via Script Input

Click here to view code image

>>> cups_consumed = input("How many cups did you drink? ")
How many cups did you drink? 3
>>> print ("You drank", cups_consumed, "cups!")
You drank 3 cups!
>>>

For the user prompt, you can enclose the prompt’s string characters in either single or double quotes.
The prompt is shown enclosed in double quotes in Listing 4.24’s input function.

By the Way: Be Nice to Your Script User
Be nice to the user of your script, even if it is just yourself. It is no fun typing in an
answer that is “squished” up against the prompt. Add a space at the end of each prompt
to give the end user a little breathing room for prompt answers. Notice in the input
function in Listing 4.24 that there is a space added between the question mark (?) and
the enclosing double quotes.

The input function treats all input as strings. This is different from how Python handles other
variable assignments. Remember that if cups_consumed = 3 were in your Python script, it
would be assigned the data type integer, int. When using the input function, as shown in Listing
4.25, the data type is set to string, str.

LISTING 4.25 Data Type Assignments via Input

Click here to view code image

>>> cups_consumed = 3
>>> type (cups_consumed)
<class 'int'>
>>> cups_consumed = input("How many cups did you drink? ")
How many cups did you drink? 3
>>> type (cups_consumed)
<class 'str'>
>>>

To convert variables which are input from the keyboard, from strings, you can use the int function.

The int function will convert a number from a string data type to an integer data type. You can use
the float function to convert a number from a string to a floating-point data type. Listing 4.26 shows
how to convert the variable cups_consumed to an integer data type.

LISTING 4.26 Data Type Conversion via the int Function

Click here to view code image

>>> cups_consumed = input ("How many cups did you drink? ")
How many cups did you drink? 3
>>> type (cups_consumed)
<class 'str'>
>>> cups_consumed = int(cups_consumed)
>>> type (cups_consumed)
<class 'int'>
>>>

You can get really tricky here and use a nested function. Nested functions are functions within
functions. The general format, is as follows:
Click here to view code image

variable = functionA(functionB(user_prompt))

Listing 4.27 uses this method to properly change the input data type from a string to an integer.

LISTING 4.27 Using Nested Functions with input

Click here to view code image

>>> cups_consumed = int(input("How many cups did you drink? "))
How many cups did you drink? 3
>>> type (cups_consumed)
<class 'int'>
>>>

Using nested functions makes a Python script more concise. However, the trade-off is that the script is
a little harder to read.

Try It Yourself: Explore Python Input and Output with Variables
You are now going to explore Python input and output using variables. In the following
steps, you will write a script to play with, instead of using the interactive Python shell:

1. If you have not already done so, power up your Raspberry Pi and log in to the
system.

2. If you do not have the LXDE GUI started automatically at boot, start it now by typing
startx and pressing Enter.

3. Open the LXTerminal by double-clicking the LXTerminal icon.
4. At the command-line prompt, type nano py3prog/script0402.py and press

Enter. The command puts you into the nano text editor and creates the file

py3prog/script0402.py.
5. Type the following code into the nano editor window, pressing Enter at the end of

each line:
Click here to view code image

script0402.py - My first real Python script.
Written by <your name here>
Date: <today's date>
#
############ Define Variables ###########
#
amount = 4 #Number of vessels.
vessels = 'glasses' #Type of vessels used.
liquid = 'water' #What is contained in the vessels.
location = 'on the table' #Location of vessels.
#
############ Output Variable Description #################
#
print ("This script has four varibles pre-defined in it.")
print ()
#
print ("The variables are as follows:")
#
print ("name: amount", "data type:", type (amount), "value:", amount)
#
print ("name: vessels", "data type:", type (vessels), "value:", vessels)
#
print ("name: liquid", "data type:", type (liquid), "value:", liquid)
#
print ("name: location", "data type:", type (location), "value:",
location)
print ()
#
############ Output Sentence Using Variables #############
#
print ("There are", amount, vessels, "full of", liquid, location,
end='.\n')
print ()

By the Way: Be Careful!
Be sure to take your time here and avoid making typographical errors. Double-
check and make sure you have entered the code into the nano text editor
window as shown above. You can make corrections by using the Delete key
and the up- and down-arrow keys.

6. Write out the information you just typed in the text editor to the script by pressing
Ctrl+O. The script file name will show along with the prompt File name to
write. Press Enter to write out the contents to the script0402.py script.

7. Exit the nano text editor by pressing Ctrl+X.
8. Type python3 py3prog/script0402.py and press Enter to run the script.

If you encounter any errors, note them so you can fix them in the next step. You
should see output like the output shown in Figure 4.3. The output is okay, but it’s a
little sloppy. You can clean it up in the next step.

FIGURE 4.3 Output for the Python script script0402.py.

9. At the command-line prompt, type nano py3prog/script0402.py and press
Enter. The command puts you into the nano text editor, where you can modify the
script0402.py script.

10. Go to the Output Variable Description portion of the script and add a
separator to the end of each line. The lines of code to be changed and how they
should look when you are done are shown here:

Click here to view code image

print ("name: amount", "data type:", type (amount), "value:", amount,
sep='\t')
#
print ("name: vessels", "data type:", type (vessels), "value:", vessels,
sep='\t')
#
print ("name: liquid", "data type:", type (liquid), "value:", liquid,
sep='\t')
#
print ("name: location", "data type:", type (location), "value:",
location,sep='\t')

11. Write out the modified script by pressing Ctrl+O. Press Enter to write out the
contents to the script0402.py script.

12. Exit the nano text editor by pressing Ctrl+X.
13. Type python3 py3prog/script0402.py and press Enter to run the script.

You should see output like the output shown in Figure 4.4. Much neater!

FIGURE 4.4 The script0402.py output, properly tabbed.

14. To try adding some input into your script, at the command-line prompt, type nano
py3prog/script0402.py and press Enter.

15. Go to the bottom of the script and add the additional Python statements shown here:
Click here to view code image

#
################## Get Input ####################
#
print ()
print ("Now you may change the variables' values.")
print ()
#
amount=int(input("How many vessels are there? "))
print ()
#
vessels = input("What type of vessels are being used? ")
print ()
#
liquid = input("What type of liquid is in the vessel? ")
print ()
#
location=input("Where are the vessels located? ")
print ()
#
################# Display New Input to Output ###########
#
print ("So you believe there are", amount, vessels, "of", liquid,
location, end='. \n')
print ()
#
#################### End of Script ######################

16. Write out the modified script by pressing Ctrl+O. Press Enter to write out the
contents to the script0402.py script.

17. Exit the nano text editor by pressing Ctrl+X.
18. Type python3 py3prog/script0402.py and press Enter to run the script.

Answer the prompts any way you want. (You are supposed to be having fun here!)
Figure 4.5 shows what your output should look like.

FIGURE 4.5 The complete script0402.py output.

Run this script as many times as you want. Experiment with the various types of answers you put in
and see what the results are. Also try making some minor modifications to the script and see what
happens. Experimenting and playing with your Python script will enhance your learning.

Summary
In this hour, you got a wonderful overview of Python basics. You learned about output and formatting
output from Python; creating legal variable names and assigning values to variables; and various data
types and when they are assigned by Python. You explored how Python can handle input from the
keyboard and how to convert the data types of the variables receiving that input. Finally, you got to
play with your first Python script. In Hour 5, your Python exploration will continue as you delve into
mathematical algorithms with Python.

Q&A
Q. Can I do any other kind of output formatting besides what I learned about in this

chapter?
A. Yes, you can also use the format function, which is covered in Hour 5.
Q. Which is better to use with a print function, double quotes or single quotes?
A. Neither one is better than the other. Which one you use is a personal preference. However,

whichever one you choose, it’s best to consistently stick with it.
Q. Bottles of tea on the wall?!
A. This is a family-friendly book. Feel free to modify your answers to script0402.py to

your liking.

Workshop
Quiz

1. The print function is part of the Python standard library and is considered a built-in function.
True or false?

2. When is a variable created and assigned a data type?
3. Which of the following is a valid Python data type?

a. int
b. input
c. print

Answers
1. True. The print function is a built-in function of the standard library. There is no need to

import it.
2. A variable is created and assigned a data type when it is assigned a value. The value and data

type for a variable can be changed with a reassignment.
3. int is a Python data type. input and print are both built-in Python functions.

Hour 5. Using Arithmetic in Your Programs

What You’ll Learn in This Hour:
 Using basic math
 Working with fractions
 Working with complex numbers
 Using the math module in Python scripts
 Using other Python math libraries

Just about every Python script that you write requires some type of mathematical operation. Whether
you need to increment a counter or calculate the Fourier transform of a signal, you need to know how
to incorporate mathematical operators and functions in your Python code. This hour walks through all
the basics you need to know to work with numbers and perform calculations in your Raspberry Pi
Python scripts.

Working with Math Operators
Python supports all the basic math calculations that you’d expect from a programming language. This
section walks you through the basics of how to use math operators in your Python scripts.

Python Math Operators
To get a feel for how Python handles numbers, you can open an IDLE window and experiment with
some simple math calculations right at the command line. You can use the IDLE command prompt as a
calculator, entering any type of mathematical equation for it to evaluate and return an answer.
Here’s an example of some basic math calculations performed in IDLE:

>>> 1 + 1
2
>>> 5 - 2
3
>>> 2 * 5
10
>>> 15 / 3
5.0
>>>

As you can see, Python supports all the basic math operators that you learned in school (using an
asterisk for multiplication and a forward slash for division).

By the Way: Division Data Types
Notice that when we performed the division, Python automatically converted the output
to a floating-point data type, even though the inputs were both integers. This is a new
feature in Python v3.2!

Besides the basic math operators that you were taught in elementary school, Python also supports

some other types of mathematical operators. Table 5.1 shows all the Python mathematical operators
available for you to use in your scripts.

TABLE 5.1 Python Math Operators
The floor division operator (//) returns the integer portion of a division result (what we use to call
the “goes into” part, back in long division classes). The modulus operator returns the remainder of the
division (what we use to call the “left over” part).
You’ll notice from the table that there are two types of AND and OR operators. There’s a subtle
difference between the binary and logical operators. The binary operators are used in what’s called
bitwise calculations. You use bitwise calculations to perform binary math using binary values.
If you’re using binary operators, you’ll probably want to also specify your values in binary notation.
To do that, just use the 0b symbol in front of the number, like this:

>>> a = 0b01100101
>>> b = 0b01010101
>>> c = a & b
>>> bin(c)
'0b1000101'
>>>

To display the value of the c variable in binary notation, you just use the bin() function.
The logical operators work with Boolean True and False logic values. These are most often used
in if-then comparisons (see Hour 6, “Controlling Your Program”). Here’s an example of how they
work:
Click here to view code image

>>> a = 101
>>>b = 85
>>> if ((a > 100) and (b < 100)): print("It worked!")

It worked!
>>> if ((a > 100) and (b > 100)): print("It worked!")

>>>

After you enter the if statement, IDLE produces a blank line, waiting for you to complete the
statement. Just press the Enter key to finish the statement. In these examples, we compared two
conditions using the logical and operator. When both conditions are True, Python runs the
print() statement. If either one is False, Python skips the print() statement.

Order of Operations
As you might expect, Python follows all the standard rules of mathematical calculations, including the
order of operations. In the following example, Python performs the multiplication first and then the
addition operation:

>>> 2 + 5 * 5
27
>>>

And just like in math, Python allows you to change the order of operations by using parentheses:
>>> (2 + 5) * 5
35
>>>

You can nest parentheses as deeply as you need to in your calculations. Just be careful to make sure
that you match up all the opening and closing parentheses in pairs. If you don’t, as in the following
example, Python will continue to wait for the missing parenthesis:

>>> ((2 + 5) * 5

When you press the Enter key, IDLE returns a blank line instead of displaying the result. It’s waiting
for you to close out the missing parenthesis. To close out the command, just supply the missing
parenthesis on the blank line:

)
35
>>>

IDLE completes the calculation and displays the result.

Using Variables in Math Calculations
Probably the most useful feature of using math in Python is the ability to use variables inside your
equations. The variables can contain values of any numeric data type in Python math calculation. The
following example shows that if you mix data types in your calculations, Python will stick with the
floating-point data type for the result:

>>> test1 = 5
>>> test1 * 2.0
10.0
>>>

Be careful to assign a value to a variable before using it in a calculation, or Python will complain, as
in this example:

Click here to view code image

>>> test10 * 5
Traceback (most recent call last):
 File "<pyshell#0>", line 1, in <module>
 test10 * 5
NameError: name 'test10' is not defined
>>>

Not only can you use variables within a calculation, you can also assign the result of a calculation to
a variable. Python automatically sets the variable to the data type required to hold the calculation
result:

>>> test1 = 2 + 5
>>> result = test1 * 5
>>> print(result)
35
>>>

The result variable contains the result of the calculation, which you can then display by using the
print() function. As you can see in the example, you can use both variables with numbers
anywhere in the calculations.
The ability to assign numbers and calculation results to variables is crucial to using math in Python
scripts. Listing 5.1 shows the script0501.py script, which performs a simple math calculation
and then displays the result.

LISTING 5.1 The script0501.py Script

#!/usr/bin/python
test1 = 2 + 5
result = test1 * 5
print(result)

When you run the script0501.py script, all you should see is the output from the print()
function:

$ python3 script0501.py
35
$

All the math calculations performed in the script are hidden from view!

Floating-Point Accuracy
As you’ve been playing around with your calculations, you may have seen some odd behavior with
some of the floating-point calculations. Here’s an example of what we mean:

>>> 5.2 * 9
46.800000000000004
>>>

The result of 5.2 multiplied by 9 should be 46.8, but the result displayed in IDLE has a stray value
added to the actual result.
This is caused by the way the underlying CPU handles floating-point arithmetic. Because the floating-

point data type converts the numbers into a special format, the calculations are somewhat inaccurate.
You can’t get around this problem in your calculations, but you can use some Python tricks to help
make things more presentable when displaying the results.

Displaying Numbers
One way to solve the floating-point accuracy issue is to display only the pertinent part of the result.
You can use the print() function to reformat the numbers that it displays.
By default, the print() function displays the actual result that’s calculated by Python:

>>> result = 5.2 * 9
>>> print(result)
46.800000000000004
>>>

However, you can use some Python tricks to help out with formatting the output.
Despite what the output looks like, the print() function actually produces a string object for the
output (in this case, the string just happens to look like the number result). Since the output is a string
object, you can use the format() function on the output (see Hour 10, “Working with Strings”),
which allows you to define how Python displays the string object.
The format() function allows you to separate the variable from the output text in the string object
by using the {} placeholder symbol:
Click here to view code image

>>> print ("The result is {}".format(result))
The result is 46.800000000000004
>>>

That hasn’t helped yet, but now you can use the special features of the {} placeholder to help you
reformat the output.
You just define an output template in the {} placeholder, and Python will use it to format the number
output. For example, to restrict the output to two decimal places, you use the template {0:.2f} to
produce this output:
Click here to view code image

>>> print("The result is {0:.2f}".format(result))
The result is 46.80
>>>

Now this is much better! The first number in the template defines what position in the number to start
to display. The second number (the .2) defines the number of decimal places to include in the output.
The f in the template tells Python that the number is a floating-point format.

Operator Shortcuts
Python provides a few shortcuts for mathematical operations. If you’re performing an operation on a
variable and plan on storing the result in the same variable, you don’t have to use the long format:

>>> test = 0
>>> test = test + 5
>>> print(test)
5
>>>

Instead, you can use an augmented assignment:
>>> test = 0
>>> test += 5
>>> print(test)
5
>>>

This feature works for addition, subtraction, multiplication, division, modulus, floor division, and
exponentiation.

Calculating with Fractions
Python supports some other cool math features that you don’t often run across in other programming
languages. One of those features is the ability to work directly with fractions. This section walks
through how to work with fractions in your Python scripts.

The Fraction Object
The fractions Python module defines a special object called Fraction. The Fraction
object holds the numerator and the denominator of a fraction as separate properties of the object.
To use a Fraction object, you need to import it from the fractions module. After you import
the object class, you can create an instance of a Fraction object, like this:
Click here to view code image

>>> from fractions import Fraction
>>> test1 = Fraction(1, 3)
>>> print(test1)
1/3
>>>

The first parameter of the Fraction() method is the fraction numerator, and the second parameter
is the denominator of the fraction value. Now you can perform any type of fraction operation on the
variable, like this:

>>> result = test1 * 4
>>> print(result)
4/3
>>>

Starting in Python v3.3, the Fraction() constructor can also convert floating-point values into a
Fraction object, as in the following example:

>>> test2 = Fraction(5.5)
>>> print(test2)
11/2
>>>

Now that you know how to create fractions, the next step is to start using them in your calculations!

Fraction Operations
After you create a Fraction object, you can use any type of mathematical calculation on the object
with other Fraction objects, as in this example:

>>> test1 = Fraction(1, 3)

>>> test2 = Fraction(4, 3)
>>> result = test1 * test2
>>> print(result)
4/9
>>>

Python will also work out common denominator problems with your fractions, like this:
>>> test1 = Fraction(1,3)
>>> test2 = Fraction(1,2)
>>> result = test1 + test2
>>> print(result)
5/6
>>>

Now you can perform calculations with fractions just as easily as with decimal numbers. That can
make life a lot easier if you’re working in an environment that uses fractions!

Using Complex Number Math
For the scientific and engineering communities, Python also supports complex numbers, as well as
complex number calculations. A complex number is represented by a combination of a real number
and an imaginary number.

By the Way: Imaginary Numbers
By definition, an imaginary number is the square root of –1, which theoretically
doesn’t exist, thus the term imaginary.

A complex number is represented by the real number, a plus sign, and the complex number, followed
by a j. For example, in the complex number 1 + 2j, 1 is the real component, and 2 is the imaginary
component.
Trying to work with calculations that use complex numbers is, well, complex! The combination of the
real and imaginary parts of the complex number causes the calculations to behave somewhat
differently from the math operations you’re probably use to seeing. This section walks through how to
handle complex numbers in your Python scripts.

Creating Complex Numbers
You define complex numbers by using the complex() function, which is built into the core Python
language. As you can see in this example, to create the complex number, you just specify the real
component value as the first parameter and then the imaginary component value as the second
parameter:

>>> test = complex(1, 3)
>>> print(test)
(1+3j)
>>>

When you need to display the complex number value, Python displays it using the j format, making it
easier to view.

Complex Number Operations

After you define a complex number, you can use it in any type of mathematical calculation, like this:
>>> result = test * 2
>>> print(result)
(2+6j)
>>>

And as you would expect, you can perform complex number calculations by using other complex
numbers, as in the following example:

>>> test1 = complex(1, 2)
>>> test2 = complex(2, 3)
>>> result = test1 + test2
>>> print(result)
(3+5j)
>>> result2 = test1 * test2
>>> print(result2)
(-4+7j)
>>>

Complex math is not for the faint of heart. If you have to work with complex numbers, though, at least
you have a friend in Python!

Getting Fancy with the math Module
For more advanced math support, you can use the methods found in the Python math module. It
provides some additional mathematical methods commonly found in advanced calculations for
trigonometry, statistics, and number theory.
Fortunately, the Raspbian distribution installs the Python math module by default in the Python
installation, so you don’t have to install it as a separate package. However, you do have to use the
import statement to import the module into your Python script to be able to use the methods:

>>> import math
>>> math.factorial(5)
120
>>>

If there’s just one function you need to use from the math module, but you use it lots of times in your
script, you can import just that function using the from statement:
Click here to view code image

>>> from math import factorial
>>> factorial(7)
5040
>>>

The math module provides lots of mathematical functions for you to use. The following sections
provide a rundown of what it provides.

Number Theory Functions
Number theory functions provide handy features such as absolute values, factorials, and determining
whether a value is a number and, if it is, what type of number. Table 5.2 lists the number theory
functions that you’ll find in the math module.

TABLE 5.2 Python Number Functions
Most of these functions are pretty self-explanatory if you’re working with math. The fsum()
function may need a little more explanation, though. It sums the values in a series, but you must
specify the series as either a Python list or tuple (see Hour 8, “Using Lists and Tuples”). Here’s an
example:

>>> math.fsum([1, 2, 3])
6.0
>>>

You just put the numbers you need to sum in the list and plug that into the fsum() function.

Power and Logarithmic Functions
If you work with logarithms and exponents, the Python math module has some functions for you.
Table 5.3 shows the logarithmic functions available.

TABLE 5.3 Python Logarithmic Functions
The pow() function performs the same function as the standard ** math symbol. It’s mostly included
in Python for completeness, as the pow() function is used in many other programming languages.

Trigonometric Functions

If trigonometry is your thing, you’ll be glad to know there are plenty of trig functions in the math
module as well. Table 5.4 shows what’s available.

TABLE 5.4 Python Trigonometric Functions
Notice that the trigonometric functions require you to specify the parameter in radians. If you’re
working with degrees, don’t forget to convert first, like this:
Click here to view code image

>>> angle = 90
>>> radangle = math.radians(angle)
>>> anglesine = math.sin(radangle)
>>> print(anglesine)
1.0
>>>

Now you’re all set to start working on your triangle calculations!

Hyperbolic Functions
Somewhat related to the trigonometric functions are hyperbolic functions. Whereas trigonometric
functions are derived from circular calculations, hyperbolic functions are derived from a hyperbola
calculation. Table 5.5 shows the hyperbolic functions that the math module supports.

TABLE 5.5 Python Hyperbolic Functions
Just as with the trigonometric functions, you must specify the hyperbolic function parameters in
radians.

Statistical Math Functions

The math module includes a few statistical math functions for good measure, as shown in Table 5.6.

TABLE 5.6 Python Statistical Math Functions
The error function is a core computation used in statistical analysis equations. You need it to compute
the normal cumulative distribution and the statistical Q-function. You need the complementary (or
inverse) error function to calculate the normal quartile of a statistical series.

Using the NumPy Math Libraries
Besides the host of functions available in the standard math module, many engineers, scientists, and
statisticians who use fancy mathematical calculations have created and shared their own extended
Python math modules.
One of the core Python libraries for advanced mathematical computing is NumPy. The NumPy
module provides methods for multidimensional array manipulations, which are required for many
advanced scientific and statistical calculations. It consists of the following:

 A multidimensional array object class
 Methods for array manipulation

The NumPy multidimensional array objects are somewhat different from standard Python lists or
tuples in that you can easily use them in mathematical calculations that require arrays. Python handles
the array objects differently from lists and tuples. The following section walks through how to use the
NumPy features.

NumPy Data Types
The NumPy module provides five core data types that you can use to store data in arrays:

 bool—Booleans
 int—Integers
 uint—Unsigned integers
 float—Floating-point numbers
 complex—Complex numbers

Within those five core data types, you can also specify a bit size at the end of the data type name, such
as int8, float64, or complex128. If you don’t specify the bit size, Python will assume the bit
size based on the CPU platform (such as 32-bit or 64-bit).
To use the NumPy module functions in your programs, just import the numpy module, however, you
may have to be patient, as it can take some time to load all of the library methods!

Creating NumPy Arrays
The Raspberry Pi Python v3 installation already includes the NumPy module, so you can write your

advanced array manipulations right out of the box.
There are several different ways to create arrays in NumPy. One way is to create an array from an
existing Python list or tuple, as in this example:
Click here to view code image

>>> import numpy
>>> a = numpy.array(([1, 2, 3], [0, 2, 4], [3, 2, 1]))
>>> print(a)
[[1 2 3]
 [0 2 4]
 [3 2 1]]
>>>

This example creates a 3-by-3 array using three Python lists.
If you don’t define a data type, Python assumes the data type for the data. If you need to change the
data type of the array values, you can specify it as a second parameter to the array() function. For
example, the following example causes the values to be stored in the floating-point data type:
Click here to view code image

>>> a = numpy.array(([1,2,3], [4,5,6]), dtype="float")
>>> print(a)
[[1. 2. 3.]
 [4. 5. 6.]]
>>>

You can also generate default arrays of either all zeros or all ones, like this:
>>> x = numpy.zeros((3,5))
>>> print(x)
[[0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0.]]
>>> y = numpy.ones((5,2))
>>> print(y)
[[1. 1.]
 [1. 1.]
 [1. 1.]
 [1. 1.]
 [1. 1.]]
>>>

You can also create an array of regularly incrementing values by using the arrange() function, as
shown here:

>>> c = numpy.arange(10)
>>> print(c)
[0 1 2 3 4 5 6 7 8 9]
>>>

You can also specify the starting and ending values, as well as the increment value.

Using NumPy Arrays
The beauty of NumPy lies in its ability to handle array math. These functions are somewhat of a pain
using standard Python lists or tuples, as you have to manually loop through the list or tuple to add or
multiply the individual array values. With NumPy, it’s just a simple calculation, as shown here:

Click here to view code image

>>> a = numpy.array(([1, 2, 3], [4, 5, 6]))
>>> b = numpy.array(([7, 8, 9], [0, 1, 2]))
>>> result1 = a + b
>>> print(reuslt1)
[[8 10 12]
 [4 6 8]]
>>> result2 = a * b
>>> print(result2)
[[7 16 27]
 [0 5 12]]
>>>

Now working with arrays in Python is a breeze!

Summary
Python supports a wide range of mathematical features for just about any type of calculations you
need to perform in your scripts. You can perform standard math functions such as addition,
subtraction, and division directly by using the standard Python math operators.
If you need to incorporate more advanced math functions in your calculations, you can import the
math module into your script. The math module provides functions for number theory, trigonometry,
and basic statistics.
Finally, you may at some point need to get into advanced scientific or statistical calculations. Python
users have created some handy libraries for you. The most popular is the NumPy library, which
contains the tools required to perform calculations using multidimensional arrays for linear algebra,
advanced statistics, and signal processing.
In the next hour, we’ll take a look at how to add control to your Python programs using the if family
of control statements. That allows you to add dynamic features to your Python programs!

Q&A
Q. What data type should you use to store monetary values in Python?
A. You should use the floating point data type so that the value can contain two decimal places

for the cents value.
Q. Does Python support the incrementor (++) and decrementor (--) operators?
A. While the incrementor and decrementor operators are popular in other programming

languages, currently Python doesn’t provide support for those operators.

Workshop
Quiz

1. What math function should you use to find the square root of a number?
a. pow()
b. sqrt()
c. log2()
d. sin()

2. You must import the Python math library in order to use the Python trigonometric functions.
True or false?

3. How do you create a fraction by using the Fraction class in Python?

Answers
1. You should use the sqrt() function to find the square root of a value.
2. True. The Python standard library only supports standard math functions and features. You’ll

need to import the separate math library module to use any of the more advanced math features
such as working with trigonometric functions.

3. The Fraction class uses the Fraction() method to create a fraction value. The format of
the Fraction() method is Fraction(numerator, denominator), which specifies
the numerator and the denominator of the fraction as separate values.

Hour 6. Controlling Your Program

What You’ll Learn in This Hour:
 How to use if-then statements
 How to group multiple statements
 How to add else sections
 Stringing together if-then statements
 Testing conditions

In all the Python scripts discussed so far, Python processes each individual statement in the script in
the order in which it appears. This works out fine for sequential operations, where you want all the
operations to process in the proper order. However, this isn’t how all programs operate.
Many programs require some sort of logic flow control between the statements in the script. This
means that Python executes certain statements given one set of circumstances but has the ability to
execute other statements given a different set of circumstances. A whole class of statements, called
structured commands, allow Python to skip over or loop through statements based on conditions of
variables or values.
There are quite a few structured commands available in Python, and we look at them individually. In
this hour, we look at the if statement.

Working with the if Statement
The most basic type of structured command is the if statement. The if statement in Python has the
following basic format:

if (condition): statement

If you have ever used if statements in other programming languages, this format may seem somewhat
odd because there’s no “then” keyword in the statement.
Python uses the semicolon to act as the “then” keyword. Python evaluates the condition in the
parentheses and then either executes the statement after the semicolon if the condition returns a True
logic value or skips the statement after the semicolon if the condition returns a False logic value.

Try It Yourself: Using the if statement
Let’s walk through a few examples to show using the if statement:

1. Open the Python3 IDLE interface on your graphical desktop (see Hour 3, “Setting Up
a Programming Environment”).

2. Set a value for a variable:
>>> x = 50

3. Test the variable value using an if statement:
Click here to view code image

>>> if (x == 50): print("The value is 50")

The value is 50

4. Try another test using another condition:
Click here to view code image

>>> if (x < 100): print("The value is less than 100")

The value is less than 100

5. Try a test condition that should fail:
Click here to view code image

>>> if (x > 100): print("The value is more than 100")

>>>

With the if statement, each time you enter the statement and press the Enter key, the IDLE interface
pauses on the next line to see if you’re going to enter any more statements. You just press the Enter
key again to close out the statement.
In the first example, the condition checks to see if the variable x is equal to 50. (We talk about the
double equal sign in the “Comparison Conditions” section, later in this chapter.) Since it is, Python
executes the print() statement on the line and prints the string.
Likewise, the second example checks whether the value stored in the x variable is less than 100.
Since it is, Python again executes the print() statement to display the string.
However, in the third example, the value stored in the x variable is not greater than 100, so the
condition returns a False logic value, causing Python to skip the print() statement after the
semicolon.

Grouping Multiple Statements
The basic if statement format allows you to process one statement based on the outcome of the
condition. More often than not, though, you want to group multiple statements together, based on the
outcome of the condition. This is another place where the Python if statement format deviates from
other programming languages.
Many programming languages use either braces or a keyword to indicate the group of statements that
the if statement controls. Instead of grouping statements together using either braces or a special
keyword, Python uses indentation.
To group a bunch of statements together, you must place them each on separate lines in the script and
indent them from the location of the if statement. Here’s an example:
Click here to view code image

>>> if (x == 50):
 print("The x variable has been set")
 print("and the value is 50")

The x variable has been set
and the value is 50
>>>

When you enter the code to test this in IDLE, after you press the Enter key for the if statement, IDLE
automatically indents the next line for you. All the statements that you enter after that are considered
part of the “then” section of the statement and are controlled by the condition.
When you’re done entering statements, you just press the Enter key on an empty line.
If you’re working with if statements in a Python script, you have to remember to manually indent the
“then” section statements. You indicate the lines outside the “if” section by not indenting them. Listing
6.1 shows an example of doing this.

LISTING 6.1 Using if Statements in Python Scripts

Click here to view code image

1: #!/usr/bin/python
2: x = 50
3: if (x == 50):
4: print("The x variable has been set")
5: print("and the value is 50")
6: print("This statement executes no matter what the value is")

Notice how lines 4 and 5 are indented from the location of the if statement on line 3. The print()
statement on line 6 isn’t indented, though. This means it’s not part of the “then” section.
To test it, run the script0601.py program from the command line:
Click here to view code image

$ python3 script0601.py
The x variable has been set
And the value is 50
This statement executes no matter what the value is
$

Now if you change the code to set the value of x to 25, you get the following output:
Click here to view code image

$./script0601.py
This statement executes no matter what the value is
$

Python skips the print() statements inside the “then” section but picks up with the next print()
statement that’s not indented.

Adding Other Options with the else Statement
In the if statement, you only have one option of whether to run statements. If the condition returns a
False logic value, Python just moves on to the next statement in the script. It would be nice to be
able to execute an alternative set of statements when the condition is False. That’s exactly what the
else statement allows you to do.
The else statement provides another group of commands in the statement:
Click here to view code image

>>> x = 25
>>> if (x == 50):

 print("The value is 50")
else:
 print("The value is not 50")

The value is not 50
>>>

When you use the else statement with the if statement, you must be careful how you place the
else statement. If you try to keep it indented, you get an error message from Python:
Click here to view code image

>>> if (x == 50):
 print("The value is 50")
 else:

SyntaxError: invalid syntax
>>>

The same applies when you’re using the if and else statements in Python scripts. When you’re
creating your script code file, make sure you line up the else statement properly in the text. Listing
6.2 demonstrates this.

LISTING 6.2 Using the else statement in a Python script

Click here to view code image

#!/usr/bin/python
x = 25
if (x == 50):
 print("The value is 50")
else:
 print("The value is not 50")

The code shown in Listing 6.2 has the else statement at the same indentation level as the if
statement. When you run the script0602.py script, only one of the print() statements will
execute, like this:

$ python3 script0602.py
The value is not 50
$

The same applies when you have multiple statements in either the “if” or “else” sections, and when
you have additional code after the if and else statements block. Listing 6.3 demonstrates a more
complicated if/else statement.

LISTING 6.3 Multiple Statements in the if and else Sections

Click here to view code image

#!/usr/bin/python
x = 25
if (x == 50):
 print("The x variable has been set")

 print("and the value is 50")
else:
 print("The x variable has been set")
 print("And the value is not 50")
print("This ends the test")

You can control the output by adjusting the value you assign to the x variable. When you run the script
as is, you get this output:
Click here to view code image

$ python3 script0603.py
The x variable has been set
And the value is not 50
This ends the test
$

If you change the value of x to 50, you get this output:
Click here to view code image

$./script0603.py
The x variable has been set
And the value is 50
This ends the test
$

Everything in the if/else statement blocks is based on the indentation of the statements, so be very
careful when you construct the statement!

Adding More Options Using the elif Statement
So far you’ve seen how to control a block of statements by using either the if statement or the if
and else combination. That gives you quite a bit of flexibility in controlling how your scripts work.
However, there’s more!
Sometimes you need to compare a value against multiple ranges of conditions. One way to solve that
is to string multiple if statements back-to-back, as shown in Listing 6.4.

LISTING 6.4 The script0604.py File

Click here to view code image

#!/usr/bin/python
x = 45
if (x > 100):
 print("The value of x is very large")
if (x > 50):
 print("The value of x is medium")
if (x > 25):
 print("The value of x is small")
if (x <= 25):
 print("The value of x is very small")

When you run the script0604.py script, Python executes only one of the print() statements,
based on the value stored in the x variable:

Click here to view code image

$ python3 script0604.py
The value of x is small
$

This works, but it is a somewhat ugly way to solve the problem. Fortunately, there’s an easier
solution.
Python supports the elif statement, which lets you string together multiple if statements and end
with a catch-all else statement. The basic format of the elif statement looks like this:
Click here to view code image

if (condition1):statement1
elif (condition2): statement2
else: statement3

When Python runs this code, it first checks the condition1 result. If that returns a True value,
Python runs statement1 and then exists the if/elif/else statements.
If condition1 evaluates to a False value, Python then checks the condition2 result. If that
returns a True value, Python runs statement2 and then exits the if/elif/else statement.
If condition2 evaluates to a False value, Python runs statement3 and then exits the
if/elif/else statement.
Listing 6.5 shows an example of how to use the elif statement in a program.

LISTING 6.5 Using the elif statement

Click here to view code image

x = 45
if (x > 100):
 print("The value of x is very large")
elif (x > 50):
 print("The value of x is medium")
elif (x > 25):
 print("The value of x is small")
else:
 print("The value of x is very small")

When you run the script0605.py code, only one print() statement runs, based on the value
you set the x variable to. By default, you see this output:
Click here to view code image

$ python3 script0605.py
The value of x is small
$

You can see that you have complete control over just what code statements Python runs in the script!

Comparing Values in Python
The operation of the if statement revolves around the comparisons you make. Python provides quite
a variety of comparison operators that allow you to check all types of data. This section walks

through the different types of comparisons that are available in your Python scripts.

Numeric Comparisons
The most common type of comparisons have to do with comparing numeric values. Python provides a
set of operators for performing numeric comparisons in your if statement conditions. Table 6.1
shows the numeric comparison operators that Python supports.

TABLE 6.1 Numeric Comparison Operators
The comparison operators return a logical True value if the comparison succeeds and a logical
False value if the comparison fails. For example, the following statement:
Click here to view code image

if (x >= y): print("x is larger than y")

executes the print() statement only if the value of the x variable is greater than or equal to the
value of the y variable.

Watch Out!: The Equality Comparison Operator
Be careful with the equal comparison! If you accidentally use a single equal sign, it
becomes an assignment statement and not a comparison. Python processes the
assignment and then exits with a True value all the time. That’s probably not what you
want to do.

String Comparisons
Unlike numeric comparisons, string comparisons can sometimes be a little tricky. While comparing
two string values for equality is easy:
Click here to view code image

x = "end"
if (x == "end"): print("Sorry, that's the end of the game")

trying to use a greater-than or less-than comparison in strings can get confusing. When is one string
value greater than another string value?
Python performs what’s called a lexicographical comparison of string values. This method converts
letters in the string to the ASCII numeric equivalent and then compares the numeric values.
Here’s a test string comparison:
Click here to view code image

>>> a = "end"
>>> if (a < "goodbye"):
 print("end is less than goodbye")
elif (a > "goodbye"):
 print("end is greater than goodbye")

end is less than goodbye
>>>

Python compares the values "end" and "goodbye" and determines which one is “greater.” Since
the string value "end" would come before "goodbye" in a sort method, it is considered “less
than” the "goodbye" string.
Now, try this example:
Click here to view code image

>>> a = "End"
>>> if (a < "goodbye"):
 print("End is less than goodbye")
elif (a > "goodbye"):
 print("End is greater than goodbye")

End is less than goodbye
>>>

Changing the capitalization of "End" still makes it less than "goodbye".
Next, compare the same word capitalized and in all lowercase letters:
Click here to view code image

>>> if (a == "end"):
 print("End is equal to end")
elif (a < "end"):
 print("End is less than end")
elif (a > "end"):
 print("End is greater than End")

End is less than end
>>>

The capitalized version of the string evaluates to be less than the lowercase version. This is an
important feature to know when comparing string values in Python!

List and Tuple Comparisons
Python allows you to compare objects that contain multiple values, such as lists and tuples. In this
example, Python considers the list stored in the a variable less than the list stored in the b variable:
Click here to view code image

>>> a = [1, 2, 3]
>>> b = [4, 5, 6]
>>> if (a < b):
 print("a is less than b")
elif (a > b):
 print("a is greater than b")

a is less than b
>>>

In the previous example, both lists are the same length. To see how Python handles comparing two
lists of different lengths, you can try this example:
Click here to view code image

>>> c = [7,8]
>>> if (a < c):
 print("a is less than c")
elif (a > c):
 print("a is greater than c")

a is less than c
>>>

Even though the c variable contains a shorter list, Python evaluates the a variable list to be less than
the c variable list.

Boolean Comparisons
Since Python evaluates the if statement condition for a logic value, testing Boolean values is pretty
easy:
Click here to view code image

>>> x = True
>>> if (x): print("The value is True")

The value is True
>>> x = False
>>> if (x): print("The value is True")

>>>

Setting a variable value directly to a logical True or False value is pretty straightforward.
However, you can also use Boolean comparisons to test other features of a variable.
If you set a variable to a value, Python also makes a Boolean comparison:
Click here to view code image

>>> a = 10
>>> if (a): print("The a variable has been set")

The a variable has been set
>>>

The same applies if you assign a string value to a variable:
Click here to view code image

>>> b = "this is a test"
>>> if (b): print("The variable has been set")

The variable has been set
>>>

However, if a variable contains a value of 0, it evaluates to a False Boolean condition:
Click here to view code image

>>> c = 0
>>> if (c): print("The b variable has been set")

>>>

So be careful when evaluating variables for Boolean values!

Evaluating Function Results
A feature related to Boolean comparisons is Python’s ability to test the result of functions. When you
run a function in Python, the function returns a return code. You can test the return code by using the
if statement to determine whether the function succeeded or failed.
A good example of this is using the isdigit() method in Python. The isdigit() method checks
whether the supplied value can be converted to a number, and it returns a True Boolean value if it
can. You can use this to check whether a value provided to your script by a user is a number. Listing
6.6 shows an example of how to use it.

LISTING 6.6 Using Functions in Conditions

Click here to view code image

#!/usr/bin/python

name = input("Please enter your name: ")
age = input("Please enter your age: ")

if (age.isdigit()):
 print("Hello", name, ",your age is", age)
else:
 print("Sorry, the age you entered is not a number")

The if statement checks whether the age variable is a digit. If it is, the script displays the data. If
not, it displays an error message.
Here’s an example of running the program to test it out:
Click here to view code image

$ python3 script0606.py
Please enter your name: Rich
Please enter your age: test
Sorry, the age you entered is not a number
$ python script0606.py
Please enter your name: Rich
Please enter your age: 10
Hello Rich, your age is 10
$

The first test uses bad data for the age value, and the script catches that! The second test uses correct
data, and that works just fine.

Checking Complex Conditions
So far in this hour, all the examples have used just one comparison check within the condition. Python
also allows you to group multiple comparisons together in a single if statement. This section show

some tricks you can use to combine more than one condition check into a single if statement.

Using Logic Operators
Python allows you to use the logic operators (see Hour 5, “Using Arithmetic in Your Programs”) to
group comparisons together. Since each individual condition check produces a Boolean result value,
Python applies the logic operation to the condition results. The result of the logic operation
determines the result of the if statement:
Click here to view code image

>>> a = 1
>>> b = 2
>>> if (a == 1) and (b == 2): print("Both conditions passed")

Both conditions passed
>>> if (a == 1) and (b == 1): print("Both conditions passed")

>>>

When you use the and logic operator, both of the conditions must return a True value for Python to
process the “then” statement. If either one fails, Python skips the “then” code block.
You can also use the or logical operator to compound condition checks:
Click here to view code image

>>> if (a == 1) or (b == 1): print("At least one condition passed")

At least one condition passed
>>>

In this situation, if either condition passes, Python processes the “then” statement.

Combining Condition Checks
You can combine condition checks into a single condition check without using logic operators. Take a
look at this example:
Click here to view code image

>>> c = 3
>>> if a < b < c: print("they all passed")

they all passed
>>> if a < b > c: print("they all passed")

>>>

In this example, Python first checks whether the a variable value is less than the b variable value.
Then it checks whether the b variable value is less than the c variable value. If both of those
conditions pass, Python runs the statement. If either condition fails, Python skips the statement.

Negating a Condition Check
There’s one final if statement trick that Python programmers like to use. Sometimes when you’re
writing if-else statements, it comes in handy to reverse the order of the “then” and “else” code blocks.
This can be because one of the code blocks is longer than the other, so you want to list the shorter one

first, or it may be because the script logic says it makes more sense to check for a negative condition.
You can negate the result of a condition check by using the logical not operator (see Hour 5):
Click here to view code image

>>> a = 1
>>> if not(a == 1): print("The 'a' variable is not equal to 1")

>>> if not(a == 2): print("The 'a' variable is not equal to 2")

The 'a' variable is not equal to 2
>>>

The not operator reverses the normal result from the equality comparison, so the opposite action
occurs from what would have happened without the not operator.

By the Way: Negating Conditions
You may have noticed that you can negate a condition result by either using the not
operand or by using the opposite numeric operand (such as!= instead of ==). Both
methods produce the same result in your Python script.

Summary
This hour covers the basics of using the if structured command. The if statement allows you to set
up one or more condition checks on the data you use in your Python script. This comes in handy when
you need to program any type of logical comparisons in your Python scripts. The if statement by
itself allows you to execute one or more statements based on the result of a comparison test. You can
add the else statement to provide an alternative group of statements to execute if the comparison
fails.
You can expand the comparisons by using one or more elif statements in the if statement. You can
just continue stringing elif statements together to continue comparing additional values.
In the next hour, we’ll take a look at some more advanced control statements you can use to make your
scripts more dynamic. We’ll discuss the Python statements that allow you to loop through sections of
your code multiple times!

Q&A
Q. Does Python support the select and case statements that are often found in other

programming languages?
A. No, you have to use the elif statement to string together multiple if condition checks.
Q. Is there a limit on how many statements I can place in an if or else code block?
A. No, you can add as many statements as you need to control inside the if or else code

blocks.
Q. Is there a limit on how many elif statements I can place in an if statement?
A. No, you can nest as many elif statements together as you need to check in your code. However,

you may want to be careful, as the more elif statements the longer it will take for Python to
evaluate the code values.

Workshop
Quiz

1. What comparison should you use to check whether the value stored in the z variable is greater
than or equal to 10?

a. >
b. <
c. >=
d. ==

2. How would you write the if statement to display a message only if the value stored in the z
variable is between 10 and 20 (not including those values)?

3. How would you write the if statement to give a game player status messages if a guess falls
within 5, 10, or 15 of the actual value?

Answers
1. c. A common mistake in writing conditions is to forget that the greater and less-than symbols

don’t include the specified number!
2. You can nest the variable between to numbers using greater-than or less-than symbols:

Click here to view code image

if 10 < z < 20: print("This is the message")

3. You can use the elif statement to add additional checks for a range of values. It’s important to
remember to check smaller ranges first, as the larger ranges will include the smaller ranges:

Click here to view code image

if (z == answer): print("Correct, you guessed the answer!")
elif (z > answer – 5) or (z < answer + 5): print("You're within 5 of the
answer")
elif (z > answer – 10) or (z < answer + 10): print("You're within 10 of the
answer")
elif (z > answer – 15) or (z < answer + 15): print("You're within 15 of the
answer")

Hour 7. Learning About Loops

What You’ll Learn in This Hour:
 How to perform repetitive tasks
 How to use the for loop
 How to use the while loop
 How to use nested loops

In this hour, you will be learning about additional structured commands that help you reach your
script’s goals using Python. Specifically, the focus is on repetitive tasks and what constructs are
needed to accomplish those tasks.

Performing Repetitive Tasks
One of the great benefits of using a computer is that it doesn’t get bored performing a task over and
over again. Doing a task over and over again is called repetition.
A synonym for repetition is iteration. In the programming world, iteration is the process of
performing a defined set of tasks repeatedly until either a desired result is achieved or the set of tasks
has been performed a desired number of times.
When referring to a loop in Python, the term iteration is used. One time through a loop is called one
iteration. Going through a loop multiple times is referred to as iterating through the loop. Now, just
iterate through these last three paragraphs again and again, until you reach the desired result of
understanding the iteration terms.

Using the for Loop for Iteration
In Python, the for loop construct is called a “count-controlled” loop, because the loop’s set of tasks
will be performed a set number of times. If you want a set of tasks to be performed five times, you
can use a for loop in Python to accomplish this task.
The syntax structure of the for loop in Python is as follows:
Click here to view code image

for variable in data_list:
 set_of_Python_statements

Notice in the for loop structure that there is no ending statement. In some programming or scripting
languages, you see a “done” or “end” type of statement. In a for loop, the Python statements to be
included are indented under the for construct. This is similar to the if-then statement structure.

By the Way: Indentation in Loops
Just as with the if-then statements you learned about in Hour 6, “Controlling Your
Program,” the Python statements have to be indented to be part of a loop. Remember
that in IDLE, the development environment editor does this for you automatically.

However, in a text editor, you need to remember to tab or space over yourself.

The operation of a for loop is as follows:
 The variable in the for construct is assigned the first value in the data list.
 The Python statement(s) in the loop is executed and has the option of using the assigned
variable’s value during execution.

 Upon completion of the loop’s Python statement(s), the variable is reassigned the next value in
the data list.

 The Python statement(s) in the loop is then executed and has the option of using the variable’s
reassigned value during execution.

 The for loop continues until all the values have been assigned to the variable and the Python
statement(s) in the loop is executed during each assignment.

Reading about structure is not as helpful as diving into specific examples. The following sections
will help you better understand for loops.

Iterating Using Numeric Values in a List
You can have the for loop iterate through numbers by providing the numbers in a data list, as shown
in Listing 7.1. The only Python statement in this loop is print (the_number), which prints the
current number being used from the data list.

LISTING 7.1 A for Loop

Click here to view code image

>>> for the_number in [1, 2, 3, 4, 5]:
... print (the_number)
...
1
2
3
4
5
>>>

Notice the format of the data list in the for loop construct in Listing 7.1. The numbers are contained
within two square brackets, and the numbers are separated with commas. The variable
the_number is assigned a number in the data list, starting with the first number (1). After the
Python statement print (the_number) within the for loop is completed, the variable,
the_number, is then assigned to the next number in the data list. Figure 7.1 shows stepping through
the for loop in this manner.

FIGURE 7.1 Stepping Through a for Loop.

The loop continues until the_number has been assigned to the last number in the data list (5) and
the Python statement in the loop has been completed. Thus, all the numbers in the data list are used,
one at a time, in an iteration of the loop.

Watching for a Few “Gotchas”
You need to be careful about a couple potential problems with the for loop structure. The first
“gotcha” is forgetting to put a colon at the end of your for loop’s data list. Listing 7.2 shows the
error message you get as a result of making this mistake.

LISTING 7.2 A Missing Colon on a for Loop

Click here to view code image

>>> for the_number in [1, 2, 3, 4, 5]
 File "<stdin>", line 1
 for the_number in [1, 2, 3, 4, 5]
 ^
SyntaxError: invalid syntax
>>>

By the Way: Python Interactive Shell Versus Text Editor
When you are testing loop structure in a Python interactive shell, you need to press the
Enter key two times after the last Python statement in the loop. This alerts the

interactive shell that you are ready for the loop to be interpreted and the results
displayed. However, in a text editor, this extra press of the Enter key is not needed.

The next “gotcha” is not using commas to separate your numeric data list. In Listing 7.3, you can see
that no error is generated, but this is probably not the result being sought.

LISTING 7.3 Missing Commas in a for Loop Data List

Click here to view code image

>>> for the_number in [12345]:
... print (the_number)
...
12345
>>>

Don’t forget to keep your indentation consistent. If you are using spaces for indenting, then continue to
use exactly the same number of spaces for indentation for each Python statement in the loop. If you are
using tabs for indenting, then continue to use exactly the same number of tabs for indentation. In
Listing 7.4, you can see how Python complains when spaces are used for one indentation and tabs are
used for the other.

LISTING 7.4 Inconsistent Indentation

Click here to view code image

>>> for the_number in [1, 2, 3, 4, 5]:
... print ("Spaces used for indentation")
... print ("Tab used for indentation")
 File "<stdin>", line 3
 print ("Tab used for indentation")
 ^
TabError: inconsistent use of tabs and spaces in indentation
>>>

This next item is not really a “gotcha” but a reminder to be aware that the numbers you use in a data
list do not have to be in numeric order. Listing 7.5 shows an example of this.

LISTING 7.5 Non-Numeric Order of Numbered Lists

Click here to view code image

>>> for the_number in [1, 5, 15, 9]:
... print (the_number)
...
1
5
15
9
>>>

As you can see, the data from the list is processed in the order in which it was placed in the data list.
Python has no complaints in processing this list. It simply follows the order of the list.

By the Way: Spaces in a Data List
You are not limited in terms of the number of spaces you can put between a comma and
a number in the data list. The data list [1, 5, 15, 9] is legal in a for loop.
However, that is poor form. It is best to put only one space between a comma and the
next data item in a data list.

Assigning Data Types from a List
Python behaves as you would expect it to with data types in for loops. In Listing 7.6, you can see
that Python assigns the data type int (integer) to the variable the_number as it assigns each data
list number to the variable.

LISTING 7.6 Data Types of Numbered Lists

Click here to view code image

>>> for the_number in [1, 5, 15, 9]:
... print (the_number)
... type (the_number)
...
1
<class 'int'>
5
<class 'int'>
15
<class 'int'>
9
<class 'int'>
>>>

Python also changes the data type, as needed, in the assignment (see Listing 7.7). For example,
changing the integer 5 to a floating-point number 5.5 causes the data type to be changed as well.

LISTING 7.7 Changing Data Type

Click here to view code image

>>> for the_number in [1, 5.5, 15, 9]:
... print (the_number)
... type (the_number)
...
1
<class 'int'>
5.5
<class 'float'>
15
<class 'int'>
9

<class 'int'>
>>>

Iterating Using Character Strings in a List
Besides iterating through numbers in a data list, you can also process through character strings in a
for loop data list. In Listing 7.8, five words are used in the data list instead of numbers.

LISTING 7.8 Character Strings in a Data List

Click here to view code image

>>> for the_word in ['Alpha','Bravo','Charlie','Delta','Echo']:
... print (the_word)
...
Alpha
Bravo
Charlie
Delta
Echo
>>>

The loop iterates through each word in the data list, just as it does through a list of numbers. Notice,
however, that you need to have quotation marks around each word.

By the Way: Quotation Mark Choices
You can use double quotation marks around each word in a data list rather than single
quotes, if you prefer. You can even use single quotation marks on some words in the
data list and double quotation marks on the rest of the words! However, such
inconsistency is considered poor form. So pick one quotation mark style for your data
list strings and stick with it.

Iterating Using a Variable
Data lists are not limited to numbers and character strings alone. You can use variables in a for loop
data list as well. In Listing 7.9, the variable top_number is assigned to the number 10.

LISTING 7.9 Variables in a Data List

Click here to view code image

>>> top_number=10
>>> for the_number in [1,2,3,4,top_number]:
... print (the_number)
...
1
2
3
4
10
>>>

As you can see, the for loop construct has no problem handling this slight change. The loop
evaluates the variable top_number as 10, and the iteration processes correctly for that number.

Iterating Using the range Function
Instead of listing all the numbers individually in a data list, you can use the range function to create
a contiguous number list for you. The range function really shines when it’s used in loops.

By the Way: A Function or Not?
The range function is not really a function. It is actually a data type that represents an
immutable sequence of numbers. However, for now, you can just think of it as a
function.

To include the range function in a loop, you replace your numeric data list as shown in Listing 7.10.
The single number between parentheses is called the stop number. In this example, the stop number is
set to 5. Notice that the range of numbers starts at 0 and ends at 4.

LISTING 7.10 Using the range Function in a for Loop

Click here to view code image

>>> for the_number in range (5):
... print (the_number)
...
0
1
2
3
4
>>>

In Listing 7.10, using the range function causes a data list of numbers to be created: [0, 1, 2,
3, 4]. The range function, by default, starts at 0 and then produces a list of numbers all the way
up to the stop number minus 1. Thus, with 5 listed as the stop number, the range function stops
producing numbers at 5 minus 1, or 4.

Did You Know: Integers Only
The range function can only accept integer numbers as arguments. No floating points
or character strings are allowed.

You can alter the behavior of the range function by including a start number. The syntax looks
like this:

range(start, stop)

and is demonstrated in Listing 7.11.

LISTING 7.11 Using a Stop Number in a range Function

Click here to view code image

>>> for the_number in range (1,5):
... print (the_number)
...
1
2
3
4
>>>

Variables can be used in place of the numbers in the range function. Listing 7.12 shows how this
works.

LISTING 7.12 Using Variables in a range Function

Click here to view code image

>>> start_number = 3
>>> stop_number = 6
>>> for the_number in range (start_number, stop_number):
... print (the_number)
...
3
4
5
>>>

By the Way: Range of Expressions
You can use a mathematical expression as your start or stop number. This is a slick
trick to help add clarity to your Python statements. For example, if you want the
numbers 1 to 5 to be used in the loop, you can use range (1, 5+1) as your
range statement. At a glance, you will see the number where the range function
stops.

To change the increment of the number list produced by the range function, you include a step number
in your range arguments. By default, the range function increments the numbers in the list by 1. By
adding a step number, using the format range (start, stop, step), you can modify this
increment. In Listing 7.13, the increment is changed from the default of 1 to 2.

LISTING 7.13 Using a Step Number in a range Function

Click here to view code image

>>> for the_number in range (2,9,2):
... print (the_number)
...
2
4
6

8
>>>

You can use the range function to produce a list of numbers that goes “backward.” You accomplish
this by making your step number negative. Of course, you have to carefully think through your start
and stop numbers, too. Listing 7.14 produces the same results as Listing 7.13, only backward. Notice
the difference in the range arguments in Listing 7.14 and Listing 7.13.

LISTING 7.14 Stepping “Backward” with a range Function

Click here to view code image

>>> for the_number in range (8,1,-2):
... print (the_number)
...
8
6
4
2
>>>

Now that you have a taste of the for loop, it’s time to try out a practical for loop example for
yourself.

Try It Yourself: Validate User Input with a for loop
An important part of obtaining input from a script user is validating the input. This is
called input verification. In the script you write in the following steps, you are going
to allow the script user three attempts to get the input right. Also, you are going to get a
chance to try something new, a break. Unfortunately, you don’t get to pour a cup of
tea with this kind of a break. Follow these steps:

1. If you have not already done so, power up your Raspberry Pi and log in to the
system.

2. If you do not have the LXDE GUI started automatically at boot, start it now by typing
startx and pressing Enter.

3. Open the LXTerminal by double-clicking the LXTerminal icon.
4. At the command-line prompt, type nano py3prog/script0701.py and press

Enter. The command puts you into the nano text editor and creates the file
py3prog/script0701.py.

5. Type the following code into the nano editor window, pressing Enter at the end of
each line:

By the Way: Be Careful!
Be sure to take your time here and avoid making typographical errors. You can
make corrections by using the Delete key and the up- and down-arrow keys.

Click here to view code image

script0701.py - The Secret Word Validation.
Written by <your name here>
Date: <today's date>
#
############ Define Variables ###########
#
max_attempts = 3 #Number of allowed input attempts.
the_word = 'secret' #The secret word.
#
############# Get Secret Word ################
#
for attempt_number in range (1, max_attempts + 1):
 secret_word = input("What is the secret word?")
 if secret_word == the_word:
 print ()
 print ("Congratulations! You know the secret word!")
 print ()
 break # Stops the scripts execution.
 else:
 print ()
 print ("That is not the secret word.")
 print ("You have", max_attempts - attempt_number, "attempts left.")
 print ()

Watch Out!: Proper Indentation
Remember that when you use a text editor, you need to make sure you do the
indentation properly. If you do not indent the for and the if code blocks
properly, Python will give you an error message. Look back to the section
“Watching for a Few ‘Gotchas,’” earlier this hour, for help on this, if needed.

6. Write out the modified script you just typed in the text editor by pressing Ctrl+O.
Press Enter to write out the contents to the script0701.py script.

7. Exit the nano text editor by pressing Ctrl+X.
8. Type python3 py3prog/script0701.py and press Enter to run the script.

The first time you run the script, answer the question correctly by entering secret.
You should see output similar to that shown in Figure 7.2.

FIGURE 7.2 The script0701.py output with the correct answer.

The script stops after you enter the correct answer because of the break statement.
The break statement causes the loop to terminate. In other words, it lets you “break
out” of the loop.

9. Type python3 py3prog/script0701.py again and press Enter to run the
script. This time, answer the question incorrectly, answering anything except
secret. You should see output similar to that shown in Figure 7.3.

FIGURE 7.3 The script0701.py output with incorrect answers.

Input verification is an important tool. The little script you just created is a small example of what
you can do with a for loop to verify user input. A while loop, as you’ll see next, is another type of
loop to use for input verification in Python scripts.

Using the while Loop for Iteration
In Python, the while loop construct is called a “condition-controlled” loop because the loop’s set of
tasks are performed until a desired condition is met. Once the condition is met, the iterations stop. For
example, you might want a loop’s set tasks to be performed until a certain condition is no longer true.
In such a case, you would use a while loop in Python.
The syntax structure of the while loop in Python is as follows:
Click here to view code image

while condition_test_statement:
 set_of_Python_statements

Just like the for loop, the while loop uses indentation to denote the Python statements associated
with it (code block). condition_test_statement examines a condition, and if the condition
is found to be true, Python statements within the loop’s code block are executed. For each iteration,
the condition is checked. If the condition is examined and found to be false, the iterations stop.

Iterating Using Numeric Conditions
You can use a number or mathematical equation in a while loop’s condition test statement. Listing
7.15, for example, shows a mathematical condition used in a while loop.

LISTING 7.15 A while Loop

Click here to view code image

1: >>> the_number = 1
2: >>> while the_number <= 5:
3: ... print (the_number)
4: ... the_number = the_number + 1
5: ...
6: 1
7: 2
8: 3
9: 4
10: 5
11: >>>

In Listing 7.15, the test statement in line 2 checks the variable the_number. As long as that
variable remains less than or equal to 5, the subsequent Python statements will be executed. The last
Python statement in the while loop on line 4 increases the variable’s value by 1. Thus, when
the_number is equal to 6, the while loop’s test statement returns false. At that time, the iterations
through the loop stop.

By the Way: Pretest
while loops are pretested, which means the test statement is run before the statements
in the code block are executed. This is why the variable the_number has to have a
value assigned to it before the while loop’s test condition is executed. These types of
loops are called pretested, or entry control loops.

Iterating Using String Conditions
Character strings can be part of the while loop’s condition test statement. In Listing 7.16, the
while test statement examines the variable the_name and sees if it is not equal to (!=) an empty
string. The while loop continues to ask for names and build that list, as long as the script user does
not just press the Enter key for a name.

LISTING 7.16 Test Condition Using Character Strings

Click here to view code image

1:>>> list_of_names = ""
2:>>> the_name = "Start"
3:>>> while the_name != "":
4:... the_name = input("Enter name: ")
5:... list_of_names = list_of_names + the_name
6:...
7:Enter name: Raz
8:Enter name:
9:>>>

Did You Know: Signaling the End
When the Enter key is pressed in Listing 7.16 and the variable the_name is assigned

an empty string or null value, it causes the while loop to terminate. A data value used
in this way is called a sentinel value. A sentinel value is any predetermined value that
is used to indicate the end of the data. Thus, sentinel values can be used for terminating
while loops.

A nice tweak on the while loop in Listing 7.16 is to replace the very long code in line 5 with a more
efficient statement that uses an operator shortcut. You learned about operator shortcuts, also called
augmented assignment operators, in Hour 5, “Using Arithmetic in Your Programs.” With an operator
shortcut, line 5 would now look like this:

list_of_names += the_name

Another nice tweak you can make is to include an optional else clause in the while loop. If you
included these two changes, Listing 7.16 would become Listing 7.17.

LISTING 7.17 An else Clause in a while Loop

Click here to view code image

1: >>> list_of_names = ""
2: >>> the_name = "Start"
3: >>> while the_name != "":
4: ... the_name = input("Enter name: ")
5: ... list_of_names += the_name
6: ... else:
7: ... print (list_of_names)
8: ...
9: Enter name: Raz
10: Enter name: Berry
11: Enter name: Pi
12: Enter name:
13: RazBerryPi
14: >>>

In Listing 7.17, the list_of_names variable is printed after the while loop terminates.
However, you should know that an else clause is executed whenever the while loop’s test
statement returns false, which could be the very first time it is tested! Listing 7.18 shows a few
changes made to the Python statements to demonstrate this potential problem.

LISTING 7.18 And else Clause Problem Due to a Pretest

Click here to view code image

1: >>> list_of_names = ""
2: >>> the_name = "Start"
3: >>> while the_name != "Start":
4: ... the_name = input("Enter name: ")
5: ... list_of_names += the_name
6: ... else:
7: ... print (list_of_names)
8: ...

9:
10: >>>

The test statement in the while loop returns false before the loop’s statements even iterates one
time. However, the else section still executes, and thus a blank line prints on line 9! You can see
that the else clause operates very differently in a while loop than it does in an if-then-else
statement.

Using while True
An infinite loop can be created using a while loop. An infinite loop is a loop that never ends.
Adding a break statement to this type of a while loop makes it usable. Take a look at Listing 7.19.
The while test statement has been modified on line 3 to while True:, and this causes the loop to
be infinite. This means the while loop will iterate indefinitely. Thus, line 5 tests for an added
sentinel value within the loop. If the Enter key is pressed without a name being typed first, the if
statement returns a true value, and break is executed. Thus, the infinite loop stops.

LISTING 7.19 while True and break

Click here to view code image

1: >>> list_of_names = ""
2: >>> the_name = "Start"
3: >>> while True:
4: ... the_name = input("Enter name: ")
5: ... if the_name == "":
6: ... break
7: ... list_of_names += the_name
8: ... else:
9: ... print (list_of_names)
10: ...
11: Enter name: Raz
12: Enter name: Berry
13: Enter name: Pi
14: Enter name:
15:>>>

Another item to notice in Listing 7.19 is that the else clause is not executed. This is because when
you issue a break in a loop, any Python statements in the else clause are skipped. You simply
“jump” right out of the while loop. To get the list of names printed out, you remove the else clause
and move the print statement to an if statement before the break, as shown in Listing 7.20.

LISTING 7.20 An else Clause Fix

Click here to view code image

>>> list_of_names = ""
>>> the_name = "Start"
>>> while True:
... the_name = input("Enter name: ")
... if the_name == "":

... print (list_of_names)

... break

... list_of_names += the_name

...
Enter name: Raz
Enter name: Berry
Enter name: Pi
Enter name:
RazBerryPi
>>>

Try It Yourself: Use a while Loop to Enter Data
A loop is a useful tool for entering data. In the following steps, you will be creating a
script to enter a fictitious club’s member list by using a while loop. The script will
ask up front for the number of member names you will be entering, and then the while
loop will ask for the member’s first, middle, and last names. Follow these steps:

1. If you have not already done so, power up your Raspberry Pi and log in to the
system.

2. If you do not have the LXDE GUI started automatically at boot, start it now by typing
startx and pressing Enter.

3. Open the IDLE window by double-clicking the IDLE 3 icon.
4. Open the IDLE text editor window by pressing Ctrl+N.
5. Type the code shown in Figure 7.4 into the IDLE text editor window, pressing Enter

when you need to get to the next line.

FIGURE 7.4 The script0702.py script.

By the Way: Be Careful!
Be sure to take your time here and avoid making typographical errors. You can
make corrections by using the Delete key and the up- and down-arrow keys.

Notice that no input verification code for entered member names is present. That will
be added in the next section of this hour.

6. Test your new script in IDLE by pressing the F5 key and entering answers to the
questions. Your results should look similar to the results in Figure 7.5.

FIGURE 7.5 The script0702.py script output.

7. If you want to save this script, press Ctrl+S to open the Save As window, double-
click the py3prog folder icon, type script0702.py in the File Name bar, and
then click the Save button.

8. Exit the IDLE environment by pressing Ctrl+Q.
No input verification is done on the while loop that you entered in this section. In the
next part of this hour, you will see how to clean up script0702.py by using a
nested loop.

Creating Nested Loops
A nested loop is a loop statement that is inside a loop statement. For example, a for loop used
within the code block of a while loop would be a nested loop. Listing 7.21 shows a script that uses
nested loops. It has a for loop that contains three while loops in the for loop’s code block.
script0703.py is a slight improvement over the script you wrote in the last Try it Yourself
section of this hour.

LISTING 7.21 A Nested Loop in script0703.py

Click here to view code image

1: pi@raspberrypi ~ $ cat py3prog/script0703.py
2: # script0703.py - Demonstration of a nested loop.
3: # Author: Blum and Bresnahan
4: # Date: May 01
5: ###
6: #

7: # Find out how many club member names need to be entered
8: names_to_enter = int(input("How many Python club member names to enter? "))
9: #
10: for member_number in range (1, names_to_enter + 1): #Loop to enter names
11: print ()
12: print ("Member #" + str(member_number))
13: #
14: first_name = "" # Initialize first_name
15: middle_name = "" # Initialize middle_name
16: last_name = "" # Initialize last_name
17: #
18: while first_name == "": #Loop to keep out blanks
19: first_name = input("First Name: ") #Get first name
20: while middle_name == "": #Loop to keep out blanks
21: middle_name = input("Middle Name: ") #Get middle name
22: while last_name == "": #Loop to keep out blanks
23: last_name = input("Last Name: ") #Get last name
24: #
25: print () # Display a member's full name
26: print ("Member #", member_number, "is", first_name, middle_name, last_
name)
27:
28:
29: pi@raspberrypi ~ $

The first improvement is that the main while loop has been replaced by a for loop, starting on line
10. Using a for loop eliminates the need to keep track of the number of names that have been entered
along the way.
Nested within the for loop are three while loops on lines 18, 20, and 22 in Listing 7.21. These
while loops improve the input verification. They ensure that a script user cannot accidentally leave
a name blank.
In Listing 7.22, you can see the new script run and an example of the input verification improvement.
When the script user accidently presses the Enter key instead of entering Raz’s middle name on lines
6 and 7, the script loops back to the input statement and asks again.

LISTING 7.22 Output of script0703.py

Click here to view code image

1: pi@raspberrypi ~ $ python3 py3prog/script0703.py
2: How many Python club member names to enter? 1
3:
4: Member #1
5: First Name: Raz
6: Middle Name:
7: Middle Name:
8: Middle Name: Berry
9: Last Name: Pi
10:
11: Member # 1 is Raz Berry Pi
12: pi@raspberrypi ~ $

Listings 7.21 and 7.22 show a very simple example of a nested loop. Nested loops are often used in
Python scripts for processing data tables, running image algorithms, manipulating games, and so on.

Summary
In this hour, you got a little loopy. You learned how to create a for loop and a while loop. Also,
you were introduced to concepts such as pretesting, sentinels, and input verification. Finally, you got
to try out both a for loop and a while loop and look at a nested loop. In Hour 8, “Using Lists and
Tuples,” you will be moving on from structured commands and investigating lists and tuples.

Q&A
Q. Does Python v3 have the xrange function?
A. Yes and no. In Python v2, the xrange function was available, along with the range

function. In Python v3, the range function is the old xrange function, and the Python v2
range function is gone. The creators of Python made this change because xrange is more
efficient in terms of memory usage than range. Unfortunately, to convert a Python v2
xrange to Python v3, you need to remove the x in front of the word range.

Q. Is it poor form to use a break statement in a loop?
A. This depends on who you ask. If you can avoid using a break, that is best. However, there

are times when you cannot determine another method, so you have to use break. Most hard-
core programmers consider using break to be poor form.

Q. I am running my Python script, and it is stuck in an infinite loop! What do I do?
A. You can stop the execution of a Python script by pressing Ctrl+C. If this doesn’t work, try

Ctrl+Z.

Workshop
Quiz

1. A for loop is a count-controlled loop, and a while loop is a condition-controlled loop.
True or false?

2. What type of loop is pretested?
3. If you want to produce a list of numbers for a for loop, starting at 1 and going to 10, with a

step of 1, which range statement should you use?
a. range (10)
b. range (1, 10, 1)
c. range (1, 11)

Answers
1. True. A for loop iterates a set number of times, and thus each iteration is counted. A while

loop iterates until a certain condition is met and then it stops.
2. A while loop is a pretested loop, because the condition test statement is run before the

statements in the loop’s code block are executed.
3. Answer c is correct. The range (1, 11) produces the following list of numbers for the for

loop to use: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Remember that the last number, the
stop number, in the range function is not included in the output list.

Part III: Advanced Python
HOUR 8 Using Lists and Tuples

HOUR 9 Dictionaries and Sets

HOUR 10 Working with Strings

HOUR 11 Using Files

HOUR 12 Creating Functions

HOUR 13 Working with Modules

HOUR 14 Exploring the World of Object-Oriented Programming

HOUR 15 Employing Inheritance

HOUR 16 Regular Expressions

HOUR 17 Exception Handling

Hour 8. Using Lists and Tuples

What You’ll Learn in This Hour:
 Working with tuples and lists
 Using multidimensional lists
 Building lists with comprehensions

When you work with variables, sometimes it comes in handy to group data values together so that you
can iterate through them later in your script. You can’t easily do that with separate variables, but
Python provide a solution for you.
Most programming languages use array variables to hold multiple data values but point to them using
a single indexed variable name. Python is a little different in that it doesn’t use array variables.
Instead, it uses a couple other variable types, called lists and tuples. This hour examines how to use
lists and tuples to store and manipulate data in Python scripts.

Introducing Tuples
The tuple data type in Python allows you to store multiple data values that don’t change. In
programming-speak, these data values are said to be immutable.
After you create a tuple, you can either work with the tuple as a single object or reference each
individual data value inside the tuple in your Python script code.
The following sections walk through how to create and use tuples in your scripts.

Creating Tuples
There are four different ways to create a tuple value in Python:

 Create an empty tuple value by using parentheses, as in this example:
>>> tuple1 = ()
>>> print(tuple1)
()
>>>

 Add a comma after a value in an assignment, as in this example:
>>> tuple2 = 1,
>>> print(tuple2)
(1,)
>>>

 Separate multiple data values with commas in an assignment, as in this example:
>>> tuple3 = 1, 2, 3, 4
>>> print(tuple3)
(1, 2, 3, 4)
>>>

 Use the tuple() built-in function in Python and specify an iterable value (such as a list value,
which we’ll talk about later), as in this example:
>>> list1 = [1, 2, 3, 4]
>>> print(list1)

[1, 2, 3, 4]
>>> tuple4 = tuple(list1)
>>> print(tuple4)
(1, 2, 3, 4)
>>>

As you may have noticed in these examples, Python denotes the tuple by grouping the data values
using parentheses.
You’re not limited to storing numeric values in tuples. You can also store string values:
Click here to view code image

>>> tuple5 = "Sunday", "Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday"
>>> print(tuple5)
('Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday',
'Saturday')
>>>

You can use either single or double quotes to delineate the string values (see Hour 10, “Working with
Strings”).

Watch Out!: Tuples Are Permanent
Once you create a tuple, you can’t change the data values, nor can you add or delete
data values.

Accessing Data in Tuples
After you create a tuple, most likely you’ll want to be able to access the data values you stored in it.
To do that, you need to use an index.
An index points to an individual data value location within a tuple variable. You use the index value
to retrieve a specific data value stored in the tuple from other Python statements in your scripts.
The index value 0 references the first data value you stored in the tuple. Starting at 0 can be
confusing, so be careful when trying to reference the data values! Here’s an example:

>>> tuple6 = (1, 2, 3, 4)
>>> print(tuple6[0])
1
>>>

To reference a specific index in the tuple variable, you just place square brackets around the index
value and add it to the end of the tuple variable name.
If you try to reference an index value that doesn’t exist, Python produces an error, like this:
Click here to view code image

>>> print(tuple6[5])
Traceback (most recent call last):
 File "<pyshell#33>", line 1, in <module>
 print(tuple6[5])
IndexError: tuple index out of range
>>>

Accessing a Range of Values

Besides just retrieving a single data value from a tuple, Python also allows you to retrieve a subset of
the data values. If you need to retrieve a sequential subset of data values from the tuple (called a
slice), you just use the index format [i:j], where i is the starting index value, and j is the ending
index value. Here’s an example of doing that:

>>> tuple7 = tuple6[1:3]
>>> print(tuple7)
(2, 3)
>>>

Watch Out!: Starting and Ending Tuple Slices
Notice that the first value in the new tuple is the starting index value defined for the
slice, but the ending value is the index value just before the ending index value defined
for the slice. This can be somewhat confusing. To help remember this format, when
determining a tuple slice, just use the equation i <= x < j, where x is the index
values you want to retrieve.

Finally, there’s one more format you can use for extracting data elements from a tuple, [i:j:k],
where i is the starting index value, j is the ending index value, and k is a step amount to use to
increment the index values in between the start and ending values. Here’s an example of how this
works:
Click here to view code image

>>> tuple8 = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
>>> tuple9 = tuple8[0:6:2]
>>> print(tuple9)
(1, 3, 5)
>>>

The tuple9 value consists of the data values contained in the tuple8 variable starting at index 0,
until index 6, skipping every 2 index values. Thus, the resulting tuple consists of index values 0, 2,
and 4, which creates the tuple (1, 3, 5).

Working with Tuples
Since tuple values are immutable, there aren’t any Python functions available to manipulate the data
values contained in a tuple. However, there are some functions available to help you gain information
about the data contained in a tuple.
Checking Whether a Tuple Contains a Value

There are two comparison operations you can use with tuple variables to check whether a tuple
contains a specific data value.
The in comparison operator returns a Boolean True value if the specified value is contained in the
tuple data elements:
Click here to view code image

>>> if 7 in tuple8: print("It's there!")

It's there!
>>> if 12 in tuple8:
 print("It's there!")

else:
 print("It's not there!")

It's not there!
>>>

You can also add the not logical operator with the in comparison operator to reverse the result:
Click here to view code image

>>> if 7 not in tuple8:
 print("It's not there!")
else:
 print("It's there!")

It's there!
>>>

Sometimes adding the not logical operator to the comparison comes in handy, such as if you want to
reverse the order of the “then” and “else” code blocks to place the shorter block first before the
longer code block.
Finding the Number of Values in a Tuple

Python includes the len() function to allow you to easily determine how many data values are in a
tuple. Here’s an example of its use:

>>> len(tuple8)
10
>>>

Watch Out!: Referencing the Last Value in a Tuple
Be careful when you use the len() function with tuples. A common beginner’s
mistake is to think the value returned by len() is the index of the last data value in
the tuple. Remember that the tuple index starts at 0, so the ending tuple index value is
one less than the value the len() function returns!

Finding the Minimum and Maximum Values in a Tuple

Python provides the min() and max() functions to give an easy way to find the smallest (min())
and largest (max()) values in a tuple, as in this example:

>>> min(tuple8)
1
>>> max(tuple8)
10
>>>

The min() and max() functions can also work with tuples that store string values. Python
determines the minimum and maximum values by using standard ASCII comparisons:

>>> min(tuple4)
'Friday'
>>> max(tuple4)
'Wednesday'
>>>

This is a quick way to find the range of values stored in a tuple!
Concatenating Tuples

While you can’t change the data elements contained within a tuple value, you can concatenate two or
more tuple values to create a new tuple value:
Click here to view code image

>>> tuple10 = 1, 2, 3, 4
>>> tuple11 = 5, 6, 7, 8
>>> tuple12 = tuple10 + tuple11
>>> print(tuple12)
(1, 2, 3, 4, 5, 6, 7, 8)
>>>

This can be somewhat misleading if you’re not familiar with tuples. The plus sign isn’t used as the
addition operator; with tuples, it’s used as the concatenation operator. Notice that concatenating the
two tuple values creates a new tuple value that contains all the data elements from the original two
tuple values.

Introducing Lists
Lists are similar to tuples, storing multiple data values referenced by a single list variable. However,
lists are mutable, and you can change the data values as well as add or delete data values stored in
the list. This adds a lot of versatility for your Python scripts!
The following sections show how to create lists, as well as how to extract the data you store in a list
and work with the data.

Creating a List
Very much like with tuples, there are four different ways to create a list variable:

 Create an empty list by using an empty pair of square brackets, as in this example:
>>> list1 = []
>>> print(list1)
[]
>>>

 Place square brackets around a comma-separated list of values, as in this example:
>>> list2 = [1, 2, 3, 4]
>>> print(list2)
[1, 2, 3, 4]
>>>

 Use the list() function to create a list from another iterable object, as in this example:
>>> tuple11 = 1, 2, 3, 4
>>> list3 = list(tuple11)
>>> print(list3)
[1, 2, 3, 4]
>>>

 Use a list comprehension.
The list comprehension method of creating lists is a more complicated process of generating a list
from other data. We’ll discuss how it works toward the end of this hour. Notice that with lists, Python
uses square brackets around the data values, not parentheses as with tuples.
Just as with tuples, lists can contain any type of data, not just numbers, as in this example:

Click here to view code image

>>> list4 = ['Rich', 'Barbara', 'Katie Jane', 'Jessica']
>>> print(list4)
['Rich', 'Barbara', 'Katie Jane', 'Jessica']
>>>

Extracting Data from a List
The examples in the previous section show how to extract all the data values from a list at the same
time, by just referencing the list variable. You can retrieve individual data elements from list values
by using index values, just as with tuple values. Here’s an example:

>>> print(list2[0])
1
>>> print(list2[3])
4
>>>

You can also use a negative number for the list index. A negative index retrieves values starting from
the end of the list:

>>> print(list2[-1])
4
>>>

Notice that when you use negative index values, the -1 value starts at the end of the list, since -0 is
the same as 0.
Lists also support the slicing method of retrieving a subset of the data elements contained in the list
value, as in the following example:

>>> list4 = list2[0:3]
>>> print(list4)
[1, 2, 3]
>>>

Working with Lists
As mentioned earlier, the main difference between lists and tuples is that you can change the data
elements contained in a list value. This means there are lots of things you can do with lists that you
can’t do with tuples! This section walks through the different operations you can perform with list
values.
Replacing List Values

The most basic operation you can perform with a list value is to replace an individual data value
contained in the list. Doing this is as easy as using an assignment statement in your scripts, referencing
the individual list data value by its index, and assigning it a new value. For example, this example
replaces the second data value (referenced by index value 1) with the value 10:

>>> list1 = [1, 2, 3, 4]
>>> list1[1] = 10
>>> print(list1)
[1, 10, 3, 4]
>>>

When you print the list value, it now contains the value 10 as the second data value.

In a much trickier operation, it’s possible to replace a subset of data values with another list or tuple
value. You reference the subset by using the list slicing method, as shown here:

>>> list1 = [1, 2, 3, 4]
>>> tuple1 = 10, 11
>>> list1[1:3] = tuple1
>>> print(list1)
[1, 10, 11, 4]
>>>

Python replaces the data elements from index 1 up to index 3 with the data elements stored in the
tuple1 value.
Deleting List Values

You can remove data elements from within a list value by using the del statement, as shown here:
>>> print(list1)
[1, 10, 11, 4]
>>> del list1[1]
>>> print(list1)
[1, 11, 4]
>>>

You can also use slicing to remove a subset of data elements from the list, as in this example:
Click here to view code image

>>> list5 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> del list5[3:6]
>>> print(list5)
[1, 2, 3, 7, 8, 9, 10]
>>>

The slicing method allows you to customize exactly which data elements to remove from the list.
Popping List Values

Python provides a special function that can both retrieve a specific data element and remove it from
the list value. The pop() function allows you to extract a value from anywhere in a list. For
example, this example pops the fifth index value from the list6 list:
Click here to view code image

>>> list6 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> list6.pop(5)
6
>>> print(list6)
[1, 2, 3, 4, 5, 7, 8, 9, 10]
>>>

When you pop a value from a list, the index values shift over to replace the popped index value.
If you don’t specify an index value in the pop() function, it returns the last data value in the list, like
this:

>>> list6.pop()
10
>>> print(list6)
[1, 2, 3, 4, 5, 7, 8, 9]
>>>

Adding New Data Values

You can add new data values to an existing list by using the append() function, as shown here:
>>> list7 = [1.1, 2.2, 3.3]
>>> list7.append(4.4)
>>> print(list7)
[1.1, 2.2, 3.3, 4.4]
>>>

The append() function adds the new data value to the end of the existing list.
You can insert a new data value into a list at a specific index location by using the insert()
function. The insert() function takes two parameters. The first parameter is the index value
before which to place the new data value, and the second parameter is the value to insert. Thus, to
insert a new data value at the front of the list, you use this:

>>> list7.insert(0, 0.0)
>>> print(list7)
[0.0, 1.1, 2.2, 3.3, 4.4]
>>>

To insert a data value in the middle of the list, you use this:
Click here to view code image

>>> list7.insert(3, 2.5)
>>> print(list7)
[0.0, 1.1, 2.2, 2.5, 3.3, 4.4]
>>>

The insert() statement inserts the value 2.5 before index 3 in the list, making it now the new
index 3 value and pushing the other index locations down one position in the list.
You can use a combination of the append() and pop() functions to create a storage area
commonly called a stack in your Python scripts. You push data values onto the stack and then retrieve
them in the opposite order from which you pushed them (called last-in, first-out [LIFO]). To do this,
you just use the append() function to add new data values to an empty list and then retrieve them by
using the pop() function, without specifying the index. Listing 8.1 shows an example of doing this in
a script.

LISTING 8.1 Using append() and pop() to work with a list

Click here to view code image

#!/usr/bin/python3

list1 = []

push some data values into the list
list1.append(10.0)
list1.append(20.0)
list1.append(30.0)
print("The starting list is", list1)

pop some values and see what happens
result1 = list1.pop()
print("The first item removed is", result1)

result2 = list1.pop()
print("The second item removed is", result2)

add one more data value and see where it goes
list1.append(40.0)
print("The final version is", list1)

The script0801.py script creates an empty list by using the list1 variable, and then it appends
a few values into it. Then it retrieves a couple values by using the pop() function. When you run the
script0801.py program, you should get this output:
Click here to view code image

pi@raspberrypi ~/scripts $ python3 script0801.py
The starting list is [10.0, 20.0, 30.0]
The first item removed is 30.0
The second item removed is 20.0
The final version is [10.0, 40.0]
pi@raspberrypi ~/scripts $

Using stacks is a common way to store values while performing calculations in long equations, as you
can push values and operations into the stack and then pop them out in reverse order to process them.
Concatenating Lists

You have to be a little careful about using the append() function with lists. If you try to append a
list onto a list, you may not get what you were looking for, as shown here:

>>> list8 = [1, 2, 3]
>>> list9 = [4, 5, 6]
>>> list8.append(list9)
>>> print(list8)
[1, 2, 3, [4, 5, 6]]
>>>

When you use a list object with the append() function, Python appends the list as a single data
value! Thus, the list8[3] value is now itself a list value in this example:

>>> print(list8[3])
[4, 5, 6]
>>>

If you wanted to concatenate the list8 and list9 lists, you need to use the extend() function,
like this:

>>> list8 = [1, 2, 3]
>>> list9 = [4, 5, 6]
>>> list8.extend(list9)
>>> print(list8)
[1, 2, 3, 4, 5, 6]
>>>

Now the result is a list that contains the individual data values from the two lists. This also works
using the addition sign, as with tuples:

>>> list8 = [1, 2, 3]
>>> list9 = [4, 5, 6]
>>> result = list8 + list9
>>> print(result)

[1, 2, 3, 4, 5, 6]
>>>

Again, the result is a single list of data values.
Other List Functions

In addition to the list functions already discussed, Python includes a few other handy list functions by
default. For example, you can count how many times a specific data value appears within a list by
using the count() function, as shown here:
Click here to view code image

>>> list10 = [1, 5, 8, 1, 34, 75, 1, 23, 34, 100]
>>> list10.count(1)
3
>>> list10.count(34)
2
>>>

The 1 value occurs three times in the list, and the 34 value occurs twice in the list.
You can use the sort() function to sort the data values in a list, as in this example:
Click here to view code image

>>> list11 = ['oranges', 'apples', 'pears', 'bananas']
>>> list11.sort()
>>> print(list11)
['apples', 'bananas', 'oranges', 'pears']
>>>

Watch Out!: Sorting in Place
Notice that the sort() function replaces the original order of the data values with the
sorted order in the list itself. This will change the index location of the individual data
values, so be careful when referencing data values in the new list!

You can find the location of a data value within a list by using the index() function. The index()
function returns the index location value of the first occurrence of the data value within the list:

>>> list11.index('bananas')
1
>>>

You can easily reverse the order of the data values stored in a list by using the reverse() function,
like this:

>>> list12 = [1, 2, 3, 4, 5]
>>> list12.reverse()
>>> print(list12)
[5, 4, 3, 2, 1]
>>>

All the data values are still in the list, just in the opposite order from where they started.

Using Multidimensional Lists to Store Data
Python supports the use of multidimensional lists—that is, lists that contain data values that

themselves can be lists!
In a multidimensional list, more than one index value is associated with each specific data element
contained in the multidimensional list. It can get somewhat complicated trying to keep track of your
data in multidimensional lists, but these lists do come in handy!
You create a multidimensional list the same way you create normal lists, just with defining lists as the
data values. Here’s an example:
Click here to view code image

>>> list13 = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
>>> print(list13)
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
>>>

To reference an individual data value within a multidimensional list, you must specify the index value
for the main list, as well as the index value for the data value list. You place square brackets around
each index value and place them in order from the outermost list to the innermost list. Here are some
examples:

>>> print(list13[0][0])
1
>>> print(list13[0][2])
3
>>> print(list13[2][1])
8
>>>

The first example retrieves the first data value contained in the first list. The last example retrieves
the second data value contained in the third list. This demonstrates a two-dimensional list. You can
continue this further by using list data values for the list data values within the list, creating a three-
dimensional list! You can continue on even further, but anything more than three dimensions starts
getting extremely complicated.

Working with Lists and Tuples in Your Scripts
Lists and tuples are powerful tools to have at your disposal in your Python scripts. Once you load
your data into a list or tuple, there are lots of Python functions you can use to extract information on
the data. That can make having to perform mathematical calculations a lot easier!
The following sections show some of the most common data functions you can use with your lists and
tuples.

Iterating Through a List or Tuple
One of the most popular uses of lists and tuples is iterating through individual items using a loop.
When you do this, you can grab each data value contained in the list or tuple individually and process
the data.
To iterate through the data values, you need to use the for statement (discussed in Hour 7, “Learning
About Loops”), like this:
Click here to view code image

>>> list14 = [1, 15, 46, 79, 123, 427]
>>> for x in list14:

 print("One value in the list is", x)

One value in the list is 1
One value in the list is 15
One value in the list is 46
One value in the list is 79
One value in the list is 123
One value in the list is 427
>>>

The x variable contains an individual data value from the list for each iteration of the for statement.
The print statement displays the current value of x in each iteration.

Sorting and Reversing Revisited
In the “Working with Lists” section earlier this hour, you saw how to sort and reverse the data values
inside a list. There are also functions that allow you to sort or reverse the data values but return the
result as a separate list, keeping the original list intact.
The sorted() function returns a sorted version of the list data values:
Click here to view code image

>>> list15 = ['oranges', 'apples', 'pears', 'bananas']
>>> result1 = sorted(list15)
>>> print(list15)
['oranges', 'apples', 'pears', 'bananas']
>>> print(result1)
['apples', 'bananas', 'oranges', 'pears']
>>>

The original list15 variable remains the same, and the result1 variable contains the sorted
version of the list.
The reversed() function returns a reversed version of list data values, but it is a little tricky.
Instead of returning a list, it returns an iterable object, which can be used in a for statement but
cannot be directly accessed. Here’s an example:
Click here to view code image

>>> list15 = ['oranges', 'apples', 'pears', 'bananas']
>>> result2 = reversed(list15)
>>> print(result2)
<list_reverseiterator object at 0x01559F70>
>>> for fruit in result2:
 print("My favorite fruit is", fruit)

My favorite fruit is bananas
My favorite fruit is pears
My favorite fruit is apples
My favorite fruit is oranges
>>>

If you try to print the result2 variable, you get a message that it’s a reverseiterator object
and not printable. You can, however, use the result2 variable in the for statement to iterate
through the reversed values.

Creating Lists by Using List Comprehensions

Creating Lists by Using List Comprehensions
As mentioned earlier this hour, in the “Creating a List” section, there’s a fourth way of creating lists:
using a list comprehension. Using a list comprehension is a shortcut way to create a list by
processing the data values contained in another list or tuple.
This is the basic format of a list comprehension statement:
Click here to view code image

[expression for variable in list]

The variable represents each data value contained in the list, as a normal for statement. A list
comprehension applies the expression on each variable to create the new data values in the new list.
Here’s an example of how it works:
Click here to view code image

>>> list17 = [1, 2, 3, 4]
>>> list18 = [x*2 for x in list17]
>>> print(list18)
[2, 4, 6, 8]
>>>

In this case, the list comprehension defines the expression as x*2, which multiplies each data value
in the original list by 2.
You can make the expression as complex as you like. Python just applies the expression—whatever it
is—to the new data values in the new list. You can also use list comprehensions with string functions
and values, as shown here:
Click here to view code image

>>> tuple19 = 'apples', 'bananas', 'oranges', 'pears'
>>> list19 = [fruit.upper() for fruit in tuple19]
>>> print(list19)
['APPLES', 'BANANAS', 'ORANGES', 'PEARS']
>>>

In this example, you apply the upper() function (see Hour 10) to the string values contained in the
list.

Working with Ranges
To close out this topic, there is one other Python data type you’ll run into that can create multiple data
elements. The range data type contains an immutable sequence of numbers that work a lot like a
tuple but are a lot easier to create.
You create a new range value by using the range() method, which has the following format:

range(start, stop, step)

The start value determines the number where the range starts, and the stop value determines
where the range stops (always one less than the stop value specified). The step value determines
the increment value between values. The stop and step values are optional; if you leave them out,
Python assumes a value of 0 for start and 1 for step.
The range data type is a bit odd to work with: You can’t reference it directly, such as to print it out.
You can only reference the individual data values contained in the range, like this:

>>> range1 = range(5)
>>> print(range1)
range(0, 5)
>>> print(range1[2])
2
>>> for x in range1:
 print(x)

0
1
2
3
4
>>>

When you try to print the range1 variable, Python just returns the range object, showing the
start and stop values. However, you can print the range1[2] value, which references the third
data value in the range.
The range data type comes in most handy in the for statement, as shown in the preceding example.
You can easily iterate through a range of values in the for loop by just specifying the range.

Watch Out!: The range() Change
In Python v2, the range() function created a sequence of numbers as a standard list
data type. Python v3 changed that to make the range data type separate from the
list data type. Be careful if you run into any v2 code that assumes that range is
list!

Summary
In this hour, you took a look at the tuple and list data types in Python. Tuples allow you to reference
multiple data values using a single variable. Tuple values are immutable, so once you create a tuple,
you can’t change it in your program code. Lists also contain multiple data values, but you can change,
add, and delete values in lists. Python supports lots of functions to help you manipulate data using
lists. They come in handy when you need to iterate through a data set of values in your scripts. List
comprehensions allow you to create new lists based on values in another list, a tuple, or a range of
values. You can define complex equations to manipulate the data as Python transfers it using a list
comprehension, making it a very versatile tool in Python.
In the next hour, we’ll turn our attention to yet another type of data storage in Python, using
dictionaries and sets.

Q&A
Q. Can you use lists to perform matrix arithmetic?
A. Not easily. Python doesn’t have any built-in functions that can perform mathematical

operations on list data values directly. You’d have to write your own code to iterate through
the individual list values and perform the calculations.
Fortunately, there’s the NumPy module (see Hour 5, “Using Arithmetic in Your Programs”),

which provides a separate matrix object and functions to perform matrix math using those
objects.

Q. Most programming languages support associative arrays, matching a key to a value in an
array. Do lists or tuples support this feature?

A. No. Python uses a separate data type to support associative array features (see Hour 9,
“Dictionaries and Sets”). Tuples and lists can only use numeric index values.

Workshop
Quiz

1. What does Python use to denote a list value?
a. Parentheses
b. Square brackets
c. Braces

2. You can change a data value in a tuple, but not in a list. True or False.
3. What list comprehension statement should you use to quickly create a list of multiples of 3 up

to 30?

Answers
1. b. You’ll need to get in the habit of remembering that Python uses parentheses for tuples, and

square brackets for lists.
2. False. Python allows you to change the data values in a list, but tuple values remain constant,

you can’t change them!
3. [x * 3 for x in range(11)]. The comprehension uses the variable x to represent

the numbers in the range. Each iteration multiplies the number by 3 before saving it in the range.

Hour 9. Dictionaries and Sets

What You’ll Learn in This Hour:
 What a dictionary is
 How to populate a dictionary
 How to obtain information from a dictionary
 What a set is
 How to program with sets

In this hour, you will read about two additional Python collection types: dictionaries and sets. You
will learn what they are, how to create them, how to fill them with data, how to manage them, and
how to use them in Python scripts.

Understanding Python Dictionary Terms
A dictionary is a simple structure, also called an associative array, that contains data. Each piece of
data contained in a dictionary is called an element, an entry, or a record. Each element is broken up
into two parts. One part is called the value. To locate a particular value in a dictionary, you use the
other part of the dictionary element, the key. A key is immutable, and it is assigned only to one
particular value in the dictionary. Thus, another name for a dictionary element is a key/value pair.

By the Way: When Is a Dictionary Not a Dictionary?
Don’t let the term dictionary fool you. A dictionary in Python is not the same as a
reference book containing word definitions found in the library. For one thing, a word
in a dictionary reference may have multiple definitions. A key in a Python dictionary
has only one value.

An example of a Python dictionary is a college, which has a list of student names and their associated
student ID numbers. The college decides to build an array, where the student ID number would be the
key and the student name would be the value. Each student ID would be assigned to only one student
name. Thus, the key/value pair for this college dictionary would be the student ID number/student
name.

Exploring Dictionary Basics
Before you can start programming with dictionaries, you need to learn a few basics, such as how to
access the data in a dictionary. Learning these basics will help when you read through the
“Programming with Dictionaries” section of this hour.

Creating a Dictionary
Creating and using dictionaries in Python is very simple. To create an empty dictionary, you just use
the Python statement dictionary_name = {}.

In Listing 9.1, a dictionary called student is created. Then the type function is used on it. You
can see that student is a dictionary (dict) type.

LISTING 9.1 Creating an Empty Dictionary

>>> student = {}
>>> type (student)
<class 'dict'>
>>>

Populating a Dictionary
Populating a dictionary means putting keys and their associated values into the dictionary. To
populate a dictionary, you use this syntax:
Click here to view code image

dictionary_name = {key1:value1, key2:value2...}

By the Way: No Need to Pre-Create
You don’t have to create an empty dictionary before you start to populate it. You can
create it and populate it all with one command. Just issue the command to populate the
dictionary, and Python automatically creates the dictionary for you.

Listing 9.2 shows an example of populating a dictionary. Here the student dictionary is populated
with three students. The key is the student ID number, such as 400A42, and the value is the student’s
name.

LISTING 9.2 Populating a Dictionary

Click here to view code image

>>> student = {'400A42':'Paul Bohall','300A04':'Jason Jones','000B35':'Raz Pi'}
>>> student
{'300A04': 'Jason Jones', '000B35': 'Raz Pi', '400A42': 'Paul Bohall'}
>>>

Notice in Listing 9.2 that the three student key/value elements are between a pair of curly brackets.
Each key/value element is set apart from the other elements by a comma. Also, both the key and the
value are character strings and thus must have quotation marks around them.

By the Way: No Order in a Dictionary
The elements in a Python dictionary are not ordered. This is why you may put into a
dictionary key/value pairs in a certain order, and then they end up being displayed in a
different order! You can see this in Listing 9.2.

You can also add key/value pairs to a dictionary one at a time. The syntax for this method is

dictionary_name[key1] = value1, as shown in Listing 9.3.

LISTING 9.3 Populating a Dictionary One Pair at a Time

Click here to view code image

>>> student['000B35'] = 'Raz Pi'
>>> student
{'300A04': 'Jason Jones', '000B35': 'Raz Pi', '400A42': 'Paul Bohall'}
>>>

There are a couple important items to note about key/value pairs:
 The key cannot be a list.
 The key must be an immutable object.
 The key can be a string.
 The key can be a number (integer or floating point).
 The key can be a tuple.
 The key must belong to only one value (no duplicate keys allowed).

The rules concerning the value in a key/value pair are much more simple. Basically, a value can be
anything.

Obtaining Data from a Dictionary
Once a dictionary is populated, you can obtain and use the elements from it. To obtain a single
dictionary value, you use this syntax:

dictionary_name[key]

Obviously, with this method, you need to know the key in order to obtain its associated value.
In Listing 9.4, a data value was obtained from the sample student dictionary. By using the associated
value’s key, the value was obtained.

LISTING 9.4 Obtaining a Dictionary Value via Its Key

>>> student['000B35']
'Raz Pi'
>>>

By the Way: Mappings
Key/value pairs are sometimes called mappings. This is because a single key maps
directly to a particular value.

You need to know a few rules about looking up key/value pair elements:
 If you enter a dictionary lookup with a key that doesn’t exist, you get a KeyError exception.
 When using a character string for a key, you must use the correct case.

 Only a key can be used to access the value. You cannot use a numeric index to access a
key/value element because the elements in a dictionary are associative not positional.

To avoid receiving an error exception for nonexistent dictionary keys, you use the get operation.
This is the basic syntax:
Click here to view code image

database_name.get(key, default)

When the get operation finds a key, it returns the associated value. When the get operation does not
find a key, it returns the string listed in its optional default. Listing 9.5 shows an example of
successfully locating a key in the dictionary and then an unsuccessful attempt.

LISTING 9.5 Using the Dictionary get Operation

Click here to view code image

>>> student.get('000B35','Not Found')
'Raz Pi'
>>> student.get('000B34','Not Found')
'Not Found'
>>>

Notice that when the unsuccessful attempt occurs, the second string (the default) is displayed. That is
because the default allows you to create your own error message. If the default section is not included
in the get operation and the key is not in the dictionary, you receive back the string "None".
You can also use a loop to obtain dictionary values. First, you get a list of the dictionary’s keys by
using the keys operation. The syntax is dictionary_name.keys (). Set the results of this
operation as a value to a variable. You can then use a for loop to traverse the dictionary, as shown
in Listing 9.6.

LISTING 9.6 Using a for Loop to Traverse a Dictionary

Click here to view code image

>>> key_list = student.keys()
>>> print (key_list)
dict_keys(['300A04', '000B35', '400A42'])
>>>
>>> for the_key in key_list:
... print(the_key, end = ' ')
... student[the_key]
...
300A04 'Jason Jones'
000B35 'Raz Pi'
400A42 'Paul Bohall'
>>>

Notice in Listing 9.6 that the students’ ID numbers are not listed in order. Remember in a dictionary,
the elements are unordered. You can solve this display problem by using the sorted function.

By the Way: Not a List
For Listing 9.6, you might think that you could just enter the list operation
key_list.sort (), but that will not work. The variable key_list is a
dictionary key (dict_keys) object type and not a list. Thus, you cannot use a list
operation on it!

In Listing 9.7, the key_list variable is sorted first. Then it is used as an iteration in the for loop,
to traverse the dictionary.

LISTING 9.7 Using a Sorted Key List to Traverse a Directory

Click here to view code image

>>> key_list = student.keys()
>>> type (key_list)
<class 'dict_keys'>
>>>
>>> key_list = sorted(key_list)
>>> type (key_list)
<class 'list'>
>>>
>>> for the_key in key_list:
... print(the_key, end = ' ')
... student[the_key]
...
000B35 'Raz Pi'
300A04 'Jason Jones'
400A42 'Paul Bohall'
>>>

Notice in Listing 9.7 that the variable key_list changes object types after it is sorted! It starts out
as dict_keys and becomes a list object type.

Updating a Dictionary
Remember that keys are immutable, so they cannot be changed. However, you can update a key’s
associated value. The syntax for doing so is database_name[key]=value. In Listing 9.8, the
student’s name associated with the student ID number (key) '000B35' is changed.

LISTING 9.8 Updating a Dictionary Element

Click here to view code image

>>> student['000B35'] #Element shown before the change.
'Raz Pi'
>>> student['000B35'] = 'Raz Berry Pi'
>>>
>>> student['000B35'] #Element shown after the change.
'Raz Berry Pi'
>>>

In Listing 9.8, a particular key is updated to a new value. However, if the key does not already exist,
a new key/value pair is created. Therefore, you can use this method not only to update a dictionary
but add new elements as well.
When you need to delete a key/value pair from a dictionary, you use the following syntax:

del dictionary_name[key]

However, if the key/value pair does not exist in the dictionary, the del operation throws an error
exception. Listing 9.9 uses an if statement to make sure the key does exist, before deleting the
element.

LISTING 9.9 Deleting a Dictionary Element

Click here to view code image

>>> if '400A42' in student:
... del student['400A42']
...
>>> student
{'300A04': 'Jason Jones', '000B35': 'Raz Berry Pi'}
>>>

By the Way: has_key No Longer Available
The dictionary operation has_key allowed you to determine whether a particular key
existed in a dictionary. For Python v3, this dictionary operation is no longer available.
Instead, you now use the if statement as shown in Listing 9.9.

Managing a Dictionary
In addition to the ones you’ve already seen this hour, a few other dictionary operations may prove
useful when you’re using a Python dictionary. Table 9.1 lists them, as well as a few of the ones
you’ve already seen this hour.

TABLE 9.1 Python Dictionary Management Operations
Now that you have an idea of the various dictionary operations, you can learn about how to program
using dictionaries.

Programming with Dictionaries
Put on your weather researcher hat: You are going to do some weather data processing using a
dictionary. In this part of the hour, you will be looking at three different Python scripts that use
dictionaries to store and then analyze weather data.
The first script, script0901.py, populates a dictionary with daily record high temps (Fahrenheit)
in Indianapolis, Indiana, for the month of May. In Listing 9.10, you can see the dictionary used to store
the collected data. Each dictionary element’s key is the day of the month in May. Each key’s
associated value is the logged record high temperature for that day.

LISTING 9.10 The script0901.py Script

Click here to view code image

1: pi@raspberrypi ~ $ cat py3prog/script0901.py
2: # script0901.py - Populate the Record High Temps Dictionary
3: # Author: Blum and Bresnahan
4: # Date: May
5: ###
6: #
7: # Populate dictionary for Record High Temps (F) during May in Indianapolis
8: print ()
9: print ("Enter the record high temps (F) for May in Indianapolis...")
10: #
11: may_high_temp = {} #Create empty dictionary
12: #
13: for may_date in range (1, 31 + 1): #Loop to enter temps
14: #
15: # Obtain record high temp for date
16: prompt = "Record high for May " + str(may_date) + ": "
17: record_high = int(input(prompt))
18: # Put element in dictionary
19: may_high_temp[may_date] = record_high
20: #
21: ###
22: # Display Record High Temps Dictionary
23: #
24: print ()
25: print ("Record High Temperatures (F) in Indianapolis during Race Month")
26: #
27: date_keys = may_high_temp.keys() #Obtain list of element keys
28: #
29: for may_date in date_keys: #Loop to display key/value pairs
30: print ("May", may_date, end = ': ')
31: print (may_high_temp[may_date])
32: #
33: ###
34: pi@raspberrypi ~ $

On line 11, the empty dictionary may_high_temp is created. Then, using a for loop, the 31 days
of high temperatures (Fahrenheit) are entered into the dictionary on lines 13–19. The elements in the
dictionary are then pulled out and displayed one by one, using another for loop on lines 29–31.
Notice that to make the values display in the right order, they are retrieved using their key value on
line 27.

Listing 9.11 shows partial output from this Python script being run. The data being entered is record
high daily temperatures (Fahrenheit) for May in Indianapolis. After this data is entered, it is then
displayed back out to the screen.

LISTING 9.11 Output of script0901.py

Click here to view code image

pi@raspberrypi ~ $ python3 py3prog/script0901.py

Enter the record high temps (F) for May in Indianapolis...
Record high for May 1: 88
Record high for May 2: 85
Record high for May 3: 88
...
Record high for May 29: 90
Record high for May 30: 92
Record high for May 31: 90

Record High Temperatures (F) in Indianapolis during Race Month
May 1: 88
May 2: 85
May 3: 88
...
May 29: 90
May 30: 92
May 31: 90
pi@raspberrypi ~ $

Now your dictionary is loaded with record temperatures, in Fahrenheit. To convert the temperatures
to Celsius, you can make a small change to the original script.
Listing 9.12 shows part of the new script. The script user has to enter the Fahrenheit temperature data
only one time. Using a single loop on lines 11–17, the following happens to the temperature:

 It is stored in a new dictionary for Fahrenheit temperatures.
 It is converted to Celsius.
 It is stored in another new dictionary for Celsius temperatures.

LISTING 9.12 The script0902.py Script

Click here to view code image

1: pi@raspberrypi ~ $ cat py3prog/script0902.py
2:
...
3: # Create the Celsius version of the dictionary
4: #
5: may_high_temp_c = {} #Create empty dictionary
6: #
7: may_high_temp_c.update(may_high_temp) #Create deep copy
8: #
9: date_keys = may_high_temp_c.keys() #Obtain list of element keys
10: #

11: for may_date in date_keys: #Loop to convert F to C
12: #
13: high_temp_f = may_high_temp_c[may_date] #Obtain Fahrenheit
14: #
15: high_temp_c = (high_temp_f - 32) * 5 / 9 #Convert to Celsius
16: #
17: may_high_temp_c[may_date] = high_temp_c #Update dictionary
18: #
19: ###
20: # Display Record High Temps Dictionaries (Both F & C)
21: #
22: print ()
23: print ("Record High Temperatures in Indianapolis during Race Month")
24: #
25: date_keys = may_high_temp.keys() #Obtain list of element keys
26: #
27: for may_date in date_keys: #Loop to display key/value pairs
28: print ("May", may_date, end = ': ')
29: print (may_high_temp[may_date],"F", end = '\t')
30: print ("{0:.1f}".format(may_high_temp_c[may_date]),"C")
...

In Listing 9.12, note that the .update dictionary operation is used on line 7. This operation
performs a deep copy of the dictionary. A deep copy copies both the structure of an object and its
elements. A shallow copy, on the other hand, copies only the structure of an object.

By the Way: The Inefficient Script
The script0902.py script is inefficient in how it has the user enter the data, then
make a copy of the dictionary, and then reenter the Fahrenheit data into another
dictionary. Keep in mind that these scripts are for learning purposes only. If they are to
be used for non-educational purposes, they should be rewritten for efficiency’s sake. In
fact, rewriting them would be a good exercise for you to do as you learn Python
programming!

In Listing 9.12, on line 15, the Fahrenheit temperature is converted to Celsius using a math equation.
You learned about math in Python back in Hour 5, “Using Arithmetic in Your Programs.” Once the
conversion is made, the value in the may_high_temp_c dictionary is updated via an assignment
option. Remember that when you use an existing key during a value assignment, the key simply has its
associated value updated.
In Listing 9.13, you can see the output produced by the script0902.py script. Notice the Celsius
temperature output in Listing 9.13 and then look back to line 30 in Listing 9.12. The format
function, as you learned in Hour 5, enables the proper display of the calculated Celsius temperature.

LISTING 9.13 Output of script0902.py

Click here to view code image

pi@raspberrypi ~ $ python3 py3prog/script0902.py

Enter the record high temps (F) for May in Indianapolis...
Record high for May 1: 88

...
Record High Temperatures in Indianapolis during Race Month
May 1: 88 F 31.1 C
May 2: 85 F 29.4 C
May 3: 88 F 31.1 C
...
pi@raspberrypi ~ $

Now you have a script that gets the temperature data into a dictionary and a script that calculates the
Celsius values. Finally, you need a script that allows you to do some calculations on the temperatures
for your pretend weather research.
Listing 9.14 shows part of script0903.py. This Python script takes the temperature data in a
dictionary and calculates the maximum, the minimum, and the mode of the high temperatures.

LISTING 9.14 The script0903.py Script

Click here to view code image

1: pi@raspberrypi ~ $ cat py3prog/script09023.py
2:
...
3: # Determine Maximum, Minimum, and Mode Temps
4: #
5: temp_list = may_high_temp.values()
6: max_temp = max(temp_list) #Determine maximum high temp
7: min_temp = min(temp_list) #Determine minimum high temp
8: #
9: # Determine mode (most common) high temp ###
10: #
11: # Import Counter function
12: from collections import Counter
13: #
14: # Count temps and take the most frequent (mode) temperature
15: mode_list = Counter(temp_list).most_common(1)
16: #
17: # Extract mode high temp from 2-dimensional mode list
18: mode_temp = mode_list[0][0]
19: #
20: print ()
21: print ("Maximum high temp in May:\t", max_temp,"F")
22: print ("Minimum high temp in May:\t", min_temp,"F")
23: print ("Mode high temp in May:\t\t", mode_temp,"F")
...

Calculating the maximum and minimum temperatures is easy. You simply grab the values from the
dictionary, on line 5, using the .values operation. Next you use the built-in max or min function
on the values. Determining the mode of the high temperatures takes a little more work.

Did You Know: What Is Mode?
In a list of values, the mode is the value that occurs the most often. Thus, in the list 1, 2,
3, 3, 3, the number 3 is the list’s mode.

In order to determine the most common temperature, you must import the non-built-in Counter
function, as shown on line 12 in Listing 9.14. Using this function’s .most_common operation on the
list of temperatures values returns a two-dimensional sorted list object. (You learned about two-
dimensional lists in Hour 8, “Using Lists and Tuples.”) The temperature mode is the first item in the
dimensional list, as shown being extracted on line 18. Listing 9.15 shows the output of this script.

LISTING 9.15 Output of script0903.py

Click here to view code image

pi@raspberrypi ~ $ python3 py3prog/script0903.py

Enter the record high temps (F) for May in Indianapolis...
Record high for May 1: 88
Record high for May 2: 85
Record high for May 3: 88
...
Maximum high temp in May: 92 F
Minimum high temp in May: 85 F
Mode high temp in May: 89 F
pi@raspberrypi ~ $

By using a dictionary in the Python scripts, you can temporarily store the temperature data so
calculations can be performed upon them. Using a dictionary also allows for easy access to any of the
stored temperatures via their key, which is the day of the month.

Understanding Python Sets
A set is a collection of elements. Unlike the elements in a dictionary, a set’s elements consist only of
values. There is no key. There are two important things to know about Python sets:

 The elements in a set are unordered.
 Each element is unique.

Because a set’s elements are unordered, you cannot access the set’s data via an index, as you can in a
list. However, similarly to a list, a set can contain different data types. (You learned about lists in
Hour 8.) Using a set is much more efficient than using a list.

Did You Know: That’s Cold!
A set’s data elements are mutable and thus can be changed. There is another type of
set, called a frozenset. A frozenset is immutable, and thus its elements cannot be
changed. Its values are, in essence, “frozen” as they are.

Exploring Set Basics
To create an empty set in Python, you use the built-in set function, which has the following syntax:

set_name = set()

In Listing 9.16, a set called students_in_108 is created for the “108 Python Set Fundamentals”

class. The type function is then used on it. You can see that the students_in_108 is a set
object type.

LISTING 9.16 Creating an Empty Set

Click here to view code image

>>> students_in_108 = set()
>>> type (students_in_108)
<class 'set'>
>>>

Populating a Set
To add a single element to a set, you use the .add operation, which has the following syntax:

set_name.add (element)

To add the value elements to the students_in_108 set, you enter them one at a time and press
Enter after each, as shown in Listing 9.17.

LISTING 9.17 Populating a Set with the .add Operation

Click here to view code image

1: >>> students_in_108.add('Raz Pi')
2: >>> students_in_108.add('Jason Jones')
3: >>> students_in_108.add('Paul Bohall')
4: >>> students_in_108
5: {'Paul Bohall', 'Raz Pi', 'Jason Jones'}
6: >>>

To display the current elements in a set, you just type the set’s name, as shown on line 4 in Listing
9.17. You can see that the elements are unordered, as you would expect in a set.
Using a less tedious method, you can create and populate a set all in one command. To do so, you use
the following syntax:
Click here to view code image

set_name([element1, element2, ... elementn])

In Listing 9.18, a new set is created for the “133 Python Programming” class.

LISTING 9.18 Populating a Set with One Command

Click here to view code image

>>> students_in_133 = set(['Raz Pi', 'Benny Lora', 'Jody Sanchez'])
>>> students_in_133
{'Raz Pi', 'Benny Lora', 'Jody Sanchez'}
>>>

In order to create the elements properly, they must be between brackets. In this example, the elements
are all strings, but the elements can also be integers, floating-point numbers, lists, tuples, and so on.

Obtaining Information from a Set
The primary value of sets is what mathematics calls set theory. You can easily determine what
particular element is in multiple sets, how sets are different from one another, whether one element is
unique in a group of sets, and so on.

Set Membership
You can determine whether an element belongs to a particular set. As shown in Listing 9.19, you can
use an if statement to check a set for an element’s membership.

LISTING 9.19 Checking a Set for Element Membership

Click here to view code image

>>> student = 'Raz Pi'
>>> if student in students_in_108:
... print (student, "is in 'Python Set Fundamentals' class.")
... else:
... print (student, "is not in the class.")
...
Raz Pi is in 'Python Set Fundamentals' class.
>>>

As you can see in Listing 9.19, the student Raz Pi does have membership in the
students_in_108 set.

Set Union
A set union is where all the elements from two sets are combined to create a third set. You do not
create a set union by using the + operand. Rather, you use the following syntax:

set_name#1.union(set_name#2)

Listing 9.20 is an example of combining sets into a union.

LISTING 9.20 Performing a Set Union

Click here to view code image

>>> students_union = students_in_108.union(students_in_133)
>>> students_in_108
{'Paul Bohall', 'Raz Pi', 'Jason Jones'}
>>> students_in_133
{'Raz Pi', 'Benny Lora', 'Jody Sanchez'}
>>> students_union
{'Paul Bohall', 'Raz Pi', 'Jason Jones', 'Benny Lora', 'Jody Sanchez'}
>>>

The .union set operative adds the set members together. However, remember that every element in

a set must be unique. So, even though the student Raz Pi was in both sets, he is listed only one time in
the union set, students_union.

Set Intersection
A set intersection contains set members that are also members in both a first and a second set. For
example, in Listing 9.20, the student Raz Pi is in both sets students_in_108 and
students_in_133. Therefore, an intersection of those two sets produces a set containing that
student, Raz Pi (see Listing 9.21).

LISTING 9.21 Performing a Set Intersection

Click here to view code image

>>> students_inter = students_in_108.intersection(students_in_133)
>>> students_in_108
{'Paul Bohall', 'Raz Pi', 'Jason Jones'}
>>> students_in_133
{'Raz Pi', 'Benny Lora', 'Jody Sanchez'}
>>> students_inter
{'Raz Pi'}
>>>

Set Difference
A set difference, also called a set complement, is a created third set that contains items in the first set
that are not in the second set. In essence, you subtract the second set from the first set, and the set
difference is whatever is left.
Listing 9.22 shows an example of set difference. Using again the set of students in the 108 and 133
classes, the students_in_108 set has subtracted from it the students_in_133 set. This
removes only the Raz Pi student. Thus, the resulting difference set contains Jason Jones and Paul
Bohall.

LISTING 9.22 Performing a Set Difference

Click here to view code image

>>> students_dif = students_in_108.difference(students_in_133)
>>> students_in_108
{'Paul Bohall', 'Raz Pi', 'Jason Jones'}
>>> students_in_133
{'Raz Pi', 'Benny Lora', 'Jody Sanchez'}
>>> students_dif
{'Paul Bohall', 'Jason Jones'}
>>>

Notice in Listing 9.22 that even though there are students in the students_in_133 set that are not
in the students_in_108 set, subtracting them has no ill effects. Using the difference operator,
you can subtract set elements that do not exist in the original set without throwing an error exception.

Symmetric Set Difference

A symmetric set difference is a created third set that contains only elements that are solely in one set
or the other. Thus, looking at the student example, a symmetric set difference would contain all the set
elements from both students_in_108 and students_in_133, except for Raz Pi. Since Raz
Pi is in both sets, he would be excluded from the symmetric set difference, as shown in Listing 9.23.

LISTING 9.23 Performing a Symmetric Set Difference

Click here to view code image

>>> students_symdif = students_in_108.symmetric_difference(students_in_133)
>>> students_in_108
{'Paul Bohall', 'Raz Pi', 'Jason Jones'}
>>> students_in_133
{'Raz Pi', 'Benny Lora', 'Jody Sanchez'}
>>> students_symdif
{'Paul Bohall', 'Jason Jones', 'Benny Lora', 'Jody Sanchez'}
>>>

Traversing a Set
Using a loop to obtain elements from a set is very easy because the set itself can be used for iteration.
Listing 9.24 shows an example of this.

LISTING 9.24 Showing a Set Traversed

Click here to view code image

>>> for the_student in students_in_133:
... print (the_student)
...
Raz Pi
Benny Lora
Jody Sanchez
>>>

Notice that the for loop has no problems traversing the set. However, due to the unordered nature of
sets, you can potentially end up with an unordered display.

By the Way: A Sort Would Change the Type
You could use the sorted function to sort a set. However, be aware that sorted
will convert the set to a list object type!

Modifying a Set
A set is not immutable, and thus it can be changed. Updating a set does not mean changing individual
elements within a set. For example, going back to the student set example, in students_in_108,
the element 'Paul Bohall' cannot be updated to be 'Sam Bohall' because sets have no
indexing capabilities. Updating a set actually means conducting a mass addition to the set.
To perform an update on a set, you use this syntax:

Click here to view code image

set_name.update([element(s)_to_add])

In Listing 9.25, a mass addition is made to the students_in_108 set, using the update
operation. As you can see, two additional elements are added to the set in a mass add.

LISTING 9.25 Updating a Set

Click here to view code image

>>> students_in_108
{'Paul Bohall', 'Raz Pi', 'Jason Jones'}
>>> students_in_108.update(['Alan Griffith','Otis McCallum'])
>>> students_in_108
{'Otis McCallum', 'Paul Bohall', 'Raz Pi', 'Jason Jones', 'Alan Griffith'}
>>>

You can also delete elements from a set. There are two set operations available for deleting elements.
The first is the remove operation, which has this syntax:
Click here to view code image

set_name.remove([element(s)_to_remove])

The other is the discard operation, which has this syntax:
Click here to view code image

set_name.discard([element(s)_to_discard])

Listing 9.26 uses the remove operation to remove two students from the students_in_108 set.

LISTING 9.26 Deleting Elements from a Set

Click here to view code image

>>> students_in_108
{'Otis McCallum', 'Paul Bohall', 'Raz Pi', 'Jason Jones', 'Alan Griffith'}
>>> students_in_108.remove('Alan Griffith')
>>> students_in_108.remove('Otis McCallum')
>>> students_in_108
{'Paul Bohall', 'Raz Pi', 'Jason Jones'}
>>>

The primary difference between doing a remove operation and a discard operation on a set has
to do with missing elements. As shown in Listing 9.27, if an element does not exist in the set and you
attempt remove it, an error exception is thrown. With a discard operation, no error exception is
given.

LISTING 9.27 The Difference Between remove and discard

Click here to view code image

>>> students_in_108
{'Paul Bohall', 'Raz Pi', 'Jason Jones'}
>>> students_in_108.discard('Alan Griffith')
>>> students_in_108.remove('Otis McCallum')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 'Otis McCallum'
>>>

By the Way: No En Masse
You cannot remove or discard en masse, as you can with the update operation. You
have to remove or discard set elements one at a time.

Programming with Sets
In this section, you’ll do some more weather temperature research—this time using sets. Using record
high temperatures (Fahrenheit) in May in Indianapolis, you will build two sets and then do some
analysis on them using a few set operations.
To build the first temperature set, highMayTemp2012, the set is initialized and then populated via
a for loop. This is shown in Listing 9.28, which displays part of the Python script
script0904.py.

LISTING 9.28 Populating a Set with the script0904.py Script

Click here to view code image

1: pi@raspberrypi ~ $ cat py3prog/script09024.py
...
2: # Populate set with High Temps (F) during May 2012 in Indianapolis
3: print ()
4: print ("Enter the high temps (F) for May 2012 in Indianapolis...")
5: #
6: highMayTemp2012 = set() #Create empty set
7: #
8: for may_date in range (1, 31 + 1): #Loop to enter temps
9: #
10: # Obtain high temp for date
11: prompt = "High temperature (F) May " + str(may_date) + " 2012: "
12: high_temp = int(input(prompt))
13: # Put element in set
14: highMayTemp2012.add(high_temp)
15: #
16: print ()
17: print ("The high temperatures (F) for May 2012 in a set are:")
18: print (highMayTemp2012)
19: #
...

Did You Know: A Camel in the Case
In Python script script0904.py, the set name highMayTemp2012 is using a

variable style of naming called camel Case. camel Case variable names, popular with
Python script writers, start out with lowercase, and then subsequent words in the name
start with uppercase characters. This helps to add clarity to a script. And, supposedly,
the name looks like a camel with several humps.

Nothing is too exciting in script094.py so far. You have seen how to gather data into a set
before. In this script, a second set, not shown in Listing 9.28, is also built just like the first one,
except the set name is highMayTemp2011.

By the Way: Actual Temperature Data
The temperature data used in this hour is actual May temperatures for Indianapolis,
Indiana. It was derived from www.almanac.com/weather/history/IN/Indianapolis.

Now that the necessary data is loaded into the scripts, you can do a little set mathematics to provide
some analysis. First, you can compare the 2012’s and 2011’s May high temperatures by using a set
intersection. The intersection should show the May high temperatures shared by both years. In Listing
9.29, the Python statement needed to accomplish this set intersection is shown on line 5.

LISTING 9.29 Setting an Intersection with the script0904.py Script

Click here to view code image

1: pi@raspberrypi ~ $ cat py3prog/script09024.py
...
2: # Determine Shared High Temps for May
3: #
4: # Find intersetion of high temp sets
5: shared_temps = highMayTemp2011.intersection(highMayTemp2012)
6: #
7: # Print out determined data
8: print ()
9: print ("High Temps (F) Shared by May 2012 & May 2011")
10: print (sorted(shared_temps))
...

Set mathematics performed on the temperature data also allows you to see which month was cooler
(May 2011 or May 2012). To accomplish this, a set difference must be performed on the data. Listing
9.30 shows the code from scrip0904.py, which performs a set difference.

LISTING 9.30 Setting a Difference with the script0904.py Script

Click here to view code image

1: pi@raspberrypi ~ $ cat py3prog/script09024.py
...
2: # Determine Which Month was Cooler - May 2011 or May 2012
3: #
4: # Find difference of high temp sets
5: diff_temps2012 = highMayTemp2012.difference(highMayTemp2011)

http://www.almanac.com/weather/history/IN/Indianapolis

6: diff_temps2011 = highMayTemp2011.difference(highMayTemp2012)
7: #
8: # Print out determined data
9: print ()
10: print ("Which month do you think was cooler?")
11: print ("May 2012:", sorted(diff_temps2012))
12: print (" or")
13: print ("May 2011:", sorted(diff_temps2011))
...

Two difference sets are built, as shown on lines 5 and 6 in Listing 9.30. Both of these difference sets
are then printed out, so the script user can determine which month was cooler.
Now that you have seen scripts0904.py’s construction, take a look at the output produced when
the script is run. Listing 9.31 shows the final results for the intersection and difference calculations
for the sets.

LISTING 9.31 Output of script0904.py

Click here to view code image

pi@raspberrypi ~ $ python3 py3prog/script0904.py

Enter the high temps (F) for May 2012 in Indianapolis...
High temperature (F) May 1 2012: 79
High temperature (F) May 2 2012: 84
High temperature (F) May 3 2012: 85
...
The high temperatures (F) for May 2012 in a set are:
{70, 72, 74, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87, 88, 90, 91, 92}
...
The high temperatures (F) for May 2011 in a set are:
{65, 68, 69, 70, 71, 72, 74, 77, 79, 80, 82, 84, 85, 87, 88, 57, 90, 59, 60}
...
High Temps (F) Shared by May 2012 & May 2011
[70, 72, 74, 79, 80, 84, 85, 87, 88, 90]

Which month do you think was cooler?
May 2012: [75, 76, 78, 81, 83, 86, 91, 92]
 or
May 2011: [57, 59, 60, 65, 68, 69, 71, 77, 82]

Notice that even though 31 days of data was entered, the sets are pretty small. Remember that each
data element in a set must be unique, so any duplicate temperatures are eliminated.
You have seen that using set mathematics can help you draw conclusions about data. According to the
Python script results, which month was cooler in Indianapolis: May 2012 or May 2011?

Summary
In this hour, you got to try out two data storage object types: dictionaries and sets. You learned how
to create both empty dictionaries and sets as well as how to populate them. Also, you were
introduced to concepts such as obtaining data from, updating, and managing both dictionaries and sets.
Finally, you saw some practical examples of using these data collection types in building a Python

script. In Hour 10, you will learn about another object type: strings.

Q&A
Q. What is a dictionary pop operation?
A. A dictionary pop operation is a method of removing a key/value pair. It is similar to the now

retired has_key operation, in that you can specify what is to be returned, if the key is not
found in the dictionary.

Q. How can you determine whether one set is a subset of another set?
A. You can use the .issubset operation to do this for Python sets. You can also determine

whether a set is a superset of another by using the .issuperset operation.
Q. Why are there no Try It Yourself sections in this hour?
A. Unfortunately, there isn’t enough room in this hour to include one. However, you can make

your own practice exercise by going back to the “Programming with Dictionaries” and
“Programming with Sets” sections and trying out the scripts shown there. Make it interesting by
finding weather data pertaining to your part of the world and using it instead of the
Indianapolis data.

Workshop
Quiz

1. A dictionary key may have one or more values associated with it at the same time. True or
false?

2. What is the most common data item in a data list called?
3. Which set operation would you perform if you wanted a set that contained only members that

are in two distinct sets?
a. Union
b. Difference
c. Intersection

Answers
1. False. A dictionary key can have only one value associated with it. Each key has one value and

no more.
2. The mode is the most common data item in a data list.
3. Answer c is correct. Performing an intersection operation on two sets produces a third set that

contains only members that are in both set 1 and set 2.

Hour 10. Working with Strings

What You’ll Learn in This Hour:
 How to create strings
 Working with string functions
 Formatting strings for output

One of the strong points of the Python programming language is its ability to work with text. Python
makes manipulating, searching, and formatting text data almost painless. This hour explores how to
create and work with text strings in your Python scripts.

The Basics of Using Strings
Before we dive too deeply into the Python text world, let’s take a look at the basics of working with
text. For starters, Python handles text data as a string data type. The following sections outline how to
use Python to create and work with string values and how to add text-handling features to your Python
scripts.

String Formats
Unfortunately, how Python handles string values has drastically changed in version 3. Previous
versions of Python stored strings in ASCII format, which uses a single byte value for each character.
Python v3 changed that, and Python now uses Unicode format to store strings. The Unicode format
uses 2 bytes to store each character, so it can accommodate a lot more text characters than the ASCII
format does. This enables it to support many different languages, making it more popular in the world
programming community.

By the Way: Using ASCII in Python v3
You can still work with ASCII characters and ASCII code values in Python v3. You
can store ASCII string characters as binary data by storing the raw ASCII code value
as a binary value, as in this example:

Click here to view code image

>>> binarystring = b'This is an ASCII string value'
>>> print(binarystring)
b'This is an ASCII string value'
>>> print(binarystring[1])
104
>>>

Because Python stores the string value as binary data, if you try to directly access an
individual letter, you’ll get the binary code for that letter. You can use the chr()
function to convert the ASCII code into the corresponding string value, like this:

Click here to view code image

>>> print(chr(binarystring[1]))
h
>>>

If you’re working with the English language in your scripts, the Python v3 change to Unicode format
isn’t readily apparent. You still store your text values the same way as in previous versions, and you
retrieve them the same way, too. However, with Unicode you now have access to a wider variety of
special characters that you can accommodate in your scripts!

Creating Strings
Creating string values in Python is pretty straightforward. You just use a simple assignment statement
to create a value and assign it to a variable. However, with string values, you must use quotes around
the data to delineate the start and end of the string value, as in this example:
Click here to view code image

>>> string1 = 'This is a test string'
>>> print(string1)
This is a test string
>>>

You can use either single or double quotes to delineate a string value, but it’s become somewhat
standard in the Python community to use single quotes, unless there are quotes inside the text value
itself.
If the text value includes single quotes, you can use double quotes to define the string beginning and
end:
Click here to view code image

>>> string2 = "This'll work when defining a string"
>>> print(string2)
This'll work when defining a string
>>>

Or you can escape the quotes by placing a backslash in front of the quotes in the string value:
Click here to view code image

>>> string3 = 'This\'ll also work when defining a string'
>>> print(string3)
This'll also work when defining a string
>>>

The backslash isn’t part of the string value; it just tells Python that the single quote in the data is part
of the value. The same technique also works for embedding double quotes inside the string value.
You can break up long string values onto separate lines in your program or in the IDLE interface by
adding a backslash at the end of the line and continuing the string on the next line. Python glues the
two lines together to create a single string value, as shown here:
Click here to view code image

>>> string4 = 'This is a long string value \
that spans multiple lines.'
>>> print(string4)
This is a long string value that spans multiple lines.
>>>

There’s another method for creating long string values, called triple quotes. With the triple quotes
method, you place three single or double quotes in a row to define the start of the string, and then you

place three single or double quotes in a row to define the end of the string, as shown in this example:
Click here to view code image

>>> string5 = '''This is another long string
value that will span multiple
lines in the output'''
>>> print(string5)
This is another long string
value that will span multiple
lines in the output
>>>

Notice though that with the triple-quotes method, the string value preserves any newlines that are
added to the text. This can come in handy if you need to store text that has embedded newline
characters that you want to display.

Handling String Values
After you assign a string value to a variable, you can use the value as a whole, or you can work with
parts of the string value.
As you’ve seen from the print() examples so far, to reference the whole string value, you just
reference the string by specifying the variable name. You can also retrieve a subset of the string text
stored in the variable by using a few different Python techniques.
Python treats string values somewhat like tuple values (see Hour 8, “Lists and Tuples”). You can
reference an individual character in a string by using an index value, as shown here:
Click here to view code image

>>> string6 = 'This is a test string'
>>> print(string6[5])
i
>>>

However, as with tuples, Python won’t let you change an individual character in the string by using
the index. Here’s an example:
Click here to view code image

>>> string6[5] = 'a'
Traceback (most recent call last):
 File "<pyshell#16>", line 1, in <module>
 string6[5] = 'a'
TypeError: 'str' object does not support item assignment
>>>

Also very much like with tuples, you can use slicing to retrieve a larger subset of characters from a
string. Here’s how:

>>> print(string6[5:7])
is
>>>

Slicing is a powerful tool to have when you’re trying to extract specific data from string values, such
as if you’re trying to scrape data values from a webpage’s content. Besides slicing, Python also
supports lots of string functions to help you manipulate string values for just about every application.
The next section takes a look at some of the most useful string functions that you’ll run into as you

code your Python scripts.

Using Functions to Manipulate Strings
Python’s popularity in working with strings is mostly due to the plethora of functions available for
working with string data. The following sections walk through the most common string functions that
you’ll use as you work with strings in your Python scripts. Since there are so many string functions to
choose from, the following sections split them up into categories to simplify a bit.

Altering String Values
Python provides a handful of functions that manipulate either the text or the text format in string
values. Table 10.1 shows the string functions that can come in handy when you need to manipulate
string values.

TABLE 10.1 String-Manipulation Functions
The string-manipulation functions don’t change the value of the original string; they return a new

string value. If you want to use the result in your script, you have to assign it to another variable, as in
this example:
Click here to view code image

>>> string7 = 'Rich is working on the problem'
>>> string8 = string7.replace('Rich', 'Christine')
>>> print(string7)
Rich is working on the problem
>>> print(string8)
Christine is working on the problem
>>>

The replace() function changes the string text and returns the result to the string8 variable.
The original string7 value remains the same.

Splitting Strings
Another useful function in string manipulation is the ability to split strings into separate substrings.
This comes in handy when you’re trying to parse string values to look for words. Table 10.2 shows
the Python string-splitting functions that are available.

TABLE 10.2 String-Splitting Functions
If you don’t specify a split character, the split functions use any type of whitespace character as the
split character. In the following example, the result is a list value, with each data value being a
separate word in the original string:
Click here to view code image

>>> string9 = 'This is a test string used for splitting'
>>> list1 = string9.split()
>>> print(list1)
['This', 'is', 'a', 'test', 'string', 'used', 'for', 'splitting']
>>>

This is a great tool for breaking out individual words from a text string for manipulation.
Splitting strings can be somewhat of an art form, and sometimes it takes some experimenting to get it
just right.

Joining Strings

The opposite of splitting out string values into a list is joining them, which you do via the join()
function. The join() function allows you to reassemble all the data values in a list back into a
string value.
The join() function is a bit quirky, but it’s extremely versatile, and will come in handy if you have
to manipulate strings.
The join() function uses a single parameter, which is the list or tuple that you want to join into a
string. However, that doesn’t tell the join() function what character to use to separate the different
list values. You need to define a string value that the join() method applies to. To see how this
works, you can take a quick look at the join() function in action. Here are some additional actions
taken on the list1 variable created in the previous example:
Click here to view code image

>>> list1[7] = 'joining'
>>> string10 = ' '.join(list1)
>>> print(string10)
This is a test string used for joining
>>>

This example shows a few different things about strings. First, it replaces the list1 data value at
index 7 with a new word. Then it uses the join() function to reassemble the list back into a string
value. The two single quotes surround a space character, so the join() function adds a space
character between the data values in the list when it creates the string value. Printing the new string
value shows that the list values were reassembled, including the updated value, using the space
character. This is a tricky way to modify words within a text string.

Testing Strings
A vital function in string manipulation is to have the ability to test string values for specific
conditions. Python provides several string-testing functions that help out with that; Table 10.3 shows
them.

TABLE 10.3 String-Testing Functions
The string-testing functions help when you need to validate input data that your scripts receive. If a
script requests a numeric value from the user, it’s a good idea to test what value the user enters before
actually using it in your code! You can try this out by creating a test script.

Try It Yourself: Test Strings
Try adding a string-testing feature to a small script by following these steps:

1. Open your favorite text editor and add the following code:
Click here to view code image

#!/usr/bin/python3

choice = input('Please enter your age: ')
if (choice.isdigit()):
 print('Your age is ', choice)
else:
 print('Sorry, that is not a valid age')

2. Save the file as script1001.py in your Python code folder.
3. From the command prompt, run the program:
python3 sscript1001.py

The script1001.py script uses the isdigit() string function to test the string

value that the input() function returns. If the string contains an invalid digit, the
script produces a message telling the user about the error:

Click here to view code image

pi@raspberry script% python3 script1001.py
Please enter your age: 34
Your age is 34
pi@raspberry script% python3 script1001.py
Please enter your age: Rich
Sorry, that is not a valid age
pi@raspberry script% python3 script1001.py
Please enter your age: 12g5
Sorry, that is not a valid age
pi@raspberry script%

You can also try using the other string-testing functions in the same manner to see
how they validate different types of text that you enter from the prompt.

Searching Strings
Yet another common string function is searching for a specific value within a string. Python provides
a couple functions to help out with this.
If you only need to know if a substring value is contained within a string value, you can use the in
operator. The in operator returns a True value if the string contains the substring value, and it
returns a False value if not. Here’s an example:
Click here to view code image

>>> string12 = 'This is a test string to use for searching'
>>> 'test' in string12
True
>>> 'testing' in string12
False
>>>

If you need to know exactly where in a string the substring is found, you need to use either the
find() or rfind() functions.
The find() function returns the index location for the start of the found substring, as shown here:

>>> string12.find('test')
10
>>>

The result from the find() function shows that the string 'test' starts at position 10 in the string
value. (Strings start at index position 0.) If the substring value isn’t in the string, the find() function
returns a value of -1:
Click here to view code image

>>> string12.find('tester')
-1
>>>

The find() function searches the entire string unless you specify a start value and an end value to
define a slice, as in this example:
Click here to view code image

>>> string12.find('test', 12, 20)
-1
>>>

It’s also important to know that the find() function returns only the location of the first occurrence
of the substring value, like this:
Click here to view code image

>>> string13 = 'This is a test of using a test string for searching'
>>> string13.find('test')
10
>>>

You can use the rfind() function to start the search from the right side of the string:
>>> string13.rfind('test')
26
>>>

Yet another searching function is the index() function. It performs the same function as find(),
but instead of returning -1 if the substring isn’t found, it returns a ValueError error, as shown
here:
Click here to view code image

>>> string13.index('tester')
Traceback (most recent call last):
 File "<pyshell#9>", line 1, in <module>
 string13.index('tester')
ValueError: substring not found
>>>

The benefit of retuning an error instead of a value is that you can catch the error as a code exception
(see Hour 17, “Exception Handling”) and have your script act accordingly.
If you’d like to just count the number of occurrences of a substring value within a string, you use the
count() function, as shown here:

>>> string13.count('test')
2
>>>

Between the find(), index(), and count() functions, you have a full arsenal of tools to help
you search for data within your strings.

Formatting Strings for Output
Python includes a powerful method of formatting the output that your script displays. The format()
function allows you to declare exactly how you want your output to look. This section walks through
how the format() function works and how you can use it to customize how your script output
looks.

Watch Out!: Python Change in String Formatting
The way Python defines formatting codes for the format() function drastically
changed between version 2 and 3. Since this book focuses on Python v3, we only cover

the v3 format() function formatting codes. If you need to use the Python v2
formatting method, refer to the Python documentation at www.python.org.

The format() Function
The format() function is the most complicated of the built-in Python string functions. However,
once you get the hang of it, you’ll find yourself using it in lots of places in your scripts to help make
your output more user friendly.
This is the syntax for the format() function:

string.format(expression)

There are two parts to using the format() function. The string component is the output string
that you want to display, and the expression component defines what variables to embed in the
output.
In the output string, you also need to embed placeholders within the string where you want the
variable values from the expression to appear. There are two types of placeholders you can use:

 Positional placeholders
 Named placeholders

The next two sections discuss each of these types of placeholders.
Positional Placeholders

Positional placeholders create spots in the output string to insert variable values by using numeric
index values representing the order of the variables in the expression. To identify the placeholders,
you put the index value within braces inside the string text. While this might sound confusing, it’s
actually pretty straightforward. Here’s an example:
Click here to view code image

>>> test1 = 10
>>> test2 = 20
>>> result = test1 + test2
>>> print('The result of adding {0} and {1} is {2}'.format(test1, test2,
 result))
The result of adding 10 and 20 is 30
>>>

Python inserts the value of each variable in the expression list in its associated positional
placeholder. The test1 variable value is placed in the {0} location, the test2 variable value is
placed in the {1} location, and the result variable value is placed in the {2} location.
Named Placeholders

Instead of using index values, for the named placeholder method, you assign names to each variable
value you want placed in the output string. You assign the names to each of the replacement values in
the expression list and then use the names in the placeholders in the output string, as in this example:
Click here to view code image

>>> vegetable = 'carrots'
>>> print('My favorite vegetable is {veggie}'.format(veggie=vegetable))
My favorite vegetable is carrots
>>>

http://www.python.org

Python replaces the {veggie} named placeholder with the value assigned to the veggie name in
the format() expression. If you have more than one named value in the expression, you just
separate them using commas, as shown here:
Click here to view code image

>>> vegetable = 'carrots'
>>> fruit = 'bananas'
>>> print('Fruit: {fruit}, Veggie: {veggie}'.format(fruit=fruit,
 veggie=vegetable))
Fruit: bananas, Veggie: carrots
>>>

You can also assign string and numeric values directly to the named placeholder, as in this example:
Click here to view code image

>>> print('My favorite fruit is a {fruit}.'.format(fruit='banana'))
My favorite fruit is a banana.
>>>

You might be thinking that so far all this does is add an extra layer of complexity to displaying string
values, with no additional purpose. However, the true power of the format() function comes in its
formatting capabilities. The next section examines those capabilities.

Formatting Numbers
The true power of the format() function comes into play when you need to display numeric values
in your output. By default, Python treats numeric values as strings in the output generated by the
print() function. That can lead to some pretty ugly printouts, as there’s no control over things such
as how many decimal places to display or whether to use scientific notation to display large values.
The format() function provides a wide array of formatting codes for you to specify exactly how
Python displays the values. You just place the formatting codes within the placeholder braces in the
string value, separated by a colon from the placeholder number or name.
You can use different formatting codes, based on the type of data you want to display. Here’s a quick
example to demonstrate:
Click here to view code image

>>> total = 3.4999999
>>> print('The total is {0:.2f}'.format(total))
The total is 3.50
>>>

This formatting code tells Python to round the floating-point value to two decimal places for you.
Now that’s handy! The following sections walk through the different codes you can use, based on the
data type of the value you need to display.
Integer Values

Displaying integer values doesn’t usually involve too much formatting. By default, Python just
displays integer values using the decimal format, which is usually just fine.
However, you can spice things up by specifying formatting codes to have Python convert the integer
value to another base (such as octal or hexadecimal) for the display automatically. Table 10.4 lists
the integer-formatting codes that are available.

TABLE 10.4 Integer-Formatting Codes
There’s nothing tricky about any of these codes. You just include them in the placeholder to output the
integer value in that format, as shown here:
Click here to view code image

>>> test1 = 154
>>> print('Binary: {0:b}'.format(test1))
Binary: 10011010
>>> print('Octal: {0:o}'.format(test1))
Octal: 232
>>> print('Hex: {0:x}'.format(test1))
Hex: 9a
>>>

Now you’re starting to see some of the built-in power of using the format() function for your
output!
Floating-Point Values

Displaying floating-point values can be somewhat of a pain. Not only do you have to worry about
small values with several places past the decimal point, you may also have to worry about very large
numbers. To get your floating-point values to display in a user-friendly manner, you can use the
floating-point formatting codes for the format() function. Table 10.5 shows what’s available for
you to use.

TABLE 10.5 Floating-Point Formatting Codes
With floating-point values, besides the formatting code, you can also specify the number of decimal
places Python should round the value to. Here’s an example of that:

Click here to view code image

>>> test1 = 10
>>> test2 = 3
>>> result = test1 / test2
>>> print(result)
3.3333333333333335
>>> print('The result is {0:.2f}'.format(result))
The result is 3.33
>>>

Without the format() function, the print() function displays the result variable value with
the repeating decimal places. The .2f format tells Python to round the value to two decimal places,
using a fixed-point format.
Sign Formatting

The format() function provides a way for you to define how Python handles the sign in a number.
The plus sign (+) tells Python that a sign should be used for both positive and negative numbers in the
output. The negative sign (-) tells Python that a sign should be used only for negative numbers. The
default is to use the sign only for negative numbers.
Here are a few examples of using the sign-formatting codes:
Click here to view code image

>>> test1 = 45
>>> print(test1)
45
>>> print('{0:+}'.format(test1))
+45
>>> test2 = -12.56
>>> print(test2)
-12.56
>>> print('{0:+.2f}'.format(test2))
-12.56
>>>

If you need your numeric columns to line up in the output, you can use a space for the sign formatting.
The space indicates that a leading space should be used on positive numbers, and a minus sign should
be used on negative numbers.
Positional Formatting

If you have to work with lining up numbers in columns, there are a few other formatting codes you can
use to help out. Table 10.6 describes the tools that are available to help align the numbers in your
output.

TABLE 10.6 Positional-Formatting Codes
With the left-align, right-align, and center formats, you specify the number of spaces reserved for the

number before the positional format code. Python then positions the number accordingly within that
space area, as you can see here:
Click here to view code image

>>> print('The result is {0:>10d}'.format(test1))
The result is 45
>>>

Python reserves 10 spaces for the output of the numeric value and then right-aligns the value within
that space area.
With all these formatting options, you should be able to create custom reports with numeric data in no
time!

Summary
This hour explores how Python handles text strings, and what functions you have available for
working with them. You can use slicing to extract substrings out of a larger string at a specific
location, or you can use the string-splitting functions to extract substrings based on a separation
character. You can also use some search functions to search through a string to find a substring value.
Finally, some handy string formatting functions help you format any output strings that your Python
scripts produce.
In the next hour, we’ll explore how to use files with your Python scripts. It’s important to know how
to store and retrieve data from your scripts, and using plain files is the easiest way to do that!

Q&A
Q. Does Python support searching for text in strings using regular expressions?
A. Yes. Regular expressions are complicated enough to have their own hour (see Hour 16,

“Regular Expressions”).
Q. Can you embed nonprintable and other characters in Python string values?
A. Yes, you can use Unicode escape encoding to embed any Unicode character using its numeric

code. Just precede the code with a \u. For example, the Unicode code for a space is 0020, so
to embed it in a string you use, do this:

Click here to view code image

>>> print('This\u0020is\u0020a\u0020test')
This is a test
>>>

Workshop
Quiz

1. What Python string function should you use to exchange a word in a string with another word?
a. swapcase()
b. split()
c. replace()
d. find()

2. The format() function can display decimal values in hexadecimal or binary formats. True
or false?

3. What format() function formatting code should you use to display a monetary value that
requires two decimal places?

Answers
1. c. The replace() function allows us to search for a specific string value and replace it with

another string value within a larger string value.
2. True. You can specify whether to use decimal, hexadecimal, or binary formats when you

display variable values using the format() function.
3. .2f. The “f” tells Python to display the value as a floating point number, and the “.2” tells it to

display only two decimal places of the floating point value. This is exactly what you need for
displaying monetary values!

Hour 11. Using Files

What You’ll Learn in This Hour:
 File types that Python can handle
 How to open a file
 Reading a file’s data
 Writing data to a file

Storing strings, lists, dictionaries, and so on in memory is fine for small Python scripts. However,
when writing large scripts, you need to store the data in files. In this hour, you will explore how to
use various files in your Python scripts.

Understanding Linux File Structures
Python can deal with various operating systems’ file structures. It can also handle the input and output
for text files, binary files, compressed files, and so on. If you want a language with great file-handling
capabilities that is also cross-platform, Python is your language.
Table 11.1 lists a few file types that Python can handle. Keep in mind that this is not a complete list!

TABLE 11.1 A Few File Types Python Can Process
Notice in Table 11.1 that the file types can overlap. For example, a numeric text file can be
compressed after it is created. The primary purpose of this table is to show that Python is extremely
flexible in its ability to handle various file formats.

By the Way: Overwhelming?
Don’t feel overwhelmed by the different file types in Table 11.1. The focus this hour is
on handling text files. (You can breathe a sigh of relief now.)

The various file types that Python can handle “live” in various places in the Raspbian directory
structure. Their type or purpose dictates their placement within the structure.

Looking at Linux Directories

The Linux directory structure is called an upside-down tree because the top of the directory structure
is called the root. Figure 11.1 shows the top root directory (/) with the subdirectories right beneath
it.

FIGURE 11.1 The subdirectories in the top root directory (/).

Each subdirectory stores particular files according to their purpose. Directory names are written in
two ways: as an absolute directory reference or as a relative directory reference.
An absolute directory reference always begins with the root directory. For example, when you log in
to your Raspberry Pi using the pi account, you are in the directory /home/pi. This is an absolute
directory reference because it starts with the root directory (/).

By the Way: Memory Trick
One way to remember that an absolute directory reference begins with the root
directory (/) is a simple memory sentence, like this: “Absolute directories absolutely
begin with the root directory.”

A relative directory reference does not begin with the root directory (/). Instead, it denotes a
directory relative to where your present working directory is now. Back in Hour 2, “Understanding
the Raspbian Linux Distribution,” you learned that a present working directory is where you are
currently located in the directory structure. You can see the present working directory by using the
pwd shell command. Listing 11.1 shows an example of using a relative directory reference.

LISTING 11.1 A Relative Directory Reference Example

Click here to view code image

pi@raspberrypi ~ $ pwd
/home/pi
pi@raspberrypi ~ $ ls py3prog
sample.py script0402.py script0702.py script0901.py script0903.py
script0401.py script0701.py script0703.py script0902.py script0904.py
pi@raspberrypi ~ $

In Listing 11.1, the pwd command is used to show the present working directory of the user pi. You
can see that the present working directory is /home/pi, which is an absolute directory reference.
Then the command ls py3prog is entered, in order to display the Python scripts currently located
within the py3prog subdirectory. The ls command uses a relative directory reference. To use an
absolute directory reference, the command would be ls /home/pi/py3prog.
To help you learn about using files in Python, the rest of this book uses the directories shown in Table

11.2.

TABLE 11.2 Python Directories for This Book
Test yourself here. In Table 11.2, which type of directory reference is used: absolute or relative?

Managing Files and Directories via Python
You learned how to create directories in Hour 2. You were the one who created the
/home/pi/py3prog directory by using the mkdir shell command. Now you will learn how to
manage files and make directories by using a Python program!
Python comes with a multiplatform function called os. The os function allows you to conduct
various operating system functions, such as creating directories. Table 11.3 lists some of the os
methods you can use to manage files and directories in Python.

TABLE 11.3 A Few os Function Methods
The os function is not a built-in Python function. Therefore, you need to issue the Python statement
import os before you can use the methods listed in Table 11.3.

Did You Know: More os, Please
The os function has a great deal more methods than shown here. To learn about these
methods, go to docs.python.org/3/library/os.html.

Listing 11.2 shows a few of the os function’s methods being used. You can see on line 8 that the os
function is imported, and a new subdirectory is created on line 11. The present working directory is
then changed to the newly created subdirectory on line 12.

LISTING 11.2 Using the os Function

Click here to view code image

1: pi@raspberrypi ~ $ pwd
2: /home/pi
3: pi@raspberrypi ~ $ python3
4: Python 3.2.3 (default, Jan 28 2013, 11:47:15)
5: [GCC 4.6.3] on linux2
6: Type "help", "copyright", "credits" or "license" for more information.
7: >>>
8: >>> import os
9: >>> os.getcwd()
10: '/home/pi'
11: >>> os.mkdir('MyNewDir')
12: >>> os.chdir('MyNewDir')
13: >>> os.getcwd()
14: '/home/pi/MyNewDir'
15: >>>

Handling these methods within Python allows you to manage directories from within your scripts.
You can create and use files within these directories.

Opening a File
To access a file in a Python script, you use the built-in open function. This is the basic syntax for
using this function:
Click here to view code image

filename_variable = open (filename, options)

Several options can be used in the open function, as shown in Table 11.4.

TABLE 11.4 open Function Options
Which options are used typically depends on which file type (see Table 11.1) you are opening. For
learning purposes here, the focus is on the mode option of the open function.

Designating the Open Mode
For the mode option in the open function, several modes can be designated, as shown in Table 11.5.

TABLE 11.5 The open Function mode Designations
For all the options a b and/or a + can be tacked onto the end. For example, the r option can be r+,
rb, or rb+. A b tacked onto a mode indicates that the file is binary. Thus, the mode wb indicates that
a binary file is being open to be written to. The + tacked onto a mode indicates two things. One is that
the file pointer will be at the beginning of the file. The other is that the file is open for both reading
and writing/appending.

Did You Know: What Is a File Pointer?
Think of a file pointer as a place keeper. It keeps your current place in the file for you
as your script reads (or writes) data from the file.

In Listing 11.3, a file called May2012TempF.txt is opened. Before it is opened, a few of the os
functions are used to navigate to the file’s location.

LISTING 11.3 Opening the Temperature File

Click here to view code image

>>> import os
>>> os.chdir('/home/pi/data')
>>> os.getcwd()
'/home/pi/data'
>>>
>>> temp_data_file = open('May2012TempF.txt','r')
>>>

Once the file is opened, methods on the file can be done using the variable temp_data_file.
Notice in Listing 11.3 that when the open function was used, both the file’s name and the mode
arguments were passed as strings. You can also use variables as arguments, if desired.

Using File Object Methods
You can act on an opened file by using its variable name. The file’s variable name in Listing 11.3 is
temp_data_file. This variable name, called a file object, has methods associated with it. For
example, once a file is open, you can check various file attributes. Table 11.6 shows a few of file
object methods for checking file attributes.

TABLE 11.6 File Object Methods for File Attributes
Going back to the example used in Listing 11.3, you can see in Listing 11.4 these file object methods
being used to determine current file attributes.

LISTING 11.4 Determining File Attributes

Click here to view code image

...
>>> os.getcwd()
'/home/pi/data'
>>> temp_data_file = open('May2012TempF.txt', 'r')
>>>
>>> temp_data_file.closed
False
>>> temp_data_file.mode
'r'
>>> temp_data_file.name
'May2012TempF.txt'
>>>

Notice that the result of the .name method returns the name used in the open function. In this case,
the file name used does not need to include an absolute directory reference. This is because the file is
located in the present working directory. In Listing 11.5, the file to be opened is not in the present
working directory, so a slight change has to be made in the open argument.

LISTING 11.5 Opening a File Using Absolute Directory Reference

Click here to view code image

...
>>> os.getcwd()
'/home/pi'
>>> temp_data_file = open('/home/pi/data/May2012TempF.txt', 'r')
>>> temp_data_file.name
'/home/pi/data/May2012TempF.txt'
>>>

Notice in Listing 11.5, that the absolute directory reference is used for the file name in the open
function. When this is done, the file object method .name returns the entire file’s name and its
directory location. Therefore, you can see that these file object methods are based on the attributes
used in the open function.

Now that you know how to open a file, you should learn how to read one. Reading files is the next
item on this hour’s agenda.

Reading a File
To read a file, of course, you must first use the open function to open the file. The mode chosen must
allow the file to be read, which the r mode does. After the file is opened, you can read an entire file
into your Python script in one statement, or you can read the file line by line.

Reading an Entire File
You can read a text file’s entire contents into a variable by using the file object method .read, as
shown in Listing 11.6.

LISTING 11.6 Reading an Entire File into a Variable

Click here to view code image

...
1: >>> temp_data_file = open('/home/pi/data/May2012TempF.txt', 'r')
2: >>>
3: >>> temp_data = temp_data_file.read()
4: >>> type (temp_data)
5: <class 'str'>
6: >>> print (temp_data)
7: 1 79
8: 2 84
9: 3 85
10: ...
11: 29 92
12: 30 81
13: 31 76
14: >>> print(temp_data[0])
15: 1
16: >>> print(temp_data[0:4])
17: 1 79
18: >>>

In Listing 11.6, you can see that the variable temp_data is used to receive the entire file contents
from the .read method on line 3. The data comes in as a string into the temp_data variable, as
shown on lines 4 and 5, using the type function. You can then access the file data now stored in the
variable by using string slicing. This is shown on lines 14 through 17. (You learned about string
slicing in Hour 10, “Working with Strings.”)

Reading a File Line by Line
With Python, you can have a file read line by line. To read a file line by line into a Python script, you
use the .readline method.

By the Way: What Is Considered a Line?
From Python’s point of view, a text file line is a string of characters of any length that
is terminated by the newline escape sequence, \n.

In Listing 11.7, the .readline method is used on the temperature file,
/home/pi/data/May2012TempF.txt. A for loop is used to iterate through the file, line by
line, printing out each read file line.

LISTING 11.7 Reading a File Line by Line

Click here to view code image

>>> temp_data_file = open('/home/pi/data/May2012TempF.txt', 'r')
>>>
>>> for the_date in range (1, 31 + 1):
... temp_data = temp_data_file.readline()
... print (temp_data,end = '')
...
1 79
2 84
3 85
...
29 92
30 81
31 76
>>>

Notice in Listing 11.7 that when printing out the temperature data, the print functions newline (\n)
has to be suppressed by using end=''. This is needed because the data already has a \n character
on the end of each line. If you do not suppress the print function’s newline (\n), your output will
be double spaced.

Did You Know: Stripping Off the Newline!
There may be times when you need to remove the newline characters that are read into
your Python script by the .readline method. You can achieve this by using the
strip method. Since the newline character is on the right side of the line string, you
more specifically use the .rstrip method. If this method were used in Listing 11.7,
it would look like this: temp_data = temp_data.rstrip('\n').

Reading a file line by line, as you would expect, reads the file in sequential order. Python maintains a
file pointer that keeps track of its current position in a file. You can see this file pointer getting
updated after each line read by using the .tell method. In Listing 11.8, the .tell method is
performed right after the file is opened on line 2. You can see that the file pointer is set to 0, or the
beginning of the file.

LISTING 11.8 Following the File Pointer Using .tell

Click here to view code image

1: >>> temp_data_file = open('/home/pi/data/May2012TempF.txt', 'r')
2: >>> temp_data_file.tell()
3: 0
4: >>> for the_date in range (1, 31 + 1):

5: ... temp_data = temp_data_file.readline()
6: ... print (temp_data,end = '')
7: ... temp_data_file.tell()
8: ...
9: 1 79
10: 5
11: 2 84
12: 10
13: 3 85
14: 15
15: ...
16: 29 92
17: 165
18: 30 81
19: 171
20: 31 76
21: 177
22: >>>

So that you can see the process of the file pointer, another .tell method is embedded in Listing
11.8, inside the for loop on line 7. After each line is read and printed out, the file pointer is updated
to the next character to read.

Reading a File Nonsequentially
You can actually use the file pointer from Listing 11.8 to directly access data within the file. This
requires you to know where the data is located, as with string slicing. To do this, you need to use the
.seek and .read methods.
For a text file, the .read method has the following basic syntax:
Click here to view code image

filename_variable.read(number_of_characters)

In Listing 11.9, you can see in line 1 that the .read method is used on temp_data_file to read
in the first four characters of the file. Using the .tell method on line 4, the file pointer is now
pointing at character number 4. The next .read, on line 6, grabs only one character, which is the
newline (\n) escape sequence. This is why the subsequent print command on line 7 prints out two
blank lines (lines 8 and 9).

LISTING 11.9 Reading File Data Using .read

Click here to view code image

1: >>> temp_data = temp_data_file.read(4)
2: >>> print (temp_data)
3: 1 79
4: >>> temp_data_file.tell()
5: 4
6: >>> temp_data = temp_data_file.read(1)
7: >>> print (temp_data)
8:
9:
10: >>> temp_data_file.tell()
11: 5

12: >>> temp_data = temp_data_file.read(4)
13: >>> print (temp_data)
14: 2 84
15: >>> temp_data_file.tell()
16: 9
17: >>>

To reposition the file pointer back to the beginning of the file, you need to use the .seek method.
The .seek method has the following basic syntax:
Click here to view code image

filename_variable.seek(position number)

The position number for the start of the file is 0. Listing 11.10 shows an example of using
.seek and .read to read a file nonsequentially.

LISTING 11.10 Repositioning the File Pointer Using .seek

Click here to view code image

1: >>> temp_data_file.seek(0)
2: 0
3: >>> temp_data = temp_data_file.read(4)
4: >>> print (temp_data)
5: 1 79
6: >>> temp_data_file.seek(25)
7: 25
8: >>> temp_data = temp_data_file.read(4)
9: >>> print (temp_data)
10: 6 84
11: >>>

Notice in Listing 11.10 that after the file pointer is position at 0 on line 1, the .read method is set to
read the next four characters in the file. This is very similar to how the .readline method works
in Listing 11.7. However, because only four characters are read in this example, the newline (\n)
does not need to be suppressed in the print function on line 4.
You need to notice one more item to note in Listing 11.10 before you can move on to the Try It
Yourself section. On line 6, the file pointer is positioned at character 25. This allows the next
.read method to read the four characters starting at that position on line 9. Thus, using the .seek
and .read methods allows you to read a file nonsequentially.

Try It Yourself: Open a File and Read It Line by Line
In the following steps, you will create a file outside Python. After it is created, you
will enter the Python interactive shell environment, open the created file, and read it
into Python line by line. In these steps, you will try out another more elegant way to
read through a file. And, hopefully, have a little fun along the way. Here’s what you
do:

1. If you have not already done so, power up your Raspberry Pi and log in to the
system.

2. If you do not have the LXDE GUI started automatically at boot, start it now by typing
startx and pressing Enter.

3. Open the LXTerminal by double-clicking the LXTerminal icon.
4. At the shell prompt, type mkdir /home/pi/data and press the Enter key. The

shell command creates the data subdirectory needed for storing your permanent
Python data files.

5. You need to create a new blank file in your new directory. Do this by typing
touch/home/pi/data/friends.txt at the shell prompt and pressing Enter.

6. Double-check that the file is there by typing ls data and pressing Enter. You
should see the file friends.txt listed. Notice that when you enter the ls
command, you use a relative directory reference of data instead of an absolute
directory reference of /home/pi/data.

7. Using a shell command in order to write records to the friends.txt file, type
echo "Chris" > /home/pi/data/friends.txt and press Enter.

8. Another shell command will be used to append another friend to the bottom of the
file, friends.txt. Type echo "Zach" >> /home/pi/data/friends.txt
and press Enter. (Note that two greater-than signs (>>) are used this time.)

9. Type echo "Karl" >> /home/pi/data/friends.txt and press Enter.
10. Type echo "Zoe" >> /home/pi/data/friends.txt and press Enter.
11. Type echo "Simon" >> /home/pi/data/friends.txt and press

Enter. (Yes, this is tedious. But it will help you appreciate writing to a file later this
hour all the more.)

12. Type echo "John" >> /home/pi/data/friends.txt and press Enter.
13. Type echo "Anton" >> /home/pi/data/friends.txt and press

Enter. (Do you recognize these names yet?)
14. Finally, you are all done creating your friends.txt file! Take a look at its contents by

typing cat data/friends.txt and pressing Enter. Don’t worry if there are
typos in your file. Just note them, so they won’t cause you confusion later on in this
section.

15. Type pwd and press Enter. Take note of your present working directory.
16. Open the Python interactive shell by typing python3 at the shell prompt and

pressing Enter.
17. At the Python interactive shell prompt, >>>, type import os and press Enter to

import the os function into your Python shell.
18. Type os.getcwd() and press Enter. You should see the same present working

directory displayed that you saw in step 15.
19. To move down into the data subdirectory, type os.chdir('data') and press

Enter.
20. Type os.listdir() and press Enter. Do you see the file friends.txt listed

in the output of this command? You should see it!

21. You will create a file object and open your friends.txt file. Type
my_friends_file = open ('friends.txt','r') at the prompt and
press Enter.

22. Create a for loop to read the friends file you just opened, line by line, by typing in
for my_friend in my_friends_file: and pressing Enter. Wait a minute!
Where is the range statement? Don’t worry. You can elegantly loop through the
friends.txt file by using this for loop structure. Just wait and see.

23. Press the Tab key one time and then type print (my_friend, end=' ').
That’s right! There is no readline method included in this loop.

24. To see this nice little loop read through the friends.txt file, press the Enter key
two times. You should see results similar to the output in Listing 11.11.

LISTING 11.11 Reading friends.txt Line by Line

Chris
Zach
Karl
Zoe
Simon
John
Anton
>>>

25. Press Ctrl+D to exit the Python interactive shell.
26. If you want to power down your Raspberry Pi now, type sudo poweroff and

press the Enter key.

The new style of for loop you used in these steps does not require any read methods. This is
because you can use a file object variable as a method for iterating through the file.
One item that has been very sloppily handled so far in this book is closing files. Notice in step 25 that
you just quit out of the Python interactive shell, without doing any proper file closure. In the next
section, you will learn how to properly close a file.

Closing a File
When a file is opened in almost any program, it is considered good form to close it before you exit
that program. This is true in Python scripting as well. The general syntax for closing an opened file is:

filename_variable.close ()

In Listing 11.12, the temperature file is opened and then closed. Whether or not the file is opened is
tested two times by the .closed method.

LISTING 11.12 Closing the Temperature File

Click here to view code image

>>> temp_data_file = open('/home/pi/data/May2012TempF.txt','r')
>>> temp_data_file.closed
False
>>> temp_data_file.close() # Close the temperature data file.
>>> temp_data_file.closed
True
>>>

Python automatically closes a file if its file name variable is reassigned to another file. However,
when you’re writing to a file, closing a file can be critical. This is due to the fact that the operating
system buffers the write methods in memory. The data is written to the file only when the buffer
reaches a certain level. When a file is closed in Python, the buffer in memory is automatically written
to the file, whether it is full or not. Not properly closing a file could leave your file’s data in a very
interesting state!
You can see why it is considered good form to properly close a file, especially if it is being written
to. This leads to the next topic of this hour: writing to a file.

Writing to a File
A file can be opened for writing only, or it can be opened to be read and written. The open mode for
writing a text file is either w or a, depending on whether you want to create a new file or append to
an old one. Adding a + at the end of the w or a open mode allows you to both read and write to the
file.

Creating and Writing to a New File
Listing 11.13 shows a new text file opened using the open function. In this case, a new file is needed
to hold new temperature data.

LISTING 11.13 Opening a File for Creation and Writing

Click here to view code image

pi@raspberrypi ~ $ ls /home/pi/data
friends.txt May2012TempF.txt
pi@raspberrypi ~ $
pi@raspberrypi ~ $ python3
Python 3.2.3 (default, Jan 28 2013, 11:47:15)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>
>>> import os
>>> os.listdir('/home/pi/data')
['friends.txt', 'May2012TempF.txt']
>>>
>>> ctemp_data_file = open('/home/pi/data/May2012TempC.txt', 'w')
>>>
>>> os.listdir('/home/pi/data')
['friends.txt', 'May2012TempC.txt', 'May2012TempF.txt']
>>>

You can see in Listing 11.13 that the file May2012TempC.txt was nonexistent before the open

function was used. Once the file was opened, using the w mode, the text file was created.

Watch Out!: Write Mode Removes
Keep in mind that if a file is opened in write mode, w, using the open function, and it
already exists, the entire file’s contents will be erased! To preserve a preexisting file,
use the append, a, mode to open a file. See the next section in this hour, “Writing to a
Preexisting File,” for how to accomplish appending to a file.

Once the file is properly opened in the correct mode, you can begin to write data to it by using the
.write method. Again using the example from Hour 9, “Dictionaries and Sets,” now you can read a
file containing temperatures in Fahrenheit, convert the temperatures to Celsius, and then write the data
to a new file.
In Listing 11.14, the Fahrenheit file May2012TempF.txt is open for reading, so the temperatures
in it can be converted to Celsius. The Celsius file May2012TempC.txt is opened for writing.
Included on line 5 is a for loop for reading the Fahrenheit temperatures from the Fahrenheit file.
Notice that the for loop is the more elegant version of a file reading loop that you used in the Try It
Yourself section of this hour.

LISTING 11.14 Writing to the Celsius Temperature File

Click here to view code image

1: >>> ftemp_data_file = open ('/home/pi/data/May2012TempF.txt', 'r')
2: >>> ctemp_data_file = open ('/home/pi/data/May2012TempC.txt', 'w')
3: >>>
4: >>> date_count = 0
5: >>> for ftemp_data in ftemp_data_file:
6: ... ftemp_data = ftemp_data.rstrip('\n')
7: ... ftemp_data = ftemp_data[2:len(ftemp_data)]
8: ... ftemp_data = ftemp_data.lstrip(' ')
9: ... ftemp_data = int(ftemp_data)
10: ... ctemp_data = round((ftemp_data - 32) * 5/9, 2)
11: ... date_count += 1
12: ... ctemp_data = str(date_count) + ' ' + str(ctemp_data) + '\n'
13: ... ctemp_data_file.write(ctemp_data)
14: ...
15: 8
16: 8
17: 8
18: ...
19: 9
20: 9
21: 9
22: >>> ftemp_data_file.close()
23: >>> ctemp_data_file.close()

After the Fahrenheit temperature is read into the variable ftemp_data, some processing is needed
to pull out the temperature from the read-in data. First, on line 6, the newline escape sequence is
stripped off. On line 7, the temperature is obtained using string slicing. (You learned about string
slicing in Hour 10.) Before calculations start, any preceding blank spaces are stripped off in line 8,

and the temperature data character string is turned into an integer on line 9.

By the Way: A Number Is a String
When reading in data from a text file in Python, numbers are not typed as numeric, such
as integer or floating point. Instead, Python assigns them the character string type
(str).
Also, when writing a number to a text file, you need to perform a conversion. A
number must be converted from its numeric type to a character string before it is
written to a text file.

The temperature is converted from Fahrenheit to Celsius on line 10 of Listing 11.14. Before the data
can be written to the new Celsius text file, it must be converted from floating point to character string,
which happens on line 12. A character string with all the needed data is created on line 12 because
the .write method can accept only one argument. Notice also on line 12 that a newline escape
sequence is added at the end of the string to act as a data separator. Now the data can be written to the
new file on line 13 in Listing 11.14.

By the Way: What Are Those Numbers?
In Listing 11.14, you can see a partial string of 8s and 9s after the .write method in
the code. This is because the .write method displays to output how many characters
it wrote to a text file or how many bytes it wrote to a binary file.

After all the data has been read from the Fahrenheit file, processed, and written out to the Celsius file,
the files should be closed. Remember that closing files is important when writing to a file, and it’s
considered good form. The files are closed on lines 22 and 23 in Listing 11.14.
So does everything work in this example? The Fahrenheit temperature data is properly read in,
converted, and written out to the Celsius file, as shown in Listing 11.15.

LISTING 11.15 The Celsius Temperature File

Click here to view code image

pi@raspberrypi ~ $ cat /home/pi/data/May2012TempC.txt
1 26.11
2 28.89
3 29.44
4 29.44
...
28 33.33
29 33.33
30 27.22
31 24.44
pi@raspberrypi ~ $

Note that each Celsius temperature has the day of the month it was recorded and is displayed in
floating-point format. Also notice that each temperature is on its own line in the text file. This is

because the newline \n escape sequence was tacked onto the end of each Celsius temperature data
string in Listing 11.14, line 12.

Writing to a Preexisting File
You tell Python that written data will be appended to a preexisting file via the open function. After
that, writing data to a preexisting file using the .write method is no different than using the
.write method for writing data to a new file.
In Listing 11.16, the Celsius temperature file is opened. This file was just filled with data in the last
section of this hour.

LISTING 11.16 Opening a File to Append to It

Click here to view code image

>>> ctemp_data_file = open ('/home/pi/data/May2012TempC.txt', 'a')
>>>

The open statement’s mode setting keeps the file’s data from being overwritten. The mode is set to
a, which does two things. First, it preserves the current data. Second, the file pointer is set to point at
the end of the file. Thus, any .write methods that occur, start writing at the file’s bottom, and no
data is lost.

Try It Yourself: Open a File and Write to It
In the last Try it Yourself, you created a file outside Python. In the following steps, you
get to create a file inside Python! Before you can complete these steps, you need to
have completed the last Try It Yourself in this hour. If you haven’t, go back and do it
now! When you’re ready, follow these steps:

1. If you have not already done so, power up your Raspberry Pi and log in to the
system.

2. If you do not have the LXDE GUI started automatically at boot, start it now by typing
startx and pressing Enter.

3. Open the LXTerminal by double-clicking the LXTerminal icon.
4. Open the Python interactive shell by typing python3 at the shell prompt and

pressing Enter.
5. To open the file needed, at the Python interactive shell prompt, >>>, type
my_friends_file = open
('/home/pi/data/friends.txt','w+') and press Enter. Wait! Won’t
this delete the contents of the friends.txt file you created in the last Try It
Yourself section? Yes, you are correct. Opening the file using the w mode will
indeed clear out the friends.txt file. But, don’t worry. You will be rebuilding
it. This is why you use the +. After you fill the file with data, you will be reading it.

6. Create a for loop to create the friends file, using keyboard input by typing for
friend_count in range(1, 7+1): and pressing Enter.

7. Press the Tab key one time to properly indent under the for loop. Now that you are
properly indented, type my_friend = input("Friend's name: ") and
press Enter. (You learned about getting keyboard input into a Python script in Hour 4,
“Understanding Python Basics.” Go back there to refresh your memory if needed.)

8. Press the Tab key one time to properly indent under the for loop. Now that you are
properly indented, type my_friend = my_friend + '\n' and press Enter.
Python will now add the needed newline escape sequence to the end of each friend’s
name.

9. Press the Tab key one time to maintain the proper indentation under the for loop.
Type my_friends_file.write(my_friend) and press Enter. This Python
statement causes the name to be written out to the friends.txt file.

10. Press the Enter key two times to kick off your loop for filling the friends.txt
file with data.

11. Each time the loop asks you for a friend’s name, enter a name from this list and then
press Enter:

Chris
Zack
Karl
Zoe
Simon
John
Anton
Don’t let it throw you that a number displays after each name you enter. Remember
that the .write method displays the number of characters it wrote to a file. (Have
you figured out who these people are yet?)

12. So that you can now read the file from the beginning, reset the file pointer to the start
of the file by typing my_friends_file.seek(0) and pressing Enter.

13. Create a for loop to read the newly populated friends file by typing for
my_friend in my_friends_file: and pressing Enter. Notice that there is
no need to close and reopen the file. This is because in step 5, the file was opened
with the mode w+, which allows you to write to the file and read it.

14. Press the Tab key one time and then type print (my_friend, end=' ').
This causes the data read into the Python script from the file to be displayed to your
screen.

15. Press the Enter key two times. You should see the friends’ names from the
friends.txt file displayed to the screen.

16. Close the friends.txt file by typing my_friends_file.close() and
pressing the Enter key. Now the file is properly closed.

17. Just to double-check, type my_friends_file.closed and press the Enter key.
If the file is truly closed, you should receive back the word True. If you get False,

repeat step 16.
18. Press Ctrl+D to exit the Python interactive shell.
19. If you want to power down your Raspberry Pi now, type sudo poweroff and

press the Enter key.

Creating the /home/pi/data/friends.txt file this time was much easier than it was in the last Try It
Yourself section! By now you should have a good handle on how to open, close, read, and write data
files.

Summary
In this hour, you read about using files in Python. You saw how to open a file and how to close a file.
Also, you were introduced to Python statements and structures that allow you to read from a file and
write to a file. You got to try out both writing to a file in the dash shell and reading it, and then
writing to a file within Python and reading it. In Hour 12, “Creating Functions,” you will investigate
how to create your own Python functions, which means you are starting to move into more advanced
Python concepts.

Q&A
Q. Which directory reference is used in Table 11.2?
A. The directories shown in Table 11.2 use an absolute directory reference. Remember that an

absolute directory reference absolutely starts with the root directory. Therefore,
/home/pi/py3prog, /home/pi/temp, and /home/pi/data are all absolute
directory references.

Q. What is pickling?
A. Pickling is a method of preserving vegetables, such as cucumbers, in a salty vinegar solution.

But you are probably asking about pickling data, mentioned in Table 11.1, and not vegetables.
Pickling is a method of transforming a Python object, such as a dictionary, into a series of bytes
for storage into a file. Turning an object into a series of bytes is called serializing an object.
You need to import the pickle function to perform pickling of objects.
The advantage of pickling is that it allows you to quickly and easily handle objects. A pickled
object can be read from a file into a single variable. The disadvantage is that pickling has no
security measures built around it. Therefore, you could cause a system to be compromised by
using it.

Q. How can I keep the .write method from displaying the number of characters it has
written during the running of a Python script?

A. You can use a “cheat” method. Import the non-built-in function sys. Then before using your
.write method, redirect the terminal output by typing in the following statement:
sys.stdout = open ('/dev/null', 'w'). This sends the characters written as
output to “nowhere.” However, be very careful using a feature like this! You will also send
any error messages to “nowhere” as well!

Q. I can’t figure it out. Who are those people in the friends.txt file?

A. Here’s a hint: They are Sci-Fi related.

Workshop
Quiz

1. The os function is a built-in function. True or false?
2. Which file object methods can be used to read a text file in a random-access manner?
3. To open a file to be both read and written, which mode should be used in the open function

statement?
a. w+
b. r&w
c. r+

Answers
1. False. The os function is not a built-in function. You must import it to use its various methods.

To import the os function, you use the Python statement import os.
2. The .read and .seek file object methods can be used to read a text file in a random-access

(nonsequential) manner. You use the .seek method to put the file pointer in the correct
position in the file. You use the .read method to read a particular number of characters from
the file.

3. This is a trick question! Both answers a and c are correct. Remember that tacking on a + to
either r or w will allow the file to have the other option done to it as well. Therefore, w+ lets
you read and write to a file, and r+ also lets you read and write to a file.

Hour 12. Creating Functions

What You’ll Learn in This Hour:
 How to create your own functions
 Retrieving data from functions
 Passing data to functions
 Using lists with functions
 Using functions in your Python scripts

Often while writing Python scripts, you’ll find yourself using the same code in multiple locations.
With just a small code snippet, that’s usually not a big deal. However, rewriting large chunks of code
multiple times in your Python scripts can get tiring. Python helps you out by supporting user-defined
functions. You can encapsulate your Python code into a function and then use it as many times as you
want, anywhere in your script. This hour walks you through the process of creating your own Python
functions and demonstrates how to use them in other Python script applications.

Utilizing Python Functions in Your Programs
As you start writing more complex Python scripts, you’ll find yourself reusing parts of code that
perform specific tasks. Sometimes it’s something simple, such as displaying a text message and
retrieving an answer from the script users. Other times it’s a complicated calculation that’s used
multiple times in a script as part of a larger process.
In each of these situations, writing the same blocks of code over and over again in your script can get
tiresome. It would be nice to just write the block of code once and then be able to refer to that block
of code other places in your script, without having to rewrite it.
Python provides a feature that allows you to do just that. Functions are blocks of script code that you
assign names to, and then you can reuse them anywhere in your code. Any time you need to use that
block of code in your script, you simply use the name you assigned to the function; this is referred to
as calling the function. The following sections describe how to create and use functions in your
Python scripts.

Creating a Function
To create a function in Python, you use the def keyword followed by the name of the function, with
parentheses, as shown here:

def name():

Note the colon at the end of the statement. By now you should recognize that this means there’s more
code associated with the statement. You just place any code that you want in your function under the
function statement, indented, like this:

def myfunction():
 statement1
 statement2

 statement3
 statement4

With Python, there’s no “end of function” type of delimiter statement. When you’re done with the
statements contained within the function, you just place the next code statement back on the left
margin.

Using Functions
To use a function in a Python script, you specify the function name on a line, just as you would any
other Python statement. Listing 12.1 shows the script1201.py program, which demonstrates how to
define and use a function in a sample Python script.

LISTING 12.1 Defining and Using Functions in a Script

Click here to view code image

#!/usr/bin/python3

def func1():
 print('This is an example of a function')

count = 1
while(count <= 5):
 func1()
 count = count + 1

print('This is the end of the loop')
func1()
print('Now this is the end of the script')

The code in the script1201.py script defines a function called func1(), which prints out a
line to let you know it ran. The script then calls the func1() function from inside a while loop, so
the function runs five times. When the loop finishes, the code prints out a line, calls the function one
more time, and then prints out another line to indicate the end of the script.
When you run the script, you should see this output:
Click here to view code image

pi@raspberrypi ~ $ python3 script1201.py
This is an example of a function
This is an example of a function
This is an example of a function
This is an example of a function
This is an example of a function
This is the end of the loop
This is an example of a function
Now this is the end of the script
pi@raspberrypi ~ $

The function definition doesn’t have to be the first thing in your Python script, but be careful. If you
attempt to use a function before it’s defined, you get an error message. Listing 12.2 shows an example
of this with the script1202.py program.

LISTING 12.2 Trying to Use a Function Before It’s Defined

Click here to view code image

#!/usr/bin/python3

count = 1
print('This line comes before the function definition')

def func1():
 print('This is an example of a function')

while(count <= 5):
 func1()
 count = count + 1

print('This is the end of the loop')
func2()
print('Now this is the end of the script')

def func2():
 print('This is an example of a misplaced function')

When you run the script1202.py function, you should get an error message:
Click here to view code image

pi@raspberrypi ~ $ python3 script1202.py
This line comes before the function definition
This is an example of a function
This is an example of a function
This is an example of a function
This is an example of a function
This is an example of a function
This is the end of the loop
Traceback (most recent call last):
 File "script1202.py", line 14, in <module>
 func2()
NameError: name 'func2' is not defined
pi@raspberrypi ~ $

The first function, func1(), is defined after a couple of statements in the script, which is perfectly
fine. When the func1() function is used in the script, Python knows where to find it.
However, the script attempts to use the func2() function before it is defined. Because the
func2() function isn’t defined yet when the script reaches the place where you use it, you get an
error message.
You also need to be careful about function names. Each function name must be unique, or you have
problems. If you redefine a function, the new definition overrides the original function definition,
without producing any error messages. Take a look at the script1203.py script in Listing 12.3
for an example of this.

LISTING 12.3 Trying to Redefine a Function

Click here to view code image

#!/usr/bin/python3

def func1():
 print('This is the first definition of the function name')

func1()

def func1():
 print('This is a repeat of the same function name')
func1()
print('This is the end of the script')

When you run the script1203.py script, you should get this output:
Click here to view code image

pi@raspberrypi ~ $ python3 script1203.py
This is the first definition of the function name
This is a repeat of the same function name
This is the end of the script
pi@raspberrypi ~ $

The original definition of the func1() function works fine, but after the second definition of the
func1() function, any subsequent uses of the function use the second definition instead of the first
one.

Returning a Value
So far the functions that you’ve used have just output a string and ended. Python uses the return
statement to exit a function with a specific value. With the return statement, you can specify a
value that the function returns back to the main program after it finishes, and then it uses that value
back in the main program.
The return statement must be the last statement in the function definition, as shown here:

def func2():
 statement1
 statement2
 return value

In the main program, you can assign the value returned by the function to a variable and then use it in
your code. Listing 12.4 shows the script1204.py script, which demonstrates how to do this.

LISTING 12.4 Returning a Value from a Function

Click here to view code image

#!/usr/bin/python3

def dbl():
 value = int(input('Enter a value: '))
 print('doubling the value')
 result = value * 2
 return result

x = dbl()
print('The new value is ', x)

In the script1204.py code, you define a function called dbl() that prompts for a number,
converts the answer to an integer, and then multiples it by 2 and returns it.
Then in the application part of the code, you call the dbl() function and assign its output to the
variable x. If you run the script1204.py script and enter a value at the prompt, you should see
these results:
Click here to view code image

pi@raspberrypi ~ $ python3 script1204.py
Enter a value: 10
doubling the value
The new value is 20
pi@raspberrypi ~ $

By the Way: Returning Values
In this example, the function returns an integer value, but you can also return strings,
floating-point values, and even other Python objects!

Passing Values to Functions
You might have noticed in the functions defined so far this hour that they have all created their own
data. However, most functions don’t operate in a vacuum but require information from the main
program to process. The following sections discuss how you can ensure that information gets to the
Python functions you create.

Passing Arguments
You pass values into a function from your main program by using arguments. Arguments are values
enclosed within the function parentheses, like this:

result = funct3(10, 50)

To retrieve the argument values in your Python functions, you define parameters in the function
definition. Parameters are variables you place in the function definition to receive the argument
values when the main program calls the function.
Here’s an example of defining a function that uses parameters:

>>> def addem(a, b):
 result = a + b
 return result

>>>

The addem() function defines two parameters. The a variable receives the first argument value, and
the b variable receives the second argument value. You can then use the a and b variables anywhere
within the function code.
Now when you call the addem() function from your Python code, you must pass two argument
values:

>>> total = addem(10, 50)
>>> print(total)
60

>>>

If you don’t provide any arguments, or if you provide the incorrect number of arguments, you get an
error message from Python, like this:
Click here to view code image

>>> total = addem()
Traceback (most recent call last):
 File "<pyshell#7>", line 1, in <module>
 total = addem()
TypeError: addem() missing 2 required positional arguments: 'a' and 'b'
>>> total = addem(10, 20, 30)
Traceback (most recent call last):
 File "<pyshell#8>", line 1, in <module>
 total = addem(10, 20, 30)
TypeError: addem() takes 2 positional arguments but 3 were given
>>>

If you pass string values as arguments, it’s important to remember to use quotes around the values, as
shown here:
Click here to view code image

>>> def greeting(name):
 print('Welcome', name)

>>> greeting('Rich')
Welcome Rich
>>>

If you don’t place the quotes around the string value, Python thinks you’re trying to pass a variable, as
shown in this example:
Click here to view code image

>>> greeting(Barbara)
Traceback (most recent call last):
 File "<pyshell#13>", line 1, in <module>
 greeting(Barbara)
NameError: name 'Barbara' is not defined
>>>

This brings up a good point: You can use variables as arguments when calling a function, as shown
here:

>>> x = 100
>>> y = 200
>>> total = addem(x, y)
>>> print(total)
300
>>>

Inside the addem() function, Python retrieves the value stored in the x variable in the main program
and stores it in the a variable inside the function. Likewise, Python retrieves the value stored in the y
variable in the main program and stores it in the b variable inside the function.

Watch Out!: Positional Parameters

Be careful when passing arguments to your Python functions. Python matches the
argument values in the same order that you define them in the function parameters.
These are called positional parameters.

Setting Default Parameter Values
Python allows you to set default values assigned to parameters if no arguments are provided when the
main program calls the function. You just set the default values inside the function definition, like this:
Click here to view code image

>>> def area(width = 10, height = 20):
 area = width * height
 return area

>>>

The area() function definition defines default values for the two parameters. If you call the
area() function with arguments, Python uses those arguments in the function and overrides the
default values, as shown here:

>>> total = area(15, 30)
>>> print(total)
450
>>>

However, if you call the function without any arguments, instead of giving you an error message,
Python uses the default values assigned to the parameters, like this:

>>> total2 = area()
>>> print(total2)
200
>>>

If you specify just one argument, Python uses it for the first parameter and takes the default for the
second parameter, as in this example:

>>> area(15)
300
>>>

If you want to define a value for the second parameter but not the first, you have to define the
argument value by name, like this:

>>> area(height=15)
150
>>>

You don’t have to declare default values for all the parameters. You can mix and match which ones
have default values, as shown here:
Click here to view code image

>>> def area2(width, height = 20):
 area2 = width * height
 print('The width is:', width)
 print('The height is:', height)
 print('The area is:', area2)

>>>

With this definition, the width parameter is required, but the height parameter is optional. If you
call the area2() function with just one argument, Python assigns it to the width variable, as
shown in this example:

>>> area2(10)
The width is: 10
The height is: 20
The area is: 200
>>>

If you call the area2() function with no parameters, you get an error message for the missing
required parameter, as shown here:
Click here to view code image

>>> area2()
Traceback (most recent call last):
 File "<pyshell#28>", line 1, in <module>
 area2()
TypeError: area2() missing 1 required positional argument: 'width'
>>>

Now you have more control over how to use functions in other Python scripts.

Watch Out!: Ordering of Parameters
When you list the parameters used in your functions, make sure you place any required
parameters first, before parameters that have default values. Otherwise, Python gets
confused and does not know which arguments match with which parameters!

Dealing with a Variable Number of Arguments
In some situations, you might not have a set number of parameters for a function. Instead, a function
may require a variable number of parameters. You can accommodate this by using the following
special format to define the parameters:

def func3(*args):

When you place an asterisk in front of the variable name, the variable becomes a tuple value,
containing all the values passed as arguments when the function is called.
You can retrieve the individual parameter values by using indexes of the variable. In this example,
Python assigns the first parameter to the args[0] variable, the second parameter to the args[1]
variable, and so on for all the arguments passed to the function.
Listing 12.5 shows the script1205.py script, which demonstrates using this method to retrieve
multiple parameter values.

LISTING 12.5 Retrieving Multiple Parameters

Click here to view code image

#!/usr/bin/python3

def perimeter(*args):
 sides = len(args)
 print('There are', sides, 'sides to the object')
 total = 0
 for i in range(0, sides):
 total = total + args[i]
 return total

object1 = perimeter(2, 3, 4)
print('The perimeter of object1 is:', object1)
object2 = perimeter(10, 20, 10, 20)
print('The perimeter of object2 is:', object2)
object3 = perimeter(10, 10, 10, 10, 10, 10, 10, 10)
print('The perimeter of object3 is:', object3)

In the script1205.py code, the perimeter() function uses the *args parameter variable to
define the parameters for the function. Because you don’t know how many arguments are used when
the function is called, the code uses the len() function to find out how many values are in the args
tuple.
While you could just use the for() loop to directly iterate through the args tuple, this example
demonstrates retrieving each value individually. The script1205.py code uses a for() loop to
iterate through a range from 0 to the number of values that the tuple contains and then uses the
arg[i] variable to reference each value directly. When the for loop is complete, the
perimeter() function returns the final value.
This example shows three different examples of using the perimeter() function, each with a
different number of arguments. In each case, the perimeter() function totals the argument values
and returns the result. When you run the script1205.py script, you should see the following
output:
Click here to view code image

pi@raspberrypi ~$ python3 script1205.py
There are 3 sides to the object
The perimeter of object1 is: 9
There are 4 sides to the object
The perimeter of object2 is: 60
There are 8 sides to the object
The perimeter of object3 is: 80
pi@raspberrypi ~$

By the Way: The args Variable
The examples in this section use the variable args to represent the tuple of the
argument values. This is not a requirement; you can use any variable name you choose.
However, it’s become somewhat of a de facto standard in Python to use the args
variable name in this situation.

Retrieving Values Using Dictionaries
You can use a dictionary variable to retrieve the argument values passed to a function. To do this, you
place two asterisks (**) before the dictionary variable name in the function definition parameter:

def func5(**kwargs):

When you place the two asterisks in front of the kwargs variable, it becomes a dictionary variable.
When you call the func5() function, you must specify a keyword and value pair for each argument:
Click here to view code image

func5(one = 1, two = 2, three = 3)

To retrieve the values, you use the kwargs['one'], kwargs['two'], and
kwargs['three'] variables.
Listing 12.6 shows an example of using this method in the script1206.py Python script.

LISTING 12.6 Using Dictionaries in Functions

Click here to view code image

#!/usr/bin/python3

def volume(**kwargs):
 radius = kwargs['radius']
 height = kwargs['height']
 print('The radius is:', radius)
 print('The height is:', height)
 total = 3.14159 * radius * radius * height
 return total

object1 = volume(radius = 5, height = 30)
print('The volume of object1 is:', object1)

The script1206.py code demonstrates how the kwargs variable becomes a dictionary
variable, using the keywords you specify when you call the function. The kwargs['radius']
variable contains the value set to the radius value in the function call, and the kwargs['height']
variable contains the value set to the height value in the function call.

By the Way: The kwargs Variable
You can use any variable name for the dictionary variable, but the kwargs variable
name has become a de facto standard for defining dictionary parameters in Python
coding.

Handling Variables in a Function
As you can probably tell by now, handling variables in Python functions can be rather complex. To
make things even more complicated, there are two different types of variables that you can use inside
Python functions:

 Local variables
 Global variables

These two types of variables behave somewhat differently in your program code, so it’s important to
know just how they work. The following sections break down the differences between using local and

global variables in your Python scripts.

Local Variables
Local variables are variables that you create inside a function. Because you create the variables
inside the function, you can only access them inside the function. Outside the function, the rest of the
script code doesn’t recognize them. Listing 12.7 shows the script1207.py program, which
demonstrates this principle.

LISTING 12.7 Working with Local Variables in a Function

Click here to view code image

#!/usr/bin/python3

def area3(width, height):
 total = width * height
 print('Inside the area3() function, the value of width is:',width)
 print('Inside the area3() function, the value of height is:',height)
 return total

object1 = area3(10, 40)
print('Outside the function, the value of width is:', width)
print('Outside the function, the value of height is:', height)
print('The area is:', object1)

The script1207.py code defines the area3() function with two parameters and then uses those
parameters inside the function to calculate the area. However, if you try to access those variables
outside the function, you get an error message, like this:
Click here to view code image

pi@raspberrypi ~% python3 script1207.py
Inside the area3() function, the value of width is: 10
Inside the area3() function, the value of height is: 40
Traceback (most recent call last):
 File "C:/Python33/script1207.py", line 11, in <module>
 print('Outside the function, the value of width is:', width)
NameError: name 'width' is not defined
pi@raspberrypi ~%

The code starts out just fine, passing two arguments to the area3() function, which completes
without a problem. However, when the code tries to access the width variable outside the
area3() function, Python produces an error message, indicating that the width variable is not
defined.

Global Variables
Global variables are variables you can use anywhere in your program code, including inside
functions. Values assigned to a global variable in the main program are accessible in the function
code, but there’s a catch: While the function can read the global variables, by default it can’t change
them. Listing 12.8 shows the script1208.py program, which is an example of how this can go wrong
in your Python scripts.

LISTING 12.8 Global Variables Causing Problems

Click here to view code image

#!/usr/bin/python3

width = 10
height = 60
total = 0

def area4():
 total = width * height
 print('Inside the function the total is:', total)

area4()
print('Outside the function the total is:', total)

The script1208.py code shown in Listing 12.8 defines three global variables: width,
height, and total. You can read them in the area4() function just fine, as shown by the output
of the print() statement. However, if you expect the total variable to still be set when the code
exits the area4() function, you have a problem, as shown here:
Click here to view code image

pi@raspberrypi ~$ python3 script1208.py
Inside the function the total is: 600
Outside the function the total is: 0
pi@raspberrypi ~$

When you try to read the total variable in the main program, the value is set back to the global
value assignment, not the value that was changed inside the area4() function!
There is a solution to this problem. To tell Python that the function is trying to access a global
variable, you need to add the global keyword to define the variable:

global total

This equates the variable named total inside the function to the variable named total defined in
the main program. Listing 12.9 shows a corrected example of using this principle with the
script1209.py program.

LISTING 12.9 Properly Using Global Variables

Click here to view code image

#!/usr/bin/python3

width = 10
height = 60
total = 0

def area5():
 global total
 total = width * height
 print('Inside the function the total is:', total)

area5()
print('Outside the function the total is:', total)

Adding the one global statement causes the code to run correctly now, as shown here:
Click here to view code image

pi@raspberrypi ~$ python3 script1209.py
Inside the function the total is: 600
Outside the function the total is: 600
pi@raspberrypi ~$

Watch Out!: Using Global Variables
You may be tempted to use global variables to pass values to a function and retrieve
values from a function. While that certainly works, it’s somewhat frowned upon in
Python programming circles. The idea is to make a function as self-contained as
possible, so you can use it in other programs without lots of extraneous coding.
Requiring global variables for the function to work complicates reusing the function in
other programs. If you stick with parameters and return values, your functions can
easily be reused in any program where you need them!

Using Lists with Functions
When you pass values as arguments to functions, Python passes the actual value, and not the variable
location in memory; this is called passing by reference. However, there’s an exception to this.
If you pass a mutable object (such as a list or dictionary variable), the function can make changes to
the object itself. That may seem a bit odd, but it can come in handy.
Listing 12.10 shows the script1210.py script, which demonstrates passing a list to a function
that modifies the list.

LISTING 12.10 Passing a List Value to a Function

Click here to view code image

#!/usr/bin/python3

def modlist(x):
 x.append('Jason')

mylist = ['Rich', 'Christine']
print('The list before the function call:', mylist)
modlist(mylist)
print('The list after the function call:', mylist)

The script1210.py code creates a function named modlist(), which appends a value to the
list passed as the function parameter.
The code then tests the modlist() function by creating a list called mylist, calling the
modlist() function, and displaying the value of the mylist list variable, as shown here:
Click here to view code image

pi@raspberrypi ~$ python3 script1210.py
The list before the function call: ['Rich', 'Christine']
The list after the function call: ['Rich', 'Christine', 'Jason']
pi@raspberrypi ~$

As you can see from the output, the modlist() function modifies the mylist list variable, which
maintains its value in the main program code.

Using Recursion with Functions
A popular use of functions is in a process called recursion. In recursion, you solve an algorithm by
repeatedly breaking the algorithm into subsets until you reach a core definition value.
The factorial algorithm is a classic example of recursion. The factorial of a number is defined as the
result of multiplying all the numbers up to and including that number. So, for example, the factorial of
5 is 120, as shown here:

5! = 1 * 2 * 3 * 4 * 5 = 120

By definition, the factorial of 0 is equal to 1. Notice that to find the factorial of 5, you just multiply 5
by the factorial of 4, and to find the factorial of 4, you multiply 4 by the factorial of 3. You continue
on until you get to the factorial of 0, which, by definition, is 1. This is a perfect example of using
recursion in your functions.

Try It Yourself: Creating a Factorial Function Using Recursion
To use recursion, you need to define an endpoint in the function so that it doesn’t get
stuck in a loop. For the factorial function, the endpoint is the factorial of 0:
if (num == 0):
 return 1

Follow these steps to create the factorial function code:
1. Create the file script1211.py, and open it in your editor program. Here’s the code to

use for the file:
Click here to view code image

#!/usr/bin/python3

def factorial(num):
 if (num == 0):
 return 1
 else:
 return num * factorial(num - 1)

result = factorial(5)
print('The factorial of 5 is', result)

2. Save the file, then run the program.
When you run the script1211.py program, you get this output:

Click here to view code image

pi@raspberrypi ~$ python3 script1211.py
The factorial of 5 is 120
pi@raspberypi ~$

The factorial() function first checks whether the parameter value is 0. If it is, it returns the
default definition value of 1. If the parameter value isn’t 0, it runs a new calculation, returning the
number multiplied by the factorial of one less than the number. So the factorial() function calls
itself, each time with a lower number, until it gets to the 0 value.

Summary
In this hour, you learned how to create and use your own functions in Python. You use the def
keyword to define your function code, and then you can just reference your function anywhere in your
script code. You can return a value from the function back to the main program that called it, and you
can pass values from the main program into the function. You also learned how to work with
variables in functions. Any variable that you define inside a function can be used only inside the
function, while variables you define outside the function can be used inside the function.
In the next hour, we’ll turn our attention to modules. Python lets us use modules to package our
functions, as well as use functions from others!

Q&A
Q. Can I group all my function definitions together into a single file and then just reference

that file in my Python scripts?
A. Yes, that technique is called using a module, and it’s covered in Hour 13, “Working with

Modules”!
Q. What if you write a function that uses recursion that doesn’t have an endpoint, and your

program gets stuck in an infinite loop?
A. Python will continue to iterate through the functions until you manually stop the program by

sending a SIGINT signal to the program (using the Ctrl-C key combination).
Q. If both the function and the main program can read and process global variables, why do

I need to pass parameters to a function? Can’t I just use global variables?
A. The idea of the function is that it should be as self-contained as possible. That way you can

easily copy functions between programs. When the function uses global variables, that means
the other programs would also need to define the global variables. With parameters, all of the
data required for the function is self-contained in the function call!

Workshop
Quiz

1. What do you call the variables that are defined to receive values passed to a function?
a. Arguments
b. Parameters
c. Global variables
d. Recursion

2. A function can never reference itself. If it did, you’d get an endless loop. True or false?

3. You must define a function before you can use it in your Python script. True or false?

Answers
1. b. Parameters. The parameters help keep the function self-contained; all of the data required for

the function are passed as parameters from the main program.
2. False. You can use recursion to reference a function inside itself. However, there must be a

predefined endpoint in the function; otherwise, it will get stuck in an infinite loop.
3. True. If the Python interpreter sees a function in use in your code, it must have the definition in

memory to know how to process it. The Python interpreter can’t read ahead in the code to find
the function definition.

Hour 13. Working with Modules

What You’ll Learn in This Hour:
 What a module is
 Standard Python modules
 What a module contains
 How to create a custom module

Keeping your Python scripts a reasonable size helps you use and manage them. Modules can help you
keep a Python script to a reasonable size. In this hour, you will learn about modules: how to create
them and how to use them in your Python scripts.

Introducing Module Concepts
A module is a collection of functions. You learned about writing your own functions in Hour 12,
“Creating Functions,” and started using functions, such as print, in Hour 4, “Understanding Python
Basics.” A module is external to a Python script and has to be imported using the import statement.
Once it is imported, the function or functions the module contains are available for you to use within
your script. The module you import may be a standard module, such as the os module. A module may
also be a user-created module, which is a module that contains functions a user (such as you) wrote.

By the Way: Term Confusion
Because a module contains functions, you often see the terms function and module
used interchangeably in Python books and documentation. Also, a function within a
module is sometimes called a method or an operation.

A module must be imported before a function in its collection can be used. However, there are three
flavors of Python modules:

 Python functions stored in a .py file—These modules can be either locally available (via the
Python standard library) or downloaded from somewhere else.

 C programs that are dynamically loaded into the Python interpreter—These modules are
built-in.

 C programs that are linked with the Python interpreter—These modules are built-in.
To determine a particular module’s flavor, you start by viewing the modules housed in files that end
with .py. At the shell prompt, issue the command ls /usr/lib/python*/*.py on your
Raspbian system. You then see the various versions of Python installed, along with each version’s
modules stored in files.
Viewing linked modules is a little trickier. You need to import the sys module to display a list of the
built-in modules, as shown in Listing 13.1. Notice that the math module is listed here.

LISTING 13.1 List of Built-in Python Modules

Click here to view code image

>>> import sys
>>> sys.builtin_module_names
('__main__', '_ast', '_bisect', '_codecs', '_collections', '_datetime',
'_elementtree', '_functools', '_heapq', '_io', '_locale', '_pickle',
'_posixsubprocess', '_random', '_socket', '_sre', '_string', '_struct',
'_symtable', '_thread', '_warnings', '_weakref', 'array', 'atexit',
'binascii', 'builtins', 'errno', 'fcntl', 'gc', 'grp', 'imp', 'itertools',
'marshal', 'math', 'operator', 'posix', 'pwd', 'pyexpat', 'select', 'signal',
'spwd', 'sys', 'syslog', 'time', 'unicodedata', 'xxsubtype', 'zipimport',
'zlib')
>>>

Compare the os module and the math module, which have been used in previous hours. The os
module’s functions are Python statements stored in a .py file. The math module is written in the C
programming language and is linked with the Python interpreter. Even though they are different
flavors of modules, as shown in Listing 13.2, both must be imported before their functions can be
used.

LISTING 13.2 Importing Different-Flavored Modules

Click here to view code image

1: >>> math.factorial(5)
2: Traceback (most recent call last):
3: File "<stdin>", line 1, in <module>
4: NameError: name 'math' is not defined
5: >>> import math
6: >>> math.factorial(5)
7: 120
8: >>> os.getcwd()
9: Traceback (most recent call last):
10: File "<stdin>", line 1, in <module>
11: NameError: name 'os' is not defined
12: >>> import os
13: >>> os.getcwd()
14: '/home/pi'
15: >>>

This is the standard syntax for using functions within modules:
module.function

To understand this syntax, look at line 6 in Listing 13.2. You can see that the module is math, and the
function (sometimes called a method or an operation) is factorial.

Did You Know: A Group of Modules
You can also gather a collection of modules in Python. This is called a package.

Using and creating Python modules have some strong benefits. They include manageability and
reusability. The term module is derived from the theory of “modular programming.” A script broken

up into small code chunks is easy to track and manage. Large scripts can be unwieldy and difficult to
debug. Small scripts that import in reusable code “chunks” (that is, modules) are much easier to
handle. Also, when you use modules, you don’t have to reinvent functions for each script.

Exploring Standard Modules
The Python standard library, which contains hundreds of modules, is included when Python is
installed on your system. One of the Python catch phrases is “Python comes with batteries included.”
That catch-phrase applies to the Python standard library, with all its prewritten functions housed in
modules.
Most of the standard library modules can be loosely fit into general categories. (Many of the modules
could fit into multiple categories.) Those categories include the following:

 Character strings processing
 Data compression and backup
 Database management
 Date and time tools
 File I/O and format processing
 Game development tools
 Graphics utilities
 Internationalization utilities
 Internet I/O and format processing
 Interprocess communication
 Multimedia tools
 Network management
 Platform-specific commands
 Python script development tools
 Scientific (including math) utilities
 Security management
 Web development tools

With so many modules full of functions, it makes sense to search through the standard library for what
you need before you decide to write your own. To determine what modules are loaded in your Python
standard library, use the help function, as shown in Listing 13.3. The listing displays only a small
portion of the entire module list because it is just too long to show the entire list in this book!

LISTING 13.3 Using help to Find Modules

Click here to view code image

>>> help('modules')

Please wait a moment while I gather a list of all available modules...

CDROM audioop imp shlex

DLFCN base64 importlib shutil
IN bdb inspect signal
RPi binascii io site
TYPES binhex itertools sitecustomize
...
Enter any module name to get more help. Or, type "modules spam" to search
for modules whose descriptions contain the word "spam".

>>>

Notice the standard library module, RPi, in Listing 13.3. This is a Raspberry Pi–specific Python
module, which contains functions to control the General Purpose Input/Output (GPIO) on the Pi. You
will have to wait until Hour 24, “Working with Advanced Pi/Python Projects,” to learn about that
module!

Did You Know: More Modules, Please
One of the great things about the Python community is its willingness to share. You can
find all kinds of user-created Python modules on the Internet to supplement the standard
library. Besides just using your favorite web search engine, take a look at the Python
Package Index (PyPi), at pypi.python.org/pypi.

Reading a module’s name may give you a clue about what type of functions it contains. However, the
best way to find out what is inside takes a little more work, as you will see in the next section.

Learning About Python Modules
To learn about a module and see a description of its various functions, you use the help function.
For example, suppose you want help on the calendar module. In Listing 13.4, the calendar
module is imported, and the help function is used on it.

LISTING 13.4 Using help to See Module Descriptions

Click here to view code image

>>> import calendar
>>> help(calendar)

Help on module calendar:

NAME
 calendar - Calendar printing functions

MODULE REFERENCE
 http://docs.python.org/3.2/library/calendar

 The following documentation is automatically generated from the Python
 source files. It may be incomplete, incorrect or include features that
...
CLASSES
 builtins.ValueError(builtins.Exception)
 IllegalMonthError

http://pypi.python.org/pypi

...

You can see that lots of information is provided by the help function, although it is a little cryptic
for those new to Python. A nice site to visit when you need a little more help on modules than you get
from help is docs.python.org/3/py-modindex.html.

By the Way: Different help Endings
Sometimes using help in the Python interactive shell just puts you back at the shell
prompt, as when you use the command help('modules'). Other times, such as
when issuing the command help(calendar), you need to use special keys to
navigate and quit the help function. This is covered in Hour 3, “Setting Up a
Programming Environment.” Review the section “Learning About the Python
Interactive Shell” in that hour if you need a refresher.

For a quick list of functions, contained within a module, you can use the dir function. For example,
Listing 13.5 shows a list of the functions the calendar module provides.

LISTING 13.5 Using dir to List Functions Within a Module

Click here to view code image

>>> import calendar
>>> dir(calendar)
['Calendar', 'EPOCH', 'FRIDAY', 'February', 'HTMLCalendar',
 'IllegalMonthError', 'IllegalWeekdayError', 'January', 'LocaleHTMLCalendar',
 'LocaleTextCalendar', 'MONDAY', 'SATURDAY', 'SUNDAY', 'THURSDAY', 'TUESDAY',
 'TextCalendar', 'WEDNESDAY', '_EPOCH_ORD', '__all__', '__builtins__',
 '__cached__', '__doc__', '__file__', '__name__', '__package__', '_colwidth',
'_locale', '_localized_day', '_localized_month', '_spacing', 'c', 'calendar',
'datetime', 'day_abbr', 'day_name', 'different_locale', 'error',
'firstweekday', 'format', 'formatstring', 'isleap', 'leapdays', 'main',
'mdays', 'month', 'month_abbr', 'month_name', 'monthcalendar', 'monthrange',
'prcal', 'prmonth', 'prweek', 'setfirstweekday', 'sys', 'timegm', 'week',
'weekday', 'weekheader']
>>>

Notice that one of the functions that calendar provides is prcal. You can get help on a particular
function, such as prcal, without digging through all the other module help information. You use the
syntax help(module.function), as shown in Listing 13.6.

LISTING 13.6 Using help to See How to Use a Function

Click here to view code image

>>> import calendar
>>> help(calendar.prcal)

Help on method pryear in module calendar:

pryear(self, theyear, w=0, l=0, c=6, m=3) method of calendar.TextCalendar instance

http://docs.python.org/3/py-modindex.html

 Print a year's calendar.
(END)
>>>

Listing 13.6 shows a quick description of the prcal function and the arguments it accepts. Notice
also that help calls prcal a “method” of the calendar module. Remember that method is
another term for a function stored within a module.

Watch Out!: Do I Need to Import a Module to Use help on It?
You may have stumbled onto the fact that you do not have to import a module in order
to get help on it or use the dir function on it. For example, without importing the
calendar function, you can issue the command help('calendar'). However,
the information you get this way may be lacking. It is always a best practice to import a
module before performing any function on it, including help or dir.

Using the information provided by help, you can try out the calendar module’s prcal method,
as shown in Listing 13.7.

LISTING 13.7 Using the prcal Function of calendar

Click here to view code image

>>> import calendar
>>> calendar.prcal(2014)
 2014

 January February March
Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su
 1 2 3 4 5 1 2 1 2
 6 7 8 9 10 11 12 3 4 5 6 7 8 9 3 4 5 6 7 8 9
13 14 15 16 17 18 19 10 11 12 13 14 15 16 10 11 12 13 14 15 16
20 21 22 23 24 25 26 17 18 19 20 21 22 23 17 18 19 20 21 22 23
27 28 29 30 31 24 25 26 27 28 24 25 26 27 28 29 30
 31

 April May June
Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su
 1 2 3 4 5 6 1 2 3 4 1
...

Look back to Listing 13.6 and compare the help syntax description to the actual use of the syntax in
Listing 13.7. You can see that help just gives you a push in the right direction. Trying it out for
yourself will help you clearly understand how to use a module’s function.

Try It Yourself: Explore the Modules on Your Raspberry Pi
In the following steps, you are going to explore the Python modules currently available
on your Raspberry Pi. You will get to try a new method of looking for the .py module
files, and you are going to get to do a little Easter egg hunting. Follow these steps:

1. If you have not already done so, power up your Raspberry Pi and log in to the

system.
2. If you do not have the LXDE graphical interface started automatically at boot, start it

now by typing startx and pressing Enter.
3. Open the LXTerminal by double-clicking the LXTerminal icon.
4. Open the Python interactive shell by typing python3 at the shell prompt and

pressing Enter.
5. At the Python interactive shell prompt, >>>, type import os and press Enter.

Python imports the os module into your Python shell.
6. Type import time and press Enter to import the time module and all its

functions into your Python shell.
7. Look to see if the os module has a .py file by typing the command
os.__file__. Note that before and after the file in the command are two
underscores (_). Press Enter to see if an absolute directory reference and a file
ending in .py are shown. You should see that this module does have a .py file.

8. Look to see if the time module has a .py file by typing the command
time.__file__ and press Enter. You should receive an error because the time
module does not have a .py file. (It’s okay that this step generates an error!) Since
the time module does not have a .py file, it may be built-in.

9. To determine whether the time module is built-in, import the sys module by
typing import sys and pressing Enter.

10. Produce a list of the built-in modules by typing sys.builtin_module_names
and pressing Enter. Do you see the time module listed in the output of the Python
statement? You should!

11. Get a little help on the time module by typing help(time) and pressing Enter.
In the help documentation, what are the two representations of time? Can you find
this information? One is called the epoch, and the other is a tuple.

12. Still looking at the time module’s help information, locate the time() function
description. Which time representation does it use: epoch or the tuple?

13. Press Q to exit the time module’s help information.
14. To import the antigravity module, type import antigravity and press

Enter. You might need to wait a few minutes, until you see an Easter egg! You should
see the Midori web browser open up, with a little surprise on the inside. Read the
webpage that appears and then hover your mouse over it to see the secret message.
Funny!

By the Way: What Is an Easter Egg?
An Easter egg is a secret message or hidden surprise. You have to know
exactly the right commands or keystrokes to find it.

15. Close the Midori web browser by clicking the X on the upper-right side of the
window.

16. Press Ctrl+D to exit the Python interactive shell.
17. If you want to power down your Raspberry Pi now, type sudo poweroff and

press the Enter key.

Understanding how to look at the various modules and their functions will be useful for you in the
years to come. This will be especially true as new modules become part of the standard library. And
didn’t you have fun seeing an Easter egg?

Creating Custom Modules
When you have created several functions, you might want to reuse them in your Python scripts. It can
be helpful to create a custom module to house your functions. Generally speaking, it takes about seven
steps to create a custom module:

1. Create or gather functions that it makes sense to put together.
2. Determine a module name.
3. Create the custom module in a test directory.
4. Test the custom module.
5. Move the module to a production directory.
6. Check the path and modify it if needed.
7. Test the production custom module.

A few of these steps require more work than they might seem like they’d need. The following sections
examine all the steps and give you directions on successfully accomplishing them.

Creating or Gathering Functions That Go Together
What functions to gather into a module is relative. It comes down to what makes sense and will be the
most productive for you. However, keep in mind that you might want to distribute your functions to
others, so take some time here. A logical gathering of functions can serve the greater community.
As an example in the following sections, you will gather two of the functions created in Hour 12 to
create a module. They are dbl() and addem().

Determining a Module Name
Naming a module is not a trivial step. Python has a few rules for naming modules, and if you do not
follow them, your module won’t work. For example, a module name cannot be a Python keyword. In
Hour 4, the “Python Keywords” section explores this topic concerning variables. The same rules
apply to modules.
It is also a standard practice to name custom modules using very short names, with all the characters
in lowercase. Additional rules focus on the file name that holds the module’s functions:

 Custom module file names must end in .py. If they don’t, Python cannot import the modules.
 A file name cannot contain a dot (.) except right before the file name extension. For example,
my.module.py is not a legal module file name. However, mymodule.py is a legal module
file name because you need the last dot (.) to denote the file’s extension.
 The file name must match the module name. Therefore, if the module’s name is ni, the file

name must be ni.py.
You could put the two functions, dbl() and addem() into a module called arith, which is short
for arithmetic. This module name follows all the module name rules.

Creating the Custom Module in a Test Directory
The file name for your new module should be arith.py in order to properly follow naming
conventions. In Listing 13.8, you can see that the module resides in /home/pi/py3prog as its test
directory.

LISTING 13.8 The arith.py Module File

Click here to view code image

1: pi@raspberrypi ~ $ cat /home/pi/py3prog/arith.py
2: def dbl(value):
3: result=value * 2
4: return result
5:
6: def addem(a, b):
7: result=a + b
8: return result
9: pi@raspberrypi ~ $

The arith module is a very simple one. It contains only the two functions from Hour 12. In Listing
13.8, you can see that the dbl() function starts on line 2 and ends on line 4. The addem() function
starts on line 6 and ends on line 8.

By the Way: Simple or Complex Modules
A module can be as simple or as complex as you choose. The custom modules shown
here are very simple. If desired, you can add help utilities to your modules, include
Python version directives, import other modules, and so on.

To create a custom module, you can use your favorite text editor or the Python IDLE editor. Be sure to
save the module to a location you have designated as a test directory. Often, this is simply a
subdirectory of your home login directory, as shown in Listing 13.8.

Testing the Custom Module
To test your module, you need to ensure that your present working directory is in the same location
where the module file resides. In Listing 13.9, the os module is used to show the present working
directory, /home/pi, on line 2. This is not the test directory which was designated earlier, and thus
the import of the arith module on line 4 does not work.

LISTING 13.9 A Test of the arith Custom Module

Click here to view code image

1: >>> import os

2: >>> os.getcwd()
3: '/home/pi'
4: >>> import arith
5: Traceback (most recent call last):
6: File "<stdin>", line 1, in <module>
7: ImportError: No module named arith
8: >>>
9: >>> os.chdir('/home/pi/py3prog')
10: >>> import arith
11: >>>
12: >>> arith.dbl(10)
13: 20
14: >>> arith.addem(5,37)
15: 42
16: >>>

After the test directory is reached on line 9, using the os.chdir statement, the import arith on
line 10 works fine. Both functions in the arith module are tested, and no problems result.

By the Way: Multiple Imports?
It doesn’t hurt anything if you accidently import a module a second (or third) time.
When the import command is issued, Python first checks whether the module is
already imported. It the module is already imported, then Python does nothing (and
doesn’t complain, either!).

Moving a Module to a Production Directory
When you have any problems resolved in your module, you should move it to a production directory
location. This is an optional step. If you are the only user of the Raspberry Pi and really don’t care
where you keep your Python code, you can skip this step. However, good form dictates that a module
should be in a standard production directory.
A production directory is a directory where modules can be accessed by all the Python script users.
You can see the current production directories by using the sys module, as shown in Listing 13.10.

LISTING 13.10 Production Directories Used by Python

Click here to view code image

>>> import sys
>>> sys.path
['', '/usr/lib/python3.2', '/usr/lib/python3.2/plat-linux2',
 '/usr/lib/python3.2/lib-dynload', '/usr/local/lib/python3.2/dist-packages',
 '/usr/lib/python3/dist-packages']
>>>

Notice in Listing 13.10 that the first directory shown is just two single quotes with no directory name
in between the quotes. When Python sees this, it searches your present working directory for the
module. This is why Listing 13.9 is able to use the os.chdir function to switch to
/home/pi/py3prog and test your module.
Also, notice in Listing 13.10 that /usr/lib/python3.2 is listed as a location in the path. This is

where the standard Python library modules’ .py files, are located for this Python version. You
looked at this directory back in the “Introducing Module Concepts” section of this hour.

Did You Know: The Path
Many programming languages and operating systems use the term path. A path is a list
of directories a program searches for other programs, libraries, components, and so
on. For modules, Python searches the path directories for modules (actually, it
searches for their .py files) that have been requested to be imported.

Following standards is always good form. Also, it protects any modules you create from being
unintentionally removed. For example, if you put your custom modules with the other standard Python
modules in /usr/lib/pythonversion, when the Python software is upgraded, your modules
could be deleted.
Table 13.1 shows the standard Python module directories for a Debian-based operating system.
Remember from Hour 2 that Raspbian is a Debian-based Linux distribution.

TABLE 13.1 Standard Python Module Directories
According to Table 13.1, when you are ready to move your module into a production directory, it
needs to go into the /usr/local/lib/pythonversion/site-packages directory. The
steps needed to make this move have to be performed at Raspbian’s dash shell. Line 1 of Listing
13.11 checks the directory /usr/local/lib/python3.2 to see if the site-packages
subdirectory exists. In this case, it does not. Only the dist-packages subdirectory exists, as you
see on line 2. Therefore, the site-packages subdirectory is created on line 3, using the sudo
and mkdir commands you learned about in Hour 2. If your system already has the site-
packages subdirectory, you do not need to use those commands.

LISTING 13.11 Copying arith.py to the Production Directory

Click here to view code image

1: $ ls /usr/local/lib/python3.2/
2: dist-packages
3: $ sudo mkdir /usr/local/lib/python3.2/site-packages
4: $
5: $ cd /home/pi/py3prog
6: $
7: $ sudo cp arith.py /usr/local/lib/python3.2/site-packages/
8: $ cd
9: $

In Listing 13.11, once the directory is created, cd is used to change the present working directory to
the location of the tested module on line 5. The arith.py module file is then copied to the
production directory on line 7, using the sudo and cp commands.

By the Way: Don’t Want a Copy?
If you do not want or need to keep a copy of your newly created module in your test
directory, you can use the mv (move) command. Simply replace cp with the mv
command, and the module is moved to the production directory, with no copy of it left
in the test directory.

Now that the module has been copied to the production directory, you should be able to import the
arith module, right? Well, look at Listing 13.12.

LISTING 13.12 Module arith Not Found

Click here to view code image

$ python3
...
>>> import arith
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ImportError: No module named arith
>>>

Obviously, there is a problem with Python finding the module. You can resolve this problem in the
next step.

Checking the Path and Modifying It, if Needed
It is a good idea to check your current Python path directories. As shown in Listing 13.10, the two
commands to use are import sys and sys.path. Notice in Listing 13.13 that the production
directory /usr/local/lib/python3.2/site-packages is not listed. This is why Python
could not find the arith module file.

LISTING 13.13 Checking the Python Path Directories

Click here to view code image

>>> import sys
>>> sys.path
['', '/usr/lib/python3.2', '/usr/lib/python3.2/plat-linux2',
 '/usr/lib/python3.2/lib-dynload',
 '/usr/local/lib/python3.2/dist-packages',
 '/usr/lib/python3/dist-packages']
>>>

To modify the path, if needed, you use a function from the sys module, as shown in Listing 13.14.

After the path is added, you can import the needed module in the added production directory.

LISTING 13.14 Adding a New Directory to the Path

Click here to view code image

>>> import sys
>>> sys.path.append('/usr/local/lib/python3.2/site-packages')
>>>
>>> sys.path
['', '/usr/lib/python3.2', '/usr/lib/python3.2/plat-linux2',
 '/usr/lib/python3.2/lib-dynload',
 '/usr/local/lib/python3.2/dist-packages',
 '/usr/lib/python3/dist-packages',
 '/usr/local/lib/python3.2/site-packages']
>>>
>>> import arith
>>>

As you can see in Listing 13.14, with the site-packages directory now added to the path, Python
can find the arith module with no problems.
Keep in mind that the path resets back to its default every time your script finishes or you exit the
Python interactive shell. This means you need to add the new path every time you want to import the
new module.

Did You Know: The Python Path
You Linux gurus should know that there is an environment variable called
PYTHONPATH that you can modify to include your new custom modules directory. By
changing this environment variable and adding it to an environment file, you make the
path permanently include the custom modules directory. There is then no need to use
the sys module to change your path every time.

Testing the Production Custom Module
Testing a production custom module is optional. However, it is always a good idea to test your
module’s functions after you have moved it to the production directory.

LISTING 13.15 Testing the Production arith Module

>>> import arith
>>> arith.dbl(20)
40
>>> arith.addem(7,35)
42
>>>
>>>

As you can see in Listing 13.15, the arith module is imported with no problem. Both the .dbl
method and the .addem method run flawlessly.

By the Way: Importing Near the Beginning
A good rule of thumb for importing modules—custom or standard—into your Python
script is to do it at the top of the script. Therefore, in Python scripts, put in all your
import statements after the leading documentation lines.

Try It Yourself: Create and Use a Custom Module in Python
In the following steps, you are going to create a custom module. In essence, you will be
following the seven steps just described to create it, test it, and then move it into
production.
Pretend that you have two great functions. One, called discountp, that shows the
actual price of an item if you give it the original price and the listed discount. The
other function, priceper, shows the price per item when the prices at a store are
shown for a group of items (for example, 3 for $11).
You decide to put these two useful functions into their own module so that you can use
them in several scripts. Next, you determine that shopper would be a good module
name. It is a nice, short name, and it is not a Python keyword. Next, you need to put the
two functions into a file called shopper.py. This is where you start in the following
steps:

1. If you have not already done so, power up your Raspberry Pi and log in to the
system.

2. If you do not have the LXDE GUI started automatically at boot, start it now by typing
startx and pressing Enter.

3. Open the LXTerminal by double-clicking the LXTerminal icon.
4. At the command-line prompt, type nano py3prog/shopper.py and press

Enter. The command puts you into the nano text editor and creates the custom module
shopper.py in the /home/pi/py3prog directory.

5. Type the following code into the nano editor window, pressing Enter at the end of
each line:

By the Way: Be Careful!
Be sure to take your time here and avoid making typographical errors. You can
make corrections by using the Delete key and the up- and down-arrow keys.

Click here to view code image

def discountp(percentage, price):
 return round(price -((percentage /100) * price),2)

def priceper(no_items, price):
 return round(price / no_items,2)

6. Double-check to make sure you have entered the code into the nano text editor
window as shown above. Make any corrections needed.

7. Write out the information from the text editor to the module by pressing Ctrl+O. The
module file name should appear along with the prompt File name to write.
Press Enter to write out the contents to the shopper.py module.

8. Exit the nano text editor by pressing Ctrl+X.
9. Now that the shopper.py custom module is created, test it by typing python3

and pressing Enter to enter the Python interactive shell.
10. Now import the os module by typing import os and pressing Enter. You need

this module to change the present working directory within the Python interactive
shell.

11. Type os.chdir('/home/pi/py3prog') and press Enter. Python changes
your present working directory to /home/pi/py3prog, where the shopper.py
module file is located. (You can double-check your present working directory by
typing os.cwd() and pressing Enter.)

12. Now see if you can import your new custom module by typing import shopper
and pressing Enter. Does Python give you an error? If so, you need to go back to step
4 and try again to create the file shopper.py. If you get no errors, you can
continue on to the next test.

13. Test the function priceper, which is stored in the shopper module, by typing
shopper.priceper(3,12) and pressing Enter. You should see the result 4.
Test the rest of the functions in the module.

14. Press Ctrl+D to exit the Python interactive shell and begin the process of moving the
shopper module to a production directory.

15. At the Raspbian shell prompt, type python3 -V and press Enter. This allows you
to determine the current version of Python you have on Raspbian. (You learned about
this is Hour 3.) You only need to know the first two numbers of the version number
displayed (for example, 3.2) for the next step

16. You must check and see if the production directory currently exists on your
Raspberry Pi by typing ls /usr/local/lib/pythonversion/site-
packages (where version is the version number from step 15, such as
/usr/local/lib/python3.2/site-packages) and press Enter. If you do not get an error
message after pressing Enter, you can skip step 17. If you get an error message, that
is okay; simply fix the problem in step 17.

17. Type sudo mkdir /usr/local/lib/pythonversion/site-
packages and press Enter. Remember to type the version number you found in step
15 rather than version.

18. Move your custom module, shopper, to the site-packages directory by
typing sudo cp /home/pi/py3prog/shopper.py
/usr/local/lib/pythonversion/site-packages and pressing Enter.
Be careful here! The command may wrap on your screen (and that’s okay). Again,
remember to type the version number you found in step 15 rather than version.

19. Now you have finished moving the module to a production directory, type
python3 and press Enter to reenter the Python interactive shell.

20. At the interactive shell prompt, type import sys and press Enter to import the
sys module.

21. Type sys.path and press Enter to display the directories currently in the Python
path. Do you see the /usr/local/lib/pythonversion/site-packages
directory? If yes, you can skip step 22. If you don’t see this directory, move on to
step 22.

22. Type sys.path.append('/usr/local/lib/pythonversion/site-
packages') and press Enter to add the production directory to the Python path.
Remember to type the version number you found in step 15 rather than version.
With the production directory containing the shopper.py module file added to
Python’s path, you are ready to test the production custom module.

23. Import the custom shopper module by typing import shopper and pressing
Enter.

24. Test the function discount by typing shopper.discountp(100,10) and
pressing Enter. You should see the response 90. Congratulations! Your custom
module has been tested and confirmed!

25. If you want to power down your Raspberry Pi now, type sudo poweroff and
press the Enter key.

By the Way: Proud of a Module You’ve Created?
You can be a part of the Python community by sharing modules you have
created. Start the sharing process by reading about Distutils at
docs.python.org/3/distutils/index.html. Also, take a look at github, github.com,
where you can share your work.

Understanding how to create a custom module is very useful in your Python learning adventure. Just
remember to follow the seven steps described in this hour, and you will be able to create lots of
custom modules containing your homemade functions.

Summary
In this hour, you read about finding and using modules in Python. You also read how to create your
own custom modules. The various Python module flavors were covered, along with where to find
modules stored in .py files on your Raspbian system. Also, you have learned where custom Python
modules can be stored. You got to try out creating your own custom module and moving it to a
production location. In Hour 14, “Exploring the World of Object-Oriented Programming,” you will
investigate object-oriented programing, including a concept called classes, which can also be stored
in a Python module.

Q&A
Q. I heard a Python expert talking about the “cheese shop.” What is that?
A. The “cheese shop” is the Python Package Index (PyPi), where you can find lots of Python

http://docs.python.org/3/distutils/index.html
http://github.com

modules to download and install on your system. PyPi used to be called the “cheese shop,”
after a Monty Python’s Flying Circus skit concerning a cheese shop that had no cheese. PyPi
is full of cheese...err...modules and is located at pypi.python.org/pypi.

Q. I’m not a Linux guru, but I want to change the PYTHONPATH variable. How do I do this?
A. First, you must make a change to a file in the home directory—that is, the present working

directory when you log into the Raspberry Pi. Edit the file .profile by typing
nano.profile and pressing Enter. Navigate to the very bottom of the file and then add the
following two lines:

Click here to view code image

PYTHONPATH=/usr/local/lib/pythonversion/site-packages
export PYTHONPATH

In place of version, type the version of Python on your Raspbian system, such as
/usr/local/lib/python3.2/site-packages.
When you have these two lines, save the file by pressing Ctrl+O and then Enter. Then exit the
editor by pressing Ctrl+X.
Test the change by logging out (typing exit and pressing Enter) logging back in, and jumping
into the Python interactive shell (by typing python3 and pressing Enter). Check the path
variable by importing the sys module (by typing import sys and pressing Enter). Now see
if the /usr/local/lib/pythonversion/site-packages directory is in the path
by typing sys.path and pressing Enter.

Q. How can I add some sort of help to my custom module?
A. You can add help to your module by putting a triple-quoted string at the top of your custom

module file. Between the quotes add a sentence or two about the purpose of the module and
give a few examples of using the module’s functions.

Workshop
Quiz

1. A Python script and a module are in essence the same thing because their file names both end
in .py. True or false?

2. What must you do to a module if it is linked with the Python interpreter and you need to use it
in a Python script?

3. In which directory should you store third-party public modules that have been downloaded and
installed?

a. /usr/lib/pythonversion
b. /usr/local/lib/pythonversion/dist-packages
c. /usr/local/lib/pythonversion/site-packages

Answers
1. False. A Python script is designed to be run on its own. A Python module must be imported into

a script or an interactive session before it can be used.
2. It must be imported before it can be used. It does not matter that the module is linked with the

http://pypi.python.org/pypi

Python interpreter. All modules, no matter where they “live,” must be imported before you can
use the functions they contain.

3. This is a bit of a trick question. The correct answer is b, /usr/local/lib/python
version/dist-packages. However, you don’t move the modules there yourself. The
package installer does it for you.

Hour 14. Exploring the World of Object-Oriented
Programming

What You’ll Learn in This Hour:
 How to create object classes
 Defining attributes and methods in classes
 How to use classes in your Python scripts
 How to use class modules in your Python scripts

So far, all the Python scripts presented in this book have followed the procedural style of
programming. With procedural programming, you create variables and functions within your code to
perform certain procedures, such as storing values in variables and then checking them with
structured statements. The data that you use and the functions you create are completely separate
entities, with no specific relationship to one another. With object-oriented programming, on the
other hand, variables and functions are grouped into common objects that you can use in any program.
In this hour, you’ll see just what object-oriented programming is and how to use it in your Python
scripts.

Understanding the Basics of Object-Oriented Programming
Before you can start working on object-oriented programming (commonly called OOP), you need to
know how it works. OOP uses a completely different paradigm than the coding you’ve been doing so
far in this book. OOP requires that you think differently about how your programs work and how you
code them.

What Is OOP?
With OOP, everything is related to objects. (I guess that’s why they call it object-oriented!) Objects
are the data you use in your applications, grouped together into a single entity.
For example, if you’re writing a program that uses cars, you can create a car object that contains
information on the car’s weight, size, engine, and number of doors. If you’re writing a program that
tracks people, you might create a person object that contains information on each person’s name,
height, age, weight, and gender.
OOP uses classes to define objects. A class is the written definition in the program code that contains
all the characteristics of the object, using variables and functions. The benefit of OOP is that once you
create a class for an object, you can use that same class any time in any other application. Just plug in
the class definition code and put it to use.
An OOP class has members, and there are two types of members:

 Attributes—Class attributes denote features of an object (such as the weight, engine, and
number of doors of a car). A class can contain many attributes, with each attribute describing a
different feature of the object.

 Methods—Methods are similar to the standard Python functions that you’ve been using. A

method performs an operation, using the attributes in a class. For instance, you could create
class methods to retrieve a specific person from a database, or change the address attribute for
an existing person. Each method should be contained within a class and perform operations only
in that class. The methods for one class shouldn’t deal with attributes in other classes.

Defining a Class
Defining a class in Python isn’t too much different from defining a function. To define a new class,
you use the class keyword, along with the class name, and a colon, followed by any statements
contained in the class. Here’s an example of a simple class definition:

>>> class Product:
 pass

>>>

The class name you choose must be unique within your program. And while it’s not required, it’s
somewhat of a de facto standard in Python to start a class name with an uppercase letter.
The statements section for the class defines any attributes and methods that the class contains. Just as
with functions, you must indent the class statements in the code. When you’re done defining the class
attributes and methods, you just place the next code statement on the left margin.
The pass statement shown in this example is special in Python. It’s a statement that does nothing!
You normally use the pass statement as a placeholder for code that you’ll add in the future. In this
example, the pass statement creates an empty class definition. You can use the class in your Python
code, but it won’t do anything!

Creating an Instance
The class definition defines the class, but it doesn’t put the class to use. To use a class, you have to
instantiate it. When you instantiate a class, you create what’s called an instance of the class in your
program. Each instance represents one occurrence of the object. To instantiate an object, you just call
it by name, like this:

>>> prod1= Product()
>>>

The prod1 variable is now an instance of the Product class. After you create an instance of a
class, you can define attributes “on the fly,” as shown here:
Click here to view code image

>>> prod1.description = 'carrot'
>>> print(prod1.description)
carrot
>>>

Each instance is a separate object in Python. If you create a second instance of the Product class,
the attributes you define in that instance are separate from the attributes you define in the first
instance, as shown in this example:
Click here to view code image

>>> prod2 = Product()
>>> prod2.description = "eggplant"
>>> print(prod2.description)

eggplant
>>> print(prod1.description)
carrot
>>>

Now you have two separate instances of the Product class: prod1 and prod2. Each instance has
its own attribute values.

Default Attribute Values
Defining attributes on the fly as you use a class instance isn’t good programming practice. It’s better
to define the class attributes inside the class definition code so that they’re documented as part of the
class. You can do that and set default values for the attributes all at the same time, like this:
Click here to view code image

>>> class Product:
 description = "new product"
 price = 1.00
 inventory = 10
>>>

Now when you instantiate a new instance of the Product class, the instance has values set for the
description, price, and inventory attributes, as shown here:
Click here to view code image

>>> prod1 = Product()
>>> print('{0} - price: ${1:.2f}, inventory: {2:d}'.format(prod1.description,
prod1.price, prod1.inventory))
new product – price: $1.00, inventory: 10
>>>

After you create the new class instance, you can replace the existing values at any time, as in the
following example:
Click here to view code image

>>> prod1.description = 'tomato'
>>> print('{0} - price: ${1:.2f}, inventory: {2:d}'.format(prod1.description,
prod1.price, prod1.inventory))
tomato – price: $1.00, inventory: 10
>>>

The description attribute of the prod1 instance now has the new value that you assigned.

Defining Class Methods
Classes consist of more than just a bunch of attributes. You also need to have methods for handling
the attributes. There are three different types of class methods available:

 Mutator methods
 Accessor methods
 Helper methods

The following sections discuss the difference between mutator and accessor methods, and then you’ll
learn more about the helper methods.

Mutator Methods

Mutator class methods are functions that change the value of an attribute. The most common type of
mutator method is called a setter.
You use a setter method to set the value of an attribute in the class. While not required, it’s somewhat
of a standard convention in Python coding to name setter mutator methods starting with set_, as in
this example:
Click here to view code image

def set_description(self, desc):
 self.__description = desc

The set_ methods use two parameters. The first parameter is a special value called self. The
self parameter points the class to the current instance of the object. This parameter is required in
all class methods as the first parameter.
The second parameter defines a value to set as the attribute value for the instance. Notice the
assignment statement used in the method statement:

self.__description = desc

The attribute name is __description. Yet another de facto Python standard in OOP is to use two
underscores at the start of the attribute name to indicate that it shouldn’t be used by programs outside
the class definition.

By the Way: Private Attributes
Some object-oriented programming languages provide a feature called private
attributes. You can use private attributes inside the class definition but not outside the
class in the program code. Python doesn’t provide for private attributes; any attribute
you define can be accessed from any program. The two-underscore naming convention
just makes it obvious which attributes you prefer not to use outside the class definition.

The self keyword used in the attribute assignment is used to reference the attribute to the current
class instance.
You can also include other mutator methods that perform some type of calculations with the attributes.
For example, you could create a buy_Product() method for the Product class that changes the
inventory value of a product when a customer purchases it. That code would look something like this:
Click here to view code image

def buy_Product(self, amount):
 self.__inventory = self.__inventory - amount

The mutator method still requires the self keyword as the first parameter, and it uses a second
parameter to provide data for the method. The assignment statement changes the __inventory
attribute value for the instance by subtracting the value sent as the second parameter.

Accessor Methods
Accessor methods are functions you use to access the attributes you define in a class. Creating special
methods to retrieve the current attribute values helps create a standard for how other programs use
your class object. These methods are often called getters because they retrieve the value of the

attribute.
As with setters, it’s somewhat of a standard convention to name getter accessor methods starting with
get_, followed by the attribute name, as shown here:
Click here to view code image

def get_description(self):
 return self.__description

This is all there is to it! Accessor methods aren’t overly complicated; they just return the current
value of the attribute. Notice that even though no data is passed to the accessor method, you still need
to include the self keyword as a parameter. Python uses this keyword internally to reference the
class instance.
When you create your classes, you need to create one setter and one getter for each attribute you use
in your class. Listing 14.1 shows the script1401.py program, which demonstrates creating setter and
getter methods for the Product class attributes and then using them in a program.

LISTING 14.1 Using Setter and Getter Methods

Click here to view code image

1: #!/usr/bin/python3
2:
3: class Product:
4: def set_description(self, desc):
5: self.__description = desc
6:
7: def get_description(self):
8: return self.__description
9: def set_price(self, price):
10: self.__price = price
11:
12: def get_price(self):
13: return self.__price
14:
15: def set_inventory(self, inventory):
16: self.__inventory = inventory
17:
18: def get_inventory(self):
19: return self.__inventory
20:
21: prod1 = Product()
22: prod1.set_description('carrot')
23: prod1.set_price(1.00)
24: prod1.set_inventory(10)
25: print('{0} - price: ${1:.2f}, inventory: {2:d}'.format(
 prod1.get_description(),prod1.get_price(), prod1.get_inventory()))

After you instantiate an instance of the Product class (line 21), you need to use the setter methods
to set the initial values (lines 22 through 24). To retrieve the attribute values (as in the print()
statement in line 25), you just use the get_ methods for each attribute.
When you run the script1401.py program, you should see this output from the instance values:
Click here to view code image

pi@raspberrypi ~$ python3 script1401.py
carrot – price: $1.00, inventory: 10
pi@raspberrypi ~$

The program code contained in the script1401.py file creates an instance of the Product
class; sets the __description, __price, and __inventory attribute values (using the
appropriate setter methods); and then retrieves the attribute values using the getter methods.
So far, so good. But things are a bit cumbersome in terms of using the class methods. You had to go
through a lot of work to create the class, set the initial values for the attributes, and then retrieve the
attribute values using the getters. Fortunately, Python has some helper methods that help make your
life easier!

Adding Helper Methods to Your Code
Besides the accessor and mutator methods, there are a few other methods you can create for your
classes that help make using classes much easier. The following sections go through some of the most
common helper class methods that you’ll want to use when working with classes in your Python
programs.
Constructors

It can get somewhat old trying to set attribute values using the set_ mutator methods, especially if
you have lots of attributes in a class. Using class constructor methods is a popular simple way to
instantiate a new instance of a class with default values.
Python provides a special method called __init__() that it calls when you instantiate a new class
instance. You can define the __init__() method in your class code to do any type of work when
the class instance is created, including assign default values to attributes. The __init__() method
requires parameters for each attribute that you want to define a value for, as shown here:
Click here to view code image

def __init__(self, description, price, inventory):
 self.__description = description
 self.__price = price
 self.__inventory = inventory

Now when you create the instance of the Product class, you must define the initial values directly
in the class constructor:
Click here to view code image

>>> prod3 = Product('tomato', 2.00, 20)
>>> print('{0} – price: ${1:.2f}, inventory:
 {2:d}'.format(prod1.get_description(), prod1.get_price(),
 prod1.get_inventory()))
tomato – price: $2.00, inventory: 20
>>>

This makes creating a new instance of a class a lot easier! The only downside is that you must specify
the default values, and if you don’t, you get an error message, like this:
Click here to view code image

>>> prod1 = Product()
Traceback (most recent call last):
 File "<pyshell#31>", line 1, in <module>
 prod1 = Product()

TypeError: __init__() missing 3 required positional arguments: 'desc', 'price', and
'inventory'
>>>

To solve this problem, just as with Python functions, the constructor method lets you define default
values in the parameters (see Hour 12, “Creating Functions”), as in this example:
Click here to view code image

def __init__(self, description = 'new product', price = 0, inventory = 0):
 self.__description = description
 self.__price = price
 self.__inventory = inventory

Now if you create a new instance of the Product class without specifying any default values,
Python uses the default values you defined in the class constructor, as shown here:
Click here to view code image

>>> prod5 = Product()
>>> prod5.get_description()
'new product'
>>> prod5.get_price()
0.0
>>> prod5.get_inventory()
0
>>>

Now your class constructor is even more versatile!
Customizing Output

The next thing to tackle is displaying the class instance. So far you’ve had to use the print()
statement to display the individual attributes from the class instance, using the get_ methods.
However, if you have to display your class data multiple times in your program code, that could get
old. Python provides an easier way to do it.
You just need to define the __str__() helper method for your class to tell Python how to display
the class object as a string value. Any time your program references the class instance as a string
(such as when you use it in a print() statement), Python calls the __str__() method from the
class definition. All you need to do is return a string value from the __str__() method that formats
the class object attributes as strings. Here’s what the __str__() method could look like for the
Product class:
Click here to view code image

def __str__(self):
 return '{0} - price: ${1:.2f}, inventory:
 {2:d}'.format(self.__description, self.__price, self.__inventory)

Now, to display the class instance attribute values, you can just reference the instance variable in the
print() statement, as shown here:
Click here to view code image

>>> prod6 = Product('banana', 1.50, 30)
>>> print(prod6)
banana – price: $1.50, inventory: 30
>>>

This is yet another method to make your life a lot easier!
Deleting Class Instances

Handling memory management in Python programs is normally a lot easier than in other programming
languages. By default, Python recognizes when a class instance is no longer in use and removes it
from memory. However, there may be times when a program needs to do some type of “cleanup”
work for the class before Python removes it from memory.
You can specify a helper method that Python automatically attempts to run just before it removes the
instance from memory. Such methods are called destructors.
Destructors come in handy with a class that works with files to ensure that the files are properly
closed before the class instance is removed.
You use the __del__() helper method to define any final statements to process before Python
removes the class instance from memory:

def __del__(self):
 statements

The __del__() method doesn’t allow you to pass any parameters into the method. All the
statements that you specify in the method need to be self-contained and must not rely on any data from
the main program.

Watch Out!: Running Destructors
Python processes a class destructor any time it automatically removes a class instance
from memory or when you use the del statement on the class instance. However, when
the Python interpreter shuts down, there are no guarantees that Python will be able to
run the descriptor class for any active class instances.

Documenting the Class

Object-oriented classes are meant to be shared. Therefore, it’s important that you document your
Python classes so that anyone else who needs to use them knows what they do (and that may even
include yourself, if you pick up some of your own Python code years later!).
While it’s not exactly a method, Python provides the document string (called docstring) feature, which
allows you to embed strings inside classes, functions, and methods to help document the code. You
enclose the docstring in triple quotes to identify it in the class, function, or method definition. Also,
the docstring must be the first item in the definition.
Here’s an example of documenting the Product class:
Click here to view code image

class Product:
 """The Product class creates an instance of a product with three
 attributes – the product description, price, and inventory"""

To see the docstring for a class, just reference the special __doc__ attribute, as shown here:
Click here to view code image

>>> prod7 = Product()
>>> prod7.__doc__

The Product class creates an instance of a product with three attributes
- the product description, price, and inventory
>>>

You can also create a docstring value for each individual method inside the class, as shown here:
Click here to view code image

def get_description(self):
 """The description contains the product type"""
 return self.__description

To view a method’s docstring, you just add the __doc__ attribute to the method in the instance, like
this:
Click here to view code image

>>> prod8 = Product()
>>> prod8.get_description.__doc__
The description contains the product type
>>>

Now you have a way to share your comments on the class with others who may use your code in their
own projects.
The property() Helper Method

So far you have setter and getter methods defined to interface with the attributes you define for a
class. However, it can get somewhat cumbersome trying to use the set_ and get_ methods all the
time for each method. To solve this problem, Python provides the property() method.
The property() method creates a method that combines the setter and getter methods, along with
the destructor and a docstring for an attribute, into a single method. Python calls the appropriate
method, based on how you use the property() method in your code.
This is the syntax for defining the property() method in a class:
Click here to view code image

method = property(setter, getter, destructor, docstring)

You don’t have to define all four parameters in the property() method. You can define a single
parameter to create only a setter method; two methods to create only setter and getter methods, three
methods for the setter, getter, and destructor; or all four parameters to create all four methods.
Here’s an example of what you can add to the end of a Product class to create the property()
methods for each attribute:
Click here to view code image

description = property(get_description, set_description)
price = property(get_price, set_price)
inventory = property(get_inventory, set_inventory)

Once you define the property() methods for the attributes, you can set or get the individual
attributes by referencing their property() methods, as shown here:
Click here to view code image

>>> prod1 = Product('carrot', 1.00, 10)
>>> print(prod1)
carrot – price: $1.00, inventory: 10

>>> prod1.price = 1.50
>>> print('The new price is', prod1.price)
The new price is 1.50
>>>

The prod1.price property allows you to both set and retrieve the __price attribute value in
your program code.

Sharing Your Code with Class Modules
The whole point of creating Python object-oriented classes is that you can reuse the same code in any
program that uses that object. If you combine the class definition code with your program code,
sharing your class objects is more difficult.
The key to OOP in Python is to create separate modules for each object class. That way, you can just
import the object class file that you need for any program that uses that type of object.
It’s somewhat common practice to name the object class module the same name as the class. Doing so
makes it easier to identify and import your classes. The following Try It Yourself walks through
creating a module file for the Product class and then using it in a separate application script.

Try It Yourself: Create a Class Module
In the following steps, you’ll create two Python script files. One file will contain the
code that defines the Product class, and the other file will contain the script you’ll
run to use the class. Here’s what you do:

1. Open a text editor and create the file product.py. Here’s the code that you need
to enter into the file:

Click here to view code image

#!/usr/bin/python3

class Product:

 def __init__(self, description, price, quantity):
 self.__description = description
 self.__price = price
 self.__inventory = quantity

 def set_description(self, description):
 self.__description = description

 def get_description(self):
 return self.__description

 description = property(get_description, set_description)

 def set_price(self, price):
 self.__price = price

 def get_price(self):
 return self.__price

 price = property(get_price, set_price)

 def set_inventory(self, inventory):

 self.__inventory = inventory

 def get_inventory(self):
 return self.__inventory

 inventory = property(get_inventory, set_inventory)

 def buy_Product(self, amount):
 self.__inventory = self.__inventory - amount

 def __str__(self):
 return '{0} - price: ${1:.2f}, inventory:
{2:d}'.format(self.__description, self.__price,
self.__inventory)

The product.py file incorporates all the attributes and methods for the Product
class into a single module. You can now use your Product class in any of your
Python scripts by simply importing the class from the product.py file.

2. Save the product.py file.
3. Open the text editor again and create the script1403.py file. Here’s the code to

enter into the file:
Click here to view code image

#!/usr/bin/python3
from product import Product

prod1 = Product('carrot', 1.25, 10)
print(prod1)

print('Buying 4 carrots...')
prod1.buy_Product(4)
print(prod1)
print('Changing the price to $1.50...')
prod1.price = 1.50
print(prod1)

The code first uses the from statement to reference the Product class from the
product.py module file. (Make sure you have the product.py file in the same
folder as the script1403.py file.)

4. Save the script1403.py file in the same folder where you saved the
product.py file.

5. Run the script1403.py file from the command prompt.
Here’s what you should see when you run the script1403.py file:

Click here to view code image

pi@raspberrypi ~$ python3 script1403.py
carrot - price: $1.25, inventory: 10
Buying 4 carrots...
carrot - price: $1.25, inventory: 6
Changing the price to $1.50...
carrot - price: $1.50, inventory: 6
pi@raspberrypi ~$

The script uses the Product class that you defined in the product.py file to

create an instance of the Product class, uses the buy_Product() method to
decrease the inventory value, and then uses the set_price accessor method to
change the price of the product. This is starting to look like a real program!

Summary
In this hour, you learned how to create and use object-oriented programming in Python. You can
create object classes by using the class keyword, and then you define attributes and methods for the
class. You also learned how to create access and mutator methods for your classes, as well as use
many of the common helper methods to help make your coding job easier. Finally, you learned how to
save a class definition in a separate code file and then import that class as a module in other Python
scripts to use the class object.
In the next hour, we’ll dig a little deeper into the object-oriented world and look at the topic of
inheritance. That allows you to build new classes from existing classes!

Q&A
Q. Does Python support protected methods?
A. No, Python doesn’t support protected methods. You can, however, use the same idea as with

private attributes and name your method starting with two underscores. The method is still
publicly accessible, just not using the normal name.

Q. Does Python support class inheritance?
A. Yes, you can allow a class to inherit attributes and methods from another class. That’s

covered in Hour 15, “Employing Inheritance.”

Workshop
Quiz

1. Which method should you define to create default values in a class constructor?
a. __del__()
b. __init__()
c. init()
d. set_init()

2. When you instantiate two instances of a class, you can share attribute values between the two
instances. True or false?

3. How would you write an accessor method to set the value of a last name attribute?

Answers
1. b. The __init__() special method allows you to pass parameters to the class constructor that

you can use to define the default values for properties.
2. False. Separate instances of the same class are considered two separate objects, you can’t

share the same property values between them.

3. You can create a method called set_lastname() that accepts the name value as a single
parameter, then assign that value to the self.__lastname property, like this:

Click here to view code image

def set_lastname(self, name):
 self.__lastname = name

Hour 15. Employing Inheritance

What You’ll Learn in This Hour:
 What subclasses are
 What inheritance is
 How to use inheritance in Python
 Inheritance in scripts

In this hour, you will learn about subclasses and inheritance, including how to create subclasses and
how to use inheritance in scripts. Inheritance is the next step in understanding object-oriented
programming in Python.

Learning About the Class Problem
In Hour 14, “Exploring the World of Object-Oriented Programming,” you read about object-oriented
programming, classes, and class module files. Even with object-oriented programming, problems
related to duplication of object data attributes and methods still exist. This is called the “class
problem.” This hour looks at the biological classification of animals and plants to help clarify the
nature of the class problem.
Suppose you are creating a Python script for an insect scientist (entomologist). What makes an insect
an insect? A very basic classification for an insect is that an animal must have the following in order
to be considered an insect:

 No vertebral column (backbone)
 A chitinous exoskeleton (outside shell)
 A three-part body (head, thorax, and abdomen)
 Three pairs of jointed legs
 Compound eyes
 One pair of antennae

Using this information, you could create an insect object definition. It would include these
characteristics as part of the object module.
But think about the ant. An ant is classified as part of the insect class because it has all the
characteristics just listed. However, an ant also has these unique characteristics that not all other
insects share:

 A narrow abdomen where it joins the thorax (looks like a tiny waist)
 At the narrow abdomen where it joins the thorax, a hump on top that is clearly separate from the
rest of the abdomen

 Elbowed antennae, with a long first segment
Thus, to create an object definition for an ant, you would need to duplicate all the insect
characteristics that are put into the insect object definition. In addition, you must add the
characteristics that are specific to ants.

However, there are more insects than just ants. For example, the honey bee is also an insect. It shares
the first characteristic specific to an ant (narrow abdomen). Therefore, to create a honey bee object
definition, you would need to duplicate the characteristics from the insect object definition, duplicate
the first ant characteristic from the ant object definition file, and then add the honey bee’s unique
characteristics. That is a lot of duplication!
The class problem is strongly demonstrated in the three object definitions we’ve just look at (insects,
ants, and honey bees). And there are more insects besides honey bees and ants! To fix the inefficient
duplication class problem, Python uses subclasses and inheritance.

Understanding Subclasses and Inheritance
A subclass is an object definition. It has all the data attributes and methods of another class but
includes additional attributes and methods specific to itself. These additional data attributes and
methods make a subclass a specific version of a class. For example, an ant is a specific version of an
insect.
A class whose data attributes and methods are used by a subclass is called a superclass. Using the
insect example, the superclass would be Insect, and the subclass would be Ant. An ant has all the
characteristics of an insect, as well as a few of its own, which are specific to ants.

By the Way: Object Class Terms
A superclass, also called a base class, is a class used in an object definition of a
subclass. A subclass, which has all the data attributes and methods of a base class, as
well as a few of its own, is also called a derived class.

Subclasses have what is called an “is a” relationship to their base class. For example, an ant
(subclass) is an insect (base class). A honey bee (subclass) is an insect (base class). These are some
other examples of “is a” relationships:

 A duck is a bird.
 Python is a programming language.
 A Raspberry Pi is a computer.

In order for a subclass object to gain the data attributes and methods of its base class, Python uses a
process called inheritance. In Python, inheritance is more similar to inheriting genes from your
biological parents than receiving a monetary inheritance.
Inheritance is the process by which a subclass may obtain a copy of the base class’s data attributes
and methods to include in its object class definition. The subclass object then creates its own data
attributes and methods in its object class definition, to make itself a specialized version of the base
class.
The example of ants and insects can be used to demonstrate inheritance. To keep it simple, only
characteristics (data attributes) are used. But you could use behavior (methods) here, too! An insect
base class object definition would contain the following data attributes:

 backbone='none'
 exoskeleton='chitinous'
 body='three-part'

 jointed_leg_pairs=3
 eyes='compound'
 antennae_pair=1

The ant object class definition would inherit all six of these insect data attributes. The following three
data attributes would be added to make the subclass (ant object) a specialized version of the base
class (insect object):

 abdomen_thorax_width='narrow'
 abdomen_thorax_shape='humped'
 antennae='elbowed'

The ant “is a” insect relationship would be maintained. Basically, the ant “inherits” the insect’s
object definition. There is no need to create duplicate data attributes and methods in the ant’s object
definition. Thus, the class problem is solved.

Using Inheritance in Python
So what does inheritance look like in Python? This is the basic syntax for inheritance in a class object
definition:
Click here to view code image

class classname:
 base class data attributes
 base class mutator methods
 base class accessor methods
 class classname (base class name):
 subclass data attributes
 subclass mutator methods
 subclass accessor methods

Listing 15.1 shows a bird class object definition stored in the object module
/home/pi/py3prog/birds.py. The Bird class is an overly simplified object definition for a
bird. Notice that there are three immutable data attributes: feathers (line 7), bones (line 8), and
eggs (line 9). The only mutable data attribute is sex (line 10) because a bird can be male, female, or
unknown.

LISTING 15.1 Bird Object Definition File

Click here to view code image

1: pi@raspberrypi ~ $ cat /home/pi/py3prog/birds.py
2: # Bird base class
3: #
4: class Bird:
5: #Initialize Bird class data attributes
6: def __init__(self, sex):
7: self.__feathers = 'yes' #Birds have feathers
8: self.__bones = 'hollow' #Bird bones are hollow
9: self.__eggs = 'hard-shell' #Bird eggs are hard-shell.
10: self.__sex = sex #Male, female, or unknown.
11:
12: #Mutator methods for Bird data attributes

13: def set_sex(self, sex): #Male, female, or unknown.
14: self.__sex = sex
15:
16: #Accessor methods for Bird data attributes
17: def get_feathers(self):
18: return self.__feathers
19:
20: def get_bones(self):
21: return self.__bones
22:
23: def get_eggs(self):
24: return self.__eggs
25:
26: def get_sex(self):
27: return self.__sex
28: pi@raspberrypi ~ $

Also notice in Listing 15.1 that there is one mutator method (lines 12 through 14) for the Bird class,
and there are four accessor methods (lines 16 through 27). There’s nothing too special here. Most of
these items should look similar to the class definitions in Hour 14.

Creating a Subclass
To add a subclass to the Bird base class, a barn swallow (also known as a European swallow) was
chosen. For simplicity’s sake, the BarnSwallow subclass is also overly simplified. Any
ornithologist will recognize that there is much more to a barn swallow than is listed here!
To add the BarnSwallow subclass, the subclass must be declared using the class declaration, as
shown here:

class BarnSwallow(Bird):

This class declaration allows you to define a subclass of BarnSwallow that inherits from its base
class (Bird). Thus, the BarnSwallow subclass object definition inherits all the data attributes and
methods from the Bird base class.
As with initializing a class, all the data attributes to be used in the BarnSwallow subclass are
initialized. This includes both base class and subclass data items, as shown here:
Click here to view code image

def __init__(self, feathers, bones, eggs, sex,
 migratory, flock_size):

Within the initialization block, the __init__ method of the Bird base class is used to initialize the
inherited data attributes feather, bones, eggs, and sex. This needs to be done for inheritance
purposes. You initialize the data attributes like this:
Click here to view code image

Bird.__init__(self, feathers, bones, eggs, sex)

Specialization of the BarnSwallow subclass can now begin. A barn swallow has the following
specialized data attributes. One data attribute is immutable (migratory) and one is mutable
(flock_size):

 migratory—Set to yes because a barn swallow is known for its large migratory range.

 flock_size—Indicates the number of birds seen in one sighting.
(Remember that this is an overly simplified example. A real barn swallow would have many more
data attributes.)
These specialized data attributes are set using the following Python statements.
Click here to view code image

self.__migratory = 'yes'
self.__flock_size = flock_size

Since the first data attribute for the BarnSwallow subclass is immutable, the only mutator method
needed is for flock_size. This is set as follows:
Click here to view code image

def set_flock_size(self,flock_size):
 self.__flock_size = flock_size

Finally, in the BarnSwallow subclass object definition, the accessor methods must be declared for
the subclass data attributes. They are shown here:
Click here to view code image

def get_migratory(self):
 return self.__migratory
def get_flock_size(self, flock_size):
 return self.__flock_size

Once all the parts of the object definition have been determined, you can add the subclass to an object
module file.

Adding a Subclass to an Object Module File
The BarnSwallow subclass object definition can be stored in the same module file as the Bird
base class (see Listing 15.2).

LISTING 15.2 The BarnSwallow Subclass in the Bird Object File

Click here to view code image

1: pi@raspberrypi ~ $ cat /home/pi/py3prog/birds.py
2: # Bird base class
3: #
4: class Bird:
5: #Initialize Bird class data attributes
6: def __init__(self, sex):
7: ...
8: #
9: # Barn Swallow subclass (base class: Bird)
10: #
11: class BarnSwallow(Bird):
12:
13: #Initialize Barn Swallow data attributes & obtain Bird inheritance.
14: def __init__(self, sex, flock_size):
15:
16: #Obtain base class data attributes & methods (inheritance)
17: Bird.__init__(self, sex)
18:

19: #Initialize subclass data attributes
20: self.__migratory = 'yes' #Migratory bird.
21: self.__flock_size = flock_size #How many in flock.
22:
23:
24: #Mutator methods for Barn Swallow data attributes
25: def set_flock_size(self,flock_size): #No. of birds in sighting
26: self.__flock_size = flock_size
27:
28: #Accessor methods for Barn Swallow data attributes
29: def get_migratory(self):
30: return self.__migratory
31: def get_flock_size(self):
32: return self.__flock_size
33: pi@raspberrypi ~ $

You can see a partial listing of the Bird base class object definition file on lines 2 through 7 of
Listing 15.2. The BarnSwallow subclass object definition is on lines 8 through 32 of the
birds.py object module file.

Watch Out!: Proper Indentation
Remember that you need to make sure you do the indentation properly for an object
module file! If you do not indent object module blocks properly, Python gives you an
error message, indicating that it cannot find a method or data attribute.

Inheritance allows you to use a subclass along with its base class in a module file. However, you are
not limited to just one subclass in an object module file.

Adding Additional Subclasses
You can add additional subclass object definitions to an object module file. For example, the South
African cliff swallow is very similar to a barn swallow, but it is non-migratory.
Listing 15.3 adds the SouthAfricanCliffSwallow subclass. Again, it is an oversimplified
version of a bird. However, you can see that the subclass object definition has its own place within
the object module file. You could list every subclass of bird that exists in the file birds.py, if you
wanted to.

LISTING 15.3 The CliffSwallow Subclass in the Bird Object File

Click here to view code image

1: pi@raspberrypi ~ $ cat /home/pi/py3prog/birds.py
2: # Bird base class
3: #
4: class Bird:
5: #Initialize Bird class data attributes
6: def __init__(self, sex):
7: ...
8:
9: #
10: # Barn Swallow subclass (base class: Bird)
11: #

12: class BarnSwallow(Bird):
13:
14: #Initialize Barn Swallow data attributes & obtain Bird inheritance.
15: def __init__(self, sex, flock_size):
16: ...
17: #
18: # South Africa Cliff Swallow subclass (base class: Bird)
19: #
20: class SouthAfricaCliffSwallow(Bird):
21:
22: #Initialize Cliff Swallow data attributes & obtain Bird inheritance.
23: def __init__(self, sex, flock_size):
24:
25: #Obtain base class data attributes & methods (inheritance)
26: Bird.__init__(self, sex)
27:
28: #Initialize subclass data attributes
29: self.__migratory = 'no' #Non-migratory bird.
30: self.__flock_size = flock_size #How many in flock.
31:
32:
33: #Mutator methods for Cliff Swallow data attributes
34: def set_flock_size(self,flock_size): #No. of birds in sighting
35: self.__flock_size = flock_size
36:
37: #Accessor methods for Cliff Swallow data attributes
38: def get_migratory(self):
39: return self.__migratory
40: def get_flock_size(self):
41: return self.__flock_size
42: pi@raspberrypi ~ $

Remember that modularity is important when you’re creating any program, including Python scripts.
Thus, keeping all the bird subclasses in the same file as the Bird base class is not a good idea.

Putting a Subclass in Its Own Object Module File
For better modularity, you can store a base class in one object module file and store each subclass in
its own module file. In Listing 15.4, you can see the modified /home/pi/py3prog/birds.py
object module file. It does not include the BarnSwallow or SouthAfricanCliffSwallow
subclass.

LISTING 15.4 A Bird Base Class Object File

Click here to view code image

pi@raspberrypi ~ $ cat /home/pi/py3prog/birds.py
Bird base class
#
class Bird:
 #Initialize Bird class data attributes
 def __init__(self, sex):
...
 def get_sex(self):
 return self.__sex
pi@raspberrypi ~ $

To put a subclass in its own object module file, you need to add an import Python statement to the
file, as shown in Listing 15.5. Here the Bird base class is imported before the BarnSwallow
subclass is defined.

LISTING 15.5 The BarnSwallow Subclass Object File

Click here to view code image

1: pi@raspberrypi ~ $ cat /home/pi/py3prog/barnswallow.py
2: #
3: # BarnSwallow subclass (base class: Bird)
4: #
5: from birds import Bird #import Bird base class
6:
7: class BarnSwallow(Bird):
8:
9: #Initialize Barn Swallow data attributes & obtain Bird inheritance.
10: def __init__(self, sex, flock_size):
11:
12: #Obtain base class data attributes & methods (inheritance)
13: Bird.__init__(self, sex)
14:
15: #Initialize subclass data attributes
16: self.__migratory = 'yes' #Migratory bird.
17: self.__flock_size = flock_size #How many in flock.
18:
19:
20: #Mutator methods for Barn Swallow data attributes
21: def set_flock_size(self, flock_size): #No. of birds in sighting
22: self.__flock_size = flock_size
23:
24: #Accessor methods for Barn Swallow data attributes
25: def get_migratory(self):
26: return self.__migratory
27: def get_flock_size(self):
28: return self.__flock_size
29: pi@raspberrypi ~ $

You can see in Listing 15.5 that the Bird base class is imported on line 5. Notice that the import
statement uses the from module_file_name import object_def format. It does so because the
module file name is bird.py and the object definition is called Bird. After it is imported, the
BarnSwallow subclass is defined on lines 7 through 28.
Once you have your object module files created—one containing the base class and others containing
all the necessary subclasses—the next step is to use these files in Python scripts.

Using Inheritance in Python Scripts
Using inheritance in a Python script is really not much different from using regular base class objects
in a script. Both the BarnSwallow subclass and the SouthAfricanCliffSwallow subclass
are used in script1501.py, along with their Bird base class. The script, as shown in Listing
15.6, simply goes through the objects and displays the immutable settings of each.

LISTING 15.6 Python Statements in script1501.py

Click here to view code image

1: pi@raspberrypi ~ $ cat /home/pi/py3prog/script1501.py
2: # script1501.py - Display Bird immutable data via Accessors
3: # Written by Blum and Bresnahan
4: #
5: ############ Import Modules ##################
6: #
7: # Birds object file
8: from birds import Bird
9: #
10: # Barn Swallow object file
11: from barnswallow import BarnSwallow
12: #
13: # South Africa Cliff Swallow object file
14: from sacliffswallow import SouthAfricaCliffSwallow
15: #
16: def main ():
17: ###### Create Variables & Object Instances ###
18: #
19: sex='unknown' #Male, female, or unknown
20: flock_size='0'
21: #
22: bird=Bird(sex)
23: barn_swallow=BarnSwallow(sex,flock_size)
24: sa_cliff_swallow=SouthAfricaCliffSwallow(sex,flock_size)
25: #
26: ########## Show Bird Characteristics ########
27: #
28: print("A bird has",end=' ')
29: if bird.get_feathers() == 'yes':
30: print("feathers,", end=' ')
31: print("bones that are", bird.get_bones(), end=' ')
32: print("and", bird.get_eggs(), "eggs.")
33: #
34: ###### Show Barn Swallow Characteristics #####
35: #
36: print()
37: print("A barn swallow is a bird that", end=' ')
38: if barn_swallow.get_migratory() == 'yes':
39: print("is migratory.")
40: else:
41: print("is not migratory.")
42: #
43: ######## Show Cliff Swallow Characteristics ######
44: #
45: print()
46: print("A cliff swallow is a bird that", end=' ')
47: if sa_cliff_swallow.get_migratory() == 'yes':
48: print("is migratory.")
49: else:
50: print("is not migratory.")
51: ###
52: #
53: ########## Call the main function #######################
54: main()

In the script, the object module files are imported before the start of the main function declaration on
lines 7 through 14. The variables sex and flock_size are to be used as arguments and thus are

set to 'unknown' and 0, respectively, on lines 19 and 20.
In Listing 15.6, the object instances themselves are declared on lines 22 through 24. Finally, the
accessors for each object are used to obtain the immutable values of each object class. They are
printed to the screen on line 28 through line 50.
Listing 15.7 shows script1501.py in action. Both the base class and each subclass’s immutable
values are displayed.

LISTING 15.7 Output of script1501.py

Click here to view code image

pi@raspberrypi ~ $ python3 /home/pi/py3prog/script1501.py
A bird has feathers, bones that are hollow and hard-shell eggs.

A barn swallow is a bird that is migratory.

A cliff swallow is a bird that is not migratory.
pi@raspberrypi ~ $

As you can see, the script runs fine. Both the BarnSwallow object and the
SouthAfricaCliffSwallow object are able to inherit data attributes and methods within the
script from the Bird object with no problems.
Many ornithology organizations around the world—such as Cornel’s Great Backyard Bird Count, at
www.birdsource.org/gbbc/—seek bird-sighting information. The script1501.py script was
modified to include sighting information and renamed script1502.py.
Listing 15.8 shows the script1502.py script. It now includes methods to obtain flock size
information.

LISTING 15.8 Python Statements in script1501.py

Click here to view code image

1: pi@raspberrypi ~ $ cat /home/pi/py3prog/script1502.py
2: # script1502.py - Record a Swallow Sighting
3: # Written by Blum and Bresnahan
4: #
5: ############ Import Modules ##################
6: #
7: # Birds object file
8: from birds import Bird
9: #
10: # Barn Swallow object file
11: from barnswallow import BarnSwallow
12: #
13: # South Africa Cliff Swallow object file
14: from sacliffswallow import SouthAfricaCliffSwallow
15: #
16: # Import Date Time function
17: import datetime
18: #
19: ##

http://www.birdsource.org/gbbc/

20: def main (): #Mainline
21: ###### Create Variables & Object Instances ###
22: #
23: flock_size='0' #Number of birds sighted
24: sex='unknown' #Male, female, or unknown
25: species='' #Barn or Cliff Swallow Object
26: #
27: barn_swallow=BarnSwallow(sex,flock_size)
28: sa_cliff_swallow=SouthAfricaCliffSwallow(sex,flock_size)
29: #
30: ###### Instructions for Script User #########
31: print()
32: print("The following characteristics are listed")
33: print("in order to help you determine what swallow")
34: print("you have sighted.")
35: print()
36: #
37: ###### Show Barn Swallow Characteristics #####
38: #
39: print("A barn swallow is a bird that", end=' ')
40: if barn_swallow.get_migratory() == 'yes':
41: print("is migratory.")
42: else:
43: print("is not migratory.")
44: #
45: ######## Show Cliff Swallow Characteristics ######
46: #
47: print("A cliff swallow is a bird that", end=' ')
48: if sa_cliff_swallow.get_migratory() == 'yes':
49: print("is migratory.")
50: else:
51: print("is not migratory.")
52: #
53: ######## Obtain Swallow Sighted #################
54: print()
55: print("Which did you see?")
56: print("European/Barn Swallow - 1")
57: print("African Cliff Swallow - 2")
58: species = input("Type number & press Enter: ")
59: print()
60: #
61: ######## Obtain Flock Size #################
62: #
63: flock_size=int(input("Approximately, how many did you see? "))
64: #
65: ###### Mutate Sighted Birds' Flock Size ####
66: #
67: if species == '1':
68: barn_swallow.set_flock_size(flock_size)
69: else:
70: sa_cliff_swallow.set_flock_size(flock_size)
71: #
72: ###### Display Sighting Data ################
73: print()
74: print("Thank you.")
75: print("The following data will be forwarded to")
76: print("the Great Backyard Bird Count.")
77: print("www.birdsource.org/gbbc")
78: #
79: print()
80: print("Sighting on \t", datetime.date.today())

81: if species == '1':
82: print("Species: \t European/Barn Swallow")
83: print("Flock Size: \t", barn_swallow.get_flock_size())
84: print("Sex: \t\t", barn_swallow.get_sex())
85: else:
86: print("Species: \t South Africa Cliff Swallow")
87: print("Flock Size: \t", sa_cliff_swallow.get_flock_size())
88: print("Sex: \t\t", sa_cliff_swallow.get_sex())
89: #
90: ###
91: #
92: ########## Call the main function #######################
93: main()
94: pi@raspberrypi ~

Notice in lines 84 and 88 of Listing 15.8 that the accessor methods are used to obtain the bird’s sex.
.get_sex is an accessor method set in the Bird base class (refer to Listing 15.1, lines 26 and 27).
Both the subclasses BarnSwallow and SouthAfricaCliffSwallow inherited methods from
Bird. Thus, they are able to access the data by using the inherited .get_sex accessor method.
This is called polymorphism.

Did You Know: Polymorphism
Polymorphism is the ability of subclasses to have methods with the same name as
methods in their base class. This is sometimes called overriding a method. You can
still access each class’s method, by using either base_class.method or
subclass.method.

Listing 15.9 shows Python interpreting script1502.py. When the script is run, the subclasses
inherit data attributes and methods with no problems.

LISTING 15.9 script1502.py Interpreted

Click here to view code image

pi@raspberrypi ~ $ python3 /home/pi/py3prog/script1502.py

The following characteristics are listed
in order to help you determine what swallow
you have sighted.

A barn swallow is a bird that is migratory.
A cliff swallow is a bird that is not migratory.

Which did you see?
European/Barn Swallow - 1
African Cliff Swallow - 2
Type number & press Enter: 1

Approximately, how many did you see? 7

Thank you.
The following data will be forwarded to
the Great Backyard Bird Count.

www.birdsource.org/gbbc

Sighting on 2013-11-06
Species: European/Barn Swallow
Flock Size: 7
Sex: unknown
pi@raspberrypi ~ $

Again, for simplicity, the data gathered here is overly simplified. However, to aid in your
understanding of inheritance, subclasses, and object module files, you are going to improve it!

Try It Yourself: Explore Python Inheritance and Subclasses
In the following steps, you will explore Python inheritance and subclasses by
improving the bird-sighting information script, script1502.py. Follow these
steps, to modify the script and create a new base class and subclass:

1. If you have not already done so, power up your Raspberry Pi and log in to the
system.

2. If you do not have the LXDE GUI started automatically at boot, start it now by typing
startx and pressing Enter.

3. Open up the LXTerminal by double-clicking the LXTerminal icon.
4. At the command-line prompt, type nano py3prog/script1503.py and press

Enter. This command puts you into the nano text editor and creates the file
py3prog/script1503.py.

5. Type all the information from script1502.py in Listing 15.6 into the nano editor
window, pressing Enter at the end of each line. Be sure to take your time here and
avoid any typographical errors. You can make corrections by using the Delete key
and the up- and down-arrow keys.

By the Way: Make It Easy
Instead of doing all this typing, you can download script1502.py from
informit.com/register. After downloading the script, simply use it instead of creating
the new script1503.py.

6. Make sure you have entered the code into the nano text editor window, as shown in Listing
15.6. Make any corrections needed.

7. Write out the information from the text editor to the script by pressing Ctrl+O. The script file
name shows along with the prompt File name to write. Press Enter to write out the
contents to the script1503.py script.

8. Exit the nano text editor by pressing Ctrl+X.
9. At the command-line prompt, type nano py3prog/birds.py and press Enter. This

command puts you into the nano text editor and creates the file py3prog/birds.py.
10. Type all the information from birds.py in Listing 15.4 into the nano editor window. You

http://informit.com/register

are creating the Birds base class object file that is needed for the Python script.

By the Way: Continue to Make It Easy
Instead of doing all this typing, you can download all three files—birds.py,
barnswallow.py, and sacliffswallow.py—from informit.com/register.
After downloading these object module files, you can skip over the steps to create
them!

11. Make sure you have entered the statements into the nano text editor window, as shown in
Listing 15.4. Make any corrections needed.

12. Write out the information from the text editor to the file by pressing Ctrl+O. The file name
shows along with the prompt File name to write. Press Enter to write out the
contents to the birds.py object file.

13. Exit the nano text editor by pressing Ctrl+X.
14. At the command-line prompt, type nano py3prog/barnswallow.py and press Enter.

The command puts you into the nano text editor and creates the file py3prog/barnswallow.py.
15. Type all the information from barnswallow.py in Listing 15.5 into the nano editor

window. You are creating the BarnSwallow subclass object file that is needed for the
Python script.

16. Make sure you have entered the statements into the nano text editor window, as shown in
Listing 15.5. Make any corrections needed.

17. Write out the information from the text editor to the file by pressing Ctrl+O. The file name
shows along with the prompt File name to write. Press Enter to write out the
contents to the barnswallow.py object file.

18. Exit the nano text editor by pressing Ctrl+X.
19. Hang in there! You are getting close! At the command-line prompt, type nano
py3prog/sacliffswallow.py and press Enter. The command puts you into the nano
text editor and creates the file py3prog/sacliffswallow.py.

20. In the nano text editor window, type the information from lines 17–29 in the birds.py file
in Listing 15.3 (the comment lines).

21. Now type the following into the nano editor window:
Click here to view code image

from birds import Bird #import Bird base class

22. Finish the SouthAfricaCliffSwallow subclass object file that needed for the Python
script by typing in the Python statements from lines 20 through 41 in Listing 15.3.

23. Make sure you have entered the statements into the nano text editor window as shown in
Listing 15.3, along with the additional import statement. Make any corrections needed.

24. Write out the information from the text editor to the file by pressing Ctrl+O. The file name
shows along with the prompt File name to write. Press Enter to write out the
contents to the sacliffswallow.py object file.

http://informit.com/register

25. Exit the nano text editor by pressing Ctrl+X.
26. Before making the improvements, make sure all is well with your code by typing python3

py3prog/script1503.py. If you get any errors, double-check the four files for any
typos and make corrections as needed. Next you will begin the improvements.

27. Create a base class called Sighting and subclass called BirdSighting. For
simplicity’s sake, you can put them both in one module file. Type nano
py3prog/sightings.py and press Enter. Python puts you into the nano text editor and
creates the object module file py3prog/sightings.py.

28. Type the following code into the nano editor window:
Click here to view code image

Sightings base class
#
class Sighting:
 #Initialize Sighting class data attributes
 def __init__(self, sight_location, sight_date):
 self.__sight_location = sight_location #Location of sighting
 self.__sight_date = sight_date #Date of sighting

 #Mutator methods for Sighting data attributes
 def set_sight_location(self, sight_location):
 self.__sight_location = sight_location

 def set_sight_date(self, sight_date):
 self.__sight_date = sight_date

 #Accessor methods for Sighting data attributes
 def get_sight_location(self):
 return self.__sight_location

 def get_sight_date(self):
 return self.__sight_date
#
Bird Sighting subclass (base class: Sighting)
#
class BirdSighting(Sighting):

 #Initialize Bird Sighting data attributes & obtain Bird inheritance.
 def __init__(self, sight_location, sight_date,
 bird_species, flock_size):

 #Obtain base class data attributes & methods (inheritance)
 Sighting.__init__(self, sight_location, sight_date)

 #Initialize subclass data attributes
 self.__bird_species = bird_species #Bird type
 self.__flock_size = flock_size #How many in flock.

 #Mutator methods for Bird Sighting data attributes
 def set_bird_species(self,bird_species):
 self.__bird_species = bird_species

 def set_flock_size(self,flock_size):
 self.__flock_size = flock_size

 #Accessor methods for Bird Sighting data attributes
 def get_bird_species(self):
 return self.__bird_species
 def get_flock_size(self):
 return self.__flock_size

29. Write out the information from the text editor to the file by pressing Ctrl+O. The file name
shows along with the prompt File name to write. Press Enter to write out the
contents to the sightings.py object file.

30. Exit the nano text editor by pressing Ctrl+X.
31. To modify the script to use these two objects, at the command-line prompt, type nano
py3prog/script1503.py and press Enter.

32. For the first change, in the Import Modules section of the script, under the import of the
SouthAfricanCliffSwallow object file, insert the following lines (which import the
new object files into the script):

Click here to view code image

Sightings object file
from sightings import Sighting
#
Birds sightings object file
from sightings import BirdSighting

33. For the second change, in the Create Variables & Object Instances section
of the script, under the creation of both the barn and cliff swallow object instances, insert the
following lines, properly indented:

Click here to view code image

location='unknown' #Location of sighting
date='unknown' #Date of sighting
#
bird_sighting=BirdSighting(location,date,species,flock_size)

34. For the third change, delete both the sections Obtain Flock Size and Mutate
Sighted Birds' Flock Size, along with their Python statements:

Click here to view code image

######## Obtain Flock Size #################
 #
 flock_size=int(input("Approximately, how many did you see? "))
 #
 ###### Mutate Sighted Birds' Flock Size ####
 #
 if species == '1':
 barn_swallow.set_flock_size(flock_size)
 else:
 sa_cliff_swallow.set_flock_size(flock_size)
 #

35. In place of what you just deleted, add the following:
Click here to view code image

######## Obtain Sighting Information #################
 #

 location=input("Where did you see the birds? ")
 print()
 flock_size=int(input("Approximately, how many did you see? "))
 #
 ###### Mutate Sighted Birds' Information ####
 #
 bird_sighting.set_sight_location(location)
 bird_sighting.set_sight_date(datetime.date.today())
 if species == '1': #CHANGE
 bird_sighting.set_bird_species('barn swallow')
 else:
 bird_sighting.set_bird_species('SA cliff swallow')
 bird_sighting.set_flock_size(flock_size)
 #

(Notice that the mutators, such as .set_sight_date, are now all from the
bird_sighting subclass.)

36. For the fourth change, in the section Display Sighting Data, delete the following
Python statements:

Click here to view code image

print("Sighting on \t", datetime.date.today())
 if species == '1':
 print("Species: \t European/Barn Swallow")
 print("Flock Size: \t", barn_swallow.get_flock_size())
 print("Sex: \t\t", barn_swallow.get_sex())
 else:
 print("Species: \t South Africa Cliff Swallow")
 print("Flock Size: \t", sa_cliff_swallow.get_flock_size())
 print("Sex: \t\t", sa_cliff_swallow.get_sex())

37. In place of what you just deleted, add the following:
Click here to view code image

print("Sighting Date: \t", bird_sighting.get_sight_date())
print("Location: \t", bird_sighting.get_sight_location())
if species == '1':
 print("Species: \t European/Barn Swallow")
else:
 print("Species: \t South Africa Cliff Swallow")
print("Flock Size: \t", bird_sighting.get_flock_size())

(Notice that the accessors, such as .get_flock_size, are now all from the
bird_sighting subclass.)

38. Review the four major changes you just made to script1503.py to ensure that there are
no typos and that the indentation is correct.

39. Write out the information from the text editor to the script by pressing Ctrl+O. The script file
name shows along with the prompt File name to write. Press Enter to write out the
contents to the script1503.py script.

40. Exit the nano text editor by pressing Ctrl+X. All your work is about to pay off!
41. To test your modifications to the script, at the command-line prompt, type python3
/home/pi/py3prog/script1503.py and press Enter. Answer the script questions
as you please. If there are no problems with your script or object definition file, the output
will look similar to Listing 15.10.

LISTING 15.10 The script1503.py Interpreted

Click here to view code image

pi@raspberrypi ~ $ python3 /home/pi/py3prog/script1503.py

The following characteristics are listed
in order to help you determine what swallow
you have sighted.

A barn swallow is a bird that is migratory.
A cliff swallow is a bird that is not migratory.

Which did you see?
European/Barn Swallow - 1
African Cliff Swallow - 2
Type number & press Enter: 1

Where did you see the birds? Indianapolis, Indiana, USA

Approximately, how many did you see? 21

Thank you.
The following data will be forwarded to
the Great Backyard Bird Count.
www.birdsource.org/gbbc

Sighting Date: 2013-11-06
Location: Indianapolis, Indiana, USA
Species: European/Barn Swallow
Flock Size: 21
pi@raspberrypi ~ $

Good job! You’ve done quite a bit of work here, but if you are like most other script writers, you
probably already see several things to improve in this script. For instance, there are no checks on
user-input data. The data should be output to a file, not just displayed to the screen. In addition, to
make the data useful, the time of day should be recorded, and more bird species should be added.
You can make all sorts of changes to this script!
Here is an idea to start. Start with script1503.py and try adding better bird descriptions to the
swallow subclass object module files to aid in their species identification. Now that you know how
to create subclasses using inheritance, you can get the script’s “ducks in a row.”

Summary
In this hour, you read about the class problem, Python subclasses, and the inheritance solution. You
learned how to create an object subclass in the same object module file as the base class. Also, you
learned how to create a subclass in its own object module file. Finally, you saw some practical
examples of using the base classes and subclasses in a few Python scripts. In Hour 16, “Regular
Expressions,” you will explore regular expressions.

Q&A
Q. What is the difference between an “is a” relationship and a “has a” relationship in

Python?
A. An “is a” relationship exists between a subclass and its base class. For example, a barn

swallow “is a” bird. A “has a” relationship exists between a class (a subclass or base class)
and one of its data attributes or methods. For example, looking at the class definition of a bird,
you can see from one of the data attribute statements that a bird “has a” feather.

Q. I added a subclass definition in a base class object file, and when I try to use one of the
stated methods, Python tells me the method is not found. Why?

A. Most likely, you do not have the correct indentation in the class object file. Try re-creating the
file within the IDLE 3 editor, which will give you some assistance creating the proper
indentation. An even better solution would be to put the subclass in its own object file, using
the IDLE 3 editor. Just be sure to include the proper import statements of the base class.

Q. Do I have to use subclasses?
A. No, there are no Python style police out there waiting to force you to use subclasses.

However, good form dictates that you should use subclasses to avoid the duplication issues in
the class problem.

Workshop
Quiz

1. A superclass is the same thing as a derived class. True or false?
2. What is it called when a subclass receives data attributes and methods from a base class?
3. Which Python statement correctly declares the subclass Ant of the base class Insect?

a. class Insect(Ant):
b. class Ant(Insect):
c. from Insect subclass Ant():

Answers
1. False. A superclass is also called a base class. A subclass, which inherits data attributes and

methods of a base class, is also called a derived class because some of its attributes and
methods are derived from the base class.

2. Inheritance is the term used when a subclass receives data attributes and methods from a base
class.

3. Answer b is correct. To properly create the subclass Ant from the base class Insect, you
use class Ant(Insect):.

Hour 16. Regular Expressions

What You’ll Learn in This Hour:
 What regular expressions are
 Defining regular expression patterns
 How to use regular expressions in your scripts

One of the most common functions used in Python scripts is manipulation of string data. One of the
things Python is known for is its ability to easily search and modify strings. One of the features in
Python that provides support for string parsing is regular expressions. In this hour, you’ll see what
regular expressions are, how to use them in Python, and how to leverage them in your own Python
scripts.

What Are Regular Expressions?
Many people have a hard time understanding what regular expressions are. The first step to
understanding them is defining exactly what they are and what they can do for you. The following
sections explain what a regular expression is and describe how Python uses regular expressions to
help with your string manipulations.

Definition of Regular Expressions
A regular expression is a pattern you create to filter text. A program or script matches the regular
expression pattern you create against data as the data flows through the program. If the data matches
the pattern, it’s accepted for processing. If the data doesn’t match the pattern, it’s rejected. Figure
16.1 shows how it works.

FIGURE 16.1 Matching data against a regular expression.

While are probably familiar with normal text searching, regular expressions provides a lot more than
that. The regular expression pattern makes use of wildcard characters to represent one or more
characters in the data stream. You can use a number of special characters in a regular expression to
define a specific pattern for filtering data. This means you have a lot of flexibility in how you define
your string patterns.

Types of Regular Expressions

The biggest problem with using regular expressions is that there isn’t just one set of them. Different
applications use different types of regular expressions. These include such diverse things as
programming languages (for example, Java, Perl, Python), Linux utilities (such as the sed editor, the
gawk program, and the grep utility), and mainstream applications (such as the MySQL and
PostgreSQL database servers).
A regular expression is implemented using a regular expression engine. A regular expression engine
is the underlying software that interprets regular expression patterns and uses those patterns to match
text.
In the open source software world, there are two popular regular expression engines:

 The POSIX Basic Regular Expression (BRE) engine
 The POSIX Extended Regular Expression (ERE) engine

Most open source programs at a minimum conform to the POSIX BRE engine specifications,
recognizing all the pattern symbols it defines. Unfortunately, some utilities (such as the sed editor)
only conform to a subset of the BRE engine specifications. This is due to speed constraints, as the sed
editor attempts to process text in the data stream as quickly as possible.
The POSIX ERE engine is often found in programming languages that rely on regular expressions for
text filtering. It provides advanced pattern symbols as well as special symbols for common patterns,
such as matching digits, words, and alphanumeric characters. The Python programming language uses
the ERE engine to process its regular expression patterns.

Working with Regular Expressions in Python
Before you can start writing regular expressions to filter data in your Python scripts, you need to
know how to use them. The Python language provides the re module to support regular expressions.
The re module is included in the Raspbian Python default installation, so you don’t need to do
anything special to start using regular expressions in your scripts, other than import the re module at
the start of a script:

import re

However, the re module provides two different ways to define and use regular expressions. The
following sections discuss how to use both methods.

Regular Expression Functions
The easiest way to use regular expressions in Python is to directly use the regular expression
functions provided by the re module. Table 16.1 lists the functions that are available.

TABLE 16.1 The re Module Functions
The re module functions take two parameters. The first parameter is the regular expression pattern,
and the second parameter is the text string to apply the pattern to.

The match() and search() regular expression functions return either a True Boolean value if
the text string matches the regular expression pattern or a False value if they don’t match. This
makes them ideal for use in if-then statements.
The match() Function

The match() function does what it says: It tries to match the regular expression pattern to a text
string. It is a little tricky in that it applies the regular expression string only to the start of the string
value. Here’s an example:
Click here to view code image

>>> re.match('test', 'testing')
<_sre.SRE_Match object at 0x015F9950>
>>> re.match('ing', 'testing')
>>>

The output from the first match indicates that the match was successful. When the match fails, the
match() function just returns a False value, which doesn’t show any output in the IDLE interface.
The search() Function

The search() function is a lot more versatile than match(): It applies the regular expression
pattern to an entire string and returns a True value if it finds the pattern anywhere in the string.
Here’s an example:
Click here to view code image

>>> re.search('ing', 'testing')
<_sre.SRE_Match object at 0x015F9918>
>>>

This output from the search() function indicates that it found the pattern inside the string.
The findall() and finditer() Functions

Both the findall() and finditer() functions returns multiple instances of the pattern if it is
found in the string. The findall() function returns a list of values that match in the string, as you
can see here:
Click here to view code image

>>> re.findall('[ch]at', 'The cat wore a hat')
['cat', 'hat']
>>>

The finditer() function returns an iterable object that you can use in a for statement to iterate
through the results.

Compiled Regular Expressions
If you find yourself using the same regular expression often in your code, you can compile the
expression and store it in a variable. You can then use the variable everywhere in your code that you
want to perform the regular expression pattern match.
To compile an expression, you use the compile() function, specifying the regular expression as the
parameter and storing the result in a variable, like this:
Click here to view code image

>>> pattern = re.compile('[ch]at')

After you store the compiled regular expression, you can use it directly in a match() or
search() function, as shown here:
Click here to view code image

>>> pattern.search('This is a cat')
<_sre.SRE_Match object at 0x015F9988>
>>> pattern.search('He wore a hat')
<_sre.SRE_Match object at 0x015F9918>
>>> pattern.search('He sat in a chair')
>>>

The additional benefit of using compiled regular expression patterns is that you can also specify flags
to control special features of the regular expression match. Table 16.2 shows these flags and what
they control.

TABLE 16.2 Compiled Flags
For example, by default, regular expression matches are case sensitive. To make a check case
insensitive, you just compile the regular expression with the re.I flag, as shown here:
Click here to view code image

>>> pattern = re.compile('[ch]at', re.I)
>>> pattern.search('Cat')
<_sre.SRE_Match object at 0x015F9988>
>>> pattern.search('Hat')
<_sre.SRE_Match object at 0x015F9918>
>>>

The search() function can now match the text in either uppercase or lowercase, anywhere in the
text.

Defining Basic Patterns
Defining regular expression patterns falls somewhere between a science and an art form. Entire
books have been written about how to create regular expressions for matching different types of data
(such as email addresses, phone numbers, or Social Security numbers). Instead of just showing a list
of different regular expression patterns, the purpose of this section is to provide the basics of how to
use them in daily text searches.

Plain Text
The simplest pattern for searching for text is to use the text that you want to find in its entirety, as in

this example:
Click here to view code image

>>> re.search('test', 'This is a test')
<_sre.SRE_Match object at 0x015F99C0>
>>> re.search('test', 'This is not going to work')
>>>

With the search() function, the regular expression doesn’t care where in the data the pattern
occurs. It also doesn’t matter how many times the pattern occurs. When the regular expression can
match the pattern anywhere in the text string, it returns a True value.
The key is matching the regular expression pattern to the text. It’s important to remember that regular
expressions are extremely picky about matching patterns. Remember that, by default, regular
expression patterns are case sensitive. This means they’ll match patterns only for the proper case of
characters, as shown here:
Click here to view code image

>>> re.search('this', 'This is a test')
>>>
>>> re.search('This', 'This is a test')
<_sre.SRE_Match object at 0x015F9988>
>>>

The first attempt here fails to match because the word this doesn’t appear in all lowercase in the
text string; the second attempt, using the uppercase letter in the pattern, works just fine.
You don’t have to limit yourself to whole words in a regular expression. If the defined text appears
anywhere in the data stream, the regular expression will match, as shown here:
Click here to view code image

>>> re.search('book', 'The books are expensive')
<_sre.SRE_Match object at 0x015F99C0>
>>>

Even though the text in the data stream is books, the data in the stream contains the regular expression
book, so the regular expression pattern matches the data. Of course, if you try the opposite, the
regular expression fails, as shown in this example:
Click here to view code image

>>> re.search('books', 'The book is expensive')
>>>

You also don’t have to limit yourself to single text words in a regular expression. You can include
spaces and numbers in your text string as well, as shown here:
Click here to view code image

>>> re.search('This is line number 1', 'This is line number 1')
<_sre.SRE_Match object at 0x015F9988>
>>> re.search('ber 1', 'This is line number 1')
<_sre.SRE_Match object at 0x015F99F8>
>>> re.search('ber 1', 'This is line number1')
>>>

If you define a space in a regular expression, it must appear in the data stream. You can even create a

regular expression pattern that matches multiple contiguous spaces, like this:
Click here to view code image

>>> re.search(' ', 'This line has too many spaces')
<_sre.SRE_Match object at 0x015F9988>
>>>

The line with two spaces between words matches the regular expression pattern. This is a great way
to catch spacing problems in text files!

Special Characters
As you use text strings in your regular expression patterns, there’s something you need to be aware of:
There are a few exceptions when defining text characters in a regular expression. Regular expression
patterns assign a special meaning to a few characters. If you try to use these characters in your text
pattern, you won’t get the results you were expecting.
Regular expressions recognize these special characters:

. * [] ^ $ { } \ + ? | ()

As you work your way through this hour, you’ll find out what these special characters do in a regular
expression. For now, though, just remember that you can’t use these characters by themselves in your
text pattern.
If you want to use one of the special characters as a text character, you need to escape it. To escape a
special character, you add another character in front of it to indicate to the regular expression engine
to interpret the next character as a normal text character. The special character that does this is the
backslash characters (\).
In Python, as you’ve learned, backslashes also have special meaning in string values. To get around
this, if you want to use the backslash character with a special character, you can create a raw string
value, using the r nomenclature:

r'textstring'

For example, if you want to search for a dollar sign in your text, just precede it with a backslash
character, like this:
Click here to view code image

>>> re.search(r'\$', 'The cost is $4.00')
<_sre.SRE_Match object at 0x015F9918>
>>>

You can use raw text strings for your regular expressions, even if they don’t contain any backslashes.
Some coders just get in the habit of always using the raw text strings.

Anchor Characters
As shown in the “Plain Text” section a little earlier this hour, by default when you specify a regular
expression pattern, the pattern can appear anywhere in the data stream and be a match. There are two
special characters you can use to anchor a pattern to either the beginning or the end of lines in the data
stream: ^ and $.
Starting at the Beginning

The caret character (^) defines a pattern that starts at the beginning of a line of text in the data stream.
If the pattern is located anyplace other than the start of the line of text, the regular expression pattern
fails.
To use the caret character, you must place it before the pattern specified in the regular expression,
like this:
Click here to view code image

>>> re.search('^book', 'The book store')
>>> re.search('^Book', 'Books are great')
<_sre.SRE_Match object at 0x015F9988>
>>>

The caret anchor character checks for the pattern at the beginning of each string, not each line. If you
need to match the beginning of each line of text, you need to use the MULTILINE feature of the
compiled regular expression, as in this example:
Click here to view code image

>>> re.search('^test', 'This is a\ntest of a new line')
>>>
>>> pattern = re.compile('^test', re.MULTILINE)
>>> pattern.search('This is a\ntest of a new line')
<_sre.SRE_Match object at 0x015F9988>
>>>

In the first example, the pattern doesn’t match the word test at the start of the second line in the text.
In the second example, using the MULTILINE feature, it does.

By the Way: Caret Versus match()
You’ll notice that the caret special character does the same thing as the match()
function. They’re interchangeable when you’re working with scripts.

Looking for the Ending

The opposite of looking for a pattern at the start of a line is looking for a pattern at the end of a line.
The dollar sign ($) special character defines the end anchor. You can add this special character after
a text pattern to indicate that the line of data must end with the text pattern, as in this example:
Click here to view code image

>>> re.search('book$', 'This is a good book')
<_sre.SRE_Match object at 0x015F99F8>
>>> re.search('book$', 'This book is good')
>>>

The problem with an ending text pattern is that you must be careful of what you’re looking for, as
shown here:
Click here to view code image

>>> re.search('book$', 'There are a lot of good books')
>>>

Because the book word is plural at the end of the line, it no longer matches the regular expression
pattern, even though book is in the data stream. The text pattern must be the very last thing on the line

in order for the pattern to match.
Combining Anchors

There are a couple common situations when you can combine the start and end anchors on the same
line. In the first situation, suppose you want to look for a line of data that contains only a specific text
pattern, as in this example:
Click here to view code image

>>> re.search('^this is a test$', 'this is a test')
<_sre.SRE_Match object at 0x015F9918>
>>> re.search('^this is a test$', 'I said this is a test')
>>>

The second situation may seem a little odd at first, but it is extremely useful. By combining both
anchors together in a pattern with no text, you can filter empty strings. Look at this example:
Click here to view code image

>>> re.search('^$', 'This is a test string')
>>> re.search('^$', "")
<_sre.SRE_Match object at 0x015F99F8>
>>>

The defined regular expression pattern looks for text that has nothing between the start and end of the
line. Because blank lines contain no text between the two newline characters, they match the regular
expression pattern. This is an effective way to remove blank lines from documents.

The Dot Character
The dot special character is used to match any single character except a newline character. The dot
character must match some character, though; if there’s no character in the place of the dot, the pattern
will fail.
Let’s take a look at a few examples of using the dot character in a regular expression pattern:
Click here to view code image

>>> re.search('.at', 'The cat is sleeping')
<_sre.SRE_Match object at 0x015F9988>
>>> re.search('.at', 'That is heavy')
<_sre.SRE_Match object at 0x015F99F8>
>>> re.search('.at', 'He is at the store')
<_sre.SRE_Match object at 0x015F9988>
>>> re.search('.at', 'at the top of the hour')
>>>

The third test here is a little tricky. Notice that you match the at, but there’s no character in front to
match the dot character. Ah, but there is! In regular expressions, spaces count as characters, so the
space in front of the at matches the pattern. The last test proves this by putting the at in the front of
the line and failing to match the pattern.

Character Classes
The dot special character is great for matching a character position against any character, but what if
you want to limit what characters to match? This is called a character class in regular expressions.
You can define a class of characters that would match a position in a text pattern. If one of the

characters from the character class is in the data stream, it matches the pattern.
To define a character class, you use square brackets. The brackets contain any character you want to
include in the class. You then use the entire class within a pattern, just as you would any other
wildcard character. This takes a little getting used to, but once you catch on, you see that you can use
it to create some pretty amazing results.
Here’s an example of creating a character class:
Click here to view code image

>>> re.search('[ch]at', 'The cat is sleeping')
<_sre.SRE_Match object at 0x015F9918>
>>> re.search('[ch]at', 'That is a very nice hat')
<_sre.SRE_Match object at 0x015F99F8>
>>> re.search('[ch]at', 'He is at the store')
>>>

This time, the regular expression pattern matches only strings that have a c or h in front of the at
pattern.
You can use more than one character class in a single expression, as in these examples:
Click here to view code image

>>> re.search('[Yy][Ee][Ss]', 'Yes')
<_sre.SRE_Match object at 0x015F9988>
>>> re.search('[Yy][Ee][Ss]', 'yEs')
<_sre.SRE_Match object at 0x015F99F8>
>>> re.search('[Yy][Ee][Ss]', 'yeS')
<_sre.SRE_Match object at 0x015F9988>
>>>

The regular expression uses three character classes to cover both lowercase and uppercase for all
three character positions.
Character classes don’t have to be just letters. You can use numbers in them as well, as shown here:
Click here to view code image

>>> re.search('[012]', 'This has 1 number')
<_sre.SRE_Match object at 0x015F99F8>
>>> re.search('[012]', 'This has the number 2')
<_sre.SRE_Match object at 0x015F9988>
>>> re.search('[012]', 'This has the number 4')
>>>

The regular expression pattern matches any lines that contain the numbers 0, 1, or 2. Any other
numbers are ignored, as are lines without numbers in them.
This is a great feature for checking for properly formatted numbers, such as phone numbers and zip
codes. However, remember that the regular expression pattern can be found anywhere in the text of
the data stream. There might be additional characters besides the matching pattern characters.
For example, if you want to match against a five-digit zip code, you can ensure that you only match
against five numbers by using the start- and end-of-the-line characters:
Click here to view code image

>>> re.search('^[0123456789][0123456789][0123456789][0123456789][0123456789]$'
, '12345')
<_sre.SRE_Match object at 0x0154FC28>

>>> re.search('^[0123456789][0123456789][0123456789][0123456789][0123456789]$'
, '123456')
>>> re.search('^[0123456789][0123456789][0123456789][0123456789][0123456789]$',
'1234')
>>>

If there are fewer than five or more than five numbers in a zip code, the regular expression pattern
returns False.

Negating Character Classes
In regular expression patterns, you can reverse the effect of a character class. Instead of looking for a
character contained in a class, you can look for any character that’s not in the class. To do this, you
place a caret character at the beginning of the character class range, as shown here:
Click here to view code image

>>> re.search('[^ch]at', 'The cat is sleeping')
>>> re.search('[^ch]at', 'He is at home')
<_sre.SRE_Match object at 0x015F9988>
>>> re.search('[^ch]at', 'at the top of the hour')
>>>

By negating the character class, the regular expression pattern matches any character that’s neither a c
nor an h, along with the text pattern. Because the space character fits this category, it passes the
pattern match. However, even with the negation, the character class must still match a character, so
the line with the at in the start of the line still doesn’t match the pattern.

Using Ranges
You may have noticed in the zip code example that it is rather awkward having to list all the possible
digits in each character class. Fortunately, you can use a shortcut to avoid having to do that.
You can use a range of characters within a character class by using the dash symbol. You just specify
the first character in the range, a dash, and then the last character in the range. The regular expression
includes any character that’s within the specified character range, depending on the character set you
defined when you set up your Raspberry Pi system.
Now you can simplify the zip code example by specifying a range of digits:
Click here to view code image

>>> re.search('^[0-9][0-9][0-9][0-9][0-9]$', '12345')
<_sre.SRE_Match object at 0x01570C98>
>>> re.search('^[0-9][0-9][0-9][0-9][0-9]$', '1234')
>>> re.search('^[0-9][0-9][0-9][0-9][0-9]$', '123456')
>>>

This saves a lot of typing! Each character class matches any digit from 0 to 9. The same technique
also works with letters:
Click here to view code image

>>> re.search('[c-h]at', 'The cat is sleeping')
<_sre.SRE_Match object at 0x0154FC28>
>>> re.search('[c-h]at', "I'm getting too fat")
<_sre.SRE_Match object at 0x01570C98>
>>> re.search('[c-h]at', 'He hit the ball with the bat')
>>>

The new pattern, [c-h]at, only matches words where the first letter is between the letter c and the
letter h. In this case, the line with only the word at fails to match the pattern.
You can also specify multiple noncontinuous ranges in a single character class:
Click here to view code image

>>> re.search('[a-ch-m]at', 'The cat is sleeping')
<_sre.SRE_Match object at 0x0154FC28>
>>> re.search('[a-ch-m]at', 'He hit the ball with the bat')
<_sre.SRE_Match object at 0x01570CD0>
>>> re.search('[a-ch-m]at', "I'm getting too fat")
>>>

The character class allows the ranges a through c and h through m to appear before the at text. This
range rejects any letters between d and g.

The Asterisk
Placing an asterisk after a character signifies that the character may appear zero or more times in the
text to match the pattern, as shown in this example:
Click here to view code image

>>> re.search('ie*k', 'ik')
<_sre.SRE_Match object at 0x0154FC28>
>>> re.search('ie*k', 'iek')
<_sre.SRE_Match object at 0x01570CD0>
>>> re.search('ie*k', 'ieek')
<_sre.SRE_Match object at 0x0154FC28>
>>> re.search('ie*k', 'ieeek')
<_sre.SRE_Match object at 0x01570CD0>
>>>

This pattern symbol is commonly used for handling words that have a common misspelling or
variations in language spellings. For example, if you need to write a script that may be used by
people speaking either American or British English, you could write this:
Click here to view code image

>>> re.search('colou*r', 'I bought a new color TV')
<_sre.SRE_Match object at 0x0154FC28>
>>> re.search('colou*r', 'I bought a new colour TV')
<_sre.SRE_Match object at 0x01570C98>
>>>

The u* in the pattern indicates that the letter u may or may not appear in the text to match the pattern.
Another handy feature is combining the dot special character with the asterisk special character. This
combination provides a pattern to match any number of any characters. It’s often used between two
strings that may or may not appear next to each other in the text:
Click here to view code image

>>> re.search('regular.*expression', 'This is a regular pattern expression')
<_sre.SRE_Match object at 0x0154FC28>
>>>

By using this pattern, you can easily search for multiple words that may appear anywhere in the text.

Using Advanced Regular Expressions Features

Because Python supports extended regular expressions, you have a few more tools available to you.
The following sections show what they are.

The Question Mark
The question mark is similar to the asterisk, but with a slight twist. The question mark indicates that
the preceding character can appear zero times or once, but that’s all. It doesn’t match repeating
occurrences of the character. In this example, if the e character doesn’t appear in the text, or as long
as it appears only once in the text, the pattern matches:
Click here to view code image

>>> re.search('be?t', 'bt')
<_sre.SRE_Match object at 0x01570CD0>
>>> re.search('be?t', 'bet')
<_sre.SRE_Match object at 0x0154FC28>
>>> re.search('be?t', 'beet')
>>>

The Plus Sign
The plus sign is another pattern symbol that’s similar to the asterisk, but with a different twist than the
question mark. The plus sign indicates that the preceding character can appear one or more times, but
it must be present at least once. The pattern doesn’t match if the character is not present. In the
following example, if the e character is not present, the pattern match fails:
Click here to view code image

>>> re.search('be+t', 'bt')
>>> re.search('be+t', 'bet')
<_sre.SRE_Match object at 0x01570C98>
>>> re.search('be+t', 'beet')
<_sre.SRE_Match object at 0x0154FC28>
>>> re.search('be+t', 'beeet')
<_sre.SRE_Match object at 0x01570C98>
>>>

Using Braces
By using curly braces in Python regular expressions, you can specify a limit on a repeatable regular
expression. This is often referred to as an interval. You can express the interval in two formats:

 {m}—The regular expression appears exactly m times.
 {m,n}—The regular expression appears at least m times but no more than n times.

This feature allows you to fine-tune how many times you allow a character (or character class) to
appear in a pattern. In this example, the e character can appear once or twice for the pattern match to
pass; otherwise, the pattern match fails:
Click here to view code image

>>> re.search('be{1,2}t', 'bt')
>>> re.search('be{1,2}t', 'bet')
<_sre.SRE_Match object at 0x0154FC28>
>>> re.search('be{1,2}t', 'beet')
<_sre.SRE_Match object at 0x01570C98>
>>> re.search('be{1,2}t', 'beeet')
>>>

The Pipe Symbol
The pipe symbol allows you to specify two or more patterns that the regular expression engine uses in
a logical OR formula when examining the data stream. If any of the patterns match the data stream
text, the text passes. If none of the patterns match, the data stream text fails.
This is the syntax for using the pipe symbol:

expr1|expr2|...

Here’s an example of this:
Click here to view code image

>>> re.search('cat|dog', 'The cat is sleeping')
<_sre.SRE_Match object at 0x0154FC28>
>>> re.search('cat|dog', 'The dog is sleeping')
<_sre.SRE_Match object at 0x01570C98>
>>> re.search('cat|dog', 'The horse is sleeping')
>>>

This example looks for the regular expression cat or dog in the data stream.
You can’t place any spaces within the regular expressions and the pipe symbol, or they’ll be added to
the regular expression pattern.

Grouping Expressions
Regular expression patterns can be grouped using parenthesis. When you group a regular expression
pattern, the group is treated like a standard character. You can apply a special character to the group
just as you would to a regular character. Here’s an example:
Click here to view code image

>>> re.search('Sat(urday)?', 'Sat')
<_sre.SRE_Match object at 0x00B07960>
>>> re.search('Sat(urday)?', 'Saturday')
<_sre.SRE_Match object at 0x015567E0>
>>>

The grouping of the day ending along with the question mark allows the pattern to match either the
full day name or the abbreviated name.
It’s common to use grouping along with the pipe symbol to create groups of possible pattern matches,
as shown here:
Click here to view code image

>>> re.search('(c|b)a(b|t)', 'cab')
<_sre.SRE_Match object at 0x015493C8>
>>> re.search('(c|b)a(b|t)', 'cat')
<_sre.SRE_Match object at 0x0157CCC8>
>>> re.search('(c|b)a(b|t)', 'bat')
<_sre.SRE_Match object at 0x015493C8>
>>> re.search('(c|b)a(b|t)', 'tab')
>>>

The pattern (c|b)a(b|t) matches any combination of the letters in the first group along with any
combination of the letters in the second group.

Working with Regular Expressions in Your Python Scripts

Working with Regular Expressions in Your Python Scripts
It helps to actually see regular expressions in use to get a feel for how to use them in your own Python
scripts. Just looking at the quirky formats doesn’t help much; seeing some examples of how regular
expressions can match real data can help clear things up!

Try It Yourself: Use a Regular Expression
Follow these steps to implement a simple phone number validator script by using
regular expressions:

1. Determine what regular expression pattern would match the data you’re trying to
look for. For phone numbers in the United States, there are four common ways to
display a phone number:

 (123)456-7890
 (123) 456-7890
 123-456-7890
 123.456.7890

This leaves four possibilities for how a customer can enter a phone number in a
form. The regular expression must be robust enough to be able to handle any
situation.
When building a regular expression, it’s best to start on the left side and build the
pattern to match the characters you might run into. In this example, there may or may
not be a left parenthesis in the phone number. You can match this by using the
following pattern:
^\(?

The caret indicates the beginning of the data. Since the left parenthesis is a special
character, you must escape it to search for it as the character itself. The question
mark indicates that the left parenthesis may or may not appear in the data to match.
Next comes the three-digit area code. In the United States, area codes start with the
number 2 through 9. (No area codes start with the digits 0 or 1.) To match the area
code, you use this pattern:
[2-9][0-9]{2}

This requires that the first character be a digit between 2 and 9, followed by any two
digits. After the area code, the ending right parenthesis may or may not be there:
\)?

After the area code there can be a space, no space, a dash, or a dot. You can group
these by using a character group along with the pipe symbol:
(| |-|\.)

The very first pipe symbol appears immediately after the left parenthesis to match the
no-space condition. You must use the escape character for the dot; otherwise, it will
take on its special meaning and match any character.
Next comes the three-digit phone exchange number, which doesn’t require anything
special:
[0-9]{3}

After the phone exchange number, you must again match either a space, a dash, or a
dot:
(|-|\.)

Then to finish things off, you must match the four-digit local phone extension at the
end of the string:
[0-9]{4}$

Putting the entire pattern together results in this:
Click here to view code image

^\(?[2-9][0-9]{2}\)?(| |-|\.)[0-9]{3}(|-|\.)[0-9]{4}$

2. Now that you have a regular expression, plug it into your code by opening a text
editor and entering this code:

Click here to view code image

#!/usr/bin/python3

import re
pattern = re.compile(r'^\(?[2-9][0-9]{2}\)?(| |-|\.)[0-9]{3}(|-|\.)[0-9]
{4}$')

while(True):
 phone = input('Enter a phone number:')
 if (phone == 'exit'):
 break
 if (pattern.search(phone)):
 print('That is a valid phone number')
 else:
 print('Sorry, that is not a valid phone number')
print('Thanks for trying our program')

3. Save the file and exit the text editor.
4. Run the file from the Raspberry Pi command prompt or the LXTerminal program in

your window:
Click here to view code image

pi@raspberrypi ~ $ python3 script1601.py
Enter a phone number:(555)555-1234
That is a valid phone number
Enter a phone number:333.123.4567
That is a valid phone number
Enter a phone number:1234567890
Sorry, that is not a valid phone number
Enter a phone number:exit
Thanks for trying our program
pi@raspberrypi ~ $

This is all there is to it! The script matches the input value against the regular
expression pattern and displays the appropriate message.

Summary
If you manipulate data in Python scripts, you need to become familiar with regular expressions. A
regular expression defines a pattern template that’s used to filter text in a string value. The pattern

consists of a combination of standard text characters and special characters. The regular expression
engine uses the special characters to match a series of one or more characters. Python uses the re
module to provide a platform for using regular expressions in Python scripts. You can use the
match(), search(), findall(), and finditer() functions to filter text from string values
in your Python scripts using regular expression patterns.
In the next hour, we’ll take a look at how to use exceptions in your Python code. With exceptions, you
can add code to your program to handle if things go wrong while the program is running!

Q&A
Q. Do regular expressions work in all language characters?
A. Yes, because Python uses Unicode strings, you can use characters from any language in your

regular expression patterns.
Q. Is there a source for common regular expressions?
A. The www.regular-expressions.info website contains lots of different expressions for matching

all sorts of data!
Q. Can I save a regular expression test to use in other programs?
A. Yes, you can create a function (see Hour 12, “Creating Functions”) that checks text using your

regular expression. You can then copy the function into a module and use that in any program
where you need to validate that type of data!

Workshop
Quiz

1. What regular expression character matches text at the end of a string?
a. the caret (^)
b. the dollar sign ($)
c. the dot (.)
d. the question mark (?)

2. The caret special character performs the same function in a regular expression as the
match() Python function. True or false?

3. What regular expression pattern should you use to match both the words Charlie and
Charles?

Answers
1. b. The dollar sign ($) anchors the expression at the end of the string.
2. True. You may find it easier to use the match() Python function; however, there are plenty of

standard regular expressions that use the caret. You can use either format to accomplish the
same thing!

3. 'Charl[ie]+[es]+' This regular expression will match if either the "ie" or "es"
characters are at the end of the "Charl" string.

http://www.regular-expressions.info

Hour 17. Exception Handling

What You’ll Learn in This Hour:
 What exceptions are
 How to handle exceptions
 How to handle multiple exceptions

In this hour, you will learn about exceptions and how to properly handle them in your Python scripts.
To understand exceptions, you will look at the different types that can occur and the tools Python
provides to manage them. Properly handling exceptions is a mark of an excellent Python script
builder.

Understanding Exceptions
An exception is an error that occurs when a Python script is being run or a command is issued within
the Python interactive shell. You might hear people talk about “throwing an exception” or “an
exception being raised.” They’re talking about Python issuing exceptions. There are two primary
categories of error exceptions: syntactical and runtime.

Syntactical Error Exceptions
You learned in Hour 3 that syntax refers to the Python commands, their proper order in a Python
statement, and additional characters, such as quotation marks ("), that are needed to make a Python
statement work properly. Before Python interprets a Python script, the interpreter checks that the
syntax of each Python statement is correct. Whenever a Python statement has incorrect syntax, the
interpreter generates a syntax error (that is, raises an exception). The exception is appropriately
called SyntaxError.
In Listing 17.1, a Python print statement is missing its ending double quotes. This causes the Python
interpreter to raise an exception.

LISTING 17.1 A print Function Syntax Error

Click here to view code image

>>> print ("I love my Raspberry Pi!)
 File "<stdin>", line 1
 print ("I love my Raspberry Pi!)
 ^
SyntaxError: EOL while scanning string literal
>>>

Notice the last line in the Listing 17.1. The word SyntaxError is used along with the helpful
message EOL while scanning string literal. This message helps you determine what
is wrong in the Python statement’s syntax. EOL stands for “end of line.” In other words, in this case,
the Python interpreter found the end of the line and did not find the closing double quote for the

print function.
The error generated in Listing 17.1 came from issuing a single syntactically incorrect statement in the
Python interactive shell. A syntax error message looks slightly different when it is generated by a
Python statement within a script. Listing 17.2 shows an example.

LISTING 17.2 A Syntax Error in a Script

Click here to view code image

pi@raspberrypi ~ $ python3 py3prog/my_errors.py
 File "py3prog/my_errors.py", line 17
 print ("I love my Raspberry Pi!)
 ^
SyntaxError: EOL while scanning string literal
pi@raspberrypi ~ $

The SyntaxError line of Listing 17.2 is identical to the SyntaxError line of Listing 17.1.
However, the first line of the error message denotes the name of the script that has the syntax error as
well as the line number in the script where it occurred. Having the line number is very helpful when
you’re tracking down syntax errors in your scripts!

By the Way: File Name
When a syntax error occurs in the Python interactive shell, the interpreter tells you that
the file is <stdin> and the line is line 1. This is because a script file is not being
used. Instead, the shell is getting Python statements from you interactively.

There is a little trick you can use to help find a raised syntax error quickly in your script. Use the
Linux shell cat -n command to display your script, as shown in Listing 17.3.

LISTING 17.3 A Trick to Display Script Line Numbers

Click here to view code image

pi@raspberrypi ~ $ cat -n py3prog/my_errors.py
 1 # my_errors.py - Demonstrates various Python errors
 2 # Written by Blum and Bresnahan
 3 #
 4 ###
 5 #
 6 ############# Initialize Variables ##################
 7 #
 8 my_error = 0
 9 num_1 = 3
 10 num_2 = 4
 11 zero = 0
 12 #
 13 ############# Error Functions ########################
 14 #
 15 def missing_quote ():
 16 print ()
 17 print ("I love my Raspberry Pi!)

 18 #
...

Using the cat -n command causes Python to display line numbers on the screen for each line in
your script. In Listing 17.3, you can easily find line 17, where the syntax error occurred. You can see
that the print statement on that line does not have the closing double quote!

Did You Know: Jump to It
You can quickly jump to a line with a syntactical error by using the nano text editor.
You use the syntax nano +line_number file_name. nano opens up the script and goes
directly to the line number you specified. For example, to go to directly to line number
17 in the file py3prog/my_errors.py, enter nano +17
py3prog/my_errors.py.
In the IDLE 3 editor, you can quickly jump to a line with a syntactical error by pressing
the key combination Alt+G. A little window opens, asking which line number to go to.
Simply type in the line number and press the Enter key.

As you have learned, the Python interpreter finds syntactical errors when it reads each Python
statement within a script and checks its syntax. If no errors are found, the Python interpreter translates
the statements into something called bytecode. When the translation is complete, the bytecode is
handed off to the Python virtual machine to run. At this point, a new type of error exception can be
raised.

Runtime Error Exceptions
A runtime error is raised when the Python script is running and an error occurs. Often such an error
causes the script to halt immediately and produce a traceback. A traceback is an error message that,
as its name says, traces back to the original runtime error.

By the Way: Illogical Runtime Errors
Runtime errors can come in a couple different flavors. One flavor is a logic error. A
logic error may cause a script to halt, or it may just produce undesirable results. Logic
errors are called logic errors because they are attributed to illogical thinking on the
part of the script writer.

A classic runtime error is trying to divide a number by zero, which is mathematically incorrect. (You
math wizards know that dividing by zero is better described as undefined.) In Listing 17.4, there are
no problems in the Python interactive shell, when the number 3 is divided by the number 4 on lines 2
through 7.

LISTING 17.4 Divide-by-Zero Example

Click here to view code image

1: >>>
2: >>> num1=3

3: >>> num2=4
4: >>> zero=0
5: >>> result=num1/num2
6: >>> print (result)
7: 0.75
8: >>> result=num1/zero
9: Traceback (most recent call last):
10: File "<stdin>", line 1, in <module>
11: ZeroDivisionError: division by zero
12: >>>

However, on line 8, when Python attempts to divide 3 by 0, it throws a runtime error and issues a
traceback message. The traceback message on line 10 in Listing 17.4 shows that the error occurs in
File "<stdin>", which means it is happening in the Python interactive shell. The message on
line 11 displays what causes the error exception to occur: ZeroDivisionError. As with the
SyntaxError message, Python gives a little more help by also displaying the message division
by zero.
As you would expect, a traceback message is a little different when it comes to a runtime error in a
script. Listing 17.5 includes code that attempts to divide by zero.

LISTING 17.5 A Runtime Error in a Script

Click here to view code image

1: pi@raspberrypi ~ $ python3 py3prog/my_errors.py
2:
3: The Classic "Divide by Zero" error.
4:
5: Traceback (most recent call last):
6: File "py3prog/my_errors.py", line 33, in <module>
7: main()
8: File "py3prog/my_errors.py", line 29, in main
9: divide_zero ()
10: File "py3prog/my_errors.py", line 23, in divide_zero
11: my_error = num_1 / zero
12: ZeroDivisionError: division by zero
13: pi@raspberrypi ~ $

Remember that a traceback message literally traces back to the original runtime error. Thus, you can
see on lines 6 through 11 of Listing 17.5 that the messages starts at the mainline function, main (lines
6 and 7 of Listing 17.5). It then progresses to the divide_zero function (lines 8 and 9 of Listing
17.5), which is called on line 29 of the script. Finally, it zeros in on the problem (lines 10 through 12
of Listing 17.5). As you can see, the culprit is on line 23 of the script, and it is a “division by zero”
error.
The my_errors.py script is displayed in Listing 17.6. Sure enough, on line 23, you can see the
code that incorrectly divides a number by zero.

LISTING 17.6 The my_errors.py Script

Click here to view code image

pi@raspberrypi ~ $ cat py3prog/my_errors.py
1: # my_errors.py - Demonstrates various Python errors
2: # Written by Blum and Bresnahan
3: #
4: ###
5: #
6: ############# Initialize Variables ##################
7: #
8: my_error = 0
9: num_1 = 3
10: num_2 = 4
11: zero = 0
12: #
13: ############# Error Functions ########################
14: #
15: #def missing_quote ():
16: # print ()
17: # print ("I love my Raspberry Pi!)
18: #
19: def divide_zero ():
20: print ()
21: print ("The Classic \"Divide by Zero\" error.")
22: print ()
23: my_error = num_1 / zero
24: #
25: ############## Mainline ##############################
...
pi@raspberrypi ~ $

Understanding error exceptions is important for handling them within a Python script. Now that you
have an understanding of exceptions, the next step is to learn how to properly handle them.

Handling Exceptions
As you have seen, when runtime errors are encountered in a script, the script stops, throws an
exception, and produces a traceback message. This is pretty sloppy and could certainly terrify an
unsuspecting script user. However, you can handle runtime errors with good form and keep your
script users happy. Python provides an exception handler via the try except statement.
The basic syntax of a try except statement is as follows:
Click here to view code image

try:
 python statements
except exception_name:
 python statements to handle exception

Notice that indentation is used with the try except statement to indicate which Python statements
belong together. The Python statements within the try statement area are part of the try statement
block. Python statements within the except statement area are part of the except statement block.
Together, the two blocks are called the try except statement block.
Using the example of the divide–by-zero exception, Listing 17.7 shows a script that could raise this
exception, along with a try except statement to properly handle it. The try except statement
block starts on line 15 and ends on line 22. Any Python statement that may raise an exception should
be put in a try statement block (Listing 17.7 lines 15 through 17) in order to properly handle that

exception. This is done in script1701.py.

LISTING 17.7 A try except Statement Block

Click here to view code image

1: pi@raspberrypi ~ $ cat py3prog/script1701.py
2: # script1701 - Properly handle Divide by Zero Exception
3: # Written by Blum and Bresnahan
4: #
5: ###
6: #
7: ################## Functions ########################
8: #
9: def divide_it ():
10: print ()
11: number=int(input("Please enter number to divide: "))
12: print ()
13: divisor=int(input("Please enter the divisor: "))
14: print ()
15: try:
16: result = number / divisor
17: print ("The result is:", result)
18: #
19: except ZeroDivisionError:
20: print ("You cannot divide a number by zero.")
21: print ("Script terminating....")
22: print ()
23:#
24:############## Mainline #############################
25:#
26:def main ():
27: divide_it ()
28:#
29:############ Call the Main Function ###################
30:#
31:main()
32: pi@raspberrypi ~ $

Notice that the script in Listing 17.7 has input statements on lines 11 and 13. The script asks the
script user for the number to be divided and its divisor. Because a script user could enter the number
0 here for the divisor, the math statement using the input is included in the try statement block.
The idea is to allow the script to continue working as normal as long as no exceptions are raised. If
an exception is raised, Python statements in the except statement block handle it. In Listing 17.8, on
lines 1 through 7, the script runs fine. The script user has input appropriate data, and thus no
exceptions are raised.

LISTING 17.8 Execution of Script script1701.py

Click here to view code image

1: pi@raspberrypi ~ $ python3 py3prog/script1701.py
2:
3: Please enter number to divide: 3

4:
5: Please enter the divisor: 4
6:
7: The result is: 0.75
8: pi@raspberrypi ~ $
9: pi@raspberrypi ~ $ python3 py3prog/script1701.py
10:
11: Please enter number to divide: 3
12:
13: Please enter the divisor: 0
14:
15: You cannot divide a number by zero.
16: Script terminating....
17:
18: pi@raspberrypi ~ $

On the second run of the script in Listing 17.8, the user puts 0 as the divisor on line 13. This raises an
exception. However, the script is not abruptly halted, nor is a scary traceback message displayed.
Instead, because the exception occurs within the try except statement block, the exception is
“caught,” and the Python statements within the except statement block run, as shown on lines 15 and
16. This is considered good form for handling raised exceptions within scripts.

Handling Multiple Exceptions
Often you need to be able to “catch” more than one type of exception for a group of Python statements.
For example, using the script1701.py script, if the user enters a word instead of a number,
Listing 17.9 shows what happens.

LISTING 17.9 Additional Exceptions Not Handled

Click here to view code image

pi@raspberrypi ~ $ python3 py3prog/script1701.py

Please enter number to divide: 3

Please enter the divisor: four
Traceback (most recent call last):
 File "py3prog/script1701.py", line 30, in <module>
 main()
 File "py3prog/script1701.py", line 26, in main
 divide_it ()
 File "py3prog/script1701.py", line 12, in divide_it
 divisor=int(input("Please enter the divisor: "))
ValueError: invalid literal for int() with base 10: 'four'

Even though the script can handle a ZeroDivisionError exception, it has not been written to
handle a ValueError exception. Multiple exceptions can be handled within a try except
statement block for cases such as this. script1701.py was modified to include such a block and
was renamed script1702.py. The new script is shown in Listing 17.10.

LISTING 17.10 Handling Multiple Exceptions

Click here to view code image

1: pi@raspberrypi ~ $ cat py3prog/script1702.py
2: # script1702 - Properly handle Division Errors
3: # Written by Blum and Bresnahan
4: #
5: ###
6: #
7: ################## Functions ########################
8: #
9: def divide_it ():
10: print ()
11: #
12: try:
13: # Get numbers to divide
14: number=int(input("Please enter number to divide: "))
15: print ()
16: divisor=int(input("Please enter the divisor: "))
17: print ()
18: #
19: # Divide the numbers
20: result = number / divisor
21: print ("The result is:", result)
22:#
23: except ZeroDivisionError:
24: print ("You cannot divide a number by zero.")
25: print ("Script terminating....")
26: print ()
27:#
28: except ValueError:
29: print ("Numbers entered must be digits.")
30: print ("Script terminating....")
31: print ()
32:#
33:############## Mainline #############################
34:#
35:def main ():
36: divide_it ()
37:#
38:############ Call the Main Function ###################
39:#
40: main()
41: pi@raspberrypi ~ $

In Listing 17.10, notice that the input statements were moved from outside the try except
statement block to inside it on lines 14 and 16. This is done because the ValueError exception can
occur when the user is entering input to these statements. The Python statements that can throw an
exception must be within the try statement block in order for the exceptions to be handled by the
try except block. Now both ValueError and ZeroDivisionError exceptions raised by
Python statements within the try statement block can be properly handled.
Listing 17.11 shows a user attempting input three different times on script1702.py.

LISTING 17.11 Execution of script1702.py

Click here to view code image

1: pi@raspberrypi ~ $ python3 py3prog/script1702.py
2:
3: Please enter number to divide: 3
4:
5: Please enter the divisor: 4
6:
7: The result is: 0.75
8: pi@raspberrypi ~ $
9: pi@raspberrypi ~ $ python3 py3prog/script1702.py
10:
11: Please enter number to divide: 3
12:
13: Please enter the divisor: four
14: Numbers entered must be digits.
15: Script terminating....
16:
17: pi@raspberrypi ~ $
18: pi@raspberrypi ~ $ python3 py3prog/script1702.py
19:
20: Please enter number to divide: 3
21:
22: Please enter the divisor: 0
23:
24: You cannot divide a number by zero.
25: Script terminating....
26:
27: pi@raspberrypi ~ $

In Listing 17.11, the script user makes an attempt with no problems on lines 1 through 7. Next, the
script user accidently enters the word four instead of the number 4 on line 13. The script captures
the raised exception and produces a user-friendly message instead of an ugly traceback. Also, notice
on lines 18 through 25 in Listing 17.11 that the ZeroDivisionError exception is still properly
handled.

Creating Multiple try except Statement Blocks
You can use multiple try except statement blocks throughout your Python scripts. In fact, it is
good form to put the blocks specifically around the Python statements that need them.
For example, looking back at the script script1702.py in Listing 17.10, you can see that the
ZeroDivisionError exception was potentially raised by the statement result = number
/ divisor. The ValueError exception could be raised by the input statements. Therefore,
good form dictates that those statements should be in their own try except statement blocks.
script1702.py has been revised and is now called script1703.py, as shown in Listing
17.12. This revised script properly divides the try except statement blocks for the Python
statements.

LISTING 17.12 Multiple try except Statement Blocks

Click here to view code image

1: pi@raspberrypi ~ $ cat py3prog/script1703.py
2: # script1703 - User Determined Division
3: # Written by Blum and Bresnahan

4: #
5: ###
6: #
7: ################## Functions ########################
8: #
9: def divide_it ():
10: print ()
11: #
12: try:
13: # Get numbers to divide
14: number=int(input("Please enter number to divide: "))
15: print ()
16: divisor=int(input("Please enter the divisor: "))
17: print ()
18: #
19: except ValueError:
20: print ("Numbers entered must be digits.")
21: print ("Script terminating....")
22: print ()
23: exit ()
24: #
25: except KeyboardInterrupt:
26: print ()
27: print ("Script terminating....")
28: print ()
29: exit ()
30: #
31: try:
32: # Divide the numbers
33: result = number / divisor
34: print ("The result is:", result)
35: #
36: except ZeroDivisionError:
37: print ("You cannot divide a number by zero.")
38: print ("Script terminating....")
39: print ()
40: exit ()
41: #
42: #
43: ############## Mainline #############################
44: #
45: ...
46: pi@raspberrypi ~ $

Notice in Listing 17.12 that an additional exception has been added to the try except statement
block for the Python input statements in lines 25 through 29. This additional exception has been
added for catching keyboard interrupts, such as the user pressing Ctrl+C during data input.

Did You Know: Exception Groups
Exceptions belong to named exception groups. These exception group names can be
used in the except statement. For example, both ZeroDivisionError and
FloatingPointError exceptions belong to the ArithmeticError base
group. An except statement block could use ArithmeticError as its named
exception, like this:
except ArithmeticError:

However, when an exception is raised, Python looks at the except statements within
the try except statement block in the order in which they are listed in the block. If
you have named except statement blocks for both ArithmeticError and
ZeroDivisonError, and a ZeroDivisionError is raised, the block that
comes first is executed.

Notice that exit function statements are added in lines 23, 29, and 40 of the script in Listing 17.12.
These statements are needed because the script does not stop executing when a raised exception is
caught by a try except statement block. Specifically, lines 23 and 29 need exit statements
because if the data input is interrupted by a Ctrl+C, the raised exception is caught, but all the data
needed by the division statement on line 33 will not have been entered.

By the Way: Any Python Statements
You can put just about anything within exception statement blocks. For example,
instead of issuing an exit statement as shown in the preceding examples, you could
issue a return statement to leave the current function but not exit the Python script.

In Listing 17.13, four tests are conducted on script1703.py to see if it can properly handle data
and a few potential exceptions. The first test simply makes sure the script can properly handle good
data.

LISTING 17.13 Execution of script1703.py

Click here to view code image

pi@raspberrypi ~ $ python3 py3prog/script1703.py

Please enter number to divide: 3

Please enter the divisor: 4

The result is: 0.75
pi@raspberrypi ~ $ python3 py3prog/script1703.py

Please enter number to divide: 3

Please enter the divisor: four
Numbers entered must be digits.
Script terminating....

pi@raspberrypi ~ $ python3 py3prog/script1703.py

Please enter number to divide: 3

Please enter the divisor: 0

You cannot divide a number by zero.
Script terminating....

pi@raspberrypi ~ $ python3 py3prog/script1703.py

Please enter number to divide: 3

Please enter the divisor: ^C
Script terminating....

pi@raspberrypi ~ $

The final three tests on script1704.py in Listing 17.13 test the newly separated try except
statement blocks of the script. Notice that the last test uses Ctrl+C. The keyboard interrupt exception
is handled gracefully. If this exception were not trapped, it would produce a very long and ugly
traceback message.

Handling Generic Exceptions
So far, you have seen anticipated exceptions being handled. However, few people can determine all
the possible error exceptions that may be raised. Fortunately, Python allows a generic exception for
unanticipated events.
The syntax for generic exceptions is not too different from that of regular exceptions. You simply
leave off the exception name from the except statement, as shown in Listing 17.14.

LISTING 17.14 A Generic Execution Statement

Click here to view code image

pi@raspberrypi ~ $ cat py3prog/script1703.py
...
 except:
 print ()
 print ("An error has occurred.")
 print ("Script terminating...")
 print ()
 exit ()
...

In Listing 17.14, the script1703.py has its first try except statement block modified to
include a generic exception statement. Notice that the only syntax difference between the generic
exception statement and the others is that no exception name is listed after except. Now if any
unforeseen exceptions are raised, the script can handle them in good form.

Understanding try except Statement Options
Several optional items you can use within your try except statement blocks provide a great deal
of flexibility. These are the three primary options:

 else statement block
 finally statement block
 as variable statement

An optional else statement block follows an except statement block and also contains Python
statements. However, these Python statements are executed only if no exceptions were raised by
Python statements within a try statement block. The following is an example of an else statement
block:

Click here to view code image

else:
 print ()
 print ("Data entered successfully")

The optional finally statement is located at the very end of a try except statement block. It
also must follow any included else statement blocks. The Python statements within the finally
statement block are executed whether an exception was raised or not. The following is an example of
a finally statement block:
Click here to view code image

finally:
 print ()
 print ("Script completed.")

The as variable statement is not a statement block like the others. Instead, it allows you to capture the
exact error message that is issued, when the exception is raised. The beauty here is that no matter
which exception is raised, you have the error message. Often script writers write the message to a log
file for later review and display a very user-friendly style message to the script user instead. The
following is an example of using an as variable statement:
Click here to view code image

except ValueError as input_error:
 print ("Numbers entered must be digits.")
 print ("Script terminating....")
 print ()
 error_log_file = open ('/home/pi/data/error.log', 'a')
 error_log_file.write(input_error)
 error_log_file.close()
 exit ()

The variable name here is input_error. If a ValueError exception is raised in this try
except statement block, the exact error message is loaded into the input_error variable. A
Python statement within the block, error_log_file.write(input_error), then writes that
error message out to an error log file.
These three options give a great deal of flexibility in handling exceptions. Now it is time to stop
reading about handling exceptions and try to handle a few yourself.

Try It Yourself: Explore Python try except Statement Blocks
In the following steps, you will explore Python try except statement blocks by
creating a script that opens a file. At first, the script will produce a traceback message.
You will add try except statements to handle the raised exceptions using good
form. Here’s what you do:

1. If you have not already done so, power up your Raspberry Pi and log in to the
system.

2. If you do not have the LXDE GUI started automatically at boot, start it now by typing
startx and pressing Enter.

3. Open a script editor, either nano or the IDLE 3 text editor, to create the script
py3prog/script1704.py.

4. Type all the information from script1704.py shown below. Take your time and
avoid any typographical errors:

Click here to view code image

script1704 - Open a File
Written by
#
###
#
################## Functions ########################
#
def get_file_name (): #Get file name
 print ()
#
 try:
 file_name=input("Please enter file to open: ")
 print ()
 return file_name
 #
 except KeyboardInterrupt:
 print ()
 print ("Script terminating....")
 print ()
 exit ()
 #
 except:
 print ()
 print ("An error has occurred.")
 print ("Script terminating...")
 print ()
 exit ()
 #
#
def open_it (file_name): #Open file name

 my_file=open(file_name,'r')
 print ("File", file_name, "opened successfully!")
 my_file.close()
#
############## Mainline #############################
#
def main ():
 file_name = get_file_name ()
 open_it (file_name)
#
############ Call the Main Function ###################
#
main()

Notice that the only try except statement block is for entering information into
the script in the get_file_name function.

5. Save the editor contents and exit the editor.
6. Before you test the script, you need to create a little file for the script to open, so at

the command-line prompt, type echo "I love my Raspberry Pi" >>
testfile and press Enter.

7. Test your script by typing python3 py3prog/script1704.py and pressing

Enter. At the Please enter file to open: prompt, type testfile and
press Enter. This should complete successfully, and you should receive the message
File testfile opened successfully!, as shown below.

Click here to view code image

pi@raspberrypi ~ $ python3 py3prog/script1704.py

Please enter file to open: testfile

File testfile opened successfully!
pi@raspberrypi ~ $

8. Now test your script again by typing python3 py3prog/script1704.py
and pressing Enter. At the Please enter file to open: prompt, type
nofile and press Enter. This should cause the script to abruptly halt (assuming that
you do not have a file called nofile), and you should get an ugly traceback
message similar to what is shown below:

Click here to view code image

pi@raspberrypi ~ $ python3 py3prog/script1704.py

Plvease enter file to open: nofile

Traceback (most recent call last):
 File "py3prog/script1704.py", line 46, in <module>
 main()
 File "py3prog/script1704.py", line 42, in main
 open_it (file_name)
 File "py3prog/script1704.py", line 32, in open_it
 my_file=open(file_name,'r')
IOError: [Errno 2] No such file or directory: 'nofile'
pi@raspberrypi ~ $

Obviously, you need to do more to get script1704.py into shape.
9. Open script1704.py in a script editor again. Modify the open_it function so

that it looks as shown below:
Click here to view code image

def open_it (file_name): #Open file name
#
 try:
 my_file=open(file_name,'r')
 print ("File", file_name, "opened successfully!")
 my_file.close()
 #
 except Exception as open_error:
 print ("An error exception has been raised.")
 print ("The error message is:")
 print (open_error)
 print ()
 return ()
#

10. Notice that the except statement uses Exception as the name of the exception.
This is the overall base group for exceptions. In order to catch the exception using

the as variable statement into the variable open_error, an exception must be
named. Using the overall base group Exception means that all exceptions will be
caught. Save the editor contents to a file and exit the editor.

11. Test your modified script by typing python3 py3prog/script1704.py and
pressing Enter. At the Please enter file to open: prompt, type nofile
and press Enter. As shown below, your new except statement block should catch the
raised exception and display the information desired:

Click here to view code image

pi@raspberrypi ~ $ python3 py3prog/script1704.py

Please enter file to open: nofile

An error exception has been raised.
The error message is:
[Errno 2] No such file or directory: 'nofile'

pi@raspberrypi ~ $

12. To clean up script1704.py a little more (and give you more experience!), open
the script in your favorite script editor again. Modify the open_it function so that
it looks as shown below:

Click here to view code image

def open_it (file_name): #Open file name

 try:
 my_file=open(file_name,'r')
 print ("File", file_name, "opened successfully!")
 my_file.close()
#
 except IOError:
 print ("File", file_name, "not found")
 print ("Script terminating...")
 return
 #
 except Exception as open_error:
 print ("An error exception has been raised.")
 print ("The error message is:")
 print (open_error)
 print ()
 return
 #

13. Notice that the change you made was to add an additional except statement block
to the function. The additional statement specifically catches any IOError
exceptions. Save the editor contents to a file and exit the editor.

14. Test your modified script by typing python3 py3prog/script1704.py and
pressing Enter. At the Please enter file to open: prompt, type nofile
and press Enter. The except statement block should catch the raised exception and
display the information desired, as shown below:

Click here to view code image

pi@raspberrypi ~ $ python3 py3prog/script1704.py

Please enter file to open: nofile

File nofile not found
Script terminating...
pi@raspberrypi ~ $

15. Open the script1704.py script in a script editor again. This time you will be
adding the optional else and finally statements. Modify the open_it function
so that it looks as shown below:

Click here to view code image

def open_it (file_name): #Open file name

 try:
 my_file=open(file_name,'r')
#
 except IOError:
 print ("File", file_name, "not found")
 print ("Script terminating...")
 #
 except Exception as open_error:
 print ("An error exception has been raised.")
 print ("The error message is:")
 print (open_error)
 print ()
 #
 else:
 print ("File", file_name, "opened successfully!")
 my_file.close()
 #
 finally:
 return
#

16. Remember that the else statement block is executed only if no exceptions are
raised. The finally statement block is run whether an exception is raised or not.
Save the editor contents to a file and exit the editor.

17. Now test your modified script by typing python3 py3prog/script1704.py
and pressing Enter. At the Please enter file to open: prompt, type
nofile and press Enter. You should see a message similar to what is shown
below:

Click here to view code image

pi@raspberrypi ~ $ python3 py3prog/script1704py

Please enter file to open: nofile

File nofile not found
Script terminating...
pi@raspberrypi ~ $

Good job! Hopefully you can see the benefits of properly and gracefully handling exceptions.
If you want a little more hands-on experience, go back through the previous hours and look at

traceback messages that are displayed in the various listings. What kind of try except statement
blocks would you write for each one?

Summary
In this hour, you explored how to handle error exceptions with class. By using try except
statement blocks, you learned how to eliminate ugly traceback messages and provide a script user
with clean and user-friendly error messages. You got to play around with try except statement
blocks and some of their options in a script.
In Hour 18, “GUI Programming,” you will take a major step forward in your Python adventure: You
will be learning about GUI programming!

Q&A
Q. I don’t know the exact name of an exception that may be raised in my script. Where can

I get help?
A. If you have a general idea about what kind of error exception may be raised from a Python

statement but don’t have its exact name to use in a try except statement, you can go to
docs.python.org/3/library/exceptions.html for a list of Python exception names and a brief
description of each one. Also, exception groupings are shown at that site.

Q. Can you wrap your mainline function within a try except statement?
A. Yes, but that would not be considered good form. It’s best to keep only the statements that may

raise a particular exception with each try except statement block.
Q. I’ve heard I can raise my own exceptions. Is that true?
A. Yes, it is true. By using the raise Python statement, you can raise exceptions to change the

flow of a script. These exceptions can be built in or custom made. See
docs.python.org/3/tutorial/errors.html for more information on this topic.

Workshop
Quiz

1. Multiple exceptions can be handled within a try except statement block. True or false?
2. A syntax error generates a SyntaxError message. A runtime error raises a(n)

____________ and produces a(n) ___________ message.
3. A(n) _________ statement block is executed when exceptions are raised and when they are not

raised, and a(n) _____________ statement block is executed only when no exceptions are
raised.
a. try; exempt
b. finally; else
c. else; finally

Answers
1. True. Multiple exceptions can be handled within a try except statement block, though it is

http://docs.python.org/3/library/exceptions.html
http://docs.python.org/3/tutorial/errors.html

often desirable for each exception to have its own except statement block.
2. exception; traceback
3. Answer b is correct. A finally statement block is executed when exceptions are raised and

when they are not raised, and an else statement block is executed only when no exceptions are
raised.

Part IV: Graphical Programming
HOUR 18 GUI Programming

HOUR 19 Game Programming

Hour 18. GUI Programming

What You’ll Learn in This Hour:
 The basics of GUI programming
 GUI Python libraries
 Exploring the tkinter package
 How to use GUI programming in Python

When you hear Python scripting, the first thing that probably comes to mind is boring command-line
scripts. This doesn’t have to be the case, though, if you plan on running your Python scripts in a
graphical environment—such as the Raspberry Pi. There are plenty of ways to interact with your
Python script other than the input and print statements! In this hour, you’ll learn how to add
graphical interfaces to your Python scripts to make them look more like Windows programs.

Programming for a GUI Environment
These days, just about every operating system incorporates some type of graphical user interface
(GUI) to allow users to input data and view results. This is true of Linux, which, you’ll remember, is
the operating system on the Raspberry Pi. While there are several different graphical desktop
environments in the Linux world, the Raspbian distribution used on the Raspberry Pi uses the LXDE
desktop package to provide a graphical desktop interface for users.
You can leverage the graphical desktop environment of the LXDE package with your Python scripts to
create a fancy window-oriented interface for your programs that will help give your scripts a more
professional look and feel.
Before we dive into the coding, though, it’s a good idea to first go through all the terms used in GUI
programming. If you’re brand new to the GUI programming world, there may be some things that
you’ve seen and used but never knew actually have names. The following sections walk through some
of the terminology and features of a GUI environment that you’ll need to become familiar with when
coding your Python scripts.

The Window Interface
When you make the move to GUI programming, you need to learn a new set of terms. For starters, the
main area in a window is called the frame. The frame contains all the objects the program uses to
interact with the user, and it is the central point in a GUI program.
The frame is composed of objects called widgets (short for window gadgets) that display and
retrieve information. Most graphical programming languages provide a library of widgets for you to
use in your programs. While not an official standard, there’s a common set of widgets available in
just about every graphical programming environment. Table 18.1 lists the widgets you’ll run into in
your Python GUI programming.

TABLE 18.1 Window Widgets
Each widget has its own set of properties that define how it appears in the program window and how
to handle any data or actions that occur while the user interacts with the window.

Event-Driven Programming
Programming for a GUI environment is a bit different from command-line programming in the way
that Python handles the program code. In a command-line program, the order of the program code
controls what happens next. For example, the program prompts the user for input, processes the input,
and then displays the results on the command line, based on the input. The program user can only
respond to input requests from the program.
In contrast, a GUI program displays an entire set of interaction widgets all at once, all in the same
window. The program user gets to decide which widget gets processed next. Because code doesn’t
know which widget the user will activate at any given time, it has to use a feature called event-driven
programming to process code. In event-driven programming, Python calls different methods within
the program, based on what event (or action) happens in the GUI window. There isn’t a set flow to
the program code; it’s just a bunch of methods that individually run in response to an event.
For example, your user can enter data into a text widget, but nothing happens until the user presses a
button in the program window to submit the text. The button triggers an event, and your program code
must detect that event and then run the code method to read the text in the text field and process it.
The key to event-driven programming is linking widgets in the window to events and then linking the
events to the code modules in the program. An event handler is in charge of this process.
For the program to work, you must create separate modules that Python calls when it receives an
event from each widget. The event handlers do the bulk of the work in GUI programs. They retrieve
the data from the widgets, process the data, and then display the results in the window, using other
widgets. This may seem a bit cumbersome at first, but once you get used to coding with event handles,
you’ll see how easy it is to work in a GUI environment.

Examining Python GUI Packages

A lot of people have worked hard to simplify GUI programming in the Python environment. Standard
library packages help you create GUI widgets from your Python scripts and build your graphical
programs. Table 18.2 describes the most popular GUI packages used in the Linux world.

TABLE 18.2 Popular Linux GUI Packages
The tkinter package is one of the older graphical packages used in Python, and it’s therefore one
of the most popular packages. Since Python includes the tkinter package by default, it’s commonly
used to create graphical Python programs on the Raspberry Pi, and we use it in this hour.

Using the tkinter Package
Since the Raspberry Pi Python libraries include the tkinter package by default, we use it to
demonstrate creating GUI programs in Python scripts. Once you become familiar with how one
graphical library package works, it’s not too difficult to use any of the others.
You need to follow three basic steps to create a GUI application using the tkinter package:

1. Create a window.
2. Add widgets to the window.
3. Define the event handlers for the widgets.

The following sections walk through each of these steps to show how you would build a GUI
application using tkinter in your Python scripts.

Creating a Window
In a GUI environment, everything revolves around a window. The first step to creating a GUI program
is to create the main window for your application, called the root window.
You do that by creating a Tk object, which controls all the aspects of your window. To create a Tk
object, you first need to import the tkinter library, and then you instantiate a Tk object, like this:

from tkinter import *
root = Tk()

This creates a main window object and assigns it to the variable named root. However, this default
window does not have any size, title, or features.
You next need to run a few default Tk object methods for the window to set up some of the window
features. Two common methods are the title() method to set a title for the window, which will
appear in the title bar at the top of the window, and the geometry() method, which sets the size of
the window. Here’s how you use them:
Click here to view code image

root.title('This is a test window')
root.geometry('300x100')

After you set these methods, you need to use the mainloop() method, which puts the window into
a loop, waiting for a window widget to trigger an event. As events occur in the window, Python
intercepts them and passes them to your program code. For example, if you click the X at the top-right
corner of the window, Python captures that event and knows to close out the window. (Later on,
you’ll code your own events to add to the window.) Listing 18.1 shows the tkinter window code
to create a simple window.

LISTING 18.1 The script1801.py Code

Click here to view code image

#!/usr/bin/python3
from tkinter import *
root= Tk()
root.title('This is a test window')
root.geometry('300x100')
root.mainloop()

To run the script1801.py code, you need to be in the LXDE graphical desktop on the Raspberry
Pi. Once you’re in the desktop, you can start the script from the command line by opening the
LXTerminal utility and then running the code from the command prompt, like this:
Click here to view code image

pi@raspberrypi ~$ python3 script1801.py

You don’t see anything happen at the command prompt, but you should see a simple window object
appear on your desktop, as shown in Figure 18.1.

FIGURE 18.1 A default Tk window with no widgets.

Congratulations! You’ve just written a Python GUI program! There aren’t any widgets to interact
with, so to close out the window, you have to click the X in the upper-right corner of the window.
Next you will start adding some widgets to your window to make things happen.

Adding Widgets to the Window
After you’ve created the root window, you’re ready to start working on the widgets for your interface.
There are three steps involved with adding widgets to a window:

1. Create a frame template in the root window.
2. Define a positioning method to use for placing widgets in the frame.
3. Place the widgets in the frame, using the positioning method you’ve chosen.

The following sections walk through these steps.
Creating a Frame Template

The first step in the process of adding widgets to your window is to create a template for the window
widget layout. The tkinter package uses the Frame object to create an area for you to place
widgets in the window. However, you don’t use the Frame object directly in your window code;
instead, you must create a child class to define all the window methods and attributes, based on the
Frame class. (For more info on child classes, see Hour 15, “Employing Inheritance”). While you can
call your Frame object child class anything you want, the most popular name for this class is
Application, as shown here:

class Application(Frame):

After you create the child class, you need to create a constructor for it. Remember from Hour 14,
“Exploring the World of Object-Oriented Programming,” that you define a constructor by using the
__init__() method. This method uses the keyword self as the first parameter, and it takes the
root Tk window object that you created as the second parameter. This is what links the Frame
object to the window.
You now have a basic template that you can use to create a window Frame class:
Click here to view code image

class Application(Frame):
 """My window application"""

 def __init__(self, master):
 super(Application, self).__init__(master)
 self.grid()

The class definition to create the window and frame isn’t very long, but it is somewhat complicated.
The constructor that you built for the Application class contains two statements. The super()
statement imports the constructor method from the parent Frame class for the Application class,
passing the root window object. The last statement in the constructor defines the positioning method
used for the frame. This example uses the tkinter grid() method. (You’ll learn more about that
feature in the next section.)
Now that you have your Application class template, you can use it to create a window. Listing
18.2 shows the script1802.py file, which is a basic code template that you’ll use to create a

window.

LISTING 18.2 The script1802.py File

Click here to view code image

#!/usr/bin/python3

from tkinter import *

class Application(Frame):
 """Build the basic window frame template"""

 def __init__(self, master):
 super(Application, self).__init__(master)
 self.grid()

root = Tk()
root.title('Test Application window')
root.geometry('300x100')
app = Application(root)
app.mainloop()

When you run the script1802.py program, you might notice that it looks just like the window you
created using the bare Tk object, shown in Figure 18.1. The difference is that now the window has a
frame, so you can start adding widgets to the Application object to fill in the window. The
script1802.py code shows the basic template that you’ll use for most of your Python GUI
programs.
Positioning Widgets

The key to a user-friendly GUI application is the placement of the widgets in the window area. Too
many widgets grouped together can make the user interface confusing.
In the example in the previous section, you used the grid() method to position widgets in the frame.
The tkinter package provides three ways to position widgets in the window:

 Using a grid system
 Packing widgets into available places
 Using positional values

The last method, using positional values, requires that you define the precise location of each widget,
using X and Y coordinates within the window. While this provides the most accurate control over
where your widgets appear, it can be somewhat difficult to work with when you’re first starting out.
The packing method pretty much does what it says: It attempts to pack widgets into a window as best
it can in the space available. When you choose this method, Python places the widgets in the window
for you, starting at the top left and moving along to the next available space, either to the right or
below the previous widget. The packing method works fine for small windows with just a few
widgets, but if you have a larger window, things can quickly get cluttered and out of alignment.
The compromise between the positional method and the packing method is the grid method. The grid
method creates a grid system in the window, using rows and columns, somewhat like a spreadsheet.
You place each widget in the window at a specific row and column location. You can define a widget

to span multiple rows or columns, so you have some flexibility in how the widgets appear.
The grid() method defines three parameters for placing the widget in the window:
Click here to view code image

object.grid(row = x, column = y, sticky = n)

The row and column values refer to the cell location in the layout, starting with row 0 and column 0
as the top-left cell in the window. The sticky parameter tells Python how to align the widget inside
the cell. There are nine possible sticky values:

 N—Places the widget at the top of the cell.
 S—Places the widget at the bottom of the cell.
 E—Right-aligns the widget in the cell.
 W—Left-aligns the widget in the cell.
 NE—Places the widget at the top-right corner of the cell.
 NW—Places the widget at the top-left corner of the cell.
 SE—Places the widget at the bottom-right corner of the cell.
 SW—Places the widget at the bottom-left corner of the cell.
 CENTER—Centers the widget in the cell.

In this hour, you’ll use the grid method of positioning the widgets.
Defining Widgets

Now that you have a Frame object and a positioning method, you’re ready to start placing some
widgets inside your window. You can define widgets directly in the class constructor for the
Application class, but it’s become somewhat standard in Python circles to create a special
method called create_widgets() and then place the statements to create the widgets inside that
method. You can just call the create_widgets() method from inside the class constructor.
When you add the create_widgets() method to the Application class, the constructor looks
like this:
Click here to view code image

def __init__(self, master):
 super(Application, self).__init__(master)
 self.grid()
 self.create_widgets()

The create_widgets() method contains all the statements to build the widget objects that you
want to appear in your window. Listing 18.3 shows the script1803.py program, which
demonstrates a simple example of this.

LISTING 18.3 The script1803.py File

Click here to view code image

1: #!/usr/bin/python3
2: from tkinter import *
3:

4: class Application(Frame):
5: """Build the basic window frame template"""
6:
7: def __init__(self, master):
8: super(Application, self).__init__(master)
9: self.grid()
10: self.create_widgets()
11:
12: def create_widgets(self):
13: self.label1 = Label(self, text='Welcome to my window!')
14: self.label1.grid(row=0, column=0, sticky= W)
15:
16: root = Tk()
17: root.title('Test Application window with Label')
18: root.geometry('300x100')
19: app = Application(root)
20: app.mainloop()

The create_widgets() method contains two lines of code to define a Label widget object for
the window. Line 13 defines the actual Label object, and line 14 applies the grid() method to
position the Label widget in the window. (Yes, that’s correct: You need to specify the placement
method for both the Frame object and the individual widget objects inside the frame.)
When you run the script1803.py file, you see a window like the one shown in Figure 18.2.

FIGURE 18.2 Displaying the simple test window.

The window contains the Label object that you defined in the create_widgets() method, and
the label text appears in the window frame.

Defining Event Handlers
The next step in building a GUI application is to define the events that the window uses. Widgets that
can generate events (such as when the application user clicks a button) use the command parameter
to define the name of a method Python calls when it detects the event.

For example, to link a button to an event method, you write code like this:
Click here to view code image

def create_widgets(self):
 self.button1 = Button(self, text="Submit", command = self.display)
 self.button1.grid(row=1, column=0, sticky = W)

def display(self):
 print("The button was clicked in the window")

The create_widgets() method creates a single button to display in the window area. The
Button class constructor sets the command parameter to self.display, which points to the
display() method in the class.
For now, the test display() method just uses a print() statement to display a message back in
the command line, where you started the program. Now things are starting to look more like a GUI
program! Listing 18.4 shows the script1804.py code, which creates the window with the button
and event defined.

LISTING 18.4 The script1804.py Code File

Click here to view code image

#!/usr/bin/python3
from tkinter import *
class Application(Frame):
 """Build the basic window frame template"""

 def __init__(self, master):
 super(Application, self).__init__(master)
 self.grid()
 self.create_widgets()

 def create_widgets(self):
 self.label1 = Label(self, text='Welcome to my window!')
 self.label1.grid(row=0, column=0, sticky=W)
 self.button1 = Button(self, text='Click me!', command=self.display)
 self.button1.grid(row=1, column=0, sticky=W)

 def display(self):
 """Event handler for the button"""
 print('The button in the window was clicked!')

root = Tk()
root.title('Test Button events')
root.geometry('300x100')
app = Application(root)
app.mainloop()

When you run the program from the LXTerminal, the window appears separate on the desktop.
However, when you click the Click me! button, the text from the print() method still appears in
the LXTerminal window, as shown in Figure 18.3.

FIGURE 18.3 Demonstrating the Button event method.

A typical GUI program contains lots of different event handlers, one for each widget that can trigger
an event. Sometimes trying to keep track of all the event handles can be challenging. This is where
using the docstring feature can come in handy. It’s always a good idea to place a one-line
docstring value in each event handler method to help describe what it does, as well as what
widget triggers it, as shown here:
Click here to view code image

def display(self):
 """Event handler for the button to display text in the command line"""
 print('The button was clicked!')

You don’t have to get too fancy with the docstring. Just place enough information in it to help link
up the event handler to the appropriate widget.

Exploring the tkinter Widgets
Now that you’ve seen the basics of how widgets interact in a GUI program, you’re ready to see the
different types of widgets available for you to use. Each widget contains attributes and methods that
you can use to customize the widget in your window. The following sections show some of the most
popular widgets used in Python GUI programs and how to use them.

Using the Label Widget
The Label widget allows you to place text inside the window. This widget is often used to identify
other widgets, such as Entry or Textbox areas, to help your program users know how to interact
with the widgets.
To add a Label widget to your window, you define the text to display with the text parameter, as
shown here:

Click here to view code image

self.label1 = Label(self, text='This is a test label')

There’s not too much that you have to worry about with labels. The hardest part is positioning them
inside the frame area in the window.

Adding the Button Widget
Buttons provide a way for application users to trigger event handlers in an application, such as to let
it know when there’s data in a form that needs to be read. This is the basic format for creating a
Button widget:
Click here to view code image

self.button1 = Button(self, text='Submit', command=self.calculate)

You must assign the Button widget to a unique variable name within the Application class.
With the Button widget, you should make sure to point the command parameter to the associated
event handler method in the Application class. If you don’t specify the command parameter, the
button won’t do anything when it’s clicked. Also, you need to use the grid() method to position the
button where you want it in the window frame area.

Working with the Checkbutton Widget
The Checkbutton widget provides an on-or-off type of interface. If the Checkbutton widget is
checked, it returns a 1 value, and if the widget is not checked, it returns a 0 value. The
Checkbutton widget is most commonly used to make selections of one or more items from a list
(such as selecting the toppings on a pizza).
Working with the Checkbutton widget is a bit tricky. You can’t directly access the
Checkbutton widget to find out whether it has been selected. Instead, you need to create a special
variable that can hold a value that represents the check box status. This is called a control variable.
You create a control variable by using one of four special methods:

 BooleanVar()—For Boolean 0 and 1 values
 DoubleVar()—For floating-point values
 IntVar()—For integer values
 StringVar()—For text values

Because the Checkbutton widget returns a Boolean value, you should use the BooleanVar()
control variable method. You must define this control variable as an attribute of the class object so
that you can reference it in the event handler method. You most often do this in the __init__()
method, as shown here:
Click here to view code image

self.varCheck1 = BooleanVar()

Then to link the control variable to the Checkbutton widget, you use the variable parameter
when you define the Checkbutton widget:
Click here to view code image

self.check1 = Checkbutton(self, text='Option1', variable=self.varCheck1)

So with the Checkbutton widget, instead of using an event handler, you link the widget to a
control variable. The text parameter in the Checkbutton object defines the text that appears next
to the check box in the window.
To retrieve the status of the Checkbutton widget in your code, you need to use the get() method
for the control variable, like this:
Click here to view code image

option1 = self.varCheck1.get()
if (option1):
 print('The checkbutton was selected')
else:
 print('The checkbutton was not selected')

Listing 18.5 shows the script1805.py program, which demonstrates how to use a
Checkbutton object in a program.

LISTING 18.5 The script1805.py Code

Click here to view code image

#!/usr/bin/python3
from tkinter import *
class Application(Frame):
 """Build the basic window frame template"""

 def __init__(self, master):
 super(Application, self).__init__(master)
 self.grid()
 self.varSausage = IntVar()
 self.varPepp = IntVar()
 self.create_widgets()

 def create_widgets(self):
 self.label1 = Label(self, text='What do you want on your pizza?')
 self.label1.grid(row=0)
 self.check1 = Checkbutton(self, text='Sausage', variable =
 self.varSausage)
 self.check2 = Checkbutton(self, text='Pepperoni', variable =
 self.varPepp)
 self.check1.grid(row=1)
 self.check2.grid(row=2)
 self.button1 = Button(self, text='Order', command=self.display)
 self.button1.grid(row=3)

 def display(self):
 """Event handler for the button, displays selections"""
 if (self.varSausage.get()):
 print('You want sausage')
 if (self.varPepp.get()):
 print('You want pepperoni')
 if (not self.varSausage.get() and not self.varPepp.get()):
 print("You don't want anything on your pizza?")
 print('----------')

root = Tk()
root.title('Test Checkbutton events')
root.geometry('300x100')

app = Application(root)
app.mainloop()

The code in the script1805.py file should look pretty familiar to you by now. It creates the
Application child class for the Frame object, defines the constructor, and defines the widgets to
place in the frame, including the two Checkbutton widgets. The button uses the display()
method for its event handler. The display() method retrieves the two control variable values used
for the Checkbutton widgets and displays a message in the command line, based on which
Checkbutton widget is selected.

Using the Entry Widget
The Entry widget is one of the most versatile widgets you’ll use in your applications. It creates a
single-line form field. A program user can use this field to enter text to submit to the program, or your
program can use it to display text dynamically in the window.
Creating an Entry widget isn’t very complicated:

self.entry1 = Entry(self)

The Entry widget doesn’t itself call an event handler. Normally, you link another widget, such as a
button, to an event handler that then retrieves the text that’s in the Entry widget or displays new text
in the Entry widget. To do that, you need to use the Entry widget’s get() method to retrieve the
text in the form field or the insert() method to display text in the form field.
Listing 18.6 shows the script1806.py program, which shows how to use the Entry widget both
for input and output for Python window scripts.

LISTING 18.6 The script1806.py Code

Click here to view code image

#!/usr/bin/python3
from tkinter import *

class Application(Frame):
 """Build the basic window frame template"""

 def __init__(self, master):
 super(Application, self).__init__(master)
 self.grid()
 self.create_widgets()

 def create_widgets(self):
 self.label1 = Label(self, text='Please enter some text in lower
 case')
 self.label1.grid(row=0)

 self.text1 = Entry(self)
 self.text1.grid(row=2)

 self.button1 = Button(self, text='Convert text',
 command=self.convert)
 self.button1.grid(row=6, column=0)
 self.button2 = Button(self, text='Clear result',
 command=self.clear)

 self.button2.grid(row=6, column=1)
 self.text1.focus_set()

 def convert(self):
 """Retrieve the text and convert to upper case"""
 varText = self.text1.get()
 varReplaced = varText.upper()
 self.text1.delete(0, END)
 self.text1.insert(END, varReplaced)

 def clear(self):
 """Clear the Entry form"""
 self.text1.delete(0,END)
 self.text1.focus_set()

root = Tk()
root.title('Testing and Entry widget')
root.geometry('500x200')
app = Application(root)
app.mainloop()

The button1 widget links to the convert() method, which uses the get() method to retrieve
the text in the Entry widget, converts it to uppercase, and then uses the insert() method to place
the converted text back in the Entry widget to display it. Before it can do that, though, it uses the
delete() method to remove the original text from the Entry widget. The focus_set() method
is a handy tool: It allows you to tell the window which widget should get control of the cursor,
preventing our window user from having to click in the widget first.

Adding a Text Widget
For entering large amounts of text, you can use the Text widget. It provides for multiline text entry or
displaying multiple lines of text. The Text widget has the following syntax:
Click here to view code image

self.text1 = Text(self, options)

You can use quite a few options to control the size of the Text widget in the window and how it
formats the text contained within the display area. The most commonly used options are width and
height, which set the size of the Text widget area in the window. (width is defined in
characters and height in lines.)
As with to the Entry widget, you retrieve the text in a Text widget by using the get() method,
you remove text from the widget by using the delete() method, and you add text to the widget by
using the insert() method. However, there’s a bit of a twist to these methods in the Text widget.
Because the widget works with multiple lines of text, the index values you specify for the get(),
delete(), and insert() methods is not a single numeric value. It’s actually a text value that has
two parts:

"x.y"

In this case, x is the row location (starting at 1), and y is the column location (starting at 0). So, to
reference the first character in the Text widget, you use the index value "1.0".
Listing 18.7 shows the script1807.py file, which demonstrates the basic use of the Text
widget.

LISTING 18.7 The script1807.py File

Click here to view code image

#!/usr/bin/python3

from tkinter import *
class Application(Frame):
 """Build the basic window frame template"""

 def __init__(self, master):
 super(Application, self).__init__(master)
 self.grid()
 self.create_widgets()

 def create_widgets(self):
 self.label1 = Label(self, text='Enter the text to convert:')
 self.label1.grid(row=0, column=0, sticky =W)

 self.text1 = Text(self, width=20, height=10)
 self.text1.grid(row=1, column=0)
 self.text1.focus_set()

 self.button1 = Button(self, text='Convert', command=self.convert)
 self.button1.grid(row=2, column=0)
 self.button2 = Button(self, text='Clear', command=self.clear)
 self.button2.grid(row=2, column=1)

 def convert(self):
 varText = self.text1.get("1.0", END)
 varReplaced = varText.upper()
 self.text1.delete("1.0", END)
 self.text1.insert(END, varReplaced)

 def clear(self):
 self.text1.delete("1.0", END)
 self.text1.focus_set()

root = Tk()
root.title = 'Text widget test'
root.geometry('300x250')
app = Application(root)
app.mainloop()

When you run the script1807.py file, you get a window that shows the Text widget and the two
buttons. You can then enter larger blocks of text into the Text widget, click the Convert button to
convert the text to all uppercase, and click the Clear button to delete the text.

Using a Listbox Widget
The Listbox widget provides a listing of multiple values for your application user to choose from.
When you create the Listbox widget, you can specify how the user selects items in the list with the
selectmode parameter, as shown here:
Click here to view code image

self.listbox1 = Listbox(self, selectmode=SINGLE)

These options are available for the selectmode parameter:
 SINGLE—Select only one item at a time.
 BROWSE—Select only one item but the items can be moved in the list.
 MULTIPLE—Select multiple items by clicking them one at a time.
 EXTENDED—Select multiple items by using the Shift and Control keys while clicking items.

After you create the Listbox widget, you need to add items to the list. You do that with the
insert() method, as shown here:
Click here to view code image

self.listbox1.insert(END, 'Item One')

The first parameter defines the index location in the list where the new item should be inserted. You
can use the keyword END to place the new item at the end of the list. If you have a lot of items to add
to the Listbox widget, you can place them in a list object and use a for loop to insert them all at
once, as in the following example:
Click here to view code image

items = ['Item One', 'Item Two', 'Item Three']
for item in items:
 self.listbox1.insert(END, item)

Retrieving the selected items from the Listbox widget is a two-step process. First, you use the
curselection() method to retrieve a tuple that contains the index of the selected items (starting
at 0):
Click here to view code image

items = self.listbox1.curselection()

Once you have the tuple that contains the index values, you use the get() method to retrieve the text
value of the item at that index location:
Click here to view code image

for item in items:
 strItem = self.listbox1.get(item)

Listing 18.8 shows the script1808.py file, which demonstrates how to use the Listbox widget
in your programs.

LISTING 18.8 The script1808.py Program Code

Click here to view code image

#!/usr/bin/python3
from tkinter import *

class Application(Frame):
 """Build the basic window frame template"""

 def __init__(self, master):
 super(Application, self).__init__(master)
 self.grid()

 self.create_widgets()

 def create_widgets(self):
 self.label1 = Label(self, text='Select your items')
 self.label1.grid(row=0)
 self.listbox1 = Listbox(self, selectmode=EXTENDED)
 items = ['Item One', 'Item Two', 'Item Three']
 for item in items:
 self.listbox1.insert(END, item)
 self.listbox1.grid(row=1)
 self.button1 = Button(self, text='Submit', command=self.display)
 self.button1.grid(row=2)

 def display(self):
 """Display the selected items"""
 items = self.listbox1.curselection()
 for item in items:
 strItem = self.listbox1.get(item)
 print(strItem)
 print('----------')

root = Tk()
root.title('Listbox widget test')
root.geometry('300x200')
app = Application(root)
app.mainloop()

When you run the script1808.py code, anything you select from the list box will appear in the
command-line window when you click the Submit button.

Working with the Menu Widget
A staple of GUI programs is the menu bar at the top of the window. The menu bar provides drop-
down menus so that program users can quickly make selections. You can create menu bars in your
tkinter windows by using the Menu widget.
To create the main menu bar, you link the Menu widget directly to the Frame object. Then you use
the add_command() method to add individual menu entries. Each add_command() method
specifies a label parameter to define what text appears for the menu entry and a command
parameter to define the method to run when the menu entry is selected. Here’s how it looks:
Click here to view code image

menubar = Menu(self)
menubar.add_command(label='Help', command=self.help)
menubar.add_command(label='Exit', command=self.exit)

This creates a single menu bar at the top of the window, with two selections: Help and Exit. Finally,
you need to link the menu bar to the root Tk object by adding this command:
Click here to view code image

root.config(menu=self.menubar)

Now when you display your application, it will have a menu bar at the top, with the menu entries that
you defined.
You can create drop-down menus by creating additional Menu widgets and linking them to your main
menu bar Menu widget. That looks like this:

Click here to view code image

menubar = Menu(self)
filemenu = Menu(menubar)
filemenu.add_command(label='Convert', command=self.convert)
filemenu.add_command(label='Clear', command=self.clear)
menubar.add_cascade(label='File', menu=filemenu)
menubar.add_command(label='Quit', command=root.quit)
root.config(menu=menubar)

After you create the drop-down menu, you use the add_cascade() method to add it to the top-
level menu bar and assign it a label.
Now that you’ve learned about the popular widgets that you’ll use in your programs, you can work
out a real program to test them out!

Try It Yourself: Create a Python GUI Program
In the following steps, you’ll create a GUI application that can calculate your bowling
average after three games. Just follow these steps to get your program up and running:

1. Create a file called script1809.py in the folder for this hour.
2. Open the script1809.py file and enter the code shown here:

Click here to view code image

#!/usr/bin/python3
from tkinter import *

class Application(Frame):
 """Build the basic window frame template"""

 def __init__(self, master):
 super(Application, self).__init__(master)
 self.grid()
 self.create_widgets()

 def create_widgets(self):
 menubar = Menu(self)
 filemenu = Menu(menubar)
 filemenu.add_command(label='Calculate', command=self.calculate)
 filemenu.add_command(label='Reset', command=self.clear)
 menubar.add_cascade(label='File', menu=filemenu)
 menubar.add_command(label='Quit', command=root.quit)
 self.label1 = Label(self, text='The Bowling Calculator')
 self.label1.grid(row=0, columnspan=3)
 self.label2 = Label(self, text="Enter score from game 1:")
 self.label3 = Label(self, text='Enter score from game 2:')
 self.label4 = Label(self, text='Enter score from game 3:')
 self.label5 = Label(self, text="Average:")
 self.label2.grid(row=2, column=0)
 self.label3.grid(row=3, column=0)
 self.label4.grid(row=4, column=0)
 self.label5.grid(row=5, column=0)
 self.score1 = Entry(self)
 self.score2 = Entry(self)
 self.score3 = Entry(self)
 self.average = Entry(self)
 self.score1.grid(row=2, column=1)
 self.score2.grid(row=3, column=1)

 self.score3.grid(row=4, column=1)
 self.average.grid(row=5, column=1)
 self.button1 = Button(self, text="Calculate Average",
 command=self.calculate)
 self.button1.grid(row=6, column=0)
 self.button2 = Button(self, text='Clear result',
command=self.clear)
 self.button2.grid(row=6, column=1)
 self.score1.focus_set()
 root.config(menu=menubar)

 def calculate(self):
 """Calculate and display the average"""
 numScore1 = int(self.score1.get())
 numScore2 = int(self.score2.get())
 numScore3 = int(self.score3.get())
 total = numScore1 + numScore2 + numScore3
 average = total / 3
 strAverage = "{0:.2f}".format(average)
 self.average.insert(0, strAverage)

 def clear(self):
 """Clear the Entry forms"""
 self.score1.delete(0,END)
 self.score2.delete(0,END)
 self.score3.delete(0,END)
 self.average.delete(0,END)
 self.score1.focus_set()

root = Tk()
root.title('Bowling Average Calculator')
root.geometry('500x200')
app = Application(root)
app.mainloop()

3. Save the script1809.py file.
4. Run the script1809.py program from an LXTerminal session in your desktop.

A window like the one shown in Figure 18.4 should appear.

FIGURE 18.4 The Bowling Average Calculator program.

You should recognize all the widgets used in the script1809.py program. This
program uses four Entry widgets—three to enter the bowling scores, and one to
display the resulting average. One important feature to notice is that the values
retrieved from the Entry widgets are strings, so you have to convert the values into
numeric values for the calculations.

Now you have all the skills you need to start creating fancy GUI programs in your Python scripts.

Summary
In this hour, you dove into the world of programming GUI programs. There are several different
libraries you can use for creating GUI programs, and in this hour, you used the tkinter library,
which comes installed in the standard Python libraries.
The tkinter library allows you to create windows with all the standard features that you’re used
to seeing in commercial GUI programs—text entry forms, selection boxes, buttons, and menu bars.
You just write the Python code to create the window, add the widgets you want to the window, and
then link methods to the events generated by the widgets.
In the next hour, we’ll take a look at how to create games using Python programming. There’s a great
tool available to help make creating games a breeze, and we’ll walk through just how to use that.

Q&A
Q. Can you link more than one widget to the same method?
A. Yes, you can use the same method for multiple events. For example, you can link a Button

widget to the same method that you link to from a Menu item.
Q. Can you link more than one method to a single widget?

A. No, you can link each widget to only one method. However, you can run a separate method
from within the original method’s code.

Workshop
Quiz

1. What type of widget should you use to display a list of items from which you can select
multiple items?

a. Entry
b. Checkbutton
c. Listbox
d. Button

2. You can use an Entry widget to both retrieve text entered by the user and display text from
your program. True or false?

3. The process of linking widgets in a window to specific methods inside the Python code is
called what type of programming?

Answers
1. c. Listbox. The Listbox widget allows you to display multiple items that you can select

from.
2. True. The Entry widget provides a textbox area where you can display text from your

program, or allow the user to enter data that your program can read.
3. Event-driven programming is what links the widgets that you display in the GUI window to

methods inside the Python program code.

Hour 19. Game Programming

What You’ll Learn in This Hour:
 Why you might want to program games
 Different Python game interfaces
 How to set up and use the PyGame library
 How to handle action in a game
 How to create a simple game script

In this hour, you will learn about creating games using Python. You will learn game scripting basics,
how to create a game screen, how to add text, how to add images, and even how to animate those
game images. In the process, you’ll learn about the PyGame library.

Understanding Game Programming
Why should you learn to program games? The simple answer is that you will become a stronger script
writer in Python. Game programming is different from other programming in that it stretches both the
programmer and the computer.
Think about computers built specifically for gaming. They tend to have the fastest CPUs, larger
memory chips, and the best video cards. This is because games can be large consumers of a computer
system’s resources.
For a game developer, getting a designed game from paper to Python script can be a big challenge.
Game scripts use all the various aspects of a scripting language, such as user input, file input/output,
mathematical manipulation, various graphical interfaces, and so on. Also, developing a game forces
you to be creative and a good problem solver.

By the Way: Developer Versus Designer
In creating a marketable game, a game developer is the person who writes the code. A
game designer, on the other hand, determines the game’s appearance, rules, and goals.
For the purposes of this hour, you can be both the game designer and the developer.

In essence, understanding game development can help make you a well-rounded script writer. Game
writing is commonly used to instruct beginners as well as to polish old-timers. As you learn to write
Python scripts on a Raspberry Pi, game development will help you solidify Python concepts.

Learning About Game Frameworks and Libraries
Several game frameworks and libraries are available in Python. Table 19.1 lists a few of them.

TABLE 19.1 Python Game Frameworks and Libraries
As you can see, there are many development tools available for creating games with Python. Having
many varieties of game development frameworks and libraries allows you to pick the tools best
suited for your game’s design.

Did You Know: What Is SDL?
You will often see the acronym SDL when reading about game frameworks and
libraries. It stands for Simple DirectMedia Layer, which is an open-source cross-
platform alternative to the DirectX API. Basically, SDL is a package of multimedia
and graphics libraries that provide the necessities of game development.

In this hour, you learn about the PyGame library, and you’ll create a simple game. Keep in mind that
entire books have been written on game development, including several that focus solely on Python
game programming. The game-writing basics you’ll learn this hour will give you a good shove in the
right direction with game script writing. This hour will also reinforce the Python skills you have
learned so far.

By the Way: Play Python Games
Want to try playing some Python games? Go to the “Specific Games” section of the
page wiki.python.org/moin/PythonGames.

http://wiki.python.org/moin/PythonGames

Setting Up the PyGame Library
The PyGame library is a package. You learned in Hour 13, “Working with Modules,” that a group of
modules can be put together in a package for use in Python scripts. The PyGame package is a
collection of modules and objects that will help you create games using Python.

Did You Know: Preinstalled PyGame Games
You’ll find several Python game scripts and their supporting files in the
/home/pi/python_games directory. You can play these games if you have the
PyGame library installed. These scripts make great learning tools, too.

PyGame for Python is really only for developing simple games, not graphical wonders. (You need
Panda3D for that kind of fancy stuff.) The real glory of PyGame is that it will help you learn more
script-writing principles while providing instantaneous positive feedback to you as a script writer.

Checking for PyGame
The PyGame package is typically not installed by default. To check your system, enter the Python
interactive shell and try importing PyGame, as shown in Listing 19.1.

LISTING 19.1 Checking for PyGame

Click here to view code image

>>>
>>> import pygame
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ImportError: No module named pygame
>>>

If you receive an ImportError message as shown in Listing 19.1, then the PyGame package is not
installed. However, if you do not receive an error, you do have it and can skip the next section, on
installing PyGame.

Installing PyGame
Typically, to install a Python package, you use a variation of the command sudo apt-get
install. Unfortunately, at the time of this writing, the PyGame library is not easy to install for
Python3 on the Raspberry Pi. The steps in this section guide you through the process. You must follow
them very carefully and in the correct order if you want to successfully install PyGame.

By the Way: Checking for a Change
Hopefully, by this time there is an easier way to install the PyGame library on your
Raspberry Pi. Check elinux.org/RPi_Debian_Python3#PyGame_Module, in the
“PyGame Module” section, for potential updates.

Making Sure Your System Is Up to Date

http://elinux.org/RPi_Debian_Python3#PyGame_Module

The first step in installing PyGame is to make sure your system is all up-to-date, with any missing
items installed. You do this by logging in to your Raspberry Pi, and typing in at the shell prompt the
command sudo apt-get dist-upgrade --fix-missing, and press Enter. (Note the two
hyphens in front of fix-missing.) Listing 19.2 shows this process in action.

LISTING 19.2 Getting Your System Up to Date

Click here to view code image

pi@raspberrypi ~ $ sudo apt-get dist-upgrade --fix-missing
Reading package lists... Done
Building dependency tree
Reading state information... Done
Calculating upgrade... Done
0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.
pi@raspberrypi ~ $

You can see in Listing 19.2 that no items are missing, and all the packages are up-to-date.
If your system is not up-to-date, the process will ask if you want to install the packages. Answer Y to
have the packages installed.

Watch Out!: Check Available Space
You need to install several libraries and packages in order to obtain PyGame. Be sure
to keep a close eye on the available space you have on your Raspberry Pi’s storage
medium. Use the shell command df to see a quick summary of the space currently
used.

Installing the Tools for Building Python Modules
Next, you need to install some tools for building Python modules. To do so, at the shell prompt type
sudo apt-get install python3-dev python3-numpy and press Enter. Listing 19.3
shows the successful installation of these tools.

LISTING 19.3 Installing Development Tools

Click here to view code image

pi@raspberrypi ~ $ sudo apt-get install python3-dev python3-numpy
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following extra packages will be installed:
 idle3 libexpat1-dev libpython3.2 libssl-dev libssl-doc libssl1.0.0 python3
 python3-minimal python3.2 python3.2-dev python3.2-minimal
Suggested packages:
...
Setting up python3-dev (3.2.3-6) ...
Setting up python3-numpy (1:1.6.2-1.2) ...
Processing triggers for menu ...
pi@raspberrypi ~ $

Did You Know: 404 Not Found
If you get errors similar to 404 Not Found when you try to install the tools for
building Python modules, first check and make sure you are connected to the Internet.
To do this, open up the Midori web browser and see if you can reach any of your
favorite websites. If you can connect to the Internet, next try repairing your system by
typing the command sudo apt-get update and press Enter. Now try typing
sudo apt-get install python3-dev python3-numpy and pressing
Enter again.

Obtaining the PyGame Source Code
To proceed, you need to obtain the PyGame source code and a software package that will allow you
to do so. At the command line, type sudo apt-get install mercurial, as shown in
Listing 19.4, and press Enter.

LISTING 19.4 Obtaining the PyGame Source Code

Click here to view code image

pi@raspberrypi ~ $ sudo apt-get install mercurial
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following extra packages will be installed:
 mercurial-common
Suggested packages:
 qct vim emacs kdiff3 kdiff3-qt kompare meld xxdiff tkcvs mgdiff
 python-mysqldb python-pygments python-openssl
The following NEW packages will be installed:
 mercurial mercurial-common
0 upgraded, 2 newly installed, 0 to remove and 191 not upgraded.
Need to get 2,404 kB of archives.
After this operation, 8,022 kB of additional disk space will be used.
Do you want to continue [Y/n]? y
Get:1 http://mirrordirector.raspbian.org/raspbian/ wheezy/main mercurial-
common all 2.2.2-3 [2,320 kB]
...
Creating config file /etc/mercurial/hgrc.d/hgext.rc with new version
pi@raspberrypi ~ $
pi@raspberrypi ~ $ hg clone https://bitbucket.org/pygame/pygame
destination directory: pygame
requesting all changes
...
664 files updated, 0 files merged, 0 files removed, 0 files unresolved
pi@raspberrypi ~ $
pi@raspberrypi ~ $ cd pygame
pi@raspberrypi ~/pygame $ pwd
/home/pi/pygame
pi@raspberrypi ~/pygame $

Next, you use the hg command from the newly install mercurial program by typing hg clone
https://bitbucket.org/pygame/pygame and pressing Enter. Finally, you need to change

https://bitbucket.org/pygame/pygame

your directory to the newly copied PyGame directory by typing cd pygame and pressing Enter.
Both of these commands are also shown above in Listing 19.4.

Installing Additional Software Packages
Now you need to install the following additional software packages:

 libsdl-dev
 libsdl-image1.2-dev
 libsdl-mixer1.2-dev
 libsdl-ttf2.0-dev
 libsmpeg-dev
 libportmidi-dev
 libavformat-dev
 libswscale-dev

These software packages, also called dependencies, are needed for the PyGame library. To install
these dependencies, type sudo apt-get install and then each software package name. You
can do several at one time, as shown in Listing 19.5.

LISTING 19.5 Installing Dependencies

Click here to view code image

pi@raspberrypi ~/pygame $ sudo apt-get install libsdl-dev libsdl-image1.2-dev
libsdl-mixer1.2-dev libsdl-ttf2.0-dev
Reading package lists... Done
Building dependency tree
...
pi@raspberrypi ~ $ sudo apt-get install libsmpeg-dev libportmidi-dev
libavformat-dev libswscale-dev
Reading package lists... Done
...
Setting up libsmpeg-dev (0.4.5+cvs20030824-5) ...
Setting up libswscale-dev (6:0.8.6-1+rpi1) ...
pi@raspberrypi ~ $

There are a lot of packages to install here. Don’t worry if you see lots of things going on during their
installation. Now would be a good time to go get a cup of coffee.

Building and Installing PyGame
Now that you have a copy of the PyGame source code, the development tools, and all the necessary
dependencies, you can finally build PyGame and install it. To do so, you need to enter two
commands.
First, type python3 setup.py build and press Enter. When that is complete, type sudo
python3 setup.py install and press Enter.

By the Way: Be Patient!
When you issue the above commands to build and install PyGame, each command may

take a long time to complete. Be patient and wait for each command to fully finish,
before moving on in this chapter.

That’s it! You are all done installing the PyGame library. You can now move on to more fun tasks,
such as creating a game.

Using PyGame
The PyGame library comes with lots of tools and features and also with a great deal of community
support. A great site to visit is the PyGame wiki, at www.pygame.org. There you will find module
and object documentation, tutorials, a lovely reference index, and general news about the PyGame
library.
Several modules within PyGame help with building games. Table 19.2 shows a list of the various
modules. Just reading through this table should get you excited!

TABLE 19.2 PyGame Modulesv

http://www.pygame.org

By the Way: Experimental Modules
Notice the modules listed as “experimental.” You should not use them in any game you
plan to keep for a while. Those modules may change dramatically and could break
your game.

The PyGame library also includes object classes that make building a Python game much easier (see
Table 19.3).

TABLE 19.3 PyGame Object Classes
At this point, you may be a little overwhelmed. That is okay because this is an overwhelming topic.
Don’t worry. This hour will take you step by step through some of these modules and objects to get
you started writing games in Python.

Did You Know: Sprites
PyGame documentation often refers to the game pieces or characters in a game as
sprites. When it does, it is referring to the Sprite object class.

Loading and Initializing PyGame
To get started using the PyGame library in your Python game script, you need to do three primary
things:

1. Import the PyGame library.
2. Import local PyGame constants.
3. Initialize the PyGame modules.

To import the PyGame library, you use the import command, like this:
import pygame

This imports all the PyGame modules and object classes. However, you can import individual
modules and classes, if desired.

By the Way: Speeding It Up
Once you have learned how to write Python game scripts, you can do a few things to
speed up your game. One of them is to import only the modules from the PyGame
library that you actually use in the script.

The local PyGame constants module, which contains top-level variables, was originally created to
make a game script writer’s life easier. One import statement and you have all the necessary
PyGame constants needed. To import these constants, you use a variation of the import command,
as shown here:

from pygame.locals import *

Finally, you need to initialize the PyGame modules. This is how you initialize all the PyGame
modules you have imported:

pygame.init()

Once you have all the modules and constants loaded and everything initialized, you can begin to use
these various PyGame items in your game script.

Setting Up the Game Screen
In setting up your game screen, you need to determine the following items:

 Game screen size
 Screen colors
 Screen background

To set up the size of your game screen, you need to use the .display module. The syntax is as
follows:
Click here to view code image

pygame.display.set_mode(width, height)

You set the results to a variable name, such as GameScreen, to create a Surface object:
Click here to view code image

GameScreen = pygame.display.set_mode(1000,700)

A Surface object is a PyGame object that allows the representation of images on the computer’s
display. Think of it as a way to create a “playing surface” on which your game will be played.
Another nice thing about creating the game surface is that it will default to the best graphics mode on
your current hardware.

By the Way: Where You’re Located
To keep your bearings when you’re beginning to create a game, it’s a good idea to
make the game screen smaller than your computer’s display. This will allow you to see
the GUI underneath and provide a visual reference point. For example, while
developing the game, keep the game screen size to 600 pixels wide and 400 pixels
high. Once you have the game script working perfectly, you can change it to the full
computer display size.

You can use any colors on your screen that your computer display can handle. To set up your colors,
use the following syntax to add variables to your script:
Click here to view code image

color_variable = Red,Green,Blue

Red,Green,Blue handles standard RGB color settings. For example, the color red is represented
by the RGB numbers 255,0,0, and the color blue is represented by the RGB numbers 0, 0,
255. A few color examples and their RGB settings are shown here:

black=0,0,0
white=255,255,255
blue=0,0,255
red=255,0,0
green=0,255,0

Once you have the screen size set up and the color variables created, you can fill the screen’s
background with the color of your choice. To do so, you need to use the Surface object, which was
created to represent the game screen, and use the fill module of that object, as in the following
example:

GameScreen.fill(blue)

In this example, the defined GameScreen Surface object would have the screen’s background
filled with the color blue. You can make your screen’s background a picture, if you want to.
However, it’s best to start simply as you design your game script and keep the screen’s background a
plain color.

Putting Text on the Game Screen
Putting text on your game screen can be tricky. First, you must determine what font you want to use
and whether that font exists on your system. PyGame provides a default game font that you can use.
The module to use is pygame.font. Within the font module, you can create a Font object by using
the syntax game_font_variable = pygame.font.Font(font, size), like this:
Click here to view code image

GameFont=pygame.font.Font(None, 60)

Notice in this example that the font used is None. This is how to set the font equal to the PyGame
default game font.
To create a text image, you need to use the Font object, which was created to represent the font, and
use the render module of that object.
Click here to view code image

GameTextGraphic=GameFont.render("Hello",True,white)

In this example, the word "Hello" is the text to be displayed. It is displayed in the PyGame default
font with a color of white. (Remember that white’s color definition, defined earlier this hour, equals
255,255,255.)
The second argument in the example, True, is set to make the displayed text characters have smooth
edges. It is a Boolean argument, so if you set it to False, the characters do not have smooth edges.
You’ve done a lot of work, but you still haven’t displayed the text to the screen yet! To put the text on
the screen, you need to use the Surface object created to represent the game’s screen. The module
of the object to use is the .blit module. Earlier, you created the Surface object GameScreen
to represent the game screen. The Python statements below are used to display the text:

Click here to view code image

GameScreen.blit(GameTextGraphic,(100,100))
pygame.display.update()

The text graphic GameTextGraphic is the first argument to the statement; it tells the .blit
module what is to be displayed on the screen. The second argument, (100,100), is the location on
the game screen where the text should be displayed. Finally, the pygame.display.update()
function displays the game screen and the graphics it contains on the screen.
Reading about all this can be rather confusing. Trying it yourself will help you understand these
concepts. Remember that one of the great features of game programming is that you get quick
feedback. Therefore, in the following Try It Yourself, you are going to build a game screen and
display text on it.

Try It Yourself: Create a Game Screen and Display Text Using PyGame
In the following steps, you will import and initialize the PyGame library, set up a
game screen, and display a simple test message on that screen. You will do all this via
a Python game script you create, which will be used as a basis for the other Try It
Yourself section in this hour. Follow these steps:

1. If you have not already done so, power up your Raspberry Pi and log in to the
system.

2. If you do not have the LXDE GUI started automatically at boot, start it now by typing
startx and pressing Enter.

3. Open a script editor, such as nano or the IDLE 3 text editor, and create the script
py3prog/script1901.py.

4. Type all the information for script1901.py shown below. Take your time and
avoid any typographical errors:

Click here to view code image

#script1901.py - Simple Game Screen & Text
#Written by <Insert your Name>
#
##
#
Import Modules & Variables
import pygame #Import PyGame library
#
from pygame.locals import * #Load PyGame constants
#
pygame.init() #Initialize PyGame
#
Set up the Game Screen
#
ScreenSize=(1000,700) #Screen size variable
GameScreen=pygame.display.set_mode(ScreenSize)
#
Set up the Game Colors
#
black = 0,0,0
white = 255,255,255
blue = 0,0,255

red = 255,0,0
green = 0,255,0
#
Set up the Game Font
#
DefaultFont=None #Default to PyGame font
GameFont=pygame.font.Font(DefaultFont,60)
#
Set up the Game Text Graphic
#
GameText="Hello"
GameTextGraphic=GameFont.render(GameText,True,white)
#
Draw the Game Screen & Add Game Text
#
GameScreen.fill(blue)
GameScreen.blit(GameTextGraphic,(100,100))
pygame.display.update()
#

5. Test your game script by exiting the editor, typing python3
py3prog/script1901.py, and pressing Enter. If you get any syntax errors, fix
them. If you don’t get any errors, you probably just saw the game screen with its text
appear briefly on the screen and then disappear. (You will address this in the next
step.)

6. Open script1901.py in a script editor. Under the import pygame line, add
import time to import the time module, as shown here:

Click here to view code image

Import Modules & Variables
import pygame #Import PyGame library
import time #Import Time module
#

7. On the very last line of script1901.py, add the line time.sleep(10). This
causes your Python game script to pause, or “sleep,” for 10 seconds after it writes
the game screen to the monitor.

8. Now test your modifications by exiting the editor, typing python3
py3prog/script1901.py, and pressing Enter. You should now see (at least
for 10 seconds) the game screen and your text displayed. (You will learn later this
hour how to control the screen display without using the time module.)

9. Just for fun, open script1901.py in a script editor again. This time, add a new
color, called RazPiRed, to the game colors, as shown here:

Click here to view code image

Set up the Game Colors
#
black = 0,0,0
white = 255,255,255
blue = 0,0,255
red = 255,0,0
RazPiRed = 210,40,82
green = 0,255,0
#

By the Way: Colors
You can create just about any color in a game by using the RGB settings.
Several sites show samples of various colors, along with the RGB settings to
achieve them. One such site is www.tayloredmktg.com/rgb/.

10. Use the new color for the game screen’s background by changing blue to
RazPiRed in the fill module attribute, as shown here:
GameScreen.fill(RazPiRed)

11. Change the font by setting the variable DefaultFont to FreeSans, as shown
here:

Click here to view code image

DefaultFont='/usr/share/fonts/truetype/freefont/FreeSans.ttf'

(There are some fonts installed by default on your Raspberry Pi. One of them is
FreeSans. You can use any installed font instead of the PyGame default font.)

12. To make things more interesting, change that boring text message from "Hello" to
"I love my Raspberry Pi!", as shown here:

Click here to view code image

GameText="I love my Raspberry Pi!"

13. Test your latest game modifications by exiting the editor, typing python3
py3prog/script1901.py, and pressing Enter. You should now see (at least
for 10 seconds) a screen similar to that in Figure 19.1.

FIGURE 19.1 The script1901.py game screen.

Good job! You can see the benefits of the instant feedback of writing game scripts. To get more
experience, try changing the screen’s background color and the location of the text message and see
what effects those changes have.

Learning More About PyGame
Displaying colors and text on a screen is fun, but it doesn’t exactly make a game. You need to learn a
few more basic concepts before you can write game scripts.

Staying in the Game
As you saw in the Try It Yourself section, a Python game script displays the game’s screen and then
exits. So how do you keep the game running? You use a loop construct and the pygame.event

http://www.tayloredmktg.com/rgb/

module.
You learned about events in Hour 18, “GUI Programming.” The PyGame library provides the
pygame.event module to monitor these events and event objects to handle them. The following is
an example of a typical game loop:
Click here to view code image

1: while True:
2: for event in pygame.event.get():
3: if event.type in (QUIT,KEYDOWN):
4: sys.exit()

The main loop is a while loop on line 1, and it will continue to run until the sys.exit()
operation exits the loop on line 4. (Note that to use this operation, you need to import the sys module
into your game scripts.) In order to reach sys.exit(), the main loop captures any events. If an
event occurs, Python handles it in the for loop on line 2 by assigning the event to the variable
event. Python checks the event’s type in line 3, using the .type method. If the event is either a quit
(QUIT) or a key being pressed on the keyboard (KEYDOWN), then sys.exit() runs, and the game
exits.
In simple terms, if you press a key on the keyboard while the game is running, the game quits
gracefully. Thus, to keep your game running, until a QUIT event occurs, you need to put all the screen
drawing and updating within a main game loop. Some of the PyGame event types you can check for
include the following:

 QUIT
 KEYDOWN
 KEYUP
 MOUSEMOTION
 MOUSEBUTTONUP
 MOUSEBUTTONDOWN
 USEREVENT

Drawing Images and Shapes
Almost all games include some sort of graphic game pieces. These game pieces can be either
imported images or shapes you design yourself.
Creating shapes is easy, thanks to the PyGame module pygame.draw. You can use this module to
draw circles, squares, hearts, and so on. Table 19.4 shows a few of the methods available in the
pygame.draw module.

TABLE 19.4 A Few pygame.draw Module Methods

By the Way: Get Help
Don’t forget that help is readily available on each of the pygame.draw module’s
methods. You learned about getting help for modules in Hour 13. You can get into the
Python interactive shell by typing python3, and then you can load PyGame by typing
import pygame. You can see all the available methods for pygame.draw (or
any other module) by typing help(pygame.draw). You can get help on an
individual method, such as pygame.draw.circle, by typing
help(pygame.draw.circle). The help shows you a description and all the
needed arguments for each method. Remember to press Q to quit out of help when you
are done.

You need to do a more work to put an image on your game screen. First, be aware that the PyGame
library may not be built to support all image file formats. You can find out more by using the
pygame.image module and the .get_extended method. Listing 19.6 shows an example.

LISTING 19.6 Testing PyGame for Image Handling

Click here to view code image

>>> import pygame
>>> pygame.image.get_extended()
1
>>>

Within the Python interactive shell, if you issue the command pygame.image.get_extended
and it returns 1 (for true), then you have support for most image file types, including .png, .jpg,
.gif, and others. However, if it returns 0 (False), then you can use only uncompressed .bmp image
files. After you determine what image files your PyGame library can handle, you can choose an
image to load into a game from the appropriate image file.
To load an image into your Python game script, you need to use the pygame.image.load method.
Before you do so, it’s best to set up a variable name to contain the image file, as shown in this
example:
Click here to view code image

Set up the Game Image Graphics
GameImage="/usr/share/raspberrypi-artwork/raspberry-pi-logo.png"
GameImageGraphic=pygame.image.load(GameImage)

This works fine, except that it can be a little slow when loading the image. In fact, it will be slow
every time the image has to be redrawn on the screen. To speed it up, you can use the .convert
method instead on the image, as shown here:
Click here to view code image

Set up the Game Image Graphics
GameImage="/usr/share/raspberrypi-artwork/raspberry-pi-logo.png"
GameImageGraphic=pygame.image.load(GameImage).convert()

However, using .convert introduces a new problem: no transparency. In Figure 19.2, you can see
the image loaded, but there is a white rectangle around the image.

FIGURE 19.2 A loaded game image with no transparency.

To make the image transparent and allow the background images to show through, you use the
.convert_alpha() method instead, as in this example:
Click here to view code image

Set up the Game Image Graphics
GameImage="/usr/share/raspberrypi-artwork/raspberry-pi-logo.png"
GameImageGraphic=pygame.image.load(GameImage).convert_alpha()

This allows the image to have transparency and display the background behind it. In other words, you
do not get a white box around the image on the game screen. Figure 19.3 shows the effects of using
.convert_alpha().

FIGURE 19.3 A loaded game image with transparency.

Once your image is loaded, you simply display it to the screen by using the Surface object and the
same method you use for text: .blit. The following is an example of this:
Click here to view code image

#
GameScreen.blit(GameImageGraphic,(300,0))

Just as with text, the variable representing the image is passed to the .blit method, along with
where on the Surface object you would like the image to be displayed: (width, height).
However, the game screen still does not show this image! To have the game screen redrawn,
remember that you need to use pygame.display.update().
To review, you use .blit for the game screen background, you use .blit for the text and images (or
shapes) on the screen, and then you update the game screen.

Putting Sound into the Game
Now that you have text and graphics, it’s time to learn how to add sound to your Python game script.
The PyGame library makes adding sounds to a game very easy.

Before you add sound to your game, make sure the sound output is working properly on your
Raspberry Pi. If you have your Raspberry Pi hooked up to a television or a computer monitor with
built-in speakers through HDMI, then sound will be traveling over the HDMI cable. If you don’t have
either one of those options, you can hook up a set of computer speakers to the standard 3.5 mm audio-
out port. (Review Hour 1, “Setting Up the Raspberry Pi,” for more help with this setup.)
To test your sound, you can use one of the sound files from the pre-installed Python games in the
/home/pi/python_games directory. A nice loud one is the match1.wav file. At the
command line, type sudo aplay /home/pi/python_games/match1.wav. You should
hear a sound. If you don’t, you may need to adjust your volume or conduct other sound troubleshooting
techniques.
To add a sound to your game, you use the pygame.mixer module to create a Sound object
variable, as in this example:
Click here to view code image

Setup Game Sound
ClickSound=pygame.mixer.Sound('/home/pi/python_games/match1.wav')

Once you have your Sound object created, you can play it by using the .play method, as shown
here:

#
ClickSound.play()
time.sleep(.25)

Notice that in the example, after the sound is played, the time.sleep method is used, with a sleep
time of 1/4 second that adds a little delay to the game. (Without this delay, you might not hear the
sound play due to buffering issues.)
A better way to handle the needed delay in a game script, so that a sound can be heard, is to use the
pygame.time.delay method. This method is superior in that you do not have to load the time
module (which slows down the game), and you can finely tune the delay time. The
pygame.time.delay method uses milliseconds as its arguments instead of seconds. Thus, to play
a sound, you use code like this:

#
ClickSound.play()
pygame.time.delay(300)

Notice that this example delays the game by 300 milliseconds. Now your sound will play, and the
game will be a little bit faster.

Dealing with PyGame Action
At this point, you have text, an image, and sound in your game script. You’re now ready to get things
moving.

Moving Graphics Around the Game Screen
Like a motion picture, graphics moving around your screen are an illusion. What happens “behind the
scene” is that the images are redrawn quickly enough to give the appearance of movement. To
simulate the appearance of movement in a Python script, you can use the Surface object’s

.get_rect method.
When you use the .get_rect method on a loaded image, it returns two items: the current
coordinates of the image and the image’s size. By default, the image’s current coordinates on the game
surface are 0, 0. However, when you use the method, you can tell it where to place the image on the
game surface.
The size that the .get_rect method returns is the not the exact same size as the image. The method
assumes a rectangular shape around the image to obtain the size and position information. Thus,
.get_rect stands for “get the rectangle area around the image and return the rectangle’s current
position on the game screen.”
In the following example, the image used previously is used again as a Surface object. You can see
that a new variable, called GameImageLocation, is created, using the .get_rect method:
Click here to view code image

GameImage="/usr/share/raspberrypi-artwork/raspberry-pi-logo.png"
GameImageGraphic=pygame.image.load(GameImage).convert_alpha()
#
GameImageLocation=GameImageGraphic.get_rect()

To change the location of the image on the screen (that is, make it move), you use the .move method.
This method uses an offset to complete the “move” of the image. In essence, the script moves the
image so many pixels down and right on the game screen if the offset numbers are positive. If the
offset numbers are negative, the script moves the images up and left.
The following code sets the offset to [10, 10], which means it will move 10 pixels down and 10
pixels to the right:
Click here to view code image

Set up Graphic Image Movement Speed
ImageOffset=[10,10]
#
#Move Image around
GameImageLocation=GameImageLocation.move(ImageOffset)

Often the offset is called speed because the higher the number, the higher the “speed” across the
screen.
Keep in the mind that the .move method does not redraw the image on the screen. You still need to
use the .blit method to redraw the image and python.display.update to redraw the
screen, as shown here:
Click here to view code image

GameScreen.fill(blue)
GameScreen.blit(GameImageGraphic,GameImageLocation)
pygame.display.update()

Notice that the .fill method is used before .blit draws the GameImageGraphic onto the
screen. Doing it this way “erases” all the previous images on the game screen and then redraws the
game image in its new location. This provides an illusion of the image moving.

Interacting with Graphics on the Game Screen
There are many ways to creatively interact with the graphics on the screen. Back in the “Staying in the

Game” section of this hour, you learned how to use events and event types to exit a game. You can
also use events to control the interaction in your game.
One popular method is to use the mouse and a collide point (a particular event occurring on top of a
Surface object). First, you need to set up the mouse in your game script. Several event types
concern the mouse. An easy one is MOUSEBUTTONDOWN, which simply indicates that one of the
buttons on the mouse has been pressed. To trap this event, you use the following Python statements:
Click here to view code image

for event in pygame.event.get():
 if event.type == pygame.MOUSEBUTTONDOWN:

If event.type matches pygame.MOUSEBUTTONDOWN, then you can test for a collide point. The
.collidepoint method helps here. You simply pass the method the position of the other object to
test for a collision. If it returns True, then the additional actions can be taken.
The following example tests the current image’s location on the game screen and determines whether
the mouse pointer has collided with the game image. In other words, it tests whether the mouse
pointer clicked the image:
Click here to view code image

for event in pygame.event.get():
 if event.type == pygame.MOUSEBUTTONDOWN:
 if GameImageLocation.collidepoint(pygame.mouse.get_pos()):
 sys.exit()

If the mouse clicked the image, then the game is exited. Of course, you can set up any kind of desired
action for a collide point. It doesn’t have to be “exit the game.”
Reading about all this is one thing, but trying it is another. This is especially true when it comes to
understanding moving images on your game screen. In the following Try It Yourself section, you’ll
play a little bit with moving an image around the screen and trying out different “speeds.”

Try It Yourself: Create Game Images and Move Them About the Screen
In the following steps, you are going to load an image, move the image about the screen
at different speeds, learn how to keep an image on the screen, create a collide point for
action, and resize an image. Fasten your safety belt and please keep your hands and
legs inside the cart for the duration of this ride:

1. If you have not already done so, power up your Raspberry Pi and log in to the
system.

2. If you do not have the LXDE GUI started automatically at boot, start it now by typing
startx and pressing Enter.

3. Open a script editor, such as nano or the IDLE 3 text editor, and create the script
py3prog/script1902.py.

4. Type all the information for script1902.py shown below. Take your time and
avoid any typographical errors:

Click here to view code image

#script1902.py - Move Game Image
#Written by <Insert your Name>

#
##
#
Import Modules & Variables
import pygame #Import PyGame library
import sys #Import System module
#
from pygame.locals import * #Load PyGame constants
#
pygame.init() #Initialize PyGame
#
Set up the Game Screen
#
ScreenSize=(1000,700) #Screen size variable
GameScreen=pygame.display.set_mode(ScreenSize)
#
Set up the Game Color
#
blue = 0,0,255
#
Set up the Game Image Graphics
#
GameImage="/usr/share/raspberrypi-artwork/raspberry-pi-logo.png"
GameImageGraphic=pygame.image.load(GameImage).convert_alpha()
#
GameImageLocation=GameImageGraphic.get_rect() #Current location
#
ImageOffset=[10,10] #Moving speed
#
Set up the Game Sound
#
ClickSound=pygame.mixer.Sound('/home/pi/python_games/match1.wav')
#
#
Play the Game
#
while True:
 for event in pygame.event.get():
 if event.type in (QUIT,MOUSEBUTTONDOWN):
 ClickSound.play()
 pygame.time.delay(300)
 sys.exit()
 #Move game image
 GameImageLocation=GameImageLocation.move(ImageOffset)
 #Draw screen images
 GameScreen.fill(blue)
 GameScreen.blit(GameImageGraphic,GameImageLocation)
 #Update game screen
 pygame.display.update()
#

5. Test your game script by exiting the editor, typing python3
py3prog/script1902.py, and pressing Enter. If you get any syntax errors, fix
them. If you don’t get any errors, watch as the Raspberry Pi image moves...right off
the screen! Click anywhere in the game screen with your mouse to play a sound and
end the game.

6. To keep the Raspberry Pi image on the game screen, open script1902.py in a
script editor again. The first change you need to make this little tweak to the

ScreenSize variable:
Click here to view code image

ScreenSize = ScreenWidth,ScreenHeight = 1000,700

By adding ScreenWidth and ScreenHeight in the middle of the variable
assignment, you essentially create two additional variables in one assignment
statement! These variables are needed in the next small change to the game script.

7. To keep the image on the screen, change the ImageOffset variable at the
appropriate time. To do this, under the .move method for the Surface object
GameImageLocation, add the following lines:

Click here to view code image

if GameImageLocation.left < 0 or GameImageLocation.right > ScreenWidth:
 ImageOffset[0] = -ImageOffset[0]
if GameImageLocation.top < 0 or GameImageLocation.bottom > ScreenHeight:
 ImageOffset[1] = -ImageOffset[1]

In essence, this little tweak causes the Raspberry Pi image to go the opposite
direction whenever it “hits” an edge of the game screen.

8. Test your changes to the game script by exiting the editor, typing python3
py3prog/script1902.py, and pressing Enter. You should see the Raspberry
Pi image move and appear to bounce off the screen edges. Click anywhere in the
game screen with your mouse to play a sound and end the game.

9. Open script1902.py in a script editor again. To get a feel for what is meant by
changing the image’s “speed,” change the ImageOffset variable as follows:
ImageOffset=[50,50]

10. Test the speed change to the game script by exiting the editor, typing python3
py3prog/script1902.py, and pressing Enter. You should see the Raspberry
Pi image move “faster” than it did before. Click anywhere in the game screen with
your mouse to play a sound and end the game.

11. Again open script1902.py in a script editor and change the ImageOffset
variable back to its original setting, as follows:
ImageOffset=[10,10]

12. Add a collide point to force the user to click the Raspberry Pi image in order to end
the game. To do this, change the for loop construct concerning the event so it looks
as follows:

Click here to view code image

for event in pygame.event.get():
 if event.type in (QUIT,MOUSEBUTTONDOWN):
 if GameImageLocation.collidepoint(pygame.mouse.get_pos()):
 ClickSound.play()
 pygame.time.delay(300)
 sys.exit()

13. Test the collide point in the game script by exiting the editor, typing python3
py3prog/script1902.py, and pressing Enter. Use your mouse to click
anywhere in the game screen except on the Raspberry Pi image. Nothing should
happen. Finally, click somewhere on the Raspberry Pi image to play a sound and end

the game. You’ve created a nice collide point, but the Raspberry Pi image is so large
that clicking it is hardly a game.

14. Open script1902.py in a script editor and change the size of the Raspberry Pi
image. To do this, under where you load the image and convert it using the
.convert_alpha method, add the following two lines to make the Raspberry Pi
image smaller:

Click here to view code image

Resize image (make smaller)
GameImageGraphic=pygame.transform.scale(GameImageGraphic,(75,75))

15. Exit the editor, type python3 py3prog/script1902.py, and press Enter to
test this change. Does the Raspberry Pi image seem a lot smaller? It should. Chase
the image around the screen until you can click somewhere on it to play a sound and
end the game. Now you need one more tweak: You are going to make it a little harder
to catch that raspberry.

16. Make the Raspberry Pi image move “faster” every time it hits a screen wall. To do
this, open script1902.py in your favorite script editor. Change the whole “Keep
game image on screen” section so that it matches the following:

Click here to view code image

#Keep game image on screen
if GameImageLocation.left < 0 or GameImageLocation.right > ScreenWidth:
 ImageOffset[0] = -ImageOffset[0]
 #Speed it up
 if ImageOffset[1] < 0:
 ImageOffset[1] = ImageOffset[1] - 1
 else:
 ImageOffset[1] = ImageOffset[1] + 1
 #
if GameImageLocation.top < 0 or GameImageLocation.bottom > ScreenHeight:
 ImageOffset[1] = -ImageOffset[1]
 #Speed it up
 if ImageOffset[0] < 0:
 ImageOffset[0] = ImageOffset[0] - 1
 else:
 ImageOffset[0] = ImageOffset[0] + 1
 #

17. Exit the editor, type python3 py3prog/script1902.py, and press Enter to
test the last change. Let the Raspberry Pi image hit the game screen walls several
times before you begin chasing it with the mouse pointer. Does it appear to speed up?
Careful! Don’t wait too long to chase it, or you may never catch it!

That was fun. But this hour is almost over, and you have only touched your little toe into the Python
gaming world’s ocean. Listing 19.7 is a last gift to help you on your way: the Raspberry Pie game.

LISTING 19.7 The Raspberry Pie Game Script

Click here to view code image

#script1903.py - The Raspberry Pie Game
#Written by Blum and Bresnahan
#######################################
#
Import Modules & Variables
import pygame #Import PyGame library
import random #Import Random module
import sys #Import System module
#
from pygame.locals import * #Local PyGame constants
#
pygame.init() #Initialize PyGame objects
#
Set up Functions
#
Delete a Raspberry
def deleteRaspberry (RaspberryDict, RNumber):
 key1 = 'RasLoc' + str(RNumber)
 key2 = 'RasOff' + str(RNumber)
 #
 #Make a copy of Current Dictionary
 NewRaspberry = dict(RaspberryDict)
 #
 del NewRaspberry[key1]
 del NewRaspberry[key2]
 #
 return NewRaspberry
#
Set up the Game Screen
#
ScreenSize = ScreenWidth,ScreenHeight = 1000,700
GameScreen=pygame.display.set_mode(ScreenSize)
#
Set up the Game Color
blue=0,0,255
#
Set up the Game Image Graphics
#
GameImage="/usr/share/raspberrypi-artwork/raspberry-pi-logo.png"
GameImageGraphic=pygame.image.load(GameImage).convert_alpha()
GameImageGraphic=pygame.transform.scale(GameImageGraphic,(75,75))
#
GameImageLocation=GameImageGraphic.get_rect() #Current location
#
ImageOffset=[10,10] #Starting Speed
#
Build the Raspberry Dictionary
#
RAmount = 17 #Number of Raspberries on screen
Raspberry = {} #Initialize the dictionary
#
for RNumber in range(RAmount): #Create the Raspberry dictionary
 Position_x = (ImageOffset[0] + RNumber) * random.randint(9,29)
 Position_y = (ImageOffset[1] + RNumber) * random.randint(8,18)
 RasKey = 'RasLoc' + str(RNumber)
 Location = GameImageLocation.move(Position_x, Position_y)
 Raspberry[RasKey] = Location
 RasKey = 'RasOff' + str(RNumber)
 Raspberry[RasKey] = ImageOffset
#
Setup Game Sound

#
ClickSound=pygame.mixer.Sound('/home/pi/python_games/match1.wav')
#

Play the Game
#
while True:
 for event in pygame.event.get():
 if event.type == pygame.MOUSEBUTTONDOWN:
 for RNumber in range(RAmount):
 RasLoc = 'RasLoc' + str(RNumber)
 RasImageLocation = Raspberry[RasLoc]
 if RasImageLocation.collidepoint(pygame.mouse.get_pos()):
 deleteRaspberry(Raspberry,RNumber)
 RAmount = RAmount - 1
 ClickSound.play()
 pygame.time.delay(50)
 if RAmount == 0:
 sys.exit()
 #Redraw the Screen Background ###############
 GameScreen.fill(blue)
 #
 #Move the Raspberries around the screen #####
 for RNumber in range(RAmount):
 RasLoc = 'RasLoc' + str(RNumber)
 RasImageLocation = Raspberry[RasLoc]
 RasOff = 'RasOff' + str(RNumber)
 RasImageOffset = Raspberry[RasOff]
 #
 NewLocation = RasImageLocation.move(RasImageOffset)
 #
 Raspberry[RasLoc] = NewLocation #Update location
 #
 #Keep Raspberries on screen ##################
 if NewLocation.left < 0 or NewLocation.right > ScreenWidth:
 NewOffset = -RasImageOffset[0]
 if NewOffset < 0:
 NewOffset = NewOffset - 1
 else:
 NewOffset = NewOffset + 1
 #
 RasImageOffset = [NewOffset, RasImageOffset[1]]
 Raspberry[RasOff] = RasImageOffset #Update offset
 #
 if NewLocation.top < 0 or NewLocation.bottom > ScreenHeight:
 NewOffset = -RasImageOffset[1]
 if NewOffset < 0:
 NewOffset = NewOffset - 1
 else:
 NewOffset = NewOffset + 1
 #
 RasImageOffset = [RasImageOffset[0],NewOffset]
 Raspberry[RasOff] = RasImageOffset #Update offset
 #
 GameScreen.blit(GameImageGraphic,NewLocation) #Put on Screen
 #
 pygame.display.update()
#

Often games have multiple images on the game screen. The Raspberry Pie game creates 17 Raspberry

Pi images. (Supposedly, it takes about 4×17 raspberries to make a full-sized raspberry pie.) The
game uses a dictionary to create the different raspberry images and keep track of their current
locations and individual offset settings.
Each image must be clicked with a mouse to be eliminated. The game ends when all the raspberry
images have been removed from the game screen. Figure 19.4 shows how the game looks in action.

FIGURE 19.4 The Raspberry Pie game in action.

You can make a number of changes and improvements to the Raspberry Pie game script. The
following are a few suggestions of changes you can try to further your adventure in learning:

 Create a “quit” option to leave the game using a keyboard sequence of keys.
 Add a game header to the game screen.
 Make each raspberry “pop” and disappear when it is clicked.
 Draw a hot baked pie image at the end of the game.
 Rewrite the Raspberry Pi images as objects instead of dictionary entries.

Game script writing really lets you be creative. Hopefully this small list of suggested changes will get
you started writing your own Python game scripts.

Summary
In this hour, you read about various Python game frameworks. You learned how to load and use the
PyGame library to create game scripts. You got to write a couple simple games, add sounds to the
game, and create player interaction with moving game images. In Hour 20, “Using the Network,” you
will expand your Python knowledge and learn about networking with Python.

Q&A

Q. I enjoyed this hour. How else can I improve my Python game script writing skills?
A. For further challenges, take a look at www.pyweek.org. This site runs game programming

contests twice a year to test your new-found Python game script writing skills.
Q. I want to use a gamepad in my game. Can PyGame handle that?
A. Yes, PyGame has an entire module, pygame.joystick, for interacting with gamepads,

trackballs, and joysticks.
Q. I’d like to have a picture as my game screen instead of a plain color. How can I make

that happen?
A. Instead of using the .fill method to fill the game screen with a plain color, you first load an

image, similarly to the way you loaded the Raspberry Pi image this hour. Next, you make sure
that image is as big as the game screen. Then you use the .blit method to draw it on the
screen first, before you .blit the other images. You can create some really cool game
backgrounds this way!

Workshop
Quiz

1. Panda3D is a sprite that you can use in a game script, and it comes pre-created in the
PyGame library. True or false?

2. What PyGame method allows you to add a slight pause (milliseconds) in the game?
3. Which PyGame method checks for two images or an image and a mouse pointer being at the

same place at the same time?
a. .collisionpoint
b. .collidepoint
c. .get_event

Answers
1. False. Panda3D is a full-feature framework for game development, including 3D graphics and

a game engine. You can use it to write games in C++ or Python.
2. The pygame.time.delay method allows you to pause a game for a specified number of

milliseconds.
3. Answer b is correct. The .collidepoint method tests the current image’s location on the

game screen and determines whether it has collided with another image or events location on
the game surface.

http://www.pyweek.org

Part V: Business Programming
HOUR 20 Using the Network

HOUR 21 Using Databases in Your Programming

HOUR 22 Web Programming

Hour 20. Using the Network

What You’ll Learn in This Hour:
 The Python network modules
 How to interact with email and web servers
 How to create your own client/server applications

These days, it’s almost a necessity for programs to be able to interact with networks. Fortunately,
there are lots of different modules available to help write network-aware Python applications that can
interact with lots of different types of network servers. In this hour, you’ll first take a look at the
different network modules available for Python, and then you’ll explore how to use Python scripts to
interact directly with email servers and web servers. Finally, you’ll wrap up this hour by creating
your own client/server programs using Python.

Finding the Python Network Modules
The Python v3 language supports lots of different networking features. However, because of the
modular approach to Python programming, you often have to find just the right network module to use
for your specific networking needs. Table 20.1 shows the different network-related modules that you
can use in your Python v3 programs.

TABLE 20.1 Python Networking Modules
Each network module has its own documentation on how to use it within your Python programs, so
you may have to do a bit of digging at the docs.python.org website to find just what you’re looking
for. The next two sections demonstrate a couple examples of how to use the modules to provide
networking features in your Python programs. First you’ll see how to incorporate email features into
your Python scripts, and then you’ll see how to read data from webpages and process it in your
Python scripts.

Working with Email Servers
One popular network feature you may run into with your Python scripts is the ability to send email
messages. This can come in handy if you have automated Python scripts that run on their own, and you
need to know if they fail, or if you’d just like to get the data results from your script sent to you in a
convenient format, without having to log in to the Raspberry Pi to view the data.
The smtplib module provides just what you need to interface your Python scripts with the email
system on your server. The following sections first explore how email works in the Linux
environment and then tackle how to use the smtplib module to send email messages from Python
scripts.

Email in the Linux World

http://docs.python.org

Sometimes the hardest part of using email in your Python programs is understanding just how the
email system works in Linux. Knowing what software packages perform what particular tasks is
crucial for getting emails from your Python scripts into your inbox.
One of the main goals of the Linux operating system was to modularize software. Instead of having
one monolithic program handle all the required pieces of a function, Linux developers created
smaller programs that each handle a smaller piece of the total functionality of the system.
This philosophy was also used when implementing the email systems used in Linux systems. In Linux,
email functions are divided into separate pieces, each assigned to a different program. Figure 20.1
shows how most open-source email software modularizes email functions in the Linux environment.

FIGURE 20.1 The Linux modular email environment.

As you can see in Figure 20.1, in the Linux environment, the email process is normally divided into
three functions:

 The Mail Transfer Agent (MTA)
 The Mail Delivery Agent (MDA)
 The Mail User Agent (UA)

The MTA is the core of the Linux email system. It’s responsible for handling both incoming and
outgoing mail messages in the system. It maintains mailboxes for each user account on the system and
can accept messages for each user. If your Raspberry Pi is directly connected to the Internet, it can
also send messages destined for recipients on remote hosts as well.
Closely related to the MTA, the MDA delivers the messages the MTA server receives. The strength
of the MDA is that it’s highly customizable. This is where you can program out-of-office messages or
rules to route incoming messages to different folders in your Inbox.
If you want to support email mailboxes directly on your Raspberry Pi, you have to install at least an
MTA package, and you can optionally install a fancier MDA package. By far the two most popular
MTA email packages that you’ll see in the Linux environment are sendmail and Postfix. As it turns

out, both of these packages combine the MTA and MDA functions into one software application,
providing a full email server for your system. However, the Raspberry Pi’s Raspbian distribution
doesn’t install either package by default, so you don’t have any email capability for the user accounts
on the Raspberry Pi.

By the Way: sendmail and Postfix on the Raspberry Pi
While not installed by default, both the sendmail and Postfix programs are available in
the Raspbian software repository. You can install either package by using the apt-
get installation tool. If you want to read your mail messages from the command line,
you should also install the mailx program.

Setting up and configuring a full-blown email server on the Internet is not an easy task. However, if
all you need to do is send email messages from your Python scripts to external email addresses,
there’s an easier way than having to set up your own mail server.
We haven’t talked about the MUA package yet. The job of MUA is to provide a method for users to
interface with their existing mailboxes (either on the local system or a remote system) to read and
send email messages.
The smtplib module in Python provides full MUA capabilities, allowing your scripts to connect to
any email server to send email messages—even servers that require encrypted authentication! And
what’s even better, the smtplib package has become so popular that it’s included in the standard
Python library modules, so it’s already available on your Raspberry Pi.

The smtplib Library
The smtplib library includes three classes to create an SMTP connection to a remote email server
and send out messages:

 SMTP—The SMTP class connects to the remote email server, using either the standard SMTP
or the extended ESMTP.
 SMTP_SSL—The SMTP_SSL class allows you to establish an encrypted session to a remote
email server.
 LMTP—The LMTP class offers a more advanced method of connecting to ESMTP servers.

For the scripts in this hour, you’ll be using the SMTP class, but you’ll also see how to encrypt the
password transaction inside the SMTP session. This provides the least amount of overhead for the
session while still keeping transactions secure.
Inside the SMTP class are several methods that you can use to set up and establish the connection with
the email server. Table 20.2 lists these methods.

TABLE 20.2 The SMTP Class Methods
To send an email message, you should follow these steps:

1. Instantiate an SMTP class object, using the remote server connection information.
2. Send an EHLO message to the remote server.
3. Place the connection into TSL security mode.
4. Send the login information for the server.
5. Create the message to send.
6. Send the message.
7. Quit the connection.

The next section walks through each of these steps in creating a simple Python script for sending out
email messages.

Using the smtplib Library
The first step in the process of creating a Python script for sending out email messages is to instantiate
the SMTP object class. When you do this, you need to provide the host name and port address
required to connect to your email server, like this:
Click here to view code image

import smtplib
smtpserver = smtplib.SMTP('smtp.gmail.com', 587)

By the Way: Remote Email Servers
This example shows the host name and port used for the popular Gmail email server.
Most email servers have specific host names and ports that you can use to connect to
send email messages via email clients such as smart phone apps instead of using the
web interface. You should be able to find that information on the Frequently Asked
Questions (FAQ) webpages for your email server. If not, you may have to contact the
tech support group for your email server to get that information.

After you instantiate the SMTP object class, you can start the login process. For the login()

function, you must provide the user ID and password that you use to connect to your email server
using your normal email client. Usually they’re just your standard email address and password. To
make the connection secure, you should also use the starttls() method. The process looks like
this:
Click here to view code image

smtpsrtver.ehlo()
smtpserver.starttls()
smtpserver.ehlo()
smtpserver.login('myuserid', 'mypassword')

You may have noticed that the code uses the ehlo() method twice. Some email servers require the
client to re-introduce itself after switching to encrypted mode. Therefore, it’s a good idea to always
use the extra ehlo() method, which doesn’t break anything on servers that don’t need it.
After you establish the connection and login, you’re ready to compose and send your message. The
message must be formatted using the RFC2822 email standard, which requires the message to start out
with a To: line to identify the recipients, a From: line to identify the sender, and a Subject: line.
Instead of creating one huge text string with all that info, it’s easier to create separate variables with
that info and then “glue” them all together to make the final message, like this:
Click here to view code image

to = 'person@remotehost.com'
from = 'rich@myhost.com'
subject = 'This is a test'
header = 'To:' + to + '\n'
header = header + 'From:' + from + '\n'
header = header + 'Subject:' + subject + '\n'
body = 'This is a test message from my Python script!'
message = header + body

Now the message variable contains the required RFC2822 headers, plus the contents of the
message to send. It’s easy to change any of the individual parts, if needed.
Now you need to send the message and close the connection, as shown here:
Click here to view code image

smtpserver.sendmail(from, to, message)
smtpserver.quit()

To send the message, the sendmail() method also needs to know the from and to information. The
to variable can either be a single email address or a list object that contains multiple recipient email
addresses.
In the following Try It Yourself, you’ll write your own Python script to send email messages.

Try It Yourself: Send Email Messages
In the following steps, you’ll create a window application using the tkinter library
(see Hour 18, “GUI Programming”) to send an email message to one or more
recipients. Just follow these steps:

1. Create the file script2001.py in the folder for this hour.
2. Enter the code shown here in the script2001.py file:

Click here to view code image

1: #!/usr/bin/python3
2: from tkinter import *
3: import smtplib
4:
5: class Application(Frame):
6: """Build the basic window frame template"""
7:
8: def __init__(self, master):
9: super(Application, self).__init__(master)
10: self.grid()
11: self.create_widgets()
12:
13: def create_widgets(self):
14: menubar = Menu(self)
15: menubar.add_command(label='Send', command=self.send)
16: menubar.add_command(label='Quit', command=root.quit)
17: self.label1 = Label(self, text='The Quick E-mailer')
18: self.label1.grid(row=0, columnspan=3)
19: self.label2 = Label(self, text="Enter the recipients:")
20: self.label3 = Label(self, text='Enter the Subject:')
21: self.label4 = Label(self, text='Enter your message here:')
22: self.label2.grid(row=2, column=0)
23: self.label3.grid(row=3, column=0)
24: self.label4.grid(row=4, column=0)
25:
26: self.recipients = Entry(self)
27: self.subj = Entry(self)
28: self.body = Text(self, width=50, height=10)
29: self.recipients.grid(row=2, column=1, sticky = W)
30: self.subj.grid(row=3, column=1, sticky = W)
31: self.body.grid(row=5, column=0, columnspan=2)
32:
33: self.button1 = Button(self, text="Send message",
 command=self.send)
34: self.button1.grid(row=6, column=0, sticky = W)
35:
36: self.recipients.focus_set()
37: root.config(menu=menubar)
38:
39: def send(self):
40: """Retrieve the text, build the message, and send it"""
41: server = 'smtp.gmail.com'
42: port = 587
43: sender = 'user@gmail.com'
44: password = 'xxxxxxxx'
45: to = self.recipients.get()
46: tolist = to.split(',')
47: subject = self.subj.get()
48: body = self.body.get('1.0', END)
49: header = 'To:' + to + '\n'
50: header = header + 'From:' + sender + '\n'
51: header = header + 'Subject:' + subject + '\n'
52: message = header + body
53:
54: smtpserver = smtplib.SMTP(server, port)
55: smtpserver.ehlo()
56: smtpserver.starttls()
57: smtpserver.ehlo()
58: smtpserver.login(sender, password)

59: smtpserver.sendmail(sender, tolist, message)
60: smtpserver.quit()
61: self.body.delete('1.0', END)
62: self.body.insert(END, 'Message sent')
63:
64: root = Tk()
65: root.title('The Quick E-mailer')
66: root.geometry('500x300')
67: app = Application(root)
68: app.mainloop()

3. In lines 41–44, replace the server, port, sender, and password variable
values with the information required for your email server.

4. Save the file.
5. Open the LXTerminal session in your LXDE desktop on the Raspberry Pi.
6. Run the script2001.py program from the command line, like this:

Click here to view code image

pi@raspberrypi ~ $ python3 script2001.py

You should see the window interface, as shown in Figure 20.2.

FIGURE 20.2 The Quick E-mailer application main window.

To send your message to multiple recipients, you just place a comma after each recipient in the To
line. The code uses the split() string method to split the comma-delimited string into a list that the
sendmail() method uses.

Watch Out!: Advanced Security in Gmail
GMail offers an advanced security feature that requires a two-step authentication
process. This method won’t work with that feature in GMail. It only works with a
standard userid/password security.

Working with Web Servers
These days, just about everyone gets information from the Internet. The World Wide Web (WWW)
has become a primary source of information for news, weather, sports, and even personal
information.
You can leverage this wealth of information on the Internet from your Python scripts. You might be
wondering how you can use your Python scripts to extract data from the graphical world of webpages.
Fortunately, Python makes it easy.
The Python urllib module, which is part of the standard Python library, allows you to interact with
a remote website to retrieve information. It retrieves the full HTML code sent from the website and
stores it in a variable. The downside is that you then have to parse through the HTML code, looking
for the content you need. But fortunately again, Python provides help for doing that!
To summarize, extracting data from websites is basically a two-step process:

1. Connect to the website and retrieve the webpage.
2. Parse the HTML code to find the data you’re looking for.

The following sections walk through these two steps to help you retrieve useful information from any
website by using a Python script.

Retrieving Webpages
Retrieving the HTML code for a webpage involves three steps:

1. Connect to the remote web server.
2. Send an HTTP request for the webpage.
3. Read the HTML code that the web server returns.

All these steps are handled with just two simple commands from the urllib module (after you
import the module):
Click here to view code image

import urllib.request
response = urllib.request.urlopen(url)
html = response.read()

The urlopen() method attempts to establish the HTTP connection with the remote website
specified in the parameter. You need to specify the full http:// or https:// format of the
address in the URL. The read() method then retrieves the HTML code sent from the remote
website.
The read() method returns the text as binary data instead of as a text string. You can use some of
the standard Python tools to convert the HTML code into text (see Hour 10, “Working with Strings”)
and then use the standard Python searching tools (see Hour 16, “Regular Expressions”) to parse
through the HTML code, looking for the data you need, in a process called screen scraping.
However, there’s an easier way of extracting, and you’ll learn about it next.

Parsing Webpage Data
While screen scraping is certainly one way to extract data from a webpage, it can be extremely
painful. Trying to hunt down individual data elements buried in the HTML code of a webpage can be

quite a chore.
If you find the data you want and try to use a positional method of extracting the content (such as
looking for the 1,200th character in an HTML document and splicing the next 10 characters), you
might be disappointed when, the next time the webpage is updated, the data is at the 1,201st position.
One solution to this problem is to use an HTML parser library. An HTML parser library allows you
to parse through the individual HTML elements contained in the document, looking for specific tags
and keywords. This makes the job of searching for data much easier, and it can help your program
survive simple changes to the webpage.
There are plenty of HTML parser libraries available in Python. The HTMLParser module is
included in the standard Python library, but it can be somewhat difficult to work with. In the
following Try It Yourself, you will use the LXML module, which is fairly easy to use yet robust
enough to help you parse through the webpages you need.

Try It Yourself: Install the LXML Module
To complete the web parsing project, you need to install the Python v3 version of the
LXML module from the Raspbian Linux distribution software repository. Just follow
these steps:

1. Open a command prompt, either from the main Raspberry Pi login interface or from
the LXTerminal utility in the graphical desktop.

2. Run the apt-get command as the root user account to update your library, like
this:

Click here to view code image

pi@raspberrypi ~ $ sudo apt-get update

3. Run the apt-get command as the root user account to install the Python v3 version
of the LXML module, like this:

Click here to view code image

pi@raspberrypi ~ $ sudo apt-get install python3-lxml

Watch Out!: The LXML Module
Be careful. The Raspbian Linux distribution software repository includes both
the Python v2 and Python v3 versions of the LXML module. Make sure you
install the Python v3 version to use with your Python v3 code! The Python v3
version is python3-lxml, while the Python v2 version is python-lxml.

Now that you have the LXML module installed, you can import it into your program and use its
features. There are two specific features that you’re interested in:

 The etree methods, which break an HTML document down into the individual HTML code
elements in the document.
 The cssselect methods, which can parse CSS data embedded in HTML documents.

Let’s take a closer look at using each of these features.

Using the etree Methods to Parse HTML

The etree methods break an HTML document down into the individual HTML elements. If you’re
familiar with HTML code, you’ve seen the HTML elements that are used to define the layout and
structure of the webpage. Here’s a quick example of the HTML code in a simple webpage:
Click here to view code image

<!DOCTYPE html>
<html>
<head>
<title>This is a test webpage</title>
</head>
<body>
<h1>This is a test webpage!</h1>
<p>This webpage contains a simple title and two paragraphs of text</p>
<p>This is the second paragraph of text on the webpage</p>
<h2>This is the end of the test webpage</h2>
</body>
</html>

The etree methods can return each HTML element in the document as a separate object that you can
manipulate. Here’s the code required to extract the HTML elements from the html variable returned
from the urllib process shown earlier:
Click here to view code image

import lxml.etree
encoding = lxml.etree.HTMLParser(encoding='utf-8')
doctree = lxml.etree.fromstring(html, encoding)

First, you need to define the encoding that you want to convert the raw binary HTML data into. The
encoding variable contains the encoding object to use. This example defines the utf-8 encoding
scheme, which can handle most languages in the world.
The second statement uses the fromstring() method to produce a list that contains the string
values of all the HTML elements and their values. The doctree variable contains a list of the
individual HTML elements and their values. You can search the list values, looking for the data, or if
you know exactly which position in the element list your data appears, you can jump directly there.
That method is a little better than using the regular expression method to search for data, but you can
still make things easier!
Most webpages use Cascading Style Sheets (CSS) to differentiate important content on the webpage.
The next step is to leverage that information to look for the specific data you want.
Using CSS to Find Data

Now that you have the webpage data broken down into the separate elements, you can use the
CSSSelector() method in the lxml module to try to parse the data even further, based on CSS
information in the webpage.
You may need to do some hunting around through the raw HTML code to figure out just what unique
features make the data you’re looking for stand out. Most modern webpages use CSS classes to define
CSS styles for specific content on the webpage. It looks something like this:
Click here to view code image

<div class="day-temp-current temp-f">79</div>

In this example, the current temperature value is surrounded by an HTML <div> element that’s
assigned to a specific CSS class to customize how it appears on the webpage. With the lxml
method, you can only find the <div> element, but with the CSSSelector() method, you can
search for the specific CSS class to find the exact data, like this:
Click here to view code image

from lxml.etree.cssselect import CSSSelector
div = CSSSelector("div.'day-temp-current temp-f'")
temp = div(doctree)[0]

The CSSSelector() method specifies the HTML element and the CSS class that you’re looking
for. This is the syntax:

CSSSelector("element.class")

In this example, the class name that you’re looking for contains a space (which is allowed in CSS),
and this complicates things a bit. Because of the space, you need to place quotes around the class
name in the parameter, and you also need to place quotes around the entire value.
The CSSSelector() method sets up the item you’re searching for, and then you just need to feed
the result from the etree parser into it. The result will be a list of all the elements that match both
the HTML element and the CSS class. Hopefully, that only applies to one item in the webpage and
gives you the data you want!

Try It Yourself: Find the Current Temperature
Plenty of websites can tell you the current temperature in your city. Follow these steps
to write a Python script that contacts one of those sites, retrieves the temperature, and
then displays it:

1. Find the specific website URL that has the information you’re looking for. For this
exercise, use the popular Yahoo Weather webpage to look up the current temperature
in Chicago, Illinois. If you go to the main weather.yahoo.com webpage, you have to
enter the city and state information. After you do that, you are redirected to a different
URL that contains the weather data. For Chicago, this is the URL:

Click here to view code image

http://weather.yahoo.com/unitd-states/illinois/chicago-2379574/

Make note of this, as it’s the URL that you need to use for your urlopen() method.
2. Use the View Source feature in your browser to look at the raw HTML code for the

webpage. Look for the data you’re interested in, and see what HTML elements are
around it. For the current temperature on the Yahoo Weather page, you might find
this:

Click here to view code image

<div class="day-temp-current temp-f">79°

Armed with the URL and the data you’re looking for, you’re ready to write the
Python script.

3. Create the file script2002.py in this hour’s folder on your Raspberry Pi.

http://weather.yahoo.com

4. Open the script2002.py file with an editor and enter the code shown here:
Click here to view code image

1: #!/usr/bin/python3
2:
3: import urllib.request
4: import lxml.etree
5: from lxml.cssselect import CSSSelector
6:
7: url = 'http://weather.yahoo.com/united- states/illinois/chicago-
2379574/'
8: response = urllib.request.urlopen(url)
9: html = response.read()
10:
11: parser = lxml.etree.HTMLParser(encoding='utf-8')
12: doctree = lxml.etree.fromstring(html, parser)
13:
14: div = CSSSelector("div.'day-temp-current temp-f'")
15: temp = div(doctree)[0].text[0:-1]
16: print('The current temperature in Chicago is', temp)

5. Save the file.
6. Run the script from a command line, as shown here:

Click here to view code image

pi@raspberrypi ~ $ python3 script2002.py
The current temperature in Chicago is 79
pi@raspberrypi ~ $

This example had to add one extra step in processing the data (refer to line 15). Unfortunately, the
data returned from the element contained the ° HTML code to make the fancy degree symbol on
the webpage. Depending on the terminal you use to run the program, that code may produce an odd
ASCII character in the text output. To avoid that, you use the text method to convert the data into a
text string, and then you use string splicing to remove the odd character at the end of the string value,
like this:
Click here to view code image

temp = div(doctree)[0].text[0:-1]

The beauty of this script is that after you extract the temperature data from a webpage, you can do
whatever you want with it, such as create a table of temperatures to track historical temperature data.
You can then schedule the script to run at regular intervals to track the temperature throughout the day
(or even combine it with the email script to automatically email it to yourself)!

Watch Out!: The Volatility of the Internet
The Internet is a dynamic place. Don’t be surprised if you spend hours working out the
precise location of data on a webpage, only to find that it’s moved a couple weeks
later, breaking your script. In fact, it’s quite possible that this example won’t work by
the time you read this book. If you know the process for extracting data from
webpages, as shown in this Try It Yourself, you can then apply that principle to any
situation.

Linking Programs Using Socket Programming
Besides connecting to other servers, Python also allows you to create your own servers on a network.
You can write a server application that listens for connections from client programs and
communicates with the client programs across the network, allowing you to move your application
around the network.
In the following sections, you’ll first learn how the client/server paradigm works in network
programming, and then you’ll see how to create your own server and client programs by using Python
scripts.

What Is Socket Programming?
Before diving into client/server programming, it’s a good idea to have an understanding of how client
and server programs operate. Obviously, the client program and the server program each have
different responsibilities in the connection and transfer of data.
A server program listens to the network for requests coming from clients. A client program initiates a
request to the server for a connection. Once the server accepts the connection request, a two-way
communication channel is available for each device to send and receive data. Figure 20.3 shows this
process.

FIGURE 20.3 The client/server communication process.

As you can see in Figure 20.3, the server must perform two functions before it can communicate with
the client. First, it must set up a specific TCP port to listen for incoming requests. When a connection
request comes in, it must then accept the connection.
The client’s responsibility is much simpler. All it must do is attempt to connect to the server on the
specific TCP port on which the server is listening. If the server accepts the connection, the two-way
communication is available, and the data can be sent.
Once a connection is established between the server and the client, the two devices must use some
sort of communication process (or protocol). If both devices attempt to listen for a message at the

same time, they’ll deadlock, and nothing will happen. Likewise, if they both attempt to send a
message at the same time, nothing will be accomplished. It’s your job as the network programmer to
decide what protocol rules your client and server programs must follow in order to communicate.
You create client/server programs by using sockets. Sockets are the interface between your program
and the physical network connection on the client and server devices. Creating the code to interact
with the network connection is called socket programming.

The Python socket Module
Python includes the socket module in the standard Python libraries to help you write network
programs. This module provides all the methods you need for both the server and client sides of the
connection. Table 20.3 shows the methods you use to write network programs.

TABLE 20.3 Python socket Module Methods
There are also lots of methods for converting host addresses into different formats used on the
Internet. This hour doesn’t dig into all those details, as you don’t need them for the simple scripts
you’ll create. If you’re interested in them, though, check out the socket module documentation on
the docs.python.org website for more information.

Creating the Server Program
To demonstrate the creation of a client/server program using Python, you’re going to set up a simple
network application. The server program you’ll create will listen for incoming connection requests
on TCP port 5150. When a connection request comes in, the server will accept it and then send a
welcome message to the client.
The server program will then wait to receive a message from the client. If it receives a message, the
server will display that message and then send the same message back to the client. After sending the
message, the server will loop back to listen for another message. This loop will continue until the
server receives a message that consists of the word exit. When that happens, the server will
terminate the session.
To create the server program, you use the socket module to create a socket and listen for incoming
connections on TCP port 5150, as shown in this example:

http://docs.python.org

Click here to view code image

import socket
server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
host = ''
port = 5150
server.bind((host, port))
server.listen(5)

The socket() method parameters are somewhat complex, but they’re also somewhat standard. The
AF_INET parameter tells the system that you’re requesting a socket that uses a IPv4 network
address, not an IPv6 network address. The SOCK_STREAM parameter tells the system that you want
a TCP connection instead of a UDP connection. (You use SOCK_DGRAM for a UDP connection.) TCP
connections are more reliable than TCP connections, and you should use them for most network data
transfers.
The bind() function establishes the program’s link to the socket. It requires a tuple value that
represents the host address and port number to listen on. If you bind to an empty host address, the
server listens on all IP addresses assigned to the system (such as the localhost address and the
assigned network IP address). If you need to listen on only one specific address, you can use the
gethostbyaddr() or gethostbyname() method in the socket module to retrieve the
system’s specific host name or address.
Once you bind to the socket, you use the listen() method to start listening for connections. The
program halts at this point, until it receives a connection request. When it detects a connection request
on the TCP port, the system passes it to your program. Your program can then accept it by using the
accept() method, like this:
Click here to view code image

client, addr = server.accept()

The two variables are required because the accept() method returns two values. The first value is
a handle that identifies the connection, and the second value is the address of the remote client. Once
the connection is established, all interaction with the client is done using the client variable. The
two methods you use are send() and recv():
Click here to view code image

client.send(b'Welcome to my server!')
data = client.recv(1024)

The send() method specifies the bytes that you want sent to the client. Note that this is in byte
format and not text format. You can use the standard Python string methods to convert between the text
and byte values. The recv() method specifies the size of the buffer to hold the received data and
returns the data received from the client as bytes instead of a text string value.
When you’re done with the connection, you must close it, like this, to reset the port on the system:

client.close()

Now that you’ve seen the basics, you’re going to create a server program to experiment with.

Try It Yourself: Create a Python Server Program
Follow these steps to create a server program to listen for client connections:

1. Create the script2003.py program in the folder for this hour.
2. Open the script2003.py file with a text editor and enter the code shown here:

Click here to view code image

1: #!/usr/bin/python3
2:
3: import socket
4: server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
5: host = ''
6: port = 5150
7: server.bind((host, port))
8: server.listen(5)
9: print('Listening for a client...')
10: client, addr = server.accept()
11: print('Accepted connection from:', addr)
12: client.send(str.encode('Welcome to my server!'))
13: while True:
14: data = client.recv(1024)
15: if (bytes.decode(data) == 'exit'):
16: break
17: else:
18: print('Received data from client:', bytes.decode(data))
19: client.send(data)
20: print('Ending the connection')
21: client.send(str.encode('exit'))
22: client.close()

3. Save the file.

The script2003.py program goes through the steps to bind to a socket on the local system (line
7) and listen for connections on TCP port 5150 (line 8). When it receives a connection from a client
(line 10), it prints a message in the command prompt and then sends a welcome message to the client
(lines 11 and 12). This example uses the str.encode() string method to convert the text into a
byte value to send and the bytes.decode() method to convert the bytes into text values to
display.
After sending the welcoming message, the code goes into an endless loop, listening for data from the
client and then returning the same data (lines 13 through 19). If the data is the word exit, the code
breaks out of the loop and closes the connection.
That’s it for the server side! Now you’re ready to work on the client side of the application.

Creating the Client Program
The client side of a network connection is a little simpler than the server side. It simply needs to
know the host address and the port number that the server uses to listen for connections, and then it
can create the connection and follow the protocol that you created to send and receive data.
Just like a server program, a client program needs to use the socket() method to establish a socket
that defines the communication type. Unlike the server program, it doesn’t need to bind to a specific
port; the system will assign one to it automatically to establish the connection. With that, you just need
five lines of code to establish the connection to the server:
Click here to view code image

import socket

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
host = socket.gethostbyname('localhost')
port = 5150
s.connect((host, port))

The client code uses the gethostbyname() method to find the connection information to the
server, based on the server’s host name. Since the server is running on the same system, you use the
special localhost host name.
The connect() method uses a tuple value of the host and port number to request the connection
with the server. If the connection fails, it returns an exception that you can catch.
Once the connection is established, you can use the send() and recv() methods to send and
receive byte streams. Just as in the server program, when the connection is terminated, you want to
use the close() method to properly end the session.

Try It Yourself: Create a Python Client Program
Follow these steps to create a Python client program that can communicate with the
server program you just created:

1. Create the file script2004.py in the folder for this hour.
2. Open the script2004.py file in a text editor and enter the code shown here:

Click here to view code image

1: #!/usr/bin/python3
2:
3: import socket
4: server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
5: host = socket.gethostbyname('localhost')
6: port = 5150
7:
8: server.connect((host, port))
9: data = server.recv(1024)
10: print(bytes.decode(data))
11: while True:
12: data = input('Enter text to send:')
13: server.send(str.encode(data))
14: data = server.recv(1024)
15: print('Received from server:', bytes.decode(data))
16: if (bytes.decode(data) == 'exit'):
17: break
18: print('Closing connection')
19: server.close()

3. Save the file.
The script2004.py code runs through the standard methods to create the socket
and connect to the remote server (lines 4 through 8). It then listens for the welcome
message from the server (line 9) and displays the message when it’s received (line
10).
After that, the client goes into an endless while loop, requesting a text string from the
user and sending it to the server (line 13). It listens for the response from the server
(line 14) and prints it on the command line. If the response from the server is exit,
the client closes the connection.

Running the Client/Server Demo
To run the client/server demo programs, you need to have two separate command-line sessions open.
You can do that in your LXDE graphical desktop by opening two separate LXTerminal windows.
In one window, you start the script2003.py server program first:
Click here to view code image

pi@raspberrypi ~ $ python3 script2003.py
Listening for a client...

When you see the message that the server is listening for a client, you can start the
script2004.py client program in the other LXTerminal window:
Click here to view code image

pi@raspberrypi ~ $ python3 script2004.py
Welcome to my server!
Enter text to send:this is a test

If all goes well, you see the welcome message sent from the server, along with a prompt for the text to
send back. Enter a short message and press Enter.
When you send the message from the client, you should see it appear in the server window:
Click here to view code image

Accepted connection from: ('127.0.0.1', 46043)
Received data from client: this is a test

The client window should receive the response back from the server:
Click here to view code image

Received from server: this is a test
Enter text to send:

When you enter the word exit at the client prompt, both the server and client connections terminate
and stop the programs.
Congratulations! You’ve just written a complete Python client/server application!

Watch Out!: Closing Sockets
If you try to restart the script2003.py server program immediately after it closes,
you may get an error message that the socket is still in use. By default, Linux systems
allow socket connections to linger open for a while after they’ve been closed, in case
any stray network data comes across. The socket usually fully closes and is ready for
reuse within a minute or so. You can monitor this by using the netstat –t
command. You should see a connection for TCP port 5150 in a TIME_WAIT status
while the system is waiting to close the socket.

Summary
In this hour, you explored the world of network programming with Python scripts. You learned about
the various modules available that allow your Python scripts to interact with a myriad of network
servers. You got to see two specific examples: using Python to send email messages and using Python

to parse data from webpages. After that, you took a look at the client/server programming paradigm
and how to use the Python socket module to create your own client/server network programs.
In the next hour, we’ll explore the world of database programming. Databases have become popular
in just about every type of programming, and Python programming is no different. Fortunately, there
are some simple libraries that we can use to help us add database features to our programs.

Q&A
Q. The socket demo program in this hour allows only one client to connect to the server at a

time. Can I write a program that allows hundreds of clients to connect at the same time?
A. Yes, you can, but that gets complicated! You have to use a process called forking to create a

separate program thread to handle each client connection as it comes in. The server program
listens for new connections and then forks each client connection to a new thread to handle the
protocol process.

Workshop
Quiz

1. What Python module should you use to allow your scripts to send email messages to a remote
host?

a. smtplibd
b. smtplib
c. urllib
d. lxml

2. You can’t retrieve data from webpages with your Python scripts because the data is in a
graphical format. True or false?

3. What’s the order of socket methods required for a server to listen and accept a client
connection?

Answers
1. b. smtplib. The smtplibd module allows you to write your own email server programs to

receive messages, but not send them.
2. False. Your Python script can read the raw HTML code text and parse the data.
3. You need to use the socket(), bind(), listen(), and then accept() methods for the

server side of the connection.

Hour 21. Using Databases in Your Programming

What You’ll Learn in This Hour:
 How to use a MySQL database server in your Python scripts
 How to use a PostgreSQL database server in your Python scripts

One of the problems with Python scripts is persistent data. You can store all the information you want
in your program variables, but at the end of the program, they just go away. There are times when
you’d like for your Python scripts to be able to store data that you can use later. In the old days,
storing and retrieving data from a Python script required creating a file, reading data from the file,
parsing the data, and saving the data back into the file. Trying to search for data in the file meant
having to read every record in the file to look for your data. Today, with databases being all the rage,
it’s a snap to interface your Python scripts with professional-quality open-source databases.
The two most popular open-source databases used in the Linux world are MySQL and PostgreSQL,
and both are supported on the Raspberry Pi! In this hour, you’ll see how to get these databases
running on your Raspberry Pi system and then spend some time getting used to working with them
from the command line. You’ll then learn how to interact with each one by using your Python script
programs.

Working with the MySQL Database
By far the most popular database available in the Linux environment is the MySQL database. Its
popularity has grown as a part of the Linux-Apache-MySQL-PHP (LAMP) server environment, which
many Internet web servers use for hosting online stores, blogs, and applications.
The following sections describe how to install and set up a MySQL database in your Raspberry Pi
environment, how to create the necessary database objects to use in your Python scripts, and how to
write Python scripts to interact with the database.

Installing MySQL
While the MySQL database isn’t installed by default on the Raspberry Pi, installing it is a simple
process. The Raspbian Linux distribution has two packages in the software repository to support the
MySQL environment: mysql-client and mysql-server. As you can probably guess, the
mysql-server package contains the files necessary to install and run the MySQL database server.
You’ll also install the mysql-client package, which contains a command-line interface to the
database server that you can use to create the database objects for your Python programs.
To install the MySQL environment, you just use the apt-get program:
Click here to view code image

pi@raspberrypi ~ $ sudo apt-get update
pi@raspberrypi ~ $ sudo apt-get install mysql-client mysql-server

Watch Out!: The MySQL root User Account
During the process of installing the MySQL server package, the installation script

queries you for a password for the MySQL root user account. The MySQL server
maintains its own set of user accounts and passwords, separate from the Linux system
user accounts. The root user account in the MySQL server has total control over the
entire MySQL server. Be sure to remember the password you assign to the MySQL
root user account!

When the installation process finishes, the MySQL database server program automatically starts
running in background mode. You’re all ready to start setting up your MySQL database for your
Python application.

Setting Up the MySQL Environment
Before you can start writing your Python scripts to interact with a database, you need a few database
objects to work with. At a minimum, you’ll want to have these:

 A unique database to store your application data
 A unique user account to access the database from your scripts
 One or more data tables to organize your data

You build all these objects by using the mysql command-line client program. The mysql program
interfaces directly with the MySQL server, using SQL commands to create and modify each of the
objects.
Most of the interactions you make with the database are performed using SQL statements. The SQL
language is an industry standard for communicating with different types of databases. You can send
any type of SQL statement to the MySQL server by using the mysql program. The following sections
walk through the different SQL statements you’ll need to build the basic database objects for your
shell scripts.
Creating a Database

The MySQL server organizes data into databases. A database usually holds the data for a single
application, separating it from other applications that use the database server. Creating a separate
database for each Python application helps eliminate confusion and data mix-ups.
You need to use this SQL statement to create a new database:

CREATE DATABASE name;

This is pretty simple. Of course, you must have the proper privileges to create new databases on the
MySQL server. The easiest way to ensure that you do is to log in as the root user account:
Click here to view code image

pi@raspberrypi ~ $ mysql -u root -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 51
Server version: 5.5.31-0+wheezy1 (Debian)

Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql> CREATE DATABASE pytest;
Query OK, 1 row affected (0.00 sec)

mysql>

You can see if the new database was created by using the SHOW command:
Click here to view code image

mysql> SHOW DATABASES;
+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
| performance_schema |
| pytest |
| test |
+--------------------+
5 rows in set (0.01 sec)

mysql>

This code shows that it was successfully created. You should now be able to connect to the new
database with the USE statement:

mysql> USE pytest;
Database changed
mysql> SHOW TABLES;
Empty set (0.00 sec)

mysql>

The SHOW TABLES command allows you to see if there are any tables created. The Empty set
result indicates that there aren’t any tables to work with yet. Before you start creating tables, though,
there’s one other thing you need to do.
Creating a User Account

So far you’ve seen how to connect to the MySQL server by using the root administrator account. This
account has total control over all the MySQL server objects—very much as the root Linux account
has complete control over the Linux system.
It’s extremely dangerous to use the root MySQL account for normal applications. If there were a
breach of security in the application and an attacker figured out the password for the root user
account, all sorts of bad things could happen to your system (and data). To prevent that, it’s wise to
create a separate user account in MySQL that has privileges only for the database used in the
application. You do this with the GRANT SQL statement, as shown here:
Click here to view code image

mysql> GRANT SELECT,INSERT,DELETE,UPDATE ON pytest.* TO test@localhost
IDENTIFIED by 'test';
Query OK, 0 rows affected (0.00 sec)

mysql>

This is quite a long command. Let’s walk through the pieces to see what it’s doing.
The first section defines the privileges the user account has on various database(s). This statement
allows the user account to query the database data (the SELECT privilege), insert new data records,
delete existing data records, and update existing data records.
The pytest.* entry defines the database and tables that the privileges apply to. This is specified in
the following format:

database.table

As you can see from this example, you’re allowed to use wildcard characters when specifying the
database and tables. This format applies the specified privileges to all the tables contained in the
database named pytest.
Finally, you specify the user account(s) that the privileges apply to (test, in this example). The
MySQL server also allows you to restrict the assigned privileges to apply only when the user account
connects from a specific location. You restrict the test user account to only log in from the
localhost location, which means only from scripts running on your Raspberry Pi system.
The neat thing about the GRANT statement is that if the user account doesn’t exist, it creates it.
IDENTIFIED BY allows you to set the password for the new user account.
When you’re done working with the MySQL server, use the exit command to get back to the
standard Linux command prompt:

mysql> exit;
pi@raspberrypi ~ $

You can test the new user account directly from the mysql program, like this:
Click here to view code image

pi@raspberrypi ~ $ mysql pytest -u test -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 76
Server version: 5.5.31-0+wheezy1 (Debian)

Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql>

The first parameter specifies the default database to use (pytest), and as you’ve already seen, the -
u parameter defines the login user account, and -p to queries for the password (remember, you set
that to “test” earlier). After you enter the password assigned to the test user account, you should be
connected to the server.
Now that you have a database and a user account, you’re ready to create some tables for the data.
Creating Tables

The MySQL server is a relational database. In a relational database, data is organized by data fields,

records, and tables. A data field is a single piece of information, such as an employee’s last name or
a salary. A record is a collection of related data fields, such as the employee ID number, last name,
first name, address, and salary. Each record indicates one set of the data fields.
The table contains all the records that hold the related data. Thus, a table called employees holds
the data records for each employee.
To create a new table in the database, you need to use the CREATE TABLE SQL command, like this:
Click here to view code image

pi@raspberrypi ~ $ mysql -u root -p
Enter password:
mysql> USE pytest;
Database changed
mysql> CREATE TABLE employees (
 -> empid int not null,
 -> lastname varchar(30),
 -> firstname varchar(30),
 -> salary float,
 -> primary key (empid));
Query OK, 0 rows affected (0.14 sec)

mysql>

First of all, notice that to create the new table, you need to log in to MySQL using the root user
account, since the test user account doesn’t have privileges to create a new table. The next item to
notice is that you specify the pytest database in the USE SQL command to connect to the pytest
database.

Watch Out!: Creating the Table in a Database
It’s extremely important that you make sure you’re in the right database before you
create the new table. Also, you need to make sure you’re logged in using the
administrative user account (root for MySQL) to create the tables.

Each data field in the table is defined using a data type. The MySQL database supports lots of
different data types. Table 21.1 shows some of the more popular data types you may need.

TABLE 21.1 MySQL Data Types

The empid data field definition also specifies a data constraint. A data constraint restricts what type
of data you can enter to create a valid record. The not null data constraint indicates that every
record must have an empid value specified.
Finally, the primary key line defines a data field that uniquely identifies each individual record.
This means that each data record must have a unique empid value in the table.
After you create the new table, you can use the SHOW TABLE command to ensure that it’s created.

Installing the Python MySQL Module
To get your Python scripts to communicate with the MySQL server, you need to use a Python
MySQL/Connector module. This is where things get a little interesting.
There are quite a few different Python modules for communicating with MySQL servers, but
unfortunately, not very many of them have been ported to the Python v3 world yet. The
MySQL/Connector module, created by the developers of MySQL, has been ported to the Python
v3 world, so you can use that in your Python 3 scripts.
The downside is that at the time of this writing, the MySQL/Connector module for Python v3 isn’t
available in the standard Debian Linux software repository yet, so it’s also not available in the
Raspbian software repository. However, you can download the package from the Debian
Experimental software repository and install it on your Raspberry Pi.

Try It Yourself: Install the Python v3 MySQL/Connector Module
In the following steps, you’ll install the MySQL/Connector module for Python v3
on your Raspberry Pi system. Here’s what you do:

1. Open a browser window and navigate to this URL:
http://packages.debian.org/experimental/python3-mysql.connector

2. In the “Download python3-mysql.connector” section, click the All link. That should
take you to the following URL:
://packages.debian.org/experimental/all/python3-mysql.connector/download

3. Click a link to download the package from a repository close to your location. At the
time of this writing, this is the download file name:

Click here to view code image

python3-mysql.connector_1.0.9-1_all.deb

4. Use the dpkg command to install the Debian package, like this:
Click here to view code image

pi@raspberrypi ~ $ sudo dpkg –i python3-mysql.connector_1.0.9-1_all.deb

5. Open a Python v3 command-line session and try to import the mysql.connector
module, as follows:

Click here to view code image

pi@raspberrypi ~ $ python3
Python 3.2.3 (default, Mar 1 2013, 11:53:50)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import mysql.connector
>>>

If all goes well, you shouldn’t get any error messages about a missing module when
you run the import statement. Now you’re ready to start working with the MySQL
database!

By the Way: Downloading Debian Packages
If you don’t have a graphical environment setup on your Raspberry Pi, you can
download the MySQL/Connector Debian package on a separate workstation, then use
SFTP to copy it over to your Raspberry Pi system.

Creating Your Python Scripts
Now that you have a MySQL database and all the pieces for your Python script to interact with your
MySQL database, you can start some coding. The following sections walk through the main processes
that you need to use to create and retrieve data.
Connecting to the Database

The first step in interacting with the MySQL database is to establish a connection from your Python
script to the MySQL server. That’s done using the connect() method, as shown here:
Click here to view code image

>>> import mysql.connector
>>> conn = mysql.connector.connect(user='test', password='test',
 database='pytest')
>>>

You must first import the mysql.connector module, and then you can run the connect()
method from the library. In the connect() method, you need to specify the user account and
password to connect to the MySQL server, as well as the database name. When you’re done
interacting with the database, you should use the close() method to close the connection.

Watch Out!: Database Script Security
You may have noticed that for the connect() method, you must specify the user
account and password directly in your Python script. This can be somewhat of a
security issue, so make sure to use the proper permissions on your script to protect it
from being read by anyone else on your Linux system.

Inserting Data

After connecting to the database, you can submit SQL statements to the MySQL server to insert new
data records. Inserting data into the table is a three-step process. Listing 21.1 shows the
script2101.py program, which demonstrates this process.

LISTING 21.1 The script2101.py Program

Click here to view code image

1: #!/usr/bin/python3

2:
3: import mysql.connector
4: conn = mysql.connector.connect(user='test', password='test',
 database='pytest')
5: cursor = conn.cursor()
6: new_employee = ('INSERT INTO employees '
7: '(empid, lastname, firstname, salary) '
8: 'VALUES (%s, %s, %s, %s)')
9:
10: employee1 = ('1', 'Blum', 'Barbara', '45000.00')
11: employee2 = ('2', 'Blum', 'Rich', '30000.00')
12:
13: try:
14: cursor.execute(new_employee, employee1)
15: cursor.execute(new_employee, employee2)
16: conn.commit()
17: except:
18: print('Sorry, there was a problem adding the data')
19: else:
20: print('Data values added!')
21: cursor.close()
22: conn.close()

First, you must define a cursor to the table (line 5). The cursor is a pointer object; it keeps track of
where in the table the current operation will perform. You must have a valid table cursor to be able to
insert new data records. You create a cursor by using the cursor() method after you establish the
connection. You need to assign the output of the cursor() method to a variable because you need
to reference that later on in your script.
Next, you have to create an INSERT statement template that you use to add a new data record (lines 6
through 8). The template uses placeholders for any data locations in the INSERT statement. That
allows you to reuse the same template to insert multiple data records.
The new_employee template defines the data fields for the data, as well as a data value
placeholder for each of the data values. It uses the %s format for the placeholders, no matter what
data type they really are.
After creating the template, you create the tuples that contain the actual data values (lines 10 and 11).
Make sure you list the data values in the same order in which you list the data fields in the INSERT
statement.
Now you’re ready to apply the data values to the INSERT statement template. You do that with the
execute() method (lines 14 and 15).
After submitting the new data record, you must run the commit() method for the connection to
commit the changes to the database (line 16).
After you run the script2101.py script, you can use the mysql command-line program to verify
that the new data values have been entered, as shown here:
Click here to view code image

pi@raspberrypi ~ $ python3 script2101.py
Data values added!
pi@raspberrypi ~ $ mysql -u test -p
Enter password:

mysql> use pytest;

Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed
mysql> select * from employees;
+-------+----------+-----------+--------+
| empid | lastname | firstname | salary |
+-------+----------+-----------+--------+
| 1 | Blum | Barbara | 45000 |
| 2 | Blum | Rich | 30000 |
+-------+----------+-----------+--------+
2 rows in set (0.00 sec)

mysql>

And there they are! The next step is to write a Python script to retrieve the data that you just stored in
the table.

Watch Out!: Primary Key Data Constraint
Because you defined the empid data field as the primary key for the table, that value
must be unique for each data record. If you try to rerun the script2101.py script
without changing the data value tuples, the INSERT statements fail due to the duplicate
data values.

Querying Data

The process of querying tables is similar to the process of inserting data records. Your Python script
must connect to the MySQL database, create a cursor, and then submit a SELECT SQL statement to
retrieve the data using the execute() method.
The difference from the insert process is that with the SELECT query, you need to retrieve data back
from the MySQL server. This is where the cursor object comes into play.
The cursor object contains a pointer to the query results. You must iterate through the cursor
object using a for loop to extract all the data records returned by the query.
Listing 21.2 shows the script2102.py program code, which demonstrates how to retrieve the
data records from the MySQL table.

LISTING 21.2 The script2102.py Program Code

Click here to view code image

1: #!/usr/bin/python3
2:
3: import mysql.connector
4: conn = mysql.connector.connect(user='test', password='test',
 database='pytest')
5: cursor = conn.cursor()
6:
7: query = ('SELECT empid, lastname, firstname, salary FROM employees')
8: cursor.execute(query)
9: for (empid, lastname, firstname, salary) in cursor:
10: print(empid, lastname, firstname, salary)
11: cursor.close()

12: conn.close()

When you write the for loop, you must specify a variable for each data field that you return in the
SELECT statement. For each iteration, the data fields contain the values for one data record in the
query results. When the loop completes, you should have iterated through all the individual data
records. When you run the script, you should get a listing of all the data records you stored in the
employees table:
Click here to view code image

pi@raspberrypi ~ $ python3 script2102.py
1 Blum Barbara 45000.0
2 Blum Rich 30000.0
pi@raspberrypi ~ $

Congratulations! You’ve just written a database program using Python. Now let’s take a look at how
to do the same thing with the other popular Linux database server, PostgreSQL.

Using the PostgreSQL Database
The PostgreSQL database started out as an academic project to demonstrate how to incorporate
advanced database techniques into a functional database server. Over the years, PostgreSQL has
evolved into one of the most advanced open-source database servers available for the Linux
environment.
The following sections walk you through getting a PostgreSQL database server installed and running
on your Raspberry Pi and then setting up your Python scripts to interact with the PostgreSQL database
to store and retrieve data.

Installing PostgreSQL
For the PostgreSQL server installation on the Raspberry Pi, both the PostgreSQL server and client
programs are contained in a single software package. You just install the postgresql package by
using the apt-get utility, as shown here:
Click here to view code image

pi@raspberrypi ~ $ sudo apt-get install postresql

After you do this, you have a fully functional PostgreSQL server up and running. The installation
process automatically starts the PostgreSQL server, so there’s nothing for you to manually run. Next,
you need to create the database objects for your Python scripts.

Setting Up the PostgreSQL Environment
Just as with the MySQL environment, you need to create your database objects in the PostgreSQL
environment before you start your Python scripting.
For the Python environment, the command-line program you use to interact with the PostgreSQL
server is called psql. However, it works a little differently from the mysql command-line program
in MySQL.
PostgreSQL uses the Linux system user accounts instead of maintaining its own database of user
accounts. While this can sometimes be confusing, it does make for a nice, clean way to control user
accounts in PostgreSQL. All you need to do is ensure that each PostgreSQL user has a valid account

on the Linux system; you don’t have to worry about a whole separate set of user accounts.
Another major difference between MySQL and PostgreSQL is that the administrator account in
PostgreSQL is called postgres, not root. When you installed the PostgreSQL package on your
Raspberry Pi, the installation process created a postgres user account on the system so the
PostgreSQL administrative user account can exist.
To interact with the PostgreSQL server, you need to run the psql program as the postres user
account. It looks like this:
Click here to view code image

pi@raspberrypi ~ $ sudo –u postgres psql
psql (9.1.9)
Type "help" for help.

postgres=#

The default psql prompt indicates the name of the database you are connected to. The pound sign
(#) in the prompt indicates that you’re logged in with the administrative user account. To exit the
psql command prompt, you just enter the \q meta-command.
Now you’re ready to start entering some commands to interact with the PostgreSQL server.
Creating a Database

Creating a database in PostgreSQL is the same as in MySQL: All you need to do is submit a CREATE
DATABASE statement. Just remember to be logged in as the postgres administrative account to create
the new database, as shown here:
Click here to view code image

pi@raspberrypi ~ $ sudo -u postgres psql
psql (9.1.9)
Type "help" for help.

postgres=# CREATE DATABASE pytest;
CREATE DATABASE
postgres=#

After you create the database, you can use the \l meta-command to see if your new database appears
in the database listing and then the \c meta-command to connect to it. Here’s an example:
Click here to view code image

postgres=# \l
 List of databases
 Name | Owner | Encoding
-----------+----------+----------
 postgres | postgres | UTF8
 template0 | postgres | UTF8
 template1 | postgres | UTF8
 pytest | postgres | UTF8
(4 rows)

postgres=# \c pytest
You are now connected to database "test" as user "postgres".
pytest=#

When you connect to the pytest database, the psql prompt changes to indicate the new database

name. This is a great reminder when you’re ready to create your database objects: You can easily tell
where you are in the system.
When you’re done working with the PostgreSQL server, just enter the \q command to return to the
Linux command prompt.

By the Way: PostgreSQL Schemas
PostgreSQL adds another layer of control, called the schema, to the database. A
database can contain multiple schemas, and each schema can contain multiple tables.
This allows you to subdivide a database for specific applications or users.
By default, every database contains one schema, called public. If you’re going to
have only one application use the database, you’re fine with just using the public
schema. If you’d like to get fancy, you can create new schemas. The following example
just uses the public schema for the tables.

After you create the database to use in your Python scripts, you need to create a separate user account
that your scripts can use to log in to the database.
Creating a User Account

After you create a new database, the next step is to create a user account that has access to it for your
Python scripts. As you’ve already seen, user accounts in PostgreSQL are significantly different from
those in MySQL.
User accounts in PostgreSQL are called login roles. The PostgreSQL server matches login roles to
the Linux system user accounts. Because of this, there are two common thoughts about creating login
roles to run Python scripts that access the PostgreSQL database:

 Create a special Linux account with a matching PostgreSQL login role to run all your Python
scripts.
 Create a PostgreSQL account for each Linux user account that needs to run Python scripts to
access the database.

This example uses the second method: You create a PostgreSQL account that matches the default pi
Linux system account on the Raspberry Pi. This way, you can run Python scripts that access the
PostgreSQL database directly from the default Raspberry Pi user account.
First, you must create the login role, like this:
Click here to view code image

pytest=# CREATE ROLE pi login;
CREATE ROLE
pytest=#

This is simple enough. Without the login parameter, the role is not allowed to log in to the
PostgreSQL server, but it can be assigned privileges. This type of role is called a group role. Group
roles are great if you’re working in a large environment with lots of users and tables. Instead of
having to keep track of which user has which type of privileges for which tables, you just create
group roles for specific types of access to tables and then assign the login roles to the proper group
role.

For simple Python scripting, you most likely won’t need to worry about creating group roles, and you
can just assign privileges directly to the login roles. That’s what you’ll do in this example.
However, PostgreSQL also handles privileges a bit differently than MySQL. It doesn’t allow you to
grant overall privileges to all objects in a database that filter down to the table level. Instead, you
need to grant privileges for each individual table you create. While this is kind of a pain, it certainly
helps enforce strict security policies. Because of that, though, you need to hold off on assigning
privileges until you’ve created the table for your application. That’s the next step in the process.
Creating a Table

Just like the MySQL server, the PostgreSQL server is a relational database. That means you need to
group your data fields into tables. As you can see here, you use the same CREATE TABLE statement
to create the employees table in the PostgreSQL pytest database:
Click here to view code image

pi@raspberrypi ~ $ sudo -u postgres psql
psql (9.1.9)
Type "help" for help.

postgres=# \c pytest
You are now connected to database "pytest" as user "postgres".
pytest=# CREATE TABLE employees (
pytest(# empid int not null,
pytest(# lastname varchar(30),
pytest(# firstname varchar(30),
pytest(# salary float,
pytest(# primary key (empid));
NOTICE: CREATE TABLE / PRIMARY KEY will create implicit index "employees_pkey" for
table "employees"
CREATE TABLE
pytest=#

Once you have created the table, you can list the tables by using the \dt meta-command:
Click here to view code image

pytest=# \dt
 List of relations
 Schema | Name | Type | Owner
--------+-----------+-------+----------
 public | employees | table | postgres
(1 row)

pytest=#

Now you’re ready to assign privileges for the employees table to the pi login role so that it can
access the table. Here’s how you do this:
Click here to view code image

pytest=# GRANT SELECT,INSERT,DELETE,UPDATE ON public.employees To pi;
GRANT
pytest=#

You can now log in to the PostgreSQL server with the pi user account to connect directly to the
pytest database. From the pi user account’s command prompt, you enter this command:
Click here to view code image

pi@raspberrypi ~ $ psql pytest
psql (9.1.9)
Type "help" for help.

pytest=> \dt
 List of relations
 Schema | Name | Type | Owner
--------+-----------+-------+----------
 public | employees | table | postgres
(1 row)

pytest=>

When you enter the database name on the psql command line, the psql program takes you directly to
that database, and you don’t have to use the \c meta-command. Even though the owner of the
employees table is the postgres user account, the pi login role has privileges to interact with
it.
Now you have your table and user account all set. The next step is to install the PostgreSQL module
for Python.

Installing the Python PostgreSQL Module
Very much as in the MySQL environment, Python has several different modules that provide support
for communicating with PostgreSQL databases from your Python scripts. Fortunately, there’s a Python
v3 module for PostgreSQL already in the Raspbian software repository. The oddly named
psycopg2 module provides full support for interacting with the PostgreSQL database from Python
scripts. This is what you’ll use in the following examples.
The psycopg2 module is in the python3-psycopg2 software package. To install it, you just
use the apt-get utility, like this:
Click here to view code image

pi@raspberrypi ~ $ sudo apt-get install python3-psycopg2

The psycopg2 module has both Python v2 and Python v3 versions, so make sure you install the
python3-psycopg2 module!

Coding with psycopg2
With the psycopg2 module installed, you’re all set to start coding your Python scripts to access the
PostgreSQL database. You’ll probably notice that many of the methods used are the same ones you’ve
seen in the MySQL/Connector module. For most Python database modules, once you learn how to
use one of them, it’s not too difficult to pick up how to use any others.
The following sections walk through how to connect to the PostgreSQL database, insert new data
records, and retrieve data records.
Connecting to the Database

Before you can interact with the table, your Python script must connect to the PostgreSQL database
you created. You do that with the connect() method, as shown here:
Click here to view code image

>>>import psycopg2
>>> conn = psycopg2.connect('dbname=pytest')

>>>

You may have noticed that the connect() method only specifies the database name. By default, it
logs in to the PostgreSQL server using the same user account with which you’re logged in to the Linux
system. Since you’re running the script logged in as the pi user account, the connect() method
uses the pi login role automatically.
You can also specify a separate user and password in the connect() method, as shown here:
Click here to view code image

>>> conn = psycopg2.connect('dbname=pytest user=pi password=mypass')

Notice that the parameters are all part of one string value, not separate strings.
Now your Python script is connected to the pytest database, and you’re ready to start interacting
with the tables.
Inserting Data

After you’ve connected to the database, you can insert some new data records into your employees
table. The psycopg2 module provides a similar approach to what you used with the
mysql.connector module. Listing 21.3 shows the script2103.py program, which
demonstrates how to add new data elements to the database.

LISTING 21.3 The script2103.py Program Code

Click here to view code image

1: #!/usr/bin/python3
2:
3: import psycopg2
4: conn = psycopg2.connect('dbname=pytest')
5: cursor = conn.cursor()
6: new_employee = 'INSERT INTO employees VALUES (%s, %s, %s, %s)'
7: employee1 = ('1', 'Blum', 'Katie Jane', '55000.00')
8: employee2 = ('2', 'Blum', 'Jessica', '35000.00')
9: try:
10: cursor.execute(new_employee, employee1)
11: cursor.execute(new_employee, employee2)
12: conn.commit()
13: except:
14: print('Sorry, there was a problem adding the data')
15: else:
16: print('Data values added!')
17: cursor.close()
18: conn.close()

The execute() method submits the INSERT statement template along with the data tuple to the
PostgreSQL server for processing. The data isn’t committed to the database, though, until you issue
the commit() method from the connection. You can run the script2103.py program and then
check the employees table for the data, as shown here:
Click here to view code image

pi@raspberrypi ~ $ python3 script2103.py
Data values added!

pi@raspberrypi ~ $ psql pytest
psql (9.1.9)
Type "help" for help.

pytest=> select * from employees;
 empid | lastname | firstname | salary
-------+----------+------------+--------
 1 | Blum | Katie Jane | 55000
 2 | Blum | Jessica | 35000
(2 rows)

pytest=>

The data is there! The next step is to write the code to query the table and retrieve the data values.
Querying Data

To query data, you submit a SELECT statement by using the execute() method. However, to
retrieve the query results, you have to use the fetchall() method for the cursor object. Listing
21.4 shows the script2104.py program, which demonstrates how to do this.

LISTING 21.4 The script2104.py Program Code

Click here to view code image

1: #!/usr/bin/python3
2:
3: import psycopg2
4: conn = psycopg2.connect('dbname=pytest')
5: cursor = conn.cursor()
6: cursor.execute('SELECT empid, lastname, firstname, salary FROM
 employees')
7: result = cursor.fetchall()
8: for data in result:
9: print(data[0], data[1], data[2], data[3])
10: cursor.close()
11: conn.close()

The script2104.py program assigns the output of the fetchall() method to the result
variable (line 7), which then contains a list of the data records in the query results. It iterates through
the list by using a for loop (line 8). The resulting list uses positional index values to reference each
data field in the data record. The order of the values matches the order in which you list the data
fields in the SELECT statement.
When you run the script2104.py program, you should see a list of the data records stored in the
PostgreSQL employees table, as shown here:
Click here to view code image

pi@raspberrypi ~ $ python3 script2104.py
1 Blum Katie Jane 55000.0
2 Blum Jessica 35000.0
pi@raspberrypi ~ $

You can use these methods to handle a database of any size. The beauty of using a database server is
that all the data crunching and scaling happens behind the scenes, in the database server. Your Python
scripts just need to interface with the database server to submit SQL statements to handle the data.

Summary
This hour you learned how to incorporate open-source databases in your Python scripts. The
Raspberry Pi supports both the MySQL and PostgreSQL open-source database servers, and you can
use them for storing and retrieving data in your scripts.
First, you learned how to install the MySQL database server, how to set it up, and how to use the
MySQL/Connector Python module to interact with the database in your Python scripts. Next, you
saw how to install and set up the PostgreSQL database server and how to use the psycopg2 module
to interact with it in your Python scripts. Both systems provide advanced data storage and retrieval
methods to add great functionality to your Python scripts.
In the next hour, we’ll take a look at another popular aspect of programming—Web programming. The
Raspberry Pi provides some modules to help you publish your Python programs on the Web.

Q&A
Q. Is the Raspberry Pi really powerful enough to support a full-blown database server such

as MySQL or PostgreSQL?
A. Yes, you can run the MySQL and PostgreSQL database servers on the Raspberry Pi just fine. I

wouldn’t recommend trying to support thousands of application users at the same time, but for
a small number of concurrent users, Raspberry Pi will hold out just fine!

Q. Which database server is better, MySQL or PostgreSQL?
A. This has been a longstanding debate in the open-source database world. The general

consensus is that the MySQL database server is usually faster, but the PostgreSQL database
supports more advanced database features. Which one you decide to use depends on the
database requirements for your specific application.

Workshop
Quiz

1. What data storage method allows you to easily store application data and retrieve it later,
using different Python scripts?

a. Variables
b. Relational databases
c. Library modules
d. Log files

2. Using standard files to store and retrieve data is just as easy as using a relational database
server. True or false?

3. When method from the psycopg2 module should you use to retrieve the data records from a
SELECT query?

Answers
1. a. relational databases. Database servers that use relational databases can quickly store and

retrieve data behind the scenes, without you having to do much coding.

2. False. With standard files, you must read the data into your Python scripts yourself—and you
must search for the data. With relational databases, the database server can do all that work for
you.

3. The fetchall() method retrieves the data records that result from a SELECT query that you
send to the PostgreSQL server.

Hour 22. Web Programming

What You’ll Learn in This Hour:
 Installing a web server on your Raspberry Pi
 Using CGI to run your Python programs from the Web
 How to generate dynamic webpages using Python
 How to retrieve form data in your Python web programs

With the popularity of the World Wide Web, these days it’s often a requirement to write applications
that are Web aware. While Python wasn’t intended to be a Web-based programming language, over
the years it has evolved to provide many Web features. In this hour, you’ll learn how to move your
Python programs into the Web world, using the Apache web server and some Python modules that are
part of the standard Python library on your Raspberry Pi.

Running a Web Server on the Pi
Before you can move your Python applications into the Web world, you need to have a web server to
host them. While the Raspberry Pi isn’t intended to be a production web server that supports
thousands of customers, it works just fine as a host for small intranet applications on your local
network.
As with just about everything else in the Linux world, there are a few different web servers that you
can choose to install on your Raspberry Pi. Here’s a list of the most popular ones:

 Apache—A full-blown production web server environment that runs on many platforms.
 Nginx—A lightweight web and email server package.
 Monkey HTTP—A development web server built for the Linux environment.
 lighttp—A small web server that focuses on performance.

The Apache web server is by far the most popular web server used on the Linux platform. It runs just
fine on the Raspberry Pi, as long as you don’t try hosting thousands of concurrent users. You’ll use the
Apache web server in the examples in this hour. The following sections walk you through setting up
the popular Apache web server in your Raspberry Pi environment.

Installing the Apache Web Server
Installing the Apache web server on the Raspberry Pi is a simple process, thanks to the Raspbian
software repository. The complete Apache web server package is contained in a single software
package, apache2. You simply use the apt-get utility to install it:
Click here to view code image

pi@raspberypi ~ $ sudo apt-get install apache2

The apache2 package installs the web server and all the supporting files required to run the server.
Table 22.1 shows some of the most important files and folders that you need to become familiar with
as you use the Apache web server.

TABLE 22.1 apache2 Files and Folders
The installation process starts the Apache web server automatically, so there’s no need to manually
start the server. However, you can start and stop the server from the command prompt at any time, if
needed, using the service command. To stop the Apache web server, you use this command:

sudo service apache2 stop

Likewise, to restart the Apache web server, you use this command:
sudo service apache2 start

When you have the Apache web server running, you can test it. You can open a browser in the LXDE
desktop on your Raspberry Pi, or if you know the IP address of your Raspberry Pi, you can connect to
it from another client on the network.
If you’re connecting from the Raspberry Pi desktop, you can connect to the special localhost host
name:

http://localhost/

If you’re connecting from a remote client on your network, you need to know the IP address of your
Raspberry Pi. (The IP address may change if you’re using Dynamic Host Configuration Protocol
[DHCP] to assign addresses on your network.) To find the current IP address assigned to your
Raspberry Pi, you use the ifconfig command at the command prompt:
Click here to view code image

pi@raspberrypi ~ $ ifconfig

When you know the IP address assigned to your Raspberry Pi, you can connect to it from the remote
client by specifying the IP address as the URL. For example, if you found out that the IP address
assigned to your Raspberry is 10.0.1.70, you would use the URL:

http://10.0.1.70/

Either way, you should see the generic test webpage, which is shown in Figure 22.1.

FIGURE 22.1 The default Apache web server page for the Raspberry Pi.

Now that the web server is running, you can try making a test webpage of your own, which is what
we’ll cover next.

Serving HTML Files
The core function of the Apache web server is to serve HTML documents to clients on the network.
By default, the Raspberry Pi Apache web server is configured to only serve files in the /var/www
folder on the system, so you must place your web documents under that folder structure.
However, that folder is owned by the root user account. To be able to save files in that folder, you
must use the sudo command when you copy them. The following Try It Yourself shows how to
publish a simple webpage to test things out.

Try It Yourself: Publishing a Webpage
You can create a webpage document in your home folder, and then when you’re ready
to publish it, you simply copy it over to the proper folder. Just follow these steps:

1. Create the script2201.html file in this hour’s working folder and enter the
code shown here:

Click here to view code image

<!DOCTYPE html>
<html>
<head>
<title>Test HTML Page</title>
</head>
<body>
<h2>This is a test HTML page for my server</h2>
</body>
</html>

2. Save the file and then exit the editor.
3. Copy the script2201.html file to the /var/www folder, like this:

Click here to view code image

pi@raspberrypi ~ $ sudo cp script2201.html /var/www
pi@raspberrypi ~ $

4. Change the mode of the new file so that it will be readable by everyone:
Click here to view code image

pi@raspberrypi ~ $ sudo chmod +r /var/www/script2201.html
pi@raspberrypi ~ $

5. Open a browser and navigate to the new webpage by using the URL
http://localhost/script2201.html.

Congratulations! You just published a webpage on your Apache web server! The next step is to
publish your Python programs.

Programming with the Common Gateway Interface
There are a few different ways to publish Python programs on the Apache web server. We’ll take a
look at the oldest and easiest way of do so: using the Common Gateway Interface (CGI).
The following sections describe the CGI and how to use it with your Python programs to allow
remote network clients to run and interact with your programs.

What Is CGI?
The CGI is a feature built into the Apache web server that allows remote clients to run shell scripts
on the host server. Allowing unknown visitors to your website to run scripts can be dangerous.
However, with the proper security controls, running scripts provides a new dimension to web
applications.
By default, the CGI in the Apache web server restricts shell scripts to a specific folder on the server:
/usr/lib/cgi-bin. This is where you must place your Python scripts so that remote clients can
run them.

Running Python Programs
To get a Python program to run as a CGI script, you have to modify it a bit. First, you have to tell the
shell that it’s a Python program. You do this by using the #! command, pointing to the standard path
of the python3 application. For the Raspberry Pi environment, you just add this line to the top of
your Python programs:

#!/usr/bin/python3

When the Linux system runs the shell script, it knows to process the program through the python3
interpreter.
Another issue with running your Python program via the Apache web server is that you won’t have
access to the command prompt to view the output from your program. Instead, the Apache CGI
redirects any output from your Python program directly to the web client. That setup is problematic

because you must format the output of your Python program so that the web client thinks it’s coming
from a webpage document.
To format the output of your Python program for a browser to process, you need to add a
Multipurpose Internet Mail Extensions (MIME) heading at the start of your output. You do this with
the Content-Type header, as shown here:
Click here to view code image

print('Content-Type: text/html')
print('')

After you identify the output as an HTML document, you also need to have a blank line before any
other output from the program.

Try It Yourself: Creating a Python Web Program
Now you’re ready to write a test Python program to run on the web server. Follow
along with these steps to get things going:

1. Create a file called script2202.cgi in the folder for this hour.
2. Open the script2202.cgi file and enter the code shown here:

Click here to view code image

#!/usr/bin/python3

import math
radius = 5
area = math.pi * radius * radius
print('Content-Type: text/html')
print('')
print('The area of a circle with radius', radius, 'is', area)

3. Save the file and exit the editor.
4. Test your script from the Python command prompt interpreter, like this:

Click here to view code image

pi@raspberrypi ~ $ python3 script2202.cgi
Content-Type: text/html

The area of a circle with radius 5 is 78.53981633974483
pi@raspberrypi ~ $

5. If this works, copy the script file to the /usr/lib/cgi-bin folder for
publishing and make sure web clients can run it by giving everyone execute
permissions on the file, like this:

Click here to view code image

pi@raspberrypi ~ $ sudo cp script2202.cgi /usr/lib/cgi-bin
pi@raspberrypi ~ $ sudo chmod +x /usr/lib/cgi-bin/script2202.cgi
pi@raspberrypi ~ $

6. Open your browser and browse to the new program. Because the file is in the cgi-
bin folder, you need to include that in the URL:

Click here to view code image

http://localhost/cgi-bin/script2202.py

You should see the results of your program appear in your web browser, as shown in
Figure 22.2!

FIGURE 22.2 The results of the script2202.cgi file in the browser.

Congratulations! You’ve run your Python program on the Web! However, this is pretty boring, as
webpages go. In the next section, you’ll take a look at how to spice up your Python webpages a bit.

Expanding Your Python Webpages
Now that you’ve seen the basics of how to get your Python programs to run on the Web, you can dive
a little deeper into the process. In the following sections, you’ll first learn how to format your
program code so that it appears more like a real webpage instead of just program output. Then you’ll
look at how to make your Python webpages more dynamic by enabling them to access database data
and display it on the webpage. Finally, you’ll add some debugging features to your code in case
things go wrong.

Formatting Output
You may have noticed from the example in Figure 22.2 that just displaying the output from your
Python code directly to the web browser isn’t all that exciting. Browsers were created to display
formatted text, using Hypertext Markup Language (HTML). HTML enables you to use plan-text
commands to identify formatting features such as layouts, fonts, and colors. Because all the HTML
coding is done in text, you can output that from your Python programs and pass it to the client
browser.
All you need to do is add some HTML code to your Python output to help liven things up a bit. Listing
22.1 shows the script2203.cgi program, which embeds HTML code inside the Python script to

format the output of the Python program.

LISTING 22.1 Using HTML in the Python Program Output

Click here to view code image

#!/usr/bin/python3

import math
print('Content-Type: text/html')
print('')
print('<!DOCTYTPE html>')
print('<html>')
print('<head>')
print('<title>The Area of a Circle</title>')
print('</head>')
print('<body>')
print('<h2>Calculating the area of a circle:</h2>')
print('<table>')
print('<tr><th>Radius</th><th>Area</th></tr>')
for radius in range(1,11):
 area = math.pi * radius * radius
 print('<tr><td>', radius, '</td><td>', area, '</td></tr>')
print('</table>')
print('</body>')
print('</html>')

After you copy the script2203.cgi file to the /usr/lib/cgi-bin folder, you can view it in
your browser to see the results. Figure 22.3 shows what you should see.

FIGURE 22.3 The script2203.cgi program output.

It’s amazing what just a little bit of HTML code can do to help with the output of your Python

program!

Working with Dynamic Webpages
Python scripting allows you to create dynamic webpages. Dynamic webpages have the ability to
change webpage content, based on some external event, such as updating data in a database.
In Hour 21, “Using Databases in Your Programming,” you learned how to store and retrieve data
from your Python scripts by using both the MySQL and PostgreSQL database servers running on your
Raspberry Pi. You can now combine that knowledge with your CGI knowledge to create dynamic
webpages to publish database data directly on your network.
In the following Try It Yourself, you’ll write a script that can read the employees table you created
in Hour 21 and display the information on a webpage.

Try It Yourself: Publishing Database Data on the Web
The key to dynamic webpages is the ability to work with a behind-the-scenes database
to store and manipulate data. In the following steps, you’ll use the MySQL database
server and the pytest database created in Hour 21 to provide dynamic data for your
Python web application. Just follow these steps:

1. Create the file script2204.cgi in this hour’s working folder.
2. Open the script2204.cgi file and enter the code shown here:

Click here to view code image

1: #!/usr/bin/python3
2:
3: import mysql.connector
4: print('''Content-Type: text/html
5:
6: <!DOCTYPE html>
7: <html>
8: <head>
9: <title>Dynamic Python Webpage Test</title>
10: </head>
11: <body>
12: <h2>Employee Table</h2>
13: <table border=1>
14: <tr><th>EmpID</th><th>Last Name</th><th>First
 Name</th><th>Salary</th></tr>''')
15:
16: conn = mysql.connector.connect(user='test', password='test',
 database='pytest')
17: cursor = conn.cursor()
18:
19: query = ('SELECT empid, lastname, firstname, salary FROM employees')
20: cursor.execute(query)
21: for (empid, lastname, firstname, salary) in cursor:
22: print('<tr><td>', empid, '</td>')
23: print('<td>', lastname, '</td>')
24: print('<td>', firstname, '</td>')
25: print('<td>', salary, '</td></tr>')
26: print('</table>')
27: print('</body>')
28: print('</html>')
29: cursor.close()

30: conn.close()

3. Save the file and then exit the editor.
4. Copy the file to the /usr/lib/cgi-bin folder and assign it permissions to run,

like this:
Click here to view code image

pi@raspberrypi ~ $ sudo cp script2204.cgi /usr/lib/cgi-bin
pi@raspberrypi ~ $ sudo chmod +x /usr/lib/cgi-bin/script2204.cgi

5. View the script2204.cgi file in your web browser client. You should see the
results from the data you entered into the employees table in Hour 21 (see Figure
22.4).

FIGURE 22.4 The results from the script2204.cgi program.

The script2204.cgi file uses a slightly different method for adding the HTML code required to
display the output. Instead of using a separate print() method for each HTML element in the
document, in the script2204.cgi file, you used the triple-quote method of creating one long
string value (lines 4 through 14). This helps cut down on some of the typing, and makes it a little
easier to follow the HTML code embedded in the Python code.

Watch Out!: Web Database Security
The script2204.cgi script embeds the user ID and password for your MySQL database
into a file that everyone on the server can read. For testing on a personal Raspberry Pi
system, this is not a problem, but on a real system shared by others, doing this isn’t
such a great idea. One solution is to restrict access to the file to only the Apache web
server user account. For the Raspberry Pi, the Apache web server runs as the www-

data user account. You can use the chown command to change the group owner of
your files to the www-data user account:

Click here to view code image

sudo chown www-data /usr/lib/cgi-bin/script2204.cgi

Then you change the permissions on the file so only the www-data user can access it:
Click here to view code image

sudo chmod 700 /usr/lib/cgi-bin/script2204.cgi

Now no one else on the system can read the file, but it’ll work just fine on the Apache
web server.

Debugging Python Programs
The downside to running your Python programs using CGI is that you don’t get any feedback if you
have any Python scripting errors in your code. If anything goes wrong in the Python script, you won’t
get any output in the client browser. Listing 22.2 shows a Python script with a math error that will
cause problems.

LISTING 22.2 Running a Python Program That Has an Error

Click here to view code image

#!/usr/bin/python3

print('Content-Type: text/html')
print('')
result = 1 / 0
print('This is a test of a bad Python program')

You need to copy this code into the /usr/lib/cgi-bin folder as the file script2205.cgi,
change the permissions on the file, and then try to run it in your web browser. The mathematical
equation in line 5 attempts to divide by 0, which causes an exception in the Python code. However,
when you run this in your web browser, you don’t see any Python error messages. In fact, you don’t
see any output in the browser window!
Fortunately, there’s an easier way to troubleshoot Python code in your webpages. The Python cgitb
module provides simple debugging output for your Python scripts. By referencing the cgitb module,
you can run the enable() method to enable debugging in the output. Listing 22.3 shows the
script2206.cgi program, which adds the enable() method to the bad Python program code.

LISTING 22.3 Displaying Errors from a Python Web Program

Click here to view code image

#!/usr/bin/python3

import cgitb
cgitb.enable()
print('Content-Type: text/html')

print('')
result = 1 / 0
print('This is a test of a bad Python program')

The script2206.cgi code still has the same division error as the script2205.cgi program,
but now you have added the cgitb.enable() method to enable the debugging feature in the
Python script. The cgitb debugging feature displays full error messages and code when a Python
error occurs in the program.
Now when you run this program from your web browser, you should see a webpage similar to the one
shown in Figure 22.5.

FIGURE 22.5 The debugging output from the script2206.cgi program.

The error message not only tells you what went wrong but also displays the Python code and what
line has the error. Now you can get a better idea of what’s going wrong with your Python code, so you
can get things working more quickly.
While the cgitb.enable() method can be very helpful when you’re debugging a Python web
application, it can also help out any attackers trying to gain insight into your Python code. Another
option you have is to redirect error messages to a log file instead of display them on the webpage. To
do that, you need to add a couple parameters to the enable() method, as shown here:
Click here to view code image

cgitb.enable(display=0, logdir='path')

The display parameter determines whether the error message appears on the webpage. (You can
set the value to 1 if you want the error to appear both on the webpage and in the log file.) The
logdir parameter specifies the folder path where you want the log file to be created. It’s important
to remember that the Apache web server’s Linux account (www-data on the Raspberry Pi) must
have write permissions to that folder. You can use the /tmp folder, as shown here, if you don’t mind

others on your Raspberry Pi system seeing the log files that are generated:
Click here to view code image

cgitb.enable(display=0, logdir='/tmp')

Figure 22.6 shows what the webpage shows after you add this line to the script2206.cgi
program.

FIGURE 22.6 The cgitb.enable() output on the webpage.

The log file that is generated contains the HTML code of the error webpage that would have been
displayed in the browser.

Processing Forms
Web applications allow you to easily collect and process data from site visitors. Web forms provide
an excellent way to interact with your program users to retrieve dynamic data for processing or
storage in databases.
The Python CGI environment provides an easy way for your Python scripts to retrieve and use form
data in your web applications. The follow sections walk through how you use it.

Creating Web Forms
The HTML standard provides elements you can use to create forms. Your site visitors can then fill
out these forms to submit data to your web applications. Table 22.2 lists the HTML form elements.

TABLE 22.2 HTML Form Elements
To build the form in your webpage, you must use the HTML <form> element, which defines the
action the browser takes with the form data when the site visitor clicks the Submit button for the form.
You use this element to tell your Python script where to pass the form data. Listing 22.4 shows the
script2207.html file, which creates a simple web form you can use to use to test the <form>
element.

LISTING 22.4 Creating a Simple Web Form

Click here to view code image

1: <!DOCTYPE html>
2: <html>
3: <head>
4: <title>Web Form Test</title>
5: </head>
6: <body>
7: <h2>Please enter your information</h2>
8:

9: <form action='/cgi-bin/script2208.cgi' method='post'>
10: <label>Last Name:</label><input type="text" name="lname" size="30" />
11:

12: <label>First Name:</label><input type="text" name="fname" size="30" />
13:

14: <label>Age range:</label>

15: <input type="radio" name="age" value="20-30" /> 20-30

16: <input type="radio" name="age" value="31-40" /> 31-40

17: <input type="radio" name="age" value="41-50" /> 41-50

18: <input type="radio" name="age" value="51+" /> 51+

19:

20: <label>Select all that apply:</label>

21: <input type="checkbox" name="hobbies" value="fishing" /> Fishing

22: <input type="checkbox" name="hobbies" value="golf" /> Golf

23: <input type="checkbox" name="hobbies" value="baseball" /> Baseball

24: <input type="checkbox" name="hobbies" value="football" /> Football

25:

26: <label>Enter your comment:</label>

27: <textarea name="comment" rows="10" cols="20"></textarea>
28:

29: <input type="submit" value="Submit your comment" />
30: </form>
31: </body>
32: </html>

The <form> element in line 9 specifies the location of the Python script that you want to process the
form data. The form contains two text boxes, a series of radio buttons to specify one age range as a
single return value, a series of check boxes to select one or more hobbies, and a text area for entering
comments.
The web form is just HTML code, and you need to place it in the standard /var/www folder to
serve it to web clients:
Click here to view code image

sudo cp script2207.html /var/www
sudo chmod +x /var/www/script2207.html

You can then open your browser to view the form by using this URL:
Click here to view code image

http://localhost/script2207.html

You should see a form like the one in Figure 22.7.

FIGURE 22.7 The basic web form used for the Python script.

Now you’re ready to write the Python script to retrieve and process the form data.

The cgi Module
When the webpage passes the form data back to the Apache web server, it groups the data in
key/value pairs. The key is the HTML element name for the form field in the webpage, and the value
is the data value that was entered in the form field.
For example, this HTML code associates the key name lname with the value entered into that form
field:

Click here to view code image

<input type="text" name="lname" />

The Apache server passes the data into the shell environment for the script so that the Python script
can retrieve it.
The Python cgi module provides the necessary elements for your Python script to retrieve the shell
environment data so you can process it in your Python script. The FieldStorage class in the cgi
module provides the methods for you to access the data. To retrieve the form data, you need to create
an instance of the FieldStorage class in your Python code, as shown here:
Click here to view code image

import cgi
formdata = cgi.FieldStorage()

After you create the FieldStorage instance, you need to use two methods to retrieve the form
data:

 getfirst()
 getlist()

The getfirst() method retrieves only the first occurrence of a key name as a string value. You
use this to retrieve text box, radio button, and text area form values.

Watch Out!: Numeric Form Fields
The getfirst() method returns the form data as string values, even if the string
value is a number. You need to use the Python type conversion methods to convert the
data into numeric values, if necessary.

The getlist() method retrieves multiple values as a list value. You use it to retrieve the check
box values. The web form returns the values of any selected check boxes in the list object.
Now you’re ready to write the script2208.cgi file to process the form data. Listing 22.5 shows
the code you use.

LISTING 22.5 Processing Form Data in a Python Script

Click here to view code image

1: #!/usr/bin/python3
2:
3: import cgi
4: formdata = cgi.FieldStorage()
5: lname = formdata.getfirst('lname', '')
6: fname = formdata.getfirst('fname', '')
7: age = formdata.getfirst('age', '')
8: comment = formdata.getfirst('comment', '')
9:
10: print('Content-Type: text/html')
11: print('')
12: print('''<!DOCTYPE html>
13: <html>
14: <head>

15: <title>Form Results</title>
16: </head>
17: <body>
18: <h2>Here are the results from your survey</h2>
19:

20: <table border=1>''')
21:
22: print('<tr><th>Name</th><td>',fname, lname, '</td></tr>')
23: print('<tr><th>Age range</th><td>', age, '</td></tr>')
24: print('<tr><th>Hobbies</th><td>')
25: for item in formdata.getlist('hobbies'):
26: print(item)v
27: print('</td></tr>')
28: print('<tr><th>Comments</th><td>', comment, '</td></tr>')
29: print('</table>')
30: print('</body>')
31: print('</html>')

In the script2208.cgi code, lines 5 through 8 use the getfirst() method to retrieve the single-
value form data values: fname, lname, age, and comment. Line 25 uses the getlist()
method to retrieve the multivalue hobbies value from the check box options. Because you don’t know
how many (if any) check boxes were selected, you can use the for statement to iterate through the list
to retrieve whatever is there.
When you submit the form from the script2207.html file, you should see the output from the
script2208.cgi script program, as shown in Figure 22.8.

FIGURE 22.8 The results of the script208.cgi script processing the form data.

After you retrieve the form data in your Python script, you can perform any type of processing on it,
including storing it in a database (see Hour 21). Now you’re well on your way to writing fully

dynamic web applications using Python on your Raspberry Pi!

Summary
In this hour, you learned how to use Python to create dynamic web applications. Although it was not
originally intended for use on the web, Python provides many Web features that you can use in your
applications. In this hour, you saw how to use the CGI to run simple Python scripts from a browser,
using the Apache web server. Next, you learned how to incorporate HTML code inside the Python
output to format an application to display in a browser environment. Finally, you walked through
using the cgi module to retrieve data from web forms and process it in your Python programs.
In the next hour, we’ll take a look at how to create some applications using Python on your Raspberry
Pi. The Raspberry Pi is known for its support for high-definition images and video, as well as
support for audio. We’ll walk through writing some applications that can leverage those features!

Q&A
Q. Are there other ways to run Python scripts from the web server, besides using the CGI?
A. Yes, the mod_python and the mod_wsgi Apache plug-in modules provide direct support

for running Python scripts without using the CGI.
Q. What are Python web frameworks?
A. The web frameworks are modules that provide built-in classes for handling many low-level

data retrieval, formatting, and storage features for you. When you use these modules, you can
concentrate more on your web application than on the low-level Python coding. Module
packages such as Django and Pylons are popular with professional Python web developers.

Workshop
Quiz

1. Where should you place your Python scripts so they can be viewed from the Apache web
server?

a. /var/log/apache2
b. /usr/lib/cgi-bin
c. /home/pi
d. /etc/apache2

2. In Python CGI scripts, you can only run modules from the standard Python library. True or
false?

3. What cgi module method should you use to retrieve data from a textarea form element?

Answers
1. b. You must place all web Python scripts in the /usr/lib/cgi-bin folder for security

reasons.
2. False. You can run any module installed in the Raspberry Pi from Python CGI scripts.
3. The getfirst() module retrieves the data passed from a textarea form element.

Part VI: Raspberry Pi Python Projects
HOUR 23 Creating Basic Pi/Python Projects

HOUR 24 Working with Advanced Pi/Python Projects

Hour 23. Creating Basic Pi/Python Projects

What You’ll Learn in This Hour:
 How to display HD images via Python
 How to use Python to play music
 How to create a special presentation

In this hour, you will learn how to create some basic projects on your Raspberry Pi using Python. You
will learn how to make your very own high-definition image presentation, how to use Python to play a
list of music on your Raspberry Pi, and how to create a special presentation using Python.

Thinking About Basic Pi/Python Projects
The sky is the limit when it comes to creating projects using your Raspberry Pi and Python! The
projects in this hour and the next will help you improve and solidify your Python script-writing skills.
Also, you will learn to take advantage of some of the nice features on your Raspberry Pi. And,
hopefully, by working on these projects, you will be inspired for additional ventures!
This hour covers a few simple projects. You’ll create something useful, without spending any
additional money. You already have all you need for this hour’s basic projects: a Raspberry Pi and
Python.

Displaying HD Images via Python
One of the Raspberry Pi’s greatest features is its small size. Carrying around a Pi is even easier than
carrying a tablet computer. Another great feature is the Raspberry Pi’s HDMI port. The HDMI port
allows you to display high-definition images from your Pi.
These two features together make the Raspberry Pi a perfect platform for many uses. You can take
your Pi over to a friend’s house, hook it up to his or her television, and show your vacation pictures.
For a business person, the small size of a Pi makes it ideal for travel and making business
presentations. For a student, imagine how impressed your teacher will be to not only see your
presentation from the Pi, but to learn that you wrote the script that runs it.

Understanding High Definition
There can be a lot of confusion concerning HD. Therefore, before you begin to build the scripts this
hour, you need to learn about—or review—what is meant by a high-definition (HD) image.
Other terms for the dimensions of an image are canvas, size, and resolution. This alone can cause
confusion! Basically, the dimensions of a picture are the image’s width times its height. It is measured
in pixels and is often written in the format width × height. For example, a picture may have the
dimensions 1280×720 pixels.
The dimensions of a picture determine whether it is HD. Larger dimension numbers mean a higher
resolution. A higher resolution provides a clearer picture. Thus, if you have a new beautiful product
to sell your client, an HD picture of it will be worthwhile. Table 23.1 shows the resolutions for each
current definition.

TABLE 23.1 Picture Quality Definitions
You may have noticed that dots per inch (dpi) is not mentioned in the definitions in Table 23.1. This
is because dpi has nothing to do with the quality of a picture. dpi is actually an old term that has to do
with printing pictures on a computer printer.

By-the-Way: Horizontal and Megapixel
Often a camera’s ability to take still HD photos is rated by giving the height
(horizontal) only or giving a megapixel rating (multiplying the height by the width). For
example, an HD camera with a resolution of 1280×720 could be listed as 720 or 720p.
Its megapixel rating would be 0.92MP.

If you do not know a picture’s resolution, you can determine whether the image is HD by using the
Image Viewer utility on Raspbian. In the Raspbian GUI on your Raspberry Pi, click on the LXDE
Programs Menu icon. (If you need help remembering where this icon is located, refer to Hour 2,
“Understanding the Raspbian Linux Distribution.”)
Within the LXDE menu, in the Accessories submenu is File Manager. When you open the File
Manager, you can navigate to any photo or image files currently stored on or accessible by your
Raspberry Pi. When the photo or image files are showing in the File Manager window, you can right-
click an image file and have the Image Viewer open it. Figure 23.1 shows an example of an image
file, /home/pi/python_games/cat.png.

FIGURE 23.1 A low-resolution image.

In Figure 23.1, you can see that the Image Viewer’s title bar shows the resolution of the image file:
125×79. This image of a cat is obviously not an HD image. Figure 23.2 shows an example of an HD
image.

FIGURE 23.2 An ultra HD photo.

The photograph’s resolution is 5616×3744, as you can see in the Image Viewer’s title bar. Its
resolution makes this still photo of an encased Raspberry Pi an ultra HD image.
The resolution of the pictures you want to present via your Raspberry Pi is up to you. Just remember
that higher resolution photos generally provide a clearer image.

Creating the Image Presentation Script
To create the HD image presentation script, you need to draw on the Python skills you’ve learned so
far. For this script, you will be using several methods from the PyGame library.
The following are the basics for importing and initializing the PyGame library:
Click here to view code image

import pygame #Import PyGame library
from pygame.locals import * #Load PyGame constants
pygame.init() #Initialize PyGame

This should look very familiar because the PyGame library is covered in Hour 19, “Game
Programming.” If you need a refresher on using PyGame, go back and review that hour.

Setting Up the Presentation Screen
At this point, you need to determine what color you want to make the background screen. Your photos
or images should guide your choice of the best background color to use. In general, you should use a
monochrome color such as black, white, or gray. To generate the necessary background color, you
need to set the RGB color settings. The RGB setting to achieve white is 255,255,255. Black is
0,0,0. The following example uses gray, with a setting of 125,125,125:
Click here to view code image

ScreenColor = Gray = 125,125,125

Notice that two variables are set up: ScreenColor and Gray. Using two variables not only makes
the script more readable but gives you some flexibility in your script. If you plan to always use gray
as your background color, you can use the Gray variable throughout the script. If you want to change
the background color, you can use the variable ScreenColor in your script.
Flexibility is the name of the game with this Python script. The script you’re creating now is very
flexible. It will allow you to walk into a room and use whatever size presentation screen is available.
It could be a 30-inch computer monitor sitting on your client’s desk, a 75-inch television screen at
your neighbor’s house, or a 10-inch tablet at school. You will not need to edit your script to use the
full screen size when you arrive at your presentation site, no matter what the screen size is! To
accomplish this feat, when the screen is initialized using pygame.display.set_mode, you use
the flag FULLSCREEN, as shown here:
Click here to view code image

ScreenFlag = FULLSCREEN | NOFRAME
PrezScreen = pygame.display.set_mode((0,0),ScreenFlag)

This causes the PyGame display screen to be set to the full size of the screen the script is
encountering at that moment.
Notice that in addition to using FULLSCREEN, you also use the NOFRAME flag. This causes any
frames around your screen to disappear during your presentation, allowing the entire available screen

to be used for your HD images.

Finding the Images
Now that you have your presentation screen set up, you need to find your images, so you need to know
their file names. Once again, the idea is flexibility: You want to be able to add or delete photo files
without needing to edit the Python script.
To have your script find your images for you, put two variables in the script that describe where the
pictures are located and their file extensions. In this example, the variable PictureDirectory is
set to point to the location of the stored photographs:
Click here to view code image

PictureDirectory = '/home/pi/pictures'
PictureFileExtension = '.jpg'

The variable PictureFileExtension is set to the photo’s current file extension. If you have
multiple file extensions, you can easily add additional variables, such as
PictureFileExtension1.
After you set the location of the photos and their file extensions, list the files in that photo directory.
To accomplish this, you need to import another module, the os module, as shown here:
Click here to view code image

import os #Import OS module

You can use the os.listdir operation to list the contents of the directory that contains the photos.
Each file located in the directory will be captured by the Picture variable. Thus, you can use a
for loop to process each file as it is encountered:
Click here to view code image

for Picture in os.listdir(PictureDirectory):

You may have other files located in this directory, especially if you use a removable drive. (See the
section “Storing Photos on a Removable Drive,” later in this hour.) To grab and display only the
desired images, you can have the script check each file for the appropriate file extension before
loading it with the .endswith operation. You can use an if statement to conduct this operation.
The for loop should now look as follows:
Click here to view code image

for Picture in os.listdir(PictureDirectory):
 if Picture.endswith(PictureFileExtension):

Now, all the pictures ending with the appropriate file extension will be processed. The rest of the
loop simply loads each picture and then fills the screen with the designated screen color:
Click here to view code image

Picture=PictureDirectory + '/' + Picture
Picture=pygame.image.load(Picture).convert_alpha()
PictureLocation=Picture.get_rect() #Current location
#Display HD Images to Screen #################3
PrezScreen.fill(ScreenColor)
PrezScreen.blit(Picture,PictureLocation)
pygame.display.update()

Also, you use the .blit operation to put the picture on the screen. Finally, the
pygame.display.update operation causes all the pictures to be displayed.

Did You Know: Movies
Many cameras can capture high-definition videos as well as photos. They use
something called HDSLR (high-definition single-lens reflex) technology. These
cameras save the videos in MPEG format. In the PyGame library, you can use the
pygame.movie operation to display these MPEG-format videos.

Before moving on, you need to know about some additional flexibility concerning your images.
Putting your photos on another storage device besides the SD card will allow you to not only store
larger and higher-resolution photo files, it will also allow you to store more photos. This means more
vacation photos to share. Your poor neighbors!

Storing Photos on a Removable Drive
HD photos can take up a great deal of space. If you have a large number of photos to present, your SD
card may not have the space needed to hold them all. Remember that the Raspbian operating system
also resides on the SD card. One way to fix this problem is to use a removable drive to hold your
presentation photos. However, using a removable drive introduces a new problem: How does your
Python presentation script access the photos on the removable drive?
Before you start modifying the presentation script, you need to determine the “device file” name
Raspbian will assign to your removable drive. Basically, a device file is a file name Raspbian uses
to access a device, such as a removable hard drive. To determine the device file name, you follow
these steps:

1. While in the GUI, plug your removable drive into an open USB port on your Raspberry Pi.
2. When the Removable Medium Is Inserted window appears, select Open in File Manager if it is

not already selected and then click the OK button. The File Manager window opens, showing
your files and some other important information (see Figure 23.3).

FIGURE 23.3 File Manager, showing a removable hard drive.

3. Look at the File Manager address bar for the directory that contains the files. Record the
directory name for later use (The directory name in Figure 23.3 is /media/28BE-27DC).

4. Close the File Manager window.
5. Open LXTerminal in the GUI and type in the command ls directory, where directory is the

name of the directory you recorded in step 3. Press Enter. You should see your picture files
(and any other files located there) on your removable hard drive.

6. Now type mount and press Enter. You should see results similar to those shown in Listing
23.1. When you use the mount command, you can see the device file name that will be used for
the removable drive when it is attached to the Raspberry Pi. (In Listing 23.1, the device file is
/dev/sda1.)

LISTING 23.1 Using mount to Display the Device File Names

Click here to view code image

1: pi@raspberrypi ~ $ mount
2: /dev/root on / type ext4 (rw,noatime,data=ordered)
3: ...
4: /dev/mmcblk0p1 on /boot type vfat (rw,relatime,fmask=0022,dmask=0022,
5: codepage=cp437,iocharset=ascii,shortname=mixed,errors=remount-ro)
6: /dev/sda1 on /media/28BE-27DC type vfat (rw,nosuid,nodev,relatime,uid=1000,
7: ...

It looks like a bunch of just letters and numbers on the screen, but a couple clues show you the

name of the removable drive’s device file. The first clue is to look for the name of directory
you recorded in step 3. In this example, the directory name is /media/28B3-27DC. Do you
see it on line 6 of Listing 23.1? The next clue is to look for the word /dev on the same line as
the directory name. In this example, the device file name is /dev/sda1, also listed on line 6.

7. Record the device file name for your removable hard drive that you found in step 6. You will
need this information in your Python presentation script.

Watch Out!: Changing Device File Names
Device file names can change! This is especially true if you have other removable hard
drives or devices attached to the USB ports on a Raspberry Pi. They can also change if
you plug your removable hard drive into a different USB port.

8. Type umount device file name, where device file name is the device file name
you recorded in step 6. (Yes, that command is umount and not unmount.) This command
unmounts your removable hard drive from the Raspberry Pi. You can then safely remove it from
the USB port.

9. Type mkdir /home/pi/pictures to create a directory for your removable hard drive’s
files.

Now that you have determined the device file name Raspbian will use to refer to your removable
hard drive, you need to make some modifications to your presentation script. First, create a variable
in your Python script to represent the device file name you determined in the steps above. Here’s an
example:

PictureDisk = '/dev/sda1'

The os module has a nice little function called .system. This function allows you to pass dash
shell commands (which you learned about in Hour 2) from your Python script to the operating system.
In your script, you should make sure that the removable hard drive has not been automatically
mounted. You can do this by issuing an umount command, using os.system, as shown here:
Click here to view code image

Command = "sudo umount " + PictureDisk
os.system(Command)

However, if the removable hard drive has not been mounted, this command generates an error
message and then continues on with the presentation script. Getting this error message is not a
problem. However, error messages certainly are not nice looking in a presentation! Not to worry:
You can hide the potential error message by using a little dash shell command trick, as shown here:
Click here to view code image

Command = "sudo umount " + PictureDisk + " 2>/dev/null"
os.system(Command)

Now to mount your removable hard drive using the Python script, you use the os.system function
again to pass a mount command to the operating system, like this:
Click here to view code image

Command = "sudo mount -t vfat " + PictureDisk + " " + PictureDirectory

os.system(Command)

Remember that the PictureDirectory variable was set earlier to /home/pi/pictures.
The files on the removable hard drive will now be available in the /home/pi/pictures
directory. (Don’t worry if this concept is a little confusing to you. It is an advanced Linux concept!)

Watch Out!: Removable Drive Format
The majority of removable hard drives are formatted using VFAT. However, some
have been formatted using NTFS. If your removable hard drive is NTFS, you need to
change the -t vfat to -t ntfs in the mount command line of the script.

Now you have set up your presentation screen, found the image files, and even incorporated the use of
a removable hard drive into your Python script. However, you need to resolve a few more issues
before you are ready to conduct your presentation.

Scaling the Photos
When you don’t always know what the presentation screen size will be, you can end up with
oversized photos on a screen that’s too small. Figure 23.4 shows how an oversized photo might look
on a small screen. In this photo, it appears that you are trying to show your audience a picture of a
particular chip. However, you are really trying to show a picture of an entire Raspberry Pi.

FIGURE 23.4 A photo sized incorrectly for the display screen.

To ensure that your photos are properly sized, you need to determine the size of the current
presentation screen. The .get_size operation helps with this. When the presentation screen is
originally set up, you have your script determine the size of the current screen and assign it to a
variable. Then you set up a variable called Scale, to be used to scale down any oversized pictures,

as shown here:
Click here to view code image

PrezScreenSize = PrezScreen.get_size()
Scale=PrezScreenSize

Within your picture display for loop, you add the following if statement to check the size of the
current picture. If the picture is larger than the current presentation screen, you have the script scale it
down to screen size by using pygame.transform.scale, like this:
Click here to view code image

If Picture is bigger than screen, scale it down.
if Picture.get_size() > PrezScreenSize:
 Picture = pygame.transform.scale(Picture,Scale)

This causes that one oversized photo in Figure 23.4 to now look like a great HD picture, as shown in
Figure 23.5.

FIGURE 23.5 A photo sized correctly for the display screen.

Now that the photo is correctly sized, you can see the entire Raspberry Pi and not just a single chip.
Also, the paper clip is now showing, giving the viewing audience a nice size comparison.

Framing the Photos
To make your photo presentation just a little nicer, you can add a frame to all your photos. Just a
minor adjustment to your Scale variable, as shown here, does the trick:
Click here to view code image

Scale=PrezScreenSize[0]-20,PrezScreenSize[1]-20

Now that you’ve added the frame, your photos will look as shown in Figure 23.6. Each one will have

the screen’s background color surrounding it.

FIGURE 23.6 A “framed” photo.

Note that if you have photos of different sizes, the thickness of your frame will change. Also, if a
photo is already smaller than the current presentation screen, the frame will have a different thickness
than any displayed oversized photos that must be scaled.

Centering the Photos
One problem you haven’t seen yet is keeping your images in the middle of the presentation screen.
When you use the functions in the PyGame library to display photos, by default, the photos are
displayed in the upper-left corner of the screen. For larger pictures that are framed, the effect of being
off-center is subtle. Notice in Figure 23.7 that the frame is missing from the upper and left sections of
the display screen.

FIGURE 23.7 An uncentered photo.

To properly center your images, you need to add an additional variable to the place where the display
screen is set up in your Python script. This variable, called CenterScreen, uses the .center
method on the display screen to find exactly the center point of the current screen. Here’s an example:
Click here to view code image

PrezScreenRect = PrezScreen.get_rect()
CenterScreen = PrezScreenRect.center

Within the display picture for loop, you modify the variable PictureLocation slightly. After
the current location of the picture’s rectangular area is obtained, the center of the picture’s rectangle
is set, using .center method:
Click here to view code image

PictureLocation=Picture.get_rect() #Current location
PictureLocation.center=CenterScreen #Put picture in center of screen

Thus, when the picture is put on the screen using the following code, its center will be exactly the
center of the presentation screen:
Click here to view code image

PrezScreen.blit(Picture,PictureLocation)

How cool is this?!
You have seen lots of bits and pieces of code to produce this presentation script. Listing 23.2 shows
the entire script that has been put together so far.

LISTING 23.2 The script2301.py Presentation Script

Click here to view code image

#script2301.py - HD Presentation
#Written by Blum and Bresnahan
#
##
#
Import Modules & Variables
import os #Import OS module
import pygame #Import PyGame library
import sys #Import System module
#
from pygame.locals import * #Load PyGame constants
#
pygame.init() #Initialize PyGame
#
Set up Picture Variables
#
PictureDirectory = '/home/pi/pictures'
PictureFileExtension = '.jpg'
PictureDisk = '/dev/sda1'
#
Mount the Picture Drive
#
Command = "sudo umount " + PictureDisk + " 2>/dev/null"
os.system(Command)
Command = "sudo mount -t vfat " + PictureDisk + " " + PictureDirectory
os.system(Command)
#
Set up Presentation Screen
#
ScreenColor = Gray = 125,125,125
#
ScreenFlag = FULLSCREEN | NOFRAME
PrezScreen = pygame.display.set_mode((0,0),ScreenFlag)
#
PrezScreenRect = PrezScreen.get_rect()
CenterScreen = PrezScreenRect.center
#
PrezScreenSize = PrezScreen.get_size()
Scale=PrezScreenSize[0]-20,PrezScreenSize[1]-20
#
Run the Presentation
#
while True:
 #
 #Get HD Pictures ###################################
 #
 for Picture in os.listdir(PictureDirectory):
 if Picture.endswith(PictureFileExtension):
 Picture=PictureDirectory + '/' + Picture
 Picture=pygame.image.load(Picture).convert_alpha()
 #
 # If Picture is bigger than screen, scale it down.
 if Picture.get_size() > PrezScreenSize:
 Picture = pygame.transform.scale(Picture,Scale)
 #
 PictureLocation=Picture.get_rect() #Current location
 PictureLocation.center=CenterScreen #Put picture in center of screen
 #

 #Display HD Images to Screen #################
 PrezScreen.fill(ScreenColor)
 PrezScreen.blit(Picture,PictureLocation)
 pygame.display.update()
 pygame.time.delay(500)
 #
 # Quit with Mouse or Keyboard if Desired
 for Event in pygame.event.get():
 Command = "sudo umount " + PictureDisk
 os.system(Command)
 sys.exit()

This script works fine, but it runs slowly! Just getting the first picture to display can take a rather long
time.

By-the-Way: While You Test
While testing your presentation script, use small, simple, non-HD image files, such as
the .png files in the /home/pi/python_games directory. That way, you can get
everything working correctly without having to deal with the slow loading of HD files.
To do this, you just change the variable PictureDirectory to
/home/pi/python_games and the variable PictureFileExtension to
.png.

Unfortunately, when you load any HD image file, a Python script can really slow down. However,
there are a few things you can do to speed up the script as well as give the appearance of speed to
your presentation audience.

Improving the Presentation Speed
To improve the speed of the Python HD image presentation script, here are some modifications you
can make:

 Load only functions used in modules instead of loading entire modules.
 Remove any implemented delays.
 Add buffering to the screen.
 Do not convert images.
 Add a title screen.
 Add finer mouse and/or keyboard controls.

Each one of these changes might improve the speed of the presentation by only a second or even just a
millisecond. However, each little bit will help improve the flow of your HD image presentation. The
following sections describe how to implement these optimizations.
Loading Only Functions Instead of Entire Modules

Loading only the functions used will speed up any Python script. When you load an entire module
using the import statement, all the functions it contains are also loaded—and this can really slow
down a script. A good tip is to create a chart of your Python script that shows the modules imported
and the actual functions used. Table 23.2 shows how this might look. This table lists each module,
along with each of the functions used from that module. This type of chart will be helpful as you make

the necessary modifications to your script.

TABLE 23.2 Functions Used in Loaded Modules
To load only the functions you use from each module, you modify your import statements, using the
chart you’ve created as a guide. The import statements will now look similar to the following:
Click here to view code image

Import Functions & Variables
#
from os import listdir, system #Import from OS module
#
 #Import from PyGame Library
from pygame import event, font, display, image, init, transform
#
from sys import exit #Import from System module

After you make this change, you need to change all the calls to the various functions. For example, you
change pygame.init() to init(), and you change sys.exit() to exit(). Python no
longer recognizes the entire pygame module because you no longer load it. Instead, it only
recognizes the functions you load from that module.
Use the chart you created and step through the Python script, making all the necessary changes to the
function calls. When you have completed these changes, you should test the Python image presentation
script. You will be amazed at how much faster it starts up! This is a good activity for any Python
script you write: Load up whole modules; tweak the script until you are happy with it; chart your
modules and their functions; modify the script to load only the functions; and modify the function
calls.
Removing Any Implemented Delays

This optimization is an easy one! For smaller, non-HD images, you needed to include the
pygame.time.delay operation to allow the images to “pause” on the screen. When loading the
large HD images, this pause is not needed, so you simply remove the line below from the script:

pygame.time.delay(500)

You also need to be sure to remove the loading of the time function in the pygame module’s
import statement.
Adding Buffering to the Screen

This speed fix will gain you only a millisecond or two, but implementing it is still worthwhile—and
it’s easy. You simply add an additional flag, DOUBLEBUF, to the flags for your presentation screen,
as shown here:
Click here to view code image

ScreenFlag = FULLSCREEN | NOFRAME | DOUBLEBUF
PrezScreen = display.set_mode((0,0),ScreenFlag)

Avoiding Converting Images

In Hour 19, you learned that for games, it is wise to use the .convert_alpha() operation to load
images. This way, game images can be converted once to speed up the operation of the game. The
opposite is true here because these pictures will be displayed to the screen only one time. To make
this modification, you need to make the image.load function for each picture look as follows.
Click here to view code image

Picture = image.load(Picture)

Remember that this statement was previously written like this:
Click here to view code image

Picture = pygame.image.load(Picture).convert_alpha()

You remove pygame here because you are no longer loading the entire pygame module. You
remove .convert_alpha() to improve the speed of the image loading.
Making this change improves the speed of image loading by about 3 to 5 seconds. Making this change
also gives you the exact pixel format displayed on the screen that is in the image file. So you get two
improvements in one!
Even with these two improvements to image.load, this particular command will still be the
slowest one in the entire script due to the large size of HD image files. However, many performance
enhancements are in the works for the Raspberry Pi, so this may not be a problem in the future.

Watch Out!: Preloading Images
Since loading images takes so long, it would make sense to preload the images into a
Python list before you begin displaying them to the screen. However, if you try to do
this, you will most likely run out of memory. It would work, though, if you had non-HD
images or just a few pictures. But trying to load up several HD photos will cause your
Python script to run out of memory, suddenly quit, and leave you with the message
“Killed” displayed on the screen.

Adding a Title Screen

The next best thing to do to improve the speed of the presentation script is to give the audience the
illusion of speed.
Sending text to the presentation screen happens relatively quickly. Thus, by adding a title screen at the
beginning of the script, you can give that first picture time to load. Also, this will prevent your
audience from staring at a blank screen for 20 to 30 seconds.
To incorporate a title screen, you set up some variables and text to be used within the presentation, as
follows:
Click here to view code image

Set up Presentation Text
#
Color
#
RazPiRed = 210,40,82
#

Font
#
DefaultFont='/usr/share/fonts/truetype/freefont/FreeSans.ttf'
PrezFont=font.Font(DefaultFont,60)
#
Text
#
IntroText1="Our Trip to the"
IntroText2="Raspberry Capital of the World"
IntroText1=PrezFont.render(IntroText1,True,RazPiRed)
IntroText2=PrezFont.render(IntroText2,True,RazPiRed)

Notice that a color called RazPiRed is being used for the text color to provide a nice contrast to the
presentation screen’s gray background.
Now you can place the text prior to the for loop in the presentation script, as follows:
Click here to view code image

Introduction Screen
#
PrezScreen.fill(ScreenColor)
#
Put Intro Text Line 1 above Center of Screen
IntroText1Location = IntroText1.get_rect()
IntroText1Location.center = AboveCenterScreen
PrezScreen.blit(IntroText1,IntroText1Location)
#
Put Intro Text Line 2 at Center of Screen
IntroText2Location = IntroText2.get_rect()
IntroText2Location.center = CenterScreen
PrezScreen.blit(IntroText2,IntroText2Location)
#
display.update()
#
#Get HD Pictures ###################################
#
for Picture in listdir(PictureDirectory):

Adding Finer Mouse and/or Keyboard Controls

This last fix will provide you with another speed illusion. Many people give business presentations
while holding a remote or using a mouse to control the flow of the images shown on the screen.
Adding an event loop immediately after a picture is loaded allows you to incorporate this type of
control, as shown here:
Click here to view code image

Picture = image.load(Picture)
#
Continue = 0
Show next Picture with Mouse
while Continue == 0:
 for Event in event.get():
 if Event.type == MOUSEBUTTONDOWN:
 Continue = 1

This added event gives the illusion of picture display control by the presenter. You still have the
same long load time, but by knowing the approximate time between pictures, you can talk through
each image and then click the mouse after the approximate time. This gives the illusion of the pictures

immediately loading when you click the mouse.
If you just want to show your friends and neighbors vacation pictures, you can leave out this
optimization. In that case, the photos will continuously feed to the screen in a continuous loop.
The Optimized Presentation

The HD image presentation script, with all of its “speed” modifications, has changed quite a bit.
Listing 23.3 shows some of the new script, script2302.py, which is available to download at
informit.com/title/9780789752055.

LISTING 23.3 The Optimized script2302.py Presentation Script

Click here to view code image

...
Import Functions & Variables
#
from os import listdir, system #Import from OS module
#
 #Import from PyGame Library
from pygame import event, font, display, image, init, transform
#
from sys import exit #Import from System module
#
from pygame.locals import * #Load PyGame constants
#
init() #Initialize PyGame
#
Set up Picture Variables
...
Set up Presentation Text
#
Color
#
RazPiRed = 210,40,82
#
Font
#
DefaultFont='/usr/share/fonts/truetype/freefont/FreeSans.ttf'
PrezFont=font.Font(DefaultFont,60)
#
Text
#
IntroText1="Our Trip to the"
IntroText2="Raspberry Capital of the World"
IntroText1=PrezFont.render(IntroText1,True,RazPiRed)
IntroText2=PrezFont.render(IntroText2,True,RazPiRed)
#
Set up the Presentation Screen
#
ScreenColor = Gray = 125,125,125
#
ScreenFlag = FULLSCREEN | NOFRAME | DOUBLEBUF
PrezScreen = display.set_mode((0,0),ScreenFlag)
#
PrezScreenRect = PrezScreen.get_rect()
CenterScreen = PrezScreenRect.center
AboveCenterScreen = CenterScreen[0],CenterScreen[1]-100

#
PrezScreenSize = PrezScreen.get_size()
Scale=PrezScreenSize[0]-20,PrezScreenSize[1]-20
#
Run the Presentation
#
while True:
 # Introduction Screen ##############################
 #
 PrezScreen.fill(ScreenColor)
 #
 # Put Intro Text Line 1 above Center of Screen
 IntroText1Location = IntroText1.get_rect()
 IntroText1Location.center = AboveCenterScreen
 PrezScreen.blit(IntroText1,IntroText1Location)
 #
 # Put Intro Text Line 2 at Center of Screen
 IntroText2Location = IntroText2.get_rect()
 IntroText2Location.center = CenterScreen
 PrezScreen.blit(IntroText2,IntroText2Location)
 #
 display.update()
 #
 #Get HD Pictures ###################################
 #
 for Picture in listdir(PictureDirectory):
 if Picture.endswith(PictureFileExtension):
 Picture = PictureDirectory + '/' + Picture
 #
 Picture = image.load(Picture)
 #
 Continue = 0
 # Show next Picture with Mouse
 while Continue == 0:
 for Event in event.get():
 if Event.type == MOUSEBUTTONDOWN:
 Continue = 1
 if Event.type in (QUIT,KEYDOWN):
 Command = "sudo umount " + PictureDisk
 system(Command)
 exit()
...

Potential Script Modifications
Hopefully, as you read through the script in Listing 23.3, you thought of many improvements you could
make. You have come a long way in learning Python! You may have noted improvements and changes
such as these:

 Rewrite the script using tkinter, which is covered in Hour 18, “GUI Programming.”
 Write an additional script which allows the creation of a configuration file that dictates where
files are located and the file extensions of pictures. Modify the presentation script to use the
information in the configuration file.
 Add to the script a dictionary that contains text to be displayed along with each image.
 Modify the script to determine the device file name on the fly, so it does not have to be
determined beforehand.

Feel free to add as many changes as you desire. This is your HD image presentation script!

Playing Music
You can use Python to create some creative scripts for playing your music—for free! After you create
such a script, you can take your Pi over to someone else’s place, hook it up to their television, and
listen to your favorite music. The best part is that you’re the one writing the script playing the music!

Creating a Basic Music Script
To keep your music script simple, you will continue to use the PyGame library you’ve already
learned about. PyGame does a decent job of handling music. You might think that the best way to
handle music files would be to create a Sound object, as you did in Hour 19 for the Python game.
That does, in fact, work, but loading the music files into Python this way goes very slowly. Thus, it’s
best to avoid using the Sound object to play music.

By-the-Way: Other Modules and Packages for Playing Music
There are several other modules and packages for Python that you can use to create
scripts for playing music files. A rather detailed list of them is shown at
http://wiki.python.org/moin/PythonInMusic.

Besides doing the basic PyGame initialization, you primarily need to use two methods in this script:
pygame.mixer.music.load and pygame.mixer.music.play. Each music file must be
loaded from the disk into the Python script, before it can be played. Here’s an example of loading a
music file:
Click here to view code image

pygame.mixer.music.load('/home/pi/music/BigBandMusic.ogg')

Did You Know: Problems with MP3 Formats
Music comes in several standard file formats. Three of the most popular are MP3,
WAV, and OGG. However, you need to be aware that the MP3 file format is a closed-
source format, so the open-source world typically frowns on it.
Python and PyGame can handle MP3 file format, but be aware that MP3 files may not
play on your Linux system and can even cause the system to crash. It is best to use
either uncompressed music files, such as the WAV format, or open-source compressed
files such as OGG files. You can convert your MP3 music files to supported formats
by using either online conversion websites or locally installed software tools. You can
find a list of many audio file conversion tools at
http://wiki.python.org/moin/PythonInMusic.

After a music file is loaded, you use the play method for playing the file, as shown here:
pygame.mixer.music.play(0)

The number shown here, 0, is the number of times the music file will play. You might think that zero
means it will play zero times, but actually, when the play method sees 0, it plays the file one time

http://wiki.python.org/moin/PythonInMusic
http://wiki.python.org/moin/PythonInMusic

and then stops.

By-the-Way: Queuing It Up!
If you want to play only a couple songs, you can use the queue method. You simply
load and play the first song, and the first song begins to play immediately. Then you
load and queue a second song. The method to queue a song is
pygame.mixer.music.queue('filename'). When the first song stops playing,
the second song starts playing right away.
You can queue only one song at a time. If you queue a third song, before the second
song starts playing, the second song is “wiped” from the queue list.

Storing Your Music on a Removable Disk
Music files, especially if they are in uncompressed WAV file format, can take up a great deal of disk
space. Once again, your SD card with Raspbian may not have the space needed to hold the music files
you want to play. You can fix this problem by using a removable drive with your Python script.
Just as you used a removable hard drive in the HD image presentation script, you can use it in your
music script. The only change needed is to set up variables which point to the disk and directory
holding your music.
Be aware that you need to create a music directory before you run your script. To create a music
directory, you open LXTerminal, type a command similar to mkdir /home/pi/music, and press
Enter.
Unlike in the HD presentation script, you cannot simply unmount the drive at the end of the script.
Playing music from a removable drive can introduce a few problems with keeping files open and can
cause the drive to fail to unmount. However, you can clean up the umount commands from the HD
presentation script and put them into a function (where they should have been in the first place).
Here’s what this looks like:
Click here to view code image

Gracefully Exit Script Function
#def Graceful_Exit ():
 pygame.mixer.music.stop() #Stop any music.
 pygame.mixer.quit() #Quit mixer
 pygame.time.delay(3000) #Allow things to shutdown
 Command = "sudo umount " + MusicDisk
 system(Command) #Unmount disk
 exit()

The method pygame.mixer.music.stop is called to stop any music from playing. Also, the
mixer is shut down using pygame.mixer.quit. Finally, a delay is added, just to give everything
time to shut down, before the umount command is issued. It’s a little bit of overkill, but properly
unmounting a removable drive with your music is worth it!

Using a Music Playlist
While you could use the os.listdir method used earlier in this hour to load the music files, using
a playlist will give you finer control (and more Python practice). You can create a simple playlist of
the music files to play in a particular order by using either the nano text editor or the IDLE text editor.

You want the playlist file to have the file names of the songs, including their file extension. This way,
you can play different types of music files, such as OGG or WAV. Also, each line of the playlist file
should contain only a single music file name. No directory names are included because they will be
handled in the Python script. The following is a simple example of a play-list that can be used with
this script:

BigBandMusic.ogg
RBMusic.wav
MusicalSong.ogg
...

To open and read your playlist in the Python script, you use the open Python statement. (For a
refresher on opening and reading files, see Hour 11, “Using Files.”)

Watch Out!: Ignoring the End
While PyGame is a wonderful utility for learning how to incorporate various features
into your Python scripts, it can be a little flakey at times, especially when playing
music. For example, PyGame often sporadically ignores the last music file loaded to
play from a playlist. Therefore, you should put your least favorite song last in the
playlist. When you learn how to properly code Python to play music, you can explore
other music library options for Python, if you so desire.

The script opens the playlist and reads it all in, and then it saves the music file information into a list
that the script can use over and over again. (If you need to review the concepts related to lists, see
Hour 8, “Using Lists and Tuples.”)
Each music file name is read from the playlist file and stored into a list called SongList. You need
to strip off the newline character from the end of each read-in record. The .rstrip method will
help you accomplish this. Use the following for loop to read in the music file names from the
playlist after it is opened:
Click here to view code image

for Song in PlayList: #Load PlayList into SongList
#
 Song = Song.rstrip('\n') #Strip off newline
 if Song != "": #Avoid blank lines in PlayList
 Song = MusicDirectory + '/' + Song
 SongList.append(Song)
 MaxSongs = MaxSongs + 1

Notice that this example uses an if Python statement. This statement allows your script to check for
any blank lines in the playlist file and discard them. It is very easy for blank lines to creep into a file
like this one. This is especially true at the bottom of the file, if you accidently press the Enter key too
many times.
The for loop appends any file names to the end of the SongList list and keeps a count of how
many music files are loaded into the list. Instead of keeping a count, you could also wait until the
SongList list is completely built. Then you can determine how many elements are in the list, using
the Python statement len(SongList).

Controlling the Playback

Now you have your playlist loaded, you have a removable drive with the music ready, and you know
how to load and play the music. But just how do you control the playback of the music?
PyGame provides event handling that will work perfectly for controlling music playback. Using the
.set_endevent method causes an event to queue up after a song has finished playing. This event
is called an “end” event because it is sent to the queue when the song ends. The following is an
example of an entire function that loads the music file, starts playing the music file, and sets an end
event:
Click here to view code image

Play The Music Function
#
def Play_Music (SongList,SongNumber):
 pygame.mixer.music.load(SongList[SongNumber])
 pygame.mixer.music.play(0)
 pygame.mixer.music.set_endevent(USEREVENT) #Send event when Music Stops

Notice that end event set is USEREVENT. This means that when the music stops playing, the event
USEREVENT will be sent to the event queue.
Checking for the USEREVENT event should be handled in the main body of the Python script. You use
a while loop to keep the music playing and a for loop to check for the song’s end event:
Click here to view code image

while True: #Keep playing the Music ############
 for Event in event.get():
 #
 if Event.type == USEREVENT:
 if SongNumber < MaxSongs:
 Play_Music(SongList,SongNumber)
 SongNumber = SongNumber + 1
 if SongNumber >= MaxSongs:
 SongNumber = 0 #Start over in PlayList
 Play_Music(SongList,SongNumber)
 SongNumber = SongNumber + 1

In this example, if the song’s end event, USEREVENT, is found in the event queue, then a couple
checks are made. If the song list has not been fully played (SongNumber < MaxSongs), the next
song in the SongList is played. However, if all the songs have been played, then SongNumber is
set back to 0 (the first file name in the SongList), and the playing of the list starts over.

By-the-Way: Getting Fancy
You have just seen a very simple way to handle playing music in Python. You can get
very fancy with PyGame operations, though. For example, you can use .fadeout to
slowly fade out music at its end and .set_volume to make certain songs (like your
favorites) louder than others.

At this point, the Python music script plays endlessly. To add control for ending the script, you need
to check for another event, such as pressing a key on the keyboard. You do this much the same way
you controlled the HD image presentation script. Here’s what it looks like:
Click here to view code image

if Event.type in (QUIT,KEYDOWN,MOUSEBUTTONDOWN):
 Graceful_Exit()

But wait! This actually doesn’t work! For PyGame to properly handle events, the display screen must
be initialized. Thus, you need to set up a simple display screen to gracefully control the end of your
script. Here’s an example:
Click here to view code image

MusicScreen = display.set_mode((0,0))
display.set_caption("Playing Music...")

Now, when your music plays, a screen pops up, with the caption "Playing Music" at the top.
You can minimize that screen and listen to your music playlist. When you are done, you just maximize
the screen and either click it with your mouse or press any key on the keyboard to stop the music.
Since the display screen is already initialized in your music script, you might think that you could add
images to be displayed on the screen while the music plays—and that’s a good idea! You’ll learn
how to do that a bit later this hour, but first you need to do a few more things related to your music
script, including reviewing the music script in its entirety. See Listing 23.4.

LISTING 23.4 The script2303.py Music Script

Click here to view code image

#script2303.py - Play Music from List
#Written by Blum and Bresnahan
#
##
#
Import Functions & Variables
#
from os import system #Import from OS module
#
 #Import from PyGame Library
from pygame import display, event, init, mixer, time
#
from sys import exit #Import from System module
#
from pygame.locals import * #Load PyGame constants
#
init() #Initialize PyGame
#
Load Music Play List Function
#
Read Playlist and Queue up Songs
#
def Load_Music ():
#
 global SongList #Make SongList global
 SongList = [] #Initialize SongList to Null
 #
 global SongNumber #Make SongNumber global
 SongNumber = 0 #Initialize Song Number to 0
 #
 global MaxSongs #Make MaxSongs global
 MaxSongs = 0 #Initialize Maximum Songs to 0
 #

 PlayList = MusicDirectory + '/' + 'playlist.txt'
 PlayList = open(PlayList, 'r')
 #
 for Song in PlayList: #Load PlayList into SongList
 #
 Song = Song.rstrip('\n') #Strip off newline
 if Song != "": #Avoid blank lines in PlayList
 Song = MusicDirectory + '/' + Song
 SongList.append(Song)
 MaxSongs = MaxSongs + 1
 PlayList.close()
#
Play The Music Function
#
def Play_Music (SongList,SongNumber):
 mixer.music.load(SongList[SongNumber])
 mixer.music.play(0)
 mixer.music.set_endevent(USEREVENT) #Send event when Music Stops
#
Gracefully Exit Script Function
#
def Graceful_Exit ():
 mixer.music.stop() #Stop any music.
 mixer.quit() #Quit mixer
 time.delay(3000) #Allow things to shutdown
 Command = "sudo umount " + MusicDisk
 system(Command) #Unmount disk
 exit()
#
Set up Music Variables
#
MusicDirectory = '/home/pi/music'
MusicDisk = '/dev/sda1'
#
Mount the Music Drive
#
Command = "sudo umount " + MusicDisk + " 2>/dev/null"
system(Command)
Command = "sudo mount -t vfat " + MusicDisk + " " + MusicDirectory
system(Command)
#
Queue up the Music
#
Load_Music()
Play_Music(SongList,SongNumber)
SongNumber = SongNumber + 1
#
#Set up Display for Event Handling ##############
#
MusicScreen = display.set_mode((0,0))
display.set_caption("Playing Music...")
#
while True: #Keep playing the Music ############
 for Event in event.get():
 #
 if Event.type == USEREVENT:
 if SongNumber < MaxSongs:
 Play_Music(SongList,SongNumber)
 SongNumber = SongNumber + 1
 if SongNumber >= MaxSongs:
 SongNumber = 0 #Start over in PlayList

 Play_Music(SongList,SongNumber)
 SongNumber = SongNumber + 1
 #
 if Event.type in (QUIT,KEYDOWN,MOUSEBUTTONDOWN):
 Graceful_Exit()

Notice that this script imports only the needed functions. The names of the module operations in the
script have been modified to reflect this.

Making the Play List Random
If desired, you can make your script play music from the playlist randomly. Making this happen
requires only a few minor changes. The first change is to import the randinit operation from the
random module, as shown here:
Click here to view code image

from random import randint #Import from Random module

The other two changes are small tweaks to an if statement within the main while loop of the music
script. For the if SongNumber >= MaxSongs: statement, you need to replace SongNumber
= 0 with the statement using the randinit method, as shown here:
Click here to view code image

while True: #Keep playing the Music ############
 for Event in event.get():
...
 if SongNumber >= MaxSongs:
 SongNumber = randint(0,MaxSongs - 1) #Pick random song
 Play_Music(SongList,SongNumber)
 SongNumber = MaxSongs #Keep songs random
...

Also, to keep the songs playing in a random fashion, instead of incrementing SongNumber after
Play_Music is called, you set it back to being equal to MaxSongs.

Creating a Special Presentation
By now you’ve probably figured out what the “special” presentation is all about: playing music along
with displaying your HD images! There are many reasons you might want to do this. You may have a
special business presentation that needs music behind it. You might want to see images display while
your music is playing. Or, as in this example, you might be a teacher trying to encourage your school
board to buy Raspberry Pis for the students and start up some classes teaching Python.

By-the-Way: Playing One Song Continuously
You might just want to play one loaded song, such as your company’s marketing song,
endlessly during a presentation. To do this, you use the Python statement
pygame.mixer.music.play(-1). The negative one (-1) tells Python to keep
playing the song over and over again, until the script exits.

Basically, this project, shown in Listing 23.5, melds together the HD image presentation script and
the music script. It assumes that both your HD images and your music will be on the same removable

drive.

LISTING 23.5 The script2305.py Special Presentation

Click here to view code image

#script2305.py - Special HD Presentation with Sound
#Written by Blum and Bresnahan
#
##
#
Import Functions & Variables
#
from os import listdir, system #Import from OS module
#
 #Import from PyGame Library
from pygame import event, font, display, image, init, mixer, time, transform
#
from random import randint #Import from Random module
#
from sys import exit #Import from System module
#
from pygame.locals import * #Load PyGame constants
#
init() #Initialize PyGame
#
Load Music Play List Function
#
Read Playlist and Queue up Songs
#
def Load_Music ():
#
 global SongList #Make SongList global
 SongList = [] #Initialize SongList to Null
 #
 global SongNumber #Make SongNumber global
 SongNumber = 0 #Initialize Song Number to 0
 #
 global MaxSongs #Make MaxSongs global
 MaxSongs = 0 #Initialize Maximum Songs to 0
 #
 PlayList = PictureDirectory + '/' + 'playlist.txt'
 PlayList = open(PlayList, 'r')
 #
 for Song in PlayList: #Load PlayList into SongList
 #
 Song = Song.rstrip('\n') #Strip off newline
 if Song != "": #Avoid blank lines in PlayList
 Song = PictureDirectory + '/' + Song
 SongList.append(Song)
 MaxSongs = MaxSongs + 1
 PlayList.close()
#
Play The Music Function
#
def Play_Music (SongList,SongNumber):
 mixer.music.load(SongList[SongNumber])
 mixer.music.play(0)
 mixer.music.set_endevent(USEREVENT) #Send event when Music Stops

#
Gracefully Exit Script Function
#
def Graceful_Exit ():
 mixer.music.stop() #Stop any music.
 mixer.quit() #Quit mixer
 time.delay(3000) #Allow things to shutdown
 Command = "sudo umount " + PictureDisk
 system(Command) #Unmount disk
 exit()
#
Set up Picture Variables
#
PictureDirectory = '/home/pi/pictures'
PictureFileExtension = '.jpg'
PictureDisk = '/dev/sda1'
#
Mount the Picture Drive
#
Command = "sudo umount " + PictureDisk + " 2>/dev/null"
system(Command)
Command = "sudo mount -t vfat " + PictureDisk + " " + PictureDirectory
system(Command)
#
Set up Presentation Text
#
Color
#
RazPiRed = 210,40,82
#
Font
#
DefaultFont='/usr/share/fonts/truetype/freefont/FreeSans.ttf'
PrezFont=font.Font(DefaultFont,60)
#
Text
#
IntroText1="Why Our School Should"
IntroText2="Use Raspberry Pi's and Teach Python"
IntroText1=PrezFont.render(IntroText1,True,RazPiRed)
IntroText2=PrezFont.render(IntroText2,True,RazPiRed)
#
Set up the Presentation Screen
#
ScreenColor = Gray = 125,125,125
#
ScreenFlag = FULLSCREEN | NOFRAME | DOUBLEBUF
PrezScreen = display.set_mode((0,0),ScreenFlag)
#
PrezScreenRect = PrezScreen.get_rect()
CenterScreen = PrezScreenRect.center
AboveCenterScreen = CenterScreen[0],CenterScreen[1]-100
#
PrezScreenSize = PrezScreen.get_size()
Scale=PrezScreenSize[0]-20,PrezScreenSize[1]-20
#
Run the Presentation
#
Queue up the Music
#
Load_Music()

Play_Music(SongList,SongNumber)
SongNumber = SongNumber + 1
#
while True:
 # Introduction Screen ##############################
 #
 PrezScreen.fill(ScreenColor)
 #
 # Put Intro Text Line 1 above Center of Screen
 IntroText1Location = IntroText1.get_rect()
 IntroText1Location.center = AboveCenterScreen
 PrezScreen.blit(IntroText1,IntroText1Location)
 #
 # Put Intro Text Line 2 at Center of Screen
 IntroText2Location = IntroText2.get_rect()
 IntroText2Location.center = CenterScreen
 PrezScreen.blit(IntroText2,IntroText2Location)
 #
 display.update()
 #
 #Get HD Pictures ###################################
 #
 for Picture in listdir(PictureDirectory):
 if Picture.endswith(PictureFileExtension):
 Picture = PictureDirectory + '/' + Picture
 #
 Picture = image.load(Picture)
 #
 for Event in event.get():
 #
 if Event.type == USEREVENT:
 if SongNumber < MaxSongs:
 Play_Music(SongList,SongNumber)
 SongNumber = SongNumber + 1
 if SongNumber >= MaxSongs:
 SongNumber = randint(0,MaxSongs - 1)
 Play_Music(SongList,SongNumber)
 SongNumber = MaxSongs #Keep it random
 #
 if Event.type in (QUIT,KEYDOWN):
 Graceful_Exit()
 #
 # If Picture is bigger than screen, scale it down.
 if Picture.get_size() > PrezScreenSize:
 Picture = transform.scale(Picture,Scale)
 #
 PictureLocation=Picture.get_rect() #Current location
 PictureLocation.center=CenterScreen #Put in center
 #
 #Display HD Images to Screen #################3
 PrezScreen.fill(ScreenColor)
 PrezScreen.blit(Picture,PictureLocation)
 display.update()
 #
 # Quit with Keyboard if Desired
 for Event in event.get():
 if Event.type in (QUIT,KEYDOWN):
 Graceful_Exit()

Remember that you can also get a copy of these scripts from the publisher’s website. That way, you

do not have to retype an entire script into your favorite text editor to modify it for your own needs.

Summary
In this hour, you learned how to create three Python projects: one that displays HD images to a
presentation screen, one that plays music from a music playlist, and one that combines the two scripts
into a special presentation.
Before you start thinking of all the modifications you can make to these projects, get ready. In the next
hour, you are about to learn some really cool and rather advanced projects using Python on the
Raspberry Pi!

Q&A
Q. What is Wayland, and could it help speed up the HD image presentation script?
A. Wayland is a replacement under-the-hood program that is partially responsible for displaying

windows in the GUI. It is promised to eventually be used in Raspbian. Will it speed up the HD
image presentation script? Possibly.

Q. Where is the Raspberry capital of the world?
A. The Raspberry capital of the world is Hopkins, Minnesota. The city hosts an annual raspberry

festival. The festival concerns fruit, and not computers.

Workshop
Quiz

1. You must use images that are already appropriately sized for the display screen. True or false?
2. What is the minimum resolution for an HD image?
3. Which PyGame operation handles the playing of music?

a. .pygame.music
b. .pygame.music.play
c. .pygame.mixer.music.play

Answers
1. False. When using the PyGame library, you can transform an image to an appropriate size.

However, if you increase the size of an image, you might lose the image’s original clarity.
2. An image is considered to be HD if it has at least a resolution of 1280×720 pixels.
3. Answer c is correct. The pygame.mixer.music.play operation handles the playing of a

loaded music file.

Hour 24. Working with Advanced Pi/Python Projects

What You’ll Learn in This Hour:
 Working with the GPIO interface
 Exploring the Python RPi.GPIO module
 Using the GPIO for output
 Using the GPIO for input

One of the exciting features of the Raspberry Pi is the GPIO interface, which allows you to connect
your Raspberry Pi to electronic circuits and then interact with the outside world. In this hour, you’ll
learn about the GPIO interface and how to use it to both accept input and send output to electronic
circuits. This hour you’ll use two popular Raspberry Pi electronic interface devices for the projects:
the Pi Cobbler and the Gertboard.

Exploring the GPIO Interface
One of the features included in the Raspberry Pi that you don’t often see in consumer computers is the
General Purpose Input/Output interface (called the GPIO interface for short). The GPIO interface is
the key to getting your Raspberry Pi to interact with the outside world. You can use it to control all
sorts of electronics, from temperature gauges to robots. In the sections that follow, you’ll take a look
at the Raspberry Pi’s digital interface and what you need to interact with it.

What Is the GPIO Interface?
The GPIO interface provides direct access to the Broadcom chip on the Raspberry Pi, which includes
several built-in digital interface features:

 17 digital input/output (I/O) pins
 A pulse-width modulation (PWM) output
 An Inter-Integrated Circuit (I2C) interface
 A Serial Peripheral Interface (SPI) connection
 A Universal Asynchronous Receiver/Transmitter (UART)

The 17 digital I/O pins allow you to read high or low digital signals from up to 17 separate devices
or send up to 17 high or low digital signals to external devices—or some combination of the two.
These signals can be used for controlling relays to turn circuits on or off or send signals to trigger
devices (such as turn on your coffeemaker).
The PWM output is used to control the speed of electric motors. You can control the PWM signal to
make a motor stop, start, speed up, or slow down.
The I2C and SPI interfaces provide a digital communications protocol for interfacing with integrated
circuits. This protocol allows you to connect advanced microcontrollers, such as the Atmel ATmega
microcontroller chip, made popular in the Arduino hobbyist unit.
Finally, the GPIO interface provides access to the UART pins on the Broadcom chip. The UART pins
allow you to connect a serial device (such as a terminal or modem) to your Raspberry Pi.

The GPIO Pin Layout
The GPIO interface is the series of 26 pins (in two rows of 13 pins each) that stick up at the upper-
left corner of the Raspberry Pi circuit board. They directly interface with specific pins on the
Broadcom integrated circuit chip and are assigned names based on the chip signal. Some pins have
dual functions from the Broadcom chip, depending on how you program the chip. Table 24.1 shows
the signal names and the alternate functions for each of the pins. When you start coding your Python
scripts, you’ll need to know which pin or signal you need to work with.

TABLE 24.1 The GPIO Pins

Watch Out!: GPIO Pins Versus Signals
The GPIO signals are numbered after the pin number on the Broadcom chip.
Unfortunately, they don’t correlate the actual pins used in the GPIO interface. (For
example, GPIO signal 2 is on pin 3 of the GPIO interface.) You must be careful when
referencing the pin connections. Make sure you know whether you’re working with pin
numbers or signal numbers. The code in this hour uses signal numbers because this is
the method most hardware interface devices use.

Connecting to the GPIO
There are three common ways to connect to the GPIO pins on the Raspberry Pi motherboard:

 Directly plug wires into them.
 Use the Pi Cobbler breakout box.
 Use the Gertboard experimental device.

Watch Out!: Connecting to the GPIO
Although you can plug wires directly into the GPIO pins on the motherboard, doing so
is somewhat of a risky adventure. If you accidentally short out the wrong pins, you risk
damaging your entire Raspberry Pi unit! It’s much safer (especially for beginners) to
use either the Pi Cobbler or the Gertboard.

Let’s take a closer look at how to connect to the GIO using the Pi Cobbler and the Gertboard.
Connecting to the GPIO via the Pi Cobbler

The Pi Cobbler is an inexpensive breakout box that connects to the GPIO pins using a standard 26-pin
ribbon cable. It then breaks out the pins into a form that you can plug into a standard breadboard
socket (see Figure 24.1).

FIGURE 24.1 The Pi Cobbler breakout box connected to a Raspberry Pi via a ribbon cable.

The Pi Cobbler unit labels the breakout pins using the GPIO signal names, so you can easily identify
which pin is which signal. Once you plug the Pi Cobbler interface into the breadboard, you can wire
up your projects directly on the breadboard.

Watch Out!: Plugging in the Pi Cobbler Ribbon Cable
Be careful when connecting the Pi Cobbler ribbon cable to the GPIO interface on the
Raspberry Pi. In the model that I purchased, the ribbon cable points to the inside of the
Raspberry Pi circuit board (see Figure 24.1), not the outside, as you might assume.

Connecting to the GPIO via the Gertboard

For more advanced Raspberry Pi experimenting, the Gertboard has it all. Created by Gert van Loo
and sold through various electronics distributors around the world, it’s a full circuit board of handy
components that plugs directly into the Raspberry Pi GPIO pins (see Figure 24.2). If you purchased a
case for your Raspberry Pi, you may have to remove the top of the case to plug in the Gertboard.

FIGURE 24.2 The Gertboard plugged in to a Raspberry Pi.

The Gertboard contains circuits for experimenting with many common features of the Raspberry Pi:
 12 buffered I/O ports
 12 LEDs for displaying logic levels
 Three push-button switches for input
 Six open collector relays for turning higher-voltage circuits on and off
 An 18v, 2A motor controller
 A two-channel analog-to-digital converter
 A two-channel digital-to-analog converter
 An Atmel ATmega microcontroller (just like the Arduino)

The Gertboard is designed as a modular board with pins that interface to all the onboard components.
Setting up a circuit is as easy as connecting wires between the pins on the board. The Gertboard kit
comes with a set of jumpers (short clips that connect two adjacent pins) and a set of straps (longer
wires that connect two pins).
To use the Gertboard, you need to become familiar with the pin layout on the board. Each group of
pins is identified by a J number that you see written on the circuit board. Table 24.2 shows what each
J block of pins is used for.

TABLE 24.2 The Gertboard Pin Block Layout
The three-pin J7 block is crucial. You must place a jumper between the middle pin and the upper pin,
labeled 3V3, to power on the Gertboard. Without it, none of your projects will work.
Also inside the circuit are two sets of 12 pins labeled B1 through B12. One set is for using the
buffered inputs, and the other set is for using the buffered outputs. Consult the Gertboard manual for a
complete description of how to use the buffered input and output pins.

Using the RPi.GPIO Module
To interface your Python programs with the GPIO signals, you have to use the RPi.GPIO module.
The RPi.GPIO module uses direct memory access to provide an interface to control the GPIO
signals. The following sections walk through the basics of the RPi.GPIO module.

Installing RPi.GPIO
At this writing, the Raspberry Pi installs the Python v2 version of the RPi.GPIO module by default
(called python-rpi.gpio). To use Python 3 programs, you have to install the Python v3 version
of the module from the software repository, like this:
Click here to view code image

sudo apt-get update
sudo apt-get install python3-rpi.gpio

After you install the module, you can test to make sure it’s installed, as in the following example:
Click here to view code image

pi@raspberrypi ~ $ python3
Python 3.2.3 (default, Mar 1 2013, 11:53:50)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import RPi.GPIO as GPIO
>>>

Because of the long module name, it has become somewhat of a default standard to use the GPIO alias
when importing the RPi.GPIO module. This hour uses that convention.
When you have the RPi.GPIO module installed for Python v3, you’re ready to start experimenting!

Startup Methods
You need to know only a handful of basic methods in order to access the GPIO pins. Before you can
start interacting with the interface, you have to use the setmode() method to set how the library
will reference the GPIO pins:

GPIO.setmode(option)

As mentioned earlier this hour, to confuse things, there are two ways to reference the GPIO signals in
the option placeholder:

 Using the pin number on the GPIO interface
 Using the GPIO signal number from the Broadcom chip

The GPIO.BOARD option, which you use like this, tells the library to reference signals based on the
pin number on the GPIO interface:

GPIO.setmode(GPIO.BOARD)

The other option is to use the Broadcom chip signal number, specified by the GPIO.BCM value, as
shown here:

GPIO.setmode(GPIO.BCM)

For example, GPIO signal 18 is on pin 12 of the GPIO interface. If you use the GPIO.BCM mode, you
reference it using the number 18, but if you use the GPIO.BOARD mode, you reference it using the
number 12.
This hour uses GPIO.BCM mode because it’s easier to see in both the Pi Cobbler and the Gertboard.
After you select the mode, you must define which GPIO signals to use in your program and whether
they will be used for input or output. You do that with the setup() method, as shown in the
following syntax:
Click here to view code image

GPIO.setup(channel, direction)

For the direction parameter, you can use constants defined in the library: GPIO.IN and GPIO.OUT.
For example, to set GPIO signal 18 to use for output, you’d write this:

GPIO.setup(18, GPIO.OUT)

Now the GPIO 18 signal is ready to use for output from your Python program. The next step is to
actually control what you output.

Controlling GPIO Output
The GPIO pins allow you to send a digital output signal to an external device. The following sections
walk through how to control the output signal from your Python program.

Setting Up the Hardware to View the GPIO Output
Before you can dive into coding, you need to set up the hardware environment for the project. You
can use either the Pi Cobbler breakout box with your own components or the Gertboard, which
contains all the components you’ll need for the project. The following sections show the instructions
for both methods.
Setting Up the Pi Cobbler for Output

Unfortunately, to use the Pi Cobbler for this project, you need to collect a few more pieces of
hardware:

 A breadboard
 A 1,000-ohm resistor

 An LED
 A piece of wire for connecting the breadboard sections

Try It Yourself: Build the Pi Cobbler Circuit
Follow these steps to set up your Pi Cobbler to test the GPIO output:

Watch Out!: Working with Power
It’s always a good idea to wire your project with the Raspberry Pi turned off.
If the Raspberry Pi is turned on, the pins on the Pi Cobbler interface are live,
and can be accidentally shorted out!

1. Connect one end of the Pi Cobbler ribbon cable to the GPIO interface and then
connect the other end to the Pi Cobbler breakout box.

2. Connect the Pi Cobbler breakout box on the breadboard, making sure the two rows
of pins straddle the middle of the breadboard so they don’t connect to each other.

3. Connect a wire from one of the GND pins on the Pi Cobbler to a common location
on the breadboard. (Most breadboards have two common rails that run the length of
the breadboard for the ground and power supply.)

4. Place the 1,000-ohm resistor in the breadboard path for the Pi Cobbler pin labeled
#18 and an empty area on the breadboard. (Pin #18 is the GPIO 18 signal pin.)

5. Place the LED so that the long lead connects to the 1,000-ohm resistor and the other
lead connects to the ground rail on the breadboard.

Figure 24.3 shows a diagram of what the circuit should look like when you’re finished
with these steps.

FIGURE 24.3 Pi Cobbler output circuit diagram.

With this circuit, when the GPIO 18 signal goes HIGH, the LED light ups, and when it goes LOW, the
LED goes out.

Setting Up the Gertboard for Output

The beauty of the Gertboard is that it already has all the components on the board for you, so all you
need to do is connect some jumpers and wires.

Try It Yourself: Build the Gertboard Circuit
The Gertboard makes developing circuits a snap! Here are the steps you need to
follow:

1. Connect a jumper to the 3.3V power supply side in the J7 block (the middle pin to
the top pin).

2. Connect a wire from the GP18 pin in the J2 block to the B12 pin in the J3 block.
This redirects the GPIO 18 signal to the I/O buffer 12 area on the Gertboard.

3. Connect a jumper between the two B12 output pins, directly above the U5 chip.

This circuit uses the D12 LED in the row of LEDs at the top of the Gertboard for the output LED.
When the GPIO 18 signal goes HIGH, the LED lights up, and when it goes LOW, the LED goes out.
Now you’re ready to start testing the GPIO output!

Testing the GPIO Output
You should test the GPIO output before you start coding. To do this, you can run a test directly from
the Python v3 command prompt to turn the LED on and off, using the GPIO output signal.
Because the RPi.GPIO module accesses the GPIO pins using direct memory access, you must run
commands at the Python v3 command prompt as the root user account using the sudo program, as
shown in this example:
Click here to view code image

pi@raspberrypi ~ $ sudo python3
Python 3.2.3 (default, Mar 1 2013, 11:53:50)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>

You need to set the GPIO.BCM mode and set up the GPIO pin 18 signal for output:
Click here to view code image

>>> import RPi.GPIO as GPIO
>>> GPIO.setmode(GPIO.BCM)
>>> GPIO.setup(18, GPIO.OUT)
>>>

Now you can turn the LED on and off by using these two commands:
Click here to view code image

>>> GPIO.output(18, GPIO.LOW)
>>> GPIO.output(18, GPIO.HIGH)

Toggle back and forth a few times and watch the LED turn on and off. Then you use the cleanup()
method to return the GPIO ports back to a neutral setting, like this:

>>> GPIO.cleanup()

>>>

If this doesn’t work, you need to make sure that you started the Python v3 command prompt using the
sudo command. If ensuring that you use sudo doesn’t help, you may have to double-check your
wiring to make sure it’s all okay.

Watch Out!: Resetting the GPIO Interface
It’s always a good idea to use the cleanup() method when you’re done with the
GPIO signals. It places all the GPIO pins in a LOW status, so no extraneous signals are
present on the interface. If you do not use the cleanup() function, the RPi.GPIO
module produces a warning message if you try to set up a GPIO signal that is already
assigned a signal value.

Blinking the LED
Now you’re ready to start writing some Python code. Listing 24.1 shows the script2401.py
program, which toggles the GPIO 18 signal LED 10 times, causing the LED to blink 10 times. Just
open your editor and enter the code shown in the Listing.

LISTING 24.1 The script2401.py Program Code

Click here to view code image

#!/usr/bin/python3

import RPi.GPIO as GPIO
import time
GPIO.setmode(GPIO.BCM)
GPIO.setup(18, GPIO.OUT)
GPIO.output(18, GPIO.LOW)
blinks = 0
print('Start of blinking...')
while (blinks < 10):
 GPIO.output(18, GPIO.HIGH)
 time.sleep(1.0)
 GPIO.output(18, GPIO.LOW)
 time.sleep(1.0)
 blinks = blinks + 1
GPIO.output(18, GPIO.LOW)
GPIO.cleanup()
print('End of blinking')

After you save this code, you need to use the chmod command to change the permissions so you can
run the code from the command line. Because the script accesses direct memory, you need to use the
sudo command to run it, as shown here:
Click here to view code image

pi@raspberrypi ~ $ chmod +x script2401.py
pi@raspberrypi ~ $ sudo ./script2401.py
Start of blinking...
End of blinking
pi@raspberrypi ~ $

When the program is running, you should see the LED blink on and off. Congratulations! You just
programmed your first digital output signal!

Creating a Fancy Blinker
You had to write a lot of code just to get the LED to blink. Fortunately, the GPIO has a feature that
can help make that easier.
PWM is a technique used in the digital world mainly to control the speed of motors using a digital
signal. You can apply it to your blinking project as well. With PWM, you control the amount of time
the HIGH/LOW signals repeat (called the frequency) and the amount of time the signal stays in the
HIGH state (called the duty cycle).
It just so happens that the Broadcom GPIO signal 18 doubles as a PWM signal. You can set the GPIO
18 signal to PWM mode by using the GPIO.PWM() method, as shown here:
Click here to view code image

blink = GPIO.PWM(channel, frequency)

After you set up the GPIO 18 signal, you can start and stop it by using the start() and stop()
methods, as shown here:

blink.start(50)
blink.stop()

The start() method specifies the duty cycle (from 1 to 100). After you start the PWM signal, your
program can go off and do other things. The GPIO 18 continues to send the PWM signal until you stop
it.
Listing 24.2 shows the script2402.py program, which demonstrates using PWM to blink the
LED.

LISTING 24.2 The script2402.py Program Code

Click here to view code image

1: #!/usr/bin/python3
2:
3: import RPi.GPIO as GPIO
4: GPIO.setmode(GPIO.BCM)
5: GPIO.setup(18, GPIO.OUT)
6: blink = GPIO.PWM(18, 1)
7: try:
8: blink.start(50)
9: while True:
10: pass
11: except KeyboardInterrupt:
12: blink.stop()
13: GPIO.cleanup()

The code starts the PWM signal on GPIO 18, at 1Hz (line 6), and then it goes into an endless while
loop doing nothing (using the pass command on line 10). You set the loop in a try code block to
catch the Ctrl+C keyboard interrupt to stop things.
After you start the program (using sudo), the LED should blink once per second (because of the 1Hz

frequency in the PWM() method) until you press Ctrl+C.

Detecting GPIO Input
Using the GPIO pins to detect input signals is a little bit trickier than using them for output. The
following sections walk through a couple different ways to handle digital input signals on the GPIO
pins. First, you need to set up the hardware you need for this project.

Setting Up the Hardware for Detecting Input
In this project, you’ll simulate a house with two doorbells: one for the front door, and one for the
back door. When someone is ringing one of the doorbells, the project will tell you which one, and it
will give you the opportunity to do some cool things with that information.
The following sections describe how to set up the hardware for the Pi Cobbler and Gertboard
environments.
Setting Up the Pi Cobbler for Input

For the doorbells, you need two push-button switches. You can use any type of switch you can find,
as long as it conducts when pushed and breaks the connection when released. You can get specialty
miniature push buttons that plug directly in to a breadboard, or you can use larger buttons and connect
them to your breadboard using wires.

Try It Yourself: Connect the Pi Cobbler Circuit
For this project, you need to start with the circuit you created for controlling GPIO
output in the previous section. In addition to that setup, you need just four additional
pieces of hardware: two push-button switches and two 1,000-ohm resisters. When you
have all the hardware you need, follow these steps:

1. Connect one side of each push-button switch to the ground signal, using a 1,000-ohm
resistor.

2. Connect the other side of one push button to the GPIO 24 pin on the Pi Cobbler
(marked #24) using a piece of wire.

3. Connect the other side of the other push button to the GPIO 25 pin on the Pi Cobbler
(marked #25) using a piece of wire.

Figure 24.4 shows a diagram of what your final circuit should look like.

FIGURE 24.4 The Pi Cobbler input circuit diagram.

Remember to keep the LED and resistor plugged into the GPIO 18 pin because you’ll use that in this
project as well.
Setting Up the Gertboard for Input

For the doorbells, you’ll use two of the three built-in push button switches on the Gertboard.

Try It Yourself: Set Up the Gertboard for Input
To set up the Gertboard for input, keep the B12 output buffer set to the B12 LED and
plugged into the GP18 pin that you used for the output test. Also make sure you have
the 3V3 jumper on the J7 block for power. Then follow these steps to set up the
switches for input:

1. Connect a wire between GP24 in the J2 block and B2 in the J3 block.
2. Connect a wire between GP25 in the J2 block and B1 in the 3 block.

That’s it! Your setup is complete, and you’re all set to start coding!

Working with Input Signals
On the surface, working with input signals is a breeze in the RPi.GPIO library. You just set up the
GPIO pin for input and then read the pin status using the input() method, like this:
Click here to view code image

pi@raspberrypi ~ $ sudo python3
Python 3.2.3 (default, Mar 1 2013, 11:53:50)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import RPi.GPIO as GPIO
>>> GPIO.setmode(GPIO.BCM)
>>> GPIO.setup(24, GPIO.IN)
>>> print(GPIO.input(24))
0
>>> print(GPIO.input(24))
1
>>> print(GPIO.input(24))
0
>>>

After you enter this code, try holding down the push button you connected to the GPIO 24 pin as you
run the print() methods. You should get different values of 0 or 1, depending on whether the
button is pushed in.
However, there’s a hidden problem with this setup, and you may have already run into it with your
testing. Pushing the button connects the GPIO 24 pin to ground, forcing the LOW value (which is
displayed as a 0). However, when the button isn’t pressed, the GPIO 18 pin isn’t connected to
anything. That means the pin could be in either a HIGH or LOW state, and it may even switch back and
forth without your doing anything. This is called flapping.
To avoid flapping, you need to set the default value of the pin for when the button isn’t pressed. This
is called a pull-up (when you set the default to a HIGH signal) or pull-down (when you set the default

to a LOW signal). There are two ways to implement a pull-up or pull-down:
 Hardware—Connect the GPIO 18 pin to either the 3.3V voltage pin for a pull-up (using a
10,000- to 50,000-ohm resistor to limit the current) or to a GND pin (using a 1,000-ohm
resistor) for a pull-down.
 Software—The RPi.GPIO library provides the option of defining a pull-up or pull-down for
the pin internally, using an option in the setup() method:

Click here to view code image

GPIO.setup(18, GPIO.IN, pull_up_down=GPIO.PUD_UP)

Adding this line forces the GPIO 18 pin to always be in a HIGH status if the pin is not connected
directly to ground.
If you’re using the Pi Cobbler, you can use either the hardware or software pull-up or pull-down
method. However, the Gertboard doesn’t provide for the hardware feature, so in this hour, you’ll
stick with using a software pull-up on your input lines, and then you’ll use the push-button switch to
connect the pin to the GND signal to trigger the LOW value.
Now you’re ready to move on to some coding!

Input Polling
The most basic method for watching for a switch is called polling. The Python code checks the
current value of a GPIO input pin at a regular interval. The GPIO input changing value means the
switch was pressed. Listing 24.3 shows the script2403.py program, which demonstrates this
feature.

LISTING 24.3 The script2403.py Program Code

Click here to view code image

1: #!/usr/bin/python3
2:
3: import RPi.GPIO as GPIO
4: import time
5:
6: GPIO.setmode(GPIO.BCM)
7: GPIO.setup(18, GPIO.OUT)
8: GPIO.setup(24, GPIO.IN, pull_up_down=GPIO.PUD_UP)
9: GPIO.setup(25, GPIO.IN, pull_up_down=GPIO.PUD_UP)
10: GPIO.output(18, GPIO.LOW)
11:
12: try:
13: while True:
14: if (GPIO.input(24) == GPIO.LOW):
15: print('Back door')
16: GPIO.output(18, GPIO.HIGH)
17: elif (GPIO.input(25) == GPIO.LOW):
18: print('Front door')
19: GPIO.output(18, GPIO.HIGH)
20: else:
21: GPIO.output(18, GPIO.LOW)
22: time.sleep(0.1)
23: except KeyboardInterrupt:
24: GPIO.cleanup()

25: print('End of test')

The code sets up the GPIO 18 pin for output (line 7) and then the GPIO 24 and GPIO 25 pins for input
(for the back and front doorbells, respectively; lines 8 and 9). Then the code goes into a loop, polling
the status of the GPIO 24 and GPIO 25 pins in each iteration. If the GPIO 24 pin is LOW, the code
prints a message that the back doorbell is ringing and lights the LED. If the GPIO 25 pin is LOW, the
code prints a message that the front doorbell is ringing and lights the LED.

By-the-Way: Doorbell Emailer
You can add any code you like to the if-then code block when a doorbell ring is
detected. For example, you can use the email feature from Hour 20, “Using the
Network,” to send a customized email message to yourself each time a doorbell rings.

Polling is a simple way of detecting an input value, but there are other ways. The next section
explores them.

Input Events
Polling is a somewhat tricky way to determine when a switch has been pressed. You have to manually
read the input value in each iteration and then determine whether the value has changed.
Most of the time, you’re not as interested in the value of the input at any specific moment as you are in
when the value changes. Rising occurs when the input changes from LOW to HIGH, and falling
happens when the input changes from HIGH to LOW.
A couple different methods in the RPi.GPIO module allow you to detect rising and falling events on
an input pin.
Synchronous Events

The wait_for_edge() method stops your program until it detects either a rising or falling event
on the input signal. If you just want your program to pause and wait for the event, this is the method to
use. Listing 24.4 shows the script2404.py program, which demonstrates how to use the
wait_for_edge() method to wait for a change in the input.

LISTING 24.4 The script2404.py Program Code

Click here to view code image

1: #!/usr/bin/python3
2:
3: import RPi.GPIO as GPIO
4:
5: GPIO.setmode(GPIO.BCM)
6: GPIO.setup(24, GPIO.IN, pull_up_down=GPIO.PUD_UP)
7: GPIO.wait_for_edge(24, GPIO.FALLING)
8: print('The button was pressed')
9: GPIO.cleanup()

This script listens for the GPIO 24 signal. The program pauses at line 7 and does nothing until it
detects a falling input value. (Remember: You’re tying the input channel HIGH, so when you press the

button, the signal goes from HIGH to LOW.) When the event occurs, the program is released and
continues processing.
The downside to this is that you can wait for only one event at a time. If someone rings the front
doorbell while you’re waiting for the back doorbell to ring, you’ll miss the event. The next method
solves this problem.
Asynchronous Events

You don’t have to stop the entire program and wait for an event to occur. Instead, you can use
asynchronous events. With asynchronous events, you can define multiple events for the program to
listen for. Each event points to a method inside your code that runs when the event is triggered.
You use the add_event_detect() method to define the event and the method to trigger, like this:
Click here to view code image

GPIO.add_event_detect(channel, event, callback=method)

You can register as many events as you need in your program to monitor as many channels as you
need. Listing 24.5 shows the script2405.py program, which demonstrates how to use this
feature.

LISTING 24.5 The script2405.py Program Code

Click here to view code image

1: #!/usr/bin/python3
2:
3: import RPi.GPIO as GPIO
4: import time
5:
6: GPIO.setmode(GPIO.BCM)
7: GPIO.setup(18, GPIO.OUT)
8: GPIO.output(18, GPIO.LOW)
9: GPIO.setup(24, GPIO.IN, pull_up_down=GPIO.PUD_UP)
10: GPIO.setup(25, GPIO.IN, pull_up_down=GPIO.PUD_UP)
11:
12: def backdoor(channel):
13: GPIO.output(18, GPIO.HIGH)
14: print('Back door')
15: time.sleep(0.1)
16: GPIO.output(18, GPIO.LOW)
17:
18: def frontdoor(channel):
19: GPIO.output(18, GPIO.HIGH)
20: print('Front door')
21: time.sleep(0.1)
22: GPIO.output(18, GPIO.LOW)
23:
24: GPIO.add_event_detect(24, GPIO.FALLING, callback=backdoor)
25: GPIO.add_event_detect(25, GPIO.FALLING, callback=frontdoor)
26:
27: try:
28: while True:
29: pass
30: except KeyboardInterrupt:
31: GPIO.cleanup()

32: print('End of program')

The script2405.py code registers two events—one for each button. In this project, the code goes
into a loop and does nothing while it waits for a button to be pressed (lines 27 through 31). You can
easily incorporate other features in the loop, such as checking the temperature. (See Hour 20 for a
refresher on using the urllib module to read temperatures from a webpage.)

By-the-Way: Reducing Switch Bounce
You may have noticed when testing the input project that sometimes using push-button
switches can be a bit touchy (such as triggering two separate contacts with one button
push). This is commonly called switch bounce. You can reduce switch bounce by
adding a capacitor across the switch inputs. You can also control switch bounce by
using software: The add_event_detect() method has a bouncetime
parameter that you can add to set a timeout feature that helps with the switch bounce
problem.

Now that you know the basics of working with input and output from the GPIO interface, you can
create many applications. You can mix and match which pins you use for input and output, creating
complex projects that detect input and send output based on the inputs.

Summary
This hour explores the GPIO interface on the Raspberry Pi. You worked on a project that outputs a
digital signal to a GPIO pin, as well as a project that outputs a PWM signal you can use to control
motors. You also worked a project to read input values from the GPIO pins, which allows you to
detect switch presses. You can use these concepts to control any type of electronic circuit, from
reading temperatures to running robots!

Q&A
Q. How do you control the analog-to-digital (A/D) and digital-to-analog (D/A) converters on

the Gertboard?
A. You can connect the A/D and D/A converters directly to GPIO pins and then either send

outputs to the GPIO pins to generate an analog voltage in the D/A converter or read inputs from
the GPIO pins to detect the A/D voltage.

Q. Can you use the ATmega microcontroller on the Gertboard from the Raspberry Pi?
A. Yes. The popular Arduino Integrated Development Environment (IDE) package has been

ported to the Raspberry Pi, so you can run Arduino programs directly from your Raspberry Pi.

Workshop
Quiz

1. What RPi.GPIO method should you use to set a GPIO signal to use for output?
a. setmode(GPIO.BCM)

b. setup(18, GPIO.OUT)
c. outout(18)
d. wait_for_edge(18, GPIO.FALLING)

2. The GPIO pin numbers on the Raspberry Pi match the GPIO signal numbers on the Broadcom
chip. True or false?

3. What add_event_detect() parameter can you add to help prevent switch bounce?

Answers
1. b. The setup(18, GPIO.OUT) statement tells the Raspberry Pi to set the GPIO signal 18

for output.
2. False, so be careful when you’re writing your Python programs! You should always include the
setmode() function to define whether your code uses

3. Use the bouncetime parameter to set a time limit between event detections. This will help
reduce switch bounce problems.

Part VII: Appendix
APPENDIX A Loading the Raspbian Operating System onto an SD Card

Appendix A. Loading the Raspbian Operating System
onto an SD Card

In order to boot your Raspberry Pi, you need a properly created SD card with the Raspbian operating
system loaded onto it. You cannot simply copy the file over to the card. You must use image burner
software or another appropriate utility. This appendix will help you move your downloaded copy of
the Raspbian operating system’s raw image from your computer to an SD ard.
Which section of this appendix you should use depends on the type of computer where the
downloaded Raspbian operating system’s raw image file now resides. If you downloaded the
operating system file to a Windows system, then go to the section “Windows: Loading Raspbian onto
an SD Card” of this appendix. If you downloaded to a Linux system, then go to the “Linux” section. If
you downloaded to an Apple system, then go to the “Mac” section.

Windows: Loading Raspbian onto an SD Card
If you downloaded Raspbian to a Windows machine, follow these steps to load Raspbian onto an SD
card:

1. If you do not already have one, download and install a disk image writer utility onto your
Windows machine. The Win32DiskImager utility from https://launchpad.net/win32-image-
writer is recommended (see Figure A.1).

FIGURE A.1 Win32DiskImager utility website.

https://launchpad.net/win32-image-writer

2. Load your SD card into your SD card reader. Take note of the drive letter that Windows
assigns to it (for example, F:).

3. If you are using a brand-new, never-been-used SD card, you can skip this step. If you are not
using a brand-new SD card (or if this is your second attempt at moving the operating system to
the SD card), you need to format it. Format the SD card to FAT32 with one partition (see Figure
A.2).

FIGURE A.2 The Windows Format window.

4. Assuming that you have downloaded the Raspbian operating system zip file already, extract the
operating system image from the zip file. Note where the image file is currently located on the
Windows system. For example, it may be in your Downloads directory.

5. Run the Win32DiskImager program. A window similar to the one in Figure A.3 appears on
your screen.

FIGURE A.3 The Win32DiskImager program.

In the Device section of the Win32DiskImager window on the right side of the window, click
the down arrow. Select the drive letter of your SD card that you noted in step 2.

Watch Out!: Wiping the Wrong Disk
If you select the wrong letter in Win32DiskImager window’s Device section, you
might wipe out the wrong disk, such as your computer’s primary hard drive. That
would be bad.

In the Image File section of the window, click the file folder icon. Navigate to the location of
your Raspbian image file. Click the file name to select it (see Figure A.4).
Now click the Write button in the Win32DiskImager window to write the image file to your SD
card. This may take a little while, so be patient.

FIGURE A.4 Win32DiskImager program with Raspbian selected.

When Win32DiskImager is done writing the image, click the Exit button to close the program.
Now you can eject the SD card from your SD card reader. The Raspbian operating system is
now loaded on your SD card.

Linux: Loading Raspbian onto an SD Card
If you downloaded Raspbian to a Linux machine, follow these steps to load Raspbian onto an SD
card:

1. Load your SD card into your SD card reader. Open a command-line terminal. Determine the
device file of the SD card by typing in df -h at the command line and pressing the Enter key.
You may see your SD card as device file /dev/sdb1, as shown in Listing A.1.

LISTING A.1 Device File Listing

Click here to view code image

$ df -h
Filesystem Size Used Avail Use% Mounted on
/dev/sda1 292G 29G 248G 11% /
udev 989M 4.0K 989M 1% /dev
tmpfs 400M 960K 399M 1% /run
none 5.0M 0 5.0M 0% /run/lock
none 998M 592K 997M 1% /run/shm
none 100M 24K 100M 1% /run/user
/dev/sdb1 3.7G 4.0K 3.7G 1% /media/christine/1427-8FBE
$

2. Unmount the device file you discovered in step 1. Type the command umount
media_card_device_file_name (where media_card_device_file_name is the device file name
assigned to your SD card) and press the Enter key. (Watch the command used here. The
command is umount not unmount.) Listing A.2 shows an example, where /dev/sdb1 is
the device file name of the SD card.

LISTING A.2 Unmounting the Device File

$ umount /dev/sdb1
$

3. Assuming that you have downloaded the Raspbian operating system zip file already, you need
to extract the Raspbian image from the zip file. At the command line, using the cd command, go
to where the image file is currently located on the Linux system. For example, you may have it
in your Downloads directory.
When you are in the correct directory, use the unzip command to extract the Raspbian image
file. Listing A.3 shows an example of the commands you might need to use.

LISTING A.3 Going to the Directory Containing the Image File

Click here to view code image

$ cd /home/christine/Downloads
$ pwd
/home/christine/Downloads
$ ls
2013-02-09-wheezy-raspbian.zip
$ unzip 2013-02-09-wheezy-raspbian.zip
Archive: 2013-02-09-wheezy-raspbian.zip
 inflating: 2013-02-09-wheezy-raspbian.img
$ ls
2013-02-09-wheezy-raspbian.img 2013-02-09-wheezy-raspbian.zip
$

4. Type the following command:
Click here to view code image

sudo dd bs=4M if=image file name of=/device_file_of_SD_card

(replacing image file name with the actual name of your image file and
device_file_of_SD_card with the actual SD card device file) and press the Enter key. Listing
A.4 shows a command that is similar to what you need to enter.

LISTING A.4 Moving the Image File to the SD Card

Click here to view code image

$ sudo dd bs=4M if=2013-02-09-wheezy-raspbian.img of=/dev/sdb1

[sudo] password for christine:
$

This command moves the image file to the SD card. Be patient at this point. It will take a long
time for the image file to be written to your SD card. You will know when it is done because
you will get your command prompt back.

Watch Out!: Wrong Device File
If you type in the wrong device file name, you might wipe out an important partition,
such as your computer’s root partition. That would be bad.

5. It is important to make sure your SD card does not get corrupted when you remove it.
Therefore, before you remove it from the SD card reader, enter the command sudo sync and
press the Enter key, as shown in Listing A.5.

LISTING A.5 Avoiding Corrupting the SD Card

Click here to view code image

$ sudo sync
[sudo] password for christine:
$

Now you can remove your card from the reader. The Raspbian operating system is loaded on your SD
card.

Mac: Loading Raspbian onto an SD Card
If you downloaded Raspbian to a Mac, follow these steps to load Raspbian onto an SD card:

1. If you do not already have one, download and install a disk image writer utility. The RPi-sd
card builder utility is the recommended tool. You can find it by opening your favorite web
search engine and typing in the name RPi-sd card builder. Doing this ensures that you
obtain the latest utility copy.

2. After you download the RPi-sd card builder utility, extract it by double-clicking the
downloaded zip file. Figure A.5 shows that the RPi-sd card builder utility has been extracted
and is represented by a Raspberry icon.

FIGURE A.5 The extracted RPi-sd card builder utility.

3. Insert your SD card into your SD card reader. It should appear as “Untitled” under Devices in
the Finder utility.

4. Assuming that you have downloaded the Raspbian operating system zip file and extracted the
image file, run the RPi-sd card builder utility. It will ask for the image file, as shown in Figure
A.6. Use Finder to browse to the image file.

FIGURE A.6 The RPi-sd card builder utility asking for the image.

5. When the utility asks if the SD card is connected, click Continue. When it shows you a list of
SD cards, select the correct one, as shown in Figure A.7.

FIGURE A.7 The RPi-sd card builder utility asking for the SD card.

Watch Out!: Which One Is My SD Card?
This step can be very confusing. The SD card may appear with the name “Untitled” and
appear to have the wrong disk size. Knowing what storage devices are currently
connected to your system and their names will help you ensure that you properly select
your SD card. The wrong selection here could wipe out the wrong disk, such as a
shared network drive.

When the utility finishes transferring the operating system image to your SD card, it tells you to
physically remove the card after you have unmounted it. However, the utility actually unmounts
the card for you when it is done. It is best to watch the Finder window until your SD card goes
away. When it does, you know that the RPi-sd card builder utility has finished the image
transfer process and unmounted your SD card. Now, you can physically remove the card from
the SD card reader.

6. Check to make sure the RPi-sd card builder utility worked correctly. After you remove the SD
card from the card reader, put it back into the card reader in order to remount the card to your
Mac. You should see a display of files similar to what is shown in Figure A.8. Unmount the SD
card and remove it from your card reader. The Raspbian operating system is now loaded on
your SD card.

FIGURE A.8 A correctly created SD card.

Index

Symbols
// (floor division operator), 98
{} placeholder, 102-103
* (asterisk), as pattern for regular expressions, 329
“ (double quotes), print function syntax, 72-73
(hash symbol), 80
| (pipe symbol), 331
+ (plus sign), 330
? (question mark), 330
‘ (single quotes), print function syntax, 72-73

A
absolute directory references, 219
accessing

data from dictionaries, 178-180
with get operation, 178-179
with for loops, 179
with sorted() function, 179-180

data in tuples, 157
GUI, 29
information from sets, 189-192

set difference, 190-191
set intersection, 190
set membership, 189
set union, 189-190
symmetric set difference, 191

range of values in tuples, 157-158
accessor methods, 281-283
acquiring Raspberry Pi, 9-11
.add operation, 188-189
adding

comments to Python scripts, 80
elements to sets, 188-189
line feeds with escape sequences, 75-76
new data values to lists, 164-165
subclasses to object module file, 298-300
widgets to windows, 366-370

advanced regular expression features, 330-332
Akerman, Dave, 9
allowing input in Python scripts, 88-89
altering strings with functions, 202-204

string-joining functions, 205
string-splitting functions, 204-205
string-testing functions, 205-206

analog televisions, connecting Raspberry Pi to, 15
anchor characters as pattern for regular expressions, 324-325
AND operators, 98
Apache web server

CGI, 473-475
installing, 470-471

append() function, 164
arguments

passing, 244-246
print function, 72-73

array() function, 111
arrays

associative arrays, 175-176
creating with NumPy module, 111-112

ASCII code, converting to string value, 200
assigning

calculation results to variables, 101
value to variables, 82-86

long string values, 84-85
number values, 85-86

associative arrays, 175-176
asterisk (*), as pattern for regular expressions, 329
asynchronous events, 547-548
audio, adding to games, 407
available modules, exploring, 264-265

B
backslash, 75
base classes, 294
binary operators, 98
bind() function, 441
Blender3D, 389
blinking the LED, 540-541

Boolean comparisons, 124-125
booting

directly to GUI, 35-36
Raspberry Pi, 21-23

troubleshooting, 24-25
break statement, terminating infinite loops, 146-147
Broadcom chip, 529
building

Gertboard circuit, 538-539
Pi Cobbler circuit, 537-538

built-in modules, 258
Button widget, 373
buying Raspberry Pi, 9-11

required peripherals, 11-16
keyboard, 16
output display, 15-16
power supply, 13-15
SD card, 12-13

C
calculations

complex number math, 105-106
floating-point accuracy, 102
Fraction object, 103-105
variables, 100-101

calendar command, 31
camel Case, 194
cases, selecting, 17-18
cat -n command, 338-339
centering photos, 503-507
CGI (Common Gateway Interface), 473-475

debugging, 480-482
cgi module, 484-487
changing

order of operations, 100
passwords, 32-33

character classes
negating, 327-328
as pattern for regular expressions, 326-327

charitable organizations
Raspberry Pi Foundation, 9

Checkbutton widget, 373-375
classes, 278-279

the class problem, 293-294
default attribute values, 279-280
deleting, 285
documenting, 286
inheritance, 295-302
instantiating, 279
methods, 280-287

accessor methods, 281-283
constructors, 283-284
mutator methods, 280-281

modules, creating, 287-289
output, customizing, 284-285
subclasses, 294-295, 308-314

creating, 297-298
polymorphism, 306
storing in its own object module file, 301-302

superclasses, 294
client programs

creating, 441-444
running, 443-445

client/server programs, 438-439
closing files, 228-231
cocos2D, 389
color coding syntax in development environment, 53
combining condition checks, 126-127
command line, 29-33

entering commands, 31-33
whoami command, 29

commands
calendar, 30
cat -n, 338-339
for creating Python scripts, 65
entering at command line, 31-33
ls, 31
mkdir, 31
nano, 65
pwd, 31
reboot, 31
reviewing, 54

for running Python scripts, 65
structured commands, 115

if statement, 115-117
sudo, 32
for testing Python statements, 65
whoami, 29

comments, adding to scripts, 80
comparing

discard and remove operations, 193
Model A and Model B, 10-11
Python v2 and Python v3, 46
tuples, 124
values

Boolean comparisons, 124-125
numeric comparisons, 122
string comparisons, 122-124

compiled programming languages, 50
complex numbers, 105-106

creating, 105
concatenating

lists, 165-166
tuples, 160

condition checks
combining, 126-127
negating, 127-128

configuring
direct bootup to GUI, 35-36
U.S. keyboard, 49-50

connecting
to GPIO, 530-534

via Gertboard, 533-534
via Pi Cobbler, 532-533

to MySQL databases, 452
to PostgreSQL databases, 463-464
Raspberry Pi to analog televisions, 15
Raspberry Pi to modern output displays, 16

constructors, 283-284
controlling

music playback, 517-521
output with escape sequences, 75-76

converting

ASCII code to string value, 200
variable data types, 89-90

count() function, 166
creating

arrays with NumPy module, 111-112
class modules, 287-289
client programs, 441-444
complex numbers, 105
custom modules, 264-275
dictionaries, 176
factorial functions, 254-255
fractions, 103-105
functions, 240
image presentation script, 495-496
lists, 160-161
multidimensional lists, 167
MySQL databases, 449-450
output with print function, 78
PostgreSQL databases, 459-460
Python scripts

commands used for, 65
in IDLE, 62-63
with nano, 64-65

server programs, 439-441
sets, 187-188
shapes, 404-407
strings, 200-201
subclasses, 297-298
tuples, 155-156
web forms, 483-484
windows, 364-366

CSSSelector() method, 435-436
custom modules

creating, 264-272, 272-273
testing, 267-268, 272

customizing class output, 284-285

D
dash shell, 29
data types, 86-88

converting, 89-90

in NumPy module, 110-111
range, 170-171
tuples, 155-160

accessing data in, 157
comparison operations, 158-159
concatenating, 160
creating, 155-156
maximum value, identifying, 159-160
minimum value, identifying, 159-160
number of values in, identifying, 159
range of values, accessing, 157-158

databases, 447
MySQL, 447-458

connecting to, 452
creating, 449-450
environment, setting up, 448-452
inserting data, 455-457
installing, 448
querying data, 457-458
tables, creating, 451-452
user accounts, creating, 450-451

PostgreSQL, 447, 458-466
connecting to, 463-464
creating, 459-460
environment, setting up, 459-463
inserting data, 464-465
querying data, 465-466
tables, creating, 461-463
user accounts, creating, 460-461

publishing data on the web, 478
relational databases, 451

Debian, 28
debugger features (IDLE), 56
debugging CGI, 480-482
deep copy, 184
default class attribute values, 279-280
default parameter values, setting, 246-247
defining

classes, 278-279
event handlers, 370-372
functions, 240-243

deleting
class instances, 285
list values, 163

designating open() function mode, 222-223
desktop environments (Linux), changing, 34
detecting GPIO input, 542
development environment shell (Python), 50, 53-57. See also IDLE
dictionaries, 175-176

accessing data from, 178-180
with get operation, 178-179
with for loops, 179
with sorted() function, 179-180

creating, 176
deep copy, 184
managing, 181-182
populating, 176-178
programming with, 182-187
shallow copy, 184
updating, 180-181
values, retrieving, 249-250

Digital Clock icon (LXPanel), 39
dir() function, 262
directories

absolute directory references, 219
home directory, 31
Linux directory structure, 217-219
managing, 220-221
path directories, checking, 270-271
present working directory, 31
production directory, moving modules to, 268-270
relative directory references, 219
test directories, creating modules in, 266-267
upside-down trees, 217

discard operation, 192
displaying

numbers, 102-103
text on game screen, 399-403
Unicode, 76-77

distributions (Linux), 27
documentation for Debian distribution, 28
documenting classes, 286

dot character as pattern for regular expressions, 325-326
double quotes (“), print function syntax, 72-73
downloading Raspbian, 20
dpi (dots per inch), 494
drawing shapes, 404-407
duty cycle, 541
dynamic webpages, 476-480

E
ehlo() method, 429
elements

adding to sets, 188-189
set difference, 190-191
set intersection, 190
set membership, 189
set union, 189-190
symmetric set difference, 191

elif statement, 120-121
else clause (while loops), 145
else statement, 118-120
email servers, 423-432

Linux, modular email environment, 425-427
remote email servers, 428
RFC 2822 email standard, 429
sending messages, 430-432
smtplib module, 427-429

entering commands at command line, 31-33
Entry widget, 397-398
equations

complex number math, 105-106
floating-point accuracy in calculations, 102
Fraction object, 103-105
numbers, displaying, 102-103
variables, 100-101

errors
generic exception handling, 350
runtime error exceptions, 340-342
syntactical error exceptions, 337-339

escape sequences
line feeds, adding, 75-76
output, controlling, 75-76

quotes, protecting, 76
Unicode, displaying, 76-77

etree methods, parsing HTML elements, 434-435
evaluating function results, 125-126
event handling, 370-372, 403-404
event-driven programming, 362-363
exception handling, 337, 342-344. See also troubleshooting

generic exceptions, 350
for multiple exceptions, 344-352
runtime error exceptions, 340-342
syntactical error exceptions, 337-339
try except statement, 344

options, 350-352
exit () statement, 57
exiting

IDLE, 57
Python interactive shell, 52

exploring
available modules, 264-265
inheritance, 308-314
Python interactive shell, 54
subclasses, 308-314

expressions, assigning results of to variables, 85-86
extend() function, 166
extracting data from lists, 161-162
extracting data from webpages, 432-438

F
factorial algorithms, 254
factorial functions, creating, 254-255
features

of IDLE, 56-57
debugger, 56
help facility, 57

of Raspberry Pi, 10-11
fifengine, 389
file extensions, .py, 63
File Manger icon (LXPanel), 38
file objects, 223-224
files

closing, 228-231
managing, 220-221
opening, 221-224
preexisting files, writing to, 234
reading, 224-228

entire file, 224-225
line by line, 225-227, 228-229
nonsequentially, 227-228

types of, 217
writing to, 231-235, 235-236

find() function, 208
findall() function, 320
finditer() function, 320
flapping, 544
flavors of Python modules, 258
floating-point accuracy in calculations, 102
floating-point values, formatting, 212-213
floor division operator (//), 98
folders, present working directory, 31
Font object, creating, 399
for loops, 132-143

assigning data types from a list, 135-136
iterating with variables, 137
iteration

with range function, 137-140
through character strings in a list, 136-137
through numbers in a list, 133-134

nested loops, 149-150
structure, 134-135
traversing dictionaries with, 179
validating user input with, 141-142

format function, 102
format() function, 209-210

positional formatting, 214-215
sign formatting, 213-214

formatting
long print lines with string concatenation, 79
numbers

floating-point values, 212-213
integer values, 212

output with print function, 73-75

strings for output, 209-215
format() function, 209-210
named placeholders, 210-211
positional placeholders, 210

webpage output, 475-476
Fraction object, 103-105
frozensets, 187
fsum() function, 108
functions, 239-243

append(), 164
array() function, 111
bind() function, 441
count() function, 166
creating, 240
defining, 240-243
dir(), 262
extend() function, 166
factorial functions, creating, 255-254
find() function, 208
findall() function, 320
finditer() function, 320
format function, 102
format() function, 209-210
fsum() function, 108
index() function, 167
input function, 88-89
int function, 89
len() function, 159
lists, 253-254
match() function, 319-320
modules, 257-259

built-in, 258
flavors of, 258
packages, 259

naming, 242-243
nested functions, 89
open() function, 221-222
passing values to, 244-250

arguments, 244-246
pop() function, 163
pow() function, 108

prcal(), 263
print function, 71-75

arguments, 72-73
output, formatting, 73-75

range function, 137-140
in re module, 319-320
recursion, 254
results, testing, 125-126
reverse() function, 167
reversed(), 169-170
rfind() function, 208
search() function, 320
sort() function, 166
sorted() function, 169-170, 179-180
string-manipulation functions, 202-204
type function, 87
variables

global variables, 251-253
local variables, 251

G
game designers, 388
game developers, 388
game frameworks, 388
game programming, 387-388

game frameworks, 388
libraries, 388
PyGame library

adding sound to games, 407
event handling, 403-404
game screen, setting up, 397-398
installing, 390-391
modules, 394
object classes, 396
setting up, 388-394
shapes, drawing, 404-407
source code, obtaining, 392-393
verifying installation, 390

Raspberry Pie game, 410-417
SDL, 388

game screen

displaying text on, 399-403
graphics

interacting with, 409-410
moving, 408-409, 411-414

setting up, 397-398
generic exception handling, 350
Gertboard

circuit, building, 538-539
connecting to GPIO interface, 533-534

get operation, 178-179
global variables, 251-253
GNOME, 34
GPIO (General Purpose Input/Output) interface, 529-534

blinking the LED, 540-541
connecting to, 530-534

via Gertboard, 533-534
via Pi Cobbler, 532-533

input
detecting, 542
events, 546-548
polling, 545-546
switch bounce, 548

input signals, 544-545
output

testing, 539-540
viewing, 536-539

pin layout, 530
PWM output, 530
RPI.GPIO module, 535-536

installing, 535
startup methods, 535-536

GPU (Graphics Processing Unit), 10
graphics

interacting with, 409-410
moving on the game screen, 408-409, 411-414

grouping
comparisons with logical operators, 126-127
multiple statements

elif statement, 120-121
else statement, 118-120
if statement, 117-118

regular expressions, 331-332
GUI (graphical user interface), 29-43. See also GUI programming

accessing, 29
booting directly to, 35-36
LXDE graphical interface, 35

desktop icons, 35
logging out of, 38-39
LXPanel, 36-39

GUI programming, 361-363, 381-382
frame, 362
packages, 363-364

tkinter package, 364-372
widgets, 362
window interface, 362

H
Hacking Raspberry Pi, 19
hash symbol (#), 80
HD (High Definition), 494-495

megapixel rating, 494-495
resolution, 494

HDMI cables, connecting Raspberry Pi to output display, 16
help function (modules), 261-262
help utility

IDLE, 57
PyGame library, 404
Python interactive shell, 52

history of Raspberry Pi, 7-9
home directory, 31
HTML

elements, parsing, 434-435
files, serving, 471-472
web forms, creating, 483-484

hyperbolic functions in math module, 108

I
icons

File Manger icon (LXPanel), 38
LXDE desktop icons, 35
LXDE Programs Menu icon, 37-39

ICs (integrated circuits), SoC, 10

identifying
maximum value in a tuple, 159-160
minimum value in a tuple, 159-160
number of values in a tuple, 159

IDLE, 55-57
color coding, 56
exiting, 57
features, 56-57

debugger, 56
help facility, 57

online documentation, 57
print function, 58-59
Python scripts

creating, 62-63
running, 60-62

starting up, 55
verifying installation, 47-48

if statement, 115-117
condition checks, negating, 127-128
multiple statements, grouping, 117-118
syntax, 115

image handling, testing PyGame library for, 405-407
image presentation script

creating, 495-496
images, locating, 497-498
modifying, 513
photos

centering, 503-507
framing, 503
scaling, 501-503
storing on removable drive, 498-501

presentation screen, setting up, 496-497
presentation speed, improving, 507-513

importing
keywords into Python, 81-82
math module to Python scripts, 106
re module, 319

improving image presentation speed, 507-513
indentation

in loops, 132
multiple statements, grouping, 117-118

index() function, 167
index values (tuples), 157
infinite loops, 146-147
inheritance, 294-302, 307-313

subclasses, creating, 297-298
syntax, 296

initializing PyGame library, 396-397
input, 91-90

GPIO
detecting, 542
events, 546-548

switch bounce, 548
validating with for loops, 141-142

input function, 88-89
input polling, 545-546
input signals, GPIO, 544-545
installing

Apache web server, 470-471
LXML module, 433
module-building tools, 391-392
MySQL, 448
MySQL/Connector module, 452
packages for PyGame library, 393-394
PostgreSQL, 458
psycopg2 module, 463
PyGame library, 390-391
Python, 48-50
RPI.GPIO module, 535
screen saver software package, 41-43

instantiating classes, 279
int function, 89
integers

converting to strings, 89-90
formatting, 212

interacting with graphics on game screen, 409-410
interactive shell (Python), 51-54

exiting, 52
exploring, 54
help utility, 52
Python scripts, running, 60
Python v2, 51

verifying, 46-47
interpreted programming languages, 50
isdigit() method, 125-126
iteration, 131

lists, 168-169
for loop, 132-143
for loops

iterating through character strings in a list, 136-137
iterating through numbers in a list, 133-134
iterating with range function, 137-140
iterating with variables, 137

tuples, 168-169
while loops, 143-148

using numeric conditions, 143-144
using string conditions, 144-145

J-K
joining strings, 205
jumping to lines with syntactical errors (nano), 339
KDE, 34
keyboard

selecting, 16
setup, verifying, 49-50

key/value pairs, 175
accessing from dictionaries, 178
dictionaries, populating, 176-178
updating, 180-181

keywords, 81-82
importing into Python, 81-82

kivy, 389

L
Label widget, 373
LAMP (Linux-Apache-MySQL-PHP) server environment, 447
Leaf Pad, 64
LED, blinking, 540-541
len() function, 159
libraries for game programming, 388
LIFO (last in, first out), 164
line feeds, adding with escape sequence, 75-76

Linux, 27-28
command line. See command line, 29-33
desktop environment, changing, 34
directory structure, 217-219

absolute directory references, 219
relative directory references, 219

distributions, 27
modular email environment, 425-427

Linux shell, 29
list comprehensions, 170
Listbox widget, 378-380
listing functions in modules, 262
lists, 160-167. See also tuples

concatenating, 165-166
creating, 160-161
extracting data from, 161-162
iteration, 168-169
list values

deleting, 163
popping, 163
replacing, 162

multidimensional lists, 167-168
creating, 167
referencing values in, 168

new data values, adding, 164-165
sorting, 169-170
using with functions, 253-254

loading
PyGame library, 396-397
Raspbian to SD card

from Linux, 556-558
from Mac OS, 558-560
from Windows, 553-556

local variables, 251
locating images for presentation script, 497-498
logarithmic functions in math module, 108
logging in to Raspberry Pi, 28-29
logging out of Linux GUI sessions, 38-39
logical operators, 98-100

comparisons, grouping, 126-127
long print lines

comments, adding, 80
formatting with string concatenation, 79

loops
indentation, 132
infinite loops, 146-147
for loop, 132-143
for loops

assigning data types from a list, 135-136
iterating through numbers in a list, 133-134
iterating with range function, 137-140
structure, 134-135
validating user input with, 141-142

nested loops, 149-150
while loops, 143-148

else clause, 145
entering data with, 147-148
iteration using numeric conditions, 143-144
iteration using string conditions, 144-145
terminating, 144

ls command, 31
LXDE graphical interface, 35

desktop icons, 35
LXPanel, 36-39

Digital Clock icon, 39
ScreenLock icon, 39

LXDE Logout Manager, 38-39
LXDE Programs Menu icon, 37-39
LXML module

CSSSelector() method, 435-436
etree methods, 434-435
installing, 433

LXPanel, 36-39
Digital Clock icon, 39
File Manger icon, 38
LXDE Logout Manager, 38-39
LXDE Programs Menu icon, 37-39
ScreenLock icon, 39

LXTerminal icon (LXDE), 35

M
managing

dictionaries, 181-182
directories, 220-221

manipulating
files, 220-221
strings with functions, 202-204

string-joining functions, 205
string-splitting functions, 204-205
string-testing functions, 205-206

mappings, 178
match() function, 319-320
math module, 106-107. See also NumPy module

hyperbolic functions, 108
logarithmic functions, 108
number theory functions, 107-108
statistical math functions, 110
trigonometric functions, 108

mathematical operators, 97-100
binary operators, 98
floor division operator, 98
logical operators, 98-100

comparisons, grouping, 126-127
order of operations, 100
shortcuts, 103

maximum value in a tuple, identifying, 159-160
megapixel rating, 494-495
Menu widget, 380-381
methods, 280-287

accessor methods, 281-283
constructors, 283-284
CSSSelector() method, 435-436
ehlo() method, 429
file object methods, 223-224
isdigit() method, 125-126
mutator methods, 280-281
os methods, 220-221
overriding, 306
property() method, 286-287
range() method, 171
in socket module, 439

minimum value in a tuple, identifying, 159-160
mkdir command, 31

Model A, 7
features, 10-11

Model B, 10
features, 10-11

modifying
image presentation script, 513
sets, 192-193

modules, 257-259
available modules, exploring, 264-265
built-in, 258
cgi module, 484-487
class modules, creating, 287-289
custom modules

creating, 264-272, 272-273
testing, 267-268, 272

flavors of, 258
help function, 261-262
installing tools for building, 391-392
listing functions in, 262
moving to a production directory, 268-270
MySQL/Connector module, installing, 452
naming, 266
networking modules, 423
packages, 259
psycopg2 module

coding with, 463-466
installing, 463

in PyGame library, 394
re module, 319-321

compiled regular expressions, 320-321
RPI.GPIO module, 535-536

installing, 535
startup methods, 535-536

smtplib module, 427-429
socket module, 439
standard modules, 259-261

moving
graphics on the game screen, 408-409
modules to a production directory, 268-270
operating system to SD card, 21

multidimensional lists, 167-168

creating, 167
referencing values in, 168

multiple statements, grouping
elif statement, 120-121
else statement, 118-120
if statement, 117-118

music
playback, controlling, 517-521
playing, 514-521
playlists, 516-517
special presentations, 521-525
storing on removable drive, 515-516

mutator methods, 280-281
MySQL, 447-458

databases
connecting to, 452
creating, 449-450
inserting data, 455-457
querying data, 457-458

environment, setting up, 448-452
installing, 448
tables, creating, 451-452
user accounts, creating, 450-451

MySQL/Connector module, installing, 452

N
named placeholders, 210-211
naming

functions, 242-243
modules, 266
variables, 82

nano
commands, 65
jumping to lines with syntactical errors, 339
Python scripts, creating, 64-65
verifying installation, 48
website, 65

negating
character classes, 327-328
condition checks, 127-128

nested functions, 89

nested loops, 149-150
network cables, 18-19
networking, email servers, 423-432
networking modules, 423

urllib module, 432-433
number theory functions in math module, 107-108
number values, assigning to variables, 85-86
numbers

displaying, 102-103
floating-point values, formatting, 212-213
integer values, formatting, 212

numeric comparison operators, 122
NumPy module, 110-112

arrays, 111-112
data types, 110-111

O
obtaining

information from sets, 189-192
set difference, 190-191
set intersection, 190
set membership, 189
set union, 189-190
symmetric set difference, 191

source code for PyGame library, 392-393
official Python website, 57
online documentation, IDLE, 57
OOP (object-oriented programming), 277-280

classes, 278-279
class modules, creating, 287-289
the class problem, 293-294
inheritance, 295
instantiating, 279
methods, 280-287
subclasses, 294-295

default attribute values, 279-280
open() function, 221-222

mode, designating, 222-223
opening files, 221-224
operating systems

downloading, 21

image, troubleshooting, 25
Linux, 27-28

desktop environment, changing, 34
modular email environment, 425-427

moving to SD card, 21
Raspbian

loading to SD card, 553-560
updating, 41-43

selecting, 20
operators, mathematical operators, 97-100

binary operators, 98
logical operators, 98-100
order of operations, 100
shortcuts, 103

OR operators, 98
order of operations, changing, 100
os methods, 220-221
output, 91-90

{} placeholder, 102-103
of classes, customizing, 284-285
controlling with escape sequences, 75-76
formatting with print function, 73-75
GPIO

testing, 539-540
viewing, 536-539

producing from Python scripts, print function, 71-78
separators, 83
strings, formatting, 209-215

format() function, 209-210
positional placeholders, 210

output display, selecting, 15-16
overriding a method, 306

P
packages, 259

in GUI programming, 363-364
tkinter package, 364-372

for PyGame library, installing, 393-394
PyPi, 261

Panda3D, 389
parameters, 244-246

default values, setting, 246-247
multiple parameters, retrieving, 248-249
positional parameters, 246

parsing
data from webpages, 433
HTML elements, 434-435

passing by reference, 253
passing values to functions, 244-250

arguments, 244-246
password prompt, 32
passwords, changing, 32-33
path directories, checking, 270-271
patterns for regular expressions

anchor characters, 324-325
asterisk, 329
braces, 330-331
character classes, 326-327
dot character, 325-326
grouping, 331-332
pipe symbol, 331
plain text, 321-323
plus sign, 330
question mark, 330
ranges, 328-329
special characters, 323

performing repetitive tasks, 131
peripherals

cases, 17-18
cords, troubleshooting, 24
network cables, 18-19
plugging in, 21-23
purchasing, 19
required peripherals, 11-16

keyboard, 16
output display, 15-16
power supply, 13-15
SD card, 12-13

SD card, transferring operating system to, 21
self-powered USB hub, 18
USB mouse, 18
verifying operation, 21-23

phone number validator script, 333-334
photos

centering, 503-507
scaling, 501-503
special presentations, 521-525
storing on removable drive, 498-501

Pi Cobbler
circuit, building, 537-538
connecting to GPIO interface, 532-533

pin layout, GPIO interface, 530
pipe symbol (|), 331
placeholders

{} placeholder, 102-103
named placeholders, 210-211
positional placeholders, 210

plain text as regular expression pattern, 321-323
playing music, 514-521

playlists, 516-517
songs, queuing, 515

playlists, 516-517
randomizing, 521

plugging in peripherals, 21-23
plus sign (+), 330
polling, 545-546
polymorphism, 306
pop() function, 163
popping list values, 163
populating

dictionaries, 176-178
sets, 188-189, 194

portable power supplies, 15
positional formatting, 214-215
positional parameters, 246
positional placeholders, 210
POSIX BRE (Basic Regular Expression) engine, 318
POSIX ERE (Extended Regular Expression) engine, 318
PostgreSQL, 447, 458-466

databases
connecting to, 463-464
creating, 459-460

querying data, 465-466
environment, setting up, 459-463
inserting data, 464-465
installing, 458
tables, creating, 461-463
user accounts, creating, 460-461

pow() function, 108
power supply

portable power supplies, 15
selecting, 13-15

prcal() function, 263
preexisting files, writing to, 234
prepackaged kits, 11-12
present working directory, 31
print function, 71-75

arguments, 72-73
IDLE, 58-59

private attributes, 281
privileges

root account, 32
sudo command, 32

procedural programming, 277
programming

with dictionaries, 182-187
event-driven programming, 362-363
game programming. See game programming, 381-382
GUI programming, 361-363, 381-382

tkinter package, 363-364
widgets, 362
window interface, 362

OOP, 277-280
classes, 278-279

procedural programming, 277
with sets, 193-196
socket programming, 438-445
web programming, 447

property() method, 286-287
protecting quotes with escape sequences, 76
psycopg2 module

coding with, 463-466
installing, 463

publishing
database data on the web, 478
webpages, 472

purchasing Raspberry Pi, 9-11
required peripherals, 11-16

keyboard, 16
output display, 15-16
power supply, 13-15
SD card, 12-13

pwd command, 31
PWM output, 530, 541-542
.py file extension, 63
PyGame library, 389

event handling, 403-404
game screen

displaying text on, 399-403
setting up, 397-398

graphics
interacting with on game screen, 409-410
moving on the game screen, 408-409, 411-414

help facility, 404
image handling, testing, 405-407
initializing, 396-397
installing, 390-391, 394
loading, 396-397
modules, 394
object classes, 396
packages, installing, 393-394
setting up, 388-394
shapes, drawing, 404-407
sound, adding to games, 407
source code, obtaining, 392-393
verifying installation, 390

Pyglet, 389
PyPi (Python Package Index), 261
PySoy, 389
Python, 9. See also Python scripts

development environment shell, 50, 53-57. See also IDLE
syntax, color coding, 53

history of, 45-46
installing, 48-50

interactive shell, 51-54
exiting, 52
exploring, 54
help utility, 52

official Python website, 57
reasons for learning, 45
scripts, 51
versions, comparing, 46

Python interpreter, verifying, 46-47
Python scripts, 57-65

comments, adding, 80
creating

commands used for, 65
in IDLE, 62-63
with nano, 64-65

functions, 240-243
image presentation script

creating, 495-496
images, locating, 497-498
presentation screen, setting up, 496-497

inheritance, 299-302
input, 90-91
input, allowing, 88-89
keywords, 81-82
music script, creating, 514-515
output, 90-91

producing with print function, 71-78
phone number validator, 333-334
Raspberry Pie game, 410-417
running

commands used for, 65
in IDLE, 60-62
in interactive shell, 60

separators, 83
users, 79
variables

assigning value to, 82-86
data types, 86-88
long string values, assigning, 84-85
naming, 82
number values, assigning, 85-86

reassigning values to, 86
unassigned, 84

Python v2, interactive shell, 51
Python-Ogre, 389
PYTHONPATH environment variable, 271

Q
querying data

with MySQL, 457-458
with PostgreSQL, 465-466

question mark (?), 330
queuing songs, 515
quotes, protecting with escape sequences, 76

R
randomizing playlists, 521
range function, 137-140
range() method, 171
ranges, 170-171

as pattern for regular expressions, 328-329
Raspberry Pi

acquiring, 9-11
features, 10-11
history of, 7-9
logging in to, 28-29
prepackaged kits, 11-12
troubleshooting, 24-25

Raspberry Pi Foundation, 9, 19
Raspberry Pie game, 410-417
Raspbian

loading to SD card
from Linux, 556-558
from Mac OS, 558-560
from Windows, 553-556

updating, 41-43
re module

compiled regular expressions, 320-321
functions, 319-320
importing, 319

reading files, 224-228

entire file, 224-225
line by line, 225-227, 228-229
nonsequentially, 227-228

reasons for learning Python, 45
reassigning values to variables, 86
reboot command, 31
rebooting, 32
recursion, using with functions, 254
referencing

strings, 201-202
values in multidimensional lists, 168

regular expressions, 317-318
advanced features, 330-332
grouping, 331-332
patterns

anchor characters, 324-325
asterisk, 329
braces, 330-331
character classes, 326-327
dot character, 325-326
pipe symbol, 331
plain text, 321-323
plus sign, 330
question mark, 330
ranges, 328-329
special characters, 323

phone number validator script, 333-334
POSIX BRE engine, 318
POSIX ERE engine, 318
re module, 319-321

compiled regular expressions, 320-321
functions, 319-320

relational databases, 451
relative directory references, 219
remote email servers, 428
remove operation, 193
repetitive tasks, performing, 131
replacing list values, 162
required peripherals, 11-16

keyboard, 16
output display, 15-16

power supply, 13-15
SD card, 12-13

transferring operating system to, 21
resolution, 494

megapixel rating, 494-495
results of expressions, assigning to variables, 85-86
results of functions, testing, 125-126
retrieving

data from websites, 437-438
multiple parameters, 248-249
values with dictionaries, 249-250
webpages, 432-433

return statement, 243-244
reverse() function, 167
reversed() function, 169-170
reviewing, commands, 54
RFC 2822 email standard, 429
rfind() function, 208
root account, 32
RPI.GPIO module, 535-536

installing, 535
startup methods, 535-536

running
client programs, 443-445
Python scripts

commands used for, 65
in IDLE, 60-62
in interactive shell, 60

server programs, 443-445
runtime error exceptions, 340-342

S
scaling photos, 501-503
screen saver software package

installing, 41-43
ScreenLock icon (LXPanel), 39
scripts (Python), 51, 57-65
SD card

loading Raspbian to
from Linux, 556-558
from Mac OS, 558-560

from Windows, 553-556
selecting, 12-13
transferring operating system to, 21
troubleshooting, 24

SDL (Simple DirectMedia Layer), 388
search() function, 320
searching strings, 207-209
selecting

cases, 17-18
keyboard, 16
operating system, 20
output display, 15-16
power supply, 13-15
SD card, 12-13
Wi-Fi adapters, 18-19

self-powered USB hub, selecting, 18
sending email messages, 430-432
separators, 83
server programs, 438-439

creating, 439-441
running, 443-445

serving HTML files, 471-472
set difference, 190-191
set intersection, 190
set theory, 189
set union, 189-190
sets, 187

creating, 187-188
elements, membership, 189
frozensets, 187
modifying, 192-193
obtaining information from, 189-192
populating, 188-189, 194
programming with, 193-196
traversing, 191-192

shallow copy, 184
shapes, drawing with PyGame library, 404-407
shortcuts for mathematical operators, 103
shutting down Raspberry Pi, 23
sign formatting (format() function), 213-214

single quotes (‘), print function syntax, 72-73
slicing, 202
smtplib module, 425, 427-429
SoC (system on a chip), 10
socket module, 439
socket programming, 438-445

client programs, 438-439
creating, 441-444
running, 443-445

server programs
creating, 439-441
running, 443-445

servers, 438-439
songs

playback, controlling, 517-521
playing continuously, 522-525
playlists, 516-517

randomizing, 521
queuing, 515
special presentations, 521-525

sort() function, 166
sorted() function, 169-170, 179-180
sorting lists, 169-170
sound, adding to games, 407
source code, obtaining for PyGame library, 392-393
special characters as regular expression pattern, 323
speed of presentations, improving, 507-513
splitting strings, 204-205
sprites, 396
stacks, 164
standard modules, 259-261
starting up IDLE, 55
statements

commands for testing, 65
try except statement, 344

creating multiple blocks of, 347-350
options, 350-352

statistical math functions in math module, 110
storing

music on removable drive, 515-516
photos on removable drive, 498-501

subclasses in its own object module file, 301-302
string comparison operators, 122-124
string concatenation, 79
string literals, 72
strings

ASCII code, 200
converting to integers, 89-90
creating, 200-201
formatting

positional formatting, 214-215
sign formatting, 213-214

formatting for output, 209-215
format() function, 209-210
named placeholders, 210-211
positional placeholders, 210

joining, 205
manipulating with functions, 202-204
referencing, 201-202
regular expressions, 317-318

advanced features, 330-332
POSIX BRE engine, 318
POSIX ERE engine, 318
re module, 319-321

searching, 207-209
slicing, 202
splitting, 204-205
testing, 205-206

structure of for loops, 134-135
structured commands, 115

if statement, 115-117
multiple statements, grouping, 117-118
syntax, 115

subclasses, 294-295, 308-314
adding to object module file, 298-300
creating, 297-298
polymorphism, 306
storing in its own object module file, 301-302

sudo command, 32
superclasses, 294
superuser, 32
switch bounce, 548

symmetric set difference, 191
synchronous events, 546-547
syntactical error exceptions, 337-339
syntax

color coding, 53
if statement, 115
for inheritance, 296
input function, 88
for loop, 132
print function, 73-75
while loops, 143

T
tables, creating

for MySQL databases, 451-452
for PostgreSQL databases, 461-463

televisions, connecting Raspberry Pi to analog televisions, 15
terminating

infinite loops, 146-147
while loops, 144

test directories, creating modules in, 266-267
testing

custom modules, 267-268, 272
function results, 125-126
GPIO output, 539-540
Python statements, commands used for, 65
strings, 205-206

text editors
Leaf Pad, 64
nano

commands, 65
jumping to lines with syntactical errors, 339
Python scripts, creating, 64-65
verifying installation, 48

Text widget, 377-378
tkinter package, 364-372

Button widget, 373
Checkbutton widget, 373-375
Entry widget, 397-398
event handlers, defining, 370-372
Label widget, 373

Listbox widget, 378-380
Menu widget, 380-381
Text widget, 377-378
windows, creating, 364-366

transferring operating system to SD card, 21
transparency, adding to images, 405-406
traversing sets, 191-192
trigonometric functions in math module, 108
triple quotes, 74-78
troubleshooting Raspberry Pi, 24-25

CGI, 480-482
peripheral cords, 24

try except statement, 344
creating multiple blocks of, 347-350
options, 350-352

tuples, 155-160
accessing data in, 157
comparing, 124
comparison operations, 158-159
concatenating, 160
creating, 155-156
index values, 157
iteration, 168-169
maximum value, identifying, 159-160
minimum value, identifying, 159-160
number of values in, identifying, 159
range of values, accessing, 157-158

turning off Raspberry Pi, 23
type function, 87

U
unassigned variables, 84
Unicode, 46

displaying, 76-77
updating

dictionaries, 180-181
Raspbian Linux distribution software, 41-43
sets, 192-193

upside-down trees, 217
Upton, Eben, 7
U.S. keyboard, configuring, 49-50

USB mouse, selecting, 18
user accounts

MySQL, creating, 450-451
PostgreSQL, creating, 460-461

users, 79
utilities, Linux shell, 29

V
validating

custom modules, 272
GPIO output, 539-540
user input with for loops, 141-142

values
comparing

Boolean comparisons, 124-125
numeric comparisons, 122
string comparisons, 122-124

passing to functions, 244-250
arguments, 244-246

retrieving with dictionaries, 249-250
returning, 243-244

van Rossum, Guido, 45
variables, 81-82. See also object references

assigning value to, 82-86
long string values, 84-85
number values, 85-86

calculation results, assigning, 101
camel Case, 194
data types, 86-88

converting, 89-90
in equations, 100-101
global variables, 251-253
local variables, 251
naming, 82
parameters, 244-246

default values, setting, 246-247
multiple parameters, retrieving, 248-249
positional parameters, 246

reassigning values to, 86
separators, 83
unassigned, 84

verifying
IDLE, 47-48
keyboard setup, 49-50
peripherals, 21-23
PyGame library installation, 390
Python interactive shell, 46-47
Python interpreter, 46-47
text editor installation, 48

versions of Python, comparing, 46
viewing GPIO output, 536-539

W
web forms, 482-487

creating, 483-484
web programming, 447

CGI, 473-475
dynamic webpages, 476-480
serving HTML files, 471-472
web forms, 482-487

creating, 483-484
webpages, formatting output, 475-476

web servers
Apache web server, 473-475

installing, 470-471
HTML elements, parsing, 434-435
webpages

parsing data from, 433
retrieving, 432-433

webpages
CGI, debugging, 480-482
dynamic webpages, 476-480
output, formatting, 475-476
publishing, 472
retrieving, 432-433

websites
nano editor homepage, 65
official Python website, 57
PyGame wiki, 394
PyPi, 261
Raspberry Pi Foundation, 19
retrieving data from, 437-438

while loops, 143-148
else clause, 145
entering data with, 147-148
iteration

using numeric conditions, 143-144
using string conditions, 144-145

nested loops, 149-150
terminating, 144

whoami command, 29
widgets, 362

adding to windows, 366-370
Button widget, 373
Checkbutton widget, 373-375
Entry widget, 397-398
Label widget, 373
Listbox widget, 378-380
Menu widget, 380-381

Wi-Fi adapters, selecting, 18-19
window interface (GUI programming), 362
windows

creating, 364-366
widgets, adding, 366-370

writing to files, 231-236
preexisting files, 234

X-Y-Z
Xfce, 34

	About This eBook
	Title Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	About the Authors
	Dedication
	Acknowledgments
	We Want to Hear from You!
	Reader Services
	Introduction
	Programming with Python
	Who Should Read This Book?
	Conventions Used in This Book

	Part I: The Raspberry Pi Programming Environment
	Hour 1. Setting Up the Raspberry Pi
	What Is a Raspberry Pi?
	Acquiring a Raspberry Pi
	What Raspberry Pi Peripherals Are Necessary?
	Nice Additional Peripherals
	Deciding How to Purchase Peripherals
	Getting Your Raspberry Pi Working
	Troubleshooting Your Raspberry Pi
	Summary
	Q&A
	Workshop

	Hour 2. Understanding the Raspbian Linux Distribution
	Learning About Linux
	Interacting with the Raspbian Command Line
	Interacting with the Raspbian GUI
	Summary
	Q&A
	Workshop

	Hour 3. Setting Up a Programming Environment
	Exploring Python
	Checking Your Python Environment
	Installing Python and Tools
	Learning About the Python Interpreter
	Learning About the Python Interactive Shell
	Learning About the Python Development Environment Shell
	Creating Python Scripts
	Knowing Which Tool to Use and When
	Summary
	Q&A
	Workshop

	Part II: Python Fundamentals
	Hour 4. Understanding Python Basics
	Producing Python Script Output
	Formatting Scripts for Readability
	Understanding Python Variables
	Assigning Value to Python Variables
	Learning About Python Data Types
	Allowing Python Script Input
	Summary
	Q&A
	Workshop

	Hour 5. Using Arithmetic in Your Programs
	Working with Math Operators
	Calculating with Fractions
	Using Complex Number Math
	Getting Fancy with the math Module
	Using the NumPy Math Libraries
	Summary
	Q&A
	Workshop

	Hour 6. Controlling Your Program
	Working with the if Statement
	Grouping Multiple Statements
	Adding Other Options with the else Statement
	Adding More Options Using the elif Statement
	Comparing Values in Python
	Checking Complex Conditions
	Negating a Condition Check
	Summary
	Q&A
	Workshop

	Hour 7. Learning About Loops
	Performing Repetitive Tasks
	Using the for Loop for Iteration
	Using the while Loop for Iteration
	Creating Nested Loops
	Summary
	Q&A
	Workshop

	Part III: Advanced Python
	Hour 8. Using Lists and Tuples
	Introducing Tuples
	Introducing Lists
	Using Multidimensional Lists to Store Data
	Working with Lists and Tuples in Your Scripts
	Creating Lists by Using List Comprehensions
	Working with Ranges
	Summary
	Q&A
	Workshop

	Hour 9. Dictionaries and Sets
	Understanding Python Dictionary Terms
	Exploring Dictionary Basics
	Programming with Dictionaries
	Understanding Python Sets
	Exploring Set Basics
	Obtaining Information from a Set
	Modifying a Set
	Programming with Sets
	Summary
	Q&A
	Workshop

	Hour 10. Working with Strings
	The Basics of Using Strings
	Using Functions to Manipulate Strings
	Formatting Strings for Output
	Summary
	Q&A
	Workshop

	Hour 11. Using Files
	Understanding Linux File Structures
	Opening a File
	Reading a File
	Closing a File
	Writing to a File
	Summary
	Q&A
	Workshop

	Hour 12. Creating Functions
	Utilizing Python Functions in Your Programs
	Returning a Value
	Passing Values to Functions
	Handling Variables in a Function
	Using Lists with Functions
	Using Recursion with Functions
	Summary
	Q&A
	Workshop

	Hour 13. Working with Modules
	Introducing Module Concepts
	Exploring Standard Modules
	Learning About Python Modules
	Creating Custom Modules
	Summary
	Q&A
	Workshop

	Hour 14. Exploring the World of Object-Oriented Programming
	Understanding the Basics of Object-Oriented Programming
	Defining Class Methods
	Sharing Your Code with Class Modules
	Summary
	Q&A
	Workshop

	Hour 15. Employing Inheritance
	Learning About the Class Problem
	Understanding Subclasses and Inheritance
	Using Inheritance in Python
	Using Inheritance in Python Scripts
	Summary
	Q&A
	Workshop

	Hour 16. Regular Expressions
	What Are Regular Expressions?
	Working with Regular Expressions in Python
	Defining Basic Patterns
	Using Advanced Regular Expressions Features
	Working with Regular Expressions in Your Python Scripts
	Summary
	Q&A
	Workshop

	Hour 17. Exception Handling
	Understanding Exceptions
	Handling Exceptions
	Handling Multiple Exceptions
	Summary
	Q&A
	Workshop

	Part IV: Graphical Programming
	Hour 18. GUI Programming
	Programming for a GUI Environment
	Examining Python GUI Packages
	Using the tkinter Package
	Exploring the tkinter Widgets
	Summary
	Q&A
	Workshop

	Hour 19. Game Programming
	Understanding Game Programming
	Learning About Game Frameworks and Libraries
	Setting Up the PyGame Library
	Using PyGame
	Learning More About PyGame
	Dealing with PyGame Action
	Summary
	Q&A
	Workshop

	Part V: Business Programming
	Hour 20. Using the Network
	Finding the Python Network Modules
	Working with Email Servers
	Working with Web Servers
	Linking Programs Using Socket Programming
	Summary
	Q&A
	Workshop

	Hour 21. Using Databases in Your Programming
	Working with the MySQL Database
	Using the PostgreSQL Database
	Summary
	Q&A
	Workshop

	Hour 22. Web Programming
	Running a Web Server on the Pi
	Programming with the Common Gateway Interface
	Expanding Your Python Webpages
	Processing Forms
	Summary
	Q&A
	Workshop

	Part VI: Raspberry Pi Python Projects
	Hour 23. Creating Basic Pi/Python Projects
	Thinking About Basic Pi/Python Projects
	Displaying HD Images via Python
	Playing Music
	Creating a Special Presentation
	Summary
	Q&A
	Workshop

	Hour 24. Working with Advanced Pi/Python Projects
	Exploring the GPIO Interface
	Using the RPi.GPIO Module
	Controlling GPIO Output
	Detecting GPIO Input
	Summary
	Q&A
	Workshop

	Part VII: Appendix
	Appendix A. Loading the Raspbian Operating System onto an SD Card
	Windows: Loading Raspbian onto an SD Card
	Linux: Loading Raspbian onto an SD Card
	Mac: Loading Raspbian onto an SD Card

	Index

