

Python Tricks: The Book
Dan Bader

Python Tricks: The Book
1. Python Tricks: The Book
2. Foreword
3. 1 Introduction

1. 1.1 What’s a Python Trick?
2. 1.2 What This Book Will Do for You
3. 1.3 How to Read This Book

4. 2 Patterns for Cleaner Python
1. 2.1 Covering Your A** With Assertions
2. 2.2 Complacent Comma Placement
3. 2.3 Context Managers and the with Statement
4. 2.4 Underscores, Dunders, and More
5. 2.5 A Shocking Truth About String Formatting
6. 2.6 The Zen of Python Easter Egg

5. 3 Effective Functions
1. 3.1 Python’s Functions Are First-Class
2. 3.2 Lambdas Are Single-Expression Functions
3. 3.3 The Power of Decorators
4. 3.4 Fun With *args and **kwargs
5. 3.5 Function Argument Unpacking
6. 3.6 Nothing to Return Here

6. 4 Classes & OOP
1. 4.1 Object Comparisons: is vs ==
2. 4.2 String Conversion (Every Class Needs a __repr__)
3. 4.3 Defining Your Own Exception Classes
4. 4.4 Cloning Objects for Fun and Profit
5. 4.5 Abstract Base Classes Keep Inheritance in Check
6. 4.6 What Namedtuples Are Good For
7. 4.7 Class vs Instance Variable Pitfalls
8. 4.8 Instance, Class, and Static Methods Demystified

7. 5 Common Data Structures in Python
1. 5.1 Dictionaries, Maps, and Hashtables
2. 5.2 Array Data Structures
3. 5.3 Records, Structs, and Data Transfer Objects

4. 5.4 Sets and Multisets
5. 5.5 Stacks (LIFOs)
6. 5.6 Queues (FIFOs)
7. 5.7 Priority Queues

8. 6 Looping & Iteration
1. 6.1 Writing Pythonic Loops
2. 6.2 Comprehending Comprehensions
3. 6.3 List Slicing Tricks and the Sushi Operator
4. 6.4 Beautiful Iterators
5. 6.5 Generators Are Simplified Iterators
6. 6.6 Generator Expressions
7. 6.7 Iterator Chains

9. 7 Dictionary Tricks
1. 7.1 Dictionary Default Values
2. 7.2 Sorting Dictionaries for Fun and Profit
3. 7.3 Emulating Switch/Case Statements With Dicts
4. 7.4 The Craziest Dict Expression in the West
5. 7.5 So Many Ways to Merge Dictionaries
6. 7.6 Dictionary Pretty-Printing

10. 8 Pythonic Productivity Techniques
1. 8.1 Exploring Python Modules and Objects
2. 8.2 Isolating Project Dependencies With Virtualenv
3. 8.3 Peeking Behind the Bytecode Curtain

11. 9 Closing Thoughts
1. 9.1 Free Weekly Tips for Python Developers
2. 9.2 PythonistaCafe: A Community for Python Developers

Python Tricks: The Book
For online information and ordering of this and other books by Dan Bader,
please visit dbader.org. For more information, please contact Dan Bader at
mail@dbader.org.

Copyright © Dan Bader (dbader.org), 2016–2017

ISBN: 9781775093305 (paperback)

ISBN: 9781775093312 (electronic)

Cover design by Anja Pircher Design (anjapircher.com)

“Python” and the Python logos are trademarks or registered trademarks of
the Python Software Foundation, used by Dan Bader with permission from
the Foundation.

Thank you for downloading this ebook. This ebook is licensed for your
personal enjoyment only. This ebook may not be re-sold or given away to
other people. If you would like to share this book with another person,
please purchase an additional copy for each recipient. If you’re reading this
book and did not purchase it, or it was not purchased for your use only, then
please return to dbader.org/pytricks-book and purchase your own copy.
Thank you for respecting the hard work behind this book.

Updated 2017-10-27 I would like to thank Michael Howitz, Johnathan
Willitts, Julian Orbach, Johnny Giorgis, Bob White, Daniel Meyer, Michael
Stueben, Smital Desai, Andreas Kreisig, David Perkins, Jay Prakash Singh,
and Ben Felder for their excellent feedback.

What Pythonistas Say About Python Tricks: The Book

I’m often amazed at some of the answers coworkers give me. Dict
comprehensions, lambdas, and generators often pepper their feedback. I am

https://dbader.org/
https://dbader.org/
http://anjapircher.com/
https://dbader.org/pytricks-book

always impressed and yet flabbergasted at how powerful Python is when
you know these tricks and can implement them correctly.

Your book was exactly what I wanted to help get me from a bewildered
powershell scripter to someone who knows how and when to use these
Pythonic ‘tricks’ everyone has been talking about.

— Daniel Meyer, Sr. Desktop Administrator at Tesla Inc.

He showed me the book via video conferencing and I sort of skimmed
through it as he flipped the pages for me, and I was immediately curious to
read more.

That same afternoon I purchased my own copy and proceeded to read your
explanation for the way dictionaries are created in Python and later that
day, as I met a different co-worker for coffee, I used the same trick on him :)

He then sprung a different question on the same principle, and because of
the way you explained things in your book, I was able tonot* guess the
result but correctly answer what the outcome would be. That means that
you did a great job at explaining things :)*

— Og Maciel, Python Developer at Red Hat

It is not just code samples, it discusses relevant implementation details
comprehensibly. What really matters though is that this book makes you
write better Python code!

— Bob Belderbos, Engineer at Oracle & Co-Founder of PyBites

Foreword
It’s been almost ten years since I first got acquainted with Python as a
programming language. When I first learned Python many years ago, it was
with a little reluctance. I had been programming in a different language
before, and all of the sudden at work, I was assigned to a different team
where everyone used Python. That was the beginning of my own Python
journey.

When I was first introduced to Python, I was told that it was going to be
easy, that I should be able to pick it up quickly. When I asked my
colleagues for resources for learning Python, all they gave me was a link to
Python’s official documentation. Reading the documentation was confusing
at first, and it really took me a while before I even felt comfortable
navigating through it. Often I found myself needing to look for answers in
StackOverflow.

Coming from a different programming language, I wasn’t looking for just
any resource for learning how to program or what classes and objects are. I
was looking for specific resources that would teach me the features of
Python, what sets it apart, and how writing in Python is different than
writing code in another language.

It really has taken me many years to fully appreciate this language. As I
read Dan’s book, I kept thinking that I wished I had access to a book like
this when I started learning Python many years ago.

For example, one of the many unique Python features that surprised me at
first were list comprehensions. As Dan mentions in the book, a tell of
someone who just came to Python from a different language is the way they
use for-loops. I recall one of the earliest code review comments I got when I
started programming in Python was, “Why not use list comprehension
here?” Dan explains this concept clearly in section 6, starting by showing
how to loop the Pythonic way and building it all the way up to iterators and
generators.

In chapter 2.5, Dan discusses the different ways to do string formatting in
Python. String formatting is one of those things that defy the Zen of Python,
that there should only be one obvious way to do things. Dan shows us the
different ways, including my favorite new addition to the language, the f-
strings, and he also explains the pros and cons of each method.

The Pythonic Productivity Techniques section is another great resource. It
covers aspects beyond the Python programming language, and also includes
tips on how to debug your programs, how to manage the dependencies, and
gives you a peek inside Python bytecode.

It truly is an honor and my pleasure to introduce this book, Python Tricks,
by my friend, Dan Bader.

By contributing to Python as a CPython core developer, I get connected to
many members of the community. In my journey, I found mentors, allies,
and made many new friends. They remind me that Python is not just about
the code, Python is a community.

Mastering Python programming isn’t just about grasping the theoretical
aspects of the language. It’s just as much about understanding and adopting
the conventions and best practices used by its community.

Dan’s book will help you on this journey. I’m convinced that you’ll be more
confident when writing Python programs after reading it.

— Mariatta Wijaya, Python Core Developer (mariatta.ca)

http://mariatta.ca/

1 Introduction
1.1 What’s a Python Trick?

Python Trick: A short Python code snippet meant as a teaching tool.
A Python Trick either teaches an aspect of Python with a simple
illustration, or it serves as a motivating example, enabling you to dig
deeper and develop an intuitive understanding.

Python Tricks started out as a short series of code screenshots that I shared
on Twitter for a week. To my surprise, they got rave responses and were
shared and retweeted for days on end.

More and more developers started asking me for a way to “get the whole
series.” Actually, I only had a few of these tricks lined up, spanning a
variety of Python-related topics. There wasn’t a master plan behind them.
They were just a fun little Twitter experiment.

But from these inquiries I got the sense that my short-and-sweet code
examples would be worth exploring as a teaching tool. Eventually I set out
to create a few more Python Tricks and shared them in an email series.
Within a few days, several hundred Python developers had signed up and I
was just blown away by that response.

Over the following days and weeks, a steady stream of Python developers
reached out to me. They thanked me for making a part of the language they
were struggling to understand click for them. Hearing this feedback felt
awesome. I thought these Python Tricks were just code screenshots, but so
many developers were getting a lot of value out of them.

That’s when I decided to double down on my Python Tricks experiment and
expanded it into a series of around 30 emails. Each of these was still just a a
headline and a code screenshot, and I soon realized the limits of that format.
Around this time, a blind Python developer emailed me, disappointed to

find that these Python Tricks were delivered as images he couldn’t read
with his screen reader.

Clearly, I needed to invest more time into this project to make it more
appealing and more accessible to a wider audience. So, I sat down to re-
create the whole series of Python Tricks emails in plain text and with proper
HTML-based syntax highlighting. That new iteration of Python Tricks
chugged along nicely for a while. Based on the responses I got, developers
seemed happy they could finally copy and paste the code samples in order
to play around with them.

As more and more developers signed up for the email series, I started
noticing a pattern in the replies and questions I received. Some Tricks
worked well as motivational examples by themselves. However, for the
more complex ones there was no narrator to guide readers or to give them
additional resources to develop a deeper understanding.

Let’s just say this was another big area of improvement. My mission
statement for dbader.org is to help Python developers become more
awesome—and this was clearly an opportunity to get closer to that goal.

I decided to take the best and most valuable Python Tricks from the email
course, and I started writing a new kind of Python book around them:

A book that teaches the coolest aspects of the language with short and
easy-to-digest examples.
A book that works like a buffet of awesome Python features (yum!)
and keeps motivation levels high.
A book that takes you by the hand to guide you and help you deepen
your understanding of Python.

This book is really a labor of love for me and also a huge experiment. I
hope you’ll enjoy reading it and learn something about Python in the
process!

— Dan Bader

https://dbader.org/

1.2 What This Book Will Do for You

My goal for this book is to make you a better—more effective, more
knowledgeable, more practical—Python developer. You might be
wondering, How will reading this book help me achieve all that?

Python Tricks is not a step-by-step Python tutorial. It is not an entry-level
Python course. If you’re in the beginning stages of learning Python, the
book alone won’t transform you into a professional Python developer.
Reading it will still be beneficial to you, but you need to make sure you’re
working with some other resources to build up your foundational Python
skills.

You’ll get the most out of this book if you already have some knowledge of
Python, and you want to get to the next level. It will work great for you if
you’ve been coding Python for a while and you’re ready to go deeper, to
round out your knowledge, and to make your code more Pythonic.

Reading Python Tricks will also be great for you if you already have
experience with other programming languages and you’re looking to get up
to speed with Python. You’ll discover a ton of practical tips and design
patterns that’ll make you a more effective and skilled Python coder.

1.3 How to Read This Book

The best way to read Python Tricks: The Book is to treat it like a buffet of
awesome Python features. Each Python Trick in the book is self-contained,
so it’s completely okay to jump straight to the ones that look the most
interesting. In fact, I would encourage you to do just that.

Of course, you can also read through all the Python Tricks in the order
they’re laid out in the book. That way you won’t miss any of them, and
you’ll know you’ve seen it all when you arrive at the final page.

Some of these tricks will be easy to understand right away, and you’ll have
no trouble incorporating them into your day to day work just by reading the
chapter. Other tricks might require a bit more time to crack.

If you’re having trouble making a particular trick work in your own
programs, it helps to play through each of the code examples in a Python
interpreter session.

If that doesn’t make things click, then please feel free to reach out to me, so
I can help you out and improve the explanation in this book. In the long run,
that benefits not just you but all Pythonistas reading this book.

2 Patterns for Cleaner Python
2.1 Covering Your A** With Assertions

Sometimes a genuinely helpful language feature gets less attention than it
deserves. For some reason, this is what happened to Python’s built-in
assert statement.

In this chapter I’m going to give you an introduction to using assertions in
Python. You’ll learn how to use them to help automatically detect errors in
your Python programs. This will make your programs more reliable and
easier to debug.

At this point, you might be wondering “What are assertions and what are
they good for?” Let’s get you some answers for that.

At its core, Python’s assert statement is a debugging aid that tests a
condition. If the assert condition is true, nothing happens, and your program
continues to execute as normal. But if the condition evaluates to false, an
AssertionError exception is raised with an optional error message.

Assert in Python — An Example

Here’s a simple example so you can see where assertions might come in
handy. I tried to give this some semblance of a real-world problem you
might actually encounter in one of your programs.

Suppose you were building an online store with Python. You’re working to
add a discount coupon functionality to the system, and eventually you write
the following apply_discount function:

def apply_discount(product, discount):

 price = int(product['price'] * (1.0 - discount))

 assert 0 <= price <= product['price']

 return price

Notice the assert statement in there? It will guarantee that, no matter what,
discounted prices calculated by this function cannot be lower than $0 and
they cannot be higher than the original price of the product.

Let’s make sure this actually works as intended if we call this function to
apply a valid discount. In this example, products for our store will be
represented as plain dictionaries. This is probably not what you’d do for a
real application, but it’ll work nicely for demonstrating assertions. Let’s
create an example product—a pair of nice shoes at a price of $149.00:

>>> shoes = {'name': 'Fancy Shoes', 'price': 14900}

By the way, did you notice how I avoided currency rounding issues by
using an integer to represent the price amount in cents? That’s generally a
good idea… But I digress. Now, if we apply a 25% discount to these shoes,
we would expect to arrive at a sale price of $111.75:

>>> apply_discount(shoes, 0.25)

11175

Alright, this worked nicely. Now, let’s try to apply some invalid discounts.
For example, a 200% “discount” that would lead to us giving money to the
customer:

>>> apply_discount(shoes, 2.0)

Traceback (most recent call last):

 File "<input>", line 1, in <module>

 apply_discount(prod, 2.0)

 File "<input>", line 4, in apply_discount

 assert 0 <= price <= product['price']

AssertionError

As you can see, when we try to apply this invalid discount, our program
halts with an AssertionError. This happens because a discount of 200%
violated the assertion condition we placed in the apply_discount function.

You can also see how the exception stacktrace points out the exact line of
code containing the failed assertion. If you (or another developer on your
team) ever encounter one of these errors while testing the online store, it
will be easy to find out what happened just by looking at the exception
traceback.

This speeds up debugging efforts considerably, and it will make your
programs more maintainable in the long-run. And that, my friend, is the
power of assertions.

Why Not Just Use a Regular Exception?

Now, you’re probably wondering why I didn’t just use an if-statement and
an exception in the previous example…

You see, the proper use of assertions is to inform developers about
unrecoverable errors in a program. Assertions are not intended to signal
expected error conditions, like a File-Not-Found error, where a user can
take corrective actions or just try again.

Assertions are meant to be internal self-checks for your program. They
work by declaring some conditions as impossible in your code. If one of
these conditions doesn’t hold, that means there’s a bug in the program.

If your program is bug-free, these conditions will never occur. But if they
do occur, the program will crash with an assertion error telling you exactly
which “impossible” condition was triggered. This makes it much easier to
track down and fix bugs in your programs. And I like anything that makes
life easier—don’t you?

For now, keep in mind that Python’s assert statement is a debugging aid, not
a mechanism for handling run-time errors. The goal of using assertions is to
let developers find the likely root cause of a bug more quickly. An assertion
error should never be raised unless there’s a bug in your program.

Let’s take a closer look at some other things we can do with assertions, and
then I’ll cover two common pitfalls when using them in real-world
scenarios.

Python’s Assert Syntax

It’s always a good idea to study up on how a language feature is actually
implemented in Python before you start using it. So let’s take a quick look
at the syntax for the assert statement, according to the Python docs:1

assert_stmt ::= "assert" expression1 ["," expression2]

In this case, expression1 is the condition we test, and the optional
expression2 is an error message that’s displayed if the assertion fails. At
execution time, the Python interpreter transforms each assert statement into
roughly the following sequence of statements:

if __debug__:

 if not expression1:

 raise AssertionError(expression2)

Two interesting things about this code snippet:

Before the assert condition is checked, there’s an additional check for the
__debug__ global variable. It’s a built-in boolean flag that’s true under
normal circumstances and false if optimizations are requested. We’ll talk
some more about later that in the “common pitfalls” section.

Also, you can use expression2 to pass an optional error message that will
be displayed with the AssertionError in the traceback. This can simplify
debugging even further. For example, I’ve seen code like this:

>>> if cond == 'x':

... do_x()

... elif cond == 'y':

... do_y()

... else:

... assert False, (

... 'This should never happen, but it does '

... 'occasionally. We are currently trying to '

... 'figure out why. Email dbader if you '

... 'encounter this in the wild. Thanks!')

Is this ugly? Well, yes. But it’s definitely a valid and helpful technique if
you’re faced with a Heisenbug2 in one of your applications.

Common Pitfalls With Using Asserts in Python

Before you move on, there are two important caveats regarding the use of
assertions in Python that I’d like to call out.

The first one has to do with introducing security risks and bugs into your
applications, and the second one is about a syntax quirk that makes it easy
to write useless assertions.

This sounds (and potentially is) quite horrible, so you should probably at
least skim these two caveats below.

Caveat #1 – Don’t Use Asserts for Data Validation

The biggest caveat with using asserts in Python is that assertions can be
globally disabled3 with the -O and -OO command line switches, as well as
the PYTHONOPTIMIZE environment variable in CPython.

This turns any assert statement into a null-operation: the assertions simply
get compiled away and won’t be evaluated, which means that none of the
conditional expressions will be executed.

This is an intentional design decision used similarly by many other
programming languages. As a side-effect, it becomes extremely dangerous
to use assert statements as a quick and easy way to validate input data.

Let me explain—if your program uses asserts to check if a function
argument contains a “wrong” or unexpected value, this can backfire quickly
and lead to bugs or security holes.

Let’s take a look at a simple example that demonstrates this problem.
Again, imagine you’re building an online store application with Python.
Somewhere in your application code there’s a function to delete a product
as per a user’s request.

Because you just learned about assertions, you’re eager to use them in your
code (hey, I know I would be!) and you write the following implementation:

def delete_product(prod_id, user):

 assert user.is_admin(), 'Must be admin'

 assert store.has_product(prod_id), 'Unknown product'

 store.get_product(prod_id).delete()

Take a close look at this delete_product function. Now, what’s going to
happen if assertions are disabled?

There are two serious issues in this three-line function example, and they’re
caused by the incorrect use of assert statements:

1. Checking for admin privileges with an assert statement is
dangerous. If assertions are disabled in the Python interpreter, this
turns into a null-op. Therefore any user can now delete products. The
privileges check doesn’t even run. This likely introduces a security
problem and opens the door for attackers to destroy or severely
damage the data in our online store. Not good.

2. The has_product() check is skipped when assertions are disabled.
This means get_product() can now be called with invalid product
IDs—which could lead to more severe bugs, depending on how our
program is written. In the worst case, this could be an avenue for
someone to launch Denial of Service attacks against our store. For
example, if the store app crashes if someone attempts to delete an
unknown product, an attacker could bombard it with invalid delete
requests and cause an outage.

How might we avoid these problems? The answer is to never use assertions
to do data validation. Instead, we could do our validation with regular if-
statements and raise validation exceptions if necessary, like so:

def delete_product(product_id, user):

 if not user.is_admin():

 raise AuthError('Must be admin to delete')

 if not store.has_product(product_id):

 raise ValueError('Unknown product id')

 store.get_product(product_id).delete()

This updated example also has the benefit that instead of raising unspecific
AssertionError exceptions, it now raises semantically correct exceptions
like ValueError or AuthError (which we’d have to define ourselves.)

Caveat #2 – Asserts That Never Fail

It’s surprisingly easy to accidentally write Python assert statements that
always evaluate to true. I’ve been bitten by this myself in the past. Here’s
the problem, in a nutshell:

When you pass a tuple as the first argument in an assert statement, the
assertion always evaluates as true and therefore never fails.

For example, this assertion will never fail:

assert(1 == 2, 'This should fail')

This has to do with non-empty tuples always being truthy in Python. If you
pass a tuple to an assert statement, it leads to the assert condition always
being true—which in turn leads to the above assert statement being useless
because it can never fail and trigger an exception.

It’s relatively easy to accidentally write bad multi-line asserts due to this,
well, unintuitive behavior. For example, I merrily wrote a bunch of broken
test cases that gave a false sense of security in one of my test suites.
Imagine you had this assertion in one of your unit tests:

assert (

 counter == 10,

 'It should have counted all the items'

)

Upon first inspection, this test case looks completely fine. However, it
would never catch an incorrect result: the assertion always evaluates to
True, regardless of the state of the counter variable. And why is that?
Because it asserts the truth value of a tuple object.

Like I said, it’s rather easy to shoot yourself in the foot with this (mine still
hurts). A good countermeasure you can apply to prevent this syntax quirk
from causing trouble is to use a code linter.4 Newer versions of Python 3
will also show a syntax warning for these dubious asserts.

By the way, that’s also why you should always do a quick smoke test with
your unit test cases. Make sure they can actually fail before you move on to
writing the next one.

Python Assertions — Summary

Despite these caveats I believe that Python’s assertions are a powerful
debugging tool that’s frequently underused by Python developers.

Understanding how assertions work and when to apply them can help you
write Python programs that are more maintainable and easier to debug.

It’s a great skill to learn that will help bring your Python knowledge to the
next level and make you a more well-rounded Pythonista. I know it has
saved me hours upon hours of debugging.

Key Takeaways

Python’s assert statement is a debugging aid that tests a condition as an
internal self-check in your program.
Asserts should only be used to help developers identify bugs. They’re
not a mechanism for handling run-time errors.
Asserts can be globally disabled with an interpreter setting.

2.2 Complacent Comma Placement

Here’s a handy tip for when you’re adding and removing items from a list,
dict, or set constant in Python: Just end all of your lines with a comma.

Not sure what I’m talking about? Let me give you a quick example.
Imagine you’ve got this list of names in your code:

>>> names = ['Alice', 'Bob', 'Dilbert']

Whenever you make a change to this list of names, it’ll be hard to tell what
was modified by looking at a Git diff, for example. Most source control
systems are line-based and have a hard time highlighting multiple changes
to a single line.

A quick fix for that is to adopt a code style where you spread out list, dict,
or set constants across multiple lines, like so:

>>> names = [

... 'Alice',

... 'Bob',

... 'Dilbert'

...]

That way there’s one item per line, making it perfectly clear which one was
added, removed, or modified when you view a diff in your source control
system. It’s a small change but I found it helped me avoid silly mistakes. It
also made it easier for my teammates to review my code changes.

Now, there are two editing cases that can still cause some confusion.
Whenever you add a new item at the end of a list, or you remove the last
item, you’ll have to update the comma placement manually to get consistent
formatting.

Let’s say you’d like to add another name (Jane) to that list. If you add Jane,
you’ll need to fix the comma placement after the Dilbert line to avoid a

nasty error:

>>> names = [

... 'Alice',

... 'Bob',

... 'Dilbert' # <- Missing comma!

... 'Jane'

]

When you inspect the contents of that list, brace yourself for a surprise:

>>> names

['Alice', 'Bob', 'DilbertJane']

As you can see, Python merged the strings Dilbert and Jane into
DilbertJane. This so-called “string literal concatenation” is intentional and
documented behavior. And it’s also a fantastic way to shoot yourself in the
foot by introducing hard-to-catch bugs into your programs:

“Multiple adjacent string or bytes literals (delimited by whitespace),
possibly using different quoting conventions, are allowed, and their
meaning is the same as their concatenation.”5

Still, string literal concatenation is a useful feature in some cases. For
example, you can use it to reduce the number of backslashes needed to split
long string constants across multiple lines:

my_str = ('This is a super long string constant '

 'spread out across multiple lines. '

 'And look, no backslash characters needed!')

On the other hand, we’ve just seen how the same feature can quickly turn
into a liability. Now, how do we fix this situation?

Adding the missing comma after Dilbert prevents the two strings from
getting merged into one:

>>> names = [

... 'Alice',

... 'Bob',

... 'Dilbert',

... 'Jane'

]

But now we’ve come full circle and returned to the original problem. I had
to modify two lines in order to add a new name to the list. This makes it
harder to see what was modified in the Git diff again… Did someone add a
new name? Did someone change Dilbert’s name?

Luckily, Python’s syntax allows for some leeway to solve this comma
placement issue once and for all. You just need to train yourself to adopt a
code style that avoids it in the first place. Let me show you how.

In Python, you can place a comma after every item in a list, dict, or set
constant, including the last item. That way, you can just remember to
always end your lines with a comma and thus avoid the comma placement
juggling that would otherwise be required.

Here’s what the final example looks like:

>>> names = [

... 'Alice',

... 'Bob',

... 'Dilbert',

...]

Did you spot the comma after Dilbert? That’ll make it easy to add or
remove new items without having to update the comma placement. It keeps
your lines consistent, your source control diffs clean, and your code
reviewers happy. Hey, sometimes the magic is in the little things, right?

Key Takeaways

Smart formatting and comma placement can make your list, dict, or set
constants easier to maintain.

Python’s string literal concatenation feature can work to your benefit,
or introduce hard-to-catch bugs.

2.3 Context Managers and the with Statement

The with statement in Python is regarded as an obscure feature by some.
But when you peek behind the scenes, you’ll see that there’s no magic
involved, and it’s actually a highly useful feature that can help you write
cleaner and more readable Python code.

So what’s the with statement good for? It helps simplify some common
resource management patterns by abstracting their functionality and
allowing them to be factored out and reused.

A good way to see this feature used effectively is by looking at examples in
the Python standard library. The built-in open() function provides us with
an excellent use case:

with open('hello.txt', 'w') as f:

 f.write('hello, world!')

Opening files using the with statement is generally recommended because
it ensures that open file descriptors are closed automatically after program
execution leaves the context of the with statement. Internally, the above
code sample translates to something like this:

f = open('hello.txt', 'w')

try:

 f.write('hello, world')

finally:

 f.close()

You can already tell that this is quite a bit more verbose. Note that the
try...finally statement is significant. It wouldn’t be enough to just write
something like this:

f = open('hello.txt', 'w')

f.write('hello, world')

f.close()

This implementation won’t guarantee the file is closed if there’s an
exception during the f.write() call—and therefore our program might leak
a file descriptor. That’s why the with statement is so useful. It makes
properly acquiring and releasing resources a breeze.

Another good example where the with statement is used effectively in the
Python standard library is the threading.Lock class:

some_lock = threading.Lock()

Harmful:

some_lock.acquire()

try:

 # Do something...

finally:

 some_lock.release()

Better:

with some_lock:

 # Do something...

In both cases, using a with statement allows you to abstract away most of
the resource handling logic. Instead of having to write an explicit
try...finally statement each time, using the with statement takes care of
that for us.

The with statement can make code that deals with system resources more
readable. It also helps you avoid bugs or leaks by making it practically
impossible to forget to clean up or release a resource when it’s no longer
needed.

Supporting with in Your Own Objects

Now, there’s nothing special or magical about the open() function or the
threading.Lock class and the fact that they can be used with a with

statement. You can provide the same functionality in your own classes and
functions by implementing so-called context managers.6

What’s a context manager? It’s a simple “protocol” (or interface) that your
object needs to follow in order to support the with statement. Basically, all
you need to do is add __enter__ and __exit__ methods to an object if you
want it to function as a context manager. Python will call these two methods
at the appropriate times in the resource management cycle.

Let’s take a look at what this would look like in practical terms. Here’s what
a simple implementation of the open() context manager might look like:

class ManagedFile:

 def __init__(self, name):

 self.name = name

 def __enter__(self):

 self.file = open(self.name, 'w')

 return self.file

 def __exit__(self, exc_type, exc_val, exc_tb):

 if self.file:

 self.file.close()

Our ManagedFile class follows the context manager protocol and now
supports the with statement, just like the original open() example did:

>>> with ManagedFile('hello.txt') as f:

... f.write('hello, world!')

... f.write('bye now')

Python calls __enter__ when execution enters the context of the with
statement and it’s time to acquire the resource. When execution leaves the
context again, Python calls __exit__ to free up the resource.

Writing a class-based context manager isn’t the only way to support the
with statement in Python. The contextlib7 utility module in the standard
library provides a few more abstractions built on top of the basic context

manager protocol. This can make your life a little easier if your use cases
match what’s offered by contextlib.

For example, you can use the contextlib.contextmanager decorator to
define a generator-based factory function for a resource that will then
automatically support the with statement. Here’s what rewriting our
ManagedFile context manager example with this technique looks like:

from contextlib import contextmanager

@contextmanager

def managed_file(name):

 try:

 f = open(name, 'w')

 yield f

 finally:

 f.close()

>>> with managed_file('hello.txt') as f:

... f.write('hello, world!')

... f.write('bye now')

In this case, managed_file() is a generator that first acquires the resource.
After that, it temporarily suspends its own execution and yields the resource
so it can be used by the caller. When the caller leaves the with context, the
generator continues to execute so that any remaining clean-up steps can
occur and the resource can get released back to the system.

The class-based implementation and the generator-based one are essentially
equivalent. You might prefer one over the other, depending on which
approach you find more readable.

A downside of the @contextmanager-based implementation might be that it
requires some understanding of advanced Python concepts like decorators
and generators. If you need to get up to speed with those, feel free to take a
detour to the relevant chapters here in this book.

Once again, making the right implementation choice here comes down to
what you and your team are comfortable using and what you find the most

readable.

Writing Pretty APIs With Context Managers

Context managers are quite flexible, and if you use the with statement
creatively, you can define convenient APIs for your modules and classes.

For example, what if the “resource” we wanted to manage was text
indentation levels in some kind of report generator program? What if we
could write code like this to do it:

with Indenter() as indent:

 indent.print('hi!')

 with indent:

 indent.print('hello')

 with indent:

 indent.print('bonjour')

 indent.print('hey')

This almost reads like a domain-specific language (DSL) for indenting text.
Also, notice how this code enters and leaves the same context manager
multiple times to change indentation levels. Running this code snippet
should lead to the following output and print neatly formatted text to the
console:

hi!

 hello

 bonjour

hey

So, how would you implement a context manager to support this
functionality?

By the way, this could be a great exercise for you to understand exactly how
context managers work. So before you check out my implementation below,
you might want to take some time and try to implement this yourself as a
learning exercise.

If you’re ready to check out my implementation, here’s how you might
implement this functionality using a class-based context manager:

class Indenter:

 def __init__(self):

 self.level = 0

 def __enter__(self):

 self.level += 1

 return self

 def __exit__(self, exc_type, exc_val, exc_tb):

 self.level -= 1

 def print(self, text):

 print(' ' * self.level + text)

That wasn’t so bad, was it? I hope that by now you’re already feeling more
comfortable using context managers and the with statement in your own
Python programs. They’re an excellent feature that will allow you to deal
with resource management in a much more Pythonic and maintainable way.

If you’re looking for another exercise to deepen your understanding, try
implementing a context manager that measures the execution time of a code
block using the time.time function. Be sure to try out writing both a
decorator-based and a class-based variant to drive home the difference
between the two.

Key Takeaways

The with statement simplifies exception handling by encapsulating
standard uses of try/finally statements in so-called context
managers.
Most commonly it is used to manage the safe acquisition and release
of system resources. Resources are acquired by the with statement and
released automatically when execution leaves the with context.
Using with effectively can help you avoid resource leaks and make
your code easier to read.

2.4 Underscores, Dunders, and More

Single and double underscores have a meaning in Python variable and
method names. Some of that meaning is merely by convention and intended
as a hint to the programmer—and some of it is enforced by the Python
interpreter.

If you’re wondering, “What’s the meaning of single and double underscores
in Python variable and method names?” I’ll do my best to get you the
answer here. In this chapter we’ll discuss the following five underscore
patterns and naming conventions, and how they affect the behavior of your
Python programs:

Single Leading Underscore: _var
Single Trailing Underscore: var_
Double Leading Underscore: __var
Double Leading and Trailing Underscore: __var__
Single Underscore: _

1. Single Leading Underscore: “_var”

When it comes to variable and method names, the single underscore prefix
has a meaning by convention only. It’s a hint to the programmer—it means
what the Python community agrees it should mean, but it does not affect the
behavior of your programs.

The underscore prefix is meant as a hint to tell another programmer that a
variable or method starting with a single underscore is intended for internal
use. This convention is defined in PEP 8, the most commonly used Python
code style guide.8

However, this convention isn’t enforced by the Python interpreter. Python
does not have strong distinctions between “private” and “public” variables
like Java does. Adding a single underscore in front of a variable name is
more like someone putting up a tiny underscore warning sign that says:
“Hey, this isn’t really meant to be a part of the public interface of this class.
Best to leave it alone.”

Take a look at the following example:

class Test:

 def __init__(self):

 self.foo = 11

 self._bar = 23

What’s going to happen if you instantiate this class and try to access the foo
and _bar attributes defined in its __init__ constructor?

Let’s find out:

>>> t = Test()

>>> t.foo

11

>>> t._bar

23

As you can see, the leading single underscore in _bar did not prevent us
from “reaching into” the class and accessing the value of that variable.

That’s because the single underscore prefix in Python is merely an agreed-
upon convention—at least when it comes to variable and method names.
However, leading underscores do impact how names get imported from
modules. Imagine you had the following code in a module called
my_module:

my_module.py:

def external_func():

 return 23

def _internal_func():

 return 42

Now, if you use a wildcard import to import all the names from the module,
Python will not import names with a leading underscore (unless the module

defines an __all__ list that overrides this behavior9):

>>> from my_module import *

>>> external_func()

23

>>> _internal_func()

NameError: "name '_internal_func' is not defined"

By the way, wildcard imports should be avoided as they make it unclear
which names are present in the namespace.10 It’s better to stick to regular
imports for the sake of clarity. Unlike wildcard imports, regular imports are
not affected by the leading single underscore naming convention:

>>> import my_module

>>> my_module.external_func()

23

>>> my_module._internal_func()

42

I know this might be a little confusing at this point. If you stick to the PEP 8
recommendation that wildcard imports should be avoided, then all you
really need to remember is this:

Single underscores are a Python naming convention that indicates a name is
meant for internal use. It is generally not enforced by the Python interpreter
and is only meant as a hint to the programmer.

2. Single Trailing Underscore: “var_”

Sometimes the most fitting name for a variable is already taken by a
keyword in the Python language. Therefore, names like class or def cannot
be used as variable names in Python. In this case, you can append a single
underscore to break the naming conflict:

>>> def make_object(name, class):

SyntaxError: "invalid syntax"

>>> def make_object(name, class_):

... pass

In summary, a single trailing underscore (postfix) is used by convention to
avoid naming conflicts with Python keywords. This convention is defined
and explained in PEP 8.

3. Double Leading Underscore: “__var”

The naming patterns we’ve covered so far receive their meaning from
agreed-upon conventions only. With Python class attributes (variables and
methods) that start with double underscores, things are a little different.

A double underscore prefix causes the Python interpreter to rewrite the
attribute name in order to avoid naming conflicts in subclasses.

This is also called name mangling—the interpreter changes the name of the
variable in a way that makes it harder to create collisions when the class is
extended later.

I know this sounds rather abstract. That’s why I put together this little code
example we can use for experimentation:

class Test:

 def __init__(self):

 self.foo = 11

 self._bar = 23

 self.__baz = 23

Let’s take a look at the attributes on this object using the built-in dir()
function:

>>> t = Test()

>>> dir(t)

['_Test__baz', '__class__', '__delattr__', '__dict__',

'__dir__', '__doc__', '__eq__', '__format__', '__ge__',

'__getattribute__', '__gt__', '__hash__', '__init__',

'__le__', '__lt__', '__module__', '__ne__', '__new__',

'__reduce__', '__reduce_ex__', '__repr__',

'__setattr__', '__sizeof__', '__str__',

'__subclasshook__', '__weakref__', '_bar', 'foo']

This gives us a list with the object’s attributes. Let’s take this list and look
for our original variable names foo, _bar, and __baz. I promise you’ll
notice some interesting changes.

First of all, the self.foo variable appears unmodified as foo in the attribute
list.

Next up, self._bar behaves the same way—it shows up on the class as
_bar. Like I said before, the leading underscore is just a convention in this
case—a hint for the programmer.

However, with self.__baz things look a little different. When you search
for __baz in that list, you’ll see that there is no variable with that name.

So what happened to __baz?

If you look closely, you’ll see there’s an attribute called _Test__baz on this
object. This is the name mangling that the Python interpreter applies. It
does this to protect the variable from getting overridden in subclasses.

Let’s create another class that extends the Test class and attempts to
override its existing attributes added in the constructor:

class ExtendedTest(Test):

 def __init__(self):

 super().__init__()

 self.foo = 'overridden'

 self._bar = 'overridden'

 self.__baz = 'overridden'

Now, what do you think the values of foo, _bar, and __baz will be on
instances of this ExtendedTest class? Let’s take a look:

>>> t2 = ExtendedTest()

>>> t2.foo

'overridden'

>>> t2._bar

'overridden'

>>> t2.__baz

AttributeError:

"'ExtendedTest' object has no attribute '__baz'"

Wait, why did we get that AttributeError when we tried to inspect the
value of t2.__baz? Name mangling strikes again! It turns out this object
doesn’t even have a __baz attribute:

>>> dir(t2)

['_ExtendedTest__baz', '_Test__baz', '__class__',

'__delattr__', '__dict__', '__dir__', '__doc__',

'__eq__', '__format__', '__ge__', '__getattribute__',

'__gt__', '__hash__', '__init__', '__le__', '__lt__',

'__module__', '__ne__', '__new__', '__reduce__',

'__reduce_ex__', '__repr__', '__setattr__',

'__sizeof__', '__str__', '__subclasshook__',

'__weakref__', '_bar', 'foo', 'get_vars']

As you can see, __baz got turned into _ExtendedTest__baz to prevent
accidental modification. But the original _Test__baz is also still around:

>>> t2._ExtendedTest__baz

'overridden'

>>> t2._Test__baz

42

Double underscore name mangling is fully transparent to the programmer.
Take a look at the following example that will confirm this:

class ManglingTest:

 def __init__(self):

 self.__mangled = 'hello'

 def get_mangled(self):

 return self.__mangled

>>> ManglingTest().get_mangled()

'hello'

>>> ManglingTest().__mangled

AttributeError:

"'ManglingTest' object has no attribute '__mangled'"

Does name mangling also apply to method names? It sure does! Name
mangling affects all names that start with two underscore characters
(“dunders”) in a class context:

class MangledMethod:

 def __method(self):

 return 42

 def call_it(self):

 return self.__method()

>>> MangledMethod().__method()

AttributeError:

"'MangledMethod' object has no attribute '__method'"

>>> MangledMethod().call_it()

42

Here’s another, perhaps surprising, example of name mangling in action:

_MangledGlobal__mangled = 23

class MangledGlobal:

 def test(self):

 return __mangled

>>> MangledGlobal().test()

23

In this example, I declared _MangledGlobal__mangled as a global variable.
Then I accessed the variable inside the context of a class named
MangledGlobal. Because of name mangling, I was able to reference the
_MangledGlobal__mangled global variable as just __mangled inside the
test() method on the class.

The Python interpreter automatically expanded the name __mangled to
_MangledGlobal__mangled because it begins with two underscore
characters. This demonstrates that name mangling isn’t tied to class
attributes specifically. It applies to any name starting with two underscore
characters that is used in a class context.

Whew! That was a lot to absorb.

To be honest with you, I didn’t write down these examples and explanations
off the top of my head. It took me some research and editing to do it. I’ve
been using Python for years but rules and special cases like that aren’t
constantly on my mind.

Sometimes the most important skills for a programmer are “pattern
recognition” and knowing where to look things up. If you feel a little
overwhelmed at this point, don’t worry. Take your time and play with some
of the examples in this chapter.

Let these concepts sink in enough so that you’ll recognize the general idea
of name mangling and some of the other behaviors I’ve shown you. If you
encounter them “in the wild” one day, you’ll know what to look for in the
documentation.

Sidebar: What are dunders?

If you’ve heard some experienced Pythonistas talk about Python or watched
a few conference talks you may have heard the term dunder. If you’re
wondering what that is, well, here’s your answer:

Double underscores are often referred to as “dunders” in the Python
community. The reason is that double underscores appear quite often in
Python code, and to avoid fatiguing their jaw muscles, Pythonistas often
shorten “double underscore” to “dunder.”

For example, you’d pronounce __baz as “dunder baz.” Likewise, __init__
would be pronounced as “dunder init,” even though one might think it
should be “dunder init dunder.”

But that’s just yet another quirk in the naming convention. It’s like a secret
handshake for Python developers.

4. Double Leading and Trailing Underscore: “__var__”

Perhaps surprisingly, name mangling is not applied if a name starts and
ends with double underscores. Variables surrounded by a double underscore
prefix and postfix are left unscathed by the Python interpreter:

class PrefixPostfixTest:

 def __init__(self):

 self.__bam__ = 42

>>> PrefixPostfixTest().__bam__

42

However, names that have both leading and trailing double underscores are
reserved for special use in the language. This rule covers things like
__init__ for object constructors, or __call__ to make objects callable.

These dunder methods are often referred to as magic methods—but many
people in the Python community, including myself, don’t like that word. It
implies that the use of dunder methods is discouraged, which is entirely not
the case. They’re a core feature in Python and should be used as needed.
There’s nothing “magical” or arcane about them.

However, as far as naming conventions go, it’s best to stay away from using
names that start and end with double underscores in your own programs to
avoid collisions with future changes to the Python language.

5. Single Underscore: “_”

Per convention, a single stand-alone underscore is sometimes used as a
name to indicate that a variable is temporary or insignificant.

For example, in the following loop we don’t need access to the running
index and we can use “_” to indicate that it is just a temporary value:

>>> for _ in range(32):

... print('Hello, World.')

You can also use single underscores in unpacking expressions as a “don’t
care” variable to ignore particular values. Again, this meaning is per
convention only and it doesn’t trigger any special behaviors in the Python
parser. The single underscore is simply a valid variable name that’s
sometimes used for this purpose.

In the following code example, I’m unpacking a tuple into separate
variables but I’m only interested in the values for the color and mileage
fields. However, in order for the unpacking expression to succeed, I need to
assign all values contained in the tuple to variables. That’s where “_” is
useful as a placeholder variable:

>>> car = ('red', 'auto', 12, 3812.4)

>>> color, _, _, mileage = car

>>> color

'red'

>>> mileage

3812.4

>>> _

12

Besides its use as a temporary variable, “_” is a special variable in most
Python REPLs that represents the result of the last expression evaluated by
the interpreter.

This is handy if you’re working in an interpreter session and you’d like to
access the result of a previous calculation:

>>> 20 + 3

23

>>> _

23

>>> print(_)

23

It’s also handy if you’re constructing objects on the fly and want to interact
with them without assigning them a name first:

>>> list()

[]

>>> _.append(1)

>>> _.append(2)

>>> _.append(3)

>>> _

[1, 2, 3]

Key Takeaways

Single Leading Underscore “_var”: Naming convention indicating a
name is meant for internal use. Generally not enforced by the Python
interpreter (except in wildcard imports) and meant as a hint to the
programmer only.

Single Trailing Underscore “var_”: Used by convention to avoid
naming conflicts with Python keywords.

Double Leading Underscore “__var”: Triggers name mangling when
used in a class context. Enforced by the Python interpreter.

Double Leading and Trailing Underscore “__var__”: Indicates
special methods defined by the Python language. Avoid this naming
scheme for your own attributes.

Single Underscore “_”: Sometimes used as a name for temporary or
insignificant variables (“don’t care”). Also, it represents the result of
the last expression in a Python REPL session.

2.5 A Shocking Truth About String Formatting

Remember the Zen of Python and how there should be “one obvious way to
do something?” You might scratch your head when you find out that there
are four major ways to do string formatting in Python.

In this chapter I’ll demonstrate how these four string formatting approaches
work and what their respective strengths and weaknesses are. I’ll also give
you my simple “rule of thumb” for how I pick the best general-purpose
string formatting approach.

Let’s jump right in, as we’ve got a lot to cover. In order to have a simple toy
example for experimentation, let’s assume we’ve got the following
variables (or constants, really) to work with:

>>> errno = 50159747054

>>> name = 'Bob'

And based on these variables we’d like to generate an output string with the
following error message:

'Hey Bob, there is a 0xbadc0ffee error!'

Now, that error could really spoil a dev’s Monday morning! But we’re here
to discuss string formatting today. So let’s get to work.

#1 – “Old Style” String Formatting

Strings in Python have a unique built-in operation that can be accessed with
the %-operator. It’s a shortcut that lets you do simple positional formatting
very easily. If you’ve ever worked with a printf-style function in C, you’ll
instantly recognize how this works. Here’s a simple example:

>>> 'Hello, %s' % name

'Hello, Bob'

I’m using the %s format specifier here to tell Python where to substitute the
value of name, represented as a string. This is called “old style” string
formatting.

In old style string formatting there are also other format specifiers available
that let you control the output string. For example, it’s possible to convert
numbers to hexadecimal notation or to add whitespace padding to generate
nicely formatted tables and reports.11

Here, I’m using the %x format specifier to convert an int value to a string
and to represent it as a hexadecimal number:

>>> '%x' % errno

'badc0ffee'

The “old style” string formatting syntax changes slightly if you want to
make multiple substitutions in a single string. Because the %-operator only
takes one argument, you need to wrap the right-hand side in a tuple, like so:

>>> 'Hey %s, there is a 0x%x error!' % (name, errno)

'Hey Bob, there is a 0xbadc0ffee error!'

It’s also possible to refer to variable substitutions by name in your format
string, if you pass a mapping to the %-operator:

>>> 'Hey %(name)s, there is a 0x%(errno)x error!' % {

... "name": name, "errno": errno }

'Hey Bob, there is a 0xbadc0ffee error!'

This makes your format strings easier to maintain and easier to modify in
the future. You don’t have to worry about making sure the order you’re
passing in the values matches up with the order the values are referenced in
the format string. Of course, the downside is that this technique requires a
little more typing.

I’m sure you’ve been wondering why this printf-style formatting is called
“old style” string formatting. Well, let me tell you. It was technically
superseded by “new style” formatting, which we’re going to talk about in a

minute. But while “old style” formatting has been de-emphasized, it hasn’t
been deprecated. It is still supported in the latest versions of Python.

#2 – “New Style” String Formatting

Python 3 introduced a new way to do string formatting that was also later
back-ported to Python 2.7. This “new style” string formatting gets rid of the
%-operator special syntax and makes the syntax for string formatting more
regular. Formatting is now handled by calling a format() function on a
string object.12

You can use the format() function to do simple positional formatting, just
like you could with “old style” formatting:

>>> 'Hello, {}'.format(name)

'Hello, Bob'

Or, you can refer to your variable substitutions by name and use them in
any order you want. This is quite a powerful feature as it allows for re-
arranging the order of display without changing the arguments passed to the
format function:

>>> 'Hey {name}, there is a 0x{errno:x} error!'.format(

... name=name, errno=errno)

'Hey Bob, there is a 0xbadc0ffee error!'

This also shows that the syntax to format an int variable as a hexadecimal
string has changed. Now we need to pass a format spec by adding a “:x”
suffix after the variable name.

Overall, the format string syntax has become more powerful without
complicating the simpler use cases. It pays off to read up on this string
formatting mini-language in the Python documentation.13

In Python 3, this “new style” string formatting is preferred over %-style
formatting. However, starting with Python 3.6 there’s an even better way to

format your strings. I’ll tell you all about it in the next section.

#3 – Literal String Interpolation (Python 3.6+)

Python 3.6 adds yet another way to format strings, called Formatted String
Literals. This new way of formatting strings lets you use embedded Python
expressions inside string constants. Here’s a simple example to give you a
feel for the feature:

>>> f'Hello, {name}!'

'Hello, Bob!'

This new formatting syntax is powerful. Because you can embed arbitrary
Python expressions, you can even do inline arithmetic with it, like this:

>>> a = 5

>>> b = 10

>>> f'Five plus ten is {a + b} and not {2 * (a + b)}.'

'Five plus ten is 15 and not 30.'

Behind the scenes, formatted string literals are a Python parser feature that
converts f-strings into a series of string constants and expressions. They
then get joined up to build the final string.

Imagine we had the following greet() function that contains an f-string:

>>> def greet(name, question):

... return f"Hello, {name}! How's it {question}?"

...

>>> greet('Bob', 'going')

"Hello, Bob! How's it going?"

When we disassemble the function and inspect what’s going on behind the
scenes, we can see that the f-string in the function gets transformed into
something similar to the following:

>>> def greet(name, question):

... return ("Hello, " + name + "! How's it " +

 question + "?")

The real implementation is slightly faster than that because it uses the
BUILD_STRING opcode as an optimization.14 But functionally they’re the
same:

>>> import dis

>>> dis.dis(greet)

 2 0 LOAD_CONST 1 ('Hello, ')

 2 LOAD_FAST 0 (name)

 4 FORMAT_VALUE 0

 6 LOAD_CONST 2 ("! How's it ")

 8 LOAD_FAST 1 (question)

 10 FORMAT_VALUE 0

 12 LOAD_CONST 3 ('?')

 14 BUILD_STRING 5

 16 RETURN_VALUE

String literals also support the existing format string syntax of the
str.format() method. That allows you to solve the same formatting
problems we’ve discussed in the previous two sections:

>>> f"Hey {name}, there's a {errno:#x} error!"

"Hey Bob, there's a 0xbadc0ffee error!"

Python’s new Formatted String Literals are similar to the JavaScript
Template Literals added in ES2015. I think they’re quite a nice addition to
the language, and I’ve already started using them in my day-to-day Python
3 work. You can learn more about Formatted String Literals in the official
Python documentation.15

#4 – Template Strings

One more technique for string formatting in Python is Template Strings. It’s
a simpler and less powerful mechanism, but in some cases this might be
exactly what you’re looking for.

Let’s take a look at a simple greeting example:

>>> from string import Template

>>> t = Template('Hey, $name!')

>>> t.substitute(name=name)

'Hey, Bob!'

You see here that we need to import the Template class from Python’s built-
in string module. Template strings are not a core language feature but
they’re supplied by a module in the standard library.

Another difference is that template strings don’t allow format specifiers. So
in order to get our error string example to work, we need to transform our
int error number into a hex-string ourselves:

>>> templ_string = 'Hey $name, there is a $error error!'

>>> Template(templ_string).substitute(

... name=name, error=hex(errno))

'Hey Bob, there is a 0xbadc0ffee error!'

That worked great but you’re probably wondering when you use template
strings in your Python programs. In my opinion, the best use case for
template strings is when you’re handling format strings generated by users
of your program. Due to their reduced complexity, template strings are a
safer choice.

The more complex formatting mini-languages of other string formatting
techniques might introduce security vulnerabilities to your programs. For
example, it’s possible for format strings to access arbitrary variables in your
program.

That means, if a malicious user can supply a format string they can also
potentially leak secret keys and other sensible information! Here’s a simple
proof of concept of how this attack might be used:

>>> SECRET = 'this-is-a-secret'

>>> class Error:

... def __init__(self):

... pass

>>> err = Error()

>>> user_input = '{error.__init__.__globals__[SECRET]}'

Uh-oh...

>>> user_input.format(error=err)

'this-is-a-secret'

See how the hypothetical attacker was able to extract our secret string by
accessing the __globals__ dictionary from the format string? Scary, huh!
Template Strings close this attack vector, and this makes them a safer
choice if you’re handling format strings generated from user input:

>>> user_input = '${error.__init__.__globals__[SECRET]}'

>>> Template(user_input).substitute(error=err)

ValueError:

"Invalid placeholder in string: line 1, col 1"

Which String Formatting Method Should I Use?

I totally get that having so much choice for how to format your strings in
Python can feel very confusing. This would be a good time to bust out some
flowchart infographic…

But I’m not going to do that. Instead, I’ll try to boil it down to the simple
rule of thumb that I apply when I’m writing Python.

Here we go—you can use this rule of thumb any time you’re having
difficulty deciding which string formatting method to use, depending on the
circumstances:

Dan’s Python String Formatting Rule of Thumb:

If your format strings are user-supplied, use Template Strings to avoid
security issues. Otherwise, use Literal String Interpolation if you’re on
Python 3.6+, and “New Style” String Formatting if you’re not.

Key Takeaways

Perhaps surprisingly, there’s more than one way to handle string
formatting in Python.
Each method has its individual pros and cons. Your use case will
influence which method you should use.
If you’re having trouble deciding which string formatting method to
use, try my String Formatting Rule of Thumb.

2.6 “The Zen of Python” Easter Egg

I know what follows is a common sight as far as Python books go. But
there’s really no way around Tim Peters’ Zen of Python. I’ve benefited from
revisiting it over the years, and I think Tim’s words made me a better coder.
Hopefully they can do the same for you.

Also, you can tell the Zen of Python is a big deal because it’s included as an
Easter egg in the language. Just enter a Python interpreter session and run
the following:

>>> import this

The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren’t special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.
There should be one—and preferably only one—obvious way to do it.
Although that way may not be obvious at first unless you’re Dutch.
Now is better than never.
Although never is often better than right now.
If the implementation is hard to explain, it’s a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea—let’s do more of those!

1. cf. Python Docs: “The Assert Statement”↩

2. cf. Wikipedia: Heisenbug↩

3. cf. Python Docs: “Constants (__debug__)”↩

4. I wrote an article about avoiding bogus assertions in your Python tests.
You can find it here: dbader.org/blog/catching-bogus-python-asserts.↩

5. cf. Python Docs: “String literal concatenation”↩

6. cf. Python Docs: “With Statement Context Managers”↩

7. cf. Python Docs: “contextlib”↩

8. cf. PEP 8: “Style Guide for Python Code”↩

9. cf. Python Docs: “Importing * From a Package”↩

10. cf. PEP 8: “Imports”↩

11. cf. Python Docs: “printf-style String Formatting”↩

12. cf. Python Docs: “str.format()”↩

13. cf. Python Docs: “Format String Syntax”↩

14. cf. Python 3 bug-tracker issue #27078↩

https://docs.python.org/3/reference/simple_stmts.html#the-assert-statement
https://en.wikipedia.org/wiki/Heisenbug
https://docs.python.org/3/library/constants.html#__debug__
https://dbader.org/blog/catching-bogus-python-asserts
https://docs.python.org/3.6/reference/lexical_analysis.html#string-literal-concatenation
https://docs.python.org/3/reference/datamodel.html#context-managers
https://docs.python.org/3/library/contextlib.html
http://pep8.org/#descriptive-naming-styles
https://docs.python.org/3/tutorial/modules.html#importing-from-a-package
http://pep8.org/#imports
https://docs.python.org/3/library/stdtypes.html#old-string-formatting
https://docs.python.org/3/library/stdtypes.html#str.format
https://docs.python.org/3/library/string.html#string-formatting
https://bugs.python.org/issue27078

15. cf. Python Docs: “Formatted string literals”↩

https://docs.python.org/3/reference/lexical_analysis.html#f-strings

3 Effective Functions
3.1 Python’s Functions Are First-Class

Python’s functions are first-class objects. You can assign them to variables,
store them in data structures, pass them as arguments to other functions, and
even return them as values from other functions.

Grokking these concepts intuitively will make understanding advanced
features in Python like lambdas and decorators much easier. It also puts you
on a path towards functional programming techniques.

Over the next few pages I’ll guide you through a number of examples to
help you develop this intuitive understanding. The examples will build on
top of each other, so you might want to read them in sequence and even to
try out some of them in a Python interpreter session as you go along.

Wrapping your head around the concepts we’ll be discussing here might
take a little longer than you’d expect. Don’t worry—that’s completely
normal. I’ve been there. You might feel like you’re banging your head
against the wall, and then suddenly things will “click” and fall into place
when you’re ready.

Throughout this chapter I’ll be using this yell function for demonstration
purposes. It’s a simple toy example with easily recognizable output:

def yell(text):

 return text.upper() + '!'

>>> yell('hello')

'HELLO!'

Functions Are Objects

All data in a Python program is represented by objects or relations between
objects.1 Things like strings, lists, modules, and functions are all objects.
There’s nothing particularly special about functions in Python. They’re also
just objects.

Because the yell function is an object in Python, you can assign it to
another variable, just like any other object:

>>> bark = yell

This line doesn’t call the function. It takes the function object referenced by
yell and creates a second name, bark, that points to it. You could now also
execute the same underlying function object by calling bark:

>>> bark('woof')

'WOOF!'

Function objects and their names are two separate concerns. Here’s more
proof: You can delete the function’s original name (yell). Since another
name (bark) still points to the underlying function, you can still call the
function through it:

>>> del yell

>>> yell('hello?')

NameError: "name 'yell' is not defined"

>>> bark('hey')

'HEY!'

By the way, Python attaches a string identifier to every function at creation
time for debugging purposes. You can access this internal identifier with the
__name__ attribute:2

>>> bark.__name__

'yell'

Now, while the function’s __name__ is still “yell,” that doesn’t affect how
you can access the function object from your code. The name identifier is
merely a debugging aid. A variable pointing to a function and the function
itself are really two separate concerns.

Functions Can Be Stored in Data Structures

Since functions are first-class citizens, you can store them in data structures,
just like you can with other objects. For example, you can add functions to
a list:

>>> funcs = [bark, str.lower, str.capitalize]

>>> funcs

[<function yell at 0x10ff96510>,

<method 'lower' of 'str' objects>,

<method 'capitalize' of 'str' objects>]

Accessing the function objects stored inside the list works like it would
with any other type of object:

>>> for f in funcs:

... print(f, f('hey there'))

<function yell at 0x10ff96510> 'HEY THERE!'

<method 'lower' of 'str' objects> 'hey there'

<method 'capitalize' of 'str' objects> 'Hey there'

You can even call a function object stored in the list without first assigning
it to a variable. You can do the lookup and then immediately call the
resulting “disembodied” function object within a single expression:

>>> funcs[0]('heyho')

'HEYHO!'

Functions Can Be Passed to Other Functions

Because functions are objects, you can pass them as arguments to other
functions. Here’s a greet function that formats a greeting string using the
function object passed to it and then prints it:

def greet(func):

 greeting = func('Hi, I am a Python program')

 print(greeting)

You can influence the resulting greeting by passing in different functions.
Here’s what happens if you pass the bark function to greet:

>>> greet(bark)

'HI, I AM A PYTHON PROGRAM!'

Of course, you could also define a new function to generate a different
flavor of greeting. For example, the following whisper function might work
better if you don’t want your Python programs to sound like Optimus
Prime:

def whisper(text):

 return text.lower() + '...'

>>> greet(whisper)

'hi, i am a python program...'

The ability to pass function objects as arguments to other functions is
powerful. It allows you to abstract away and pass around behavior in your
programs. In this example, the greet function stays the same but you can
influence its output by passing in different greeting behaviors.

Functions that can accept other functions as arguments are also called
higher-order functions. They are a necessity for the functional
programming style.

The classical example for higher-order functions in Python is the built-in
map function. It takes a function object and an iterable, and then calls the

function on each element in the iterable, yielding the results as it goes
along.

Here’s how you might format a sequence of greetings all at once by
mapping the bark function to them:

>>> list(map(bark, ['hello', 'hey', 'hi']))

['HELLO!', 'HEY!', 'HI!']

As you saw, map went through the entire list and applied the bark function
to each element. As a result, we now have a new list object with modified
greeting strings.

Functions Can Be Nested

Perhaps surprisingly, Python allows functions to be defined inside other
functions. These are often called nested functions or inner functions. Here’s
an example:

def speak(text):

 def whisper(t):

 return t.lower() + '...'

 return whisper(text)

>>> speak('Hello, World')

'hello, world...'

Now, what’s going on here? Every time you call speak, it defines a new
inner function whisper and then calls it immediately after. My brain’s
starting to itch just a little here but, all in all, that’s still relatively
straightforward stuff.

Here’s the kicker though—whisper does not exist outside speak:

>>> whisper('Yo')

NameError:

"name 'whisper' is not defined"

>>> speak.whisper

AttributeError:

"'function' object has no attribute 'whisper'"

But what if you really wanted to access that nested whisper function from
outside speak? Well, functions are objects—you can return the inner
function to the caller of the parent function.

For example, here’s a function defining two inner functions. Depending on
the argument passed to top-level function, it selects and returns one of the
inner functions to the caller:

def get_speak_func(volume):

 def whisper(text):

 return text.lower() + '...'

 def yell(text):

 return text.upper() + '!'

 if volume > 0.5:

 return yell

 else:

 return whisper

Notice how get_speak_func doesn’t actually call any of its inner functions
—it simply selects the appropriate inner function based on the volume
argument and then returns the function object:

>>> get_speak_func(0.3)

<function get_speak_func.<locals>.whisper at 0x10ae18>

>>> get_speak_func(0.7)

<function get_speak_func.<locals>.yell at 0x1008c8>

Of course, you could then go on and call the returned function, either
directly or by assigning it to a variable name first:

>>> speak_func = get_speak_func(0.7)

>>> speak_func('Hello')

'HELLO!'

Let that sink in for a second here… This means not only can functions
accept behaviors through arguments but they can also return behaviors.
How cool is that?

You know what, things are starting to get a little loopy here. I’m going to
take a quick coffee break before I continue writing (and I suggest you do
the same).

Functions Can Capture Local State

You just saw how functions can contain inner functions, and that it’s even
possible to return these (otherwise hidden) inner functions from the parent
function.

Best put on your seat belt now because it’s going to get a little crazier still
—we’re about to enter even deeper functional programming territory. (You
had that coffee break, right?)

Not only can functions return other functions, these inner functions can also
capture and carry some of the parent function’s state with them. Well, what
does that mean?

I’m going to slightly rewrite the previous get_speak_func example to
illustrate this. The new version takes a “volume” and a “text” argument
right away to make the returned function immediately callable:

def get_speak_func(text, volume):

 def whisper():

 return text.lower() + '...'

 def yell():

 return text.upper() + '!'

 if volume > 0.5:

 return yell

 else:

 return whisper

>>> get_speak_func('Hello, World', 0.7)()

'HELLO, WORLD!'

Take a good look at the inner functions whisper and yell now. Notice how
they no longer have a text parameter? But somehow they can still access
the text parameter defined in the parent function. In fact, they seem to
capture and “remember” the value of that argument.

Functions that do this are called lexical closures (or just closures, for short).
A closure remembers the values from its enclosing lexical scope even when
the program flow is no longer in that scope.

In practical terms, this means not only can functions return behaviors but
they can also pre-configure those behaviors. Here’s another bare-bones
example to illustrate this idea:

def make_adder(n):

 def add(x):

 return x + n

 return add

>>> plus_3 = make_adder(3)

>>> plus_5 = make_adder(5)

>>> plus_3(4)

7

>>> plus_5(4)

9

In this example, make_adder serves as a factory to create and configure
“adder” functions. Notice how the “adder” functions can still access the n
argument of the make_adder function (the enclosing scope).

Objects Can Behave Like Functions

While all functions are objects in Python, the reverse isn’t true. Objects
aren’t functions. But they can be made callable, which allows you to treat
them like functions in many cases.

If an object is callable it means you can use the round parentheses function
call syntax on it and even pass in function call arguments. This is all
powered by the __call__ dunder method. Here’s an example of class
defining a callable object:

class Adder:

 def __init__(self, n):

 self.n = n

 def __call__(self, x):

 return self.n + x

>>> plus_3 = Adder(3)

>>> plus_3(4)

7

Behind the scenes, “calling” an object instance as a function attempts to
execute the object’s __call__ method.

Of course, not all objects will be callable. That’s why there’s a built-in
callable function to check whether an object appears to be callable or not:

>>> callable(plus_3)

True

>>> callable(yell)

True

>>> callable('hello')

False

Key Takeaways

Everything in Python is an object, including functions. You can assign
them to variables, store them in data structures, and pass or return
them to and from other functions (first-class functions.)
First-class functions allow you to abstract away and pass around
behavior in your programs.
Functions can be nested and they can capture and carry some of the
parent function’s state with them. Functions that do this are called

closures.
Objects can be made callable. In many cases this allows you to treat
them like functions.

3.2 Lambdas Are Single-Expression Functions

The lambda keyword in Python provides a shortcut for declaring small
anonymous functions. Lambda functions behave just like regular functions
declared with the def keyword. They can be used whenever function
objects are required.

For example, this is how you’d define a simple lambda function carrying
out an addition:

>>> add = lambda x, y: x + y

>>> add(5, 3)

8

You could declare the same add function with the def keyword, but it
would be slightly more verbose:

>>> def add(x, y):

... return x + y

>>> add(5, 3)

8

Now you might be wondering, “Why the big fuss about lambdas? If they’re
just a slightly more concise version of declaring functions with def, what’s
the big deal?”

Take a look at the following example and keep the words function
expression in your head while you do that:

>>> (lambda x, y: x + y)(5, 3)

8

Okay, what happened here? I just used lambda to define an “add” function
inline and then immediately called it with the arguments 5 and 3.

Conceptually, the lambda expression lambda x, y: x + y is the same as
declaring a function with def, but just written inline. The key difference
here is that I didn’t have to bind the function object to a name before I used
it. I simply stated the expression I wanted to compute as part of a lambda,
and then immediately evaluated it by calling the lambda expression like a
regular function.

Before you move on, you might want to play with the previous code
example a little to really let the meaning of it sink in. I still remember this
taking me awhile to wrap my head around. So don’t worry about spending a
few minutes in an interpreter session on this. It’ll be worth it.

There’s another syntactic difference between lambdas and regular function
definitions. Lambda functions are restricted to a single expression. This
means a lambda function can’t use statements or annotations—not even a
return statement.

How do you return values from lambdas then? Executing a lambda function
evaluates its expression and then automatically returns the expression’s
result, so there’s always an implicit return statement. That’s why some
people refer to lambdas as single expression functions.

Lambdas You Can Use

When should you use lambda functions in your code? Technically, any time
you’re expected to supply a function object you can use a lambda
expression. And because lambdas can be anonymous, you don’t even need
to assign them to a name first.

This can provide a handy and “unbureaucratic” shortcut to defining a
function in Python. My most frequent use case for lambdas is writing short
and concise key funcs for sorting iterables by an alternate key:

>>> tuples = [(1, 'd'), (2, 'b'), (4, 'a'), (3, 'c')]

>>> sorted(tuples, key=lambda x: x[1])

[(4, 'a'), (2, 'b'), (3, 'c'), (1, 'd')]

In the above example, we’re sorting a list of tuples by the second value in
each tuple. In this case, the lambda function provides a quick way to modify
the sort order. Here’s another sorting example you can play with:

>>> sorted(range(-5, 6), key=lambda x: x * x)

[0, -1, 1, -2, 2, -3, 3, -4, 4, -5, 5]

Both examples I showed you have more concise implementations in Python
using the built-in operator.itemgetter() and abs() functions. But I hope
you can see how using a lambda gives you much more flexibility. Want to
sort a sequence by some arbitrary computed key? No problem. Now you
know how to do it.

Here’s another interesting thing about lambdas: Just like regular nested
functions, lambdas also work as lexical closures.

What’s a lexical closure? It’s just a fancy name for a function that
remembers the values from the enclosing lexical scope even when the
program flow is no longer in that scope. Here’s a (fairly academic) example
to illustrate the idea:

>>> def make_adder(n):

... return lambda x: x + n

>>> plus_3 = make_adder(3)

>>> plus_5 = make_adder(5)

>>> plus_3(4)

7

>>> plus_5(4)

9

In the above example, the x + n lambda can still access the value of n even
though it was defined in the make_adder function (the enclosing scope).

Sometimes, using a lambda function instead of a nested function declared
with the def keyword can express the programmer’s intent more clearly.
But to be honest, this isn’t a common occurrence—at least not in the kind of
code that I like to write. So let’s talk a little more about that.

But Maybe You Shouldn’t…

On the one hand, I’m hoping this chapter got you interested in exploring
Python’s lambda functions. On the other hand, I feel like it’s time to put up
another caveat: Lambda functions should be used sparingly and with
extraordinary care.

I know I’ve written my fair share of code using lambdas that looked “cool”
but were actually a liability for me and my coworkers. If you’re tempted to
use a lambda, spend a few seconds (or minutes) to think if it is really the
cleanest and most maintainable way to achieve the desired result.

For example, doing something like this to save two lines of code is just
silly. Sure, technically it works and it’s a nice enough “trick.” But it’s also
going to confuse the next gal or guy that has to ship a bugfix under a tight
deadline:

Harmful:

>>> class Car:

... rev = lambda self: print('Wroom!')

... crash = lambda self: print('Boom!')

>>> my_car = Car()

>>> my_car.crash()

'Boom!'

I have similar feelings about complicated map() or filter() constructs
using lambdas. Usually it’s much cleaner to go with a list comprehension or
generator expression:

Harmful:

>>> list(filter(lambda x: x % 2 == 0, range(16)))

[0, 2, 4, 6, 8, 10, 12, 14]

Better:

>>> [x for x in range(16) if x % 2 == 0]

[0, 2, 4, 6, 8, 10, 12, 14]

If you find yourself doing anything remotely complex with lambda
expressions, consider defining a standalone function with a proper name
instead.

Saving a few keystrokes won’t matter in the long run, but your colleagues
(and your future self) will appreciate clean and readable code more than
terse wizardry.

Key Takeaways

Lambda functions are single-expression functions that are not
necessarily bound to a name (anonymous).
Lambda functions can’t use regular Python statements and always
include an implicit return statement.
Always ask yourself: Would using a regular (named) function or a list
comprehension offer more clarity?

3.3 The Power of Decorators

At their core, Python’s decorators allow you to extend and modify the
behavior of a callable (functions, methods, and classes) without
permanently modifying the callable itself.

Any sufficiently generic functionality you can tack on to an existing class or
function’s behavior makes a great use case for decoration. This includes the
following:

logging
enforcing access control and authentication
instrumentation and timing functions
rate-limiting
caching, and more

Now, why should you master the use of decorators in Python? After all,
what I just mentioned sounded quite abstract, and it might be difficult to see
how decorators can benefit you in your day-to-day work as a Python
developer. Let me try to bring some clarity to this question by giving you a
somewhat real-world example:

Imagine you’ve got 30 functions with business logic in your report-
generating program. One rainy Monday morning your boss walks up to
your desk and says: “Happy Monday! Remember those TPS reports? I need
you to add input/output logging to each step in the report generator. XYZ
Corp needs it for auditing purposes. Oh, and I told them we can ship this by
Wednesday.”

Depending on whether or not you’ve got a solid grasp on Python’s
decorators, this request will either send your blood pressure spiking or leave
you relatively calm.

Without decorators you might be spending the next three days scrambling
to modify each of those 30 functions and clutter them up with manual
logging calls. Fun times, right?

If you do know your decorators however, you’ll calmly smile at your boss
and say: “Don’t worry Jim, I’ll get it done by 2pm today.”

Right after that you’ll type the code for a generic @audit_log decorator
(that’s only about 10 lines long) and quickly paste it in front of each
function definition. Then you’ll commit your code and grab another cup of
coffee…

I’m dramatizing here, but only a little. Decorators can be that powerful. I’d
go as far as to say that understanding decorators is a milestone for any
serious Python programmer. They require a solid grasp of several advanced
concepts in the language, including the properties of first-class functions.

I believe that the payoff for understanding how decorators work in
Python can be enormous.

Sure, decorators are relatively complicated to wrap your head around for
the first time, but they’re a highly useful feature that you’ll often encounter
in third-party frameworks and the Python standard library. Explaining
decorators is also a make or break moment for any good Python tutorial. I’ll
do my best here to introduce you to them step by step.

Before you dive in however, now would be an excellent moment to refresh
your memory on the properties of first-class functions in Python. There’s a
chapter on them in this book, and I would encourage you to take a few
minutes to review it. The most important “first-class functions” takeaways
for understanding decorators are:

Functions are objects—they can be assigned to variables and passed
to and returned from other functions

Functions can be defined inside other functions—and a child
function can capture the parent function’s local state (lexical closures)

Alright, are you ready to do this? Let’s get started.

Python Decorator Basics

Now, what are decorators really? They “decorate” or “wrap” another
function and let you execute code before and after the wrapped function
runs.

Decorators allow you to define reusable building blocks that can change or
extend the behavior of other functions. And, they let you do that without
permanently modifying the wrapped function itself. The function’s behavior
changes only when it’s decorated.

What might the implementation of a simple decorator look like? In basic
terms, a decorator is a callable that takes a callable as input and returns
another callable.

The following function has that property and could be considered the
simplest decorator you could possibly write:

def null_decorator(func):

 return func

As you can see, null_decorator is a callable (it’s a function), it takes
another callable as its input, and it returns the same input callable without
modifying it.

Let’s use it to decorate (or wrap) another function:

def greet():

 return 'Hello!'

greet = null_decorator(greet)

>>> greet()

'Hello!'

In this example, I’ve defined a greet function and then immediately
decorated it by running it through the null_decorator function. I know this
doesn’t look very useful yet. I mean, we specifically designed the null
decorator to be useless, right? But in a moment this example will clarify
how Python’s special-case decorator syntax works.

Instead of explicitly calling null_decorator on greet and then reassigning
the greet variable, you can use Python’s @ syntax for decorating a function
more conveniently:

@null_decorator

def greet():

 return 'Hello!'

>>> greet()

'Hello!'

Putting an @null_decorator line in front of the function definition is the
same as defining the function first and then running through the decorator.
Using the @ syntax is just syntactic sugar and a shortcut for this commonly
used pattern.

Note that using the @ syntax decorates the function immediately at
definition time. This makes it difficult to access the undecorated original
without brittle hacks. Therefore you might choose to decorate some
functions manually in order to retain the ability to call the undecorated
function as well.

Decorators Can Modify Behavior

Now that you’re a little more familiar with the decorator syntax, let’s write
another decorator that actually does something and modifies the behavior of
the decorated function.

Here’s a slightly more complex decorator which converts the result of the
decorated function to uppercase letters:

def uppercase(func):

 def wrapper():

 original_result = func()

 modified_result = original_result.upper()

 return modified_result

 return wrapper

Instead of simply returning the input function like the null decorator did,
this uppercase decorator defines a new function on the fly (a closure) and
uses it to wrap the input function in order to modify its behavior at call
time.

The wrapper closure has access to the undecorated input function and it is
free to execute additional code before and after calling the input function.
(Technically, it doesn’t even need to call the input function at all.)

Note how, up until now, the decorated function has never been executed.
Actually calling the input function at this point wouldn’t make any sense—
you’ll want the decorator to be able to modify the behavior of its input
function when it eventually gets called.

You might want to let that sink in for a minute or two. I know how
complicated this stuff can seem, but we’ll get it sorted out together, I

promise.

Time to see the uppercase decorator in action. What happens if you
decorate the original greet function with it?

@uppercase

def greet():

 return 'Hello!'

>>> greet()

'HELLO!'

I hope this was the result you expected. Let’s take a closer look at what just
happened here. Unlike null_decorator, our uppercase decorator returns a
different function object when it decorates a function:

>>> greet

<function greet at 0x10e9f0950>

>>> null_decorator(greet)

<function greet at 0x10e9f0950>

>>> uppercase(greet)

<function uppercase.<locals>.wrapper at 0x76da02f28>

And as you saw earlier, it needs to do that in order to modify the behavior
of the decorated function when it finally gets called. The uppercase
decorator is a function itself. And the only way to influence the “future
behavior” of an input function it decorates is to replace (or wrap) the input
function with a closure.

That’s why uppercase defines and returns another function (the closure)
that can then be called at a later time, run the original input function, and
modify its result.

Decorators modify the behavior of a callable through a wrapper closure so
you don’t have to permanently modify the original. The original callable
isn’t permanently modified—its behavior changes only when decorated.

This let’s you tack on reusable building blocks, like logging and other
instrumentation, to existing functions and classes. It makes decorators such
a powerful feature in Python that it’s frequently used in the standard library
and in third-party packages.

A Quick Intermission

By the way, if you feel like you need a quick coffee break or a walk around
the block at this point—that’s totally normal. In my opinion closures and
decorators are some of the most difficult concepts to understand in Python.

Please, take your time and don’t worry about figuring this out immediately.
Playing through the code examples in an interpreter session one by one
often helps make things sink in.

I know you can do it!

Applying Multiple Decorators to a Function

Perhaps not surprisingly, you can apply more than one decorator to a
function. This accumulates their effects and it’s what makes decorators so
helpful as reusable building blocks.

Here’s an example. The following two decorators wrap the output string of
the decorated function in HTML tags. By looking at how the tags are
nested, you can see which order Python uses to apply multiple decorators:

def strong(func):

 def wrapper():

 return '' + func() + ''

 return wrapper

def emphasis(func):

 def wrapper():

 return '' + func() + ''

 return wrapper

Now let’s take these two decorators and apply them to our greet function at
the same time. You can use the regular @ syntax for that and just “stack”
multiple decorators on top of a single function:

@strong

@emphasis

def greet():

 return 'Hello!'

What output do you expect to see if you run the decorated function? Will
the @emphasis decorator add its tag first, or does @strong have
precedence? Here’s what happens when you call the decorated function:

>>> greet()

'Hello!'

This clearly shows in what order the decorators were applied: from bottom
to top. First, the input function was wrapped by the @emphasis decorator,
and then the resulting (decorated) function got wrapped again by the
@strong decorator.

To help me remember this bottom to top order, I like to call this behavior
decorator stacking. You start building the stack at the bottom and then keep
adding new blocks on top to work your way upwards.

If you break down the above example and avoid the @ syntax to apply the
decorators, the chain of decorator function calls looks like this:

decorated_greet = strong(emphasis(greet))

Again, you can see that the emphasis decorator is applied first and then the
resulting wrapped function is wrapped again by the strong decorator.

This also means that deep levels of decorator stacking will evenutally have
an effect on performance because they keep adding nested function calls. In
practice, this usually won’t be a problem, but it’s something to keep in mind

if you’re working on performance-intensive code that frequently uses
decoration.

Decorating Functions That Accept Arguments

All examples so far only decorated a simple nullary greet function that
didn’t take any arguments whatsoever. Up until now, the decorators you saw
here didn’t have to deal with forwarding arguments to the input function.

If you try to apply one of these decorators to a function that takes
arguments, it will not work correctly. How do you decorate a function that
takes arbitrary arguments?

This is where Python’s *args and **kwargs feature3 for dealing with
variable numbers of arguments comes in handy. The following proxy
decorator takes advantage of that:

def proxy(func):

 def wrapper(*args, **kwargs):

 return func(*args, **kwargs)

 return wrapper

There are two notable things going on with this decorator:

It uses the * and ** operators in the wrapper closure definition to
collect all positional and keyword arguments and stores them in
variables (args and kwargs).

The wrapper closure then forwards the collected arguments to the
original input function using the * and ** “argument unpacking”
operators.

It’s a bit unfortunate that the meaning of the star and double-star operators
is overloaded and changes depending on the context they’re used in, but I
hope you get the idea.

Let’s expand the technique laid out by the proxy decorator into a more
useful practical example. Here’s a trace decorator that logs function
arguments and results during execution time:

def trace(func):

 def wrapper(*args, **kwargs):

 print(f'TRACE: calling {func.__name__}() '

 f'with {args}, {kwargs}')

 original_result = func(*args, **kwargs)

 print(f'TRACE: {func.__name__}() '

 f'returned {original_result!r}')

 return original_result

 return wrapper

Decorating a function with trace and then calling it will print the
arguments passed to the decorated function and its return value. This is still
somewhat of a “toy” example—but in a pinch it makes a great debugging
aid:

@trace

def say(name, line):

 return f'{name}: {line}'

>>> say('Jane', 'Hello, World')

'TRACE: calling say() with ("Jane", "Hello, World"), {}'

'TRACE: say() returned "Jane: Hello, World"'

'Jane: Hello, World'

Speaking of debugging, there are some things you should keep in mind
when debugging decorators:

How to Write “Debuggable” Decorators

When you use a decorator, really what you’re doing is replacing one
function with another. One downside of this process is that it “hides” some
of the metadata attached to the original (undecorated) function.

For example, the original function name, its docstring, and parameter list
are hidden by the wrapper closure:

def greet():

 """Return a friendly greeting."""

 return 'Hello!'

decorated_greet = uppercase(greet)

If you try to access any of that function metadata, you’ll see the wrapper
closure’s metadata instead:

>>> greet.__name__

'greet'

>>> greet.__doc__

'Return a friendly greeting.'

>>> decorated_greet.__name__

'wrapper'

>>> decorated_greet.__doc__

None

This makes debugging and working with the Python interpreter awkward
and challenging. Thankfully there’s a quick fix for this: the
functools.wraps decorator included in Python’s standard library.4

You can use functools.wraps in your own decorators to copy over the lost
metadata from the undecorated function to the decorator closure. Here’s an
example:

import functools

def uppercase(func):

 @functools.wraps(func)

 def wrapper():

 return func().upper()

 return wrapper

Applying functools.wraps to the wrapper closure returned by the
decorator carries over the docstring and other metadata of the input
function:

@uppercase

def greet():

 """Return a friendly greeting."""

 return 'Hello!'

>>> greet.__name__

'greet'

>>> greet.__doc__

'Return a friendly greeting.'

As a best practice, I’d recommend that you use functools.wraps in all of
the decorators you write yourself. It doesn’t take much time and it will save
you (and others) debugging headaches down the road.

Oh, and congratulations—you’ve made it all the way to the end of this
complicated chapter and learned a whole lot about decorators in Python.
Great job!

Key Takeaways

Decorators define reusable building blocks you can apply to a callable
to modify its behavior without permanently modifying the callable
itself.
The @ syntax is just a shorthand for calling the decorator on an input
function. Multiple decorators on a single function are applied bottom
to top (decorator stacking).
As a debugging best practice, use the functools.wraps helper in your
own decorators to carry over metadata from the undecorated callable
to the decorated one.
Just like any other tool in the software development toolbox,
decorators are not a cure-all and they should not be overused. It’s
important to balance the need to “get stuff done” with the goal of “not
getting tangled up in a horrible, unmaintainable mess of a code base.”

3.4 Fun With *args and **kwargs

I once pair-programmed with a smart Pythonista who would exclaim
“argh!” and “kwargh!” every time he typed out a function definition with
optional or keyword parameters. We got along great otherwise. I guess
that’s what programming in academia does to people eventually.

Now, while easily mocked, *args and **kwargs parameters are
nevertheless a highly useful feature in Python. And understanding their
potency will make you a more effective developer.

So what are *args and **kwargs parameters used for? They allow a
function to accept optional arguments, so you can create flexible APIs in
your modules and classes:

def foo(required, *args, **kwargs):

 print(required)

 if args:

 print(args)

 if kwargs:

 print(kwargs)

The above function requires at least one argument called “required,” but it
can accept extra positional and keyword arguments as well.

If we call the function with additional arguments, args will collect extra
positional arguments as a tuple because the parameter name has a * prefix.

Likewise, kwargs will collect extra keyword arguments as a dictionary
because the parameter name has a ** prefix.

Both args and kwargs can be empty if no extra arguments are passed to the
function.

As we call the function with various combinations of arguments, you’ll see
how Python collects them inside the args and kwargs parameters according
to whether they’re positional or keyword arguments:

>>> foo()

TypeError:

"foo() missing 1 required positional arg: 'required'"

>>> foo('hello')

hello

>>> foo('hello', 1, 2, 3)

hello

(1, 2, 3)

>>> foo('hello', 1, 2, 3, key1='value', key2=999)

hello

(1, 2, 3)

{'key1': 'value', 'key2': 999}

I want to make it clear that calling the parameters args and kwargs is
simply a naming convention. The previous example would work just as
well if you called them *parms and **argv. The actual syntax is just the
asterisk (*) or double asterisk (**), respectively.

However, I recommend that you stick with the accepted naming convention
to avoid confusion. (And to get a chance to yell “argh!” and “kwargh!”
every once in a while.)

Forwarding Optional or Keyword Arguments

It’s possible to pass optional or keyword parameters from one function to
another. You can do so by using the argument-unpacking operators * and **
when calling the function you want to forward arguments to.5

This also gives you an opportunity to modify the arguments before you pass
them along. Here’s an example:

def foo(x, *args, **kwargs):

 kwargs['name'] = 'Alice'

 new_args = args + ('extra',)

 bar(x, *new_args, **kwargs)

This technique can be useful for subclassing and writing wrapper functions.
For example, you can use it to extend the behavior of a parent class without
having to replicate the full signature of its constructor in the child class.
This can be quite convenient if you’re working with an API that might
change outside of your control:

class Car:

 def __init__(self, color, mileage):

 self.color = color

 self.mileage = mileage

class AlwaysBlueCar(Car):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.color = 'blue'

>>> AlwaysBlueCar('green', 48392).color

'blue'

The AlwaysBlueCar constructor simply passes on all arguments to its parent
class and then overrides an internal attribute. This means if the parent class
constructor changes, there’s a good chance that AlwaysBlueCar would still
function as intended.

The downside here is that the AlwaysBlueCar constructor now has a rather
unhelpful signature—we don’t know what arguments it expects without
looking up the parent class.

Typically you wouldn’t use this technique with your own class hierarchies.
The more likely scenario would be that you’ll want to modify or override
behavior in some external class which you don’t control.

But this is always dangerous territory, so best be careful (or you might soon
have yet another reason to scream “argh!”).

One more scenario where this technique is potentially helpful is writing
wrapper functions such as decorators. There you typically also want to
accept arbitrary arguments to be passed through to the wrapped function.

And, if we can do it without having to copy and paste the original function’s
signature, that might be more maintainable:

def trace(f):

 @functools.wraps(f)

 def decorated_function(*args, **kwargs):

 print(f, args, kwargs)

 result = f(*args, **kwargs)

 print(result)

 return decorated_function

@trace

def greet(greeting, name):

 return '{}, {}!'.format(greeting, name)

>>> greet('Hello', 'Bob')

<function greet at 0x1031c9158> ('Hello', 'Bob') {}

'Hello, Bob!'

With techniques like this one, it’s sometimes difficult to balance the idea of
making your code explicit enough and yet adhere to the Don’t Repeat
Yourself (DRY) principle. This will always be a tough choice to make. If
you can get a second opinion from a colleague, I’d encourage you to ask for
one.

Key Takeaways

*args and **kwargs let you write functions with a variable number of
arguments in Python.
*args collects extra positional arguments as a tuple. **kwargs collects
the extra keyword arguments as a dictionary.
The actual syntax is * and **. Calling them args and kwargs is just a
convention (and one you should stick to).

3.5 Function Argument Unpacking

A really cool but slightly arcane feature is the ability to “unpack” function
arguments from sequences and dictionaries with the * and ** operators.

Let’s define a simple function to work with as an example:

def print_vector(x, y, z):

 print('<%s, %s, %s>' % (x, y, z))

As you can see, this function takes three arguments (x, y, and z) and prints
them in a nicely formatted way. We might use this function to pretty-print
3-dimensional vectors in our program:

>>> print_vector(0, 1, 0)

<0, 1, 0>

Now depending on which data structure we choose to represent 3D vectors
with, printing them with our print_vector function might feel a little
awkward. For example, if our vectors are represented as tuples or lists we
must explicitly specify the index for each component when printing them:

>>> tuple_vec = (1, 0, 1)

>>> list_vec = [1, 0, 1]

>>> print_vector(tuple_vec[0],

 tuple_vec[1],

 tuple_vec[2])

<1, 0, 1>

Using a normal function call with separate arguments seems unnecessarily
verbose and cumbersome. Wouldn’t it be much nicer if we could just
“explode” a vector object into its three components and pass everything to
the print_vector function all at once?

(Of course, you could simply redefine print_vector so that it takes a
single parameter representing a vector object—but for the sake of having a
simple example, we’ll ignore that option for now.)

Thankfully, there’s a better way to handle this situation in Python with
Function Argument Unpacking using the * operator:

>>> print_vector(*tuple_vec)

<1, 0, 1>

>>> print_vector(*list_vec)

<1, 0, 1>

Putting a * before an iterable in a function call will unpack it and pass its
elements as separate positional arguments to the called function.

This technique works for any iterable, including generator expressions.
Using the * operator on a generator consumes all elements from the
generator and passes them to the function:

>>> genexpr = (x * x for x in range(3))

>>> print_vector(*genexpr)

Besides the * operator for unpacking sequences like tuples, lists, and
generators into positional arguments, there’s also the ** operator for
unpacking keyword arguments from dictionaries. Imagine our vector was
represented as the following dict object:

>>> dict_vec = {'y': 0, 'z': 1, 'x': 1}

We could pass this dict to print_vector in much the same way using the **
operator for unpacking:

>>> print_vector(**dict_vec)

<1, 0, 1>

Because dictionaries are unordered, this matches up dictionary values and
function arguments based on the dictionary keys: the x argument receives
the value associated with the 'x' key in the dictionary.

If you were to use the single asterisk (*) operator to unpack the dictionary,
keys would be passed to the function in random order instead:

>>> print_vector(*dict_vec)

<y, x, z>

Python’s function argument unpacking feature gives you a lot of flexibility
for free. Often this means you won’t have to implement a class for a data
type needed by your program. As a result, using simple built-in data
structures like tuples or lists will suffice and help reduce the complexity of
your code.

Key Takeaways

The * and ** operators can be used to “unpack” function arguments
from sequences and dictionaries.
Using argument unpacking effectively can help you write more
flexible interfaces for your modules and functions.

3.6 Nothing to Return Here

Python adds an implicit return None statement to the end of any function.
Therefore, if a function doesn’t specify a return value, it returns None by
default.

This means you can replace return None statements with bare return
statements or even leave them out completely and still get the same result:

def foo1(value):

 if value:

 return value

 else:

 return None

def foo2(value):

 """Bare return statement implies `return None`"""

 if value:

 return value

 else:

 return

def foo3(value):

 """Missing return statement implies `return None`"""

 if value:

 return value

All three functions properly return None if you pass them a falsy value as
the sole argument:

>>> type(foo1(0))

<class 'NoneType'>

>>> type(foo2(0))

<class 'NoneType'>

>>> type(foo3(0))

<class 'NoneType'>

Now, when is it a good idea to use this feature in your own Python code?

My rule of thumb is that if a function doesn’t have a return value (other
languages would call this a procedure), then I will leave out the return
statement. Adding one would just be superfluous and confusing. An
example for a procedure would be Python’s built-in print function which is
only called for its side-effects (printing text) and never for its return value.

Let’s take a function like Python’s built-in sum. It clearly has a logical
return value, and typically sum wouldn’t get called only for its side-effects.
Its purpose is to add a sequence of numbers together and then deliver the
result. Now, if a function does have a return value from a logical point of
view, then you need to decide whether to use an implicit return or not.

On the one hand, you could argue that omitting an explicit return None
statement makes the code more concise and therefore easier to read and
understand. Subjectively, you might also say it makes the code “prettier.”

On the other hand, it might surprise some programmers that Python behaves
this way. When it comes to writing clean and maintainable code, surprising
behavior is rarely a good sign.

For example, I’ve been using an “implicit return statement” in one of the
code samples in an earlier revision of the book. I didn’t mention what I was
doing—I just wanted a nice short code sample to explain some other feature
in Python.

Eventually I started getting a steady stream of emails pointing me to “the
missing return statement” in that code example. Python’s implicit return
behavior was clearly not obvious to everybody and was a distraction in this
case. I added a note to make it clear what was going on, and the emails
stopped.

Don’t get me wrong—I love writing clean and “beautiful” code as much as
anyone. And I also used to feel strongly that programmers should know the
ins and outs of the language they’re working with.

But when you consider the maintenance impact of even such a simple
misunderstanding, it might make sense to lean towards writing more
explicit and clear code. After all, code is communication.

Key Takeaways

If a function doesn’t specify a return value, it returns None. Whether to
explicitly return None is a stylistic decision.
This is a core Python feature but your code might communicate its
intent more clearly with an explicit return None statement.

1. cf. Python Docs: “Objects, values and types”↩

2. Since Python 3.3 there’s also __qualname__ which serves a similar
purpose and provides a qualified name string to disambiguate function
and class names (cf. PEP 3155).↩

3. cf. “Fun With *args and **kwargs" chapter↩

4. cf. Python Docs: “functools.wraps”↩

5. cf. “Function Argument Unpacking” chapter↩

https://docs.python.org/3/reference/datamodel.html#objects-values-and-types
https://www.python.org/dev/peps/pep-3155/
https://docs.python.org/3/library/functools.html#functools.wraps

4 Classes & OOP
4.1 Object Comparisons: “is” vs “==”

When I was a kid, our neighbors had two twin cats. They looked seemingly
identical—the same charcoal fur and the same piercing green eyes. Some
personality quirks aside, you couldn’t tell them apart just from looking at
them. But of course, they were two different cats, two separate beings, even
though they looked exactly the same.

That brings me to the difference in meaning between equal and identical.
And this difference is crucial to understanding how Python’s is and ==
comparison operators behave.

The == operator compares by checking for equality: if these cats were
Python objects and we compared them with the == operator, we’d get “both
cats are equal” as an answer.

The is operator, however, compares identities: if we compared our cats
with the is operator, we’d get “these are two different cats” as an answer.

But before I get all tangled up in this ball-of-twine cat analogy, let’s take a
look at some real Python code.

First, we’ll create a new list object and name it a, and then define another
variable (b) that points to the same list object:

>>> a = [1, 2, 3]

>>> b = a

Let’s inspect these two variables. We can see that they point to identical-
looking lists:

>>> a

[1, 2, 3]

>>> b

[1, 2, 3]

Because the two list objects look the same, we’ll get the expected result
when we compare them for equality by using the == operator:

>>> a == b

True

However, that doesn’t tell us whether a and b are actually pointing to the
same object. Of course, we know they are because we assigned them earlier,
but suppose we didn’t know—how might we find out?

The answer is to compare both variables with the is operator. This confirms
that both variables are in fact pointing to one list object:

>>> a is b

True

Let’s see what happens when we create an identical copy of our list object.
We can do that by calling list() on the existing list to create a copy we’ll
name c:

>>> c = list(a)

Again you’ll see that the new list we just created looks identical to the list
object pointed to by a and b:

>>> c

[1, 2, 3]

Now this is where it gets interesting. Let’s compare our list copy c with the
initial list a using the == operator. What answer do you expect to see?

>>> a == c

True

Okay, I hope this was what you expected. What this result tells us is that c
and a have the same contents. They’re considered equal by Python. But are
they actually pointing to the same object? Let’s find out with the is
operator:

>>> a is c

False

Boom! This is where we get a different result. Python is telling us that c and
a are pointing to two different objects, even though their contents might be
the same.

So, to recap, let’s try and break down the difference between is and == into
two short definitions:

An is expression evaluates to True if two variables point to the same
(identical) object.

An == expression evaluates to True if the objects referred to by the
variables are equal (have the same contents).

Just remember to think of twin cats (dogs should work, too) whenever you
need to decide between using is and == in Python. If you do that, you’ll be
fine.

4.2 String Conversion (Every Class Needs a
__repr__)

When you define a custom class in Python and then try to print one of its
instances to the console (or inspect it in an interpreter session), you get a
relatively unsatisfying result. The default “to string” conversion behavior is
basic and lacks detail:

class Car:

 def __init__(self, color, mileage):

 self.color = color

 self.mileage = mileage

>>> my_car = Car('red', 37281)

>>> print(my_car)

<__console__.Car object at 0x109b73da0>

>>> my_car

<__console__.Car object at 0x109b73da0>

By default all you get is a string containing the class name and the id of the
object instance (which is the object’s memory address in CPython.) That’s
better than nothing, but it’s also not very useful.

You might find yourself trying to work around this by printing attributes of
the class directly, or even by adding a custom to_string() method to your
classes:

>>> print(my_car.color, my_car.mileage)

red 37281

The general idea here is the right one—but it ignores the conventions and
built-in mechanisms Python uses to handle how objects are represented as
strings.

Instead of building your own to-string conversion machinery, you’ll be
better off adding the __str__ and __repr__ “dunder” methods to your
class. They are the Pythonic way to control how objects are converted to
strings in different situations.1

Let’s take a look at how these methods work in practice. To get started,
we’re going to add a __str__ method to the Car class we defined earlier:

class Car:

 def __init__(self, color, mileage):

 self.color = color

 self.mileage = mileage

 def __str__(self):

 return f'a {self.color} car'

When you try printing or inspecting a Car instance now, you’ll get a
different, slightly improved result:

>>> my_car = Car('red', 37281)

>>> print(my_car)

'a red car'

>>> my_car

<__console__.Car object at 0x109ca24e0>

Inspecting the car object in the console still gives us the previous result
containing the object’s id. But printing the object resulted in the string
returned by the __str__ method we added.

__str__ is one of Python’s “dunder” (double-underscore) methods and gets
called when you try to convert an object into a string through the various
means that are available:

>>> print(my_car)

a red car

>>> str(my_car)

'a red car'

>>> '{}'.format(my_car)

'a red car'

With a proper __str__ implementation, you won’t have to worry about
printing object attributes directly or writing a separate to_string()
function. It’s the Pythonic way to control string conversion.

By the way, some people refer to Python’s “dunder” methods as “magic
methods.” But these methods are not supposed to be magical in any way.
The fact that these methods start and end in double underscores is simply a
naming convention to flag them as core Python features. It also helps avoid
naming collisions with your own methods and attributes. The object

constructor __init__ follows the same convention, and there’s nothing
magical or arcane about it.

Don’t be afraid to use Python’s dunder methods—they’re meant to help
you.

__str__ vs __repr__

Now, our string conversion story doesn’t end there. Did you see how
inspecting my_car in an interpreter session still gave that odd <Car object
at 0x109ca24e0> result?

This happened because there are actually two dunder methods that control
how objects are converted to strings in Python 3. The first one is __str__,
and you just learned about it. The second one is __repr__, and the way it
works is similar to __str__, but it is used in different situations. (Python
2.x also has a __unicode__ method that I’ll touch on a little later.)

Here’s a simple experiment you can use to get a feel for when __str__ or
__repr__ is used. Let’s redefine our car class so it contains both to-string
dunder methods with outputs that are easy to distinguish:

class Car:

 def __init__(self, color, mileage):

 self.color = color

 self.mileage = mileage

 def __repr__(self):

 return '__repr__ for Car'

 def __str__(self):

 return '__str__ for Car'

Now, when you play through the previous examples you can see which
method controls the string conversion result in each case:

>>> my_car = Car('red', 37281)

>>> print(my_car)

__str__ for Car

>>> '{}'.format(my_car)

'__str__ for Car'

>>> my_car

__repr__ for Car

This experiment confirms that inspecting an object in a Python interpreter
session simply prints the result of the object’s __repr__.

Interestingly, containers like lists and dicts always use the result of
__repr__ to represent the objects they contain. Even if you call str on the
container itself:

str([my_car])

'[__repr__ for Car]'

To manually choose between both string conversion methods, for example,
to express your code’s intent more clearly, it’s best to use the built-in str()
and repr() functions. Using them is preferable over calling the object’s
__str__ or __repr__ directly, as it looks nicer and gives the same result:

>>> str(my_car)

'__str__ for Car'

>>> repr(my_car)

'__repr__ for Car'

Even with this investigation complete, you might be wondering what the
“real-world” difference is between __str__ and __repr__. They both seem
to serve the same purpose, so it might be unclear when to use each.

With questions like that, it’s usually a good idea to look into what the
Python standard library does. Time to devise another experiment. We’ll
create a datetime.date object and find out how it uses __repr__ and
__str__ to control string conversion:

>>> import datetime

>>> today = datetime.date.today()

The result of the date object’s __str__ function should primarily be
readable. It’s meant to return a concise textual representation for human
consumption—something you’d feel comfortable displaying to a user.
Therefore, we get something that looks like an ISO date format when we
call str() on the date object:

>>> str(today)

'2017-02-02'

With __repr__, the idea is that its result should be, above all, unambiguous.
The resulting string is intended more as a debugging aid for developers.
And for that it needs to be as explicit as possible about what this object is.
That’s why you’ll get a more elaborate result calling repr() on the object.
It even includes the full module and class name:

>>> repr(today)

'datetime.date(2017, 2, 2)'

We could copy and paste the string returned by __repr__ and execute it as
valid Python to recreate the original date object. This is a neat approach and
a good goal to keep in mind while writing your own reprs.

On the other hand, I find that it is quite difficult to put into practice. Usually
it won’t be worth the trouble and it’ll just create extra work for you. My
rule of thumb is to make my __repr__ strings unambiguous and helpful for
developers, but I don’t expect them to be able to restore an object’s
complete state.

Why Every Class Needs a __repr__

If you don’t add a __str__ method, Python falls back on the result of
__repr__ when looking for __str__. Therefore, I recommend that you
always add at least a __repr__ method to your classes. This will guarantee

a useful string conversion result in almost all cases, with a minimum of
implementation work.

Here’s how to add basic string conversion support to your classes quickly
and efficiently. For our Car class we might start with the following
__repr__:

def __repr__(self):

 return f'Car({self.color!r}, {self.mileage!r})'

Please note that I’m using the !r conversion flag to make sure the output
string uses repr(self.color) and repr(self.mileage) instead of
str(self.color) and str(self.mileage).

This works nicely, but one downside is that we’ve repeated the class name
inside the format string. A trick you can use here to avoid this repetition is
to use the object’s __class__.__name__ attribute, which will always reflect
the class’ name as a string.

The benefit is you won’t have to modify the __repr__ implementation
when the class name changes. This makes it easy to adhere to the Don’t
Repeat Yourself (DRY) principle:

def __repr__(self):

 return (f'{self.__class__.__name__}('

 f'{self.color!r}, {self.mileage!r})')

The downside of this implementation is that the format string is quite long
and unwieldy. But with careful formatting, you can keep the code nice and
PEP 8 compliant.

With the above __repr__ implementation, we get a useful result when we
inspect the object or call repr() on it directly:

>>> repr(my_car)

'Car(red, 37281)'

Printing the object or calling str() on it returns the same string because the
default __str__ implementation simply calls __repr__:

>>> print(my_car)

'Car(red, 37281)'

>>> str(my_car)

'Car(red, 37281)'

I believe this approach provides the most value with a modest amount of
implementation work. It’s also a fairly cookie-cutter approach that can be
applied without much deliberation. For this reason, I always try to add a
basic __repr__ implementation to my classes.

Here’s a complete example for Python 3, including an optional __str__
implementation:

class Car:

 def __init__(self, color, mileage):

 self.color = color

 self.mileage = mileage

 def __repr__(self):

 return (f'{self.__class__.__name__}('

 f'{self.color!r}, {self.mileage!r})')

 def __str__(self):

 return f'a {self.color} car'

Python 2.x Differences: __unicode__

In Python 3 there’s one data type to represent text across the board: str. It
holds unicode characters and can represent most of the world’s writing
systems.

Python 2.x uses a different data model for strings.2 There are two types to
represent text: str, which is limited to the ASCII character set, and
unicode, which is equivalent to Python 3’s str.

Due to this difference, there’s yet another dunder method in the mix for
controlling string conversion in Python 2: __unicode__. In Python 2,
__str__ returns bytes, whereas __unicode__ returns characters.

For most intents and purposes, __unicode__ is the newer and preferred
method to control string conversion. There’s also a built-in unicode()
function to go along with it. It calls the respective dunder method, similar to
how str() and repr() work.

So far so good. Now, it gets a little more quirky when you look at the rules
for when __str__ and __unicode__ are called in Python 2:

The print statement and str() call __str__. The unicode() built-in calls
__unicode__ if it exists, and otherwise falls back to __str__ and decodes
the result with the system text encoding.

Compared to Python 3, these special cases complicate the text conversion
rules somewhat. But there is a way to simplify things again for practical
purposes. Unicode is the preferred and future-proof way of handling text in
your Python programs.

So generally, what I would recommend you do in Python 2.x is to put all of
your string formatting code inside the __unicode__ method and then create
a stub __str__ implementation that returns the unicode representation
encoded as UTF-8:

def __str__(self):

 return unicode(self).encode('utf-8')

The __str__ stub will be the same for most classes you write, so you can
just copy and paste it around as needed (or put it into a base class where it
makes sense). All of your string conversion code that is meant for non-
developer use then lives in __unicode__.

Here’s a complete example for Python 2.x:

class Car(object):

 def __init__(self, color, mileage):

 self.color = color

 self.mileage = mileage

 def __repr__(self):

 return '{}({!r}, {!r})'.format(

 self.__class__.__name__,

 self.color, self.mileage)

 def __unicode__(self):

 return u'a {self.color} car'.format(

 self=self)

 def __str__(self):

 return unicode(self).encode('utf-8')

Key Takeaways

You can control to-string conversion in your own classes using the
__str__ and __repr__ “dunder” methods.
The result of __str__ should be readable. The result of __repr__
should be unambiguous.
Always add a __repr__ to your classes. The default implementation
for __str__ just calls __repr__.
Use __unicode__ instead of __str__ in Python 2.

4.3 Defining Your Own Exception Classes

When I started using Python, I was hesitant to write custom exception
classes in my code. But defining your own error types can be of great value.
You’ll make potential error cases stand out clearly, and as a result, your
functions and modules will become more maintainable. You can also use
custom error types to provide additional debugging information.

All of this will improve your Python code and make it easier to understand,
easier to debug, and more maintainable. Defining your own exception
classes is not that hard when you break it down to a few simple examples.
In this chapter I’ll walk you through the main points you need to remember.

Let’s say you wanted to validate an input string representing a person’s
name in your application. A toy example for a name validator function
might look like this:

def validate(name):

 if len(name) < 10:

 raise ValueError

If the validation fails, it throws a ValueError exception. That seems fitting
and kind of Pythonic already. So far, so good.

However, there’s a downside to using a “high-level” generic exception class
like ValueError. Imagine one of your teammates calls this function as part
of a library and doesn’t know much about its internals. When a name fails
to validate, it’ll look like this in the debug stack trace:

>>> validate('joe')

Traceback (most recent call last):

 File "<input>", line 1, in <module>

 validate('joe')

 File "<input>", line 3, in validate

 raise ValueError

ValueError

This stack trace isn’t really all that helpful. Sure, we know that something
went wrong and that the problem had to do with an “incorrect value” of
sorts, but to be able to fix the problem your teammate almost certainly has
to look up the implementation of validate(). However, reading code costs
time. And it can add up quickly.

Luckily we can do better. Let’s introduce a custom exception type to
represent a failed name validation. We’ll base our new exception class on
Python’s built-in ValueError, but make it speak for itself by giving it a
more explicit name:

class NameTooShortError(ValueError):

 pass

def validate(name):

 if len(name) < 10:

 raise NameTooShortError(name)

Now we have a “self-documenting” NameTooShortError exception type
that extends the built-in ValueError class. Generally, you’ll want to either
derive your custom exceptions from the root Exception class or the other
built-in Python exceptions like ValueError or TypeError—whicever feels
appropriate.

Also, see how we’re now passing the name variable to the constructor of our
custom exception class when we instantiate it inside validate? The new
implementation results in a much nicer stack trace for your colleague:

>>> validate('jane')

Traceback (most recent call last):

 File "<input>", line 1, in <module>

 validate('jane')

 File "<input>", line 3, in validate

 raise NameTooShortError(name)

NameTooShortError: jane

Once again, try to put yourself in your teammate’s shoes. Custom exception
classes make it much easier to understand what’s going on when things go
wrong (and eventually they always do).

The same is true even if you’re working on a code base all by yourself. A
few weeks or months down the road you’ll have a much easier time
maintaining your code if it’s well-structured.

By spending just 30 seconds on defining a simple exception class, this code
snippet became much more communicative already. But let’s keep going.
There’s more to cover.

Whenever you’re publicly releasing a Python package, or even if you’re
creating a reusable module for your company, it’s good practice to create a

custom exception base class for the module and then derive all of your other
exceptions from it.

Here’s how to create a custom exception hierarchy for all exceptions in a
module or package. The first step is to declare a base class that all of our
concrete errors will inherit from:

class BaseValidationError(ValueError):

 pass

Now, all of our “real” error classes can be derived from the base error class.
This gives a nice and clean exception hierarchy with little extra effort:

class NameTooShortError(BaseValidationError):

 pass

class NameTooLongError(BaseValidationError):

 pass

class NameTooCuteError(BaseValidationError):

 pass

For example, this allows users of your package to write try…except
statements that can handle all of the errors from this package without
having to catch them manually:

try:

 validate(name)

except BaseValidationError as err:

 handle_validation_error(err)

People can still catch more specific exceptions that way, but if they don’t
want to, at least they won’t have to resort to snapping up all exceptions with
a catchall except statement. This is generally considered an anti-pattern—it
can silently swallow and hide unrelated errors and make your programs
much harder to debug.

Of course you can take this idea further and logically group your exceptions
into fine grained sub-hierarchies. But be careful—it’s easy to introduce
unnecessary complexity by going overboard with this.

In conclusion, defining custom exception classes makes it easier for your
users to adopt an it’s easier to ask for forgiveness than permission (EAFP)
coding style that’s considered more Pythonic.

Key Takeaways

Defining your own exception types will state your code’s intent more
clearly and make it easier to debug.
Derive your custom exceptions from Python’s built-in Exception class
or from more specific exception classes like ValueError or KeyError.
You can use inheritance to define logically grouped exception
hierarchies.

4.4 Cloning Objects for Fun and Profit

Assignment statements in Python do not create copies of objects, they only
bind names to an object. For immutable objects, that usually doesn’t make a
difference.

But for working with mutable objects or collections of mutable objects, you
might be looking for a way to create “real copies” or “clones” of these
objects.

Essentially, you’ll sometimes want copies that you can modify without
automatically modifying the original at the same time. In this chapter I’m
going to give you the rundown on how to copy or “clone” objects in Python
and some of the caveats involved.

Let’s start by looking at how to copy Python’s built-in collections. Python’s
built-in mutable collections like lists, dicts, and sets can be copied by
calling their factory functions on an existing collection:

new_list = list(original_list)

new_dict = dict(original_dict)

new_set = set(original_set)

However, this method won’t work for custom objects and, on top of that, it
only creates shallow copies. For compound objects like lists, dicts, and sets,
there’s an important difference between shallow and deep copying:

A shallow copy means constructing a new collection object and then
populating it with references to the child objects found in the original. In
essence, a shallow copy is only one level deep. The copying process does
not recurse and therefore won’t create copies of the child objects
themselves.

A deep copy makes the copying process recursive. It means first
constructing a new collection object and then recursively populating it with
copies of the child objects found in the original. Copying an object this way
walks the whole object tree to create a fully independent clone of the
original object and all of its children.

I know, that was a bit of a mouthful. So let’s look at some examples to drive
home this difference between deep and shallow copies.

Making Shallow Copies

In the example below, we’ll create a new nested list and then shallowly
copy it with the list() factory function:

>>> xs = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

>>> ys = list(xs) # Make a shallow copy

This means ys will now be a new and independent object with the same
contents as xs. You can verify this by inspecting both objects:

>>> xs

[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

>>> ys

[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

To confirm ys really is independent from the original, let’s devise a little
experiment. You could try and add a new sublist to the original (xs) and
then check to make sure this modification didn’t affect the copy (ys):

>>> xs.append(['new sublist'])

>>> xs

[[1, 2, 3], [4, 5, 6], [7, 8, 9], ['new sublist']]

>>> ys

[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

As you can see, this had the expected effect. Modifying the copied list at a
“superficial” level was no problem at all.

However, because we only created a shallow copy of the original list, ys
still contains references to the original child objects stored in xs.

These children were not copied. They were merely referenced again in the
copied list.

Therefore, when you modify one of the child objects in xs, this
modification will be reflected in ys as well—that’s because both lists share
the same child objects. The copy is only a shallow, one level deep copy:

>>> xs[1][0] = 'X'

>>> xs

[[1, 2, 3], ['X', 5, 6], [7, 8, 9], ['new sublist']]

>>> ys

[[1, 2, 3], ['X', 5, 6], [7, 8, 9]]

In the above example we (seemingly) only made a change to xs. But it turns
out that both sublists at index 1 in xs and ys were modified. Again, this
happened because we had only created a shallow copy of the original list.

Had we created a deep copy of xs in the first step, both objects would’ve
been fully independent. This is the practical difference between shallow and
deep copies of objects.

Now you know how to create shallow copies of some of the built-in
collection classes, and you know the difference between shallow and deep
copying. The questions we still want answers for are:

How can you create deep copies of built-in collections?
How can you create copies (shallow and deep) of arbitrary objects,
including custom classes?

The answer to these questions lies in the copy module in the Python
standard library. This module provides a simple interface for creating
shallow and deep copies of arbitrary Python objects.

Making Deep Copies

Let’s repeat the previous list-copying example, but with one important
difference. This time we’re going to create a deep copy using the
deepcopy() function defined in the copy module instead:

>>> import copy

>>> xs = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

>>> zs = copy.deepcopy(xs)

When you inspect xs and its clone zs that we created with
copy.deepcopy(), you’ll see that they both look identical again—just like
in the previous example:

>>> xs

[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

>>> zs

[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

However, if you make a modification to one of the child objects in the
original object (xs), you’ll see that this modification won’t affect the deep

copy (zs).

Both objects, the original and the copy, are fully independent this time. xs
was cloned recursively, including all of its child objects:

>>> xs[1][0] = 'X'

>>> xs

[[1, 2, 3], ['X', 5, 6], [7, 8, 9]]

>>> zs

[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

You might want to take some time to sit down with the Python interpreter
and play through these examples right about now. Wrapping your head
around copying objects is easier when you get to experience and play with
the examples firsthand.

By the way, you can also create shallow copies using a function in the copy
module. The copy.copy() function creates shallow copies of objects.

This is useful if you need to clearly communicate that you’re creating a
shallow copy somewhere in your code. Using copy.copy() lets you
indicate this fact. However, for built-in collections it’s considered more
Pythonic to simply use the list, dict, and set factory functions to create
shallow copies.

Copying Arbitrary Objects

The question we still need to answer is how do we create copies (shallow
and deep) of arbitrary objects, including custom classes. Let’s take a look at
that now.

Again the copy module comes to our rescue. Its copy.copy() and
copy.deepcopy() functions can be used to duplicate any object.

Once again, the best way to understand how to use these is with a simple
experiment. I’m going to base this on the previous list-copying example.
Let’s start by defining a simple 2D point class:

class Point:

 def __init__(self, x, y):

 self.x = x

 self.y = y

 def __repr__(self):

 return f'Point({self.x!r}, {self.y!r})'

I hope you agree that this was pretty straightforward. I added a __repr__()
implementation so that we can easily inspect objects created from this class
in the Python interpreter.

Next up, we’ll create a Point instance and then (shallowly) copy it, using
the copy module:

>>> a = Point(23, 42)

>>> b = copy.copy(a)

If we inspect the contents of the original Point object and its (shallow)
clone, we see what we’d expect:

>>> a

Point(23, 42)

>>> b

Point(23, 42)

>>> a is b

False

Here’s something else to keep in mind. Because our point object uses
primitive types (ints) for its coordinates, there’s no difference between a
shallow and a deep copy in this case. But I’ll expand the example in a
second.

Let’s move on to a more complex example. I’m going to define another
class to represent 2D rectangles. I’ll do it in a way that allows us to create a
more complex object hierarchy—my rectangles will use Point objects to
represent their coordinates:

class Rectangle:

 def __init__(self, topleft, bottomright):

 self.topleft = topleft

 self.bottomright = bottomright

 def __repr__(self):

 return (f'Rectangle({self.topleft!r}, '

 f'{self.bottomright!r})')

Again, first we’re going to attempt to create a shallow copy of a rectangle
instance:

rect = Rectangle(Point(0, 1), Point(5, 6))

srect = copy.copy(rect)

If you inspect the original rectangle and its copy, you’ll see how nicely the
__repr__() override is working out, and that the shallow copy process
worked as expected:

>>> rect

Rectangle(Point(0, 1), Point(5, 6))

>>> srect

Rectangle(Point(0, 1), Point(5, 6))

>>> rect is srect

False

Remember how the previous list example illustrated the difference between
deep and shallow copies? I’m going to use the same approach here. I’ll
modify an object deeper in the object hierarchy, and then you’ll see this
change reflected in the (shallow) copy as well:

>>> rect.topleft.x = 999

>>> rect

Rectangle(Point(999, 1), Point(5, 6))

>>> srect

Rectangle(Point(999, 1), Point(5, 6))

I hope this behaved how you expected it to. Next, I’ll create a deep copy of
the original rectangle. Then I’ll apply another modification and you’ll see
which objects are affected:

>>> drect = copy.deepcopy(srect)

>>> drect.topleft.x = 222

>>> drect

Rectangle(Point(222, 1), Point(5, 6))

>>> rect

Rectangle(Point(999, 1), Point(5, 6))

>>> srect

Rectangle(Point(999, 1), Point(5, 6))

Voila! This time the deep copy (drect) is fully independent of the original
(rect) and the shallow copy (srect).

We’ve covered a lot of ground here, and there are still some finer points to
copying objects.

It pays to go deep (ha!) on this topic, so you may want to study up on the
copy module documentation.3 For example, objects can control how they’re
copied by defining the special methods __copy__() and __deepcopy__()
on them. Have fun!

Key Takeaways

Making a shallow copy of an object won’t clone child objects.
Therefore, the copy is not fully independent of the original.
A deep copy of an object will recursively clone child objects. The
clone is fully independent of the original, but creating a deep copy is
slower.
You can copy arbitrary objects (including custom classes) with the
copy module.

4.5 Abstract Base Classes Keep Inheritance in
Check

Abstract Base Classes (ABCs) ensure that derived classes implement
particular methods from the base class. In this chapter you’ll learn about the
benefits of abstract base classes and how to define them with Python’s
built-in abc module.

So what are Abstract Base Classes good for? A while ago I had a discussion
at work about which pattern to use for implementing a maintainable class
hierarchy in Python. More specifically, the goal was to define a simple class
hierarchy for a service backend in the most programmer-friendly and
maintainable way.

We had a BaseService class that defined a common interface and several
concrete implementations. The concrete implementations do different things
but all of them provide the same interface (MockService, RealService, and
so on). To make this relationship explicit, the concrete implementations all
subclass BaseService.

To make this code as maintainable and programmer-friendly as possible we
wanted to make sure that:

instantiating the base class is impossible; and
forgetting to implement interface methods in one of the subclasses
raises an error as early as possible.

Now why would you want to use Python’s abc module to solve this
problem? The above design is pretty common in more complex systems. To
enforce that a derived class implements a number of methods from the base
class, something like this Python idiom is typically used:

class Base:

 def foo(self):

 raise NotImplementedError()

 def bar(self):

 raise NotImplementedError()

class Concrete(Base):

 def foo(self):

 return 'foo() called'

 # Oh no, we forgot to override bar()...

 # def bar(self):

 # return "bar() called"

So, what do we get from this first attempt at solving the problem? Calling
methods on an instance of Base correctly raises NotImplementedError
exceptions:

>>> b = Base()

>>> b.foo()

NotImplementedError

Furthermore, instantiating and using Concrete works as expected. And, if
we call an unimplemented method like bar() on it, this also raises an
exception:

>>> c = Concrete()

>>> c.foo()

'foo() called'

>>> c.bar()

NotImplementedError

This first implementation is decent, but it isn’t perfect yet. The downsides
here are that we can still:

instantiate Base just fine without getting an error; and
provide incomplete subclasses—instantiating Concrete will not raise
an error until we call the missing method bar().

With Python’s abc module that was added in Python 2.6,4 we can do better
and solve these remaining issues. Here’s an updated implementation using
an Abstract Base Class defined with the abc module:

from abc import ABCMeta, abstractmethod

class Base(metaclass=ABCMeta):

 @abstractmethod

 def foo(self):

 pass

 @abstractmethod

 def bar(self):

 pass

class Concrete(Base):

 def foo(self):

 pass

 # We forget to declare bar() again...

This still behaves as expected and creates the correct class hierarchy:

assert issubclass(Concrete, Base)

Yet, we do get another very useful benefit here. Subclasses of Base raise a
TypeError at instantiation time whenever we forget to implement any
abstract methods. The raised exception tells us which method or methods
we’re missing:

>>> c = Concrete()

TypeError:

"Can't instantiate abstract class Concrete

with abstract methods bar"

Without abc, we’d only get a NotImplementedError if a missing method
was actually called. Being notified about missing methods at instantiation
time is a great advantage. It makes it more difficult to write invalid
subclasses. This might not be a big deal if you’re writing new code, but a
few weeks or months down the line, I promise it’ll be helpful.

This pattern is not a full replacement for compile-time type checking, of
course. However, I found it often makes my class hierarchies more robust
and more readily maintainable. Using ABCs states the programmer’s intent
clearly and thus makes the code more communicative. I’d encourage you to

read the abc module documentation and to keep an eye out for situations
where applying this pattern makes sense.

Key Takeaways

Abstract Base Classes (ABCs) ensure that derived classes implement
particular methods from the base class at instantiation time.
Using ABCs can help avoid bugs and make class hierarchies easier to
maintain.

4.6 What Namedtuples Are Good For

Python comes with a specialized “namedtuple” container type that doesn’t
seem to get the attention it deserves. It’s one of those amazing features in
Python that’s hidden in plain sight.

Namedtuples can be a great alternative to defining a class manually, and
they have some other interesting features that I want to introduce you to in
this chapter.

Now, what’s a namedtuple and what makes it so special? A good way to
think about namedtuples is to view them as an extension of the built-in
tuple data type.

Python’s tuples are a simple data structure for grouping arbitrary objects.
Tuples are also immutable—they cannot be modified once they’ve been
created. Here’s a brief example:

>>> tup = ('hello', object(), 42)

>>> tup

('hello', <object object at 0x105e76b70>, 42)

>>> tup[2]

42

>>> tup[2] = 23

TypeError:

"'tuple' object does not support item assignment"

One downside of plain tuples is that the data you store in them can only be
pulled out by accessing it through integer indexes. You can’t give names to
individual properties stored in a tuple. This can impact code readability.

Also, a tuple is always an ad-hoc structure. It’s hard to ensure that two
tuples have the same number of fields and the same properties stored on
them. This makes it easy to introduce “slip-of-the-mind” bugs by mixing up
the field order.

Namedtuples to the Rescue

Namedtuples aim to solve these two problems.

First of all, namedtuples are immutable containers, just like regular tuples.
Once you store data in top-level attribute on a namedtuple, you can’t
modify it by updating the attribute. All attributes on a namedtuple object
follow the “write once, read many” principle.

Besides that, namedtuples are, well…named tuples. Each object stored in
them can be accessed through a unique (human-readable) identifier. This
frees you from having to remember integer indexes, or resorting to
workarounds like defining integer constants as mnemonics for your
indexes.

Here’s what a namedtuple looks like:

>>> from collections import namedtuple

>>> Car = namedtuple('Car' , 'color mileage')

Namedtuples were added to the standard library in Python 2.6. To use them,
you need to import the collections module. In the above example, I
defined a simple Car data type with two fields: color and mileage.

You might be wondering why I’m passing the string 'Car' as the first
argument to the namedtuple factory function in this example.

This parameter is referred to as the “typename” in the Python docs. It’s the
name of the new class that’s being created by calling the namedtuple
function.

Since namedtuple has no way of knowing what the name of the variable is
we’re assigning the resulting class to, we need to explicitly tell it which
class name we want to use. The class name is used in the docstring and the
__repr__ implementation that namedtuple automatically generates for us.

And there’s another syntactic oddity in this example—why are we passing
the fields as a string that encodes their names as 'color mileage'?

The answer is that namedtuple’s factory function calls split() on the field
names string to parse it into a list of field names. So this is really just a
shorthand for the following two steps:

>>> 'color mileage'.split()

['color', 'mileage']

>>> Car = namedtuple('Car', ['color', 'mileage'])

Of course, you can also pass in a list with string field names directly if you
prefer how that looks. The advantage of using a proper list is that it’s easier
to reformat this code if you need to split it across multiple lines:

>>> Car = namedtuple('Car', [

... 'color',

... 'mileage',

...])

Whatever you decide, you can now create new “car” objects with the Car
factory function. It behaves as if you had defined a Car class manually and
given it a constructor accepting a “color” and a “mileage” value:

>>> my_car = Car('red', 3812.4)

>>> my_car.color

'red'

>>> my_car.mileage

3812.4

Besides accessing the values stored in a namedtuple by their identifiers, you
can still access them by their index. That way, namedtuples can be used as a
drop-in replacement for regular tuples:

>>> my_car[0]

'red'

>>> tuple(my_car)

('red', 3812.4)

Tuple unpacking and the *-operator for function argument unpacking also
work as expected:

>>> color, mileage = my_car

>>> print(color, mileage)

red 3812.4

>>> print(*my_car)

red 3812.4

You’ll even get a nice string representation for your namedtuple object for
free, which saves some typing and verbosity:

>>> my_car

Car(color='red' , mileage=3812.4)

Like tuples, namedtuples are immutable. When you try to overwrite one of
their fields, you’ll get an AttributeError exception:

>>> my_car.color = 'blue'

AttributeError: "can't set attribute"

Namedtuple objects are implemented as regular Python classes internally.
When it comes to memory usage, they are also “better” than regular classes

and just as memory efficient as regular tuples.

A good way to view them is to think that namedtuples are a memory-
efficient shortcut to defining an immutable class in Python manually.

Subclassing Namedtuples

Since they are built on top of regular Python classes, you can even add
methods to a namedtuple object. For example, you can extend a
namedtuple’s class like any other class and add methods and new properties
to it that way. Here’s an example:

Car = namedtuple('Car', 'color mileage')

class MyCarWithMethods(Car):

 def hexcolor(self):

 if self.color == 'red':

 return '#ff0000'

 else:

 return '#000000'

We can now create MyCarWithMethods objects and call their hexcolor()
method, just as expected:

>>> c = MyCarWithMethods('red', 1234)

>>> c.hexcolor()

'#ff0000'

However, this might be a little clunky. It might be worth doing if you want a
class with immutable properties, but it’s also easy to shoot yourself in the
foot here.

For example, adding a new immutable field is tricky because of how
namedtuples are structured internally. The easiest way to create hierarchies
of namedtuples is to use the base tuple’s _fields property:

>>> Car = namedtuple('Car', 'color mileage')

>>> ElectricCar = namedtuple(

... 'ElectricCar', Car._fields + ('charge',))

This gives the desired result:

>>> ElectricCar('red', 1234, 45.0)

ElectricCar(color='red', mileage=1234, charge=45.0)

Built-in Helper Methods

Besides the _fields property, each namedtuple instance also provides a
few more helper methods you might find useful. Their names all start with a
single underscore character (_) which usually signals that a method or
property is “private” and not part of the stable public interface of a class or
module.

With namedtuples, the underscore naming convention has a different
meaning though. These helper methods and properties are part of
namedtuple’s public interface. The helpers were named that way to avoid
naming collisions with user-defined tuple fields. So go ahead and use them
if you need them!

I want to show you a few scenarios where the namedtuple helper methods
might come in handy. Let’s start with the _asdict() helper method. It
returns the contents of a namedtuple as a dictionary:

>>> my_car._asdict()

OrderedDict([('color', 'red'), ('mileage', 3812.4)])

This is great for avoiding typos in the field names when generating JSON-
output, for example:

>>> json.dumps(my_car._asdict())

'{"color": "red", "mileage": 3812.4}'

Another useful helper is the _replace() function. It creates a (shallow)
copy of a tuple and allows you to selectively replace some of its fields:

>>> my_car._replace(color='blue')

Car(color='blue', mileage=3812.4)

Lastly, the _make() classmethod can be used to create new instances of a
namedtuple from a sequence or iterable:

>>> Car._make(['red', 999])

Car(color='red', mileage=999)

When to Use Namedtuples

Namedtuples can be an easy way to clean up your code and to make it more
readable by enforcing a better structure for your data.

For example, I find that going from ad-hoc data types like dictionaries with
a fixed format to namedtuples helps me express my intentions more clearly.
Often when I attempt this refactoring I magically come up with a better
solution for the problem I’m facing.

Using namedtuples over unstructured tuples and dicts can also make my
coworkers’ lives easier because they make the data being passed around
“self-documenting” (to a degree).

On the other hand, I try not to use namedtuples for their own sake if they
don’t help me write “cleaner” and more maintainable code. Like many other
techniques shown in this book, sometimes there can be too much of a good
thing.

However, if you use them with care, namedtuples can undoubtedly make
your Python code better and more expressive.

Key Takeaways

collection.namedtuple is a memory-efficient shortcut to manually
define an immutable class in Python.
Namedtuples can help clean up your code by enforcing an easier-to-
understand structure on your data.
Namedtuples provide a few useful helper methods that all start with a
single underscore, but are part of the public interface. It’s okay to use
them.

4.7 Class vs Instance Variable Pitfalls

Besides making a distinction between class methods and instance methods,
Python’s object model also distinguishes between class and instances
variables.

It’s an important distinction, but also one that caused me trouble as a new
Python developer. For a long time I didn’t invest the time needed to
understand these concepts from the ground up. And so my early OOP
experiments were riddled with surprising behaviors and odd bugs. In this
chapter we’ll clear up any lingering confusion about this topic with some
hands-on examples.

Like I said, there are two kinds of data attributes on Python objects: class
variables and instance variables.

Class variables are declared inside the class definition (but outside of any
instance methods). They’re not tied to any particular instance of a class.
Instead, class variables store their contents on the class itself, and all objects
created from a particular class share access to the same set of class
variables. This means, for example, that modifying a class variable affects
all object instances at the same time.

Instance variables are always tied to a particular object instance. Their
contents are not stored on the class, but on each individual object created
from the class. Therefore, the contents of an instance variable are
completely independent from one object instance to the next. And so,
modifying an instance variable only affects one object instance at a time.

Okay, this was fairly abstract—time to look at some code! Let’s bust out the
old “dog example”… For some reason, OOP-tutorials always use cars or
pets to illustrate their point, and it’s hard to break with that tradition.

What does a happy dog need? Four legs and a name:

class Dog:

 num_legs = 4 # <- Class variable

 def __init__(self, name):

 self.name = name # <- Instance variable

Alright, that’s a neat object-oriented representation of the dog situation I
just described. Creating new Dog instances works as expected, and they
each get an instance variable called name:

>>> jack = Dog('Jack')

>>> jill = Dog('Jill')

>>> jack.name, jill.name

('Jack', 'Jill')

There’s a little more flexibility when it comes to class variables. You can
access the num_legs class variable either directly on each Dog instance or on
the class itself:

>>> jack.num_legs, jill.num_legs

(4, 4)

>>> Dog.num_legs

4

However, if you try to access an instance variable through the class, it’ll fail
with an AttributeError. Instance variables are specific to each object
instance and are created when the __init__ constructor runs—they don’t
even exist on the class itself.

This is the central distinction between class and instance variables:

>>> Dog.name

AttributeError:

"type object 'Dog' has no attribute 'name'"

Alright, so far so good.

Let’s say that Jack the Dog gets a little too close to the microwave when he
eats his dinner one day—and he sprouts an extra pair of legs. How’d you
represent that in the little code sandbox we’ve got so far?

The first idea for a solution might be to simply modify the num_legs
variable on the Dog class:

>>> Dog.num_legs = 6

But remember, we don’t want all dogs to start scurrying around on six legs.
So now we’ve just turned every dog instance in our little universe into
Super Dog because we’ve modified a class variable. And this affects all
dogs, even those created previously:

>>> jack.num_legs, jill.num_legs

(6, 6)

So that didn’t work. The reason it didn’t work is that modifying a class
variable on the class namespace affects all instances of the class. Let’s roll
back the change to the class variable and instead try to give an extra pair o’
legs specifically to Jack only:

>>> Dog.num_legs = 4

>>> jack.num_legs = 6

Now, what monstrosities did this create? Let’s find out:

>>> jack.num_legs, jill.num_legs, Dog.num_legs

(6, 4, 4)

Okay, this looks “pretty good” (aside from the fact that we just gave poor
Jack some extra legs). But how did this change actually affect our Dog
objects?

You see, the trouble here is that while we got the result we wanted (extra
legs for Jack), we introduced a num_legs instance variable to the Jack
instance. And now the new num_legs instance variable “shadows” the class
variable of the same name, overriding and hiding it when we access the
object instance scope:

>>> jack.num_legs, jack.__class__.num_legs

(6, 4)

As you can see, the class variables seemingly got out of sync. This
happened because writing to jack.num_legs created an instance variable
with the same name as the class variable.

This isn’t necessarily bad, but it’s important to be aware of what happened
here, behind the scenes. Before I finally understood class-level and
instance-level scope in Python, this was a great avenue for bugs to slip into
my programs.

To tell you the truth, trying to modify a class variable through an object
instance—which then accidentally creates an instance variable of the same
name, shadowing the original class variable—is a bit of an OOP pitfall in
Python.

A Dog-free Example

While no dogs were harmed in the making of this chapter (it’s all fun and
games until someone sprouts and extra pair of legs), I wanted to give you
one more practical example of the useful things you can do with class
variables. Something that’s a little closer to the real-world applications for
class variables.

So here it is. The following CountedObject class keeps track of how many
times it was instantiated over the lifetime of a program (which might
actually be an interesting performance metric to know):

class CountedObject:

 num_instances = 0

 def __init__(self):

 self.__class__.num_instances += 1

CountedObject keeps a num_instances class variable that serves as a
shared counter. When the class is declared, it initializes the counter to zero
and then leaves it alone.

Every time you create a new instance of this class, it increments the shared
counter by one when the __init__ constructor runs:

>>> CountedObject.num_instances

0

>>> CountedObject().num_instances

1

>>> CountedObject().num_instances

2

>>> CountedObject().num_instances

3

>>> CountedObject.num_instances

3

Notice how this code needs to jump through a little hoop to make sure it
increments the counter variable on the class. It would’ve been an easy
mistake to make if I had written the constructor as follows:

WARNING: This implementation contains a bug

class BuggyCountedObject:

 num_instances = 0

 def __init__(self):

 self.num_instances += 1 # !!!

As you’ll see, this (bad) implementation never increments the shared
counter variable:

>>> BuggyCountedObject.num_instances

0

>>> BuggyCountedObject().num_instances

1

>>> BuggyCountedObject().num_instances

1

>>> BuggyCountedObject().num_instances

1

>>> BuggyCountedObject.num_instances

0

I’m sure you can see where I went wrong now. This (buggy)
implementation never increments the shared counter because I made the
mistake I explained in the “Jack the Dog” example earlier. This
implementation won’t work because I accidentally “shadowed” the
num_instance class variable by creating an instance variable of the same
name in the constructor.

It correctly calculates the new value for the counter (going from 0 to 1), but
then stores the result in an instance variable—which means other instances
of the class never even see the updated counter value.

As you can see, that’s quite an easy mistake to make. It’s a good idea to be
careful and double-check your scoping when dealing with shared state on a
class. Automated tests and peer reviews help greatly with that.

Nevertheless, I hope you can see why and how class variables—despite
their pitfalls—can be useful tools in practice. Good luck!

Key Takeaways

Class variables are for data shared by all instances of a class. They
belong to a class, not a specific instance and are shared among all
instances of a class.

Instance variables are for data that is unique to each instance. They
belong to individual object instances and are not shared among the
other instances of a class. Each instance variable gets a unique backing
store specific to the instance.
Because class variables can be “shadowed” by instance variables of
the same name, it’s easy to (accidentally) override class variables in a
way that introduces bugs and odd behavior.

4.8 Instance, Class, and Static Methods
Demystified

In this chapter you’ll see what’s behind class methods, static methods, and
regular instance methods in Python.

If you develop an intuitive understanding for their differences, you’ll be
able to write object-oriented Python that communicates its intent more
clearly and will be easier to maintain in the long run.

Let’s begin by writing a (Python 3) class that contains simple examples for
all three method types:

class MyClass:

 def method(self):

 return 'instance method called', self

 @classmethod

 def classmethod(cls):

 return 'class method called', cls

 @staticmethod

 def staticmethod():

 return 'static method called'

Note for Python 2 users: The @staticmethod and @classmethod decorators
are available as of Python 2.4 and so this example will work as is. Instead
of using a plain class MyClass declaration, you might choose to declare a
new-style class inheriting from object with the class MyClass(object)
syntax. But other than that, you’re golden!

Instance Methods

The first method on MyClass, called method, is a regular instance method.
That’s the basic, no-frills method type you’ll use most of the time. You can
see the method takes one parameter, self, which points to an instance of
MyClass when the method is called. But of course, instance methods can
accept more than just one parameter.

Through the self parameter, instance methods can freely access attributes
and other methods on the same object. This gives them a lot of power when
it comes to modifying an object’s state.

Not only can they modify object state, instance methods can also access the
class itself through the self.__class__ attribute. This means instance
methods can also modify class state.

Class Methods

Let’s compare that to the second method, MyClass.classmethod. I marked
this method with a @classmethod5 decorator to flag it as a class method.

Instead of accepting a self parameter, class methods take a cls parameter
that points to the class—and not the object instance—when the method is
called.

Since the class method only has access to this cls argument, it can’t modify
object instance state. That would require access to self. However, class
methods can still modify class state that applies across all instances of the
class.

Static Methods

The third method, MyClass.staticmethod was marked with a
@staticmethod6 decorator to flag it as a static method.

This type of method doesn’t take a self or a cls parameter, although, of
course, it can be made to accept an arbitrary number of other parameters.

As a result, a static method cannot modify object state or class state. Static
methods are restricted in what data they can access—they’re primarily a
way to namespace your methods.

Let’s See Them in Action!

I know this discussion has been fairly theoretical up to this point. I also
believe it’s important that you develop an intuitive understanding for how
these method types differ in practice. That’s why we’ll go over some
concrete examples now.

Let’s take a look at how these methods behave in action when we call them.
We’ll start by creating an instance of the class and then calling the three
different methods on it.

MyClass was set up in such a way that each method’s implementation
returns a tuple containing information we can use to trace what’s going on
and which parts of the class or object that method can access.

Here’s what happens when we call an instance method:

>>> obj = MyClass()

>>> obj.method()

('instance method called', <MyClass instance at 0x11a2>)

This confirms that, in this case, the instance method called method has
access to the object instance (printed as <MyClass instance>) via the self
argument.

When the method is called, Python replaces the self argument with the
instance object, obj. We could ignore the syntactic sugar provided by the
obj.method() dot-call syntax and pass the instance object manually to get
the same result:

>>> MyClass.method(obj)

('instance method called', <MyClass instance at 0x11a2>)

By the way, instance methods can also access the class itself through the
self.__class__ attribute. This makes instance methods powerful in terms
of access restrictions—they can freely modify state on the object instance
and on the class itself.

Let’s try out the class method next:

>>> obj.classmethod()

('class method called', <class MyClass at 0x11a2>)

Calling classmethod() showed us that it doesn’t have access to the
<MyClass instance> object, but only to the <class MyClass> object,
representing the class itself (everything in Python is an object, even classes
themselves).

Notice how Python automatically passes the class as the first argument to
the function when we call MyClass.classmethod(). Calling a method in
Python through the dot syntax triggers this behavior. The self parameter on
instance methods works the same way.

Please note that naming these parameters self and cls is just a convention.
You could just as easily name them the_object and the_class and get the
same result. All that matters is that they’re positioned first in the parameter
list for that particular method.

Time to call the static method now:

>>> obj.staticmethod()

'static method called'

Did you see how we called staticmethod() on the object and were able to
do so successfully? Some developers are surprised when they learn that it’s
possible to call a static method on an object instance.

Behind the scenes, Python simply enforces the access restrictions by not
passing in the self or the cls argument when a static method gets called

using the dot syntax.

This confirms that static methods can neither access the object instance
state nor the class state. They work like regular functions but belong to the
class’ (and every instance’s) namespace.

Now, let’s take a look at what happens when we attempt to call these
methods on the class itself, without creating an object instance beforehand:

>>> MyClass.classmethod()

('class method called', <class MyClass at 0x11a2>)

>>> MyClass.staticmethod()

'static method called'

>>> MyClass.method()

TypeError: """unbound method method() must

 be called with MyClass instance as first

 argument (got nothing instead)"""

We were able to call classmethod() and staticmethod() just fine, but
attempting to call the instance method method() failed with a TypeError.

This is to be expected. This time we didn’t create an object instance and
tried calling an instance function directly on the class blueprint itself. This
means there is no way for Python to populate the self argument and
therefore the call fails with a TypeError exception.

This should make the distinction between these three method types a little
more clear. But don’t worry, I’m not going to leave it at that. In the next two
sections I’ll go over two slightly more realistic examples of when to use
these special method types.

I will base my examples around this bare-bones Pizza class:

class Pizza:

 def __init__(self, ingredients):

 self.ingredients = ingredients

 def __repr__(self):

 return f'Pizza({self.ingredients!r})'

>>> Pizza(['cheese', 'tomatoes'])

Pizza(['cheese', 'tomatoes'])

Delicious Pizza Factories With @classmethod

If you’ve had any exposure to pizza in the real world, you’ll know that there
are many delicious variations available:

Pizza(['mozzarella', 'tomatoes'])

Pizza(['mozzarella', 'tomatoes', 'ham', 'mushrooms'])

Pizza(['mozzarella'] * 4)

The Italians figured out their pizza taxonomy centuries ago, and so these
delicious types of pizza all have their own names. We’d do well to take
advantage of that and give the users of our Pizza class a better interface for
creating the pizza objects they crave.

A nice and clean way to do that is by using class methods as factory
functions7 for the different kinds of pizzas we can create:

class Pizza:

 def __init__(self, ingredients):

 self.ingredients = ingredients

 def __repr__(self):

 return f'Pizza({self.ingredients!r})'

 @classmethod

 def margherita(cls):

 return cls(['mozzarella', 'tomatoes'])

 @classmethod

 def prosciutto(cls):

 return cls(['mozzarella', 'tomatoes', 'ham'])

Note how I’m using the cls argument in the margherita and prosciutto
factory methods instead of calling the Pizza constructor directly.

This is a trick you can use to follow the Don’t Repeat Yourself (DRY)8
principle. If we decide to rename this class at some point, we won’t have to
remember to update the constructor name in all of the factory functions.

Now, what can we do with these factory methods? Let’s try them out:

>>> Pizza.margherita()

Pizza(['mozzarella', 'tomatoes'])

>>> Pizza.prosciutto()

Pizza(['mozzarella', 'tomatoes', 'ham'])

As you can see, we can use the factory functions to create new Pizza
objects that are configured just the way we want them. They all use the
same __init__ constructor internally and simply provide a shortcut for
remembering all of the various ingredients.

Another way to look at this use of class methods is to realize that they allow
you to define alternative constructors for your classes.

Python only allows one __init__ method per class. Using class methods
makes it possible to add as many alternative constructors as necessary. This
can make the interface for your classes self-documenting (to a certain
degree) and simplify their usage.

When To Use Static Methods

It’s a little more difficult to come up with a good example here, but tell you
what—I’ll just keep stretching the pizza analogy thinner and thinner…
(yum!)

Here’s what I came up with:

import math

class Pizza:

 def __init__(self, radius, ingredients):

 self.radius = radius

 self.ingredients = ingredients

 def __repr__(self):

 return (f'Pizza({self.radius!r}, '

 f'{self.ingredients!r})')

 def area(self):

 return self.circle_area(self.radius)

 @staticmethod

 def circle_area(r):

 return r ** 2 * math.pi

Now what did I change here? First, I modified the constructor and __repr__
to accept an extra radius argument.

I also added an area() instance method that calculates and returns the
pizza’s area. This would also be a good candidate for an @property—but
hey, this is just a toy example.

Instead of calculating the area directly within area(), by using the well-
known circle area formula, I factored that out to a separate circle_area()
static method.

Let’s try it out!

>>> p = Pizza(4, ['mozzarella', 'tomatoes'])

>>> p

Pizza(4, {self.ingredients})

>>> p.area()

50.26548245743669

>>> Pizza.circle_area(4)

50.26548245743669

Sure, this is still a bit of a simplistic example, but it’ll help explain some of
the benefits that static methods provide.

As we’ve learned, static methods can’t access class or instance state
because they don’t take a cls or self argument. That’s a big limitation—
but it’s also a great signal to show that a particular method is independent
from everything else around it.

In the above example, it’s clear that circle_area() can’t modify the class
or the class instance in any way. (Sure, you could always work around that
with a global variable, but that’s not the point here.)

Now, why is that useful?

Flagging a method as a static method is not just a hint that a method won’t
modify class or instance state. As you’ve seen, this restriction is also
enforced by the Python runtime.

Techniques like that allow you to communicate clearly about parts of your
class architecture so that new development work is naturally guided to
happen within these boundaries. Of course, it would be easy enough to defy
these restrictions. But in practice, they often help avoid accidental
modifications that go against the original design.

Put differently, using static methods and class methods are ways to
communicate developer intent while enforcing that intent enough to avoid
most “slip of the mind” mistakes and bugs that would break the design.

Applied sparingly and when it makes sense, writing some of your methods
that way can provide maintenance benefits and make it less likely that other
developers use your classes incorrectly.

Static methods also have benefits when it comes to writing test code. Since
the circle_area() method is completely independent from the rest of the
class, it’s much easier to test.

We don’t have to worry about setting up a complete class instance before
we can test the method in a unit test. We can just fire away like we would if
we were testing a regular function. Again, this makes future maintenance
easier and provides a link between object-oriented and procedural
programming styles.

Key Takeaways

Instance methods need a class instance and can access the instance
through self.
Class methods don’t need a class instance. They can’t access the
instance (self) but they have access to the class itself via cls.
Static methods don’t have access to cls or self. They work like
regular functions but belong to the class’ namespace.
Static and class methods communicate and (to a certain degree)
enforce developer intent about class design. This can have definite
maintenance benefits.

1. cf. Python Docs: “The Python Data Model”↩

2. cf. Python 2 Docs: “Data Model”↩

3. cf. Python docs: “Shallow and deep copy operations”↩

4. cf. Python Docs: abc module↩

5. cf. Python Docs: “@classmethod”↩

6. cf. Python Docs: “@staticmethod”↩

7. cf. Wikipedia: “Factory (object-oriented programming)”↩

8. cf. Wikipedia: “Don’t repeat yourself”↩

https://docs.python.org/3.6/reference/datamodel.html#object.__repr__
https://docs.python.org/2/reference/datamodel.html
https://docs.python.org/3/library/copy.html
https://docs.python.org/3/library/abc.html
https://docs.python.org/3/library/functions.html#classmethod
https://docs.python.org/3/library/functions.html#staticmethod
https://en.wikipedia.org/wiki/Factory_(object-oriented_programming)
https://en.wikipedia.org/wiki/Don't_repeat_yourself

5 Common Data Structures in
Python
What’s something that every Python developer should practice and learn
more about?

Data structures. They’re the fundamental constructs around which you build
your programs. Each data structure provides a particular way of organizing
data so it can be accessed efficiently, depending on your use case.

I believe that going back to the fundamentals always pays off for a
programmer, regardless of their skill level or experience.

Now, I don’t advocate that you should focus on expanding your data
structures knowledge alone—the “failure mode” for that is getting stuck in
theory la-la land and never shipping anything…

But I found that spending some time on brushing up your data structures
(and algorithms) knowledge always pays off.

Whether you do that with a tightly focused “sprint” for a few days, or as an
ongoing project with little pockets of time here and there doesn’t really
matter. Either way, I promise it’ll be time well spent.

Alright, so data structures in Python, eh? We’ve got lists, dicts, sets…umm.
Stacks? Do we have stacks?

You see, the trouble is that Python ships with an extensive set of data
structures in its standard library. However, sometimes the naming for them
is a bit “off”.

It’s often unclear how even well-known “abstract data types” like a Stack
correspond to a specific implementation in Python. Other languages like
Java stick to a more “computer-sciency” and explicit naming scheme: A list
isn’t just a “list” in Java—it’s either a LinkedList or an ArrayList.

This makes it easier to recognize the expected behavior and the
computational complexity of these types. Python favors a simpler and more
“human” naming scheme, and I love it. In part, it’s what makes
programming with Python so much fun.

But the downside is that even to experienced Python developers, it can be
unclear whether the built-in list type is implemented as a linked list or a
dynamic array. And the day will come when lacking this knowledge will
cause them endless hours of frustration, or get them rejected in a job
interview.

In this part of the book you’ll take a tour of the fundamental data structures
and implementations of abstract data types (ADTs) built into Python and its
standard library.

My goal here is to clarify how the most common abstract data types map to
Python’s naming scheme and to provide a brief description for each. This
information will also help you shine in Python coding interviews.

If you’re looking for a good book to brush up on your general data
structures knowledge, I highly recommend Steven S. Skiena’s The
Algorithm Design Manual.

It strikes a great balance between teaching you fundamental (and more
advanced) data structures, and then showing you how to put them to
practical use in various algorithms. Steve’s book was a great help in the
writing of these chapters.

5.1 Dictionaries, Maps, and Hashtables

In Python, dictionaries (or “dicts” for short) are a central data structure.
Dicts store an arbitrary number of objects, each identified by a unique
dictionary key.

Dictionaries are also often called maps, hashmaps, lookup tables, or
associative arrays. They allow for the efficient lookup, insertion, and
deletion of any object associated with a given key.

What does this mean in practice? It turns out that phone books make a
decent real-world analog for dictionary objects:

Phone books allow you to quickly retrieve the information (phone
number) associated with a given key (a person’s name). So, instead of
having to read a phone book front to back in order to find someone’s
number, you can jump more or less directly to a name and look up the
associated information.

This analogy breaks down somewhat when it comes to how the information
is organized in order to allow for fast lookups. But the fundamental
performance characteristics hold: Dictionaries allow you to quickly find the
information associated with a given key.

In summary, dictionaries are one of the most frequently used and most
important data structures in computer science.

So, how does Python handle dictionaries?

Let’s take a tour of the dictionary implementations available in core Python
and the Python standard library.

dict – Your Go-To Dictionary

Because of their importance, Python features a robust dictionary
implementation that’s built directly into the core language: the dict data
type.1

Python also provides some useful “syntactic sugar” for working with
dictionaries in your programs. For example, the curly-braces dictionary
expression syntax and dictionary comprehensions allow you to
conveniently define new dictionary objects:

phonebook = {

 'bob': 7387,

 'alice': 3719,

 'jack': 7052,

}

squares = {x: x * x for x in range(6)}

>>> phonebook['alice']

3719

>>> squares

{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

There are some restrictions on which objects can be used as valid keys.

Python’s dictionaries are indexed by keys that can be of any hashable type2:
A hashable object has a hash value which never changes during its lifetime
(see __hash__), and it can be compared to other objects (see __eq__). In
addition, hashable objects which compare as equal must have the same hash
value.

Immutable types like strings and numbers are hashable and work well as
dictionary keys. You can also use tuple objects as dictionary keys, as long
as they contain only hashable types themselves.

For most use cases, Python’s built-in dictionary implementation will do
everything you need. Dictionaries are highly optimized and underlie many
parts of the language, for example class attributes and variables in a stack
frame are both stored internally in dictionaries.

Python dictionaries are based on a well-tested and finely tuned hash table
implementation that provides the performance characteristics you’d expect:
O(1) time complexity for lookup, insert, update, and delete operations in the
average case.

There’s little reason not to use the standard dict implementation included
with Python. However, specialized third-party dictionary implementations
exist, for example skip lists or B-tree based dictionaries.

Besides “plain” dict objects, Python’s standard library also includes a
number of specialized dictionary implementations. These specialized
dictionaries are all based on the built-in dictionary class (and share its

performance characteristics), but add some convenience features on top of
that.

Let’s take a look at them.

collections.OrderedDict – Remember the Insertion Order of
Keys

Python includes a specialized dict subclass that remembers the insertion
order of keys added to it: collections.OrderedDict.3

While standard dict instances preserve the insertion order of keys in
CPython 3.6 and above, this is just a side effect of the CPython
implementation and is not defined in the language spec.4 So, if key order is
important for your algorithm to work, it’s best to communicate this clearly
by explicitly using the OrderDict class.

By the way, OrderedDict is not a built-in part of the core language and
must be imported from the collections module in the standard library.

>>> import collections

>>> d = collections.OrderedDict(one=1, two=2, three=3)

>>> d

OrderedDict([('one', 1), ('two', 2), ('three', 3)])

>>> d['four'] = 4

>>> d

OrderedDict([('one', 1), ('two', 2),

 ('three', 3), ('four', 4)])

>>> d.keys()

odict_keys(['one', 'two', 'three', 'four'])

collections.defaultdict – Return Default Values for Missing
Keys

The defaultdict class is another dictionary subclass that accepts a callable
in its constructor whose return value will be used if a requested key cannot
be found.5

This can save you some typing and make the programmer’s intentions more
clear, as compared to using the get() methods or catching a KeyError
exception in regular dictionaries.

>>> from collections import defaultdict

>>> dd = defaultdict(list)

Accessing a missing key creates it and

initializes it using the default factory,

i.e. list() in this example:

>>> dd['dogs'].append('Rufus')

>>> dd['dogs'].append('Kathrin')

>>> dd['dogs'].append('Mr Sniffles')

>>> dd['dogs']

['Rufus', 'Kathrin', 'Mr Sniffles']

collections.ChainMap – Search Multiple Dictionaries as a
Single Mapping

The collections.ChainMap data structure groups multiple dictionaries into
a single mapping.6 Lookups search the underlying mappings one by one
until a key is found. Insertions, updates, and deletions only affect the first
mapping added to the chain.

>>> from collections import ChainMap

>>> dict1 = {'one': 1, 'two': 2}

>>> dict2 = {'three': 3, 'four': 4}

>>> chain = ChainMap(dict1, dict2)

>>> chain

ChainMap({'one': 1, 'two': 2}, {'three': 3, 'four': 4})

ChainMap searches each collection in the chain

from left to right until it finds the key (or fails):

>>> chain['three']

3

>>> chain['one']

1

>>> chain['missing']

KeyError: 'missing'

types.MappingProxyType – A Wrapper for Making Read-Only
Dictionaries

MappingProxyType is a wrapper around a standard dictionary that provides
a read-only view into the wrapped dictionary’s data.7 This class was added
in Python 3.3, and it can be used to create immutable proxy versions of
dictionaries.

For example, this can be helpful if you’d like to return a dictionary carrying
internal state from a class or module, while discouraging write access to this
object. Using MappingProxyType allows you to put these restrictions in
place without first having to create a full copy of the dictionary.

>>> from types import MappingProxyType

>>> writable = {'one': 1, 'two': 2}

>>> read_only = MappingProxyType(writable)

The proxy is read-only:

>>> read_only['one']

1

>>> read_only['one'] = 23

TypeError:

"'mappingproxy' object does not support item assignment"

Updates to the original are reflected in the proxy:

>>> writable['one'] = 42

>>> read_only

mappingproxy({'one': 42, 'two': 2})

Dictionaries in Python: Conclusion

All of the Python dictionary implementations listed in this chapter are valid
implementations that are built into the Python standard library.

If you’re looking for a general recommendation on which mapping type to
use in your programs, I’d point you to the built-in dict data type. It’s a
versatile and optimized hash table implementation that’s built directly into
the core language.

I would only recommend that you use one of the other data types listed here
if you have special requirements that go beyond what’s provided by dict.

Yes, I still believe all of them are valid options—but usually your code will
be more clear and easier to maintain by other developers if it relies on
standard Python dictionaries most of the time.

Key Takeaways

Dictionaries are the central data structure in Python.
The built-in dict type will be “good enough” most of the time.
Specialized implementations, like read-only or ordered dicts, are
available in the Python standard library.

5.2 Array Data Structures

An array is a fundamental data structure available in most programming
languages, and it has a wide range of uses across different algorithms.

In this chapter we’ll take a look at array implementations in Python that
only use core language features or functionality that’s included in the
Python standard library.

You’ll see the strengths and weaknesses of each approach so you can decide
which implementation is right for your use case. But before we jump in,
let’s cover some of the basics first.

How do arrays work, and what are they used for?

Arrays consist of fixed-size data records that allow each element to be
efficiently located based on its index.

Because arrays store information in adjoining blocks of memory, they’re
considered contiguous data structures (as opposed to linked datas structure
like linked lists, for example.)

A real world analogy for an array data structure is a parking lot:

You can look at the parking lot as a whole and treat it as a single
object, but inside the lot there are parking spots indexed by a unique
number. Parking spots are containers for vehicles—each parking spot
can either be empty or have a car, a motorbike, or some other vehicle
parked on it.

But not all parking lots are the same:

Some parking lots may be restricted to only one type of vehicle. For
example, a motor-home parking lot wouldn’t allow bikes to be parked
on it. A “restricted” parking lot corresponds to a “typed array” data
structure that only allows elements that have the same data type stored
in them.

Performance-wise, it’s very fast to look up an element contained in an array
given the element’s index. A proper array implementation guarantees a
constant O(1) access time for this case.

Python includes several array-like data structures in its standard library that
each have slightly different characteristics. Let’s take a look at them:

list – Mutable Dynamic Arrays

Lists are a part of the core Python language.8 Despite their name, Python’s
lists are implemented as dynamic arrays behind the scenes. This means a
list allows elements to be added or removed, and the list will automatically
adjust the backing store that holds these elements by allocating or releasing
memory.

Python lists can hold arbitrary elements—“everything” is an object in
Python, including functions. Therefore, you can mix and match different
kinds of data types and store them all in a single list.

This can be a powerful feature, but the downside is that supporting multiple
data types at the same time means that data is generally less tightly packed.
And as a result, the whole structure takes up more space.

>>> arr = ['one', 'two', 'three']

>>> arr[0]

'one'

Lists have a nice repr:

>>> arr

['one', 'two', 'three']

Lists are mutable:

>>> arr[1] = 'hello'

>>> arr

['one', 'hello', 'three']

>>> del arr[1]

>>> arr

['one', 'three']

Lists can hold arbitrary data types:

>>> arr.append(23)

>>> arr

['one', 'three', 23]

tuple – Immutable Containers

Just like lists, tuples are also a part of the Python core language.9 Unlike
lists, however, Python’s tuple objects are immutable. This means elements
can’t be added or removed dynamically—all elements in a tuple must be
defined at creation time.

Just like lists, tuples can hold elements of arbitrary data types. Having this
flexibility is powerful, but again, it also means that data is less tightly
packed than it would be in a typed array.

>>> arr = 'one', 'two', 'three'

>>> arr[0]

'one'

Tuples have a nice repr:

>>> arr

('one', 'two', 'three')

Tuples are immutable:

>>> arr[1] = 'hello'

TypeError:

"'tuple' object does not support item assignment"

>>> del arr[1]

TypeError:

"'tuple' object doesn't support item deletion"

Tuples can hold arbitrary data types:

(Adding elements creates a copy of the tuple)

>>> arr + (23,)

('one', 'two', 'three', 23)

array.array – Basic Typed Arrays

Python’s array module provides space-efficient storage of basic C-style
data types like bytes, 32-bit integers, floating point numbers, and so on.

Arrays created with the array.array class are mutable and behave
similarly to lists, except for one important difference—they are “typed
arrays” constrained to a single data type.10

Because of this constraint, array.array objects with many elements are
more space-efficient than lists and tuples. The elements stored in them are
tightly packed, and this can be useful if you need to store many elements of
the same type.

Also, arrays support many of the same methods as regular lists, and you
might be able to use them as a “drop-in replacement” without requiring
other changes to your application code.

>>> import array

>>> arr = array.array('f', (1.0, 1.5, 2.0, 2.5))

>>> arr[1]

1.5

Arrays have a nice repr:

>>> arr

array('f', [1.0, 1.5, 2.0, 2.5])

Arrays are mutable:

>>> arr[1] = 23.0

>>> arr

array('f', [1.0, 23.0, 2.0, 2.5])

>>> del arr[1]

>>> arr

array('f', [1.0, 2.0, 2.5])

>>> arr.append(42.0)

>>> arr

array('f', [1.0, 2.0, 2.5, 42.0])

Arrays are "typed":

>>> arr[1] = 'hello'

TypeError: "must be real number, not str"

str – Immutable Arrays of Unicode Characters

Python 3.x uses str objects to store textual data as immutable sequences of
Unicode characters.11 Practically speaking, that means a str is an
immutable array of characters. Oddly enough, it’s also a recursive data
structure—each character in a string is a str object of length 1 itself.

String objects are space-efficient because they’re tightly packed and they
specialize in a single data type. If you’re storing Unicode text, you should
use them. Because strings are immutable in Python, modifying a string
requires creating a modified copy. The closest equivalent to a “mutable
string” is storing individual characters inside a list.

>>> arr = 'abcd'

>>> arr[1]

'b'

>>> arr

'abcd'

Strings are immutable:

>>> arr[1] = 'e'

TypeError:

"'str' object does not support item assignment"

>>> del arr[1]

TypeError:

"'str' object doesn't support item deletion"

Strings can be unpacked into a list to

get a mutable representation:

>>> list('abcd')

['a', 'b', 'c', 'd']

>>> ''.join(list('abcd'))

'abcd'

Strings are recursive data structures:

>>> type('abc')

"<class 'str'>"

>>> type('abc'[0])

"<class 'str'>"

bytes – Immutable Arrays of Single Bytes

Bytes objects are immutable sequences of single bytes (integers in the range
of 0 <= x <= 255).12 Conceptually, they’re similar to str objects, and you
can also think of them as immutable arrays of bytes.

Like strings, bytes have their own literal syntax for creating objects and
they’re space-efficient. Bytes objects are immutable, but unlike strings,
there’s a dedicated “mutable byte array” data type called bytearray that
they can be unpacked into. You’ll hear more about that in the next section.

>>> arr = bytes((0, 1, 2, 3))

>>> arr[1]

1

Bytes literals have their own syntax:

>>> arr

b'x00x01x02x03'

>>> arr = b'x00x01x02x03'

Only valid "bytes" are allowed:

>>> bytes((0, 300))

ValueError: "bytes must be in range(0, 256)"

Bytes are immutable:

>>> arr[1] = 23

TypeError:

"'bytes' object does not support item assignment"

>>> del arr[1]

TypeError:

"'bytes' object doesn't support item deletion"

bytearray – Mutable Arrays of Single Bytes

The bytearray type is a mutable sequence of integers in the range 0 <= x
<= 255.13 They’re closely related to bytes objects with the main difference
being that bytearrays can be modified freely—you can overwrite elements,
remove existing elements, or add new ones. The bytearray object will
grow and shrink accordingly.

Bytearrays can be converted back into immutable bytes objects but this
involves copying the stored data in full—a slow operation taking O(n) time.

>>> arr = bytearray((0, 1, 2, 3))

>>> arr[1]

1

The bytearray repr:

>>> arr

bytearray(b'x00x01x02x03')

Bytearrays are mutable:

>>> arr[1] = 23

>>> arr

bytearray(b'x00x17x02x03')

>>> arr[1]

23

Bytearrays can grow and shrink in size:

>>> del arr[1]

>>> arr

bytearray(b'x00x02x03')

>>> arr.append(42)

>>> arr

bytearray(b'x00x02x03*')

Bytearrays can only hold "bytes"

(integers in the range 0 <= x <= 255)

>>> arr[1] = 'hello'

TypeError: "an integer is required"

>>> arr[1] = 300

ValueError: "byte must be in range(0, 256)"

Bytearrays can be converted back into bytes objects:

(This will copy the data)

>>> bytes(arr)

b'x00x02x03*'

Key Takeaways

There are a number of built-in data structures you can choose from when it
comes to implementing arrays in Python. In this chapter we’ve focused on
core language features and data structures included in the standard library
only.

If you’re willing to go beyond the Python standard library, third-party
packages like NumPy14 offer a wide range of fast array implementations
for scientific computing and data science.

By restricting ourselves to the array data structures included with Python,
here’s what our choices come down to:

You need to store arbitrary objects, potentially with mixed data types?
Use a list or a tuple, depending on whether you want an immutable data
structure or not.

You have numeric (integer or floating point) data and tight packing
and performance is important? Try out array.array and see if it does
everything you need. Also, consider going beyond the standard library and
try out packages like NumPy or Pandas.

You have textual data represented as Unicode characters? Use Python’s
built-in str. If you need a “mutable string,” use a list of characters.

You want to store a contiguous block of bytes? Use the immutable bytes
type, or bytearray if you need a mutable data structure.

In most cases, I like to start out with a simple list. I’ll only specialize later
on if performance or storage space becomes an issue. Most of the time,
using a general-purpose array data structure like list gives you the fastest
development speed and the most programming convenience.

I found that this is usually much more important in the beginning than
trying to squeeze out every last drop of performance right from the start.

5.3 Records, Structs, and Data Transfer Objects

Compared to arrays, record data structures provide a fixed number of fields,
where each field can have a name and may also have a different type.

In this chapter, you’ll see how to implement records, structs, and “plain old
data objects” in Python, using only built-in data types and classes from the
standard library.

By the way, I’m using the definition of a record loosely here. For example,
I’m also going to discuss types like Python’s built-in tuple that may or may
not be considered records in a strict sense because they don’t provide
named fields.

Python offers several data types you can use to implement records, structs,
and data transfer objects. In this chapter, you’ll get a quick look at each
implementation and its unique characteristics. At the end, you’ll find a
summary and a decision-making guide that will help you make your own
picks.

Alright, let’s get started!

dict – Simple Data Objects

Python dictionaries store an arbitrary number of objects, each identified by
a unique key.15 Dictionaries are also often called maps or associative
arrays and allow for the efficient lookup, insertion, and deletion of any
object associated with a given key.

Using dictionaries as a record data type or data object in Python is possible.
Dictionaries are easy to create in Python, as they have their own syntactic
sugar built into the language in the form of dictionary literals. The
dictionary syntax is concise and quite convenient to type.

Data objects created using dictionaries are mutable, and there’s little
protection against misspelled field names, as fields can be added and
removed freely at any time. Both of these properties can introduce
surprising bugs, and there’s always a trade-off to be made between
convenience and error resilience.

car1 = {

 'color': 'red',

 'mileage': 3812.4,

 'automatic': True,

}

car2 = {

 'color': 'blue',

 'mileage': 40231,

 'automatic': False,

}

Dicts have a nice repr:

>>> car2

{'color': 'blue', 'automatic': False, 'mileage': 40231}

Get mileage:

>>> car2['mileage']

40231

Dicts are mutable:

>>> car2['mileage'] = 12

>>> car2['windshield'] = 'broken'

>>> car2

{'windshield': 'broken', 'color': 'blue',

'automatic': False, 'mileage': 12}

No protection against wrong field names,

or missing/extra fields:

car3 = {

 'colr': 'green',

 'automatic': False,

 'windshield': 'broken',

}

tuple – Immutable Groups of Objects

Python’s tuples are simple data structures for grouping arbitrary objects.16
Tuples are immutable—they cannot be modified once they’ve been created.

Performance-wise, tuples take up slightly less memory than lists in
CPython,17 and they’re also faster to construct.

As you can see in the bytecode disassembly below, constructing a tuple
constant takes a single LOAD_CONST opcode, while constructing a list object
with the same contents requires several more operations:

>>> import dis

>>> dis.dis(compile("(23, 'a', 'b', 'c')", '', 'eval'))

 0 LOAD_CONST 4 ((23, 'a', 'b', 'c'))

 3 RETURN_VALUE

>>> dis.dis(compile("[23, 'a', 'b', 'c']", '', 'eval'))

 0 LOAD_CONST 0 (23)

 3 LOAD_CONST 1 ('a')

 6 LOAD_CONST 2 ('b')

 9 LOAD_CONST 3 ('c')

 12 BUILD_LIST 4

 15 RETURN_VALUE

However, you shouldn’t place too much emphasis on these differences. In
practice, the performance difference will often be negligible, and trying to
squeeze extra performance out of a program by switching from lists to
tuples will likely be the wrong approach.

A potential downside of plain tuples is that the data you store in them can
only be pulled out by accessing it through integer indexes. You can’t give

names to individual properties stored in a tuple. This can impact code
readability.

Also, a tuple is always an ad-hoc structure: It’s difficult to ensure that two
tuples have the same number of fields and the same properties stored on
them.

This makes it easy to introduce “slip-of-the-mind” bugs, such as mixing up
the field order. Therefore, I would recommend that you keep the number of
fields stored in a tuple as low as possible.

Fields: color, mileage, automatic

>>> car1 = ('red', 3812.4, True)

>>> car2 = ('blue', 40231.0, False)

Tuple instances have a nice repr:

>>> car1

('red', 3812.4, True)

>>> car2

('blue', 40231.0, False)

Get mileage:

>>> car2[1]

40231.0

Tuples are immutable:

>>> car2[1] = 12

TypeError:

"'tuple' object does not support item assignment"

No protection against missing/extra fields

or a wrong order:

>>> car3 = (3431.5, 'green', True, 'silver')

Writing a Custom Class – More Work, More Control

Classes allow you to define reusable “blueprints” for data objects to ensure
each object provides the same set of fields.

Using regular Python classes as record data types is feasible, but it also
takes manual work to get the convenience features of other

implementations. For example, adding new fields to the __init__
constructor is verbose and takes time.

Also, the default string representation for objects instantiated from custom
classes is not very helpful. To fix that you may have to add your own
__repr__ method,18 which again is usually quite verbose and must be
updated every time you add a new field.

Fields stored on classes are mutable, and new fields can be added freely,
which you may or may not like. It’s possible to provide more access control
and to create read-only fields using the @property decorator,19 but once
again, this requires writing more glue code.

Writing a custom class is a great option whenever you’d like to add
business logic and behavior to your record objects using methods.
However, this means that these objects are technically no longer plain data
objects.

class Car:

 def __init__(self, color, mileage, automatic):

 self.color = color

 self.mileage = mileage

 self.automatic = automatic

>>> car1 = Car('red', 3812.4, True)

>>> car2 = Car('blue', 40231.0, False)

Get the mileage:

>>> car2.mileage

40231.0

Classes are mutable:

>>> car2.mileage = 12

>>> car2.windshield = 'broken'

String representation is not very useful

(must add a manually written __repr__ method):

>>> car1

<Car object at 0x1081e69e8>

collections.namedtuple – Convenient Data Objects

The namedtuple class available in Python 2.6+ provides an extension of the
built-in tuple data type.20 Similar to defining a custom class, using
namedtuple allows you to define reusable “blueprints” for your records that
ensure the correct field names are used.

Namedtuples are immutable, just like regular tuples. This means you cannot
add new fields or modify existing fields after the namedtuple instance was
created.

Besides that, namedtuples are, well… named tuples. Each object stored in
them can be accessed through a unique identifier. This frees you from
having to remember integer indexes, or resort to workarounds like defining
integer constants as mnemonics for your indexes.

Namedtuple objects are implemented as regular Python classes internally.
When it comes to memory usage, they are also “better” than regular classes
and just as memory efficient as regular tuples:

>>> from collections import namedtuple

>>> from sys import getsizeof

>>> p1 = namedtuple('Point', 'x y z')(1, 2, 3)

>>> p2 = (1, 2, 3)

>>> getsizeof(p1)

72

>>> getsizeof(p2)

72

Namedtuples can be an easy way to clean up your code and make it more
readable by enforcing a better structure for your data.

I find that going from ad-hoc data types, like dictionaries with a fixed
format, to namedtuples helps me express the intent of my code more
clearly. Often when I apply this refactoring, I magically come up with a
better solution for the problem I’m facing.

Using namedtuples over regular (unstructured) tuples and dicts can also
make my coworkers’ lives easier: Namedtuples make the data that’s being

passed around “self-documenting”, at least to a degree.

>>> from collections import namedtuple

>>> Car = namedtuple('Car' , 'color mileage automatic')

>>> car1 = Car('red', 3812.4, True)

Instances have a nice repr:

>>> car1

Car(color='red', mileage=3812.4, automatic=True)

Accessing fields:

>>> car1.mileage

3812.4

Fields are immtuable:

>>> car1.mileage = 12

AttributeError: "can't set attribute"

>>> car1.windshield = 'broken'

AttributeError:

"'Car' object has no attribute 'windshield'"

typing.NamedTuple – Improved Namedtuples

This class added in Python 3.6 is the younger sibling of the namedtuple
class in the collections module.21 It is very similar to namedtuple, the
main difference being an updated syntax for defining new record types and
added support for type hints.

Please note that type annotations are not enforced without a separate type-
checking tool like mypy.22 But even without tool support, they can provide
useful hints for other programmers (or be terribly confusing if the type hints
become out-of-date.)

>>> from typing import NamedTuple

class Car(NamedTuple):

 color: str

 mileage: float

 automatic: bool

>>> car1 = Car('red', 3812.4, True)

Instances have a nice repr:

>>> car1

Car(color='red', mileage=3812.4, automatic=True)

Accessing fields:

>>> car1.mileage

3812.4

Fields are immutable:

>>> car1.mileage = 12

AttributeError: "can't set attribute"

>>> car1.windshield = 'broken'

AttributeError:

"'Car' object has no attribute 'windshield'"

Type annotations are not enforced without

a separate type checking tool like mypy:

>>> Car('red', 'NOT_A_FLOAT', 99)

Car(color='red', mileage='NOT_A_FLOAT', automatic=99)

struct.Struct – Serialized C Structs

The struct.Struct class23 converts between Python values and C structs
serialized into Python bytes objects. For example, it can be used to handle
binary data stored in files or coming in from network connections.

Structs are defined using a format strings-like mini language that allows
you to define the arrangement of various C data types like char, int, and
long, as well as their unsigned variants.

Serialized structs are seldom used to represent data objects meant to be
handled purely inside Python code. They’re intended primarily as a data
exchange format, rather than as a way of holding data in memory that’s
only used by Python code.

In some cases, packing primitive data into structs may use less memory
than keeping it in other data types. However, in most cases that would be
quite an advanced (and probably unnecessary) optimization.

>>> from struct import Struct

>>> MyStruct = Struct('i?f')

>>> data = MyStruct.pack(23, False, 42.0)

All you get is a blob of data:

>>> data

b'x17x00x00x00x00x00x00x00x00x00(B'

Data blobs can be unpacked again:

>>> MyStruct.unpack(data)

(23, False, 42.0)

types.SimpleNamespace – Fancy Attribute Access

Here’s one more “esoteric” choice for implementing data objects in Python:
types.SimpleNamespace.24 This class was added in Python 3.3 and it
provides attribute access to its namespace.

This means SimpleNamespace instances expose all of their keys as class
attributes. This means you can use obj.key “dotted” attribute access instead
of the obj['key'] square-brackets indexing syntax that’s used by regular
dicts. All instances also include a meaningful __repr__ by default.

As its name proclaims, SimpleNamespace is simple! It’s basically a glorified
dictionary that allows attribute access and prints nicely. Attributes can be
added, modified, and deleted freely.

>>> from types import SimpleNamespace

>>> car1 = SimpleNamespace(color='red',

... mileage=3812.4,

... automatic=True)

The default repr:

>>> car1

namespace(automatic=True, color='red', mileage=3812.4)

Instances support attribute access and are mutable:

>>> car1.mileage = 12

>>> car1.windshield = 'broken'

>>> del car1.automatic

>>> car1

namespace(color='red', mileage=12, windshield='broken')

Key Takeaways

Now, which type should you use for data objects in Python? As you’ve
seen, there’s quite a number of different options for implementing records
or data objects. Generally your decision will depend on your use case:

You only have a few (2-3) fields: Using a plain tuple object may be okay if
the field order is easy to remember or field names are superfluous. For
example, think of an (x, y, z) point in 3D space.

You need immutable fields: In this case, plain tuples,
collections.namedtuple, and typing.NamedTuple would all make good
options for implementing this type of data object.

You need to lock down field names to avoid typos:
collections.namedtuple and typing.NamedTuple are your friends here.

You want to keep things simple: A plain dictionary object might be a good
choice due to the convenient syntax that closely resembles JSON.

You need full control over your data structure: It’s time to write a
custom class with @property setters and getters.

You need to add behavior (methods) to the object: You should write a
custom class, either from scratch or by extending collections.namedtuple
or typing.NamedTuple.

You need to pack data tightly to serialize it to disk or to send it over the
network: Time to read up on struct.Struct because this is a great use
case for it.

If you’re looking for a safe default choice, my general recommendation for
implementing a plain record, struct, or data object in Python would be to
use collections.namedtuple in Python 2.x and its younger sibling,
typing.NamedTuple in Python 3.

5.4 Sets and Multisets

In this chapter you’ll see how to implement mutable and immutable set and
multiset (bag) data structures in Python, using built-in data types and
classes from the standard library. First though, let’s do a quick recap of
what a set data structure is:

A set is an unordered collection of objects that does not allow duplicate
elements. Typically, sets are used to quickly test a value for membership in
the set, to insert or delete new values from a set, and to compute the union
or intersection of two sets.

In a “proper” set implementation, membership tests are expected to run in
fast O(1) time. Union, intersection, difference, and subset operations should
take O(n) time on average. The set implementations included in Python’s
standard library follow these performance characteristics.25

Just like dictionaries, sets get special treatment in Python and have some
syntactic sugar that makes them easy to create. For example, the curly-
braces set expression syntax and set comprehensions allow you to
conveniently define new set instances:

vowels = {'a', 'e', 'i', 'o', 'u'}

squares = {x * x for x in range(10)}

But be careful: To create an empty set you’ll need to call the set()
constructor. Using empty curly-braces {} is ambiguous and will create an
empty dictionary instead.

Python and its standard library provide several set implementations. Let’s
have a look at them.

set – Your Go-To Set

This is the built-in set implementation in Python.26 The set type is mutable
and allows for the dynamic insertion and deletion of elements.

Python’s sets are backed by the dict data type and share the same
performance characteristics. Any hashable object can be stored in a set.27

>>> vowels = {'a', 'e', 'i', 'o', 'u'}

>>> 'e' in vowels

True

>>> letters = set('alice')

>>> letters.intersection(vowels)

{'a', 'e', 'i'}

>>> vowels.add('x')

>>> vowels

{'i', 'a', 'u', 'o', 'x', 'e'}

>>> len(vowels)

6

frozenset – Immutable Sets

The frozenset class implements an immutable version of set that cannot
be changed after it has been constructed.28 Frozensets are static and only
allow query operations on their elements (no inserts or deletions.) Because
frozensets are static and hashable, they can be used as dictionary keys or as
elements of another set, something that isn’t possible with regular (mutable)
set objects.

>>> vowels = frozenset({'a', 'e', 'i', 'o', 'u'})

>>> vowels.add('p')

AttributeError:

"'frozenset' object has no attribute 'add'"

Frozensets are hashable and can

be used as dictionary keys:

>>> d = { frozenset({1, 2, 3}): 'hello' }

>>> d[frozenset({1, 2, 3})]

'hello'

collections.Counter – Multisets

The collections.Counter class in the Python standard library implements
a multiset (or bag) type that allows elements in the set to have more than
one occurrence.29

This is useful if you need to keep track of not only if an element is part of a
set, but also how many times it is included in the set:

>>> from collections import Counter

>>> inventory = Counter()

>>> loot = {'sword': 1, 'bread': 3}

>>> inventory.update(loot)

>>> inventory

Counter({'bread': 3, 'sword': 1})

>>> more_loot = {'sword': 1, 'apple': 1}

>>> inventory.update(more_loot)

>>> inventory

Counter({'bread': 3, 'sword': 2, 'apple': 1})

Here’s a caveat for the Counter class: You’ll want to be careful when
counting the number of elements in a Counter object. Calling len() returns
the number of unique elements in the multiset, whereas the total number of
elements can be retrieved using the sum function:

>>> len(inventory)

3 # Unique elements

>>> sum(inventory.values())

6 # Total no. of elements

Key Takeaways

Sets are another useful and commonly used data structure included
with Python and its standard library.
Use the built-in set type when looking for a mutable set.
frozenset objects are hashable and can be used as dictionary or set
keys.

collections.Counter implements multiset or “bag” data structures.

5.5 Stacks (LIFOs)

A stack is a collection of objects that supports fast last-in, first-out (LIFO)
semantics for inserts and deletes. Unlike lists or arrays, stacks typically
don’t allow for random access to the objects they contain. The insert and
delete operations are also often called push and pop.

A useful real-world analogy for a stack data structure is a stack of plates:

New plates are added to the top of the stack. And because the plates
are precious and heavy, only the topmost plate can be moved (last-in,
first-out). To reach the plates that are lower down in the stack, the
topmost plates must be removed one by one.

Stacks and queues are similar. They’re both linear collections of items, and
the difference lies in the order that the items are accessed:

With a queue, you remove the item least recently added (first-in, first-out
or FIFO); but with a stack, you remove the item most recently added (last-
in, first-out or LIFO).

Performance-wise, a proper stack implementation is expected to take O(1)
time for insert and delete operations.

Stacks have a wide range of uses in algorithms, for example, in language
parsing and runtime memory management (“call stack”). A short and
beautiful algorithm using a stack is depth-first search (DFS) on a tree or
graph data structure.

Python ships with several stack implementations that each have slightly
different characteristics. We’ll now take a look at them and compare their
characteristics.

list – Simple, Built-In Stacks

Python’s built-in list type makes a decent stack data structure as it
supports push and pop operations in amortized O(1) time.30

Python’s lists are implemented as dynamic arrays internally, which means
they occasionally need to resize the storage space for elements stored in
them when elements are added or removed. The list over-allocates its
backing storage so that not every push or pop requires resizing, and as a
result, you get an amortized O(1) time complexity for these operations.

The downside is that this makes their performance less consistent than the
stable O(1) inserts and deletes provided by a linked list based
implementation (like collections.deque, see below). On the other hand,
lists do provide fast O(1) time random access to elements on the stack, and
this can be an added benefit.

Here’s an important performance caveat you should be aware of when using
lists as stacks:

To get the amortized O(1) performance for inserts and deletes, new items
must be added to the end of the list with the append() method and removed
again from the end using pop(). For optimum performance, stacks based on
Python lists should grow towards higher indexes and shrink towards lower
ones.

Adding and removing from the front is much slower and takes O(n) time, as
the existing elements must be shifted around to make room for the new
element. This is a performance antipattern that you should avoid as much as
possible.

>>> s = []

>>> s.append('eat')

>>> s.append('sleep')

>>> s.append('code')

>>> s

['eat', 'sleep', 'code']

>>> s.pop()

'code'

>>> s.pop()

'sleep'

>>> s.pop()

'eat'

>>> s.pop()

IndexError: "pop from empty list"

collections.deque – Fast & Robust Stacks

The deque class implements a double-ended queue that supports adding and
removing elements from either end in O(1) time (non-amortized). Because
deques support adding and removing elements from either end equally well,
they can serve both as queues and as stacks.31

Python’s deque objects are implemented as doubly-linked lists which gives
them excellent and consistent performance for inserting and deleting
elements, but poor O(n) performance for randomly accessing elements in
the middle of a stack.32

Overall, collections.deque is a great choice if you’re looking for a stack
data structure in Python’s standard library that has the performance
characteristics of a linked-list implementation.

>>> from collections import deque

>>> s = deque()

>>> s.append('eat')

>>> s.append('sleep')

>>> s.append('code')

>>> s

deque(['eat', 'sleep', 'code'])

>>> s.pop()

'code'

>>> s.pop()

'sleep'

>>> s.pop()

'eat'

>>> s.pop()

IndexError: "pop from an empty deque"

queue.LifoQueue – Locking Semantics for Parallel Computing

This stack implementation in the Python standard library is synchronized
and provides locking semantics to support multiple concurrent producers
and consumers.33

Besides LifoQueue, the queue module contains several other classes that
implement multi-producer/multi-consumer queues that are useful for
parallel computing.

Depending on your use case, the locking semantics might be helpful, or
they might just incur unneeded overhead. In this case you’d be better off
with using a list or a deque as a general-purpose stack.

>>> from queue import LifoQueue

>>> s = LifoQueue()

>>> s.put('eat')

>>> s.put('sleep')

>>> s.put('code')

>>> s

<queue.LifoQueue object at 0x108298dd8>

>>> s.get()

'code'

>>> s.get()

'sleep'

>>> s.get()

'eat'

>>> s.get_nowait()

queue.Empty

>>> s.get()

Blocks / waits forever...

Comparing Stack Implementations in Python

As you’ve seen, Python ships with several implementations for a stack data
structure. All of them have slightly different characteristics, as well as
performance and usage trade-offs.

If you’re not looking for parallel processing support (or don’t want to
handle locking and unlocking manually), your choice comes down to the
built-in list type or collections.deque. The difference lies in the data
structure used behind the scenes and overall ease of use:

list is backed by a dynamic array which makes it great for fast
random access, but requires occasional resizing when elements are
added or removed. The list over-allocates its backing storage so that
not every push or pop requires resizing, and you get an amortized O(1)
time complexity for these operations. But you do need to be careful to
only insert and remove items “from the right side” using append() and
pop(). Otherwise, performance slows down to O(n).

collections.deque is backed by a doubly-linked list which optimizes
appends and deletes at both ends and provides consistent O(1)
performance for these operations. Not only is its performance more
stable, the deque class is also easier to use because you don’t have to
worry about adding or removing items from “the wrong end.”

In summary, I believe that collections.deque is an excellent choice for
implementing a stack (LIFO queue) in Python.

Key Takeaways

Python ships with several stack implementations that have slightly
different performance and usage characteristics.
collections.deque provides a safe and fast general-purpose stack
implementation.
The built-in list type can be used as a stack, but be careful to only
append and remove items with append() and pop() in order to avoid
slow performance.

5.6 Queues (FIFOs)

In this chapter you’ll see how to implement a FIFO queue data structure
using only built-in data types and classes from the Python standard library.
But first, let’s recap what a queue is:

A queue is a collection of objects that supports fast first-in, first-out (FIFO)
semantics for inserts and deletes. The insert and delete operations are
sometimes called enqueue and dequeue. Unlike lists or arrays, queues
typically don’t allow for random access to the objects they contain.

Here’s a real-world analogy for a first-in, first-out queue:

Imagine a line of Pythonistas waiting to pick up their conference
badges on day one of PyCon registration. New additions to the line are
made to the back of the queue as new people enter the conference
venue and “queue up” to receive their badges. Removal (serving)
happens in the front of the queue, as developers receive their badges
and conference swag bags and leave the queue.

Another way to memorize the characteristics of a queue data structure is to
think of it as a pipe:

New items (water molecules, ping-pong balls, …) are put in at one end
and travel to the other where you or someone else removes them again.
While the items are in the queue (a solid metal pipe) you can’t get at
them. The only way to interact with the items in the queue is to add
new items at the back (enqueue) or to remove items at the front
(dequeue) of the pipe.

Queues are similar to stacks, and the difference between them lies in how
items are removed:

With a queue, you remove the item least recently added (first-in, first-out
or FIFO); but with a stack, you remove the item most recently added (last-
in, first-out or LIFO).

Performance-wise, a proper queue implementation is expected to take O(1)
time for insert and delete operations. These are the two main operations
performed on a queue, and in a correct implementation, they should be fast.

Queues have a wide range of applications in algorithms and often help
solve scheduling and parallel programming problems. A short and beautiful
algorithm using a queue is breadth-first search (BFS) on a tree or graph data
structure.

Scheduling algorithms often use priority queues internally. These are
specialized queues: Instead of retrieving the next element by insertion time,
a priority queue retrieves the highest-priority element. The priority of
individual elements is decided by the queue, based on the ordering applied
to their keys. We’ll take a closer look at priority queues and how they’re
implemented in Python in the next chapter.

A regular queue, however, won’t re-order the items it carries. Just like in
the pipe example, “you’ll get what you put in” and in exactly that order.

Python ships with several queue implementations that each have slightly
different characteristics. Let’s review them.

list — Terribly Sloooow Queues

It’s possible to use a regular list as a queue but this is not ideal from a
performance perspective.34 Lists are quite slow for this purpose because
inserting or deleting an element at the beginning requires shifting all of the
other elements by one, requiring O(n) time.

Therefore, I would not recommend using a list as a makeshift queue in
Python (unless you’re only dealing with a small number of elements).

>>> q = []

>>> q.append('eat')

>>> q.append('sleep')

>>> q.append('code')

>>> q

['eat', 'sleep', 'code']

Careful: This is slow!

>>> q.pop(0)

'eat'

collections.deque – Fast & Robust Queues

The deque class implements a double-ended queue that supports adding and
removing elements from either end in O(1) time (non-amortized). Because
deques support adding and removing elements from either end equally well,
they can serve both as queues and as stacks.35

Python’s deque objects are implemented as doubly-linked lists.36 This
gives them excellent and consistent performance for inserting and deleting
elements, but poor O(n) performance for randomly accessing elements in
the middle of the stack.

As a result, collections.deque is a great default choice if you’re looking
for a queue data structure in Python’s standard library.

>>> from collections import deque

>>> q = deque()

>>> q.append('eat')

>>> q.append('sleep')

>>> q.append('code')

>>> q

deque(['eat', 'sleep', 'code'])

>>> q.popleft()

'eat'

>>> q.popleft()

'sleep'

>>> q.popleft()

'code'

>>> q.popleft()

IndexError: "pop from an empty deque"

queue.Queue – Locking Semantics for Parallel Computing

This queue implementation in the Python standard library is synchronized
and provides locking semantics to support multiple concurrent producers
and consumers.37

The queue module contains several other classes implementing multi-
producer/multi-consumer queues that are useful for parallel computing.

Depending on your use case, the locking semantics might be helpful or just
incur unneeded overhead. In this case, you’d be better off using
collections.deque as a general-purpose queue.

>>> from queue import Queue

>>> q = Queue()

>>> q.put('eat')

>>> q.put('sleep')

>>> q.put('code')

>>> q

<queue.Queue object at 0x1070f5b38>

>>> q.get()

'eat'

>>> q.get()

'sleep'

>>> q.get()

'code'

>>> q.get_nowait()

queue.Empty

>>> q.get()

Blocks / waits forever...

multiprocessing.Queue – Shared Job Queues

This is a shared job queue implementation that allows queued items to be
processed in parallel by multiple concurrent workers.38 Process-based
parallelization is popular in CPython due to the global interpreter lock
(GIL) that prevents some forms of parallel execution on a single interpreter
process.

As a specialized queue implementation meant for sharing data between
processes, multiprocessing.Queue makes it easy to distribute work across
multiple processes in order to work around the GIL limitations. This type of

queue can store and transfer any pickle-able object across process
boundaries.

>>> from multiprocessing import Queue

>>> q = Queue()

>>> q.put('eat')

>>> q.put('sleep')

>>> q.put('code')

>>> q

<multiprocessing.queues.Queue object at 0x1081c12b0>

>>> q.get()

'eat'

>>> q.get()

'sleep'

>>> q.get()

'code'

>>> q.get()

Blocks / waits forever...

Key Takeaways

Python includes several queue implementations as part of the core
language and its standard library.
list objects can be used as queues, but this is generally not
recommended due to slow performance.
If you’re not looking for parallel processing support, the
implementation offered by collections.deque is an excellent default
choice for implementing a FIFO queue data structure in Python. It
provides the performance characteristics you’d expect from a good
queue implementation and can also be used as a stack (LIFO Queue).

5.7 Priority Queues

A priority queue is a container data structure that manages a set of records
with totally-ordered39 keys (for example, a numeric weight value) to

provide quick access to the record with the smallest or largest key in the
set.

You can think of a priority queue as a modified queue: instead of retrieving
the next element by insertion time, it retrieves the highest-priority element.
The priority of individual elements is decided by the ordering applied to
their keys.

Priority queues are commonly used for dealing with scheduling problems,
for example, to give precedence to tasks with higher urgency.

Think about the job of an operating system task scheduler:

Ideally, high-priority tasks on the system (e.g., playing a real-time
game) should take precedence over lower-priority tasks (e.g.,
downloading updates in the background). By organizing pending tasks
in a priority queue that uses the task urgency as the key, the task
scheduler can quickly select the highest-priority tasks and allow them
to run first.

In this chapter you’ll see a few options for how you can implement Priority
Queues in Python using built-in data structures or data structures that ship
with Python’s standard library. Each implementation will have their own
upsides and downsides, but in my mind there’s a clear winner for most
common scenarios. Let’s find out which one it is.

list – Maintaining a Manually Sorted Queue

You can use a sorted list to quickly identify and delete the smallest or
largest element. The downside is that inserting new elements into a list is a
slow O(n) operation.

While the insertion point can be found in O(log n) time using
bisect.insort40 in the standard library, this is always dominated by the
slow insertion step.

Maintaining the order by appending to the list and re-sorting also takes at
least O(n log n) time. Another downside is that you must manually take

care of re-sorting the list when new elements are inserted. It’s easy to
introduce bugs by missing this step, and the burden is always on you, the
developer.

Therefore, I believe that sorted lists are only suitable as priority queues
when there will be few insertions.

q = []

q.append((2, 'code'))

q.append((1, 'eat'))

q.append((3, 'sleep'))

NOTE: Remember to re-sort every time

a new element is inserted, or use

bisect.insort().

q.sort(reverse=True)

while q:

 next_item = q.pop()

 print(next_item)

Result:

(1, 'eat')

(2, 'code')

(3, 'sleep')

heapq – List-Based Binary Heaps

This is a binary heap implementation usually backed by a plain list, and it
supports insertion and extraction of the smallest element in O(log n)
time.41

This module is a good choice for implementing priority queues in Python.
Since heapq technically only provides a min-heap implementation, extra
steps must be taken to ensure sort stability and other features typically
expected from a “practical” priority queue.42

import heapq

q = []

heapq.heappush(q, (2, 'code'))

heapq.heappush(q, (1, 'eat'))

heapq.heappush(q, (3, 'sleep'))

while q:

 next_item = heapq.heappop(q)

 print(next_item)

Result:

(1, 'eat')

(2, 'code')

(3, 'sleep')

queue.PriorityQueue – Beautiful Priority Queues

This priority queue implementation uses heapq internally and shares the
same time and space complexities.43

The difference is that PriorityQueue is synchronized and provides locking
semantics to support multiple concurrent producers and consumers.

Depending on your use case, this might be helpful—or just slow your
program down slightly. In any case, you might prefer the class-based
interface provided by PriorityQueue over using the function-based
interface provided by heapq.

from queue import PriorityQueue

q = PriorityQueue()

q.put((2, 'code'))

q.put((1, 'eat'))

q.put((3, 'sleep'))

while not q.empty():

 next_item = q.get()

 print(next_item)

Result:

(1, 'eat')

(2, 'code')

(3, 'sleep')

Key Takeaways

Python includes several priority queue implementations for you to use.
queue.PriorityQueue stands out from the pack with a nice object-
oriented interface and a name that clearly states its intent. It should be
your preferred choice.
If you’d like to avoid the locking overhead of queue.PriorityQueue,
using the heapq module directly is also a good option.

1. cf. Python Docs: “Mapping Types — dict”↩

2. cf. Python Docs Glossary: “Hashable”↩

3. cf. Python Docs: “collections.OrderedDict”↩

4. cf. CPython mailing list↩

5. cf. Python Docs: “collections.defaultdict”↩

6. cf. Python Docs: “collections.ChainMap”↩

7. cf. Python Docs: “types.MappingProxyType”↩

8. cf. Python Docs: “list”↩

9. cf. Python Docs: “tuple”↩

10. cf. Python Docs: “array.array”↩

11. cf. Python Docs: “str”↩

12. cf. Python Docs: “bytes”↩

13. cf. Python Docs: “bytearray”↩

https://docs.python.org/3/library/stdtypes.html#mapping-types-dict
https://docs.python.org/3/glossary.html#term-hashable
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://mail.python.org/pipermail/python-dev/2016-September/146327.html
https://docs.python.org/3/library/collections.html#collections.defaultdict
https://docs.python.org/3/library/collections.html#collections.ChainMap
https://docs.python.org/3/library/types.html#types.MappingProxyType
https://docs.python.org/3.6/library/stdtypes.html#lists
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/array.html
https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str
https://docs.python.org/3/library/stdtypes.html#bytes-objects
https://docs.python.org/3.1/library/functions.html#bytearray

14. www.numpy.org↩

15. cf. “Dictionaries, Maps, and Hashtables” chapter↩

16. cf. Python Docs: “tuple”↩

17. cf. CPython tupleobject.c and listobject.c↩

18. cf. “String Conversion (Every Class Needs a __repr__)” chapter↩

19. cf. Python Docs: “property”↩

20. cf. “What Namedtuples Are Good For” chapter↩

21. cf. Python Docs: “typing.NamedTuple”↩

22. mypy-lang.org↩

23. cf. Python Docs: “struct.Struct”↩

24. cf. Python Docs: “types.SimpleNamespace”↩

25. cf. wiki.python.org/moin/TimeComplexity↩

26. cf. Python Docs: “set”↩

27. cf. Python Docs: “hashable”↩

28. cf. Python Docs: “frozenset”↩

29. cf. Python Docs: “collections.Counter”↩

30. cf. Python Docs: “Using lists as stacks”↩

31. cf. Python Docs: “collections.deque”↩

32. cf. CPython _collectionsmodule.c↩

33. cf. Python Docs: “queue.LifoQueue”↩

http://www.numpy.org/
https://docs.python.org/3/library/stdtypes.html#tuple
https://github.com/python/cpython/blob/1a5856bf9295fa73995898d576e0bedf016aee1f/Include/tupleobject.h#L10-L34
https://github.com/python/cpython/blob/b879fe82e7e5c3f7673c9a7fa4aad42bd05445d8/Include/listobject.h#L4-L41
https://docs.python.org/3/library/functions.html#property
https://docs.python.org/3/library/typing.html#typing.NamedTuple
http://mypy-lang.org/
https://docs.python.org/3/library/struct.html#struct.Struct
https://docs.python.org/3/library/types.html#types.SimpleNamespace
https://wiki.python.org/moin/TimeComplexity
https://docs.python.org/3/library/stdtypes.html#set-types-set-frozenset
https://docs.python.org/3/glossary.html#term-hashable
https://docs.python.org/3/library/stdtypes.html#set-types-set-frozenset
https://docs.python.org/3/library/collections.html#collections.Counter
https://docs.python.org/3/tutorial/datastructures.html#using-lists-as-stacks
https://docs.python.org/3/library/collections.html#collections.deque
https://github.com/python/cpython/blob/947629916a5ecb1f6f6792e9b9234e084c5bf274/Modules/_collectionsmodule.c#L24-L26
https://docs.python.org/3/library/queue.html#queue.LifoQueue

34. cf. Python Docs: “Using lists as queues”↩

35. cf. Python Docs: “collections.deque”↩

36. cf. CPython _collectionsmodule.c↩

37. cf. Python Docs: “queue.Queue”↩

38. cf. Python Docs: “multiprocessing.Queue”↩

39. cf. Wikipedia “Total order”↩

40. cf. Python Docs: “bisect.insort”↩

41. cf. Python Docs: “heapq”↩

42. cf. Python Docs: “heapq – Priority queue implementation notes”↩

43. cf. Python Docs: “queue.PriorityQueue”↩

https://docs.python.org/3/tutorial/datastructures.html#using-lists-as-queues
https://docs.python.org/3/library/collections.html#collections.deque
https://github.com/python/cpython/blob/947629916a5ecb1f6f6792e9b9234e084c5bf274/Modules/_collectionsmodule.c#L24-L26
https://docs.python.org/3/library/queue.html#queue.Queue
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Queue
https://en.wikipedia.org/wiki/Total_order
https://docs.python.org/3/library/bisect.html#bisect.insort
https://docs.python.org/3/library/heapq.html
https://docs.python.org/3/library/heapq.html#priority-queue-implementation-notes
https://docs.python.org/3/library/queue.html#queue.PriorityQueue

6 Looping & Iteration
6.1 Writing Pythonic Loops

One of the easiest ways to spot a developer with a background in C-style
languages who only recently picked up Python is to look at how they write
loops.

For example, whenever I see a code snippet like the following, that’s an
example of someone trying to write Python like it’s C or Java:

my_items = ['a', 'b', 'c']

i = 0

while i < len(my_items):

 print(my_items[i])

 i += 1

Now, what’s so “unpythonic” about this code, you ask? Two things:

First, it keeps track of the index i manually—initializing, it to zero and then
carefully incrementing it upon every loop iteration.

And second, it uses len() to get the size of the my_items container in order
to determine how often to iterate.

In Python you can write loops that handle both of these responsibilities
automatically. It’s a great idea to take advantage of that. For example, it’s
much harder to write accidental infinite loops if your code doesn’t have to
keep track of a running index. It also makes the code more concise and
therefore more readable.

To refactor this first code example, I’ll start by removing the code that
manually updates the index. A good way to do that is with a for-loop in

Python. Using the range() built-in, I can generate the indexes
automatically:

>>> range(len(my_items))

range(0, 3)

>>> list(range(0, 3))

[0, 1, 2]

The range type represents an immutable sequence of numbers. Its
advantage over a regular list is that it always takes the same small amount
of memory. Range objects don’t actually store the individual values
representing the number sequence—instead, they function as iterators and
calculate the sequence values on the fly.1

So, rather than incrementing i manually on each loop iteration, I could take
advantage of the range() function and write something like this:

for i in range(len(my_items)):

 print(my_items[i])

This is better. However, it still isn’t very Pythonic and it still feels more like
a Java-esque iteration construct than a proper Python loop. When you see
code that uses range(len(...)) to iterate over a container you can usually
simplify and improve it further.

As I mentioned, in Python, for-loops are really “for-each” loops that can
iterate directly over items from a container or sequence, without having to
look them up by index. I can use this to simplify this loop even more:

for item in my_items:

 print(item)

I would consider this solution to be quite Pythonic. It uses several advanced
Python features but remains nice and clean and almost reads like pseudo
code from a programming textbook. Notice how this loop no longer keeps

track of the container’s size and doesn’t use a running index to access
elements.

The container itself now takes care of handing out the elements so they can
be processed. If the container is ordered, the resulting sequence of elements
will be too. If the container isn’t ordered, it will return its elements in
arbitrary order but the loop will still cover all of them.

Now, of course you won’t always be able to rewrite your loops like that.
What if you need the item index, for example?

It’s possible to write loops that keep a running index while avoiding the
range(len(...)) pattern I cautioned against. The enumerate() built-in
helps you make those kinds of loops nice and Pythonic:

>>> for i, item in enumerate(my_items):

... print(f'{i}: {item}')

0: a

1: b

2: c

You see, iterators in Python can return more than just one value. They can
return tuples with an arbitrary number of values that can then be unpacked
right inside the for-statement.

This is very powerful. For example, you can use the same technique to
iterate over the keys and values of a dictionary at the same time:

>>> emails = {

... 'Bob': 'bob@example.com',

... 'Alice': 'alice@example.com',

... }

>>> for name, email in emails.items():

... print(f'{name} -> {email}')

'Bob -> bob@example.com'

'Alice -> alice@example.com'

There’s one more example I’d like to show you. What if you absolutely,
positively need to write a C-style loop. For example, what if you must
control the step size for the index? Imagine you started out with the
following Java loop:

for (int i = a; i < n; i += s) {

 // ...

}

How would this pattern translate to Python? The range() function comes to
our rescue again—it accepts optional parameters to control the start value
for the loop (a), the stop value (n), and the step size (s). Therefore, our Java
loop example could be translated to Python, like this:

for i in range(a, n, s):

 # ...

Key Takeaways

Writing C-style loops in Python is considered unpythonic. Avoid
managing loop indexes and stop conditions manually if possible.
Python’s for-loops are really “for-each” loops that can iterate directly
over items from a container or sequence.

6.2 Comprehending Comprehensions

One of my favorite features in Python are list comprehensions. They can
seem a bit arcane at first but when you break them down they are actually a
very simple construct.

The key to understanding list comprehensions is that they’re just for-loops
over a collection but expressed in a more terse and compact syntax.

This is sometimes referred to as syntactic sugar—a little shortcut for
frequently used functionality that makes our lives as Python coders easier.

Take the following list comprehension as an example:

>>> squares = [x * x for x in range(10)]

It computes a list of all integer square numbers from zero to nine:

>>> squares

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

If you wanted to build the same list using a plain for-loop, you’d probably
write something like this:

>>> squares = []

>>> for x in range(10):

... squares.append(x * x)

That’s a pretty straightforward loop, right? If you go back and compare the
list comprehension example with the for-loop version, you’ll spot the
commonalities and eventually some patterns will emerge. By generalizing
some of the common structure here, you’ll eventually end up with a
template similar to the one below:

values = [expression for item in collection]

The above list comprehension “template” is equivalent to the following
plain for-loop:

values = []

for item in collection:

 values.append(expression)

Here, we first set up a new list instance to receive the output values. Then,
we iterate over all items in the container, transforming each of them with an
arbitrary expression and then adding the individual results to the output list.

This is a “cookie-cutter pattern” that you can apply to many for-loops in
order to transform them into list comprehensions and vice versa. Now,
there’s one more useful addition we need to make to this template, and that
is filtering elements with conditions.

List comprehensions can filter values based on some arbitrary condition
that decides whether or not the resulting value becomes a part of the output
list. Here’s an example:

>>> even_squares = [x * x for x in range(10)

 if x % 2 == 0]

This list comprehension will compute a list of the squares of all even
integers from zero to nine. The modulo (%) operator used here returns the
remainder after division of one number by another. In this example, we use
it to test if a number is even. And it has the desired result:

>>> even_squares

[0, 4, 16, 36, 64]

Similar to the first example, this new list comprehension can be
transformed into an equivalent for-loop:

even_squares = []

for x in range(10):

 if x % 2 == 0:

 even_squares.append(x * x)

Let’s try and generalize the above list comprehension to for-loop
transformation pattern some more. This time we’re going to add a filter
condition to our template so we get to decide which values end up in the
output list. Here’s the updated list comprehension template:

values = [expression

 for item in collection

 if condition]

Again, we can transform this list comprehension into a for-loop with the
following pattern:

values = []

for item in collection:

 if condition:

 values.append(expression)

Once more, this was a straightforward transformation—we simply applied
the updated cookie-cutter pattern. I hope this dispels some of the “magic”
associated with how list comprehensions work. They’re a useful tool that all
Python programmers should know how to use.

Before you move on, I want to point out that Python not only supports list
comprehensions but also has similar syntactic sugar for sets and
dictionaries.

Here’s what a set comprehension looks like:

>>> { x * x for x in range(-9, 10) }

set([64, 1, 36, 0, 49, 9, 16, 81, 25, 4])

Unlike lists, which retain the order of the elements in them, Python sets are
an unordered collection type. So you’ll get a more or less “random” order
when you add items to a set container.

And this is a dictionary comprehension:

>>> { x: x * x for x in range(5) }

{0: 0, 1: 1, 2: 4, 3: 9, 4: 16}

Both are useful tools in practice. There’s one caveat to Python’s
comprehensions though—as you get more proficient at using them, it
becomes easier and easier to write code that’s difficult to read. If you’re not

careful, you might have to deal with monstrous list, set, and dict
comprehensions soon. Remember, too much of a good thing is usually a bad
thing.

After much chagrin, I’m personally drawing the line at one level of nesting
for comprehensions. I found that in most cases it’s better (as in “more
readable” and “easier to maintain”) to use for-loops beyond that point.

Key Takeaways

Comprehensions are a key feature in Python. Understanding and
applying them will make your code much more Pythonic.
Comprehensions are just fancy syntactic sugar for a simple for-loop
pattern. Once you understand the pattern, you’ll develop an intuitive
understanding for comprehensions.
There are more than just list comprehensions.

6.3 List Slicing Tricks and the Sushi Operator

Python’s list objects have a neat feature called slicing. You can view it as an
extension of the square-brackets indexing syntax. Slicing is commonly used
to access ranges of elements within an ordered collection. For example, you
can slice up a large list object into several smaller sublists with it.

Here’s an example. Slicing uses the familiar “[]” indexing syntax with the
following “[start:stop:step]” pattern:

>>> lst = [1, 2, 3, 4, 5]

>>> lst

[1, 2, 3, 4, 5]

lst[start:end:step]

>>> lst[1:3:1]

[2, 3]

Adding the [1:3:1] index returned a slice of the original list ranging from
index 1 to index 2, with a step size of one element. To avoid off-by-one

errors, it’s important to remember that the upper bound is always exclusive.
This is why we got [2, 3] as the sublist from the [1:3:1] slice.

If you leave out the step size, it defaults to one:

>>> lst[1:3]

[2, 3]

You can do other interesting things with the step parameter, also called the
stride. For example, you can create a sublist that includes every other
element of the original:

>>> lst[::2]

[1, 3, 5]

Wasn’t that fun? I like to call “:” the sushi operator. It looks like a
delicious maki roll cut in half. Besides reminding you of delicious food and
accessing ranges of lists, it has a few more lesser-known applications. Let
me show you some more fun and useful list-slicing tricks!

You just saw how the slicing step size can be used to select every other
element of a list. Well, there’s more: If you ask for a [::-1] slice, you’ll get
a copy of the original list, but in the reverse order:

>>> numbers[::-1]

[5, 4, 3, 2, 1]

We asked Python to give us the full list (::), but to go over all of the
elements from back to front by setting the step size to -1. This is pretty
neat, but in most cases I’d still stick with list.reverse() and the built-in
reversed() function to reverse a list.

Here’s another list-slicing trick: You can use the :-operator to clear all
elements from a list without destroying the list object itself.

This is extremely helpful when you need to clear out a list in your program
that has other references pointing to it. In this case, you often can’t just
empty the list by replacing it with a new list object, since that wouldn’t
update the other references. But here’s the sushi operator coming to your
rescue:

>>> lst = [1, 2, 3, 4, 5]

>>> del lst[:]

>>> lst

[]

As you can see, this removes all elements from lst but leaves the list object
itself intact. In Python 3 you can also use lst.clear() for the same job,
which might be the more readable pattern, depending on the circumstances.
However, keep in mind that clear() isn’t available in Python 2.

Besides clearing lists, you can also use slicing to replace all elements of a
list without creating a new list object. This is a nice shorthand for clearing a
list and then repopulating it manually:

>>> original_lst = lst

>>> lst[:] = [7, 8, 9]

>>> lst

[7, 8, 9]

>>> original_lst

[7, 8, 9]

>>> original_lst is lst

True

The previous code example replaced all elements in lst but did not destroy
and recreate the list itself. The old references to the original list object are
therefore still valid.

Yet another use case for the sushi operator is creating (shallow) copies of
existing lists:

>>> copied_lst = lst[:]

>>> copied_lst

[7, 8, 9]

>>> copied_lst is lst

False

Creating a shallow copy means that only the structure of the elements is
copied, not the elements themselves. Both copies of the list share the same
instances of the individual elements.

If you need to duplicate everything, including the elements, then you’ll
need to create a deep copy of the list. Python’s built-in copy module will
come in handy for this.

Key Takeaways

The : “sushi operator” is not only useful for selecting sublists of
elements within a list. It can also be used to clear, reverse, and copy
lists.
But be careful—this functionality borders on the arcane for many
Python developers. Using it might make your code less maintainable
for everyone else on your team.

6.4 Beautiful Iterators

I love how beautiful and clear Python’s syntax is compared to many other
programming languages. Let’s take the humble for-in loop, for example. It
speaks to Python’s beauty that you can read a Pythonic loop like this, as if it
was an English sentence:

numbers = [1, 2, 3]

for n in numbers:

 print(n)

But how do Python’s elegant loop constructs work behind the scenes? How
does the loop fetch individual elements from the object it is looping over?
And, how can you support the same programming style in your own Python
objects?

You’ll find the answers to these questions in Python’s iterator protocol:
Objects that support the __iter__ and __next__ dunder methods
automatically work with for-in loops.

But let’s take things step by step. Just like decorators, iterators and their
related techniques can appear quite arcane and complicated on first glance.
So, we’ll ease into them.

In this chapter you’ll see how to write several Python classes that support
the iterator protocol. They’ll serve as “non-magical” examples and test
implementations you can build upon and deepen your understanding with.

We’ll focus on the core mechanics of iterators in Python 3 first and leave
out any unnecessary complications, so you can see clearly how iterators
behave at the fundamental level.

I’ll tie each example back to the for-in loop question we started out with.
And, at the end of this chapter we’ll go over some differences that exist
between Python 2 and 3 when it comes to iterators.

Ready? Let’s jump right in!

Iterating Forever

We’ll begin by writing a class that demonstrates the bare-bones iterator
protocol. The example I’m using here might look different from the
examples you’ve seen in other iterator tutorials, but bear with me. I think
doing it this way gives you a more applicable understanding of how
iterators work in Python.

Over the next few paragraphs we’re going to implement a class called
Repeater that can be iterated over with a for-in loop, like so:

repeater = Repeater('Hello')

for item in repeater:

 print(item)

Like its name suggests, instances of this Repeater class will repeatedly
return a single value when iterated over. So the above example code would
forever print the string 'Hello' to the console.

To start with the implementation, we’ll first define and flesh out the
Repeater class:

class Repeater:

 def __init__(self, value):

 self.value = value

 def __iter__(self):

 return RepeaterIterator(self)

On first inspection, Repeater looks like a bog-standard Python class. But
notice how it also includes the __iter__ dunder method.

What’s the RepeaterIterator object we’re creating and returning from
__iter__? It’s a helper class we also need to define for our for-in iteration
example to work:

class RepeaterIterator:

 def __init__(self, source):

 self.source = source

 def __next__(self):

 return self.source.value

Again, RepeaterIterator looks like a straightforward Python class, but
you might want to take note of the following two things:

1. In the __init__ method, we link each RepeaterIterator instance to
the Repeater object that created it. That way we can hold onto the
“source” object that’s being iterated over.

2. In RepeaterIterator.__next__, we reach back into the “source”
Repeater instance and return the value associated with it.

In this code example, Repeater and RepeaterIterator are working
together to support Python’s iterator protocol. The two dunder methods we
defined, __iter__ and __next__, are the keys to making a Python object
iterable.

We’ll take a closer look at these two methods and how they work together
after some hands-on experimentation with the code we’ve got so far.

Let’s confirm that this two-class setup really made Repeater objects
compatible with for-in loop iteration. To do that we’ll first create an
instance of Repeater that would return the string 'Hello' indefinitely:

>>> repeater = Repeater('Hello')

And now we’re going to try iterating over this repeater object with a for-in
loop. What’s going to happen when you run the following code snippet?

>>> for item in repeater:

... print(item)

Right on! You’ll see 'Hello' printed to the screen…a lot. Repeater keeps
on returning the same string value, and so, this loop will never complete.
Our little program is doomed to forever print 'Hello' to the console:

Hello

Hello

Hello

Hello

Hello

...

But congratulations—you just wrote a working iterator in Python and used
it with a for-in loop. The loop may not terminate yet…but so far, so good!

Next up, we’ll tease this example apart to understand how the __iter__ and
__next__ methods work together to make a Python object iterable.

Pro tip: If you ran the last example inside a Python REPL session or from
the terminal, and you want to stop it, hit Ctrl + C a few times to break out
of the infinite loop.

How do for-in loops work in Python?

At this point we’ve got our Repeater class that apparently supports the
iterator protocol, and we just ran a for-in loop to prove it:

repeater = Repeater('Hello')

for item in repeater:

 print(item)

Now, what does this for-in loop really do behind the scenes? How does it
communicate with the repeater object to fetch new elements from it?

To dispel some of that “magic,” we can expand this loop into a slightly
longer code snippet that gives the same result:

repeater = Repeater('Hello')

iterator = repeater.__iter__()

while True:

 item = iterator.__next__()

 print(item)

As you can see, the for-in was just syntactic sugar for a simple while loop:

It first prepared the repeater object for iteration by calling its
__iter__ method. This returned the actual iterator object.
After that, the loop repeatedly called the iterator object’s __next__
method to retrieve values from it.

If you’ve ever worked with database cursors, this mental model will seem
familiar: We first initialize the cursor and prepare it for reading, and then
we can fetch data from it into local variables as needed, one element at a
time.

Because there’s never more than one element “in flight,” this approach is
highly memory-efficient. Our Repeater class provides an infinite sequence
of elements and we can iterate over it just fine. Emulating the same thing
with a Python list would be impossible—there’s no way we could create a
list with an infinite number of elements in the first place. This makes
iterators a very powerful concept.

On more abstract terms, iterators provide a common interface that allows
you to process every element of a container while being completely isolated
from the container’s internal structure.

Whether you’re dealing with a list of elements, a dictionary, an infinite
sequence like the one provided by our Repeater class, or another sequence
type—all of that is just an implementation detail. Every single one of these
objects can be traversed in the same way with the power of iterators.

And as you’ve seen, there’s nothing special about for-in loops in Python. If
you peek behind the curtain, it all comes down to calling the right dunder
methods at the right time.

In fact, you can manually “emulate” how the loop uses the iterator protocol
in a Python interpreter session:

>>> repeater = Repeater('Hello')

>>> iterator = iter(repeater)

>>> next(iterator)

'Hello'

>>> next(iterator)

'Hello'

>>> next(iterator)

'Hello'

...

This gives the same result—an infinite stream of hellos. Every time you call
next(), the iterator hands out the same greeting again.

By the way, I took the opportunity here to replace the calls to __iter__ and
__next__ with calls to Python’s built-in functions, iter() and next().

Internally, these built-ins invoke the same dunder methods, but they make
this code a little prettier and easier to read by providing a clean “facade” to
the iterator protocol.

Python offers these facades for other functionality as well. For example,
len(x) is a shortcut for calling x.__len__. Similarly, calling iter(x)
invokes x.__iter__ and calling next(x) invokes x.__next__.

Generally, it’s a good idea to use the built-in facade functions rather than
directly accessing the dunder methods implementing a protocol. It just
makes the code a little easier to read.

A Simpler Iterator Class

Up until now, our iterator example consisted of two separate classes,
Repeater and RepeaterIterator. They corresponded directly to the two
phases used by Python’s iterator protocol:

First, setting up and retrieving the iterator object with an iter() call, and
then repeatedly fetching values from it via next().

Many times both of these responsibilities can be shouldered by a single
class. Doing this allows you to reduce the amount of code necessary to
write a class-based iterator.

I chose not to do this with the first example in this chapter because it mixes
up the cleanliness of the mental model behind the iterator protocol. But now
that you’ve seen how to write a class-based iterator the longer and more
complicated way, let’s take a minute to simplify what we’ve got so far.

Remember why we needed the RepeaterIterator class again? We needed
it to host the __next__ method for fetching new values from the iterator.
But it doesn’t really matter where __next__ is defined. In the iterator
protocol, all that matters is that __iter__ returns any object with a
__next__ method on it.

So here’s an idea: RepeaterIterator returns the same value over and over,
and it doesn’t have to keep track of any internal state. What if we added the

__next__ method directly to the Repeater class instead?

That way we could get rid of RepeaterIterator altogether and implement
an iterable object with a single Python class. Let’s try it out! Our new and
simplified iterator example looks as follows:

class Repeater:

 def __init__(self, value):

 self.value = value

 def __iter__(self):

 return self

 def __next__(self):

 return self.value

We just went from two separate classes and 10 lines of code to just one
class and 7 lines of code. Our simplified implementation still supports the
iterator protocol just fine:

>>> repeater = Repeater('Hello')

>>> for item in repeater:

... print(item)

Hello

Hello

Hello

...

Streamlining a class-based iterator like that often makes sense. In fact, most
Python iterator tutorials start out that way. But I always felt that explaining
iterators with a single class from the get-go hides the underlying principles
of the iterator protocol—and thus makes it more difficult to understand.

Who Wants to Iterate Forever

At this point you should have a pretty good understanding of how iterators
work in Python. But so far we’ve only implemented iterators that keep on
iterating forever.

Clearly, infinite repetition isn’t the main use case for iterators in Python. In
fact, when you look back all the way to the beginning of this chapter, I used
the following snippet as a motivating example:

numbers = [1, 2, 3]

for n in numbers:

 print(n)

You’ll rightfully expect this code to print the numbers 1, 2, and 3 and then
stop. And you probably wouldn’t expect it to go on spamming your terminal
window by printing “3” forever until you mash Ctrl+C a few times in a
wild panic…

And so, it’s time to find out how to write an iterator that eventually stops
generating new values instead of iterating forever because that’s what
Python objects typically do when we use them in a for-in loop.

We’ll now write another iterator class that we’ll call BoundedRepeater. It’ll
be similar to our previous Repeater example, but this time we’ll want it to
stop after a predefined number of repetitions.

Let’s think about this for a bit. How do we do this? How does an iterator
signal that it’s exhausted and out of elements to iterate over? Maybe you’re
thinking, “Hmm, we could just return None from the __next__ method.”

And that’s not a bad idea—but the trouble is, what are we going to do if we
want some iterators to be able to return None as an acceptable value?

Let’s see what other Python iterators do to solve this problem. I’m going to
construct a simple container, a list with a few elements, and then I’ll iterate
over it until it runs out of elements to see what happens:

>>> my_list = [1, 2, 3]

>>> iterator = iter(my_list)

>>> next(iterator)

1

>>> next(iterator)

2

>>> next(iterator)

3

Careful now! We’ve consumed all of the three available elements in the list.
Watch what happens if I call next on the iterator again:

>>> next(iterator)

StopIteration

Aha! It raises a StopIteration exception to signal we’ve exhausted all of
the available values in the iterator.

That’s right: Iterators use exceptions to structure control flow. To signal the
end of iteration, a Python iterator simply raises the built-in StopIteration
exception.

If I keep requesting more values from the iterator, it’ll keep raising
StopIteration exceptions to signal that there are no more values available
to iterate over:

>>> next(iterator)

StopIteration

>>> next(iterator)

StopIteration

...

Python iterators normally can’t be “reset”—once they’re exhausted they’re
supposed to raise StopIteration every time next() is called on them. To
iterate anew you’ll need to request a fresh iterator object with the iter()
function.

Now we know everything we need to write our BoundedRepeater class that
stops iterating after a set number of repetitions:

class BoundedRepeater:

 def __init__(self, value, max_repeats):

 self.value = value

 self.max_repeats = max_repeats

 self.count = 0

 def __iter__(self):

 return self

 def __next__(self):

 if self.count >= self.max_repeats:

 raise StopIteration

 self.count += 1

 return self.value

This gives us the desired result. Iteration stops after the number of
repetitions defined in the max_repeats parameter:

>>> repeater = BoundedRepeater('Hello', 3)

>>> for item in repeater:

 print(item)

Hello

Hello

Hello

If we rewrite this last for-in loop example to take away some of the
syntactic sugar, we end up with the following expanded code snippet:

repeater = BoundedRepeater('Hello', 3)

iterator = iter(repeater)

while True:

 try:

 item = next(iterator)

 except StopIteration:

 break

 print(item)

Every time next() is called in this loop, we check for a StopIteration
exception and break the while loop if necessary.

Being able to write a three-line for-in loop instead of an eight-line while
loop is quite a nice improvement. It makes the code easier to read and more

maintainable. And this is another reason why iterators in Python are such a
powerful tool.

Python 2.x Compatibility

All the code examples I showed here were written in Python 3. There’s a
small but important difference between Python 2 and 3 when it comes to
implementing class-based iterators:

In Python 3, the method that retrieves the next value from an iterator is
called __next__.
In Python 2, the same method is called next (no underscores).

This naming difference can lead to some trouble if you’re trying to write
class-based iterators that should work on both versions of Python. Luckily,
there’s a simple approach you can take to work around this difference.

Here’s an updated version of the InfiniteRepeater class that will work on
both Python 2 and Python 3:

class InfiniteRepeater(object):

 def __init__(self, value):

 self.value = value

 def __iter__(self):

 return self

 def __next__(self):

 return self.value

 # Python 2 compatibility:

 def next(self):

 return self.__next__()

To make this iterator class compatible with Python 2, I’ve made two small
changes to it:

First, I added a next method that simply calls the original __next__ and
forwards its return value. This essentially creates an alias for the existing

__next__ implementation so that Python 2 finds it. That way we can
support both versions of Python while still keeping all of the actual
implementation details in one place.

And second, I modified the class definition to inherit from object in order
to ensure we’re creating a new-style class on Python 2. This has nothing to
do with iterators specifically, but it’s a good practice nonetheless.

Key Takeaways

Iterators provide a sequence interface to Python objects that’s memory
efficient and considered Pythonic. Behold the beauty of the for-in
loop!
To support iteration an object needs to implement the iterator protocol
by providing the __iter__ and __next__ dunder methods.
Class-based iterators are only one way to write iterable objects in
Python. Also consider generators and generator expressions.

6.5 Generators Are Simplified Iterators

In the chapter on iterators we spent quite a bit of time writing a class-based
iterator. This wasn’t a bad idea from an educational perspective—but it also
demonstrated how writing an iterator class requires a lot of boilerplate code.
To tell you the truth, as a “lazy” developer, I don’t like tedious and
repetitive work.

And yet, iterators are so useful in Python. They allow you to write pretty
for-in loops and help you make your code more Pythonic and efficient. If
there only was a more convenient way to write these iterators in the first
place…

Surprise, there is! Once more, Python helps us out with some syntactic
sugar to make writing iterators easier. In this chapter you’ll see how to write
iterators faster and with less code using generators and the yield keyword.

Infinite Generators

Let’s start by looking again at the Repeater example that I previously used
to introduce the idea of iterators. It implemented a class-based iterator
cycling through an infinite sequence of values. This is what the class looked
like in its second (simplified) version:

class Repeater:

 def __init__(self, value):

 self.value = value

 def __iter__(self):

 return self

 def __next__(self):

 return self.value

If you’re thinking, “that’s quite a lot of code for such a simple iterator,”
you’re absolutely right. Parts of this class seem rather formulaic, as if they
would be written in exactly the same way from one class-based iterator to
the next.

This is where Python’s generators enter the scene. If I rewrite this iterator
class as a generator, it looks like this:

def repeater(value):

 while True:

 yield value

We just went from seven lines of code to three. Not bad, eh? As you can
see, generators look like regular functions but instead of using the return
statement, they use yield to pass data back to the caller.

Will this new generator implementation still work the same way as our
class-based iterator did? Let’s bust out the for-in loop test to find out:

>>> for x in repeater('Hi'):

... print(x)

'Hi'

'Hi'

'Hi'

'Hi'

'Hi'

...

Yep! We’re still looping through our greetings forever. This much shorter
generator implementation seems to perform the same way that the
Repeater class did. (Remember to hit Ctrl+C if you want out of the infinite
loop in an interpreter session.)

Now, how do these generators work? They look like normal functions, but
their behavior is quite different. For starters, calling a generator function
doesn’t even run the function. It merely creates and returns a generator
object:

>>> repeater('Hey')

<generator object repeater at 0x107bcdbf8>

The code in the generator function only executes when next() is called on
the generator object:

>>> generator_obj = repeater('Hey')

>>> next(generator_obj)

'Hey'

If you read the code of the repeater function again, it looks like the yield
keyword in there somehow stops this generator function in mid-execution
and then resumes it at a later point in time:

def repeater(value):

 while True:

 yield value

And that’s quite a fitting mental model for what happens here. You see,
when a return statement is invoked inside a function, it permanently passes
control back to the caller of the function. When a yield is invoked, it also

passes control back to the caller of the function—but it only does so
temporarily.

Whereas a return statement disposes of a function’s local state, a yield
statement suspends the function and retains its local state. In practical
terms, this means local variables and the execution state of the generator
function are only stashed away temporarily and not thrown out completely.
Execution can be resumed at any time by calling next() on the generator:

>>> iterator = repeater('Hi')

>>> next(iterator)

'Hi'

>>> next(iterator)

'Hi'

>>> next(iterator)

'Hi'

This makes generators fully compatible with the iterator protocol. For this
reason, I like to think of them primarily as syntactic sugar for implementing
iterators.

You’ll find that for most types of iterators, writing a generator function will
be easier and more readable than defining a long-winded class-based
iterator.

Generators That Stop Generating

In this chapter we started out by writing an infinite generator once again. By
now you’re probably wondering how to write a generator that stops
producing values after a while, instead of going on and on forever.

Remember, in our class-based iterator we were able to signal the end of
iteration by manually raising a StopIteration exception. Because
generators are fully compatible with class-based iterators, that’s still what
happens behind the scenes.

Thankfully, as programmers we get to work with a nicer interface this time
around. Generators stop generating values as soon as control flow returns

from the generator function by any means other than a yield statement.
This means you no longer have to worry about raising StopIteration at
all!

Here’s an example:

def repeat_three_times(value):

 yield value

 yield value

 yield value

Notice how this generator function doesn’t include any kind of loop. In fact
it’s dead simple and only consists of three yield statements. If a yield
temporarily suspends execution of the function and passes back a value to
the caller, what will happen when we reach the end of this generator? Let’s
find out:

>>> for x in repeat_three_times('Hey there'):

... print(x)

'Hey there'

'Hey there'

'Hey there'

As you may have expected, this generator stopped producing new values
after three iterations. We can assume that it did so by raising a
StopIteration exception when execution reached the end of the function.
But to be sure, let’s confirm that with another experiment:

>>> iterator = repeat_three_times('Hey there')

>>> next(iterator)

'Hey there'

>>> next(iterator)

'Hey there'

>>> next(iterator)

'Hey there'

>>> next(iterator)

StopIteration

>>> next(iterator)

StopIteration

This iterator behaved just like we expected. As soon as we reach the end of
the generator function, it keeps raising StopIteration to signal that it has
no more values to provide.

Let’s come back to another example from the iterators chapter. The
BoundedIterator class implemented an iterator that would only repeat a
value a set number of times:

class BoundedRepeater:

 def __init__(self, value, max_repeats):

 self.value = value

 self.max_repeats = max_repeats

 self.count = 0

 def __iter__(self):

 return self

 def __next__(self):

 if self.count >= self.max_repeats:

 raise StopIteration

 self.count += 1

 return self.value

Why don’t we try to re-implement this BoundedRepeater class as a
generator function. Here’s my first take on it:

def bounded_repeater(value, max_repeats):

 count = 0

 while True:

 if count >= max_repeats:

 return

 count += 1

 yield value

I intentionally made the while loop in this function a little unwieldy. I
wanted to demonstrate how invoking a return statement from a generator
causes iteration to stop with a StopIteration exception. We’ll soon clean

up and simplify this generator function some more, but first let’s try out
what we’ve got so far:

>>> for x in bounded_repeater('Hi', 4):

... print(x)

'Hi'

'Hi'

'Hi'

'Hi'

Great! Now we have a generator that stops producing values after a
configurable number of repetitions. It uses the yield statement to pass back
values until it finally hits the return statement and iteration stops.

Like I promised you, we can further simplify this generator. We’ll take
advantage of the fact that Python adds an implicit return None statement to
the end of every function. This is what our final implementation looks like:

def bounded_repeater(value, max_repeats):

 for i in range(max_repeats):

 yield value

Feel free to confirm that this simplified generator still works the same way.
All things considered, we went from a 12-line implementation in the
BoundedRepeater class to a three-line generator-based implementation
providing the exact same functionality. That’s a 75% reduction in the
number of lines of code—not too shabby!

As you just saw, generators help “abstract away” most of the boilerplate
code otherwise needed when writing class-based iterators. They can make
your life as a programmer much easier and allow you to write cleaner,
shorter, and more maintainable iterators. Generator functions are a great
feature in Python, and you shouldn’t hesitate to use them in your own
programs.

Key Takeaways

Generator functions are syntactic sugar for writing objects that support
the iterator protocol. Generators abstract away much of the boilerplate
code needed when writing class-based iterators.
The yield statement allows you to temporarily suspend execution of a
generator function and to pass back values from it.
Generators start raising StopIteration exceptions after control flow
leaves the generator function by any means other than a yield
statement.

6.6 Generator Expressions

As I learned more about Python’s iterator protocol and the different ways to
implement it in my own code, I realized that “syntactic sugar” was a
recurring theme.

You see, class-based iterators and generator functions are two expressions
of the same underlying design pattern.

Generator functions give you a shortcut for supporting the iterator protocol
in your own code, and they avoid much of the verbosity of class-based
iterators. With a little bit of specialized syntax, or syntactic sugar, they save
you time and make your life as a developer easier.

This is a recurring theme in Python and in other programming languages.
As more developers use a design pattern in their programs, there’s a
growing incentive for the language creators to provide abstractions and
implementation shortcuts for it.

That’s how programming languages evolve over time—and as developers,
we reap the benefits. We get to work with more and more powerful building
blocks, which reduces busywork and lets us achieve more in less time.

Earlier in this book you saw how generators provide syntactic sugar for
writing class-based iterators. The generator expressions we’ll cover in this
chapter add another layer of syntactic sugar on top.

Generator expressions give you an even more effective shortcut for writing
iterators. With a simple and concise syntax that looks like a list
comprehension, you’ll be able to define iterators in a single line of code.

Here’s an example:

iterator = ('Hello' for i in range(3))

When iterated over, this generator expression yields the same sequence of
values as the bounded_repeater generator function we wrote in the
previous chapter. Here it is again to refresh your memory:

def bounded_repeater(value, max_repeats):

 for i in range(max_repeats):

 yield value

iterator = bounded_repeater('Hello', 3)

Isn’t it amazing how a single-line generator expression now does a job that
previously required a four-line generator function or a much longer class-
based iterator?

But I’m getting ahead of myself. Let’s make sure our iterator defined with a
generator expression actually works as expected:

>>> iterator = ('Hello' for i in range(3))

>>> for x in iterator:

... print(x)

'Hello'

'Hello'

'Hello'

That looks pretty good to me! We seem to get the same results from our
one-line generator expression that we got from the bounded_repeater
generator function.

There’s one small caveat though: Once a generator expression has been
consumed, it can’t be restarted or reused. So in some cases there is an
advantage to using generator functions or class-based iterators.

Generator Expressions vs List Comprehensions

As you can tell, generator expressions are somewhat similar to list
comprehensions:

>>> listcomp = ['Hello' for i in range(3)]

>>> genexpr = ('Hello' for i in range(3))

Unlike list comprehensions, however, generator expressions don’t construct
list objects. Instead, they generate values “just in time” like a class-based
iterator or generator function would.

All you get by assigning a generator expression to a variable is an iterable
“generator object”:

>>> listcomp

['Hello', 'Hello', 'Hello']

>>> genexpr

<generator object <genexpr> at 0x1036c3200>

To access the values produced by the generator expression, you need to call
next() on it, just like you would with any other iterator:

>>> next(genexpr)

'Hello'

>>> next(genexpr)

'Hello'

>>> next(genexpr)

'Hello'

>>> next(genexpr)

StopIteration

Alternatively, you can also call the list() function on a generator
expression to construct a list object holding all generated values:

>>> genexpr = ('Hello' for i in range(3))

>>> list(genexpr)

['Hello', 'Hello', 'Hello']

Of course, this was just a toy example to show how you can “convert” a
generator expression (or any other iterator for that matter) into a list. If you
need a list object right away, you’d normally just write a list comprehension
from the get-go.

Let’s take a closer look at the syntactic structure of this simple generator
expression. The pattern you should begin to see looks like this:

genexpr = (expression for item in collection)

The above generator expression “template” corresponds to the following
generator function:

def generator():

 for item in collection:

 yield expression

Just like with list comprehensions, this gives you a “cookie-cutter pattern”
you can apply to many generator functions in order to transform them into
concise generator expressions.

Filtering Values

There’s one more useful addition we can make to this template, and that’s
element filtering with conditions. Here’s an example:

>>> even_squares = (x * x for x in range(10)

 if x % 2 == 0)

This generator yields the square numbers of all even integers from zero to
nine. The filtering condition using the % (modulo) operator will reject any
value not divisible by two:

>>> for x in even_squares:

... print(x)

0

4

16

36

64

Let’s update our generator expression template. After adding element
filtering via if-conditions, the template now looks like this:

genexpr = (expression for item in collection

 if condition)

And once again, this pattern corresponds to a relatively straightforward, but
longer, generator function. Syntactic sugar at its best:

def generator():

 for item in collection:

 if condition:

 yield expression

In-line Generator Expressions

Because generator expressions are, well…expressions, you can use them in-
line with other statements. For example, you can define an iterator and
consume it right away with a for-loop:

for x in ('Bom dia' for i in range(3)):

 print(x)

There’s another syntactic trick you can use to make your generator
expressions more beautiful. The parentheses surrounding a generator
expression can be dropped if the generator expression is used as the single
argument to a function:

>>> sum((x * 2 for x in range(10)))

90

Versus:

>>> sum(x * 2 for x in range(10))

90

This allows you to write concise and performant code. Because generator
expressions generate values “just in time” like a class-based iterator or a
generator function would, they are very memory efficient.

Too Much of a Good Thing…

Like list comprehensions, generator expressions allow for more complexity
than what we’ve covered so far. Through nested for-loops and chained
filtering clauses, they can cover a wider range of use cases:

(expr for x in xs if cond1

 for y in ys if cond2

 ...

 for z in zs if condN)

The above pattern translates to the following generator function logic:

for x in xs:

 if cond1:

 for y in ys:

 if cond2:

 ...

 for z in zs:

 if condN:

 yield expr

And this is where I’d like to place a big caveat:

Please don’t write deeply nested generator expressions like that. They can
be very difficult to maintain in the long run.

This is one of those “the dose makes the poison” situations where a
beautiful and simple tool can be overused to create hard to read and difficult
to debug programs.

Just like with list comprehensions, I personally try to stay away from any
generator expression that includes more than two levels of nesting.

Generator expressions are a helpful and Pythonic tool in your toolbox, but
that doesn’t mean they should be used for every single problem you’re
facing. For complex iterators, it’s often better to write a generator function
or even a class-based iterator.

If you need to use nested generators and complex filtering conditions, it’s
usually better to factor out sub-generators (so you can name them) and then
to chain them together again at the top level. You’ll see how to do this in the
next chapter on iterator chains.

If you’re on the fence, try out different implementations and then select the
one that seems the most readable. Trust me, it’ll save you time in the long
run.

Key Takeaways

Generator expressions are similar to list comprehensions. However,
they don’t construct list objects. Instead, generator expressions
generate values “just in time” like a class-based iterator or generator
function would.
Once a generator expression has been consumed, it can’t be restarted
or reused.
Generator expressions are best for implementing simple “ad hoc”
iterators. For complex iterators, it’s better to write a generator function
or a class-based iterator.

6.7 Iterator Chains

Here’s another great feature of iterators in Python: By chaining together
multiple iterators you can write highly efficient data processing “pipelines.”
The first time I saw this pattern in action in a PyCon presentation by David
Beazley, it blew my mind.

If you take advantage of Python’s generator functions and generator
expressions, you’ll be building concise and powerful iterator chains in no
time. In this chapter you’ll find out what this technique looks like in
practice and how you can use it in your own programs.

As a quick recap, generators and generator expressions are syntactic sugar
for writing iterators in Python. They abstract away much of the boilerplate
code needed when writing class-based iterators.

While a regular function produces a single return value, generators produce
a sequence of results. You could say they generate a stream of values over
the course of their lifetime.

For example, I can define the following generator that produces the series
of integer values from one to eight by keeping a running counter and
yielding a new value every time next() gets called on it:

def integers():

 for i in range(1, 9):

 yield i

You can confirm this behaviour by running the following code in a Python
REPL:

>>> chain = integers()

>>> list(chain)

[1, 2, 3, 4, 5, 6, 7, 8]

So far, so not-very-interesting. But we’ll quickly change this now. You see,
generators can be “connected” to each other in order to build efficient data
processing algorithms that work like a pipeline.

You can take the “stream” of values coming out of the integers()
generator and feed them into another generator again. For example, one that
takes each number, squares it, and then passes it on:

def squared(seq):

 for i in seq:

 yield i * i

This is what our “data pipeline” or “chain of generators” would do now:

>>> chain = squared(integers())

>>> list(chain)

[1, 4, 9, 16, 25, 36, 49, 64]

And we can keep on adding new building blocks to this pipeline. Data
flows in one direction only, and each processing step is shielded from the
others via a well-defined interface.

This is similar to how pipelines work in Unix. We chain together a sequence
of processes so that the output of each process feeds directly as input to the
next one.

Why don’t we add another step to our pipeline that negates each value and
then passes it on to the next processing step in the chain:

def negated(seq):

 for i in seq:

 yield -i

If we rebuild our chain of generators and add negated at the end, this is the
output we get now:

>>> chain = negated(squared(integers()))

>>> list(chain)

[-1, -4, -9, -16, -25, -36, -49, -64]

My favorite thing about chaining generators is that the data processing
happens one element at a time. There’s no buffering between the processing
steps in the chain:

1. The integers generator yields a single value, let’s say 3.
2. This “activates” the squared generator, which processes the value and

passes it on to the next stage as 3 × 3 = 9
3. The square number yielded by the squared generator gets fed

immediately into the negated generator, which modifies it to -9 and
yields it again.

You could keep extending this chain of generators to build out a processing
pipeline with many steps. It would still perform efficiently and could easily
be modified because each step in the chain is an individual generator
function.

Each individual generator function in this processing pipeline is quite
concise. With a little trick, we can shrink down the definition of this
pipeline even more, without sacrificing much readability:

integers = range(8)

squared = (i * i for i in integers)

negated = (-i for i in squared)

Notice how I’ve replaced each processing step in the chain with a generator
expression built on the output of the previous step. This code is equivalent
to the chain of generators we built throughout the chapter:

>>> negated

<generator object <genexpr> at 0x1098bcb48>

>>> list(negated)

[0, -1, -4, -9, -16, -25, -36, -49]

The only downside to using generator expressions is that they can’t be
configured with function arguments, and you can’t reuse the same generator
expression multiple times in the same processing pipeline.

But of course, you could mix-and-match generator expressions and regular
generators freely in building these pipelines. This will help improve
readability with complex pipelines.

Key Takeaways

Generators can be chained together to form highly efficient and
maintainable data processing pipelines.
Chained generators process each element going through the chain
individually.
Generator expressions can be used to write concise pipeline
definitions, but this can impact readability.

1. In Python 2 you’ll need to use the xrange() built-in to get this
memory-saving behavior, as range() will actually construct a list
object.↩

7 Dictionary Tricks
7.1 Dictionary Default Values

Python’s dictionaries have a get() method for looking up a key while
providing a fallback value. This can be handy in many situations. Let me
give you a simple example to show you what I mean. Imagine we have the
following data structure that’s mapping user IDs to user names:

name_for_userid = {

 382: 'Alice',

 950: 'Bob',

 590: 'Dilbert',

}

Now we’d like to use this data structure to write a function greeting()
which will return a greeting for a user based on their user ID. Our first
implementation might look something like this:

def greeting(userid):

 return 'Hi %s!' % name_for_userid[userid]

It’s a straightforward dictionary lookup. This first implementation
technically works—but only if the user ID is a valid key in the
name_for_userid dictionary. If we pass an invalid user ID to our greeting
function it throws an exception:

>>> greeting(382)

'Hi Alice!'

>>> greeting(33333333)

KeyError: 33333333

A KeyError exception isn’t really the result we’d like to see. It would be
much nicer if the function returned a generic greeting as a fallback if the
user ID can’t be found.

Let’s implement this idea. Our first approach might be to simply do a key in
dict membership check and to return a default greeting if the user ID is
unknown:

def greeting(userid):

 if userid in name_for_userid:

 return 'Hi %s!' % name_for_userid[userid]

 else:

 return 'Hi there!'

Let’s see how this implementation of greeting() fares with our previous
test cases:

>>> greeting(382)

'Hi Alice!'

>>> greeting(33333333)

'Hi there!'

Much better. We now get a generic greeting for unknown users and we keep
the personalized greeting when a valid user ID is found.

But there’s still room for improvement. While this new implementation
gives us the expected results and seems small and clean enough, it can still
be improved. I’ve got some gripes with the current approach:

It’s inefficient because it queries the dictionary twice.

It’s verbose since part of the greeting string is repeated, for example.

It’s not Pythonic—the official Python documentation specifically
recommends an “easier to ask for forgiveness than permission”
(EAFP) coding style for these situations:

“This common Python coding style assumes the existence of valid
keys or attributes and catches exceptions if the assumption proves
false.”1

A better implementation that follows the EAFP principle might use a try…
except block to catch the KeyError instead of doing an explicit membership
test:

def greeting(userid):

 try:

 return 'Hi %s!' % name_for_userid[userid]

 except KeyError:

 return 'Hi there'

This implementation is still correct as far as our initial requirements go, and
now we’ve removed the need for querying the dictionary twice.

But we can still improve this further and come up with a cleaner solution.
Python’s dictionaries have a get() method on them which supports a
“default” parameter that can be used as a fallback value:2

def greeting(userid):

 return 'Hi %s!' % name_for_userid.get(

 userid, 'there')

When get() is called, it checks if the given key exists in the dictionary. If it
does, the value for the key is returned. If it does not exist, then the value of
the default parameter is returned instead. As you can see, this
implementation of greeting still works as intended:

>>> greeting(950)

'Hi Bob!'

>>> greeting(333333)

'Hi there!'

Our final implementation of greeting() is concise, clean, and only uses
features from the Python standard library. Therefore, I believe it is the best
solution for this particular situation.

Key Takeaways

Avoid explicit key in dict checks when testing for membership.
EAFP-style exception handling or using the built-in get() method is
preferable.
In some cases, the collections.defaultdict class from the standard
library can also be helpful.

7.2 Sorting Dictionaries for Fun and Profit

Python dictionaries don’t have an inherent order. You can iterate over them
just fine but there’s no guarantee that iteration returns the dictionary’s
elements in any particular order (although this is changing with Python 3.6).

However, it’s frequently useful to get a sorted representation of a dictionary
to put the dictionary’s items into an arbitrary order based on their key,
value, or some other derived property. Suppose you have a dictionary xs
with the following key/value pairs:

>>> xs = {'a': 4, 'c': 2, 'b': 3, 'd': 1}

To get a sorted list of the key/value pairs in this dictionary, you could use
the dictionary’s items() method and then sort the resulting sequence in a
second pass:

>>> sorted(xs.items())

[('a', 4), ('b', 3), ('c', 2), ('d', 1)]

The key/value tuples are ordered using Python’s standard lexicographical
ordering for comparing sequences.

To compare two tuples, Python compares the items stored at index zero
first. If they differ, this defines the outcome of the comparison. If they’re
equal, the next two items at index one are compared, and so on.

Now, because we took these tuples from a dictionary, all of the former
dictionary keys at index zero in each tuple are unique. Therefore, there are
no ties to break here.

In some cases a lexicographical ordering might be exactly what you want.
In other cases you might want to sort a dictionary by value instead.

Luckily, there’s a way you can get complete control over how items are
ordered. You can control the ordering by passing a key func to sorted()
that will change how dictionary items are compared.

A key func is simply a normal Python function to be called on each element
prior to making comparisons. The key func gets a dictionary item as its
input and returns the desired “key” for the sort order comparisons.

Unfortunately, the word “key” is used in two contexts simultaneously here
—the key func doesn’t deal with dictionary keys, it merely maps each input
item to an arbitrary comparison key.

Now, maybe we should look at an example. Trust me, key funcs will be
much easier to understand once you see some real code.

Let’s say you wanted to get a sorted representation of a dictionary based on
its values. To get this result you could use the following key func which
returns the value of each key/value pair by looking up the second element in
the tuple:

>>> sorted(xs.items(), key=lambda x: x[1])

[('d', 1), ('c', 2), ('b', 3), ('a', 4)]

See how the resulting list of key/value pairs is now sorted by the values
stored in the original dictionary? It’s worth spending some time wrapping

your head around how key funcs work. It’s a powerful concept that you can
apply in all kinds of Python contexts.

In fact, the concept is so common that Python’s standard library includes
the operator module. This module implements some of the most frequently
used key funcs as plug-and-play building blocks, like
operator.itemgetter and operator.attrgetter.

Here’s an example of how you might replace the lambda-based index
lookup in the first example with operator.itemgetter:

>>> import operator

>>> sorted(xs.items(), key=operator.itemgetter(1))

[('d', 1), ('c', 2), ('b', 3), ('a', 4)]

Using the operator module might communicate your code’s intent more
clearly in some cases. On the other hand, using a simple lambda expression
might be just as readable and more explicit. In this particular case, I actually
prefer the lambda expression.

Another benefit of using lambdas as a custom key func is that you get to
control the sort order in much finer detail. For example, you could sort a
dictionary based on the absolute numeric value of each value stored in it:

>>> sorted(xs.items(), key=lambda x: abs(x[1]))

If you need to reverse the sort order so that larger values go first, you can
use the reverse=True keyword argument when calling sorted():

>>> sorted(xs.items(),

 key=lambda x: x[1],

 reverse=True)

[('a', 4), ('b', 3), ('c', 2), ('d', 1)]

Like I said earlier, it’s totally worth spending some time getting a good grip
on how key funcs work in Python. They provide you with a ton of

flexibility and can often save you from writing code to transform one data
structure into another.

Key Takeaways

When creating sorted “views” of dictionaries and other collections,
you can influence the sort order with a key func.
Key funcs are an important concept in Python. The most frequently
used ones were even added to the operator module in the standard
library.
Functions are first-class citizens in Python. This is a powerful feature
you’ll find used everywhere in the language.

7.3 Emulating Switch/Case Statements With Dicts

Python doesn’t have switch/case statements so it’s sometimes necessary to
write long if…elif…else chains as a workaround. In this chapter you’ll
discover a trick you can use to emulate switch/case statements in Python
with dictionaries and first-class functions. Sound exciting? Great—here we
go!

Imagine we had the following if-chain in our program:

>>> if cond == 'cond_a':

... handle_a()

... elif cond == 'cond_b':

... handle_b()

... else:

... handle_default()

Of course, with only three different conditions, this isn’t too horrible yet.
But just imagine if we had ten or more elif branches in this statement.
Things would start to look a little different. I consider long if-chains to be a
code smell that makes programs more difficult to read and maintain.

One way to deal with long if…elif…else statements is to replace them with
dictionary lookup tables that emulate the behavior of switch/case

statements.

The idea here is to leverage the fact that Python has first-class functions.
This means they can be passed as arguments to other functions, returned as
values from other functions, and assigned to variables and stored in data
structures.

For example, we can define a function and then store it in a list for later
access:

>>> def myfunc(a, b):

... return a + b

...

>>> funcs = [myfunc]

>>> funcs[0]

<function myfunc at 0x107012230>

The syntax for calling this function works as you’d intuitively expect—we
simply use an index into the list and then use the “()” call syntax for calling
the function and passing arguments to it:

>>> funcs[0](2, 3)

5

Now, how are we going to use first-class functions to cut our chained if-
statement back to size? The core idea here is to define a dictionary that
maps lookup keys for the input conditions to functions that will carry out
the intended operations:

>>> func_dict = {

... 'cond_a': handle_a,

... 'cond_b': handle_b

... }

Instead of filtering through the if-statement, checking each condition as we
go along, we can do a dictionary key lookup to get the handler function and
then call it:

>>> cond = 'cond_a'

>>> func_dict[cond]()

This implementation already sort-of works, at least as long as cond can be
found in the dictionary. If it’s not in there, we’ll get a KeyError exception.

So let’s look for a way to support a default case that would match the
original else branch. Luckily all Python dicts have a get() method on
them that returns the value for a given key, or a default value if the key
can’t be found. This is exactly what we need here:

>>> func_dict.get(cond, handle_default)()

This code snippet might look syntactically odd at first, but when you break
it down, it works exactly like the earlier example. Again, we’re using
Python’s first-class functions to pass handle_default to the get()-lookup
as a fallback value. That way, if the condition can’t be found in the
dictionary, we avoid raising a KeyError and call the default handler
function instead.

Let’s take a look at a more complete example for using dictionary lookups
and first-class functions to replace if-chains. After reading through the
following example, you’ll be able to see the pattern needed to transform
certain kinds of if-statements to a dictionary-based dispatch.

We’re going to write another function with an if-chain that we’ll then
transform. The function takes a string opcode like "add" or "mul" and then
does some math on the operands x and y:

>>> def dispatch_if(operator, x, y):

... if operator == 'add':

... return x + y

... elif operator == 'sub':

... return x - y

... elif operator == 'mul':

... return x * y

... elif operator == 'div':

... return x / y

To be honest, this is yet another toy example (I don’t want to bore you with
pages and pages of code here), but it’ll serve well to illustrate the
underlying design pattern. Once you “get” the pattern, you’ll be able to
apply it in all kinds of different scenarios.

You can try out this dispatch_if() function to perform simple calculations
by calling the function with a string opcode and two numeric operands:

>>> dispatch_if('mul', 2, 8)

16

>>> dispatch_if('unknown', 2, 8)

None

Please note that the 'unknown' case works because Python adds an implicit
return None statement to the end of any function.

So far so good. Let’s transform the original dispatch_if() into a new
function which uses a dictionary to map opcodes to arithmetic operations
with first-class functions.

>>> def dispatch_dict(operator, x, y):

... return {

... 'add': lambda: x + y,

... 'sub': lambda: x - y,

... 'mul': lambda: x * y,

... 'div': lambda: x / y,

... }.get(operator, lambda: None)()

This dictionary-based implementation gives the same results as the original
dispatch_if(). We can call both functions in exactly the same way:

>>> dispatch_dict('mul', 2, 8)

16

>>> dispatch_dict('unknown', 2, 8)

None

There are a couple of ways this code could be further improved if it was
real “production-grade” code.

First of all, every time we call dispatch_dict(), it creates a temporary
dictionary and a bunch of lambdas for the opcode lookup. This isn’t ideal
from a performance perspective. For code that needs to be fast, it makes
more sense to create the dictionary once as a constant and then to reference
it when the function is called. We don’t want to recreate the dictionary
every time we need to do a lookup.

Second, if we really wanted to do some simple arithmetic like x + y, then
we’d be better off using Python’s built-in operator module instead of the
lambda functions used in the example. The operator module provides
implementations for all of Python’s operators, for example operator.mul,
operator.div, and so on. This is a minor point, though. I intentionally used
lambdas in this example to make it more generic. This should help you
apply the pattern in other situations as well.

Well, now you’ve got another tool in your bag of tricks that you can use to
simplify some of your if-chains should they get unwieldy. Just remember
—this technique won’t apply in every situation and sometimes you’ll be
better off with a plain if-statement.

Key Takeaways

Python doesn’t have a switch/case statement. But in some cases you
can avoid long if-chains with a dictionary-based dispatch table.
Once again Python’s first-class functions prove to be a powerful tool.
But with great power comes great responsibility.

7.4 The Craziest Dict Expression in the West

Sometimes you strike upon a tiny code example that has real depth to it—a
single line of code that can teach you a lot about a programming language if
you ponder it enough. Such a code snippet feels like a Zen kōan: a question
or statement used in Zen practice to provoke doubt and test the student’s
progress.

The tiny little code snippet we’ll discuss in this chapter is one such
example. Upon first glance, it might seem like a straightforward dictionary
expression, but when considered at close range, it takes you on a mind-
expanding journey through the CPython interpreter.

I get such a kick out of this little one-liner that at one point I had it printed
on my Python conference badges as a conversation starter. It also led to
some rewarding conversations with members of my Python newsletter.

So without further ado, here is the code snippet. Take a moment to reflect
on the following dictionary expression and what it will evaluate to:

>>> {True: 'yes', 1: 'no', 1.0: 'maybe'}

I’ll wait here…

Ok, ready?

This is the result we get when evaluating the above dict expression in a
CPython interpreter session:

>>> {True: 'yes', 1: 'no', 1.0: 'maybe'}

{True: 'maybe'}

I’ll admit I was pretty surprised about this result the first time I saw it. But
it all makes sense when you investigate what happens, step by step. So, let’s
think about why we get this—I want to say slightly unintuitive—result.

When Python processes our dictionary expression, it first constructs a new
empty dictionary object; and then it assigns the keys and values to it in the
order given in the dict expression.

Therefore, when we break it down, our dict expression is equivalent to this
sequence of statements that are executed in order:

>>> xs = dict()

>>> xs[True] = 'yes'

>>> xs[1] = 'no'

>>> xs[1.0] = 'maybe'

Oddly enough, Python considers all dictionary keys used in this example to
be equal:

>>> True == 1 == 1.0

True

Okay, but wait a minute here. I’m sure you can intuitively accept that 1.0
== 1, but why would True be considered equal to 1 as well? The first time I
saw this dictionary expression it really stumped me.

After doing some digging in the Python documentation, I learned that
Python treats bool as a subclass of int. This is the case in Python 2 and
Python 3:

“The Boolean type is a subtype of the integer type, and Boolean values
behave like the values 0 and 1, respectively, in almost all contexts, the
exception being that when converted to a string, the strings ‘False’ or
‘True’ are returned, respectively.”3

And yes, this means you can technically use bools as indexes into a list or
tuple in Python:

>>> ['no', 'yes'][True]

'yes'

But you probably should not use boolean variables like that for the sake of
clarity (and the sanity of your colleagues.)

Anyway, let’s come back to our dictionary expression.

As far as Python is concerned, True, 1, and 1.0 all represent the same
dictionary key. As the interpreter evaluates the dictionary expression, it

repeatedly overwrites the value for the key True. This explains why, in the
end, the resulting dictionary only contains a single key.

Before we move on, let’s have another look at the original dictionary
expression:

>>> {True: 'yes', 1: 'no', 1.0: 'maybe'}

{True: 'maybe'}

Why do we still get True as the key here? Shouldn’t the key also change to
1.0 at the end, due to the repeated assignments?

After some mode research in the CPython interpreter source code, I learned
that Python’s dictionaries don’t update the key object itself when a new
value is associated with it:

>>> ys = {1.0: 'no'}

>>> ys[True] = 'yes'

>>> ys

{1.0: 'yes'}

Of course this makes sense as a performance optimization—if the keys are
considered identical, then why spend time updating the original? In the last
example you saw that the initial True object is never replaced as the key.
Therefore, the dictionary’s string representation still prints the key as True
(instead of 1 or 1.0.)

With what we know now, it looks like the values in the resulting dict are
getting overwritten only because they compare as equal. However, it turns
out that this effect isn’t caused by the __eq__ equality check alone, either.

Python dictionaries are backed by a hash table data structure. When I first
saw this surprising dictionary expression, my hunch was that this behavior
had something to do with hash collisions.

You see, a hash table internally stores the keys it contains in different
“buckets” according to each key’s hash value. The hash value is derived

from the key as a numeric value of a fixed length that uniquely identifies
the key.

This allows for fast lookups. It’s much quicker to search for a key’s numeric
hash value in a lookup table instead of comparing the full key object against
all other keys and checking for equality.

However, the way hash values are typically calculated isn’t perfect. And
eventually, two or more keys that are actually different will have the same
derived hash value, and they will end up in the same lookup table bucket.

If two keys have the same hash value, that’s called a hash collision, and it’s
a special case that the hash table’s algorithms for inserting and finding
elements need to handle.

Based on that assessment, it’s fairly likely that hashing has something to do
with the surprising result we got from our dictionary expression. So let’s
find out if the keys’ hash values also play a role here.

I’m defining the following class as our little detective tool:

class AlwaysEquals:

 def __eq__(self, other):

 return True

 def __hash__(self):

 return id(self)

This class is special in two ways.

First, because its __eq__ dunder method always returns True, all instances
of this class will pretend they’re equal to any other object:

>>> AlwaysEquals() == AlwaysEquals()

True

>>> AlwaysEquals() == 42

True

>>> AlwaysEquals() == 'waaat?'

True

And second, each AlwaysEquals instance will also return a unique hash
value generated by the built-in id() function:

>>> objects = [AlwaysEquals(),

 AlwaysEquals(),

 AlwaysEquals()]

>>> [hash(obj) for obj in objects]

[4574298968, 4574287912, 4574287072]

In CPython, id() returns the address of the object in memory, which is
guaranteed to be unique.

With this class we can now create objects that pretend to be equal to any
other object but have a unique hash value associated with them. That’ll
allow us to test if dictionary keys are overwritten based on their equality
comparison result alone.

And, as you can see, the keys in the next example are not getting
overwritten, even though they always compare as equal:

>>> {AlwaysEquals(): 'yes', AlwaysEquals(): 'no'}

{ <AlwaysEquals object at 0x110a3c588>: 'yes',

 <AlwaysEquals object at 0x110a3cf98>: 'no' }

We can also flip this idea around and check to see if returning the same
hash value is enough to cause keys to get overwritten:

class SameHash:

 def __hash__(self):

 return 1

Instances of this SameHash class will compare as non-equal with each other
but they will all share the same hash value of 1:

>>> a = SameHash()

>>> b = SameHash()

>>> a == b

False

>>> hash(a), hash(b)

(1, 1)

Let’s look at how Python’s dictionaries react when we attempt to use
instances of the SameHash class as dictionary keys:

>>> {a: 'a', b: 'b'}

{ <SameHash instance at 0x7f7159020cb0>: 'a',

 <SameHash instance at 0x7f7159020cf8>: 'b' }

As this example shows, the “keys get overwritten” effect isn’t caused by
hash value collisions alone either.

Dictionaries check for equality and compare the hash value to determine if
two keys are the same. Let’s try and summarize the findings of our
investigation:

The {True: 'yes', 1: 'no', 1.0: 'maybe'} dictionary expression
evaluates to {True: 'maybe'} because the keys True, 1, and 1.0 all
compare as equal, and they all have the same hash value:

>>> True == 1 == 1.0

True

>>> (hash(True), hash(1), hash(1.0))

(1, 1, 1)

Perhaps not-so-surprising anymore, that’s how we ended up with this result
as the dictionary’s final state:

>>> {True: 'yes', 1: 'no', 1.0: 'maybe'}

{True: 'maybe'}

We touched on a lot of subjects here, and this particular Python Trick can be
be a bit mind-boggling at first—that’s why I compared it to a Zen kōan in
the beginning.

If it’s difficult to understand what’s going on in this chapter, try playing
through the code examples one by one in a Python interpreter session.
You’ll be rewarded with an expanded knowledge of Python’s internals.

Key Takeaways

Dictionaries treat keys as identical if their __eq__ comparison result
says they’re equal and their hash values are the same.
Unexpected dictionary key collisions can and will lead to surprising
results.

7.5 So Many Ways to Merge Dictionaries

Have you ever built a configuration system for one of your Python
programs? A common use case for such systems is to take a data structure
with default configuration options, and then to allow the defaults to be
overridden selectively from user input or some other config source.

I often found myself using dictionaries as the underlying data structure for
representing configuration keys and values. And so I frequently needed a
way to combine or to merge the config defaults and the user overrides into a
single dictionary with the final configuration values.

Or, to generalize: sometimes you need a way to merge two or more
dictionaries into one, so that the resulting dictionary contains a combination
of the keys and values of the source dicts.

In this chapter I’ll show you a couple of ways to achieve that. Let’s look at
a simple example first so we have something to discuss. Imagine you had
these two source dictionaries:

>>> xs = {'a': 1, 'b': 2}

>>> ys = {'b': 3, 'c': 4}

Now, you want to create a new dict zs that contains all of the keys and
values of xs and all of the keys and values of ys. Also, if you read the
example closely, you saw that the string 'b'appears as a key in both dicts—
we’ll need to think about a conflict resolution strategy for duplicate keys as
well.

The classical solution for the “merging multiple dictionaries” problem in
Python is to use the built-in dictionary update() method:

>>> zs = {}

>>> zs.update(xs)

>>> zs.update(ys)

If you’re curious, a naive implementation of update() might look
something like this. We simply iterate over all of the items of the right-hand
side dictionary and add each key/value pair to the left-hand side dictionary,
overwriting existing keys as we go along:

def update(dict1, dict2):

 for key, value in dict2.items():

 dict1[key] = value

This results in a new dictionary zs which now contains the keys defined in
xs and ys:

>>> zs

>>> {'c': 4, 'a': 1, 'b': 3}

You’ll also see that the order in which we call update() determines how
conflicts are resolved. The last update wins and the duplicate key 'b' is
associated with the value 3 that came from ys, the second source dictionary.

Of course you could expand this chain of update() calls for as long as you
like in order to merge any number of dictionaries into one. It’s a practical

and well-readable solution that works in Python 2 and Python 3.

Another technique that works in Python 2 and Python 3 uses the dict()
built-in combined with the **-operator for “unpacking” objects:

>>> zs = dict(xs, **ys)

>>> zs

{'a': 1, 'c': 4, 'b': 3}

However, just like making repeated update() calls, this approach only
works for merging two dictionaries and cannot be generalized to combine
an arbitrary number of dictionaries in one step.

Starting with Python 3.5, the **-operator became more flexible.4 So in
Python 3.5+ there’s another—and arguably prettier—way to merge an
arbitrary number of dictionaries:

>>> zs = {**xs, **ys}

This expression has the exact same result as a chain of update() calls. Keys
and values are set in a left-to-right order, so we get the same conflict
resolution strategy: the right-hand side takes priority, and a value in ys
overrides any existing value under the same key in xs. This becomes clear
when we look at the dictionary that results from the merge operation:

>>> zs

>>> {'c': 4, 'a': 1, 'b': 3}

Personally, I like the terseness of this new syntax and how it still remains
sufficiently readable. There’s always a fine balance between verbosity and
terseness to keep the code as readable and maintainable as possible.

In this case, I’m leaning towards using the new syntax if I’m working with
Python 3. Using the **-operator is also faster than using chained update()
calls, which is yet another benefit.

Key Takeaways

In Python 3.5 and above you can use the **-operator to merge multiple
dictionary objects into one with a single expression, overwriting
existing keys left-to-right.
To stay compatible with older versions of Python, you might want to
use the built-in dictionary update() method instead.

7.6 Dictionary Pretty-Printing

Have you ever tried hunting down a bug in one of your programs by
sprinkling a bunch of debug “print” statements to trace the execution flow?
Or maybe you needed to generate a log message to print some configuration
settings…

I have—and I’ve often been frustrated with how difficult some data
structures are to read in Python when they’re printed as text strings. For
example, here’s a simple dictionary. Printed in an interpreter session, the
key order is arbitrary, and there’s no indentation to the resulting string:

>>> mapping = {'a': 23, 'b': 42, 'c': 0xc0ffee}

>>> str(mapping)

{'b': 42, 'c': 12648430, 'a': 23}

Luckily there are some easy-to-use alternatives to a straight up to-str
conversion that give a more readable result. One option is using Python’s
built-in json module. You can use json.dumps() to pretty-print Python
dicts with nicer formatting:

>>> import json

>>> json.dumps(mapping, indent=4, sort_keys=True)

{

 "a": 23,

 "b": 42,

 "c": 12648430

}

These settings result in a nicely indented string representation that also
normalizes the order of the dictionary keys for better legibility.

While this looks nice and readable, it isn’t a perfect solution. Printing
dictionaries with the json module only works with dicts that contain
primitive types—you’ll run into trouble trying to print a dictionary that
contains a non-primitive data type, like a function:

>>> json.dumps({all: 'yup'})

TypeError: "keys must be a string"

Another downside of using json.dumps() is that it can’t stringify complex
data types, like sets:

>>> mapping['d'] = {1, 2, 3}

>>> json.dumps(mapping)

TypeError: "set([1, 2, 3]) is not JSON serializable"

Also, you might run into trouble with how Unicode text is represented—in
some cases you won’t be able to take the output from json.dumps and copy
and paste it into a Python interpreter session to reconstruct the original
dictionary object.

The classical solution to pretty-printing objects in Python is the built-in
pprint module. Here’s an example:

>>> import pprint

>>> pprint.pprint(mapping)

{'a': 23, 'b': 42, 'c': 12648430, 'd': set([1, 2, 3])}

You can see that pprint is able to print data types like sets, and it also
prints the dictionary keys in a reproducible order. Compared to the standard
string representation for dictionaries, what we get here is much easier on the
eyes.

However, compared to json.dumps(), it doesn’t represent nested structures
as well visually. Depending on the circumstances, this can be an advantage
or a disadvantage. I occasionally use json.dumps() to print dictionaries
because of the improved readability and formatting, but only if I’m sure
they’re free of non-primitive data types.

Key Takeaways

The default to-string conversion for dictionary objects in Python can
be difficult to read.
The pprint and json module are “higher-fidelity” options built into
the Python standard library.
Be careful with using json.dumps() and non-primitive keys and
values as this will trigger a TypeError.

1. cf. Python Glossary: “EAFP”↩

2. cf. Python Docs: dict.get() method↩

3. cf. Python Docs: “The Standard Type Hierarchy”↩

4. cf. PEP 448: “Additional Unpacking Generalizations”↩

https://docs.python.org/3/glossary.html
https://docs.python.org/3/library/stdtypes.html#dict.get
https://docs.python.org/3/reference/datamodel.html#the-standard-type-hierarchy
https://www.python.org/dev/peps/pep-0448/

8 Pythonic Productivity Techniques
8.1 Exploring Python Modules and Objects

You can interactively explore modules and objects directly from the Python
interpreter. This is an underrated feature that’s easy to overlook, especially
if you’re switching to Python from another language.

Many programming languages make it difficult to inspect a package or
class without consulting online documentation or learning interface
definitions by heart.

Python is different—an effective developer will spend quite a bit of time in
REPL sessions working interactively with the Python interpreter. For
example, I often do this to work out little snippets of code and logic that I
then copy and paste into a Python file I’m working on in my editor.

In this chapter you’ll learn two simple techniques you can use to explore
Python classes and methods interactively from the interpreter.

These techniques will work on any Python install—just start up the Python
interpreter with the python command from the command-line and fire
away. This is great for debugging sessions on systems where you don’t have
access to a fancy editor or IDE, for example, because you’re working over
the network in a terminal session.

Ready? Here we go! Imagine you’re writing a program that uses Python’s
datetime module from the standard library. How can you find out what
functions or classes this module exports, and which methods and attributes
can you find on its classes?

Consulting a search engine or looking up the official Python documentation
on the web would be one way to do it. But Python’s built-in dir() function
lets you access this information directly from the Python REPL:

>>> import datetime

>>> dir(datetime)

['MAXYEAR', 'MINYEAR', '__builtins__', '__cached__',

'__doc__', '__file__', '__loader__', '__name__',

'__package__', '__spec__', '_divide_and_round',

'date', 'datetime', 'datetime_CAPI', 'time',

'timedelta', 'timezone', 'tzinfo']

In the example above, I first imported the datetime module from the
standard library and then inspected it with the dir() function. Calling
dir() on a module gives you an alphabetized list of the names and
attributes the module provides.

Because “everything” is an object in Python, the same technique works not
only on the module itself, but also on the classes and data structures
exported by the module.

In fact, you can keep drilling down into the module by calling dir() again
on individual objects that look interesting. For example, here’s how you’d
inspect the datetime.date class:

>>> dir(datetime.date)

['__add__', '__class__', ..., 'day', 'fromordinal',

'isocalendar', 'isoformat', 'isoweekday', 'max',

'min', 'month', 'replace', 'resolution', 'strftime',

'timetuple', 'today', 'toordinal', 'weekday', 'year']

As you can see, dir() gives you a quick overview of what’s available on a
module or class. If you don’t remember the exact spelling for a particular
class or function, then maybe that’s all you need to keep going without
interrupting your coding flow.

Sometimes calling dir() on an object will result in too much information—
on a complex module or class you’ll get a long printout that’s difficult to
read quickly. Here’s a little trick you can use to filter down the list of
attributes to just the ones you’re interested in:

>>> [_ for _ in dir(datetime) if 'date' in _.lower()]

['date', 'datetime', 'datetime_CAPI']

Here, I used a list comprehension to filter down the results of the
dir(datetime) call to only contain names that include the word “date.”
Notice how I called the lower() method on each name to make sure the
filtering is case-insensitive.

Getting a raw listing of the attributes on an object won’t always be enough
information to solve the problem at hand. So, how can you get more info
and further details on the functions and classes exported by the datetime
module?

Python’s built-in help() function will come to your rescue. With it, you can
invoke Python’s interactive help system to browse the auto-generated
documentation for any Python object:

>>> help(datetime)

If you run the above example in a Python interpreter session, your terminal
will display a text-based help screen for the datetime module, looking
somewhat like this:

Help on module datetime:

NAME

 datetime - Fast implementation of the datetime type.

CLASSES

 builtins.object

 date

 datetime

 time

You can use the cursor up and down keys to scroll through the
documentation. Alternatively you can also hit the space bar to scroll down a
few lines at once. To leave this interactive help mode you’ll need to press

the q key. This will take you back to the interpreter prompt. Nice feature,
right?

By the way, you can call help() on arbitrary Python objects, including
other built-in functions and your own Python classes. The Python
interpreter automatically generates this documentation from the attributes
on an object and its docstring (if available.) The examples below are all
valid uses of the help function:

>>> help(datetime.date)

>>> help(datetime.date.fromtimestamp)

>>> help(dir)

Of course, dir() and help() won’t replace nicely formatted HTML
documentation, the powers of a search engine, or a Stack Overflow search.
But they’re great tools for quickly looking things up without having to
switch away from the Python interpreter. They’re also available offline and
work without an internet connection—which can be very useful in a pinch.

Key Takeaways

Use the built-in dir() function to interactively explore Python
modules and classes from an interpreter session.
The help() built-in lets you browse through the documentation right
from your interpreter (hit q to exit.)

8.2 Isolating Project Dependencies With
Virtualenv

Python includes a powerful packaging system to manage the module
dependencies of your programs. You’ve probably used it to install third-
party packages with the pip package manager command.

One confusing aspect of installing packages with pip is that it tries to install
them into your global Python environment by default.

Sure, this makes any new packages you install available globally on your
system, which is great for convenience. But it also quickly turns into a
nightmare if you’re working with multiple projects that require different
versions of the same package.

For example, what if one of your projects needs version 1.3 of a library
while another project needs version 1.4 of the same library?

When you install packages globally there can be only one version of a
Python library across all of your programs. This means you’ll quickly run
into version conflicts—just like the Highlander did.

And it gets worse. You might also have different programs that need
different versions of Python itself. For example, some programs might still
run on Python 2 while most of your new development happens in Python 3.
Or, what if one of your projects needs Python 3.3, while everything else
runs on Python 3.6?

Besides that, installing Python packages globally can also incur a security
risk. Modifying the global environment often requires you to run the pip
install command with superuser (root/admin) credentials. Because pip
downloads and executes code from the internet when you install a new
package, this is generally not recommended. Hopefully the code is
trustworthy, but who knows what it will really do?

Virtual Environments to the Rescue

The solution to these problems is to separate your Python environments
with so-called virtual environments. They allow you to separate Python
dependencies by project and give you the ability to select between different
versions of the Python interpreter.

A virtual environment is an isolated Python environment. Physically, it lives
inside a folder containing all the packages and other dependencies, like
native-code libraries and the interpreter runtime, that a Python project
needs. (Behind the scenes, those files might not be real copies but symbolic
links to save memory.)

To demonstrate how virtual environments work, I’ll give you a quick
walkthrough where we’ll set up a new environment (or virtualenv, as
they’re called for short) and then install a third-party package into it.

Let’s first check where the global Python environment currently resides. On
Linux or macOS, we can use the which command-line tool to look up the
path to the pip package manager:

$ which pip3

/usr/local/bin/pip3

I usually put my virtual environments right into my project folders to keep
them nice and separate. But you could also have a dedicated “python-
environments” directory somewhere to hold all of your environments across
projects. The choice is yours.

Let’s create a new Python virtual environment:

$ python3 -m venv ./venv

This will take a moment and will create a new venv folder in the current
directory and seed it with a baseline Python 3 environment:

$ ls venv/

bin include lib pyvenv.cfg

If you check the active version of pip (with the which command), you’ll see
it’s still pointing to the global environment, /usr/local/bin/pip3 in my
case:

(venv) $ which pip3

/usr/local/bin/pip3

This means if you install packages now, they’d still end up in the global
Python environment. Creating a virtual environment folder isn’t enough—
you’ll need to explicitly activate the new virtual environment so that future
runs of the pip command reference it:

$ source ./venv/bin/activate

(venv) $

Running the activate command configures your current shell session to
use the Python and pip commands from the virtual environment instead.1

Notice how this changed your shell prompt to include the name of the
active virtual environment inside parentheses: (venv). Let’s check which
pip executable is active now:

(venv) $ which pip3

/Users/dan/my-project/venv/bin/pip3

As you can see, running the pip3 command would now run the version
from the virtual environment and not the global one. The same is true for
the Python interpreter executable. Running python from the command-line
would now also load the interpreter from the venv folder:

(venv) $ which python

/Users/dan/my-project/venv/bin/python

Note that this is still a blank slate, a completely clean Python environment.
Running pip list will show an almost empty list of installed packages that
only includes the baseline modules necessary to support pip itself:

(venv) $ pip list

pip (9.0.1)

setuptools (28.8.0)

Let’s go ahead and install a Python package into the virtual environment
now. You’ll want to use the familiar pip install command for that:

(venv) $ pip install schedule

Collecting schedule

 Downloading schedule-0.4.2-py2.py3-none-any.whl

Installing collected packages: schedule

Successfully installed schedule-0.4.2

You’ll notice two important changes here. First, you won’t need admin
permissions to run this command any longer. And second, installing or
updating a package with an active virtual environment means that all files
will end up in a subfolder in the virtual environment’s directory.

Therefore, your project dependencies will be physically separated from all
other Python environments on your system, including the global one. In
effect, you get a clone of the Python runtime that’s dedicated to one project
only.

By running pip list again, you can see that the schedule library was
installed successfully into the new environment:

(venv) $ pip list

pip (9.0.1)

schedule (0.4.2)

setuptools (28.8.0)

If we spin up a Python interpreter session with the python command, or run
a standalone .py file with it, it will use the Python interpreter and the
dependencies installed into the virtual environment—as long as the
environment is still active in the current shell session.

But how do you deactivate or “leave” a virtual environment again? Similar
to the activate command, there’s a deactivate command that takes you
back to the global environment:

(venv) $ deactivate

$ which pip3

/usr/local/bin

Using virtual environments will help keep your system uncluttered and your
Python dependencies neatly organized. As a best practice, all of your
Python projects should use virtual environments to keep their dependencies
separate and to avoid version conflicts.

Understanding and using virtual environments also puts you on the right
track to use more advanced dependency management methods like
specifying project dependencies with requirements.txt files.

If you’re looking for a deep dive on this subject with additional productivity
tips, be sure to check out my Managing Python Dependencies course
available on dbader.org.

Key Takeaways

Virtual environments keep your project dependencies separated. They
help you avoid version conflicts between packages and different
versions of the Python runtime.
As a best practice, all of your Python projects should use virtual
environments to store their dependencies. This will help avoid
headaches.

8.3 Peeking Behind the Bytecode Curtain

When the CPython interpreter executes your program, it first translates it
into a sequence of bytecode instructions. Bytecode is an intermediate
language for the Python virtual machine that’s used as a performance
optimization.

Instead of directly executing the human-readable source code, compact
numeric codes, constants, and references are used that represent the result
of compiler parsing and semantic analysis.

https://dbader.org/products/managing-python-dependencies/?utm_source=python-tricks-book&utm_medium=pdf&utm_campaign=pytricks-book

This saves time and memory for repeated executions of programs or parts
of programs. For example, the bytecode resulting from this compilation step
is cached on disk in .pyc and .pyo files so that executing the same Python
file is faster the second time around.

All of this is completely transparent to the programmer. You don’t have to
be aware that this intermediate translation step happens, or how the Python
virtual machine deals with the bytecode. In fact, the bytecode format is
deemed an implementation detail and not guaranteed to remain stable or
compatible between Python versions.

And yet, I find it very enlightening to see how the sausage is made and to
peek behind the abstractions provided by the CPython interpreter.
Understanding at least some of the inner workings can help you write more
performant code (when that’s important). And it’s also a lot of fun.

Let’s take this simple greet() function as a lab sample we can play with
and use to understand Python’s bytecode:

def greet(name):

 return 'Hello, ' + name + '!'

>>> greet('Guido')

'Hello, Guido!'

Remember how I said that CPython first translates our source code into an
intermediate language before it “runs” it? Well, if that’s true, we should be
able to see the results of this compilation step. And we can.

Each function has a __code__ attribute (in Python 3) that we can use to get
at the virtual machine instructions, constants, and variables used by our
greet function:

>>> greet.__code__.co_code

b'dx01|x00x17x00dx02x17x00Sx00'

>>> greet.__code__.co_consts

(None, 'Hello, ', '!')

>>> greet.__code__.co_varnames

('name',)

You can see co_consts contains parts of the greeting string our function
assembles. Constants and code are kept separate to save memory space.
Constants are, well, constant—meaning they can never be modified and are
used interchangeably in multiple places.

So instead of repeating the actual constant values in the co_code instruction
stream, Python stores constants separately in a lookup table. The instruction
stream can then refer to a constant with an index into the lookup table. The
same is true for variables stored in the co_varnames field.

I hope this general concept is starting to become more clear. But looking at
the co_code instruction stream still makes me feel a little queasy. This
intermediate language is clearly meant to be easy to work with for the
Python virtual machine, not humans. After all, that’s what the text-based
source code is for.

The developers working on CPython realized that too. So they gave us
another tool called a disassembler to make inspecting the bytecode easier.

Python’s bytecode disassembler lives in the dis module that’s part of the
standard library. So we can just import it and call dis.dis() on our greet
function to get a slightly easier-to-read representation of its bytecode:

>>> import dis

>>> dis.dis(greet)

 2 0 LOAD_CONST 1 ('Hello, ')

 2 LOAD_FAST 0 (name)

 4 BINARY_ADD

 6 LOAD_CONST 2 ('!')

 8 BINARY_ADD

 10 RETURN_VALUE

The main thing disassembling did was split up the instruction stream and
give each opcode in it a human-readable name like LOAD_CONST.

You can also see how constant and variable references are now interleaved
with the bytecode and printed in full to spare us the mental gymnastics of a
co_const or co_varnames table lookup. Neat!

Looking at the human-readable opcodes, we can begin to understand how
CPython represents and executes the 'Hello, ' + name + '!' expression
in the original greet() function.

It first retrieves the constant at index 1 ('Hello, ') and puts it on the stack.
It then loads the contents of the name variable and also puts them on the
stack.

The stack is the data structure used as internal working storage for the
virtual machine. There are different classes of virtual machines and one of
them is called a stack machine. CPython’s virtual machine is an
implementation of such a stack machine. If the whole thing is named after
the stack, you can imagine what a central role this data structure plays.

By the way—I’m only touching the surface here. If you’re interested in this
topic you’ll find a book recommendation at the end of this chapter. Reading
up on virtual machine theory is enlightening (and a ton of fun).

What’s interesting about a stack as an abstract data structure is that, at the
bare minimum, it only supports two operations: push and pop. Push adds a
value to the top of the stack and pop removes and returns the topmost value.
Unlike an array, there’s no way to access elements “below” the top level.

I find it fascinating that such a simple data structure has so many uses. But
I’m getting carried away again…

Let’s assume the stack starts out empty. After the first two opcodes have
been executed, this is what the contents of the VM stack look like (0 is the
topmost element):

0: 'Guido' (contents of "name")

1: 'Hello, '

The BINARY_ADD instruction pops the two string values off the stack,
concatenates them, and then pushes the result on the stack again:

0: 'Hello, Guido'

Then there’s another LOAD_CONST to get the exclamation mark string on the
stack:

0: '!'

1: 'Hello, Guido'

The next BINARY_ADD opcode again combines the two to generate the final
greeting string:

0: 'Hello, Guido!'

The last bytecode instruction is RETURN_VALUE which tells the virtual
machine that what’s currently on top of the stack is the return value for this
function so it can be passed on to the caller.

And voila, we just traced back how our greet() function gets executed
internally by the CPython virtual machine. Isn’t that cool?

There’s much more to say about virtual machines, and this isn’t the book for
it. But if this got you interested, I highly recommend that you do some more
reading on this fascinating subject.

It can be a lot of fun to define your own bytecode languages and to build
little virtual machine experiments for them. A book on this topic that I’d
recommend is Compiler Design: Virtual Machines by Wilhelm and Seidl.

Key Takeaways

CPython executes programs by first translating them into an
intermediate bytecode and then running the bytecode on a stack-based

virtual machine.
You can use the built-in dis module to peek behind the scenes and
inspect the bytecode.
Study up on virtual machines—it’s worth it.

1. On Windows there’s an activate command you need to run directly
instead of loading it with source.↩

9 Closing Thoughts
Congratulations—you made it all the way to the end! Time to give yourself a
pat on the back, since most people buy a book and never even crack it open
or make it past the first chapter.

But now that you’ve read the book, this is where the real work starts—
there’s a big difference between reading and doing. Take the new skills and
tricks you learned in this book, and go out there and use them. Don’t let this
be just another programming book you read.

What if you started sprinkling some of Python’s advanced features in your
code from now on? A nice and clean generator expression here, an elegant
use of the with-statement there…

You’ll catch the attention of your peers in no time—and in a good way too,
if you do it right. With some practice you’ll have no trouble applying these
advanced Python features tastefully, and to only use them where they make
sense and help make your code more expressive.

And trust me, your colleagues will pick up on this after a while. If they ask
you questions, be generous and helpful. Pull everyone around you up and
help them learn what you know. Maybe you can even give a little
presentation on “writing clean Python” for your coworkers a few weeks
down the road. Feel free to use my examples from the book.

There’s a difference between doing a great job as a Python developer, and to
be seen doing a great job. Don’t be afraid to stick your head out. If you share
your skills and newfound knowledge with the people around you, your
career will benefit greatly.

I follow the same mindset in my own career and projects. And so, I’m
always looking for ways to improve this book and my other Python training
materials. If you’d like to let me know about an error, or if you just have a
question or want to offer some constructive feedback, then please email me
at mail@dbader.org.

mailto:mail@dbader.org

Happy Pythoning!

— Dan Bader

P.S. Come visit me on the web and continue your Python journey at
dbader.org and on my YouTube channel.

9.1 Free Weekly Tips for Python Developers

Are you looking for a weekly dose of Python development tips to improve
your productivity and streamline your workflows? Good news—I’m running
a free email newsletter for Python developers just like you.

The newsletter emails I send out are not your typical “here’s a list of popular
articles” flavor. Instead I aim for sharing at least one original thought per
week in a (short) essay-style format.

If you’d like to see what all the fuss is about, then head on over to
dbader.org/newsletter and enter your email address in the signup form. I’m
looking forward to meeting you!

9.2 PythonistaCafe: A Community for Python
Developers

Mastering Python is not just about getting the books and courses to study. To
be successful you also need a way to stay motivated and to grow your
abilities in the long run.

Many Pythonistas I know are struggling with this. It’s simply a lot less fun to
build your Python skills completely alone.

If you’re a self-taught developer with a non-technical day job, it’s hard to
grow your skills all by yourself. And with no coders in your personal peer
group, there’s nobody to encourage or support you in your endeavor of
becoming a better developer.

https://dbader.org/
https://dbader.org/youtube
https://dbader.org/newsletter?utm_source=python-tricks-book&utm_medium=pdf&utm_campaign=pytricks-book

Maybe you’re already working as a developer, but no one else at your
company shares your love for Python. It’s frustrating when you can’t share
your learning progress with anyone or ask for advice when you feel stuck.

From personal experience, I know that existing online communities and
social media don’t do a great job at providing that support network either.
Here are a few of the best, but they still leave a lot to be desired:

Stack Overflow is for asking focused, one-off questions. It’s hard to
make a human connection with fellow commenters on the platform.
Everything is about the facts, not the people. For example, moderators
will freely edit other people’s questions, answers, and comments. It
feels more like a wiki than a forum.

Twitter is like a virtual water cooler and great for “hanging out” but it’s
limited to 140 characters at a time—not great for discussing anything
substantial. Also, if you’re not constantly online, you’ll miss out on
most of the conversations. And if you are constantly online, your
productivity takes a hit from the never-ending stream of interruptions
and notifications. Slack chat groups suffer from the same flaws.

Hacker News is for discussing and commenting on tech news. It doesn’t
foster long-term relationships between commenters. It’s also one of the
most aggressive communities in tech right now with little moderation
and a borderline toxic culture.

Reddit takes a broader stance and encourages more “human”
discussions than Stack Overflow’s one-off Q&A format. But it’s a huge
public forum with millions of users and has all of the associated
problems: toxic behavior, overbearing negativity, people lashing out at
each other, jealousy, … In short, all the “best” parts of the human
behavior spectrum.

Eventually I realized that what holds so many developers back is their
limited access to the global Python coding community. That’s why I founded
PythonistaCafe, a peer-to-peer learning community for Python developers.

https://www.pythonistacafe.com/?utm_source=python-tricks-book&utm_medium=pdf&utm_campaign=pytricks-book

A good way to think of PythonistaCafe is to see it as a club of mutual
improvement for Python enthusiasts:

Inside PythonistaCafe you’ll interact with professional developers and
hobbyists from all over the world who will share their experiences in a safe
setting—so you can learn from them and avoid the same mistakes they’ve
made.

Ask anything you want and it will remain private. You must have an active
membership to read and write comments and as a paid community, trolling
and offensive behavior are virtually nonexistent.

The people you meet on the inside are actively committed to improving their
Python skills because membership in PythonistaCafe is invite-only. All
prospective members are required to submit an application to make sure
they’re a good fit for the community.

You’ll be involved in a community that understands you, and the skills and
career you’re building, and what you’re trying to achieve. If you’re trying to
grow your Python skills but haven’t found the support system you need,
we’re right there for you.

PythonistaCafe is built on a private forum platform where you can ask
questions, get answers, and share your progress. We have members located
all over the world and with a wide range of proficiency levels.

You can learn more about PythonistaCafe, our community values, and what
we’re all about at www.pythonistacafe.com.

https://www.pythonistacafe.com/?utm_source=python-tricks-book&utm_medium=pdf&utm_campaign=pytricks-book

	Python Tricks: The Book
	Python Tricks: The Book
	Foreword
	1 Introduction
	1.1 What’s a Python Trick?
	1.2 What This Book Will Do for You
	1.3 How to Read This Book

	2 Patterns for Cleaner Python
	2.1 Covering Your A** With Assertions
	2.2 Complacent Comma Placement
	2.3 Context Managers and the with Statement
	2.4 Underscores, Dunders, and More
	2.5 A Shocking Truth About String Formatting
	2.6 The Zen of Python Easter Egg

	3 Effective Functions
	3.1 Python’s Functions Are First-Class
	3.2 Lambdas Are Single-Expression Functions
	3.3 The Power of Decorators
	3.4 Fun With *args and **kwargs
	3.5 Function Argument Unpacking
	3.6 Nothing to Return Here

	4 Classes & OOP
	4.1 Object Comparisons: is vs ==
	4.2 String Conversion (Every Class Needs a __repr__)
	4.3 Defining Your Own Exception Classes
	4.4 Cloning Objects for Fun and Profit
	4.5 Abstract Base Classes Keep Inheritance in Check
	4.6 What Namedtuples Are Good For
	4.7 Class vs Instance Variable Pitfalls
	4.8 Instance, Class, and Static Methods Demystified

	5 Common Data Structures in Python
	5.1 Dictionaries, Maps, and Hashtables
	5.2 Array Data Structures
	5.3 Records, Structs, and Data Transfer Objects
	5.4 Sets and Multisets
	5.5 Stacks (LIFOs)
	5.6 Queues (FIFOs)
	5.7 Priority Queues

	6 Looping & Iteration
	6.1 Writing Pythonic Loops
	6.2 Comprehending Comprehensions
	6.3 List Slicing Tricks and the Sushi Operator
	6.4 Beautiful Iterators
	6.5 Generators Are Simplified Iterators
	6.6 Generator Expressions
	6.7 Iterator Chains

	7 Dictionary Tricks
	7.1 Dictionary Default Values
	7.2 Sorting Dictionaries for Fun and Profit
	7.3 Emulating Switch/Case Statements With Dicts
	7.4 The Craziest Dict Expression in the West
	7.5 So Many Ways to Merge Dictionaries
	7.6 Dictionary Pretty-Printing

	8 Pythonic Productivity Techniques
	8.1 Exploring Python Modules and Objects
	8.2 Isolating Project Dependencies With Virtualenv
	8.3 Peeking Behind the Bytecode Curtain

	9 Closing Thoughts
	9.1 Free Weekly Tips for Python Developers
	9.2 PythonistaCafe: A Community for Python Developers

