

 [image: Cover image]
 Book cover of Quantitative Trading Strategies Using Python

 Peng Liu

Quantitative Trading Strategies Using Python
Technical Analysis, Statistical Testing, and Machine Learning

 [image:]
 The Apress logo.

Peng LiuSingapore, Singapore

				ISBN 978-1-4842-9674-5e-ISBN 978-1-4842-9675-2
https://doi.org/10.1007/978-1-4842-9675-2
© Peng Liu 2023
Apress Standard
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This Apress imprint is published by the registered company APress Media, LLC, part of Springer Nature.
The registered company address is: 1 New York Plaza, New York, NY 10004, U.S.A.

Any source code or other supplementary material referenced by the author in this book is available to readers on GitHub (github.com/apress). For more detailed information, please visit https://www.apress.com/gp/services/source-code.
Table of Contents

Chapter 1:​ Quantitative Trading:​ An Introduction1
Overview of Quantitative Trading2
Model Development Workflow4

Institutional Algorithmic Trading5

Being a Quant Trader7

Major Asset Classes and Derivatives8

Grouping Tradable Assets10

Common Trading Avenues and Steps14

Market Structures15

Major Types of Buy-Side Stock Investors16

Market Making17

Scalping18

Portfolio Rebalancing18

Getting Started with Financial Data Analysis19
Summarizing Stock Prices19

Downloading Stock Price Data21

Visualizing Stock Price Data29

Summary32

Exercises33

Chapter 2:​ Electronic Market35
Introducing Electronic Market35
Electronic Order36

Proprietary and Agency Trading38

Order Matching Systems39

Market Order42

Limit Order43

Limit Order Book44

Display vs.​ Non-display Orders47

Stop Order47

Stop-Limit Order49

Pegged Order50

Trailing Stop Order52

Market If Touched Order53

Summarizing Major Types of Orders54

More Order Types:​ Limit and Cancelation55

Price Impact55

Order Flow56

Working with LOB Data57
Understanding Label Distribution59

Understanding Price-Volume Data61

Visualizing Price Movement70

Summary74

Exercises75

Chapter 3:​ Forward and Futures Contracts77
Introducing Forward and Futures Contracts78
Parameters of a Futures Contract80

Hedging and Speculation81

Obligations at Maturity82

Leverage in a Futures Contract83

Clearing House84

Mark-to-Market85

Pricing Forward Contract88

Pricing Futures Contract91

Contango and Backwardation94

Working with Futures Data96
Adding Technical Indicators99

Summary104

Exercises105

Chapter 4:​ Understanding Risk and Return107
Risk and Return Trade-Off108
Analyzing Returns109

Working with Dummy Returns110

The 1+R Format114

The Terminal Return115

Stock Return with Dividends117

Multiperiod Return117

Annualizing Returns119

Calculating Single-Period Returns from Price Data120

Calculating Two-Period Terminal Return123

Calculating Annualized Returns124

Analyzing Risk125
Introducing Variance and Standard Deviation126

Annualizing Volatility127

Combining Risk and Return via the Sharpe Ratio129

Working with Stock Price Data132

Calculating the Mean, Variance, and Standard Deviation134

Calculating the Annualized Volatility137

Calculating the Annualized Returns137

Calculating the Sharpe Ratio139

Summary139

Exercises140

Chapter 5:​ Trend-Following Strategy141
Working with Log Returns142
Analyzing Stock Prices Using Log Returns150

Introducing Trend Trading153
Understanding Technical Indicators154

Introducing Moving Averages155

Delving into Simple Moving Averages156

Delving into Exponential Moving Averages163

Implementing the Trend-Following Strategy166

Summary173

Exercises174

Chapter 6:​ Momentum Trading Strategy175
Introducing Momentum Trading176
Diving Deeper into Momentum Trading176

Contrasting with the Trend-Following Strategy177

Observing the Role of Lookback Windows178

More on Trend Following180

Implementing the Momentum Trading Strategy182
Obtaining DJI Stock Symbols182

Downloading Stock Prices185

Calculating Monthly Returns185

Calculating the Six-Month Terminal Return187

Generating Trading Signals188

Evaluating Out-of-Sample Performance192

Comparing with the Buy-and-Hold Strategy194

Summary195

Exercises196

Chapter 7:​ Backtesting a Trading Strategy197
Introducing Backtesting197
Caveats of Backtesting199

Understanding Maximum Drawdown201

The Downside of Drawdown Risk203

Calculating the Max Drawdown204

Backtesting the Trend-Following Strategy216

Summary222

Exercises223

Chapter 8:​ Statistical Arbitrage with Hypothesis Testing225
Statistical Arbitrage225
Pairs Trading227

Cointegration229

Stationarity232

Test for Cointegration236

Correlation and Cointegration240

Implementing the Pairs Trading Strategy242
Identifying Cointegrated Pairs of Stocks242

Testing Pairwise Cointegration243

Obtaining the Spread245

Converting to Z-Scores246

Formulating the Trading Strategy250

Summary254

Exercises255

Chapter 9:​ Optimizing Trading Strategies with Bayesian Optimization257
Optimizing Trading Strategies257
Parametric Trading Strategies258

More on Optimization260

Global Optimization261

The Objective Function265

Bayesian Optimization268

Gaussian Process270

Acquisition Function273

EI and UCB275

The Full BO Loop277

Optimizing the Pairs Trading Strategy278
Trading Strategy Performance As the Black-Box Function279

Generating Training Set for Bayesian Optimization284

Implementing the Gaussian Process Model286

Guiding the Sequential Search by Maximizing the Acquisition Function288

Performing Sequential Search292

Summary300

Exercises301

Chapter 10:​ Pairs Trading Using Machine Learning303
Machine Learning in Pairs Trading303
Machine Learning Workflow304

Support Vector Machine306

Random Forest308

Neural Network310

Implementing the Pairs Trading Strategy Using Machine Learning313
Feature Engineering315

Pairs Trading Using SVM316

Pairs Trading Using Random Forest319

Pairs Trading Using Neural Networks320

Summary324

Exercises325

Index327

About the Author

Peng Liu
 [image:]
 A photo of Peng Liu.

 is an assistant professor of quantitative finance (practice) at Singapore Management University and an adjunct researcher at the National University of Singapore. He holds a Ph.D. in statistics from the National University of Singapore and has ten years of working experience as a data scientist across the banking, technology, and hospitality industries. Peng is the author of Bayesian Optimization (Apress, 2023).

About the Technical Reviewer

Sonal Raj
 [image:]
 A photo of Sonal Raj.

 is an engineer, mathematician, data scientist, and Python evangelist from India, who has carved a niche in the financial services domain. He is a Goldman Sachs and D. E. Shaw alumnus who currently serves as Vice President and Head of Data Management and Research for a leading high-frequency trading firm.

 Sonal holds dual masters in computer science and business administration and is a former research fellow of the Indian Institute of Science. He is a doctoral candidate in data science at the Swiss School of Business Management, Geneva. His areas of research range from image processing and real-time graph computations to electronic trading algorithms. Sonal is the author of the titles The Pythonic Way (BPB, 2021) and Neo4j High Performance (Packt, 2015). During his career, Sonal has created low latency trading algorithms, trading strategies, market signal models, and components of electronic trading systems. He is also a community speaker and a Python and data science mentor to young minds in the field.

 When not engrossed in reading fiction or playing symphonies, he spends far too much time watching rockets lift off.

 He is a loving son and husband and a custodian of his personal library.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2023
P. LiuQuantitative Trading Strategies Using Pythonhttps://doi.org/10.1007/978-1-4842-9675-2_1

1. Quantitative Trading: An Introduction

Peng Liu1
(1)Singapore, Singapore

 Quantitative trading, also called algorithmic trading, refers to automated trading activities that buy or sell particular instruments based on specific algorithms. Here, an algorithm can be considered a model that transforms an input into an output. In this case, the input includes sufficient data to make a proper trading decision, and the output is the action of buying or selling an instrument. The quality of a trading decision thus relies on the sufficiency of the input data and the suitability and robustness of the model.

 Developing a successful quantitative trading strategy involves the collection and processing of vast amounts of input data, such as historical price data, financial news, and economic indicators. The data is passed as input to the model development process, where the goal is to accurately forecast market trends, identify trading opportunities, and manage potential risks, all of which are reflected in the resulting buy or sell signals.

 A robust trading algorithm is often identified via the process of backtesting, which involves simulating the algorithm’s performance using historical data. Simulating the performance of the algorithm under different scenarios allows us to assess the strategy’s potential effectiveness better, identify its limitations, and fine-tune the parameters to optimize its results. However, one also needs to be aware of the potential risks of overfitting and survivorship bias, which can lead to inflated metrics and potentially poor test set performance.

 In this chapter, we start by covering a few basic and important concepts related to quantitative trading. We then switch to hands-on examples of working with financial data using Python.

 Overview of Quantitative Trading

 Quantitative trading refers to the use of mathematical models and algorithms to analyze large datasets (structured or unstructured), identify consistent patterns, and generate robust trading signals. The key components of quantitative trading include data collection and preprocessing, feature engineering, model development, backtesting, optimization, and execution. Quantitative strategies can vary greatly in complexity, ranging from simple moving average crossovers to advanced machine learning techniques, all of which are covered in later chapters of the book.

 A good trading strategy could be as simple as buying low and selling high (i.e., long a security) or selling high and buying low (i.e., short a security). The underlying trading model can consume different types of input data. For example, the input data could include structured features such as specific performance metrics of a particular stock or unstructured news contents pertinent to the company of the stock. When the input is financial news, the challenge is often concerned with converting unstructured textual information to structured features in a consistent and principled manner. The input data could also be raw financial ratios readily available from the balance sheet or derived features such as firm-specific technical indicators.

 We can categorize the input data into the following four general groups:	
 Market states: Security-specific price movements such as tick data that measures the minimum upward or downward movement in the price of a security, or market-specific factors such as bid-ask spread in limit-order books (LOB) in high-frequency trading. Besides the tick size, other resolution parameters of a LOB include the lot size, which specifies the smallest amount of a stock that can be traded.

	
 Financial news: Macroeconomic news, analyst reports, earnings conference call transcripts, etc.

	
 Fundamentals: Overall economic or sector-specific conditions and firm-specific metrics such as revenue, cash flow, earnings per share (EPS), etc.

	
 Technicals: Derived technical indicators based on the raw price series, including moving averages, stochastic indicators, etc.

 More generally, quantitative trading can be defined as the process of order execution based on trading signals generated using computer programs and algorithms. The purpose is either to seek profits and achieve an abnormal rate of return that beats the market (called alpha) or manage different types of risk.

 In a nutshell, quantitative trading refers to an algorithm (also called a function or a model) that digests any of these structured or unstructured data sources and outputs a trading decision. The automatic trading strategies could be in the form of experience-based rules based on technical analysis or data-driven machine learning models trained based on historical data. Upon receiving the output as a trading signal, we would either buy (also called long) an asset to open a position or sell (also called short) an asset to close a position, make a profit, or stop a loss. Trading signals could occur intraday in a high-frequency setting (also called day trading) or in a longer term (also called position trading). Figure 1-1 illustrates this process.
 [image:]
 2 flow diagrams. Market states, financial news, fundamentals, and technicals give the algorithm, function or model, followed by a trading decision to buy or long or sell or short. The input is followed by quantitative trading to give the output.

Figure 1-1
 Illustrating the overall quantitative trading process

 The model used to generate trading signals could be either rule-based or trained using data. The rule-based approach mainly relies on domain knowledge and requires explicitly writing out the logic flow from input to output, similar to following a cooking recipe. On the other hand, the data-driven approach involves training a model using machine learning techniques and using the model as a black box for prediction and inference. Let us review the overall model training process in a typical machine learning workflow.

 Model Development Workflow

 A typical model development workflow starts with some training data. The training data consists of input-output pairs in supervised learning tasks where both input and output data are given. Each input entry could contain multiple features that describe the same observation from different perspectives. The corresponding output has the true target, acting as the correct answer to guide the training process. Model training aims to generate a mapping function, a model, that correctly maps a given input to the corresponding output.

 A trained model consists of two parts: parameters and architecture. Parameters are the integral components of a model, and the architecture specifies how these components interact with the input data to produce the final prediction output. This predicted value is then compared with the ground truth target to make an error metric jointly. Here, the error indicates the current cost on how close or far away it is between the prediction and the actual value. Following a particular optimization procedure, the training process adjusts the model parameters for a given architecture to reduce the training cost. After changing the weights, the new error is calculated again, forming a feedback loop. The whole model training process is depicted in Figure 1-2.
 [image:]
 A process diagram with 4 main steps. Training data with input features and target labels gives a model that includes parameters and architecture, followed by prediction and cost. Cost undergoes optimization and goes into the model. A description of each step is given.

Figure 1-2
 Example of a typical model training process. The workflow starts with the available training data and gradually tunes a model. The tuning process requires matching the model prediction to the target output, where the gap is measured by a particular cost function and used as feedback for the next round of tuning. Each tuning produces a new model, and we want to look for one that minimizes the cost

 Now let us look at a specific type of algorithmic trading at large institutions: institutional algorithmic trading.

 Institutional Algorithmic Trading

 Since the underlying decision model could be a black box, algorithmic trading is also called automated trading, black-box trading, or robo-trading. It is used to generate and execute orders in markets with electronic access. In the context of large institutions, hedge funds, and trading desks, the trading volume is often quite large. In this case, institutional algorithmic trading often seeks to break up large orders into smaller ones to reduce the execution risk, which refers to the case when a large order cannot be fulfilled in the market.

 Besides preserving anonymity in transactions, large institutions also use algorithmic trading to minimize the price impact of a trade. This is because even if a large order is executable, it is difficult to guarantee that the market price will not be impacted due to the execution of the large order. Thus, the main objective of institutional algorithmic trading is to control the market risk and the execution cost rather than gaining profits.

 When executing a large order by an institutional investor, the demand for a large amount of liquidity will typically affect the cost of the trade negatively. This is called slippage, which refers to situations when a market participant receives a different execution price than initially intended. This could happen for many instruments, including stocks, bonds, currencies, and derivatives.

 To execute these block trades anonymously without generating a noticeable impact in the market, large institutions often involve dark pools to carry out these trades. Dark pools are private exchanges that execute orders from institutional investors away from the central stock exchanges, thus exhibiting little transparency in the transactional process.

 These large institutional orders, when split into small-sized orders, are also called iceberg orders. By partially exposing the tip of an iceberg, the majority of the orders could remain hidden and transition into visible orders afterward, thus minimizing the disruption to the trading market as opposed to a single large order. These smaller orders will then be executed electronically over minutes, hours, or days. To minimize the impact of these orders, institutional investors would trade more at the market opens and closes when the trading volume is relatively high and less during a slow period around lunchtime.

 Let us look at a simple example of generating a small subset of iceberg orders from the original orders using Python. In Listing 1-1, we create a list of ten random integers saved in total_order to indicate all the orders to be executed by an institutional investor. We can randomly sample two indexes and use them to access the corresponding elements in total_order and save in iceberg_order, representing the iceberg orders to be exposed to the market.

 # generate multiple random integers

 total_order = [random.randint(0, 10) for p in range(0, 10)]

 >>> total_order

 [9, 6, 4, 3, 7, 6, 3, 0, 0, 6]

 # randomly sample two indexes to identify iceberg orders

 iceberg_order_idx = random.sample(total_order, 2)

 >>> iceberg_order_idx

 [0, 4]

 # retrieve iceberg orders

 iceberg_order = np.array(total_order)[iceberg_order_idx]

 iceberg_order

 array([9, 7])

 Listing 1-1
 Generating iceberg orders

 The institutional algorithmic strategies generate optimal trading signals by analyzing daily quotes and prices. For example, an institutional algorithmic strategy may suggest entering a long position if the current stock price moves from below to above the volume-weighted average price (VWAP) over a day, a technical indicator often used by short-term traders. The institutional algorithmic strategies may also exploit arbitrage opportunities or price spreads between correlated securities. Here, arbitrage means making positive sure profits with zero investments. Arbitrage opportunities, if exist, would normally disappear very fast as many hedge funds and investors are constantly looking for such arbitrage opportunities.

 The next section briefly introduces the role of a quant trader.

 Being a Quant Trader

 A quant trader is a specialized trader that uses mathematical models and quantitative analysis to evaluate different financial products and identify trading opportunities to buy or sell the best securities out of hundreds of thousands of candidates. Quant traders make use of data-driven methods to make model-based trading decisions, seeking to exploit temporary inefficiencies and underlying patterns in the market that may not be easily discernible through traditional qualitative analysis.

 The first attribute of an aspiring quant trader is familiarity with numbers and mathematical models. As the majority of the time is spent on analyzing the data, proposing, backtesting, and implementing trading strategies to either buy, sell, or hold specific security, a quant trader needs to be comfortable with both mathematical models and programming, which often requires an advanced degree in financial modeling or related field. When a positive signal pops up, the quant trader needs to act swiftly using self-developed programs to capitalize on the current trading opportunities.

 The second attribute lies in soft skills such as handling high pressure with a good temperament. This requires good emotional intelligence to neither assume too much risk nor be overly risk averse. Knowing when to exit a position and stop loss is a critical skill that requires discipline in daily trading activities.

 The following section covers the major asset classes and various tradable instruments.

 Major Asset Classes and Derivatives

 Multiple tradable financial instruments are used to raise capital in public and private markets. Institutional and retail investors can enter into long or short positions involving different single or combinations of assets, profit-seeking, or risk management (i.e., hedging).

 Let us first get a glimpse of the many tradable assets. In the following list, we provide a short definition of common assets used in the market:	
 Stocks: Also called equity, a form of security representing proportionate ownership of the issuing company. A unit of stock is called a share, and the number of shares determines the proportionate ownership and, thus, profit sharing of the stock owner. The stock owner profits when the stock price increases or by receiving dividends.

	
 Bonds: Fixed-income debt instruments representing a fixed-duration loan from the investor/lender to the borrower (company or government). A bond provides the owner with fixed-rate coupon or variable interest payments, and the principal is paid to the owner at the end date. It is a fixed-income asset due to the regular and stable interest paid to the owner.

	
 Annuities: Insurance contracts from financial institutions that provide a fixed-income stream to the contract owner in the future. Investors mainly purchase annuities for retirement as they can receive a guaranteed stream of payments in the future for a specified period or the remainder of life.

	
 Cash and equivalents: Highly liquid short-term (less than 90 days) investment securities with low risk and low return (usually less than the inflation rate). The equivalents include bank accounts, near-term instruments such as US Treasury bills, and money market funds. These current assets can be easily accessed anytime and reflect the firm’s ability to pay the short-term debt.

	
 Commodities: Basic goods used in commerce as raw inputs to produce other goods or services. Common commodities, such as gold, oil, and natural gas, can be traded in the spot (cash) market or via derivatives such as futures and options.

	
 Futures: Financial derivatives in the form of legal agreements that oblige the futures contract buyer to buy or sell the underlying asset at a prespecified price, amount, and time in the future. Futures are often used to hedge against price movements of the underlying asset and thus avoid losses due to unfavorable price changes in the future. The price of a futures contract is settled daily, that is, marked to market (MTM).

	
 Forward: Similar to the futures contract. The difference is that a forward contract is a private and customizable agreement traded over the counter (OTC), which is a decentralized marketplace where participants trade instruments directly without engaging a central exchange or a broker. The price of a forward contract is settled at the end of the agreement.

	
 Options: Financial derivatives that offer the buyer of the options contract the opportunity to buy (if it is a call option) or sell (if it is a put option) the underlying asset on or before a specific expiration (maturity) date and (strike) price. Options give the buyers the right, not the obligation, to long or short an underlying asset. They can be used for both hedging and speculation. Note that we focus on the European option by default.

	
 Currencies: International currencies and currency derivatives traded via the (largest and most liquid) global electronic marketplace, also called the foreign exchange market or forex. Forex allows investors to exchange one currency for the equivalent value in another currency at the current market rate. Traders also speculate on the direction of currency values to profit from a favorable price movement of a particular pair of currencies.

	
 ETFs: Exchange-traded funds that refer to a type of pooled investment security that are baskets of securities (stocks, bonds, commodities, etc.) and are traded intraday like regular stocks.

	
 REITs: Real estate investment trusts that refer to companies that own, operate, or finance income-generating real estate. Investors in REITs (liquid and publicly traded like stocks) can earn a steady income stream from real estate investments without purchasing, managing, or financing the actual properties themselves.

	
 Mutual funds: A type of financial vehicle that consists of a portfolio of stocks, bonds, or other securities. Mutual funds are managed by professional money managers and allow individual investors to access diversified and professionally managed portfolios at the expense of annual fees. Mutual funds only can be purchased at the end of each trading day based on a calculated price known as the net asset value.

	
 Hedge funds: Actively managed investment pools that aim at earning above-average returns for investors via a wide range of (often risky) trading strategies at the expense of higher fees than conventional investment funds.

 These tradable asset types can be grouped into different classes based on a particular perspective. We introduce a few popular perspectives in the following section.

 Grouping Tradable Assets

 An asset class is a collection of investment instruments that exhibit similar fundamental characteristics in terms of risk and return. There are four major asset classes: equities, fixed-income instruments, cash and equivalents, and alternative investments, defined as financial assets that do not fall into prior investment categories. Figure 1-3 illustrates the four classes of investment securities.
 [image:]
 A chart classifies common assets into 4 classes. Equities include stocks. Fixed-income instruments include bonds and annuities. Cash and equivalents include cash, bank accounts, United States Treasury bills, money market funds, and funds. Alternative investment has 8 components.

Figure 1-3
 Grouping common investment assets into four major classes

 Alternatively, we can group tradable assets based on the type of maturity. Stocks, currencies, and commodities are asset classes with no maturity, while fixed-income instruments and derivatives have maturities. For vanilla security with a maturity date, such as a futures contract, it is possible to compute its fair price based on the no-arbitrage argument, a topic we will discuss in Chapter 3.

 We can also group assets based on the linearity of the payoff function at maturity for certain derivative instruments. For example, a futures contract allows the buyer/seller to buy/sell the underlying asset at an agreed price at maturity. Let us assume the underlying (stock) price at the maturity date is ST and the agreed price is K. When a buyer enters/longs a futures contract to buy the stock at price K, the buyer would make a profit of ST − K if ST ≥ K (purchase the stock at a lower price) or suffer a loss of K − ST if ST < K (purchase the stock at a higher price). A similar analysis applies to the case of entering a short position in a futures contract. Both functions are linear with respect to the underlying asset’s price upon exercise. See Figure 1-4 for an illustration of linear payoff functions.
 [image:]
 2 line graphs of payoff versus S T. 1. The graph has a linearly increasing line for S T minus K. The line intersects the x-axis at point K. 2. The graph has a linearly decreasing line for K minus S T. The line intersects the x-axis at point K.

Figure 1-4
 Illustration of the linear payoff function of entering a long or short position in a futures contract

 Other derivative products with linear payoff functions include forwards and swaps. These are easy to price since their prices are linear functions of the underlying asset. We can price these instruments irrespective of the mathematical model for the underlying price. In other words, we only require the underlying asset’s price, not the mathematical model around the asset. These assets are thus subject to model-independent pricing.

 Let us look at the nonlinear payoff function from an options contract. A call option gives the buyer a choice to buy the underlying asset at the strike price K at the maturity date T when the underlying asset price is ST, while a put option changes such choice to selling the underlying asset at the strike price K. Under both situations, the buyer can choose not to exercise the option and therefore gains no profit. Given that an investor can either long or short a call or put option, there are four combinations when participating in an options contract, as listed in the following:	
 Long a call: Buy a call option to obtain the opportunity to buy the underlying asset at a prespecified strike price upon maturity.

	
 Short a call: Sell a call option to allow the buyer the opportunity to buy the underlying asset at a prespecified strike price upon maturity.

	
 Long a put: Buy a put option to obtain the opportunity to sell the underlying asset at a prespecified strike price upon maturity.

	
 Short a put: Sell a put option to allow the buyer the opportunity to sell the underlying asset at a prespecified strike price upon maturity.

 Figure 1-5 contains the payoff functions for the four different combinations, all of which are nonlinear functions of the underlying asset price ST.
 [image:]
 4 line graphs of payoff versus S T. 1 and 2. Long a call and short a call options have a line that grows horizontally up to K and then ascends and descends linearly. 2. Long a put and short a put options have a line that descends and ascends linearly up to K and then grows horizontally.

Figure 1-5
 Four types of nonlinear payoff functions in an options contract

 Note that tradable instruments within the same asset class exhibit similar characteristics but will differ from one another in some aspects. The market behavior will differ for tradable instruments that follow their respective price dynamics.

 We can also group a tradable asset according to whether it belongs to the cash market or the derivative market. The cash market, also called the spot market, is a marketplace where trading instruments are exchanged at the point of sale, and purchasers take immediate possession of the trading products. For example, the stock exchange falls into the cash market since investors receive shares of stock almost immediately in exchange for cash, thus settling the transactions on the spot.

 On the other hand, the derivative market completes a transaction only at a prespecified date in the future. Take the futures market, for example. A buyer who pays for the right to receive a good only gets to expect the delivery at a prespecified future date.

 The next section introduces common trading avenues and steps.

 Common Trading Avenues and Steps

 As mentioned earlier, investors engage in trading activities for the purpose of profit-making or risk management. When the purpose is to invest and make profits, the next sequence of actions is to observe and analyze the market and act upon the trading signals. For example, if investors use predictive methods to predict when the market will go up or down, they can initiate trades to turn the market into profits and make short, instant wins. Such activity is referred to as market timing, where an investor enters or exits a position or rebalances a portfolio (moving money between assets) based on predicted market movement in the near future. This is opposite to the buy-and-hold strategy, where an investor purchases trading instruments and holds them for a long period, irrespective of the market’s volatility (ups and downs).

 When engaging in trading activity, it is important to understand the short-term and long-term seasonality effect for a particular tradable asset. Take stock trading, for example. Short-term swings in stock prices tend to occur when the market opens and closes, falling under the regular trading hours of major stock exchanges and forming the opening and closing prices of the particular day. In the longer term, trading activities at the end of the year tend to be quieter than other periods of the particular year.

 Trading activities can happen at one of the following four avenues:	
 Regulated exchanges, such as the New York Stock Exchange (NYSE) and NASDAQ

	
 Dark pools, private exchanges that are less regulated

	
 Brokered market, where transactions between the buyer and the seller are performed via middlemen called brokers (or agents, intermediaries)

	
 Over-the-counter (OTC) market, a decentralized market that allows direct transactions between buyers and sellers

 Let us look at the anatomy of a trade. There are four usual steps involved when performing a trade:	
 Acquisition of information and quotes: Before engaging in a trade, it is important to access quality information about the asset and gain transparency in many tangible and intangible factors such as supply and demand, the risk attitude of investors, and the overall economic and geopolitical environment. Information on the market structure, liquidity, and information flow eventually determine the price discovery of the tradable asset.

	
 Routing of order, such as selecting the broker(s) to handle the trade(s) or deciding which market(s) to transmit and execute the trade(s).

	
 Execution of order, matching and executing the trading orders between buyers and sellers according to the rules of the particular market.

	
 Confirmation, clearance, and settlement: This happens at the end of executing a trading order. Clearance is the recording and comparison of trade records, and settlement involves the actual delivery of the security and its payment.

 In the next section, we will look at different market structures.

 Market Structures

 Before 2010, open outcry was a popular way to communicate trade orders in trading pits (floor). Traders would tap into temporary information asymmetry and use verbal communication and hand signals to perform trading activities at stock, option, and futures exchanges. Traders would arrange their trades face to face on the exchange’s trading floor, cry out bids and offers to offer liquidity, and listen for bids and offers to take liquidity. The open outcry rule is that traders must announce their bids and offers so that other traders may react to them, avoiding whispering among a small group of traders. They must also publicly announce that they accept bids (assets sold) or offers (assets taken) of particular trades. The largest pit was the US long-term treasury bond futures market, with over 500 floor traders under the Chicago Board of Trade (CBOT), a major market maker that later merged into the CMT Group.

 As technology advanced, the trading markets moved from physical to electronic, shaping a fully automated exchange. First proposed by Fischer Black in 1971, the fully automated exchange was also called program trading, which encompasses a wide range of portfolio trading strategies.

 The trading rules and systems together define a trading market’s market structure. One type of market is called the call market, where trades are allowed only when the market is called. The other type of market is the continuous market, where trades are allowed anytime during regular trading hours. Big exchanges such as NYSE, LSE (London Stock Exchange), and SGX (Singapore Exchange) allow a hybrid mode of market structure.

 The market structure can also be categorized based on the nature of pricing among the tradable assets. When the prices are determined based on the bid (buy) and ask (sell) quotations from market makers or dealers, it is called a quote-driven or price-driven market. The trades are determined by dealers and market makers who participate in every trade and match orders from their inventory. Typical assets in a quote-driven market include bonds, currencies, and commodities.

 On the other hand, when the trades are based on the buyers’ and sellers’ requirements, it is called an order-driven market where the bid and ask prices, along with the number of shares desired, are put on display. Typical assets in an order-driven market include stock markets, futures exchanges, and electronic communications networks (ECNs). There are two basic types of orders: market orders, based on the asset’s market price, and limit orders, where the assets are only traded based on the preset limit price.

 Let us look at a few major types of buy-side stock investors.

 Major Types of Buy-Side Stock Investors

 Buy-side investors include institutional (account for the majority) and retail investors. Here, buy-side activities include purchasing stocks, bonds, or other financial securities based on the specific requirements and strategies of the institution’s or client’s portfolio. The buy side is a segment of financial markets made up of investing institutions and retail investors that purchase financial products for money-management purposes.

 Typical buy-side institutional investors include	
 Mutual fund

	
 Passive exchange-traded fund (ETF)

	
 Pension fund

	
 Sovereign wealth fund

	
 Hedge fund

	
 Insurance company

	
 Bank

	
 Corporate nominee

 Typical buy-side retail investors include	
 Start-up investor

	
 Family business

	
 Household/individual

 The next section introduces the concept of market making.

 Market Making

 Market maker refers to a firm or an individual that actively quotes the two-sided markets (buy side and sell side) of a particular security. The market maker provides bids, meaning the particular price of the security along with the quantity it is willing to buy. It also provides offers (asks), meaning the price of the security and the quantity it is willing to sell. Naturally, the asking price is supposed to be higher than the bid price, so that the market maker can make a profit based on the spread of the two quote prices.

 Market makers post quotes and stand ready to trade, thereby providing immediacy and liquidity to the market. By quoting bid and ask prices, market makers make the assets more liquid for potential buyers and short sellers.

 A market maker also takes a significant risk of holding the assets because a security’s value may decline between its purchase and sale to another buyer. They need capital to finance their inventories. The capital available to them thus limits their ability to offer liquidity. Because market making is very risky, investors generally dislike investing in market-making operations. Market-making firms with significant external financing typically have excellent risk management systems that prevent their dealers from generating large losses.

 The next section introduces the concept of scalping.

 Scalping

 Scalping is a type of trading that makes small and fast profits by quickly (typically no more than a few minutes in large positions) and continuously acquiring and unwinding their positions. Traders that engage in scalping are referred to as scalpers.

 When engaged in scalping, a trader requires a live feed of quotes in order to move fast. The trader, also called the day trader, must follow a strict exit strategy because one large loss could eliminate the many small gains the trader worked to accumulate.

 Active traders such as day traders are strong believers in market timing, a key component of actively managed investment strategies. For example, if traders can predict when the market will go up and down, they can make trades to turn that market move into a profit. Obviously, this is a difficult and strenuous task as one needs to watch the market continuously, from daily to even hourly, as compared to long-term position traders that invest for the long run.

 The next section introduces the concept of portfolio rebalancing.

 Portfolio Rebalancing

 As time goes on, a portfolio’s current asset allocation will drift away from an investor’s original target asset allocation. If left unadjusted, the portfolio will either become too risky or too conservative. Such rebalancing is completed by changing the position of one or more assets in the portfolio, either buying or selling, with the goal of maximizing the portfolio return or hedging another financial instrument.

 Asset allocations in a portfolio can change as market performance alters the values of the assets due to price changes. Rebalancing involves periodically buying or selling the assets in a portfolio to regain and maintain that original, desired level of asset allocation defined by an investor’s risk and reward profile.

 There are several reasons why a portfolio may deviate from its target allocation over time, such as due to market fluctuations, additional cash injection or withdrawal, and changes in risk tolerance. We can perform portfolio rebalancing using either a time-based rebalancing approach (e.g., quarterly or annually) or a threshold-based rebalancing approach, which occurs when the allocation of an asset class deviates from the target by a predefined percentage.

 In the world of quantitative trading, Python has emerged as a powerful tool for formulating and implementing trading algorithms. Part of the reason is its comprehensive open source libraries and strong community support. In the next section, we will discuss the practical aspect of financial data analysis and start by acquiring and summarizing the stock data using Python.

 Getting Started with Financial Data Analysis

 Financial data analysis is the process of processing and analyzing financial data to support decision-making in various financial applications, such as investing, trading, risk management, and corporate finance. It involves the use of advanced analytical techniques and models to identify the underlying patterns, trends, and relationships in the data, which will be used to support more informed financial decisions.

 The interval of stock data can be different, such as by minute, hour, or day. Since time is continuous, we need a measure to summarize the profile of the stock price data within the interval. Let us start by introducing one of the most popular ways to summarize stock data.

 Summarizing Stock Prices

 The most common type of summary for stock data is the daily OHLC prices (open, high, low, close). An OHLC chart is a bar chart that shows open, high, low, and closing prices for each period, often daily. They present a day’s four major data points, with the closing price considered the most important indicator by many traders.

 The OHLC chart, similar to the candlestick chart shown in Figure 1-6, is useful because it can show increasing or decreasing momentum. When the open and closing prices have a big gap in between, it shows a strong momentum for an increase or decrease in the day. When the open and closing prices are close, it shows indecision or a weak momentum. The high and low prices show the full price range and can be used to assess the volatility.

 Figure 1-6 shows two candlestick charts, both summarizing the price movements over a specified period, for example, daily. The color represents emotions for the stock price movement, with an up candle shaded green and a down candle shaded red, although these colors can be altered in the specific trading platform. A collection of candlestick charts can be used to determine the direction of the market movement. Each candlestick chart consists of four main points: open, high, low, and close, following the sequence of time in the period. The open and close points determine the real body of the candlestick. The green color represents a bullish candlestick, that is, the stock price closes above where it opens. Similarly, the red color represents a bearish candlestick, that is, the stock price closes below where it opens.
 [image:]
 2 diagrams of candlesticks. The labeled parts in both candlesticks from the top to the bottom are high, close, real body, open, and low. The broad middle part is the real body.

Figure 1-6
 Illustrating the bullish candlestick in green and bearish candlestick in red

 Let us examine the bullish candle in the green of a trading day. When the market starts, the stock assumes an opening price and starts to move. Across the day, the stock will experience the highest price point (high) and the lowest price point (low), where the gap in between indicates the momentum of the movement. We know for a fact that the high will always be higher than the low, as long as there is movement. When the market closes, the stock registers a close. Figure 1-7 depicts a sample movement path summarized by the green candlestick.
 [image:]
 A line graph of price versus time. It has an unsymmetrical sine wave curve. The beginning point is labeled open. The highest peak is labeled high. The maximum dip is labeled low. The bend point is labeled close.

Figure 1-7
 A sample path of stock price movement represented by the green candlestick chart. When the market starts, the stock assumes an opening price and starts to move. It will experience the highest price point (high) and the lowest price point (low), where the gap in between indicates the momentum of the movement. When the market closes, the stock registers a close

 Next, we will switch gears and start working on the actual stock price data using Python. We will download the data from Yahoo! Finance and introduce different ways to graph the data.

 Downloading Stock Price Data

 Yahoo! Finance is a common source where we can get market data. To download the stock price data, we can use the yfinance library, a popular open source (and free) library, to access the financial data available on Yahoo! Finance. It is relatively quick to set up and offers a high level of granularity in the data (covering daily or even per-minute data).

 To start with, we need to install the yfinance package via the pip command in the Jupyter notebook environment and import it:

 !pip install yfinance

 import yfinance as yf

 Next, we can use the Ticker() module from the yfinance package to observe the profile information of a specific stock. The following code snippet obtains the ticker information on Microsoft and prints it out via the info attribute:

 # use the Ticker module to access ticker data

 msft = yf.Ticker("MSFT")

 # get stock info

 >>> msft.info

 {'zip': '98052-6399',

 'sector': 'Technology',

 'fullTimeEmployees': 221000,

 'longBusinessSummary': 'Microsoft Corporation develops, licenses, and supports software, services, devices, and solutions worldwide. The company operates in three segments: Productivity and Business Processes, Intelligent Cloud, and More Personal Computing. The Productivity and Business Processes segment offers Office, Exchange, SharePoint, Microsoft Teams, Office 365 Security and Compliance, Microsoft Viva, and Skype for Business; Skype, Outlook.com, OneDrive, and LinkedIn; and Dynamics 365, a set of cloud-based and on-premises business solutions for organizations and enterprise divisions. The Intelligent Cloud segment licenses SQL, Windows Servers, Visual Studio, System Center, and related Client Access Licenses; GitHub that provides a collaboration platform and code hosting service for developers; Nuance provides healthcare and enterprise AI solutions; and Azure, a cloud platform. It also offers enterprise support, Microsoft consulting, and nuance professional services to assist customers in developing, deploying, and managing Microsoft server and desktop solutions; and training and certification on Microsoft products. The More Personal Computing segment provides Windows original equipment manufacturer (OEM) licensing and other non-volume licensing of the Windows operating system; Windows Commercial, such as volume licensing of the Windows operating system, Windows cloud services, and other Windows commercial offerings; patent licensing; and Windows Internet of Things. It also offers Surface, PC accessories, PCs, tablets, gaming and entertainment consoles, and other devices; Gaming, including Xbox hardware, and Xbox content and services; video games and third-party video game royalties; and Search, including Bing and Microsoft advertising. The company sells its products through OEMs, distributors, and resellers; and directly through digital marketplaces, online stores, and retail stores. Microsoft Corporation was founded in 1975 and is headquartered in Redmond, Washington.',

 'city': 'Redmond',

 'phone': '425 882 8080',

 'state': 'WA',

 'country': 'United States',

 'companyOfficers': [],

 'website': 'https://www.microsoft.com',

 'maxAge': 1,

 'address1': 'One Microsoft Way',

 'fax': '425 706 7329',

 'industry': 'Software—Infrastructure',

 'ebitdaMargins': 0.48672,

 'profitMargins': 0.34366,

 'grossMargins': 0.6826,

 'operatingCashflow': 87693000704,

 'revenueGrowth': 0.106,

 'operatingMargins': 0.41691002,

 'ebitda': 98841001984,

 'targetLowPrice': 234,

 'recommendationKey': 'buy',

 'grossProfits': 135620000000,

 'freeCashflow': 46155874304,

 'targetMedianPrice': 290,

 'currentPrice': 238.73,

 'earningsGrowth': -0.133,

 'currentRatio': 1.84,

 'returnOnAssets': 0.15223,

 'numberOfAnalystOpinions': 45,

 'targetMeanPrice': 296.91,

 'debtToEquity': 44.442,

 'returnOnEquity': 0.42875,

 'targetHighPrice': 411,

 'totalCash': 107244003328,

 'totalDebt': 77136003072,

 'totalRevenue': 203074994176,

 'totalCashPerShare': 14.387,

 'financialCurrency': 'USD',

 'revenuePerShare': 27.142,

 'quickRatio': 1.585,

 'recommendationMean': 1.8,

 'exchange': 'NMS',

 'shortName': 'Microsoft Corporation',

 'longName': 'Microsoft Corporation',

 'exchangeTimezoneName': 'America/New_York',

 'exchangeTimezoneShortName': 'EST',

 'isEsgPopulated': False,

 'gmtOffSetMilliseconds': '-18000000',

 'quoteType': 'EQUITY',

 'symbol': 'MSFT',

 'messageBoardId': 'finmb_21835',

 'market': 'us_market',

 'annualHoldingsTurnover': None,

 'enterpriseToRevenue': 8.615,

 'beta3Year': None,

 'enterpriseToEbitda': 17.7,

 '52WeekChange': -0.30287635,

 'morningStarRiskRating': None,

 'forwardEps': 11.18,

 'revenueQuarterlyGrowth': None,

 'sharesOutstanding': 7454470144,

 'fundInceptionDate': None,

 'annualReportExpenseRatio': None,

 'totalAssets': None,

 'bookValue': 23.276,

 'sharesShort': 40445360,

 'sharesPercentSharesOut': 0.0054,

 'fundFamily': None,

 'lastFiscalYearEnd': 1656547200,

 'heldPercentInstitutions': 0.72300005,

 'netIncomeToCommon': 69788999680,

 'trailingEps': 9.29,

 'lastDividendValue': 0.68,

 'SandP52WeekChange': -0.19752294,

 'priceToBook': 10.256488,

 'heldPercentInsiders': 0.00059,

 'nextFiscalYearEnd': 1719705600,

 'yield': None,

 'mostRecentQuarter': 1664496000,

 'shortRatio': 1.38,

 'sharesShortPreviousMonthDate': 1667174400,

 'floatShares': 7447764118,

 'beta': 0.933189,

 'enterpriseValue': 1749498331136,

 'priceHint': 2,

 'threeYearAverageReturn': None,

 'lastSplitDate': 1045526400,

 'lastSplitFactor': '2:1',

 'legalType': None,

 'lastDividendDate': 1668556800,

 'morningStarOverallRating': None,

 'earningsQuarterlyGrowth': -0.144,

 'priceToSalesTrailing12Months': 8.763292,

 'dateShortInterest': 1669766400,

 'pegRatio': 1.92,

 'ytdReturn': None,

 'forwardPE': 21.353308,

 'lastCapGain': None,

 'shortPercentOfFloat': 0.0054,

 'sharesShortPriorMonth': 36909448,

 'impliedSharesOutstanding': 0,

 'category': None,

 'fiveYearAverageReturn': None,

 'previousClose': 238.19,

 'regularMarketOpen': 236.11,

 'twoHundredDayAverage': 261.927,

 'trailingAnnualDividendYield': 0.010663755,

 'payoutRatio': 0.26700002,

 'volume24Hr': None,

 'regularMarketDayHigh': 238.87,

 'navPrice': None,

 'averageDailyVolume10Day': 35831410,

 'regularMarketPreviousClose': 238.19,

 'fiftyDayAverage': 240.6454,

 'trailingAnnualDividendRate': 2.54,

 'open': 236.11,

 'toCurrency': None,

 'averageVolume10days': 35831410,

 'expireDate': None,

 'algorithm': None,

 'dividendRate': 2.72,

 'exDividendDate': 1676419200,

 'circulatingSupply': None,

 'startDate': None,

 'regularMarketDayLow': 233.9428,

 'currency': 'USD',

 'trailingPE': 25.697523,

 'regularMarketVolume': 21206982,

 'lastMarket': None,

 'maxSupply': None,

 'openInterest': None,

 'marketCap': 1779605569536,

 'volumeAllCurrencies': None,

 'strikePrice': None,

 'averageVolume': 30495014,

 'dayLow': 233.9428,

 'ask': 238.45,

 'askSize': 800,

 'volume': 21206982,

 'fiftyTwoWeekHigh': 344.3,

 'fromCurrency': None,

 'fiveYearAvgDividendYield': 1.17,

 'fiftyTwoWeekLow': 213.43,

 'bid': 238.2,

 'tradeable': False,

 'dividendYield': 0.0114,

 'bidSize': 1000,

 'dayHigh': 238.87,

 'coinMarketCapLink': None,

 'regularMarketPrice': 238.73,

 'preMarketPrice': None,

 'logo_url': 'https://logo.clearbit.com/microsoft.com',

 'trailingPegRatio': 2.1113}

 The result shows a long list of information about Microsoft, useful for our initial analysis of a particular stock. Note that all this information is structured in the form of a dictionary, making it easy for us to access a specific piece of information. For example, the following code snippet prints the market cap of the stock:

 # access a specific attribute from the dictionary

 >>> msft.info["marketCap"]

 1779605569536

 Such structured information, also considered metadata in this context, comes in handy when we analyze multiple tickers together.

 Now let us focus on the actual stock data of Microsoft. In Listing 1-2, we download the stock price data of Microsoft from the beginning of 2022 till the current date. Here, the current date is determined automatically by the today() function from the datetime package, which means we will obtain a different (bigger) result every time we run the code on a future date. We also specify the format of the date to be “YYYY-mm-dd,” an important practice to unify the date format.

 # download daily stock price data by passing in specified ticker and date range

 from datetime import datetime

 today_date = datetime.today().strftime('%Y-%m-%d')

 print(today_date)

 data = yf.download("MSFT", start="2022-01-01", end=today_date)

 Listing 1-2
 Downloading stock price data

 We can examine the first few rows by calling the head() function of the DataFrame. The resulting table contains price-related information such as open, high, low, close, and adjustment close prices, along with the daily trading volume:

 # view the first few rows.

 >>> data.head()

 Open High Low Close Adj Close Volume

 Date

 2022-01-03 335.350006 338.000000 329.779999 334.750000 331.642456 28865100

 2022-01-04 334.829987 335.200012 326.119995 329.010010 325.955750 32674300

 2022-01-05 325.859985 326.070007 315.980011 316.380005 313.442993 40054300

 2022-01-06 313.149994 318.700012 311.489990 313.880005 310.966217 39646100

 2022-01-07 314.149994 316.500000 310.089996 314.040009 311.124725 32720000

 We can also view the last few rows using the tail() function:

 >>> data.tail()

 Open High Low Close Adj Close Volume

 Date

 2022-12-30 238.210007 239.960007 236.660004 239.820007 239.820007 21930800

 2023-01-03 243.080002 245.750000 237.399994 239.580002 239.580002 25740000

 2023-01-04 232.279999 232.869995 225.960007 229.100006 229.100006 50623400

 2023-01-05 227.199997 227.550003 221.759995 222.309998 222.309998 39585600

 2023-01-06 223.000000 225.759995 219.350006 224.929993 224.929993 43597700

 It is also a good habit to check the dimension of the DataFrame using the shape() function:

 # check data dimension/size

 >>> data.shape

 (254, 6)

 The following section will look at visualizing the time series data via interactive charts.

 Visualizing Stock Price Data

 The plotly package is an interactive graphing library that supports exploratory and expository visualizations. Let us demonstrate its use via a few examples, focusing on the stock’s closing price for now.

 First, let us visualize the closing price as a time series plot. As the name suggests, a time series is a sequence of data with a timestamp in each data point. Thus, when plotted on a graph, the horizontal axis indicates the time that flows from left to right, and the vertical axis represents the quantity of interest, that is, the daily closing price. Also, since each timestamp corresponds to one stand-alone point on the graph, we will connect all neighboring points via straight lines to form the final time series plot and show the trending patterns.

 Listing 1-3 completes this task. Here, we pass the index of the DataFrame to indicate the dates on the x-axis (passed to the x argument) and the closing pricing on the y-axis (passed to the y argument) and specify the presentation mode to be in lines.

 # plot closing price as a time series chart

 import plotly.graph_objects as go

 fig = go.Figure(data=go.Scatter(x=data.index,y=data['Close'], mode='lines'))

 fig.show()

 Listing 1-3
 Plotting the daily closing price

 Running the code produces Figure 1-8. Note that the graph is interactive; by hovering over each point, the corresponding date and closing price come forward.
 [image:]
 A line graph of the daily closing price versus months. It has a fluctuating descending curve. The labeled point on a peak is (August 18, 2023, 290.17).

Figure 1-8
 Interactive time series plot of the daily closing price of Microsoft

 We can also enrich the graph by overlaying the trading volume information, as shown in Listing 1-4.

 # overlay the trading volume

 from plotly.subplots import make_subplots

 fig2 = make_subplots(specs=[[{"secondary_y": True}]])

 fig2.add_trace(go.Scatter(x=data.index,y=data['Close'],name='Price'),secondary_y=False)

 fig2.add_trace(go.Bar(x=data.index,y=data['Volume'],name='Volume'),secondary_y=True)

 fig2.show()

 Listing 1-4
 Overlaying trading volume in the daily closing price chart

 Running the code generates Figure 1-9. Note that the trading volume assumes a secondary y-axis on the right, by setting secondary_y=True.
 [image:]
 A dual y-axis clustered bar line graph of daily closing price and trading volume versus months. It has a fluctuating descending curve for the daily closing price. The bars for the trading volume have a fluctuating trend. A labeled point on a high bar is (October 26, 2023, 82.5432 millions).

Figure 1-9
 Visualizing the daily closing price and trading volume of Microsoft

 Based on this graph, a few bars stand out, making it difficult to see the line chart. Let us change it by controlling the magnitude of the secondary y-axis. Specifically, we can enlarge the total magnitude of the right y-axis to make these bars appear shorter, as shown in Listing 1-5.

 # rescale volume

 fig2.update_yaxes(range=[0,500000000],secondary_y=True)

 fig2.update_yaxes(visible=True, secondary_y=True)

 fig2

 Listing 1-5
 Rescaling the y-axis

 Running the code generates Figure 1-10. Now the bars appear shorter given a bigger range (0 to 500M) of the y-axis on the right.
 [image:]
 A dual y-axis clustered bar line graph of daily closing price and trading volume versus months. It has a fluctuating descending curve for the daily closing price. The bars for the trading volume have a fluctuating trend. The bars are shorter due to a larger range of 0 to 500 millions.

Figure 1-10
 Controlling the magnitude of the daily trading volume as bars

 Lastly, let us plot all the price points via candlestick charts. This requires us to pass in all the price-related information in the DataFrame. The Candlestick() function can help us achieve this, as shown in Listing 1-6.

 # switch to candlestick chart

 fig3 = make_subplots(specs=[[{"secondary_y": True}]])

 fig3.add_trace(go.Candlestick(x=data.index,

 open=data['Open'],

 high=data['High'],

 low=data['Low'],

 close=data['Close'],

))

 fig3

 Listing 1-6
 Plotting the candlestick chart

 Running the code generates Figure 1-11. Each bar represents one day’s summary points (open, high, low, and close), with the green color indicating an increase in price and red indicating a decrease in price at the end of the trading day.
 [image:]
 A candlestick chart of daily price points versus months. It has a fluctuating descending trend of bullish and bearish candlesticks. Below is a sliding window with the same trend of candlesticks, which can be used to zoom in on a specific range.

Figure 1-11
 Visualizing all daily price points of Microsoft as candlestick charts

 Notice the sliding window at the bottom. We can use it to zoom in a specific range, as shown in Figure 1-12. The dates along the x-axis are automatically adjusted as we zoom in. Also, note that these bars come in groups of five. This is no incidence—there are five trading days in a week.
 [image:]
 A zoomed view of a candlestick chart of daily price points versus months. It has a fluctuating descending trend of bullish and bearish candlesticks. Below is a sliding window with the same trend of candlesticks and the selected range to zoom.

Figure 1-12
 Zooming in a specific range

 Summary

 In this chapter, we covered the basics of quantitative trading, covering topics such as institutional algorithmic trading, major asset classes, derivatives such as options, market structures, buy-side investors, market making, scalping, and portfolio rebalancing. We then delved into exploratory data analysis of the stock data, starting with summarizing the periodic data points using candlestick charts. We also reviewed the practical side of things, covering data retrieval, analysis, and visualization via interactive charts. These will serve as the building blocks as we develop different trading strategies later on.

 Exercises

 	
 List a few financial instruments and describe the risk and reward profile.

	
 Can a model get exposed to the test set data during training?

	
 A model is considered better if it does better than another model on the training set, correct?

	
 For daily stock price data, can we aggregate it as weekly data? How about hourly?

	
 What is the payoff function for the issuer of a European call option? Put option? How is it connected to the payoff function of the buyer?

	
 Suppose you purchase a futures contract that requires you to sell a particular commodity one month later for a price of $10,000. What is your payoff when the price of the commodity grows to $12,000? Drops to $7000?

	
 What about the payoff for the buyer in both cases?

	
 How do the results change if we switch to an options contract with the same strike price and delivery date?

	
 Draw a sample stock price curve of a red candlestick.

	
 Download the stock price data of Apple, plot it as both a line and a candlestick chart, and analyze its trend.

	
 Calculate the YTD (year-to-date) average stock price of Apple.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2023
P. LiuQuantitative Trading Strategies Using Pythonhttps://doi.org/10.1007/978-1-4842-9675-2_2

2. Electronic Market

Peng Liu1
(1)Singapore, Singapore

 In this chapter, we delve into the world of electronic markets, which have revolutionized the way financial instruments are traded. With the rapid advancements in technology and the widespread adoption of the Internet, electronic markets have largely replaced traditional, floor-based trading venues, ushering in an era of speed, efficiency, and accessibility for market participants around the globe.

 Electronic markets facilitate the buying and selling of financial instruments, such as stocks, bonds, currencies, and commodities (covered in Chapter 1), through computerized systems and networks. They have played a critical role in democratizing access to financial markets, enabling a broader range of participants, including retail investors, institutional investors, and high-frequency traders, to engage in trading activities with ease and transparency. At the heart of electronic markets lies the trading mechanism, which governs how buy and sell orders are matched, executed, and settled.

 Furthermore, electronic markets offer a variety of order types that cater to the diverse needs and objectives of traders. These order types can be used to achieve specific goals, such as minimizing market impact, ensuring a desired level of execution, or managing risk. In this chapter, we will examine the most common types of orders, including market orders, limit orders, stop orders, and their various iterations.

 As we progress through this chapter, readers will gain a comprehensive understanding of the inner workings of electronic markets, the trading mechanisms that drive them, and the wide array of order types available to market participants.

 Introducing Electronic Market

 The electronic market operates on the basis of a discrete price grid where prices are arranged linearly according to the price magnitude. Every market has a minimum tick size. One tick is the minimum price difference between any two adjacent prices on the price grid of a trading instrument in a market. The price movements of different trading instruments could vary a lot, and we use their respective tick sizes to represent the minimum amount they can move up or down on an exchange. Stocks generally trade in one-cent tick size increments, currencies in pips (percentage in point or price interest point), and rates in basis points (bps). When the price grid is such that prices are arranged from the smallest price to the largest price, it is called the price ladder.

 The price ladder plays a crucial role in electronic markets by providing a visual representation of the order book, which contains a list of all pending buy and sell orders for a specific trading instrument. The order book is continuously updated in real time, reflecting the dynamic nature of the market as new orders are placed, modified, or canceled. Each rung of the price ladder corresponds to a specific price level, with buy orders (or bids) listed on one side and sell orders (or asks) on the other. The highest bid and the lowest ask are referred to as the best bid and best ask, respectively, and the gap between them is known as the bid-ask spread.

 Market participants can use the information provided by the price ladder and order book to gain valuable insights into a particular trading instrument’s supply and demand dynamics. This data can help traders identify potential trading opportunities, assess liquidity, and gauge the depth of the market at various price levels. For instance, large clusters of orders at specific price points may indicate significant support or resistance levels, while a thinning order book might suggest a lack of liquidity and increased price volatility. By carefully analyzing the price ladder and order book, traders can make more informed decisions and develop strategies that take advantage of the prevailing market conditions. Additionally, understanding the role of tick sizes in the price grid is crucial for traders when placing orders, managing risk, and executing trades, as even small changes in tick sizes can have a substantial impact on the potential profit or loss of a trade.

 Electronic Order

 The rise of electronic trading has brought about significant improvements in the efficiency, speed, and accessibility of financial markets. Transactions that once took minutes or hours to complete can now be executed in milliseconds or even microseconds, thanks to the power of high-speed networks and advanced computer algorithms. As a result, market participants can take advantage of fleeting trading opportunities, react more swiftly to market news, and benefit from tighter bid-ask spreads, which translate into lower transaction costs.

 Moreover, electronic trading has democratized access to global financial markets, allowing individual investors to trade alongside institutional players such as hedge funds, banks, and proprietary trading firms. Through user-friendly online trading platforms, retail investors can access a vast array of financial instruments, from stocks and bonds to currencies and derivatives, and participate in various markets around the world. These platforms provide a wealth of market data, research tools, and risk management features, empowering investors to make more informed decisions and execute their trading strategies with precision and ease. At the same time, the increased transparency and availability of market data have fostered a more competitive landscape, driving innovation in trading strategies, algorithms, and financial products.

 Orders are short messages to the exchange through the broker. An order is a set of instructions the trader gives to the exchange. It must contain at least the following instructions:	
 Contract/security (or contracts/securities) to trade

	
 Buy or sell or cancel or modify

	
 Size: How many shares or contracts to trade

 From an investor’s perspective, making a trade via a computer system is simple and easy. However, the complex process behind the scenes sits on top of an impressive array of technology. What was once associated with shouting traders and wild hand gestures in open outcry markets has now become more closely associated with computerized trading strategies.

 When you place an order to trade a financial instrument, the complex technology enables your brokerage to interact with all the securities exchanges looking to execute the trade. Those exchanges simultaneously interact with all the brokerages to facilitate trading activities.

 For example, the Singapore Exchange (SGX), a Singaporean investment holding company, acts through its central depository (CDP) as a central counterparty to all matched trades (mainly securities) executed on the SGX ST Trading Engine, as well as privately negotiated married trades that are reported to the clearing house for clearing on the trade date. Being a central counterparty (CCP), CDP assumes the role of the seller to the buying clearing member and buyer to the selling clearing member. CDP, therefore, takes the buyer’s credit risks and assumes the seller’s delivery risks. This interposing of CDP as the CCP eliminates settlement uncertainty for market participants. SGX provides a centralized order-driven market with automated order routing, supported by decentralized computer networks. There are no designated market makers (liquidity providers), and member firms act as brokers or principals for clearing and settlement.

 Proprietary and Agency Trading

 In the world of finance, the distinction between proprietary and agency trading plays a crucial role in determining the objectives and motivations behind trading activities. While both types of trading involve the execution of orders in financial markets, they serve different purposes and are subject to different regulations and risk profiles.

 Proprietary trading allows financial institutions to generate profits by leveraging their own capital and expertise in market analysis, risk management, and trading strategies. Prop traders often engage in various strategies such as arbitrage, market making, and statistical arbitrage, seeking opportunities to capitalize on market inefficiencies and price discrepancies. However, proprietary trading carries a higher degree of risk due to the full responsibility for potential losses. As a result, proprietary trading desks are often subject to strict risk management controls and regulatory oversight, particularly in the wake of the 2008 financial crisis.

 On the other hand, agency trading focuses on providing execution services for clients, prioritizing the best execution of client orders, and ensuring that clients’ interests are aligned with the broker’s actions. The primary goal of agency trading is to achieve the most favorable terms for the client while minimizing the impact of the trade on the market. Brokers engaged in agency trading earn income through commissions and fees, rather than by taking positions in the market. Since agency traders do not assume market risk on behalf of their clients, they are subject to different regulatory and compliance requirements than proprietary traders.

 A broker or trading agency can execute trading orders for their clients or their own agency. The main difference between agency and proprietary trading is the trading client, that is, for whom the trade is executed, and whose investment portfolio is changed as a result of trading. Agency trading is any type of trade that a broker executes for their clients/investors who are charged a brokerage fee. Proprietary trading, also known as prop trading, refers to when an agency or broker executes trades for the benefit of its own institution. The orders submitted by traders for their own accounts/institutions are called proprietary orders. Since most traders cannot access the markets directly, most orders are agency orders, which a broker presents to the market.

 Agency orders can be held or not held. Held orders are those when the broker has an obligation to a client to fill the order. Market-not-held orders are institutional orders where the trader hires a broker-dealer to execute the order. Working on an order means a broker-dealer takes some time to fill the order.

 Understanding the differences between proprietary and agency trading is essential for market participants to navigate the complex world of financial markets. While proprietary trading focuses on generating profits through active market participation, agency trading emphasizes the execution of client orders in the best possible manner, ensuring that the interests of clients are at the forefront of the broker’s actions.

 Order Matching Systems

 A securities exchange needs to pair one or more unsolicited buy orders to one or more sell orders to make trades. This process is called matching the trading orders. When an investor wants to purchase a specific amount of stock, and another wants to sell the same quantity at the same price, the orders from both sides match, and a transaction takes place. The process of pairing these orders is called order matching, whereby exchanges identify buy orders, or bids, with corresponding sell orders, or asks, to pair and execute both orders.

 This order matching process has become almost entirely automated, using rule-based systems to execute the pair of trades if certain conditions are satisfied. Most exchanges, some brokerages, and almost all electronic communication networks use rule-based order matching systems. These trading rules arrange trades from the orders of specific sizes that traders submit to them, not requiring face-to-face negotiation. Note that these systems follow particular order precedence rules.

 Order precedence rules are a set of guidelines that dictate the priority in which orders are matched and executed in the market. These rules aim to ensure a fair and efficient order matching process by determining which orders take precedence over others in the queue. There are three primary order precedence rules followed by most trading systems: price, time, and size.	
 Price precedence: Orders with better prices are given priority over orders with worse prices. In the case of buy orders, higher bids have precedence, while for sell orders, lower asks are prioritized. This rule ensures that market participants who are willing to buy at higher prices or sell at lower prices get their orders executed first.

	
 Time precedence: If two or more orders have the same price, the order that was placed earlier takes precedence. This rule, also known as the “first-come, first-served” principle, rewards traders who submit their orders earlier, ensuring that they are not disadvantaged by others submitting orders at the same price later.

	
 Size precedence: In some markets, when multiple orders have the same price and time priority, the order with the larger size may be given precedence. This rule encourages market participants to place larger orders, which can contribute to enhanced liquidity in the market.

 There are three common types of orders that an electronic exchange sees: limit orders, market orders, and cancelation orders. Limit orders must include information such as the limit price, order size, and trade direction (buy or sell). Market orders must include the order size and trade direction. A cancelation order cancels a standing limit order entirely or reduces its order size.

 Note that some exchanges, such as the London Stock Exchange and the NYSE Group, support functionality to allow traders to specify whether their limit orders are to be displayed or not on the limit order book (LOB). This is called lit (displayed) or unlit (not displayed). In that case, the limit order must have at least the following:	
 Limit price

	
 Order size

	
 Trade direction

	
 Display or non-display

	
 If displayed, the size to be displayed

 Several common order precedence rules are considered for execution. For the order type precedence, market orders always rank above limit orders. For the price precedence, a more competitive price rule is. The display precedence takes the form of lit or unlit preference, and the time precedence observes the time of arrival for the orders.

 The rule used by most exchanges is the price/display/time precedence rule to determine the priority of execution. Specifically, the highest bids and lowest offers always execute before lower bids and higher offers. Among equally priced orders, displayed orders always get executed before non-displayed orders. Among displayed and non-displayed orders at the same price level, the time of arrival determines an order’s priority.

 The price/display/time precedence rule ensures a fair and efficient trading environment by prioritizing orders based on their competitiveness, visibility, and time of submission. By adhering to this rule, electronic exchanges can maintain a transparent and orderly market, encouraging market participants to submit competitive orders and enhancing liquidity.

 In addition to the common order types and precedence rules discussed earlier, many electronic exchanges also offer a variety of advanced order types and conditional orders designed to cater to the diverse needs of traders. These may include	
 Stop orders: These are orders that are triggered once a specific price level is reached. Stop orders can be used to limit losses, protect profits, or enter a position once a particular price level is breached. They can be further classified into stop-market and stop-limit orders.

	
 Iceberg orders: These are large orders that are divided into smaller parts, with only a portion of the order visible on the order book at any given time. Once the visible portion is executed, the next portion is revealed. This helps to minimize the market impact of large orders and can prevent information leakage.

	
 Trailing stop orders: These orders allow traders to set a stop price that trails the market price by a specific distance. As the market price moves in a favorable direction, the stop price adjusts accordingly, helping to protect gains while giving the position room to run.

 By offering a diverse range of order types and adhering to well-defined precedence rules, electronic exchanges can provide market participants with a flexible and efficient trading environment. This enables traders to effectively manage risk, optimize execution, and tailor their trading strategies to the unique characteristics of the financial instruments they trade.

 Market Order

 The market order is the most common transaction type in the stock markets. It is an instruction by an investor to a broker to buy or sell stock shares, bonds, or other assets at the best available price in the current financial market. This means a market order instructs the broker to buy or sell a security immediately at the current price. Since there will be plenty of willing buyers and sellers for large-cap stocks, futures, or ETFs, market orders are best used for buying or selling these financial instruments with high liquidity.

 Since the market order is an instruction to trade a given quantity at the best price possible, the priority of the market-order trader is to execute the order immediately with no specific price limit. Thus, the main risk is the uncertainty of the ultimate execution price. Once submitted, the market order cannot be canceled since it has already been executed.

 Note that the electronic market orders don’t wait. Upon receipt of a market order, the exchange will match it against the standing limit orders immediately until it is completely filled. Such immediacy characterizes market orders compared to limit orders (introduced in the following section). This means that when filling a market order, the order matching system will buy at the (ideally) lowest ask price or sell at the highest bid price, thus ending up paying the bid/ask spread.

 Given the nature of market orders, they are particularly suitable for situations where the primary goal is to execute a trade quickly, rather than achieving a specific target price. This makes market orders especially useful in fast-moving or volatile market conditions, where getting in or out of a position promptly is crucial. However, the urgency of market orders also exposes investors to the risk of price slippage, which occurs when the actual execution price differs from the expected price due to rapid market fluctuations.

 It is important for investors to understand that market orders offer no price protection, meaning that the execution price may be significantly different from the current market price, especially for illiquid or thinly traded instruments. In such cases, limit orders may be a more appropriate choice, as they allow investors to specify a maximum purchase price or a minimum sale price for their orders, providing some level of price control. However, limit orders come with the trade-off of potentially not being executed if the specified price is not met.

 Limit Order

 A limit order, which instructs the broker to buy or sell at the best price available only if the price is no worse than the price limit specified by the investor, is the main alternative to the market order for most individual investors. It is preferable when buying or selling a less frequently traded or highly volatile asset.

 During regular hours, limit orders are arranged according to the exchange’s limit price and time of receipt. When a buy market order arrives, first in the queue limit order selling at the lowest ask price gets matched first. When a sell market order arrives, first in the queue limit orders bidding at the highest bid price gets executed first. If the order is not executable, the order will be a standing offer and placed in a file called a limit order book.

 A buy limit order is an order to purchase a financial instrument at or below a specified price, allowing traders to control how much they would pay for the instrument. In other words, the investor is guaranteed to pay that price or less by using a limit order to make a purchase.

 Although the price is guaranteed, the order being filled is not guaranteed to be executed in time. After all, a buy limit order will only be executed if the asking price is at or below the specified limit price. If the asset does not reach the specified price or moves too quickly through the price, the order is not filled and will be stacked into the limit order book, causing the investor to miss out on the trading opportunity. That is, by using a buy limit order, the investor is guaranteed to pay the buy limit order price or better but is not guaranteed to have the order filled.

 The same reasoning applies to the sell limit order, where the investor will sell the financial instrument at or above a specified selling price. A sell limit order allows traders to set a minimum selling price for their financial instruments. In this case, the investor is guaranteed to receive the specified price or a better price for the sale, but there is no guarantee that the order will be executed. A sell limit order will only be filled if the bid price is at or above the specified limit price. If the asset does not reach the specified price or moves too quickly through the price, the order is not filled and will be stored in the limit order book, potentially causing the investor to miss out on the trading opportunity.

 Limit orders offer more control over the execution price than market orders and can be particularly useful when trading illiquid or volatile assets, where price slippage is more likely. However, they also come with the risk that the order may not be executed if the specified price is not reached, potentially resulting in missed trading opportunities.

 To maximize the chances of a limit order being executed, traders should carefully monitor market conditions and adjust their limit prices accordingly. They may also consider using other advanced order types, such as stop-limit orders or trailing stop-limit orders, which combine the features of limit orders with additional conditions, providing even greater control over the execution price and risk management.

 Limit Order Book

 Note that a limit order book likely contains multiple bids and asks for the same instrument. These two types of trading directions, that is, bid and ask, represent the demand and supply side of the market. These limit orders are shelved on the book because they are not executable at the moment, for a reason. That reason is the bid/ask spread, defined as the price difference between the best bid and the best offer/ask of a LOB for a given instrument.

 The best bid represents the limit order with the highest price the underlying investor from the demand side is willing to pay for the specific asset, and the best offer/ask is the lowest price some other investor from the supply side is willing to sell out the specific asset. When this gap is negative, the bordering trades will be automatically filled, creating a new spread based on the new best bid and offer. Popular large-cap stocks will have little or no spread, as you can almost always find another party who is willing to make the trade. The spread becomes wider for those less popular instruments. This means you should be careful when entering a position for these less frequently traded assets, as it will be challenging to exit the position later on.

 The bid/ask spread plays a critical role in trading as it directly relates to the cost of trading and the liquidity of the trading market for the specific asset. A small spread indicates a highly liquid market where multiple buyers and sellers are involved. This leads to lower transaction costs and faster order execution. On the other hand, a big spread suggests a less liquid market. In this case, fewer market participants are interested in trading the asset, leading to potentially higher transaction costs and slower order execution.

 Market makers provide liquidity by continuously quoting both bid and ask prices for a particular asset, thus playing an essential role in maintaining a healthy bid/ask spread and providing sufficient liquidity to the market. These market participants stand ready to buy or sell the asset at their quoted prices, ensuring that there is always a counterparty available for traders looking to execute their orders. As a result, the presence of active market makers can, and are incentivized to, help reduce the bid/ask spread and improve overall market efficiency.

 Figure 2-1 illustrates the limit order book for a particular asset. There are multiple price points (along with their sizes/volumes) for the demand from the buy side and the supply from the sell side. We take the lowest ask price of the upper box as the best offer and the highest bid price of the lower box as the best bid. The difference between the two gives the bid/ask spread. A bigger gap corresponds to lower liquidity. A market maker would be incentivized to reduce the gap by providing more liquidity to the market, making the trades of this asset more executable.
 [image:]
 A diagram that describes steps of the limit order book of a specific asset. There is a relation between the supply side and the demand side through bid ask spread, best offer or ask, and best bid. Supply side includes volume for ask prices and demand side, for bid prices.

Figure 2-1
 Illustrating the limit order book that consolidates all standing limit orders (prices and quantities) from the buy side and the sell side. A market maker is incentivized to reduce the gap by providing more liquidity to the market, serving as the liquidity provider, and making the trades of this asset more executable

 We can also look at the marketability of buy and sell orders at different ranges. As shown in Figure 2-2, we divide the limit order book into five different regions: above the best offer, at the best offer, between the best bid and best offer, at the best bid, and below the best bid. For a buy order, it will be (easily) marketable if the price is at regions 1 and 2, since those eager to sell the asset (at the bottom part of the top box) would love to see a buyer with an expected or even higher bid. We call the buy order in the market if it lives within region 3, a situation in flux. Region 4 is borderline and is called at the market, representing the best bid of all the buyers in the limit order book. When the price of the buy order drops to region 5, there is no marginal competitiveness, and the order will simply be buried among the rest of the buy orders, leaving it behind the market. The same reasoning applies to the marketability of sell orders as well.
 [image:]
 A diagram to analyze the marketability of buy orders and sell orders. The different regions of the limit order book between ask price and bid price are above the best offer, at the best offer, between the best bid and best offer, at the best bid, and below the best bid.

Figure 2-2
 Analyzing the marketability of buy and sell orders within different regions of the limit order book

 It is important for traders and investors to understand the marketability of buy and sell orders in these different regions so as to optimize their order execution strategies. By strategically placing orders in the appropriate regions, traders can increase the likelihood of their orders being executed at the desired price levels, thus minimizing transaction costs and better managing trading risks. Furthermore, by monitoring the market dynamics and the depth of the limit order book (the number of levels of buy and sell limit orders available in the order book at a given point in time), traders can gain valuable insights into the market dynamics of the asset.

 Display vs. Non-display Orders

 A display order is a visible order, and a non-display order is a hidden one that is not displayed on the limit order book. The former is much more heavily regulated than the latter.

 A visible order is prohibited from crossing the market. For example, if an offer is already on one exchange, another exchange cannot post a bid for the same price or higher, thus creating a locked market. These regulations ensure a stable bid/ask spread for a particular asset. On the other hand, hidden orders have no such regulation.

 Hidden, or non-display, orders offer traders a degree of anonymity by concealing their intentions and visibility from other market participants. This is particularly useful for large institutional investors who want to avoid revealing their large positions and prevent other traders from front-running or anticipating their trades. While hidden orders provide anonymity, they usually have lower execution priority compared to visible orders at the same price level. This means that when equally priced orders are matched, visible orders are executed first, followed by hidden orders based on their time of arrival.

 The choice between using display and non-display orders depends on specific trading objectives and market conditions. Display orders are suitable for traders who prioritize execution speed and are willing to reveal their intentions to the market. Non-display orders, on the other hand, are more appropriate for traders who prioritize discretion and want to minimize the resulting market impact. However, they may have to accept the trade-off of lower execution priority and increased time to fill the order.

 Stop Order

 By default, a stop order is a market order conditioned on a preset stop price. A stop order becomes a market order as soon as the current market price reaches or crosses the preset stop price.

 A stop order is always executed in the direction that the asset price is moving, assuming that such movement will continue in its original direction. For instance, if the market for a particular asset is moving downward, the stop order will be to sell at a preset price below the current market price. This is called a stop-loss order, which is placed to limit potential losses when the investor is in an open position of the asset. The stop-loss order will take the investor out of the open position at a preset level if the market moves against the existing position.

 Stop-loss orders are essential, especially when one cannot actively keep an eye on the market. It’s thus recommended to always have a stop-loss order in place for any existing position in order to gain protection from a sudden drop in price due to adverse market news. We can also call it a sell-stop order, which is always placed below the current market price and is typically used to limit a loss or protect a profit on a long stock position.

 Alternatively, if the price is moving upward, the stop order will be to buy once the security reaches a preset price above the current market price. This is called a stop-entry order, or buy-stop order, which can be used to enter the market in the direction the market is moving. A buy-stop order is always placed above the current market price.

 Therefore, before entering a position, we can use a stop-entry (buy-stop) order to long an asset if the market price exceeds the preset stop price, and use a sell-stop order to short an asset if the market price drops below the preset stop price. If we are already in a long (or short) position, we can use a sell-stop (or buy-stop) order to limit the loss of the position in case the market price drops (or rises).

 Also, note that stop orders can be subject to slippage, that is, the difference between the expected execution price and the actual execution price. Since stop orders are triggered and converted into market orders once the preset stop price is reached, there is a possibility that the order may be executed at a worse price than initially anticipated, especially in fast-moving or illiquid markets. As a result, slippage can lead to a larger loss or a smaller profit than originally expected.

 Let us look at one example. Say you observe that a particular stock has been moving in a sideways range (a fairly stable range without forming any distinct trends over some period of time) between $20 and $30, and you believe it will ultimately break out the upper limit and move higher. You would like to employ breakout trading, which means you will take a position within the early stage of an upward-moving trend. In this case, you could place a stop-entry order above the current upper limit of $30. The price of the stop-entry order can be set as $30.25 to allow for a margin of error. Placing the stop-entry order gets you into the market once the sideways range is broken to the upside. Also, now that you’re long in the position, if you’re a disciplined trader, you’ll want to immediately establish a regular stop-loss sell order to limit your losses in case the upward trend is false.

 When placing a stop order, we have (unknowingly) entered into the world of algorithmic trading. Here, the logic of algorithmic trading is simple: if the market price reaches or crosses the stop price, issue a market order; else, keep checking the market price.

 Stop-Limit Order

 A stop-limit order is similar to a stop order in that a stop price will activate the order. However, unlike the stop order, which is submitted as a market order when elected, the stop-limit order is submitted as a limit order. A stop-limit order combines the features of a stop order and a limit order, providing more control over the execution price while still allowing for the possibility of protecting against significant losses or locking in profits. Specifically, when the market price reaches the preset stop price, the stop-limit order becomes a limit order that will be executed at the specified limit price or better. This ensures that the order will not be executed at a price worse than the limit price, thus mitigating the risk associated with market orders.

 A stop-limit order is a conditional trade that combines the features of a stop order with those of a limit order and is used to mitigate risk. So a stop-limit order is a limit order contingent on a preset stop price and a limit price. A stop-limit order eliminates the price risk associated with a stop order where the execution price cannot be guaranteed. However, it exposes the investor to the risk that the order may never fill even if the stop price is reached. A stop-limit order gives traders precise control over when the order should be filled, but the order is not guaranteed to be executed. Traders often use stop-limit orders to lock in profits or limit downside losses, although they could “miss the market” altogether, resulting in missed opportunities if the asset’s price moves in the desired direction but doesn’t satisfy the limit price condition.

 In summary, stop-limit orders offer a balance between limiting the execution price and stopping potential loss due to significant adverse market movements. However, they come with the risk of not being executed if the limit price is not met, potentially causing traders to miss out on potential profits or fail to limit their losses effectively.

 Let us look at an example algorithm behind the stop-limit order. Suppose research shows that the slippage is usually three ticks. Regarding the algorithmic rule for a buy-stop-limit order, if the market price reaches or crosses the stop price, the system would issue a limit order of a limit price three ticks above the stop price. Otherwise, it will keep checking the market price. Regarding the algorithmic rule for a sell-stop-limit order, if the market price reaches or crosses the stop price, the system would issue a limit order of a limit price three ticks below the stop price. Otherwise, it will keep checking the market price.

 Pegged Order

 A pegged order is a type of order that allows the limit price to be dynamic, adjusting automatically based on a reference price. This can be particularly useful in spread trading or other trading strategies that require staying in sync with the market’s best bid, best offer, or mid-price.

 The price in a limit order is fixed and static; we can only issue a new order to have a new limit price. However, there are situations when we would like the limit price to be dynamic. For example, suppose a trading strategy must trade at an offset of the best bid or best ask. But these two quotes fluctuate, and you want your limit order prices to change in sync with them. Pegged orders allow you to do just that.

 Placing a pegged order requires specifying the reference price to track, along with an optional differential offset. The differential offset can be a positive or negative multiple of the tick size that represents the minimum price movement for the particular asset. The trading system will then manage the pegged order by automatically modifying its price on the order book as the reference price moves, maintaining the desired price relationship.

 A pegged order is a limit order with a dynamic limit price. It allows traders to keep their orders in line with the changing market conditions without having to monitor and adjust their orders manually and constantly. This can be particularly beneficial in fast-moving markets or when trading strategies require maintaining specific price relationships with the best bid, best offer, or mid-price. However, it’s essential to understand that pegged orders still carry the risk of not being executed if the market moves unfavorably, and the dynamic limit price never reaches a level at which the order can be filled.

 The pegged order is often used in spread trading, which involves the simultaneous buying and selling of related securities as a unit, designed to profit from a change in the spread (price difference) between the two securities. Here, spread trading is a strategy that takes advantage of the price difference, or spread, between two related securities. In this strategy, a trader simultaneously buys one security and sells another security to profit from changes in the spread between the two. The objective is to capitalize on the temporary mispricing or changing price relationship between the securities rather than betting on the direction of the individual securities themselves.

 So how does a pegged order work? When entering a pegged order, you must specify a reference price they wish to track, which could be the best bid, best offer, or mid-price. Best bid and best offer pegs may track at a differential offset, which is specified as a multiple of the whole tick size. This means that the trading system will manage the pegged order by automatically modifying the pegged order’s price on the order book as the reference price moves.

 Let us look at an example of pegged order. Suppose your strategy requires you to buy a limit order to be filled at three ticks lower than the current best bid and a sell limit order to be filled at two ticks higher than the current best offer. When the bid price changes, the pegged order becomes a composite order comprising	
 A cancelation order of total order size (one buy limit order and one sell limit order)

	
 A new buy limit order with a limit price pegged at the new best bid less an offset of three ticks, and a new sell limit order with a limit price pegged at the new best ask plus an offset of two ticks

 Let’s say the current best bid is $100, and the best offer is $101. According to this strategy, we will place a buy limit order at $100 – (3 ticks) and a sell limit order at $101 + (2 ticks). Assuming each tick is $0.01, the buy limit order will be placed at $99.97, and the sell limit order will be placed at $101.02.

 Now, if the best bid changes to $100.50 and the best offer changes to $101.50, the pegged orders will automatically adjust to the new reference prices. Specifically, the buy limit order will now be placed at $100.50 – (3 ticks) = $100.47, and the sell limit order will be placed at $101.50 + (2 ticks) = $101.52.

 The pseudocode for the algorithm behind a pegged buy order with an offset of x is as follows:	1.

 If the bid price increases to B+	a.

 Cancel the current limit order

	b.

 Submit a buy limit order at a price of B+ − x

	2.

 Else	a.

 If the bid price decreases to B−	i.

 If the current limit order is not filled	1.

 Cancel the current limit order

	2.

 Submit a buy limit order at a price of B− − x

	ii.

 Else	1.

 Keep checking whether the bid price has changed

 When the bid price changes, the algorithm checks if the change is an increase or a decrease. If the bid price increases, the current limit order is canceled, and a new buy limit order is submitted at the new bid price minus the offset x. If the bid price decreases, the algorithm first checks if the current limit order has been filled or not. If the current limit order is not filled, the order is canceled, and a new buy limit order is submitted at the new bid price minus the offset x. If the order is filled, no further action is needed. The algorithm will continue monitoring the bid price for changes and adjust the buy limit order accordingly.

 Pay attention to the inner if condition in the else statement. Here, we check if the current limit order is filled. Since there is a price drop, we would execute the limit order if it drops to the limit price of the buy limit order.

 We can similarly write out the pseudocode for the algorithm behind a pegged sell order with an offset of x as follows:	1.

 If the ask price decreases to A−	a.

 Cancel the current limit order

	b.

 Submit a sell limit order at a price of A− + x

	2.

 Else	a.

 If the ask price increases to A+	i.

 If the current limit order is not filled	1.

 Cancel the current limit order

	2.

 Submit a sell limit order at a price of A− + x

	ii.

 Else	1.

 Keep checking whether the bid price has changed

 Trailing Stop Order

 Suppose you have a winning position and want to make it run. And you want to protect your gain. This can be achieved with a stop order. But stop order is static. If the run continues, you want to raise the stop order automatically in tandem.

 So trailing stop order is invented for this purpose. A trailing (sell) stop order sets the initial stop price at a fixed amount below the market price. As the market price rises, the stop price rises by the trailing amount. But if the stock price falls, the stop price remains unchanged. When the stop price is hit, a market order is submitted. Reverse this for a buy trailing stop order. This strategy may allow a trader to limit the maximum possible loss without limiting possible gain.

 A trailing stop order is a useful tool for managing positions in a dynamic market. It allows investors to secure gains and limit losses by automatically adjusting the stop price as the market moves in a favorable direction. This flexibility is particularly beneficial when a position is experiencing significant price fluctuations, as it helps protect profits without limiting potential upside.

 Therefore, a trailing stop is a modification of a typical stop order that can be set at a defined percentage or dollar amount away from a security’s current market price. An investor places a trailing stop loss below the current market price for a long position and a trailing stop above the current market price for a short position. It is designed to lock in profits or limit losses as a trade moves favorably.

 Note that the trailing stops only move if the price moves favorably. Once it moves to lock in a profit or reduce a loss, it does not move back in the other direction. The trailing stop order is thus a dynamically changing stop order.

 Market If Touched Order

 A market if touched (MIT) is an order to buy (sell) below (above) the market. This order is held in the system until the trigger price is touched and is then submitted as a market order if and when a specified price level is reached. It is a conditional order that becomes a market order when a security reaches a specified price. When using a buy MIT order, a broker will wait until the security reaches the specified level before purchasing the asset. Correspondingly, a sell MIT order will trigger a market sell order when the security reaches a specified sell price.

 Note that MIT orders are typically used to buy when the price falls or sell when the price rises. This is in contrast to stop orders and limit orders. For example, a buy MIT order looks for the price of an asset to fall, while a buy-stop order activates when the market value of the security increases past a specified level. On the other hand, the buy limit order only activates when the market value of the security reaches the limit price.

 Take an asset whose current price is $288.7, for example. There is a large buy limit order size of $287.9. You want to buy at $288.0 and be among the first to buy. With an MIT, you can send a market order to buy when touched.

 Summarizing Major Types of Orders

 Table 2-1 summarizes the major types of orders, including market order, limit order, stop order, stop-limit order, pegged order, trailing stop order, and market if touched order.Table 2-1
 Major types of orders

	
 Order Type

 	
 Attributes

 	
 Note

	
 Market order

 	
 Trading direction and volume

 	
 Buy or sell immediately at the current best price by matching against standing limit orders; no price limit; uncertainty in the execution price; pay for the bid-ask spread

	
 Limit order

 	
 Limit price, trading direction, and volume

 	
 Guaranteed to buy/sell an asset at the specified limit price or better for a buy/sell limit order; execution not guaranteed; order is shelved into the LOB if not executable; different marketability

	
 Stop order

 	
 Stop price, trading direction, and volume

 	
 Market order with a stop price; executed in the direction of asset price movement; applicable for both entering a position and already in a position

	
 Stop-limit order

 	
 Stop price, limit price, trading direction, and volume

 	
 A limit order is contingent on a preset stop price and a limit price; execution is not guaranteed

	
 Pegged order

 	
 Reference price, offset, trading direction, and volume

 	
 A limit order with a dynamic limit price; consists of a cancelation order and a new limit order when reference price changes

	
 Trailing stop order

 	
 Trailing amount, trading direction, and volume

 	
 Dynamic stop order; trailing stops only move if the price moves favorably

	
 Market if touched order

 	
 Trigger price, trading direction, and volume

 	
 A market order to buy (sell) below (above) the market; buy when the price falls or sell when the price rises

 More Order Types: Limit and Cancelation

 There exist some other order types. For example, fill or kill (FOK) is a conditional type of order used in securities trading that instructs a brokerage to execute a transaction immediately and completely (the fill part) or not at all (the kill part). With FOK, the limit order is either completely filled at a specified or better price or completely canceled. It combines an all-or-none (AON) specification indicating it must be filled entirely; if not, it will be canceled. FOK orders are often used when a trader wants to ensure that a large order is executed quickly and fully without partial fills. This type of order is more suitable for large orders or illiquid markets, where a trader wants to avoid the risk of moving the market price.

 Similarly, fill and kill (FAK) is a limit order that is executed against any existing orders at the stated limit price or better, up to the volume of the order. Any residual volume from this order is then immediately canceled. FAK orders are useful when a trader wants to take advantage of short-term market opportunities without leaving an open order on the books. FAK orders provide a balance between getting an immediate fill for the desired quantity, but without the all-or-none restriction of an FOK order.

 Both FOK and FAK orders can be useful in specific trading scenarios, depending on the trader’s objectives and market conditions. These conditional order types offer greater control over trade executions and can help traders manage risk and capture market opportunities more effectively.

 In addition, in high-frequency trading (HFT), an “immediate or cancel” (IOC) order is a type of order that must be executed as soon as it is placed in the market. The unfilled portion is immediately canceled when the order cannot be fully executed.

 Price Impact

 It is important to note the potential price impact of large market orders, which tend to move prices. And the reason is the lack of sufficient liquidity for large orders to fill at the best price. Large market orders can have a significant impact on prices, especially when there is insufficient liquidity at the best price level. This phenomenon is known as price slippage, which occurs when the actual execution price of an order differs from the expected price due to insufficient liquidity.

 For example, suppose that a 10K-share market buy order arrives, and the best offer is $100 for 5K shares. Half the order will fill at $100, but the next 5K shares will have to fill at the next price in the book, say at $100.02 (where we assume there are also 5K shares offered). The volume-weighted average price for the order will be $100.01, which is larger than $100.00. Thus, the price might move further following the trade.

 To mitigate the impact of large market orders on prices, traders can consider using alternative order types or strategies, such as using limit orders to control the price at which their orders get executed or iceberg orders that divide large orders into smaller parts, thus reducing the visibility of the order’s total size.

 Order Flow

 In trading, order flow is an important concept. It is the overall trade direction at any given period of time. Ex post, order flow can be inferred from the trade direction. For example, a trade is said to be buyer initiated if the trade took place at the ask price or higher. In this case, the buyer is willing to absorb the bid/ask spread and pay a higher price. The trade sign is +1.

 Conversely, a trade is seller initiated if the trade occurred at the bid price or lower. In this case, the seller is willing to absorb the bid/ask spread and sell for a low price. The trade sign is –1.

 In essence, the order flow suggests the net direction of the market. When there were more buy (sell) market orders (MO) than sell (buy) MO, the market direction would typically be up (down). Many papers in the literature have provided ample evidence of this intuitive observation. It is also well known among traders. By analyzing the order flow, traders can identify buying and selling pressure and anticipate potential price movements. The concept of order flow is based on the premise that the net direction of market orders can provide insights into market trends and potential price changes.

 A positive net order flow, where there are more buy market orders than sell market orders, generally indicates a bullish market with upward price movement. Conversely, a negative net order flow, where there are more sell market orders than buy market orders, signals a bearish market with a downward price movement. This correlation between order flow and market direction is well documented in academic literature and widely recognized by traders.

 So how do we measure the direction of market order flows? One way is to use the net trade sign: the total number of buyer-initiated trades less the total number of seller-initiated trades. We can also use the net trade volume sign: the aggregate size of buyer-initiated trades less the aggregate size of seller-initiated trades.

 That being said, if we can forecast the direction of order flow ex ante, the trade direction in the future can be anticipated. In other words, a positive order flow suggests the market is likely to go up, while a negative order flow suggests the market is likely to go down.

 Therefore, we can use some models to forecast the order flow on the fly. A simple model is to generate a trading signal if the forecasted order flow for the next period exceeds some threshold. This threshold can be determined via backtesting (to be covered in a later chapter).

 In the following section, we will look at a sample limit order book data and develop familiarity with both concepts and implementation.

 Working with LOB Data

 The LOB data mainly consists of limit prices and associated trading volume at each price level. Due to the vast disparity in different trading platforms, compiling all LOB data for a specific asset is difficult. Fortunately, we begin to see a coordinated effort in the research community in compiling and sharing such data with open access.

 One example is a recent paper in 2020 titled “Benchmark Dataset for Mid-Price Forecasting of Limit Order Book Data with Machine Learning Methods,” where the authors share the first publicly available benchmark dataset of high-frequency limit order markets for mid-price prediction. The paper extracted normalized data representations of time series data for five stocks from the NASDAQ Nordic stock market for a time period of ten consecutive days, leading to a dataset of around four million time series samples in total and covering a complete market-wide history of ten trading days.

 The dataset shared by the paper is available at https://etsin.fairdata.fi/dataset/73eb48d7-4dbc-4a10-a52a-da745b47a649. We have downloaded a sample file named “Train_Dst_NoAuction_DecPre_CF_7.txt” and placed it in the data folder. Listing 2-1 imports a few packages for data processing and visualization, followed by loading the dataset into df.

 import numpy as np

 import pandas as pd

 import plotly.express as px

 from plotly.subplots import make_subplots

 import plotly.graph_objects as go

 df = np.loadtxt('data/Train_Dst_NoAuction_DecPre_CF_7.txt')

 Listing 2-1
 Loading the LOB dataset

 We can access the dimensions of the sample dataset via the shape attribute:

 >>> df.shape

 (149, 254750)

 In this dataset, the rows indicate features such as asset price and volume, and the columns indicate timestamps. Typically, we would use the rows to indicate observation-level data per timestamp and use the columns to represent features or attributes. We would need to transpose the dataset.

 Also, based on the documentation on the dataset, the first 40 rows carry 10 levels of bid and ask from the order book, along with the volume of each particular price point. We have a total of 40 entries per timestamp since each side (buy and sell) contains 10 price levels, and each level includes two points: price and volume. In other words, the limit order book in a single time snapshot shows up as an array of 40 elements.

 The following code prints out price-volume data of ten price levels for the sell and the buy sides at the first timestamp:

 >>> df[:40,0]

 array([0.2615 , 0.00353, 0.2606 , 0.00326, 0.2618 , 0.002 , 0.2604 ,

 0.00682, 0.2619 , 0.00164, 0.2602 , 0.00786, 0.262 , 0.00532,

 0.26 , 0.00893, 0.2621 , 0.00151, 0.2599 , 0.00159, 0.2623 ,

 0.00837, 0.2595 , 0.001 , 0.2625 , 0.0015 , 0.2593 , 0.00143,

 0.2626 , 0.00787, 0.2591 , 0.00134, 0.2629 , 0.00146, 0.2588 ,

 0.00123, 0.2633 , 0.00311, 0.2579 , 0.00128])

 Since each level consists of a price-volume pair for both sides (buy and sell), we know that for the first four entries, 0.2615 indicates the ask price, 0.00353 as the volume at that ask price level, 0.2606 as the buy price, and 0.00326 as the volume at that buy price level. Every two entries constitute a price-volume pair, and every price level corresponds to two consecutive pairs. We have a total of 10 price levels, corresponding to 20 price-volume pairs, including 10 for the buy side and 10 for the sell side. Also, we know that price levels on the sell side should always be higher than on the buy side, and a quick check verifies this.

 Let us extract the price-volume pairs across all timestamps. Remember to transpose the dataset, which is achieved by accessing the .T attribute. The final result is then converted into a Pandas DataFrame format for better processing later. Remember to print a few rows of the transformed dataset in df2 for a sanity check:

 df2 = pd.DataFrame(df[:40, :].T)

 Understanding Label Distribution

 The dataset comes with target labels that assume one of the following three values: up, down, or stationary movements. This label is used to describe the direction of movement of the mid-price for the limit order book. This label is further differentiated by different windows of lookahead in order to analyze the lagging effect further. Specifically, we would look at the direction of movement after 10, 20, 30, 50, and 100 events (timestamps).

 Information on the target labels is contained between rows 145 and 149 of the original DataFrame. In Listing 2-2, we define a function to plot the distribution of the three movements as bar plots (histograms) for each lookahead window, repeated across all five windows. These five subplots are arranged together in one row and five columns via the make_subplots() function.

 labels = ["Up", "Stationary", "Down"]

 def printdistribution(dataset):

 fig = make_subplots(rows=1, cols=5,

 subplot_titles=("k=10", "k=20", "k=30", "k=50", "k=100"))

 fig.add_trace(

 go.Histogram(x=dataset[144,:], histnorm='percent'),

 row=1, col=1

)

 fig.add_trace(

 go.Histogram(x=dataset[145,:], histnorm='percent'),

 row=1, col=2

)

 fig.add_trace(

 go.Histogram(x=dataset[146,:], histnorm='percent'),

 row=1, col=3

)

 fig.add_trace(

 go.Histogram(x=dataset[147,:], histnorm='percent'),

 row=1, col=4

)

 fig.add_trace(

 go.Histogram(x=dataset[148,:], histnorm='percent'),

 row=1, col=5,

)

 fig.update_layout(

 title="Label distribution of mid-point movement",

 width=700,

 height=300,

 showlegend=False

)

 fig.update_xaxes(ticktext=labels, tickvals=[1, 2, 3], tickangle = -45)

 fig.update_yaxes(visible=False, showticklabels=False)

 fig.layout.yaxis.title.text = 'percent'

 fig.show()

 >>> printdistribution(df)

 Listing 2-2
 Plotting the label distribution of the mid-point movement

 Running the code generates Figure 2-3. The plot suggests an increasingly obvious trend for upward and downward movements as the lookahead window gets large.
 [image:]
 A histogram presents three types of movement, up, stationary, and down for each of the values of K equal to 10, 20, 30, 50, and 100 respectively. k = 50 has the highest value in all 3 types of movement.

Figure 2-3
 Histogram of three types of movement across different lookahead windows in the limit order book

 Understanding Price-Volume Data

 We stored the price-volume data in the df2 variable earlier. This DataFrame has 40 columns, corresponding to 10 price levels for each side, with a unique price-volume pair at each price level. For example, the first four columns belong to the level 1 price. Within the first four columns, the first is the level 1 ask price, the second is the level 1 ask volume, the third is the level 1 bid price, and the fourth is the level 1 bid volume. This pattern repeats across all 10 price levels, thus forming a total of 40 columns. Each row is a snapshot at a particular timestamp, and together these 40 columns form that snapshot.

 Let us get the dimension of df2:

 >>> df2.shape

 (254750, 40)

 Now we would like to dissect this DataFrame and allocate each component to a separate DataFrame. In Listing 2-3, we subset the DataFrame based on the sequence of columns for each component, resulting in four DataFrames: dfAskPrices, dfAskVolumes, dfBidPrices, and dfBidVolumes. Subsetting the DataFrame is completed by calling the loc() function and supplying the corresponding row and column indexes.

 dfAskPrices = df2.loc[:, range(0,40,4)]

 dfAskVolumes = df2.loc[:, range(1,40,4)]

 dfBidPrices = df2.loc[:, range(2,40,4)]

 dfBidVolumes = df2.loc[:, range(3,40,4)]

 Listing 2-3
 Extracting the bid/ask prices and volumes

 One thing to note is that the ask and bid prices do not follow the same sequence order. Printing out the first row of dfAskPrices and dfBidPrices helps us verify this:

 >>> dfAskPrices.loc[0,:]

 0 0.2615

 4 0.2618

 8 0.2619

 12 0.2620

 16 0.2621

 20 0.2623

 24 0.2625

 28 0.2626

 32 0.2629

 36 0.2633

 Name: 0, dtype: float64

 >>> dfBidPrices.loc[0,:]

 2 0.2606

 6 0.2604

 10 0.2602

 14 0.2600

 18 0.2599

 22 0.2595

 26 0.2593

 30 0.2591

 34 0.2588

 38 0.2579

 Name: 0, dtype: float64

 The results show that the ask prices follow an increasing sequence, while the bid prices follow a decreasing sequence. Since we often work with price data that follow an increasing sequence in analyses such as plotting, we need to reverse the order of the bid prices. The order could be reversed by rearranging the sequence of columns in the DataFrame. The current sequence of the columns is

 >>> dfBidPrices.columns

 Int64Index([2, 6, 10, 14, 18, 22, 26, 30, 34, 38], dtype='int64')

 We can reverse the ordering by the [::-1] command:

 >>> dfBidPrices.columns[::-1]

 Int64Index([38, 34, 30, 26, 22, 18, 14, 10, 6, 2], dtype='int64')

 Now let us reverse both bid prices and volumes, where we passed the reversed column names to the respective DataFrames based on column selection:

 dfBidPrices = dfBidPrices[dfBidPrices.columns[::-1]]

 dfBidVolumes = dfBidVolumes[dfBidVolumes.columns[::-1]]

 Examining the first row of dfBidPrices shows an increasing price trend now:

 >>> dfBidPrices.loc[0,:]

 38 0.2579

 34 0.2588

 30 0.2591

 26 0.2593

 22 0.2595

 18 0.2599

 14 0.2600

 10 0.2602

 6 0.2604

 2 0.2606

 Name: 0, dtype: float64

 Note that the index for each entry still stays the same. We may need to reset the index depending on the specific follow-up process.

 Since the price increases from the bottom (buy side) to the top (sell side) in a limit order book, we can join the price tables from both sides to show the continuum. There are multiple ways to join two tables, and we choose outer join to avoid missing any entry. Listing 2-4 joins the price and volume tables from both sides, followed by renaming the columns.

 # Concatenate Bid and Ask together to form complete orderbook picture

 dfPrices = dfBidPrices.join(dfAskPrices, how='outer')

 dfVolumnes = dfBidVolumes.join(dfAskVolumes, how='outer')

 #Rename columns starting from 1->20

 dfPrices.columns = range(1, 21)

 dfVolumnes.columns = range(1, 21)

 Listing 2-4
 Concatenating bid and ask tables

 We can print out the first row of dfPrices to check the prices across all levels at the first timestamp:

 >>> dfPrices.loc[0,:]

 1 0.2579

 2 0.2588

 3 0.2591

 4 0.2593

 5 0.2595

 6 0.2599

 7 0.2600

 8 0.2602

 9 0.2604

 10 0.2606

 11 0.2615

 12 0.2618

 13 0.2619

 14 0.2620

 15 0.2621

 16 0.2623

 17 0.2625

 18 0.2626

 19 0.2629

 20 0.2633

 Name: 0, dtype: float64

 The result shows that all prices are in increasing order. Since the first ten columns show the buy-side prices and the last ten columns belong to the sell-side prices, the best bid price would be the highest price at the buy side, that is, 0.2606, while the best ask price (best offer) would be the lowest price at the sell side, that is, 0.2615. The difference between the two price points gives us the bid/ask spread for the current snapshot, and its movement across different snapshots indicates market dynamics.

 We can plot these prices as time series, where each price curve represents the evolution of price for the specific particular of a buy or sell trading side. As a matter of fact, these curves should not intersect with each other; otherwise, they would have been transacted and jointly removed from that price level. Listing 2-5 plots the 20 price curves for the first 50 timestamps.

 fig = go.Figure()

 for i in dfPrices.columns:

 fig.add_trace(go.Scatter(y=dfPrices[:50][i]))

 fig.update_layout(

 title='10 price levels of each side of the orderbook',

 xaxis_title="Time snapshot index",

 yaxis_title="Price levels",

 height=500,

 showlegend=False,

)

 >>> fig.show()

 Listing 2-5
 Visualizing sample price curves

 Running the code generates Figure 2-4. Note the big gap in the middle; this is the bid/ask spread of the limit order book. The figure also tells us something about market dynamics. For example, at time step 20, we observe a sudden jump in ask prices, which may be caused by a certain event in the market, causing the sellers to raise the prices as a whole.
 [image:]
 A multiline graph of 10 price levels versus the time snapshot index presents 2 sets of curves. The curves increase with irregular step trends and do not intersect with each other. The first set of curves start between 0.258 and 0.261, and the second set between 0.2618 to 0.264.

Figure 2-4
 Visualizing the 10 price curves for both sides for the first 50 time snapshots. Each curve represents the price evolution at a particular price level and will not intersect with each other. The big gap in the middle presents the bid/ask spread of the limit order book

 Note that the graph is interactive, offering the usual set of flexible controls (such as zooming, highlighting via selection, and additional data upon hovering) based on the plotly library.

 We can also plot the volume data as stacked bar charts. The following code snippet retrieves the first 5 snapshots of volume data and plots the 20 levels of volumes as stack bars:

 px.bar(dfVolumnes.head(5).transpose(), orientation='h')

 Running this code generates Figure 2-5.
 [image:]
 A horizontal stacked bar graph of index versus value for 20 price levels with 5 variables, 0, 1, 2, 3, and 4. For variable 4, the value is 0.00311, at index 18. Index 8 has the highest length, followed by 7, and 9.

Figure 2-5
 Plotting the first 5 snapshots of volume as bar charts across all 20 price levels

 Let us plot the volume at each price level for a particular time snapshot. We can use the iloc() function to access a particular portion based on the positional index. For example, the following code prints out the first row of dfPrices:

 >>> dfPrices.iloc[0]

 1 0.2579

 2 0.2588

 3 0.2591

 4 0.2593

 5 0.2595

 6 0.2599

 7 0.2600

 8 0.2602

 9 0.2604

 10 0.2606

 11 0.2615

 12 0.2618

 13 0.2619

 14 0.2620

 15 0.2621

 16 0.2623

 17 0.2625

 18 0.2626

 19 0.2629

 20 0.2633

 Name: 0, dtype: float64

 We can plot the volume data of a particular timestamp as bars. As shown in Listing 2-6, we use list comprehension to format the prices to four decimal places before passing them to the y argument in the go.Bar() function.

 colors = ['lightslategrey',] * 10

 colors = colors + ['crimson',] * 10

 fig = go.Figure()

 timestamp = 0

 fig.add_trace(go.Bar(

 y= ['price-'+'{:.4f}'.format(x) for x in dfPrices.iloc[timestamp].tolist()],

 x=dfVolumnes.iloc[timestamp].tolist(),

 orientation='h',

 marker_color=colors

))

 fig.update_layout(

 title='Volume of 10 price levels of each side of the orderbook',

 xaxis_title="Volume",

 yaxis_title="Price levels",

 # template='plotly_dark'

)

 fig.show()

 Listing 2-6
 Visualizing the volume data

 Running the code generates Figure 2-6.
 [image:]
 A horizontal bar graph of price levels versus volume for 10 price levels. Volume is 0.00787 at price of 0.2626. Volume is the highest at price 0.2600.

Figure 2-6
 Volume data of 20 price levels (10 for the sell side and 10 for the buy side) for a particular snapshot in time

 We can also combine the previous two charts together, as shown in Listing 2-7.

 fig = make_subplots(rows=1, cols=2)

 for i in dfPrices.columns:

 fig.add_trace(go.Scatter(y=dfPrices.head(20)[i]), row=1, col=1)

 timestamp = 0

 fig.add_trace(go.Bar(

 y= ['price-'+'{:.4f}'.format(x) for x in dfPrices.iloc[timestamp].tolist()],

 x= dfVolumnes.iloc[timestamp].tolist(),

 orientation='h',

 marker_color=colors

), row=1, col=2)

 fig.update_layout(

 title='10 price levels of each side of the orderbook for multiple time points, bar size represents volume',

 xaxis_title="Time snapshot",

 yaxis_title="Price levels",

 template='plotly_dark'

)

 fig.show()

 Listing 2-7
 Combining multiple charts together

 Running the code generates Figure 2-7.
 [image:]
 A multiline graph of 10 price levels versus time snapshot presents the variation with 2 sets of curves at 4 different time points. A horizontal bar graph of price versus volume presents prices for 9 different traces. For trace 20, the volume is 0.00532, and the price is 0.2620.

Figure 2-7
 Combining the price and volume data for each price level

 Visualizing Price Movement

 The price at each price level may move across different timestamps as a reflection of market dynamics. Visualizing the whole times series of the price index may be too granular at first glance, since there are too many observations, given the nature of the ultra high-frequency data. Instead, we can pick a fixed-size window to plot the price at a particular period within the window and then move the window forward in time to show the change in price. The rolling window can then be used to generate an animation of prices moving up and down.

 Listing 2-8 achieves the desired plotting effect. Here, we set the window length to 100 and choose the second price level for visualization. The animation is essentially a collection of frames changing from one to another. Thus, we supply the corresponding sequence of data for each frame in the animation.

 widthOfTime = 100

 priceLevel = 1

 fig = go.Figure(

 data=[go.Scatter(x=dfPrices.index[:widthOfTime].tolist(), y=dfPrices[:widthOfTime][priceLevel].tolist(),

 name="frame",

 mode="lines",

 line=dict(width=2, color="blue")),

],

 layout=go.Layout(width=1000, height=400,

 # xaxis=dict(range=[0, 100], autorange=False, zeroline=False),

 # yaxis=dict(range=[0, 1], autorange=False, zeroline=False),

 title="10 price levels of each side of the orderbook",

 xaxis_title="Time snapshot index",

 yaxis_title="Price levels",

 template='plotly_dark',

 hovermode="closest",

 updatemenus=[dict(type="buttons",

 showactive=True,

 x=0.01,

 xanchor="left",

 y=1.15,

 yanchor="top",

 font={"color":'blue'},

 buttons=[dict(label="Play",

 method="animate",

 args=[None])])]),

 frames=[go.Frame(

 data=[go.Scatter(

 x=dfPrices.iloc[k:k+widthOfTime].index.tolist(),

 y=dfPrices.iloc[k:k+widthOfTime][priceLevel].tolist(),

 mode="lines",

 line=dict(color="blue", width=2))

]) for k in range(widthOfTime, 1000)]

)

 fig.show()

 Listing 2-8
 Animating the price movement

 Running the code generates Figure 2-8. We can click the Play button to start animating the line chart, which will change shape as we move forward.
 [image:]
 A line graph presents the variation in price levels with 10 different time snapshot indexes. It indicates 10 price levels for each side of the order book. The line is very fluctuating and at time snapshot index 58, the price level is 0.26.

Figure 2-8
 Animating the price changes of a selected price level via a rolling window of 100 timestamps

 In addition, we can also plot the animation of change in the volume across all the price levels, as shown in Listing 2-9. The change in volume also indicates the market dynamics in terms of supply and demand, although less so direct than the price itself.

 timeStampStart = 100

 fig = go.Figure(

 data=[go.Bar(y= ['price-'+'{:.4f}'.format(x) for x in dfPrices[:timeStampStart].values[0].tolist()],

 x=dfVolumnes[:timeStampStart].values[0].tolist(),

 orientation='h',

 name="priceBar",

 marker_color=colors),

],

 layout=go.Layout(width=800, height=450,

 title="Volume of 10 buy, sell price levels of an orderbook",

 xaxis_title="Volume",

 yaxis_title="Price levels",

 template='plotly_dark',

 hovermode="closest",

 updatemenus=[dict(type="buttons",

 showactive=True,

 x=0.01,

 xanchor="left",

 y=1.15,

 yanchor="top",

 font={"color":'blue'},

 buttons=[dict(label="Play",

 method="animate",

 args=[None])])]),

 frames=[go.Frame(

 data=[go.Bar(y= ['price-'+'{:.4f}'.format(x) for x in dfPrices.iloc[k].values.tolist()],

 x=dfVolumnes.iloc[k].values.tolist(),

 orientation='h',

 marker_color=colors)],

 layout=go.Layout(width=800, height=450,

 title="Volume of 10 buy, sell price levels of an orderbook [Snapshot=" + str(k) +"]",

 xaxis_title="Volume",

 yaxis_title="Price levels",

 template='plotly_dark',

 hovermode="closest")) for k in range(timeStampStart, 500)]

)

 fig.show()

 Listing 2-9
 Animating the volume movement

 Running the code generates Figure 2-9.
 [image:]
 A horizontal bar graph of price levels versus volume presents the volume of 10 buy, and sell price levels of an order look. When the volume is 0.00787, the price level is 0.2626.

Figure 2-9
 Visualizing the change in the volume across all the price levels

 Summary

 In this chapter, we covered the basics of the electronic market and the different types of electronic orders, including market order, stop order, limit order, and other forms of dynamic order (e.g., pegging, trailing stop, market if touched, limit, and cancelation). We discussed the mechanism of the order matching system and order flow.

 In the second section, we looked at real LOB data and discussed different ways to visualize the price and volume data, such as their movement across time. Working with the actual data by first plotting them out and performing some initial analysis is a common and important first step in the whole pipeline of devising and implementing trading strategies.

 Exercises

 	
 Write a function in Python to illustrate the algorithm of a pegged buy order and sell order. (Hint: Start by defining your own input and output.)

	
 What’s the difference between the market if touched order (MIT) and the stop order?

	
 How to calculate mid-price in a limit order book? Implement the logic in code. (Hint: Start by defining your own input and output.)

	
 Describe how a buy trailing stop order works.

	
 Should the trailing stop-loss order be placed above or below the current market price for an investor in a long position? A short position?

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2023
P. LiuQuantitative Trading Strategies Using Pythonhttps://doi.org/10.1007/978-1-4842-9675-2_3

3. Forward and Futures Contracts

Peng Liu1
(1)Singapore, Singapore

 In financial markets, forward and futures contracts serve as popular financial instruments for hedging risk (preventing or reducing potential loss) and speculation (seeking abnormal and risky profits). These contracts offer market participants the opportunity to mitigate or enlarge the impact of price fluctuations on their positions. The use of forward and futures contracts has grown exponentially over the years, as market participants increasingly recognize their potential benefits in risk management and portfolio diversification. As such, understanding the mechanics, advantages, and limitations of these contracts is essential in the dynamic financial markets.

 Forward and futures contracts find their roots in the age-old practice of producers and consumers entering into agreements to exchange goods at a future date for a predetermined price. Today, these contracts become popular financial vehicles traded on a much larger scale, encompassing a wide variety of underlying assets, including commodities, currencies, interest rates, and equity indices. Forwards are typically traded over the counter (OTC) and customized to the specific needs of the counterparties on both sides. Futures contracts are standardized products traded on regulated exchanges, just like stocks. Futures and forward contracts differ in liquidity, counterparty risk, and transparency.

 In this chapter, we delve deeper into the world of forward and futures contracts, exploring their unique characteristics, similarities, and differences. We will discuss the process of entering and settling these contracts, their role in managing risk, and the strategies employed by market participants to capitalize on anticipated price movements.

 Introducing Forward and Futures Contracts

 Forward and futures contracts are very similar in nature. Both obligate the buyer (or seller) to buy (or sell) a predetermined quantity of an underlying asset at a predetermined delivery date and price. Since the price is fixed in advance, market participants can rely on this investment vehicle to better manage their operational activities. For example, a farmer produces wheat and sells the wheat to a food manufacturing company. The wheat price changes every year, causing unexpected fluctuations on both sides of the trade. By entering a forward contract, both sides lock in the trading price and quantity, thus eliminating future uncertainty in the wheat price.

 Let us look at the buy side and the sell side when entering a given forward/futures contract. On the buy side, the buyer of the forward/futures contract takes on the obligation to purchase and receive the underlying asset at the time point when the forward/futures contract expires. On the sell side, the seller of the forward/futures contract is obliged to provide and deliver the underlying asset to the buyer at the expiration date.

 Both are derivative products because they depend on another underlying asset: grain, livestock, energy, currencies, or even securities. It obliges the buyer to purchase the underlying asset (or the seller to sell that asset) at a predetermined future price and date.

 Note that counterparty risk often constitutes the biggest risk in a forward contract. A forward contract can only be rolled forward based on the consent of both parties. Without such consent, the forward contract cannot be exercised afterward; it can only be settled between the two parties at the prespecified date.

 Futures contracts are more standardized products when compared to forward contracts. Forwards, which are similar agreements that lock in a future price at the current time, are traded OTC and have customizable terms between the counterparties. On the other hand, futures contracts come with the same terms for all counterparties, thus making futures contracts highly standardized and tradable products. In other words, we can choose to use the contract even before its expiry. For example, we can further buy or sell the contract at any time point before the expiry date, which essentially transfers the contract to another counterparty in the futures market.

 Specifically, while forward contracts are tailor-made for the specific needs of the counterparties, a futures contract is a standardized and regulated financial product (in small increments) that allows the investor to buy or sell a particular commodity asset or financial security at a predetermined price and at a specified time in the future over an exchange. It is a fixed-price deal in the future. Futures contracts have standardized features such as contract size, expiration dates, and settlement procedures. This standardization makes futures contracts more accessible and liquid, as they can be easily traded on exchanges. Since the future price for the commodity or security of interest is fixed, there is no risk due to potential fluctuations in the future price. Investors thus often use futures to hedge the risk of big changes in price.

 Futures contracts are traded through centralized futures exchanges, which serve as the middleman and eliminate the counterparty risk, that is, one party does not fulfill the obligation required by the futures contract. The counterparty risk exists in the forward contract, which is considered a customized OTC trading instrument and is traded directly between two parties.

 In addition, another key difference between forward and futures contracts is the manner in which they are settled. Forward contracts are typically settled through physical delivery of the underlying asset upon expiry, whereas futures contracts can be settled either through physical delivery or cash settlement (more on this later).

 Moreover, the role of margin accounts in futures trading is another distinguishing factor between forward and futures contracts. Futures exchanges require both parties to maintain a margin account to cover potential price fluctuations in the underlying asset. This ensures that the parties have sufficient funds to cover their obligations, thereby mitigating the risk of default. In contrast, forward contracts do not involve margin accounts, leaving the parties more exposed to counterparty risk.

 In summary, forward and futures contracts are financial instruments that enable market participants to manage risk and speculate on the future prices of underlying assets. Although both instruments share some similarities, they also have key differences in terms of standardization, trading venues, settlement procedures, and risk management. The futures exchange profits by maintaining a spread between the quoted prices from the buyer and the seller of the futures contract. Since the futures contracts are standardized, the futures exchange can add a small margin to them before exposing them to potential buyers while maintaining a lower price for those who short the futures contract. Again, as a measure of protection, the futures exchange also requires both sides of the trade to open and maintain a margin account in case the price of the underlying asset moves against the exchange, such as a drop in price.

 Parameters of a Futures Contract

 A standardized futures contract features the following four parameters:	
 Lot size

	
 Contract value

	
 Margin

	
 Expiration date

 Let us look at these parameters in detail. The lot size of a futures contract specifies the quantity of the underlying asset that an investor will have to trade upon entering a futures position. The quantity to be traded in the futures contract must be a predetermined multiple of the minimum quantity. The lot size determines the predefined quantity of the underlying asset to form a single futures contract. This lot size ensures that futures contracts are standardized and easily tradable on exchanges. Take the futures contract of Apple’s shares, for example. Say the lot size for Apple’s future is 100. Therefore, any futures contract would come in a multiple of 100 shares.

 The contract value specifies the total monetary value of the futures contract in terms of the underlying asset, calculated by multiplying the lot size by the current market price of the underlying asset. This value represents the notional exposure of the investor’s position in the contract. Suppose Apple stock is trading at $125 per share. Thus, the total contractual value of Apple’s futures contract will be equal to $12,500 ($125 × 100), assuming the futures contract obligates the investor to purchase one lot (100 shares) of Apple’s stock. The contract value is the product of the lot size and the asset price.

 Margin is the amount of deposit from the investor to enter a futures contract position, consisting of an initial margin and a maintenance margin. The initial margin is the initial amount of deposit to open the margin account, and the maintenance margin is the minimum amount required by the futures exchange in order to maintain the futures position and keep it open. Therefore, we do not need the entire contract value to get into a futures position. All we need to do is to deposit the required initial margin of the contract value with the broker to sign the futures contract. The margin is blocked upon entering a futures contract and released upon exiting it. These margins thus help to mitigate counterparty risk and ensure that both parties can fulfill their obligations under the contract.

 The expiration date is the date of delivery/settlement for the futures contract, via either physical delivery or cash settlement. Each futures contract is time-bound and ceases to exist after the expiration date. A futures investor needs to close or roll over the futures position on or before the expiration date to avoid settlement.

 Understanding these parameters is crucial for investors who wish to trade futures contracts, as they determine the contract’s structure, risk profile, and potential return on investment. By carefully considering the lot size, contract value, margin requirements, and expiration date, investors can tailor their futures positions to align with their specific financial goals and risk tolerance.

 Hedging and Speculation

 There are two purposes when engaging in a futures contract. The first purpose is speculation, as a futures contract allows the investor to speculate on the direction of movement for the underlying asset. The second purpose is hedging, so as to help prevent losses from unfavorable price changes. This constitutes the two types of participants in the market: hedgers and speculators.

 Hedging is a common practice for producers and manufacturers who wish to ensure a stable production process by locking the price of products or raw materials in the future. By entering a futures contract to guarantee the price at which the commodity is sold or purchased, hedgers ensure that they transact the commodity at a satisfactory price, thus hedging against any changes in the market.

 Hedgers are typically involved in the production, processing, or consumption of the underlying asset, and they use futures contracts to manage their exposure to fluctuations in the asset’s price. By locking in a predetermined price for the asset, they can reduce the risk of unexpected price changes impacting their operations or profitability. For example, an airline company might hedge against rising fuel prices by entering into a futures contract to buy oil at a specific price in the future. This ensures that the company’s fuel costs remain predictable, regardless of market volatility.

 Speculators, in contrast, are primarily interested in profiting from price fluctuations in the underlying asset. Since many commodity prices tend to move in predictable ways, many speculators (traders and fund managers) aim to make a profit by trading futures, even if they do not have a direct interest in the underlying commodity. They do not typically have a direct stake in the production, processing, or consumption of the asset. Instead, they trade futures contracts to capitalize on their market predictions and generate profits. Speculators use futures to bet on the price movement of the underlying asset. This provides liquidity to the futures market, as their trading activity helps to create a market for hedgers to enter and exit positions. By taking on the risk of price changes, speculators can earn a return on their investment if their predictions are accurate.

 Obligations at Maturity

 There are two types of settlement upon expiration of a futures (and options) contract: physical delivery and cash settlement. Such derivative contracts will either be physically delivered or cash-settled.

 The first type is the physical delivery of the underlying asset. A deliverable futures contract stipulates that the buyer in the long position of the futures contract will pay the agreed-upon price to the seller, who in turn will deliver the underlying asset to the buyer on the predetermined date (settlement date of the futures contract). This process is called delivery, where the actual underlying asset needs to be delivered upon the specified delivery date, rather than being traded out with offsetting contracts.

 For example, a buyer enters a one-year crude oil futures contract with an opposing seller at a price of $60. We know that one futures contract corresponds to 1000 barrels of crude oil. This means the buyer is obligated to purchase 1000 barrels of crude oil from the seller, regardless of the commodity’s spot price on the settlement date. If the spot price of the crude oil on the agreed settlement date one year later is below $58, the long contract holder loses a total of ($60 – $58) × $1000 = $2000, and the short position holder gains $2000. Conversely, if the spot price rises to $65 per barrel, the long position holder gains ($65 – $60) × $1000 = $5000, and the short position holder loses $5000.

 The second type is cash settlement. When a futures contract is cash-settled, the net cash position of the contract on the expiry date is transferred between the buyer and the seller. It permits the buyer and seller to pay the net cash value of the position on the delivery date.

 Take the previous case, for example. When the spot price of the crude oil drops to $58, the long position holder will lose $2000, which happens by debiting $2000 from the buyer’s account and crediting this amount to the seller’s account. On the other hand, when the spot price rises to $65, the account of the long position holder will be credited $5000, which comes from debiting the account of the short position holder.

 It is important to understand that the majority of futures contracts are not held until maturity, and most participants in the futures market do not actually take or make delivery of the underlying asset. Instead, they are traded out before the settlement date. Traders and investors often choose to close their positions before the contract’s expiration date to avoid the obligations associated with physical delivery or cash settlement. This can be achieved by entering into an offsetting transaction that effectively cancels out the original position. For example, a trader with a long position in a futures contract can sell an identical contract to offset the position, while a trader with a short position can buy an identical contract to close the position.

 The process of closing out a futures position before maturity is a common practice in the market, as it allows participants to lock in gains or limit losses without having to deal with the actual delivery or cash settlement of the underlying asset. This flexibility is one of the key features of futures trading, as it enables market participants to manage their risk exposure and capitalize on market opportunities efficiently.

 In conclusion, while futures contracts carry obligations at maturity in the form of physical delivery or cash settlement, most participants in the futures market choose to close their positions before the expiration date. By engaging in offsetting transactions, traders and investors can effectively manage their risk exposure and profit from price movements in the underlying asset without having to deal with the logistics of taking or making the delivery.

 Leverage in a Futures Contract

 As we already know, we only need to deposit a certain margin in the margin account to enter a futures contract. This means that high leverage can be used in the futures market. The higher the leverage, the higher the risk, and the higher the potential profit.

 Let us continue with the previous example. Say we enter a futures contract on Apple’s stock that allows us to buy 100 shares at $125 per share, with an initial margin of $1000. The total contract value is $125 × 100 = $12,500. If the stock price goes up to $140, the contract value becomes $140 × 100 = $14,000, with the additional $1,500 amount credited to our margin account due to daily settlement. We made a profit of $1,000 by blocking an initial deposit of $1,000.

 Suppose now the price of Apple’s stock goes down to $110. The total contract value becomes $110 × 100 = $11,000, registering a loss of $1500. We would get a margin call to deposit another ($1000 – $1500 + $1500) = $1000 to bring it back to the amount required by the initial margin.

 Leverage is a double-edged sword in the futures market, as it can amplify both gains and losses. It allows investors and traders to control a larger contract value with a smaller amount of capital through the use of margin. While leverage can significantly increase potential profits, it can also lead to substantial losses if the market moves against the trader’s position.

 When utilizing leverage, it is crucial for market participants to employ proper risk management strategies to protect their capital. This may involve using stop-loss orders to limit potential losses or closely monitoring the position to ensure the margin requirements are met. Clearly, this is a zero-sum game. Money moves from the losers to the winners on a daily basis. The profit made by the buyer is equivalent to the loss made by the seller and vice versa.

 Clearing House

 Farmers who sell futures contracts do not sell directly to the buyers. Rather, they sell to the clearing house of the futures exchange. As a designated intermediary between a buyer and seller in the financial market, the clearing house validates and finalizes each transaction, ensuring that both the buyer and the seller honor their contractual obligations. The clearing house thus guarantees that all of the traders in the futures market will honor their obligations, thus avoiding potential counterparty risk.

 The clearing house serves this role by adopting the buyer’s position to every seller and the seller’s position to every buyer. Every trader in the futures market has obligations only to the clearing house. The clearing house takes no active position in the market, but interposes itself between all parties to every transaction. As the middleman, the clearing house provides the security and efficiency integral to financial market stability. So as far as the farmers are concerned, they can sell their goods to the clearing house at the price of the futures contract when the contract expires.

 The clearing house will then match and confirm the details of the trades executed on the exchange, including the contract size, price, and expiration date, ensuring that all parties have accurate and consistent information. Order matching and confirmation is thus one of the main roles of a clearing house.

 The clearing house of the futures market also has a margin requirement, which is a sum of the deposit that serves as the minimum maintenance margin for the (clearing) member of the exchange. All members of an exchange are required to clear their trades through the clearing house at the end of each trading session and satisfy the margin requirement to cover the corresponding minimum balance requirement. Otherwise, the member will receive a margin call to top up the remaining balance when the margin account runs low due to fluctuation in asset price. Clearing houses thus collect and monitor margin requirements from their members, ensuring that all participants have sufficient collateral to cover potential losses. This helps to maintain the financial stability of the market and reduces the likelihood of default.

 Figure 3-1 illustrates the clearing house as a middle party between the buyer and the seller.
 [image:]
 A block diagram. The buyer gives funds to the clearing house. The clearing house gives funds to the seller. The seller gives the goods to the clearing house. A clearing house gives goods to the buyer.

Figure 3-1
 Illustrating the role of the clearing house as an intermediary between buyers and sellers in a futures market

 Mark-to-Market

 Mark-to-market involves updating the price of a futures contract to reflect its current market value rather than the book value, so as to ensure that margin requirements are being met. If the current market value of the futures contract causes the margin account to fall below its required level, the trader will receive a margin call from the exchange to top up the remaining balance.

 Mark-to-market is a process of pricing futures contracts at the end of every trading day. Made to accounts with open futures positions, the cash adjustment in mark-to-market reflects the day’s profit or loss, based on the settlement price of the product, and is determined by the exchange. Since mark-to-market adjustments affect the cash balance in a futures account, the margin requirement for the account is being assessed on a daily basis to continue holding an open position.

 Let us look at a mark-to-market example and understand the daily change in the price of the futures contract due to fluctuating prices in the underlying asset. First, note the two counterparties on either side of a futures contract, that is, a long position trader and a short position trader. The long trader goes bullish as the underlying asset is expected to increase in price, while the trader shorting the contract is considered bearish due to the expected drop in the price of the underlying asset.

 The futures contract may go up or down in value at the end of the trading day. When its price goes up, the long margin account increases in value due to mark-to-market, with the daily gain credit to the margin account of the long position trader. Correspondingly, the short position trader on the opposing side will suffer a loss of an equal amount, which is debited from the margin account.

 Similarly, when the price of the futures contract goes down, the long margin account decreases in value due to mark-to-market, with the daily loss debited from the margin account of the long position trader. This amount will be credited to the margin account of the short position trader, who will realize a gain of an equal amount.

 By updating the price of a futures contract to reflect its current market value, the exchange can monitor the risk exposure of traders in real time. This helps to ensure that margin requirements are being met and that traders have enough funds to cover their positions, which essentially reduces risk exposure to the traders. This also allows traders to accurately assess their profit or loss and make informed decisions about their positions.

 Figure 3-2 illustrates the two types of traders with an open position in the same futures contract and their respective profit and loss due to mark-to-market.
 [image:]
 A block diagram presents 2 types of traders with mark-to-market losses. When the market goes up, the short position holder suffers a loss. Money moves to the long position holder. When the market goes down, long position holders suffer a loss. Money moves to the short position holder.

Figure 3-2
 Illustrating the mark-to-market process and the resulting effect on the margin account of long and short position traders for the same futures contract

 To better understand the daily dynamics for traders of different positions as a result of the daily mark-to-market exercise by the exchange, let us look at a concrete example. As shown in Figure 3-3, we plot the daily amount of the margin account for both the long and short position holders. The initial amount in the margin account is $100 for both traders. Given the increase in asset value on day 1, a $5 increase in the margin account of the long position holder is realized ($100 + $5 = $105), while a $5 decrease for the short position holder enters ($100 – $5 = $95). On day 2, the net change is –$20 for the long position margin account, bringing it from $105 to $85, lower than the minimum requirement (called maintenance margin) of $90. The long position trader then gets a margin call from the exchange and tops up $15 to increase their margin account to $100, based on the required initial amount. The short position trader benefits a total of $20, ending with an end-of-day amount of $115 in their margin account.
 [image:]
 2 line graphs of the amount of margin account versus time. 1. For a long position holder, the line passes through points, (0, 100), (1, 105), and (2, 85). 2. For a short position holder, the line passes through points, (0, 100), (1, 95), and (2, 115) and descends linearly.

Figure 3-3
 An example of daily changes in the margin account of long and short position traders due to mark-to-market

 Note that the margin account changes the balance daily due to gain/loss from mark-to-market exercise. Although the final settlement price at the delivery date could be different from the intended price upon entering the futures position, the traders on both sides would still end up transacting at an effective price equal to the initially intended price, thus hedging the risk of price fluctuations.

 Now let us look at how to price this derivative product, starting with its similar twin: forward contract.

 Pricing Forward Contract

 A forward contract is a customizable contract between two parties to buy or sell an asset at a specified price on a future date. Different from the futures contract, whose price is settled on a daily basis until the end of the contract, a forward contract is only settled at the end of the agreement and is traded over the counter. Therefore, it is easier to price.

 The price of a forward contract is the predetermined delivery price for the underlying asset decided by the buyer and the seller. This is the price to be paid at a predetermined date in the future and is determined by the following formula:
 [image: $$ {F}_0={S}_0{e}^{rT} $$]

 where F0 is the price of the forward contract at the current time point t = 0, and S0 is the price of the underlying asset at t = 0. r is the risk-free bond interest rate, the theoretical rate of return of an investment with zero risk. T is the duration from the current time point t = 0 to the expiration date t = T. More generally, we can write the price of the forward contract as follows:
 [image: $$ {F}_t={S}_t{e}^{r\left(T-t\right)} $$]

 Here, multiplying the exponential constant simply means increasing the price of the forward contract, depending on the baseline interest rate r and the duration T − t in a continuously compounding scheme. In other words, suppose we deposit $1000 in a bank, which promises a continuously compounded interest rate of r. We can thus expect to see the total value of the deposit grow to 1000er at the end of year 1, 1000e2r at the end of year 2, etc. This is a common way of compounding in finance and accounting.

 Now let us look at how this formula comes into shape. The reasoning follows the no-arbitrage argument, which says there is no arbitrage opportunity to make any riskless profit, no matter how the price of the underlying asset changes. Suppose we enter into a long forward contract that obligates us to buy the asset S at time T for a price of FT. We are living at the current time point t, where the spot price of the asset is St, and the future price of the asset will be ST. The nature of the agreement fixes the action for us at the delivery date; thus, we need to pay an amount of FT to purchase the asset valued at ST. In other words, our net profit/loss (P&L) at time T is −FT + ST, where the negative sign means cash outflow. Note that this happens in the future at time T and not yet for now at time t.

 However, there is a risk involved upon entering this contract. Since the asset price fluctuates in the future, the asset price may drop a lot due to unforeseen circumstances in the future, leading to a very negative P&L upon delivery. Although the opposite could also be true and the final P&L could be very positive, this still poses a potential risk, especially for market participants such as farmers and manufacturers mentioned earlier.

 To hedge this risk, we could short one unit of this asset at time t, since we know that a short position makes a profit if the asset price drops. A short position in the underlying asset profits us from losses in the future due to a decrease in the future asset price. It is one unit of the underlying asset because we can use the exact one unit of the asset bought based on the forward agreement to close the initial short position in the underlying asset, that is, return the asset back to where we borrowed it from.

 Now we look at the process in more detail. Upon entering the short position of one unit of the underlying asset at time t, we obtain a cash inflow of St, as shorting means selling an asset and buying it back later. This means that we will have a cash outflow of ST at the delivery date to pay back the asset and close the short position.

 Note that the cash St at time t will not sit idle. Instead, we will invest the cash, such as depositing t in the bank to enjoy a risk-free interest rate. The money will grow to Ster(T − t) upon reaching the delivery date, with an investment period of T − t. This investment will be used to cover the short position in the underlying asset.

 Figure 3-4 summarizes the positions in different products and the total portfolio value with the evolution of time. Here, we have three different products in our portfolio: a forward contract, an asset (e.g., one share of stock), and cash. These three constitute our portfolio, and we start with zero value in the portfolio at time t. To see this, we observe that the forward position is zero at time t since we only make the transaction upon reaching the delivery date. The stock position gives −St since we are shorting the stock, and the cash position gives St, the income generated by shorting the stock. Adding up the value of these three positions gives zero value for the portfolio at time t. The net cash flow at time t is zero.
 [image:]
 A process diagram. Forward from 0 to negative F + S T. Stock to negative S t to negative S T. Cash to S t to S t e to the power r times T minus t. Forward, stock, and cash are summed up to form a portfolio that goes to 0 followed by no arbitrage to give F equal to S t e to the power r times T minus t.

Figure 3-4
 Pricing the forward contract in a long position using the no-arbitrage argument. The stock and cash positions also constitute a replicating portfolio that offsets the randomness in the payoff function of the forward contract at the delivery date

 As time passes by, the value of each position will evolve. Specifically, the forward position becomes −F + ST since we would buy one asset valued at ST for a price of F. Our stock position becomes −ST due to change in the stock price, and cash position becomes Ster(T − t).

 Now, using the no-arbitrage argument, we would end up with zero value in our portfolio since we started with zero value. Adding the value of the three positions at time T gives the total portfolio value of −F + Ster(T − t). And by equating it to zero, we have F = Ster(T − t), thus completing the pricing of the forward contract using the no-arbitrage argument.

 This is the formula for the price of a forward contract. It demonstrates that the forward price is determined by the current price of the underlying asset, the risk-free interest rate, and the time until the contract expires. By using this formula, both parties in a forward contract can agree on a fair price that eliminates arbitrage opportunities and reflects the true value of the underlying asset.

 It is interesting to note that the stock and cash positions jointly constitute a replicating portfolio that offsets the randomness in the payoff function of the forward contract at the delivery date. This means that no matter what the price of the forward contract will be in the future, we will always be able to use another replicating portfolio to deliver the same payoff, as if we were in a position of the forward contract. This is called pricing by replication.

 Let us see what happens if the price of the forward is not equal to the stock price with a continuously compounded interest rate. We can argue about arbitrage opportunities based on the riskless profit from the buy-low-sell-high principle. When F > Ster(T − t), we can borrow an amount of St and use the money to short a forward contract that allows us to sell one unit of the underlying asset at price F. Upon reaching the delivery date, we receive a total of F by selling the asset, pay back the borrowed money with interest Ster(T − t), and earn a net profit of F − Ster(T − t). This is arbitrage, where we made a riskless profit by taking advantage of the price difference at the future time T.

 Similarly, when F < Ster(T − t), the forward contract is cheaper, and the asset is more expensive. In that case, we again exercise the buy-low-sell-high principle by longing a forward contract at time t that allows us to buy one unit of the underlying asset at price F and time T. We will also short one unit of the underlying asset at time t to gain a total amount of St, which further grows to Ster(T − t) upon reaching the delivery date. When the contract expires, we will close the short position in the underlying asset by purchasing one unit of the asset for a price of F. We get to keep the remaining balance Ster(T − t) − F, thus also establishing the arbitrage argument and ensuring a riskless profit.

 Note that the futures price is equal to the spot price of the underlying asset at the current time t. To see this, simply set T = t and we have F = Ster(t − t) = St.

 In a nutshell, the future net cash flow predetermined or fixed in advance (today) must equal today’s net cash flow to annihilate arbitrage opportunities. The no-arbitrage argument gives a fair price for the forward contract.

 Pricing Futures Contract

 The futures contract is priced in a similar way as the forward contract but involves a few more factors. Ultimately, the futures contract price is set by the supply and demand in the market. When a seller and a buyer agree on an equilibrium price for transacting a futures contract, that price is the futures contract price.

 Say we would like to price the futures contract at the next month (front month). Also, assume that we enter a short position in the futures contract, obliged to sell one unit of the underlying asset at the expiration date. The extra factors to consider here are the cost and benefit of holding the asset until expiration.

 For the cost of carrying the asset until the delivery date, we need to add it to the price of the futures contract since it poses an actual cost we need to factor in from entering the position all the way to the delivery date. For example, if we short a futures contract to sell 1000 barrels of oil at time T, we would borrow money to purchase 1000 barrels of oil from the spot market at time t so that we can fulfill the obligation at time T. Doing so requires storing these 1000 barrels of oil, which incurs a storage cost to be added to the price of the futures contract.

 For the benefit of carrying the asset until the delivery date, we need to minus it from the futures contract price. This is called the convenience yield, where the party holding the underlying asset gains benefits through the course until the delivery date. Such a situation usually happens when holding the actual asset is preferred. For example, holding stocks may generate dividends payment, holding currencies may generate profits due to differences in the interest rate, and holding commodities is preferred when the market is in short supply of such commodities.

 Building on top of the spot price with interest compounding, the fair price of the futures contract can be calculated via the following formula:

 Fair price = spot price with compounded interest + cost of storage – convenience yield due to holding the asset

 When the interest, cost, and convenience yield are all annually compounded, the fair price of the forward contract can be calculated via the following formula:
 [image: $$ F={S}_t{\left(1+r+s-c\right)}^{T-t} $$]

 where St is the spot price of the underlying asset, r is the risk-free bond interest rate, s is the storage cost in percentage and compounded annually, and c is the convenience yield also in percentage and compounded annually. We raise it to the power of the duration T − t to show the compounding effect in this period.

 This formula shows that the futures contract price considers several factors: the spot price of the underlying asset, the risk-free interest rate, the storage cost, and the convenience yield. These components help market participants to determine a fair price for the futures contract, reflecting the true value of the underlying asset while accounting for the costs and benefits of holding the asset until the delivery date.

 The futures contract price is essential for both buyers and sellers, as it determines their potential profits or losses when they enter into a futures contract. By understanding how the futures contract price is calculated, market participants can make informed decisions about whether to enter into a futures contract and at what price.

 It’s also important to note that the fair price of the futures contract is a theoretical value. In reality, the actual futures contract price in the market is influenced by supply and demand dynamics, which can cause the market price to deviate from the fair price. Market participants need to continuously monitor the futures market, paying attention to the changes in the underlying asset’s spot price, interest rates, storage costs, and convenience yields, in order to adapt the strategies and make informed decisions about the futures contract positions.

 Let us look at an example. Suppose the current spot price is St = $80, the interest rate is r = 2%, the storage cost is s = 1%, the convenience yield is c = 0.5%, and the position in the futures contract is three months. Since the compounding is done on an annual basis, we need to convert the duration to a yearly term, making
 [image: $$ T-t=\frac{3}{12}=0.25 $$]
 . Therefore, the fair price of the futures contract can be calculated as
 [image: $$ F=80{\left(1+0.02+0.01-0.005\right)}^{0.25}=\$80.5 $$]

 Figure 3-5 summarizes the process of calculating the fair price of a futures contract.
 [image:]
 An equation of fair price with labeled variables. F is equal to S t times 1 plus r plus s minus c to the power T minus t. The labeled variables are the fair price, spot price of the underlying asset, annually compounded interest rate, convenience yield, storage cost, and duration on a yearly basis.

Figure 3-5
 Calculating the fair price of a futures contract with an annually compounded interest rate, storage cost, and convenience yield

 Contango and Backwardation

 There are a few extra terms often used in the futures world. These terms are listed as follows, where the contango is sort of the opposite of backwardation:	
 Contango: The futures contract price is higher than the current spot price of the underlying asset.

	
 Normal contango: The futures contract price is higher than the expected spot price of the underlying asset.

	
 Backwardation: The futures contract price is lower than the current spot price of the underlying asset.

	
 Normal backwardation: The futures contract price is lower than the expected spot price of the underlying asset.

 A close look into these terms helps us better understand the price dynamics of the futures contract. Let us start with contango. When we say the market for a specific futures contract is in contango, what this means is that we have an upward-sloping futures price curve. Here, the futures price curve specifies the (increasing) price of a futures contract with different delivery dates, at the current time snapshot. A futures contract with a longer duration is more expensive than another with a shorter duration. In addition, when we say the market is in normal contango, this means that the futures price is higher than the (theoretical) expected spot price. Different price points along the futures price curve correspond to different paths of price movements across time, with the final settlement price of the futures contract converging with the spot price at the same (future) delivery date.

 The existence of contango or backwardation can have various underlying reasons. For instance, storage costs, seasonality, market expectations, and macroeconomic factors can all contribute to the formation of these pricing patterns in the futures market.

 Contango is commonly observed in commodities markets where there are costs associated with holding and storing the underlying assets, such as oil or grain. These costs are factored into the futures contract price, causing it to be higher than the current spot price. Contango can also arise when market participants expect the underlying asset’s price to rise in the future, causing them to bid up the price of longer-dated futures contracts.

 Backwardation, on the other hand, can occur when market participants believe that the underlying asset’s price will decline in the future. This could be due to a forecasted decrease in demand or an anticipated increase in supply. In such cases, market participants might be more willing to sell futures contracts at a lower price than the current spot price, as they expect the spot price to drop in the future.

 Figure 3-6 provides an example to help put these statements in perspective. Here, we have two futures contracts with one and two months before the delivery date, respectively. A market in contango means an upward-trending price curve for the futures contracts as the duration gets longer, as shown on the left panel of the figure. As the asset price starts to move across time, as shown by the curve starting with the orange dot, the futures contract price will gradually approach the spot price. Eventually, the futures price will be equal to the spot price when the delivery date is the current date.
 [image:]
 2 line graphs of price versus time. 1. The graph has an ascending curve. 2. The graph has 2 descending curves and a fluctuating ascending curve. It indicates the point of evolution of the spot price of the underlying asset. The futures price converges to the spot price upon reaching the delivery rate.

Figure 3-6
 Illustrating the price dynamics of the futures contract in contango. The left panel shows the price curve at the current time point, where a futures contract with a longer delivery date is more expensive. The right panel shows the price evolution of the asset and futures contract with different delivery dates, each converging to the spot price upon reaching the respective delivery date

 Correspondingly, a market in backwardation displays the opposite behavior, as shown in Figure 3-7.
 [image:]
 2 line graphs of price versus time. 1. The graph has a descending curve. 2. The graph has 3 fluctuating ascending curves. It indicates the point of evolution of the spot price of the underlying asset. The futures price converges to the spot price upon reaching the delivery rate.

Figure 3-7
 Illustrating the price dynamics of the futures contract in backwardation

 Working with Futures Data

 We can retrieve futures data using the yfinance package. In Listing 3-1, we download futures data on platinum for the year 2022. Note that the symbol is “PL=F”. After downloading the dataset, we rewrite the index to the datetime format so that it facilitates plotting, as shown in Listing 3-1.

 # For data manipulation

 import pandas as pd

 # To fetch financial data

 import yfinance as yf

 # For visualisation

 import matplotlib.pyplot as plt

 plt.style.use('seaborn-darkgrid')

 %matplotlib inline

 # Download the platinum prices

 futures_data = yf.download("PL=F", start="2022-01-01", end="2022-12-31")

 # Set the index to a datetime type

 futures_data.index = pd.to_datetime(futures_data.index)

 Listing 3-1
 Downloading futures data

 Let us plot the closing price via Listing 3-2. Note the use of the fontsize argument in adjusting the font size in the figure.

 # Plot the close price

 plt.figure(figsize=(15, 7))

 futures_data['Adj Close'].plot()

 # Set labels and sizes of the title and axis

 plt.title('Platinum Futures Data', fontsize=16)

 plt.xlabel('Year', fontsize=15)

 plt.ylabel('Price ($)', fontsize=15)

 plt.xticks(fontsize=15)

 plt.yticks(fontsize=15)

 plt.legend(['Close'], prop={'size': 15})

 # Show the plot

 plt.show()

 Listing 3-2
 Visualizing the futures data

 Running this command generates Figure 3-8.
 [image:]
 A line graph of closing price versus years. It has a fluctuating curve that ascends, descends, and again ascends.

Figure 3-8
 Visualizing the closing price of platinum futures data in 2022

 We can also download multiple futures contracts in one shot. In Listing 3-3, we download the futures data for gold and copper, using the “GC=F” and “HG=F” symbols, respectively, followed by formatting the index and printing the last five rows.

 # Fetch gold and copper futures prices

 futures_data = yf.download(["GC=F","HG=F"], start="2022-01-01", end="2022-12-31", group_by= 'tickers')

 # Set the index to a datetime type

 futures_data.index = pd.to_datetime(futures_data.index)

 # Display the last five rows

 futures_data.tail()

 Listing 3-3
 Downloading multiple futures

 Note that the DataFrame has two levels of columns, with the first level specifying the symbol name and the second one showing the different price points.

 Similarly, we can plot the closing price of the two sets of futures data, as shown in Listing 3-4.

 # Set the figure size

 ax = plt.figure(figsize=(15, 7))

 # Plot both futures close prices

 ax = futures_data['GC=F']['Close'].plot(label='Gold Futures')

 ax2 = futures_data['HG=F']['Close'].plot(secondary_y=True, color='g', ax=ax, label='Copper Futures')

 # Set the title and axis labels and sizes

 plt.title('Gold and Copper Futures Data', fontsize=16)

 ax.set_xlabel('Year-Month', fontsize=15)

 ax.set_ylabel('Gold Price ($)', fontsize=15)

 ax2.set_ylabel('Copper Price ($)', fontsize=15)

 ax.tick_params(axis='both', labelsize=15)

 ax2.tick_params(axis='y', labelsize=15)

 h1, l1 = ax.get_legend_handles_labels()

 h2, l2 = ax2.get_legend_handles_labels()

 ax.legend(h1+h2, l1+l2, loc=2, prop={'size': 15})

 # Show the plot

 plt.show()

 Listing 3-4
 Visualizing multiple futures time series

 Running this command generates Figure 3-9.
 [image:]
 A dual y-axis line graph of gold and copper prices versus year-month. It has 2 fluctuating curves that ascend, descend, and again ascend.

Figure 3-9
 Visualizing the closing price of gold and copper futures data in 2022

 Adding Technical Indicators

 In this section, we will look at the popular S&P 500 E-Mini futures contract and discuss how to add common technical indicators to aid technical analysis. The S&P 500 E-Mini futures contract is a financial derivative product that tracks the performance of the S&P 500 index, which represents the 500 largest publicly traded companies in the United States. The E-Mini futures contract is a smaller version of the standard S&P 500 futures contract, making it more accessible and affordable for individual traders and investors.

 Let us fetch the daily futures data for this specific contract using the symbol “ES=F” for the full year of 2022, as shown in Listing 3-5.

 futures_symbol = "ES=F"

 futures_data = yf.download(futures_symbol, start="2022-01-01", end="2022-04-01", interval="1d")

 Listing 3-5
 Downloading S&P 500 E-Mini futures data

 Now let us calculate a few technical indicators using the ta library. In this example, we will calculate the Relative Strength Index (RSI), Bollinger Bands, and MACD (Moving Average Convergence Divergence). The following list briefly describes these popular technical indicators:	
 Relative Strength Index (RSI): RSI is a momentum oscillator that measures the speed and change of price movements. The RSI oscillates between 0 and 100, and traders often consider an asset overbought when the RSI is above 70 and oversold when it’s below 30.

	
 Bollinger Bands: Bollinger Bands are a volatility indicator that measures the standard deviation of price changes. The indicator consists of three lines: the middle line (a simple moving average) and two outer lines (upper and lower bands) plotted at a specified number of standard deviations away from the moving average. When the bands widen, it indicates increased volatility, and when they narrow, it signifies decreased volatility. Prices often move between the upper and lower bands.

	
 Moving Average Convergence Divergence (MACD): MACD is a momentum indicator that shows the relationship between two moving averages of an asset’s price. It consists of two lines: the MACD line (difference between short-term and long-term moving averages) and the signal line (a moving average of the MACD line). When the MACD line crosses above the signal line, it may suggest a bullish signal (buy), and when it crosses below the signal line, it may indicate a bearish signal (sell). Additionally, when the MACD line is above zero, it suggests an upward momentum, while below zero indicates a downward momentum.

 Listing 3-6 calculates these technical indicators and concatenates them to the DataFrame.

 # Calculate RSI

 futures_data["RSI"] = ta.momentum.RSIIndicator(futures_data["Close"]).rsi()

 # Calculate Bollinger Bands

 bbands = ta.volatility.BollingerBands(futures_data["Close"])

 futures_data["BB_upper"] = bbands.bollinger_hband()

 futures_data["BB_lower"] = bbands.bollinger_lband()

 # Calculate MACD

 macd = ta.trend.MACD(futures_data["Close"])

 futures_data["MACD"] = macd.macd()

 futures_data["MACD_signal"] = macd.macd_signal()

 Listing 3-6
 Calculating common technical indicators

 Now we can plot the raw futures time series data together with the technical indicators to facilitate analysis, as shown in Listing 3-7.

 # Create subplots for each indicator

 fig, axes = plt.subplots(4, 1, figsize=(10, 15), sharex=True)

 # Plot closing price

 axes[0].plot(futures_data.index, futures_data["Close"], label="Close")

 axes[0].set_title("S&P 500 E-Mini Futures - Closing Price")

 axes[0].grid()

 # Plot RSI

 axes[1].plot(futures_data.index, futures_data["RSI"], label="RSI", color="g")

 axes[1].axhline(30, linestyle="--", color="r", alpha=0.5)

 axes[1].axhline(70, linestyle="--", color="r", alpha=0.5)

 axes[1].set_title("Relative Strength Index (RSI)")

 axes[1].grid()

 # Plot Bollinger Bands

 axes[2].plot(futures_data.index, futures_data["Close"], label="Close")

 axes[2].plot(futures_data.index, futures_data["BB_upper"], label="Upper Bollinger Band", linestyle="--", color="r")

 axes[2].plot(futures_data.index, futures_data["BB_lower"], label="Lower Bollinger Band", linestyle="--", color="r")

 axes[2].set_title("Bollinger Bands")

 axes[2].grid()

 # Plot MACD

 axes[3].plot(futures_data.index, futures_data["MACD"], label="MACD", color="b")

 axes[3].plot(futures_data.index, futures_data["MACD_signal"], label="Signal Line", linestyle="--", color="r")

 axes[3].axhline(0, linestyle="--", color="k", alpha=0.5)

 axes[3].set_title("Moving Average Convergence Divergence (MACD)")

 axes[3].grid()

 Listing 3-7
 Visualizing futures data and technical indicators

 Running the code generates Figure 3-10.
 [image:]
 4 line graphs. 1. Closing price versus days has a fluctuating descending curve. 2. The relative strength index versus days has a fluctuating ascending curve. 3. Bollinger bands versus days have 3 fluctuating descending curves. 4. M A C D versus days has 2 fluctuating ascending curves.

Figure 3-10
 Visualizing futures data and technical indicators

 We can plot a few things here. In the plotted RSI chart, we can observe periods when the RSI crossed below 30, which might signal potentially oversold conditions. Traders may use these signals to consider entering or exiting positions. In the plotted chart on Bollinger Bands, we can see periods when the price touched or crossed the bands, which may indicate potential trend reversals or support and resistance levels. In the MACD chart, we can observe periods when the MACD line crossed the signal line, which may signal potential entry or exit points for traders.

 Summary

 In this chapter, we delved into the world of options and futures contracts.

 Forward contracts are customized, private agreements between two parties and are traded over the counter (OTC). They are only settled at the end of the agreement and are priced based on the spot price of the underlying asset, the risk-free interest rate, and the time to expiration. However, forward contracts come with potential counterparty risk as there is no clearing house to guarantee the fulfillment of the contractual obligations.

 Futures contracts, on the other hand, are standardized contracts traded on regulated exchanges. They are marked to market daily, meaning that the price of the contract is adjusted to reflect its current market value, ensuring that margin requirements are met. The clearing house of the futures exchange serves as an intermediary between buyers and sellers, mitigating counterparty risk and ensuring the stability of the market.

 We also covered the pricing of both types of contracts. For example, the pricing of futures contracts is influenced by factors such as the spot price of the underlying asset, the risk-free interest rate, storage costs, and convenience yield. In addition, futures markets can exhibit contango, where futures prices are higher than the spot price, or backwardation, where futures prices are lower than the spot price.

 Exercises

 	
 A farmer sells agricultural products, and a manufacturer purchases raw materials for production. In both cases, what position should they take in a futures contract in order to hedge against adverse price changes in the future?

	
 A wheat farmer takes a short position in ten wheat futures contracts on day 1, each valued at $4.5 and representing 5000 bushels. If the price of the futures contracts increases to $4.55 on day 2, what is the change in the farmer’s margin account?

	
 Suppose we enter into a short forward position. What is the risk due to the fluctuating asset price in the future? How can we hedge the risk?

	
 Assume we could buy a barrel of oil for $80 today, and the current futures price is $85 for delivery three months from today. One futures contract can buy 1000 barrels of oil. How can you arbitrage in this situation? What is the profit? Assume a zero risk-free interest rate.

	
 Apply the same no-arbitrage argument to value a forward contract in a short position.

	
 Write a function to calculate the fair price of a futures contract given the spot price of the asset, risk-free interest rate, rate of storage cost, convenience yield, and delivery date. Allow for both annual compounding and continuous compounding.

	
 Explain the source of riskless profit when a forward contract is overpriced or underpriced than its theoretical no-arbitrage value.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2023
P. LiuQuantitative Trading Strategies Using Pythonhttps://doi.org/10.1007/978-1-4842-9675-2_4

4. Understanding Risk and Return

Peng Liu1
(1)Singapore, Singapore

 Any financial asset is characterized by its risk and return. Return means the financial reward it brings, such as the percentage increase in the asset value. We hope to maximize the percentage return of the asset as much as possible. However, a higher reward often comes with higher risk, where risk refers to the volatility of such return. That is, an asset displays high oscillations in its historical returns, making its future outlook more uncertain than, say, a stable product with little deviation from the expected gain, such as the bond. As an investor, the goal of making profits boils down to maximizing the return and, at the same time, minimizing the risk.

 Return is a measure of the financial gain or loss of an investment over a specific period. It can be calculated as a percentage of the initial investment, taking into account factors such as capital appreciation, dividends, and interest payments. Returns can be either realized (already received) or unrealized (expected to be received in the future). There are various ways to measure returns, including absolute return, annualized return, and risk-adjusted return.

 Risk is the variability or uncertainty in the returns of an investment. It represents the potential for losses due to factors such as market fluctuations, economic conditions, and company-specific events. There are several types of risk, including market risk, credit risk, liquidity risk, and operational risk, among others. In general, investments with higher risk tend to offer higher potential returns to compensate for the increased uncertainty.

 Risk and Return Trade-Off

 With the risk and return trade-off, a low-return asset is associated with low risk, and a high-return asset comes with a high risk. This is true for most financial instruments in the market. For example, the bond, as a fixed-income asset, is often considered a riskless asset that delivers a low return and comes with virtually no risk. The stock market offers a higher return but often displays higher volatility due to the uncertain and unpredictable future. Under such a trade-off, an investor can only gain a higher return and make more profits if they are willing to accept more risk, that is, a higher probability of losses.

 The appropriate risk-return trade-off depends on various factors, including an investor’s risk tolerance profile, years to retirement, and the potential to replace lost funds. The trade-off also depends on the time horizon for a given position. For example, position traders typically hold onto a position for a long period of time, which provides the trader with the potential to recover from the risks of bear markets and participate in bull markets, hoping for an increase in the asset value over the long term. On the other hand, swing traders or even day traders enter a position for a short time, seeking profits by speculating on the movement of the asset’s price changes. The same equities (e.g., stocks) have a higher risk proposition when an investor can only invest in a short time frame.

 It is important to note that each individual asset has its own risk and return profile, and a group of assets can form a portfolio with new risk and return characteristics. At the portfolio level, the risk-return trade-off assesses the concentration or diversity of holdings and whether the portfolio mix presents an excessive risk or a lower-than-desired potential for returns. Therefore, the risk-return trade-off applies to both individual assets and a portfolio of assets.

 However, a diversified portfolio generally reduces the risks presented by individual investment positions. Diversification across various asset classes, industries, and geographies can help mitigate the impact of poor-performing assets on overall returns, providing a more balanced approach to risk management. A better understanding of the risk-return trade-off, along with different diversification strategies, allows us to tailor the portfolios to achieve the desired financial objectives and, at the same time, effectively manage the inherent risks associated with investing.

 Let us draw a two-dimensional coordinate system to characterize the risk and return. We would often put risk on the horizontal axis and return on the vertical axis. As shown in Figure 4-1, the lower-left quadrant has low risk and low return. Representative products include fixed-income instruments such as bonds and treasury bills. Moving to the upper-right quadrant, we have products associated with high risk and return. Examples include stocks and derivative products. The other two quadrants are less frequent. For example, it is not so often to see financial instruments with a low risk and high return. Companies could experience an urgent need for funds and thus issue bonds with a higher return, but getting into such a situation itself implies an increased default risk already. On the other hand, it is very unlikely to see products with a low return but high risk, since this goes against the profit maximization nature of trading.
 [image:]
 A return versus risk plane is divided into 4 quadrants. Clockwise from top right, high risk high return with examples of stocks and derivatives. High risk low return, even more likely. Low-risk low return, example, fixed income products. Low risk high return, less frequent.

Figure 4-1
 Illustrating the four quadrants of risk and return profile

 In the following section, we will start by understanding the fundamentals of returns as a performance measure of financial assets. Understanding returns is crucial for us to evaluate the success of different investments and make informed decisions in managing portfolios.

 Analyzing Returns

 The return is the first and foremost metric most investors would look at for a specific investment vehicle. It represents the change in value of a financial asset over a specified period. It can be expressed in absolute terms (e.g., the dollar amount gained or lost) or as a percentage of the initial investment value. As a crucial metric on the performance of an asset or portfolio, the return allows us to compare across different investments.

 When measured in percentage terms, the range could range from (theoretically) negative infinity to positive infinity. Suppose the asset price changes from St − 1 to St. The change in price is St − St − 1, which could be positive or negative. Considering the price of an asset changes across different time points, and also the fact that multiple assets have multiple price levels, it is difficult to assess whether the price change St − St − 1 is big or small. To standardize the price changes and make it easier for comparison, a more widely used measure is percentage return Rt, defined as
 [image: $$ {R}_t=\frac{S_t-{S}_{t-1}}{S_{t-1}} $$]

 This equation essentially measures the change in asset price in proportion to the previous-period asset price, that is, the baseline. It allows us to transition from prices to returns. This percentage change in asset price thus allows us to assess and compare different assets. By calculating the percentage return Rt, we can effectively transition from focusing on the raw price changes to the proportional changes in asset prices. This transition allows us to evaluate the performance of different investments relative to a baseline, which is the previous-period asset price. This standardization is particularly useful when evaluating investments with different price levels or those that experience different magnitudes of price fluctuations.

 Note that we may also write the return as Rt − 1, t to emphasize the fact that the return measures the relative change in prices between period t − 1 and t:
 [image: $$ {R}_{t-1,t}=\frac{S_t-{S}_{t-1}}{S_{t-1}} $$]

 Let us analyze some dummy return data to make these calculations tangible.

 Working with Dummy Returns

 In Listing 4-1, we first create two five-element (or five-period) lists representing the returns of two different assets, stored in asset_return1 and asset_return2, respectively. The returns are constructed such that their mean returns are the same. We can verify the equality using the == operator.

 asset_return1 = [0.05, 0.3, -0.1, 0.35, 0.2]

 asset_return2 = [0.5, -0.2, 0.3, 0.5, -0.3]

 >>> print(np.mean(asset_return1))

 >>> print(np.mean(asset_return2))

 >>> print(np.mean(asset_return1) == np.mean(asset_return2))

 0.16

 0.16

 True

 Listing 4-1
 Simulating two asset returns

 Next, let us combine these two lists in a Pandas DataFrame for easy manipulation. This is achieved by wrapping the two lists in a dictionary and passing it to the pd.DataFrame() function:

 return_df = pd.DataFrame({"Asset1":asset_return1, "Asset2":asset_return2})

 >>> return_df

 Printing out the return_df variable generates the following, where the two lists now appear as the two columns in the DataFrame:

 Asset1 Asset2

 0 0.05 0.5

 1 0.30 -0.2

 2 -0.10 0.3

 3 0.35 0.5

 4 0.20 -0.3

 To facilitate visual analysis, let us plot the two return series in a bar chart using the .plot.bar() method:

 >>> return_df.plot.bar()

 Running this command generates Figure 4-2. The figure suggests that despite having the same mean return, these two assets clearly have different risk profiles. Specifically, asset 2 (orange bars) is more volatile than asset 1 (blue bars).
 [image:]
 A grouped positive-negative bar graph with the return profiles for asset 1 and asset 2. The profiles of asset 2 are more volatile than asset 1.

Figure 4-2
 Visualizing the returns as bar charts

 Again, this notion of higher volatility will be more concrete when we introduce its precise definition later. For now, we can simply call the std() function to calculate the standard deviation (another name for volatility) of the two columns:

 >>> return_df.std()

 Asset1 0.185068

 Asset2 0.384708

 dtype: float64

 Note that the std() is applied column-wise. Similarly, we can call the mean() function to calculate the mean value of each column:

 >>> return_df.mean()

 Asset1 0.16

 Asset2 0.16

 dtype: float64

 The result aligns with our previous calculations using np.mean(). This example shows that merely looking at the average return of an asset is not enough. In fact, it could be misleading if we just report the average return of an asset without its volatility.

 To see the difference, assume we have an initial investment of $100 in both assets. To calculate the running asset value at each period in a sequential manner, we first add one to the percentage return values, forming the 1+R format. Take asset 1, for example. As shown in the following, after running the following code snippet, we can use 1.05 to calculate the asset value after the first period as $100 × 1.05, the asset value after the second period as $100 × 1.05 × 1.30, and so on:

 >>> return_df + 1

 Asset1 Asset2

 0 1.05 1.5

 1 1.30 0.8

 2 0.90 1.3

 3 1.35 1.5

 4 1.20 0.7

 Instead of multiplying these percentage returns cumulatively, a convenient function called cumprod() does the work for us. Therefore, we can obtain the period-wise asset value by applying this function on the previous 1+R formatted DataFrame and multiplying by $100, as shown in the following code snippet:

 init_investment = 100

 cum_value = (return_df + 1).cumprod()*100

 >>> cum_value

 Asset1 Asset2

 0 105.0000 150.0

 1 136.5000 120.0

 2 122.8500 156.0

 3 165.8475 234.0

 4 199.0170 163.8

 We can similarly plot the evolution of asset values as a line chart:

 >>> cum_value.plot.line()

 Running this command generates Figure 4-3. Although asset 2 looks more profitable in most of the periods, it actually ends with a lower return in the last period. Thus, a key takeaway from this chart is that two assets with equal average returns may end up with a totally different terminal return.
 [image:]
 A multiline graph with the increasing return profiles for asset 1 and asset 2. The profiles of asset 2 are more profitable than asset 1, in most of the periods.

Figure 4-3
 Visualizing the evolution of asset values

 The 1+R Format

 Recall that to calculate the return Rt − 1, t from the period t − 1 to t, we need asset prices St − 1 and St in both periods. With simple manipulation, we can express the return as follows:
 [image: $$ 1+{R}_{t-1,t}=\frac{S_t}{S_{t-1}} $$]

 This is the so-called 1+R format, where we use 1 + Rt − 1, t to denote the percentage of current-period asset price St over previous-period asset price St − 1. We can then easily calculate the return Rt − 1, t after obtaining the 1+R return 1 + Rt − 1, t:
 [image: $$ {R}_{t-1,t}=\frac{S_t}{S_{t-1}}-1 $$]

 One reason why we use this format is the convenience in the calculation. Since the prices are arranged along a column from start to end, we can simply shift the price column upward by one row to obtain the next-period price and then calculate the ratio
 [image: $$ \frac{S_t}{S_{t-1}} $$]
 (i.e., 1 + Rt − 1, t) in a separate column. We could then subtract one to obtain Rt − 1, t for each period.

 Figure 4-4 illustrates the benefits of using the 1+R formatted return. The extra step involved is to create a shifted column by moving the price column upward by one unit. Calculating the 1+R formatted return is straightforward and fast, as this is a direct division between two columns that are performed simultaneously across all the rows. This avoids a for loop. We will then minus one to recover the same return.
 [image:]
 A flow of 3 equations that define the return as the percentage change in the asset price. Flow of 3 tables having columns for time, price, shifted price, and 1 + R return, present that the return is easy to calculate by shifting the price column and taking the division.

Figure 4-4
 Illustrating the calculation process of return using the 1+R format that gives a more convenient way to calculate the return

 Also, note that the last row in the shifted column is NA, which is due to the fact that there is no more future price available at the last time point. This also makes the 1+R return column NA. We will demonstrate the calculation process in code later. For now, it is good to digest and accept the 1+R formatted return as an equivalent way of describing asset returns.

 The Terminal Return

 Terminal return refers to the return at the last time period as compared to the initial return, that is, R0, T. Suppose we have price data from period t = 0 to t = T. To calculate the terminal return R0, T at period T, we can take the initial price S0 and terminal price ST, take the ratio, and subtract one, giving
 [image: $$ {R}_{0,T}=\frac{S_T}{S_0}-1 $$]

 This approach essentially ignores the intermediate returns and only considers the initial and terminal asset prices. By focusing solely on the initial and terminal asset prices, this metric offers a simplified view of the investment’s growth or decline over time, disregarding intermediate fluctuations. This can be particularly useful when assessing the long-term performance of an investment or comparing the growth of different assets over an extended period. However, note that the terminal return does not provide insights into the volatility or risk associated with the investment, as it only considers the initial and terminal asset prices.

 There is another way to calculate this value. Instead of focusing only on the initial and terminal prices, we view the whole price evolution process as sequential, changing from one price point to another. Therefore, the terminal return at period T (or an arbitrary period t) is the result of multiplying all previous 1+R formatted returns, followed by a subtraction of one. Mathematically, we have
 [image: $$ {R}_{0,T}=\left(1+{R}_{0,1}\right)\left(1+{R}_{1,2}\right)\dots \left(1+{R}_{T-1,T}\right)-1 $$]

 Plugging in the definition of 1+R formatted return gives the following:
 [image: $$ {R}_{0,T}=\frac{S_1}{S_0}\frac{S_2}{S_1}\dots \frac{S_T}{S_{T-1}}-1 $$]

 which is nothing more than the initial equation we presented, after canceling like terms. By doing so, we acknowledge the compound effect of each period’s return on the overall investment performance. This approach is more comprehensive, as it takes into account all price changes during the investment period.

 Figure 4-5 illustrates the calculation process of the terminal return.
 [image:]
 A flow of 3 equations present the 3 steps to calculate terminal return using the initial and terminal asset price, switching to the 1 + R approach, and recovering the previous equation after plugging in the definition of the 1+R formatted return.

Figure 4-5
 Calculating the terminal return via different approaches

 Stock Return with Dividends

 Note that dividends also need to be considered when calculating the asset return. This means that we own the stock at its current price and also enjoy the dividends it brings. The previous definition of return is called the price return, which only considers the price movements of the stock. Adding dividends together with the current stock price is referred to as the total return, which is more realistic. When analyzing stock performance, the total return is almost always used. The difference between the total return and the price return gives the dividends.

 The total return of a stock is calculated as follows:
 [image: $$ {R}_{t-1,t}=\frac{S_t+{D}_{t-1,t}}{S_{t-1}}-1=\frac{S_t+{D}_{t-1,t}-{S}_{t-1}}{S_{t-1}} $$]

 In this equation, the total return is denoted by Rt − 1, t, which is the return from time t − 1 to time t. St and St − 1 represent the stock prices at time t and time t − 1, respectively. Dt − 1, t represents the dividend paid out during the period from t − 1 to t.

 The total return provides a more comprehensive assessment of an investment’s performance by incorporating both capital appreciation (i.e., the increase in the stock’s price) and dividend income. It is particularly relevant for income-oriented investors, who are focused on maximizing their returns through a combination of capital gains and dividends.

 To calculate the total return of a stock, the formula takes into account the stock price at the beginning of the period, the stock price at the end of the period, and any dividends paid out during the period. By dividing the sum of the stock price at the end of the period and the dividends by the stock price at the beginning of the period, and then subtracting one, we obtain the total return as a percentage.

 Multiperiod Return

 The terminal return can also be considered as the multiperiod return, or the return over a combined period of time. Since the evolution process is sequential, we need to compound the returns in each period, sequentially. When we have the 1+R formatted returns, it is easy to calculate the multiperiod return by multiplying/compounding the intermediate 1+R returns followed by a subtraction of one.

 The multiperiod return is a measure of an investment’s performance over a series of consecutive periods. Recall that the terminal return can be calculated via R0, T = (1 + R0, 1)(1 + R1, 2)…(1 + RT − 1, T) − 1. When we calculate the two-period return Rt, t + 2, the formula becomes
 [image: $$ {R}_{t,t+2}=\left(1+{R}_{t,t+1}\right)\left(1+{R}_{t+1,t+2}\right)-1 $$]

 This method allows us to calculate the overall return over the two periods while considering the compounding effect of each period’s return on the next. The compounded return is thus easy to calculate using the 1+R formatted returns for both periods. Figure 4-6 illustrates the process of compounding the two-period return.
 [image:]
 A flow diagram with mathematical expressions that explains the process of calculating the cumulative two-period return using the 1+R formatted returns for both periods, and adjusting it by subtracting 1 to get % return.

Figure 4-6
 Calculating the two-period return by compounding the two single-period returns in 1+R format, followed by an adjustment of subtraction by one

 Similarly, for an n-period return, the formula can be generalized as
 [image: $$ {R}_{t,t+n}=\left(1+{R}_{t,t+1}\right)\left(1+{R}_{t+1,t+2}\right)\dots \left(1+{R}_{t+n-1,t+n}\right)-1 $$]

 By multiplying the 1+R formatted returns for all n periods and then subtracting one, we can determine the compounded return over the entire n-period investment horizon.

 Let us look at a simple example. Suppose we invest in an asset for two periods, where the first-period return is 10%, and the second-period return is –2%. To calculate the compounded return, our first step is to convert both single-period returns to the 1+R format, giving 1.1 and 0.98, respectively. We would then multiply these two numbers and subtract by one:
 [image: $$ \left(1+0.1\right)\left(1-0.02\right)-1\approx 0.078=7.8\% $$]

 Note that we should not calculate the two-period terminal return as (10% – 2%) = 8%, which ignores the compounding effect. Working through the calculations sequentially by multiplying the 1+R returns in each period ensures we obtain the correct result. These multiplications give the terminal return in the 1+R format, and we subtract by one to get the return itself.

 Annualizing Returns

 Once we know how to calculate the terminal return of any asset, the next question is comparing assets with different periods of time. For example, some returns are daily, while other returns are monthly, quarterly, or yearly. The answer is annualization, where we annualize the returns to the same time scale of a year for a fair comparison.

 Annualizing returns is a crucial step in comparing the performance of assets with different investment horizons. By converting returns to an annualized basis, we can more easily evaluate and compare the performance of various assets on a standardized time scale. This process helps to level the playing field and facilitate informed decision-making.

 The overall process for annualizing returns is as follows:	
 Calculate the 1+R formatted return for the given period.

	
 Raise the 1+R formatted return to the power of the number of periods per year.

	
 Subtract one to convert the result from the 1+R format back to the return itself.

 Let us look at an example. Suppose we have an asset that generates a monthly return of 1%. To calculate the annualized return, we need to enlarge the time horizon to a year. However, simply multiplying 12 by 1% is incorrect. To proceed with the sequential compounding process, we would construct the 1+R formatted return (1 + 0.01) for each month, multiply across all 12 months to reach (1 + 0.01)12, and finally subtract by one to give (1 + 0.01)12 − 1 ≈ 12.68%, which is higher than 12%. Calculating the annualized return thus involves deriving the 1+R formatted return, multiplying these returns by the number of periods per year, and subtracting by one to convert from 1+R to R.

 This calculation shows that the annualized return is 12.68%, which is higher than simply multiplying the 1% monthly return by 12. This difference is due to the compounding effect, which is an essential factor to consider when annualizing returns.

 Calculating Single-Period Returns from Price Data

 We often start with the price data of an asset, and there is a process to calculate the returns. This section will demonstrate how to achieve this.

 The following command creates a list of three price points, which will be used to calculate different returns similar to the previous two-period return example:

 prices = [0.1, 0.2, -0.05]

 The first-period return can be calculated based on the first two price points. We would first obtain the 1+R formatted return and then subtract by one to switch to the normal return:

 >>> prices[1]/prices[0] – 1

 1.0

 Similarly, we can calculate the second-period normal return as follows:

 >>> prices[2]/prices[1] – 1

 -1.25

 When the list gets large, it would be inconvenient to calculate these single-period returns by hand. A more convenient approach is to borrow the idea of shifting the prices. Shifting can be done via proper indexing in a list. For example, the following code snippet subsets the last two and first two prices, respectively:

 >>> print(prices[1:])

 [0.2, -0.05]

 >>> print(prices[:-1])

 [0.1, 0.2]

 Now we can do division for the corresponding elements in one shot. However, we need to convert both lists to NumPy arrays in order for the element-wise multiplication to work:

 >>> print(np.array(prices[1:])/np.array(prices[:-1])-1)

 [1. -1.25]

 Another approach is to rely on the Pandas ecosystem, which implements a lot of NumPy calculations under the hood. Let us convert the list to a Pandas DataFrame by converting a dictionary, the same technique used earlier:

 prices_df = pd.DataFrame({"price":prices})

 >>> prices_df

 price

 0 0.10

 1 0.20

 2 -0.05

 A common method to subset a Pandas DataFrame is via the iloc() method, which returns the elements based on the positional indexes at both row and column levels. The following code snippet selects the last two and first two elements, respectively:

 >>> prices_df.iloc[1:]

 price

 1 0.20

 2 -0.05

 >>> prices_df.iloc[:-1]

 price

 0 0.1

 1 0.2

 Pay attention to the indexes in the first column here. These are the default row-level indexes assigned upon creating the Pandas DataFrame, and these indexes remain unchanged even after the subsetting operation. Having misaligned indexes could easily lead to problems when trying to combine two DataFrames. In this case, we would end up with an unwanted result when we divide these two DataFrames:

 >>> prices_df.iloc[1:]/prices_df.iloc[:-1]

 price

 0 NaN

 1 1.0

 2 NaN

 The reason behind this seemingly irregular behavior is that both DataFrames are trying to locate the corresponding element with the same index. When the counterparty cannot be found, a NaN value shows up.

 To correct this, we can extract the value attribute only from these DataFrames. We only need to do this for one DataFrame as the other will be converted to the format of the value automatically. The following code snippet shows the way to go, where the result is the same as before:

 >>> prices_df.iloc[1:].values/prices_df.iloc[:-1] – 1

 price

 0 1.00

 1 -1.25

 >>> prices_df.iloc[1:]/prices_df.iloc[:-1].values – 1

 price

 1 1.00

 2 -1.25

 Let us stay with the shifting operation a bit longer. It turns out that there is a function with the same name. For example, to shift the prices downward by one unit, we can pass one to the shift() function of the Pandas DataFrame object as follows:

 >>> prices_df.shift(1)

 price

 0 NaN

 1 0.1

 2 0.2

 Notice that the first element is filled with NaN since there is no value before the first price. We can then divide the original DataFrame by the shifted DataFrame to obtain the sequence of single-period 1+R formatted returns and subtract by one to get the normal return:

 >>> prices_df/prices_df.shift(1) - 1

 price

 0 NaN

 1 1.00

 2 -1.25

 Finally, we have one more utility function that helps us perform these calculations in one shot. The function is pct_change(), which calculates the percentage change between two consecutive values in the DataFrame:

 returns_df = prices_df.pct_change()

 >>> returns_df

 price

 0 NaN

 1 1.00

 2 -1.25

 Again, the first entry is NaN as there is no prior price point.

 Next, we move on to calculating the cumulative two-period terminal return.

 Calculating Two-Period Terminal Return

 The terminal return comes from compounding the previous single-period returns. In the case of a single-period horizon, the terminal return is the same as the single-period return. In the following example, we are calculating the two-period terminal return using a simple DataFrame (returns_df) containing single-period returns. The process involves the following steps:	
 Convert the single-period returns to the 1+R format by adding one.

	
 Calculate the product of the 1+R formatted returns.

	
 Subtract one to convert the result back to the terminal return.

 Specifically, to calculate the two-period terminal return, we first obtain the 1+R formatted single-period returns:

 >>> returns_df + 1

 price

 0 NaN

 1 2.00

 2 -0.25

 We then call the prod() function from NumPy to multiply all elements in an array, ignoring the NaN value. This gets us the 1+R formatted terminal return, from which we subtract one to convert to the normal terminal return:

 >>> np.prod(returns_df + 1) – 1

 price -1.5

 dtype: float64

 There is also a corresponding Pandas way, which gives the same result:

 >>> (returns_df+1).prod() – 1

 price -1.5

 dtype: float64

 Calculating Annualized Returns

 We consider three scenarios where the return frequencies are different, including a daily return of 0.0001, a monthly return of 0.01, and a quarterly return of 0.05. The calculation process is the same as calculating the multiperiod terminal return at a yearly mark:	
 Convert the normal return to the 1+R format for each period.

	
 Raise the 1+R formatted return to the power of the number of periods in a year.

	
 Subtract one to convert the result back to the normal return.

 For the daily return, we assume a total of 252 trading days in a year, which is a typical assumption when working with daily prices. We follow the same recipe here: convert normal return to 1+R return for every single period, compound/multiply these single periods until reaching a year, and minus one to convert back to the normal terminal return:

 r = 0.0001

 >>> (1+r)**252-10

 0.025518911987694626

 For the monthly return, since there are 12 months in a year, we would compound it 12 times:

 r = 0.01

 >>> (1+r)**12-1

 0.12682503013196977

 And lastly, there are four quarters in a year, so we compound it four times:

 r = 0.05

 >>> (1+r)**4-1

 0.21550625000000023

 Now we switch to analyzing risk in the following section.

 Analyzing Risk

 The risk of an asset is related to volatility, which is of equal or higher importance than the reward. Volatility is a crucial metric in assessing the risk of an investment, as it represents the level of uncertainty or fluctuations in the asset’s returns. A higher volatility implies a higher risk, as the asset’s price can experience more significant ups and downs. To quantify the risk associated with an investment, we must understand the concept of volatility and how to calculate it.

 Recall the returns of two assets in Figure 4-3. Despite having the same average reward, asset 2 is more volatile than asset 1. Asset 2 deviates from the mean more often and more significantly than asset 1. Volatility thus measures the degree of deviation from the mean. We will formalize the notion of volatility in this section.

 Before looking at volatility, let us first introduce the concept of variance and standard deviation.

 Introducing Variance and Standard Deviation

 Variance and standard deviation are two widely used statistical measures that describe the spread of the data around its mean value. Suppose we have a total of N returns
 [image: $$ {\left\{{R}_i\right\}}_{i=1}^N $$]
 . We know the mean return RP is calculated by averaging all returns:
 [image: $$ {R}_P=\frac{\sum_{i=1}^N{R}_i}{N} $$]

 Here, the mean return RP describes the central tendency of the returns for the asset or portfolio. That is, on average, the return is RP. It is also called the arithmetic mean of the returns.

 Now comes the measure of the deviation from the mean. For any return Ri, its distance with RP is Ri − RP. However, this distance may be positive or negative. Since we have a total of N returns and, therefore, N distances, aggregating these N distances by summing them up does not seem to be a good idea, as positive and negative distances will cancel out each other. Instead of directly summing up these distances, the variance measure says that we can square the distances first and then take the average of these squared distances. Mathematically, the variance of the returns is expressed as follows:
 [image: $$ {\sigma}_P^2=\frac{\sum_{i=1}^N{\left({R}_i-{R}_P\right)}^2}{N} $$]

 Here, Ri − RP also means to de-mean the original return Ri, that is, subtract the mean return RP from the original return Ri. This gives deviation from the mean. Also, by squaring these deviations, the problem of canceling out positive and negative terms no longer exists; all de-meaned returns end up being positive or zero. Finally, we take the average of the squared deviations as the variance of the return series. A visual inspection of Figure 4-3 also suggests that asset 2 has a higher variance than asset 1.

 Although variance summarizes the average degree of deviation from the mean return, its unit is the squared distance from the average return, making it difficult to interpret the unit. In practice, we would often take the square root of the variance and bring it back to the same scale as the return. The result is called standard deviation, where the deviation is now standardized and comparable.
 [image: $$ {\sigma}_P=\sqrt{\frac{\sum_{i=1}^N{\left({R}_i-{R}_P\right)}^2}{N}} $$]

 This is also our measure of volatility. It measures how large the prices swing around the mean price and serves as a direct measure of the dispersion of returns. The higher the volatility, the higher the deviations from the mean return. Figure 4-7 summarizes the definitions of common statistical measures such as the mean, variance (both population and sample), and standard deviation, also called volatility in the financial context.
 [image:]
 A set of 4 mathematical equations that define the 1. mean return, arithmetic mean, 2. variance, population, 3. variance, sample, and 4. standard deviation, volatility.

Figure 4-7
 Summarizing the common statistical measures, including the mean, variance (population and sample), and standard deviation (also called volatility)

 In summary, variance and standard deviation are essential statistical measures for understanding the risk associated with an investment. They describe the dispersion or spread of returns around their mean value, which helps estimate the potential volatility of an asset or portfolio. These statistical measures also play an important role in assessing the risk tolerance in a portfolio allocation.

 Annualizing Volatility

 Similar to return, the volatility also needs to be annualized to warrant a fair comparison. Without annualizing the volatility, it is difficult to compare the volatility of monthly data with that of daily data.

 The formula for annualizing the volatility relies on the fact that the volatility increases with the square root of the time period T. The annualized return σP, T can be calculated as
 [image: $$ {\sigma}_{P,T}=\sqrt{T}{\sigma}_P $$]

 where σP is our single-period volatility, which can be daily, monthly, or quarterly. This expression relies on the assumption that the returns are normally distributed and independent of each other. We are only going to build intuition on this formula instead of delving into the technical details.

 The time period T is the full time period. Therefore, daily returns give T = 252, monthly returns give T = 12, and quarterly returns give T = 4. We would simply multiply the square root of this time period with the original single-period volatility to obtain the annualized volatility.

 To recap, we can follow these steps to calculate the annualized volatility:	
 Calculate the single-period volatility (σP) for the given data (daily, monthly, or quarterly returns).

	
 Determine the number of periods per year (T). For daily returns, T = 252 (trading days in a year); for monthly returns, T = 12; and for quarterly returns, T = 4.

	
 Multiply the single-period volatility (σP) by the square root of the number of periods per year (T) to obtain the annualized volatility; that is,
 [image: $$ {\sigma}_{P,T}=\sqrt{T}{\sigma}_P $$]
 .

 Keep in mind that the assumption of normally distributed and independent returns is critical for this method to hold true. Annualizing volatility using this method allows us to compare the volatility of assets with different return frequencies on a common scale, making it easier to evaluate and manage the risks associated with different investments.

 When the single-period volatility σP is fixed, our annualized return σP, T will grow as T increases. Such growth in σP, T is a nonlinear function of T due to the square root operation. As the time period T increases, the annualized volatility will also increase, but at a decreasing rate because of the square root function. This means that when the daily return and monthly return have the same single-period volatility, the daily return will have a higher annualized volatility. This makes intuitive sense as it captures short-term fluctuations that are smoothed out when using longer time frames like monthly data, and we expect to see more variations in the daily data compared to the monthly data.

 We can also view the formula from another perspective. Squaring both sides gives us the annualized variance on both sides, as shown in the following:
 [image: $$ {\sigma}_{P,T}^2=T{\sigma}_P^2 $$]

 Now the annualized variance
 [image: $$ {\sigma}_{P,T}^2 $$]
 grows linearly with the time T. Figure 4-8 illustrates the subtlety here.
 [image:]
 Two line graphs between sigma subscript P, T and T present that annualizing volatility rises non-linearly with sigma subscript P, T = square root of T times sigma subscript P, and annualizing variance rises linearly with sigma squared subscript P, T = T sigma squared subscript P.

Figure 4-8
 Comparing the differences when annualizing volatility and variance. When given a fixed single-period volatility or variance, the annualized volatility grows nonlinearly with time, while the annualized variance grows linearly with time

 Let us look at a simple example. Suppose the standard deviation of a stock’s daily return series is 0.1%. The annualized volatility can be calculated as
 [image: $$ 0.001\ast \sqrt{252}\approx 1.59\% $$]

 Combining Risk and Return via the Sharpe Ratio

 Now we have two measures for a particular asset: return and risk; both can be annualized. One asset may display a low return and a low risk, while another asset may deliver a higher return but comes with a higher risk as well. We would like to combine these two measures and create a single risk-adjusted return.

 One way is to divide the average return RP by the volatility σP, giving
 [image: $$ \frac{R_P}{\sigma_P} $$]
 . However, the average return RP gives no information on the overall market conditions. We are unsure if a higher ratio of
 [image: $$ \frac{R_P}{\sigma_P} $$]
 is due to the portfolio itself or the booming market. It would be good to account for the overall market benchmark in the numerator. This is where the Sharpe ratio comes in.

 The Sharpe ratio is a measure that is calculated by dividing the portfolio’s excess return by its volatility to assess risk-adjusted performance. Here, excess return means the return that is above an industry benchmark, typically using the risk-free rate of return such as the Treasury bill or bond. With this standardized measure, we can now compare different assets or portfolios while taking into account the overall market conditions. We will then choose the assets or portfolio with a higher Sharpe ratio.

 Mathematically, the Sharpe ratio is defined as follows:
 [image: $$ Sharpe\ ratio=\frac{R_P-{R}_f}{\sigma_p} $$]

 where RP is the average return of the portfolio, Rf is the risk-free rate, and σp is the volatility of the portfolio. A higher Sharpe ratio indicates that the investment generates higher returns for the same level of risk compared to other investments or the overall market. When comparing different investments, an investment with a higher Sharpe ratio is considered to be more attractive because it offers a better risk-adjusted return. By incorporating the risk-free rate, the Sharpe ratio provides a more accurate assessment of an investment’s performance relative to the overall market conditions.

 Let us look at one example. Suppose we have two portfolios whose returns and volatilities are (5%, 20%) and (10%, 50%). Clearly, portfolio 2 is more profitable and also more volatile than portfolio 1. Such volatility will discount the attractiveness of portfolio 2. To compare these two portfolios using a single metric, we calculate
 [image: $$ \frac{R_P}{\sigma_P} $$]
 as follows:
 [image: $$ \frac{0.05}{0.2}=0.25>\frac{0.1}{0.5}=0.2 $$]

 Thus, portfolio 1 is more attractive using the risk-adjusted measure. Now suppose the risk-free interest rate in the market is 3%. Now we focus on the excess return of both portfolios and compare them using the Sharpe ratio:
 [image: $$ \frac{0.05-0.03}{0.2}=0.1<\frac{0.1-0.03}{0.5}=0.14 $$]

 Now portfolio 2 has become more attractive. This is because portfolio 2 did provide a better return than portfolio 1 after considering the market benchmark. Listing 4-2 demonstrates the comparison in this example.

 p1_ret = 0.05

 p1_vol = 0.2

 p2_ret = 0.1

 p2_vol = 0.5

 risk_free_rate = 0.03

 >>> p1_ret / p1_vol

 0.25

 >>> p2_ret / p2_vol

 0.2

 >>> (p1_ret - risk_free_rate) / p1_vol

 0.1

 >>> (p2_ret - risk_free_rate) / p2_vol

 0.14

 Listing 4-2
 Calculating the Sharpe ratio

 Figure 4-9 summarizes the different measures of the risk-adjusted return.
 [image:]
 A set of 2 mathematical expressions to calculate the risk-adjust return, define the return over risk ratio as R subscript P by sigma subscript P, and sharpe ratio as R subscript P minus R subscript f, by sigma subscript P.

Figure 4-9
 Different risk-adjusted returns. Subtracting the risk-free rate from the (annualized) return gives the excess return, which considers the market benchmark performance

 Let us work with some real data to calculate the aforementioned metrics in the next section.

 Working with Stock Price Data

 In this section, we will download the year-to-date stock price data for Apple (AAPL) and Google (GOOG). In Listing 4-3, we specify the starting date to be “2023-01-01,” with the default end date automatically determined by the system’s current date, which is January 20, 2023, at the time of writing.

 import yfinance as yf

 prices_df = yf.download(["AAPL","GOOG"], start="2023-01-01")

 >>> prices_df.head()

 Listing 4-3
 Downloading stock data using yfinance

 Running the code generates Figure 4-10. Note the multilevel columns here. There are two levels of columns, with the first level indicating the price type and the second one denoting the ticker symbol. Also, the index of the DataFrame follows a datetime format.
 [image:]
 A table with 5 rows of data in date time format, with columns of adjusted close, close, high, low, open, and volume, each with 2 subdivisions of Apple and Google.

Figure 4-10
 Printing the first few rows of daily stock prices for Apple and Google

 Next, we would like to focus on the daily adjusted closing price of the two stocks, indexed by date instead of datetime. Listing 4-4 completes these two tasks.

 # convert datetime index to date format

 prices_df.index = prices_df.index.date

 # keep the adjust close

 prices_df = prices_df['Adj Close']

 >>> prices_df.head()

 AAPL GOOG

 2023-01-03 125.070000 89.699997

 2023-01-04 126.360001 88.709999

 2023-01-05 125.019997 86.769997

 2023-01-06 129.619995 88.160004

 2023-01-09 130.149994 88.800003

 Listing 4-4
 Indexing by date and selecting the daily adjusted closing price

 Here, we accessed the date attribute of the index and assigned it to the index attribute of the DataFrame. We would then calculate the 1+R formatted returns using the pct_change() utility function:

 returns_df = prices_df.pct_change()

 >>> returns_df.head()

 AAPL GOOG

 2023-01-03 NaN NaN

 2023-01-04 0.010314 -0.011037

 2023-01-05 -0.010605 -0.021869

 2023-01-06 0.036794 0.016019

 2023-01-09 0.004089 0.007260

 Again, the first row is empty since there is no data point before it. We can remove this row using the dropna() function:

 returns_df = returns_df.dropna()

 >>> returns_df.head()

 AAPL GOOG

 2023-01-04 0.010314 -0.011037

 2023-01-05 -0.010605 -0.021869

 2023-01-06 0.036794 0.016019

 2023-01-09 0.004089 0.007260

 2023-01-10 0.004456 0.004955

 All rows with any NA value in a cell are removed.

 Next, we calculate the mean, variance, and standard deviation of the return series for both stocks.

 Calculating the Mean, Variance, and Standard Deviation

 The column-wise arithmetic mean returns can be obtained by calling the mean() method of the returns DataFrame:

 >>> returns_df.mean()

 AAPL 0.007228

 GOOG 0.004295

 dtype: float64

 It seems Apple is having a better start than Google at the beginning of the year. To calculate the standard deviation or volatility of the returns, we can use the std() function. However, to see the column-wise operation in action, we explicitly specify axis=0 in the input argument, which says that the standard deviation should be taken along the columns:

 >>> returns_df.std(axis=0)

 AAPL 0.012995

 GOOG 0.016086

 dtype: float64

 Google’s stock prices were more volatile than Apple’s in the first few days. Now let us try setting axis=1:

 >>> returns_df.std(axis=1)

 2023-01-04 0.015097

 2023-01-05 0.007965

 2023-01-06 0.014690

 2023-01-09 0.002242

 2023-01-10 0.000352

 2023-01-11 0.009001

 2023-01-12 0.002259

 2023-01-13 0.000308

 2023-01-17 0.011068

 2023-01-18 0.000882

 2023-01-19 0.016097

 dtype: float64

 The result shows the daily standard deviation calculated for the two stocks combined.

 Now we show how to calculate the volatility manually by going through the exact steps described earlier. Our first step is to de-mean the daily returns and obtain the deviations from the (arithmetic) mean:

 deviations_df = returns_df - returns_df.mean()

 >>> deviations_df.head()

 AAPL GOOG

 2023-01-04 0.003086 -0.015332

 2023-01-05 -0.017833 -0.026164

 2023-01-06 0.029566 0.011724

 2023-01-09 -0.003139 0.002964

 2023-01-10 -0.002772 0.000660

 The next step is to square these deviations so that they would not cancel each other when summing together. Squaring is the same as raising the element to the power of two, using the double asterisk notation:

 squared_deviations_df = deviations_df**2

 >>> squared_deviations_df.head()

 AAPL GOOG

 2023-01-04 0.000010 2.350688e-04

 2023-01-05 0.000318 6.845668e-04

 2023-01-06 0.000874 1.374582e-04

 2023-01-09 0.000010 8.787273e-06

 2023-01-10 0.000008 4.352158e-07

 In the third step, we average these daily squared deviations using the mean() function:

 variance = squared_deviations_df.mean()

 >>> variance

 AAPL 0.000154

 GOOG 0.000235

 dtype: float64

 The last step is to take the square root of the variance to obtain the volatility:

 volatility = np.sqrt(variance)

 >>> volatility

 AAPL 0.012390

 GOOG 0.015337

 dtype: float64

 Notice that the result is different from the one obtained using the std() function! The cause for the difference is that the std() function calculates the sample standard deviation, which divides N − 1 in the denominator as opposed to N in our manual calculations.

 To correct this, let us revisit step three and divide the sum of squared deviations by N − 1 this time. In Listing 4-5, we first get the number of rows N using the first dimension (row dimension) of the shape() function, then plug in the calculation based on the formula of variance.

 num_rows = squared_deviations_df.shape[0]

 variance2 = squared_deviations_df.sum() / (num_rows-1)

 >>> variance2

 AAPL 0.000169

 GOOG 0.000259

 dtype: float64

 Listing 4-5
 Calculating the sample variance

 Taking the square root now gives the same result as using the std() function:

 volatility2 = np.sqrt(variance2)

 >>> volatility2

 AAPL 0.012995

 GOOG 0.016086

 dtype: float64

 Now we have the single-period volatility that measures the daily spread of the returns around its mean, the next section calculates the annualized volatility.

 Calculating the Annualized Volatility

 Following the formula for annualizing the single-period volatility to annual volatility, we can calculate the annualized volatility as follows, where the total length of time in a year is T = 252:

 annualized_vol = returns_df.std()*np.sqrt(252)

 >>> annualized_vol

 AAPL 0.206289

 GOOG 0.255356

 dtype: float64

 We can also calculate the square root of 252 by raising it to the power of 0.5, which returns the same result:

 annualized_vol = returns_df.std()*(252**0.5)

 >>> annualized_vol

 AAPL 0.206289

 GOOG 0.255356

 dtype: float64

 The next section looks at annualizing the returns.

 Calculating the Annualized Returns

 A note to pay attention to here is that returns follow a sequential compounding process. This means that once we have the single-period average return, we need to compound it by the corresponding frequency to reach a year’s length. And, to calculate the single-period average return, we take the geometric mean of the returns. The geometric mean is a better choice than the arithmetic mean in this context because it takes into account the effects of sequential compounding.

 Specifically, we first calculate the geometric mean of the returns as follows. Note that the geometric mean aligns with the sequential compounding nature when analyzing the cumulative return of an asset:

 returns_per_day = (returns_df+1).prod()**(1/returns_df.shape[0]) - 1

 >>> returns_per_day

 AAPL 0.007153

 GOOG 0.004178

 dtype: float64

 Let us decompose the sequence of operations here. First, we construct the 1+R returns in (returns_df+1) for each day, then perform sequential compounding using the prod() function to obtain the cumulative terminal return in 1+R format. Before subtracting one, we raise it to the power of 1/N, where N is the number of rows in the DataFrame. This gives the geometric mean of the returns in 1+R format. We do not use the arithmetic mean here.

 Now comes the annualization part. As shown in Listing 4-6, we assume a fixed daily return as the geometric mean and roll it forward by a year, corresponding to 252 trading days. Again, convert between 1+R return and the normal return.

 annualized_return = (returns_per_day+1)**252-1

 >>> annualized_return

 AAPL 5.025830

 GOOG 1.859802

 dtype: float64

 Listing 4-6
 Annualizing the daily return

 It seems Apple is doing quite well compared with Google for the first few days.

 There is another way to calculate the annualized return, a faster way:

 annualized_return = (returns_df+1).prod()**(252/returns_df.shape[0])-1

 >>> annualized_return

 AAPL 5.025830

 GOOG 1.859802

 dtype: float64

 The key change here is that we raise the terminal return to the power of 252/N. This is standardization, bringing the daily scale to the yearly scale.

 Calculating the Sharpe Ratio

 Finally, let us compute the Sharpe ratio for both stocks. We assume a risk-free interest rate of 3%, calculate the excess return by subtracting it from the annualized return, and divide it by the annualized volatility to obtain the Sharpe ratio. This is shown in Listing 4-7.

 riskfree_rate = 0.03

 excess_return = annualized_return - riskfree_rate

 sharpe_ratio = excess_return/annualized_vol

 >>> sharpe_ratio

 AAPL 24.217681

 GOOG 7.165694

 dtype: float64

 Listing 4-7
 Calculating the Sharpe ratio

 Thus, the Sharpe ratio as a risk-adjusted return is much higher for Apple than Google for the first few days.

 Summary

 In this chapter, we explored the two key characteristics of any financial asset: risk and return. Return refers to the financial reward an asset brings, while risk represents the volatility or uncertainty of that return. As investors, our goal is to maximize return while minimizing risk.

 We introduced different ways to represent and calculate the returns, including the simple return, terminal return, multiperiod return, and the 1+R formatted return. It is important to understand the connections among these forms of return when translating one form to the other.

 We then highlighted the risk-return trade-off, where low-return assets are typically associated with low risk and high-return assets with high risk. To better compare the risk and return for different investment vehicles, we introduced the annualized return and volatility, as well as a risk-adjusted return metric called the Sharpe ratio. We also provided examples illustrating the importance of considering both risk and return when comparing investment products.

 Exercises

 	
 How many inputs do we need to calculate a single-period return?

	
 What is the return if the asset price changes from $5 to $6?

	
 Is the total return of a popular stock typically higher or lower than its price return?

	
 Calculate the three-period return that consists of 10%, –5%, and 6%.

	
 If we buy an asset that rises by 10% on day one and drops by 10% on day two, is our return positive, negative, or zero?

	
 Calculate the annualized return for an asset with a quarterly (three months) return of 2%.

	
 Download the YTD stock data for Apple and Tesla and calculate the daily cumulative returns using the daily closing price. Plot the returns as line charts.

	
 Both annualized volatility and variance grow linearly with time, correct?

	
 Suppose the monthly volatility is 5%. Calculate the annualized volatility.

	
 The annualized volatility is always greater than the monthly volatility. True or false?

	
 The risk-free rate is the return on an investment that carries a low risk. True or false?

	
 If the risk-free rate goes up and the volatility of the portfolio remains unchanged, will the Sharpe ratio increase or decrease?

	
 Obtain monthly return data based on the median daily price per month of Apple stock in the first half of 2022. Calculate the annualized return and volatility based on the monthly returns.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2023
P. LiuQuantitative Trading Strategies Using Pythonhttps://doi.org/10.1007/978-1-4842-9675-2_5

5. Trend-Following Strategy

Peng Liu1
(1)Singapore, Singapore

 Trend following is a popular investment strategy used in all types of markets, including stocks, bonds, commodities, currencies, and even cryptocurrencies. As its name suggests, this strategy is based on the assumption that prices tend to move in a particular direction (or “trend”) over time, thus offering opportunities to capitalize on these movements. At its core, trend following involves analyzing historical price data to identify potential trends. The strategy then recommends taking positions that align with these trends with the expectation that they will continue. For example, if the price of an asset has been steadily rising, a trend follower would typically take a long position, expecting the upward trend to continue. Conversely, if the price has been consistently falling, the trend follower might take a short position, betting that the price will continue to drop.

 However, like any trading strategy, trend following is not foolproof. Trends can reverse suddenly due to unexpected market events or changes in market sentiment, leading to potential losses. Therefore, trend-following strategies typically include overlaying risk management techniques, such as setting up stop-loss orders, to limit potential losses when the trend reverses.

 Trend-following strategies use a variety of technical indicators to identify and confirm trends, such as moving averages, trend lines, and momentum indicators. This chapter introduces the working mechanism of the trend-following strategies using moving averages and then shows its implementation in Python.

 Since we will be working with log returns mostly, let us start by going through an example of its calculation process.

 Working with Log Returns

 Let us build a further understanding of the logarithmic return (or log return) as we will use it to calculate the stock returns when assessing the trend-following strategy. We start with the Excel table in Figure 5-1, where we are given a set of dummy stock prices and are asked to answer questions from Q1 to Q9. We detail the questions and answers in the following.
 [image:]
 An Excel table for dunny stock prices. It presents a set of answers from Q 1 to Q 9 for the dummy stock prices of 5 days.

Figure 5-1
 Daily dummy stock prices

 Let us go through each of these nine questions.

 Q1: Why do we use percentage return?

 Answer: Percentage return provides the same scale of comparison. For example, when we have the price data of another stock (stock B) in the range of 1–10, comparing it with the stock price data (stock A) given by the Excel table is difficult when using absolute terms. A $5 increase means more for stock A than stock B. By converting them to the relative percentage terms, we can put both stocks on the scale ruler and measure their performance. Thus, using percentage returns, we can accurately compare the performance of these two stocks despite their difference in price levels.

 Percentage returns are also useful for comparing the performance of an investment to a benchmark or standard, such as a market index (like the S&P 500 or the Dow Jones Industrial Average). This helps investors to assess how well an investment or a portfolio is performing relative to the broader market or a sector of the market.

 Q2: Calculate single-period percentage return the original way (based on the definition of return).

 Answer: The single-period percentage return, also known as the simple return or the holding period return, reflects the percentage change in the value of an investment from one period to the next. It is calculated as
 [image: $$ {R}_{t,t+1}=\frac{S_{t+1}-{S}_t}{S_t} $$]

 where Rt, t + 1 is the single-period percentage return from time period t to t + 1, and St and St + 1 are asset prices at the end of period t and t + 1, respectively. The numerator of the formula, St + 1 − St, calculates the change in the price of the asset from time t to t + 1. The denominator, St, is the price at the beginning of the period, which serves as the baseline for measuring the relative change. Dividing the price change by the starting price gives the relative change in price, expressed as a percentage, which is the simple return.

 Applying the same formula to all cells in column return1 except for day 1 generates the result in Figure 5-2.
 [image:]
 An Excel table for dunny stock prices. It presents a single-period percentage return in column Q 2 for the dummy stock prices of 5 days. The column headers are day, price, and return 1. The prices of day 1 and day 2 are 100 and 108, which are highlighted.

Figure 5-2
 Calculating the simple returns based on the definition of percentage return

 Q3: Calculate the same returns using the 1+R way.

 Answer: The 1+R approach to calculating returns is slightly different from the original method but essentially delivers the same result. This approach emphasizes the growth factor of the asset’s price from one period to the next, making it easier to understand and interpret. The 1+R approach says that we rewrite the return as
 [image: $$ {R}_{t,t+1}=\frac{S_{t+1}}{S_t}-1 $$]

 This requires two steps: first, calculate the ratio
 [image: $$ \frac{S_{t+1}}{S_t} $$]
 to obtain the so-called 1+R return. This ratio reflects the growth factor of the asset’s price from the beginning of the period to the end. If this ratio is greater than one, it indicates that the asset’s price has increased over the period. If it’s less than one, it indicates a decrease in the asset’s price. If the ratio equals one, it means the asset’s price hasn’t changed.

 Next, we would subtract one from the 1+R return to convert it to the simple return. This step transforms the growth factor
 [image: $$ \frac{S_{t+1}}{S_t} $$]
 into the actual percentage return. Subtracting one essentially removes the initial investment from the calculation, leaving only the gained or lost amount relative to the initial investment, which is the return. See Figure 5-3 for an illustration, where the daily returns are the same as in the previous approach.
 [image:]
 An Excel table for dunny stock prices. It presents the same returns using the 1+R way, for the dummy stock prices of 5 days. The column headers are day, price, return 1, and return 2. The prices of day 1 and day 2 are 100 and 108, which are highlighted.

Figure 5-3
 Calculating the simple returns based on the 1+R approach

 This 1+R method is often used because it is more intuitive. The growth factor
 [image: $$ \frac{S_{t+1}}{S_t} $$]
 easily shows how much the initial investment has grown (or shrunk), and subtracting one gives the net growth in percentage terms, which is the simple return. This method is especially useful when dealing with multiple time periods, as growth factors can simply be multiplied together to calculate the cumulative growth factor over several periods.

 Q4: What is the terminal return from day 1 to day 5 without compounding?

 Answer: The terminal return is the total return on an investment over a given period of time. It’s a measure of the total gain or loss experienced by an investment from the start of the investment period to the end, without considering any compounding effect over the period.

 To calculate the terminal return without involving the compounding process, we would resort to
 [image: $$ {R}_{1,5}=\frac{S_5-{S}_1}{S_1}=\frac{S_5}{S_1}-1 $$]
 , where the second formula first calculates the ratio of the asset’s price on day 5 to its price on day 1 (which reflects the overall growth factor) and then subtracts one to convert the growth factor into a terminal return. See Figure 5-4 for an illustration.
 [image:]
 An Excel table for dunny stock prices. It presents the terminal return without compounding, for the dummy stock prices of 5 days. The column headers are day, price, and return 1. The prices of day 1 and day 5 are 100 and 106, which are highlighted.

Figure 5-4
 Calculating the terminal return without compounding

 Q5: What is the terminal return from day 1 to day 5 with compounding? Is it equal to the result in Q4?

 Answer: Compounding returns is an important concept in finance. It reflects the fact that not only your initial investment earns a return but also the returns from previous periods. This leads to exponential growth over time, given a positive return rate.

 We will fill in the “return3” column, where each cell is a product between the 1+R return of the current period and the cumulative 1+R return of the previous period, offset by one. For the first period (from day 1 to day 2), the “return3” value would be just the “1 + R” return for this period. See Figure 5-5 for an illustration.
 [image:]
 An Excel table for dunny stock prices. It presents the terminal return with compounding for the dummy stock prices of 5 days. The column headers are day, price, return 1, return 2, and return 3. The returns of day 4 for Q 5, and day 5 for Q 3 are highlighted.

Figure 5-5
 Calculating the terminal return using compounding

 As it turns out, the terminal return is 6%, which is the same as previously calculated.

 Q6: Sum up the single-period returns in Q3. Is it equal to the result in Q4?

 Answer: The result shows that it is different from 6%. In general, adding up single-period returns can lead to incorrect conclusions about the overall return on investment. The sum of the single-period returns is not equal to the terminal return (from Q4) because this approach overlooks the effect of compounding. In other words, by simply summing up single-period returns, we are effectively treating each period’s return as if it was independent and earned on the initial investment amount, disregarding the fact that the investment grows with each period due to the returns earned in the prior periods. This is why we see a difference between the summed single-period returns and the terminal return calculated through the correct method that takes into account the compounding effect.

 The principle of compounding acknowledges that returns accumulate over time, meaning the returns earned in one period are reinvested and can generate further returns in subsequent periods. So, while the sum of single-period returns might provide a rough estimate of the total return, it is not a correct measure, especially when the time span is long, or the return rate is high. Instead, the appropriate way to calculate the total return over multiple periods is to use the concept of compound returns, which considers both the initial investment and the reinvestment of returns. It is thus important to follow the sequential compounding process when calculating the terminal return. See Figure 5-6 for an illustration.
 [image:]
 An Excel table for dunny stock prices. It presents the sum of the single-period returns in Q 3. The column headers are day, price, return 1, and return 2. The data in the column Q 3 is highlighted.

Figure 5-6
 Summing up all single-period returns

 Q7: Calculate the log return for each period.

 Answer: The logarithmic return, or continuously compounded return, is another method of calculating returns that can simplify various calculations in finance. This method uses the natural logarithm (log) to express the rate of return, which is derived from the relative changes in price.

 To calculate the log return for each period, we can use the formula:
 [image: $$ \log _\mathrm{return}=\ln \frac{S_{t+1}}{S_t} $$]

 Here, St + 1 and St represent the asset price at the future time t + 1 and the current time t, respectively, and ln denotes the natural logarithm. See Figure 5-7 for an illustration.
 [image:]
 An Excel table for dunny stock prices. It presents the sum of the log return for each period. The column headers are day, price, return 1, return 2, return 3, and return 4. The data in the column Q 3 for day 2 is highlighted.

Figure 5-7
 Calculating the log returns of each period

 For instance, if we have the price data in a sequence, we can compute the log return for each period using this formula. Note that the log return is a good approximation for small returns, and it also has some desirable mathematical properties, such as time additivity, which means that the log return over multiple periods is simply the sum of the log returns over each individual period.

 Also, note that we need to ensure that the denominator (St in this case) is not zero to avoid division by zero error. This can be handled by adding a small constant to the denominator when implementing the calculation in programs.

 Q8: Calculate the terminal return using the log returns. Is it equal to Q4?

 Answer: The terminal return using log returns can be calculated by summing all the single-period log returns, then exponentiating the result to reverse the log operation, and finally subtracting one to convert back to the simple return format. This is because log returns are time additive, meaning that the total log return over a given period is simply the sum of the log returns over the subperiods.

 In other words, if you have calculated log returns over several periods (say daily), you can get the total (terminal) log return over these periods simply by summing up all these daily log returns. This property simplifies the calculation of terminal returns over multiple periods, making it very convenient, especially for large datasets.

 The result shows that it is equal to the one obtained in Q4. See Figure 5-8 for an illustration.
 [image:]
 An Excel table for dunny stock prices. It presents the terminal return, calculated by using the log returns. The column headers are day, price, return 1, return 2, return 3, and return 4. The data in column Q 7 for all five days is highlighted.

Figure 5-8
 Calculating the terminal return using log returns

 Q9: Discuss the advantages of using log returns.

 Answer: As mentioned, the use of logarithmic returns, or “log returns,” has several advantages, as detailed in the following:	
 Ease of calculation and analysis: Log returns simplify mathematical calculations and statistical analyses. This simplification is particularly noticeable when dealing with compounded returns over multiple periods. Because logarithms convert multiplication and division operations into addition and subtraction, the compounded return (or “total return”) over multiple periods can be calculated as the simple sum of the log returns over those periods.

	
 Symmetry: Log returns also exhibit a desirable symmetry property. If a price doubles and then halves, or halves and then doubles, the total log return over the two periods is zero, reflecting the fact that the price is unchanged over the two periods. This symmetry property, which is not possessed by simple returns, often simplifies analyses and improves the interpretability of results.

	
 Suppose a stock price St changes to St + 1 and then changes back to St, the resulting log returns will be symmetric around zero. For example, when the stock price changes from 100 on day 1 to 108 on day 2 and then back to 100 on day 3, the resulting log returns are 7.7% on day 2 and –7.7% on day 3. A simple mathematical analysis would immediately make sense of this:
 [image: $$ \log \frac{S_{t+1}}{S_t}=-\log {\left(\frac{S_{t+1}}{S_t}\right)}^{-1}=-\log \frac{S_t}{S_{t+1}} $$]

	
 Normality: In addition, financial models often assume that returns are normally distributed. However, it’s been observed that simple returns have skewness and excess kurtosis, implying that they deviate from normality. On the other hand, log returns tend to have properties closer to normality which makes them a better fit for these financial models.

	
 Continuously compounded returns: Log returns also represent continuously compounded returns. This property makes log returns the preferred choice in certain financial applications, especially those involving options and other derivatives, where continuous compounding is commonly used.

 In summary, using log returns simplifies mathematical computations and statistical analyses, enables symmetry and normality, and represents continuously compounded returns. These properties make log returns highly valuable in financial analysis and modeling.

 Let us look at a concrete example to understand the calculations using log returns.

 Analyzing Stock Prices Using Log Returns

 We first download Google’s stock price data for the first few days of 2023, as shown in Listing 5-1.

 import numpy as np

 import pandas as pd

 import matplotlib.pyplot as plt

 import yfinance as yf

 symbol = 'GOOG'

 df = yf.download(symbol, start="2023-01-01", end="2023-01-08")

 >>> df

 Open High Low Close Adj Close Volume

 Date

 2023-01-03 89.830002 91.550003 89.019997 89.699997 89.699997 20738500

 2023-01-04 91.010002 91.239998 87.800003 88.709999 88.709999 27046500

 2023-01-05 88.070000 88.209999 86.559998 86.769997 86.769997 23136100

 2023-01-06 87.360001 88.470001 85.570000 88.160004 88.160004 26612600

 Listing 5-1
 Downloading Google’s stock price

 We can use the pct_change() method to calculate the single-period percentage returns, as shown in Listing 5-2.

 # single-period percentage returns

 returns = df.Close.pct_change()

 >>> returns

 Date

 2023-01-03 00:00:00-05:00 NaN

 2023-01-04 00:00:00-05:00 -0.011037

 2023-01-05 00:00:00-05:00 -0.021869

 2023-01-06 00:00:00-05:00 0.016019

 Name: Close, dtype: float64

 Listing 5-2
 Calculating the single-period percentage returns

 Here, the first-period return is NaN as there is no prior stock price available.

 Let us calculate the terminal return using the original approach by taking the first and last closing prices as the inputs (based on the definition given earlier), as shown in Listing 5-3.

 # terminal return

 terminal_return = df.Close[-1]/df.Close[0] - 1

 >>> terminal_return

 -0.01716826464354737

 Listing 5-3
 Calculating the terminal return using the original approach by definition

 We can also calculate the same value by compounding the (1+R) returns based on the .cumprod() function, as shown in Listing 5-4.

 # cumulative returns

 cum_returns = (1+returns).cumprod() - 1

 >>> cum_returns

 Date

 2023-01-03 00:00:00-05:00 NaN

 2023-01-04 00:00:00-05:00 -0.011037

 2023-01-05 00:00:00-05:00 -0.032664

 2023-01-06 00:00:00-05:00 -0.017168

 Name: Close, dtype: float64

 Listing 5-4
 Calculating the same cumulative terminal return by compounding 1+R formatted returns

 The equality operator on both terminal returns evaluates to True:

 # check equality on terminal return

 >>> cum_returns.values[-1] == terminal_return

 True

 Now we calculate the same using log returns, starting by obtaining the single-period log returns in Listing 5-5.

 # log returns (1+R format)

 log_returns = np.log(1+returns)

 >>> log_returns

 Date

 2023-01-03 00:00:00-05:00 NaN

 2023-01-04 00:00:00-05:00 -0.011098

 2023-01-05 00:00:00-05:00 -0.022112

 2023-01-06 00:00:00-05:00 0.015892

 Name: Close, dtype: float64

 Listing 5-5
 Calculating the log returns

 We can add all log returns from previous periods together to get the cumulative log returns, convert back to the original scale via exponentiation, and, lastly, offset by one to convert from 1+R to the simple return format, as shown in Listing 5-6.

 # get cumulative returns using log returns

 cum_return2 = np.exp(log_returns.cumsum()) - 1

 >>> cum_return2

 Date

 2023-01-03 00:00:00-05:00 NaN

 2023-01-04 00:00:00-05:00 -0.011037

 2023-01-05 00:00:00-05:00 -0.032664

 2023-01-06 00:00:00-05:00 -0.017168

 Name: Close, dtype: float64

 Listing 5-6
 Calculating the cumulative returns using log returns

 Again, we verify the value of the last entry and verify that it is the same as the previous terminal return:

 # check equality on terminal return

 >>> cum_return2.values[-1] == terminal_return

 True

 The next section introduces the trend-following strategy.

 Introducing Trend Trading

 Trend trading, also known as trend following, is a strategy that attempts to harness the momentum of an existing trend in a financial market. It operates on the premise that securities tend to move in a relatively sustained direction over time, either upward (bullish) or downward (bearish). It is a proactive trading strategy that seeks to capitalize on the sustained directional momentum of an asset’s price.

 The fundamental principle behind trend trading is that a market’s momentum, or the rate of acceleration of the asset’s price, often continues in one direction for a period of time. This is where the two key concepts, trend and momentum, come into play. The trend represents the direction in which an asset’s price is moving, while momentum indicates the strength or speed of this movement over a certain period. It refers to the capacity for the asset’s price trend to sustain itself going forward. A strong momentum can continue in an upward or downward trend, which can be confirmed by a set of technical indicators.

 Trend traders leverage technical analysis tools to identify potential buying and selling opportunities. They carefully analyze price charts and use various technical indicators, such as moving averages, MACD (Moving Average Convergence Divergence), and the Relative Strength Index (RSI), among others, to identify and confirm an asset’s trend direction and momentum. These technical indicators provide signals that help traders to make educated decisions about when to enter and exit trades.

 In an uptrend, a trend trader will enter a long position, meaning they buy the asset with the expectation that its price will continue to rise. Conversely, in a downtrend, a trend trader will enter a short position, meaning they sell the asset (or sell short) with the expectation that its price will continue to fall. The trend-following strategy aims to take advantage of these significant movements in price and to profit from both rising and falling markets based on the forward-looking uptrends with new highs or anticipated downtrends with new lows.

 Let us start with the technical indicators which are used to generate trading signals.

 Understanding Technical Indicators

 Technical indicators are mathematical calculations based on historical price (high, low, open, close, etc.) or volume and can be used to determine entry and exit points for trades. They are integral to many trading strategies and systems, providing key insights into market behavior. They can be considered as additional features derived from the raw asset data, a practice of feature engineering in machine learning. This makes technical indicators highly security dependent: what can be a good technical indicator for a particular security might not hold the case for the other. Selecting the right features makes all the difference.

 Note that these technical indicators appear as additional features for each observation in the dataset. This means that more columns are added to the price-volume table we worked with earlier, with each column representing a separate technical indicator for the specific asset and time.

 When looking at the raw price data, overlaying a set of technical indicators would help clarify the market analysis for traders. For example, technical indicators help confirm if the market is following a trend or in a range-bound situation, oscillating within a price range.

 Technical indicators are integral to many trading strategies and systems, providing key insights into market behavior. As you’ve described, they are tools derived from mathematical calculations on historical price and volume data, designed to predict future price trends or patterns.

 Some of the most commonly used technical indicators include	
 Moving averages (MA): Moving averages smooth out price data by creating a constantly updated average price. The two most common types are the simple moving average (SMA) and the exponential moving average (EMA). They can help identify whether a security is in an uptrend or downtrend. More on this later.

	
 Relative Strength Index (RSI): The RSI measures the speed and change of price movements, typically on a scale of 0 to 100. A high RSI (generally above 70) may indicate that the asset is overbought and due for a price correction, while a low RSI (generally below 30) could suggest that the asset is oversold and might rebound.

	
 Moving Average Convergence Divergence (MACD): This indicator is a trend-following momentum indicator that shows the relationship between two moving averages of a security’s price. The MACD is calculated by subtracting the 26-day EMA from the 12-day EMA.

	
 Bollinger Bands: These bands are plotted two standard deviations away from a simple moving average. They help identify whether an asset is overbought or oversold and can signal the end of a trend.

	
 Volume-based indicators: These include indicators such as the on-balance volume (OBV), which uses volume flow to predict changes in stock price.

 Each of these indicators provides a unique perspective on potential market movements. A combination of these indicators is often used to create a robust trading strategy.

 Also, note that these indicators don’t predict future prices with absolute certainty. Instead, they help traders identify potential trading opportunities based on statistical probabilities. Each indicator works best under specific market conditions and may not be universally applicable across different asset classes, markets, and trading horizons.

 The following section provides more introduction to moving averages.

 Introducing Moving Averages

 Moving average, also called rolling average, is the mean or average of the specified data field (e.g., daily closing price) for a given set of consecutive periods. As new data becomes available, the mean of the data is computed by dropping the oldest value and adding the latest one. It is rolling along with the data, hence the name “moving average.” It provides a way of smoothing out the price data of a financial asset to identify trends more clearly.

 When calculating moving averages of stock prices, it works similarly to moving a fixed-size window along the time horizon, where each window reports a single number as the average of all price points within the window. And when that window does not have full price points for the initial periods, an NA value is often reported.

 When working with time series data such as daily stock price, the averaging effect can also be considered as smoothening the time series, reducing short-term fluctuations and temporary variations in the data.

 There are different types of moving averages, with the simple moving average and the exponential moving average being the most popular ones. The simple moving average is straightforward to calculate; we simply take the average of all the price points in the current fixed-size window, assuming an equal weightage for all the price points in this window.

 The exponential moving average, or exponentially weighted moving average (EWMA), decreases the weightage for older price points. It’s more complex to calculate than the SMA, as it involves a smoothing factor that needs to be computed. But the basic idea is the same: it’s an average of the closing prices over a certain period.

 The choice between using a simple or exponential moving average depends on the trader’s preference and the specific trading strategy. In general, EMAs react more quickly to recent price changes than SMAs, making them more preferred by short-term traders or those trading volatile markets.

 Moving averages can be used to identify support and resistance levels. The support level is typically a price level or zone that a stock or a market has had difficulty falling below over a specific period. The resistance level is the opposite of the support level. It’s a price level or zone that a stock or a market has trouble moving above. Prices often bounce off these levels, making them useful for identifying potential trade entry and exit points.

 In addition, when two moving averages (e.g., 50-day and 200-day) cross each other, it may signal a change in trend. A bullish signal is given when the shorter MA crosses above the longer MA, and a bearish signal is given when the shorter MA crosses below the longer MA. These crossover points become potential trading signals.

 The following section focuses more on the simple moving averages.

 Delving into Simple Moving Averages

 The simple moving average SMAt at time t is defined as follows:
 [image: $$ SM{\mathrm{A}}_t=\frac{S_{t-\left(M-1\right)}+\dots +{S}_{t-1}+{S}_t}{M} $$]

 In other words, to calculate SMAt, we would take M historical price points, including the current period, and then take the average of these M price points. Essentially, it involves adding up the prices of the security for the last M periods (days, hours, etc.) and then dividing by M. This provides a single output point, the SMA at time t. As new price data becomes available, the oldest data point is dropped, and the newest data point is included in the calculation. This “rolling” or “moving” calculation continues as new price data is added.

 The SMA is often used in trend analysis as it smoothens out short-term fluctuations and provides a clearer picture of the overall trend. It is the unweighted mean of the previous M price points. Here, the choice of M (the number of periods) is crucial because it affects the sensitivity and reliability of the SMA. A smaller M will be more responsive to price changes but may also yield more false signals. A larger M will provide a slower, more reliable SMA, but it might be slower in signaling changes in trends.

 Let us look at how to calculate SMA. We first download Apple’s stock price data for 2022, as shown in Listing 5-7.

 import numpy as np

 import pandas as pd

 import matplotlib.pyplot as plt

 import yfinance as yf

 symbol = 'AAPL'

 df = yf.download(symbol, start="2022-01-01", end="2023-01-01")

 df.index = pd.to_datetime(df.index)

 >>> df.head()

 Open High Low Close Adj Close Volume

 Date

 2022-01-03 177.830002 182.880005 177.710007 182.009995 180.434296 104487900

 2022-01-04 182.630005 182.940002 179.119995 179.699997 178.144302 99310400

 2022-01-05 179.610001 180.169998 174.639999 174.919998 173.405685 94537600

 2022-01-06 172.699997 175.300003 171.639999 172.000000 170.510956 96904000

 2022-01-07 172.889999 174.139999 171.029999 172.169998 170.679489 86709100

 Listing 5-7
 Downloading Apple’s stock price data

 Note that we have an index named Date which now assumes a datetime format to facilitate plotting.

 Listing 5-8 generates a plot on the daily adjusted closing price. We will later overlay its SMA on the same plot.

 # plot the adj closing price

 plt.figure(figsize=(15, 7))

 df['Adj Close'].plot()

 # set labels and sizes of the title and axis

 plt.title('Daily adjusted closing price of Apple', fontsize=16)

 plt.xlabel('Time', fontsize=15)

 plt.ylabel('Price ($)', fontsize=15)

 plt.xticks(fontsize=15)

 plt.yticks(fontsize=15)

 plt.legend(['Close'], prop={'size': 15})

 # show the plot

 >>> plt.show()

 Listing 5-8
 Plotting the daily adjusted closing price

 Running the commands generates Figure 5-9, suggesting a download trend overall.
 [image:]
 A line graph of price versus time presents the variations in the closing prices of apples between January 2021 and January 2023. The close curve has fluctuation trends.

Figure 5-9
 Visualizing the daily closing price of Apple in 2022

 Now we create an SMA series with a window size of three. We can create the rolling window using the rolling() method for a Pandas Series, followed by the mean() method to extract the average value from the window (a collection of price points). Listing 5-9 creates a new SMA column called SMA-3 and subsets to keep only two columns: the adjusted closing price and the SMA column.

 window = 3

 SMA1 = "SMA-"+str(window)

 df[SMA1] = df['Adj Close'].rolling(window).mean()

 colnames = ["Adj Close",SMA1]

 df2 = df[colnames]

 >>> df2.head()

 Adj Close SMA-3

 Date

 2022-01-03 180.434296 NaN

 2022-01-04 178.144302 NaN

 2022-01-05 173.405685 177.328094

 2022-01-06 170.510956 174.020315

 2022-01-07 170.679489 171.532043

 Listing 5-9
 Creating simple moving averages

 Let us pause for a moment and look at how this column is generated. We see that the first two rows in the SMA column are missing. This makes sense as both of them are unable to get a full three-period moving window to calculate the average. In other words, we cannot calculate the average when there is an empty value in the window unless additional treatment is applied here, such as ignoring the empty value while calculating the average.

 We note that the third entry of the SMA column is 177.844493. Let us verify through manual calculation. The following command takes the first three entries of the adjusted closing price column and calculates the average, which reports the same value:

 >>> np.mean(df['Adj Close'][:3])

 177.84449259440103

 which verifies the calculation. Figure 5-10 summarizes the process of calculating SMA in our running example.
 [image:]
 An illustration presents the formula to calculate the simple moving average. A table presents the smile moving average calculated by using the command, rolling in parentheses window underscore size dot mean.

Figure 5-10
 Illustrating the process of calculating simple moving averages

 Note that we can configure the min_periods argument in the rolling() function to control the behavior at the initial windows with incomplete data. For example, by setting min_periods=1, the previous code will report the average value based on the available data in the window. See the following code snippet for a comparison:

 df['New_SMA'] = df['Adj Close'].rolling(window, min_periods=1).mean()

 >>> df[colnames + ['New_SMA']].head()

 Adj Close SMA-3 New_SMA

 Date

 2022-01-03 180.434296 NaN 180.434296

 2022-01-04 178.144302 NaN 179.289299

 2022-01-05 173.405685 177.328094 177.328094

 2022-01-06 170.510956 174.020315 174.020315

 2022-01-07 170.679489 171.532043 171.532043

 Note that the only difference is in the first two entries, where we have an incomplete set of values in the rolling window.

 Next, we plot the three-period SMA alongside the original daily adjusted closing price series, as shown in Listing 5-10.

 # colors for the line plot

 colors = ['blue', 'red']

 # line plot for original price and SMA

 df2.plot(color=colors, linewidth=3, figsize=(12,6))

 # modify ticks size

 plt.xticks(fontsize=13)

 plt.yticks(fontsize=13)

 plt.legend(labels = colnames, fontsize=13)

 # title and labels

 plt.title('Daily adjusted closing price and its SWA', fontsize=20)

 plt.xlabel('Date', fontsize=16)

 plt.ylabel('Price', fontsize=16)

 Listing 5-10
 Plotting the closing price and its SMA

 Running these commands generates Figure 5-11. Note that the three-period SMA curve in red looks less volatile than the original price series in blue. Also, the three-period SMA curve starts from the third entry.
 [image:]
 A multiline graph of price versus date presents the variations in the adjusted closing prices and S M A 3 between January 2022 and January 2023. All 3 curves has fluctuation trends.

Figure 5-11
 Visualizing the original price and three-period SMA

 Now let us add another SMA with a longer period. In Listing 5-11, we add a 20-period SMA as an additional column to df2.

 window = 20

 SMA2 = "SMA-"+str(window)

 df2["SMA-"+SMA2] = df2['Adj Close'].rolling(window).mean()

 colnames = ["Adj Close",SMA1,SMA2]

 Listing 5-11
 Creating 20-period SMA

 Next, we overlay the 20-period SMA on the previous graph, as shown in Listing 5-12.

 # colors for the line plot

 colors = ['blue', 'red', 'green']

 # line plot for original price and SMA

 df2.plot(color=colors, linewidth=3, figsize=(12,6))

 # modify ticks size

 plt.xticks(fontsize=13)

 plt.yticks(fontsize=13)

 plt.legend(labels = colnames, fontsize=13)

 # title and labels

 plt.title('Daily adjusted closing price and its SWA', fontsize=20)

 plt.xlabel('Date', fontsize=16)

 plt.ylabel('Price', fontsize=16)

 Listing 5-12
 Plotting the closing price and two SMAs

 Running these commands generates Figure 5-12, which shows that the 20-period SMA is smoother than the 3-period SMA due to a larger window size.
 [image:]
 A multiline graph of price versus date presents the variations in the adjusted closing prices, S M A 3 and S M A 20, between January 2022 and January 2023. All 3 curves has fluctuation trends.

Figure 5-12
 Visualizing the daily prices together with 3-period and 20-period SMAs

 The next section focuses on the exponential moving averages (EMA).

 Delving into Exponential Moving Averages

 The exponential moving average (EMA), also known as an exponentially weighted moving average (EWMA), is another type of moving average that places a higher weight and significance on the most recent data points. This is a key difference compared to the simple moving average, which gives equal weight to all data points within the period.

 The exponential moving average (EMA) is a widely used method to reduce the noise in the data and identify long-term trends. Each EMA entry is a weighted combination of historical prices and the current price. The weight of each price point decreases progressively over time, giving greater weight to recent data points. It is calculated using the following formula:
 [image: $$ EWM{\mathrm{A}}_t=\left\{\begin{array}{c}{S}_0,\kern0.5em t=0\\ {}\upalpha {\mathrm{S}}_t+\left(1-\alpha \right) EWM{\mathrm{A}}_{t-1},\kern0.5em t>0\end{array}\right. $$]

 where α is the smoothing factor which ranges between zero and one. The smoothing factor α determines the weight given to the most recent price relative to the existing EMA. A higher α emphasizes recent prices more strongly.

 As for the first EWMA value at time t = 0, a default choice is to set EWMA0 = S0. Therefore, EMA assumes that recent data is more relevant than old data. Such an assumption has its merit since EMA can react faster to changes and is thus more sensitive to recent movements as compared to the simple moving average. This also means there is no window size to be specified by the function since all historical data points are in use.

 It’s important to note that while EMA provides more accurate and timely signals than SMA, it might also produce more false signals as it’s more responsive to short-term price fluctuations.

 The EMA can be calculated by calling the ewm() method from a Pandas Series object, followed by extracting the average value via mean(). We can set the alpha argument in ewm() to directly control the importance of the current observation compared with historical ones. See Listing 5-13 for an illustration, where we set α = 0.1 to give more weightage to historical prices.

 alpha = 0.1

 df2['EWM_'+str(alpha)] = df2['Adj Close'].ewm(alpha=alpha, adjust=False).mean()

 df2.head()

 Adj Close SMA-3 SMA-20 EWM_0.1

 Date

 2022-01-03 180.434296 NaN NaN 180.434296

 2022-01-04 178.144302 NaN NaN 180.205296

 2022-01-05 173.405685 177.328094 NaN 179.525335

 2022-01-06 170.510956 174.020315 NaN 178.623897

 2022-01-07 170.679489 171.532043 NaN 177.829456

 Listing 5-13
 Creating EMA series

 We observe that there is no missing value in the EMA series. Indeed, the first entry will simply be the original price itself due to the design of the EMA weighting scheme.

 As usual, let us verify the calculations to ensure our understanding is on the right track. The following code snippet manually calculates the second EMA value, which is the same as the one obtained using the ewm() function:

 alpha=0.1

 >>> alpha*df2['Adj Close'][1] + (1-alpha)*df2['Adj Close'][0]

 180.73006591796877

 Let us continue to create another EMA series with α = 0.5. In other words, we assign an equal weightage to the current observation and historical ones:

 alpha = 0.5

 df2['EWM_'+str(alpha)]= df2['Adj Close'].ewm(alpha=alpha, adjust=False).mean()

 df2.head()

 Adj Close SMA-3 SMA-20 EWM_0.1 EWM_0.5

 Date

 2022-01-03 180.434296 NaN NaN 180.434296 180.434296

 2022-01-04 178.144302 NaN NaN 180.205296 179.289299

 2022-01-05 173.405685 177.328094 NaN 179.525335 176.347492

 2022-01-06 170.510956 174.020315 NaN 178.623897 173.429224

 2022-01-07 170.679489 171.532043 NaN 177.829456 172.054357

 Let us put all these moving averages in a single chart. Here, the plot() function treats all four columns as four separate series to be plotted against the index column, as shown in Listing 5-14.

 df2.plot(linewidth=3, figsize=(12,6))

 plt.title('Daily adjusted closing price with SWA and EWM', fontsize=20)

 plt.xlabel('Date', fontsize=16)

 plt.ylabel('Price', fontsize=16)

 Listing 5-14
 Plotting all moving averages together

 Running these commands generates Figure 5-13. We note that EWM_0.1 (red line) is close to SMA-20 (green line), both of which give more weightage to historical observations. The same is true for the other two moving averages. For EMA, a small weighting factor α results in a high degree of smoothing, while a larger value leads to a quicker response to recent changes.
 [image:]
 A multiline graph of price versus date presents the variations in the adjusted closing prices, S M A 3, S M A 20, E W M 0.1, and E W M 0.5 between January 2022 and January 2023. All 3 curves has fluctuation trends.

Figure 5-13
 Visualizing the daily closing prices with both SMA and EMA of different configurations

 Having looked at how to compute these moving averages, the next section shows how to use them as technical indicators to develop a trend-following strategy.

 Implementing the Trend-Following Strategy

 The trend-following strategy that relies on moving averages works like this. There will be two moving averages: a short-term moving average and a long-term moving average. When the short-term moving average crosses above the long-term moving average, it signals a buy action, and the trend trader enters a long position on the asset. When the short-term moving average crosses below the long-term moving average, it signals a sell action, and the trend trader enters a short position on the asset. Thus, the strategy is based on the intersection of two moving averages: one short term (quick) and one long term (slow).

 Note that this framework also applies to the case when there is only one moving average series. In this case, the trend trader would buy the asset when the current price is above the moving average and sell it if the current price is below the moving average. The key justification for such trading action is, when the price is above a moving average, an uptrend may be present, and vice versa. The crossover between two lines generates the trading signal.

 Other momentum-related technical indicators, such as the RSI and MACD, may also be used to signal entries or exits.

 In the following section, we will implement a trend-following trading strategy using the long-term and short-term moving averages. Using this strategy, we are essentially searching for the trading signal at each time point. That is, we want to decide if we would buy, sell, or hold an asset at each time step. The signal is generated by a crossover between two moving averages. We assume no transaction cost will be incurred when performing a trading action, and the market is liquid (sufficient Apple stock in the market) and complete (no arbitrage opportunities).

 Let us recall the main DataFrame we will work with. The following command prints out the summary information using the info() function:

 >>> df2.info()

 <class 'pandas.core.frame.DataFrame'>

 DatetimeIndex: 251 entries, 2022-01-03 00:00:00-05:00 to 2022-12-30 00:00:00-05:00

 Data columns (total 5 columns):

 # Column Non-Null Count Dtype

 --- ------ -------------- -----

 0 Adj Close 251 non-null float64

 1 SMA-3 249 non-null float64

 2 SMA-20 232 non-null float64

 3 EWM_0.1 251 non-null float64

 4 EWM_0.5 251 non-null float64

 dtypes: float64(5)

 memory usage: 19.9 KB

 Now we will use SMA-3 and SMA-20 as the respective short-term and long-term moving averages, whose crossover will generate a trading signal. We leave it as an exercise to try both SMA with different window sizes and EMA with different weighting schemes.

 Note that we can only use the information up to yesterday to make a trading decision for tomorrow. We cannot use today’s information since the closing price is not yet available in the middle of the day. To enforce this requirement, we can shift the moving averages one day into the future, as shown in the following code snippet. This essentially says that the moving average for today is derived from historical information up to yesterday.

 # Shift to the future by one day so that everyday uses the information up to

 # yesterday to make a trading decision for tmr

 df2['SMA-3'] = df2['SMA-3'].shift(1)

 df2['SMA-20'] = df2['SMA-20'].shift(1)

 Now let us implement the trading rule: buy if SMA-3 > SMA-20, and sell if SMA-3 < SMA-20. Such an if-else condition can be created using the np.where() function, as shown in Listing 5-15.

 # identify buy signal

 df2['signal'] = np.where(df2['SMA-3'] > df2['SMA-20'], 1, 0)

 # identify sell signal

 df2['signal'] = np.where(df2['SMA-3'] < df2['SMA-20'], -1, df2['signal'])

 df2.dropna(inplace=True)

 Listing 5-15
 Creating and identifying buy and sell signals

 Here, a normal trading day would assume a value of either 1 or –1 in the signal column. When there is a missing value or other special cases, we set it to 0. We also use the dropna() function to ensure that the DataFrame is of good quality by dropping rows with any NA/missing value in it.

 We can check the frequency distribution of the signal column as follows:

 >>> df2['signal'].value_counts()

 -1 135

 1 96

 Name: signal, dtype: int64

 The result shows that there are more declining days than inclining days, which confirms the downward trending price series shown earlier.

 Next, we introduce a baseline strategy called buy-and-hold, which simply means we hold one share of Apple stock until the end of the whole period. Also, we will use the log return instead of the raw return to facilitate the calculations. Therefore, instead of taking the division between consecutive stock prices to get
 [image: $$ \frac{S_{t+1}}{S_t} $$]
 , we now take the difference log St + 1 − log St to get
 [image: $$ \log \frac{S_{t+1}}{S_t} $$]
 , which can then be exponentiated to convert to back
 [image: $$ \frac{S_{t+1}}{S_t} $$]
 .

 The following code snippet calculates the instantaneous logarithmic single-period return, where we first take the logarithm of the adjusted closing prices and then call the diff() function to obtain the differences between consecutive pairs of prices:

 df2['log_return_buy_n_hold'] = np.log(df2['Adj Close']).diff()

 Now comes the calculation of the single-period return for the trend-following strategy. Recall the signal column we created earlier. This column represents whether we go long (valued 1) or short (value –1) in a position for every single period. This also shows that the logarithmic return
 [image: $$ \log \frac{S_{t+1}}{S_t} $$]
 is positive if St + 1 > St and negative if St + 1 < St. This creates the following four scenarios when the asset moves from St to St + 1:	
 When we long an asset and its logarithmic return is positive, the trend-following strategy reports a positive return, that is,
 [image: $$ 1\ast \log \frac{S_{t+1}}{S_t} $$]
 .

	
 When we long an asset and its logarithmic return is negative, the trend-following strategy reports a negative return, that is,
 [image: $$ 1\ast \log \frac{S_{t+1}}{S_t} $$]
 .

	
 When we short an asset and its logarithmic return is positive, the trend-following strategy reports a negative return, that is,
 [image: $$ -1\ast \log \frac{S_{t+1}}{S_t} $$]
 .

	
 When we short an asset and its logarithmic return is negative, the trend-following strategy reports a positive return, that is,
 [image: $$ -1\ast \log \frac{S_{t+1}}{S_t} $$]
 .

 Summarizing these four scenarios, we can obtain the single-period logarithmic return for the trend-following strategy by multiplying signal with the log_return_buy_n_hold (the single-period logarithmic return based on the buy-and-hold strategy), as shown in Listing 5-16.

 df2['log_return_trend_follow'] = df2['signal'] * df2['log_return_buy_n_hold']

 Listing 5-16
 Calculating the log return of the trend-following strategy

 Compared with the buy-and-hold strategy, the key difference is the additional shorting actions generated by the trend-following strategy. That is, when the stock price drops, the buy-and-hold strategy will register a loss, while the trend-following strategy will make a profit if the trading signal is to go short. Creating a good trading signal thus makes all the difference.

 Next, we create explicit trading actions. The signal column tells us whether we should go long or short in the given asset under the trend-following strategy. However, this does not mean we need to make a trade at every period. If the signal remains the same for two consecutive periods, we simply hold on to the position and remain seated. In other words, there is no trading action for this specific trading day. This applies in the case of two consecutive 1s or –1s in the signal column.

 On the other hand, we will make an action when there is a sign switch in the trading signal, changing from 1 to –1 or from –1 to 1. The former means changing from longing a unit of stock to shorting it, while the latter means the reverse.

 To create the trading actions, we can use the diff() method again on the signal column, as shown in the following:

 df2['action'] = df2.signal.diff()

 We can produce a frequency count of different trading actions using the value_counts() function:

 >>> df2['action'].value_counts()

 0.0 216

 2.0 7

 -2.0 7

 Name: action, dtype: int64

 The result shows that the majority of the trading days do not require action. For the 14 days with a trading action, 7 days change the position from short to long, and another 7 change from long to short.

 We can visualize these trading actions as triangles on the graph with stock prices and SMAs. In Listing 5-17, we indicate a buy action via the green triangle facing upward when the short-term SMA crosses above the long-term SMA. On the other hand, we use a red triangle facing downward to indicate a sell action when the short-term SMA crosses below the long-term SMA.

 plt.rcParams['figure.figsize'] = 12, 6

 plt.grid(True, alpha = .3)

 plt.plot(df2['Adj Close'], label = 'Adj Close')

 plt.plot(df2['SMA-3'], label = 'SMA-3')

 plt.plot(df2['SMA-20'], label = 'SMA-20')

 plt.plot(df2.loc[df2.action == 2].index, df2['SMA-3'][df2.action == 2], '^',

 color = 'g', markersize = 12)

 plt.plot(df2[df2.action == -2].index, df2['SMA-20'][df2.action == -2], 'v',

 color = 'r', markersize = 12)

 plt.legend(loc=1);

 Listing 5-17
 Visualizing trading actions

 Running these commands generates Figure 5-14. Again, we denote the green triangles as acting from short to long and the red triangles as moving from long to short.
 [image:]
 A multiline graph of price versus date presents the variations in the adjusted closing prices, S M A 3 and S M A 20, between March 2022 and January 2023. All 3 plots has fluctuating decreasing trends.

Figure 5-14
 Visualizing the trading actions, including going from short to long (green triangles) and long to short (red triangles)

 Let us analyze the cumulative returns of each period for both trading strategies. Specifically, we would like to obtain the final percentage return at the end of 2022 if we started with one unit of Apple stock at the beginning of 2022, comparing the two trading strategies.

 Recall that we need to multiply the 1+R return at each period to carry out the compounding process in order to obtain the terminal return (after subtracting one). We also know that the 1+R return is the same as the division between two consecutive prices, that is,
 [image: $$ 1+{R}_{t,t+1}=\frac{S_{t+1}}{S_t} $$]
 . Therefore, to calculate the terminal return, we first convert the returns from the logarithmic format to the usual percentage format using the np.exp() function, then carry out the compounding by performing a cumulative product operation using the cumprod() method. This is achieved via Listing 5-18, where we leave out the last step of subtracting by one and report the 1+R return.

 plt.plot(np.exp(df2['log_return_buy_n_hold']).cumprod(), label='Buy-n-hold')

 plt.plot(np.exp(df2['log_return_trend_follow']).cumprod(), label='Trend following')

 plt.legend(loc=2)

 plt.title("Cumulative return of different trading strategies")

 plt.grid(True, alpha=.3)

 Listing 5-18
 Visualizing cumulative returns

 Running these commands generates Figure 5-15, which shows that the trend-following strategy clearly outperforms the buy-and-hold strategy. However, note that this is a simplified setting that does not take into account transaction cost and other market factors. More analyses and tests are needed to assess the performance of this trading strategy (also many others) in the real-world environment.
 [image:]
 A multiline graph of price versus date presents the variations in the trends of buy-and-hold and trend-following between February 2022 and January 2023. Both has fluctuation trends.

Figure 5-15
 Comparing the cumulative return of buy-and-hold and trend-following strategies for one share of Apple’s stock

 Lastly, we compare the terminal returns of both strategies:

 # terminal return of buy-n-hold

 >>> np.exp(df2['log_return_buy_n_hold']).cumprod()[-1] -1

 -0.25156586984649587

 # terminal return of trend following

 >>> np.exp(df2['log_return_trend_follow']).cumprod()[-1] -1

 0.0711944903093773

 It turns out that sticking to the buy-and-hold strategy would lose by 25%, while using the trend-following strategy generates a terminal return of 7%.

 Summary

 In this chapter, we covered the basics of the popular trend-following strategy and its implementation in Python. We started with an exercise on working with log returns and then transitioned to different moving averages as commonly used technical indicators, including simple moving averages and exponential moving averages. Lastly, we discussed how to generate trading signals and calculate the performance metrics using this strategy, which will serve as a good baseline strategy as we delve into other candidates later on.

 Exercises

 	
 Explain why log returns are symmetric mathematically.

	
 How can we deal with a situation where the price point at a given day is missing when calculating its moving average?

	
 How does the value of the window size affect the smoothness of the SMA? What about the impact of α on the smoothness of EMA?

	
 Change the code to obtain a moving median instead of a moving average. Discuss the difference between the median and the mean. How about maximum and minimum over the same rolling window?

	
 Switch to EMA to derive the trading signals and discuss the results.

	
 Show mathematically why the log returns are additive over time and explain the significance of this property in the context of asset returns.

	
 Suppose there are multiple missing price points in your data, how would you modify the moving average calculation to handle these gaps? What are the potential issues with your approach?

	
 Experiment with different window sizes for SMA and different values of α for EMA. Discuss how these parameters affect the sensitivity of the moving averages to price changes. How would you choose an optimal value for these parameters?

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2023
P. LiuQuantitative Trading Strategies Using Pythonhttps://doi.org/10.1007/978-1-4842-9675-2_6

6. Momentum Trading Strategy

Peng Liu1
(1)Singapore, Singapore

 Momentum trading is a strategy that makes use of the strength of price movements as a basis for opening positions, either longing or shorting a set of assets. It involves buying and/or selling a selected set of assets according to the recent strength of price trends, assuming that these trends will continue in the same direction if there is enough force behind a price move. When using momentum trading, traders intend to capitalize on the force or speed of price movements to determine investment positions. They would either initiate long or short positions in a curated selection of assets based on the recent vigor of price trends. Crucially, the key presumption underpinning this approach is that existing trends, given that their force is strong enough, will persist in the same direction.

 When an asset displays an upward trend, registering higher prices, it invariably attracts more attention from a wider spectrum of traders and investors. The heightened attention garnered by the asset fuels its market price further. This momentum endures until a significant number of sellers enter and penetrate the market, supplying an abundance of the asset. Once enough sellers are in the market, the momentum changes its direction and forces an asset’s price to go lower. This is essentially the price dynamics between supply and demand. At this juncture, market participants may reassess the fair price of the asset, which may be perceived as overvalued due to the recent price surge.

 In other words, as more sellers infiltrate the market, the momentum alters its course, pushing the asset’s price in a downward direction. This is essentially a representation of the classic supply and demand dynamics and the shift from an environment with more buyers than sellers to one where sellers outweigh buyers. Also, note that while price trends can persist for an extended period, they will inevitably reverse at some point. Thus, the ability to identify these inflection points and adjust the positions accordingly is also of equal importance.

 Introducing Momentum Trading

 Momentum traders seek to identify the main driver assets of the trend in a given direction, taking advantage of the expected price changes and anticipated price fluctuations, rather than focusing on predicting the peak of a trend. Instead of attempting to find the top and bottom of a trend, a momentum trader focuses on the top and bottom quantiles of the price move, which implies exploitation of market herding and the tendency toward following the majority that represents the most significant price movements.

 This approach essentially exploits market herding behavior, a phenomenon in which traders tend to follow the majority of the market consensus. In periods of strong upward or downward trends, many traders and investors may decide to follow the crowd to long or short popular assets, thereby initiating or augmenting the existing momentum. Thus, momentum trading is a self-reinforcing mechanism to some extent: as more traders identify an emerging trend, they contribute to the strength of the trend by adding to the buying or selling force. This, in turn, attracts more market participants, which further strengthens the identified trend. This process continues until the market dynamics shift, either due to a change in underlying fundamentals or a change in market sentiment, causing the existing trend to stall or reverse. Such a cyclical nature of trends characterizes the momentum trading strategy, although timing the beginning and end of the momentum, namely, the entry and exit points, is extremely difficult. In fact, one would use different technical indicators to attempt this task.

 Diving Deeper into Momentum Trading

 Momentum trading rests on the confluence of three integral elements: volume, volatility, and time frame.	
 Volume: This signifies the quantity of an asset traded within a specified time frame. A high trading volume often indicates a strong interest in the asset and can be an indicator of the start of a new trend in the asset’s price movement. Conversely, a low volume could signal a lack of interest in the asset, potentially leading to a reversal in trend. Hence, volume plays a crucial role in confirming the strength and sustainability of a trend.

	
 Volatility: Volatility represents the degree of variation in an asset’s price over a short period of time. A higher volatility corresponds to larger price swings, which can provide good trading opportunities for momentum traders, if such variation is in the profitable direction. However, variability is a double-edged sword, as it also increases the risk for significant losses. Therefore, understanding and managing volatility is a critical aspect of momentum trading.

	
 Time frame: The time frame represents the expected duration of the identified trend. Depending on the specific time frames, momentum traders may engage in intraday trading to open and close a position within a day (called day trading) or hold positions for several weeks or months (called position trading). This choice of time frame can affect the risk and return profile of a trade, as day trading is apparently more volatile than position trading.

 These factors can be quantified and aggregated together via technical analysis when developing a momentum trading strategy. The process typically involves analyzing historical price data and trading volumes, followed by applying technical indicators to identify potential trading signals. Essentially, momentum trading requires identifying potential price movements before they occur and capitalizing on these trends to generate a return.

 Contrasting with the Trend-Following Strategy

 The trend-following and momentum trading strategies, both grounded in the concept of momentum, aim to capture the sustained directional movement or the persistent performance of an asset. Both strategies are built upon the observation that asset prices can have a tendency to move in a particular direction over time, a phenomenon known as momentum. Despite their common underpinning, the application and focus of the two strategies differ significantly.

 The momentum trading strategy, as we have discussed, is cross-sectional in nature. It involves comparing the momentum across various assets at a specific time point and investing in those that demonstrate the highest momentum. This comparative analysis occurs at a particular point in time and aims to compare the relative performance among multiple assets. Hence, momentum trading is often characterized as a type of relative momentum strategy.

 In contrast, the trend-following strategy utilizes time series momentum, focusing exclusively on an asset’s own historical performance over time. It analyzes the price pattern of a single asset over its own history, spanning numerous time points, to identify potential trading signals. Therefore, the trend-following strategy is an instance of an absolute momentum strategy. It emphasizes the historical trend of an individual asset and aims to capitalize on its continuation.

 Observing the Role of Lookback Windows

 The application of lookback windows in trend-following and momentum trading strategies varies, depending on their unique operational requirements and objectives.

 The trend-following strategy, as discussed in the previous chapter, employs two lookback windows. These two windows, one short term and one long term, calculate the respective moving averages as technical indicators. The intersection or crossover of these moving averages then produces a trading signal, indicating a shift in the trend’s direction and the right moment for action (for either buying or selling). Thus, the dual lookback windows in the trend-following strategy serve as the basis for decision-making, assisting traders in identifying potential shifts in market trends.

 Conversely, the momentum trading strategy uses a singular, uniform lookback window to evaluate an array of assets. This window helps identify which assets have performed best over the defined lookback period. Subsequently, another uniform lookahead window is used to determine the holding period of a position once a trading decision is made. Essentially, the lookback window aids in selecting the assets to invest in based on their past performance, while the lookahead window provides a time frame for holding the investment, assuming that the asset’s momentum will continue during this period.

 Therefore, both lookback and lookahead windows are essential in momentum trading, helping traders identify high-momentum assets and define the investment’s holding period, respectively. The strategic use of these windows provides a structured approach to navigating the ever-fluctuating market dynamics.

 Let us elaborate on the difference. Figure 6-1 characterizes the selection of three stocks at regular trading intervals as indicated by the lookahead window. Each trading decision (indicated by the green box in the solid line) considers historical stock prices within the same lookback window. The trading decision could be buying the stock with the highest momentum (based on metrics such as the historical average return) and selling the stock with the lowest momentum at a specific time point. We assess all three stocks and make a trading decision at regular intervals (the lookahead window) based on a rolling lookback window.
 [image:]
 A line graph of price versus time. It has 3 fluctuating curves for stock A, stock B, and stock C and 2 vertical bars. The bars present the time points for making the trading decisions. It also indicates 2 uniform lookback windows to assess the momentum for all assets.

Figure 6-1
 Characterizing the momentum trading strategy for three stocks

 The momentum trading strategy is particularly effective in equities, offering a systematic approach to compare and analyze similar assets. It performs a cross-sectional analysis across the equity universe (in this case, three stocks), evaluating and rank-ordering the constituents based on their relative performances over a specified lookback period. This process enables traders to identify strong performers and potential laggards, using their recent momentum as a proxy for future performance.

 In making a trading decision, the momentum strategy often embraces a two-pronged approach, establishing a portfolio with two legs. The first leg is the “long” leg, consisting of top-ranked assets projected to maintain their strong upward price momentum. Traders buy these stocks with an expectation of price appreciation, aiming to sell at a higher price in the future. The second leg is the “short” leg, made up of bottom-ranked assets showing signs of declining price momentum. Traders sell these stocks, often through short-selling, where they borrow the stock to sell in the market with the intent to buy it back at a lower price later. The idea is to profit from the anticipated price decline of these assets. By going long on assets with strong positive momentum and short on assets with negative momentum, traders can potentially benefit from both rising and falling markets, provided the identified momentum persists over the holding period.

 Note that momentum strategies, grounded in the principle of relative momentum, maintain their long and short positions irrespective of the broader market trends. These strategies function on the assumption that the strongest performers and underperformers will persist in their respective trajectories, thus maintaining their relative positions in the investment universe. In other words, in a bullish market environment, the stocks with the strongest upward momentum are expected to outperform the market. Meanwhile, during bearish phases, these same high-momentum stocks may fall in price, but they are still expected to perform better than other stocks that are falling more rapidly. Conversely, the bottom-ranked stocks, showing declining momentum, are expected to underperform the market. In a rising market, these stocks may increase in value, but at a slower pace than the market. Similarly, in a falling market, these stocks are anticipated to decline more rapidly than the broader market. Thus, irrespective of whether the market is bullish or bearish, momentum strategies rely on the persistence of relative performance.

 More on Trend Following

 The trend-following strategy fundamentally differs from the momentum trading strategy in terms of its approach and trading frequency. Trend following is a time series–based strategy that employs moving averages over different lookback periods, one shorter and one longer, to generate the trading signals.

 As depicted in Figure 6-2, the trend-following strategy calculates two moving averages at each point in time, leveraging a longer-term lookback window for one and a shorter-term lookback window for the other. A trading signal is produced when there’s a crossover, which corresponds to a change in the relative position of the two moving averages from one time point to the next. For instance, when the short-term moving average crosses above the long-term moving average, it is often viewed as a bullish signal, and a bearish signal when it crosses below.
 [image:]
 A line graph of price versus time. It has a fluctuating ascending curve for stock A and a vertical bar. The bar presents that the trading interval is not fixed and is purely data-driven. It also indicates longer and shorter lookback windows above and below the curve.

Figure 6-2
 Characterizing the trend-following strategy for a single stock

 Contrary to the momentum trading strategy, which mandates regular trading based on a predefined lookahead window, the trend-following strategy operates without a set trading frequency. Rather, it’s driven entirely by the data at hand. Trading actions are informed by the moving averages’ interactions, leading to potentially less frequent but more strategically timed trades. Such a mechanism makes the trend-following strategy more flexible as it adapts to the market’s movements.

 Note that in a trend-following strategy, the primary concern is whether an asset is on an upward or downward trend. When employing this strategy, traders do not focus on the comparative performance of different assets against each other, as in a momentum strategy. Rather, their interest lies in identifying and capitalizing on established price trends of individual assets. The underlying assumption for this strategy is that the identified asset prices that have been rising or falling steadily over a period will continue to move in the same direction. So, a trader would go long when an asset shows an upward trend and go short when it’s on a downward trend. The action is to “ride the wave” as long as the trend continues. The “trendiness” of the market completely determines the trading decisions of the strategy.

 In summary, while both strategies aim to exploit market momentum, the trend-following strategy involves time series analysis that relies on the absolute momentum in historical prices of the same asset, and the momentum trading strategy involves cross-sectional analysis that relies on the relative momentum across multiple assets. Thus, these two strategies are fundamentally different from each other.

 The next section introduces implementing the momentum trading strategy using Python.

 Implementing the Momentum Trading Strategy

 The Dow Jones Industrial Average (DJIA), often referred to simply as “the Dow,” is a popular equity index that comprises 30 major publicly owned companies based in the United States and covering diverse industries. The variety of sectors represented makes it a useful gauge for assessing the general trends and performance of the market. However, it is considered a relatively small pool size, as compared to other broader indices like the S&P 500, which comprises 500 of the largest publicly traded companies in the United States, making it a more accurate reflection of the market dynamics.

 For the purpose of this section, we’ll employ a momentum trading strategy with the DJIA constituents as our reference universe. This will involve analyzing their respective price trends and performance relative to each other over a specified period in order to identify potential investment opportunities. Our strategy will seek to capitalize on the continuing momentum of outperforming stocks while shorting those with poor performance, with the expectation that these trends will persist over the near to medium term. In other words, we are going to make trading decisions by longing top performers and shorting bottom performers of the 30 constituent stocks.

 To start, we need to obtain the ticker symbols of these 30 stocks.

 Obtaining DJI Stock Symbols

 The Wikipedia page provides a list of these stocks at https://en.wikipedia.org/wiki/Dow_Jones_Industrial_Average. Instead of manually copying and pasting these symbols to our coding console, we are going to leverage a web scraping package called Beautiful Soup, a widely used Python package for parsing HTML and XML documents. We will use this package to create a parse tree and extract data from the specific HTML page.

 First, as shown in Listing 6-1, we import the following packages, where the bs4 is the Beautiful Soup package, the requests package to send HTTP requests, and yfinance is used to download the financial data once the ticker symbols are obtained.

 import pandas as pd

 import requests

 from bs4 import BeautifulSoup

 import os

 import numpy as np

 import pandas as pd

 import yfinance as yf

 Listing 6-1
 Importing relevant packages

 Next, we write a function called fetch_info() to complete the scraping task. As shown in Listing 6-2, we first assign the web link to the url variable and store the header details in the headers variable. The headers are necessary metadata upon visiting a website. We then send a GET request to obtain information from the specified web link via the requests.get() method and pull and parse the data out of the scraped HTML file using BeautifulSoup(), stored in the soup variable. We can then find the meat in the soup by passing the specific node name (table in this case) to the find_all() function, read the HTML data into a DataFrame format using the read_html() function from Pandas, and drop the unnecessary column (the Notes column) before returning the DataFrame object. Finally, if the scraping fails, the function will print out an error message via a try-except control statement.

 def fetch_info():

 try:

 url = "https://en.wikipedia.org/wiki/Dow_Jones_Industrial_Average"

 headers = {

 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:101.0) Gecko/20100101 Firefox/101.0',

 'Accept': 'application/json',

 'Accept-Language': 'en-US,en;q=0.5',

 }

 # Send GET request

 response = requests.get(url, headers=headers)

 soup = BeautifulSoup(response.content, "html.parser")

 # Get the symbols table

 tables = soup.find_all('table')

 # # Convert table to dataframe

 df = pd.read_html(str(tables))[1]

 # Cleanup

 df.drop(columns=['Notes'], inplace=True)

 return df

 except:

 print('Error loading data')

 return None

 Listing 6-2
 Fetching relevant information from the web page

 Now let us call the function to store the result in dji_df and output the first five rows, as shown in the following:

 # get DJI components (ticker symbols)

 dji_df = fetch_info()

 >>> dji_df.head()

 Company Exchange Symbol Industry Date added Index weighting

 0 3M NYSE MMM Conglomerate 1976-08-09 2.41%

 1 American Express NYSE AXP Financial services 1982-08-30 3.02%

 2 Amgen NASDAQ AMGN Biopharmaceutical 2020-08-31 5.48%

 3 Apple NASDAQ AAPL Information technology 2015-03-19 2.84%

 4 Boeing NYSE BA Aerospace and defense 1987-03-12 3.36%

 We can then take the Symbol column, extract the values, and convert it to a list format:

 tickers = dji_df.Symbol.values.tolist()

 With the DJI tickers available, we can now download the stock prices for these ticker symbols using the yfinance package.

 Downloading Stock Prices

 There are three input arguments to be specified to call the download() function: the ticker symbols, the start date, and the end date. In this case, we set the start date as 2021-01-01 and the end date as 2022-09-01, as shown in Listing 6-3.

 start_date = "2021-01-01"

 end_date = "2022-09-01"

 df = yf.download(tickers, start=start_date, end=end_date)

 Listing 6-3
 Downloading the daily stock prices of DJI tickers

 We will focus on the adjusted closing prices for later analysis:

 # use the adjusted closing prices for follow-up analysis

 df = df['Adj Close']

 By now, we have stored the stock prices of the 30 DJI constituents, with each column representing one ticker and each row indicating a corresponding trading day. The index of the DataFrame follows the datetime format.

 Next, we convert the daily stock prices to monthly returns.

 Calculating Monthly Returns

 To transition from the raw daily stock prices to monthly returns, we need to go through a few steps. The first step is to convert the prices to daily percentage returns using the pct_change() method. As introduced in the previous chapter, this function automatically calculates the simple percentage return
 [image: $$ {R}_{t,t+1}=\frac{S_{t+1}-{S}_t}{S_t} $$]
 for all trading days. As this is a daily return, we need to roll it up to the monthly return by compounding all daily returns of the same month and using the terminal return as the monthly return. Breaking it down, we need to group all trading days by month and then calculate the terminal return for each month. Listing 6-4 chains together all these operations in one shot, with the resulting monthly returns stored in mth_return_df.

 mth_return_df = df.pct_change().resample("M").agg(lambda x: (x+1).prod()-1)

 Listing 6-4
 Generating monthly returns from daily prices

 Although chaining together relevant operations looks more concise, it is not the best way to learn these operations if this is the first time we encounter them. Let us decompose these operations. The first operation is to call the pct_change() method, which is a convenient function widely used in many contexts. Next comes the resample() function, which is a convenient method for frequency conversion and resampling of time series data. Let us use some dummy data to understand this function.

 The following code snippet creates a Pandas Series object with nine integers ranging from zero to eight, which are indexed by nine one-minute timestamps:

 # creating a series with 9 one minute timestamps

 index = pd.date_range('1/1/2000', periods=9, freq='T')

 series = pd.Series(range(9), index=index)

 >>> series

 2000-01-01 00:00:00 0

 2000-01-01 00:01:00 1

 2000-01-01 00:02:00 2

 2000-01-01 00:03:00 3

 2000-01-01 00:04:00 4

 2000-01-01 00:05:00 5

 2000-01-01 00:06:00 6

 2000-01-01 00:07:00 7

 2000-01-01 00:08:00 8

 Freq: T, dtype: int64

 We then aggregate the series into three-minute bins and sum the values of the timestamps falling into a bin, as shown in the following code snippet:

 >>> series.resample('3T').sum()

 2000-01-01 00:00:00 3

 2000-01-01 00:03:00 12

 2000-01-01 00:06:00 21

 Freq: 3T, dtype: int64

 As we can see from the result, the resample() function completes the aggregation operation by the specified interval, and the following method summarizes the data within the interval.

 Back to our running example, we downsample the raw daily returns into monthly returns, so each month is represented with only one data point instead of 30 (in a typical month). The aggregation works by cumulating all daily returns following the same procedure: converting to 1+R format, compounding, and then converting back to simple return.

 The new thing here is the lambda function. We use the x symbol to represent a general input argument. In this case, it will be all the raw daily returns in a given month. Since this lambda function performs a customized operation, we use the agg() function to carry through the customized function, instead of using the built-in function such as sum() as before.

 By now, we have converted the daily returns to monthly representations where every single monthly return represents the terminal return of the daily returns compounded within the month. Next, we calculate another metric using historical monthly returns to indicate the current month’s stock performance.

 Calculating the Six-Month Terminal Return

 We know that making a trading decision based on the current month’s return would be flawed in two ways. First, we rely too much on the current month and ignore historical performances. Second, we run into the risk of data snooping. That is, to calculate the monthly return on a given day of the month, if it does not fall on the last day of the month, we would snoop all future daily returns within the same month in order to calculate the terminal return.

 We focus on the first point and come back to the second point in a moment. Obviously, we need to find a way to incorporate historical monthly returns when generating trading signals in the current month. However, different from the moving averages used for stock prices, the historical average monthly return obtained using the same arithmetic mean essentially ignores the sequential compounding process. Therefore, we need to treat historical monthly returns as a sequential process and compound these returns (up to a specific lookback window) to obtain the terminal monthly return.

 This terminal monthly return will then serve as the momentum indicator for stock selection and trading initiation. This involves choosing a lookback window with a specific size. Let us assume a window size of six. Now, to calculate the six-month terminal return for each month on a rolling basis, we can use the rolling() function, which is the same function used to calculate moving averages. The only change is that, instead of taking the average using mean() after rolling the pointer backward by six months, we take the product of these 1+R monthly returns using np.prod in the apply() function to complete the compounding process, as shown in Listing 6-5.

 # obtain the historical cumulative returns of past 6 months as the terminal return of current month

 past_cum_return_df = (mth_return_df+1).rolling(6).apply(np.prod) - 1

 Listing 6-5
 Calculating six-month cumulative returns

 By now, we have calculated the six-month terminal monthly return as the cumulative return of the past six months, including the current month. This also explains why the first five months show empty values in the previous result and the cumulative monthly returns only start from the sixth month.

 Next, we look at using these terminal returns to generate trading signals.

 Generating Trading Signals

 We have fixed the lookback window to be six months into the past. The momentum trading strategy involves another lookahead window used to fix the trading horizon in the future. Specifically, suppose we form our trading strategy and make the trading decision in the current month. These new positions will last for a full month in the next month if the lookahead horizon is one. We can then measure the performance of these positions at the end of the next month. In this case, the size of the lookahead window is set to be one.

 Also, we cannot use the monthly terminal return in the formation month to generate trading signals, as it uses future daily returns within the same month. When standing in the middle of the formation month, what we can use is the terminal monthly return of the last month, which is the end of the measurement period. The measurement period represents the collection of all historically observed data and thus avoids data snooping when limiting the usable data to this period only. Figure 6-3 illustrates the subtlety here.
 [image:]
 A timeline with 6 labeled points. Each tick marks the end of the month. The labeled points are a historical measurement period with 6 months of lookback window, 6-month terminal monthly return, trade formation period, current time point, and performance period with one month of a lookahead window.

Figure 6-3
 Illustrating the measurement period, formation period, and evaluation period across the investment horizon

 Since our data lasts until 2022-08-31, we will use 2022-07-31 as the trade formation period. To generate a trading strategy, we will use the terminal monthly return from the previous month indexed at 2022-06-30 as the end of the measurement period. We resort to the datetime package to encode these two dates, as shown in Listing 6-6.

 import datetime as dt

 end_of_measurement_period = dt.datetime(2022,6,30)

 formation_period = dt.datetime(2022,7,31)

 Listing 6-6
 Identifying the measurement and formation periods

 These dates will then be used to slice the cumulative monthly return DataFrame stored in past_cum_return_df. In the following code snippet, we pass the end_of_measurement_period variable to the .loc[] property of past_cum_return_df to perform label-based indexing at the row level. Since the result is Pandas Series indexed by the 30 ticker symbols, we will use the reset_index() method to reset its index to zero-based integers and bring the symbols as a column in the resulting DataFrame. The following code snippet shows the resulting cumulative terminal returns at the end of the measurement period:

 end_of_measurement_period_return_df = past_cum_return_df.loc[end_of_measurement_period]

 end_of_measurement_period_return_df = end_of_measurement_period_return_df.reset_index()

 >>> end_of_measurement_period_return_df.head()

 index 2022-06-30 00:00:00-04:00

 0 AAPL -0.227936

 1 AMGN 0.099514

 2 AXP -0.144964

 3 BA -0.320882

 4 CAT -0.126977

 These six-month terminal monthly returns of the 30 DJI constituents represent the relative momentum of each stock. We can observe the stock symbols and returns with the highest momentum in the positive and negative directions using the following code snippet:

 # highest momentum in the positive direction

 >>> end_of_measurement_period_return_df.loc[end_of_measurement_period_return_df.iloc[:,1].idxmax()]

 index CVX

 2022-06-30 00:00:00-04:00 0.256955

 Name: 7, dtype: object

 # highest momentum in the negative direction

 end_of_measurement_period_return_df.loc[end_of_measurement_period_return_df.iloc[:,1].idxmin()]

 index DIS

 2022-06-30 00:00:00-04:00 -0.390535

 Name: 8, dtype: object

 Here, we used the methods idxmax() and idxmin() to return the index of the maximum and minimum values, respectively.

 These two stocks would become the best choices if we were to long or short an asset. Instead of focusing on only one stock in each direction (long and short), we can enlarge the space and use a quantile approach for stock selection. For example, we can classify all stocks into five groups (also referred to as quantiles or percentiles) based on their returns and form a trading strategy that longs the stocks in the top percentile and shorts those in the bottom percentile.

 To obtain the quantile of each return, we can use the qcut() function from Pandas, which receives a Pandas Series and cuts it into a prespecified number of groups based on their quantiles, thus discretizing the continuous variables into a categorical, more specifically, and ordinal one. The following code snippet provides a short example:

 >>> pd.qcut(series, 5, labels=False)

 2000-01-01 00:00:00 0

 2000-01-01 00:01:00 0

 2000-01-01 00:02:00 1

 2000-01-01 00:03:00 1

 2000-01-01 00:04:00 2

 2000-01-01 00:05:00 3

 2000-01-01 00:06:00 3

 2000-01-01 00:07:00 4

 2000-01-01 00:08:00 4

 Freq: T, dtype: int64

 Thus, the qcut() function rank-orders the series into five groups based on their quantiles. We can now similarly rank-order the returns and store the result in a new column called rank, as shown in Listing 6-7.

 end_of_measurement_period_return_df['rank'] = pd.qcut(end_of_measurement_period_return_df.iloc[:,1], 5, labels=False)

 >>> end_of_measurement_period_return_df.head()

 index 2022-06-30 00:00:00-04:00 rank

 0 AAPL -0.227936 1

 1 AMGN 0.099514 4

 2 AXP -0.144964 2

 3 BA -0.320882 0

 4 CAT -0.126977 2

 Listing 6-7
 Rank-ordering the stocks based on cumulative terminal monthly returns

 We can now use this column to select the top and bottom performers. Specifically, we will long the stocks ranked four and short the stocks ranked zero. Let us observe the stock symbols in these two groups via Listing 6-8.

 long_stocks = end_of_measurement_period_return_df.loc[end_of_measurement_period_return_df["rank"]==4,"index"].values

 >>> long_stocks

 array(['AMGN', 'CVX', 'IBM', 'KO', 'MRK', 'TRV'], dtype=object)

 short_stocks = end_of_measurement_period_return_df.loc[end_of_measurement_period_return_df["rank"]==0,"index"].values

 >>> short_stocks

 array(['BA', 'CRM', 'CSCO', 'DIS', 'HD', 'NKE'], dtype=object)

 Listing 6-8
 Obtaining the stock tickers to long or short

 Having identified the group of stocks to be bought or sold, we will execute the trading actions and enter into these positions for a period of one month. Since the current period is 2022-07-31, we will evaluate the out-of-sample performance of the momentum strategy on 2022-08-31.

 Evaluating Out-of-Sample Performance

 Let us first grab the monthly return indexed at 2022-08-31 from mth_return_df for the long and short positions, respectively. As shown in Listing 6-9, we use the relativedelta function from the dateutil package to shift formation_period by one month into the future, arriving at the evaluation period. This goes to the row-level condition in the .loc[] property. For the column-level condition, we subset the columns to the stock symbols within the long positions using the isin() method. The result for the evaluation-period performance of the long position is stored in long_return_df.

 from dateutil.relativedelta import relativedelta

 long_return_df = mth_return_df.loc[formation_period + relativedelta(months=1), \ mth_return_df.columns.isin(long_stocks)]

 >>> long_return_df

 AMGN -0.021474

 CVX -0.026156

 IBM -0.005517

 KO -0.038336

 MRK -0.044549

 TRV 0.018526

 Name: 2022-08-31 00:00:00-04:00, dtype: float64

 Listing 6-9
 Obtaining the performance of stocks in a long position at the evaluation period

 The result shows that the majority of the top performers are decreasing in price, which is a direct reflection of market sentiment during that period of time. We can similarly obtain the evaluation-period performance for the bottom performances in the short position, as shown in Listing 6-10.

 short_return_df = mth_return_df.loc[formation_period + relativedelta(months=1), \ mth_return_df.columns.isin(short_stocks)]

 >>> short_return_df

 BA 0.005900

 CRM -0.151614

 CSCO -0.014327

 DIS 0.056362

 HD -0.035350

 NKE -0.073703

 Name: 2022-08-31 00:00:00-04:00, dtype: float64

 Listing 6-10
 Obtaining the performance of stocks in a short position at the evaluation period

 Now we calculate the return of the evaluation period based on these two positions. We assume an equally weighted portfolio in both positions. Thus, the final return is the average of all member stocks in the respective position. Also, since we hold a short position for the bottom performers, we subtract the average return from the short position in these stocks while adding the average return from the long position. Listing 6-11 completes the calculation.

 momentum_profit = long_return_df.mean() - short_return_df.mean()

 >>> momentum_profit

 0.015870799817079288

 Listing 6-11
 Calculating the total profit

 Therefore, the momentum trading strategy reports a final monthly return of 1.587%. Now let us compare with the buy-and-hold strategy.

 Comparing with the Buy-and-Hold Strategy

 We assume a buy-and-hold strategy based on DJI as the benchmark. This means entering a long position of the index at the same beginning of the trading period on 2021-01-01 and holding them all the way until 2022-09-01. We first download the data on this index by passing “^DJI” as the ticker symbol, as shown in the following code snippet:

 df_dji = yf.download("^DJI", start=start_date, end=end_date)

 Next, we follow the same approach to calculate the monthly terminal returns, as shown in Listing 6-12.

 buy_n_hold_df = df_dji['Adj Close'].pct_change().resample("M").agg(lambda x: (x+1).prod()-1)

 >>> buy_n_hold_df.head()

 Date

 2021-01-31 00:00:00-05:00 -0.007983

 2021-02-28 00:00:00-05:00 0.031677

 2021-03-31 00:00:00-04:00 0.066247

 2021-04-30 00:00:00-04:00 0.027085

 2021-05-31 00:00:00-04:00 0.019324

 Freq: M, Name: Adj Close, dtype: float64

 Listing 6-12
 Calculating the monthly terminal returns of the buy-and-hold strategy

 We can then access the monthly return during the evaluation period, as shown in the following code snippet:

 >>> buy_n_hold_df.loc[formation_period + relativedelta(months=1),]

 -0.04063613884907047

 The buy-and-hold strategy thus reports a monthly return of –4.064% in the same evaluation period. Although the momentum trading strategy performs better, we are still far from claiming victory here. More robust backtesting on the out-of-sample performance across multiple periods is still needed.

 Summary

 In this chapter, we looked at the momentum trading strategy and its implementation in Python. We started by comparing it with the trend-following strategy from the previous chapter, discussing their connections and differences in terms of time series and cross-sectional analysis, as well as the different use of lookback and lookahead windows. Next, we covered its implementation using monthly returns, focusing on the process of signal generation and out-of-sample performance evaluation.

 In the next chapter, we will learn a systematic way of assessing different trading strategies using backtesting.

 Exercises

 	
 Play around with the parameters of the momentum trading strategy (such as the window size) and assess the performance.

	
 Try implementing the momentum trading strategy on a different set of assets, such as commodities, forex, or cryptocurrencies. Discuss any differences or similarities you observe in the performance of the strategy.

	
 Try to create a hybrid strategy that combines both momentum trading and trend following. How does this hybrid strategy perform compared to the stand-alone strategies?

	
 Try to incorporate volatility measures, such as Bollinger Bands or standard deviation of returns, into the momentum trading strategy. How does this impact the performance?

	
 Implement the strategy using other momentum indicators such as the Relative Strength Index (RSI) or the Moving Average Convergence Divergence (MACD). Compare their performance with the basic momentum strategy.

	
 Incorporate transaction costs into the momentum trading strategy. How do these costs impact the overall profitability of the strategy?

	
 Perform backtesting of the momentum trading strategy over different market periods (bull market, bear market, high volatility period, etc.). How robust is the strategy across different market conditions?

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2023
P. LiuQuantitative Trading Strategies Using Pythonhttps://doi.org/10.1007/978-1-4842-9675-2_7

7. Backtesting a Trading Strategy

Peng Liu1
(1)Singapore, Singapore

 As the name suggests, backtesting refers to the process of testing a trading strategy on relevant historical data before rolling it up to the live market. It gives an indication of the likely performance in different trading scenarios. In this chapter, we delve into the intricacies of backtesting a trading strategy, starting with an understanding of why backtesting is an important component in quantitative trading.

 Note that while backtesting can offer insightful results, it is only as good as the quality of the data and the assumptions underpinning the trading strategy. For example, a trading strategy might work very well in a bull market, but it’s equally important to know how it performs during a bear market or during periods of high market volatility. By using backtesting, we can analyze the strategy’s robustness over different market phases, which provides a more holistic view of its performance. Therefore, a good practice is to choose multiple representative trading periods and record the backtesting performances so as to obtain a robust measure of the actual performance of a specific trading strategy.

 Introducing Backtesting

 Backtesting allows us to simulate a trading strategy using historical data and analyze the risk and return before actually entering into a position. It refers to the process of testing a particular trading strategy backward using historical data in order to assess its performance on future data going forward. Such performance is also called the test set performance in the context of training a machine learning model, with the common constraint that the test set needs to be completely kept away when formulating a strategy or training a model. This period of historical data reserved for testing purposes allows us to assess the potential variability of the proposed trading strategy.

 Building on that, backtesting offers a way to measure the effectiveness of a trading strategy while keeping emotions and subjective bias at bay. It provides a scientific method to simulate the actual performance of a strategy, which then can be used to calculate various summary metrics that indicate the strategy’s potential profitability, risk, and stability over time. Example metrics include the total return, average return, volatility, maximum drawdown (to be covered shortly), and the Sharpe ratio.

 When carrying out a backtesting procedure, one needs to avoid data snooping (i.e., peeking into the future) and observe the sequence of time. Even if a certain period of historical data is used to cross-validate a strategy, one needs to ensure that the cross-validation periods fall outside or, more specifically, after the training period. In other words, the cross-validation period cannot exist in the middle of the training period, thus preserving the sequence of time as we move forward.

 Retrospectively testing out the hypothetical performance of a trading strategy on historical data allows us to assess its variability over a set of aforementioned metrics. Since the same trading strategy may exhibit completely different behavior when backtested over various choices of investment horizons and assets, it is critical to overlay a comprehensive set of backtesting scenarios for the particular trading strategy before its adoption. It’s essential to conduct a thorough and varied backtesting process, as the performance of a trading strategy can greatly vary depending on the choice of investment horizon, the selection of assets, and the specific market conditions during the testing period.

 For example, we can use backtesting on the trend-following strategy we covered earlier, where we use two moving averages to generate trading signals if there is a crossover. In this process, the input consists of two window sizes: one for the short window and one for the long window. The output is the resulting return, volatility, or other risk-adjusted return such as the Sharpe ratio. Any pair of window sizes for the moving averages has a corresponding performance metric, and we would change the input parameters in order to obtain the optional performance metric on the historical data. More specifically, we can create a range of potential values for each parameter—for example, we could test short moving averages from 10 to 30 days and long moving averages from 50 to 200 days. For each combination of these parameters, we calculate the corresponding performance metric. The optimal parameters then maximize (or minimize, depending on the specific metric) this selected performance metric.

 Caveats of Backtesting

 Note that a good backtesting performance does not necessarily guarantee a good future return. This is due to the underlying assumption of backtesting: any strategy that did well in the past is likely to do well in the future period, and conversely, any strategy that performed poorly in the past is likely to perform poorly in the future. Since financial markets are complex adaptive systems that are influenced by a myriad of factors, including economic indicators, geopolitical events, and even shifts in investor sentiment, all these are constantly evolving and can deviate significantly from past patterns. In summary, past performance is not indicative of future results.

 However, a well-conducted backtest that yields positive results gives assurance that the strategy is fundamentally sound and is likely to yield profits when implemented in reality. Backtesting can at least help us to weed out the strategies that do not prove themselves worthy. However, this assumption is likely to fail in the stock market, which typically highlights a low signal-to-noise ratio. Since financial markets keep evolving fast, the future may exhibit patterns not present in the historical data, making extrapolation a difficult task compared to interpolation.

 Another issue with backtesting is the potential to overfit a strategy such that it performs well on the historical data used for testing but fails to generalize to new, unseen data. Overfitting occurs when a strategy is too complex and tailors itself to the idiosyncrasies and noise in the test data rather than identifying and exploiting the fundamental patterns that govern the data-generating process.

 In addition, the backtesting period of the historical data needs to be representative and reflect a variety of market conditions. Excessively using the same dataset for backtesting is called data dredging, where the same dataset may produce an exceptionally good result purely by chance. If the backtest only includes a period of economic boom, for instance, the strategy might appear more successful than it would during a downturn or volatile market conditions. By assessing the trading strategy over a comprehensive and diverse period of historical data, we can avoid data dredging and better tell if the good performance, if any, is due to sound trading or merely a fluke.

 Data dredging, or “p-hacking,” is a material concern in backtesting. It involves repeatedly running different backtests with slightly modified parameters on the same dataset until a desirable result is found. The danger here lies in the fact that the positive result might just be a product of chance rather than an indication of a genuinely effective strategy. This overfitting could lead to a strategy that performs exceptionally well on the test data but fails miserably on new, unseen data.

 On the other hand, the selection of the stocks used for backtesting also needs to be representative, including companies that eventually went bankrupt, were sold, or liquidated. Failing to do so produces the survivorship bias, where one cherry-picks a set of stocks and only looks at those that survived till today and ignores others that disappeared in the middle. By excluding companies that have failed or undergone significant structural changes, we could end up with an overly optimistic view of the strategy’s profitability and risk profile. This is because the stocks that have survived, in general, are likely to be those that performed better than average. Ignoring companies that went bankrupt or were delisted for any reason may skew the results, creating an illusion of a successful strategy when, in reality, the strategy may not perform as well in the real environment.

 Moreover, by incorporating stocks that have underperformed or failed, we are in a better position to assess the risk of the strategy and prepare for worst-case scenarios. This can lead to more accurate risk and reward assessments and better inform the decision-making process when it comes to deploying the strategy. This strategy will also be more robust and can withstand various market conditions, including periods of economic downturn or industry-specific shocks.

 Lastly, a backtest should also consider all trading costs, however insignificant, as these can add up over the course of the backtesting period and drastically affect the performance of a trading strategy’s profitability. These costs can include brokerage fees, bid-ask spreads, slippage (the difference between the expected price of a trade and the price at which the trade is executed), and in some cases, taxes and other regulatory fees. Overlooking these costs in backtesting can lead to an overly optimistic assessment of a strategy’s performance. For example, a high-frequency trading strategy might seem profitable when backtested without trading costs. However, in reality, such strategies involve a large number of trades and, therefore, high transaction costs, which can quickly erode any potential profits. Considering these costs during the backtesting stage will present a more accurate estimate of the net profitability of the strategy. Moreover, the impact of trading costs can vary greatly depending on the specifics of the trading strategy. Strategies that involve frequent trading, narrow profit margins, or large order sizes can be particularly sensitive to the assumptions made about trading costs in the backtesting process.

 Before diving into the specifics of backtesting, let us introduce a popular risk measure called the maximum drawdown, or max drawdown.

 Understanding Maximum Drawdown

 Previously, we introduced the Sharpe ratio, which measures the excess return per unit of volatility. There are many other measures of risk, and this section covers the max drawdown due to its popular use in practice. In particular, the max drawdown measures the impact of the downside volatility, since the upside volatility brings positive returns and is a preferred behavior. In other words, we are more concerned with deviating from the mean on the downside instead of the upside. Therefore, when we use the term risk, we often highlight more on the downside movement that leads to a lower or even negative return.

 Max drawdown is defined as the maximum loss in percentage from the previous high wealth to a subsequent low wealth. Here, wealth refers to the asset value and represents the amount of money we have at hand due to holding the asset. Since it tracks the maximum loss possible, the max drawdown measures a hypothetical loss if we were to buy the asset at its peak price and sell it at its bottom price. It measures the worst return from the peak to the trough that we could have experienced, if we are unlucky enough, over the investment period. It gives an indication of how bad the worst-case scenario could be, although it does not necessarily reflect the actual returns of a trading strategy.

 Max drawdown provides a valuable perspective on the potential risks associated with an investment strategy and is particularly useful in highlighting the potential extent of negative performance. By considering the maximum percentage loss that an investment strategy would have incurred in the worst-case scenario, we gain an understanding of the potential “pain” or “risk” the investor might have to endure.

 To calculate the max drawdown, we first need to obtain a series of the wealth index to indicate the amount of money we have at each unit of time, assuming a hypothetical buy-and-hold strategy (or other trading strategies of interest). It is a time series that records the value of the portfolio at each point in time, taking into account all trading activities, including the reinvestment of dividends, the effect of market returns, and adjustments made to the portfolio, such as buying or selling of assets. In other words, the wealth index tracks the evolution of an initial investment amount (say $1000) that was used to buy the asset at the beginning of the investment horizon.

 Next, we obtain the prior peak wealth index at any point in time. This gives the highest portfolio value that one has experienced due to the particular trading strategy at any point in time since the initiation of the position. This essentially identifies the “highest highs” of the portfolio value. The distance between the prior peak and current wealth gives the drawdown (converted to percentages), which indicates the amount of money we could have lost. This value is usually negative or zero and reflects the extent to which the current portfolio value has fallen from its most recent peak.

 Lastly, the maximum distance then gives the max drawdown. This is the lowest (most negative) value of the drawdown, indicating the largest percentage loss from the peak to the trough. It signifies the worst loss the portfolio would have incurred over the backtest period if the asset is bought at the peak and sold at the lowest point thereafter.

 Figure 7-1 illustrates the calculation process of max drawdown. We first obtain the raw price points of trading assets, which could typically be daily or monthly. These prices are converted to single-period returns, followed by compounding the sequential returns to obtain the wealth index. The single-period drawdown is then derived by calculating the percentage difference between the cumulative maximum wealth of each time point and the wealth value at the current time point. Finally, we report the maximum of these single-period drawdowns as the final return of the max drawdown.
 [image:]
 A horizontal process diagram to calculate maximum drawdown that is the returns the maximum drawdown out of all daily or monthly drawdowns from raw time series of asset price means daily or monthly price points through daily or monthly returns, wealth index, and drawdown.

Figure 7-1
 Illustrating the process of calculating the max drawdown

 Again, the max drawdown is a risk measure that helps us understand the worst-case scenario of the trading strategy during the backtest period. Such a calculation process for the drawdown intuitively makes sense, since most people treat it as the money they have lost compared to the peak asset value they once owned in the past.

 Figure 7-2 provides a sample wealth index curve and the corresponding single-period drawdowns. Based on the cumulative wealth index curve in the blue line in the left panel, we can obtain the cumulative peak value in the green line, which overlaps with the wealth index if the wealth continues to make new heights and stays flat if the wealth drops. We can thus form a new time series curve consisting of single-period drawdowns as the percentage difference between these two curves and return the lowest point as the max drawdown.
 [image:]
 Two line graphs of wealth and drawdown versus time. The lowest point indicates maximum drawdown and the highest peak of wealth versus time indicates cumulative peak. The decreased part of the curve indicates cumulative wealth index and the increased part indicates cumulative max overlaps.

Figure 7-2
 Obtaining the max drawdown based on a sample wealth index curve

 Here, the max drawdown does not mean we are going to suffer such a loss; it simply means the maximum loss we could have suffered following the particular trading strategy. The strategy may incur such a loss if we are extremely unlucky and happen to buy the asset at its peak price and sell it at its trough price. A strategy with a high max drawdown would indicate a higher risk level, as it shows that the strategy has historically resulted in substantial losses. On the other hand, a strategy with a low max drawdown would indicate lower risk, as it has not led to significant losses in the past.

 A shrewd reader may immediately wonder if there is a risk-adjusted return metric based on drawdown risk. It turns out there is, and the measure is called the Calmar ratio, which is calculated as the ratio between the annualized return of the trailing 36 months and the max drawdown over the same trailing 36 months.

 The Downside of Drawdown Risk

 Although the drawdown risk is a popular measure among practitioners, it is not robust and thus far from being a perfect measure of risk-adjusted return. For example, each single-period drawdown relies on two inputs: the current wealth value and the cumulative peak wealth value. The calculation then proceeds by taking the percentage difference between the two. However, when there is an outlier value in these two inputs, the resulting drawdown will be directly impacted. Its sensitivity to outliers, for instance, can skew the risk measurement and present a distorted image of the potential loss. An unusually high or low value can inflate or deflate the drawdown, leading to misleading interpretations of the strategy’s riskiness. It is thus very sensitive to potential outliers in the dataset.

 Another downside of using drawdown risk is its dependency on the frequency of the observations. For example, daily or weekly drawdowns exhibit a higher degree of volatility than monthly drawdowns and are thus more likely to generate a deep drawdown. However, when aggregating the data into monthly returns, such a deep drawdown may completely disappear or move to other locations. Such sensitivity to the granularity of the data further hurts the robustness of the drawdown measure.

 It is also worth noting that max drawdown only provides a snapshot of the worst-case scenario observed in the past. It doesn’t consider other potential unfavorable situations that didn’t occur but could happen in the future.

 Next, we look at calculating the max drawdown using Python.

 Calculating the Max Drawdown

 In this section, we will focus on the process of calculating the max drawdown for the early period of 2023 for Google and Microsoft. These two stocks are picked due to their recent introduction of large-scale language models: ChatGPT, first introduced by Microsoft, and Bard, later by Google. Both led to a relatively big shock to the stock prices, resulting in a positive uplift for Microsoft and a negative impact for Google.

 Let us first download the stock price data from 2023-01-01 to 2023-02-11 via Listing 7-1.

 import numpy as np

 import pandas as pd

 import yfinance as yf

 import matplotlib.pyplot as plt

 start_date = "2023-01-01"

 end_date = "2023-02-11"

 df = yf.download(['GOOG', 'MSFT'], start=start_date, end=end_date)

 >>> df.head()

 Listing 7-1
 Downloading the stock price data

 As shown in Figure 7-3, the DataFrame has a multilayer column structure, where the first level indicates the type of stock price and the second layer indicates the stock ticker.
 [image:]
 A screenshot of a program. It has a table with 13 rows and 5 columns. It presents the data of stock prices on five different dates.

Figure 7-3
 Printing the first five rows of the downloaded stock price data

 We will use the adjusted closing prices in the follow-up analysis:

 df2 = df['Adj Close']

 Note that the DataFrame is indexed by a list of dates in the datetime format, as shown in the following:

 >>> df2.index

 DatetimeIndex(['2023-01-03', '2023-01-04', '2023-01-05', '2023-01-06', '2023-01-09', '2023-01-10', '2023-01-11', '2023-01-12', '2023-01-13', '2023-01-17', '2023-01-18', '2023-01-19', '2023-01-20', '2023-01-23', '2023-01-24', '2023-01-25', '2023-01-26', '2023-01-27', '2023-01-30', '2023-01-31', '2023-02-01', '2023-02-02', '2023-02-03', '2023-02-06', '2023-02-07', '2023-02-08', '2023-02-09', '2023-02-10'], dtype='datetime64[ns]', name='Date', freq=None)

 We can use these date indices to subset the DataFrame by the different granularity of time periods, such as selecting at the monthly level. As an example, the following code snippet slices the data in February 2023:

 >>> df2.loc["2023-02"]

 GOOG MSFT

 Date

 2023-02-01 101.430000 252.750000

 2023-02-02 108.800003 264.600006

 2023-02-03 105.220001 258.350006

 2023-02-06 103.470001 256.769989

 2023-02-07 108.040001 267.559998

 2023-02-08 100.000000 266.730011

 2023-02-09 95.459999 263.619995

 2023-02-10 94.860001 263.100006

 The DataFrame we will work with contains 28 days of daily adjusted closing prices for both stocks, ranging from 2023-01-03 to 2023-02-10. We can check these details using the info() method:

 >>> df2.info()

 <class 'pandas.core.frame.DataFrame'>

 DatetimeIndex: 28 entries, 2023-01-03 to 2023-02-10

 Data columns (total 2 columns):

 # Column Non-Null Count Dtype

 --- ------ -------------- -----

 0 GOOG 28 non-null float64

 1 MSFT 28 non-null float64

 dtypes: float64(2)

 memory usage: 672.0 bytes

 Let us visualize the price curves as line plots:

 >>> df2.plot.line()

 As shown in Figure 7-4, both stocks maintained an increasing trend during this period, although Google suffered a big hit in stock price near the end of the period.
 [image:]
 A double line graph presents the variation of G O O G and M S F T on 5 different dates between January 2023 and February 2023. The line for M S F T is more fluctuating.

Figure 7-4
 Visualizing the stock prices as line plots

 To better understand the stock returns, let us convert the raw stock prices to single-period percentage returns using the pct_change() function:

 returns_df = df2.pct_change()

 >>> returns_df.head()

 GOOG MSFT

 Date

 2023-01-03 NaN NaN

 2023-01-04 -0.011037 -0.043743

 2023-01-05 -0.021869 -0.029638

 2023-01-06 0.016019 0.011785

 2023-01-09 0.007260 0.009736

 Again, the first day shows an NA value since there is no prior stock price as the baseline to calculate the daily return.

 The corresponding line plot for the daily returns follows in Figure 7-5.

 >>> returns_df.plot.line()

 [image:]
 A double line graph presents the variation of G O O G and M S F T in terms of stock returns on ten different dates between January 2023 and February 2023. The line for G O O G is more fluctuating.

Figure 7-5
 Visualizing the stock returns

 The figure suggests that the daily returns of both stocks are highly correlated, except for the last few days when Google showed a sharp dip in price. Such a dip will reflect itself in the max drawdown measure, as we will show later. Besides, we also observe a higher volatility for Google as compared to Microsoft.

 Now let us construct the wealth index time series. We assume an initial amount of $1000 for each stock, based on which we will observe the daily evolution of the portfolio value, assuming a buy-and-hold strategy. Such a wealth process relies on the sequential compounding process using the cumprod() function based on 1+R returns, as shown in Listing 7-2.

 initial_wealth = 1000

 wealth_index_df = initial_wealth*(1+returns_df).cumprod()

 >>> wealth_index_df.head()

 GOOG MSFT

 Date

 2023-01-03 NaN NaN

 2023-01-04 988.963234 956.256801

 2023-01-05 967.335558 927.915502

 2023-01-06 982.831735 938.851285

 2023-01-09 989.966623 947.992292

 Listing 7-2
 Constructing the wealth curve

 We can override the initial entry as 1000 in order to plot the complete wealth index curve for both stocks. This essentially tracks the money we have at each time point after we invest $1000 in each stock on day 1, that is, 2023-01-03.

 wealth_index_df.loc["2023-01-03"] = initial_wealth

 >>> wealth_index_df.head()

 GOOG MSFT

 Date

 2023-01-03 1000.000000 1000.000000

 2023-01-04 988.963234 956.256801

 2023-01-05 967.335558 927.915502

 2023-01-06 982.831735 938.851285

 2023-01-09 989.966623 947.992292

 Now we plot the wealth curve for both stocks, as shown in Figure 7-6.

 >>> wealth_index_df.plot.line()

 [image:]
 A double line graph presents the variation of G O O G and M S F T on 5 different dates between January 2023 and February 2023. The line for G O O G is more fluctuating.

Figure 7-6
 Visualizing the wealth curves

 It appears that investing in Microsoft ends up with a higher portfolio value than in Google, despite the latter taking the lead in all of the previous trading days. As it turns out, one of the biggest drivers for the strong momentum behind Microsoft’s growth is its investment in the ChatGPT model and recent integration with its search engine Bing and Edge.

 With the wealth index ready, we can build a new series to indicate the cumulative peak wealth value for each trading day. This is achieved using the cummax() function shown in Listing 7-3.

 prior_peaks_df = wealth_index_df.cummax()

 >>> prior_peaks_df.head()

 GOOG MSFT

 Date

 2023-01-03 1000.0 1000.0

 2023-01-04 1000.0 1000.0

 2023-01-05 1000.0 1000.0

 2023-01-06 1000.0 1000.0

 2023-01-09 1000.0 1000.0

 Listing 7-3
 Constructing the cumulative maximum wealth

 Let us plot them as line charts, as shown in Figure 7-7.

 >>> prior_peaks_df.plot.line()

 [image:]
 A double line graph presents the variation of G O O G and M S F T in terms of cumulative maximum on 5 different dates between January 2023 and February 2023. Both increase with time but the line for G O O G is more fluctuating.

Figure 7-7
 Visualizing the cumulative maximum of the wealth curves

 Now we are in a good position to calculate the daily drawdown as the percentage difference between the current wealth and the prior peak. This is shown in Listing 7-4.

 drawdown_df = (wealth_index_df - prior_peaks_df) / prior_peaks_df

 >>> drawdown_df.head()

 GOOG MSFT

 Date

 2023-01-03 0.000000 0.000000

 2023-01-04 -0.011037 -0.043743

 2023-01-05 -0.032664 -0.072084

 2023-01-06 -0.017168 -0.061149

 2023-01-09 -0.010033 -0.052008

 Listing 7-4
 Calculating the daily drawdown

 The corresponding line charts are shown in Figure 7-8.

 >>> drawdown_df.plot.line()

 [image:]
 A double line graph presents the variation of G O O G and M S F T to indicate the daily drawdown on 5 different dates between January 2023 and February 2023. The line for G O O G is more fluctuating.

Figure 7-8
 Visualizing the daily drawdown

 The sharp dip in Google’s drawdown at the end of the series becomes more noticeable now, and we can probably say something about the reason behind the steep drop. It turns out that there was a factual error in the demo when Google introduced Bard as a response to the challenge from its rival, Microsoft’s ChatGPT. The error caused Google shares to tank by a drop of $100 billion in market value.

 Coming back to the max drawdown, we can now collect the minimum of these daily drawdowns as the final report of the max drawdown for this trading strategy, as shown in Listing 7-5. Note that we entered a long position in both stocks at the beginning of the investment period, so the trading strategy is simply buy-and-hold.

 >>> drawdown_df.min()

 GOOG -0.128125

 MSFT -0.072084

 dtype: float64

 Listing 7-5
 Calculating the max drawdown

 Here, we take the minimum of the daily drawdown as it is a negative value. In practice, we would often report it as a positive number. The result shows that Google has a much bigger max drawdown (again, expressed as a negative value and interpreted as the positive absolute value), more than double the max drawdown of Microsoft during the same trading period.

 We can observe the date when the max drawdown occurs using the idxmin() function, which returns the date index of the minimum value across the whole column/series, as shown in the following code snippet:

 >>> drawdown_df.idxmin()

 GOOG 2023-02-10

 MSFT 2023-01-05

 dtype: datetime64[ns]

 We can also limit the range of the DataFrame by subsetting using a less granular date index in the loc() function. For example, the following code returns the max drawdown and the corresponding date for each stock in January 2023:

 >>> drawdown_df.loc["2023-01"].min()

 GOOG -0.044264

 MSFT -0.072084

 dtype: float64

 >>> drawdown_df.loc["2023-01"].idxmin()

 GOOG 2023-01-25

 MSFT 2023-01-05

 dtype: datetime64[ns]

 Till now, we have managed to calculate the max drawdown following the requisite steps. It turns out that a function would be extremely helpful when such steps become tedious and complex. Using a function to wrap the recipe as a black box allows us to focus on the big picture and not get bogged down by the inner workings each time we calculate the max drawdown.

 We define a function called drawdown() to achieve this task, as shown in Listing 7-6. This function takes the daily returns in the form of a single Pandas Series as input, executes the aforementioned calculation steps, and returns the daily wealth index, prior peaks, and drawdowns in a DataFrame as the output.

 def drawdown(return_series: pd.Series):

 """

 Input: a time series of asset returns

 Output: a DataFrame that contains:

 - the wealth index

 - the prior peaks

 - percentage drawdowns

 """

 wealth_index_series = initial_wealth*(1+return_series).cumprod()

 prior_peaks_series = wealth_index_series.cummax()

 drawdown_series = (wealth_index_series - prior_peaks_series) / prior_peaks_series

 return pd.DataFrame({

 "Wealth index": wealth_index_series,

 "Prior peaks": prior_peaks_series,

 "Drawdown": drawdown_series

 })

 Listing 7-6
 Defining a function to calculate the wealth index, prior peak, and drawdown

 Note that the calculation process remains the same. The only change is the compilation of the relevant information (wealth index, prior peaks, and drawdown) in one DataFrame. Also, we explicitly specified the input type to be a Pandas Series, as this saves the need to check the input type later on.

 Now let us test this function by passing Google’s daily returns as the input series:

 >>> drawdown(returns_df["GOOG"]).head()

 Wealth index Prior peaks Drawdown

 Date

 2023-01-03 NaN NaN NaN

 2023-01-04 988.963234 988.963234 0.000000

 2023-01-05 967.335558 988.963234 -0.021869

 2023-01-06 982.831735 988.963234 -0.006200

 2023-01-09 989.966623 989.966623 0.000000

 The following code snippet plots the wealth index and prior peaks as line charts:

 >>> drawdown(returns_df["GOOG"])[['Wealth index', 'Prior peaks']].plot.line()

 Running the command generates Figure 7-9.
 [image:]
 A double line graph presents the variation of wealth index and prior peaks on ten different dates between January 2023 and February 2023. Both increase with time but the line for wealth index is more fluctuating.

Figure 7-9
 Visualizing the wealth index and prior peaks as line charts

 We can use the loc() function to subset for a specific month. For example, the following code returns the same curves for January 2023:

 >>> drawdown(returns_df.loc["2023-01","GOOG"])[['Wealth index', 'Prior peaks']].plot.line()

 Running the command generates Figure 7-10.
 [image:]
 A double line graph presents the variation of wealth index and prior peaks on eight different dates between January 2023 and February 2023. Both the curves increase with time but the line for the prior peak is more fluctuating.

Figure 7-10
 Visualizing the wealth index and prior peaks for January 2023

 Similarly, we can obtain the max drawdown and the corresponding date for both stocks, as shown in the following code snippet:

 >>> drawdown(returns_df["GOOG"])['Drawdown'].min()

 -0.1281250188455857

 >>> drawdown(returns_df["GOOG"])['Drawdown'].idxmin()

 Timestamp('2023-02-10 00:00:00')

 >>> drawdown(returns_df["MSFT"])['Drawdown'].min()

 -0.035032299621028426

 >>> drawdown(returns_df["MSFT"])['Drawdown'].idxmin()

 Timestamp('2023-01-19 00:00:00')

 The following code snippet returns the max drawdown for both stocks in January 2023:

 >>> drawdown(returns_df.loc["2023-01","GOOG"])['Drawdown'].min()

 -0.04426435893749917

 >>> drawdown(returns_df.loc["2023-01","MSFT"])['Drawdown'].min()

 -0.035032299621028426

 In the next section, we will discuss the backtesting procedure using the trend-following strategy.

 Backtesting the Trend-Following Strategy

 In this backtesting exercise, we are going to calculate four metrics as the performance indicator: the annualized return and volatility, the Sharpe ratio, and the max drawdown. Since the trend-following strategy works on one asset only, we are going to backtest Google’s stock price for the year 2022 based on its adjusted closing price.

 First, let us download the dataset and store it in df_goog:

 df_goog = yf.download(['GOOG'], start="2022-01-01", end="2023-01-01")['Adj Close']

 df_goog = pd.DataFrame(df_goog)

 >>> df_goog.head()

 Adj Close

 Date

 2022-01-03 145.074493

 2022-01-04 144.416504

 2022-01-05 137.653503

 2022-01-06 137.550995

 2022-01-07 137.004501

 Now we create two moving averages, a short curve with a span of 5 using the exponential moving average via the ewm() method and a long curve with a window size of 30 using the simple moving average via the rolling() method, as shown in Listing 7-7.

 sma_span = 30

 ema_span = 5

 short_ma = 'ema'+str(ema_span)

 long_ma ='sma'+str(sma_span)

 df_goog[long_ma] = df_goog['Adj Close'].rolling(sma_span).mean()

 df_goog[short_ma] = df_goog['Adj Close'].ewm(span=ema_span).mean()

 >>> df_goog.head()

 Adj Close sma30 ema5

 Date

 2022-01-03 145.074493 NaN 145.074493

 2022-01-04 144.416504 NaN 144.679700

 2022-01-05 137.653503 NaN 141.351501

 2022-01-06 137.550995 NaN 139.772829

 2022-01-07 137.004501 NaN 138.710106

 Listing 7-7
 Calculating the short and long moving averages

 Note that the span is directly related to the α parameter we introduced earlier via the following relationship:
 [image: $$ \alpha =\frac{2}{span+1} $$]

 where span ≥ 1.

 Since generating the trading signal requires that both moving averages are available at each time point, we remove the rows with any NA value in the DataFrame using the dropna() method, where we set inplace=True to change within the DataFrame directly:

 df_goog.dropna(inplace=True)

 >>> df_goog.head()

 Adj Close sma30 ema5

 Date

 2022-02-14 135.300003 137.335750 137.064586

 2022-02-15 136.425507 137.047450 136.851559

 2022-02-16 137.487503 136.816483 137.063541

 2022-02-17 132.308502 136.638317 135.478525

 2022-02-18 130.467499 136.402200 133.808181

 Now let us plot these two moving averages together with the original price curve via the following code snippet:

 fig = plt.figure(figsize=(14,7))

 plt.plot(df_goog.index, df_goog['Adj Close'], linewidth=1.5, label='Daily Adj Close')

 plt.plot(df_goog.index, df_goog[long_ma], linewidth=2, label=long_ma)

 plt.plot(df_goog.index, df_goog[short_ma], linewidth=2, label=short_ma)

 plt.title("Trend following strategy")

 plt.ylabel('Price($)')

 plt.legend()

 Running the command generates Figure 7-11.
 [image:]
 A triple line graph of price versus date presents the trend following strategy. It presents the variation of daily average close, s m a 30, and e m a 5 with time. The curves for daily average close and e m a 5 are more fluctuating.

Figure 7-11
 Visualizing the moving averages together with the raw time series

 As Figure 7-11 suggests, the short moving average (green curve) tracks the raw time series more closely, while the long moving average (orange curve) displays a smoother pattern due to a stronger averaging effect.

 Now let us calculate the log returns of the buy-and-hold strategy, which assumes buying one share of Google stock and holding it till the end of the investment period. This is shown in Listing 7-8.

 df_goog['log_return_buy_n_hold'] = np.log(df_goog['Adj Close'] / df_goog['Adj Close'].shift(1))

 Listing 7-8
 Calculating the log returns of the buy-and-hold strategy

 An equivalent way of calculating the log returns is to convert the prices to logarithmic form and then take the difference, as shown in Listing 7-9.

 df_goog['log_return_buy_n_hold'] = np.log(df_goog['Adj Close']).diff()

 Listing 7-9
 An equivalent way of calculating the log returns

 Next, we identify the trading signals for the trend-following strategy, starting by creating a signal column that indicates the intended position based on the magnitude of the two moving averages. This is shown in Listing 7-10.

 # identify buy signal

 df_goog['signal'] = np.where(df_goog[short_ma] > df_goog[long_ma], 1, 0)

 # identify sell signal

 df_goog['signal'] = np.where(df_goog[short_ma] < df_goog[long_ma], -1, df_goog['signal'])

 df_goog.dropna(inplace=True)

 >>> df_goog.head()

 Adj Close sma30 ema5 log_return_buy_n_hold signal

 Date

 2022-02-15 136.425507 137.047450 136.851559 0.008284 -1

 2022-02-16 137.487503 136.816483 137.063541 0.007754 1

 2022-02-17 132.308502 136.638317 135.478525 -0.038397 -1

 2022-02-18 130.467499 136.402200 133.808181 -0.014012 -1

 2022-02-22 129.402496 136.148800 132.339619 -0.008196 -1

 Listing 7-10
 Creating the signal column

 The periodic log returns for the trend-following strategy can be obtained by multiplying signal with log_return_buy_n_hold via Listing 7-11.

 df_goog['log_return_trend_follow'] = df_goog['signal'] * df_goog['log_return_buy_n_hold']

 Listing 7-11
 Calculating the periodic log returns of the buy-and-hold strategy

 The terminal return can be calculated using the cumprod() function or the prod() function, as shown in Listing 7-12. The first approach calculates the compounded periodic return and accesses the last period as the final return before converting to the simple return format. The second approach directly multiplies all intermediate percentage returns to get the final return as the last period, followed by conversion to a simple return.

 # terminal return of buy-n-hold

 >>> np.exp(df_goog['log_return_buy_n_hold']).cumprod()[-1] -1

 -0.34419806832531474

 # another way to calculate

 >>> np.exp(df_goog['log_return_buy_n_hold']).prod() – 1

 -0.34419806832531474

 # terminal return of trend following

 >>> np.exp(df_goog['log_return_trend_follow']).cumprod()[-1] -1

 0.3609149965748346

 # another way to calculate

 np.exp(df_goog['log_return_trend_follow']).prod() – 1

 0.3609149965748346

 Listing 7-12
 Calculating terminal returns of both strategies

 Although the buy-and-hold strategy is obviously no match for the trend-following strategy, we will still calculate the aforementioned backtesting measures, namely, annualized return and volatility, Sharpe ratio, and the max drawdown.

 Let us start with the annualized return. As shown in Listing 7-13, the annualized return is calculated by obtaining the terminal return in 1+R format, rescaling it to an annual basis, and finally converting it back to a simple return.

 # calculate annualized return of buy-n-hold

 annualized_return_buy_n_hold = np.exp(df_goog['log_return_buy_n_hold']).prod()**(252/df_goog.shape[0])-1

 >>> annualized_return_buy_n_hold

 -0.3818823804560594

 # calculate annualized return of trend following

 annualized_return_trend_follow = np.exp(df_goog['log_return_trend_follow']).prod()**(252/df_goog.shape[0])-1

 >>> annualized_return_trend_follow

 0.4210313983829783

 Listing 7-13
 Calculating the annualized return

 Note that we can also add up all the log returns and exponentiate the sum to get the same result:

 >>> np.exp(df_goog['log_return_trend_follow'].sum())**(252/df_goog.shape[0])-1

 0.4210313983829783

 Let us calculate the annualized volatility, as shown in Listing 7-14. Recall that the daily volatility scales up as a function of the square root of time.

 # calculate annualized volatility of buy-n-hold

 annualized_vol_buy_n_hold = (np.exp(df_goog['log_return_buy_n_hold'])-1).std()*(252**0.5)

 >>> annualized_vol_buy_n_hold

 0.3896836224899977

 # calculate annualized volatility of trend following

 annualized_vol_trend_follow = (np.exp(df_goog['log_return_trend_follow'])-1).std()*(252**0.5)

 >>> annualized_vol_trend_follow

 0.39285546408734645

 Listing 7-14
 Calculating the annualized volatility

 Now we calculate the Sharpe ratio, assuming a risk-free interest rate of 3%. This is shown in Listing 7-15.

 riskfree_rate = 0.03

 # calculate Sharpe ratio of buy-n-hold

 sharpe_ratio_buy_n_hold = (annualized_return_buy_n_hold - riskfree_rate) / annualized_vol_buy_n_hold

 >>> sharpe_ratio_buy_n_hold

 -1.0569661045137495

 # calculate Sharpe ratio of trend following

 sharpe_ratio_trend_follow = (annualized_return_trend_follow - riskfree_rate) / annualized_vol_trend_follow

 >>> sharpe_ratio_trend_follow

 0.9953569038205886

 Listing 7-15
 Calculating the Sharpe ratio

 Lastly, we calculate the max drawdown of both strategies, as shown in Listing 7-16.

 # max drawdown of buy-n-hold

 max_drawdown_buy_n_hold = drawdown(np.exp(df_goog['log_return_buy_n_hold'])-1)['Drawdown'].min()

 >>> max_drawdown_buy_n_hold

 -0.41876535983781205

 # max drawdown of trend following

 max_drawdown_trend_follow = drawdown(np.exp(df_goog['log_return_trend_follow'])-1)['Drawdown'].min()

 >>> max_drawdown_trend_follow

 -0.20685357874978227

 Listing 7-16
 Calculating the max drawdown

 Although these two strategies are quite disparate in terms of these measures in backtesting, it also shows the importance of demonstrating the superiority of a strategy among a set of common backtesting measures before its adoption. In the next chapter, we will discuss a feedback loop that optimizes the selection of trading parameters, such as the window size, in order to obtain the best trading performance given a specific trading strategy.

 Summary

 In this chapter, we covered the process of backtesting a trading strategy. We started by introducing the concept of backtesting and its caveats. We then introduced the maximum drawdown, a commonly used performance measure on the downside risk of a particular trading strategy, followed by its calculation process. Lastly, we provided an example of how to backtest a trend-following strategy via multiple performance measures.

 In the next chapter, we will introduce statistical arbitrage with hypothesis testing, with the pairs trading strategy as the working example.

 Exercises

 	
 Asset A loses 1% a month for 12 months, and asset B gains 1% per month for 12 months. Which is the more volatile asset?

	
 Drawdown is a measure of only downside risk and not upside risk. True or false?

	
 Assume the risk-free rate is never negative. The drawdown of an investment that returns the risk-free rate every month is zero. True or false?

	
 The drawdown computed from a daily return series is always greater than or equal to the drawdown computed from the corresponding monthly series. True or false?

	
 Write a class to calculate the annualized return, volatility, Sharpe ratio, and max drawdown of a momentum trading strategy.

	
 How does the frequency of data sampling affect the calculated max drawdown? What might be the implications of using daily data vs. monthly data?

	
 Assume you have calculated a Sharpe ratio of 1.5 for your trading strategy. If the risk-free rate increases, what would happen to the Sharpe ratio, all else being equal?

	
 If a strategy has a positive average return but a high max drawdown, what might this suggest about the risk of the strategy?

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2023
P. LiuQuantitative Trading Strategies Using Pythonhttps://doi.org/10.1007/978-1-4842-9675-2_8

8. Statistical Arbitrage with Hypothesis Testing

Peng Liu1
(1)Singapore, Singapore

 Statistical arbitrage is a market-neutral trading strategy leveraging statistical methods to identify and exploit significant relationships between financial assets. Through hypothesis testing, it discerns pricing discrepancies within correlated asset pairs due to temporary market inefficiencies. By purchasing underpriced and selling overpriced assets, the strategy ensures profit as the market corrects these inefficiencies, regardless of overall market movements.

 Statistical Arbitrage

 Statistical arbitrage refers to the use of statistical methods to identify statistically significant relationships underlying multiple financial assets and generate trading signals. There are two parts involved in this process: statistical analysis and arbitrage. In this context, statistical analysis mostly refers to hypothesis testing, which is a suite of statistical procedures that allows us to determine if a specific relationship among multiple financial instruments based on the observed data is statistically significant. On the other hand, arbitrage means making sure-win profits.

 At its core, this strategy relies on mean reversion, which assumes that financial instruments that have deviated far from their historical relationship will eventually converge again. For instance, consider two highly correlated stocks, A and B. If, due to some short-term market factors, the price of A increases disproportionately compared to B, a statistical arbitrage strategy might involve short-selling A (which is now overpriced) and buying B (which is underpriced). As the prices of A and B revert to their historical correlation, the arbitrageur would close both positions—buy A to cover the short sell and sell B to realize the gain. The net profit comes from the convergence of prices. Therefore, statistical arbitrage is essentially a market-neutral strategy, generating profits by taking advantage of temporary market inefficiencies.

 Note that statistical arbitrage strategies should expect a relatively stable long-term equilibrium relationship between the two underlying assets for the strategy to work. They also operate on relatively small profit margins, necessitating high volumes of trades to generate substantial returns.

 Delving deeper, the first step in the statistical arbitrage process is to identify pairs of trading instruments that exhibit a high degree of comovement. This can be achieved through statistical procedures such as correlation analysis or cointegration tests. For instance, consider stocks A and B, which typically move in sync with each other. Although perfect correlation is rare in financial markets, we can leverage historical price data to find stocks that are highly correlated, often within the same industry or sector.

 However, this comovement doesn’t always mean equal price changes. Short-term fluctuations driven by various factors like market sentiment, sudden news announcements, or unforeseen events like a pandemic can cause a temporary divergence in the price relationship. In the given example, if stock A increases by 10% and stock B only by 5%, it suggests a temporary mispricing where B is underpriced relative to A.

 This brings us to the second step, which involves capitalizing on this mispricing through trading actions such as pairs trading. In the case of A and B, an investor could execute a long position on the underpriced stock B, expecting its price to increase and converge with the price of A.

 It’s important to note that statistical arbitrage relies heavily on the premise that these pricing inefficiencies are temporary and that the price relationship will revert to its historical norm. Therefore, this strategy necessitates diligent monitoring and a robust risk management system to ensure timely entries and exits.

 Figure 8-1 illustrates one way of performing statistical arbitrage. We assume a perfect correlation between stocks A and B, where the same percentage change is observed for periods 0, 1, and 2. However, stock A increased by 10% in period 3, while stock B only increased by 5%. Based on the principle of statistical arbitrage, we could long stock B, which is considered to be underpriced, or short stock A, which is considered overpriced. We could also do both at the same time.
 [image:]
 A line graph of price versus time. It has 2 ascending curves for stock A and stock B. Stock A increased by 10% in period 3 while stock B increased by 5%. There is a perfect correlation between stocks A and B in periods 0, 1, and 2.

Figure 8-1
 Illustrating the concept of statistical arbitrage. After identifying a perfect correlation between stocks A and B using statistical techniques, as indicated by the prices in periods 0, 1, and 2, we would take advantage of market mispricing by longing stock B (which is underpriced) and/or shorting stock A (which is overpriced)

 Pairs Trading

 Pairs trading is a market-neutral strategy that leverages statistical analysis to generate potential profits regardless of the overall market direction. The “pair” in pairs trading refers to simultaneously taking two positions: going long on one asset and short on another, with the key requirement being that these assets are highly correlated. The trading signal stems from the spread or price difference between these two assets.

 An unusually large spread, in comparison to historical data, suggests a temporary divergence, and the anticipation is that this divergence will eventually correct itself, reverting to its mean or average value over time. Traders can capitalize on this mean-reverting behavior, initiating trades when the spread is abnormally wide and closing them once the spread narrows and returns to its typical range.

 The determination of what constitutes an “abnormal” or “normal” spread is crucial and forms the core parameters of the pairs trading strategy. This typically involves extensive backtesting, where historical price data is analyzed to identify consistent patterns in price divergence and convergence, which then informs the thresholds for trade entry and exit points. Pairs trading, while robust in its market-neutral stance, requires a keen understanding of the long-term equilibrium relationship between the paired assets and careful management of potential risks if the expected price convergence does not materialize.

 In the strategy of pairs trading, asset selection is grounded in a statistical procedure called hypothesis testing, specifically, the cointegration test. This process uses historical price data to identify pairs of financial instruments that exhibit a high level of correlation. When two assets are highly correlated, they tend to move in a synchronized manner. This means that any price change in one asset is typically mirrored proportionally by the other, resulting in relatively stable spreads that do not deviate significantly from their historical average. However, there can be moments when this spread deviates markedly from its historical norm, suggesting temporary mispricing of the assets. This divergence indicates that the assets’ prices have drifted apart more than their usual correlation would predict.

 Such deviations create a unique profit opportunity in pairs trading. Traders can capitalize on these large spreads by betting on their future contraction. Specifically, the strategy would be to go long on the underpriced asset and short on the overpriced one, with the anticipation that the spread will revert back to its historical average as the asset prices correct themselves. This reversion provides the opportunity to close both positions at a profit.

 Figure 8-2 provides the overall workflow of implementing a pairs trading strategy. At first, we analyze a group of financial assets (such as stocks) and identify a pair that passes the cointegration test. This is a statistical test that determines if a group of assets is cointegrated, meaning their combination generates a stationary time series, despite each individual time series not exhibiting such stationarity. In other words, the historical differences, or spreads, of the two cointegrated assets form a stationary time series. We can thus monitor the current spread and check if it exceeds a reasonable range of historical spreads. Exceeding the normal range indicates a trading signal to enter two positions: long the underpriced asset and short the overpriced asset. We would then hold these positions until the current spread shrinks back to the normal range, upon which point we would exit the positions and lock in a profit before it shrinks even further (which results in a loss).
 [image:]
 A workflow diagram. Select a pair of stocks that passes the cointegration test. Obtain a normal range of historical spread. Compare current spreads with historical spreads. If short-term fluctuation occurs, enter a position. When the current spread reverts to normal, exit a position.

Figure 8-2
 Overall workflow of implementing the pairs trading strategy

 Cointegration

 Cointegration, a concept pivotal to hypothesis testing, posits two potential scenarios: the null hypothesis, which states that two or more non-stationary time series are not cointegrated, and the alternative hypothesis, which claims the opposite, that is, these time series are cointegrated if their linear combination generates a stationary time series (more on this later).

 Let’s demystify some of the jargon here. A time series refers to a sequence of data points indexed (or listed or graphed) in time order, with each data point assigned a specific timestamp. This dataset can be analyzed through several summary statistics or statistical properties. These can include metrics like mean and variance computed over a certain time frame or window.

 Moving this window across different periods, a stationary time series exhibits constancy in its mean and variance on average. This means that no matter when you observe it, its basic properties do not change. On the other hand, a non-stationary time series demonstrates a trend or a drift, signifying a changing mean and variance across varying time periods. These time series are dynamic, with their basic properties shifting over time, often due to factors like trends and seasonality.

 Hence, the process of cointegration examines whether there is a long-term equilibrium relationship between non-stationary time series despite short-term fluctuations. Such long-term equilibrium manifests as a stationary time series as a linear combination of the two non-stationary time series.

 Many traditional statistical methods, including ordinary least squares (OLS) regression, are based on the assumption that the variables under analysis—which are also time series data points—exhibit stationarity. This implies that their fundamental statistical characteristics remain consistent over time. However, when dealing with non-stationary variables, this stationarity assumption gets violated. As a result, different techniques are needed to perform the modeling. One common strategy is to difference the non-stationary variable (deriving a new time series by taking the difference in the observed values of two consecutive time points) to eliminate any observable trend or drift.

 A non-stationary time series might possess a unit root, which signifies a root of one in its autoregressive (AR) polynomial. To put it differently, the value in the next time period is strongly impacted by the present period value. This dependency reflects a form of serial correlation, where values from previous periods exert influence on subsequent ones, thereby potentially leading to non-stationary behavior.

 The unit root test, therefore, is a method to examine whether a time series is non-stationary and possesses a unit root. Identifying and addressing the presence of a unit root is a critical step in the process of time series modeling, especially when the aim is to understand long-term trends and forecasts.

 In essence, a cointegration test examines the assumption that, although individual time series may each have a unit root and hence be non-stationary, a linear combination of these time series might result in a stationary series. This forms the alternative hypothesis for the test.

 To be precise, the alternative hypothesis states that the aggregate time series, derived from a linear combination of individual time series, achieves stationarity. Should this be the case, it would imply a persistent long-term relationship among these time series variables. Such long-term relationships will get obscured by temporary fluctuations in the market from time to time, due to factors such as mispricing. Hence, the cointegration test aids in revealing these hidden long-term relationships among time series variables.

 When assets are determined to be cointegrated—meaning that the alternative hypothesis is upheld—they are fed into the trading signal generation phase of the pairs trading strategy. Here, we anticipate the long-term relationship between the two time series variables to prevail, regardless of short-term market turbulence.

 Therefore, cointegration serves as a valuable tool in statistical analysis, exposing the underlying long-term relationship between two non-stationary and seemingly unrelated time series. This long-term association, difficult to detect when these time series are analyzed independently, can be discovered by combining these individual non-stationary assets in a particular way. This combination is typically done using the Johansen test, yielding a new, combined time series that exhibits stationarity, characterized by a consistent mean and variance over different periods. Alternatively, the Engle-Granger test can be employed to generate a spread series from the residuals of a linear regression model between the two assets.

 Figure 8-3 illustrates the process of cointegration and strategy formulation. The purpose of cointegration is to convert individual non-stationary time series data into a combined stationary series, which can be achieved via the Johansen test with a linear combination, the Engle-Granger test via a linear regression model, or other test procedures. We would then derive another series called the spread to indicate the extent of short-term fluctuation from the long-term equilibrium relationship. The spread is used to generate trading signals in the form of entry and exit points based on the extent of deviation at each time point, with the help of entry and exit thresholds defined in advance.
 [image:]
 A block process diagram. Non-stationary time series data, stocks A and B, undergo cointegration to give stationary time series data, spread. Compare short-term fluctuation with long-term equilibrium relationship to get trading signals for enter and exit points.

Figure 8-3
 Illustrating the process of cointegration using different tests and strategy formulation to generate trading signals

 The next section covers a more in-depth discussion on stationarity.

 Stationarity

 Stock prices are time series data. A stationary time series is a time series where the statistical properties of the series, including the mean, variance, and covariance at different time points, are constant and do not change over time. A stationary time series is thus characterized by a lack of observable trends or cycles in the data.

 Let us take the normal distribution as an example. A normal distribution y = f (x; μ, σ) is a probability density function that maps an input x to a probability output y, assuming a fixed set of parameters: the mean μ as the central tendency and standard deviation σ as the average deviation from the mean. The specific form of the probability distribution is as follows:
 [image: $$ y=f\left(x;\mu, \sigma \right)=\frac{1}{\sqrt{2\pi {\sigma}^2}}{e}^{-\frac{{\left(x-\mu \right)}^2}{2{\sigma}^2}} $$]

 A widely used normal distribution is the standard normal, specifying μ = 0 and σ = 1. The resulting probability density function is
 [image: $$ y=f\left(x;\mu, \sigma \right)=\frac{1}{\sqrt{2\pi }}{e}^{-\frac{x^2}{2}} $$]

 We can generate random samples following this specific form using the random.normal() function from NumPy. In Listing 8-1, we define a function generate_normal_sample() that generates a normally distributed random sample by passing in the input parameter μ and σ in a list.

 # generate random samples from normal distribution

 def generate_normal_sample(params):

 """

 input: params, including mean in params[0] and standard deviation in params[1]

 output: a random sample from the normal distribution parameterized by the input

 """

 mean = params[0]

 sd = params[1]

 return np.random.normal(mean, sd)

 Listing 8-1
 Generating normal samples

 Now we generate a sample by specifying a standard normal distribution:

 # generate sample from standard norml

 >>> print(generate_normal_sample([0,1]))

 0.09120471661981977

 To see the impact on the samples generated from a non-stationary distribution, we will specify three different non-stationary distributions. Specifically, we will generate 100 samples that follow a distribution with either an increasing mean or standard deviation. Listing 8-2 performs the random sampling for 100 rounds and compares them with the samples from the standard normal distribution.

 # generate 100 random samples for both stationary and non-stationary distribution

 T = 100

 stationary_list, nonstationary_list1, nonstationary_list2 = [], [], []

 for i in range(T):

 # generate a stationary sample and append to list

 stationary_list.append(generate_normal_sample([0,1]))

 # generate a non-stationary sample with an increasing mean and append to list

 nonstationary_list1.append(generate_normal_sample([i,1]))

 # # generate a non-stationary sample with an increasing mean and sd and append to list

 nonstationary_list2.append(generate_normal_sample([i,np.sqrt(i)]))

 x = range(T)

 # plot the lists as line plots with labels for each line

 plt.plot(x, stationary_list, label='Stationary')

 plt.plot(x, nonstationary_list1, label='Non-stationary with increasing mean')

 plt.plot(x, nonstationary_list2, label='Non-stationary with increasing mean and sd')

 # set the axis labels

 plt.xlabel('Sample index')

 plt.ylabel('Sample value')

 # add a legend

 plt.legend()

 # show the plot

 plt.show()

 Listing 8-2
 Generating samples from stationary and non-stationary normal distributions

 Running the code generates Figure 8-4, where the impact of a changing mean and standard deviation becomes more pronounced as we increase the magnitude in later rounds.
 [image:]
 A line graph of sample value versus sample index. It has a horizontally fluctuating line for stationary. 2 linearly ascending fluctuating lines for non-stationary with increasing mean, and non-stationary with increasing mean and s d that fluctuates with minor oscillations.

Figure 8-4
 Generating normally distributed random samples from non-stationary distributions with different parameter specifications

 Note that we can use the augmented Dickey-Fuller (ADF) test to check if a series is a stationary. The function stationarity_test() defined in Listing 8-3 accepts two inputs: the time series to be tested for stationarity and the significant level used to compare with the p-value and determine the statistical significance. Note that the p-value is accessed as the second argument from the test result object using the adfuller() function. This is shown in Listing 8-3.

 # test for stationarity

 def stationarity_test(x, threshold=0.05):

 """

 input:

 x: a list of scalar values

 threshold: significance level

 output: print out message on stationarity

 """

 pvalue = adfuller(x)[1]

 if pvalue < threshold:

 return 'p-value is ' + str(pvalue) + '. The series is likely stationary.'

 else:

 return 'p-value is ' + str(pvalue) + '. The series is likely non-stationary.'

 Listing 8-3
 Testing stationarity of a time series

 Let us apply this function to the previous time series data. The result shows that the ADF is able to differentiate if a time series is stationary (with fixed parameters) based on a preset significance level:

 >>> print(stationarity_test(stationary_list))

 >>> print(stationarity_test(nonstationary_list1))

 >>> print(stationarity_test(nonstationary_list2))

 p-value is 1.2718058919122438e-12. The series is likely stationary.

 p-value is 0.9925665941220737. The series is likely non-stationary.

 p-value is 0.9120355459829741. The series is likely non-stationary.

 Let us look at a concrete example of how to test for cointegration between two stocks.

 Test for Cointegration

 This section provides an example of performing the cointegration test using the Engle-Granger two-step method. Here’s a general overview of the steps involved:	
 Estimate the coefficients of the linear regression model between one stock (as the dependent variable) and the other stock (as the independent variable) using ordinary least squares (OLS).

	
 Calculate the residuals from the linear regression model.

	
 Test the residuals for stationarity using a unit root test, such as the augmented Dickey-Fuller (ADF) test.

	
 If the residuals are stationary, the two stocks are cointegrated. If the residuals are non-stationary, the two stocks are not cointegrated.

 Let us illustrate the procedure using two stocks: Google and Microsoft. Listing 8-4 imports necessary packages and downloads the daily stock prices for the whole year of 2022. We will use the adjusted closing price for the cointegration test.

 import os

 import random

 import numpy as np

 import yfinance as yf

 import pandas as pd

 from statsmodels.tsa.stattools import adfuller

 from statsmodels.regression.linear_model import OLS

 import statsmodels.api as sm

 from matplotlib import pyplot as plt

 %matplotlib inline

 SEED = 8

 random.seed(SEED)

 np.random.seed(SEED)

 # download data from yfinance

 start_date = "2022-01-01"

 end_date = "2022-12-31"

 stocks = ['GOOG','MSFT']

 df = yf.download(stocks, start=start_date, end=end_date)['Adj Close']

 >>> df.head()

 GOOG MSFT

 Date

 2022-01-03 145.074493 330.813873

 2022-01-04 144.416504 325.141357

 2022-01-05 137.653503 312.659882

 2022-01-06 137.550995 310.189301

 2022-01-07 137.004501 310.347382

 Listing 8-4
 Importing packages and downloading stock data

 Now we dig into the linear regression model between these two stocks. We will treat Google stock as the (only) independent variable and Microsoft stock as the dependent variable to be predicted. The model assumes the following form:
 [image: $$ y={\beta}_0+{\beta}_1x+\epsilon $$]

 where β0 denotes the intercept and β1 is the slope of the linear line fitted between these two stocks. ϵ represents the random noise that is not modeled by the predictor x. Note that we are assuming a linear relationship between x and y, which is unlikely to be the case in a real-world environment. Another name for ϵ is the residual, which is interpreted as the (vertical) distance between the predicted value β0 + β1x and the target value y. That is, ϵ = y − (β0 + β1x).

 Our focus would then shift to these residuals, with the intention of assessing if the residual time series would be stationary. Let us first obtain the residuals from the linear regression model.

 In Listing 8-5, we assign the first stock as the target variable Y and the second stock as the predictor variable X. We then use the add_constant() function to add a column of ones to the X variable, which can also be considered as the bias trick to incorporate the intercept term β0. Next, we construct a linear regression model object using the OLS() function, perform learning by invoking the fit() function, and calculate the residuals as the difference between the target values and the predicted values, obtained via the predict() method.

 # build linear regression model

 # Extract prices for two stocks of interest

 # target var: Y; predictor: X

 Y = df[stocks[0]]

 X = df[stocks[1]]

 # estimate linear regression coefficients of stock1 on stock2

 X_with_constant = sm.add_constant(X)

 model = OLS(Y, X_with_constant).fit()

 residuals = Y - model.predict()

 Listing 8-5
 Extracting residuals from OLS

 The model object is essentially a collection of the model weights (also called parameters) and the architecture that governs how the data flow from the input to the output. Let us access the model weights:

 # access model weights

 >>> print(model.params)

 const -47.680218

 MSFT 0.610303

 dtype: float64

 We have two parameters in the model: const corresponding to β0 and MSFT corresponding to β1.

 Besides using the predict() method to obtain the predicted values, we can also construct the explicit expression for the predictions and calculate them manually. That is, we can calculate the predicted values
 [image: $$ {\left\{\hat{y}\right\}}_{i=1}^N $$]
 as follows:
 [image: $$ \hat{y_i}={\beta}_0+{\beta}_1{x}_i,i\in \left\{1,\dots, N\right\} $$]

 The following code snippet implements this expression and calculates the model predictions manually. We also check if the manually calculated residuals are equal to the previous values using the equals() function:

 # alternative approach

 residuals2 = Y - (model.params['const'] + model.params[stocks[1]] * X)

 # check if both residuals are the same

 print(residuals.equals(residuals2))

 Lastly, we test the stationarity of the residual series, again using the augmented Dickey-Fuller (ADF) test. The test can be performed using the adfuller() function from the statsmodels package. There are two metrics that are relevant to every statistical test: the test statistic and the p-value. Both metrics convey the same information on the statistical significance of the underlying hypothesis, with the p-value being a standardized and, thus, more interpretable metric. A widely used threshold (also called the significance level) is 5% for the p-value. That is, if the resulting p-value from a statistical test is less than 5%, we can safely (up to a confidence level of 95%) reject the null hypothesis in favor of the alternative hypothesis. If the p-value is greater than 5%, we fail to reject the null hypothesis and conclude that the two stocks are not cointegrated.

 The null hypothesis often represents the status quo. In the case of the cointegration testing using the Engle-Granger test, the null hypothesis is that the two stocks are not cointegrated. That is, the historical prices do not exhibit a linear relationship in the long run. The alternative hypothesis is that the two stocks are cointegrated, as exhibited by a linear relationship between the two and a stationary residual series.

 Now let us carry out the ADF test and use the result to determine if these two stocks are cointegrated using a significance level of 5%. In Listing 8-6, we apply the adfuller() function to the prediction residuals and print out the test statistic and p-value. This is followed by an if-else statement to determine if we have enough confidence to reject the null hypothesis and claim that the two stocks are cointegrated.

 # test stationarity of the residuals

 adf_test = adfuller(residuals)

 print(f"ADF test statistic: {adf_test[0]}")

 print(f"p-value: {adf_test[1]}")

 if adf_test[1] < 0.05:

 print("The two stocks are cointegrated.")

 else:

 print("The two stocks are not cointegrated.")

 ADF test statistic: -3.179800920038961

 p-value: 0.021184058997635733

 The two stocks are cointegrated.

 Listing 8-6
 Testing stationarity of the residuals

 The result suggests that Google and Microsoft stocks are cointegrated due to a small p-value of 2%. Indeed, based on our previous analysis of calculating the max drawdown, Google and Microsoft stock prices generally tend to move together. However, with the introduction of ChatGPT in Bing search, the overall picture may start to change. Such cointegration (comovement) may gradually weaken as the tool gives everything for Microsoft to win (due to a small revenue from web search) and for Google to lose (majority revenue comes from web search).

 Next, we touch upon another closely related but different statistical concept: correlation.

 Correlation and Cointegration

 Both correlation and cointegration are important statistical measures used to analyze the relationship between two time series datasets. Correlation quantifies the degree of linear association between two time series. In essence, it reveals whether the two variables increase or decrease in tandem and the strength of this relationship. The correlation coefficient can vary between –1 and 1. A coefficient of 1 denotes a perfect positive linear relationship, –1 signifies a perfect negative linear relationship, while 0 suggests the absence of any linear relationship.

 In contrast, cointegration is concerned with the long-term equilibrium relationship between two potentially non-stationary time series. If two time series are cointegrated, it signifies that they share a common long-term trend, regardless of their short-term variations. Consequently, while the two time series may not exhibit short-term linear correlation, they can display a long-term stationary pattern when suitably combined. This enables analysts to uncover persistent relationships masked by transitory market volatility.

 The following code snippet provides an example of two correlated time series that are not cointegrated. We first sample two series of 100 random values following normal distributions with a different mean and the same variance. This is followed up by a cumulative summation operation stored as a Pandas Series object. Finally, we plot both series as lines after combining them horizontally in a DataFrame and calling the plot() function:

 np.random.seed(123)

 X = np.random.normal(1, 1, 100)

 Y = np.random.normal(2, 1, 100)

 X = pd.Series(np.cumsum(X), name='X')

 Y = pd.Series(np.cumsum(Y), name='Y')

 pd.concat([X, Y], axis=1).plot()s

 Running the code generates Figure 8-5. Series Y has a higher drift than series X as designed and also exhibits a high degree of correlation (or comovement) across the whole history of 100 points.
 [image:]
 A line graph of the y-axis versus the x-axis. It has 2 ascending fluctuating lines for X and Y that start at the origin. The line for Y has a higher rise than the line for X.

Figure 8-5
 Illustrating the evolution of two series that are highly correlated but not cointegrated

 Let us calculate the exact correlation coefficient and cointegration p-value. In the following code snippet, we call the corr() method to obtain the correlation of X with Y and use the coint() function from the statsmodels package to perform the cointegration test and retrieve the resulting p-value. The coint() function performs the augmented Engle-Granger two-step cointegration test, similar to how to manually carry out the two-step process earlier. The result shows that these two series are highly correlated but not cointegrated.

 from statsmodels.tsa.stattools import coint

 # calculate the correlation coefficeint

 >>> print('Correlation: ' + str(X.corr(Y)))

 # perform in cointegration test

 score, pvalue, _ = coint(X,Y)

 >>> print('Cointegration test p-value: ' + str(pvalue))

 Correlation: 0.994833254077976

 Cointegration test p-value: 0.17830098966789126

 In the next section, we dive deep into the implementation of the pairs trading strategy.

 Implementing the Pairs Trading Strategy

 As a market-neutral trading strategy, pairs trading identifies two cointegrated stocks based on a specific statistical test procedure using historical data. It takes a long and a short position in these two stocks simultaneously. Therefore, no matter whether the market moves up or down for these two stocks, there is no impact on the pairs trading strategy, so long as their relative spread remains the same. Instead, the strategy monitors the spread between the two stocks, which should remain relatively constant over time, and makes a move in case of short-term price movements based on preset thresholds.

 Let us first download the stock price data. We will focus on a few stock symbols of major tech giants: Google, Microsoft, Apple, Tesla, Meta, and Netflix. The following code snippet downloads the historical stock prices for the full year of 2022 and extracts the adjusted closing prices to the df variable:

 # download data from yfinance

 stocks = ['GOOG','MSFT','AAPL','TSLA','META','NFLX']

 df = yf.download(stocks, start=start_date, end=end_date)['Adj Close']

 Next, we analyze each unique pair of stocks and perform the cointegration test to look for those with a long-term equilibrium relationship.

 Identifying Cointegrated Pairs of Stocks

 There are a total of six stocks in our search space, leading to a total of
 [image: $$ {C}_6^2=15 $$]
 . Generating the list of unique pairs of stocks can be performed via the combinations() function from the itertools package, as shown in Listing 8-7.

 from itertools import combinations

 # get all pairs of stocks

 stock_pairs = list(combinations(df.columns, 2))

 >>> stock_pairs

 [('AAPL', 'GOOG'),

 ('AAPL', 'META'),

 ('AAPL', 'MSFT'),

 ('AAPL', 'NFLX'),

 ('AAPL', 'TSLA'),

 ('GOOG', 'META'),

 ('GOOG', 'MSFT'),

 ('GOOG', 'NFLX'),

 ('GOOG', 'TSLA'),

 ('META', 'MSFT'),

 ('META', 'NFLX'),

 ('META', 'TSLA'),

 ('MSFT', 'NFLX'),

 ('MSFT', 'TSLA'),

 ('NFLX', 'TSLA')]

 Listing 8-7
 Generating all unique pairs of stocks

 These 15 unique pairs of stocks are stored as tuples in a list. Each tuple will go through the cointegration test in the following section.

 Testing Pairwise Cointegration

 In Listing 8-8, we loop through each pair of stocks and perform the Engle-Granger test using the coint() function. For each unique pair of stocks, we first extract the corresponding DataFrame via subsetting by column names and then perform the cointegration test using the two series to obtain the test score and p-value. We will then compare the p-value with a preset threshold and print out the result to assess if the test result is statistically significant.

 threshold = 0.1

 # run Engle-Granger test for cointegration on each pair of stocks

 for pair in stock_pairs:

 # subset df based on current pair of stocks

 df2 = df[list(pair)]

 # perform test for the current pair of stocks

 score, pvalue, _ = coint(df2.values[:,0], df2.values[:,1])

 # check if the current pair of stocks is cointegrated

 if pvalue < threshold:

 print(pair, 'are cointegrated')

 else:

 print(pair, 'are not cointegrated')

 Listing 8-8
 Performing a cointegration test for each unique pair of stocks

 Note that the threshold is set as 10% instead of 5% as before, since the test would show no cointegrated pair of stocks when setting the threshold as the latter. As it turns out, the coint() function is slightly different from our manual implementation of the test procedure earlier. For example, the order of the time series assumed by the coint() function may not be the same.

 Running the code generates the following result:

 ('AAPL', 'GOOG') are not cointegrated

 ('AAPL', 'META') are not cointegrated

 ('AAPL', 'MSFT') are not cointegrated

 ('AAPL', 'NFLX') are not cointegrated

 ('AAPL', 'TSLA') are not cointegrated

 ('GOOG', 'META') are not cointegrated

 ('GOOG', 'MSFT') are cointegrated

 ('GOOG', 'NFLX') are not cointegrated

 ('GOOG', 'TSLA') are not cointegrated

 ('META', 'MSFT') are not cointegrated

 ('META', 'NFLX') are not cointegrated

 ('META', 'TSLA') are not cointegrated

 ('MSFT', 'NFLX') are not cointegrated

 ('MSFT', 'TSLA') are not cointegrated

 ('NFLX', 'TSLA') are not cointegrated

 It turns out that only Google and Microsoft stock prices are cointegrated using the 10% threshold on the significance level. These two stocks will be the focus of our pairs trading strategy in the following, starting by identifying the stationary spread between the two stocks.

 Obtaining the Spread

 As introduced earlier, the spread is a time series derived from the historical data of the two stocks in the pairs trading strategy. There are many ways to calculate the spread, and we will go with the one employed in the cointegration test procedure. Specifically, we define the spread as the residuals from the linear regression model between the two stocks. If they pass the cointegration test, we have confidence (up to 90% confidence level) that these two stocks, when linearly combined, generate a stationary time series in the spread.

 Listing 8-9 generates the spread time series and visualizes it in a line plot. As before, we first extract the predictor X and target Y, apply the bias trick by adding a column of constant ones to X, run the linear regression model, and finally obtain the spread as the residual between the target and the prediction.

 # calculate the spread for GOOG and MSFT

 Y = df["GOOG"]

 X = df["MSFT"]

 # estimate linear regression coefficients

 X_with_constant = sm.add_constant(X)

 model = OLS(Y, X_with_constant).fit()

 # obtain the spread as the residuals

 spread = Y - model.predict()

 spread.plot(figsize=(12,6))

 Listing 8-9
 Calculating the spread

 Running the code generates Figure 8-6. The spread now appears as white noise, that is, following a normally distributed Gaussian distribution. Since different stocks have different scales of spread, it would be recommended to standardize them into the same scalar for ease of comparison and strategy formulation. The next section covers the conversion process that turns the spread into z-scores.
 [image:]
 A line graph of spread versus date. It has a fluctuating curve with sharp and high peaks and dips. The curve ascends with fluctuations, descends, and again ascends and descends.

Figure 8-6
 Visualizing the spread as the residuals of the linear regression model

 Converting to Z-Scores

 A z-score is a measure of how many standard deviations the daily spread is from its mean. It is a standardized score that we can use to compare across different distributions. Denote x as the original observation. The z-score is calculated as follows:
 [image: $$ z=\frac{x-\mu }{\sigma } $$]

 where μ and σ denote the mean and standard deviation of the time series, respectively.

 Therefore, the magnitude of the z-score indicates how far away the current observation deviates from the mean in terms of the unit of standard deviations, and the sign of the z-score suggests whether the deviation is above (a positive z-score) or below (a negative z-score) the mean.

 For example, assume a distribution with a mean of 10 and a standard deviation of 2. If an observation is valued at 8, the z-score for this observation would be
 [image: $$ \frac{10-8}{2}=1 $$]
 . In other words, this observation is one standard deviation away from the mean of the distribution.

 The z-score is often used to assess the statistical significance of observation in hypothesis testing. A z-score of greater than or equal to 1.96 (or smaller than or equal to –1.96) corresponds to a p-value of 0.05 or less, which is a common threshold for assessing the statistical significance.

 In Listing 8-10, we visualize the probability density function (PDF) of a standard normal distribution with a mean of 0 and a standard deviation of 1. We first generate a list of equally spaced input values as the z-scores using the np.linspace() function and obtain the corresponding probabilities in the PDF of standard normal distribution using the norm.pdf() function with a location parameter of 0 (corresponding to the mean) and scale of 1 (corresponding to the standard deviation). We also shade the areas before –1.96 and after 1.96, where a z-score of 1.96 corresponds to a 95% significance level in a statistical test. In other words, z-scores greater than or equal to 1.96 account for 5% of the total probability, and z-scores lower than or equal to –1.96 account for 5% as well.

 # illustrate z score by generating a standard normal distribution with mu 0 and sd 1

 from scipy.stats import norm

 # input: unbounded scalar, assumed to be in the range of [-5,-5] in this case

 x = np.linspace(-5, 5, 100)

 # output: probability between 0 and 1

 y = norm.pdf(x, loc=0, scale=1)

 # set up the plot

 fig, ax = plt.subplots()

 # plot the pdf of normal distribution

 ax.plot(x, y)

 # shade the area corresponding to a z-score of >=1.96 and <=-1.96

 z_critical = 1.96

 x_shade = np.linspace(z_critical, 5, 100)

 y_shade = norm.pdf(x_shade, loc=0, scale=1)

 ax.fill_between(x_shade, y_shade, color='red', alpha=0.3)

 z_critical2 = -1.96

 x_shade2 = np.linspace(-5, z_critical2, 100)

 y_shade2 = norm.pdf(x_shade2, loc=0, scale=1)

 ax.fill_between(x_shade2, y_shade2, color='red', alpha=0.3)

 # add labels and a title

 ax.set_xlabel('Z-score')

 ax.set_ylabel('Probability density')

 # add a vertical line to indicate the z-score of 1.96 and -1.96

 ax.axvline(x=z_critical, linestyle='--', color='red')

 ax.axvline(x=z_critical2, linestyle='--', color='red')

 # display the plot

 plt.show()

 Listing 8-10
 Calculating the z-score

 Running the code generates Figure 8-7.
 [image:]
 A line graph of the probability density versus Z-score. It has a symmetrical bell-shaped curve with a peak at 0 z-score. 2 vertical lines are at negative 2 and 2 z-scores. The areas between the vertical lines and the tails of the curve are shaded.

Figure 8-7
 Visualizing the probability density function of a standard normal distribution, with the 5% significance level shaded at both the left and right sides

 In the context of hypothesis testing, the shaded area represents the probability of observing a z-score greater than 1.96 under the null hypothesis. Performing the statistical test would give us a z-score. If the z-score is above 1.96 or below –1.96 in a one-sided test, we would reject the null hypothesis in favor of the alternative hypothesis at the 0.05 significance level, since the probability of observing the phenomenon under the null hypothesis would simply be too small.

 In summary, we use the z-score as a standardized score to measure how many standard deviations an observation is from the mean of a distribution. It is used in hypothesis testing to determine the statistical significance of an observation, that is, the probability of an event happening under the null hypothesis. The significance level is often set at 0.05. We can use the z-score to calculate the probability of observing a value as extreme as the observation under the null hypothesis. Finally, we make a decision on whether to reject or fail to reject the null hypothesis.

 Now let us revisit the running example. Since stock prices are often volatile, we switch to the moving average approach to derive the running mean and standard deviation. That is, each daily spread would have a corresponding running mean and standard deviation based on the collection of spreads in the rolling window. In Listing 8-11, we derive the running mean and standard deviation using a window size of ten and apply the transformation to derive the resulting z-scores as the standardized spread.

 # convert to z score

 # z-score is a measure of how many standard deviations the spread is from its mean

 # derive mean and sd using a moving window

 window_size = 10

 spread_mean = spread.rolling(window=window_size).mean()

 spread_std = spread.rolling(window=window_size).std()

 zscore = (spread - spread_mean) / spread_std

 zscore.plot(figsize=(12,6))

 Listing 8-11
 Converting to z-scores based on moving averages

 Running the code generates Figure 8-8, where the standardized spreads now look more normally distributed as white noise.
 [image:]
 A line graph of z-scores versus date. It has a horizontally fluctuating curve with sharp and high peaks and dips.

Figure 8-8
 Visualizing the z-scores after standardizing the spreads using the running mean and standard deviation

 Since we used a window size of ten, the first nine observations will appear as NA in the moving average series. Let us get rid of the initial NA values by first identifying the first valid index using the first_valid_index() function and then subsetting the z-score series, as shown in the following code:

 # remove initial days with NA

 first_valid_idx = zscore.first_valid_index()

 zscore = zscore[first_valid_idx:]

 >>> zscore

 Date

 2022-01-14 1.123748

 2022-01-18 1.245480

 2022-01-19 0.742031

 2022-01-20 0.211878

 2022-01-21 0.064889

 ...

 2022-12-23 1.618937

 2022-12-27 0.977235

 2022-12-28 0.807607

 2022-12-29 -0.230086

 2022-12-30 -0.137035

 Name: GOOG, Length: 242, dtype: float64

 The next section formulates the trading strategy using the z-scores.

 Formulating the Trading Strategy

 As introduced earlier, the pairs trading strategy utilizes the z-scores to generate trading signals in the face of short-term fluctuations in the spread, taking long and short positions in two cointegrated assets and profiting from the long-term mean reversion of the spread.

 The trading signals are generated when the z-score obtained from the previous section crosses over a specific threshold. For example, we can long the first stock and short the second stock when the z-score is below –2, meaning that the spread is more negative than usual, and there is a good chance that the spread will revert back to its mean in the long run. Similarly, we can short the first stock and long the second stock when the z-score is above 2, suggesting that the spread is more positive than usual and there is a good chance that the spread will go back to its mean. These constitute our entry signals.

 On the other hand, when we are in an open position, the stock may move in an adverse direction in a very small amount of time. To protect our profit and stop the loss, we can place an exit signal that serves as a stop-loss order. For example, assume we entered a long position when the z-score was below –2 in the previous step. We can set up another threshold to exit the position when the z-score returns to a small value, say –1. Crossing this threshold indicates that the spread has reverted back to its mean.

 The following list summarizes the formulation of trading signals for entering and exiting the long and short positions:	
 Long entry: Enter a long position in the first stock when the z-score is below a preset negative threshold value (say –2).

	
 Long exit: Exit the long position in the first stock when the z-score crosses above another preset negative threshold value (say –1).

	
 Short entry: Enter a short position in the second stock when the z-score is above a preset positive threshold value (say 2).

	
 Short exit: Exit the short position in the second stock when the z-score crosses below another preset positive threshold value (say 1).

 To manage these four types of signals in implementation, we could maintain a Pandas Series object for each stock, where each value is either 1 (for long), –1 (for short), or 0 (for exit position). To simplify the process, we also assume that the long and short positions for each stock are also entered and exited together. In other words, upon entering a long position for one stock, we would enter a short position in the other stock at the same time.

 Figure 8-9 overlays these four trading signals in the previous z-score time series. The outer thresholds 2 and –2 represent entry signals for long and short positions, and the inner thresholds 1 and –1 represent the exit signals for existing positions. In between these two thresholds, we simply maintain the current position.
 [image:]
 A line graph of z-scores versus date. It has a horizontally fluctuating curve with sharp and high peaks and dips. It has 4 horizontal lines at z-scores, negative 2, negative 1, 1, and 2. It also presents the trading signals for the 5 ranges created between the horizontal lines.

Figure 8-9
 Illustrating the process of formulating trading signals based on preset entry and exit thresholds for the z-scores

 In Listing 8-12, we first initialize the entry and exit thresholds, respectively. We create two Pandas Series objects (stock1_position and stock2_position) to store the daily positions for each stock. Based on the current z-score and present thresholds for entering and exiting long or short positions, we check the daily z-score in a loop and match it to one of the four cases for signal generation based on the following rule:	
 Long stock 1 and short stock 2 if the z-score is below –2 and stock 1 has no prior position.

	
 Short stock 1 and long stock 2 if the z-score is above 2 and stock 2 has no prior position.

	
 Exit the position in both stock 1 and stock 2 if the z-score is between –1 and 1.

	
 Maintain the position in both stock 1 and stock 2 for the rest of the cases, that is, the z-score is between –2 and –1 or between 1 and 2.

 # set the threshold values for entry and exit signals

 entry_threshold = 2.0

 exit_threshold = 1.0

 # initialize the daily positions to be zeros

 stock1_position = pd.Series(data=0, index=zscore.index)

 stock2_position = pd.Series(data=0, index=zscore.index)

 # generate daily entry and exit signals for each stock

 for i in range(1, len(zscore)):

 # zscore<-2 and no existing long position for stock 1

 if zscore[i] < -entry_threshold and stock1_position[i-1] == 0:

 stock1_position[i] = 1 # long stock 1

 stock2_position[i] = -1 # short stock 2

 # zscore>2 and no existing short position for stock 2

 elif zscore[i] > entry_threshold and stock2_position[i-1] == 0:

 stock1_position[i] = -1 # short stock 1

 stock2_position[i] = 1 # long stock 2

 # -1<zscore<1

 elif abs(zscore[i]) < exit_threshold:

 stock1_position[i] = 0 # exit existing position

 stock2_position[i] = 0

 # -2<zscore<-1 or 1<zscore<2

 else:

 stock1_position[i] = stock1_position[i-1] # maintain existing position

 stock2_position[i] = stock2_position[i-1]

 Listing 8-12
 Implementing pairs trading

 We can now calculate the overall profit of the pairs trading strategy. In Listing 8-13, we first obtain the daily percentage changes using the pct_change() function for each stock, starting from the index with a valid value. These daily returns will be adjusted according to the position we held from the previous trading day. In other words, multiplying the shifted positions with the daily returns gives the strategy’s daily returns for each stock, filling possible NA values with zero. Finally, we add up the daily returns from the two stocks, convert them to 1+R returns, and perform the sequential compounding procedure using the cumprod() function to obtain the wealth index.

 # Calculate the returns of each stock

 stock1_returns = (df["GOOG"][first_valid_idx:].pct_change() * stock1_position.shift(1)).fillna(0)

 stock2_returns = (df["MSFT"][first_valid_idx:].pct_change() * stock2_position.shift(1)).fillna(0)

 # calculate the total returns of the strategy

 total_returns = stock1_returns + stock2_returns

 cumulative_returns = (1 + total_returns).cumprod()

 # plot the cumulative returns

 >>> cumulative_returns.plot()

 Listing 8-13
 Calculating the cumulative return

 Running the code generates Figure 8-10.
 [image:]
 A line graph of cumulative returns versus date. It has a step-up fluctuating ascending curve between January 2022 to January 2023.

Figure 8-10
 Cumulative returns of the pairs trading strategy

 The terminal return, extracted via the following code, shows that the pairs trading strategy delivers a total of 14.1% profit at the end of the trading year.

 Again, this result is subject to more rigorous backtesting in terms of the selection of investment assets, trading periods, and evaluation metrics.

 Summary

 In this chapter, we covered the concept of statistical arbitrage and hypothesis testing, as well as the implementation details based on the pairs trading strategy. We first walked through the overall process of developing a pairs trading strategy and introduced new concepts such as cointegration and stationarity. Next, we compared cointegration and correlation, both closely related but drastically different. Last, we introduced a case study on calculating the cumulative return using the pairs trading strategy.

 In the next chapter, we will introduce Bayesian optimization, a principled way to search for optimal parameters of a trading strategy.

 Exercises

 	
 Evaluate the cointegration of selected stock pairs during bull and bear market periods separately. Do the results vary significantly? If so, discuss possible reasons.

	
 Implement rolling cointegration tests on a pair of time series data and observe how cointegration status (cointegrated or not) evolves over time.

	
 For a given pair of stocks, test the stationarity of the spread between them using the ADF test. If the spread is stationary, what does it imply for the pairs trading strategy?

	
 Given the time series data of spreads for a pair of stocks, perform a hypothesis test to check whether the mean of spreads is equal to zero.

	
 Calculate the z-scores of the spread for different lookback periods (e.g., 30, 60, and 90 days). How does changing the lookback period affect the distribution of z-scores and the performance of your pairs trading strategy?

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2023
P. LiuQuantitative Trading Strategies Using Pythonhttps://doi.org/10.1007/978-1-4842-9675-2_9

9. Optimizing Trading Strategies with Bayesian Optimization

Peng Liu1
(1)Singapore, Singapore

 Financial trading employs numerous strategies in order to maximize returns. The effectiveness of these strategies can often hinge on the fine-tuning of the respective parameters, a task that can be both time-consuming and computationally expensive. Bayesian optimization comes into play as a highly efficient method for strategy optimization. It is a model-based optimization algorithm that uses the past evaluation results (in the form of a training set) to form a probabilistic surrogate model, which it exploits to determine the next point to evaluate using the so-called acquisition function. This approach is particularly useful in trading strategy optimization, where the objective function is often noisy, nonconvex, and expensive to evaluate.

 In this chapter, we will explore the principles of Bayesian optimization and its use in trading strategy optimization. By the end of this chapter, readers will have a solid understanding of how Bayesian optimization can be used to fine-tune parameters and therefore enhance trading strategies, leading to potentially higher returns and more efficient use of computational resources.

 Optimizing Trading Strategies

 We aim to maximize terminal profitability via a specific trading strategy, which often comes with a set of parameters. When properly located, the optimal set of parameters can generate the highest profit (if the goal is to maximize the terminal return) during the backtesting period. Since different testing periods likely exhibit different characteristics in terms of the asset price curve, a robust approach is to backtest a specific set of parameters over different test periods that cover most representative scenarios. The optimal set of parameters thus consistently produces the highest terminal return over multiple backtesting periods.

 The optimal set of parameters is the one that consistently produces the highest terminal return over multiple backtesting periods. This means that the strategy performs well not just in one specific market condition, but across a variety of typical scenarios. This approach helps to ensure that the strategy is robust and adaptable, capable of delivering strong returns regardless of market fluctuations.

 However, manually fine-tuning a trading strategy by setting different parameter values is an extremely time-consuming process. On the one hand, the number of possible parameter values to test out may simply be too large. When there are too many alternative configurations to be tested, carrying out a grid search (search over each unique configuration) may look too prohibitive, especially when each parameter has multiple alternative values, and there are many such parameters. In particular, a continuous parameter will render such manual search infeasible due to infinitely many values. Yet, on the other hand, backtesting each specific set of parameters is not instantaneous. Instead, each round of execution may take very long, thus further exacerbating the challenge in the global search for the optimal strategy and making the process of manually fine-tuning a trading strategy a daunting task.

 This is where automated optimization techniques, such as Bayesian optimization, come into play. These methods can efficiently navigate the search space (also referred to as the domain), intelligently choosing the next set of parameters to test based on previous results. This allows for more efficient sampling of the parameter space, saving both time and computational resources.

 It turns out that there are many optimization techniques that aim at locating the optimal set of parameters for a specific trading strategy. Let us first understand the optimization problem that occurs upon searching for the optimal trading strategy.

 Parametric Trading Strategies

 The parameters serve as the input variables to a specific trading strategy. A typical trading strategy has one or more parameters, each assuming a particular value within the prespecified range. Each parameter can vary within its defined ranges, allowing for a wide array of possible strategy configurations. Upon accepting these input parameters, the strategy will generate the resulting trading signals, from which the terminal return over a specific backtesting period could be calculated as an indicator of the “goodness” of these parameters. The input parameters do not assume fixed values; instead, they are variables that can vary within predefined ranges.

 Let us look at a concrete example. Recall the trend-following strategy covered earlier. This trading strategy relies on two moving averages to generate a trading signal: a short-term moving average and a long-term moving average. We would enter into a long position if the short-term moving average crosses above the long-term moving average, after closing the existing short position, if any. Alternatively, we would enter into a short position if the short-term moving average crosses below the long-term moving average, after closing the existing long position, if any.

 This strategy thus depends on two input parameters: the window lengths l1 and l2 for the short-term and long-term moving averages, respectively. Each set of parameters would correspond to a number of performance metrics, such as the terminal return or the Sharpe ratio. Each set of parameters (l1 and l2) will generate a unique series of trading signals, which in turn will result in a specific terminal return or Sharpe ratio. These performance metrics serve as indicators of the “goodness” or effectiveness of the chosen parameters.

 To proceed with the search for the optimal set of window length parameters, we would need a single-number metric to optimize over. Such scalar objective serves as the feedback signal on how good or bad the current set of input parameters is. This objective serves as a feedback signal, indicating the effectiveness of a given set of input parameters. For example, suppose we choose the Sharpe ratio as the objective to be maximized. This results in an objective function, where the output is the Sharpe ratio S over a specific backtesting period, the input parameters are window lengths l1 and l2, and we can represent the objective function as S = f (l1, l2). Here, f represents a black-box function, which means we do not have its explicit mathematical form or its derivative information. A black-box function is one where we do not have explicit knowledge of its mathematical form or its derivative information. This means that we can evaluate the function (i.e., we can determine the Sharpe ratio for a given set of parameters), but we don’t have a simple formula that allows us to directly calculate the optimal parameters. This makes global optimization extremely difficult since we know very little about the characteristics of this function while our goal is to find its global maximum point.

 Such a lack of explicit knowledge about the function makes the optimization problem challenging. We are essentially searching for the global maximum of a function that we know very little about. However, this is precisely the type of problem that Bayesian optimization is designed to tackle.

 More formally, we could frame the question as this: for a given stock, locate the values of l1 and l2 in the range of [1,10] and [11,20] (note that we need to ensure l1 < l2) that maximizes the Sharpe ratio within the backtesting period of a whole year. Figure 9-1 summarizes the characteristics of the optimization problem. Note that different trading strategies correspond to a different unknown black-box function f. Even if the strategy is the same, varying the backtesting period also yields a different function realization of the objective function f.
 [image:]
 A representation of the optimization problem. The black box function f, takes input parameters satisfying window length l 1 less than l 2, with unavailable explicit functional form or gradient information, and the goal is to figure out the set of input parameters to achieve a higher Sharpe ratio.

Figure 9-1
 Illustrating the optimization problem. The selected trading strategy manifests as an unknown function, and our goal is to search for the optimal set of window lengths that deliver the highest performance metric, the Sharpe ratio in this case

 The next section provides more perspectives on the overall optimization process.

 More on Optimization

 Optimization aims at locating the optimal value f ∗ = f (x∗) or its maximizer
 [image: $$ {x}^{\ast }={\mathrm{argmax}}_{x\in \mathcal{X}}f $$]
 for all the input values
 [image: $$ x\in \mathcal{X} $$]
 in a maximization setting, which could also be a minimization problem. The procedure that carries out the optimization process is called the optimizer. There are multiple types of optimizers, with stochastic gradient descent (SGD) being the most popular optimizer in the space of deep learning. In the context of backtesting a trading strategy, we are mostly interested in optimizing the risk-adjusted return, represented by the Sharpe ratio or other risk measures such as the max drawdown. Plus, we have the additional challenge that the inputs are not continuous values; instead, they are discrete such as window sizes or trading volumes.

 The optimizer takes a function f and figures out the desired optimum value f ∗ or its corresponding input parameter x ∗. Being an optimum value means that f (x ∗) is greater (or less, in the case of minimization) than any other values in the neighborhood. Here, f ∗ may be either a local optimum or a global optimum. A local optimum means f (x ∗) is at the top of a mountain, and global optimum means the highest point of all mountains in the region. That is, in a maximization setting, we could take all the local maxima, compare each other, and report the maximum of them as the global maximum. Both are characterized by having a zero gradient at the point x ∗, yet the global optimum is often what we aim for. The optimizer needs a strategy to escape from these local optima and continue its search for the global optimum. There are various techniques to handle this issue, including using different initial values via the multistart procedure, applying random jumps in the parameter space, and using complex algorithms like simulated annealing or genetic algorithms that employ specific mechanisms to escape local optima.

 In the context of developing a trading strategy, we are interested in the global maximizer (optimal input parameters) that gives the maximal Sharpe ratio. This is a complex task as there may be many sets of parameters that yield good results (local maxima), but we want to find the absolute best (global maximum).

 Note that using the gradient information to identify an optimum represents a huge improvement in our understanding of optimization problems, as first proposed by Isaac Newton. Prior to his time, we would make the manual comparison for each unique pair, which is a combinatorial problem that requires the most time-consuming work. When the function form is available, such as y = x2, we could invoke the tool of calculus and solve for the point whose gradient is zero, that is, y′ = 2x = 0, giving x = 0. We could then calculate the second derivative or apply the sign chart method to ascertain if this is a maximum or minimum point.

 The next section introduces more on the global optimization problem.

 Global Optimization

 Optimization aims to locate the optimal set of parameters of interest across the whole search domain, often by carefully allocating limited resources. For example, when searching for the car key at home before leaving for work in two minutes, we would naturally start with the most promising place where we would usually put the key. If it is not there, think for a little while about the possible locations and go to the next most promising place. This process iterates until the key is found. In this example, the search policy is, in a way, behaving intelligently. It digests the available information on previous searches and proposes the following promising location, so as to use the limited resource wisely. The resource could be the limited number of trials we could run before a project deadline approaches tomorrow or the two-minute budget to search for the key in this case. The unknown function is the house itself, a binary value that reveals if the key is placed at the proposed location upon each sampling at the specific location.

 This intelligent search policy represents a cornerstone concept in optimization, especially in the context of derivative-free optimization where the unknown function does not reveal any derivative information. Here, the policy needs to balance exploration, which probes the unknown function at various locations in the search domain, and exploitation, which focuses on promising areas where we have already identified a good candidate value. This trade-off is usually characterized by a learning curve showing the function value of the best-found solution over the number of function evaluations.

 The key search example is considered an easy one since we are familiar with the environment in terms of its structural design. However, imagine locating an item in a totally new environment. The optimizer would need to account for the uncertainty due to unfamiliarity with the environment while determining the next sampling location via multiple sequential trials. When the sampling budget is limited, as is often the case in real-life searches in terms of time and resources, the optimizer needs to argue carefully on the utility of each candidate input parameter value.

 This process is characterized by sequential decision-making under uncertainty, a problem that lies at the heart of the field of optimization. When faced with such a situation, optimizers need to develop an intelligent search policy that effectively manages the trade-off between exploration (searching new areas) and exploitation (capitalizing on known, promising locations). In the context of searching for an item in an unfamiliar environment, exploration involves searching in completely new areas where the item could potentially be located, while exploitation involves focusing the search around areas where clues or signs of the item have already been found. The challenge is to balance these two approaches, as focusing too much on exploration could lead to a waste of time and resources, while focusing too much on exploitation could result in missed opportunities.

 In the world of trading strategies, this situation amounts to a search in a high-dimensional parameter space where each dimension represents a different aspect of the trading strategy. Exploration would involve trying out completely new sets of parameters, while exploitation would involve fine-tuning the most promising sets of parameters already discovered. The optimizer aims to effectively navigate this high-dimensional space and find the set of parameters that yields the best possible performance in terms of the Sharpe ratio or other preset metrics.

 Let us formalize this sequential global optimization using mathematical terms. We are dealing with an unknown scalar-valued objective function f based on a specific domain
 [image: $$ \mathcal{X} $$]
 . In other words, the unknown subject of interest f is a function that maps a certain candidate parameter in
 [image: $$ \mathcal{X} $$]
 to a real number in
 [image: $$ \mathcal{X} $$]
 that is,
 [image: $$ f:\mathcal{X}\to \mathbb{R} $$]
 . We typically place no specific assumption about the nature of the domain
 [image: $$ \mathcal{X} $$]
 other than that it should be a bounded, compact, and convex set.

 A bounded set
 [image: $$ \mathcal{X} $$]
 means that it has upper and lower limits, and all values of the parameters contained within
 [image: $$ \mathcal{X} $$]
 fall within these bounds. A compact set is one that is both bounded and closed, meaning that it includes its boundary. And a convex set is one in which, for any two points within the set, the set contains the whole line segment that joins them. These assumptions make our problem mathematically tractable and realistic in the real-world scenario.

 Unless otherwise specified, we focus on the maximization setting instead of minimization since maximizing the objective function is equivalent to minimizing the negated objective, followed by another negation to recover the original maximum value. The optimization procedure thus aims at locating the global maximum f ∗ or its corresponding location x ∗ in a principled and systematic manner. Mathematically, we wish to locate f ∗ where
 [image: $$ {f}^{\ast }=\underset{x\in \mathcal{X}}{\max }f(x)=f\left({x}^{\ast}\right) $$]

 Or equivalently, we are interested in its location x∗ where
 [image: $$ {x}^{\ast }={\mathrm{argmax}}_{\mathrm{x}\in \mathcal{X}}f(x) $$]

 The argmax operation is used in mathematics to denote the argument of the maximum or the set of points in the domain
 [image: $$ \mathcal{X} $$]
 that maximizes the function f. When used in this optimization problem, it means that we are looking for the specific values of the input parameters that yield the maximum value of the function.

 Again, note that f (x) is unknown and only indirectly observable through sampling, and
 [image: $$ \mathcal{X} $$]
 could be a set in a high-dimensional space. So, we are looking for the best parameters in a high-dimensional space that we can only explore one sample at a time. This is what makes the global optimization problem challenging in practice.

 Figure 9-2 provides an example one-dimensional objective function with its global maximum f ∗ and its location x ∗ highlighted. The goal of global optimization is thus to systematically reason about a series of sampling decisions within the total search space
 [image: $$ \mathcal{X} $$]
 , so as to locate the global maximum as fast as possible, that is, sampling as few times as possible, instead of conducting random trials or grid search. Besides, when the optimizer makes a sequence of decisions about where in the parameter space to sample next, each decision is influenced by the results of previous samples (also referred to as the training set) and is aimed at improving the estimated optimum.
 [image:]
 A line graph of f versus x represents a decreasing curve with 2 peaks and 3 troughs. The peak marks the global maximum. The x-axis is the total search space.

Figure 9-2
 An example objective function with the global maximum f ∗ and its location x∗. The goal of global optimization is to systematically reason about a series of sampling decisions so as to locate the global maximum as fast as possible

 Note that this is a nonconvex function, as is often the case in real-life functions we are optimizing. A nonconvex function means that there are multiple local optima in the function. Thus, we could not resort to first-order gradient-based methods to reliably search for the global optimum, as we did for the convex function y = x2. Using the gradient-based method, such as solving for the solution that makes the gradient of the original function equal to zero, will likely converge to a local optimum. This is also one of the advantages of Bayesian optimization, introduced as a global optimization technique later, compared with other gradient-based optimization procedures for local search.

 The next covers more on the objective function.

 The Objective Function

 The objective function governs how the quantity of interest is generated. The whole chapter would be finished if we knew its explicit expression, and the problem would be considered solved if we could access its underlying mathematical form. Unfortunately, many objective functions in real life are black boxes to us: the stock price of a given company the next day, the weather two days from now, or the exact time point when the interest rate starts to go down. Even though the objective function is a black box, we can still use optimization techniques to find the best possible solution given the available data and resources.

 There are different types of objective functions. For example, some functions are wiggly shaped, while others are smooth; some are convex, while others are nonconvex. Many complex functions are almost impossible to be expressed using an explicit expression. For the specific type of objective functions that govern the performance of trading strategies, we summarize the following common attributes:	
 We do not have access to the explicit expression of the objective function, making it a “black-box” function. This means we can only interact with the objective function by sampling at a specific location to perform a functional evaluation.

	
 The returned value by probing at a specific input parameter value is highly sensitive to the choice of backtesting period. In other words, it is often corrupted by noise and does not represent the exact true value of the objective function at that location. Due to the indirect evaluation of its actual value, we need to account for such noise embedded in the actual observations from the functional evaluation.

	
 Each functional evaluation is costly, thus ruling out the option for an exhaustive probing exercise. We need a sample-efficient method to minimize the number of evaluations of the trading strategy while trying to locate its global optimum. In other words, the optimizer needs to fully utilize the existing observations and systematically reason about the next sampling decision so that the limited resource is well spent on promising candidate parameter values.

	
 We do not have access to its gradient. When the functional evaluation is relatively cheap, and the functional form is smooth, it would be very convenient to compute/estimate the gradient and optimize using the first-order procedure such as gradient descent. Access to the gradient is necessary for us to understand the adjacent curvature of a particular evaluation point. With gradient evaluations, the follow-up direction of travel is easier to determine.

 The black-box function, such as the one that calculates the Sharpe ratio based on two window length parameters, is challenging to optimize for the preceding reasons. To further elaborate on the possible functional form of the objective, we list three representative examples in a minimization setting, as shown in Figure 9-3. On the left is a convex function with only one global minimum; this is considered easy for global optimization, since we could just set the derivative of the function to zero and solve for the optimal value of the input variable. In the middle is a nonconvex function with multiple local optima; it is difficult to ascertain if the current local optimum is also globally optimal. It is also difficult to identify whether this is a flat region vs. a local optimum for a function with a flat region full of saddle points, as shown on the right panel. Such nonconvexity makes it difficult to perform global optimization efficiently.
 [image:]
 3 line graphs of f versus x. Left. Parabola. Curved trough marks convex function with unique global minimum. Middle. Fluctuating trend. 3 troughs mark nonconvex function with multiple local minima. Right. drop, stable, and rise. Non-convex function with flat region consisting of many saddle points.

Figure 9-3
 Three possible functional forms. On the left is a convex function whose optimization is easy. In the middle is a nonconvex function with multiple local minima, and on the right is also a nonconvex function with a wide flat region full of saddle points. Optimization for the latter two cases takes a lot more work than for the first case

 Let us look at one example of hyperparameter tuning when training machine learning models. A machine learning model is a function that involves a set of parameters to be optimized given the input data. These parameters are automatically tuned via a specific optimization procedure, typically governed by a set of corresponding meta parameters called hyperparameters, which are fixed before the model training starts. For example, when training deep neural networks using the gradient descent algorithm, a learning rate that determines the step size of each parameter update needs to be manually selected in advance. If the learning rate is too large, the model may diverge and eventually fails to learn. If the learning rate is too small, the model may converge very slowly as the weights are updated by only a small margin in this iteration. See Figure 9-4 for a visual illustration of the two scenarios.
 [image:]
 2 line graphs of f versus x with a parabola. Left. Small learning rate that leads to slow convergence. Indicated by a few dots on the left arm at small intervals connected by downward arrows. Right. A large learning rate that leads to the divergence. Arrows zig-zag on either side at large intervals.

Figure 9-4
 Slow convergence due to a small learning rate on the left and divergence due to a large learning rate on the right

 Choosing a reasonable learning rate as a preset hyperparameter thus plays a critical role in training a good machine learning model. Locating the best learning rate and other hyperparameters is an optimization problem that fits the purpose of Bayesian optimization (introduced later). In the case of hyperparameter tuning, evaluating each learning rate is a time-consuming exercise. The objective function would generally be the model’s final test set loss (in a minimization setting) upon model convergence. A model needs to be fully trained in order to do reasonably well on the training set, which typically involves hundreds of epochs of training to reach a stable convergence. Here, one epoch is a complete pass of the entire training dataset.

 The functional form of the test set loss or accuracy may also be highly nonconvex and multimodal for the hyperparameters. Upon convergence, it is not easy to know whether we are in a local optimum, a saddle point, or a global optimum. Besides, some hyperparameters may be discrete, such as the number of nodes and layers when training a deep neural network. We could not calculate its gradient in such a case since it requires continuous support in the domain.

 The Bayesian optimization approach is designed to tackle all these challenges. It has been shown to deliver good performance in locating the best hyperparameters under a limited budget (i.e., the number of evaluations allowed). It is also widely and successfully used in other fields, such as chemical engineering.

 Bayesian Optimization

 As the name suggests, Bayesian optimization is an area that studies optimization problems using the Bayesian approach. Optimization aims at locating the optimal objective value (i.e., a global maximum or minimum) of all possible values or the corresponding location of the optimum over the search domain, also called the environment. The search process starts at a specific initial location and follows a particular policy to iteratively guide the following sampling locations, collect new observations, and refresh the guiding search policy.

 At its core, Bayesian optimization uses a probabilistic model (such as Gaussian processes) to represent the unknown function and a utility function (also called the acquisition function) to decide where to sample next. It iteratively updates the probabilistic model with new sample points and uses this updated model to select the next sampling location.

 As shown in Figure 9-5, the overall optimization process consists of repeated interactions between the policy (the optimizer) and the environment (the unknown objective function). The policy is a mapping function that takes in a new input parameter (plus historical ones) and outputs the next parameter value to try out in a principled way. Here, we are constantly learning and improving the policy as the search continues. A good policy guides our search toward the global optimum faster than a bad one. In arguing which parameter value to try out, a good policy would spend the limited sampling budget on promising candidate values.
 [image:]
 A cyclic process presents environment and policy connected through observation and sampling location. The environment contains unknown real objective function and the policy has the guiding principle that determines the sampling decision based on the collected observations.

Figure 9-5
 The overall Bayesian optimization process. The policy digests the historical observations and proposes a new sampling location. The environment governs how the (possibly noise-corrupted) observation at the newly proposed location is revealed to the policy. Our goal is to learn an efficient and effective policy that could navigate toward the global optimum as quickly as possible

 On the other hand, the environment contains the unknown objective function to be learned by the policy within a specific boundary (maximum and minimum values of the parameter value). When probing the functional value as requested by the policy, the actual observation revealed by the environment to the policy is often corrupted by noise due to the choice of the backtesting period, making the learning even more challenging. Thus, Bayesian optimization, a specific approach for global optimization, would like to learn a policy that can help us efficiently and effectively navigate toward the global optimum of an unknown, noise-corrupted objective function as quickly as possible.

 When deciding which parameter value to try next, most search strategies face the exploration and exploitation trade-off. Exploration means searching within an unknown and faraway area, and exploitation refers to searching within the neighborhood visited earlier in the hope of locating a better functional evaluation. Bayesian optimization also faces the same dilemma. Ideally, we would like to explore more at the initial phase to increase our understanding of the environment (the black-box function) and gradually shift toward the exploitation mode that taps into the existing knowledge and digs into known promising regions.

 Bayesian optimization achieves such a trade-off via two components: a Gaussian process (GP) used to approximate the underlying black-box function and an acquisition function that encodes the exploration-exploitation trade-off into a scalar value as an indicator of the sampling utility across all candidates in the domain. Let us look at each component in detail in the following sections.

 Gaussian Process

 As a widely used stochastic process (able to model an unknown black-box function and the corresponding uncertainties of modeling), the Gaussian process takes the finite-dimensional probability distributions one step further into a continuous search domain that contains an infinite number of variables, where any finite set of points in the domain jointly forms a multivariate Gaussian distribution. It is a flexible framework to model a broad family of functions and quantify their uncertainties, thus being a powerful surrogate model used to approximate the true underlying function. Let us look at a few visual examples to see what it offers.

 Figure 9-6 illustrates an example of a “flipped” prior probability distribution for a single random variable selected from the prior belief of the Gaussian process. Every single point represents a parameter value, although it is now modeled as a random variable and thus has randomness in its realizations. Specifically, each point follows a normal distribution. Plotting the mean (solid line) and 95% credible interval (dashed lines) of all these prior distributions gives us the prior process for the objective function regarding each location in the domain. The Gaussian process thus employs an infinite number of normally distributed random variables within a bounded range to model the underlying objective function and quantify the associated uncertainty via a probabilistic approach.
 [image:]
 A line graph of function f versus x presents a continuous horizontal line in the middle of 2 dotted lines. A dotted curve that connects all 3 is the prior predictive distribution of the random variable. The solid line is the mean of Gaussian process. Dotted lines indicate 95 % credible interval.

Figure 9-6
 A sample prior belief of the Gaussian process represented by the mean and 95% credible interval for each location in the domain. Every objective value is modeled by a random variable that follows a normal prior predictive distribution. Collecting the distributions of all random variables and updating these distributions as more observations are collected could help us quantify the potential shape of the true underlying function and its probability

 The prior process can thus serve as the surrogate data-generating process of the unknown black-box function, which can also be used to generate samples in the form of functions, an extension of sampling single points from a probability distribution. For example, if we were to repeatedly sample from the prior process, we would expect the majority (around 95%) of the samples to fall within the credible interval and a minority outside this range. Figure 9-7 illustrates three functions sampled from the prior process.
 [image:]
 A line graph of function f versus x presents a solid line between two dotted horizontal lines. The lines comprise 3 sinusoidal trends of varying amplitude and phases which mostly lie within the dotted lines.

Figure 9-7
 Three example functions sampled from the prior process, where the majority of the functions fall within the 95% credible interval

 In a Gaussian process, the uncertainty on the objective value of each location (i.e., the parameter value of a trading strategy) is quantified using a credible interval. As we start to collect observations and assume a noise-free and exact observation model, the uncertainties at the collection locations will be resolved, leading to zero variance and direct interpolation at these locations. Besides, the variance increases as we move further away from the observations, which is a result of integrating the prior process (the prior belief about the unknown black-box function) with the information provided by the actual observations. Figure 9-8 illustrates the updated posterior process after collecting two observations. The posterior process with updated knowledge based on the observations will thus make a more accurate surrogate model and better estimate the objective function.
 [image:]
 A line graph of function f versus x has 2 intersecting dotted lines comprising a continuous line in the middle. The solid line is the mean of the posterior process and the dotted lines mark the 95 % credible interval. The intersection points mark the exact observations.

Figure 9-8
 Updated posterior process after incorporating two exact observations in the Gaussian process. The posterior mean interpolates through the observations, and the associated variance reduces as we move nearer the observations

 Mathematically, for a new sampling location
 [image: $$ {\mathbf{x}}_{\ast}\in \mathcal{X} $$]
 , the corresponding functional evaluation f∗ following the Gaussian process would assume a conditional normal distribution:
 [image: $$ p\left({f}_{\ast };{\mathbf{x}}_{\ast },{D}_n\right)=N\left({f}_{\ast }|{\mu}_{\ast },{\sigma}_{\ast}^2\right) $$]

 where
 [image: $$ {D}_n={\left\{\left({\mathbf{x}}_i,{\mathbf{f}}_i\right)\right\}}_{i=1}^n $$]
 contains the historical observed in pairs of sampling locations and scalar observations. The closed form of the posterior mean and variance functions can be derived by invoking the multivariate Gaussian theorem, giving
 [image: $$ {\mu}_{\ast }=\mathbf{k}\left({\mathbf{x}}_{1:n},{\mathbf{x}}_{\ast}\right)\mathbf{K}{\left({\mathbf{x}}_{1:n},{\mathbf{x}}_{1:n}\right)}^{-1}{\mathbf{f}}_{1:n} $$]

 [image: $$ {\sigma}_{\ast}^2=k\left({\mathbf{x}}_{\ast },{\mathbf{x}}_{\ast}\right)-\mathbf{k}\left({\mathbf{x}}_{1:n},{\mathbf{x}}_{\ast}\right)\mathbf{K}{\left({\mathbf{x}}_{1:n},{\mathbf{x}}_{1:n}\right)}^{-1}\mathbf{k}\left({\mathbf{x}}_{1:n},{\mathbf{x}}_{\ast}\right) $$]

 Therefore, we can obtain the posterior mean and variance at any arbitrary location based on the posterior Gaussian process model, serving as the surrogate model for the underlying function of the specific trading strategy.

 Now let us look at the other critical component: the acquisition function.

 Acquisition Function

 The tools from Bayesian inference and the incorporation of the Gaussian process provide principled reasoning on the underlying distribution of the objective function. However, we would still need to incorporate such probabilistic information in our decision-making to search for the global maximum. We need to build a policy (by maximizing the acquisition function) that absorbs the most updated information on the objective function and recommends the following most promising sampling location in the face of uncertainties across the domain. The optimization policy guided by maximizing the acquisition function thus plays an essential role in connecting the Gaussian process to the eventual goal of Bayesian optimization. In particular, the posterior predictive distribution obtained from the updated Gaussian process provides an outlook on the objective value and the associated uncertainty for locations not explored yet, which could be used by the optimization policy to quantify the utility of any alternative location within the domain.

 When converting the posterior knowledge about candidate locations, that is, posterior parameters such as the mean and the variance of the Gaussian distribution at each location, to a single scalar utility score, the acquisition function comes into play. An acquisition function is a manually designed mechanism that evaluates the relative potential of each candidate location in the form of a scalar score, and the location with the maximum score will be used as the next sampling choice. It is a function that assesses how valuable a candidate’s location is when we acquire/sample it.

 The acquisition function takes into account both the expected value and the uncertainty (variance) of the function at unexplored locations, as provided by the Gaussian process posterior distribution. In this context, exploration means sampling in regions of high uncertainty, while exploitation involves sampling where the function value is expected to be high.

 The acquisition function is also cheap to evaluate as a side computation since we need to evaluate it at every candidate location and then locate the maximum utility score, posing another (inner) optimization problem. Figure 9-9 provides a sample curve of the acquisition function.
 [image:]
 A line graph of acquisition function versus x has a fluctuating trend. The peak point marks the maximization of the acquisition function which is the next sampling point. Two troughs at zero values indicate there is no additional information gained by sampling location.

Figure 9-9
 Illustrating a sample acquisition function curve. The location that corresponds to the highest value of the acquisition function is the next location (parameter value of a trading strategy) to sample. Since there is no value added if we were to sample those locations already sampled earlier, the acquisition function thus reports zero at these locations

 Many choices of acquisition functions have been proposed in the literature. Popular choices include the expected improvement (EI) and upper confidence bound (UCB). Still, it suffices, for now, to understand that it is a predesigned function that needs to balance two opposing forces: exploration and exploitation. Exploration encourages resolving the uncertainty across the domain by sampling at unfamiliar and distant locations, since these areas may bear a big surprise due to high certainty. Exploitation recommends a greedy move at promising regions where we expect the observation value to be high. The exploration-exploitation trade-off is a common topic in many optimization settings.

 Another distinguishing feature is the short-term (myopic) and long-term (nonmyopic) trade-offs. A short-term acquisition function only focuses on one step ahead and assumes this is the last chance to sample from the environment; thus, the recommendation is to maximize the immediate utility. A long-term acquisition function employs a multistep lookahead approach by simulating potential evolutions/paths in the future and making a final recommendation by maximizing the long-run utility.

 There are many other emerging variations in the design of the acquisition function, such as adding safety constraints to the system under study. In any case, we would judge the quality of the policy using a specific acquisition function based on how close we are to the location of the global maximum upon exhausting our budget. The distance between the current and optimal locations is often called instant regret or simple regret. Alternatively, the cumulative regret (cumulative distances between historical locations and the optimum location) incurred throughout the sampling process can also be used.

 Let us dive more into two popular acquisition functions: expected improvement (EI) and upper confidence bound (UCB).

 EI and UCB

 Acquisition functions differ in multiple aspects, including the choice of the utility function, the number of lookahead steps, the level of risk aversion or preference, etc. Introducing risk appetite directly benefits from the posterior belief about the underlying objective function. In the case of GP regression as the surrogate model, the risk is quantified by the covariance function, with its credible interval expressing the uncertainty level about the objective’s possible values.

 Regarding the utility of the collected observations, the expected improvement chooses the historical maximum of the observed value as the benchmark for comparison upon selecting an additional sampling location. It also implicitly assumes that only one more additional sampling is left before the optimization process terminates. The expected marginal gain in utility (i.e., the acquisition function) becomes the expected improvement in the maximal observation, calculated as the expected difference between the observed maximum and the new observation after the additional sampling at an arbitrary sampling location.

 Specifically, denote y1 : n = {y1, …, yn} as the set of collected observations at the corresponding locations x1 : n = {x1, …, xn}. Assuming the noise-free setting, the actual observations would be exact, that is, y1 : n = f1 : n. Given the collected dataset
 [image: $$ {\mathcal{D}}_n=\left\{{x}_{1:n},{y}_{1:n}\right\} $$]
 , the corresponding utility is
 [image: $$ u\left({\mathcal{D}}_n\right)=\max \left\{{f}_{1:n}\right\}={f}_n^{\ast } $$]
 , where
 [image: $$ {f}_n^{\ast } $$]
 is the incumbent maximum observed so far. Similarly, assume we obtain another observation yn + 1 = fn + 1 at a new location xn + 1, the resulting utility is
 [image: $$ u\left({\mathcal{D}}_{n+1}\right)=u\left({\mathcal{D}}_n\cup \left\{{x}_{n+1},{f}_{n+1}\right\}\right)=\max \left\{{f}_{n+1},{f}_n^{\ast}\right\} $$]
 . Taking the difference between these two gives the increase in utility due to the addition of another observation:
 [image: $$ u\left({\mathcal{D}}_{n+1}\right)-u\left({\mathcal{D}}_n\right)=\max \left\{{f}_{n+1},{f}_n^{\ast}\right\}-{f}_n^{\ast }=\max \left\{{f}_{n+1}-{f}_n^{\ast },0\right\} $$]

 which returns the marginal increment in the incumbent if
 [image: $$ {f}_{n+1}\ge {f}_n^{\ast } $$]
 and zero otherwise, as a result of observing fn + 1. Readers familiar with the activation function in neural networks would instantly connect this form with the ReLU (rectified linear unit) function, which keeps the positive signal and silences the negative one.

 Due to randomness in yn + 1, we can introduce the expectation operator to integrate it out, giving us the expected marginal gain in utility, that is, the expected improvement acquisition function:
 [image: $$ {\alpha}_{EI}\left({x}_{n+1};{\mathcal{D}}_n\right)=\mathbbm{E}\left[u\left({\mathcal{D}}_{n+1}\right)-u\left({\mathcal{D}}_n\right)|{x}_{n+1},{\mathcal{D}}_n\right]\kern7em =\int \max \left\{{f}_{n+1}-{f}_n^{\ast },0\right\}p\left({f}_{n+1}|{x}_{n+1},{\mathcal{D}}_n\right)d{f}_{n+1} $$]

 Under the framework of GP regression, we can obtain a closed-form expression of the expected improvement acquisition function as follows:
 [image: $$ {\alpha}_{EI}\left({x}_{n+1};{\mathcal{D}}_n\right)=\left({\mu}_{n+1}-{f}_n^{\ast}\right)\Phi \left(\frac{\mu_{n+1}-{f}_n^{\ast }}{\sigma_{n+1}}\right)+{\sigma}_{n+1}\phi \left(\frac{\mu_{n+1}-{f}_n^{\ast }}{\sigma_{n+1}}\right) $$]

 where
 [image: $$ {f}_n^{\ast } $$]
 is the best-observed value so far, and ϕ and Φ denote the probability and cumulative density function of a standard normal distribution at the tentative point xn + 1, respectively. μn + 1 and σn + 1 denote the posterior mean and standard deviation at xn + 1.

 The closed-form EI consists of two components: exploitation (the first term) and exploration (the second term). Exploitation means continuing sampling the neighborhood of the observed region with a high posterior mean, and exploration encourages sampling an unvisited area where the posterior uncertainty is high. The expected improvement acquisition function thus implicitly balances off these two opposing forces.

 On the other hand, the UCB acquisition function, as defined in the following, encodes such a trade-off explicitly:
 [image: $$ {\alpha}_{UCB}\left({x}_{n+1};{\mathcal{D}}_n\right)={\mu}_{n+1}+{\beta}_{n+1}{\sigma}_{n+1} $$]

 where βn + 1 is a user-defined stagewise hyperparameter that controls the trade-off between the posterior mean and standard deviation. A low value of βn + 1 encourages exploitation, and a high value of βn + 1 leans more toward exploration.

 Both acquisition functions will then be assessed globally in search of the maximizing location, which will serve as the next sampling choice. Let us summarize the full BO (Bayesian optimization) loop in the following section.

 The Full BO Loop

 Bayesian optimization is an iterative process between the (uncontrolled) environment and the (controlled) policy. The policy involves two components supporting the sequential decision-making: a Gaussian process as the surrogate model to approximate the true underlying function (i.e., the environment), and an acquisition function to recommend the best sampling location. The environment receives the probing request at a specific location and responds by revealing a new observation that follows a particular observation model. The Gaussian process surrogate model then uses the new observation to obtain a posterior process in support of follow-up decision-making by the preset acquisition function. This process continues until the stopping criterion, such as exhausting a given budget, is met. Figure 9-10 illustrates this process.
 [image:]
 A cyclic diagram includes blocks titled environment and policy connected through observation and sampling location. The policy has acquisition of function from the Gaussian process. The observations are generated by assuming a specific observation model.

Figure 9-10
 The full Bayesian optimization loop featuring an iterative interaction between the unknown (black-box) environment and the decision-making policy that consists of a Gaussian process for probabilistic evaluation and acquisition function for utility assessment of candidate locations in the environment

 With the basic BO framework in mind, let us test it out by optimizing the window lengths of the pairs trading strategy.

 Optimizing the Pairs Trading Strategy

 As introduced earlier, the pairs trading strategy characterizes two input arguments: the entry and exit thresholds. More specifically, we would like to apply the BO technique to search for the optimal entry and exit thresholds such that the black-box function reaches a maximum value. For simplicity, we only perform the Sharpe ratio calculation once over one backtesting period. A more robust approach to minimize the observation noise is to test it over multiple representative backtesting periods and report the average Sharpe ratio as a fair indication of the goodness of the given input parameters.

 To begin with, we will first install two packages: the botorch package that performs BO based on PyTorch and the yfinance package to facilitate data downloading.

 !pip install botorch

 !pip install yfinance

 We also import a few supporting packages in the following, along with setting the random seed for reproducibility:

 import os

 import math

 import torch

 import random

 import numpy as np

 from matplotlib import pyplot as plt

 import torch.nn as nn

 import yfinance as yf

 import pandas as pd

 from statsmodels.tsa.stattools import adfuller

 from statsmodels.regression.linear_model import OLS

 import statsmodels.api as sm

 %matplotlib inline

 SEED = 1

 random.seed(SEED)

 np.random.seed(SEED)

 torch.manual_seed(SEED)

 The next section touches upon the performance of the pairs trading strategy as the black-box function.

 Trading Strategy Performance As the Black-Box Function

 The trend-following strategy will govern the output of the black-box function. Previously, we have illustrated how to calculate the Sharpe ratio given a specific set of entry and exit parameters. Assuming the Sharpe ratio calculated over one backtesting period is sufficiently representative, we would like to modularize the whole process of mapping a set of input parameters to the output performance metric. In other words, we need to code a function (or a class) that spits out the Sharpe ratio for a given set of entry and exit thresholds.

 To start with, we define a class called QTS_OPTIMIZER that inherits the nn.Module class. This will serve as the main horsepower for generating observations given any query points. In the __init__() method, we require three compulsory arguments: the ticker pairs in ticker_pair, the starting date of the stock price in start_date, and the end date in end_date. We also set an optional argument riskfree_rate to control the risk-free interest rate used for Sharpe ratio calculation. This is shown in Listing 9-1.

 class QTS_OPTIMIZER(nn.Module):

 def __init__(self, ticker_pair, start_date, end_date, riskfree_rate=0.04):

 super(QTS_OPTIMIZER, self).__init__()

 self.ticker_pair = ticker_pair

 self.start_date = start_date

 self.end_date = end_date

 self.riskfree_rate = riskfree_rate

 self.stock = self.get_stock_data()

 Listing 9-1
 Defining the black-box function for Bayesian optimization

 Upon instantiating this class, the __init__() function will get triggered, which also includes downloading the stock data for the selected ticker and date range. Listing 9-2 has the definition of the get_stock_data() method, where we use the usual download() function to download the data and extract the adjusted closing price that considers dividends and splits.

 def get_stock_data(self):

 print("===== DOWNLOADING STOCK DATA =====")

 df = yf.download(['GOOG'], start=self.start_date, end=self.end_date)['Adj Close']

 print("===== DOWNLOAD COMPLETE =====")

 return pd.DataFrame(df)

 Listing 9-2
 Defining the method to retrieve stock data

 Next, we introduce the forward() method, which gets triggered automatically upon calling the class object itself. This is where we implement the mechanism of the black-box function, which takes two parameters as the input and outputs the corresponding Sharpe ratio over the prespecified stock data and backtesting period. As shown in Listing 9-3, upon passing the entry and exit thresholds entry_threshold and exit_threshold, we estimate the linear regression coefficients, calculate the residuals, and obtain the z-scores. We then create the position columns to represent the trading position determined by the daily entry and exit signals. Based on the daily returns, we could then calculate the joint returns and the resulting annualized return and volatility, followed by the Sharpe ratio as the final return of the forward() function.

 def forward(self, entry_threshold, exit_threshold, window_size=10):

 # add sma columns

 stock_df = self.stock.copy()

 # calculate the spread for GOOG and MSFT

 Y = stock_df[self.ticker_pair[0]]

 X = stock_df[self.ticker_pair[1]]

 # estimate linear regression coefficients

 X_with_constant = sm.add_constant(X)

 model = OLS(Y, X_with_constant).fit()

 # obtain the spread as the residuals

 spread = Y - model.predict()

 # calculate rolling mean and sd

 spread_mean = spread.rolling(window=window_size).mean()

 spread_std = spread.rolling(window=window_size).std()

 zscore = (spread - spread_mean) / spread_std

 # remove initial days with NA

 first_valid_idx = zscore.first_valid_index()

 zscore = zscore[first_valid_idx:]

 # initialize the daily positions to be zeros

 stock1_position = pd.Series(data=0, index=zscore.index)

 stock2_position = pd.Series(data=0, index=zscore.index)

 # generate daily entry and exit signals for each stock

 for i in range(1, len(zscore)):

 # zscore<-entry_threshold and no existing long position for stock 1

 if zscore[i] < -entry_threshold and stock1_position[i-1] == 0:

 stock1_position[i] = 1 # long stock 1

 stock2_position[i] = -1 # short stock 2

 # zscore>entry_threshold and no existing short position for stock 2

 elif zscore[i] > entry_threshold and stock2_position[i-1] == 0:

 stock1_position[i] = -1 # short stock 1

 stock2_position[i] = 1 # long stock 2

 # -exit_threshold<zscore<exit_threshold

 elif abs(zscore[i]) < exit_threshold:

 stock1_position[i] = 0 # exit existing position

 stock2_position[i] = 0

 # -entry_threshold<zscore<-exit_threshold or exit_threshold<zscore<entry_threshold

 else:

 stock1_position[i] = stock1_position[i-1] # maintain existing position

 stock2_position[i] = stock2_position[i-1]

 # Calculate the returns of each stock

 stock1_returns = (Y[first_valid_idx:].pct_change() * stock1_position.shift(1)).fillna(0)

 stock2_returns = (X[first_valid_idx:].pct_change() * stock2_position.shift(1)).fillna(0)

 # calculate the total returns of the strategy

 total_returns = stock1_returns + stock2_returns

 # calculate annualized return

 annualized_return = (1 + total_returns).prod()**(252/Y[first_valid_idx:].shape[0])-1

 # calculate annualized volatility

 annualized_vol = total_returns.std()*(252**0.5)

 if annualized_vol==0:

 annualized_vol = 100

 # calculate Sharpe ratio

 sharpe_ratio = (annualized_return - self.riskfree_rate) / annualized_vol

 return sharpe_ratio

 Listing 9-3
 Defining the method to calculate the Sharpe ratio

 Let us test the class out. The following code instantiates the class into the qts variable by passing the ticker symbol of Google and Microsoft with a date range of the start and end dates of 2022. Note the printed message after running this line, showing that the get_stock_data() function gets triggered during the process. Note that there is no mention of entry and exit signals at this stage; the initialization stage is meant to handle all preparatory work before the actual scoring in the forward() function.

 >>> qts = QTS_OPTIMIZER(ticker_pair=["GOOG","MSFT"], start_date="2022-01-01", end_date="2023-01-01")

 ===== DOWNLOADING STOCK DATA =====

 [*********************100%***********************] 1 of 1 completed

 ===== DOWNLOAD COMPLETE =====

 We can also print the first few rows of the object’s stock attribute as a sanity check:

 >>> qts.stock.head()

 GOOG MSFT

 Date

 2022-01-03 145.074493 330.813873

 2022-01-04 144.416504 325.141388

 2022-01-05 137.653503 312.659851

 2022-01-06 137.550995 310.189270

 2022-01-07 137.004501 310.347412

 Let us test out the scoring function. In the following code snippet, we pass in different values of entry and exit thresholds and obtain the corresponding Sharpe ratio for the whole year of 2022:

 >>> qts(entry_threshold=2, exit_threshold=1)

 1.690533096171306

 >>> qts(entry_threshold=1.5, exit_threshold=0.5)

 1.8278364562046485

 We see that different values of the thresholds correspond to different Sharpe ratios. Our task is to find the optimal set of entry and exit thresholds that correspond to the highest Sharpe ratio, as fast as possible. This is where Bayesian optimization comes in.

 Generating Training Set for Bayesian Optimization

 Most machine learning models require a training set to start with. The training set provides the correct input-output mapping relationship for the model to fine-tune its weights and, therefore, learn such a mapping relationship. This is the same for the Bayesian optimization model. Specifically, the training set helps update the prior distribution used by the Gaussian process, so that its governing hyperparameters get updated, which would then be used to obtain a more representative posterior distribution.

 The following code snippet creates a few preparatory variables for later use, where device denotes the computing device (CPU or GPU) to run the calculations later, dtype specifies the data type of the PyTorch tensor, and x1_bound and x2_bound contain the lower and upper bounds for the short and long windows, respectively. Here, we specify the short window to vary from 1 to 10 and the long window from 11 to 20:

 # generate initial training dataset for optimization

 device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

 dtype = torch.double

 x1_bound = [1,3]

 x2_bound = [0,1]

 Next, we define a function named generate_initial_data() to get a set of training data. As shown in Listing 9-4, this function takes a single input n to specify the number of observations in the training set. Inside the function, we first generate a set of random values using the torch.rand() function from Torch. After combining the set of entry and exit thresholds into a single variable train_x, we iterate through each row to apply the black-box scoring function qts() and obtain the corresponding Sharpe ratio, collectively stored in train_y. Besides returning train_x and train_y, we also report the highest score in best_observed_value, as we will maintain a list of cumulative maximum values to indicate the search quality. The current best value observed so far also represents the utility of the dataset collected till now, that is, the utility value of the dataset in helping us locate the optimum window lengths.

 def generate_initial_data(n=10):

 # generate random initial locations

 train_x1 = x1_bound[0] + (x1_bound[1] - x1_bound[0]) * torch.rand(size=(n,1), device=device, dtype=dtype)

 train_x2 = torch.rand(size=(n,1), device=device, dtype=dtype)

 train_x = torch.cat((train_x1, train_x2), 1)

 # obtain the exact value of the objective function and add output dimension

 train_y = []

 for i in range(len(train_x)):

 train_y.append(qts(entry_threshold=train_x1[i], exit_threshold=train_x2[i]))

 train_y = torch.Tensor(train_y, device=device).to(dtype).unsqueeze(-1)

 # get the current best observed value, i.e., utility of the available dataset

 best_observed_value = train_y.max().item()

 return train_x, train_y, best_observed_value

 Listing 9-4
 Generating initial training data

 Let us generate three samples in the training set as follows:

 train_x, train_y, best_observed_value = generate_initial_data(n=3)

 >>> print(train_x)

 >>> print(train_y)

 >>> print(best_observed_value)

 tensor([[1.1221, 0.1771],

 [1.4491, 0.5561],

 [1.4685, 0.1094]], dtype=torch.float64)

 tensor([[0.0550],

 [2.2504],

 [1.0004]], dtype=torch.float64)

 2.250356674194336

 Next, we implement the first component in BO: the Gaussian process model.

 Implementing the Gaussian Process Model

 As mentioned earlier, we can use this training set to optimize the hyperparameters of the Gaussian process (GP) model so that it’s more fine-tuned toward the data at hand. This is because a GP model is also governed by its own hyperparameters upon initialization, such as the length scale. Different GP models have different hyperparameters, and we will go with the default choice provided by BoTorch.

 In Listing 9-5, we create a function called initialize_model() to initialize the GP model. We use the SingleTaskGP() class from botorch.models to instantiate a GP model based on the previous training data and then use the ExactMarginalLogLikelihood() function to obtain the exact marginal log-likelihood of the GP model.

 # initialize GP model

 from botorch.models import SingleTaskGP

 from gpytorch.mlls import ExactMarginalLogLikelihood

 def initialize_model(train_x, train_y):

 # create a single-task exact GP model instance

 # use a GP prior with Matern kernel and constant mean function by default

 model = SingleTaskGP(train_X=train_x, train_Y=train_y)

 mll = ExactMarginalLogLikelihood(model.likelihood, model)

 return mll, model

 Listing 9-5
 Initializing the GP model

 Let us print out the values of the hyperparameters (including kernel parameters and noise variance) of the GP model before optimization:

 mll, model = initialize_model(train_x, train_y)

 >>> list(model.named_hyperparameters())

 [('likelihood.noise_covar.raw_noise', Parameter containing:

 tensor([2.0000], dtype=torch.float64, requires_grad=True)),

 ('mean_module.raw_constant', Parameter containing:

 tensor(0., dtype=torch.float64, requires_grad=True)),

 ('covar_module.raw_outputscale', Parameter containing:

 tensor(0., dtype=torch.float64, requires_grad=True)),

 ('covar_module.base_kernel.raw_lengthscale', Parameter containing:

 tensor([[0., 0.]], dtype=torch.float64, requires_grad=True))]

 Optimizing the GP hyperparameters can be done by following the maximum log-likelihood (MLL) approach, which is implemented in the fit_gpytorch_mll() function from botorch.fit. Listing 9-6 fits the GP hyperparameters and prints out their values.

 # optimize GP hyperparameters

 from botorch.fit import fit_gpytorch_mll

 # fit hyperparameters (kernel parameters and noise variance) of a GPyTorch model

 fit_gpytorch_mll(mll.cpu());

 mll = mll.to(train_x)

 model = model.to(train_x)

 >>> list(model.named_hyperparameters())

 [('likelihood.noise_covar.raw_noise', Parameter containing:

 tensor([0.2238], dtype=torch.float64, requires_grad=True)),

 ('mean_module.raw_constant', Parameter containing:

 tensor(1.1789, dtype=torch.float64, requires_grad=True)),

 ('covar_module.raw_outputscale', Parameter containing:

 tensor(1.8917, dtype=torch.float64, requires_grad=True)),

 ('covar_module.base_kernel.raw_lengthscale', Parameter containing:

 tensor([[-0.8823, -0.9687]], dtype=torch.float64, requires_grad=True))]

 Listing 9-6
 Optimizing GP hyperparameters

 The result shows a different set of hyperparameters after optimization. Note that we need to move the mll object to GPU to perform the optimization, after which it can be moved back to GPU (if available).

 The optimized GP model can then be incorporated into the acquisition function to guide the following search process, as detailed in the next section.

 Guiding the Sequential Search by Maximizing the Acquisition Function

 We will use a few popular acquisition functions, including the expected improvement (EI), upper confidence bound (UCB), parallel expected improvement (qEI), and the parallel knowledge gradient (qKG). Instead of focusing on the derivation and reasoning of each choice, we will jump straight into their implementation and usage. Readers interested in a more in-depth discussion on different acquisition functions can refer to the book Bayesian Optimization: Theory and Practice Using Python.

 To start with, we instantiate both acquisition functions via ExpectedImprovement(), qExpectedImprovement(), UpperConfidenceBound(), and qKnowledgeGradient() from botorch.acquisition. Note that different acquisition functions expect different input arguments. For example, other than the GP model instance from the previous section, EI requires the best-observed value so far, while UCB expects a beta parameter that adjusts the trade-off between exploitation and exploration. Such adjustment is implicitly handled in EI. This is shown in Listing 9-7.

 # define acquisition function

 from botorch.acquisition import ExpectedImprovement

 from botorch.acquisition import qExpectedImprovement

 from botorch.acquisition import UpperConfidenceBound

 from botorch.acquisition.knowledge_gradient import qKnowledgeGradient

 # call helper functions to generate initial training data and initialize model

 train_x, train_y, best_observed_value = generate_initial_data(n=3)

 train_x_ei = train_x

 train_x_qei = train_x

 train_x_ucb = train_x

 train_x_qkg = train_x

 train_y_ei = train_y

 train_y_qei = train_y

 train_y_ucb = train_y

 train_y_qkg = train_y

 mll_ei, model_ei = initialize_model(train_x_ei, train_y_ei)

 mll_qei, model_qei = initialize_model(train_x_qei, train_y_qei)

 mll_ucb, model_ucb = initialize_model(train_x_ucb, train_y_ucb)

 mll_qkg, model_qkg = initialize_model(train_x_qkg, train_y_qkg)

 EI = ExpectedImprovement(model=model_ei, best_f=best_observed_value)

 qEI = qExpectedImprovement(model=model_qei, best_f=best_observed_value)

 beta = 0.8

 UCB = UpperConfidenceBound(model=model_ucb, beta=beta)

 num_fantasies = 64

 qKG = qKnowledgeGradient(

 model=model_qkg,

 num_fantasies=num_fantasies,

 X_baseline=train_x,

 q=1

)

 Listing 9-7
 Defining and initializing the acquisition functions

 The acquisition function is used to generate the next parameter value to be sampled, which is located by maximizing the acquisition function at hand. The process of searching for the maximum value of the acquisition function within the search domain is handled by the optimize_acqf() function, which is provided by the botorch.optim module. The new parameter value, along with the corresponding score from the unknown objective function, will be used as an additional training data point to support an updated version of the GP model and acquisition function in the next round.

 Listing 9-8 provides the detailed implementation of passing an acquisition function and obtaining the next sampling decision and functional observation. Note the additional parameters required by the optimization procedure optimize_acqf(): bounds to define the search domain of each parameter, BATCH_SIZE to specify the number of samples to probe at each round (probing multiple points in parallel is possible), NUM_RESTARTS to control the number of initial conditions when optimization starts, and RAW_SAMPLES to indicate the number of initial samples to support heuristic-based optimization over the acquisition function.

 # optimize and get new observation

 from botorch.optim import optimize_acqf

 # get search bounds

 bounds = torch.tensor([[x1_bound[0], x2_bound[0]], [x1_bound[1], x2_bound[1]]], device=device, dtype=dtype)

 # parallel candidate locations generated in each iteration

 BATCH_SIZE = 1

 # number of starting points for multistart optimization

 NUM_RESTARTS = 10

 # number of samples for initialization

 RAW_SAMPLES = 1024

 def optimize_acqf_and_get_observation(acq_func):

 """Optimizes the acquisition function, and returns a new candidate and a noisy observation."""

 # optimize

 candidates, value = optimize_acqf(

 acq_function=acq_func,

 bounds=bounds,

 q=BATCH_SIZE,

 num_restarts=NUM_RESTARTS,

 raw_samples=RAW_SAMPLES, # used for intialization heuristic

)

 # observe new values

 new_x = candidates.detach()

 # sample output value

 new_y = qts(entry_threshold=new_x.squeeze()[0].item(), exit_threshold=new_x.squeeze()[1].item())

 # add output dimension

 new_y = torch.Tensor([new_y], device=device).to(dtype).unsqueeze(-1)

 # print("new fn value:", new_y)

 return new_x, new_y

 Listing 9-8
 Obtaining a new proposal by optimizing the acquisition function

 Let us test out this function with the qKG acquisition function:

 >>> optimize_acqf_and_get_observation(qKG)

 (tensor([[1.5470, 0.6003]], dtype=torch.float64),

 tensor([[2.2481]], dtype=torch.float64))

 Before scaling up to multiple iterations, we will also test out the random search strategy, which selects a random window length for each moving series at each round. This serves as the baseline for comparison, since manual selection often amounts to a random search strategy in the initial phase. In the function update_random_observations() shown in Listing 9-9, we pass a running list of best-observed function values, perform a random selection, observe the corresponding functional evaluation, compare it with the current running maximum, and then return the list of running maxima with the current maximum appended.

 def update_random_observations(best_random):

 """Simulates a random policy by drawing a new random points,

 observing their values, and updating the current best candidate to the running list.

 """

 new_x1 = x1_bound[0] + (x1_bound[1] - x1_bound[0]) * torch.rand(size=(1,1), device=device, dtype=dtype)

 new_x2 = torch.rand(size=(1,1), device=device, dtype=dtype)

 new_x = torch.cat((new_x1, new_x2), 1)

 new_y = qts(entry_threshold=new_x[0,0].item(), exit_threshold=new_x[0,1].item())

 best_random.append(max(best_random[-1], new_y))

 return best_random

 Listing 9-9
 Defining the random search strategy

 Now we perform the sequential search based on the aforementioned acquisition functions, along with the random search strategy.

 Performing Sequential Search

 These three search strategies have different search qualities in terms of the maximum Sharpe ratio found within the same sampling budget. To measure the effectiveness of the search strategy at each round, we use the cumulative maximum value returned by the black-box function, which is a nondecreasing function by design. A more effective search strategy would be able to identify a higher Sharpe ratio faster than alternative strategies under the same environment setting.

 Listing 9-10 creates a few lists (best_observed_ei, best_observed_ucb, best_observed_qei, best_observed_qkg, and best_random) to store the best-observed Sharpe ratios at each round. The same training set consisting of three samples is used to initialize the GP model (if any) of each search strategy using the initialize_model() function, with the resulting GP model instances stored in model_ei, model_qkg, model_qei, and model_ucb, respectively. For the random search strategy, we can simply simulate a random selection and update its running max without any explicit learning process.

 # single trial

 import time

 N_ROUND = 20

 verbose = True

 beta = 0.8

 best_random, best_observed_ei, best_observed_qei, best_observed_ucb, best_observed_qkg = [], [], [], [], []

 best_random.append(best_observed_value)

 best_observed_ei.append(best_observed_value)

 best_observed_qei.append(best_observed_value)

 best_observed_ucb.append(best_observed_value)

 best_observed_qkg.append(best_observed_value)

 # run N_ROUND rounds of BayesOpt after the initial random batch

 for iteration in range(1, N_ROUND + 1):

 t0 = time.monotonic()

 # fit the models

 fit_gpytorch_mll(mll_ei)

 fit_gpytorch_mll(mll_qei)

 fit_gpytorch_mll(mll_ucb)

 fit_gpytorch_mll(mll_qkg)

 # for best_f, we use the best observed exact values

 EI = ExpectedImprovement(model=model_ei, best_f=train_y_ei.max())

 qEI = qExpectedImprovement(model=model_qei,

 best_f=train_y_ei.max(),

 num_samples=1024

)

 UCB = UpperConfidenceBound(model=model_ucb, beta=beta)

 qKG = qKnowledgeGradient(

 model=model_qkg,

 num_fantasies=64,

 objective=None,

 X_baseline=train_x_qkg,

)

 # optimize and get new observation

 new_x_ei, new_y_ei = optimize_acqf_and_get_observation(EI)

 new_x_qei, new_y_qei = optimize_acqf_and_get_observation(qEI)

 new_x_ucb, new_y_ucb = optimize_acqf_and_get_observation(UCB)

 new_x_qkg, new_y_qkg = optimize_acqf_and_get_observation(qKG)

 # update training points

 train_x_ei = torch.cat([train_x_ei, new_x_ei], dim=0)

 train_x_qei = torch.cat([train_x_qei, new_x_qei], dim=0)

 train_x_ucb = torch.cat([train_x_ucb, new_x_ucb], dim=0)

 train_x_qkg = torch.cat([train_x_qkg, new_x_qkg], dim=0)

 train_y_ei = torch.cat([train_y_ei, new_y_ei], dim=0)

 train_y_qei = torch.cat([train_y_qei, new_y_qei], dim=0)

 train_y_ucb = torch.cat([train_y_ucb, new_y_ucb], dim=0)

 train_y_qkg = torch.cat([train_y_qkg, new_y_qkg], dim=0)

 # update progress

 best_random = update_random_observations(best_random)

 best_value_ei = max(best_observed_ei[-1], new_y_ei.item())

 best_value_qei = max(best_observed_qei[-1], new_y_qei.item())

 best_value_ucb = max(best_observed_ucb[-1], new_y_ucb.item())

 best_value_qkg = max(best_observed_qkg[-1], new_y_qkg.item())

 best_observed_ei.append(best_value_ei)

 best_observed_qei.append(best_value_qei)

 best_observed_ucb.append(best_value_ucb)

 best_observed_qkg.append(best_value_qkg)

 # reinitialize the models so they are ready for fitting on next iteration

 mll_ei, model_ei = initialize_model(

 train_x_ei,

 train_y_ei

)

 mll_qei, model_qei = initialize_model(

 train_x_qei,

 train_y_qei

)

 mll_ucb, model_ucb = initialize_model(

 train_x_ucb,

 train_y_ucb

)

 mll_qkg, model_qkg = initialize_model(

 train_x_qkg,

 train_y_qkg

)

 t1 = time.monotonic()

 Listing 9-10
 Performing the sequential search

 Let us plot the search progress so far via the following code snippet:

 iters = np.arange(N_ROUND + 1) * BATCH_SIZE

 plt.plot(iters, best_random, label='random')

 plt.plot(iters, best_observed_ei, label='EI')

 plt.plot(iters, best_observed_qei, label='qEI')

 plt.plot(iters, best_observed_ucb, label='UCB')

 plt.plot(iters, best_observed_qkg, label='qKG')

 plt.legend()

 plt.xlabel("Sampling iteration")

 plt.ylabel("Sharpe ratio")

 plt.show()

 For each iteration, we fit the GP model to optimize its hyperparameters for each strategy, instantiate the acquisition function based on the updated GP model instance, optimize over the acquisition function, propose the next sampling point, obtain the corresponding function evaluation, append the new observation (parameter value and Sharpe ratio) to the training set, update the search progress by appending to running maximum Sharpe ratio, and finally reinitialize the GP for the next iteration.

 Running the code generates Figure 9-11. The comparison demonstrates the benefits of adopting a principled model-based search strategy over random selections. UCB performs the best across all iterations, showing the advantage of a higher focus on early exploration embedded in this acquisition function. Other strategies pick up later and stay flat afterward. Both model-based strategies perform better than the random strategy.
 [image:]
 A multi-line graph of Sharpe ratio versus sampling iteration has increasing curves with the maximum value obtained for U C B, q E I, and E I followed by q K G and random. The curves have inclined step increase.

Figure 9-11
 Cumulative maximum Sharpe ratio of all search strategies. The UCB policy performs the best as it is able to identify the highest Sharpe ratio in just one iteration. Other policies pick up later but lack exploration toward the later iterations. The random strategy performs the worst, showing the advantage of a principled search policy over random selection

 Let us repeat the experiments a number of times to assess the stability of the results, as shown in Listing 9-11.

 # multiple trials

 # number of runs to assess std of different BO loops

 N_TRIALS = 4

 # indicator to print diagnostics

 verbose = True

 # number of steps in the outer BO loop

 N_ROUND = 20

 best_random_all, best_observed_ei_all, best_observed_qei_all, best_observed_ucb_all, best_observed_qkg_all = [], [], [], [], []

 # average over multiple trials

 for trial in range(1, N_TRIALS + 1):

 best_random, best_observed_ei, best_observed_qei, best_observed_ucb, best_observed_qkg = [], [], [], [], []

 # call helper functions to generate initial training data and initialize model

 train_x, train_y, best_observed_value = generate_initial_data(n=3)

 train_x_ei = train_x

 train_x_qei = train_x

 train_x_ucb = train_x

 train_x_qkg = train_x

 train_y_ei = train_y

 train_y_qei = train_y

 train_y_ucb = train_y

 train_y_qkg = train_y

 mll_ei, model_ei = initialize_model(train_x_ei, train_y_ei)

 mll_qei, model_qei = initialize_model(train_x_qei, train_y_qei)

 mll_ucb, model_ucb = initialize_model(train_x_ucb, train_y_ucb)

 mll_qkg, model_qkg = initialize_model(train_x_qkg, train_y_qkg)

 best_random.append(best_observed_value)

 best_observed_ei.append(best_observed_value)

 best_observed_qei.append(best_observed_value)

 best_observed_ucb.append(best_observed_value)

 best_observed_qkg.append(best_observed_value)

 # run N_ROUND rounds of BayesOpt after the initial random batch

 for iteration in range(1, N_ROUND + 1):

 t0 = time.monotonic()

 # fit the models

 fit_gpytorch_mll(mll_ei)

 fit_gpytorch_mll(mll_qei)

 fit_gpytorch_mll(mll_ucb)

 fit_gpytorch_mll(mll_qkg)

 # for best_f, we use the best observed exact values

 EI = ExpectedImprovement(model=model_ei, best_f=train_y_ei.max())

 qEI = qExpectedImprovement(model=model_qei,

 best_f=train_y_ei.max(),

 num_samples=1024

)

 UCB = UpperConfidenceBound(model=model_ucb, beta=beta)

 qKG = qKnowledgeGradient(

 model=model_qkg,

 num_fantasies=64,

 objective=None,

 X_baseline=train_x_qkg,

)

 # optimize and get new observation

 new_x_ei, new_y_ei = optimize_acqf_and_get_observation(EI)

 new_x_qei, new_y_qei = optimize_acqf_and_get_observation(qEI)

 new_x_ucb, new_y_ucb = optimize_acqf_and_get_observation(UCB)

 new_x_qkg, new_y_qkg = optimize_acqf_and_get_observation(qKG)

 # update training points

 train_x_ei = torch.cat([train_x_ei, new_x_ei], dim=0)

 train_x_qei = torch.cat([train_x_qei, new_x_qei], dim=0)

 train_x_ucb = torch.cat([train_x_ucb, new_x_ucb], dim=0)

 train_x_qkg = torch.cat([train_x_qkg, new_x_qkg], dim=0)

 train_y_ei = torch.cat([train_y_ei, new_y_ei], dim=0)

 train_y_qei = torch.cat([train_y_qei, new_y_qei], dim=0)

 train_y_ucb = torch.cat([train_y_ucb, new_y_ucb], dim=0)

 train_y_qkg = torch.cat([train_y_qkg, new_y_qkg], dim=0)

 # update progress

 best_random = update_random_observations(best_random)

 best_value_ei = max(best_observed_ei[-1], new_y_ei.item())

 best_value_qei = max(best_observed_qei[-1], new_y_qei.item())

 best_value_ucb = max(best_observed_ucb[-1], new_y_ucb.item())

 best_value_qkg = max(best_observed_qkg[-1], new_y_qkg.item())

 best_observed_ei.append(best_value_ei)

 best_observed_qei.append(best_value_qei)

 best_observed_ucb.append(best_value_ucb)

 best_observed_qkg.append(best_value_qkg)

 # reinitialize the models so they are ready for fitting on next iteration

 mll_ei, model_ei = initialize_model(

 train_x_ei,

 train_y_ei

)

 mll_qei, model_qei = initialize_model(

 train_x_qei,

 train_y_qei

)

 mll_ucb, model_ucb = initialize_model(

 train_x_ucb,

 train_y_ucb

)

 mll_qkg, model_qkg = initialize_model(

 train_x_qkg,

 train_y_qkg

)

 t1 = time.monotonic()

 best_observed_ei_all.append(best_observed_ei)

 best_observed_qei_all.append(best_observed_qei)

 best_observed_ucb_all.append(best_observed_ucb)

 best_observed_qkg_all.append(best_observed_qkg)

 best_random_all.append(best_random)

 Listing 9-11
 Assessing the stability of the results via repeated experiments

 Running the code generates Figure 9-12, suggesting that BO-based search strategies consistently outperform the random search strategy.
 [image:]
 A multi-line graph of the Sharpe ratio versus sampling iteration has a rising trend for all the results. It observes the maximum Sharpe ratio obtained for U C B and the minimum for random. E I, q E I, and q K G lie in between. The curves increase with inclined steps.

Figure 9-12
 Assessing the stability of the results via repeated experiments

 Finally, let us extract the mean and standard deviation of all experiments, as shown in Listing 9-12.

 def extract_last_entry(x):

 tmp = []

 for i in range(4):

 tmp.append(x[i][-1])

 return tmp

 rst_df = pd.DataFrame({

 "EI": [np.mean(extract_last_entry(best_observed_ei_all)), np.std(extract_last_entry(best_observed_ei_all))],

 "qEI": [np.mean(extract_last_entry(best_observed_qei_all)), np.std(extract_last_entry(best_observed_qei_all))],

 "UCB": [np.mean(extract_last_entry(best_observed_ucb_all)), np.std(extract_last_entry(best_observed_ucb_all))],

 "qKG": [np.mean(extract_last_entry(best_observed_qkg_all)), np.std(extract_last_entry(best_observed_qkg_all))],

 "random": [np.mean(extract_last_entry(best_random_all)), np.std(extract_last_entry(best_random_all))],

 }, index=["mean", "std"])

 >>> rst_df

 EI qEI UCB qKG random

 mean 2.736916 2.734416 2.786065 2.706545 2.470426

 std 0.116130 0.146371 0.106940 0.041464 0.247212

 Listing 9-12
 Extracting the mean and standard deviation for all experiments

 Since there are multiple choices of acquisition functions available in the BO community, we expect this approach to be enjoying greater popularity down the road. However, it should be noted that the superior performance in our running example may be a result of overfitting. Instead of selecting only one backtesting period, scoring a set of parameters over multiple representative backtesting periods is recommended in order to get a fairer assessment of the functional evaluation at the specific sampling location. In other words, we need to have a more robust observation model for the black-box function to minimize the risk of overfitting the current training dataset.

 Summary

 In this chapter, we introduced the use of Bayesian optimization techniques to search for optimal parameters of a trading strategy. We started by illustrating the concept of optimizing trading strategies by tuning the corresponding governing parameters, a nontrivial task. By treating the performance measure as a black-box function of the tuning parameters, we introduced the Bayesian optimization framework, which uses Gaussian processes and acquisition functions (such as EI and UCB) to support the search of optimal parameters in a sample-efficient manner. With the full BO loop in perspective, we went through a case study that optimizes the entry and exit thresholds of a pairs trading strategy to obtain an optimal Sharpe ratio.

 In the final chapter, we will look at the use of machine learning models in the pairs trading strategy.

 Exercises

 	
 How does Bayesian optimization approach the problem of hyperparameter tuning in trading strategies? What makes this approach particularly suitable for this task?

	
 Change the objective function to search for the parameters that minimize the maximum drawdown of the trend-following strategy.

	
 Bayesian optimization is based on a probabilistic model of the objective function, typically a Gaussian process (GP). How does this model assist in identifying areas of the search space to explore or exploit?

	
 Can you describe a scenario where a long-term (nonmyopic) acquisition function would be beneficial in the context of optimizing trading strategies? What about a scenario where a short-term (myopic) function might be preferable?

	
 Can you discuss how the incorporation of prior knowledge can be leveraged in the Bayesian optimization process for parameter tuning in trading strategies?

	
 How can Bayesian optimization handle noisy evaluations, a common occurrence in financial markets, during the optimization process of a trading strategy’s parameters?

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2023
P. LiuQuantitative Trading Strategies Using Pythonhttps://doi.org/10.1007/978-1-4842-9675-2_10

10. Pairs Trading Using Machine Learning

Peng Liu1
(1)Singapore, Singapore

 Machine learning can be used in pairs trading in several ways to improve the effectiveness of trading strategies. Examples include pair selection, feature engineering, spread prediction, etc. In this final chapter, we are going to focus on spread prediction using different machine learning algorithms in order to generate trading signals.

 Machine Learning in Pairs Trading

 As discussed in the previous chapter, pairs trading is a type of quantitative trading strategy that involves transacting two highly correlated/cointegrated assets at the same time and in the opposite direction. The financial instruments could be two stocks or two indices, based on which the relative price difference is used to derive the spread series and generate trading signals. The primary assumption behind pairs trading is that the price spread between two highly correlated or cointegrated assets should exhibit a mean reversion behavior over time. During this period, traders can profit by buying the underperforming asset and short-selling the overperforming asset in case of market mispricing due to temporary fluctuations. In other words, the two assets identified by the strategy should bear a long-term equilibrium relationship and move in tandem, while any deviation from this pattern is likely to be temporary and will eventually revert back to the mean.

 In pairs trading, we start by identifying two assets that are highly correlated/cointegrated and share a similar risk exposure. After taking a long position in one asset and a short position in the other when the z-score exceeds a predefined threshold, we would then hope to profit from the convergence of their spread. Specifically, as the spread between the two assets widens, we sell the overpriced asset and buy the underpriced asset. Similarly, as the spread narrows and the z-score drops below another predefined threshold, we will exit the positions and lock in the profits.

 Being a market-neutral strategy, pairs trading can be profitable in either bull, bear, or sideways markets. The success of the strategy depends on two factors: whether the pair of correlated/cointegrated assets with a similar risk profile can be identified and whether the spread between the two assets can be accurately predicted. For example, we used a moving average in the previous chapter to standardize the daily spread into a z-score. Such a moving average acts as the predicted spread, which is then used to compare with the actual spread of the day and derive the unit of deviation in terms of the standard deviation.

 In addition, we also need to have proper risk management in place. When the spread continues to widen and moves in an adverse direction due to unexpected market events, the larger spread can lead to a significant loss. A stop-loss order is thus often placed to limit the potential loss of the strategy.

 Figure 10-1 summarizes the three critical components of a pairs trading strategy. The second component will be the focus of the following sections, where we illustrate the use of machine learning techniques to predict the spread series.
 [image:]
 A tree diagram presents 3 components of the pairs trading strategy. Quality of the selected correlated pair of assets, predictive accuracy of spread series, and proper risk management via stop loss order.

Figure 10-1
 Summarizing the three components that determine the success of a pairs trading strategy

 Machine Learning Workflow

 Machine learning models are predictive functions that generate predictions given a specific set of inputs. In this case, we intend to use a machine learning model in pairs trading to predict the spread between the two assets, which will then be used to identify profitable trading signals. Since the spread is a continuous quantity, we will explore regression models in this chapter, including support vector machine (SVM), random forest (RF), and neural network models. We will also augment the feature space, that is, historical spread series, with additional features such as technical indicators. Once the spread is predicted, we can generate trading signals by taking a long position in the underperforming asset and a short position in the overperforming asset.

 A machine learning model is a mathematical algorithm or a function that is trained on a training dataset and used to make predictions for the future unseen test dataset. Depending on the specific model class, the function can learn the underlying patterns and relationships from the given data, usually in the form of input-output pairs in the context of supervised learning. This process is called interpolation, where the model is expected to interpolate through the given data, subject to a certain degree of robustness against random noise in the dataset, as indicated by a relatively low training error.

 Next, the trained model will be assessed using a new set of test data, a process called extrapolation, where the test data may be somewhat different from the training data. A model is expected to do well on the test set so that it gives confidence when we apply it to practical applications. The test set performance is also called the generalization performance, an indicator of how well the model generalizes to the test set data.

 A typical machine learning model consists of two components: the parameters (or weights) serve as the building blocks of the model, and the model architecture specifies how the input data interact with the parameters to generate the output. Model training refers to the process of tuning these parameters such that the model produces a good performance on the test set and often a relatively good performance on the training set. During the training process, the machine learning algorithm adjusts the parameters of the model based on the input data to improve the accuracy of its predictions on the training data. Once the model is trained, it can be used to make predictions for the new data, which may not have been seen before.

 If the model performs too well on the training set but not so well on the test set, then the model is considered as overfitting the training data. Since modern models are typically complex in architecture and large in the number of model parameters, overfitting is a common phenomenon in many training situations. Proper regularization techniques can be adopted to reduce the chance of overfitting.

 Let us recall the graph on the overall model training process workflow displayed in Chapter 1, also shown in Figure 10-2 for ease of reference. We can apply regularization techniques to achieve a better generalization performance from these four components: the training data, the model, the cost measure, and the optimization procedure. Each component has a specific extent of regularization effect and can be combined together to achieve a good generalization performance for the specific training situation.
 [image:]
 A diagram presents the overall model training process workflow. It has 4 components, the training data with input features and target label, the model with parameters and architecture, the cost measure, and the optimization procedure of the model with feedback of cost.

Figure 10-2
 Example of a typical model training process. The workflow starts with the available training data and gradually tunes a model. The tuning process requires matching the model prediction to the target output, where the gap is measured by a particular cost measure and used as feedback for the next round of tuning. Each tuning produces a new model, and we want to look for one that minimizes the cost

 In the following section, we will introduce the high-level principles of three different types of machine learning algorithms: support vector machine, random forest, and neural network.

 Support Vector Machine

 Support vector machine (SVM) is a popular supervised learning algorithm, especially in the Kaggle community, for both classification and regression. In the context of classification, SVM works by mapping the input data from its original feature space into a high-dimensional feature space using a kernel function, and then finding the hyperplane that best separates the different classes of data. The hyperplane is chosen in order to maximize the margin between the classes. Seeking a boundary based on the principle of maximal margin often leads to a better generalization performance, thus reducing the risk of overfitting.

 Since we are interested in predicting the spread as a continuous outcome, making it a regression task, SVM instead finds the hyperplane that best separates the input data while minimizing the margin violations. In this case, our goal in the regression task is to fit a hyperplane as closely as possible to the actual data points by minimizing the sum of the squared errors (SSE) as the cost measure between the predicted output and the actual target values. Since minimizing SSE toward zero would easily lead to an overfitting model, the SVM model used in regression often assumes an ϵ-insensitive loss function, which allows the model to tolerate some error in its predictions, up to a certain threshold ϵ.

 There are multiple technical terms here that serve more explanation. Let us start with the concept of the hyperplane. A hyperplane is a decision line used to predict the continuous output in the case of regression. The data points on either side of the hyperplane within a certain distance (specifically, within ϵ) are called support vectors. We can also use these support vectors to draw two decision boundaries around the hyperplane at a distance of ϵ.

 Moving on, a kernel is a set of mathematical functions that take data as input and transform it into the required form, possibly in a different dimension. These are generally used for finding a hyperplane in the higher-dimensional space, which is considered easier to achieve linear separation than finding the same separating hyperplane in the original feature space. Using kernels in SVM provides a powerful and flexible tool for classification and regression tasks, allowing SVM to handle complex and even nonlinearly separable datasets.

 Figure 10-3 helps illustrate these concepts. Given a set of training observations in the form of input-output pairs, the support vector regression model will build a hyperplane as the regression line to predict future test data. The hyperplane is surrounded by two decision boundaries, determined by a user-specified hyperparameter ϵ. Here, ϵ specifies the width of the ϵ-insensitive zone (or tolerance zone) around the regression line, where errors are not penalized. Not all the points are within the decision boundaries, and SVM is designed to minimize such margin violations by maximizing the number of points within the decision boundary upon estimating the hyperplane.
 [image:]
 An X-Y plane presents some points between the decision boundaries, with hyperplane in its center as the decision line that predicts target values in the region. Some points are not within the decision boundaries. Tolerance error term is the distance from hyperplane to a boundary.

Figure 10-3
 Illustrating the training mechanism of the support vector regression model

 Note that ϵ controls the tolerance of the margin violation. It determines the trade-off between the model complexity and the predictive accuracy. A small value of ϵ will result in a complex model that closely fits the training data, but risks overfitting the training set and therefore generalizing poorly to the new data. On the other hand, a large value of ϵ will result in a simpler model with larger errors but potentially a better generalization performance.

 As a user-specified hyperparameter, the choice of ϵ can be highly sensitive to the resulting predictive performance. A common approach is cross-validation, which involves partitioning the raw data into training and validation sets several times, each starting with a different random seed. The best ϵ is the one that reports the highest predictive performance on average.

 We introduce the random forest model in the following section.

 Random Forest

 Random forest is a type of ensemble model, which includes multiple simple models combined together to make the final prediction. It is a powerful and flexible model that can be used for both regression and classification tasks. As the name suggests, the algorithm constructs multiple decision trees and combines all trees in the forest to make a final prediction.

 The main differentiating factor about random forest compared with other models is how the raw training dataset is divided to support the training of each tree. Specifically, each tree is trained on a different subset of the data and a different subset of the features, a process known as bagging or bootstrap aggregation. By using random subsets of the data and features, the algorithm creates multiple independent submodels that have a low bias and high variance. The final prediction is then produced by taking the average of the predictions of all the individual trees, similar to collecting the views from multiple independent consultants and taking the average recommendation as the final decision.

 Note that at each node of the tree, a random subset of features is considered to determine the best split, instead of considering all features. This process is called feature bagging. The randomness in feature selection ensures that the trees are decorrelated and reduces the chance of overfitting.

 Random forests are widely used for their simplicity, versatility, and robustness. They can handle a mix of numerical and categorical features, require very little preprocessing of the data, and provide a built-in method for handling missing values. Furthermore, they offer measures of feature importance, which can provide insights into the underlying structure of the data.

 Figure 10-4 illustrates the overall training process of the random forest model. We start by sampling from the original training set to obtain a total of B subsets. Each sampling randomly selects both observations and features, so that the resulting subsets appear to be independent of each other and uncorrelated in the feature space. We will then train a decision tree model for each subset, leading to B submodels. Upon assessing a new test data point, these B predictions will be aggregated together and averaged to produce the final prediction.
 [image:]
 A chart of the random forest model describes that the training process starts by sampling from the original training set to obtain a total of B subsets. Train a decision tree model for each subset. The predictions are aggregated together and averaged as the final prediction.

Figure 10-4
 Illustrating the training mechanism of the random forest model

 In the next section, we introduce the basic feed-forward neural network.

 Neural Network

 A neural network consists of multiple interconnected nodes, also called neurons, stacked together in layers. Each neuron serves as a function that receives input from the neurons in the preceding layer, performs a nonlinear transformation on that input, and sends an output to the neurons in the next layer. In between these neurons are the weights, also called parameters of the neural network. Learning a neural network model essentially means tuning the weights so that the final prediction is accurate, and the model generalizes well to the test set.

 A typical neural network consists of an input layer representing the input data and an output layer generating the output. It can also include any number of layers in between (called hidden layers). Each layer contains at least one neuron, interpreted as an extracted hidden feature. When it comes to the number of layers of a neural network, it refers to the hidden layer plus the output layer. For example, a perceptron is a single-layer neural network, meaning it has only input and output layers and does not have any hidden layer in between.

 Being the fundamental constituent of a neural network, a perceptron is a single neuron that completes two steps of mathematical operations: the weighted sum and the nonlinear transformation. For a single observation with p dimensions x ∈ ℝp, the perceptron first calculates the weighted sum
 [image: $$ {\sum}_{i=1}^p{w}_i{x}_i $$]
 between x and its corresponding weight vector w ∈ ℝp, which is (and should be) also p-dimensional. The weighted sum is often accompanied by one more term called intercept or bias, which acts as an additional parameter to exercise a global level shift to the weighted sum to fit the data better.

 After adding an intercept/bias term b, the sum passes through an activation function which introduces a nonlinear transformation to the weighted sum. Note that the bias term is added by inserting a column of ones in the input data, which is the same bias trick as linear regression. Such nonlinear transformation, together with the number and width of layers, determines neural networks' flexibility, expressivity, and approximating power. Figure 10-5 summarizes the process flow of a perceptron.
 [image:]
 A flowchart presents the process flow of a perceptron. The inputs X 1 to X p with respective weights, and constant 1 with b, give the weighted sum. The sum passes through an activation function to generate the final output.

Figure 10-5
 The process flowchart of a perceptron, which consists of a weighted sum operation followed by an activation function. A column of ones is automatically added to correspond to the bias term in the weight vector

 The most popular choice of activation function is the rectified linear unit (ReLU), which acts as an on/off switch that fires the input signal as it is if its value is above a specific threshold and mutes it by outputting zero if it is below the threshold. In other words, the ReLU operation is an identity function if the input is positive; otherwise, the output is set as zero. Without such nonlinear activation, a multilayer neural network would simply become a series of linear functions stacked on top of each other, resulting in a linear model.

 Figure 10-6 visualizes the ReLU function's shape and summarizes the characteristics of the perceptron operation discussed so far. Other than the architectural flexibility of a neural network model in terms of the number and width of its layers, another main added flexibility lies in the nonlinear operation. In fact, many exciting and meaningful hidden features could be automatically extracted using ReLU as an activation function. For example, when training an image classifier using a special architecture called convolutional neural networks, low-level features in the initial hidden layers tend to resemble fundamental structural components such as lines or edges, while high-level features at later hidden layers start to learn structural patterns such as squares, circles, or even complex shapes like the wheels of a car. This is not possible if we are limited to the linear transformation of features and is considered an extremely difficult task if we were to engineer such informative features manually.
 [image:]
 A representation of a mathematical equation and a line graph. The function of simple perception consists of a weighted sum + activation function. The graph presents the nonlinearity of the activation function, with an initial horizontal and then a rise.

Figure 10-6
 Decomposing a single perceptron into a weighted sum and an activation function which is often ReLU. The ReLU operation passes through a signal if it is positive and mutes it if it is negative. Such nonlinearity also introduces great approximating power to the neural networks in addition to the flexibility in designing the number and width of layers

 One of the reasons why ReLU (and its variants) remains the most popular activation function is its fast gradient computation. When the input is less than or equal to zero, the gradient (of a constant number) becomes zero, thus saving the need for backpropagation and parameter update. When the input is positive, the gradient (of the original input variable) is simply one, which gets backpropagated as it is.

 Having reviewed these three model classes, let us switch to the implementation of pairs trading and compare their performances after using machine learning models to predict the daily spread.

 Implementing the Pairs Trading Strategy Using Machine Learning

 In this section, we will follow a similar recipe to develop a pairs trading strategy as in the previous chapter, with the only change being the calculation of the predicted spread. The previous chapter used a rolling window to derive the mean and standard deviation of the daily spread. In other words, the predicted spread is the average of a collection of historical spreads in the moving window, whose volatility is also used to standardize the difference between the actual spread and the predicted spread.

 Let us start by importing the necessary packages. As shown in Listing 10-1, we will focus on the same pair of stocks (Google and Microsoft) and trading horizon (the full year of 2022).

 import os

 import random

 import numpy as np

 import yfinance as yf

 import pandas as pd

 from statsmodels.tsa.stattools import adfuller

 from statsmodels.regression.linear_model import OLS

 import statsmodels.api as sm

 from matplotlib import pyplot as plt

 %matplotlib inline

 SEED = 8

 random.seed(SEED)

 np.random.seed(SEED)

 # download data from yfinance

 stocks = ['GOOG','MSFT']

 start_date = "2022-01-01"

 end_date = "2022-12-31"

 df = yf.download(stocks, start=start_date, end=end_date)['Adj Close']

 df.head()

 GOOG MSFT

 Date

 2022-01-03 145.074493 330.813873

 2022-01-04 144.416504 325.141327

 2022-01-05 137.653503 312.659882

 2022-01-06 137.550995 310.189270

 2022-01-07 137.004501 310.347412

 Listing 10-1
 Downloading the stock data

 For simplicity, we will define spread as the difference in the log price of the two stocks, which is calculated and visualized in Listing 10-2.

 # Calculate the spread between the two assets

 spread = np.log(df[stocks[0]]) - np.log(df[stocks[1]])

 plt.plot(spread, label='Spread using difference of log price')

 plt.legend()

 plt.show()

 Listing 10-2
 Calculating the spread

 Running this code generates Figure 10-7.
 [image:]
 A descending line graph with fluctuations of the spread, which is calculated by using the difference of the log price, between January 2022 and January 2023.

Figure 10-7
 Visualizing the daily spread defined as the difference in the log price of both stocks

 Next, we will perform feature engineering to boost the feature space.

 Feature Engineering

 Feature engineering is the process of selecting, transforming, and extracting relevant features from the raw data in order to boost the performance of a machine learning model. The quality and sometimes the quantity of the features are critical factors that influence the performance of a machine learning model. These additional engineered features may not necessarily make sense from an interpretability perspective, yet they will likely improve the predictive performance of the machine learning algorithm by offering a new knob for the model to tune with.

 We have already encountered feature engineering in previous discussions, with the moving average being the most notable example. In this exercise, we will use five features to predict the spread series, including the daily returns for both stocks, the five-day moving average of the spread series, and the 20-day moving standard deviation of daily returns. These are created in Listing 10-3.

 # Define additional features

 asset1_returns = np.log(df[stocks[0]]).diff()

 asset2_returns = np.log(df[stocks[1]]).diff()

 spread_ma5 = spread.rolling(5).mean()

 asset1_volatility = asset1_returns.rolling(20).std()

 asset2_volatility = asset2_returns.rolling(20).std()

 Listing 10-3
 Generating additional features

 Note that this is just one way to create additional features. In practice, we would create many more features to support algorithms such as SVM and random forest if the goal is to maximize the predictive accuracy. For neural networks, however, such feature engineering is helpful but not essential. Neural networks are powerful function approximators in that they can learn the correct feature extraction given a sufficiently complex architecture and enough training time.

 We will then aggregate these features into a single DataFrame X, followed by filling NA values with zero. We also assign the spread series to y:

 # Combine the features into a single DataFrame

 X = pd.DataFrame({'Asset1Returns': asset1_returns,

 'Asset2Returns': asset2_returns,

 'SpreadMA5': spread_ma5,

 'Asset1Volatility': asset1_volatility,

 'Asset2Volatility': asset2_volatility})

 X = X.fillna(0)

 y = spread

 Let us also split the data into a training and a test set. We will adopt the common 80-20 rule; that is, 80% of the data goes to the training set, and 20% goes to the test set. We will also observe the sequence of time, so the 80% training set does not peak in the future, as shown in Listing 10-4.

 # Split the data into training and test sets

 train_size = int(len(spread) * 0.8)

 train_X = X[:train_size]

 test_X = X[train_size:]

 train_y = y[:train_size]

 test_y = y[train_size:]

 Listing 10-4
 Performing train-test split

 With the training and test data ready, we can now move into the model training part, starting with SVM.

 Pairs Trading Using SVM

 Since this is a regression task, we will use the SVR class from sklearn, specifying a linear kernel. After instantiating the model class, we use the fit() method to fit the model parameters to the training data and the predict() method to generate predictions for the test data. We will also check the root mean squared error (RMSE) for both training and test sets. Listing 10-5 completes the training and testing operations.

 from sklearn.svm import SVR

 from sklearn.metrics import mean_squared_error

 svm_model = SVR(kernel='linear')

 svm_model.fit(train_X, train_y)

 train_pred = svm_model.predict(train_X)

 >>> print("training rmse: ", np.sqrt(mean_squared_error(train_y, train_pred)))

 test_pred = svm_model.predict(test_X)

 >>> print("test rmse: ", np.sqrt(mean_squared_error(test_y, test_pred)))

 training rmse: 0.039616044798431914

 test rmse: 0.12296547390274865

 Listing 10-5
 Model training and testing using SVM

 The RMSE measures the model’s predictive performance. However, we still need to plug the model into the trading strategy and evaluate the ultimate profitability in the pairs trading strategy. As the only change is on the predicted spread based on the specific machine learning model, we can define a function to score the model as an input parameter and output the terminal profit. The score_fn() function in Listing 10-6 completes the scoring operation.

 import torch

 def score_fn(model, type="non_neural_net"):

 # Generate predicted spread using the SVM model

 if type == "non_neural_net":

 test_pred = model.predict(test_X)

 else:

 test_pred = model(torch.Tensor(test_X.values)).detach().numpy()

 # Calculate z-score of the actual and predicted spread

 zscore = (spread - test_pred.mean()) / test_pred.std()

 # set the threshold values for entry and exit signals

 entry_threshold = 2.0

 exit_threshold = 1.0

 # initialize the daily positions to be zeros

 stock1_position = pd.Series(data=0, index=zscore.index)

 stock2_position = pd.Series(data=0, index=zscore.index)

 # generate daily entry and exit signals for each stock

 for i in range(1, len(zscore)):

 # zscore<-2 and no existing long position for stock 1

 if zscore[i] < -entry_threshold and stock1_position[i-1] == 0:

 stock1_position[i] = 1 # long stock 1

 stock2_position[i] = -1 # short stock 2

 # zscore>2 and no existing short position for stock 2

 elif zscore[i] > entry_threshold and stock2_position[i-1] == 0:

 stock1_position[i] = -1 # short stock 1

 stock2_position[i] = 1 # long stock 2

 # -1<zscore<1

 elif abs(zscore[i]) < exit_threshold:

 stock1_position[i] = 0 # exit existing position

 stock2_position[i] = 0

 # -2<zscore<-1 or 1<zscore<2

 else:

 stock1_position[i] = stock1_position[i-1] # maintain existing position

 stock2_position[i] = stock2_position[i-1]

 # Calculate the returns of each stock

 stock1_returns = (np.exp(test_X['Asset1Returns']) * stock1_position.shift(1)).fillna(0)

 stock2_returns = (np.exp(test_X['Asset2Returns']) * stock2_position.shift(1)).fillna(0)

 # calculate the total returns of the strategy

 total_returns = stock1_returns + stock2_returns

 cumulative_returns = (1 + total_returns).cumprod()

 return cumulative_returns[-1]

 Listing 10-6
 Calculating cumulative return using pairs trading under a given predictive model

 In this function, we add another input parameter to control if the model belongs to a neural network. This control is placed here to determine the specific prediction method to use. For standard sklearn algorithms such as SVM and random forest, we can call the predict() method of the model object to generate predictions for the given input data. However, when the model is a neural network trained using PyTorch, we need to first convert the input to a tensor object using torch.Tensor(), generate predictions by calling the model object itself (underlying, the forward() function within the model class is called), extracting the outputs without gradient information using the detach() method, and converting to a NumPy object using numpy().

 Next, we calculate the z-score using the mean and the standard deviation of the predicted spread series. We then use an entry threshold of two and an exit threshold of one to generate the trading signals based on the standardized z-scores. The rest of the calculations follow the same approach as in the previous chapter.

 We can now use this function to obtain the terminal return for the pairs trading strategy using the SVM model:

 >>> score_fn(svm_model)

 1.143746922303926

 Similarly, we can obtain the same measure using the random forest regressor.

 Pairs Trading Using Random Forest

 To build a random forest model for regression, we can use the RandomForestRegressor class and specify two main parameters: n_estimators as the number of trees to be built in the random forest and random_state as the random seed for reproducibility. Listing 10-7 trains the random forest model and evaluates its performance in the training and test sets using RMSE.

 # random forest

 from sklearn.ensemble import RandomForestRegressor

 # Create random forest regressor

 rf_model = RandomForestRegressor(n_estimators=100, random_state=42)

 # Train the model on the training and test set

 rf_model.fit(train_X, train_y)

 train_pred = rf_model.predict(train_X)

 >>> print("training rmse: ", np.sqrt(mean_squared_error(train_y, train_pred)))

 test_pred = rf_model.predict(test_X)

 >>> print("test rmse: ", np.sqrt(mean_squared_error(test_y, test_pred)))

 training rmse: 0.005741011378501151

 test rmse: 0.07322761976891506

 Listing 10-7
 Model training and testing using random forest

 The result shows that random forest can better fit the data with a lower training and test set RMSE compared with SVM.

 We also calculate the terminal return as follows:

 >>> score_fn(svm_model)

 0.9489411965252148

 The result reports a lower terminal return, despite a better predictive performance. This is also overfitting, in the sense that a more predictive model at the stage-one prediction task leads to a lower terminal return at the stage-two trading task. Combining these two tasks in a single stage is an interesting and active area of research.

 We move to neural networks in the next section.

 Pairs Trading Using Neural Networks

 Training a deep neural network requires specifying the four major components: input data, model architecture, objective function, and optimizer. We start with the input data by converting them into tensor objects using the torch.Tensor() function as follows:

 # Convert data to PyTorch tensors

 train_X_ts = torch.Tensor(train_X.values)

 train_y_ts = torch.Tensor(train_y).view(-1, 1)

 test_X_ts = torch.Tensor(test_X.values)

 test_y_ts = torch.Tensor(test_y).view(-1, 1)

 Note that we use the .values attribute to access the values from the DataFrame and the view() function to reshape the target into a column.

 Next, we define the neural network model in Listing 10-8. Here, we slot the attributes to the initialization function, including one input linear layer, one hidden linear layer, and one output linear layer. The number of incoming neurons in the input layer (i.e., train_X.shape[1]) and the number of outgoing neurons in the output layer (i.e., 1) are determined by the specific problem at hand. The number of neurons in the middle layers is user defined and directly determines the model complexity. All these layers are chained together with a ReLU activation function in the middle via the forward() function. Also, note that it is unnecessary to apply ReLU to the last layer since the output will be a scalar value representing the predicted spread.

 # Define the neural network model

 class Net(nn.Module):

 def __init__(self):

 super(Net, self).__init__()

 self.fc1 = nn.Linear(train_X.shape[1], 64)

 self.fc2 = nn.Linear(64, 32)

 self.fc3 = nn.Linear(32, 1)

 self.relu = nn.ReLU()

 def forward(self, x):

 x = self.fc1(x)

 x = self.relu(x)

 x = self.fc2(x)

 x = self.relu(x)

 x = self.fc3(x)

 return x

 Listing 10-8
 Defining the network architecture

 Now we instantiate a neural network model in nn_model and inspect the architectural information of the model using the summary() function, as shown in Listing 10-9.

 from torchsummary import summary

 # Create an instance of the neural network model

 nn_model = Net()

 # print the summary of the customized neural network

 >>> summary(nn_model, input_size=(1, train_X.shape[1]))

 --

 Layer (type) Output Shape Param #

 ==

 Linear-1 [-1, 1, 64] 384

 ReLU-2 [-1, 1, 64] 0

 Linear-3 [-1, 1, 32] 2,080

 ReLU-4 [-1, 1, 32] 0

 Linear-5 [-1, 1, 1] 33

 ==

 Total params: 2,497

 Trainable params: 2,497

 Non-trainable params: 0

 --

 Input size (MB): 0.00

 Forward/backward pass size (MB): 0.00

 Params size (MB): 0.01

 Estimated Total Size (MB): 0.01

 --

 Listing 10-9
 Checking network model summary

 The result shows that the neural network contains a total of 2497 parameters over three linear layers. Note that the ReLU layer does not have any associated parameters as it involves deterministic mapping only.

 Next, we define the loss function as the mean square error using MSELoss() and choose Adam as the optimizer over the network weights, with an initial learning rate of 0.001:

 # Define the loss function and optimizer

 criterion = nn.MSELoss()

 optimizer = torch.optim.Adam(nn_model.parameters(), lr=0.001)

 We now enter the iterative training loop to update the weights by minimizing the specified loss function, as shown in Listing 10-10.

 # Train the model

 for epoch in range(100):

 optimizer.zero_grad()

 outputs = nn_model(train_X_ts)

 loss = criterion(outputs, train_y_ts)

 loss.backward()

 optimizer.step()

 # Print the loss for every 10 epochs

 if epoch % 10 == 0:

 print("Epoch {}, Loss: {:.4f}".format(epoch, loss.item()))

 Listing 10-10
 The full model training procedure

 Here, we iterate over the training set for a total of 100 epochs. In each epoch, we first clear the existing gradients in memory using the zero_grad() function of the optimizer. Next, we score the training set to obtain predicted targets in outputs, calculate the corresponding MSE loss, perform backward propagation to calculate the gradients using autograd functionality via the backward() method, and finally perform gradient descent update using the step() function.

 Running the code generates the following results, where we see that the training loss continues to decrease as iteration proceeds:

 Epoch 0, Loss: 0.4154

 Epoch 10, Loss: 0.2246

 Epoch 20, Loss: 0.0850

 Epoch 30, Loss: 0.0093

 Epoch 40, Loss: 0.0043

 Epoch 50, Loss: 0.0051

 Epoch 60, Loss: 0.0013

 Epoch 70, Loss: 0.0016

 Epoch 80, Loss: 0.0013

 Epoch 90, Loss: 0.0012

 We can also check the in-sample and out-of-sample RMSE as follows:

 # evaluate the model on the training and testing set

 train_pred = nn_model(train_X_ts).detach().numpy()

 >>> print("training rmse: ", np.sqrt(mean_squared_error(train_y_ts, train_pred)))

 test_pred = nn_model(test_X_ts).detach().numpy()

 >>> print("test rmse: ", np.sqrt(mean_squared_error(test_y_ts, test_pred)))

 training rmse: 0.033806544

 test rmse: 0.08466047

 The result shows that the neural network is less overfitting than the random forest model.

 Now we obtain the terminal return of the pairs trading strategy based on the neural network model:

 >>> score_fn(nn_model, type="nn")

 0.8999874304248494

 Again, this result shows that an accurate machine learning model may not necessarily lead to a higher terminal return in the pairs trading strategy. Even if the machine learning model is predictive of future spreads, another layer of assumption imposed by the pairs trading strategy is that the temporary market fluctuations will ease down, and the two assets will revert back to the long-term equilibrium relationship. Such an assumption may not necessarily stand, along with the many unpredictable factors in the market.

 Summary

 In this chapter, we introduced different machine learning algorithms used in predicting the spread, a key component when employing the pairs trading strategy. We started by introducing the overall framework when training any machine learning algorithm and then elaborated on three specific algorithms: support vector machine, random forest, and neural network. Lastly, we plugged these models into the strategy and found that a higher predictive performance by the machine learning model, a sign of overfitting, may lead to a lower performance score in terms of cumulative return. It is thus important not to overfit the machine learning models at the prediction stage and instead focus more on the final performance of the trading strategy at the decision stage, where the actual trading action is made.

 Exercises

 	
 How does the SVM model determine the optimal hyperplane for predicting the spread in a pairs trading strategy? What are the key parameters that need to be adjusted in an SVM?

	
 How does a random forest algorithm handle feature selection when predicting the spread in a pairs trading strategy? What are the implications of feature importance in this context?

	
 Explain how SVM, random forest, and neural networks approach the problem of overfitting in the context of predicting the spread in a pairs trading strategy.

	
 How can you handle nonlinear relationships between features in SVM, random forest, and neural networks when predicting the spread in a pairs trading strategy?

	
 How can the layers in a neural network be optimized to improve the prediction of the spread in a pairs trading strategy?

Index

A

 Acquisition function

 best-observed value

 closed-form EI

 decision-making

 defining and initializing

 randomness

 trade-off between

 UCB

 Actively managed investment pools

 Active traders

 add_constant() function

 Advanced order types

 Agency orders

 Agency trading

 agg() function

 All-or-none (AON)

 alpha argument

 Annualized variance

 Annualizing returns

 Annualizing volatility

 Annuities

 apply() function

 Arbitrage

 Arithmetic mean

 Asset classes

 Asset price curve

 asset_return1

 asset_return2

 Augmented Dickey-Fuller (ADF) test

 Automated optimization techniques

 Automated trading

B

 Backtesting

 historical data

 market phases

 maximum drawdown/max drawdown

 optimistic assessment

 parameters

 performance

 performance indicator

 procedure

 profits

 risk and reward assessments

 test set performance

 trend-following strategy

 backward() method

 Backwardation

 Bayesian optimization

 black-box function

 environment

 parameter

 policy

 Big exchanges

 Black-box function

 Bollinger Bands

 Bonds

 botorch.optim module

 Buy-and-hold strategy

 Buy-side institutional investors

 Buy-side prices

 Buy-side retail investors

C

 Call market

 Candlestick() function

 Candlestick charts

 Cash settlement

 Central depository (CDP)

 Centralized order-driven market

 ChatGPT model

 Chicago Board of Trade (CBOT)

 Clearance

 Clearing house

 coint() function

 Cointegration

 correlation

 equilibrium

 statsmodels package

 time series

 hypothesis

 non-stationary time series

 process

 statistical analysis

 statistical characteristics

 traditional statistical methods

 Compounded return

 Compounding returns

 Contango

 Continuously compounded returns

 Continuous market

 Convenience yield

 cummax() function

 .cumprod() function

 cumprod() function

D

 Daily drawdowns

 Dark pools

 DataFrames

 Data-generating process

 datetime format

 Day trader

 Delivery

 Derivative market

 df2 variable

 dfBidPrices

 dfPrices

 diff() function

 Display orders

 DJI Stock Symbols

 Dow Jones Industrial Average (DJIA)

 momentum trading

 download() function

 drawdown()

 dropna() function

E

 Earnings per share (EPS)

 Electronic communications networks (ECNs)

 Electronic markets

 buying and selling financial instruments

 discrete price grid

 discrete price ladder

 display vs. non-display order

 electronic order

 limit order

 limit order book

 market order

 market participants

 MIT

 order flow

 order matching systems

 order types

 pegged order

 price impact

 proprietary and agency trading

 revolution

 stop-limit order

 stop order

 trailing stop order

 E-Mini futures contract

 equals() function

 Evaluation-period performance

 ewm() method

 ExactMarginalLogLikelihood() function

 Exchange-traded funds (ETFs)

 Execution risk

 Expected improvement (EI)

 Exploratory data analysis

 Exponentially weighted moving average (EWMA)

 Exponential moving average (EMA)

 Exponentiation

F

 FAK orders

 Feature engineering

 SVM and random forest

 training and test data

 DataFrame X

 Fill and kill (FAK)

 Fill or kill (FOK)

 Financial assets

 Financial data analysis

 definition

 downloading stock price data

 summarizing stock prices

 visualizing stock price data

 Financial derivatives

 Financial instrument

 Financial market stability

 Financial trading

 First-order gradient-based methods

 First-period return

 Flexible controls

 FOK orders

 Forward and futures contracts

 age-old practice

 derivative products

 financial instruments

 futures trading

 key difference

 market participants opportunities

 predetermined quantity

 purchase and receive obligation

 Forward contract

 arbitrage opportunities

 buy-low-sell-high principle

 counterparty risk

 current time point

 definition

 exponential constant

 formula

 net cash flow

 no-arbitrage argument

 portfolio

 predetermined delivery price

 private agreements

 risk-free interest rate

 stock and cash positions

 trading price and quantity

 unforeseen circumstances

 Futures contract

 clearing house

 hedging and speculation

 leverage

 mark-to-market

 obligations at maturity

 parameters

 pricing

 standardized features

 standardized contracts

 Futures data

 closing price

 downloading

 fontsize argument

 “GC=F” and “HG=F” symbols

 technical indicators

 visualizing

 yfinance package

 Futures trading

G

 Gaussian distribution

 Gaussian process (GP) model

 generate_initial_data()

 get_stock_data() function

 go.Bar() function

 Group tradable assets

 derivative products

 maturity

 nonlinear payoff function

 payoff function linearity

H

 head() function

 Hedge funds

 Hedgers

 Hedging

 Hidden/non-display orders

 High-frequency trading (HFT)

 Hyperparameter tuning

 Hypothesis testing

I, J, K

 Iceberg orders

 idxmin() function

 iloc() function

 iloc() method

 Immediate or cancel (IOC)

 Implementing trend-following strategy

 buy-and-hold

 cumulative returns analysis

 framework

 long-term moving average

 momentum-related technical indicators

 1+R return

 short-term moving average

 signal column

 sign switch

 single-period return

 SMA-3 and SMA-20

 trading actions

 trading rule

 transaction cost

 info() function

 initialize_model()

 Input data groups

 financial news

 fundamentals

 market states

 technicals

 Institutional algorithmic trading

 Interpolation

L

 Label distribution

 Leverage

 Limit order

 Limit order book (LOB)

 Linear regression model

 LOB data

 data folder

 features

 label distribution

 limit prices

 normalized data representations

 price-volume data

 price-volume pair

 visualizing price movement

 loc() function

 Logarithmic returns

 advantages

 compounding returns

 dummy stock prices

 mathematical computations

 natural logarithm

 percentage return

 1+R approach

 sequential compounding process

 single-period returns

 stock price analysis

 stock returns calculation

 terminal return

 Lookback windows application

M

 Machine learning

 components

 market-neutral strategy

 pairs trading

 calculation

 stocks

 trading horizon

 trained model

 training process workflow

 training situation

 types

 make_subplots() function

 Marked to market (MTM)

 Market if touched (MIT)

 Market maker

 Market-neutral trading strategy

 Market-not-held orders

 Market orders

 Market participants

 Market timing

 Mark-to-market

 definition

 exchange

 final settlement price

 fluctuating prices

 long margin account

 minimum requirement

 price updation

 profit and loss

 traders risk exposure

 Maximum drawdown

 buy-and-hold strategy

 calculating

 calculation process

 daily returns

 DataFrame

 distance

 line charts

 performance

 risk-adjusted return metric

 risk measure

 stock price data

 stock returns

 stocks

 trading strategy

 volatility

 wealth index curve

 Maximum log-likelihood (MLL) approach

 mean() method

 Mean square error

 Model development workflow

 Model training process

 Momentum trading

 asset’s price

 characterizes

 current month

 elements

 time frame

 volatility

 volume

 measurement period

 monthly returns

 principle

 terminal return

 traders

 traders and investors

 and trend-following

 Moving Average Convergence Divergence (MACD)

 Moving averages (MA)

 Multiperiod return

 Mutual funds

N

 NaN value

 NASDAQ Nordic stock market

 Neural network

 fundamental constituent

 input data and an output layer

 linear regression

 parameters

 ReLU function

 New York Stock Exchange (NYSE)

 No-arbitrage argument

 Nonconvex function

 Non-display orders

 Normal contango

 Normal contango

 Normality

 n-period investment horizon

 np.exp() function

 np.mean() function

 Null hypothesis

O

 Objective functions

 OHLC prices

 OHLC chart

 On-balance volume (OBV)

 One-dimensional objective function

 Online trading platforms

 Optimization

 argmax operation

 decision-making

 derivative-free

 global

 optimizer

 parameters

 procedure

 time and resources

 trading strategy

 Order-driven market

 Order flow

 Order matchings systems

 definition

 conditional orders

 electronic exchanges

 exchanges

 non-displayed orders

 order precedence rules

 order types

 price/display/time precedence rule

 rule-based systems

 Order precedence rules

 types

 price precedence

 size precedence

 time precedence

 Order types

 Ordinary least squares (OLS)

 Over-the-counter (OTC)

P

 Pairs trading

 assets

 asset selection

 components

 implementation

 mean-reverting behavior

 neural network

 SVM

 fit() method

 predict() method

 score_fn() function

 sklearn algorithms

 torch.Tensor()

 strategy

 view() function

 traders

 Pandas DataFrame

 pct_change() function

 pd.DataFrame() function

 Pegged order

 algorithm

 best bid

 composite order

 definition

 differential offset

 dynamic limit price

 limit order

 reference price

 securities

 Percentage change

 Percentage returns

 p-hacking

 Physical delivery

 plot() function

 plotly package

 Potential trading opportunities

 predict() method

 Price impact

 Price ladder

 Price movement visualization

 Price precedence

 Price return

 Price slippage

 Principle of compounding

 prod() function

 Program trading

 Proprietary orders

 Proprietary trading

Q

 qcut() function

 Quantitative trading

 algorithm

 avenues and steps

 buy-side investors

 common assets

 SeeTradable assets, quantitative trading

 data collection and processing

 definition

 grouping tradable assets

 institutional algorithmic trading

 market making

 market structures

 model development workflow

 order execution

 portfolio rebalancing

 process

 quant trader

 scalping

 structured features

 Quant trader

 Quote-driven/price-driven market

R

 Random forest

 bagging or bootstrap aggregation

 factor

 features

 training process

 Random forest regressor

 Real estate investment trusts (REITs)

 Rebalances a portfolio

 Rebalancing

 Rectified linear unit (ReLU)

 Relative Strength Index (RSI)

 Rerminal return

 resample() function

 return_df variable

 Returns analysis

 annualized returns calculation

 annualizing

 description

 dummy returns

 multiperiod return

 1+R format

 single-period returns calculation

 stock return with dividends

 terminal return

 two-period terminal return calculation

 Return values

 1+R format

 1+R formatted DataFrame

 Risk-adjusted return

 Risk analysis

 annualized returns calculation

 annualized volatility calculation

 column-wise arithmetic mean returns

 Sharpe ratio

 Sharpe ratio calculation

 stock price data

 variance and standard deviation

 volatility

 Risk and return trade-off

 diversification strategies

 factors

 individual asset

 low-return asset

 profit maximization

 stock market

 two-dimensional coordinate system

 Risk-free bond interest rate

 Risk-free interest rate

 1+R method

 rolling() function

 Root mean squared error (RMSE)

 1+R return

 Rule-based approach

S

 Scalping

 shape() function

 Sharpe ratio

 shift() function

 Short-term swings

 Simple moving average (SMA)

 Singaporean investment

 Singapore Exchange (SGX)

 Single-period logarithmic return

 Single-period log returns

 Single-period percentage return

 Single-period returns

 Single-period volatility

 Size precedence

 Slippage

 SMA-3

 Speculators

 S&P 500 E-Mini futures contract

 Spot market

 Stacked bar charts

 Standard deviation

 Standardization

 Stationarity

 adfuller() function

 distribution

 mean and standard deviation

 random.normal() function

 stationarity_test()

 stock prices

 time series

 Statistical arbitrage

 concept

 market movements

 mean reversion

 short-term fluctuations

 short-term market factors

 statistical methods

 steps

 stocks

 Statistical concept

 Statistical measures

 std() function

 Stock data

 Stock price data

 Stock return with dividends

 Stocks

 Stop-entry order

 Stop-limit order

 Stop-loss orders

 Stop orders

 summary() function

 Sum of the squared errors (SSE)

 Support vector machine (SVM)

 hyperplane

 input-output pairs

 mathematical functions

 support vectors

 user-specified hyperparameter

 Symmetry

T

 tail() function

 Tangible and intangible factors

 Technical indicators

 additional features

 Bollinger Bands

 DataFrame

 EMA

 integral

 MA

 MACD

 market analysis clarification

 mathematical calculations

 raw futures time series data

 RSI

 SMA

 volume-based indicators

 Terminal monthly return

 Terminal return

 Ticker() module

 Time precedence

 Time series data

 today() function

 torch.Tensor() function

 Tradable assets, quantitative trading

 annuities

 bonds

 cash and equivalents

 commodities

 currencies

 ETFs

 forward

 futures

 hedge funds

 mutual funds

 options

 REITs

 stocks

 Trade formation period

 Traders

 Trading agency

 Trading algorithm

 Trading avenues

 Trading signals

 Trading steps

 acquisition of information and quotes

 confirmation, clearance, and settlement

 execution of order

 routing of order

 Trading volume

 Trailing stop orders

 Transactions

 Trend following strategy

 definition

 implementation

 SeeImplementing trend-following strategy

 log return

 SeeLogarithmic return

 lookback window

 risk management techniques

 technical indicators

 See alsoTrend trading

 Trend traders

 Trend trading

 definition

 EMA

 fundamental principle

 moving average

 SMA

 technical analysis tools

 technical indicators

 SeeTechnical indicators

 Two-period return

 Typical model training process

U

 Unit root test

 Upper confidence bound (UCB)

V, W, X

 value_counts() function

 Variance and standard deviation

 Volatility

 Volume-weighted average price (VWAP)

Y

 Yahoo! Finance

 yfinance library

 yfinance package

Z

 zero_grad() function

 Zero-sum game

 Z-score

OEBPS/images/605529_1_En_5_Chapter/605529_1_En_5_Fig6_HTML.jpg
B11 = fx =SUM(D5:08)

A B

Daily stock prices

Q2

Q3

Day Price

returnl

return2

100

P

108

8.00%

8.00%

100

-7.41%

-7.41%

98

-2.00%

-2.00%

VB WIN|-

106

8.16%

8.16%

il
2
3
4
S
6
7
8
9

10 Q4 Q6

Q8

11| 6.00%| 6.76%|

OEBPS/images/605529_1_En_9_Chapter/605529_1_En_9_Chapter_TeX_Equg.png
apr (Tni1;Dn) = Elu(Dpr1) — w(Dy) [2541, D) = /max {fos1 = [0 0 p (fasa|Tor1, D) dfnia

OEBPS/images/605529_1_En_9_Chapter/605529_1_En_9_Chapter_TeX_Equh.png
QEpy (aan;Dn) = (Mn+1 — f;)) <M> 4+ O_n+1§b <Mn+1 - f;)

OEBPS/images/605529_1_En_9_Chapter/605529_1_En_9_Chapter_TeX_Equi.png
QyCB ($n+15 Dn) = Up+1 T Bn+10_n+1

OEBPS/images/605529_1_En_7_Chapter/605529_1_En_7_Fig6_HTML.jpg
1200

1150 4

1100 1

1050 1

950 -

-— GOOG
—— MSFT

OEBPS/images/605529_1_En_8_Chapter/605529_1_En_8_Fig6_HTML.jpg
=10 A

OEBPS/images/605529_1_En_1_Chapter/605529_1_En_1_Fig4_HTML.jpg
Entering a long position in a
futures contract

P?yoﬁ

(Entering a short position in a

futures contract

Pfyoff

OEBPS/images/605529_1_En_5_Chapter/605529_1_En_5_Fig14_HTML.jpg
22222222222222222222222222222222222

OEBPS/images/605529_1_En_2_Chapter/605529_1_En_2_Fig4_HTML.jpg
Price levels

10 price levels of each side of the orderbook

0.266

0 10 20 30
Time snapshot index

40

OEBPS/images/605529_1_En_5_Chapter/605529_1_En_5_Fig4_HTML.jpg
A1l :

A

fo =B8/B4A-1

B

Daily stock prices

Q2

Day

Price

returnl

(100

108

8.00%

100

-7.41%

98

-2.00%

NHWIN|F

(106

8.16%

il
2
3
4
5
6
7
8
9

10 Q4

11 | 6.00%]

Q6

Q8

OEBPS/images/605529_1_En_3_Chapter/605529_1_En_3_Fig4_HTML.jpg
‘ Pricing a forward contract using the no-arbitrage argument J
Buy one unit of asset valued
n I at Sy for a price of F
=8 -Sr Asset price changes across time
— 7 Receives risk-free interest rate

@ ® Evolution of time
t T

Summing up to form the portfolio No-arbitrage

Crite |- { 0) (s = (7oawe]

OEBPS/images/605529_1_En_4_Chapter/605529_1_En_4_Fig4_HTML.jpg
‘ The return is defined as the J The calculation process is tedious as 1

percentage change in asset price it involves differencing and division
1

\
\

\ R _ St — St
-1t Se-1 Easy to calculate by shifting the price]
| column and taking the division
[The 1+R formatted return J @ ~\
|
1
‘,_‘A_‘ [)
St
14+R_, = — Time Shifted | 1+R
b=he St-1 ® O-in price | return
@ S 0 % 57 0 I 53 Sy
1 s N S,
el D S| & [n
2 S, 1 S S, s_z
R Se 1 2 Sz S3 S1
-1t =g 3 S3 = s - 2 S, 8 S3

{ Recover the same return] 3 S3 NA NA

OEBPS/images/605529_1_En_5_Chapter/605529_1_En_5_Chapter_TeX_IEq12.png
t—|—1

—1 *log =~

OEBPS/images/605529_1_En_5_Chapter/605529_1_En_5_Fig12_HTML.jpg
Daily adjusted closing price and its SWA

180 = Adj Close
— SMA-3
G —— SMA-20
160
@
o
& 150
140
130
o> o2 o° ol ° R o
15 i3 2 97 3 15 >
20 o 0% S\ 0% e 10

OEBPS/images/605529_1_En_5_Chapter/605529_1_En_5_Chapter_TeX_IEq13.png
1
1+ By = =5

Y

OEBPS/images/605529_1_En_7_Chapter/605529_1_En_7_Fig4_HTML.jpg
- GOOG
— MSFT

o A° a Py ®
Nl
Date

OEBPS/images/605529_1_En_5_Chapter/605529_1_En_5_Chapter_TeX_IEq10.png
S,
1*10gg—+t1

OEBPS/images/605529_1_En_5_Chapter/605529_1_En_5_Chapter_TeX_IEq11.png
t—|—1

—1 *log =~

OEBPS/images/605529_1_En_8_Chapter/605529_1_En_8_Fig10_HTML.jpg
1175
1150 1
1125 1
1100 1
1075 1
1050 1

1025 1

&

7

&

4
.9‘1-‘1"° .911

®

Date

&

&

OEBPS/images/605529_1_En_1_Chapter/605529_1_En_1_Fig2_HTML.jpg
Optimization refers to an algorithm responsible for
tweaking the model's parameters such that the
specified cost function is minimized. This tweak
generates a new model, as represented by a new
set of parameters or weights.

Input features

Parameters | Architecture

Target label

\

Prediction

)

\

We start with a set of training data, which
consists of input-output pairs. Our goal is
to build a model that takes a given input
and produces a prediction, hoping it is
close to the output label.

A model is a final product out of a training
process. It consists of parameters and
architecture. Parameters are the tuning knobs
of a radio machine, and architecture specifies
how these knobs interact with received input
radio to output the desired channel. A complex
model often refers to many parameters and
possibly complex architecture that controls the
flow of information.

Cost refers to the error or loss that
quantifies the distance between model
prediction and target label. The training
process aims at building a model that
achieves zero error in training data, i.e.,
its predictions perfectly match the
targets. However, this may lead to
overfitting.

OEBPS/images/605529_1_En_10_Chapter/605529_1_En_10_Fig1_HTML.jpg
{ Pairs trading strategy

l

l

Quality of selected —_ Proper risk
. Predictive accuracy of ;
correlated/cointegrated . management via stop-
; spread series
pair of assets loss order

OEBPS/images/605529_1_En_9_Chapter/605529_1_En_9_Fig4_HTML.jpg
A small learning rate that leads to A large learning rate that leads to
slow convergence divergence

5y fT

SV
8

OEBPS/images/605529_1_En_3_Chapter/605529_1_En_3_Fig2_HTML.jpg
L Mark-to-market J

Long position holder Short position holder

(bullish) (bearish)

Profit from daily When market goes up Suffer loss from daily
settlement settlement
Profit credited to the Mihey mioves Loss debited from the
margin account Y N margin account

settlement settlement
Loss debited from the Profit credited to the

R Money moves X
margin account margin account

Suffer loss from daily W When market goes down (Profit from daily
/ o

OEBPS/images/605529_1_En_3_Chapter/605529_1_En_3_Chapter_TeX_IEq1.png
T—t=3=0.25

OEBPS/images/605529_1_En_5_Chapter/605529_1_En_5_Fig10_HTML.jpg
Calculating the simple moving average

_ St-u-1) e+ Se-1 + St

SMA, o

Created using .rolling(window_size).mean()

Adj Close

Date .
Empty due to incomplete values

2022-01-03 00:00:00-05:00 180.959747 NaN in the rolling window
2022-01-04 00:00:00-05:00 178.663086 NaN

2022-01-05 00:00:00-05:00 173.910645 177.844493 177.844493 18"'959747“78‘6363"86“73'9106"‘5

2022-01-06 00:00:00-05:00 171.007523 174.527084

2022-01-07 00:00:00-05:00 171.176529 172.031565

OEBPS/images/605529_1_En_5_Chapter/605529_1_En_5_Fig8_HTML.jpg
a1 4 fx =EXP(SUMI(FS:F8))-1
A B (5 D E F
Daily stock prices
Q2 Q3 Q5 Q7

Day Price |returnl |return2 |return3 |return4

100

108| 8.00%| 8.00%| 8.00%|| 7.70%

100| -7.41%| -7.41%| 0.00%||-7.70%

98| -2.00%| -2.00%| -2.00%|(-2.02%

VN WIN|-

106| 8.16%| 8.16%| 6.00%|| 7.85%

it
2
3
4
5
6
7
8
9

10 Q4 Q6 Q8

11| 6.00% 6.76%| 6.00%|

OEBPS/images/605529_1_En_6_Chapter/605529_1_En_6_Chapter_TeX_IEq1.png

OEBPS/images/605529_1_En_5_Chapter/605529_1_En_5_Fig2_HTML.jpg
fx =(B5-B4)/B4

A B €

1 Daily stock prices

2 Q2

3 Day Price [returnl
4 1| (100

5 2| (108 8.00%
6 3] 100| -7.41%
7/ 4 98| -2.00%
8 5| 106/ 8.16%

OEBPS/images/605529_1_En_1_Chapter/605529_1_En_1_Fig8_HTML.jpg
Mar 2022 May 2022 Jul 2022 Sep 2022 Nov 2022

OEBPS/images/978-1-4842-9675-2_CoverFigure.jpg
Trading Strategies
Using Python

Technical Analysis, Statistical Testing,
and Machine Learning

Peng Liu

OEBPS/images/605529_1_En_3_Chapter/605529_1_En_3_Fig8_HTML.jpg
Price ($)

g

e

Platinum Futures Data

2

—— Close

OEBPS/images/605529_1_En_7_Chapter/605529_1_En_7_Fig8_HTML.jpg
0.00 1
-0.02 1
-0.04 1
-0.06 1
-0.08 1
-0.10 1

— GOOG
0121 __ msT

° A5 b L
2% 3% 3%
Tt w0t P

Date

&

OEBPS/images/605529_1_En_9_Chapter/605529_1_En_9_Fig8_HTML.jpg
[

The mean of the
posterior process

J

Exact observations
which the posterior
mean passes through

[

95% credible interval of
the posterior process

J

/N

PN
- ="~
- BN

===

’
J
s

’
/

=
—
=
—

| R B

OEBPS/images/605529_1_En_2_Chapter/605529_1_En_2_Fig6_HTML.jpg
Price levels

Volume of 10 price levels of each side of the orderbook
B e e

::E:'gi:z:= (0.00787, price-0.2626)
price-0. 2621=
price-0. 2619_
price-0. 2615—
pnce -0. 2604—
price-0.2600:
price-0.2595 HE——
price-0.2591=
prit:e-(.\.25790

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009

Volume

OEBPS/images/605529_1_En_4_Chapter/605529_1_En_4_Fig6_HTML.jpg
. } N
1 Rets1 Rits1

period return to get percentage return

-

[The cumulative two- J [Adjusting by subtracting oneJ

4
Rt,t+2

Ritsz = (1+Reer1)(1+ Reyapez) — 1

f

‘ Compounding single-period returns J

OEBPS/images/605529_1_En_4_Chapter/605529_1_En_4_Chapter_TeX_Equr.png
Rp — Ry
Op

Sharpe ratio =

OEBPS/images/605529_1_En_4_Chapter/605529_1_En_4_Chapter_TeX_Equq.png
0.001 * V252 ~ 1.59%

OEBPS/images/605529_1_En_7_Chapter/605529_1_En_7_Fig11_HTML.jpg
140

130

120

Price(s)

2022.02

Trend following strategy

~— Daily Adj Close
—— sma30
- emab

2025-12 202'3-01

OEBPS/images/605529_1_En_4_Chapter/605529_1_En_4_Chapter_TeX_Equt.png
0.05—-0.03

0.1 —0.03

= (.14

OEBPS/images/605529_1_En_4_Chapter/605529_1_En_4_Chapter_TeX_Equs.png

OEBPS/images/605529_1_En_9_Chapter/605529_1_En_9_Fig1_HTML.jpg
Black box function that take input parameters and returns the scalar
performance metric (Sharpe ratio) of a given trading strategy

Window length [

f Sharpe ratio S
Window length I, ———— \

[Input parameters that are integer-

information is unavailable, and each
evaluation may be time-consuming

of input parameters that
achieve the higher Sharpe ratio

valued in the trend-following

The goal is to figure out the set]
strategy, satisfying [; < I,

[Explicit functional form or gradient l

OEBPS/images/605529_1_En_BookFrontmatter_Figb_HTML.jpg

OEBPS/images/605529_1_En_4_Chapter/605529_1_En_4_Chapter_TeX_Equn.png
op

> (R — Rp)

OEBPS/images/605529_1_En_4_Chapter/605529_1_En_4_Chapter_TeX_Equm.png

OEBPS/images/605529_1_En_4_Chapter/605529_1_En_4_Chapter_TeX_Equp.png

OEBPS/images/605529_1_En_4_Chapter/605529_1_En_4_Chapter_TeX_Equo.png
opr = VTop

OEBPS/images/605529_1_En_4_Chapter/605529_1_En_4_Chapter_TeX_Equb.png

OEBPS/images/605529_1_En_4_Chapter/605529_1_En_4_Chapter_TeX_Equa.png

OEBPS/images/605529_1_En_4_Chapter/605529_1_En_4_Chapter_TeX_Equd.png

OEBPS/images/605529_1_En_4_Chapter/605529_1_En_4_Chapter_TeX_Equc.png
L+ Ry = 5

OEBPS/images/605529_1_En_1_Chapter/605529_1_En_1_Fig11_HTML.jpg
ﬂ*lﬁw“{* o™

Mar 2022

8
[l S e ol o e T

hﬁﬂi

1 "F~
AL NI

May 2022 Jul 2022

e

g T e e e

. N
L

OEBPS/images/605529_1_En_BookFrontmatter_Figa_HTML.png
APIess®

OEBPS/images/605529_1_En_4_Chapter/605529_1_En_4_Chapter_TeX_Equj.png
Ripin =04 Repy1) T4+ Reprp42) - (L + Resn—144n) —

OEBPS/images/605529_1_En_4_Chapter/605529_1_En_4_Chapter_TeX_Equi.png
Ritro=(14Ripr1) (1 + Rep1400) — 1

OEBPS/images/605529_1_En_4_Chapter/605529_1_En_4_Chapter_TeX_Equl.png

OEBPS/images/605529_1_En_4_Chapter/605529_1_En_4_Chapter_TeX_Equk.png
(140.1)(1—=0.02) —1~0.078 =7.8%

OEBPS/images/605529_1_En_4_Chapter/605529_1_En_4_Chapter_TeX_Equf.png
RO,T = (1 + RO,l) (1 + Rl’g) - (1 + RT—l,T) —1

OEBPS/images/605529_1_En_4_Chapter/605529_1_En_4_Chapter_TeX_Eque.png

OEBPS/images/605529_1_En_4_Chapter/605529_1_En_4_Chapter_TeX_Equh.png

OEBPS/images/605529_1_En_4_Chapter/605529_1_En_4_Chapter_TeX_Equg.png

OEBPS/images/605529_1_En_7_Chapter/605529_1_En_7_Fig2_HTML.jpg
Wealth

[Cumulative peak J

Cumulative max overlaps with
the wealth index in these regions

[Cumulative wealth index]

—>

Time

Drawdown

[Each point is a single-period drawdown]

°w¥

[Max drawdown]

Time

OEBPS/images/605529_1_En_2_Chapter/605529_1_En_2_Fig1_HTML.jpg
Limit order book of a specific asset

Supply side

Bid-ask spread

Demand side

SR

Ask price 1
Ask price 2

A o

(Volume for ask price level 1)
(Volume for ask price level 2)

4

A

Best offer/ask

4)

Bid price 2
Bid price 1

R

A

Best bid

(Volume for bid price level 2)
(Volume for bid price level 1)

OEBPS/images/605529_1_En_8_Chapter/605529_1_En_8_Chapter_TeX_Equa.png

OEBPS/images/605529_1_En_5_Chapter/605529_1_En_5_Fig1_HTML.jpg
Daily stock prices
Q2 Q3 Q5 Q7

Day Price |[returnlireturn2|return3|return4

100

108

100

98

NiHIWIN|E-

106

Q4 Q6 Q8

OEBPS/images/605529_1_En_8_Chapter/605529_1_En_8_Chapter_TeX_Equb.png

OEBPS/images/605529_1_En_8_Chapter/605529_1_En_8_Chapter_TeX_Equc.png
y=00+pix+e

OEBPS/images/605529_1_En_8_Chapter/605529_1_En_8_Chapter_TeX_Equd.png
Zji:ﬁoﬂLﬁlxi,iE{l,...,N}

OEBPS/images/605529_1_En_6_Chapter/605529_1_En_6_Fig1_HTML.jpg
One uniform lookback window to Another uniform lookahead window to
assess the momentum for all assets determine the holding period for all assets

\ /
\ /
«

A

Price
Stock A
Stock B
Stock C
(A trading decision is T.h.e mext trading
made at this time point decision is made here

Time

The momentum trading strategy that assess multiple
assets at the same snapshot in a cross-sectional manner
and selects the assets with the biggest momentum

OEBPS/images/605529_1_En_10_Chapter/605529_1_En_10_Fig3_HTML.jpg
y

!

Two decision boundaries based on

support vectors and used to

In between is the tolerance zone o
surround the decision hyperplane

where the model tolerates errors in

the predictions up to €

[The tolerance error term € }

Not all points are within the decision
S boundaries. This point is a margin
% violation which SVM seeks to minimize

X

The hyperplane as the decision line to
predict target values in this region

OEBPS/images/605529_1_En_4_Chapter/605529_1_En_4_Fig10_HTML.jpg
Date
2023-01-03 00:00:00-05:00
2023-01-04 00:00:00-05:00
2023-01-05 00:00:00-05:00
2023-01-06 00:00:00-05:00

2023-01-09 00:00:00-05:00

Adj Close

AAPL

125.070000
126.360001
125.019997
129.619995

130.149994

89.699997
88.709999
86.769997
88.160004

88.800003

Close

AAPL

125.070000
126.360001
125.019997
129.619995

130.149994

89.699997
88.709999
86.769997
88.160004

88.800003

High

AAPL

130.899994
128.660004
127.769997
130.289993

133.410004

91.550003
91.239998
88.209999
88.470001

90.830002

124.169998
125.080002
124.760002
124.889999

129.889999

89.019997
87.800003
86.559998
85.570000

88.580002

130.279999
126.889999
127.129997
126.010002

130.470001

89.830002
91.010002
88.070000
87.360001

89.195000

Volume

112117500
89113600
80962700
87686600

70790800

20738500
27046500
23136100

22996700

OEBPS/css/envelope.png

OEBPS/images/605529_1_En_2_Chapter/605529_1_En_2_Fig8_HTML.jpg
Price levels

10 price levels of each side of the orderbook

0.2605
0.26
0.2595
0.259
0.2585

0.258
0 10 20 30 40

50

Time snapshot index

60

70

80

90

OEBPS/images/605529_1_En_2_Chapter/605529_1_En_2_Fig2_HTML.jpg
Marketability of buy orders

Limit order book

Marketability of sell orders

Bid price 1

e —
Ask price 1 R
(1) | Ask price2 |(1)
N %o ¥
Marketable —
IR 7=\
Marketable ———— 2 /2) £
"/3\“ \”3\l ‘\‘
In the market &S 2 j
Atthe market —— (4) (4)
e o =\
Behind the market (5) | Bidprice2 |(5) }

Behind the market

At the market

In the market
Marketable

Marketable

Forin N\
/(1) Above the best offer

o~

€)) At the best offer
CB\ Between best bid and
best offer
@ At the best bid
\ ®) Below the best bid |
- /

o

OEBPS/images/605529_1_En_7_Chapter/605529_1_En_7_Fig3_HTML.jpg
Date
2023-01-03
2023-01-04
2023-01-05
2023-01-06
2023-01-09

Adj Close

GOOG

89.699997
88.709999
86.769997
88.160004
88.800003

MSFT

239.580002
229.100006
222.309998
224.929993
227.119995

Close

89.699997
88.709999
86.769997
88.160004
88.800003

239.580002
229.100006
222.309998
224.929993
227.119995

High

91.550003
91.239998
88.209999
88.470001
90.830002

245.750000
232.869995
227.550003
225.759995
231.240005

Low
GOOG
89.019997
87.800003
86.559998

85.570000
88.580002

237.399994
225.960007
221.759995
219.350006
226.410004

[

89.830002
91.010002
88.070000
87.360001
89.195000

243.080002
232.279999
227.199997
223.000000
226.449997

Volume

20738500
27046500
23136100
26604400
22996700

25740000
50623400
39585600
43597700
27369800

OEBPS/images/605529_1_En_8_Chapter/605529_1_En_8_Fig4_HTML.jpg
Sample value

100 1

- Stationary
- Non-stationary with increasing mean
- Non-stationary with increasing mean and sd

0 2 40 60 80 100
Sample index

OEBPS/images/605529_1_En_7_Chapter/605529_1_En_7_Fig9_HTML.jpg
1200
1150 -

1100 -

5

- Wealth index
——— Prior peaks

T T T T T T

WP (A 'D ‘f’ '19 a S o
1—
1‘”'@1‘”'&1" ~p13”®"°’”~pf’§a 'Q‘Qf" o

Date

OEBPS/images/605529_1_En_10_Chapter/605529_1_En_10_Fig2_HTML.jpg
Optimization refers to an algorithm responsible for
tweaking the model's parameters such that the
specified cost function is minimized. This tweak
generates a new model, as represented by a new
set of parameters or weights.

Input features

Parameters | Architecture

Target label

\

Prediction

)

\

We start with a set of training data, which
consists of input-output pairs. Our goal is
to build a model that takes a given input
and produces a prediction, hoping it is
close to the output label.

A model is a final product out of a training
process. It consists of parameters and
architecture. Parameters are the tuning knobs
of a radio machine, and architecture specifies
how these knobs interact with received input
radio to output the desired channel. A complex
model often refers to many parameters and
possibly complex architecture that controls the
flow of information.

Cost refers to the error or loss that
quantifies the distance between model
prediction and target label. The training
process aims at building a model that
achieves zero error in training data, i.e.,
its predictions perfectly match the
targets. However, this may lead to
overfitting.

OEBPS/images/605529_1_En_9_Chapter/605529_1_En_9_Chapter_TeX_IEq20.png

OEBPS/images/605529_1_En_9_Chapter/605529_1_En_9_Fig11_HTML.jpg
Sharpe ratio

28
26 1
24 1 —— random
—"
—_ gl
22 1 — ucB
— &KG
00 25 50 75 100 125 150 175 200

Sampling iteration

OEBPS/images/605529_1_En_6_Chapter/605529_1_En_6_Fig2_HTML.jpg
[The longer lookback window that }

generates another moving average price
A M :
Price The trend-following strategy generates a
A +——
trading signal if there is a crossover
between the two moving averages

Stock A
— The trading interval is not fixed
and purely data-driven

i

> Time

The shorter lookback window that
generates one moving average price

OEBPS/images/605529_1_En_5_Chapter/605529_1_En_5_Chapter_TeX_IEq1.png
Syl

OEBPS/images/605529_1_En_5_Chapter/605529_1_En_5_Chapter_TeX_IEq2.png
Syl

OEBPS/images/605529_1_En_1_Chapter/605529_1_En_1_Fig12_HTML.jpg
340
320
300

280

260 ==

-t mm = = -—
2404 III * B o= == ==
220

Nov 29 Dec 2 Dec5 Dec8 Dec 11 Dec 14 Dec 17 Dec 20 Dec 23

2022
— ..ﬂ

OEBPS/images/605529_1_En_3_Chapter/605529_1_En_3_Fig10_HTML.jpg
S&P 500 E-Mini Futures - Closing Price
4800

4700
4600
4500
4400
4300

4200

Relative Strength Index (RSI)

Bollinger Bands
4900

4800
4700
4600
4500
4400
4300

pm——————l
—r————

4200

A
- -

- =

L P

4100

Moving Average Convergence Divergence (MACD)

-80
2022-01-01 2022-01-15 2022-02-01 2022-02-15 2022-03-01 2022-03-15 2022-04-01

OEBPS/images/605529_1_En_8_Chapter/605529_1_En_8_Fig5_HTML.jpg
- X

200 1

175

L] 1 °

100

OEBPS/images/605529_1_En_5_Chapter/605529_1_En_5_Chapter_TeX_IEq9.png
S,
1*10gg—+t1

OEBPS/images/605529_1_En_5_Chapter/605529_1_En_5_Chapter_TeX_IEq7.png
Syl

OEBPS/images/605529_1_En_5_Chapter/605529_1_En_5_Chapter_TeX_IEq8.png

OEBPS/images/605529_1_En_5_Chapter/605529_1_En_5_Chapter_TeX_IEq5.png
Syl

OEBPS/images/605529_1_En_5_Chapter/605529_1_En_5_Chapter_TeX_IEq6.png

OEBPS/images/605529_1_En_5_Chapter/605529_1_En_5_Chapter_TeX_IEq3.png
Syl

OEBPS/images/605529_1_En_9_Chapter/605529_1_En_9_Fig6_HTML.jpg
The prior predictive distribution for the
selected random variable
\ \ The 95% credible interval of
The mean of the \ the Gaussian process
Gaussian process A
b e 5, e i T s o e o i e o
: A i
v e :
AN . i
~ i
N 1
————— _—————————————‘————-——v———
| >
Ed

condition we place over

i
This location is the
the single random variable

OEBPS/images/605529_1_En_5_Chapter/605529_1_En_5_Chapter_TeX_IEq4.png

OEBPS/images/605529_1_En_9_Chapter/605529_1_En_9_Chapter_TeX_IEq14.png
D,

{(x;, £},

OEBPS/images/605529_1_En_9_Chapter/605529_1_En_9_Chapter_TeX_IEq15.png
D, = {xlzna ylzn}

OEBPS/images/605529_1_En_3_Chapter/605529_1_En_3_Fig3_HTML.jpg
(Mark-to-market in terms of profit/loss due to daily settlement J

Amount in margin account

L ition hold 0= Margin call triggered as margin
(San:h(;S' RISTSHICK 100 QV account falls below
} maintenance margin (90)
85
0 1 2 T
Gain/loss of long-position
Amount in margin account margin account
115
i Day 1 5
Short position holder 100 Day 2 -20
(bearish) 95

OEBPS/images/605529_1_En_9_Chapter/605529_1_En_9_Chapter_TeX_IEq12.png

OEBPS/images/605529_1_En_3_Chapter/605529_1_En_3_Fig9_HTML.jpg
Gold Price ($)

—— Gold Futures

2000 —— Copper Futures

1900

1800

1700

&

o>

]
.-9’1:7"0

el
’p'ﬂ.c

Gold and Copper Futures Data

ot
i
Year-Month

5.00

4.75

I S S
8 & &8

Copper Price ($)

w
=
3

3.50

3.25

OEBPS/images/605529_1_En_9_Chapter/605529_1_En_9_Chapter_TeX_IEq13.png
X, € X

OEBPS/images/605529_1_En_8_Chapter/605529_1_En_8_Chapter_TeX_IEq2.png

OEBPS/images/605529_1_En_9_Chapter/605529_1_En_9_Chapter_TeX_IEq10.png

OEBPS/images/605529_1_En_8_Chapter/605529_1_En_8_Chapter_TeX_IEq1.png

OEBPS/images/605529_1_En_9_Chapter/605529_1_En_9_Chapter_TeX_IEq11.png

OEBPS/images/605529_1_En_8_Chapter/605529_1_En_8_Chapter_TeX_IEq3.png

OEBPS/images/605529_1_En_1_Chapter/605529_1_En_1_Fig6_HTML.jpg
A bullish candlestick A bearish candlestick
High — < High

Close — — = < Open

.~ Realbody

Open . S b <« Close

Low «~— Low

OEBPS/images/605529_1_En_9_Chapter/605529_1_En_9_Chapter_TeX_IEq18.png
u (Dn+1) =u (Dn U {xm—la fn+1}) — maX{f?’H—la f;;}

OEBPS/images/605529_1_En_9_Chapter/605529_1_En_9_Chapter_TeX_IEq19.png
fn+1 Z fn

OEBPS/images/605529_1_En_9_Chapter/605529_1_En_9_Chapter_TeX_IEq16.png

OEBPS/images/605529_1_En_9_Chapter/605529_1_En_9_Chapter_TeX_IEq17.png

OEBPS/images/605529_1_En_2_Chapter/605529_1_En_2_Fig5_HTML.jpg
index

0.01

0.015

0.02

value

0.025

0.03

0.035

0.04

variable

0

1
2
3
4

OEBPS/images/605529_1_En_1_Chapter/605529_1_En_1_Fig5_HTML.jpg
Long a call option]

P?yoff

[Long a put option]

P?yoff

[Short a call option

Pa\fpff

[Short a put option

Payoff

A

OEBPS/images/605529_1_En_5_Chapter/605529_1_En_5_Fig13_HTML.png
Daily adjusted closing price with SWA and EWM

= Adj Close
— SMA-3
— SMA-20
— EWM_0.1
— EWM_05

g x> o>
3 13 >
p ¥ =

OEBPS/images/605529_1_En_5_Chapter/605529_1_En_5_Fig5_HTML.jpg
A

fx =(1+4D8)*(1+4E7)-1

B

C

Daily stock prices

Q2

Q3

Q5

Day

Price

returnl

return2

return3

100

108

8.00%

8.00%

8.00%

100

-7.41%

-7.41%

0.00%

98

-2.00%

-2.00%

(-2.00%)

NI IWIN |-

106

8.16%

(8.16%

6.00%

OEBPS/images/605529_1_En_3_Chapter/605529_1_En_3_Fig5_HTML.jpg
‘ Calculating the fair price of a futures contract ’

Annually compounded

interest rate convenience yield

\

Annually compounded ’

The fair price of a _ \- Y N\T—t H__[Duration on a
futures contract F=5(1+r+s—c) yearly basis

/ B

The spot price of the Annually compounded
underlying asset storage cost

OEBPS/images/605529_1_En_4_Chapter/605529_1_En_4_Fig5_HTML.jpg
Rom=2T_1 Calculating the terminal return using
or = the initial and terminal asset price

Ror = (1+Ro1)(1+Ryz)..(14+Rp_qp)—1 ~—{ Switching to the 1+R approach ’

Il

515, St Recover the previous equation after plugging

OF = 5_05_1 Y -1 in the definition of 1+R formatted return

OEBPS/images/605529_1_En_7_Chapter/605529_1_En_7_Fig5_HTML.jpg
0.08
0.06 4
0.04 1
0.02 1
0.00 1
-0.02 A1
-0.04
-0.06 1

- GOOG

-0.08

.91‘5” 'f’”

4
‘91‘5 ‘&1}

1\ 1" 19
.91-3'0 "D'Qap"l- .p’l}
Date

o

0\ aS° 91.09

o ‘9'1-3

OEBPS/css/sidebar.gif

OEBPS/images/605529_1_En_4_Chapter/605529_1_En_4_Fig7_HTML.jpg
Mean return NR
(arithmetic mean) Rp = — N
Variance » _ Xieq1(R; —Rp)?
(population) L intunnn- guam
Variance B N (R;— Rp)?
(sample) ' Easamtent~ ee apaaas

Standard deviation >N (R; — Rp)?
(volatility) op = T

OEBPS/navigation.xhtml

 Contents

 		Cover

 		Front Matter

 		1. Quantitative Trading: An Introduction

 		2. Electronic Market

 		3. Forward and Futures Contracts

 		4. Understanding Risk and Return

 		5. Trend-Following Strategy

 		6. Momentum Trading Strategy

 		7. Backtesting a Trading Strategy

 		8. Statistical Arbitrage with Hypothesis Testing

 		9. Optimizing Trading Strategies with Bayesian Optimization

 		10. Pairs Trading Using Machine Learning

 		Back Matter

 Landmarks

 		Cover

 		Table of Contents

 		Body Matter

OEBPS/images/605529_1_En_5_Chapter/605529_1_En_5_Fig7_HTML.jpg
1
2
3
4
5
6
7
8

A

fi =LN(1+D5)

B

Daily stock prices

Q2

Q3

Qs

Q7

Day

Price

returnl

return2

return3

return4

100

108

8.00%

(8.00%

8.00%

7.70%

100

-7.41%

-7.41%

0.00%

-7.70%

98

-2.00%

-2.00%

-2.00%

-2.02%

NI IWIN[F

106

8.16%

8.16%

6.00%

7.85%

OEBPS/images/605529_1_En_3_Chapter/605529_1_En_3_Fig7_HTML.jpg
[Price dynamics of future contracts in backwardation }

current time snapshot

Price Price Evolution of spot price
of the underlying asset

Price curve in backwardation at . i
Price movements over time

Futures price converges to spot price
upon reaching the delivery rate

OEBPS/images/605529_1_En_10_Chapter/605529_1_En_10_Chapter_TeX_IEq1.png

OEBPS/images/605529_1_En_2_Chapter/605529_1_En_2_Fig7_HTML.jpg
Price levels

10 price levels of each side of the orderbook for multiple time points, bar size represents volume

NN/

0.262;

0.26:

0.258,

10

Time snapshot

15

= e
price-0.2629 = ~—— trace 0

price-0.2625 ~—— trace 1

price-0.2621 — trace 2
price-0.2619 = {(0:00532, price-02620)] -

—— trace 3

- ——
price-0.. 2615 trace 4
| e] —— e]
price-0.; 2604 trace 5
- —_—
price-0.; 2600 trace 6
price-0.2595 mmm——
—— trace 7
price-0.2591 m—
—_— ——— trace 8

price-0.2579 m——
0 0.002 0.004 0.006 0.008

OEBPS/images/605529_1_En_9_Chapter/605529_1_En_9_Fig10_HTML.jpg
The observations are generated by assuming
The recommended sampling a specific observation model, i.e., a probability
location has a maximum utility based distribution conditioned by the true objective
on the acquisition function value and corrupted by random noise

\] Environment
Q
<

v

> N\ %
\oo X
o B ’E‘)Q 9. (e)
S\ L %% i
@Q Ve R
%'b v e°
Policy

Acquisition ’

Gaussian ’ &
function

< process

'
1

Provides a probabilistic belief in the form of the ’
posterior predictive distribution for decision making

OEBPS/images/605529_1_En_7_Chapter/605529_1_En_7_Fig7_HTML.jpg
1200 -

1150 -

1100 -

1050 -

— GOOG
— MSFT

.p'lv

OEBPS/images/605529_1_En_5_Chapter/605529_1_En_5_Fig15_HTML.jpg
Cumulative return of different trading strategies

—— Buy-n-hold
—— Trend following

2022-02 2022-03

2022-04 2022-05

2022-06

2022-07

2022-08

2022-09

2022-10

2022-11

2022-12

2023-01

OEBPS/images/605529_1_En_4_Chapter/605529_1_En_4_Chapter_TeX_IEq7.png

OEBPS/images/605529_1_En_4_Chapter/605529_1_En_4_Chapter_TeX_IEq5.png

OEBPS/images/605529_1_En_8_Chapter/605529_1_En_8_Fig7_HTML.jpg
0.10 1
0.05 1
0.00 1

Z-score

OEBPS/images/605529_1_En_4_Chapter/605529_1_En_4_Chapter_TeX_IEq6.png

OEBPS/images/605529_1_En_4_Chapter/605529_1_En_4_Chapter_TeX_IEq3.png
opT = VTop

OEBPS/images/605529_1_En_9_Chapter/605529_1_En_9_Fig7_HTML.jpg

OEBPS/images/605529_1_En_4_Chapter/605529_1_En_4_Chapter_TeX_IEq4.png
Opr

OEBPS/images/605529_1_En_4_Chapter/605529_1_En_4_Chapter_TeX_IEq1.png
St

OEBPS/images/605529_1_En_4_Chapter/605529_1_En_4_Chapter_TeX_IEq2.png
(R,

OEBPS/images/605529_1_En_5_Chapter/605529_1_En_5_Chapter_TeX_Equc.png
St+1
S,

log return = In ——

OEBPS/images/605529_1_En_5_Chapter/605529_1_En_5_Chapter_TeX_Equd.png

OEBPS/images/605529_1_En_5_Chapter/605529_1_En_5_Chapter_TeX_Eque.png
St—(M—1) + -+ Ot-1 + 5

SMAt -

OEBPS/images/605529_1_En_5_Chapter/605529_1_En_5_Chapter_TeX_Equf.png
So, t=0

EWMA, =
w ! {OCSt+(1—Oé)EWMAt_1, t>0

OEBPS/images/605529_1_En_10_Chapter/605529_1_En_10_Fig7_HTML.jpg
- Spread using difference of log price

-0.75 1
—0.80 1
-0.85 1
-0.90 1
-0.95 1

-1.00 1
2022.01 2022-03 2022-05 2022-07 2022-09 2022-11 2023-01

OEBPS/images/605529_1_En_5_Chapter/605529_1_En_5_Chapter_TeX_Equa.png

OEBPS/images/605529_1_En_9_Chapter/605529_1_En_9_Fig12_HTML.jpg
30

25

~
o

Sharpe ratio

-
wn

10

05

Il
A

—— random
= Ei
= dl
—+— ucB
—+= &KG

00

25

50

75 100 125
Sampling iteration

150

175 200

OEBPS/images/605529_1_En_5_Chapter/605529_1_En_5_Chapter_TeX_Equb.png

OEBPS/images/605529_1_En_6_Chapter/605529_1_En_6_Fig3_HTML.jpg
‘ Trade formation period J

Historical measurement period with Performance period with one
6 months of lookback window month of lookahead window J

| : Y

. .
‘ Each tick marks the T Current time point]
end of month J

> time

6-month terminal monthly return
used to generate the trading signal

OEBPS/images/605529_1_En_8_Chapter/605529_1_En_8_Fig9_HTML.jpg
o—[If z-score>2, short stock 1 and long stock 2]

0—[Maintain current position if 1<z-score<2 J

~—[If -1<z-score<1, exit positions in both stocks J

‘—[Maintain current position if -2<z-score<-1]

«—[If z-score<-2, long stock 1 and short stock 2 J

OEBPS/images/605529_1_En_4_Chapter/605529_1_En_4_Fig9_HTML.jpg
t Calculating the risk-adjust return 1

‘ Return over risk] (Sharpe ratio] Considers the risk-free rate that
represents the market benchmark
R Bs — R The numerator is also
P P f =

called the excess return
Op Op

OEBPS/images/605529_1_En_1_Chapter/605529_1_En_1_Fig7_HTML.jpg
Price
A

Open

High

Close

Low

Tﬂne

OEBPS/images/605529_1_En_8_Chapter/605529_1_En_8_Chapter_TeX_Eque.png

OEBPS/images/605529_1_En_1_Chapter/605529_1_En_1_Fig1_HTML.jpg
Market states Jl Financial news]t Fundamentals] (Technicals J Input

/
/ @
/

‘ Algorithm/function/model ’ Quantitative trading

U @

‘ Trading decision: buy/long or sell/short ’ Output

OEBPS/images/605529_1_En_9_Chapter/605529_1_En_9_Fig5_HTML.jpg
Contains the unknown real objective
function, often noise corrupted

Environment

Sampling location
A

Observation
»

Proposed recommendation The actual observation
on where to sample next revealed due to the sampling
within the environment ! action at the proposed location

The guiding principle that determines
the sampling decision based on the
historically collected observations

OEBPS/images/605529_1_En_7_Chapter/605529_1_En_7_Chapter_TeX_Equa.png
o0 =——>7:
span + 1

OEBPS/images/605529_1_En_2_Chapter/605529_1_En_2_Fig9_HTML.jpg
Price levels

Volume of 10 buy, sell price levels of an orderbook

e —
price-0.2629 _

price-0.2625

price-0.2621 I
price-0.2619
price-0.2615__
price-0.2604_

price-0.2600
price-0.2595 I

B
price-0.2591 I
—

price-0.2579 I
0 0.002 0.004 0.006 0.008

Volume

OEBPS/images/605529_1_En_BookFrontmatter_Figc_HTML.jpg

OEBPS/images/605529_1_En_8_Chapter/605529_1_En_8_Fig3_HTML.jpg
Non-stationary Stationary time Entry and exit points

time series data . series data
Johansen test via a

g linear combination of h Compare short-term —

the two assets fluctuation with long-
Stock A term equilibrium
relationship Trading
Spread .
signals
Stock B
Engle-Granger test via a
“_/ linear regression model |

between the two assets

Cointegration ‘ Strategy formulation J

OEBPS/images/605529_1_En_4_Chapter/605529_1_En_4_Fig3_HTML.jpg
240

220 1

200 -

180 1

160 -

140

120 1

100

— Assetl
— Asset2

00 05

10

15

20

25

30

35

40

OEBPS/images/605529_1_En_2_Chapter/605529_1_En_2_Fig3_HTML.jpg
Label distribution of mid-point movement

k=10 k=20 k=30 k=50 k=100

. (Up, 19.72993) RiE:le=X0)

R (@6 & R Qq;* & R S O
& QD O R
> > o

OEBPS/images/605529_1_En_1_Chapter/605529_1_En_1_Fig10_HTML.jpg
340 S00M

320
400M

300

300M
280

260 200M

240
100M

220
l'l“.ililii.!ii l‘llllilu o 0 o 0 o e ilh.ﬁ-Jio
Mar 2022 May 2022 Jul 2022 Sep 2022

Nov 2022

— Price
W Volume

OEBPS/images/605529_1_En_8_Chapter/605529_1_En_8_Fig1_HTML.jpg
[Perfect correlation between stocks A

and B in periods 0, 1 and 2 ’

Price

Stock B

Stock A

Stock A increased by 10% in period 3
while stock B increased by 5% only

= Il

/\/(‘ We could take advantage of this

arbitrage opportunity by longing stock B
or shorting stock A in period 3

OEBPS/images/605529_1_En_7_Chapter/605529_1_En_7_Fig1_HTML.jpg
[Raw time series of asset price J <——— Daily or monthly price points

U

L Daily/monthly returns

U

The returns are generated after
adopting a specific trading strategy

thi This represents the evolution of the
Wealth index portfolio value over time
Calculated as the percentage distance
Drawdown -— :
between the prior peak value and the

@ current value

Returns the maximum drawdown out of all
daily/monthly drawdowns

[Max drawdown

OEBPS/images/605529_1_En_10_Chapter/605529_1_En_10_Fig4_HTML.jpg
I Original training set J

Pl 2 e
‘ Training subset 1 ’ ‘ Training subset 2 J 0 e ‘ Training subset B ’

T T T

| | |

\ | \

v v v
L Decision tree 1 ’ ’ Decision tree 2 J [N N) ‘ Decision tree B ’

\\\ T - /////

.y ‘ e
- e
\\\\x ‘ //////
)

[Average as the final prediction 1

OEBPS/images/605529_1_En_10_Chapter/605529_1_En_10_Fig5_HTML.jpg
Input <

ol i
Weighted Activation
Constant @ sum function

OEBPS/images/605529_1_En_9_Chapter/605529_1_En_9_Chapter_TeX_IEq2.png
r e X

OEBPS/images/605529_1_En_9_Chapter/605529_1_En_9_Chapter_TeX_IEq1.png
r* = argmax .y f

OEBPS/images/605529_1_En_8_Chapter/605529_1_En_8_Fig2_HTML.jpg
Stock A
Stock B
Stock C

Trading signal to
exit a position

Select a pair of stocks
that passes the

cointegration test Stock A |

Obtain a normal range of
historical spread for the pair
of cointegrated assets

Historical

‘ Stock B

Trading signal to

enter a position

the positions and lock in a profit.

Compare current spread with

’ spread

historical spreads to assess if the ‘

former exceeds a normal range

/—lﬁ

I Current

If short-term fluctuation occurs
due to market fluctuations,
buy the underperforming asset
while short-selling the
overperforming asset

spread

OEBPS/images/605529_1_En_9_Chapter/605529_1_En_9_Fig2_HTML.jpg
f

The global |
maximum

fr=maxf(x)=f(x7)

[Location of the

global maximum

X" = argmaxyef ()
X

Y

OEBPS/images/605529_1_En_9_Chapter/605529_1_En_9_Chapter_TeX_IEq8.png

OEBPS/images/605529_1_En_9_Chapter/605529_1_En_9_Chapter_TeX_IEq7.png

OEBPS/images/605529_1_En_3_Chapter/605529_1_En_3_Fig1_HTML.jpg
Funds Funds
Buyer Clearing house Seller
Goods Goods

OEBPS/images/605529_1_En_4_Chapter/605529_1_En_4_Fig1_HTML.jpg
Return

Low risk
High return
Less frequent

High risk
High return
E.g., Stocks, derivatives

Low risk

Low return

E.g., fixed-income
products

High risk
Low return
Even more unlikely

OEBPS/images/605529_1_En_9_Chapter/605529_1_En_9_Chapter_TeX_IEq9.png

OEBPS/images/605529_1_En_9_Chapter/605529_1_En_9_Chapter_TeX_IEq4.png

OEBPS/images/605529_1_En_9_Chapter/605529_1_En_9_Chapter_TeX_IEq3.png

OEBPS/images/605529_1_En_9_Chapter/605529_1_En_9_Chapter_TeX_IEq6.png
f: X —R

OEBPS/images/605529_1_En_9_Chapter/605529_1_En_9_Chapter_TeX_IEq5.png

OEBPS/images/605529_1_En_7_Chapter/605529_1_En_7_Fig10_HTML.jpg
] —— Weailth index

~—Prior peaks

OEBPS/images/605529_1_En_10_Chapter/605529_1_En_10_Fig6_HTML.jpg
consists of Activah
[Single perceptron J I:> Weighted sum Ifl}l qunct(i:olxa(l!\’o;LU) }

f(X)=¢(wx—|—b) WX ¢(:c)={0 ifr <0

z ifx>0

Nonlinearity is introduced via the activation
function, which adds more flexibility to the

> 100
approximating power of a neural network besides a7
controlling the number and width of layers 050

OEBPS/images/605529_1_En_5_Chapter/605529_1_En_5_Fig3_HTML.jpg
[

fx =B5/B4-1

A B C D
1 Daily stock prices
2 Q2 Q3
3 Day Price [returnl |return2
4 1| (100
5 2| (108] 8.00%| 8.00%
6 3] 100 -7.41%| -7.41%
7 4 98| -2.00%| -2.00%
8 5| 106/ 8.16%| 8.16%

OEBPS/images/605529_1_En_5_Chapter/605529_1_En_5_Fig9_HTML.jpg
Daily adjusted closing price of Apple

180 —— Close

170

160

Price ($)

[
w
o

140

130

0N o ' '
0 ° ° 'il’\’\ 1‘5‘°\’

Vg N 10 N

S g

0
Time

OEBPS/images/605529_1_En_9_Chapter/605529_1_En_9_Fig9_HTML.jpg
Acquisition function

The maximizer of the acquisition function |
| becomes the next sampling point

g) N\
These values are zero as they are historical observations.

That is, there is no additional information gained by
| sampling locations already sampled before.

OEBPS/images/605529_1_En_4_Chapter/605529_1_En_4_Fig2_HTML.jpg
05 1
04 1
0.3 1

0.1 1
0.0 1
-0.1 1
-0.2 1
-0.3

Ik

. Assetl
- Asset2

OEBPS/images/605529_1_En_4_Chapter/605529_1_En_4_Fig8_HTML.jpg
Annualizing volatility] [Annualizing variance]

opr = VTop opr =Tap
Op,1 Op,T
///,
T el / T

Nonlinear relationship Linear relationship

OEBPS/images/605529_1_En_3_Chapter/605529_1_En_3_Chapter_TeX_Equb.png
Ft = StGT(T_t)

OEBPS/images/605529_1_En_3_Chapter/605529_1_En_3_Chapter_TeX_Equa.png
F() = S()GTT

OEBPS/images/605529_1_En_1_Chapter/605529_1_En_1_Fig9_HTML.jpg
340

»n
2
S

N
N
S

Mar 2022 May 2022

Jul 2022 Sep 2022

Nov 2022

= Price
W Volume

OEBPS/images/605529_1_En_5_Chapter/605529_1_En_5_Fig11_HTML.jpg
Price

Daily adjusted closing price and its SWA

180 = Adj Close
— SMA-3

170
160
150
140
130

o> o o ol o A o>

2 2 2 2 3 2 2

ig g g 0% 0% 2% 0%

Date

OEBPS/images/605529_1_En_8_Chapter/605529_1_En_8_Fig8_HTML.jpg
-2 1

&

»

-&f‘”ﬁ'

»

'o"‘”g'

OEBPS/images/605529_1_En_3_Chapter/605529_1_En_3_Chapter_TeX_Equd.png
F = 80(1 4+ 0.02+ 0.01 — 0.005)"* = $80.5

OEBPS/images/605529_1_En_3_Chapter/605529_1_En_3_Chapter_TeX_Equc.png
F=S8(1+r+s—c'"

OEBPS/images/605529_1_En_3_Chapter/605529_1_En_3_Fig6_HTML.jpg
[Price dynamics of future contracts in contango]

[Price curve in contango at }

N ‘ Price movements over time]
current time snapshot

Price Price

Futures price converges to spot price
upon reaching the delivery rate

N

’ Evolution of spot price]
of the underlying asset

OEBPS/images/605529_1_En_9_Chapter/605529_1_En_9_Fig3_HTML.jpg
Convex function with a Non-convex function with (" Non-convex function with a
unique global minimum multiple local minima flat region consisting of
many saddle points

N

£ £y 5y

HV
H"
y

8

OEBPS/images/605529_1_En_9_Chapter/605529_1_En_9_Chapter_TeX_Equc.png
p(fix. Dy) =N (f*|u*,03)

OEBPS/images/605529_1_En_9_Chapter/605529_1_En_9_Chapter_TeX_Equd.png
Hsx = k (X1:n7 X*) K(X1:n7 Xl:n)_lflzn

OEBPS/images/605529_1_En_9_Chapter/605529_1_En_9_Chapter_TeX_Eque.png

OEBPS/images/605529_1_En_9_Chapter/605529_1_En_9_Chapter_TeX_Equf.png
u(Dyy1) —u(Dy) = max{foi1, 7} — [=max{f1— [0}

OEBPS/images/605529_1_En_9_Chapter/605529_1_En_9_Chapter_TeX_Equa.png
max f(z)

OEBPS/images/605529_1_En_1_Chapter/605529_1_En_1_Fig3_HTML.jpg
~ Common assetclasses |

Fixed-income Cash and Alternative
Stocks instruments equivalents investment

Bonds Cash Commodities
Annuities Bank accounts Forex
U.S. Treasury bills REITs
money market Futures
funds Options
ETFs

Mutual funds
Hedge funds

OEBPS/images/605529_1_En_9_Chapter/605529_1_En_9_Chapter_TeX_Equb.png
¥ = argmax, .y f(2)

