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Preface

Quantum Computing for the Brain is intended as a comprehensive 
resource with practically usable high-level descriptions of quantum infor-
mation methods, as directed towards the specific yet portable context of 
computational neuroscience (specifically, neural signaling). The book 
arose from the need for a guide to the entirety of the emerging quantum 
information science field, in plain language, for all levels of participants. 
A concise toolkit is provided for quantum engineers, researchers, execu-
tives, business strategists, product managers, policy-makers, investors, 
and students to become immediately effective in applying quantum strate-
gies to solving real-life problems.

The book can be treated as two separate lines of material, either as 
quantum information science or quantum neuroscience on its own, or as 
the integration of the two as quantum information science applied to com-
putational neuroscience. As standalone components, Chapter 3 serves as a 
comprehensive guide to AdS/Studies, Chapters 16–18 can be employed as 
a quantum machine learning module, and Chapters 10–11 as a quantum 
optical networks module. Computational neuroscience is a representative 
problem area as one of science’s most complex undertakings, with exten-
sibility in approach and methods to many other fields with similar prob-
lem structures such as quantum finance, quantum cryptography, and 
quantum machine learning. The book is appropriate for all levels of inter-
est without any background in the underlying areas.
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As with other fields, computational neuroscience may migrate to the 
more capacious platforms of quantum computing. Such platforms offer 
scalable energy-efficient computation that surpasses supercomputing and 
more naturally corresponds to the three-dimensional structure of atomic 
reality. New classes of complex problems can be addressed more fully 
such as the modeling of neural signaling in which two central challenges 
are synaptic integration (aggregating thousands of incoming spikes from 
dendrites and other neurons) and electrical-chemical signaling (incorpo-
rating neuron–glia interactions at the molecular scale).

Many technical requirements of neural signaling cannot be fully 
accommodated classically, including spatial interactions and partial dif-
ferential equations (PDEs). Neurons are typically modeled only in their 
electrical activity with ordinary differential equations (ODEs) instead of 
via diffusion-based electrical-to-chemical neurotransmitter conversions 
across the synaptic cleft that are received as molecular ions at dendritic 
arbors, with flexible geometries and ongoing dendritic spikes. The AdS/
Brain theory is proposed as a composite model of neural signaling based 
on recent advances in quantum information science related to many-body 
dynamics, information scrambling (spread), entropy-based short-and-
long-range (UV–IR) correlations between subsystems, renormalization, 
continuous-time quantum walks, entanglement generation, and quantum 
teleportation. Linking quantum methods to computational neuroscience, a 
list of Millennium Prize-type quantum neural circuits is elaborated in the 
final chapter. The overall focus of the book is to operationalize quantum 
concepts into a standardized toolkit to apply to quantum neuroscience and 
beyond. Towards this goal, the AdS/Brain platform aims to serve as a 
generic quantum neural field theory model in which to easily incorporate 
ongoing foundational physics findings in neuroscience interpretations. 

Quantum computing is an emerging physics-driven research frontier 
whose complexity is rooted in quantum mechanics. The exciting news is 
that the mysteries of the counterintuitive behavior of the quantum 
mechanical world (namely, superposition and entanglement) can be har-
nessed in quantum machines for computation, communication, and sens-
ing, and directed towards the goals of improving human quality of life 
through the continued understanding and treatment of neuropathologies.
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Chapter 1

Introduction to Quantum Neuroscience

In the contemporary study of the brain, nearly all of the domains of 
physics are not only relevant but truly essential

— Lynn and Bassett (2019, p. 3)

Abstract

Quantum Neuroscience has the possibility of bringing the modeling of 
the human brain’s 86 billion neurons and 242 trillion synapses within 
reach, even with existing quantum systems (for example, a 53-qubit sys-
tem has nine quadrillion states (253)). Available cloud-based quantum 
computing services could extend their offerings to tools for the study of 
the brain such as quantum machine learning, high-dimensional photonic 
entanglement, and spiking neural networks. Contemporary advances in 
foundational physics and information theory are informing the develop-
ment of standardized neural circuits and quantum neuroscience appli-
cations in wavefunction modeling, quantum biology, and neuroscience 
physics.

1.1  The Brain Is the “Killer Application” of 
Quantum Computing

The thesis of this book is that the brain is the “killer application” of quan-
tum computing. The many earlier applications are impressive but are not 
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the main attraction. The “killer application” for quantum computing is not 
the rapidly emerging field of quantum finance, or quantum cryptography 
based on Shor’s factoring algorithm, Grover’s search algorithm, varia-
tional quantum eigensolvers (VQE), quantum approximate optimization 
algorithms (QAOA), quantum machine learning, continuous-time quan-
tum walks, quantum chemistry models of atomically-precise protein 
docking, Majorana fermion braiding, the discovery of new superconduct-
ing materials to produce quantum processing units (QPUs), boson sam-
pling, demonstrations of quantum advantage over classical systems, 
global quantum clocks, end-to-end qubit delivery with quantum teleporta-
tion, qudit-based high- dimensional entanglement heralding and distilla-
tion in photonic quantum networks, or even the study of superconducting 
black holes with scalar hair, thermofield double states, information scram-
bling, black hole interiors, spacetime superfluid crystals, and the com-
plexity equals volume or action conjecture. No, the “killer application” of 
quantum computing is the brain.

The brain is tailor-made to exploit the possibilities of quantum com-
puting. No other system is as complex, as multidimensional in time and 
space, as dynamical, as less well understood, as of peak interest, and as in 
need of three-dimensional modeling as it appears and functions in real-life 
as is the human brain. The high level of foundational physics progress, 
together with real-life data accruing in connectomics and high-volume 
brain scanning, suggests that now is precisely the moment of opportunity 
to define the emerging field of quantum neuroscience. Brain modeling is 
the limits-case application that defines the requirements for the quantum 
computing platform.

The five themes of this book are as follows:

1. The brain inexorably coming under greater scientific scrutiny.
2. Entropy and information-theoretic formulations (including short-

range (UV) and long-range (IR) correlations in multiscalar domains).
3. Machine learning (classical and quantum) as a core infrastructural 

technology.
4. Global photonic networks for computation, communication, and 

sensing.
5. Energy-efficient computation and superconducting materials.
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These themes come together to hint at universal problem-solving 
methods that extend across disciplines. The biggest overall trend of the 
information-theoretic formulation of problems for digitized and quantized 
computation is likely to persist. Entropy and short-long range correlations 
(UV-IR) are powerful conceptual tools that can help to address long-
standing problems in neuroscience such as fluctuations. The challenge is 
to produce neural dynamics models in which each network node incorpo-
rates activity from both the local neural population, and influences from 
farther regions in the form of stochastic fluctuations (correlations). 
Physics-based models of entropy and short-long range correlations within 
a multi-tier system accommodate this requirement. 

Another persistency across disciplines is the structural model of alter-
nating linear-nonlinear activation. Whole-brain neural field theories 
exhibit an alternating linear (input function) and nonlinear (output func-
tion) activation structure (Amari, 1977), attempting to explain how stable 
periodic network states give way to discontinuous firing behavior 
(Coombes et al., 2018). This structural pattern is seen in other advanced 
analytical methods such as the alternating linear-nonlinear structures of 
machine learning (max pooling, and convolutions-activations (LeCun  
et al., 2015)), tensor networks (disentanglers and isometries (Vidal, 
2008)), quantum optical networking with high-dimensional entanglement 
(path-encoded qudits (Wang et al., 2018)), and matrix quantum mechanics 
(Han & Hartnoll, 2020).

1.1.1  The complexity of the brain

The brain is recognized as a complex system (Bassett & Gazzaniga, 
2011). The central components, neurons, are themselves complex 
dynamical systems with a wide range of internal time scales (Sejnowski, 
2020, p. 30036). The brain exhibits complexity via nonlocal interactions 
in which dynamic activity at one location influences distant locations 
without affecting intermediate regions (Nunez et al., 2015, p. 7). Each 
scale tier of the brain has its own spatial and temporal processes and 
dynamics (Breakspear, 2017, p. 340). The brain operates by way of 
dynamical coordination and on-the-fly synaptic rewiring across twelve 
orders of magnitude at nine levels of organization ranging from the 
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central nervous system (100 m) to minute ion channels (10−12 m) (Sterratt 
et al. (2011) and similarly indicated by Sejnowski (2020, p. 30037)) 
(Table 1.1).

The brain is complex but not intractable. The problem is a lack of 
data. Mathematical physics can likely explain phenomena once uncov-
ered. The main issue is obtaining a fuller dataset of the brain’s live 
activity at different scales and interactions. Advanced data collection 
efforts suggest that basic wiring diagrams of the human brain are no 
longer the gating factor as much as three-dimensional whole-brain 
models.

1.2  The Brain and Quantum Computing

There are 86 billion neurons in the human brain and 242 trillion syn-
apses, meaning roughly 2,800 synapses per neuron (Martins et al., 
2019, p. 4). The population of glial cells in the human brain is slightly 
lower than neurons, about 85 billion (von Bartheld et al., 2016). 
Avogadro’s number typically refers to the number of particles (mole-
cules, atoms, or ions) in a sample. Once unthinkably large (0.6 of a 
trillion × one trillion), Avogadro’s number is now coming into compu-
tational reach. A simple heuristic is that n-qubits can store 2n bits of 
information, which means that 79 qubits can store on the order of 279 or 

Table 1.1.  Levels of organization in the brain.

No. Level Size (Decimal) Size Size (m)

1 Nervous system 1 >1 m 100

2 Subsystem 0.1 10 cm 10−1

3 Neural network 0.01 1 cm 10−2

4 Microcircuit 0.001 1 mm 10−3

5 Neuron 0.000 1 100 μm 10−4

6 Dendritic arbor 0.000 01 10 μm 10−5

7 Synapse 0.000 001 1 μm 10−6

8 Signaling pathway 0.000 000 001 1 nm 10−9

9 Ion channel 0.000 000 000 001 1 pm 10−12
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6.04 × 1023 bits of information, which is in the range of Avogadro’s 
number. From the standpoint of modern computing, 86 billion and 
242 trillion are not big numbers, but what is not yet fully understood is 
how neurons and synapses operate on an interlinked basis in the brain.

In quantum computing, one of the first standard gate-model systems 
released was the 19-qubit chip from Rigetti (Otterbach et al., 2017). 
Available to customers as of August 2020 was the 27-qubit IBM Quantum 
Falcon processor (Jurcevic et al., 2020). Research scientists not affiliated 
with vendors have been using state-of-the-art quantum computers for vari-
ous tasks including IBM’s Q 20 Tokyo processor with 20 superconducting 
qubits (Hamilton et al., 2019), the Rigetti 16Q Aspen-1 processor with 16 
qubits (Leyton-Ortega et al., 2019), and the 7-qubit fully programmable 
trapped ion quantum computer (Zhu et al., 2019). Google produced a 
research demonstration with a 53-qubit chip (Sycamore) in 2019 (Arute 
et al., 2019), later confirming the chip’s performance by simulating it on 
a supercomputer (Villalonga et al., 2020). CERN indicates that a 79-qubit 
level (an Avogadro’s number) of computation is needed for the LHC’s 
upgrade to the High-Luminosity Large Hadron Collider (HL-LHC) 
expected to begin operation in 2026 with 50–100 times more computing 
needed than available before (Carminati, 2018) (Table 1.2).

Some of the first quantum neuroscience applications use quantum 
machine learning to study EEG data with quantum neural networks 
(CNNs, Aishwarya et al., 2020) and quantum wavelet neural networks 

Table 1.2.  Neural entities and quantum computation.

Level Estimated Size

Neurons 86 × 109 86,000,000,000

Glia 85 × 109 85,000,000,000

Synapses 2 × 1014 242,000,000,000,000

Avogadro’s number 6 × 1023 602,214,076,000,000,000,000,000

19 Qubits (Rigetti-available) 219 524,288

27 Qubits (IBM-available) 227 134,217,728

53 Qubits (Google-research) 253 9,007,199,254,740,990

79 Qubits (needed at LHC) 279 604,462,909,807,315,000,000,000
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(RNNs, Taha & Taha, 2018). Such an approach is conducive as EEG data 
are brain waves (Nunez, 1974) that are in the form of wavefunctions that 
can be readily analyzed with quantum methods. Kiani et al. (2020) have 
developed quantum algorithms to reconstruct medical images captured in 
MRI, CT, and PET scans.

1.3  Status of Neuroscience

The brain is a “big data” domain and, with quantum computing, might 
become a “really big data” science. Imaging is a central focus in neurosci-
ence research, particularly whole-brain imaging. Connectome projects have 
led to new methods in high-throughput imaging and recording techniques 
such that neuroscience data acquisition outpaces that of most other biomedi-
cal fields (Motta et al., 2019). In high-throughput connectomics, ongoing 
work from the Allen Institute for Brain Science demonstrates terabyte-scale 
processing for contemporary neuron reconstruction (Wang et al., 2019a) 
and petabyte-scale next-generation dataset acquisition methods (Yin et al., 
2019). In many substantial microscopy advances, single-molecule-scale 
resolution has been obtained to capture synaptic proteins at dendritic spines, 
myelination along axons, and presynaptic densities at dopaminergic neu-
rons with expansion light-sheet microscopy (Gao et al., 2019). The general 
research aim of whole-brain neuroscience is full-volume, three-dimen-
sional, whole-brain analysis at multiple spatial and temporal scales. One 
task is integrating real-life data obtained simultaneously from EEG, MEG, 
fMRI, and tractography techniques. The challenge is interpreting brain 
potentials and other data to articulate the simple bulk properties of the brain 
and develop a nonlinear dynamical systems theory of the brain.

As in other fields, computational power is a key contributor to the 
kinds of techniques and resulting knowledge that are possible. Graphics 
Processing Units (GPUs) have made a difference in neuroscience data 
acquisition processing times and analysis capabilities (Vescovi et al., 
2017). Neuroscience might continue to benefit from the computational 
chip progression suggested as CPU-GPU-TPU-QPU (Central, Graphics, 
Tensor, Quantum Processing Units). In quantum computing more gener-
ally, an industry tipping point may be reached if universal quantum 
computing chips become feasible. In machine learning, the advent of 
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fast GPUs enabled researchers to train networks 10–20 times faster 
(LeCun et al., 2015, p. 439). Tensor Processing Units (TPUs) provided a 
similar advance, allowing matrix multiplications to flow through without 
having to store interim values in memory. An independent benchmarking 
analysis of chips at peak FLOPs recorded state-of-the-art CPU-GPU-
TPUs at 2, 125, and 420 teraFLOPs, respectively (Wang et al., 2019b, 
p. 4). QPUs are implicated in being able to solve problems faster than 
existing chips by exploiting the quantum properties of superposition and 
entanglement.

To complete the human connectome (and even the mouse connectome 
(Abbott et al., 2020)), a qualitatively different mode of computing is 
likely necessary, similar to the technology-driven inflection point in the 
sequencing of the human genome that allowed its completion in 2001 
(Pennisi, 2001). Human connectomes are not an immediate prospect since 
the whole-brain fruit fly connectome was only completed in 2018 (Zheng 
et al., 2018). The imaging, data processing, and storage requirements may 
be 1 zettabyte per human connectome (Lichtman et al., 2014, p. 8), which 
compares to 59 zettabytes of data generated worldwide in 2020 (Reinsel, 
2020). Quantum computing may be precisely the computational platform 
that is adequate to the study of the brain and might eventually lead to 
personalized connectome analysis and neuropathology prevention.

1.3.1  Whole-brain simulation

The need for quantum neuroscience can be seen in the status of whole-
brain simulation projects. Although progress has been made with exist-
ing technology, human whole-brain simulation remains a distant target 
with nonquantum platforms, namely, neuromorphic hardware systems 
and supercomputers. The largest model using the SpiNNaker neuro-
morphic platform is a partial brain simulation of 80,000 neurons and 
0.3 billion synapses (van Albada et al., 2018). The simulation compares 
favorably with brain network simulations using the computational neu-
roscience platform NEST, but comprises only a small portion of the 
brain’s estimated 86 billion neurons and 242 trillion synapses. A super-
computing project fares better, realizing the simulation of one-third of 
the human brain (Igarashi et al., 2019). A spiking neuron structure uses 

b4362_Ch01.indd   7b4362_Ch01.indd   7 4/29/2022   6:32:57 PM4/29/2022   6:32:57 PM



b4362  Quantum Computing for the Brain 6"×9"

8  Quantum Computing for the Brain

76% of the total capacity of the Japanese K supercomputer (63,504 of 
82,944 computational nodes) to simulate one-third of the human brain.

The Blue Brain project continues towards its goal of simulating the 
entire mammalian brain, starting with the mouse and progressing to the 
human. A supercomputing platform upgrade, to Blue Brain 5, was com-
pleted in 2018. However, the biggest factor in brain simulation is not 
floating-point operations (the specialty of supercomputers), but rather 
memory, bandwidth, and input–output performance. Project leader 
Henry Markram notes that “Simulating the human brain is a big data 
challenge” (Feldman, 2018). Even modeling a single neuron in the Blue 
Brain architecture requires about 20,000 ordinary differential equations. 
The initial project was simulating a rat neocortical column as a basic 
functional unit of the cortex (Markram, 2006). In humans, neocortical 
columns are about 2 mm in length and 0.5 mm wide and contain about 
60,000 neurons. In comparison, rat neocortical columns are similar in 
structure but only contain 10,000 neurons. Quantum computing might 
facilitate neocortical column modeling and human whole-brain simula-
tion more generally.

1.4  Status of Quantum Computing
Living things are made of atoms according to the laws of physics, and 
the laws of physics present no barrier to reducing the size of computers 
until bits are the size of atoms and quantum behavior holds sway

— Feynman et al. (2005) and Feynman (1985)

Quantum systems, unlike having classical bits that exist in distinct values 
of zero or one (Figure 1.1), have qubits (quantum information bits 
(Schumacher, 1995)) that exist in a state of superposition of all possible 
values in the space until collapsed into a measurement. In general, the 
term “quantum” refers to atoms, which are on the scale of nanometers 
(10−9), and subatomic ions, electrons, and photons, which are on the scale 
of picometers (10−12). Feynman (1985) was the first to propose the idea 
for a universal quantum computer. Such a computer would model nature 
exactly as it is, in three-dimensional atomically accurate representations, 
which would be a more scalable and natural computational method.
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Quantum computing is therefore defined as the use of engineered 
quantum systems to perform computation, typically the precise manipula-
tion of quantum objects (atoms, ions, and photons) by means of external 
electromagnetic fields (Acin et al., 2018). Quantum computing incorpo-
rates the principles of quantum physics as the approach to understanding 
quantum mechanical phenomena. Quantum mechanics describes the 
behavior of quantum objects that is stridently different from the  macroscale 
classical domain through the properties of superposition, entanglement, 
and interference. Quantum communication involves the transmission of 
quantum state information between locations, and quantum information 
science is the field that provides an information-theoretic interpretation of 
quantum physics in the implementation of quantum computing and quan-
tum communication networks. Each area has constituent domains of theo-
retical and experimental focus (Table 1.3).

The “big data” era is a substantial motivation towards the develop-
ment of quantum computing. Data science applications are constrained by 
classical computing limitations. Quantum computers, however, have the 
potential to perform complex calculations and cycle through a series of 

Figure 1.1.  Quantum versus classical computing.

Source: Sandia National Laboratories.
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permutations in ways that classical systems cannot. Modeling classical 
data as quantum wavefunctions allows more information to be incorpo-
rated in a complex format that is more scalable and (through entangle-
ment) reveals otherwise unseen correlations in the classical data.

1.4.1  2n scalability

The biggest arguments in favor of quantum computing are its scalability 
as a next-generation computing platform, and its natural three-dimensional 
representational capability. Regarding scalability, a central feature of 
quantum mechanics is the 2n problem. This is the issue that the number of 
possible particle states (the state space) grows exponentially as the size of 
the system grows. For example, a system consisting of n 2-state quantum 
particles has 2n possible states, and in general, might be in a superposition 
of all of them. The classical simulation of such a system requires one 
complex number per state, which means that simulating more than about 
40 qubits in a general superposition state is beyond most classical capa-
bilities (Kendon et al., 2010, p. 3611).

With quantum computing’s 2n format, though, an exponentially large 
number of values can be encoded in a set of qubits for expedient informa-
tion processing. Mathematically, the quantum state of n qubits is a vector 
in a 2n-dimensional complex vector space. This means that performing a 
quantum logic operation or a qubit measurement multiplies the corre-
sponding state vector by 2n × 2n matrices (Biamonte et al., 2017, p. 196). 
By building up these kinds of matrix transformations, quantum computers 
can execute common linear algebraic operations such as computing 
Fourier transforms (Shor, 1997), finding eigenvectors and eigenvalues 

Table 1.3.  Quantum terminology.

Term Description

Quantum computing Computation with engineered quantum systems

Quantum communication Transmission of quantum state information

Quantum physics Foundational physics, quantum mechanics

Quantum information Information-theoretic interpretation of physics
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(Nielsen & Chuang, 2000), and solving linear sets of equations (Harrow 
et al., 2009) exponentially faster than their best known classical 
counterparts.

In general, quantum computers have been shown to provide an expo-
nential advantage over classical computers in solving both linear and 
nonlinear differential equations (Biamonte et al., 2017; Lloyd et al., 
2020). The implication is that because quantum algorithms are better at 
performing algebra-related tasks, there could be many areas of quantum 
advantage over classical computing. The number of qubits required to 
implement various computational tasks suggests which kinds of problems 
may be tractable with currently available NISQ devices (noisy intermedi-
ate-scale quantum devices) with 50–100 qubits. The million-qubit quan-
tum hardware needed for full-scale quantum neuroscience and other 
advanced applications is not immediately immanent. Technical break-
throughs are needed to deliver quantum error correction to progress from 
(non-error corrected) NISQ devices to FTQC (fault-tolerant quantum 
computing) (Preskill, 2021, p. 10). However, it is not too early to reformu-
late classical problems for the quantum domain and test them on simula-
tion platforms.

1.4.2  Three-dimensional format

Aside from scalability, the other key benefit of quantum computing for 
modeling the brain is the ability to have three-dimensional representations 
of real-life systems. The organic molecules of life are three-dimensional, 
and also their representation in quantum computing. Feynman’s vision to 
model nature as it actually is, with a universal quantum computer, 
becomes more prominent in quantum neuroscience applications. Brain 
entities and the chemical conversion processes that orchestrate their 
behavior are quantum mechanical in nature and an analogous computing 
environment for representing these processes is needed. The benefit of 
quantum computers is that they can store and process information about a 
simulated quantum system natively (NSF, 2016, p. 1). To perform such a 
quantum simulation, the Hilbert space of the underlying system is mapped 
directly onto the Hilbert space of the qubits in the quantum computer 
(Kendon et al., 2010, p. 3609).
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1.4.3  Quantum advantage over classical computing

An industry objective is demonstrating quantum advantage, applications in 
which quantum computers perform tasks that classical computers cannot. 
Quantum advantage is indicated differently based on the underlying plat-
form. It could be demonstrated, for example, by sampling the output of 
random quantum circuits on gate-model platforms (Aaronson & Chen, 
2016) or by conducting boson sampling on photonic platforms (Aaronson 
& Arkhipov, 2013). Google deployed the first method, sampling the output 
of random quantum circuits, to declare having achieved quantum advantage 
in October 2019 with a 53-qubit chip (Sycamore) (Arute et al., 2019). IBM 
rebutted the claim (Pednault et al., 2019). Google confirmed the computa-
tional result by simulating the random circuit sampling operation on the 
world’s largest supercomputer at the time, Summit, in a 281-Pflop/s dem-
onstration (Villalonga et al., 2020). Notably, the quantum method was many 
orders of magnitude more energy-efficient than classical supercomputers.

A greater claim of quantum advantage, with no question of being 
unassailable with classical methods, occurred in December 2020 (Ball, 
2020). The result in Science announced using a photon-based quantum 
computer to perform boson sampling (Zhong et al., 2020). The work high-
lights the benefit of photonic platforms that operate at room temperature 
as opposed to the ultracold temperatures required by superconducting 
circuits. Debate continues as to which platform has more feasible near-
term applications, the 53-qubit superconducting chip which is program-
mable but not commercially released, or the boson sampling method, 
which has already been applied in quantum chemistry (Sparrow et al., 
2018) and graph theory applications (Bromley et al., 2020).

Indeed, perhaps the more important aim is not research demonstra-
tions of quantum advantage, but progressing more quickly to scalable 
quantum computers for tackling real-life problems (Cirac, 2021). The 
status of end-user quantum computing is NISQ devices, used directly or 
via cloud-based services. NISQ devices can perform useful tasks and do 
not require error correction (Preskill, 2018). Such NISQ devices continue 
to be available from IBM and Rigetti (gate-model systems) and D-Wave 
Systems (quantum annealing machines with 5,000 qubits as of 2019). 
Researchers building their own boson sampling setups is another flavor of 
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the NISQ device, and there are other platforms (Swan et al., 2020, 
pp. 50–62).

The biggest threat of quantum computing is possibly being able to break 
existing cryptography. Shor’s (1997) algorithm can factor large numbers 
expediently and is implicated in eventually forcing an evolution in cryptogra-
phy standards (a sort of “Y2K for Crypto”). A 2019 U.S. National Academies 
of Sciences report estimates that this is unlikely within 10 years (Grumbling 
and Horowitz, 2019); however, methods are constantly improving. The U.S. 
NIST (National Institute of Standards and Technology) has a competition-
based method to develop next-generation standards based on lattice cryptog-
raphy (complex three-dimensional arrangements of atoms), as opposed to the 
difficulty of factoring large numbers, in a mathematical shift to group theory 
(lattices) from number theory (factoring) (Alagic et al., 2019).

The vision is not that end users would have quantum desktop comput-
ers on which to open up an N = 4 Yang–Mills ground state, but rather 
would access it via cloud-based services as any other internet application. 
Gartner notes that the COVID-19 pandemic strengthened the demand for 
cloud services with worldwide public cloud end-user spending estimated 
to grow 18% in 2021 (Costello & Rimol, 2020). Cloud services are fore-
cast to comprise 14.2% of the total global enterprise Information 
Technology (IT) spending market in 2024, up from 9.1% in 2020. The 
fastest-growing cloud service is application infrastructure services (PaaS) 
(more intelligent applications) as opposed to software as a service (SaaS) 
which has a larger share but a slower growth rate.

In 2019, Gartner estimated that by 2023, 20% of organizations will 
be budgeting for quantum computing and that 95% of organizations 
researching quantum computing strategies will use quantum computing as 
a service (QCaaS) (Panetta, 2019). To aid in this endeavor, 90% of enter-
prise quantum computing investments may turn to quantum consulting 
organizations, and employ an increasing number of degreed quantum 
physicists in product management roles. In an April 2021 survey, IDC 
similarly found that the number of organizations allocating about a fifth 
of their annual IT budgets to quantum computing is expected to rise from 
7% in 2021 to an estimated 19% in 2023 (West, 2021). P&S Intelligence 
(2020) estimates the global market for quantum computing to grow from 
$507.1 million in 2019 to $64,988.3 million by 2030.
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1.4.4  Supercomputing versus quantum computing

The question arises as to the relationship between supercomputing and 
quantum computing. On the one hand, the platforms can be complemen-
tary as they have different architectures and target different tasks. On the 
other hand, the bigger news is that quantum computing is likely to sub-
stantially leapfrog the capabilities of supercomputing. For example, state-
of-the-art supercomputers (in 2018) were noted as already being limited 
in not being able to simulate universal random circuits of sufficient depth 
in a two-dimensional lattice of approximately 7 × 7 qubits (Boixo et al., 
2018, p. 595). Quantum computing is already demonstrating greater capa-
bility than 49-qubit systems (7 × 7).

For understanding the complexity of the brain, a vastly more scalable 
platform beyond supercomputing such as quantum computing is neces-
sary (Harris & Kendon, 2010, p. 3581). Supercomputers have only man-
aged to simulate one-third of the human brain so far (Igarashi et al., 2019). 
Quantum computing easily surmounts supercomputing with its scalability 
and three-dimensional problem instantiation as supercomputing remains 
constrained to massively parallelizable tasks. Further, a potential quantum 
revolution is indicated as a next-generation platform for computation in 
general, with cost-effective accessibility through cloud-based quantum 
computing applications, and as QPUs might be made in existing micro-
processor fabrication facilities. Further, just as quantum computer simula-
tions are run on supercomputers to the extent possible (Villalonga et al., 
2020), in the future, supercomputers might be simulated on quantum 
computers.

1.4.5  Quantum finance and AdS/Finance

One of the first applications of quantum computing that could enter the 
mainstream is quantum finance. Standardized quantum approaches and 
circuits could quickly extend to other fields such as neuroscience. 
Financial market participants are often early adopters of new technology, 
and individuals involved with J.P. Morgan, Goldman Sachs, Banco 
Santander, and other global financial institutions are publishing research 
discussing these efforts. Quantum finance is the branch of econophysics 
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that applies theories and methods from quantum mechanics and econom-
ics to problems in finance, namely, option pricing, trading strategies, risk 
management, and portfolio optimization. Markets are complex nonlinear 
dynamical systems that do not have formal solutions, and hence quantum 
mechanical methods such as wavefunction modeling have been a main-
stay in computational finance (Haven, 2002). What is new is the ability to 
more effectively model market behavior with quantum platforms that 
include wavefunctions and path integrals (Baaquie, 2004; Orus et al., 
2019).

A concrete application is implementing the traditional classical 
framework of the Black Scholes option pricing model with the 
Schrödinger wavefunction equation (option price is modeled as a state 
function). Such quantum finance methods may have been applied 
through topological quantum field theories such as the Chern-Simons 
3-form as a form of quantum field theory on a three-dimensional mani-
fold expressed with Lie algebra (Chern & Simons, 1974). These tech-
niques may be responsible for the success of hedge funds such as 
Renaissance Technologies (founded by Simons) and its Medallion Fund, 
an effort which has resulted in the Simons Institute for the Theory of 
Computing.

Unlike disease, which ideally, is formally solvable and demonstrates 
ongoing progress towards this objective, markets have social feedback 

Table 1.4.  Quantum finance ecosystem.

No.
Analysis

Quantum Finance
Execution

Quantum Blockchains
Delivery

Quantum Networks

1 Quantum amplitude 
estimation

Quantum key distribution Heralded entanglement

2 Quantum Monte 
Carlo methods

Continuous-time quantum 
walks

End-to-end qubits

3 Anharmonic 
oscillators

Computational verification 
(zero-knowledge proofs)

Smart routing SLAs

4 Quantum kernel 
learning

GHZ-state optical 
blockchain

Benchmarking
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loops and are resistant to traditional formal solutions. Reflexivity is the 
term for participants modeling the potential behavior of other participants 
as hypothesized by George Soros (Davis & Hands, 2016). Reflexivity is 
an inherently quantum mechanical concept in that the role of the observer 
influences outcomes, but is difficult to model.

1.4.5.1  Classical-digital-quantum finance progression

Conceptually, there is a progression from classical to digital (blockchains) 
to quantum finance. The potential future ecosystem for quantum finance 
can be seen in the structure of the deployment of quantum financial meth-
ods for analysis, quantum blockchains for execution, and quantum net-
works for delivery (Table 1.4).

Quantum blockchain applications focus on two areas, post-quantum 
cryptography and the instantiation of the underlying blockchain logic and 
protocol with quantum platforms (Li et al., 2019). Post-quantum cryptog-
raphy methods include quantum key distribution and lattice-based quan-
tum cryptography, and are being extended to consider continuous-time 
quantum walks with Hadamard coins (Montero, 2017) and blind quantum 
computing (Flamini et al., 2018). Continuous-time quantum walks with 
Hadamard coins (zero-one flips) enhance security as walks proceed on the 
basis of ballistic propagation through a lattice graph as opposed to classi-
cal algorithms which are constrained to diffusive spread. The faster the 
cryptographic algorithm, the safer it is, and in quantum finance, the faster 
a trading opportunity can be identified. In the application of instantiating 
blockchain logic in quantum networks, computational verification (zero-
knowledge proof technology) (Swan, 2020) and optical networks are 
likely crucial to deployment. One project outlines a blockchain formula-
tion with optical networks relying on entangled GHZ states (Rajan & 
Visser, 2019), similar to the use of GHZ states in a global quantum clock 
network proposal (Komar et al., 2014). The execution of quantum finan-
cial analysis methods could be via quantum blockchains deployed on 
quantum networks and instantiating (anti-de Sitter) AdS/Finance as holo-
graphic option pricing (Treiblmaier et al., 2021).

Quantum finance applications treat the analysis of financial markets. 
One of the main research activities in quantum finance is establishing 
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standard quantum algorithms for deployment in financial analysis. So far, 
quantum finance methods demonstrate what is becoming the usual 
expected quadratic speedup of using quantum systems when benchmarked 
against classical methods (mainly classical Monte Carlo). The main appli-
cations of quantum finance target either individual instruments (with 
option pricing, trading, and risk management) or overall portfolio 
management.

Considering individual instruments, quantum amplitude estimation is 
a technique used to estimate the properties of random distributions such as 
risk measures (Woerner & Egger, 2019). In a quantum computing setup, 
the method is operationalized to estimate the probability of measuring a 
value of “1” in the last qubit. There are four steps in the quantum circuit 
execution. First, the system is defined to consist of a unitary operator act-
ing on a register of qubits. Second, an estimation operator is created to 
operate on the system based on the unitary operator and quantum phase 
estimation (Kitaev, 1995) to approximate certain eigenvalues of the estima-
tion operator. This requires additional qubits and additional applications of 
the estimation operator. Third, the additional qubits are put into equal 
superposition by applying Hadamard gates and used to control  different 
powers of the estimation operator. Fourth, the system is evolved, an inverse 
quantum Fourier transform is applied, and the qubit state is measured. The 
result is an integer which is mapped to a classical estimation function. The 
quantum amplitude estimation method indicates a quadratic speedup com-
pared to the convergence rate of classical Monte Carlo methods.

Research continues to improve the quantum amplitude estimation 
algorithm, for example, in the proposal of a version of amplitude estima-
tion without phase estimation that requires fewer gates (Suzuki et al., 
2020). This method also results in a quadratic speedup compared to clas-
sical Monte Carlo methods and is tested by deploying option pricing cir-
cuits on an IBM Q Tokyo quantum device (Stamatopoulos et al., 2020).

Another project also uses quantum amplitude estimation algorithms, 
and models the time evolution of interest rates with the Heath-Jarrow-
Morton framework for stochastic dynamics (volatility-based) (Martin 
et al., 2019). The successful deployment of the quantum finance circuit on 
a 5-qubit IBMQX2 quantum computer foresees the near-term practical 
applications of quantum computing in finance.
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In portfolio optimization, a team simulated a quantum circuit Born 
machine for an ion-trap quantum computer (Alcazar et al., 2020). A well-
known portfolio management problem in finance was implemented using 
time-series pricing data from asset subsets of the S&P500 stock market 
index. The quantum model had superior performance as compared to classi-
cal machine learning methods (restricted Boltzmann machines). Other work 
also considers portfolio optimization with quantum Monte Carlo methods, 
quantum machine learning, and quantum annealing heuristics (Bouland 
et al., 2020). In another project, a complete quantum finance field theory is 
proposed based on anharmonic (not simple harmonic) oscillators and 
energy, deployed through a Quantum Finance Forecast Center website (qffc.
uic.edu.hk) (Lee, 2020). Finally, other work proposes quantum kernel learn-
ing based on reproducing kernel Hilbert spaces (Chatterjee & Yu, 2017).

The first step is that quantum finance enables better analysis of exist-
ing markets, and the second step could be that the quantum domain 
enables new financial instruments specific to its structure and parameters. 
Just as blockchain digital finance offers arbitrage possibilities between 
classical and digital instruments, for example, between a physical-world 
loan and a smart contract loan due in block time (the digital time regime 
of the blockchain) (Swan, 2016), the quantum domain likewise offers 
novel possibilities. Instead of Euclidean space and lockstep time, there 
could be a superpositioning of time and space. As in multiplexing in com-
munications networks, time and space can be treated as different modes 
of “photonic finance”. Instruments can measure in one space and many 
times (measure the same system at different times), or measure the system 
in different spaces at one time, with spacetime states created based on 
these measurement statistics (Zhang et al., 2020). Thus, a loan on a Bloch 
sphere would not be a traditional 30-year mortgage and might have geo-
desic rather than linear pricing (an AdS/Finance application). Quantum 
methods access correlations not present in classical systems, and quantum 
finance might engage a new geometry of economic space with entropic 
connections (Potts, 2000, p. 47).

1.5  What This Book Does Not Cover

This book investigates the study of the brain using quantum computing. 
First, this means that the primary interest is in the most basic measurable 
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physical-level behavior in the brain regarding neuronal and synaptic sig-
naling. Higher-order behavior such as learning, attention, memory, and 
cognition are not examined in any specificity (these are addressed in 
other quantum neuroscience applications research such as using the 
quantum machine learning of EEG data to model decision-making 
(Aishwarya et al., 2020)). Other such higher-level behaviors are assumed 
to exist, but the focus here is on the basic tiers of neural behavior as they 
may be modeled computationally most readily from available data and 
how these physical aspects may be addressable indicators of disease.

Second, this book does not discuss the hypothesis called quantum 
consciousness (that consciousness is caused by quantum effects). Koch 
and Hepp (2006) offer cogent guidance on this issue, arguing that quantum 
effects are not part of the brain. The brain is simply too big, and while biol-
ogy obeys quantum mechanics, it does not exhibit quantum effects. The 
biological features of the brain indicate that it is too large and has distances 
(millimeters) that are too long for quantum signals to remain coherent 
(Tegmark, 2000). The main argument of this book is that quantum comput-
ing is possibly the best computational platform for modeling the brain’s 
neural signaling processes. The work is not proceeding from the assump-
tion that there is something quantum-like taking place in the brain, but 
rather is inspired by the mathematical structure of quantum mechanics 
(Bruza et al., 2015). The basic processes are necessary to enumerate as the 
building blocks of larger-scale behavior anyway (Churchland et al., 1994).

1.6  Quantum Neuroscience and AdS/Brain

The current volume draws from contemporary progress in neuroscience 
and physics to ultimately propose AdS/Brain as a multiscalar theory of 
neural signaling that might be implemented with quantum computing. The 
advent of quantum computing is a concrete testament to the understanding 
of quantum mechanics and may facilitate the quest to further clarify the 
mysterious inner workings of the brain. One critique might be that it is too 
early for this work given the lack of human in vivo whole-brain activity 
data, and the developmental stage of quantum computing. However, the 
rate of data acquisition from connectomics projects and the specialized 
expertise of neuroscientists suggest that this is exactly the time for quali-
tatively new methods to address the challenges of the brain, to obtain a full 
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model of neural signaling behavior. Further, quantum computing is part of 
the national competitiveness narrative for many countries and has substan-
tial financial resources invested.

Computation methods are needed that are not just faster (server racks) 
or process data in parallel (supercomputing) but that run differently, more 
in line with quantum mechanical reality. There is an opportunity to define 
the computational neuroscience analysis techniques that will succeed in 
the areas of spiking neural networks, neural field theories, tensor networks 
and quantum kernel learning, photonic quantum networks for smart net-
work computing, and quantum state teleportation with high-dimensional 
entangled qudits. A computational environment is needed with multiple 
levels of three-dimensional image representation and their behavioral 
manipulation through nonlinear dynamical models. It is clear that a deeper 
theoretical and experimental arsenal is necessary for the next eras of neu-
roscience and that quantum computing might help to open a new chapter 
in studying the brain.
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Chapter 2

Neural Signaling Basics

In addition to secretory machines, nerve terminals are computational 
units

— Sudhof (2004, p. 510)

Abstract

Chemical synapses are the brain’s neural signaling processes between 
axon, presynaptic terminal, synaptic cleft, postsynaptic density, and den-
dritic spiking potentials from dendrite to soma (at the scale tiers of net-
work, neuron, synapse, and molecule). Electrical signals from the action 
potential are converted to chemical signals in the presynaptic terminal, 
cross the synaptic cleft as neurotransmitters, are received at dendritic 
arbors, and are then reconverted to electrical signals as dendritic spikes. 
Synaptic integration is the process by which the brain integrates thou-
sands of dendritic spikes and other incoming signals.

2.1  Scale Levels in the Brain

The human brain is a small 1.2–1.4 kg organ (Bigos et al., 2015, p. 157) 
containing 86 billion neurons and 242 trillion synapses (Martins et al., 
2019, p. 4) and 85 billion glial cells (von Bartheld et al., 2016). The brain 
transfers vast amounts of information between areas and rewires its 
 connections as necessary with synaptic plasticity. Neurons in the cortex 
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are arranged in layers, creating a complex communications network of 
neuronal connections or cortical circuits (Farhy-Tselnicker & Allen, 
2018). The outermost gray matter of the cortex is a local area network 
(with mainly local connections) and the innermost white matter is a long-
distance network (within itself) (Laughlin & Sejnowski, 2003).

The three elements involved in neural signaling are the sending neu-
ron, the synapse, and the receiving neuron’s dendritic arbors. The sending 
neuron’s action potential is an electrical signal that is converted to a 
 neurotransmitter-based chemical signal, sent across the synaptic cleft, and 
then reconverted to an electrical signal by the receiving neuron’s den-
drites. Protein complexes at the ends of the neurons transport calcium ions 
and molecules in and out of the cells. The relevant scales for neural signal-
ing are those of the neuron, synapse, signaling pathway, and ion channel 
identified, respectively, as 100 μm, 1 μm, 1 nm, and 1 pm (Table 2.1) 
(Sterratt et al., 2011). A related proposal similarly identifies the three 
levels of the neuron, synapse, and molecule, at 100 μm, 1 μm, and 
1 Angstrom (10−10) (Sejnowski, 2020, p. 30037). In quantum mechanics, 
atoms are on the order of nanometers (10−9), and ions and photons are at 
the subatomic scale of picometers (10−12). The scale pairings can be mod-
eled as bulk-boundary relationships with the AdS/CFT correspondence in 
the AdS/Brain theory.

Since they are larger in scale and have more readily detectable electri-
cal activity, action potential spikes from neurons have been the first and 
most studied aspect of neural signaling. The chemical operations of syn-
apses are less well known, and the molecular propagation into dendritic 
arbors even less so. In computational neuroscience modeling (such as with 
the industry workhorse NEURON), neuronal and synaptic activity can 
be accommodated in a relatively straightforward manner with ordinary 

Table 2.1.  Neural signaling scale tiers.

No. Scale Number Size Size (m) NEURON Microscopy

1 Neuron   86 bn 100 μm 10−4 ODE EM

2 Synapse 242 tn 1 μm 10−6 ODE EM/Light field

3 Signaling pathway Unk 1 nm 10−9 PDE Light sheet

4 Ion channel Unk 1 pm 10−12 PDE Light sheet
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differential equations (ODEs), but dendritic activities require more com-
plicated partial differential equations (PDEs). In connectomics micros-
copy, single-neuron resolution is standard (Wang et al., 2019), and 
single-molecule resolution for dendritic arbor analysis (detecting synaptic 
proteins at dendritic spines) is emerging (Gao et al., 2019).

2.1.1  Relative size of neural entities

Understanding neural operations require thinking in various numeric 
scales. The standard units employed are the micron (μm, a millionth of a 
meter, 1 × 10−6 meter) and the nanometer (a billionth of a meter, 1 × 10−9 
meter). One micron is 1,000 nm. As a heuristic, the diameter of a human 
hair is ~100 microns or 100,000 nm (the range is 17–181 microns) (Ley, 
1999). A red blood cell is 7,000 nm and the smallest capillaries are 3,000 nm 
(Freitas, 2012, p. 69). Neurons are larger, having a 10,000–25,000 nm cell 
body (soma) and a 3,000–18,000 nm nucleus (Chudler, 2009).

Nerve impulse

Calcium ion
channel

Synaptic
vesicle

Neurotransmitter

Ion channel
with receptor site

Calcium ion

Presynaptic
terminal
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2

3

4

5

Synaptic
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Figure 2.1.  Neural signaling.

Source: Okinawa Institute of Science and Technology.
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Presynaptic terminal research has studied in detail the calyx of Held 
(in the auditory pathway) in rats. The pathway forms a large nerve ter-
minal 15,000 nm in diameter and makes about 500–600 synaptic con-
tacts with the postsynaptic cell (Sudhof, 2004, p. 511). The presynaptic 
terminal has active zones on the synaptic cleft 50–100 nm wide and 
vesicles with an average radius of 20 nm (although stored in larger ves-
icles with a radius of 50–200 nm) (Ibid., pp. 512, 523). The synaptic cleft 
between neurons is very small, 20–50 nm (Scimemi &  Beato, 2009,  
p. 290), and glial cells are separated from each other by only 2 nm 
(Figure 2.1).

On the receiving neuron, the postsynaptic density is usually found 
at the tip of dendritic spines. Dendritic spines are long membrane pro-
trusions on dendrites that receive the majority of synaptic inputs and 
are about 500–2,000 nm in length (Kim & Sheng, 2009, R723). The 
head of the dendritic spine or postsynaptic density is often a disk-like 
shape with an average diameter of 360 nm (range 200–800 nm) and a 
thickness of 40 nm (30–50 nm) (Ibid.). A similar estimate of the post-
synaptic density is a diameter of 250–500 nm and a thickness of 50–100 
nm (Meyer et al., 2014). The postsynaptic density is positioned directly 
opposite the presynaptic active zone to receive the release of 
neurotransmitters.

In terms of glia, microglial cells are about the same size as neurons, 
15,000–30,000 nm (Kettenmann & Verkhratsky, 2011), and astrocytes are 
even larger, 40,000–50,000 nm, with long branches wrapping around the 
neurons in their territory (Parent, 1996) (Table 2.2).

The postsynaptic density is an apparatus in a protein-dense area 
attached to the postsynaptic membrane stretched out in dendritic spines. 
Located across from specific active zones in the presynaptic terminal, the 
postsynaptic density orchestrates signal reception, becoming enlarged in 
the process and contributing to synaptic plasticity (the long-term potentia-
tion or depression of synapses). The size of the postsynaptic density is 
dynamic and expands and shrinks during the signaling process. The sig-
naling of many different proteins is implicated in the process. For exam-
ple, Sonic hedgehog (Shh) signaling has an expansionary effect on the 
presynaptic terminals of both glutamatergic and GABAergic synapses in 
adult hippocampal neurons (Mitchell et al., 2012, p. 4208). Glutamate 
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(excitatory action) and GABA (gamma-Aminobutyric acid) (inhibitory 
action) are the two most  common neurotransmitters in the brain, compris-
ing 90% of neurotransmitter activity.

The structural setup of the synapse facilitates the targeting of signals. 
The active zone (50–100 nm) on the sending presynaptic terminal is much 
smaller than the receiving postsynaptic density (360 nm or 250–500 nm), 
which effectively creates a large goalpost through which to receive incom-
ing neurotransmitters. Further, the areas enlarge during signaling to addi-
tionally enhance signal reception.

2.2  Neural Signaling Overview

A neuron is an electrically excitable cell that communicates with other 
cells by sending a signal called an action potential across specialized con-
nections called synapses. Each neuron is comprised of a cell body (soma), 
a long thin axon insulated by a myelin sheath for outbound signaling, 
and multiple dendrites for receiving inbound signals. Glial cells are non-
neuronal cells that insulate neurons from each other, supply nutrients, and 
facilitate signaling.

Table 2.2.  Circulatory system entities and neural cells.

Entity Size (Microns) Size (nm)

Human hair 100 100,000

Red blood cell 7 7,000

Smallest capillaries 3 3,000

Neuron cell body (soma) 10–25 10,000–25,000

Neuron cell body nucleus 3–18 3,000–18,000

Presynaptic terminal 15 15,000

Presynaptic terminal active zones — 50–100

Synaptic cleft — 20–50

Dendritic spine 0.5–2 500–2,000

Postsynaptic density (dendritic head) — 360 × 40

Glial cells: Astrocytes 40–50 40,000–50,000

Glial cells: Microglial cells 15–30 15,000–30,000
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Neurons have two main processes, sending and receiving signals. To 
send a signal, an axon transmits information from the neuron to neighbor-
ing neurons. To receive a signal, a neuron’s dendrites interpret incoming 
information sent by the axons of other neurons. The signaling activity of 
neurons is both electrical and chemical. The axons of neurons produce 
and transmit electrical pulses called action potentials which travel along 
the axon like a wave. The action potential is a short electrical pulse that is 
0.1 V in amplitude and lasts for one millisecond (Nicholls et al., 2012, 
p. 14). The action potential is sent along the axon to the axon terminals in 
the synaptic nerve endings, from which the axon contacts the dendrites of 
other neurons. Synapses (from the Greek word for conjunction) consist of 
active zones on the edge of the presynaptic terminal on the outbound neu-
ron, the postsynaptic density on the dendrites of the receiving neuron, and 
a ~20 nm gap between them (synaptic cleft).

The electrical current responsible for the propagation of the action 
potential along the axons cannot go across the synaptic cleft. A signal 
conversion is made so that the transmission across the gap between one 
neuron’s axon and another’s dendrites is accomplished by chemical mes-
sengers called neurotransmitters. Various chemical neurotransmitters are 
stored in vesicles (spherical bags) in the synaptic terminal at the nerve 
ending to be available for release across the synaptic junction.

At the presynaptic terminal (the bouton or bulbous area at the end of 
the neuron), the arrival of an electrical action potential causes voltage-
gated calcium channels in the terminal wall to open and disgorge calcium 
into the terminal bulb. The calcium triggers synaptic vesicles located in 
the terminal to release their neurotransmitter contents into the synaptic 
cleft. In less than a millisecond, neurotransmitter diffuses across the gap 
and activates receptors in the membrane of the postsynaptic density (den-
drites) in the receiving neuron, and also activates adjacent astrocyte pro-
cesses. Astrocytes (glial cells) are present around the synaptic cleft to 
facilitate signaling and recycle neurotransmitters from the synaptic cleft 
back into synaptic vesicles (Shepherd, 1974).

Although each neuron has only one axon (which ends in multiple 
axon terminals for sending signals), it has multiple dendrites for receiving 
signals. On average, there may be about 2,800 synaptic connections to 
other neurons (Martins et al., 2019). Other estimates are higher: That each 
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neuron may have an average of 7,000 synaptic connections to other neu-
rons (Finger, 1994), or 10,000 (Koch, 1999). Another analysis points out 
that although each neuron may have about 7,000 axon terminals from 
other neurons, redundancy suggests an effective connectivity to only 
80 other neurons, mostly nearest neighbors (Cowan et al., 2016, p. 2). 
Specialized cells such as the Purkinje cells in the cerebellum have over 
1,000 dendritic branches, each with thousands of synaptic connections to 
other neurons (Mel, 2016). Synapses can be either excitatory or inhibitory, 
which serves to reinforce or dampen the signal that comes from the axon.

2.2.1  Electrical-to-chemical interconnects

Just as global telecommunications networks convert signals from electric 
to optical to electric for more expedient transmission across the intermedi-
ate portion of the network, the brain, likewise, converts signals from elec-
tric to chemical to electric. The neuron has an elaborate process for 
converting signals between the electrical and chemical regimes for effi-
cient transfer (Table 2.3). A neuron receives signals via dendrite and soma 
(for example, from visual or motor stimulus), and sends them as an elec-
trical action potential down the axon. The action potential is converted 
from an electrical to chemical signal in the presynaptic terminal and 
crosses the synaptic cleft as a chemical signal. In the postsynaptic density 
of the dendritic spine head, the chemical signal is processed and recon-
verted to an electrical signal to pass on to the soma of the receiving neu-
ron. Whereas the general form of neural signaling is through chemical 
synapses as described, there are also exclusively electrical synapses 

Table 2.3.  Neural signal processing.

No. Location Activity Signal

1 Sending neuron axon Action potential Electric

2 Presynaptic terminal Signal conversion Electric-to-chemical

3 Synaptic cleft Signal transmission Chemical

4 Postsynaptic density Signal reception Chemical-to-electric

5 Dendritic arbors Synaptic integration Electric
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(excitable cells which allow ions to pass directly from one cell to another) 
that are used in high-stakes rapid-signaling applications such as in the 
heart and escape reflexes.

2.2.2  Neural signaling energy budget

It is no mystery that creating electric energy potentials might use up a lot 
of the brain’s estimated energy budget, but receiving signals (postsynaptic 
receptor potentials) uses up a full third, too, as dendrites produce and send 
action potentials (dendritic spikes) themselves (Table 2.4). Attwell and 
Laughlin (2001) estimate the energy expenditure of different aspects of 
information processing of the brain. Most demanding are action potentials 
and postsynaptic potentials (47% and 34% of the total energy signaling 
budget). Then are neuronal and glial resting potentials (13%), presynaptic 
calcium entry and neurotransmitter recycling (each 3%), and least 
demanding are calcium transients in spines and vesicle recycling (<1%).

2.3  Sending Neuron (Presynaptic Terminal)

Neurons communicate with each other at specialized contact points called 
synapses. Presynaptic neurons store neurotransmitters within presynaptic 
vesicles at the nerve terminal. During synaptic transmission, presynaptic 
vesicles fuse with the plasma membrane, releasing their neurotransmitter 
contents into the synaptic cleft to activate postsynaptic receptors on 
receiving dendrites. Neurotransmitter release is a multistage process 

Table 2.4.  Energy budget for signaling in the brain.

No. Brain Function Energy (%)

1 Action potentials 47

2 Postsynaptic potentials 34

3 Resting potentials 13

4 Presynaptic calcium (Ca2+) 3

5 Glutamate recycling 3

Source: Attwell and Laughlin (2001, p. 1140).
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which requires the priming of synaptic vesicles into a readily-releasable 
pool of vesicles. When an action potential (an electrical signal traveling 
along the neuron’s axon) invades a nerve terminal, it promotes an influx 
of calcium ions (Ca2+) that proceed to trigger the fusion of primed vesicles 
with the membrane’s active zone, thereby causing neurotransmitter 
release.

The so-called “calcium hypothesis” describes how neurotransmitter 
release from presynaptic vesicles is triggered by elevations in the calcium 
ion (Ca2+) concentration in the presynaptic terminal (Katz & Miledi, 1965). 
The three main steps in the presynaptic signaling cascade are Ca2+ influx 
through voltage-gated calcium channels, buffered Ca2+ diffusion from the 
channels to releasable vesicles, and activation of the Ca2+ sensor for release 
(Meinrenken et al., 2003, p. 665). An action potential arrives and there is 
a Ca2+ influx (through a voltage-gated channel in the presynaptic terminal 
wall). Ca2+ enters the terminal through three subtypes of calcium channels 
(P/Q-type, N-type, and R-type channels, with 50%, 25%, and 25% contri-
butions, respectively) (Ibid., p. 668). There may be, on average, at least ten 
open channels per mm2 membrane (Ibid.).

Once the Ca2+ influx in the presynaptic terminal is received as a result 
of the action potential, a number of steps of protein interaction-related 
steps are triggered in the terminal or bouton (the enlarged nerve ending 
at the end of the axon). Synaptotagmins are a family of membrane- 
trafficking proteins that function as calcium sensors in the regulation of 
neurotransmitter release.

Synaptotagmins serve as Ca2+ sensors for release and also inhibit the 
spontaneous fusion of synaptic vesicles in the absence of an action poten-
tial. Synaptotagmins are implicated in early and late vesicle docking with 
the presynaptic (fusion) membrane. Two synaptotagmins (synaptotagmins 
1 and synaptotagmins 7), mediate fast and slow neurotransmitter release, 
respectively, and maintain a readily-releasable pool of vesicles (Bacaj 
et al., 2015).

The Ca2+ sensor synaptotagmins form an interface with the SNARE 
complex. The SNARE complex consists of three proteins (synaptobrevin, 
syntaxin, and SNAP-25) and the synaptotagmins Ca2+ sensor. The 
SNARE complex brings the synaptic vesicle and plasma membranes into 
juxtaposition and provides the energy for membrane fusion. Whereas 
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synaptotagmins orchestrate the neurotransmitter-filled vesicles, the coor-
dination with the SNARE complex binds the vesicle membrane to the 
plasma membrane and proceeds with exocytosis (in which the vesicles 
expel their contents into the synaptic cleft). Synaptotagmin displaces the 
protein complexin from the SNARE complex in the presence of calcium 
as one of the last steps in exocytosis. Calcium-bound synaptotagmin binds 
to the SNARE complex, causing the fusion clamp effect of complexin 
to be released, which allows vesicle fusion to occur and exocytosis to 
proceed (Sudhof, 2013).

Over 1,000 proteins function in the presynaptic nerve terminal, and 
hundreds are thought to participate in exocytosis (Sudhof, 2004, p. 510). 
The Munc13 and Munc18 proteins, for example, contribute to calcium 
sensitivity, and Munc13 is also related to the regulation of SNARE com-
plex assembly (Lai et al., 2017). Experimental evidence highlights the 
three-dimensional structure of the presynaptic terminal, finding that syn-
aptic vesicles are tightly interconnected in the axonal bouton, and prefer-
entially connected to active zones (Siksou et al., 2007).

Other research indicates that presynaptic inhibition is more compli-
cated and autonomous than had been thought (Jullie et al., 2020). This is 
due to MOR (mu-type) opioid receptors in the GPCR (G protein-coupled 
receptor) family being diffusely distributed and laterally mobile across the 
axon surface, and recycling locally as a separate behavior from the synap-
tic vesicle cycle.

2.4  Receiving Neuron (Postsynaptic Density)

Neurotransmitters released at the presynaptic terminal are either excit-
atory or inhibitory. Whereas excitatory neurotransmitters depolarize the 
postsynaptic cell, inhibitory neurotransmitters hyperpolarize the postsyn-
aptic cell. The inhibitory neurotransmitter often mitigates the effects of an 
excitatory neurotransmitter. The depolarization of the excitatory neu-
rotransmitters is called an excitatory postsynaptic potential (EPSP), and 
the hyperpolarization of the inhibitory neurotransmitter is called inhibi-
tory postsynaptic potential (IPSP).

The postsynaptic density is a dense protein-rich complex on the post-
synaptic membrane that receives neurotransmitter signals, mostly via 
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specialized protrusions called dendritic spines. Electron microscopy 
identifies the postsynaptic density as an electron-dense thickening of the 
postsynaptic membrane of excitatory synapses (Kim & Sheng, 2009). 
Excitatory synapses occur mainly on dendritic spines, whereas inhibitory 
synapses are typically formed on the shaft of dendritic arbors (Sheng &  
Kim, 2011). Postsynaptic densities are located across from the active 
zone of the presynaptic terminal of the sending neuron that releases 
excitatory neurotransmitters (mainly glutamate). Inhibitory synapses do 
not have a prominent postsynaptic density. The postsynaptic density 
comprises many different protein complexes and the space underneath 
it is occupied by actin filaments, the major cytoskeletal component of 
dendritic spines.

About 90% of excitatory synapses terminate on the dendritic 
spines of the receiving neuron. There are about 1–10 spines per micron 
length (1,000 nm) of dendrite (Sheng & Hoogenraad, 2007). Spine 
shapes are labeled as mushroom (60% of all spines in the adult cortex), 
stubby (20–25%), thin (10–20%), filopodia (2–15%), or branched 
(Ibid.). The postsynaptic density also serves as a signaling apparatus 
(including by compartmentalizing calcium) and is implicated in synap-
tic plasticity (Suzuki et al., 2018). The size and shape of the postsyn-
aptic density can change dynamically, and also the dendritic spines in 
response to long-term potentiation and long-term depression (Martins 
et al., 2016).

The most numerous volume of molecules received at the dendritic 
synapse is calcium ions (Cugno et al., 2019, p. 2), which geometrically are 
absorbed into a lattice structure (Suzuki et al., 2018). Of the many differ-
ent classes of postsynaptic density proteins identified by mass spectrom-
etry, about half are related to structural form and the other half to function. 
Functional proteins include kinases (11%), GTPases (8%), metabolism 
(7%), translation (6%), mitochondria (6%), and membrane trafficking 
(5%). Structural proteins include cytoskeleton-actin (12%), cell adhesion 
(7%), receptors and channels (6%), and scaffolds (6%) (Sheng & Kim, 
2011, p. 3). The most abundant postsynaptic density proteins are those 
from the CamKII (Calmodulin-dependent protein kinase type II) family, a 
GTPase-activating protein (SynGAP), and a scaffold protein PSD-95 
(postsynaptic density 95) (Kim & Sheng, 2009, R724).
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2.5  Synaptic (Dendritic) Spike Integration

Neurotransmitters are disgorged from the active zone on the edge of the 
presynaptic terminal and cross the 20-nm wide synaptic cleft directly into 
the postsynaptic density across the channel on the receiving neuron. 
Processing the signaling information, the dendrites in the postsynaptic 
density may convert the chemical signals back into electrical signals for 
onward transmission. The chemical-to-electric conversion is performed 
with the same membrane polarization and depolarization mechanisms that 
are used to generate the electrical signal of the axon’s action potential. 
Dendritic membrane depolarization is triggered by incoming (afferent) 
chemicals (neurotransmitters), which are received at many locations on 
the dendrite. Dendrites have high densities of calcium channels, and cal-
cium entry into the cell causes prolonged membrane depolarization and 
increased action potentials. The initiation of dendritic spikes is facilitated 
by the high input impedance of small-diameter branches, which allows a 
relatively small number of co-activated synapses on the same branch to 
produce a large local EPSP, and thus evoke a dendritic spike. The den-
drites thus generate small local action potentials (dendritic spikes) and 
send them upstream in an information processing sequence in which they 
may be further aggregated and eventually lead to the neuron’s cell body 
(soma) and axon to possibly trigger an outgoing action potential from that 
neuron.

Synaptic integration (or dendritic integration) is the neuron’s informa-
tion processing activity of amalgamating individually received molecular 
signals on dendrites into a global action. The majority of synaptic input 
neurons receive is made onto their dendrites, and so the morphology and 
membrane properties of dendrites play a key role in signal transformation. 
In particular, the structure of the dendritic tree and the position of syn-
apses on the dendrites influence synaptic summation in different ways. 
Dendritic geometry is an active research topic. One project modeled the 
dendritic shape as elliptical spheroids and found that the curvature of the 
geometry gives rise to pseudoharmonic functions that can be used to pre-
dict the locations of maximum and minimum concentrations along the 
spine heads (Cugno et al., 2019). In the basic setting, three elements 
are involved in the synaptic integration of incoming signals. There is the 
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amplitude of the unitary postsynaptic potential, the manner in which non-
simultaneous unitary events add in time (temporal summation), and the 
addition of unitary events occurring simultaneously in separate regions of 
the dendritic arbor (spatial summation) (Magee, 2000).

There is active dendritic integration at many intermediary steps along 
the way from the dendrite to the cell body (soma), not merely passive 
signal transmission (Williams & Atkinson, 2008). Dendritic spikes are 
generated in many regions of the dendritic tree. Dendrites do not merely 
forward signals to the neuron’s cell body and axon, but process signals 
along the way. The number of dendritic integration compartments is 
defined by the electrical geometry of the neuron together with the den-
dritic distribution of voltage-activated ion channels. Dendritic synaptic 
inputs are integrated locally in the dendritic tree, leading to the generation 
of dendritic spikes as an intermediary processing signal. Synaptic input is 
integrated not only at the level of the axon, but also within the dendritic 
tree. The brain is the original smart network, with local intelligence built 
into its processing all the way from the dendrite to the cell body.

An intricate brain processing logic appears to be at work as a large 
number of incoming signals are received, but not necessarily transferred 
to the neuron’s soma. For example, empirical dendritic recordings indicate 
that barrages of excitatory synaptic input generated distally (far away) in 
the dendritic tree of cortical pyramidal neurons do not sum to form a 
coherent signal, and rather are heavily attenuated and provide a weak 
drive for action potential firing (Williams &  Atkinson, 2008, R1045). The 
implication is that some degree of intelligence is added by dendritic inte-
gration and spiking activity in order to transmit signals.

Spatial (near and far) and temporal properties (fast and slow) are 
implicated in dendritic signal transfer and amalgamation (and also signal 
amplitude and kinetics). Dendrite potentials closest to the soma (basal, 
proximal) are more heavily weighted than those that are farther away 
(distal, apical (apex of dendrite)). The closer to the cell body, the higher 
the signal amplitude. The most heavily transferred signals are fast signals 
from nearby dendrites, but even these are only transferred to the soma 
with 20–25% efficiency (Henze et al., 1996, p. 341). Slow signals from 
farther away dendrites are efficiently transferred to the soma, which sug-
gests a modulatory role on the resting potential of the cell. In other cases 
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in which there is a joint signal from both closer and farther away dendrites 
(when nearby wave activity is superimposed on farther away activity), the 
neuron has a higher probability of firing an action potential. Further, 
the amplitude and kinetics of the electrical signal can vary as a function 
of position within the dendrite and signal frequency, adding even more 
complexity to the “neural algebra” by which incoming signals are 
aggregated.

Dendrites track not only how many incoming signals they receive but 
also how many neurons are involved in sending them, in both space and 
time. Dendritic spikes are more likely to occur when dendrites receive a 
coherent activation simultaneously from a number of presynaptic neurons, 
as opposed to when a presynaptic neuron fires alone (Losonczy et al., 
2008). Also, dendritic spikes have different levels, weak and strong, 
modulated by activity-dependent dendritic voltage-activated ion channels, 
as a sort of learning rule (Ibid.). Fast and slow times are implicated in two 
different ways. One is that fast and slow times are used in that local fast 
signals, and distant slow signals, are more likely to be transmitted to the 
soma. Another is that fast and slow times are used for fast network pro-
cessing at the edge and slower processing at the core.

2.5.1  Excitatory and inhibitory postsynaptic potentials

The dendritic spiking and integration activity discussed so far applies 
mainly to excitatory signals. Excitatory synapses occur mainly on the tiny 
protrusions called dendritic spines. In contrast, inhibitory synapses are 
more hidden and typically form on the shaft of dendrites. Excitatory syn-
apses differ from inhibitory synapses in their location and shape and in the 
type of neurotransmitter receptors they have and the processing activity 
they conduct. More is known about excitatory synapses as they have a 
distinctive structure and greater abundance. Signals from both excitatory 
and inhibitory synapses, though, consist of far-off (distal) and nearby 
(proximate) signals that are aggregated for upstream transmission. 
Dendrite potentials (signals) are aggregated into excitatory postsynaptic 
potentials (EPSPs) or inhibitory postsynaptic potentials (IPSPs). Synaptic 
computation is performed in dendritic trees when excitatory and inhibi-
tory synapses are activated in specific spatial and temporal patterns. 
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Whereas excitatory potentials have a stimulatory impact, inhibitory poten-
tials exert a blocking influence. At the soma and axon, inhibitory synaptic 
potentials have the ability to block action potential generation, and in the 
dendrites, the ability to block dendritic spike generation and propagation 
(Spruston et al., 2016, pp. 36–7). By preventing dendritic spike genera-
tion, inhibitory synapses on individual dendritic branches act as gatekeep-
ers that control whether or not a dendritic spike is generated.

2.5.2  Dendritic pathologies

Many pathologies are associated with improperly functioning dendritic 
arbors. Stress-related pathologies such as posttraumatic stress disorder 
(PTSD) are implicated in that chronic stress reduces arbor complexity and 
dendritic length (McKittrick et al., 2000). Chronic stress-induced changes 
in behavior are often further attributed to changes in the hippocampus and 
targeted with pharmaceutical intervention. In addition, mutations in post-
synaptic density proteins are associated with autism spectrum disorders, 
obsessive-compulsive disorder, and other neuropsychiatric illnesses 
(Sheng & Kim, 2011, p. 12).

Reduced levels of postsynaptic density proteins in the brain are a 
hallmark of Alzheimer’s disease, possibly related to the substantial syn-
apse loss that is a precursor to this neurodegenerative disorder. Seizure is 
also implicated as an abnormal brain state. Electrical activity in the brain 
is usually nonsynchronous, but neurons that fire in an excessive and syn-
chronized manner can lead to seizures (Angus-Leppan, 2014). The mech-
anism of action is that ion channel mutations may confer a long-lasting 
depolarized resting state to neurons that then leads to hyperexcitability. 
The long-lasting depolarization is due to an influx of calcium ions from 
outside of the cell which triggers the extended opening of sodium chan-
nels and repetitive action potentials.

2.5.3  Dendritic integration filtering

There is even more complication and nuance to dendritic integration than 
discussed earlier. Central to dendritic integration is the idea that dendrites 
behave like electrical filters, reducing the amplitude of synaptic potentials 

b4362_Ch02.indd   43b4362_Ch02.indd   43 4/29/2022   6:33:05 PM4/29/2022   6:33:05 PM



b4362  Quantum Computing for the Brain 6"×9"

44  Quantum Computing for the Brain

as they travel from the dendritic site of generation to the cell body (Rall, 
1995). The time course of EPSPs at the soma is slowed due to the filtering 
properties of the dendritic membrane between the synapse and the soma. 
The neuron responds more slowly to inputs received at distal dendrites 
than at proximal dendrites. Synaptic potentials generated in distal den-
drites may attenuate over 100-fold by the time they reach the soma, sug-
gesting that such synapses will be less efficient than more proximal 
synapses.

Two additional factors mitigate the disparity between proximal and 
distal synapses. First, the attenuation of synaptic charge is much less than 
the attenuation of fast synaptic voltage changes. Second, at least some 
synapses may scale their conductance to compensate for dendritic dis-
tance (Spruston et al., 2016, p. 17). On the one hand, synaptic voltage, 
through EPSP attenuation and temporal filtering, depends not only on the 
distance of the synapse from the soma but also on the EPSP time course, 
with faster EPSPs attenuated and filtered more than slower EPSPs. On the 
other hand, the attenuation of synaptic charge depends only on distance 
from the soma and not on the time course of the charge entry at the syn-
apse. Notably, the treatment of voltage and charge behaviors may be quite 
different in passive dendrites and active dendrites.

Filtering or other mechanisms may be at work in a new class of 
graded dendritic action potentials that have been discovered. Studying 
human pyramidal neurons, Gidon et al. (2020) identified some calcium-
mediated dendritic action potentials whose waveform and effects on neu-
ronal output have not been described previously. In contrast to typical 
all-or-none action potentials, these potentials appear to be graded in the 
sense of having maximal amplitudes for threshold-level stimuli but damp-
ened amplitudes for stronger stimuli.

2.5.4  Computational neuroscience and biophysical modeling

The complexities of dendritic behavior are still emerging and eclipse the 
ability of contemporary modeling techniques. The opportunity for quan-
tum computing is immediately clear in possibly providing a natural three-
dimensional environment similar to the dendrite’s own. This could 
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improve on the simple three-dimensional cone models that have been 
proposed (Henze et al., 1996). Meanwhile, computational neuroscience 
software applications such as NEURON, GENESIS, BRIAN, and 
NEST are the main options for modeling the complexities of dendritic 
behavior. However, although these platforms (particularly, NEURON and 
GENESIS) offer intricate single neuron models, a fuller simulation of 
brain network behavior is difficult, even with multicompartment models 
(Tikidji-Hamburyan et al., 2017). Neuronal morphology is simplified into 
a point representation of the soma, and linear summations at the soma of 
the excitatory and inhibitory synaptic currents originating from dendrites. 
The point neuron framework does not incorporate the complete picture of 
the spatiotemporal aspects of dendritic integration. One proposed solution 
is an overlay to the existing point neuron model in NEURON, in the form 
of a synaptic integration current that captures a greater range of dendritic 
effects including the dendritic filtering effect (that far-off signals are 
attenuated) (Li et al., 2019).

2.6  Neural Signaling and Quantum Computing

The obvious low-hanging fruit application for quantum neuroscience is 
synaptic integration. The problem is complex and three-dimensional and 
requires diffusion equation modeling with PDEs (to capture the effects of 
nonlinear calcium signaling). Although the electrical signaling behavior 
of the action potential being transmitted along the neuron’s axon is some-
what well understood, having a predictive model of dendrite behavior is 
much more challenging. Pyramidal human dendritic arbors appear to 
perform extremely sophisticated logic operations. Further, dendritic 
behavior involves chemical signaling comprising complicated protein 
cascades at the subatomic scale. Current synaptic modeling software 
approaches include dendritic trees to some extent, but not full synaptic 
integration (Poirazi & Papoutsi, 2020). The underlying biology is still 
being characterized. Thus, synaptic integration modeling and microscopy 
imaging (electron microscopy, light field microscopy, and  lattice light 
sheet expansion microscopy) might further inform each other as imple-
mented in quantum neuroscience applications.
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Chapter 3

The AdS/Brain Correspondence

The gauge/gravity duality is an equality between two theories. On one 
side we have a quantum field theory in d spacetime dimensions. On the 
other side we have a gravity theory on a d+1 dimensional spacetime

— Maldacena (2014, p. 1)

Abstract

The AdS/CFT correspondence is a model of physical systems equating 
a complicated bulk volume to a boundary region with one less dimen-
sion. The model surpassed 20,000 journal citations in early 2021 and is 
applied in various areas of physics, information science, and neurosci-
ence. A novel multi-tier AdS/Brain correspondence is proposed. AdS/
DIY mathematics are elaborated with the four equations of the metric, 
operator, action, and Hamiltonian or Lagrangian.

3.1  The AdS/CFT Correspondence

The AdS/CFT correspondence (anti-de Sitter space/conformal field the-
ory) is a solvable theory of quantum gravity proposed by Maldacena 
(1999). The work constitutes one of the most cited papers in any field 
(over 21,000 citations as of September 2021), including in all physics 
arXivs (Natsuume, 2016, p. 4). Although the correspondence is a conjec-
ture that has not been mathematically proven, no serious inconsistencies 
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appear to have arisen. The essence of the theory is that any physical sys-
tem with a complicated bulk volume can be described by a boundary 
theory in one less dimension. This could be a room full of particles, a 
black hole, or a brain. The model formally states that there is an equiva-
lence between a gravity theory (bulk) and a gauge theory (boundary). The 
theories can be related in part due to the fact that both operate on the basis 
of fields (gravitational fields and quantum fields) which can be mathemat-
ically related in matrix operations.

The AdS/CFT correspondence is also called the holographic corre-
spondence or holographic duality (HD) because metaphorically, the 
boundary is a hologram in the sense of encoding a three-dimensional 
image on a two-dimensional surface. The holographic correspondence 
offers two views of the same physical system (boundary surface or bulk 
volume) and a mathematical formalism for solving in either direction 
(bulk-to-boundary or boundary-to-bulk). This book proposes the first 
instance, as far as the authors know, of using a multi-tier correspondence 
model (multiple graduated levels of bulk and boundary), in this case, to 
instantiate the scale tiers of the brain’s neural signaling processes between 
axon, presynaptic terminal, synaptic cleft, postsynaptic density, and den-
dritic spiking potentials from dendrite to soma (at the scale tiers of net-
work, neuron, synapse, and molecule). The resulting AdS/Brain theory is 
a composite theory of neural signaling that interprets the AdS/CFT cor-
respondence in a matrix quantum mechanics formulation (a multiple 
matrix model for quantum mechanical systems (Han et al., 2020)).

3.1.1  Stating the AdS/CFT correspondence

The AdS/CFT correspondence is a quantum field theory in d spacetime 
dimensions that is equivalent to a gravity theory on a d + 1 dimensional 
spacetime (Maldacena, 2014, p. 1). An important target application of the 
correspondence is studying black hole solutions in various numbers of 
dimensions (Ibid.). As the d and d + 1 format suggests, there can be dif-
ferent dimensional flavors of the correspondence. Most basic is AdS2/CFT 
(two spatial dimensions in the bulk and one in the boundary).

The correspondence is initially stated in terms of AdS5/CFT4, 
namely, five bulk dimensions and four boundary dimensions (Table 3.1). 
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The correspondence is the duality between a certain supersymmetric 
quantum gauge theory in four dimensions, N = 4 SU(N) Yang–Mills the-
ory, and a theory of quantum gravity, type IIB string theory, in a fluctuat-
ing spacetime that is an asymptotically five-dimensional AdS space times 
a spherical manifold, AdS5 × S5 (the manifold “S” (as in S5) is mostly 
ignored until computation begins). Yang–Mills theory is a gauge theory 
upon which the Standard Model of particle physics is based. The HD is 
simplest from the gravity point of view when the boundary quantum field 
theory is strongly coupled since in this limit, quantum gravity reduces to 
classical gravity in a weakly curved space.

AdS is a solution of classical gravity (of Einstein’s equation with 
negative vacuum energy). The two theories have the same amount of 
degrees of freedom per unit volume and the same global symmetries. The 
theory draws from the holographic principle which says that the informa-
tion stored in a spatial volume is encoded in its boundary area in AdSd−1 
(Susskind, 1995). The idea is to choose a bulk-boundary dimensional 
relationship relevant to the problem at hand, possibly beginning with the 
simple model of AdS2/CFT and expanding into higher dimensionality. 
Although the AdS/CFT correspondence has long been conceived as a 
renormalization group method (Heemskerk & Polchinski, 2011), it is only 
recently with information-theoretic methods that an equation is available 
to perform this calculation explicitly (Harlow, 2017).

Following the correspondence itself, the second canonical proposal 
is the Ryu-Takayanagi formula for entanglement entropy (Ryu & 
Takayanagi, 2006). The formula says that the entanglement entropy of a 
region in the boundary is equivalent to the area of a bulk minimal surface. 
Entanglement entropy is a measure of the degree of quantum entangle-
ment in a many-body quantum state. In the classical gravity limit of the 

Table 3.1.  The canonical AdS/CFT correspondence.

Bulk Boundary

5D theory of quantum gravity 
(AdS5 × S5)

4D supersymmetric quantum gauge theory  
(N = 4 SU(N) Yang–Mills theory)

Area of a minimal three-
dimensional surface

Entanglement entropy of a boundary region
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bulk, the entanglement entropy of a region in the boundary quantum field 
theory is given by the area (in Planck units) of a minimal three- 
dimensional surface which hangs from the two-dimensional boundary 
region into the bulk as a geodesic (shortest length curve) (Swingle, 2012). 
The curve is a holographic screen in two senses: In one way, it projects 
bulk information onto the boundary, and, in another way, it hides other 
bulk information that is not revealed. Independent proofs have confirmed 
the Ryu-Takayanagi formula (Lewkowycz & Maldacena, 2013; Faulkner 
et al., 2014). The entanglement entropy formula has been extended in the 
Hubeny-Rangamani-Takayanagi formula to accommodate covariance 
(measurement in a change of basis) (Hubeny et al., 2007) and quantum 
formulations (Engelhardt & Wall, 2019).

3.2  AdS/CFT Correspondence Studies

3.2.1  AdS/CFT hybrid approaches

The AdS/CFT correspondence is implemented either directly as a tool in 
a content domain or via another tool aimed at a content domain, including 
itself as the content domain (in the study of HD). The AdS/CFT corre-
spondence thus has various interpretations in other tools such as the 
Sachdev–Ye–Kitaev (SYK) model, tensor networks (TNs), and machine 
learning (ML) networks, as further directed to the study of a content 
domain. Current topics in HD include various dictionary mappings, bulk 
duals, bulk quantum mechanics, and theories of quantum gravity. A spe-
cific dictionary mapping on the research agenda, for example, is a com-
plete gravity dual for the Ising model, since if such a dual exists, it seems 
likely to be complicated (Swingle, 2012; Harlow, 2017). AdS/CFT hybrid 
approaches are listed in Table 3.2.

3.2.2  Duality lens

The premise of the correspondence is that a duality lens can be applied 
to any physical system such that it can be understood either as a quantum 
field theory or as a gravity theory, using whichever side is more 
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convenient to compute. The directionality can be either way. Some sys-
tems are more complicated as formulated on the gravity side, and others 
from the quantum field theory perspective. This can be seen in two 
canonical problems to which the correspondence is applied. First, in the 
boundary-to-bulk direction, well-understood standard quantum field 
theories on the boundary are used to study the more complicated situa-
tion of quantum gravity and the emergence of gravity (and time and 
space) in the bulk. The duality view provides an indirect way to study 
gravity without the computational difficulty of studying gravity directly. 
Second, the bulk-to-boundary direction proves equally useful in other 
systems such as in condensed matter physics. Here, the quantum field 
theories by which unconventional materials behave are unknown, but can 
be interrogated through the bulk classical gravity that is well understood. 
Certain CFT states correspond to classical geometries in the bulk 
(Table 3.3).

Table 3.2.  AdS/CFT hybrid approaches.

No. Approach Result Reference

1 AdS-SYK-HD Bulk duals for cubic couplings Gross and Rosenhaus (2017)

2 AdS-TN-HD Entropy equals geodesics Swingle (2012)

3 AdS-TN-HD Exact holographic mapping Qi (2013)

4 AdS-TN-HD Expanded form of AdS/CFT Hayden et al. (2016)

5 AdS-TN-QIT Motzkin spin state walks Alexander et al. (2018)

6 AdS-TN-QIT Quantum error correction Pastawski et al. (2015)

7 AdS-ML-QCD QCD neural networks Hashimoto (2019)

Table 3.3.  AdS/CFT correspondence directional duality.

Direction Domain Known Unknown

Boundary-to-bulk Theoretical physics Standard quantum 
field theory

Quantum gravity

Bulk-to-boundary Condensed matter 
physics

Classical gravity Unconventional materials 
quantum field theory
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3.3  Applied AdS/CFT

Many discipline-specific versions of the AdS/CFT correspondence have 
arisen as the theory continues to be applied to various fields. In theoretical 
physics, areas of study include quantum chromodynamics (QCD) and 
strongly coupled systems such as plasmas, condensed matter theory 
(CMT) and the SYK model, and chaotic thermal systems. The AdS/CFT 
correspondence sees application in neuroscience as a model for memory, 
a control tool for brain-cloud interfaces, and in the current work, as a 
multiscalar theory for neural signaling modeling. An early AdS/Brain 
proposal is the hypothesis of a nonlinear associative memory function 
in the human brain akin to the performance of a Fourier holograph 
(Willshaw et al., 1969). In information science, the AdS/CFT correspon-
dence is applied to TNs, quantum information theory (QIT), blockchain 
distributed ledgers, ML, and quantum ML (Table 3.4).

Table 3.4.  Applied AdS/CFT correspondence studies.

No. AdS/CFT Correspondence Variation Reference

Theoretical physics

 1 AdS/CFT AdS/conformal field theory Maldacena (1999)

 2 AdS/QCD AdS/quantum chromodynamics Natsuume (2016)

 3 AdS/CMT AdS/condensed matter theory Hartnoll et al. (2018)

 4 AdS/SYK AdS/SYK model Sachdev (2010)

 5 AdS/Chaos AdS/chaos (thermal systems) Shenker and Stanford (2014)

 6 AdS/Math AdS/mathematics Hazboun (2018)

Neuroscience

 7 AdS/Brain AdS/neuroscience Willshaw et al. (1969)

 8 AdS/BCI AdS/brain/cloud interface Swan (2022)

Information science

 9 AdS/TN AdS/tensor networks Swingle (2012)

10 AdS/QIT AdS/quantum information theory Hayden et al. (2016)

11 AdS/DLT AdS/blockchain technology Kalinin and Berloff (2018)

12 AdS/ML AdS/machine learning Hashimoto et al. (2018b)

13 AdS/QML AdS/quantum machine learning Cottrell et al. (2019)

14 AdS/QSN AdS/quantum smart networks Swan et al. (2020)
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3.3.1  AdS/QCD (quantum chromodynamics)

The AdS/QCD correspondence is the research program to describe QCD 
(the quantum field theory of the strong force) in terms of a gravitational 
theory. In this formulation, QCD (strongly interacting particles) is the 
boundary, and a gravitational dual is the bulk. The strong force is diffi-
cult to test experimentally and the correspondence provides a means of 
investigating it more closely. The strong force pertains to quarks (matter 
particles) and gluons (force particles) which are bound together to com-
prise the protons and the neutrons in atomic nuclei. (In QCD, the funda-
mental degrees of freedom are quarks and gluons). Although the strong 
force is well understood, experiments are difficult because it is not pos-
sible to separate quarks and gluons as it is electrons in the standard setup 
of particle accelerator experiments. Other typical methods such as per-
turbation also do not work because the strong force is literally very 
strong. However, with the AdS/CFT correspondence, it is possible to 
study a strongly coupled gauge theory using the AdS spacetime bulk 
(Natsuume, 2016).

Quarks and gluons are normally confined inside protons and neutrons. 
However, at high enough temperatures, they become deconfined and form 
the quark-gluon plasma. Experimental evidence indicates that the quark-
gluon plasma behaves like a fluid with low viscosity. Quark-gluon plasma 
viscosity is similar to that of black holes as predicted by the holographic 
correspondence. Viscosity is a measure of how quickly a thermal system 
returns to equilibrium after being perturbed. An example is throwing a 
pebble into a pond. Surface waves are generated but decay quickly, and 
the pond returns to a flat state. The pond has low viscosity and resets 
quickly. Black holes also have low viscosity and reset quickly.

When an object is dropped into a black hole, the shape of the black 
hole horizon momentarily becomes irregular, but the perturbation decays 
quickly and the black hole returns to its original symmetric shape. 
Viscosity can be computed by the dissipation rate of the perturbed state. 
In particular, the transport coefficients in the viscosity calculation mea-
sure how quickly the effect propagates. Quark-gluon plasmas have been 
found to have similar transport coefficients to those in other low viscosity 
systems such as black holes and hydrodynamic fluids. There are several 
proposals for a precise formula for computing the viscosity of the 
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holographic bulk, for example, Gursoy et al. (2011) and Casalderrey-
Solana et al. (2012). The upshot is that it is easy to perturb black hole 
spacetime with the holographic correspondence, whereas experimenting 
with quarks and gluons in real-life is very hard, and the two can be studied 
together through the duality relation of the correspondence.

Another team’s AdS/QCD method takes a different approach. In this 
case, strong force empirical data are available, and the correspondence is 
used as a theoretical framework to compile and interpret the data (via a 
ML model). In one experiment, lattice QCD values (of a chiral condensate 
at finite-temperature) serve as input on the boundary and a thermal phase 
transition is the output of the bulk analysis (Hashimoto et al., 2018a). In 
another experiment, meson mass spectra data are input on the boundary 
and a curved geometry formulation is the output of the bulk analysis 
(Akutagawa et al., 2020) (Table 3.5).

3.3.2  AdS/CMT (condensed matter theory)

The AdS/CMT correspondence is the application of the AdS/CFT corre-
spondence to problems in condensed matter physics. Unconventional 
materials have proven impervious to study with traditional methods, and 
the holographic correspondence offers a way to attack unsolvable quan-
tum mechanical systems (exotic materials) with the bulk as a known grav-
ity formalism. The main formulation of AdS/CMT is a bulk-to-boundary 
application of the correspondence. The bulk (Einstein’s classical theory of 
gravity) is well understood and is used to evaluate the unknown quantum 
field theories of exotic materials on the boundary. The premise is that 
there is a holographic duality between black holes (bulk) and unconven-
tional materials (boundary) (Sachdev, 2010). The assumption is that since 

Table 3.5.  Bulk-boundary: AdS/QCD (strong force).

No. Bulk Boundary Reference

1 AdS spacetime Strongly coupled gauge theory Natsuume (2016)

2 Thermal phase transition Lattice chiral condensate Hashimoto et al. (2018a)

3 Curved geometry Meson mass spectra data Akutagawa et al. (2020)
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black holes and unconventional materials have similar properties related 
to mass, temperature, and charge, they can be investigated with the duality 
lens of the correspondence.

An important application of the AdS/CMT correspondence is investi-
gating high-temperature superconductors since they are not fully under-
stood but could have an extremely transformative effect on future 
computational devices such as quantum computers. High-temperature 
superconductors are materials (such as cuprates, pnictides, and heavy fer-
mions) that become superconducting (conducting electricity without resis-
tivity) at relatively high temperatures (above 77 K (−196°C or −321°F)). 
“High-temperature” is a significant technical threshold as such materials 
do require bulky and expensive cryogenic freezing equipment (Flores-
Livas et al., 2020). In the AdS/CMT correspondence, high-temperature 
superconductors are the boundary. They constitute a CFT (boundary) in 
that the materials behave according to some unknown quantum field the-
ory of interactions between the particles comprising the material, appar-
ently governed by equations related to both the temperature and charge of 
the material. Classical gravity is the bulk, a well-understood computable 
theory. The method is to append a gravity bulk to the boundary field theory 
of the unconventional material to elicit its properties. Of particular interest 
is the conductivity (ability to conduct electricity) of the material as one of 
the first typical characterizations of materials, which is not possible with 
traditional methods (e.g. BCS (Bardeen–Cooper–Schrieffer) theory that 
applies to nonexotic superconducting materials (Bardeen et al., 1957)).

The experimental analysis is as follows. The unconventional material 
organized per an unknown quantum field theory is appended to a bulk 
with a black hole behaving according to classical relativity. The two 
domains are linked together through the correspondence formalism. Then 
some electric current is applied to the boundary. Calculating the effect of 
applying the current to the exotic material is not possible because its prop-
erties are unknown. However, calculating the effect of applying the cur-
rent is straightforward on the black hole side. When current or charge is 
applied to a black hole event horizon (boundary), some of the current falls 
into the black hole in the form of ripples in spacetime gravity. This makes 
the black hole larger, and the resulting growth can be measured as the 
entropy of the black hole with known formulas (from Bekenstein and 
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Hawking). Since entropy is the same as the loss of heat, via the correspon-
dence, the loss of heat in the bulk is equal to the conductivity of the uncon-
ventional material (Hartnoll et al., 2016).

Other methods do not allow the conductivity of the unconventional 
material to be calculated. However, with the AdS/CMT correspondence, 
black hole formulations can be used to describe dissipative processes that 
allow the investigation of unconventional materials. An important prop-
erty in materials science is establishing a material’s conductivity (ability 
to conduct electricity) and the converse, resistivity (ability to block the 
transmission of electricity). Articulating the properties of high-temperature 
superconductors, which have perfect conductivity (no loss), and how their 
operational deployment might proceed could have substantial use in con-
structing lossless computing systems. Some of the bulk-boundary rela-
tionships of AdS/CMT are outlined in Table 3.6.

3.3.3  AdS/SYK (SYK model)

The AdS/CMT correspondence is often applied with the SYK model 
(named after the authors, Sachdev & Ye, 1993; Kitaev, 2015), which is a 
solvable model of condensed matter systems with broad application in 
many fields of physics and beyond. More specifically, the SYK model is 
a model of quantum mechanical systems of Majorana fermions with all-
to-all random interactions, that unlike many other models of strongly 
interacting quantum mechanical systems are readily solvable. Further, the 
SYK model is important as the minimal realization of the AdS/CFT cor-
respondence (Sachdev, 2010).

AdS/SYK refers to the body of research that applies the correspon-
dence through the SYK model. AdS/SYK is applied in both directions, 

Table 3.6.  Bulk-boundary: AdS/CMT (condensed matter).

No. Bulk Boundary Reference

1 Black hole gravity Unconventional materials quantum 
field theory

Sachdev (2010)

2 Black hole entropy Unconventional materials 
conductivity

Hartnoll et al. (2016)
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from bulk-to-boundary to facilitate the study of unknown quantum 
mechanical systems on the boundary via the well-understood bulk 
 classical gravity, and from boundary-to-bulk to elaborate bulk duals 
(emergent bulk structure). For example, Gross and Rosenhaus (2017) 
examine the bulk dual of the SYK model as related to the cubic couplings 
of bulk interactions. Engelsoy et al. (2016) also investigate bulk duals, in 
particular through the dynamical time variable in the SYK model, to study 
black hole evaporation and the role of entropy, among other aspects. 
Garcia-Alvarez et al. (2017) propose the digital quantum simulation of a 
minimal AdS/CFT model in controllable quantum platforms using the 
SYK model as a protocol that reproduces a simplified low-dimensional 
model of quantum gravity in advanced quantum platforms as trapped ions 
and superconducting circuits.

3.3.4  AdS/Chaos (thermal systems)

AdS/Chaos refers to the application of the AdS/CFT correspondence to 
the study of chaotic systems. Chaos denotes the states of dynamical sys-
tems whose apparently random states of disorder and irregularity are in 
fact governed by deterministic laws that are highly sensitive to initial 
conditions. In theoretical physics, chaos is often synonymous with ther-
mal systems (systems governed by heat), which often follow chaotic 
dynamics (a seemingly random evolution but one that can be described by 
laws). As in AdS/CMT, applying the correspondence in AdS/Chaos can 
provide a simplification for solving an otherwise intractable problem. 
Chaotic thermal systems are typically described by strongly interacting 
gauge theories, which cannot be easily computed. Chaos problems fre-
quently entail solving classical general relativity problems, which sug-
gests that they might be amenable to a gravity formulation via the 
holographic correspondence. The chaotic system is formulated with the 
correspondence in order to obtain computable coefficients for the times-
cale by which the strongly interacting thermal system will relax. 
Understanding how a chaotic system relaxes is a start toward character-
izing the system.

Shenker and Stanford (2014) use the correspondence in the gauge-
gravity formulation to explore bulk geometry. The experimental setup has 

b4362_Ch03.indd   59b4362_Ch03.indd   59 4/29/2022   6:33:15 PM4/29/2022   6:33:15 PM



b4362  Quantum Computing for the Brain 6"×9"

60  Quantum Computing for the Brain

highly entangled CFTs linked to black hole bulk geometry. A chaotic 
system is induced by acting on the bulk and the boundary with thermal-
scale operators that are local at different times, such that perturbations 
create an intersecting network of shock waves. The resulting chaotic CFT 
dynamics and the associated fast information scrambling time are used to 
identify features of the resulting bulk geometries. The method is specify-
ing the bulk and boundary regions, acting on both, and then finding out 
more about the bulk through the boundary.

In another example of AdS/Chaos, Maldacena et al. (2016) use 
holography to conjecture a bound on the growth rate of chaos in quantum 
thermal systems that have a large number of degrees of freedom. The 
usual mechanism for diagnosing chaotic systems, an out-of-time-order 
correlation function, is used (a quantum information operator that 
assesses  temporal correlation). Long-time behavior that is sensitive to 
initial conditions in the CFT is connected to high-energy scattering pro-
cesses in the bulk near the black hole horizon. A key finding is the claim 
that chaos can develop no faster than exponentially (per the influence of 
chaos on the out-of-time-order correlator). Analyzing an AdS5/CFT4 
model (N = 4 Super Yang–Mills theory/AdS5), Cotler et al. (2017) find 
that the late time behavior of horizon fluctuations in large AdS black 
holes is governed by random matrix dynamics that describe the fine-
grained structure of energy levels in chaotic systems. Bulk-boundary 
representations of AdS/Chaos (thermal systems) applications appear in 
Table 3.7.

Table 3.7.  Bulk-boundary: AdS/Chaos (thermal systems).

No. Bulk Boundary Reference

1 Black hole geometry Highly entangled CFTs Shenker and Stanford 
(2014)

2 High-energy scattering 
processes near the bulk 
black hole horizon

Long time behavior 
(sensitivity to initial 
conditions) in the CFT

Maldacena et al. (2016)

3 5D AdS-Schwarzschild 
black hole metric

4D super Yang–Mills 
theory

Cotler et al. (2017)
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3.3.5  AdS/QIT (quantum information theory)

CFT: Quantum Field Theory -> Quantum Information State -> Qubits
The AdS/QIT correspondence is the research program of interpreting 

the AdS/CFT correspondence in terms of QIT. The thought progression is 
that the boundary quantum field theory is described by quantum informa-
tion states, which are represented by qubits. The correspondence is gener-
ally considered in the context of tangible physical systems such as a black 
hole or superconducting material. However, quantum computers are like-
wise physical systems and information-theoretical interpretation of the 
correspondence sees the boundary field theory as quantum states repre-
sented by qubits.

Information theory is concerned with the efficiency of information 
quantification, storage, and transmission. One problem of interest is deter-
mining the best information compression protocols for sending quantum 
states. AdS/QIT thus might operate a bulk-to-boundary analysis to find 
efficient information compression protocols for the boundary quantum 
states. AdS/QIT might go in the other direction as well, as a boundary-to-
bulk analysis to interrogate bulk structures defined by boundary measures 
such as entropy.

One frequent application of the AdS/QIT correspondence is the rela-
tion between thermal density operators on the boundary and geometry in 
the bulk in the form of geodesic curves (the shortest path through the bulk’s 
negatively curved AdS space). The boundary is density operators and the 
bulk is geometry (geodesic curves). Instead of using a traditional quantum 
mechanical entropy calculation (the sum over all minimal measurement 
bases) which is difficult to compute, a geometric calculation of entropy is 
applied via the correspondence. The shortest distance between two points 
on the boundary is the shortest length curve through the bulk. The shortest 
distance between two points on the boundary is interpreted as the number 
of qubits required to send a message (the quantum state) from one location 
to another. Entropy is a measure of the minimal number of qubits required 
to send a message. Hence, the question is posed in the boundary, namely, 
the most efficient compression of quantum state information (the number 
of qubits required to send the state), and solved in the bulk, by finding the 
shortest curve through the bulk geometry (Czech et al., 2015).
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Both the geometric and topological complexity of the bulk are a target of 
study (Raimond et al., 2018). This is because different curves through the bulk 
have different meanings. Whereas the geodesic (the shortest curve) is equiva-
lent to total entropy (the entropy of a boundary region), an arbitrary-length 
curve can be interpreted as conditional entropy (Czech et al., 2015). There is 
also relative entropy (in the form of the Kullback–Leibler divergence) for 
computing how one probability distribution is different from another. These 
entropy measures are important for creating entanglement distillation in quan-
tum information compression protocols (Horodecki et al., 2007) (Table 3.8). 
Other work uses the measure of relative entropy in the boundary for a deriva-
tion of classical gravity in the bulk (Lashkari et al., 2014).

3.3.6  AdS/TN (tensor networks)

AdS/TN is the idea of holographic TN, implementing the correspondence 
in the form of a TN. TNs factorize a high-order tensor into a network of 
low-order tensors. The structure of TNs is a hierarchical multilayered 
model that consolidates arbitrary microscale detail into increasingly 
fewer-node tiers in an overall apparatus that theoretically culminates in 
one macroscale kernel. TNs are an implementation of the renormalization 
group method in that the network structure preserves salient detail related 
to the individual scale tiers. In the blockchain world, TNs are similar to a 
Merkle tree, in which blocks of information are similarly rolled up in a 
hash-linked data structure into one cryptographic kernel (Merkle root) that 
calls the entirety of a data corpus.

A frequent implementation of AdS/TN is AdS/MERA. MERA (multi-
scale entanglement renormalization ansatz (guess)) is a tensor network 
structure designed to model quantum many-body systems by renormalizing 

Table 3.8.  Bulk-boundary: AdS/QIT (quantum information).

No. Bulk Boundary Reference

1 Geometric structure Quantum states (qubits) Hayden et al. (2016)

2 Geodesic (shortest curve) Entanglement entropy Swingle (2012)

3 Arbitrary length curve Conditional entropy Czech et al. (2015)

4 Einstein gravity derivation Relative entropy Lashkari et al. (2014)
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entanglement (Vidal, 2007). In a real-space renormalization procedure 
defined for quantum states, MERA represents a highly entangled many-
body state (such as the ground state of a CFT) with a tensor network. 
MERA is constructed as a tensor network with alternating layers of disen-
tanglers and isometries. The network structure has multiple input nodes 
and one output node; the system operates by coarse-graining up from 
microscopic system inputs to one (or few) macroscopic kernel(s). In each 
layer, unitary operators (disentanglers) remove local entanglement and 
isometries coarse grain the nodes into fewer representations in the next tier. 
The resulting network of unitary and isometric tensors encodes input such 
as ground state wavefunctions with the multilayered structure (Vidal, 
2008). The alternating disentangler-isometry layers in MERA are similar to 
the alternating max pooling followed by convolutions and rectified linear 
unit (ReLU) activations in a neural network (LeCun et al., 2015).

TNs provide a natural framework for interpreting the AdS/CFT cor-
respondence. The tensor network input layer is the boundary and the 
rolled-up tiers point deeper into the bulk. The entropy of a boundary 
region is equal to the area of a corresponding bulk minimal surface per the 
Ryu–Takayanagi formula (2006). Swingle (2012) first suggested the ten-
sor network interpretation of the AdS/CFT correspondence, by extending 
the Ryu–Takayanagi formulation to link the entropy of a boundary region 
to a bulk minimal curve (Table 3.9).

The work is demonstrated through a tensor network-based implemen-
tation of the Ising model. A key insight is running the tensor network 

Table 3.9.  Bulk-boundary: AdS/TN (tensor networks).

No. Bulk Boundary Reference

1 Geodesic Entropy Swingle (2012)

2 Qubit to protect Protective ancilla Pastawski et al. (2015)

3 Bulk entanglement wedge Boundary region Hayden et al. (2016)

4 Lattice: d + 1 Hilbert space Lattice: Flat Hilbert space Lee and Qi (2016)

5 Tile-based Motzkin walks Motzkin spin-chain ground 
state

Alexander et al. (2018)

6 2D ground states on a 
lattice

Gauged global symmetries McMahon et al. (2020)
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backward. Whereas a tensor network has an endpoint, a black hole bulk 
does not. The coarse-grained final state in the tensor network completely 
factorizes (as the macroscale kernel), and then the renormalization pro-
cess can be reversed to trace back through the network to calculate new 
aspects of the boundary starting from information already included in the 
entanglement roll-ups in the network. Calculating the entropy of a block 
of sites in the boundary is such a problem that lacks other tractable meth-
ods (concretized as obtaining the entropy of a block of sites in the Ising 
lattice model). Retracing back through the tensor network generates a 
curve of the minimum number of sites that must be passed through to 
obtain the boundary block entropy, thereby linking boundary region 
entropy to a bulk geodesic (the shortest path on a curved surface).

There are many other holographic tensor network implementations. 
Pastawski et al. (2015) build a tensor network with the correspondence 
using the bulk as an ancilla (ancillary bits) in the sense of having bulk 
logical degrees of freedom protect boundary physical degrees of freedom 
in a quantum error correction code structure (initially proposed by 
Almheiri et al. (2015)). Hayden et al. (2016) use holographic random TNs 
to propose an expanded model of the correspondence that applies to a 
wider range of spacetimes. Lee and Qi (2016) propose an exact holo-
graphic mapping method between the bulk and boundary Hilbert spaces 
of lattices and obtain analytic results for free fermion systems. Alexander 
et al. (2018) define exact holographic TNs for the Motzkin spin chain. The 
Motzkin model is a recently developed quantum mechanical model used 
to study quantum optimization problems as it is not constrained by the 
energy scaling profile typically associated with a CFT. McMahon et al. 
(2020) lift a traditional one-dimensional MERA implementation of criti-
cal ground states on a lattice to a two-dimensional bulk dual that allows a 
wider range of bulk-boundary operator mapping and in which horizon-
like holographic screens emerge. Increasing the capacity of TNs to repre-
sent higher-dimensional systems is an ongoing research focus.

3.3.7  AdS/ML (machine learning)

The AdS/ML correspondence interprets the AdS/CFT correspondence as 
a neural network, with experimental data as the boundary and unknown 
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quantum system structure as the bulk to be interrogated. It is a boundary-
to-bulk analysis in which the known boundary is used to interrogate the 
unknown bulk. The premise is that the emergent neural network structure 
(as the network runs to produce an optimal solution) corresponds to emer-
gent bulk structure that quantizes aspects of an unknown quantum system. 
Experimental data (boundary) is the input to ML networks (bulk). The 
emergent neural network structure (weights, layer depth) equates to the 
generation of the bulk metric, dilaton (hypothetical particle) profile, and 
other structural features of the bulk mechanics. The mapping between 
neural network parameters and the AdS/CFT correspondence appears in 
Table 3.10 (Hashimoto, 2019, p. 9).

In the standard deployment of AdS/ML, the first step is defining the 
boundary with training data (real-life data of quantum observables as 
training data for the neural network to learn). Supervised (discrimina-
tive) ML is used if the input data are labeled, and unsupervised (genera-
tive) learning of the input data are not annotated. The second step is 
interpreting the emergent network structure as the emergent bulk struc-
ture. The neural network weights (probabilities) are read as the bulk 
metric (an overall equation for the quantum system with space, time, 
curvature, volume, or other relevant parameters). The third step is using 
the bulk metric for the more complete description of specific aspects of 
interest in the quantum system such as scaling metrics, short-range and 
long-range correlations, and phase transition. Code is available for AdS/

Table 3.10.  Mapping: AdS/ML (machine learning).

No.
Deep Neural Network 
(Boltzmann Machine) AdS/CFT Correspondence

1 Neural network architecture Bulk spacetime geometry

2 Network depth Emergent bulk radial direction

3 Network weights Metric components

4 Hidden variables Discretized fields in the bulk

5 Probability distribution given by 
the Boltzmann machine

Generating function of the QFT 
dual to the bulk gravity

6 Classical equations of motion Fields propagating on spacetime
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ML (https://github.com/AkinoriTanaka-phys/DL_holographicQCD) and 
specific examples of the deployed method appear in Table 3.11.

3.4  AdS/DIY

The AdS/CFT correspondence can be applied practically in the notion of 
do-it-yourself AdS (AdS/DIY). The core concept is that any volumetric 
physical system can be described by a boundary theory in one less dimen-
sion, sort of like taking the derivative of a system to obtain the salient 
aspect. A basic example is a room, whose temperature and pressure are 
boundary theories in terms of being readily calculable averages of con-
stituent bulk microstates.

To formulate the correspondence, first is defining the system and the 
two spaces, distinguishing a more complicated bulk region, and a more 
streamlined boundary in one less dimension. Second is choosing a rele-
vant coordinate system and scale (units) for distance and curvature since 
lengths and energies will be measured in these units in the system. Third 
is defining the constituent elements and dynamics of the respective 
spaces. Fourth is defining a dictionary mapping between the two spaces 

Table 3.11.  Bulk-boundary: AdS/ML (machine learning).

No. Bulk (Emergent Structure) Boundary (Empirical Data) Reference

1 Concrete bulk gravity metric and 
dilaton profile for AdS/QCD

QCD observables: Hadron 
spectra (rho and a2 mesons)

2020

2 Consistent bulk geometry at 
various temperatures; black 
hole horizon

Lattice QCD data (finite-
temperature chiral 
condensate)

2021

3 Bulk metric with finite-height IR 
wall (QCD thermal phase 
transition)

Lattice QCD data (finite-
temperature chiral 
condensate)

2018a

4 Bulk metric, mass, and quadratic 
coupling; gravitational model 
of a strongly correlated system

Magnetic response data for the 
strongly correlated material 
Sm0.6Sr0.4MnO3

2018b

Sources: Hashimoto et al. (2018a, Holographic QCD), Hashimoto et al. (2018b, AdS/CFT 
correspondence), Akutagawa et al. (2020, AdS/QCD), Hashimoto et al. (2021, Neural ODE).   
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that puts them into correspondence and describes how one domain can 
act upon the other. The correspondence might be defined on the basis 
of theories, states, operators, spatial structure, or other parameters  
(degrees of freedom) that have a correspondence between the two scale 
tiers of the system. Fifth is deploying the correspondence to solve prob-
lems from one side or the other, or asking a question in the boundary to 
return an answer from the bulk (or vice versa).

The two main dictionaries that describe the bulk-boundary mapping 
are the differentiate dictionary (Gubser et al., 1998) and the extrapolate 
dictionary (Banks et al., 1998). The differentiate dictionary makes use of 
the equivalence between the partition functions of the bulk and boundary 
theories, and the extrapolate dictionary relies on the fact that local CFT 
operators living in the boundary theory can be expressed as the limit of 
appropriately weighted bulk fields. Either of these dictionaries or a new 
mapping might be most relevant for the AdS/DIY operation.

3.4.1  The AdS/CFT equations

The AdS/CFT correspondence is a relationship between a quantum 
gravity theory and a quantum field theory. The basic statement of the 
correspondence is that any CFT in d-dimensional spacetime is equiva-
lent to a quantum theory of gravity in (d + 1) dimensional spacetime. 
Implementing the correspondence involves defining the bulk and the 
boundary and the equality relation between them.

The four kinds of equations that typically comprise the AdS/CFT 
correspondence are listed in Table 3.12. The most important is the met-
ric, articulated as an equation in the form of (ds=), for the AdS space 
and the CFT. The metric (shortened from the metric tensor used in 
General Relativity) is the fundamental object of study and is used to 
define the space, time, distance, volume, curvature, and angles of any 
gravitational system, thereby providing a complete description of 
the geometric structure of the spacetime used in the formulation. 
Mathematically, the metric tensor is a function which takes as input a 
pair of tangent vectors at a point on a surface and produces a real num-
ber scalar. Dot products generalize vector properties in Euclidean 
space, and metric tensors are used similarly in AdS space to define the 
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length of tangent vectors and the angle between them on a manifold. 
The metric tensor is integrated to give the length of curves on the mani-
fold. A metric is defined for both the AdS and the CFT as the central 
equations of the correspondence.

The two respective spaces (AdS and CFT) have constituent elements 
upon which operators act to produce system observables. Any number of 
operators (O=) can be defined to act on the observable elements of the 
system. Then, bulk and boundary local effective actions (S=) are defined 
for the system. The action is an attribute of the dynamics that reflects 
kinetic and potential energy and which derives the equations of motion of 
the system. Finally, a Hamiltonian or Lagrangian is defined to enumerate 
and predict the different states of the dynamical system.

3.4.1.1  The AdS/CFT formalism

The AdS/CFT relation postulates that the physics of an AdS spacetime can 
be described by a local quantum field theory on the boundary. Setting 
forth the correspondence involves first defining the two terms in field-
theoretic language so that they can be equated, and then second, defining 
the equality relation between them. The first term to define is the AdS 
space of interest. AdS is a maximally symmetric spacetime with negative 
curvature. It is a solution to Einstein’s equations with a negative cosmo-
logical constant. However, unlike the Einstein field equations of general 
relativity, the AdS/CFT equations are solvable. The second term to define 
is the CFT, which is constructed from the AdS formulation.

Table 3.12.  AdS/CFT correspondence equations.

No. Term Description

1 Metrics (ds=) for the AdS space and the CFT Specification of system space, 
time, curvature

2 Operators (O=) which act on observables Functions acting on system 
observables

3 Local effective actions in AdS and CFT (S=) Formulation of system energy 
and dynamics

4 Hamiltonian or Lagrangian (H=) or (L=) Calculation of states of the 
dynamical system
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According to the AdS/CFT correspondence, the Hilbert spaces are 
identical, and all (physical or global) symmetries can be matched between 
the two theories. In particular, the spacetime symmetries or isometries of 
AdSd+1 form the group SO(2, d) and these act on the CFTd to create the 
conformal group. All states in both theories will be representations of this 
group (Kaplan, 2016, p. 11). More specifically, the isometries of AdS act 
on the boundary. Due to the symmetry relation, they send points on the 
boundary to other points on the boundary. This action is the action of  
the conformal group in d dimensions, SO(2, d). Thus, the quantum field 
theory is a CFT. Symmetry rescaling in the bulk translates into a dual 
representation on the boundary. This means that the boundary theory is 
scale invariant (Maldacena, 2014, p. 3). SO(2, d) is the special orthogonal 
matrix operation (in the 2 × d dimensions of the AdS) that is a linear trans-
formation or rotation about the origin of a point in space that results in 
other measures or points in the space.

The AdS/CFT correspondence is formulated as a set of equations to 
implement the equality relation between the AdS bulk and the CFT bound-
ary. The next step is specifying the spacetime of interest. Spacetimes might 
range between the most basic AdS2/CFT (two dimensions of bulk space and 
one of boundary space) and Maldacena’s initial Ads5/CFT4 specification 
(a five-dimensional theory of bulk quantum gravity equating to a four-
dimensional supersymmetric quantum gauge theory (N = 4 Super Yang–
Mills theory)). A familiar three-dimensional Euclidean space would have a 
metric (ds=) with three spatial terms, denoted X, Y, and Z (Natsuume, 2016, 
p. 89). An advanced formulation might have two time-like and three spatial 
dimensions in the AdS metric (Sokolowski, 2016, p. 3).

With the bulk-boundary space and time dimensions identified, next, a 
coordinate system for the model is defined. These are the global coordi-
nates of the system. Applying the coordinates to the system, the AdS 
metric is then written in terms of the radius of curvature (Maldacena, 
2014, p. 1; Harlow, 2017, p. 3). Then the metric for the CFT is specified 
based on populating the points in the CFT with the special orthogonal 
group matrix transformations governed by parameters of symmetry and 
dilation. Correlation functions (such as two-point correlation functions) 
and Green’s functions are calculated in the CFT, as a means of further 
defining the CFT and providing standard formalisms to be used in the 
 correspondence relation.
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Finally, the equality of the two sides is articulated using field opera-
tors and a dictionary. The way the duality is deployed between the gravity 
theory (bulk) and the quantum field theory (boundary) is through field 
operators and a map. The map between the two theories might be a one-
to-one map between individual operators. For example, in AdS5/CFT4, the 
map is between gauge invariant operators in the two domains (the N = 4 
SU(N) Super Yang–Mills boundary theory and the classical gravity fields 
in AdS5 × S5 (S5 is a manifold)). Overall, the map provides an explicit link 
between the two theories.

3.4.1.2  Correspondence formulation example

Harlow (2017) provides a useful demonstration of the correspondence. 
The same three steps apply, namely, defining the two terms and the 
relation between them. The two terms are defined as metrics (ds=). 
Harlow defines a metric for the AdS space (page 3), a metric for 
the CFT (page 6), and puts them into correspondence (page 8). 
Technically, the AdS space is an asymptotically AdS space (Henneaux 
and Teitelboim, 1985).

A metric (ds=) is defined for AdS space, a set of global coordinates is 
defined for the space, and the metric for AdS space is written in global 
coordinates. A metric (ds=) for the CFT is defined taking into account that 
conformal field theories are relativistic quantum field theories which have 
Poincaré symmetry and are invariant under dilations and special confor-
mal transformations. The two metrics for AdS and CFT are equated by 
considering the map between the observables on the two sides. The idea 
is to establish a map between the observables by creating a dictionary that 
indicates how to view the duality as an isomorphism (one-to-one map-
ping) between the two Hilbert spaces. To implement the dictionary, local 
operators (O=) are defined to act on observables. The map from operators 
to states is implemented with path integrals.

The first line in the AdS/CFT dictionary (mapping between AdS and 
CFT) defines unitary operators which implement isomorphic symmetry 
groups between the AdS and CFT. This means that the spectrum of the 
Hamiltonian is the same in both AdS and CFT, and states decompose into 
the same irreducible representations of symmetry groups. The key point is 
that any operator on one side can be mapped to an operator on the other 
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side. In the identity mapping, the Hamiltonians and the ground states of 
both are equal. With the dictionary in place, the next step is to define bulk 
and boundary local effective actions (S=).

With this basic setup of the AdS/CFT dictionary, a range of useful 
experiments can be carried out using correlation functions of local opera-
tors in the CFT. One typical experiment is a “scattering” investigation 
between the boundary and the bulk. The protocol is acting with boundary 
local operators, waiting for some time, and then measuring the boundary 
operators to obtain the corresponding formulation that comes out of the 
bulk. Black hole formation and evaporation can be examined this way. A 
more advanced AdS/CFT dictionary is needed to define operators in the 
CFT which represent bulk operators far from the boundary for investiga-
tions involving bulk reconstruction and the investigation of bulk structural 
emergence.

3.4.1.3  Listing of AdS/CFT correspondence formulations

For AdS/DIY, a survey of AdS/CFT correspondence literature delineating 
the mathematical formalisms appears in Table 3.13. First are the refer-
ences for the initial statements of the correspondence. Next is Harlow and 

Table 3.13.  AdS/CFT correspondence mathematics.

No. Reference Focus

Early formulations of the correspondence

1 Maldacena (1999, 2014) Initial correspondence formulation: AdS5/CFT4

2 Witten (1998) Supergravity correlation functions in CFT

3 Klebanov and Witten (1999) Symmetry breaking and the correspondence

Standard formulations of the correspondence

4 Harlow (2017, p. 3) Expansive formulation for emergent bulk structure

5 Erdmenger (2018, p. 4) Standard formulation with classical bulk gravity

Additional formulations of the correspondence

6 Zaanen et al. (2012, p. 11) Formulation beginning from the CFT side

7 Kaplan (2016, p. 3) Context of quantum field theories

8 Guo et al. (2016, p. 6) Generating function of correlation functions

9 Zaffaroni (2000, p. 21) Describes boundary CFT with a Lagrangian
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Erdmenger as two standard sources for the formalisms. Both include the 
basics. Harlow (2017) is good for boundary-to-bulk investigation of new 
topics such as quantum gravity theories and bulk quantum mechanics. 
Erdmenger (2018) is good for bulk-to-boundary investigations, using clas-
sical gravity to interrogate condensed matter situations such as the Kondo 
problem. The rest are formulations for various specific problems.
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Chapter 4

Tabletop Experiments

[T]he technology for the control of complex quantum many-body 
 systems is advancing rapidly, and we appear to be at the dawn of a new 
era in physics—the study of quantum gravity in the lab

— Susskind and team. Brown et al. (2019, p. 2)

Abstract

This chapter describes a photonic particle accelerator-on-a-chip, quan-
tum gravity testing with Rydberg atoms, a black hole on a superconduct-
ing chip solution, and quantum simulators of the Sachdev–Ye–Kitaev 
(SYK) model. The SYK model constitutes a minimal realization of the 
anti-de Sitter space/conformal field theory (AdS/CFT) correspondence. 
Due to information-theoretic formulations, foundational physics findings 
from black holes and the holographic correspondence can be applied in 
manageable tabletop experiments to study a variety of complex quantum 
systems including the brain.

4.1  Black Holes and Quantum Gravity in the Lab

A surprising development is the inventive experiments that are bringing 
large-scale phenomena such as particle accelerators, black holes, and 
quantum gravity into reach in the form of models that can be studied in 
the laboratory. A large part of this effort is facilitated by the anti-de Sitter 
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space/conformal field theory (AdS/CFT) correspondence, which indicates 
how two different descriptions of the same underlying physical system are 
equivalent. The implication is that certain quantum mechanical systems 
are dynamically equivalent to black holes in quantum gravity, and there-
fore can be used as a means of studying them. Conversely, if a quantum 
mechanical system can be shown to have the same kind of dynamics as a 
black hole (such as fast information scrambling and chaotic behavior), it 
may qualify as a holographic dual. The upshot is that the experimental 
tools needed to study black holes are the same ones that physicists have 
already been developing to solve quantum computational problems. The 
insight is that both situations require storing a complex system of many 
particles and accurately controlling how they interact (which is also simi-
lar to the brain’s activity in neural signaling).

4.2  Particle Accelerator on a Chip

One of the most tangible tabletop experiments with near-term benefits is 
the advent of a laser-driven particle accelerator that fits on a silicon chip 
(Sapra et al., 2020). The accelerator-on-a-chip project led by Vuckovic at 
Stanford’s Nanoscale and Quantum Photonics Laboratory presents the first 
experimental demonstration of a waveguide-integrated dielectric laser 
accelerator. The problem addressed is that the size and cost of conventional 
radio-frequency accelerators have limited the reach of traditional particle 
accelerators. Instead, creating a dielectric laser accelerator provides a com-
pact and cost-effective solution to power accelerator nanostructures with 
visible or near-infrared pulsed lasers, and results in a 104 reduction of scale 
(Wootton et al., 2016). Earlier examples of dielectric laser accelerators 
used free-space lasers directly incident on the accelerating structures, but 
that still limited the scalability and integrability of the technology. Sapra 
et al.’s (2020) waveguide-integrated dielectric laser accelerator overcomes 
these problems and is able to achieve an initial energy of 83.4 keV over 
30 μm, and peak acceleration gradients of 40.3 MeV/m.

Particle accelerators are measured in terms of the energy scale at 
which they operate, as to the number of electron volts marshaled 
(Table 4.1). The accelerator-on-a-chip initializes at 83.4 thousand electron 
volts and has a peak gradient of 40 million electron volts. To put this 
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in context, the Stanford linear accelerator (SLAC) operates at 50 GeV 
(billion electron volts). The Large Hadron Collider (LHC), 9 km in diam-
eter, currently operates at about 7 TeV (trillion electron volts) with a 
planned expansion to 14 TeV with the High-Luminosity Large Hadron 
Collider (HL-LHC) to open in 2026.

Chip-based accelerators provide an accessible lower-cost alternative 
to conventional radio-frequency-based electron accelerators with accel-
erators operating with optical and near-infrared sources. While the larger 
macroscale accelerators emphasize foundational theoretical physics 
experiments, chip-based accelerators could have a range of practical 
applications in targeted cancer therapies, compact imaging sources, and 
tabletop lasers. In principle, optical accelerators on a chip could replace 
traditional radio-frequency-based electron accelerators for many applica-
tions. Chip-based accelerators not only scale down the wavelength of the 
source but also all other components of the accelerator. The implication is 
that an accelerator that spans kilometers could one day fit inside a volume 
the size of a shoebox.

Also, although chip-based accelerator energies are currently lower 
than traditional macroscale accelerators, this could change. There are high 
losses in metals at optical frequencies, and so the elements that make up 
the accelerator-on-a-chip cannot simply be miniaturized but must be rein-
vented in appropriate material systems. A roadmap is proposed to reinvent 
the related components (dielectric material systems such as silicon, silicon 
dioxide, and silicon nitride).

Further, integrating the accelerator with photonic waveguides also 
represents a design challenge due to difficulties in accounting for scatter-
ing and reflections of the waveguide mode from sub-wavelength features. 

Table 4.1.  Accelerator energy scales (electron Volts).

No. Abbr. Description Size (eV) Capacity Example

1 KeV Kilo (thousand) electron volts 1,000 83.4 keV (initial)

2 MeV Mega (million) electron volts 1,000,000 40.3 MeV (peak)

3 GeV Giga (billion) electron volts 1,000,000,000 9 GeV

4 TeV Tera (trillion) electron volts 1,000,000,000,000 7 TeV (14TeV)
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Sapra et al. (2020) address this by using an inverse design approach to 
develop a waveguide-integrated dielectric laser accelerator on a 500 nm 
device layer silicon-on-insulator platform.

The chip-based particle accelerator uses lasers to accelerate electrons 
along an etched channel (channels are etched into silicon chips in the 
fabrication process). As electrons flow through the channel, laser light 
accelerates the particles to high speeds. The idea of using lasers in accel-
erators stretches back to the invention of the laser (late 1950s). Lasers 
produce electromagnetic waves with much shorter wavelengths than the 
microwaves used in a full-scale accelerator, which means they can accel-
erate electrons moving through a much smaller space. The device size can 
be extremely small. The electrons in the chip-based accelerator, for 
example, travel along a channel that is only 3 μm (3,000 nm) wide (about 
half the width of a 7 μm (7,000 nm) wide human red blood cell (Freitas, 
2012, p. 69)). Although laser-driven devices can accelerate electrons in a 
much smaller space than full-scale accelerators, they require much greater 
precision to line up the laser and the electrons so that the light waves push 
the particles in the correct direction with as much energy as possible 
(Hughes et al., 2018). Previous proof-of-concept prototypes required 
separate devices to generate the electrons, but the accelerator-on-a-chip 
integrates the components in one chip.

4.3  Quantum Gravity in the Lab

4.3.1  Quantum gravity

Quantum gravity in the lab refers to laboratory experiments designed to 
probe aspects of quantum gravity indirectly. A theory of quantum gravity 
is needed to solve contemporary puzzles about black holes, the Big Bang, 
and dark energy. Various theories of quantum gravity have been proposed, 
and what is new is the possibility of testing some of these theories in the 
laboratory. Traditional methods for studying quantum phenomena such as 
particle accelerators are not feasible for studying the much smaller scale 
of quantum gravity. A particle accelerator to generate the forces necessary 
to study quantum gravity at the 10−35 meters Planck-length scale would be 
the size of the entire Milky Way galaxy, and hence indirect methods are 
needed (Preskill, 2020).
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Newtonian gravity (1687) was a substantial advance that unified the 
observed behavior of both terrestrial and celestial objects. The law states 
that bodies attract with a force that is directly proportional to the product 
of their masses and inversely proportional to the square of the distance 
between their centers (Newton, 1729, p. 392). Newtonian gravity contin-
ues to describe short-range gravity such as throwing a ball on Earth. 
However, other theories are needed to explain the intricacies of longer-
range gravity in celestial motion. General relativity, Einstein’s theory of 
gravitation (1915), proves such a formulation of gravity.

The two predominant theories in physics are general relativity and 
quantum mechanics. On the one hand, general relativity describes objects 
that are very large and very heavy such as planets. On the other hand, 
quantum mechanics describes objects that are very small and very light 
such as particles. A theory that incorporates aspects of both general relativ-
ity and quantum mechanics is needed to study objects that are very small 
and very heavy. These objects include black holes and the Big Bang and 
might enlighten an understanding of dark matter and dark energy. Dark 
energy contributes 68% of the total energy in the present-day observable 
universe, dark matter 27%, and ordinary (baryonic) matter 5% (Carroll, 
2007, p. 46). The different theories of gravitation are listed in Table 4.2.

4.3.1.1  Justification for quantum gravity in the lab

The central phenomenon studied in quantum gravity is the formation and 
eventual evaporation of black holes due to quantum effects. The AdS/CFT 
correspondence provides the theoretical and mathematical justification for 
indirect quantum gravity experiments. The holographic correspondence 
establishes an equivalence between two different formulations of the same 
physical system. Per the equivalence, a black hole’s life cycle can be 

Table 4.2.  Gravitational theories.

Newtonian Gravity General Relativity

Human-scale objects (apples) Very large and very heavy objects (planets)

Quantum Mechanics Quantum Gravity

Very small and very light objects 
(particles)

Very small and very heavy objects (black 
holes)
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described in a completely different language that does not involve gravity 
at all. Instead, the holographic dual of gravity (the bulk theory) is a quan-
tum system that consists of many particles strongly interacting with one 
another (the boundary theory). A goal of quantum gravity experiments in 
the laboratory is to continue to define the dictionary that translates 
between the bulk and boundary languages.

A key difficulty in the attempt to understand the quantum nature of 
spacetime and gravity has been the lack of experimental means. Gravity 
is a relatively weak force, and thus probing quantum gravity directly 
would mean going to experimentally infeasible energy scales. A conse-
quence of the holographic principle, however, and its concrete realization 
in the AdS/CFT correspondence is that nongravitational systems with suf-
ficient entanglement exhibit characteristics of quantum gravity. This sug-
gests that it may be possible to use tabletop physics experiments to probe 
quantum gravity indirectly.

4.3.2  Wormholes and holographic teleportation

Brown et al. (2019) propose holographic teleportation protocols for quan-
tum information transfer that can be readily executed in tabletop experi-
ments with an outline for experimental realization in two platforms, 
Rydberg atom arrays, and trapped ions. The holographic teleportation 
protocols are quantum communication directions for how to transmit the 
quantum states and operators of a system. The teleportation protocols are 
holographic in that they exhibit behavior similar to that seen in black hole 
wormhole constructions. Information scrambled into one half of an entan-
gled system unscrambles into the other half, after a weak coupling 
between the two halves. The work develops research in operator size 
growth and distribution in the context of information transmission.

4.3.2.1  Operator size and size winding distribution

A key innovation of the research is an analysis of operator size distributions 
and growth, ideas that have been studied in connection to holography and 
many-body physics. The standard canon is that operators grow in size and 
complexity as a quantum system evolves in time, and because operator size 
can be computed, it can be used as a metric for determining other aspects 
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of the system. New terms, teleportation-by-operator-size and winding-size-
distributions, are introduced in this work to establish practical quantum 
communications protocols based on wormhole-like (holographic) physics. 
Teleportation-by-operator-size describes how information transmission 
couplings are sensitive to operator size. Winding-size-distributions (wind-
ing and unwinding the size of the distribution) refer to a wavefunction 
ansatz (guess) in which coefficients in the size basis acquire an imaginary 
phase that is linear in the size of the operators. The winding size distribu-
tion produces wormhole-like physics as opposed to the conventional size 
distribution, in which coefficients are uniformly summed over the square 
of the absolute value in the usual treatment of a quantum system.

4.3.2.2  Holographic teleportation protocols

The research formalizes the holographic protocols (that instantiate the 
wormhole-like physics) with a state transfer protocol and an operator 
transfer protocol. A quantum circuit is outlined for each. A specific con-
figuration is provided and the circuits can be created in a laboratory 
(Brown et al., 2019, p. 4). The teleportation protocols and the quantum 
circuits are designed to exhibit the reoccurrence feature of information 
scrambling. Information scrambling is a process whereby initially simple 
information becomes so thoroughly mixed across the degrees of freedom 
of a system that it is inaccessible to local measurements. Here, a special 
property is the recoherence phenomenon of scrambling-unscrambling 
information in which information disappears and then reappears at dis-
tance focused into view. The information disappears (is scrambled) in one 
side of an entangled coupled system and then reappears in the other side 
of the system at some future moment in time. Teleportation refers to the 
transfer of information, not matter (analogous to a fax machine). Quantum 
teleportation uses preexisting entanglement between two states together 
with classical communication to send a quantum message.

4.3.3  Preparing the thermofield double state

A thermofield double state is prepared. The thermofield double state is an 
entangled state between two copies of a quantum state. The reduced den-
sity matrix of each copy is thermal (allowing a physical understanding 
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based on heat through the system’s thermal properties). The thermofield 
double state serves as a “model organism” or “model state” in the sense 
of being a basic construction in quantum physics to probe different 
aspects of a system. Here, the thermofield double state is executed by 
preparing a special entangled state of two copies of the physical system, 
as the left and right systems. At infinite-temperature, the thermofield 
double state is a collection of (entangled) Bell pairs between the left and 
right systems. For general Hamiltonians and noninfinite-temperature, 
there is no known procedure to prepare the thermofield double state. 
However, there are approximate methods for systems of interest (such as 
the Sachdev–Ye–Kitaev (SYK) model and various spin chains) employed 
by this work.

The quantum circuits act on a 2n-qubit state (just 2n, not 2n). The 
qubits are divided into n qubits on the left and n qubits on the right (creat-
ing two copies of the system). The qubits are described by a Hamiltonian 
that is assumed to be scrambling (dissipating its quantum state informa-
tion among the constituent parts of the system). Also, the system must be 
able to effectively evolve forward and backward in time with the system 
Hamiltonian. The left and right qubits are initially entangled in the “ther-
mofield double” state (two copies of a system being entangled per thermal 
purification). The left and right systems are further partitioned into “mes-
sage” qubits and “carrier” qubits.

The procedure consists of two phases, one for scrambling and one for 
unscrambling. To scramble the information, the left side of the system is 
used. The idea is to insert a message and scramble it on the left side of the 
system. The first step is evolving the left qubits “backward in time” by 
acting on them with the inverse of the time-evolution operator. The sec-
ond step is inserting the message into the message subsystem (partition) 
of the left qubits at the earlier time. The third step is evolving the left 
system “forward in time” by acting on it with the time-evolution operator. 
The result is that the forward evolution rapidly scrambles the message 
among the left qubits. The left side of the system has a scrambled mes-
sage in it.

The next phase is unscrambling the information and seeing what hap-
pens. The left and right sides of the system (which are entangled per the 
setup) are now coupled by acting on the qubits with a coupling operator. 
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The result is that each of the left carrier qubits is coupled to mirror image 
carrier qubits on the right. Then all n of the right qubits (carrier and mes-
sage) are evolved “forward in time” by acting on them with the time-
evolution operator. At this stage, the recohering phenomenon occurs. The 
message, buried and scrambled on the left, reappears on the right. Since 
the left and right systems are coupled, it is possible to recover the message 
on the right. Interpreting the result in the context of black hole physics, 
the message has traveled across a wormhole, a wormhole through the bulk 
attached to two different boundary conformal field theories (constructed 
as the thermofield double left and right sides).

The point of the experiment is to investigate the information scram-
bling time of quantum systems. Scrambling time is important in terms of 
how much information can be sent and recovered with high fidelity, for 
example, in terrestrial quantum communications protocols. The scram-
bling time is the timescale for information to spread across the entire 
system. Due to entanglement, information recovery is possible. Since the 
two systems are entangled at the time of the original message, before it is 
scrambled, it is not a surprise that it is recovered. If the two systems were 
not entangled when the message was scrambled, the expectation would be 
that it would not be recovered on the other side. Even though the two sides 
need to be further coupled to recover the message on the right side, the 
key point is that the two sides were entangled at the time of the original 
message insertion.

Summarizing the experimental setup, the process is to first entangle 
the two sides of the system (left and right) by configuring a thermofield 
double state. Second is to evolve the left side of the system backward in 
time, insert a message, and evolve forward in time such that the message 
is scrambled. Third, the two sides of the system are further coupled and 
the original message pops out on the right side. This work uses out-of-
time-order correlation (OTOC) functions to run the system evolution 
backward and forward. Another strategy for understanding the evolution 
of thermofield double states is machine learning. In an AdS/QML (quan-
tum machine learning for the study of the holographic correspondence) 
application, machine learning is used to learn the operator mapping 
between the left and right system evolutions in the thermofield double 
state (Cottrell et al., 2019).
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4.3.3.1  Obtain wormhole-like physics with size winding

A key experimental target in this research is understanding more about the 
information scrambling time in quantum systems with the practical objec-
tive of developing more efficient quantum communications protocols. 
Toward this goal, a salient innovation is the introduction of the size-
winding distribution to enable greater fine-tuning of the quantum system 
than the traditional method of the conventional-size distribution. In the 
winding size distribution, an imaginary phase that is linear in the size of 
the operators is introduced into the coefficients, which allows greater 
manipulability than the conventional size distribution in which the coef-
ficients are simply summed.

The result is that the size winding distribution gives a different ansatz 
(guess) for the operator wavefunction. The manipulability of the size 
winding distribution allows it to be applied as usual at the late time of the 
quantum system, after information scrambling is complete, and also at 
intermediate times, while information scrambling is still in process. 
Whereas the late-time size winding is necessarily damped because the 
scrambling process is complete, the intermediate-time size winding can be 
more granular or perfect because scrambling is still in process. Thus, there 
are two different forms of the size winding distribution, the dampened 
form deployed at the late time and the perfect form deployed at the inter-
mediate times of the quantum system evolution (Table 4.3). The size 
winding feature means both size winding and size unwinding in the 

Table 4.3.  Operator growth and size winding.

Operator Growth Time

Late Time Intermediate Time

Size winding Damped size winding Perfect size winding

# of qubits teleported One qubit Many qubits 

Signal dependence Weak signal dependence, 
high fidelity

Strong signal dependence, 
limited fidelity

Operator transfer Weak operator transfer Strong operator transfer

Geometrical wormhole No signature Strong signature 

Source: Adapted from Brown et al. (2019, p. 7).
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wormhole system with the two different sides. Depending on the  
coupling, a signal can be transferred left to right in the system. The action 
of the coupling can unwind the distribution in one direction and wind it in 
the opposite direction (tuning one side of the system from the other).

If only considering late time, the result is that a single-qubit infinite-
temperature large-time example does not correspond to geometrical 
motion through a semi-classical wormhole. Whereas only a single qubit 
can be teleported with high fidelity in the high-temperature limit, with 
the right encoding of information, many qubits can be sent at low 
 temperature and intermediate time in a holographic system hosting a 
traversable wormhole. Hence, since the strong signature of a geometrical 
wormhole is indicated in the intermediate-time perfect size winding sys-
tem configuration, the idea is to work toward the higher fidelity telepor-
tation of many qubits. The overall benefit is that size winding implements 
the holographic correspondence by providing a clean mechanism for 
operator transfer that abstracts the complicated way that geometrical 
wormholes work in the bulk, to the more accessible level of the boundary 
theory. Further, since a system’s scrambling time is determined by its 
geometry, the size winding analysis can be applied to study emergent 
bulk structure.

4.3.4  Rydberg atoms and trapped ions

The experimental setup of the holographic teleportation protocols to trans-
fer information that is discussed in this work can be implemented in 
atomic physics laboratory settings. Although the AdS/CFT correspon-
dence may have an infinite number of degrees of freedom, quantum sys-
tems in laboratory can be realized using a finite number of degrees of 
freedom. Four steps are as follows. First, a thermofield double state asso-
ciated with the Hamiltonian is prepared. This means preparing a special 
entangled state of two copies of the physical system, the left, and right 
systems. At infinite-temperature, the thermofield double state comprises a 
collection of Bell pairs between left and right (or the appropriate fermi-
onic version).

Second, the system is effectively evolved forward and backward in 
time with the system Hamiltonian. With a fully controlled fault-tolerant 
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quantum computer, it would be more straightforward to implement back-
ward time evolution than forward time evolution. However, implementing 
forward and backward time evolution in a specialized quantum simulator 
(QSim) requires specific capabilities. In the context of measurements of 
out-of-time-order correlators (OTOCs), various techniques have been 
developed to achieve this level of control, at least approximately.

Third, the weak left-right coupling of the system given by the velocity 
operator must be applied. The coupling must be applied suddenly, in 
between the other time-evolution segments of the circuit. Fourth, local 
control operations are applied to delete and insert qubits, perform local 
unitary operations, and make local measurements on a general basis. This 
requires some degree of individual qubit addressability, although in the 
simplest cases only a small number of qubits need to be targeted. With 
these capabilities, in principle, the holographic protocols for state transfer 
and operator transfer outlined in the research can be realized. Two such 
quantum hardware platforms are Rydberg atom arrays and trapped ions.

4.3.4.1  Rydberg atom arrays

One of the most obvious platforms for implementing holographic telepor-
tation protocols for information transfer is Rydberg atom arrays. Rydberg 
atom arrays are a useful experimental formulation that that involves atoms 
(often alkali metals) in a highly excited state (the Rydberg state). The 
excited state tiers are several orders of magnitude larger than the atomic 
ground state (i.e. the electron is far from the nucleus), have long decay 
periods, and indicate an exaggerated response to electric and magnetic 
fields. These properties make Rydberg atom arrays an experimental model 
that is easy to deploy for the study of strong interactions and other quan-
tum phenomena.

In a test implementation of the holographic teleportation protocols, 
information is encoded in a pair of levels in 87Rb (a ground state and a 
Rydberg state) such that the effective Hamiltonian can be written in a 
spin-chain form (Bernien et al., 2017). An infinite-temperature thermo-
field double state (i.e. Bell pairs) has been achieved using Rydberg atoms 
(Levine et al., 2019). Approximate methods might be similarly applied 
for finite-temperatures. The needed left-right coupling is feasible in a 
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Rydberg system, and used to prepare the Bell states. The backward time 
evolution can be engineered in different ways. One possibility is to work 
in the blockade regime, in which effective dynamics take place in a con-
strained Hilbert space. The parameters can be reversed with echo pulse 
sequences as the mechanism for forward and backward time evolution.

An interesting system to consider is a Floquet version of the Rydberg 
Hamiltonian known as the kicked quantum Ising model. The kicked 
model is appealing because the infinite-temperature thermofield double 
state is easier to prepare and because it allows easier control of the system 
time evolution. Although experiments are restricted to infinite- temperature 
(due to heating), the model is interesting because it can enhance chaos and 
offer more exact backward and forward time evolution. For example, to 
study chaotic systems, the entanglement entropy of subsystems grows as 
rapidly as possible when starting from a product state (Bertini et al., 
2019). The hyperfine encoding for qubits (in the Floquet model as 
opposed to using the Rydberg level directly) is likewise useful for gate-
like time dynamics (Levine et al., 2019).

4.3.4.2  Trapped ions

Rydberg atom arrays have a natural spatial structure to their interactions, 
but other systems can also be considered that support few-body but geo-
metrically nonlocal interactions. One such system is an ion trap quantum 
processor (Wright et al., 2019). By directing the vibrational modes of an 
ionic crystal, it is possible to engineer a rich pattern of all-to-all interac-
tions. Such systems are interesting because they mimic the structure of the 
SYK model and other matrix models that exhibit low-energy dynamics 
governed by a simple gravitational effective theory. Analog or digital ver-
sions of the platform can be considered. A small-scale preparation of 
approximate thermofield double states on a digital ion trap quantum pro-
cessor has been demonstrated (Zhu et al., 2019).

4.4  Black Hole on a Chip

Pikulin and Franz (2017) propose the design for a superconducting chip 
to study black holes via the holographic correspondence. The work 
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proceeds from the justification that the SYK model is a solvable boundary 
theory with which to study black holes (gravity) in the bulk (discussed in 
more detail in the next section). The SYK model is a calculable model of 
Majorana zero mode fermions with random infinite range interactions. 
Majorana fermions are a canonical model used to study strongly coupled 
matter particles (fermions). The work proposes one of the first physical 
implementations of the SYK model in a solid-state system (a supercon-
ducting chip), alongside other proposals to realize the SYK model in 
ultracold gases (Danshita et al., 2017) and digital quantum simulations 
(Garcia-Alvarez et al., 2017).

The research proposes using the Fu–Kane superconductor chip, a 
device designed specifically to study Majorana fermions (Fu & Kane, 
2008). The superconductor chip orchestrates Majorana fermions into a 
two-dimensional state in a format that resembles a spinless superconduc-
tor, and that does not break time reversal symmetry. Junctions in the 
superconducting device provide a way to create, manipulate, and fuse 
Majorana bound states. The chip has three layers and a hole in the center. 
The bottom layer is a topological insulator such as Bismuth Selenium 
(Bi2Se3). The top layer is an ordinary superconductor, namely, Niobium 
(Nb with 41 electrons) or Lead (Pb with 82 electrons). Niobium is a super-
conductor of choice because it has a relatively high critical temperature 
(temperature at which it becomes superconducting) for a single element. 
The middle layer is a very thin interface between the insulator and the 
superconductor.

The chip structure is designed to host unpaired Majorana zero modes 
which create magnetic vortices in the shape of a lattice. Two-fermion 
interactions dominate, but four-fermion interactions are needed for the 
SYK model. To facilitate this, the interface superconductor is tuned to its 
neutrality point, at which the low-energy Hamiltonian is dominated by the 
four-fermion terms and a chiral symmetry suppresses the two-fermion 
terms. A further step is necessary to obtain the infinite range interactions 
that are also part of the SYK model. A hole is fabricated in the supercon-
ducting layer of the chip to pin the vortices. Effectively infinite-ranged 
interactions among the fermions are obtained by pinning the required 
number of Majorana zero modes to the same region of space. A supercon-
ducting phase is applied to induce the vortex pinning, binding the 
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Majorana zero modes to the hole. Pinning costs condensation energy, so 
the superconducting phase must be applied to pin the vortices because, 
otherwise, they prefer a lower-energy location such as a material 
impurity.

The superconducting device setup with the Majorana fermions 
pinned to the hole (threaded by magnetic flux quanta in the presence of 
disorder) allows the numerical calculation of the Majorana wavefunctions. 
Assuming that the constituent electrons interact via screened Coulomb 
potential, the four-fermion coupling constants between the Majorana 
zero modes can be calculated exactly. These are used as input data for the 
many-body Majorana Hamiltonian which is diagonalized numerically for 
N up to 32. Other work likewise confirms numerical methods for the 
diagonalization of the SYK Hamiltonian for N up to 32 on a desktop com-
puter, and possibly N up to 42 (7 × 6 qubits in a two-dimensional lattice) 
on a supercomputer (Boixo et al., 2018, p. 595). Quantum computing 
platforms might substantially expand the reach of such numerical 
analysis.

Several technical advances were necessary to make the method pos-
sible. One is the ability to tune the chemical potential in the chip to its 
neutrality point by applying the superconducting phase. Another is the 
controllable design feature of the size and shape of the hole in the super-
conducting chip. An irregular-shaped hole is required to obtain random 
trajectories in the zero mode wavefunctions (often termed “billiards” in 
chaos studies).

4.4.1  Fast scramblers

Black holes are fast scramblers (scrambling initial state information with 
maximum possible efficiency) and exhibit quantum chaos (seemingly 
random but deterministic ballistic-then-saturation growth eras). Therefore, 
one way to assess whether a quantum theory is a holographic dual of a 
black hole is to find that its dynamics exhibit fast scrambling and chaotic 
behavior. The standard way to check for scrambling is with OTOC func-
tions. An OTOC allows the quantum chaotic behavior to be quantified. For 
black holes in Einstein gravity, scrambling is exponentially fast and the 
decay rate is given by the Lyapunov exponent. A corresponding 
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calculation of the OTOC is expected for the SYK model in the large-N 
limit. In the black hole on a chip setup, the system size is too small to 
show the expected Lyapunov exponent, but the OTOC decays rapidly to 
zero which is consistent with expected results.

4.5  QSims: The SYK Model and Beyond

4.5.1  The SYK model

QSims are another form of tabletop experiment that brings theoretical 
concepts into the practical setting. A key first-level objective in simulating 
quantum systems is implementing the SYK model as a known and solv-
able model of strongly interacting systems. The SYK model is also impor-
tant because it is a simple model of a black hole and constitutes a minimal 
realization of the AdS/CFT duality. Thus, the SYK model is useful for 
exploring otherwise unreachable physics (black holes, strongly interacting 
systems, and high-temperature superconducting materials) in tabletop 
laboratory experiments.

In condensed matter physics and black hole physics, the SYK model 
is a mathematical framework proposed by Sachdev and Ye (1993) and 
expanded by Kitaev (2015). Definitionally, the SYK model is a model of 
strongly interacting quantum systems with random all-to-all couplings 
among N Majorana fermions (a basic matter-based system) that is solv-
able in the large-N limit. In mathematical implementation, the SYK model 
is a model of Q spin-polarized fermions on N sites, typically described by 
a Hamiltonian (the SYK Hamiltonian).

The SYK model is useful for studying a range of problems because it 
is solvable, and since many difficult quantum problems can be formulated 
in terms of the SYK model, including information scrambling problems, 
chaotic systems, black holes, and superconductors. For example, in the 
context of high-temperature superconductors (non-Fermi liquids with 
“strange metal” behavior), the SYK model is exactly solvable at large N 
and exhibits an explicit non-Fermi liquid behavior with nonzero entropy 
density at vanishing temperature.

The SYK model shares important properties with black holes in that 
both are fast scrambling and maximally chaotic systems. A feature of the 
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SYK model is that for large N and strong coupling, it is possible to sum 
the Feynman diagrams to obtain out-of-order-time correlation functions 
(among other properties). The results of this exercise suggest that the SYK 
model is maximally chaotic (having the same Lyapunov exponent as black 
holes in Einstein gravity). The property of being maximally chaotic, 
together with the emergence of an approximate conformal symmetry at 
low temperatures, indicates that the holographic dual of the SYK model is 
a theory of Einstein gravity (Polchinski & Rosenhaus, 2016).

The SYK model is a minimal configuration of the AdS/CFT corre-
spondence and can be applied in either direction to calculate unknown 
aspects of a quantum system (Table 4.4). In the bulk-to-boundary applica-
tion, the holographic SYK model can be used to calculate attributes of an 
unknown quantum field theory of an exotic superconducting material on 
the boundary from a known bulk theory of classical gravity, for example, 
to study non-Fermi liquids (high-temperature superconductors) (Luo 
et al., 2019). In the boundary-to-bulk application, the holographic SYK 
model takes a known condensed matter field theory on the boundary to 
calculate an unknown bulk gravity, for example, beyond classical gravity 
toward a theory of quantum gravity (Gross & Rosenhaus, 2017).

There are two reasons why the SYK model is attractive to the study 
of quantum gravity. First, in the long-distance (IR) bulk, the SYK model 
is nearly conformally invariant (resistant to small conformal changes) and 
also nearly diffeomorphism invariant (even more strongly resistant to cer-
tain local changes). Second, the SYK model has the same Lyapunov 
exponent as a black hole. These two features suggest the existence of a 
gravitational dual in AdS2 (the discrete model of the correspondence with 
a one-dimensional CFT and two-dimensional bulk). However, the nature 
of the bulk dual is largely unknown, except that it likely contains AdS2 
dilaton gravity (a simplified form of gravity based on a hypothetical 

Table 4.4.  Bulk-boundary: Holographic SYK model.

No. Direction Known Unknown

1 Boundary-to-bulk Condensed matter field theory Quantum gravity

2 Bulk-to-boundary Classical gravity Non-Fermi liquids
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particle (dilaton)) (Almheiri & Polchinski, 2015). The solvability of SYK 
at large N, in principle, provides the ability to derive the bulk specification 
directly. Gross and Rosenhaus (2017) provide a systematic construction of 
the bulk dual to the SYK model framed as a 0 + 1 dimensional theory of 
a large number of Majorana fermions with random interaction. The pro-
gram involves solving the SYK model at large N (in the 1/N expansion), 
analyzing the two-, four-, and six-point functions of the fermions, and 
extracting the resulting operators to determine the mass of bulk fields and 
their cubic couplings. The resulting bulk structure of fields and couplings 
is a start toward a theory of quantum gravity and can be applied to a 
 variety of bulk-boundary analysis problems.

4.5.2  Tabletop platforms for quantum simulation

A first group of tabletop platforms for quantum simulation involves simu-
lating lattice gauge theories and the SYK model with ultracold atomic 
platforms and does not use quantum computing (Table 4.5). First is a 
proposal for modeling inaccessible high-energy physics problems (lattice 
gauge theories) with low-energy models such as ultracold atoms in an 
optical lattice (Zohar et al., 2016). Second is a similar setup with ultracold 

Table 4.5.  Tabletop platforms: SYK model and beyond.

No. Description What Is Modeled Hardware Platform

Nonquantum computing methods

1 High-energy system simulation Lattice gauge theories Ultracold atoms

2 SYK study of black holes SYK Ultracold gases 

3 Black hole on a chip SYK Superconducting chip 

Quantum computing methods

4 SYK digital quantum simulation SYK Trapped ions, circuits

5 Error-corrected SYK model SYK Post-NISQ devices

6 Quantum gravity in the lab SYK and wormholes Rydberg, trapped ions

7 SYK experimental demonstration SYK 4-qubit NMR 

8 Ryu-Takayanagi formula simulation Entanglement entropy 6-qubit NMR 

9 Scrambling Hamiltonian, chaos Information scrambling Rydberg, trapped ions
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gases in an optical lattice to implement the SYK model (Danshita et al., 
2017). Third is the black hole on a chip project as a physical realization 
of the SYK model in a solid-state system (Pikulin & Franz, 2017).

A second group of tabletop platforms for quantum simulation relies 
on quantum computing setups, implementing various methods for simu-
lating the SYK model and beyond. The fourth project is a protocol for 
the quantum digital simulation of the SYK model in either a trapped ion 
or superconducting circuit platform Garcia-Alvarez et al. (2017). Fifth is 
a  quantum algorithm that features state preparation oracles and lower gate 
complexity and is conducive to post-NISQ device (error correction) 
implementation (Babbush et al., 2019). NISQ (noisy intermediate-scale 
quantum) devices are currently available quantum computers that do not 
require error correction. Sixth is the proposal to study quantum gravity in 
the laboratory by creating quantum systems with wormhole-like behavior 
(Brown et al., 2019).

Two projects employ nuclear magnetic resonance (NMR) quantum 
computing for real-life demonstrations. One is an SYK model with N = 8 
Majorana fermions using a 4-qubit NMR QSim to study non-Fermi liq-
uids (high-temperature superconductors) (Luo et al., 2019). The team 
extends the work using a 6-qubit NMR QSim to calculate the Ryu–
Takayanagi formula for bulk-boundary entanglement entropy as a key 
result of the AdS/CFT correspondence (Li et al., 2019).

Finally, QSims are extending into new territory beyond SYK model 
implementations to establish other exactly solvable canonical models. For 
example, since black holes and the SYK model are known to be fast 
scramblers, it might be possible to write an information-theoretic simpli-
fication of this relationship. Such a simplification is proposed by rewriting 
the Hamiltonian (from the usual SYK Hamiltonian to a scrambling 
Hamiltonian) to more expediently calculate information scrambling (the 
spread of information across a system) in quantum systems (Belyansky 
et al., 2020). Fast scrambling is a property of black holes, chaotic systems, 
and other quantum problems. The scrambling Hamiltonian can be realized 
experimentally with QSims such as the dressed (nonfree floating) 
Rydberg states of neutral atoms, cavity-QED (quantum electrodynamics) 
setups, coupled chains of superconducting qubits, and trapped ions. These 
and other projects are elaborated in greater detail in what follows.
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4.5.3  Simulation with ultracold gases

4.5.3.1  Large-scale and small-scale physics

One of the first quantum simulations proposals is to simulate high-
energy physics with a low-energy, nonrelativistic, many-body system 
(ultracold atoms) (Zohar et al., 2016). This is surprising as it would not 
seem that the two kinds of systems have much in common particularly 
given their scale differences. Understanding this in context, the Standard 
Model of particle physics is the theory that describes elementary parti-
cles and three of the four fundamental forces in the universe (electro-
magnetic, weak, and strong interactions), but not the gravitational force. 
The Standard Model has been tested extensively in the context of both 
large-scale and small-scale physics. An extraordinary range of experi-
mental results from cosmological observations and particle accelerators 
has measured both high-energy scales up to 1012 eV (electron Volts) and 
low-energy scales down to 10−7 eV (a range of nineteen orders of mag-
nitude) (Table 4.6).

Besides the energy scale, there are also other differences between 
large-scale and small-scale physical systems in the formal structure and 
the underlying physical principles that govern them. On the one hand, the 
physics of high-energy phenomena is relativistic, with dynamical struc-
ture and constrained symmetries (local gauge invariance and Lorentz 
invariance). On the other hand, low-energy systems such as ultracold 
atoms are nonrelativistic, with less dynamical structure (per conserved 
quantities) and also without constrained symmetry (systems manifest 

Table 4.6.  Physics: Nineteen orders of magnitude.

System Energy Scale Structure Physical Principles

High-energy physics 
(field theories)

1012 eV Relativistic Dynamical structure, constrained 
symmetries: Local gauge 
invariance, Lorentz invariance

Low-energy systems 
(ultracold atoms)

10−7 eV Nonrelativistic Causal spacetime, charge 
conservation, no local gauge 
invariance, no Lorentz 
invariance
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neither local gauge invariance nor Lorentz invariance). Among other 
effects, this leads to a causal spacetime structure and charge conservation 
laws (seen as long-range interactions in QED and quark confinement in 
QCD).

The point is that it is not obvious that the two domains could come 
together and that high-energy field theories might be simulated by the 
physics of ultra-low-energy systems. What is new is the possibility of 
configuring an atomic system there are ways to configure an atomic sys-
tem to manifest both local gauge invariance and Lorentz invariance. 
Specifically, local gauge invariance can arise either as an effective, low-
energy symmetry, or as an exact symmetry, following from the conserva-
tion laws in atomic interactions. Hence, Zohar et al. (2016) suggest that it 
is possible for high-energy physics to be simulated by low-energy, non-
relativistic, many-body systems such as ultracold atoms.

4.5.3.2  Ultracold atoms in optical lattices

The team investigates quantum simulations of lattice gauge theories using 
ultracold atoms (via the Hamiltonian formulation of lattice gauge theories). 
A quantum simulation of abelian and nonabelian lattice gauge theories in 1 + 
1 and 2 + 1 dimensions is constructed using ultracold atoms in optical lat-
tices. The result is the possibility that QSims and cold atoms tabletop experi-
ments could become standard for studying high-energy physics phenomena 
such as the confinement of dynamical quarks, phase transitions, and other 
strong force effects in quantum chromodynamics (QCD), which are inacces-
sible using other methods, both experimentally and computationally.

Three requirements are identified for simulating a gauge theory. First, 
the theory must contain both fermions and bosons. The fermions represent 
matter fields and the bosons represent gauge fields. Ultracold atoms are a 
good candidate for a simulation platform since bosonic and fermionic 
atoms are freely available in these systems. Second, ultimately, the theory 
must be Lorentz invariant (holding in any inertial frame). This might be 
problematic, but the lattice gauge theories can be simulated to obtain this 
symmetry in the continuum limit, which is manageable with the structure 
of optical lattices as the simulating systems. Third, the theory must have 
local gauge invariance, which is the symmetry responsible for gauge-
matter interactions. This is the most problematic aspect since local gauge 
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invariance is not a fundamental symmetry in cold atom systems. To 
achieve gauge invariant interactions which are not fundamental to ultra-
cold atoms, two methods are applied to obtain effective symmetry and 
exact symmetry. The effective symmetry method imposes gauge invari-
ance as a constraint in that the gauge invariance is constrained to be an 
emerging, low-energy symmetry. The exact symmetry method maps 
gauge invariance into a fundamental symmetry of the atoms, per the laws 
of conservation of hyperfine angular momentum in atomic collisions.

4.5.3.3  Black hole in a tabletop gas

One of the first implementations of the SYK model was proposed by 
Danshita et al. (2017). The work uses an SYK-based model to produce 
black hole-like conditions in an experimental setting with ultracold gases 
for the potential study of quantum gravity. The work relies on the idea that 
quantum gravity can be studied in optical-lattice systems loaded with 
ultracold gases by using the holographic principle. The SYK model is 
considered as a specific example, as it consists of spin-polarized fermions 
with all-to-all random connectivity, and its low-temperature state has been 
conjectured to be dual to an AdS2 black hole as the quantum gravitational 
system (Sachdev, 2010). The work introduces a variant of the SYK model 
(that is equivalent to the original SYK model in the large-N limit) and can, 
in principle, be created by confining ultracold fermionic atoms into opti-
cal lattices and coupling two atoms with molecular states via photo-
association lasers (Table 4.7).

The SYK model is represented as a model of Q spin-polarized 
 fermions on N sites given by a Hamiltonian. Calculating the physical 

Table 4.7.  Bulk-boundary: Black hole in a gas.

No. Bulk Boundary Reference

1 AdS2 black hole SYK Model: Spin-polarized 
fermions with an all-to-all 
random connectivity

Sachdev (2010)

2 Quantum gravitational 
system

Optical-lattice systems loaded 
with ultracold gases

Danshita et al. (2017)
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observables of the system is possible by measuring the OTOC functions 
and the single-particle Green’s function, which characterize the properties 
of the black hole, by the use of a control qubit consisting of an atom in a 
double well. The proposal is incomplete due to practical difficulties in 
realizing the model with then-current experimental technology (including 
related to the fact that particles on lattice systems tend to move the most 
dominantly in nearest-neighbor interactions). However, the importance of 
the proposal is in articulating some of the first steps toward the experi-
mental realization of the SYK model, and hence laboratory systems dual 
to black holes.

4.5.4  Simulation with quantum computing

4.5.4.1  SYK simulation with ion traps and circuits

Transitioning quantum simulation efforts onto the quantum computing 
platform, one of the first efforts is defining a protocol for the digital quan-
tum simulation of the SYK model (Garcia-Alvarez et al., 2017). The aim 
is to reproduce a simplified low-dimensional model of quantum gravity in 
available quantum platforms such as trapped ions and superconducting 
circuits. The proposal calls for simulating the AdS/CFT correspondence 
with the simplest quenched-disorder SYK model (an SYK model with a 
quenched-disorder Hamiltonian). Both Majorana fermions and complex 
fermions can be studied, by solving the model for Majorana fermions at 
finite N, or for complex fermions in the large-N limit. The quantum algo-
rithm can be implemented with ion traps or superconducting circuits. 
Either platform can implement the quantum algorithm design based on 
the multiqubit Molmer-Sorensen gate (which implements the exponentials 
of tensor products of Pauli matrices). A method is also given for prob-
ing nonequilibrium dynamics with OTOC functions and information 
scrambling.

In the same area of research, Babbush et al. (2019) suggest a more 
scalable algorithm for the simulation of the SYK model with quantum 
platforms. Gate complexity is reduced by using a new method for encod-
ing the Hamiltonian with state preparation oracles and random quantum 
circuits. The algorithm anticipates post-NISQ devices by being conducive 
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to application with known error-correcting codes (surface codes) and pos-
sibly accommodating larger-scale (N > 100) SYK model quantum simula-
tions (a size thought to be intractable on NISQ devices).

4.5.4.2  Demonstrations with NMR QSims

Some of the earliest real-life demonstrations of tabletop SYK model 
implementations are achieved with the NMR platform. A generalized 
SYK model with N = 8 Majorana fermions using a 4-qubit NMR QSim is 
realized by Luo et al. (2019). The NMR platform is selected as it is one 
of the most fully controllable quantum systems. Well-characterized qubits 
can be produced with long decoherence times, and there is fine control 
over the nuclear spins through radio-frequency fields. This enables the 
ability to simulate the dynamics of a generalized SYK model. The aim 
of the research is using the SYK model to study non-Fermi liquids (such 
as high-temperature superconductors). So far, the quantum simulation 
of non-Fermi-liquid states in strongly interacting systems has not been 
possible.

The experimental realization of the SYK model is challenging 
because it is difficult to simulate the Hamiltonian which has strong ran-
domness and fully nonlocal fermion interactions. How to initialize the 
simulated system into specific states at different temperatures and mea-
sure the related dynamical properties is also unclear. A QSim with indi-
vidual and high-fidelity controllability is key, and ideally, the simulation 
process should be easy to manipulate digitally.

The SYK model describes a strongly interacting quantum system with 
random all-to-all couplings among N Majorana fermions. At large N, the 
model is exactly solvable and exhibits an explicit non-Fermi liquid behav-
ior with a nonzero entropy density at vanishing temperature. Non-Fermi 
liquids (“strange metals” or anomalous matter phases) are systems in 
which Fermi liquid behavior breaks down, meaning systems that deviate 
from resistivity at low temperatures, which suggests that more exotic 
physics is taking place. In condensed matter physics, one of the most well-
known (yet poorly understood) non-Fermi liquids is the “strange metal” 
phase of high-temperature superconductors (such as in cuprates (high-
temperature ceramic superconductors) with optimal doping). In these 
systems, the resistivity scales linearly with the temperature for a large 
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range of their behavior. The strange metal phase can be viewed as the par-
ent state of high-temperature superconductors, in contrast to the role of 
the Fermi liquid in ordinary superconductors. Non-Fermi liquids are a 
research frontier and other work has constructed non-Fermi liquid states 
based on SYK physics, with potential application to condensed matter 
systems (Patel et al., 2018). QSims for the SYK model could greatly 
extend research in this area.

The quantum simulation of the SYK model is demonstrated on a 
nuclear-spin-chain simulator. The observed results include the fermion 
pairing instability of the non-Fermi liquid state and the chaotic- 
nonchaotic transition at simulated temperatures, as predicted in previous 
theories. The experiment highlights the first steps toward the quantum 
simulation of non-Fermi-liquid states in strongly interacting systems. As 
the realization of the SYK model in practice, the results provide a new 
direction in the investigation of other key features of non-Fermi liquid 
states, as well as quantum chaotic systems and the AdS/CFT duality.

A further aspect of the work is the use of machine learning for system 
control. Such ML/Quantum Simulation applications, the application of 
machine learning to quantum simulation, could become a standard digital 
toolkit method. The scalability of control techniques is an obstacle when 
performing higher-dimensional digital quantum simulations. Earlier work 
from the team proposes a method that utilizes the power of quantum pro-
cessors together with machine learning techniques to enhance quantum 
control (Lu et al., 2017). Specifically, this is in the form of a quantum 
processor optimizing its own control sequence by using measurement-
based feedback control. The method is efficient in the sense that it requires 
polynomial time for optimization with the number of qubits. Improvement 
of control fidelities has been demonstrated on a 12-qubit system. The 
machine learning control method can be scaled up to many qubit systems, 
and thus might underpin future quantum simulation tasks involving SYK 
models of greater complexity as well as other models.

4.5.4.3  Ryu–Takayanagi entanglement entropy simulation

Extending the work to quantum gravity-type problems, the team 
announces the simulation of entanglement entropy using a 6-qubit NMR 
QSim (Li et al., 2019). A key result of the AdS/CFT correspondence, the 
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Ryu-Takayanagi formula for bulk-boundary entanglement entropy, is 
demonstrated by measuring relevant entanglement entropies on a perfect 
tensor state. The fidelity of the experimentally prepared 6-qubit state is 
85.0% via full state tomography and reaches 93.7% if the signal-decay 
due to decoherence is taken into account. The experiment could serve as 
a core module in the simulation of more complex tensor network states to 
examine the holographic correspondence. As one of the early experimen-
tal attempts to study AdS/CFT via quantum information processing, the 
work could open up new directions for investigating quantum gravity 
phenomena on QSims. The research is an example of AdS/TN/QSim: AdS 
with tensor networks implemented on a quantum simulator.

4.5.4.4  Scrambling Hamiltonian

Extending this research trajectory, Belyansky et al. (2020) propose a 
simpler-than-SYK model as a generic technology to generate Hamiltonians 
for the characterization and study of a quantum system’s dynamics. The 
underlying need is to establish a greater range of exactly solvable models 
for quantum problems. The premise is that it is now possible to simulate 
fast scrambling using QSims without having to rely on the SYK setup 
(with its nontrivial SYK Hamiltonian) and that a simplified model can be 
used. Fast scrambling (the spread of quantum information across a sys-
tem) is a signature of black holes, chaotic systems, and other complex 
quantum many-body problems of interest. The idea is that although com-
plicated quantum systems (such as high-temperature superconductors) 
can be formulated as an SYK problem (solvable with some effort), instead 
they might be cast as an information scrambling problem (more easily 
solvable). Whereas the SYK model sees condensed matter systems 
(through the holographic correspondence) as having black hole-like prop-
erties (solvable), the fast-scrambling model sees quantum systems 
(including condensed matter systems) as having information-theoretic 
properties (more easily solvable). The advance is one of quantum infor-
mation theory.

More specifically, scrambling refers to the spread of an initially local 
quantum information over the many-body degrees of freedom of the entire 
system, rendering it inaccessible to local measurements. Scrambling is 
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also related to the Heisenberg dynamics of local operators and can be 
probed via the squared commutator of two local, commuting, unitary, and 
Hermitian operators. One operator grows so fast that it eventually fails to 
commute with the other. The formalism produces two exactly solvable 
models. One comprises a random circuit with Haar random local unitaries 
and a global interaction, and the other is a classical model of globally 
coupled nonlinear oscillators. Numerical analysis provides further evi-
dence of the relationship by studying the time evolution of an OTOC and 
the entanglement entropy in spin chains of intermediate sizes.

The streamlined scrambling Hamiltonian can be realized experimen-
tally in a variety of state-of-the-art QSims. The most natural setup is with 
the Rydberg dressing (holding in place) of neutral atoms. The spin can be 
encoded in two ground states with one ground state dressed to two Rydberg 
states such that one of the Rydberg states leads to all-to-all  interactions and 
the other produces nearest-neighbor interactions. Other similar spin mod-
els can be implemented with cavity-QED setups, using photon-mediated 
all-to-all interactions of the Heisenberg form together with nearest-neigh-
bor interactions achieved by Rydberg dressing one of the ground states. 
The resulting Hamiltonian differs on the basis of the local interactions but 
leads to qualitatively similar information scrambling. Other possibilities 
include a chain of coupled superconducting qubits (with all-to-all flip-flop 
interactions mediated via a common bus) and trapped ions.
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Chapter 5

Neuronal Gauge Theory

It is only slightly overstating the case to say that physics is the study of 
symmetry

— Nobel Physicist, Anderson (1972, p. 394)

Abstract

This chapter studies symmetry, the property that systems look the same 
from different points of view (whether a face, a cube, or the laws of 
nature), and symmetry breaking (phase transition). A neuronal gauge 
theory interprets the brain as a multiscalar system with a global sym-
metry (invariant property). In the process of neural signaling, the global 
symmetry is maintained by the application of gauge fields with energy 
minimization as the gauge-invariant property of the brain system.

5.1  Concept of the Neuronal Gauge Theory

The laws of nature originate in symmetries, and much of foundational 
physics is based in symmetries and symmetry breaking. For example, the 
understanding of symmetry breaking in superconductivity helped to facili-
tate the quantum computational advance of the Josephson junction (to 
manage quantum interference and make use of quantum tunneling) 
(Anderson, 1972, p. 396). Likewise, an enumeration of relevant symmetry 
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breaking behavior in living things (such as the brain) might be crucial to 
understanding these domains (Ibid., p. 395).

The concept of the neuronal gauge theory for modeling the brain is 
proposed by the Friston laboratory (Sengupta et al., 2016). The work is an 
application of previous research regarding the free energy principle which 
argues that any self-organizing system that is at equilibrium with its envi-
ronment must be minimizing its free energy (Friston et al., 2006). The free 
energy principle takes the form of a predictive mechanism about the 
steady state and the free energy needed to maintain an organism, and is 
thought to be greatly conserved across types of organisms. Energy mini-
mization is a model widely used in fields ranging from materials analysis 
to deep learning. Typically, the problem is framed as the analysis of how 
a dynamic system finds the shortest path to the lowest-energy configura-
tion of the system. A notable model for energy minimization computa-
tions is the spin glass (a disordered ferromagnet), and in the sense that 
both systems minimize energy, the brain is like a spin glass.

These ideas are developed in the proposal for a neuronal gauge theory 
in which the gauge invariance (nonchanging property of a system) is the 
principle of variational free energy minimization (Sengupta et al., 2016). 
A gauge theory is a theory specifying that certain global properties of a 
physical system do not change as a result of local transformations 
(changes). For example, a ball can be tossed around a room and have dif-
ferent locations (local transformations), while the laws of gravitation 
(global symmetries) always hold. The gauge invariance is the laws of 
gravity as an overall system property. Many powerful theories in physics 
are described by gauge invariance or system dynamics that are invariant 
under certain kinds of local transformations. The brain as a system pre-
sumably remains invariant under different kinds of local transformations, 
and might be explained by a neuronal gauge theory. In the specific neuro-
nal gauge theory proposed by Sengupta et al. (2016), the overarching 
principle that does not change (gauge invariance) is free energy minimiza-
tion and the local transformations are the stimulus received by system 
elements such as stochastic fluctuations in the brain due to thermal energy, 
ion channel chattering, and irregular synaptic input from other neurons 
(Table 5.1).
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The problem domain is the specification of the bulk properties of the 
brain. The aim of the neuronal gauge theory is to serve as a general prin-
ciple for neuronal dynamics that holds at various timescales (for example, 
evolutionary, developmental, and perceptual timescales). The gauge the-
ory as posed centers around an energy minimization principle arguing that 
energy minimization extends to any biological system (whether neuron, 
brain, or body) as the operation of an organism resolving uncertainty 
about its external milieu, either by changing its internal states or its rela-
tionship to the environment.

The empirical demands of neuroimaging and optogenetics have 
forced the need to characterize the relationship between the activity of 
neurons and their system-level behavior. These technical innovations call 
for theories that describe neuronal interactions and reveal the underlying 
principles of the brain. A gauge-theoretic formalism in neuroscience 
might provide a quantitative framework for modeling neural activity and 
also show that neuronal dynamics across scales (from single neurons to 
population activity) can be described by the same principle.

5.1.1  Gauge theory

A gauge theory formalism is naturally suggested as a physics-based 
approach to the brain as a physical system. A central organizing principle 
of the universe and physical systems in general is thought to be gauge 
theories which describe overarching properties (symmetries) that are 
invariant irrespective of scale. Gauge theories arose to understand classi-
cal electromagnetism and general relativity together in the context of the 
gauge symmetries that appear in the relativistic quantum mechanics of 
electrons (quantum electrodynamics). Electrons are controlled by both 
spin and charge, which necessitates a formulation such as a gauge theory 

Table 5.1.  Neuronal gauge theory.

Local Transformation Global Invariance

A ball in a room Different locations Laws of gravitation

Neuronal gauge theory System element stimulus Free energy minimization
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(with symmetry-type principles) to explain their behavior (Griffiths, 1995, 
p. 175). Such gauge theories are widely applied in condensed matter phys-
ics, high energy physics, and other fields.

General relativity, electromagnetism, and quantum field theory can be 
consolidated within the framework of gauge theory (O’Raifeartaigh & 
Straumann, 2000). The AdS/CFT correspondence likewise formulates 
gravity as being equal to gauge theory in one less dimension (Maldacena, 
1998). Gauge-theoretic formalisms highlight the fact that both general 
relativity and quantum mechanics are based on fields (gravitational fields 
and quantum fields) which can be analyzed together mathematically as 
matrices. The centrality of gauge theory as a physical theory of the uni-
verse and its possibility of uniting large-scale and small-scale systems 
(such as general relativity and quantum mechanics) suggests the utility of 
gauge-theoretic approaches to neural dynamics.

5.1.1.1  The principle of variational free energy

Neuronal gauge theories might be specified on the basis of various proper-
ties of invariance. For Sengupta et al. (2016), the variational free energy 
principle is a good candidate as a central invariance principle. Minimizing 
variational free energy indicates that every aspect of the brain (from neu-
ronal signaling to synaptic connection strengths, as well as higher-order 
behavior) can be described as a process that minimizes variational free 
energy. Variational free energy is a measure of the approximate amount 
energy available in a system. In the neural context, variational free energy 
is a measure of the probability of receiving certain sensory inputs and 
stimulus, based on the brain’s indirect model of how these inputs are 
caused (Friston et al., 2006). The “variational” aspect of variational free 
energy is due to its derivation from variational calculus. Variational calcu-
lus is using small changes in functions to find minima and maxima such 
as geodesics (the shortest length curve connecting two points), and fea-
tures heavily in information theory.

In the simplest formulation, variational free energy reduces to pre-
diction error in the same way that estimating the parameters of a statisti-
cal model can be reduced to minimizing the sum of squared error. 
Variational free energy’s statistical model therefore suggests a machine 
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learning implementation (which is also based on error minimization). 
When physical laws such as Hamilton’s principle of least action are 
applied to variational free energy, the resulting behavior is statistical 
inference, giving the brain (or any self-organizing system) the character-
istics of a system trying to estimate or infer the causes of its sensory 
exchanges with the world.

Minimizing variational free energy is a statistical data analysis tech-
nique, often used in Bayesian (iteratively updating) models. If the brain 
were shown to minimize variational free energy, it might be considered 
more formally as a Bayesian (self-updating) system. Such evidence could 
support the Bayesian brain hypothesis (that the brain updates itself in an 
ongoing manner) (Knill & Pouget, 2004). A Bayesian inference model of 
the brain, based on formulating the free energy principle as a neuronal 
gauge theory, might lead to new inference schemes for analyzing neuro-
science data. Such methods might provide new ways for inferring the 
underlying structure in empirical data.

The aim of a neuronal gauge theory is to understand complex neural 
dynamics in simpler yet formal terms. For example, gauge theories are 
used to model complex weather patterns such as the Coriolis effect (cur-
vilinear motion in a rotating frame of reference). A similar method could 
be applied to understanding the effects of inbound neural signals on post-
synaptic responses as a necessary consequence of much simpler invari-
ances or symmetries. In the Bayesian brain model, neuronal activity 
encodes representations (Bayesian beliefs) and the Lagrangian (varia-
tional free energy) is a probability distribution function. The gauge- 
theoretic perspective allows the specification of a structure of patterns or 
responses that is independent of the usual noise of stochastic fluctuations 
from thermal energy, ion channels, and synaptic communication. These 
latter are the local transformations and free energy minimization is the 
gauge invariance (unchanging property).

5.1.1.2  Symmetry, gauge invariance, and the Lagrangian

Symmetry, gauge invariance, and the Lagrangian are related ideas in phys-
ics. Symmetry and gauge invariance are used as synonyms and mean the 
unchanging overall system parameters in the face of small local changes. 
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The Lagrangian is a mathematical function describing the system’s 
dynamics across local and global states that remain unchanged.

In everyday use, symmetry means balance, proportion, and evenness. 
In mathematics, symmetry has a more precise definition, and refers to an 
object that is invariant under some transformations including translation, 
reflection, rotation, or scaling. The two meanings are not at odds in that 
they both point to aspects of an object or system that are consistent or 
unchanging. Symmetry is a statement that something looks the same from 
different points of view, which could be a face, a cube, or the laws of 
nature (Weinberg, 1980) (Table 5.2).

Symmetry may be further classified as global or local. Symmetry is 
global if a system or theory is invariant under a transformation identically 
performed at every point in the spacetime in which the physical processes 
occur. Local symmetry is a stronger constraint and serves as a cornerstone 
of gauge theories. A local symmetry’s group parameters are spacetime-
independent whereas a global symmetry’s group parameters are 
 spacetime-dependent. In addition to being a property of objects, symme-
try may be observed with respect to the passage of time, as a spatial rela-
tionship, through geometric transformations, through other kinds of 
functional transformations. Symmetry is also observed as a feature of 
abstract objects including theoretic models, language, and music. In phys-
ics,  symmetry is synonymous with invariance (lack of change) under 
transformation. The concept has become one of the most powerful tools 
of theoretical physics, as it has become evident that practically all laws of 
nature originate in symmetries.

Symmetry, gauge invariance, and the Lagrangian are considered 
together in the overall frame of gauge theories. The terms symmetry and 
gauge invariance are used synonymously in physics. Symmetry (invari-
ance) and gauge invariance are used to refer to the system property of a 
nonchanging Lagrangian (system dynamics function) under a group of 

Table 5.2.  Symmetry definition.

No. Use Interpretation Meaning

1 Everyday Balance Looking the same from different 
points of view2 Physics Invariance
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local transformations. The Lagrangian is a system dynamics function, a 
function that describes the state of a dynamic system in terms of position 
coordinates and time derivatives, and potential energy and kinetic energy, 
and is invariant under local transformations. The overall frame is that of a 
gauge theory which is a field theory in which the Lagrangian (state of a 
dynamic system) does not change (is invariant) under local transforma-
tions (that are mathematically described by certain Lie groups). The Lie 
group is a widely used algebraic formulation of a continuous group in 
which spaces are combined, allowing all points in a space to be multiplied 
and divided.

The concept of gauge refers to a system being organized in discrete 
tiers. An analogy can be drawn to the twelve-gauge shotgun, which only 
accommodates bullets in its size tier. Similarly in physics, a gauge is a 
mathematical formalism that regulates scale tiers (as redundant degrees of 
freedom) in the system description, with the Lagrangian. A system may 
have various degrees of freedom, meaning parameters, the number of 
independent parameters required to characterize a system. The same 
 system parameters (degrees of freedom) may be relevant to a system 
description at multiple tiers (for example, location is a reoccurring param-
eter). Analyzing a system as to which properties remain invariant across 
scale tiers requires some sort of renormalization to streamline redun-
dant degrees of freedom, which is the operation of a gauge theory. 
Summarizing, the gauge theory is a field theory which the Lagrangian 
(system dynamics) does not change (is invariant) under local transforma-
tions. Definitions related to this cluster of terms are as follows:

• Gauge: A formalism rendering systems in discrete scale tiers.
• Gauge bosons: Force particles that are the quanta of gauge fields.
• Gauge field: A (vector) field generated by the Lie algebra that describes 

the gauge theory. Gauge fields are included in the Lagrangian to ensure 
its invariance under the local group transformations (gauge invariance).

• Gauge group (symmetry group): Lie group (algebraic formulation) 
formed by all possible gauge transformations.

• Gauge invariance: Unchanging global property of a system. The 
 system property of a nonchanging Lagrangian (system dynamics func-
tion) under local transformations.
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• Gauge theory: A field theory in which the Lagrangian (state of a 
dynamic system) does not change (is invariant) under local transforma-
tions from certain Lie groups.

• Gauge transformation: Transformations between possible gauges 
 (levels, degrees of freedom) in a system.

• Lagrangian: System dynamics function: a function that describes the 
state of a dynamical system in terms of position coordinates and time 
derivatives, and potential energy and kinetic energy, and is invariant 
under local transformations.

• Lie group: A continuous group combining regions of space by allowing 
all points in a space to be multiplied and divided.

• Symmetry: Balanced (everyday), invariance (physics); property of look-
ing the same from different points of view (for example, a face, a cube, 
or the laws of nature).

• Symmetry group: (see gauge group).

5.2  Details of the Neuronal Gauge Theory

Gauge theories originate in physics but can be applied to many other 
fields, including biology to analyze cell structure, morphogenesis, and 
embryonic development. For example, a gauge-theoretic treatment has 
been used to study the self-organization of dendritic spines (Kiebel & 
Friston, 2011). Sengupta et al. (2016) posit a gauge theory for the central 
nervous system more generally to describe overall brain function. A gauge 
theory is a field theory, and the proposal for the brain-wide gauge-field 
theory is partially motivated by empirical evidence that visual perception 
is a field-based phenomenon (Zeki, 2005).

In a gauge theory, the Lagrangian (overall system dynamics) is invari-
ant under continuous symmetry transformations. A gauge theory of the 
brain would therefore require a Lagrangian plus three elements, a system 
with symmetry, local forces applied to the system, and a gauge field(s) to 
compensate for the perturbations that are introduced by the local forces. 
In the neuronal gauge theory, the system with symmetry (invariant aspects 
across tiers) is the nervous system. The local forces or local transforma-
tions are sensory stimuli received by brain elements. The gauge fields are 
part of the brain environment and apply continuous forces to act on the 
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brain elements to produce local perturbations that counteract the effect of 
the local force stimulus. The gauge theory is a mechanism that acts to 
constantly rebalance the system such that symmetry (gauge invariance) is 
maintained. The four aspects of interpreting the brain in a gauge-theoretic 
format are listed in Table 5.3. These include first having a system with 
conserved symmetry, second, there being local forces in the system, third 
having the structural aspect of gauge fields in the system, and finally, 
 having a Lagrangian equation to describe the system’s dynamics.

Simplifying, in the “ball in a room” example, local transformations 
are the location of the ball in the room and the system property that is 
invariant is the law of gravity. In the neuronal gauge theory, the local 
transformations are the stimulus from local forces received by the brain 
elements and the system property that is invariant is the Lagrangian (sys-
tem dynamics). The Lagrangian is the focal object of analysis because it 
must maintain the gauge invariance of the system. A Lagrangian can be 
defined on the basis of the variational free energy minimization principle. 
Such a free energy Lagrangian has been specified previously to measure 
of aspects of functional brain architecture including hierarchical organiza-
tion and the asymmetries between forward and backward connections in 
cortical hierarchies. By formal analogy with Lagrangian mechanics, the 
free energy of the system can be written as a function of time (Friston, 
2008, p. 6), thus providing a description of neuronal dynamics.

5.2.1  Rebalancing global symmetry

The neuronal gauge theory sees a system immersed in its environment as 
an extended hierarchy. The gauge theory can be applied at various nested 

Table 5.3.  Neuronal gauge theory: Four elements.

Element Generic Gauge Theory Neuronal Gauge Theory

Symmetry System with conserved symmetry Central nervous system

Local transformations Local forces acting on the system Sensory stimuli

Gauge field Zone of invariance to local 
transformations

Counter-compensation for 
local perturbations

Lagrangian System dynamics function Free energy Lagrangian
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levels. At every scale tier (gauge), the Lagrangian is disturbed by local 
transformations (changes in forward or bottom-up sensory input), and 
compensatory adjustments must be made to keep the Lagrangian invariant 
(via backward or top-down messages) (Sengupta et al., 2016, p. 7). 
Variational free energy reduces to prediction error in the statistical imple-
mentation (the same way that estimating the parameters of a statistical 
model can be reduced to minimizing the sum of squared error). In the 
variational free energy minimization context, the bottom-up or forward 
adjustment messages convey the prediction error from a lower hierarchi-
cal level to a higher level, and the backward or top-down messages are 
predictions of statistics in the level below. The predictions are produced to 
explain away prediction errors in the lower levels.

The gauge field is the enforcement mechanism of the Lagrangian in 
maintaining global symmetry (formalized by Lie algebra terms in the 
Lagrangian). The gauge field incorporates the prediction errors and other 
system information, and is applied to preserve global symmetry despite 
the perturbing action of local forces. The local forces are prediction errors 
that serve to increase variational free energy, thereby activating the gauge 
fields to reduce or minimize such growth in free energy, and explain away 
or eliminate the importance of the local transformations in the global sym-
metry calculation. The gauge fields are based on the fact that variational 
free energy is a scalar quantity determined by probability measures. The 
gauge theory is the rebalancing mechanism that preserves system sym-
metry (gauge invariance). In the free energy model, the consequence of 
the nervous system maintaining its Lagrangian is that energy (prediction 
error) is minimized across all scale tiers. This suggests that the complexi-
ties of multiscalar neural behavior might be modeled with a neuronal 
gauge theory.

5.2.1.1  Information-theoretic interpretation

Central to the neuronal gauge theory is the multi-tier rebalancing of local 
transformations per overall gauge principles. Gauge theories have an 
information-theoretic interpretation through information geometry and 
entropy. The neuronal gauge theory argument is that macroscale brain 
emergence is a force that manifests from the curvature of information 
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geometry in the same way that gravity is manifested when the spacetime 
continuum is curved by massive planetary bodies. Macroscale emergence 
in the brain can be seen in the apparatus of a gauge theory interpreted by 
information geometry and entropy.

Sengupta et al.’s (2016) method is a free energy based interpretation 
of the information geometry and mean-field approximation approach 
developed by Amari (1995) and others (which also configures neural field 
theories). The probability measures executed in the neuronal gauge theory 
produce not a flat, but a curved (Riemannian) landscape. Such negative 
curvature has a hyperbolic geometry. Traversing a curved manifold 
requires a distance measure that corresponds to the distance between two 
statistical distributions. In differential geometry, the distance measure is 
often provided by the Fisher information metric, an approximation of the 
local geometry of a probability distribution which quantifies the amount 
of information that a random variable carries about an unknown parame-
ter. The Fisher information represents the curvature of the relative entropy 
(Kullback–Leibler divergence). Distance in the curved geometry corre-
sponds to the relative entropy of traveling from one point on the manifold 
to another. The shortest-length curve or geodesic is a central formulation 
in information geometry (Amari, 1995, p. 15), as well as general relativity 
and the AdS/CFT correspondence. The AdS/Information Geometry inter-
pretation appears in Table 5.4.

The neuronal gauge theory uses a free energy based model developed 
by Jordan et al. (1998). The proposal is a variational Fokker–Planck 
method with a Langevin (stochastic time evolution) equation whose 
ensemble density minimizes variational free energy. Fokker–Planck equa-
tions describe time-dependent dynamics, specifically the time evolution of 
the probability density function of particle velocity under the influence of 
drag forces equivalent to the convection-diffusion equation in Brownian 
motion. Here, the Fokker–Plank energy minimization approach provides 
the information-geometric manifold coordinates that are used to apply the 

Table 5.4.  AdS/Information Geometry.

Bulk Boundary Mathematical Formulation

Geodesic Neural signal Fisher information, Kullback–Leibler divergence
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gauge field. The gauge field is formulated as a Levi-Civita connection 
(covariant derivative), an operation on the tangent bundle that differenti-
ates vector fields. The gauge field is formalized as a vector field com-
prised of independent coordinates on the manifold base, and compares 
two points or distributions. The gauge field (Levi-Civita connection) is 
applied to enact the local forces that form the neuronal dynamics in the 
neuronal gauge theory.

5.2.1.2  Implications

The concept of the neuronal gauge theory is presented as an apparatus 
with a compensatory mechanism (gauge fields) to maintain the invariance 
of a global symmetry across all scale levels of a system. The Lagrangian 
is the formula describing the system dynamics and the implicit mecha-
nism used to rebalance the local forces to maintain gauge invariance. Free 
energy minimization is proposed as one candidate for a gauge-invariant 
property in the brain, but there could be others. From the information-
geometric perspective, the invariance preservation mechanism entails 
finding the shortest path on a curved manifold (geodesic). The gauge 
theory model could be implemented for further investigation on any vari-
ety of classical and quantum computational systems including machine 
learning platforms, neural networks, tensor networks, spiking neural net-
works, and photonic platforms.

Two of the key benefits of the neuronal gauge theory are having a 
method for finding the shortest path on curved manifolds (concretized 
with coordinates) and having an entropy-based formulation. A consider-
able challenge in neural modeling is the map-territory problem, namely, 
transforming the physical space the neural realities to the phase space of 
the model (Golubitsky & Stewart, 2003). The modeling process can dis-
connect variables and result in coordinate transformation issues (for 
example, in EEG and fMRI analysis, scale changes can be lost when 
instantiating the three-dimensional cortex as a representation in a plane) 
(Cocchi et al., 2017). The neuronal gauge theory contributes a schema of 
concretized coordinates for the curved manifold analysis. Further, the 
natural structure of the gauge theory allows a symmetry property in phase 
space to be translated into a symmetry property in the physical space. 
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The benefit of articulating the symmetries of a dynamical system with a 
gauge theory is that one dynamical system can be more readily mapped to 
another by aligning the higher-order properties. Symmetry is an ongoing 
topic in quantum computing algorithm design. For example, one effort 
formalizes the connection between the quantum symmetry properties 
of the Quantum Approximate Optimization Algorithm (QAOA) and 
the underlying symmetries of the objective function to be optimized 
(Shaydulin et al., 2020).

5.2.2  Diffeomorphism invariance

Gauge theories are a fundamental tool that might aid in the understanding 
of the brain and also continue to contribute to theoretical physics. 
Although gauge theories have helped to bring general relativity and quan-
tum mechanics closer together in the picture of both having fields (gravi-
tational fields and quantum fields) that can be computed with matrices, 
there is more work to be done. On the one hand, general relativity is a 
geometrical theory of gravity in which the effects of gravity are due to the 
curvature of space and time. On the other hand, fundamental particle 
interactions are described as quantum field theories that are invariant 
under gauge transformations. To unify gravity with particle theories, 
one proposed strategy is to rewrite general relativity more formally as 
a gauge theory. Gravity (general relativity) is already considered to be a 
gauge theory in some respects because it is diffeomorphism invariant.

Diffeomorphism invariance refers to a system that is invariant to 
 diffeomorphism (manifold changes). A diffeomorphism is a mapping 
between two smooth manifolds. A diffeomorphism invariant system is 
one that does not change with certain kinds of mappings between smooth 
(differentiable) manifolds. The gauge symmetry in general relativity can 
be identified as being invariant under diffeomorphism (manifold) transfor-
mations. However, the nature of this symmetry, how it is implemented, 
and how it behaves as a gauge transformation is unknown. Spontaneous 
symmetry breaking and the Higgs mechanism (by which particles acquire 
mass) are important in particle physics gauge theories, and these same 
formulations might likewise contribute to a gravity gauge theory that is 
diffeomorphism invariant (Chung, 2008).
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5.2.3  Symmetry and Yang–Mills theory

Symmetry is implicated in the current understanding of the Standard 
Model of particle physics developed from Yang–Mills theory. The Yang–
Mills theory is a gauge theory based on a special unitary group SU(n) 
described by Lie algebra (Yang & Mills, 1954). The behavior of elemen-
tary particles is described using nonabelian Lie groups. The Yang–Mills 
theory is at the heart of the unification of the electromagnetic force and 
weak forces (i.e. U(1) × SU(2)) together with quantum chromodynamics, 
the theory of the strong force (based on SU(3)) (Jaffe & Witten, 2006). 
This results in the unified symmetry group of the Standard Model (Table 
5.5). The Lie group often plays the role of symmetry (invariance) in physi-
cal systems, indicating the overall system properties that remain unchanged 
in the face of local transformations.
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Chapter 6

Quantum Information Theory

It from bit … all things physical are information-theoretic in origin

— Wheeler (1990, p. 356)

Abstract

This chapter describes information-theoretic formulations as a control 
lever for quantum mechanical processes such as quantum comput-
ing. Entropy is a key measure of the interconnectedness of subsystems 
within a system and can be manipulated in the information compression 
and quantum teleportation of the state information between locations. 
Quantum walks and out-of-time-order correlation (OTOC) functions 
manage forward and backward time evolution in quantum systems.

6.1  Quantum Information

Wheeler’s quote points to the idea that information is the key to under-
standing reality. The intuition is that in order to truly comprehend reality, 
which involves unifying general relativity and quantum mechanics, it is 
necessary to develop a deeper understanding of the behavior of informa-
tion, particularly in quantum systems. Hence, the field of quantum infor-
mation has arisen as the discipline of thinking about information in many 
different kinds of quantum mechanical situations such as qubits, harmonic 
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oscillators, and fermion systems. The quote update for the quantum 
 computing era is “it from qubit”, or more appropriately, “it from qudit” 
(multistate unit of quantum information).

6.1.1  Entropy and quantum information

The first topic to be clarified is what is meant by information. The usual 
definition of information is facts provided or learned about something that 
resolves uncertainty. Etymologically, information comes from the verb to 
“in form”, to give a form or an idea to something. In this way, information 
can be seen as a coalescing of order out of disorder, the rendering of 
salience out of randomness. Physicist Davies (1992, p. 16) suggests that 
the real question is why there is any order at all “given the limitless variety 
of ways in which matter and energy can arrange themselves”.

Conceptually, information theory can be seen as a way of organizing 
and quantifying the correlations observed in real-life phenomena (how 
interrelated subsystems of a system are). The methods of information 
theory provide concrete functions and quantities to evaluate correlations, 
including entropy, mutual information, channel capacity, and error correc-
tion. Entropy plays this kind of role in statistical mechanics, namely, 
quantifying the underlying relationships in complex systems, and the 
same concept extends to quantum systems.

6.1.1.1  Classical information theory

Information theory arose in the context of efficient signal processing in 
communications. Shannon was interested in the fundamental limitations 
of signal processing and data compression. He proposed information-
theoretic entropy as a measure of the minimum number of bits needed to 
communicate a message produced by a statistical source (Shannon, 1948). 
Hence, classical information theory is often understood as the study of the 
quantification, storage, and communication of information. Information is 
taken to be an ordered sequence of symbols from an alphabet. Horodecki 
et al. (2007) articulate three building blocks that comprise classical 
 information theory. These are entropy (the information content of some-
thing or the minimum number of bits needed to communicate a message), 
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mutual information (the knowledge held in common between entities), 
and conditional entropy (the total entropy minus partial entropy as the 
additional amount information that must be sent to relay a message).

Bennett and Shor (1998, p. 2724) suggest that quantum information 
theory is the natural completion of classical information theory: “At a 
more fundamental level, it has become clear that an information theory 
based on quantum principles extends and completes classical information 
theory, somewhat as complex numbers extend and complete the reals”.

Quantum information theory has to do with the same topics of infor-
mation generation, storage, and transmission in quantum networks for 
quantum communication and quantum computing. In the broadest sense, 
quantum information theory is formulating quantum mechanics from an 
information-theoretic perspective (Nielsen & Chuang, 2010). The term 
“quantum information” specifically denotes the information of the state 
of a quantum system. It can be given formally (by the technical von 
Neumann entropy measure) or informally (by the general computational 
status of a system). In practice, quantum information theory is the coun-
terpart of classical information theory. Relevant topics in quantum infor-
mation theory include quantum information encoding, error correction, 
channel capacity, entanglement, and quantum cryptography. A lexicon of 
terms appears in Table 6.1.

6.1.1.2  Entropy

Entropy is a widely used term in various contexts, always meaning about 
the same thing, namely, the number of different ways a system can 
be arranged. Entropy refers to a desk becoming messy, stirring milk into 

Table 6.1.  Lexicon: Classical and quantum information.

Term Definition

Classical information Facts that give form to something (in-form)

Quantum information State information of a quantum system

Classical information theory Quantification, storage, and sending of information

Quantum information theory Information-theoretic version of quantum physics
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coffee, a black hole evaporating, or sending a message across the quantum 
internet. The more different ways the system can be organized (micro-
states), the higher the entropy, and the more information that is required 
to send the full details of the system to another location. Entropy arose in 
the context of studying thermodynamics and heat dissipation, and was 
formulated as statistical mechanical entropy by Boltzmann (2011, 1896) 
and in the modern formulation by Gibbs (1902). von Neumann applied the 
Gibbs entropy to quantum mechanics to take the minimum over all mea-
surement bases of the system (1932).

Shannon used entropy in information-theoretic terms to describe the 
information bits required to encode, compress, and transmit messages 
(1948). In these situations, entropy is a quantitative measure of the num-
ber of possible microscopic configurations (microstates) of a system that 
are consistent with its macroscopic quantities such as volume, pressure, 
and temperature. There is no practical distinction between thermodynamic 
entropy and information-theoretic entropy (Harlow, 2017). Both von 
Neumann entropy and Shannon entropy have the operational interpreta-
tion of the number of bits (qubits) required to transmit the system state 
information (relevant microscopic degrees of freedom) from one location 
to another. Rényi (1961) entropy is another form of entropy often used in 
quantum information theory as a composite of four other entropy mea-
sures (Shannon, Hartley, collision, and minimum entropy).

The AdS/CFT correspondence has sponsored further advance in 
entropy formulations. The Ryu and Takayanagi (2006) formula relates 
the bulk and the boundary regions through entanglement entropy. 
Entanglement entropy is a measure of the information content (entangle-
ment) between two quantum subsystems. The Ryu–Takayanagi formula 
states that the boundary entanglement entropy is equal to the area of a 
corresponding minimal surface in the bulk. This can be seen as the entan-
glement entropy of a region in the boundary being given by the area of a 
minimal three-dimensional surface which hangs from the two-dimen-
sional boundary region into the bulk as a geodesic (shortest length curve) 
(Swingle, 2012). An additional advance is the geometric formulation of 
quantum mechanical entropy. Despite the von Neumann formula, mini-
mizing over all measurement bases in a strongly interacting quantum 
mechanical system is cumbersome and sometimes intractable. Instead, 
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Czech et al. (2015) extend the geodesic-based geometrical formulation to 
quantum mechanical entropy. Using the holographic correspondence, the 
idea is to evaluate entropy with geometry, through the geometrical quan-
tity of the shortest length curve through the bulk that corresponds to a 
boundary region.

6.1.2  Superposition, entanglement, and interference

The SEI properties (superposition, entanglement, and interference) are the 
central attributes of quantum mechanical objects that are relevant to quan-
tum computing (Swan et al., 2020, p. 48). Superposition is the property 
that an unobserved particle exists in all possible states simultaneously, but 
once measured, collapses to just one state. Entanglement is the property 
of particles being connected such that their states are related, even when 
separated by a large distance. Interference is the property of waves rein-
forcing or canceling each other out (cohering or decohering), which is 
important for measuring wave amplitudes in many-particle systems.

6.1.2.1  Superposition and interference

The superposition and interference properties of quantum mechanics are 
demonstrated by the canonical double-slit experiment (Nielsen & Chuang, 
2010). In the first setup of the experiment, there is just one slit. A laser is 
shone through the slit and illuminates a screen in the distance. The result-
ing pattern is a curve with a peak in the middle and weaker peaks further 
out on the screen in diminishing size. If the slit is narrowed, the width of 
the peak broadens, and in the limit of an infinitely thin slit, there is an 
infinite-width peak. In the second setup of the experiment, there are two 
slits. In this case, the wave front hits both slits with little waves coming 
out from each slit that interfere with each another. The pattern on the 
screen shows multiple peaks with interference which is not surprising as 
they indicate the expected behavior of classical wave formations.

The third setup of the experiment considers the quantum mechanical 
scale. The laser is turned down to emit only one photon at a time. The 
emitted light is composed of one individual photon. Thus, it seems that the 
photon could only take the path through the upper slit or the lower slit. 
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However, when performing a measurement and looking at the screen, the 
result is the same pattern as that of the two-slit experiment with multiple 
peaks and interference. In order to generate such an interference pattern, 
the photon would need to pass through both slits. Since there is only one 
photon, not the photon but something related to it must be two places at 
once. This idea is called superposition, that a quantum object simultane-
ously exists in what would seem to be two mutually exclusive domains 
from a classical perspective (Lee, 2020, p. 7).

6.1.2.2  Two-state qubit systems and quantum computing

In information-theoretic terms, the quantum double-slit experiment is a 
qubit system (a two-state system) (Bennett & DiVincenzo, 2000). The 
coinage of the term “qubit” is credited to Schumacher (1995). The two 
states can be labeled as zero and one. If the photon is passing through the 
upper slit, it is a zero, and through the lower slit, it is a one. Since quantum 
mechanics allows both states to occur at the same time, superposition is 
modeled mathematically as a linear combination of the two possibilities. 
The principle of superposition is that multiple incompatible classical 
realities can coexist simultaneously.

There are many different ways to make a two-state qubit system for 
the purpose of quantum computing. Most qubit systems use binary state 
properties that can be labeled in a quantum object (atom, ion, photon) 
related to energy, spin, or other physical properties. The simplest atom, for 
example, is the hydrogen atom (with one proton and one electron). To 
make a qubit system, the lowest energy state (the ground state) is labeled 
zero, and the first excited state is labeled one. The qubit states (one and 
zero) are literal translations of the real-life physical properties of the quan-
tum object. A quantum computer is a physical system.

A basic approach to quantum computing is applying energy to the 
hydrogen atom qubit system to create states that are between the zero and 
the one (Rieffel & Polak, 2014, p. 13). These are not states in which the 
electron is halfway between the zero orbit and the one orbit, but states in 
which there is some amplitude (probability, which appears as a coeffi-
cient) associated with the zero orbit and some amplitude associated with 
the one orbit, that coexist. Superconducting circuits are another platform 
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for quantum computing, ideally realized by the semiconductor industry. In 
a superconducting circuit, the two-state qubit system is typically con-
structed such that the current flowing one way in a Josephson junction 
circuit is a zero, and the current flowing the other way is a one. Another 
semiconductor-related method is quantum dots which are a microfabri-
cated structure in which there is a potential well, and the electron prefers 
to be in one location or the other. Whether the electron is in the left or the 
right well is encoded as the zero or the one. The presence or absence of a 
charge is another standard form of qubit system, as is binary polarization 
in optical systems.

6.1.2.3  Entanglement and Bell pairs

Entanglement is the property of particles being connected such that their 
states are related, even if they are separated by a large distance. 
Entanglement is produced when a pair of quantum objects such as photons 
interacts physically. For example, a laser beam fired through a certain type 
of crystal can cause individual photons to be split into pairs of entangled 
photons. The photons can be separated by a large distance, hundreds of 
miles or more. When observed, one photon takes on one state (spin-up, for 
example). The entangled photon, though now far away, immediately takes 
on the opposite state (spin-down).

A qubit exists in a superposition of two states until collapsing to one 
of them when measured. By analogy to a coin flip, a qubit exists in the 
state of Heads and Tails at the same time. The probability of being in 
Heads and the probability of being in Tails sum to one. If two qubits are 
entangled, it means that if one ends up in Heads, the other is in Tails. Both 
qubits do not need to be measured, because if one is measured, the other’s 
state is known automatically due to their being entangled. The entangle-
ment relationship ends when one side is measured. Qubits may participate 
in high-dimensional entanglement schemes by being simultaneously 
entangled according to one or more attributes such as spin, polarization, 
and angular momentum, in a dense juggernaut of quantum computational 
information (Erhard et al., 2020). For each attribute, there are two values, 
and if one qubit is measured in “spin up”, the other is correspondingly in 
“spin down”.
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Entangled particles are called Bell pairs (after Bell’s theorem). 
Einstein objected to the idea of such “spooky action at a distance” since 
faster-than-light-travel is not possible. That is true, but entanglement is 
also true. Particles that are in physical proximity, entangled, and then 
separated remain entangled, and when one half of the pair is measured, the 
other immediately collapses to the opposite value (Weihs et al., 1998). 
Quantum entanglement has been demonstrated numerous times and is 
exploited as a standard feature in quantum communication.

6.2  Quantum Toolbox

6.2.1  Quantum teleportation

Quantum entanglement is harnessed is in quantum teleportation. Quantum 
teleportation is a technique for sending quantum information from one 
location to another, for example, between two parties, A and B. This is 
possible if A and B share an entangled Bell pair and have a classical com-
munications channel available to them. The idea of quantum teleportation 
is sending information, not matter, more like a fax machine than a means 
of transportation (as science fiction suggests). In quantum teleportation, 
the state of a particle or quantum system is transmitted from one physical 
location to another. It is analogous to sending a fax in that only informa-
tion is sent and the final product relies on some sort of feedstock being 
present at the receiving location to generate the state.

In an experimental setup, A and B might teleport the state of a photon 
from A across some distance to B (Nielsen & Chuang, 2010, p. 26). First, 
A packages up the information describing the quantum state of the photon 
in the form of a qubit. Then A and B use an existing Bell pair, or create a 
new Bell pair with an entangled state between two new photons, to initiate 
the teleportation. They separate the Bell pair photons so each has one 
qubit of the entangled Bell pair. Next, A interacts the qubit state with A’s 
half of the entangled Bell pair, and then measures the two qubits, obtain-
ing one of four possible classical results (00, 01, 10, 11). A sends this 
information to B using a classical channel. Depending on A’s message, B 
performs one of four pre-specified operations on B’s half of the entangled 
pair to recover the original state. Through entanglement, in the form of the 
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entangled pair, A and B are able to transfer the quantum state information 
of the original photon from one location to another. Notably, quantum 
teleportation is secure because the Bell pair has information shared exclu-
sively between themselves and no other particles. This property might be 
used to provide a high level of information security in quantum commu-
nication and computation. A further extension is blind quantum comput-
ing, protocols in which one party cannot access a quantum computer, and 
another party facilitates the computation with the input, output, and task 
remaining hidden (Childs, 2005), in a sort of quantum zero-knowledge 
proof technology method.

6.2.2  Quantum error correction

Quantum error correction is becoming more prominent in considering the 
potential future applications that extend beyond NISQ devices to universal 
fault-tolerant quantum computing, including as motivated by real-life 
applications in quantum finance. Fault tolerance means preventing a few 
errors from escalating to many. Various quantum error correction tech-
niques are used to protect quantum information (i.e. quantum states) from 
environmental noise. Such noise arises in quantum communication as 
quantum states pass through noisy channels, and in quantum computation 
as quantum states are transformed through a sequence of computational 
steps and exposed to environmental decoherence (Brun, 2019). Classical 
error correction methods such as making redundant copies or checking 
information integrity before transmission are not possible in quantum 
systems since information cannot be copied or inspected (per the no-
cloning and no-measurement principles of quantum mechanics). Quantum 
error correction therefore relies on entanglement instead of redundancy. 
The quantum state to be protected is entangled with a larger group of 
states from which it can be corrected indirectly (one qubit might be 
entangled with a 9-qubit ancilla of extra qubits, for example).

The basic errors that occur are a bit flip, a sign flip (the sign of the 
phase), or both. Basic error correcting codes are applied to diagnose the 
error, and correspond to the usual Pauli matrices for manipulating qubits 
in the X, Y, and Z dimensions of a Hilbert space. The error is expressed as 
a superposition of basis operations given by the Pauli matrices. If there is 
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an error, the same Pauli operator is applied to act again on the corrupted 
qubit to reverse the effect of the error. The unitary correction returns the 
state to the initial state without measuring the qubit directly.

The basic form of the quantum error correcting code (QECC) is the 
stabilizer code, as the quantum version of linear codes used in classical 
systems (Brown, 2020). In the application of stabilizer codes, the quantum 
information to be protected is stored in a larger quantum state (ancilla) 
that is accessible through QECCs. The QECCs are a subspace of the larger 
Hilbert space of the protective ancilla. The code subspace is the eigens-
pace of a set of commuting Pauli operators (called stabilizer generators) 
acting on the qubits. A stabilizer code is defined by three parameters: The 
number of underlying physical qubits to be protected, the number of logi-
cal qubits in the protective ancilla, and the minimum distance of the code 
(the smallest number of simultaneous qubit errors that can be tolerated) 
(Swan et al., 2020, p. 325). A stabilizer code acts to correct any damaged 
information in this schema, and can be applied within other analytical 
frameworks; MERA tensor network-based stabilizer codes, for example 
(Kim & Kastoryano, 2017).

Stabilizer codes are the general method for protecting static quantum 
information from noise, for example, in quantum communications net-
works. However, the dynamical process of quantum computing itself also 
introduces errors since information is not only stored but also processed. 
For universal quantum computing, fault-tolerant error correction is needed 
to prevent a few errors from escalating during the quantum computation 
process. Topology-based stabilizer codes (the toric code and the surface 
code) are proposed as the primary method for fault-tolerant error correc-
tion. Particle movement and its correction are interpreted in the structure 
of lattice topologies. Toric codes are stabilizer codes defined on a two-
dimensional lattice with periodic boundary conditions (which gives them 
the shape of a torus), with stabilizer operators on the spins around each 
vertex and plaquette (face) (Kitaev, 1997). Surface codes are a more 
generic formulation of topology-based stabilizer codes, which are also 
defined on two-dimensional spin lattices, and take various shapes, but are 
not necessarily toroidal.

Other fault-tolerant stabilizer codes are also proposed related 
to Majorana fermion braiding and color codes (gauge color fixing). 

b4362_Ch06.indd   134b4362_Ch06.indd   134 4/29/2022   6:33:42 PM4/29/2022   6:33:42 PM



b4362  Quantum Computing for the Brain6"×9" 

 Quantum Information Theory  135

In particular, color codes are a family of topological quantum error- 
correcting codes that use less computationally demanding gauge-fixing 
instead of magic state distillation to execute non-Clifford gates (Brown 
et al., 2016). “Color” coding refers to the minimal number of colors 
needed to code a system so that each cell touches no other cell of the same 
color (states on a map is a canonical color-coding problem). Color coding 
has a more compact encoding but requires more elaborate hardware 
(Litinski, 2019, p. 28). Further, the ability to conduct “lattice surgery” by 
choosing different decoders, including with the help of machine learning 
(QEC/ML), allows fault-tolerant code switching (Nautrup et al., 2019).

Another quantum error correction method proposes a three- 
dimensional surface code in the form of the staged progression of one 
surface code being slid underneath two other surface codes in time (thus 
constituting a “time technology”) (Brown, 2020). The method provides a 
new type of non-Clifford-gate error-correcting method without the need 
for the computational overhead of state distillation. There are two kinds of 
quantum gates, Clifford gates and non-Clifford gates. Clifford gates 
(based on elements in the Clifford algebra) are basic quantum gates (Pauli 
matrices, Hadamard gate, CNOT gate, and π/2-phase shift gates) that can 
be simulated efficiently on a classical computer (i.e. in polynomial time). 
Non-Clifford gates are needed for greater logical depth and more complex 
operations (such as the π/8 gate) and cannot be simulated efficiently on a 
classical computer (Rieffel & Polak, 2014, p. 318).

The non-Clifford gates rely on so-called magic state distillation 
which is the computationally expensive task of consolidating multiple 
noisy quantum states into fewer reliable states. Brown’s three-dimen-
sional surface code is an advance in circumventing the need for magic 
state distillation in the execution of non-Clifford gates. The non-Clifford 
gate uses three overlapping copies of the surface code that interact 
locally over a period of time. This is carried out by taking thin slices of 
the three-dimensional surface code and collapsing them into a two-
dimensional space. The process is repeated with the help of just-in-time 
gauge fixing, a procedure for stacking together the two-dimensional 
slices on a chip, as well as dealing with any occurring errors. The three 
surface codes replicate the three-dimensional code that performs the 
non-Clifford gate functions.
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6.2.2.1  AdS/QECC

The AdS/CFT correspondence is a recognized as a quantum error correc-
tion structure, formally as an operator algebra problem (Almheiri et al., 
2015). An early example of AdS/QECC (quantum error correction 
codes) is demonstrated using tensor networks (Pastawski et al., 2015). 
The implication of AdS/QECC is that a physical qubit in the bulk can 
be protected by entangling it with logical qubits on the boundary.  
AdS/QECC work continues to link advances in algebraic formalisms and 
information theory to quantum error correction. In AdS/CFT research, a 
key objective is bulk reconstruction, reconstructing emergent structure in 
the bulk.

In quantum error correction, the implementation is protecting a physi-
cal qubit in the bulk with a logical ancilla of qubits on the boundary. The 
structural and formal objectives inform each other in AdS/QECC applica-
tions. One finding is that conditions in which bulk and boundary relative 
entropies are equal do not always hold in error correction scenarios. Thus, 
work in quantum information theory is used to argue that for any quantum 
channel of information transmission, there exists an approximate recovery 
channel, using type 1 von Neumann algebras as the formalism (Junge 
et al., 2018). The initial state can be corrected from the recovery channel 
acting as the identity on all states in the domain, to perform sufficiently 
approximate error correction. The AdS/QECC implication is that any low-
energy bulk operator in the entanglement wedge (related area) of a bound-
ary region can be represented as an operator acting on that boundary 
region, without having to assume that the bulk and boundary relative 
entropies are equal (Cotler et al., 2019). The type 1 von Neumann alge-
bras as the formalism are extended to arbitrary von Neumann algebras in 
subsequent work (Faulkner et al., 2020).

6.2.2.2  QECC example: The three-qutrit code

A good example of a QECC is the three-qutrit code. For example, there is 
a qubit that needs to be protected from quantum noise or for security rea-
sons. The idea is to encode the qubit, a logical qutrit, into three physical 
qutrits. The logical qutrit is in the bulk and the three physical qutrits are 
on the boundary. A qutrit is a three-state qubit, which is a useful 
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self-contained nine-state error-correction code system. The logical qutrit 
is encoded into physical qutrits A and B together, B and C together, and 
A and C together, as groups of boundary regions or surface states. The 
physical qutrit can be recovered from any pair of the surface states since 
they are entangled. There are three different ways to recover the qutrit 
since any two of three boundary states are needed to reconstruct the qutrit. 
The message is incoherent to an outsider if only examining one pair with-
out knowing how the qutrits are entangled.

A typical example is sending a Greenberger–Horne–Zeilinger (GHZ) 
state (an entangled quantum state involving at least three entangled par-
ticles or qubits) using the three-qutrit code. Each of the three-qutrits has 
three states (nine total states). The three-particle GHZ state is encoded 
into the three-qutrit (nine-state) system and the three-qutrits are sent one 
at a time. The GHZ state cannot be recovered from just one qutrit, but can 
be reconstructed from any two of the three-qutrits (the full state can be 
reconstructed from six states). The receiver acts with an operator (speci-
fied ahead of time) to decode the entangled qutrits (code subspace) and 
access the message. The state can be recovered from any two of the qutrits 
by acting on them with the operator to obtain the full GHZ state (Harlow, 
2017, p. 25). Applications of holographic quantum error-correcting codes 
are further discussed by Swan et al. (2020, pp. 319–36).

6.2.3  Out-of-time-order correlators

A concept frequently used in quantum information theory is evolving time 
backward and forward in a quantum system. As the name indicates, out-
of-time-order correlation (OTOC) functions are operators used to evolve 
a quantum system back or forward through time, in particular to measure 
the scrambling time (how quickly information spreads out over the entire 
system so that a local measurement is not possible). The function evolves 
a quantum system back or forward through time so that two different 
states of the quantum system can be compared. The two different states 
are compared either by applying a function and waiting for some time for 
the system to evolve forward in time and then measure it, or by applying 
a measurement, evolving the system back in time and applying another 
operator at some earlier moment to measure it then. The formalism is 
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carried out by comparing how fast two operators which are initially 
 commuting, decay to become non-commuting (Swingle et al., 2016, p. 1).

6.2.4  Quantum walks and Hadamard coins

Classical random walks are based on Markov (stochastic) processes and a 
coin flip, and are used to explain Brownian motion in real-life systems. 
Quantum random walks are the quantum version, also determined by a 
coin flip (a quantum coin-flip operator), and are used to find faster quan-
tum algorithms (for search and cryptography), and involve more variables 
including the graph setup, the walk algorithm, the time regime (discrete or 
continuous), and the coin-flip operator. The quantum structure offers sig-
nificant potential speedups versus classical random walks, which are 
confined to a classical diffusive spreading out rate. Instead, quantum 
walks have various regimes of ballistic, hyper-ballistic, and chaotic 
spreading, delivering at minimum a quadratic speedup improvement com-
pared to classical methods (Pires et al., 2019). Also, continuous-time 
quantum walks can be exponentially faster than classical random walks 
due to interference effects which enable the quantum walk to penetrate 
decision-tree structures more quickly (Farhi & Gutmann, 1998).

Quantum walks can be implemented on any platform, in particular 
optical platforms such as photonic waveguide arrays, graphene, and crys-
tal lattices (Razzoli et al., 2020). Other applications for quantum walks 
include coin-space entanglement and memory (in the form of elephant 
walks with good memory (Di Molfetta et al., 2018)). Quantum walks can 
be performed in discrete-time or continuous-time (Childs, 2005).

A classical random walk is a mathematical object that is a stochastic 
(random) process describing a path of successive random steps in a space, 
used to facilitate the explanation of Brownian motion in systems such as 
stock prices, population ecologies, and superconducting materials. A ran-
dom walk proceeds as a Markov process in which, at every time step, a 
particle moves (either left or right) to one of two neighboring sites as a 
result of the random outcome of a coin toss.

In quantum walks, the wavefunction describing the system evolves 
according to the value of an inner binary property (such as the spin or the 
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chirality) whose state is locally updated by the action of a unitary operator 
(the coin operator). One of the main coin operators is the Hadamard coin 
or coin-flip operator, a real-valued unitary operator that performs a 
Hadamard transformation (flips into superposition) on the chirality of the 
particle. There are various coin operators (site-dependent coins, time-
dependent coins, history-dependent coins, and random coins (unitary coin 
operators selected at random)) (Montero, 2017).

The space in which the quantum walk takes place is more complicated 
than that of the classical random walk as quantum walks often proceed in 
elaborate lattice graph structures. The lattice graphs might be embedded 
in a Euclidean plane to form a regular tessellation (triangular, square, and 
honeycomb lattice graphs). Continuous-time quantum walks in embedded 
lattices are of particular interest (Flamini et al., 2018, p. 20). A photon 
propagating through a lattice shows a ballistic spread for a distance pro-
portional to the evolution time, due to the interference of the wave packet 
amplitudes across the continuous-time quantum walk. In continuous 
walks on disordered lattices with static disorders, an Anderson localiza-
tion can be produced in which the wave packet localizes on the initial sites 
of the lattice. An Anderson localization is the absence of the diffusion of 
waves in a disordered medium (a useful property of electron localiza-
tion in semiconductors with implications for computation). It is also pos-
sible to manipulate Bloch oscillations (periodic oscillations between the 
spreading and the localization of the wave packet) on lattices with external 
gradient forces.

Quantum chaos formulations have important practical uses in the bal-
listic regimes of chaotic spreading of quantum walks that are much faster 
than the diffusion spreading of classical random walks. Quantum walk 
algorithms can be used to develop faster algorithms for search and cryp-
tography. The advent of usable quantum chaos for computing scenarios 
introduces a ratcheting effect that impacts quantum information security. 
The risk is that lower-dimensional systems with slower-speed and chaotic 
dynamical behavior degradation could leave systems vulnerable to attack 
(El-Latif et al., 2020). Quantum cryptosystem design thus makes use of 
the latest quantum walk protocols, similar to the way that classical algo-
rithms incorporate the latest cryptographic standards.
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Chapter 7

Quantum Computing 101

[Quantum computing] does not merely make computer science a branch 
of physics. It also makes part of experimental physics into a branch of 
computer science

— Deutsch (1985, p. 115)

Abstract

This chapter discusses writing quantum algorithms and quantum circuits 
to run on quantum hardware platforms. Qubits are encoded into vari-
ous physical systems such as electron spins, superconducting current, 
and optical lattices. Input data are modulated (written) onto qubits with 
basis (one-to-one) encoding or amplitude (many) encoding. Quantum 
programs are rerun many times to obtain probabilistic confidence of the 
results. Quantum computation proceeds with unitary transformations 
(one-off steps) to evolve quantum systems forward in time.

7.1  Quantum Algorithms and Quantum Circuits

Quantum computing consists of the two steps of writing a quantum algo-
rithm and running it on a quantum circuit. A quantum algorithm is a set of 
instructions for performing a quantum computation. A quantum circuit  
is a standard computational unit used to conduct logic operations with 
quantum gates on a quantum information processor. Both have analogs in 
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classical computing. Whereas quantum algorithm design began decades 
ago, activity now includes the design of quantum circuits for real-life 
hardware implementation or simulation (Table 7.1).

The mathematics was quickly understood for how the quantum 
domain operates differently from the classical domain and how to produce 
computational speedups. The first focus is writing programs as linear 
algebra vectors to offer an improvement as compared to classical algo-
rithms (Biamonte et al., 2017). Some of the first quantum algorithms were 
written in the 1990s, notably Shor’s (1997) algorithm for factorization and 
Grover’s (1996) algorithm for search. Initially algorithm writing was a 
theoretical project without much to do with practical implementation, 
although quantum computing has always been realizable in principle. 
Now, what is different is real-life instantiations, and the aim is writing and 
translating quantum algorithms for implementation on real-life quantum 
computing platforms. Since quantum algorithms are exponentially faster 
at performing linear algebra calculations, a low-hanging fruit task is 
modifying classical algorithms to incorporate quantum linear algebra 
 subroutines to gain the quantum speedup.

7.2  Qubit Encoding

To perform operations on a quantum computer, input data are encoded 
into a quantum state using qubits. Quantum bits, or qubits, are two-level 
quantum systems (Schumacher, 1995). They can be physically realized in 
many ways such as by the states of a spin-1/2 particle, the polarization 
of a single-photon, two distinguished levels of a trapped atom or ion, the 
current states of a microscopic superconducting loop, or many other 
physical systems (Table 7.2).

Table 7.1.  Quantum computing steps.

Term Definition

Quantum algorithm Set of instructions to perform a quantum computation

Quantum circuit Computational unit used to perform logic operations with quantum 
gates on a quantum information processor
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Qubits can be encoded in any variety of physical systems in which a 
zero and a one can be clearly designated. Most qubit systems use binary 
state properties that can be labeled in a quantum object (atom, ion, pho-
ton) related to energy, spin, and other physical properties. The qubit states 
(zero and one) are literal translations of the real-life physical properties of 
the quantum object. One of the most straightforward ways to formulate a 
qubit is with an electron spin. Other systems include Josephson junctions 
(superconducting devices with quantum tunneling), photonic lattices, 
nuclear spin systems, and Majorana fermions (non-abelian anyons in 
topological superconductors with interspersed braid-like trajectories).

7.2.1  Quantum circuit demonstrations

Two different ways to prepare a quantum circuit (for machine learn-
ing tasks in data classification) are described in detail by Farhi and 

Table 7.2.  Qubit encoding in various physical systems.

No. System Quantity Qubit (One-Zero)

1 Electrons Spin Up/down

Charge 0/1 electrons

2 Josephson junction Charge 0/1 Cooper pair

Current Clock/counter-clockwise

Energy Ground/excited state

3 Single-photon Spin angular momentum: 
Polarization

H/V, L/R, diagonals

Orbital angular momentum: 
Spatial modes

Left/right

Waveguide propagation path 0/1 photons

Time-bin, frequency-bin Early/late arrival bins

4 Optical lattice Spin Up/down

5 Quantum dot Spin Up/down

6 Nuclear spin Spin Up/down

7 Majorana fermions Topology Braiding

Source: Adapted from Flamini et al. (2018, p. 3).
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Neven (2018) and Grant et al. (2018), in the respective concepts of quan-
tum neural networks and quantum tensor networks (Table 7.3). Grant 
et al. (2018) develop a hierarchical 8-qubit quantum circuit to classify 
both classical data (Iris and MNIST) and entangled quantum data (self-
generated) with a tensor network structure (TTN and MERA), and test the 
circuit with Iris data on the IBM QX4 quantum computer.

Farhi and Neven propose a “quantum neural network” that represents 
labeled data and is trained with supervised learning methods. Digits from 
the MNIST database are distinguished (the 3 and the 6). The model maps 
17-element data strings to 17 qubits in the quantum circuit. The 17 qubits 
consist of 16 data bits of 4 × 4 MNIST digits (down-sampled from 28 × 
28 pixel images) plus a data label. The bit strings representing the input 
data are loaded into a qubit register. The method is tested by running a 
simulation of a quantum device on a classical computer (but could in 
principle be run on NISQ devices), and in terms of size, could expand 
from 17 qubits to 40 qubits.

The two approaches are structurally quite similar, encoding classical 
data into quantum states, processing the data with quantum circuits, and 
measuring a target qubit with a Pauli (spin) operator at the end. Both 
teams employ standard machine learning techniques such as stochastic 
gradient descent (a loss function structure to optimize the learning pro-
cess). One difference is that Grant et al. (2018) provide results from a 
real-life quantum computer while Farhi and Neven (2018) provide results 
from the classical simulation of a quantum computer.

The other main difference is that Farhi and Neven (2018) use a stan-
dard neural network format and Grant et al. (2018) employ a tensor 

Table 7.3.  Quantum circuit preparation.

Approach Data Embedding Hardware Data

Quantum neural 
network

Basis embedding (bit string) Simulation on 
classical 
computer

MNIST (classical)

Quantum tensor 
network

Basis embedding (classical 
data) and amplitude 
embedding (quantum data)

IBM QX4 
quantum 
computer

IRIS, MNIST (classical) 
and self-generated 
(quantum)
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network format. The tensor network format might offer greater flexibility 
in testing different configurations of the circuit composition. This is 
important since many of the steps in running a quantum circuit are fairly 
straightforward, namely, encoding input data into quantum states, measur-
ing target qubits to obtain results, and repeating to generate high- 
confidence in the output probability distribution. However, the actual 
circuit design in terms of the gate set types and order, and parametrization 
of the unitary transformations to be employed, is much less clear, and ten-
sor networks may offer greater visibility into circuit optimization than 
neural networks (traditionally a “black box” operation).

7.3  How Does Quantum Computing Work?

7.3.1  Input, processing, output, repeat

7.3.1.1  Quantum gate logic

Quantum states are represented as quantum circuits to perform logic 
operations (Carrasquilla, 2020). This means that quantum states are trans-
lated into quantum computations that are written in terms of quantum 
circuits or logic operations, which are converted into probabilistic circuits 
(probabilistic gate logic). The quantum circuit is initialized with a simple 
quantum state, which is evolved into a more complicated quantum state, 
and measured at the end of the computation.

The theoretical basis for quantum computing is probability (Orus 
et al., 2019). To produce a quantum circuit, the operation is first written 
in terms of quantum state language. The quantum state language is then 
translated into an initial probability distribution. In the computational 
operation, a sequence of matrix transformations is applied to the initial 
probability distribution to obtain an ending probability distribution at the 
conclusion of the computation. For example, the initial quantum state 
might be represented as a simple tensor product (such as 0 0 0 0). The 
state could be evolved by applying a sequence of unitary matrices that 
act on the initial state. The unitary matrices act locally on a few qubits at 
a time, iteratively repeating and extending the operation. The idea is 
that the probability distribution corresponding to the quantum state is 
evolved through time using matrix operations to compute the problem. 
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The specification of the unitary matrices that are to be applied in the logic 
gates is about the only aspect of the problem that can be chosen. At the 
end of the computation, the outcome is measured on a designated qubit.

7.3.1.2  Setting up a quantum computation

In quantum computing, the primary task is to design a quantum circuit (an 
algorithm or sequence of steps) to represent some data, perform some 
operations on it, and measure the output toward a goal, such as classifying 
data with labels. This is the usual structure of computation, namely, the 
three steps of data input, processing, and output.

In quantum computing, the data input is a quantum state. The input 
data for the problem are packaged into a quantum state, which is the for-
mat that can be read by the quantum circuit. The input data are encoded 
into a quantum state, either a single-qubit state or a multi-qubit state, pos-
sibly with entanglement. Once the data have been encoded as a quantum 
state, the data processing phase consists of a series of unitary operations 
applied to the initial quantum state. The circuit performs a series of steps 
called unitary transformations (one by one steps with operators acting on 
qubits) to advance the computation. These are the logic gates of the com-
putation, carried out with the analogs of classical computation (Boolean 
gates such as IF, THEN, NOT). All of the classical logic operations can be 
performed and encoded in the structure of the quantum computation. 
Finally, a measurement is performed to obtain the result of the logic 
operation on the data. The main difference with quantum computing is 
that states cannot be measured along the way, and once the state of a qubit 
is measured, the computation is over. Hence, there is a fourth step, repeti-
tion (repeating the running of the circuit), as many times as necessary to 
obtain confidence in the probability-distribution output.

In quantum computing, there are many ways to make qubits, however 
once produced, qubits operate per standard gate logic. The most basic 
standard gate logic in quantum systems entails the Hadamard gate (which 
acts on one qubit to put it in a superposition state), the CNOT gate (which 
acts on two qubits to flip one), and the Toffoli gate (which acts on three 
or more qubits to implement the Boolean operators). There are many other 
more complicated gates (Nielsen & Chuang, 2010, pp. xxx–xxxi).
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Summarizing, quantum data processing is analogous to classical data 
processing in that the same primary steps apply, namely, acquiring input 
data, processing the data per programmed instructions, obtaining a result, 
and repeating the process as necessary. In quantum computing, the pro-
cess adds some domain-specific wrinkles. The steps consist of encoding 
input data into quantum state, processing the operation as a series of uni-
tary operations applied to the initial quantum state, measuring a target 
qubit, and repeating the process to confirm the result. The biggest 
unknown and hence a substantial design focus is determining the optimal 
circuit architecture (gate order) and parametrizations of the unitary opera-
tors (Table 7.4).

7.3.2  Step 1: Data encoding (embedding)

There are two kinds of encoding in quantum computing. There is qubit 
encoding and data encoding (or more accurately, data embedding). Qubit 
encoding is producing qubits in the physical system in which the qubits 
are designated (such as electron spins, photonic polarization, and ion 
traps). Data encoding is the method by which data are converted or modu-
lated (written) onto qubits for computation. In data encoding, one electron 
spin rotation, for example, may correspond to one input value. Data 
encoding may be in a one-to-one relationship with a qubit, or take advan-
tage of the multiple dimensions of the qubit (multiple rotations).

One distinction in data encoding is between basis embedding and 
amplitude embedding. Farhi and Neven (2018) use basis embedding (for 
classical data) and Grant et al. (2018) use both techniques (for classical 
and quantum data). Basis encoding is a one-to-one relation of quantum 

Table 7.4.  Steps in performing a quantum computation.

No. Step Description

1 Acquire data Encode input data into a quantum state

2 Process data Process operation as a series of unitary transformations (one-by-one 
operations) applied to the initial quantum state

3 Obtain result Measure a target qubit (with a Pauli (spin) operator)

4 Repeat Repeat to obtain a high-confidence probability distribution
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states with classical bit values. One qubit is used for each data element. 
Each data element is associated with one qubit, and one state of the qubit, 
such as one electron spin rotation. The basis embedding method applies to 
classical data that are in the form of binary strings. The embedded quan-
tum state is the bit-wise translation of a binary string to the corresponding 
states of the quantum subsystems. An input of 1001, for example, would 
be represented by the 4-qubit quantum state |1001>.

Amplitude embedding is the other data encoding method, and is 
 applicable to quantum data that are already in a superposition state, 
or encoding data into a multidimensional state. The multiple dimensions 
of the data are mapped correspondingly to multiple dimensions of the 
qubit state, such as multiple amplitude rotations. Data are encoded into the 
amplitudes of the quantum state. Notably, basis embedding, one-to- 
one encoding (one qubit for each state), is not a scalable method. 
Superposition states (instead of devoting a whole qubit to each state) is 
ultimately a more scalable way of managing classical data, and what give 
quantum computing the ability to encode exponentially large number of 
values in a set of qubits. However, at the early stages of development of 
quantum computing, proof of method is most important, and one-to-one 
encoding on NISQ platforms is easiest to manage.

7.3.2.1  Classical data

Grant et al. (2018) describe some of the differences in encoding classical 
and quantum data (Table 7.5). Input data may be classical or quantum. 
Whatever the classical data are, they are encoded into a quantum state to 
be run in the quantum computation. The most straightforward 

Table 7.5.  Classical and quantum data encoding.

Data Input Data [Feature Vectors; Label] Quantum State Data Encoding

Classical n-dimensional real-valued input 
vectors; label

Encode into single-state qubit 
rotations

Quantum 2n-dimensional complex-valued 
input vectors; label

Encode into superposition 
states
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implementation is that classical data are written as vectors and each vector 
element is encoded into a qubit format. Machine learning data are typi-
cally already organized and presented in a structural form (feature vector; 
label) that is conducive to vector representation.

Ultimately, input data vectors are written as a wavefunction (with 
coefficients indicating the probability of whether a qubit is in the zero or 
one state) that is ready to use in a quantum algorithm. Classical data are 
encoded into a quantum state, the quantum format of a wavefunction. Data 
from classical datasets such as Iris and MNIST are already packaged in 
such a data vector format that is favorable to machine learning treatment. 
The data structure is straightforward to encode into the quantum format. 
In the basic formulation, the data vectors are encoded into a quantum state 
in a vector-to-qubit encoding method, using N qubits to encode an 
N-dimensional data vector.

7.3.2.2  Quantum data

Similar methods apply to quantum data. However, whereas classical data 
may have N-dimensional input vectors that are real numbers, quantum 
data may have 2n-dimensional input vectors that are complex numbers. 
Quantum data may be in the form of entangled states which are better 
stored in superposition states (a more efficient quantum state encoding 
method). For example, a quantum dataset for binary classification may be 
one in which the data features component is complex numbers of 
2n-dimensional input vectors of unit length, and the classifier labels term 
is the usual (0,1) label. Hence, instead of real-valued single-qubit states as 
with classical data encoding, there are complex-valued quantum ampli-
tudes for quantum data encoding. In contrast to classical data, quantum 
data (such as the output of another quantum circuit or data received from 
a quantum sensor) may already be in a superposition state. The quantum 
states can be brought into the computation directly without additional 
state preparation required. The point is that classical data may consist of 
real numbers, and quantum data may be comprised of complex numbers. 
The potential benefits of quantum computing can be seen in being able to 
manage the complex numbers of quantum data as compared to the lower-
dimensional real numbers of classical data.
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7.3.3  Step 2: Data processing

7.3.3.1  Circuit architecture

Data processing refers to the circuit architecture (the design structure of 
gate logic type and order) and the unitary parametrization (how unitary 
transformations are to be applied) in the operation of the quantum gates 
on the quantum state data. A challenge is that guidelines have not yet been 
established for the type and order of unitary transformations (gate set 
order) to apply to the qubits in standard variety of computations.

Farhi and Neven (2018) deploy a neural network method based on 
either random gate selection or restricted gate selection. They obtain 
essentially sub-par results as compared to other machine learning classifi-
cation methods, but provide an important proof of demonstration of the 
quantum circuit simulation method. Grant et al. (2018) use tensor net-
works instead of neural networks as the structure of the machine learning 
model, which involves eliciting greater structure from the underlying data 
and produces a hierarchical model for gate selection. Their results are on 
par with other classification methods. The key difference is that the tensor 
network structure allows quantum correlations on a particular length scale 
to be captured at the same layer of the network. The hierarchical model of 
tensor networks is thereby able to avoid the parametrization problem of 
random gate selection or arbitrarily restricted gate selection because ten-
sor networks are a more robust structure that naturally incorporates more 
of the local information in the nearest neighbor relationships in the data.

7.3.3.2  Unitary parametrization

The unitary parametrization is how the unitary transformations (linear 
advances through the computation by one regular unit) are to be set up to 
operate on quantum state data through the series of quantum logic gates 
that comprise the quantum circuit. Different unitary parametrizations of 
the circuit can be implemented on the basis of employing more sophisti-
cated quantum computational formulations. Unitary parametrizations 
apply similarly to classical data (real-valued numbers) and quantum data 
(complex-valued numbers).
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Grant et al. (2018) test an increasing order of gate complexity based 
on the number of qubits. There are three gate parametrizations with 
 single-qubit rotations and a CNOT gate, standard 2-qubit gates, and 
3-qubit gates (with an ancilla qubit for nonlinear operations). The first 
uses only single-qubit rotations and a fixed CNOT gate. This means that 
two arbitrary single-qubit rotations are followed by a CNOT gate (which 
can act to flip the qubit). The structure can be implemented with available 
quantum computers. The second instantiates standard 2-qubit gates. 
An arbitrary 2-qubit gate in the general setting requires compilation into 
hardware-dependent gates in available quantum computers. The third uses 
3-qubit gates. The arbitrary 3-qubit gate involves adding an ancilla qubit 
which can be used for nonlinear operations. The circuit would also need to 
be compiled in currently available hardware (Table 7.6).

The aim of the table is to indicate that quantum computing is in the 
early phases of development. The simplest methods are being employed 
at first (although already elaborate compared to classical computing), 
with the expectation of becoming more sophisticated over time. Once 
techniques are proven, and hardware, and possibly error correction 
 methods become available, it would be expected that the complexity of 
methods, and the types of problems that can be analyzed would grow 
substantially.

Table 7.6.  Qubit gates and unitary parametrizations.

Qubits Parametrization Description
Ease of 

Implementation

1 Single-qubit rotations 
and a CNOT gate

Two arbitrary single-qubit 
rotations followed by a 
CNOT gate (spin-flipping)

Available NISQ 
devices

2 Standard 2-qubit 
gates

General 2-qubit gate model Requires hardware 
compilation

3 3-qubit gates (one 
ancilla qubit)

One additional ancilla qubit 
allows a richer suite of 
nonlinear operations

Requires hardware 
compilation

Source: Extended from Grant et al. (2018, p. 5).
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7.3.4  Steps 3 and 4: Results and repetition

Measurement is different between classical and quantum computing. In 
classical computing, measurement samples can be taken any time, and 
system state and measurement are essentially synonymous. In quantum 
systems, however, measurement is a distinct concept. Qubits are subject 
to the no-cloning and no-measurement principles of the quantum domain. 
Viewing or measuring the qubit changes its state. In quantum computa-
tion, measurement collapses the qubit wavefunction to a specific value 
(one or zero). Therefore, the quantum system cannot be measured during 
the processing, only at the end, and the system state is obtained by mea-
suring a designated readout qubit. For Farhi and Neven (2018), at the end 
of the series of gate operation progressions, a measurement is carried out 
on a target qubit. The measurement is performed on a specific qubit and 
consists of a simple Pauli (spin) measurement in a chosen direction.

In practice, multiple runs are required to approximate the expectation 
of the measurement outcome, and the most frequent outcome is taken as 
the predicted class. Having more runs increases the confidence in the 
result. The assumption in quantum computing is that the experiment can 
be repeated many times (hundreds or thousands of times) to obtain confi-
dence in the probabilistic results. For example, if the same quantum mes-
sage is sent 100 times (in the simplest setup, a zero or a one), and a certain 
result (say a zero) is obtained in 80% of the measurements, and the other 
result (a one) obtained in only 20% of the measurements, the conclusion 
is that it is highly likely that a zero was the value of the qubit sent in the 
message. The assumption is that the exact quantum state of the experiment 
can be recreated an arbitrary number of times to obtain confidence in the 
probabilistic results.

7.3.4.1  Results measurement with complexity

Since repetition is a feature of quantum computing, many different permu-
tations can be tested. Ascertaining the accuracy and quality of results is 
important. A series to tests can be performed to evaluate the accuracy of a 
circuit’s results. Also, different circuits may be compared to see which 
gate logic structure is more efficient. One way to compare circuits is on 
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the basis of complexity. Complexity is typically assessed as a function of 
the number of operations required to complete a task. This could be the 
number of queries to a data source, or the number of multiplications 
required to perform a task. The computational complexity (the number of 
unitary transforms or matrix multiplication operations) can be compared 
for different data encodings and gate logic circuits to see which is the best 
for a certain measurement outcome.

7.4  Advances in Quantum Computing

Some of the major events in the timeline of quantum computing are 
summarized in Table 7.7. The initial conceptual proposal was by 

Table 7.7.  Advances in quantum computing.

No. Event Description Year

Conceptual proposal

1 Universal quantum simulator Simulate quantum systems directly with 
quantum molecules

1982

2 Quantum computer Fully quantum computing model for 
computation

1985

Algorithm development

3 Deutsch–Jozsa algorithm Example of a quantum algorithm being 
exponentially faster than classical 
algorithm

1992

4 Shor’s algorithm Efficient quantum factoring algorithm, 
threat to global cryptography standards

1997

5 Grover’s algorithm Widely applicable search algorithm 1996

Experimental demonstrations

6 NMR implementation 7-qubit NMR factorization of the  
number 15

2001

7 Optical implementation Four photonic qubit factorization of the 
number 15 (tomography-verified)

2007

8 Solid-state superconducting 
qubits implementation

Nine-element solid-state quantum 
processor-based factorization of the 
number 15 (tomography-verified)

2012
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Feynman (1982), suggesting that simulating quantum systems with 
quantum molecules would be more efficient than with classical system. 
Deutsch then developed the idea into “a general, fully quantum model 
for computation” (Deutsch, 1985, p. 102). With the concept of quantum 
computing in mind, algorithms started to be proposed that would take 
advantage of the unique quantum possibilities of the platform. One of 
the first examples of a quantum algorithm that is exponentially faster 
than a classical algorithm is the Deutsch–Jozsa algorithm (Deutsch and 
Jozsa, 1992).

One of the first events that drew substantial attention to quantum com-
puting was Shor’s articulation of a quantum algorithm for factoring large 
numbers. The algorithm signifies a clear speedup of quantum systems 
over classical systems, and a potential threat to existing cryptography if 
implemented (Shor, 1997). Shor’s algorithm has two parts, one that casts 
factoring as the problem of finding the period of a function (which may 
be implemented classically), and one that finds the period of the function 
using the quantum Fourier transform (using the superposition capability 
of a quantum computer to be in multiple states simultaneously). Grover’s 
search algorithm is likewise important, and although does not offer the 
same exponential speedup, is more widely applicable than Shor’s algo-
rithm (Grover, 1996). Grover’s quantum search algorithm finds a particu-
lar register in an unordered database within a certain number of steps. 
Some of the first experimental demonstrations of quantum algorithms 
occurred in the 1990s.

Early work (Beckman et al., 1996) suggested that a proof-of-principle 
demonstration of quantum factoring (factorization of 15) might be per-
formed with only six trapped ions and 38 laser pulses. An initial imple-
mentation of Shor’s algorithm was shown by a team at IBM using a 
7-qubit nuclear magnetic resonance (NMR) system, factoring 15 into 3 × 
5 (Vandersypen et al., 2001). (The Deutsch–Jozsa algorithm and Grover’s 
algorithm were likewise demonstrated elsewhere). Two optical demon-
strations followed, both using four photonic qubits with linear optical 
equipment to factor the number 15 (Lu et al., 2007) and confirming the 
results with tomography (Lanyon et al., 2007). Both relied on the ability 
to generate entanglement between qubits by coherent application of a 
series of quantum gates.

b4362_Ch07.indd   156b4362_Ch07.indd   156 4/29/2022   6:33:48 PM4/29/2022   6:33:48 PM



b4362  Quantum Computing for the Brain6"×9" 

 Quantum Computing 101  157

In the experimental setup for Lu et al. (2007), femtosecond laser pulses 
pass through specialized crystals (Beta-barium borate) to produce two pairs 
of entangled photons. Polarizers are used to disentangle the photons and 
prepare them into quantum states denoting spatial modes. The photons pass 
through half-wave plates and are superposed on the polarizing beam splitter 
to implement the necessary single-qubit and 2-qubit gates. To ensure good 
spatial and temporal overlap, the photons are spectrally filtered and coupled 
by single-mode fibers. The final measurement results are read out using 
polarizers and single-photon detectors. Lucero et al. (2012) were among 
the first to factor the number 15 using Shor’s algorithm using a nine-ele-
ment quantum processor with Josephson junctions (solid-state qubits).

7.5  Unitary Transformation

The basic format of quantum computing is encoding data into circuits, 
performing unitary transformations, and measuring the result. A unitary 
transformation is the application of the unitary operator to evolve a quan-
tum system forward by one linear step. Mathematically, a unitary transfor-
mation is the application of certain linear algebra matrix operations. 
A unitary transformation is not only the most basic step forward allowed 
in evolving a quantum system but also has deep philosophical roots as a 
concept in quantum mechanics.

• Unitary: Adjective: a system or state whose evolution is by the unit 
operator (advancing linearly by one regular unit); Noun: synonym for 
unit operator, unitary operator (a unitary = a unitary operator).

• Unit operator or unitary operator: Standard quantum mechanical 
 system evolution operator, acting to advance a quantum system  
linearly by one regular unit, preserving inner products in Hilbert  
space.

• Unitarity: System property of the time evolution of a quantum state 
according to the Schrödinger equation as mathematically represented 
by a unitary operator.

• Unitary matrix: An n × n complex square matrix whose conjugate 
transpose is also its inverse, and both are equal to the identity matrix 
(matrix U is unitary if U*U = UU* = I).
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• Identity matrix: An n × n square matrix with ones on the main diagonal 
and zeros elsewhere (the main diagonal runs top left to bottom right); a 
primitive used in matrix operations.

• Unitary transformation: Application of the unitary operator to evolve a 
quantum system forward by one linear step.

A postulate of quantum physics is that quantum evolution is unitary. 
Unitary means by units, that a quantum system or state can only advance 
linearly by one regular unit (Susskind & Friedman, 2014, p. 98). The unit 
operator (“unitary operator” or simply “unitary”) acts to perform the state 
evolution, preserving the inner products in Hilbert space. In a quantum 
system, movement can only occur in discrete unit-sized changes, any 
change is in the size of the basic unit (advancing one step at a time, not 
two steps or 1.3 steps). In quantum physics, unitarity is the condition that 
the time evolution of a quantum state proceeds according to the 
Schrödinger equation, as represented by a unitary operator.

With linear algebra, the unitary operator acts on the unitary matrix to 
perform the transform. The unitary matrix is an n × n complex square 
matrix whose conjugate transpose is also its inverse, and both are equal 
to the Identity matrix (matrix U is unitary if U*U = UU* = I). The impli-
cation is that many transformations are possible given the structural 
equivalence of the matrix properties. The identity matrix is an even sim-
pler matrix primitive, an n × n square matrix with ones on the main diago-
nal and zeros elsewhere (the main diagonal runs top left to bottom right). 
The unitary structure sets up well-formedness in quantum computing.
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Chapter 8

Glia Neurotransmitter Synaptome

Given that glial cells associated with synapses integrate neuronal inputs 
and can release transmitters that modulate synaptic activity, it is time to 
rethink our understanding of the wiring diagram of the nervous system

— Haydon (2001, p. 185)

Abstract

This chapter discusses neural signaling models that progress beyond 
those that are primarily focused on electrical action potentials, to a 
broader picture that also includes the action of glial cells, neurotransmit-
ters, and synapse proteins. The connectome and the synaptome could be 
the “killer applications” of quantum computing for the brain. The con-
nectome is the wiring diagram of all neural connections in the brain, and 
the synaptome is the similar map for synapses.

8.1  Glial Cells

Glia (glial cells) are nonneuronal cells in the central and peripheral ner-
vous system that maintain homeostasis, form myelin, and provide support 
and protection for neurons. It is now recognized that glia are more central 
to brain functioning than was previously thought (Fields, 2009). First, glia 
have an active role in neural signaling and synapse formation and opera-
tion. Second, glia have their own calcium signaling system, with each 
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astrocyte wrapping around more than 100,000 synapses, tiling out to 
cover the whole-brain in a nonoverlapping manner, and responding more 
slowly than electrical signaling but having greater reach. Third, glia are 
implicated in pathology management as astrocytes and oligodendrocytes 
phagocytose (engulf) unhealthy neurons. Fourth, it has been shown exper-
imentally that neurons cannot survive without astrocytes (Jakel & Dimou, 
2017). Composite models of neural signaling necessarily include both 
electrical action potentials and glial calcium signaling, both of which are 
amenable to quantum platforms as wavefunctions.

There are about as many glia as neurons, an estimated 85 billion glia 
and 86 billion neurons in the human brain1 (Herculano-Houzel, 2009). 
There are three main kinds of glia in the central nervous system 
(Table 8.1). Oligodendrocytes are generally thought to be the most numer-
ous (45–75%), followed by astrocytes (19–40%) and microglia (about 
10%) (von Bartheld et al., 2016, p. 11). Corroborating research finds oli-
godendrocytes to be the most numerous glial cells in the mouse brain with 
an absolute number of 17.4 million and a proportion of 40% of glia 
(Valerio-Gomes et al., 2018). As oligodendrocytes and astrocytes both 
have large populations, research also often cites astrocytes as the most 
abundant glial cells in the mammalian brain (Allen & Eroglu, 2017).

Oligodendrocytes myelinate axons. Each oligodendrocyte may extend 
myelin sheaths to as many as 50 axons, and has the capacity to renew 

1 The implied one-to-one relationship between neurons and glia varies by brain region. In 
the cerebral cortex, the overall ratio is 3.72, and for gray matter 1.48. The cerebellum has 
only 0.23 neurons to glia, whereas the basal ganglia, diencephalon, and brainstem regions 
have a ratio of 11.35 to 1 (Azevedo et al., 2009).

Table 8.1.  Central nervous system glial cells.

Glial Cells Percentage Function

Oligodendrocytes 45–75% Provide myelination to insulate axons

Astrocytes 19–40% Calcium signaling, neurotransmitter recycling 

Microglia 10–20% Destroy pathogens, phagocytose debris

Ependymal cells Low Cerebrospinal fluid and the blood-brain barrier

Radial glia Low Neuroepithelial development and neurogenesis
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myelin sheaths three times per day (Peferoen et al., 2013, p. 302). The 
oligodendrocyte sends out paddle-shaped extensions that wrap around the 
axon membrane and form sheaths that are approximately 1 mm in length. 
The next form of glia is the astrocytes which participate in calcium signal-
ing, create and dismantle synapses, recycle neurotransmitters, and other-
wise maintain homeostasis in the central nervous system. The third type 
is microglia which are the immune system of the brain.

8.1.1  Astrocyte calcium signaling

Far from being merely “glue” as the name derivation suggests, glial cells 
are essential to active brain operation. Astrocytes in particular, are central 
to neural signaling, as they are implicated in synaptogenesis, neuronal 
transmission, and synaptic plasticity. During disease and injury, astrocytes 
efficiently protect neurons by various means, including by sealing them 
off from neurotoxic factors and by repairing the blood–brain barrier. 
Initially, astrocytes were considered to be passive supporters of neurons, 
with metabolic support, neurotransmitter precursors, and ion buffering, 
however, neural signaling cannot proceed without astrocytes.

8.1.1.1  Tripartite synapse

Given the active role of astrocytes in neural signaling, the notion of the 
“tripartite synapse” is proposed to describe the synapse as two neurons 
and an astrocyte as a functional unit (Araque et al., 1999). Although syn-
aptic activity was recorded over a century ago using electrophysiology, 
it was not until the 1950s with development of electron microscopy that 
more detailed synapse structures could be visualized in greater detail. 
It was then discovered that neuronal synapses are not just composed of 
presynaptic and postsynaptic neurons, but in many cases are also con-
tacted by an astrocyte process (Farhy-Tselnicker & Allen, 2018).

In a tripartite synapse, the neurotransmitters released from neurons 
also bind to receptors on adjacent astrocytes, activating signaling  
pathways in the astrocytes which modulate synaptic behavior. Astrocytes 
regulate synapses by direct contact, and by secreting soluble factors  
(gliotransmitters) that target presynaptic and postsynaptic sites, thereby 
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modulating the structure and function of both excitatory and inhibitory 
synapses. In addition to contacting neurons, astrocytes are interconnected 
with each other by gap junctions, specialized channels which allow nutri-
ents and ions to diffuse between networks of astrocytes. Such communica-
tion further expands the range and magnitude of synaptic regulation of 
neurons by astrocytes.

8.1.1.2  Astrocyte tiling: Nonoverlapping territories

A prominent organizational feature of astrocytes is that they spread out 
across the brain into nonoverlapping territories. Astrocytes avoid interfer-
ing with processes from neighboring cells by tiling themselves out in a 
process that results in a volume overlap of only 4–6% between adjacent 
astrocytes (Bushong et al. 2002). In the mature brain, the processes of 
astrocytes extensively infiltrate into the neural structure and wrap around 
synapses. In this way, astrocytes completely parcel out the gray matter in 
a nonoverlapping manner, forming separate anatomical domains. A single 
mouse cortical astrocyte is estimated to contact over 100,000 synapses, 
whereas a human astrocyte can contact up to 2,000,000 synapses 
(Oberheim et al., 2009). These observations suggest that astrocytes, 
through their detailed processes, have the ability to sense and adhere to 
synapses and coordinate with neighboring astrocytes to completely cover 
the neural architecture (Allen & Eroglu, 2017).

In healthy functioning, astrocytes are shaped like sponge-like cells, 
each covering a distinct territory in the central nervous system. However, 
Grosche et al. (2013) find that there is an age-related increase in the ter-
ritorial volumes of astrocytes that leads to loss of the strict organization in 
nonoverlapping territories. The resulting reactive gliosis has been pro-
posed to affect to age-related pathologies such as Alzheimer’s disease and 
amyotrophic lateral sclerosis.

8.1.1.3  Astrocyte signaling: Calcium operations

Calcium signaling is implicated in neural signaling both in connection 
with action potentials and in the calcium-based signaling network with 
other astrocytes. The main way that calcium signaling is recognized in 
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neural signaling is when an action potential induces the opening of 
 calcium ion channels in the presynaptic terminal wall. This leads to the 
propagation of calcium ion transients through the terminal and influences 
a chain of operations to produce synaptic vesicle exocytosis, disgorging 
neurotransmitters into the synaptic cleft (Sudhof, 2004).

What is new is the understanding of the vast calcium-signaling 
 networks of astrocytes, on an intracellular (within the astrocyte) and extra-
cellular (among astrocytes) basis. Calcium signals are the universal 
response of astrocytes to various forms of stimulation. Astrocytes express 
numerous receptors and ion channels linked to the generation of a variety 
of complex cytoplasmic calcium responses. The increases in calcium lev-
els experienced by individual glial cells can propagate across large dis-
tances in the form of calcium waves.

Calcium can propagate over greater distances than electric action 
potentials. The mechanism of propagation involves both intracellular and 
extracellular signals (via inositol and ATP, respectively). Inositol diffusion 
through gap junctions is important for short-range wave propagation, 
whereas ATP is more relevant for propagation across larger distances 
(Haydon, 2001). Further, calcium waves propagate directly or indirectly, 
directly through gap junction channels, and indirectly by releasing glio-
transmitters that activate membrane receptors on neighboring cells. The 
major target of calcium signaling is extracellular plasma membrane pro-
teins, but there are also many intracellular targets (Scemes & Giaume, 
2006, p. 18) (Table 8.2).

Extracellular glial calcium waves produce a signaling pathway 
between glial cells. These spontaneous waves are propagated by ATP 
release. Glial calcium elevation can lead to the release of glutamate, ATP, 
and D-serine, altering synaptic efficacy and neuronal excitability. Glial 
calcium elevations also trigger the release of arachidonic acid metabolites 
that regulate blood vessel diameter (Kurth-Nelson et al., 2009).

The calcium signals propagated by glial cells create a spreading wave 
of calcium ions (Ca2+) which allows information exchange within cellular 
networks. The propagating calcium waves are primarily mediated by 
intracellular excitable media formed by calcium storage organelles within 
the glia. The glial calcium signals can be evoked by neuronal activity, and 
vice versa, they may also initiate electrical and calcium-based responses 
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in adjacent neurons. Glial calcium signals thus are able to integrate  
glial and neuronal compartments and are therefore involved in the infor-
mation processing in the brain (Deitmer et al., 1998). The sequential 
activation of neighboring astrocytes occurs during the spreading of the 
calcium wave.

8.1.1.4  Astrocytes and synapse formation

Astrocytes are also noted for their important coordination role with syn-
apses. Astrocytes are involved in the structural formation, the functional 
formation, and the elimination of synapses by secreting a variety of tar-
geted synaptogenic and then later phagocytosis-related molecules (Allen 
& Eroglu, 2017, p. 700) (Table 8.3).

Table 8.2.  Astrocyte calcium signaling targets.

No. Target Location Description Reach

1 Plasma membrane proteins Metabotropic receptors Extracellular

2 Plasma membrane proteins K+ (Ca2+) channels Extracellular

3 Plasma membrane proteins Na+/Ca2+ exchanger Extracellular

4 Plasma membrane proteins Ca2+-ATPase Extracellular

5 Intracellular membrane proteins Phospholipases Intracellular

6 Endoplasmic reticulum Inositol-trisphosphate receptors Intracellular

7 Cytoskeleton elements Actin turnover proteins Intracellular

8 Enzymes Calcium-dependent effectors Intracellular

9 Vesicles (gliotransmitter) Glutamate Intracellular

10 Gap junction channels Same targets in neighboring cells Extracellular

Table 8.3.  Astrocytes control the synapse life cycle.

No. Synapse Phase Astrocyte-secreted Molecules and Receptors

1 Structural formation Thrombospondins (TSPs) and hevin (both synaptogenic)

2 Functional formation Glypican (synaptogenic) and SPARC (negative regulator)

3 Elimination TGF-b and MERTK/MEGF10 receptor-based phagocytosis 

b4362_Ch08.indd   166b4362_Ch08.indd   166 4/29/2022   6:33:53 PM4/29/2022   6:33:53 PM



b4362  Quantum Computing for the Brain6"×9" 

 Glia Neurotransmitter Synaptome  167

8.1.2  Glia and neuropathology

Glia are implicated in several immune system and neuropathology func-
tions. Although microglia are the brain’s primary immune system, oligo-
dendrocytes and astrocytes also participate in immune response, and all 
three cell types are in communication with each other and neurons to 
coordinate this response. For example, in diseases involving autoimmune 
attacks on myelin such as multiple sclerosis, oligodendrocytes, in con-
junction with their responsibilities for myelinating axons, take on related 
immune system responsibilities, in communication with microglia (Falcao 
et al., 2018).

In neurodegenerative pathologies such as Alzheimer’s disease, when a 
neuron goes into apoptosis (cell death), microglia and astrocytes act 
in concert to dispatch it (Damisah et al., 2020). Microglia, as the 
main immune system in the brain, phagocytose the soma (cell body). 
Astrocytes, already wrapped around synapses for signaling purposes, are 
thus close to the dendritic arbors, and absorb the dendrites of the phagocy-
tosed neuron. Both types of phagocytosis (soma and dendrite) require the 
receptor Mertk to be expressed for the operation, which the microglia and 
the astrocyte can recognize and take action. However, because there are a 
number of failures of function in aging and unhealthy brains that produce 
inflammation (or “inflamm-aging” (Franceschi et al., 2000)), microglia 
can be triggered to engulf living cells by mistake (Brown & Vilalta, 2015). 
Glia malfunction in phagocytosing declining but still living cells is not yet 
understood or remedied (Fakhoury, 2018; Gomes-Leal, 2019).

In the case of stroke, all three of the main glial cells are involved. In 
minor stroke, astrocytes repair damage and provide energy to neurons by 
breaking down stored glycogen to generate lactate. In the acute phase of 
stroke, astrocytes reduce damage through the uptake of glutamate and 
potassium, and by scavenging reactive oxygen species. In severe stroke, 
astrocytes themselves die which causes glutamate to be released due to 
membrane depolarization, which can lead to excitotoxicity (overstimula-
tion, too much excitatory stimulation). This excitotoxicity can in turn lead 
to oligodendrocyte death as oligodendrocytes have a high metabolic rate 
and are particularly sensitive to excitotoxicity. In stroke recovery, astro-
cytes release neuroprotective agents such as erythropoietin and vascular 
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endothelial growth factor (VEGF). Microglia are activated by damaged 
neurons in stroke to phagocytose debris and secrete pro-inflammatory 
cytokines (Scimemi, 2018).

8.2  Neurotransmitters and Chemical Signaling

8.2.1  Glutamate (excitatory) and GABA (inhibitory)

Neurotransmitters are chemicals used by neurons to send signals across 
the synaptic cleft. In the human brain, about 80% of synapses are excit-
atory and 20% inhibitory (Xu et al., 2016). Further, glutamate (excitatory) 
and GABA (inhibitory) are the prominent neurotransmitters, activated in 
90% of synapses in the human brain (Sapolsky, 2005, pp. 13–14). Other 
important neurotransmitters include acetylcholine, adrenaline, dopamine, 
serotonin, histamine, and melatonin, and over 200 have been discovered.

Neurotransmitters are stored in synaptic vesicles near the cell mem-
brane in the presynaptic terminal of the sending neuron. When needed, 
neurotransmitters are released into the 20 nm wide synaptic cleft, where 
they bind to specific receptors on the membrane of the postsynaptic neu-
ron. The synapses on the receiving neuron are either excitatory or inhibi-
tory, and have different shapes and locations. Excitatory synapses are 
located prominently on the edges of dendritic spines, whereas inhibitory 
synapses are located on the shaft of the spines closer to the path to the cell 
body. The locational setup is so that the inhibitory synapses can serve as 
a block or brake to modulate excitatory signals if necessary on their way 
from the dendritic arbors to the cell’s body.

The mechanism of action is that neurotransmitters bind to the den-
drites on the receiving neuron, influencing the membrane in either an 
excitatory way by depolarizing it, or in an inhibitory way by repolarizing 
it. Nerve cells have a resting potential characterized by the inside of the 
cell being negative with respect to the outside (extracellular) solution by 
a little less than a tenth of a volt. Incoming excitatory signals depolarize 
the cell membrane, making the inside less negative, and creating a mem-
brane potential called an excitatory postsynaptic potential (EPSP). 
Inhibitory signals hyperpolarize the cell membrane, making it more nega-
tive, and creating a membrane potential called an inhibitory postsynaptic 
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potential (IPSP). Thus, incoming neurotransmitters act to increase 
 (excitatory) or decrease (inhibitory) the transmembrane ion flow contrib-
uting to the probability that the receiving cell ultimately produces an 
action potential.

Neurotransmitters are central to the operation of the brain. Astrocytes 
(glial cells) constantly recycle glutamate and GABA. Neurons must rely 
on astrocytes as they are not able to synthesize glutamate directly (since 
they do not have the enzyme pyruvate carboxylase). About 15% of gluta-
mate results from de novo synthesis and the rest from recycling (Hampe 
et al., 2018, p. 67). Glutamatergic and GABAergic imbalances are impli-
cated in a variety of neurological diseases related to epilepsy, autism 
spectrum disorders, and anxiety disorders (van Veenendaal et al., 2018).

One classificatory mechanism for neurotransmitters is by size 
(Table 8.4). There are only a few large amino acid neurotransmitters, for 
example, glutamate and aspartate (excitatory), and GABA and glycine 
(inhibitory). Acetylcholine is the third most important neurotransmitter 
after glutamate and GABA as a general alert system that increases the 
probability of presynaptic neurotransmitter release and has either excit-
atory or inhibitory action. Most neurotransmitters are small molecules 

Table 8.4.  Neurotransmitter classes.

Neurotransmitter Class Stimulus

Type Neurotransmitter Excitatory Inhibitory

Glutamate X —

Large amino Aspartate X —

acids GABA — X

Glycine — X

Other Acetylcholine X X

Dopamine X —

Small molecules Norepinephrine — X

(monoamines) Epinephrine X —

Histamine X —

Serotonin X X
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(single amino acids) such as dopamine, norepinephrine, histamine, and 
serotonin. Small molecule neurotransmitters may have both excitatory and 
inhibitory action (such as serotonin), or one or the other. Examples of 
small molecule neurotransmitters are noradrenaline (signaling a stress 
response) and dopamine (activating the reward system).

Another classificatory mechanism for neurotransmitters is whether 
they are either ionotropic (complicated) or metabotropic (less compli-
cated). Both classes operate by binding to transmembrane-based receptors 
on the receiving neuron. Ionotropic neurotransmitters cause an ion chan-
nel to open in the receiving membrane, and the less powerful metabo-
tropic neurotransmitters trigger a signaling cascade within the receiving 
cells (by coupling to G-proteins). The major neurotransmitters, glutamate 
and GABA, tend to use ionotropic receptors, and small molecules such as 
dopamine and noradrenaline use metabotropic receptors coupled to 
G-proteins (Nicholls et al., 2012, p. 185). With its priority as an alert sys-
tem, acetylcholine makes use of both uses both ionotropic and metabo-
tropic binding mechanisms.

8.2.2  Neurotransmitter transport

The primary orchestration point of neurotransmitters is the presynaptic 
terminal. In addition to transporting inorganic ions, nerve cells have 
mechanisms for accumulating a variety of other substances, including 
those involved in synaptic transmission. Inside a neuron, neurotransmit-
ters are transported into organelles within the cytoplasm of presynaptic 
nerve terminals (synaptic vesicles), where they are stored to be ready for 
release. After release, neurotransmitters (e.g. glutamate, GABA, norepi-
nephrine, serotonin, and glycine) are recovered from the synaptic cleft by 
transporters in the plasma membranes of either the terminals themselves 
or adjacent glial cells. Neurotransmitter recovery processes involve trans-
port mechanisms that use energy from the movement of sodium, potas-
sium, or hydrogen ions down their electrochemical gradients to power 
transmitter accumulation. The two main types of neurotransmitter traf-
ficking are transport from the neuron’s cytoplasm into presynaptic vesi-
cles, and neurotransmitter transmitter uptake from the synaptic cleft 
(intercellular medium) into the neuron cytoplasm.
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8.2.2.1  Transport into presynaptic vesicles: Proton gradient

Neurotransmitters are synthesized in the presynaptic terminal cytoplasm 
and taken up (with endocytosis) into concentrations in presynaptic vesi-
cles by transport mechanisms coupled to proton outflow. The transport 
mechanism is analogous to sodium-driven transport across the plasma 
membrane (used by action potentials). However, instead of a sodium gra-
dient, a proton gradient is used (established by the transport of hydrogen 
ions from the cytoplasm into the vesicle by hydrogen ATPase). Three 
solute carrier (SLC) genetic families of proton-coupled transporters man-
age this process and are expressed in the lipid bilayers of secretory vesi-
cles (SLC17, SLC18, and SLC32) (Table 8.5).

8.2.2.2  Molecular economy

The family of solute carrier (SLC) proteins has different forms, each of 
which is related to transporters that are responsible for accumulating spe-
cific neurotransmitters in vesicles. The SLC17 protein, for example, is 
associated with the VGLUT1 transporter (vesicle glutamate transporter) 
and orchestrates glutamate. The membrane transport process is accom-
plished through an economy of molecular exchange. The molecular 
exchange ratio (stoichiometry) varies. For SLC17-managed transport of 
the excitatory neurotransmitter Glutamate, the ratio is one Hydrogen 
ATPase proton for one Glutamate molecule transport plus one chloride 

Table 8.5.  Neurotransmitter transport into vesicles.

No. Gene Transporter Neurotransmitter Molecular Exchange Ratio

1 SLC18 VMAT1,2 Norepinephrine, 
dopamine, serotonin

Two hydrogen ATPase protons for 
one monoamine or acetylcholine 
molecule2 SLC18 VAChT Acetylcholine

3 SLC32 VGAT 
VIAAT 

GABA, glycine One hydrogen ATPase proton for 
one GABA or glycine molecule

4 SLC17 VGLUT1,2,3 Glutamate One hydrogen ATPase proton for 
one glutamate molecule transport 
plus one chloride molecule

Source: Adapted from Nicholls et al. (2012, p. 151).
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molecule. In other operations, for SLC18-facilitated transport, two Hydrogen 
ATPase protons are exchanged for one monoamine or acetylcholine mole-
cule. For SLC32-related transport of inhibitory neurotransmitters GABA and 
glycine, the ratio is one Hydrogen ATPase proton for one GABA or glycine 
molecule.

8.2.2.3  Transmitter uptake from cleft: Sodium gradient

The same kinds of processes of endocytosis are at work in neurotransmitter 
recycling from the synaptic cleft, involving neurotransmitter uptake from 
the intercellular medium to the neuron’s cytoplasm. Once released from 
presynaptic nerve terminals into the synaptic cleft, most neurotransmitters 
are recovered either by the nerve terminals themselves or by adjacent glial 
cells. In general, such recovery serves two purposes. First, the neurotrans-
mitter is removed from the extracellular space in the region of the synapse, 
which helps to terminate its synaptic action and prevents diffusion to other 
synaptic regions. Second, the neurotransmitter molecules recovered by the 
nerve terminal can be packaged again for future release. All synaptic 
uptake mechanisms use the electrochemical gradient for sodium to carry 
transmitter substances across the plasma membrane into the cytoplasm.

Two major transmitter uptake families are expressed in the cell mem-
branes of neurons and glial cells. The SLC1 family mediates the uptake of 
glutamate and neutral amino acids, and the SLC6 family is responsible for 
the uptake of dopamine, serotonin, norepinephrine, glycine, and GABA. 
Again, each family has different forms, related transporters, and molecu-
lar exchange ratios. In the SLC1 system, the inward transport of one glu-
tamate ion is coupled to the influx of two sodium ions and the efflux of 
one potassium ion, coupled with either the extrusion of an hydroxyl ion or 
influx of a proton. In the SLC6 system, the molecular exchange ratio for 
the uptake of each transmitter molecule is accompanied by the entry of 
two sodium and one chloride ion (Table 8.6).

The SLC1 family includes several high-affinity glutamate transporters 
(EAAT: Excitatory amino acid transporter) for glutamate uptake. The 
SLC6 family includes transporters for GABA (GAT: GABA transporter) 
and small molecule neurotransmitters. Both neurons and glia express 
transporters and participate in the neurotransmitter recovery operation.
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8.3  Synaptome

Although synapse proteome analysis most often focuses on postsynaptic 
proteins (and excitatory synapses as 80% of the brain’s synapses are excit-
atory), presynaptic proteins are also of interest as more than 1,000 pro-
teins function in the presynaptic nerve terminal, and hundreds are thought 
to participate in exocytosis (Sudhof, 2004, p. 510).

8.3.1  Genome, connectome, and synaptome

The synaptome is a map of all the brain’s different synapses and the syn-
aptosome is the synapse proteome, a list of all of the proteins that are used 
at the synapses in the brain (DeFelipe, 2010). The connectome is the wir-
ing diagram of the neural connections in the brain, and the synaptome the 
similar map of synapses. A standard resource is the Mouse Lifespan 
Synaptome Atlas for the investigation of synapse function across all brain 
regions during the full lifespan of the mouse (Gokhale et al., 2020). The 
synapse proteome is dynamic and changes during the lifespan, including 
indicating various biomarkers of the neuropathologies of aging.

The synaptome is one of latest “omics” fields (high-throughput analy-
sis to characterize the entirety of a biological phenomenon) in the progres-
sion that includes genomics, connectomics, and synaptomics (Table 8.7). 
Genes encode the proteins used at synapses. The genome is all of 
the genetic material of an organism, and genomics aims at mapping the 

Table 8.6.  Neurotransmitter uptake from synaptic cleft.

No. Gene Transporter Neurotransmitter Molecular Exchange Ratio

1 SLC1 EAAT1, EAAT2–5 Glutamate One K+ and one OH− for one 
glutamate and two sodium

2 SLC6 GAT1,2 GABA One GABA, glycine, or monoamine 
molecule coupled to two sodium 
and one chloride molecule

3 NET Norepinephrine

4 DAT Dopamine

5 SERT Serotonin

6 GLYT1,2 Glycine

Source: Redrawn from Nicholls et al. (2012, p. 151).
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chromosome location and function of each gene (Winkler, 1920). The 
connectome is a comprehensive map of the neural connections in the brain 
(a wiring diagram) (Hagmann, 2005; Sporns et al., 2005). The synaptome 
is the description and mapping of the set of synapses in the brain, and the 
synaptosome their proteins (DeFelipe, 2010; Barker et al., 1972).

8.3.1.1  Quantum computing-level complexity

Synapse proteome analysis is a combinatorially complex problem as 
there are an estimated 2n−1 types of synapses arising from n proteins 
(Grant, 2019a, p. 221). The possibility space is such that even 50 pro-
teins (less than 5% of the 1,000 proteins in the synapse proteome) could 
potentially generate more types of synapses than there are total synapses 
in the human brain; 500 trillion (5 × 1014) possible synapses versus 
242 trillion total estimated synapses (Martins et al., 2019). The combi-
natorial complexity of synapse proteins and their structure as a 2n prob-
lem immediately suggests the need for quantum computing as an 
analysis platform.

8.3.1.2  Synapse proteome and neuropathology

In the human brain, about 80% of synapses are excitatory and 20% inhibi-
tory (Xu et al., 2016). Over 133 brain diseases are caused by mutations 
that disrupt gene encoding in the proteome of excitatory synapses in the 
postsynaptic density (Bayes et al., 2011). Human genome sequencing 
applied to brain disorders indicates that synapse proteins have a larger 
impact on neuropathology than other brain proteins. The work isolates the 
postsynaptic density from the human neocortex and identifies 1,461 pro-
teins. Human postsynaptic density mutations cause 133 diseases, 80% 

Table 8.7.  Brain “omics” fields.

Field Focus Definition

Genome Genes All genetic material of an organism

Connectome Neurons All neural connections in the brain

Synaptome Synapses All synapses in the brain and their proteins
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affecting the central nervous system and 20% affecting the peripheral 
nervous system. The diseases are classified according to the clinical rubric 
of the International Classification of Disease (ICD-10). Four of the 22 
classifications concern common neurodegenerative diseases (such as 
Alzheimer’s, Parkinson’s, and Huntington’s). A synaptomic theory of 
brain disease has been proposed (Grant, 2019b).

8.3.2  Mouse synaptome: Aging pathologies

The first whole-brain synaptome was reported in 2018 by the Grant labo-
ratory (Zhu et al., 2018). The protein composition and morphological 
features of one billion individual synapses across all regions of the mouse 
brain were consolidated as a standardized resource. Notably, the synapse 
proteome is highly complex with over 1,000 conserved proteins.

Earlier work (Grant, 2007), proposed a molecular catalogue of syn-
apses, and that synapse proteome markers could be biomarkers of aging. 
Further, the standard purified synaptome could be a laboratory resource, 
having synaptomes with identical proteomes in limitless amounts to test 
disease scenarios as a clonal population of uniform cells (the “clonal syn-
apse”). Two different clonal synapse preparations, for example, could 
show a different signature of protein marker expression (e.g. excitatory 
glutamatergic synapse and inhibitory GABA synapse).

In follow-on work, the team further analyzes the molecular diversity 
and spatiotemporal architecture of five billion excitatory synapses at 
 single-synapse resolution across the whole-brain mouse synaptome from 
birth to old age (Cizeron et al., 2020). The key finding is that synapse 
composition in all brain regions changes during the course of a lifespan. 
Synaptome changes can be divided into three epochs that correspond to 
childhood and adolescence, early adulthood, and late adulthood. Synapse 
diversity expands between birth and early adulthood, differentiating brain 
regions, and then changes in synapse composition progressively dediffer-
entiate brain regions in old age. The resulting lifespan synaptome archi-
tecture indicates factors that can modify the expression of synaptic 
proteins (such as genetic mutation, inflammation, and pharmaceutical 
intervention). The work is consolidated into a Mouse Lifespan Synaptome 
Atlas to provide standard lifespan trajectories of various behavioral 
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changes, psychological functions, and gene mutations that can lead to 
synaptic pathology in certain brain areas at certain ages.

8.3.2.1  Three phases of development, stability, and decline

Using synaptome mapping, the work investigates excitatory synapse 
diversity through two leading postsynaptic scaffold proteins (PSD95 and 
SAP102), identifying spatiotemporal synaptome architecture in mice 
from birth until 18 months of age. Synapses are classified into three types, 
those that express PSD95, SAP102, or both, and 37 synaptome subtypes 
are defined on the basis of molecular and morphological features. Data are 
examined in 109 anatomical subregions within 12 overarching regions 
(isocortex, olfaction, hippocampus, cortical subplate, striatum, pallidum, 
thalamus, hypothalamus, midbrain, pons, medulla, and cerebellum).

Each subtype shows a unique anatomical expression pattern across the 
brain. The spatiotemporal lifespan trajectories of PSD95 and SAP102 
puncta (point) density, intensity, and size are plotted as graphs and heat-
maps to explore characteristic patterns at three scales, the whole-brain, 
the 12 regions, and the 109 subregions. Lifespan changes occur in three 
phases. During the first phase (from birth to one month old), the numbers 
of puncta increased rapidly. The second phase began as the rate of 
increase in puncta density slowed and was characterized by relative stabil-
ity until six months (adulthood). The third phase, late adult life, was char-
acterized by a decline in puncta density and an increase in synapse size.

8.3.2.2  Synapse diversity and plasticity

The second finding regarding synapse diversity is that there are different 
peaks at different ages, and that old age does not preclude additional 
development (which is in parallel with human results). Each synapse type 
and subtype had a specific trajectory in each brain region and subregion, 
reaching peak values at different ages. Thus, the synapse composition of 
brain regions continues to change throughout the lifespan and is not 
restricted to early life development, when synapse density increases. 
Further, the presence of more than one peak at different ages suggests that 
shaping synapse composition (through processes such as transcriptional 

b4362_Ch08.indd   176b4362_Ch08.indd   176 4/29/2022   6:33:53 PM4/29/2022   6:33:53 PM



b4362  Quantum Computing for the Brain6"×9" 

 Glia Neurotransmitter Synaptome  177

regulation, synapse pruning, and growth) is an ongoing process. The pro-
portion of large synapses increases with age, since many small synapses 
are lost in the olfactory areas and thalamus in the aging brain.

8.3.2.3  EPSPs and fMRI data

The possible outcome of EPSPs resulting from three kinds of brain waves 
(gamma, theta, and theta-burst) on hippocampal synapses at three ages is 
tested with a computational simulation approach. The finding is that the 
(more generic) theta waves produce a stable response at all ages, whereas 
the gamma and theta-burst brain waves result in different responses at 
 different ages.

The synaptome contains three-dimensional molecular information 
about brain structure and function. Hence, it makes sense to relate synap-
tome analysis to established brain imaging methods in the clinic. The 
synapse proteome composition of regions of the human neocortex has 
been showed to correlate with functional brain imaging (Positron 
Emission Tomography (PET) and functional Magnetic Resonance Imaging 
(fMRI)) (Roy et al., 2018). In the mouse synaptome work, correlation in 
the synaptome node degree was found with the small-world topology of 
brain networks in resting states (Zhu et al., 2018, p. 789).

8.3.3  Alzheimer’s disease synaptome

8.3.3.1  Synaptic plasticity and long-lived proteins in humans

How the brain manages synaptic plasticity, changing the strength and 
structure of synapses, is not well understood. Certain forms of synaptic 
plasticity, such as long-term potentiation or depression, can be maintained 
for many months to years. The earliest events leading to these initiations 
involve activation of cellular signaling machinery, which can last on the 
order of seconds to minutes. Later phases, which can be examined experi-
mentally over several hours, involve the synthesis, recruitment, and cap-
ture of specific proteins that produce changes in the structure and strength 
of the synapse.

Heo et al. (2018) demonstrate the existence of long-lived proteins in 
synapses in the human brain and support a potential role for them in 
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synaptic plasticity. The research problem is that while cellular memories 
may persist for the lifetime of an organism, the majority of proteins 
undergo rapid degradation and synthesis to minimize the toxic effect to 
cells and tissues. It has been appreciated that proteins with longer half-
lives exist in certain cells and tissues and this work identifies synaptic 
long-lived proteins by high-resolution mass spectrometry. In general, 
synaptic proteins exhibit slower turnover than cytosolic proteins.

Other long-lived proteins in the body have been studied. DNA, for 
example, employs several mechanisms to repair damage, whereas crystal-
lin and collagen, which make up the lens of the eye and cartilage, do not, 
and are subject to the formation of cataracts and cartilage stiffening. 
Synaptic kinases may help to maintain long-lived synapse proteins. For 
example, the activation of Ca2+/calmodulin-dependent protein kinase type 
II (CaMKII) is required for the induction of LTP and increased phos-
phorylation and functionality of AMPA receptors (AMPARs), and auto-
phosphorylation of CaMKII has been proposed to maintain LTP and 
long-term memory.

The work finds 164 synaptosomal long-lived proteins in mice. Long-
lived proteins retain at least 50% of a label after a seven-week chase 
period, corresponding to a relative isotope abundance turnover ratio of 
2.0 or less, thus indicating a half-life of several weeks or months. This is 
in comparison to other proteins with a relatively high turnover ratio (such 
as PSD95 at 2.69 and amyloid beta A4 protein at 5.61). The research 
identifies several synaptome proteins that have not been previously been 
identified with longevity, including type-II regulatory subunits of PKA 
(protein kinase A), several components of the extracellular matrix, and 
all five members of the collapsin response mediator proteins (CRMP) 
family of microtubule binding proteins. CRMP5 in particular showed 
almost no turnover during the seven-week chase period (Heo et al., 2018, 
p. E3829).

8.3.3.2  Alzheimer’s disease synaptome and intervention

Synaptome analysis is a new and promising method of attack for possibly 
combating Alzheimer’s disease (AD). Genomic analysis has been an indi-
cator of the potential risk of developing the disease, but there have only 
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been vague phenotypic indicators used to diagnose the pathology, often 
after the fact (WHO, 2021, 146). It is now known that synapse loss is the 
best indication of AD (Spires-Jones & Hyman, 2014; Terry et al., 1991). 
The two proteins involved in AD are amyloid-beta plaques and tau pro-
teins (Serrano-Pozo et al., 2011). Tau-related pathology manifests in 
intracellular neurofibrillary tangles composed of hyperphosphorylated tau 
proteins. Amyloid-beta plaques comprised of the apolipoprotein (apoE) 
protein are extracellular and accumulate in synapses, leading to synapse 
loss (Koffie et al., 2012). The single biggest risk factor for AD is the 
inherited genetic profile for the apoE epsilon 4 allele (APOE4); one copy 
of the APOE4 variant is associated with a three-fold increase in disease 
risk, and two copies with a ten-fold increased risk (Corder et al., 1994).

Hesse et al. (2019) conduct a proteomic analysis of the human “syn-
aptoneurosome” from the temporal and occipital cortices of human 
Alzheimer’s disease patient and control subjects with known APOE gene 
status (for n = 33 total subjects). The analysis identifies over 5,500 pro-
teins in the human synaptoneurosome and highlights disease, brain region, 
and APOE-associated changes in multiple molecular pathways. In 
Alzheimer’s disease patients, synaptic and mitochondrial function pro-
teins are decreased, and neuroimmune interactions and intracellular sig-
naling proteins are increased. The apolipoprotein E4 risk gene is 
associated with exacerbated changes in synaptic proteins in Alzheimer’s 
disease. Notably, the work incorporates glial processes closely associated 
with the synapse, which is key for understanding the role of nonneuronal 
cells in synapse degeneration, an important emerging research topic 
(Henstridge & Spires-Jones, 2019). The method uses high-resolution 
imaging with wave-modeling based array tomography (Jackson et al., 
2019).

Analysis investigating pathway alterations in the 1,532 proteins that 
were changed more than 20% in Alzheimer’s disease indicate a clear 
upregulation of pathways involved in immune response and cellular sig-
naling, and downregulation of pathways involved in synaptic function 
including long term potentiation, glutamate signaling, and calcium signal-
ing. As pathological severity increases, pathways involved in synaptic 
function are also decreased (including glutamate, GABA, and CREB 
signaling), and synaptic long-term potentiation and long-term depression, 
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and proteins are decreased in pathways implicated in mitochondrial 
function.

Synapse degeneration is an important precursor to synapse loss in 
Alzheimer’s disease. It is likely that there is some degree of synaptic 
remodeling or compensation taking place as some synaptic proteins are 
increased and others are decreased. The increase in immune system-related 
synaptic proteins may indicate the development of pathology. For example, 
the synaptic receptor TMEM97 is increased in synapses, whose disruption 
is protective and being tested for efficacy in human Alzheimer’s disease as 
a therapeutic (Izzo et al., 2014). Also notably increased (21%) in 
Alzheimer’s disease as compared to controls is  clusterin, which has been 
shown within individual synapses containing amyloid-beta in Alzheimer’s 
disease (Jackson et al., 2019). The work further supports the hypothesis 
that proteins may be removed from synapses in Alzheimer’s disease and 
cleared from the brain via the cerebrospinal fluid. Overall, the research 
demonstrates that specific synaptic proteins and their signaling pathways 
are identified that become differentially upregulated or downregulated ver-
sus controls in Alzheimer’s disease and that these early warning indicators 
might possibly be targeted by therapeutics.

Another project addresses the multiscalar nature of neural signaling 
(Jolivet et al., 2015). Activity-dependent metabolic coupling in the 
 neuron-glia-vasculature ensemble is modeled, integrating the respective 
timescales at which energy metabolism and neuronal excitability occur. 
The healthy brain coordinates the temporal regimes but the disruption of 
normal metabolic processes is suggested to underlie the progression of 
neurodegenerative diseases such as Alzheimer’s disease.
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Chapter 9

Black Hole Information Theory

Philosophy [i.e. physics] is written in this grand book — I mean the 
 universe — which stands continually open to our gaze, but it cannot be 
understood unless one first learns to comprehend the language and 
interpret the characters in which it is written. It is written in the lan-
guage of mathematics … without which … one is wandering around in 
a dark labyrinth

— Galileo Galilei (1623, pp. 237–38)

Abstract

This chapter discusses black holes as a model system and information-
theoretic format for foundational physics. The AdS/CFT correspondence 
was proposed to study black holes and might likewise be applied to 
the brain. The information-theoretic correspondence formulation uses 
entropy to study the UV–IR (short-range and long-range) correlations in 
a system. A geodesic (shortest-length curve) through the bulk provides a 
measure of boundary region entanglement.

9.1  Black Holes

A black hole is a region of spacetime in which gravity is so strong that 
nothing can escape from it, not even electromagnetic radiation such as 
light. The most basic example is a Schwarzschild black hole which does 
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not rotate and has no charge. The next definitions are for a charged 
(Reissner–Nordstrom) and a rotating (Kerr) black hole, and there are 
many others. The no-hair theorem is the claim that black holes can be 
characterized by three physical properties: Mass, charge, and angular 
momentum (and no others, i.e. no additional “hair”). The black hole infor-
mation paradox arises in that material (information) is absorbed by black 
holes, and black holes evaporate over time (via Hawking radiation), but it 
is not known what happens to the information. The information might stay 
inside the black hole perhaps in a transformed manner, evaporate in the 
Hawking radiation, or create a firewall or ring of information (soft hair) 
around the edge of the black hole horizon.

To solve the black hole information paradox and many other prob-
lems, black holes ensue as an active research frontier. Anti-de Sitter (AdS) 
black holes (i.e. model black holes) are a realization of holographic super-
conductivity (Gubser, 2008; Hartnoll et al., 2008). AdS black holes 
become superconductors in the presence of “scalar hair”. This is a scalar 
field close to the black hole horizon, held in place by the gravitational pull 
toward the interior of the AdS space combined with electrostatic repulsion 
from the horizon (Hartnoll et al., 2020). The holographic correspondence 
as a model system is used to understand more about superconducting 
materials and black hole interiors. Other work posits that real-life black 
holes might have stretched horizons containing quantum information, as a 
form of quantum hair (soft hair), around the black hole horizon. So far, 
most observational data support the “no hair” hypothesis. However, a 
quantum information layer of condensate (hair) might occur in the excited 
states of high-energy cataclysmic events such as black hole mergers, and 
might possibly be measured in the altered profile of outgoing radiation 
(spacetime ripples). Such hypotheses might be tested with a more sensi-
tive version of LIGO (Crowell & Corda, 2020).

9.1.1  Black holes as a model system

Black holes are a good model system, serving as the “C. elegans of theo-
retical physics”. This is in the sense that they require understanding gen-
eral relativity and quantum mechanics together, provide a venue for 
interrogating many not-yet-understood problems in physics, and admit a 
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quantum-information theoretic interpretation with many tools and formal-
isms for applied study such as entropy, entanglement, quantum states, 
information scrambling, chaos, thermal system analysis, and the holo-
graphic correspondence. Research results in black hole physics (from both 
empirical and model systems) contribute wide-ranging foundational phys-
ics knowledge that may have an impact on quantum computing (including 
superconducting materials) and neuroscience investigation (most directly 
imaging technologies such as EEG and fMRI).

9.1.1.1  Quantum gravity and black hole evaporation

A theory of quantum gravity is needed to explain black holes. Black holes 
are precisely the site of conflict between general relativity and quantum 
mechanics as the two main theories of physical reality. On the one hand, 
general relativity predicts black holes and suggests the “no-hair” theorem 
that black holes can be fully described by the three macroscopic properties 
of mass, charge, and angular momentum (Einstein, 1916). On the other 
hand, black holes have also been found to have an entropy associated with 
them. The entropy is proportional to the area of the black hole (the event 
horizon of the black hole) (Bekenstein, 1973; Hawking, 1975). General 
relativity does not allow for a microscopic description since black holes 
are characterized exclusively by their macroscopic parameters. This sug-
gests that there are some underlying microscopic degrees of freedom that 
are not being described in general relativity and that perhaps the theory is 
incomplete. The incompleteness of general relativity is one of the first 
indications that it is necessary to develop a quantum theory of gravity. 
Such a quantum theory of gravity would explain the underlying micro-
scopic quantum mechanical degrees of freedom that give rise to observed 
macroscopic parameters that include gravity, and space and time.

A further conflict concerns the status of information in the black hole. 
General relativity indicates that information inside a black hole cannot 
escape. However, a core tenet of quantum mechanics is that information 
cannot be destroyed. In describing the dynamics of black holes, Hawking 
found that they emit radiation (photons). The so-called Hawking radiation 
carries energy which means that the mass of the black hole has to decrease 
as a function of time, and eventually evaporates until nothing is left. 
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The point is that it is not possible to explain black hole entropy or evapora-
tion in the classical picture with general relativity alone, and that quantum 
mechanics is also needed.

General relativity and quantum mechanics share a similar property, 
though, in that their equations are intractable. Both Einstein’s field equa-
tions in the formulation of general relativity and the Schrödinger wave-
function equation in quantum mechanics involve partial differential 
equations which are difficult to compute. Hence, into this conflict comes 
the AdS/CFT correspondence which provides a calculable model between 
the gravity theory in the bulk (general relativity) and the gauge theory 
on the boundary (quantum mechanics) (Maldacena, 1999). The corre-
spondence is a solvable model of quantum gravity from either direction. 
Some of the standard interpretations of the bulk-boundary relationship are 
listed in Table 9.1.

9.1.1.2  Black hole in a box

The AdS/CFT correspondence is a model to study quantum gravity with-
out having to address the complications of quantum gravity directly. 
A strategy used in physics to cope with complicated systems is to put the 
problem in a box. Some well-known examples are the “gas in a box” and 
the “particle in a box” methods as bounded models for examining a finite 
number of the numerous particles that comprise a gas or a subset of the 
movement of a particle. The box can grow and become distorted, but put-
ting the problem in a box limits the system and makes it easier to evaluate. 
System attributes that are infinite can be made finite, and other limita-
tions placed on the model such that the problem can be addressed. 
The AdS/CFT correspondence effectively packages AdS space as a 

Table 9.1.  AdS/CFT bulk-boundary configurations.

No. Bulk Boundary Reference

1 Gravity theory Gauge theory Maldacena (1999)

2 Black hole Thermal state Shenker and Stanford (2014)

3 Quantum gravity Quantum state of an exotic 
superconducting material

Hayden et al. (2016)
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representative box (shaped as a hyperbolic sphere with negative curvature) 
for quantum gravity (Harlow, 2017, p. 5).

The problem is that quantum gravity does not easily fit into a rectan-
gular box as in the “particle in a box” or the “gas in a box” strategies. The 
correspondence therefore uses a special box for quantum gravity which is 
different from the regular universe. The familiar everyday universe is 
described by de Sitter space, with three spatial dimensions and one time 
dimension. AdS space is a simpler toy version of de Sitter space. Instead 
of extending forever, AdS space is bounded and has negative curvature. 
The Escher Circle Limit drawings depict this kind of space as a circle or 
globe tiled with identical fish, large and sparse in the center, and becom-
ing smaller and more profuse when reaching the boundary. AdS space is 
in this configuration, having a curved boundary with increasing numbers 
of fish as the boundary is reached.

The AdS/CFT correspondence provides a simpler version of the real-
life universe with which to examine problems such what happens to infor-
mation in a black hole. The hyperbolic (negatively curved) geometry of 
AdS space is likened to the Escher figures and also a can of soup. The 
“soup” or bulk volume inside the can is the quantum gravity region, which 
is complicated and messy, and the boundary is the can itself, a more 
cleanly solvable theory in one less dimension than the bulk. The quantum 
gravity bulk is filled with the matter and force particles that have gone into 
creating the black hole. The boundary is the event horizon or quantum 
field theory which can be interpreted as the quantum state of some mate-
rial on the boundary in one less dimension.

9.1.2  Hologram decoding dictionaries

The AdS/CFT correspondence encodes a higher-dimensional space (the 
bulk) in a one less dimensional space (the boundary), and therefore has a 
holographic format. An important precursor to the AdS/CFT correspon-
dence is the holographic principle (Susskind, 1995), which applies the 
concept of holography to physics. The holographic principle states 
that the information stored in a spatial volume Vd is encoded in its bound-
ary area Ad−1, measured in units of the Planck area (Erdmenger, 2018, 
p. 14). The boundary is a hologram. The hologram format allows a 
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three-dimensional image to be encoded into a two-dimensional film. In 
the bulk-boundary correspondence, there is a three-dimensional space 
encoded into two dimensions of space, or in a simpler example, two 
dimensions of space encoded into one. There can be many varieties.

The correspondence is used to investigate how structure arises in the 
bulk to form gravity, space, and time. Calculating from the boundary, an 
extra radial dimension emerges from the bulk, often interpreted as space. 
The bulk has one more dimension than the boundary, an extra dimension 
of space, the radial dimension which emerges when computing the AdS/
CFT correspondence from the boundary theory. Since the correspon-
dence is a tool for identifying the emergence of bulk microscopic struc-
ture and relating it to macroscopic manifestations on the boundary, a 
question naturally arises as to how the bulk of degrees of freedom are 
encoded on the boundary. In information-theoretic terms, the question is 
one of finding dictionary mappings to decode the hologram of how the 
bulk degrees of freedom are encoded in the boundary degrees of 
freedom.

One of the first holographic dictionaries is the Ryu and Takayanagi 
(2006) formula for entanglement entropy. The formula states that the 
entanglement entropy of a boundary region is equal to the area of a mini-
mal surface in the bulk (effectively hanging down from the boundary 
region). Another holographic dictionary is quantum error correction codes 
(Pastawski et al., 2015). This idea describes how a bulk physical qubit 
can be protected by an ancilla of boundary logical qubits via the bulk-
boundary entanglement relationship.

A third holographic dictionary mapping is called (informally) the 
“fish-counting metric” or (formally) the bulk minimal curve (Hayden & 
Penington, 2019, p. 24; Czech et al., 2015). The work draws from the 
Escher’s Circle Limit pictures in which AdS space has a curved geometry 
and there are many more fish are at the edge of the boundary. The shortest 
path between any two points on the boundary passes through the bulk. 
Instead of tracing along the boundary through many fish, the shortest 
path between the points is a curve through the bulk that touches as few fish 
as possible. Hence, the “fish-counting metric” is the shortest distance 
between any two points in AdS space, which is a bulk curve that is the 
curved space equivalent of a straight line (a geodesic).
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The bulk can contain anything complex that is not straightforward to 
analyze directly such as black holes, gravity, or the particles in a room. 
The AdS/CFT correspondence provides a model for studying how this 
complexity behaves. The premise of the correspondence is that the bulk 
degrees of freedom are encoded in the boundary. The “fish-counting 
 metric” can be applied to concertize the bulk and boundary degrees-of-
freedom (parameters) relationship. The shortest distance between two 
points on the boundary is a minimal curve in the bulk. Changing the sys-
tem, such as by putting a heavy black hole in the bulk can bend the curve, 
so instead of being a regular curve, it becomes distorted. The bulk geom-
etry is not fixed and can be manipulated to characterize the system. For 
example, increasing the entanglement of a field in the bulk changes its 
minimal surface behavior topologically, which via the duality, relates to 
scaling dimensions in the boundary calculation (Hayden et al., 2016).

9.2  Practical Quantum Communications Protocols

A practical application of the AdS/CFT correspondence is employing the 
model to calculate the entropy of a boundary state to develop a quantum 
communications protocol for information transfer. The correspondence 
can be applied in either direction, as a known boundary theory to calculate 
an unknown bulk, or as a known bulk theory to calculate an unknown 
boundary. One of the quintessential applications of the correspondence is 
interrogating unknown bulk structure such as trying to define a theory of 
quantum gravity with a known quantum field theory from the boundary. 
Another standard application of the correspondence is in condensed mat-
ter physics, using classical gravity as a known bulk theory to investigate 
the properties of unknown materials such as novel superconductors on the 
boundary. The quantum field theories that characterize strongly interact-
ing novel superconductors in the boundary area unknown, but they can be 
studied through their entanglement relationship with classical gravity in 
the bulk. The idea is to use the AdS/CFT correspondence to understand 
more about such novel superconducting materials so that they may be 
used in quantum computing and quantum communications. The informa-
tion-theoretic frame for investigation is setting up the problem to calculate 
entropy. The problem is phrased as transmitting the quantum state of the 
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material in the most efficient way possible, based on its entropy. Entropy 
is the fewest number of qubits needed to send a quantum information state 
from one location to another.

The AdS/CFT correspondence can be used to calculate entropy. One 
holographic dictionary mapping is the Ryu and Takayanagi (2006) formula 
for computing the entanglement entropy of a boundary region as being 
equal to the area of a corresponding minimal bulk surface. Another holo-
graphic dictionary mapping is the fish-counting metric which establishes 
the shortest distance between two boundary points as the shortest-length 
geometric curve (geodesic) through the bulk (Czech et al., 2015). The short-
est bulk curve method can be interpreted as a measure of entropy. The cor-
respondence translates boundary problems such as calculating entropy into 
geometric questions in the bulk. The bulk domain is one of a classical theory 
of gravity or geometry (geometry is Einsteinian relativity). The correspon-
dence indicates that entropy can be evaluated by a geometrical quantity. 
This could be with the Ryu–Takayanagi formula of the minimal area of a 
corresponding bulk surface or as the shortest-length curve through the bulk.

In the quantum communications example, there is an exotic supercon-
ducting material on the boundary. It is complex, quantum mechanical, and 
has many degrees of freedom. In the black hole analogy, it is a ring of exotic 
material around the outside of the black hole whose physics is supposed to 
encode quantum gravity. The idea is to calculate properties about the exotic 
material such as its entropy which relates to the information diversity of the 
microscopic degrees of freedom. The prescribed method for obtaining the 
quantum mechanical (von Neumann) entropy is to sum over all the minimal 
measurement bases of the material. However, this is difficult to compute 
for the exotic superconducting material. Instead, the shortest bulk curve 
method can be applied as a more expedient formula for calculating entropy. 
In this bulk-to-boundary application of the AdS/CFT correspondence, the 
complexity is in the boundary in the difficult entropy calculation. The strat-
egy is thus to solve the boundary theory from the bulk theory.

9.2.1  UV–IR information compression

The correspondence-based entropy calculation can be used to develop an 
information compression protocol for use in quantum communications. 
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In general, entropy is the measure of the interrelatedness of subsystems 
within a system, how related one area is to another within the system. The 
interrelations are measured as short-range (UV) and long-range (IR) cor-
relations. If the task is to send the information of the system from one 
location to another, the entropy, or interrelatedness of the subsystems, can 
be interpreted as an efficient compression of the UV–IR correlations. This 
captures the detail and complexity of the system. The AdS/CFT corre-
spondence provides a structure with which to interpret the UV–IR correla-
tions of a system. In the bulk-boundary setup, the boundary material has 
short-range (UV) correlations with the portions of the bulk closest to the 
boundary, and long-range (IR) correlations with the deep bulk interior. 
UV (ultraviolet) and IR (infrared) are frequently used terms in physics, 
not always meant literally to designate short and long wavelengths, but as 
a heuristic for the nearest and farthest ranges or extremes of a system.

In the nonquantum picture, information compression protocols are 
used in applications such as audio and video media streaming. If a video 
service is transmitting a movie to an end-user, the most efficient protocol 
is to compress and send the whole movie. This incorporates all of the pos-
sible correlations in the movie content and provides the best compression. 
Both the short-range (UV) correlations and the long-range (IR) correla-
tions are exploited. However, for live streaming, a different information 
compression protocol is needed. In a typical movie, the scene does not 
change much between individual image frames, suggesting that the short-
range correlations are the most relevant. Short-range correlations are those 
that are local in time in the movie. For example, these could be small 
changes in character movements, moment to moment in the scene. An 
information protocol might send only the changes between the image 
frames on a short-time basis (UV). The long-range (IR) correlations are 
those that are over long-time intervals in the course of the movie. For 
example, the faces of the main characters do not change, but their expres-
sions do. This information could be compressed as long-range correla-
tions in an information compression protocol (Table 9.2).

Video delivery services tend to start streaming the content immedi-
ately instead of waiting to compress and send all of the UV and IR cor-
relations at once. As a result, information compression protocols typically 
only make use of the short-term UV correlations and do not include the 
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long-term IR correlations. The longer the window to compress the file, the 
more UV and IR correlations can be included. For real-time streaming, 
only short-range correlations are exploited, and over a narrow time win-
dow. The fixed-size time window advances as the movie is streamed.

A similar information compression protocol can be defined for send-
ing the quantum state of an exotic superconducting material. The cost of 
sending the information is the number of qubits that need to be sent, which 
can be calculated as the length of the bulk curve. The correspondence-
based entropy calculation is used to find the shortest curve, which equates 
to the cost of sending the information. With the correspondence, an infor-
mation compression protocol can be developed to identify the optimal 
configurations of the short-range and long-range correlations in the quan-
tum system of the superconducting material to send. Unlike in the movie 
example, the right mix of UV–IR correlations to transport the quantum 
state of the exotic material is unknown. The video streaming setup is simi-
larly employed to have a fixed-size window ratcheting over the quantum 
system to perform entropy (correlation) calculations. As with the movie, 
the most efficient protocol incrementally constrains the quantum informa-
tion contents. The full long-distance (IR) correlations the material has 
with the depths of the bulk interior are not accessed as much as the short-
distance (UV) correlations the material has with the portions of the bulk 
closest to the boundary, in a finite window at every step. The sequence of 
windows is given by intervals calculated from the entropy curves.

A specific information compression protocol setup for the quantum 
system is as follows. At each point on the bulk curve, a tangent circle is 
created. In flat space, every point on a curve has a tangent line. In curved 
space, there is a tangent geodesic (shortest path on a curved surface). The 
tangent geodesics are circular shapes that intersect the boundary at two 

Table 9.2.  UV–IR correlations (short- and long-range).

Correlation Range Movie Information Compression Example

UV (ultraviolet): Short-range 
correlations

Changes in character movements moment to 
moment in a scene

IR (infrared): Long-range correlations Change in facial expressions of the main 
characters over the course of the movie
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points. For each point on the curve, there is a tangent circle and that inter-
sects the boundary at two points, and which defines an interval. These 
intervals are analogous to the ratcheting intervals in the video streaming 
information compression protocol. The sequence of intervals can be used 
to define or to constrain a streaming compression protocol for an efficient 
means of sending quantum information (Balasubramanian et al., 2014).

The collections of intervals from the tangent geodesics of the curve 
are used to define a streaming compression protocol. This is the minimal 
qubit cost to transmit qubits containing the quantum information state of 
the exotic superconducting material in an information compression proce-
dure. The qubits could be compressed and sent generally or via quantum 
teleportation. In quantum teleportation, the cost of sending qubits is even 
more prominent as entangled Bell pairs need to be created. The minimal 
number of entangled Bell pairs required to teleport would be the number 
of qubits in the compression as they have a one-to-one relationship (one 
Bell pair for each qubit sent by quantum teleportation). The minimum 
compression rate is the entropy. The practical result is that the entropy 
counts the minimum number of qubits required to compress and send the 
information in the material, computed as the minimal length of the bulk 
curve and its related correlations.

9.2.1.1  UV–IR correlations for interrogating bulk structure

The information compression protocol based on entropy and UV–IR cor-
relations is not only a practical method for sending quantum information 
states but also has theoretical benefits for interrogating emergent bulk 
structure. The geometry of the bulk is translated into entropy as an 
 information-theoretic formulation on the boundary, to constitute the infor-
mation compression protocol. The UV and IR constraints on the informa-
tion compression protocol reflect the structure of the bulk. The key point 
is that the boundary entropy has information about the bulk geometry, and 
can be constructed from the bulk geometry using shortest-length curves. 
The broader impact of this advance is that it provides a framework that 
reveals how the points inside the bulk are related to points on the bound-
ary. How the long-range correlations are related between the boundary 
and the deeper points inside the bulk is a tool for investigating different 
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kinds of structural emergence in the bulk such as quantum gravity, and 
space and time.
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Chapter 10

Quantum Photonics and  
High-Dimensional Entanglement

The photon … is the only elementary particle of energy, whereas there 
are hundreds of elementary particles of matter

— Nair (2006, p. 321)

Abstract

This chapter discusses quantum computing in global networks as 
opposed to standalone machines. Global networks are built on photonic 
transfer, an expertise honed over decades. Optical qubits can be encoded 
and entangled in many ways, leading to the high-dimensional entangle-
ment of qudits (quantum information digits) and the sending of GHZ 
(Greenberger–Horne–Zeilinger) states (entangled quantum states involv-
ing at least three qubits or particle states). Gaussian boson sampling is an 
optical NISQ device, and can be interpreted with graph theory.

10.1  Quantum Photonics

10.1.1  Technical benefits and qudits

Photonics is likely to be a significant contributor to quantum computing, 
a U.S. National Science Foundation roadmap suggests (Awschalom et al., 
2019). Global quantum networks for computing, communications, and 
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sensing (Table 10.1) may be implemented with all-optical components 
from the outset or optical-electrical interconnects, and linked to cloud-
based quantum repeaters, routers, and switches.

Quantum optical platforms suggest better-than-classical performance 
in computation, communication, and sensing (Nunn et al., 2013), and also 
outperform other quantum methods. Optical systems do not need to be 
supercooled (like superconducting chips) as quantum effects in optical 
systems can be easily observed at room temperature. Optical circuits also 
do not require error correction. Light has numerous degrees of freedom 
that can be used to encode, entangle, and transmit quantum information, 
and optical signals can be generated and detected efficiently. Photonic 
processing is well understood from global fiberoptic telecommunications 
networks. The capacity of optical transmission is leveraged with dense 
multiplexing techniques, encoding strategies that might be applied like-
wise to quantum processing. The terms optical and photonic are used 
interchangeably, and mean the manipulation of information with light.

Even without quantum computing, optical networking is expecting 
substantial growth due to traffic from cloud-based services and 5G roll-
outs. Gartner estimates that worldwide cloud services spending will 
increase 18% in 2021 (Costello & Rimol, 2020) and IDC indicates that 
more than 59 zettabytes of data were created worldwide in 2020 (Reinsel, 
2020). Cisco forecasts that by 2023, global mobile devices will grow from 
8.8 billion in 2018 to 13.1 billion, with 1.4 billion being 5G capable (and 
that a 5G connection will generate nearly 3× more traffic than a 4G con-
nection) (Cisco, 2020, p. 1, 33).

Harnessing the quantum aspects of light (particularly entanglement) 
has been necessary to the realization of global fiberoptic telecommunica-
tion networks. Such networks have been employing quantum principles 
since the 1960s (Glauber, 1963). Photons are the ideal carriers of quantum 
information over long distances. The contemporary focus is adding even 
more quantum aspects and upgrading the communications network 

Table 10.1.  Quantum networks.

Computing Communication Sensing

Processing Transmission Capture
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infrastructure to be more oriented to quantum computation (including 
with quantum key distribution, quantum routers, quantum teleportation, 
and distilled entanglement). It is possible that one or more equipment 
manufacturing companies might emerge as the “Cisco of quantum net-
works” in providing quantum internet components.

Quantum photonics has been a well-established industry for decades 
and is poised to be central to facilitating a potential transition to quantum 
networks for computing and communication. Quantum optical systems 
are prominent candidates for the quantum future because they link quan-
tum computation and quantum communication in the same framework. 
The U.S. National Science Foundation workshop roadmap emphasizes the 
development of quantum optical interconnects for next-generation infor-
mation technologies (Awschalom et al., 2019). Although there are many 
ways to make qudits (quantum information digits) for quantum computing 
on standalone machines, for a larger architecture of networked machines, 
electrical signals must be converted to optical signals. Hence, there are 
two methods in development for quantum computing networks. One is 
creating an all-optical platform from the beginning with continuous qubit 
optical interfaces. The other is building a microwave superconducting 
platform (in the model of semiconductors) that is later interfaced to opti-
cal networks with electrical-optical interconnects. Both approaches could 
develop simultaneously.

Quantum optics is a proven method in the communications field. In 
many ways it is easier and less costly to manipulate light than other 
physical systems. Some of the first demonstrations of Shor’s algorithm 
were in optical systems, using four photonic qubits to factor the number 
fifteen (Lu et al., 2007; Lanyon et al., 2007). Another argument in favor 
of photonics is that the platform is a natural fit for the realization of 
qudits (quantum information digits beyond the two-valued qubit). The 
qudit structure often provides the best packaging of information and 
draws from established methods in greater than two-channel multiplex-
ing (Imany et al., 2019). Also, it is easy to realize quantum photonics 
with existing off-the-shelf linear optics equipment. Such quantum com-
puting with linear optics (combined with adaptive measurement) might 
be a blueprint for universal for quantum computation (Knill et al., 
2001).
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10.1.1.1  Bosons and fermions

There are many practical reasons for optics (widely used in global 
 telecommunications, well-understood, off-the-shelf equipment), and there 
are also quantum mechanical reasons. The two basic types of quantum 
mechanical particles are bosons (force particles such as photons) and fer-
mions (matter particles such as electrons and quarks). In some cases, 
bosons can be easier to treat because they clump together (unlike matter 
particles which repel per the Fermi exclusion principle). Bosons are also 
attractive because they have symmetric wavefunctions (meaning it is pos-
sible to easily swap in another particle), whereas fermions have antisym-
metric wavefunctions. Boson wavefunction amplitudes are nonnegative 
and do not have the “sign problem” of fermions in which positive and 
negative terms need to be canceled out in computations. This means that 
Monte Carlo analysis can be applied more easily to approximate bosonic 
ground states than fermionic ground states.

However, bosonic wavefunction amplitudes are more difficult to 
 calculate than fermionic amplitudes and are in a more difficult computa-
tional complexity class, #P-complete versus P (Aaronson & Arkhipov, 
2013, pp. 13–14). Fermionic amplitudes are given by determinants of n × 
n matrices (determinants are in the P class of computational complexity). 
Bosonic amplitudes are given by permanents (permanents are #P- 
complete). Overall, in some ways, bosons are better for quantum compu-
tation, and in other ways, fermions are. Boson sampling, for example, is 
an implementation of the “harder job” of calculating bosonic wavefunc-
tion amplitudes. Quantum computing is proceeding forward with both 
fermionic (matter-based) and bosonic (photon-based) systems, two 
respective examples are Gaussian boson sampling to demonstrate quan-
tum advantage (Zhong et al., 2020), and Majorana fermions to simulate 
the minimal realization of the AdS/CFT correspondence with the SYK 
model (Garcia-Alvarez et al., 2017).

10.2  Boson Sampling

Boson sampling is the statistical method of sampling from the output dis-
tribution of photon scattering. The probability distribution of many bosons 
whose quantum waves interfere with one another is calculated in a way 
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that essentially randomizes the position of the particles. The typical 
experimental setup is an interferometer implementing a Haar-random 
(narrow-range) transformation on n indistinguishable bosons (photons). 
The problem is computationally complex as it is difficult to evaluate the 
permanent (the statistical value of positive terms in a matrix expansion) in 
the scattering amplitudes. The boson sampling problem is in the complex-
ity class #P-hard due to the complexity of the permanent. Boson sampling 
is theoretically interesting because it is believed to be intractable for a 
classical computer, and can thus serve as a means of establishing quantum 
advantage (better-than-classical performance). Such as a real-life claim 
of quantum advantage has been made using Gaussian boson sampling 
(Zhong et al., 2020) in an ongoing implementation of the theoretical pro-
posal (Aaronson & Arkhipov, 2013).

Boson sampling is a promising route for demonstrating quantum 
advantage as it uses existing off-the-shelf equipment (single-photon 
sources, passive beam splitter networks and single-photon detectors). In 
the original boson sampler design, N single-photon Fock states are 
launched into an N2-mode interferometer. This is a good test for quantum 
computing because the mathematics required to calculate bosonic statis-
tics is classically intractable (an equation with many unknown variables 
must be calculated). Technically, computing the probability of measuring 
a specific photon pattern at the output depends upon the permanent of a 
submatrix of the interferometer unitary. The permanent is in the #P com-
plexity class (Valiant, 1979, p. 189). This class, #P, is based on counting 
the number of functions that are solutions to an NP-hard problem (a prob-
lem whose number of solutions increases exponentially with the number 
of variables, and that cannot be calculated efficiently with classical com-
puting, but whose possible answers can be easily verified). Since the 
permanent is #P-hard (in the #P complexity class), sampling from the 
distribution of bosonic statistics is an intractable problem for classical 
computers. There is no classical shortcut for the computation as boson 
sampling is a #P-hard problem (Ball, 2020).

10.2.1  Gaussian boson sampling

Reliable photon generation and detection equipment are crucial to calcu-
lating boson statistics. In early boson sampling experimental efforts, 
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reliable (perfectly deterministic) sources of single photons were not 
 available. Efforts thus made use of post-selected photon-pair states to 
confirm results, but the method does not scale to high numbers of photons. 
A key innovation is Gaussian boson sampling (Hamilton et al., 2017). The 
advance came from noticing that while earlier methods such as scattershot 
boson sampling make use of Gaussian input states, they discard their 
Gaussian nature, retaining only a specific number of post-selected single 
photons from the complete distribution, which constrains the input 
squeezers to a low gain regime.

Instead, the new idea is a boson sampling method that takes advantage 
of the full Gaussian nature of the input states. This is achieved by using 
squeezed input states with a higher gain. High-gain squeezed states are 
incorporated as a nonclassical input resource and nonclassical methods 
are also used to compute the bosonic statistics. The probability of measur-
ing specific photon patterns from a general Gaussian state (a state whose 
distribution is Gaussian) in the Fock basis is related to a matrix function 
called the hafnian, a classically intractable #P-class problem that is solved 
with quantum computation. The speedup results from instead of having to 
post-select Gaussian states from output results, reliably generating 
Gaussian states in the first place. The high-gain squeezed states as a 
 nonclassical resource for producing photons increases the probability of 
obtaining Gaussian states. The method relates the probability of measur-
ing specific photon patterns from a general Gaussian state in the Fock 
basis to the hafnian matrix function (which computes the number of per-
fect matchings in the graph of an adjacency matrix).

Gaussian boson sampling is established as a special-purpose model of 
photonic quantum computation in which a multi-mode Gaussian state is 
prepared and then measured in the Fock basis (multiparticle Hilbert 
space). A Gaussian state is a state whose distribution function in phase 
space or density operator in Fock space is in the Gaussian form. 
A Gaussian state can be prepared from the vacuum by a sequence of  
single-mode squeezing, multi-mode linear interferometry, and single-
mode displacements. Fock-basis measurements can be implemented by 
using photon-number resolving detectors. A basic Gaussian state with 
zero mean can be prepared using only state squeezing followed by linear 
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interferometry, and there is a high probability that the required kinds of 
outputs can be observed. The result is a more efficient boson sampling 
method as compared to other approaches.

10.2.1.1  Gaussian boson sampling demonstration

One of the first experimental demonstrations of Gaussian boson sampling 
was reported by Zhong et al. (2019), and then sharpened to a claim of 
quantum advantage a year later (2020). The boson sampling problem is 
that it is difficult to evaluate boson scattering amplitudes (due to the 
matrix expansion term (permanent)). There is no shortcut for performing 
the calculation on a classical computer. However, a quantum computer 
can sidestep the brute-force calculation by simulating the quantum pro-
cess directly, allowing bosons to interfere and then sampling from the 
resulting distribution (Ball, 2020). Here, the quantum advantage experi-
mental setup is as follows. Gaussian boson sampling was achieved by 
sending 50 indistinguishable single-mode squeezed states into a 100-
mode ultralow-loss interferometer with full connectivity and sampling the 
output using 100 high-efficiency single-photon detectors.

Photons are used as qubits, encoding states (modes) that make use of 
two degrees of freedom encoding (horizontal and vertical polarization and 
spatial position). The states are then pumped into an optical network 
effectively consisting of 300 beam splitters and 75 mirrors to create 
the interference. Within 200 seconds, over 3 million events of 43- 
photon coincidence were obtained as the photon distribution output. 
Photodetectors capable of registering single photons measure the distribu-
tion, which in effect encodes calculations that are classically intractable. 
The team estimates that a 1014 quantum advantage is obtained as the prob-
lem would take 2.5 billion years to calculate on China’s TaihuLight super-
computer (the world’s fourth most powerful supercomputer as of 
November 2020 with 125 Pflop/s (Top500, 2020)). The Gaussian boson 
sampling protocol not only significantly enhances the photon generation 
probability, compared to standard boson sampling with single-photon 
Fock states, but also supports potential applications in dense subgraph 
problems and quantum chemistry.
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10.2.1.2  Gaussian boson sampling as a NISQ device

Gaussian boson sampling is not only a theoretical platform for the dem-
onstration of quantum advantage, but also a NISQ device (available quan-
tum computer that does not require error correction) with practical 
applications. A number of problems can be encoded with Gaussian boson 
sampling methods. Relevant Gaussian boson sampling algorithms have 
been developed for applications such as how proteins dock to one another 
and to probe spectral analysis in quantum chemistry. Sparrow et al. 
(2018), for example, exploit a natural mapping between vibrations in mol-
ecules and photons in waveguides to demonstrate a reprogrammable pho-
tonic chip as a simulation platform for a range of dynamic quantum 
behavior in various chemical molecules. The time evolution of vibrational 
excitations in the harmonic approximations for four-atom molecules 
(including H2CS, SO3, HNCO, HFHF, N4, and P4) is simulated, and also 
energy transport and thermal relaxation. The results highlight the power 
of simulation tools for molecular quantum dynamics and the field of 
femtochemistry.

10.2.2  Gaussian boson sampling/graph theory

An emerging field of application is Gaussian boson sampling/graph the-
ory (GBS/GT), using Gaussian boson sampling to study problems in 
graph theory. The output of sampling is graphs, and thus it is a natural 
connection to apply Gaussian boson sampling to graph theory problems. 
Sampling output is in the form of various different kinds of graphs includ-
ing random graphs, matched graphs, and Erdos–Renyi graphs. A body of 
work is developed by Schuld et al. (2019) and other team members, for-
malizing the relationship between Gaussian boson sampling and graph 
theory. The work relies on Gaussian boson sampling being a NISQ device 
for studying quantum computational phenomena (Table 10.2).

First, graph matching polynomials are used to study the relationship 
between distributions defined over classes of samples from a GBS device 
(Bradler et al., 2019). A new graph polynomial is introduced called the 
displaced GBS polynomial (whose coefficients are the coarse-grained 
photon-number probabilities of an arbitrary undirected graph encoded in 
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a GBS device). Notably, there is a duality between the displaced (arbi-
trary) GBS polynomial and a certain matching polynomial that is a prism 
over the graph (the Cartesian graph product of the graph with a single-
weighted edge). The graph polynomial relationship provides greater 
insight into the functioning of Gaussian boson sampling, and suggests 
how Gaussian boson sampling might be simulated classically. The method 
is also used in the second example of constructing feature maps in a quan-
tum kernel learning application (Schuld et al., 2019). The work proposes 
how a new type of coarse-grained quantum statistics might be used to 
construct feature maps and makes use of a quantum hardware-induced 
graph kernel.

Third, Gaussian boson sampling is used to identify dense subgraphs 
(Arrazola & Bromley, 2018). Focusing on the NP-hard densest k-subgraph 
problem, stochastic algorithms are found to be enhanced through GBS, 
which selects dense subgraphs with high probability. The findings incor-
porate a link between graph density and the number of perfect matchings 
(enumerated by the hafnian) which is the relevant quantity determining 
sampling probabilities in GBS.

Fourth, a connection is made between a Gaussian boson sampler 
and the graph isomorphism problem (Bradler et al., 2018b). The setup 
encodes graphs into quantum states of light, whose properties are then 
probed with photon-number-resolving detectors. A proof is given that the 
probabilities of different photon detection events in this scheme can be 
combined to provide a complete set of graph invariants. Two graphs are 
isomorphic if and only if their detection probabilities are equivalent.

Table 10.2.  Gaussian boson sampling/graph theory.

No. Gaussian Boson Sampling (GBS) Graph Theory

1 Distributions classes over GBS samples Graph matching polynomials

2 Gaussian boson sampling Hardware-induced graph kernel

3 GBS hafnian for probability sampling Graph density (dense subgraphs)

4 Quantum light state graph encoding Graph isomorphism invariants

5 Adjacency matrix hafnian output Undirected graph perfect matching

6 Proportional sampling of GBS Densest k-subgraph approximation
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Fifth, a famous hard graph problem of computing the number of 
 perfect matchings (the number of unique and complete pairings of the 
vertices of a graph) is tackled (Bradler et al., 2018a). A method is pro-
posed for estimating the number of perfect matchings of undirected 
graphs based on the relationship between GBS and graph theory. The 
probability of measuring zero or one photons in each output mode is 
directly related to the hafnian of the adjacency matrix, and thus to the 
number of perfect matchings of a graph. The result is a set of encodings 
for translating the adjacency matrix of a graph into a Gaussian state, along 
with strategies for boosting the sampling success probability.

Sixth, quantum approximate optimization with Gaussian boson sam-
pling is proposed (Arrazola et al., 2018). Difficult optimization problems 
are often approached by finding approximate solutions. Here, proportional 
sampling is proposed for improving the performance of stochastic algo-
rithms used for optimization. An NP-Hard problem, Max-Haf, is intro-
duced to demonstrate that GBS can be used to enhance any stochastic 
algorithm for this problem.

10.2.2.1  Application tools for boson sampling/graph theory

Realizing the need for standardized software development tools to facilitate 
the use of Gaussian boson sampling as a NISQ device, Bromley et al. (2020) 
introduce the GBS application layer of Strawberry Fields. The project is an 
open-source Python library for photonic quantum computing, available at 
github.com/XanaduAI/strawberryfields. The application layer is built with 
the goal of providing users with the capability to implement and test GBS 
algorithms using only a few lines of code. Specifically, the toolkit contains 
modules dedicated to dense subgraph identification, maximum clique, 
graph similarity, point processes, and vibrating spectra. The project 
addresses one the most substantial roadblocks to quantum computing by 
providing easy-to-use tools for writing quantum algorithms.

10.3  Space-Division Multiplexing Innovation

Quantum photonics is the science of generating, manipulating, and detect-
ing light in regimes in which it is possible to coherently control photons 
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(as individual quanta of the light field) (Pearsall, 2017). The high demand 
for global communications networks makes quantum photonics an active 
research frontier. Activity began in the 1950s–1960s when it was realized 
that light requires a quantum formulation, and that the classical picture 
(only electromagnetic fields) would be insufficient to describe it. A key 
advance is the coherent state, an oscillatory quantum state. This is a state 
with dynamics closely resembling the oscillatory behavior of a classical 
harmonic oscillator, in particular for the manipulation of quantum light 
(bosons) (Glauber, 1963). It was further demonstrated that light could be 
emitted one photon at a time, which has given rise to global fiberoptic 
telecommunications networks and single-photon manipulation.

There are various ways to write (modulate) information onto light. 
Traffic is often received as analog electrical signals which are converted 
to optical signals for transport and then reconverted back to analog electri-
cal signals for delivery at the other end. A key piece of technical equip-
ment is optical-to-electronic interconnects for traffic ingress and egress. 
All signals are typically multiplexed to fit as much information as possible 
onto a communications fiber. The different techniques to optimize multi-
plexing are based on time, wavelength, polarization, phase, and space. 
Demand continues to grow for transmitting increasing amounts of infor-
mation over longer distances and a key focus is on expanding the capacity 
and information transmission rates in fibers (Xavier & Lima, 2020). The 
same kinds of light manipulation techniques are used for different applica-
tions; data multiplexing activities are generally kept separate from those 
involving entanglement generation and management.

10.3.1  Information multiplexing

The optical fiber is the central unit in the communications infrastructure. 
A variety of multiplexing techniques are used for encoding information 
onto the fiber are based on time, wavelength, and space (Table 10.3).

Time-division multiplexing (TDM) has been used for decades as a 
method for increasing channel capacity by transmitting and receiving 
independent signals over a common signal path by means of synchronized 
switches at each end of the transmission line. Wavelength division multi-
plexing (WDM) is another technique for increasing transmission capacity 
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that involves multiple data channels being multiplexed using different 
wavelengths over a single fiber (Brackett, 1990).

Space-division multiplexing (SDM) is the most recent advance 
(Richardson et al., 2013). The technique was known, and has become 
technologically feasible. Space-division multiplexing is the spatial  analog 
of wave-division multiplexing. Whereas waves propagate forward and can 
be multiplexed (divided into channels) on this basis, there is also the trans-
verse (sideways) dimension of waves. The insight is to multiplex data onto 
both the forward-propagating and transverse direction of the optical 
modes of a light beam to increase the spatial density of the communica-
tions fiber. The transverse optical modes are electromagnetic field patterns 
of the radiation encoded in the plane perpendicular (transverse) to the 
radiation’s propagation direction. New optical fiber designs and compo-
nents help to realize space-division multiplexing as multiple co-existing 
data channels based on light propagation over distinct transverse optical 
modes.

In particular, space-division multiplexing draws from recent progress 
in fiber research. There are improvements to conventional fibers and high-
precision fabrication methods have been developed to produce fibers with 
hollow cores and other complex microstructures. State-of-the art space-
division multiplexing technology as of 2019 was on the order of 266.1 
terabits per second transmission over a six-mode fiber (Wakayama, et al., 
2019). This compares to TeleGeography’s estimated total global internet 
bandwidth capacity of 295 terabits per second (1012 bps) in 2017 (Rebatta, 
2017). The implication is that just one fiber can provide the entire back-
bone capacity of recent moments of internet traffic.

Table 10.3.  Multiplexing in global fiberoptic networks.

No. Multiplexing Method Year

1 Time-division multiplexing (TDM): Time synchronization between 
sender-receiver

1880

2 Wave-division multiplexing (WDM): Multiplex onto forward direction of 
wave movement

1990

3 Space-division multiplexing (SDM): Multiplex onto sideways direction 
of wave movement

2013
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Simultaneously, there have been developments in quantum information 
processing, with novel protocols and devices for computing, communication, 
and sensing. Quantum networks could lead to the full-fledged implementa-
tion of the quantum internet and other novel kinds of quantum networks. 
Technological advance, demand, and a more intense potential era of quantum 
networks are motivating the deployment of space-division multiplexing. 
However, one barrier to increasing information transmission rates with space-
division multiplexing is that many installed fibers are a basic technology that 
is only designed to support the fundamental Gaussian propagation mode 
(single-mode transmission). Fortunately, in some cases, space-division mul-
tiplexing might be run as an overlay to existing technologies. The installed 
plant of fiber cables is a mix of legacy and upgrade technologies, with some 
being more conducive to space-division multiplexing than others.

Any fiber that can support more than one transverse (perpendicular) opti-
cal mode of propagation is possibly suitable for space-division multiplexing. 
The most direct approach is to embed several single-mode cores into a single 
fiber cladding to produce a multi-core fiber. If the transverse core separation 
is large enough, the fibers can be approximated as independent fibers in most 
applications. Another alternative is to use a fiber with only a single core, but 
which is capable of supporting more than one transverse mode for light 
propagation. Existing multi-mode optical fibers are less conducive to space-
division multiplexing as they already run their own complicated expansion 
technology supporting hundreds of modes which require complex auxiliary 
optoelectronic systems to reconstruct the original wavefront.

Space-division multiplexing can also be implemented with quantum 
techniques, particularly to reach terabit per second data rates (Wang et al., 
2012). One quantum strategy is the multiplexing of data channels using 
transverse optical modes carrying orbital angular momentum (OAM) 
(Gibson et al., 2004). A certain kind of light beam (Laguerre-Gaussian) is 
used to carry discrete OAM modes. Each associated photon carries a fixed 
amount of OAM (lħ, where ħ is Planck’s constant divided by 2π).

10.3.1.1  Spacetime states

Foundational physics advance continues to encourage progress in quan-
tum computation and communications networks. New ideas might be 
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applied to substantially extend the capacity and information rates of 
global communications networks. Zhang et al. (2020) use theoretical 
physics to expand the possibilities of multiplexing. The research presents 
a unified approach to space and time integration in quantum theory, by 
building quantum states across spacetime instead of only on spatial slices. 
Instead of distinguishing measurements on the same system at different 
times, measurements are taken on different systems at one time and space-
time states are constructed on the basis of these measurement statistics. 
The work proposes six possible definitions for spacetime states in con-
tinuous variables, based on four different measurement processes: 
Quadratures, displaced parity operators, position measurements and weak 
measurements. The central idea is to treat different instances of time as 
different quantum modes. The formalisms used are the pseudo-density 
matrix formulation and the path integral formulation. These definitions 
lead to practically useful network properties, and theoretically help to 
illuminate the differences between spatial and temporal correlations. The 
operational meaning of the spacetime states can be confirmed with tomog-
raphy or other similar methods.

10.3.2  Personal brain networks

Advances in communications (high-capacity secure network transfer with 
quantum optical networks and personal area network protocols) and neu-
roscience (individual connectomes with the Virtual Brain project and 
wavelet interpretation algorithms) could come together in the idea of 
personal brain networks. Such personal brain networks could 
 noninvasively acquire and monitor personal neurological data continu-
ously, and transfer these data for secure processing, storing, and permis-
sioned sharing. Personal connectomics could develop from the Virtual 
Brain (VirtualBrain.org) connectome-based brain simulation platform 
which has over fifty individual human connectomes (Triebkorn et al., 
2020). Personal connectomes might be analyzed with ultrafast wavelet-
based data management techniques that increase the capacity of optical 
networks (Cincotti et al., 2005). Such methods propose an optical wavelet 
packet division multiplexing (WPDM) scheme in which data signals 
are waveform-coded onto wavelet atom functions for transmission. 
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This consists of compact integrable architectures to perform the discrete 
wavelet transforms and the wavelet packet decomposition of an optical 
digital signal. The implication is the possibility of using wavelet technol-
ogy for personal local networks, including personal brain networks (with 
appropriate security). Neuroscience imaging signals are already wavelet-
processed (Puckett et al., 2020), and having a secure personalized data 
collection method via optical networking technology could speed the 
development of personalized connectomes and other applications.

Khalid et al. (2019) discuss Visible Light Communication as a model 
for next-generation wireless communication in local area networks. The 
method is designed to relieve radio-frequency (RF) congestion by using a 
visible light band for transmission. The RF spectrum has become crowded 
with the demand for high-speed multi-media mobile services. Particularly 
with an eye to 5G roll-out, innovations in broadband technology are 
needed. One research program examines new ideas for data transmission 
on a highly localized basis. Visible Light Communication is such a local 
data communication technology based modulating the intensity of light to 
transmit information, mostly by means of Light Emitting Diodes. The 
IEEE has confirmed Visible Light Communication as the standard for data 
transmission in Wireless Personal Area Networks (WPANs) (IEEE proto-
col 802.15.17) (Sarbazi & Uysal, 2013). Hence, the major pieces are in 
place for an early prototype of personal brain networks with neuroscience-
based brain wavelet interpretations, optical-frequency personal area 
 network data collection, and high-speed optical network-based data mul-
tiplexing for external transfer.

10.4  Photonic Qubit Encoding

Encoding photons in quantum computing and quantum communications 
networks can be achieved with two classes of methods, those based on the 
physics of angular momentum and those based on technology. The physics-
based methods build qubit technology around the quantum mechanical 
behavior of particles, namely, by using polarization to encode spin angular 
momentum (SAM) and spatial modes to encode OAM. The technology-
based encoding methods use waveguide paths and time and frequency 
bins to generate and structure qubits, and are often used in boson sampling 
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(Zhong et al., 2020). Polarization is the established workhorse method but 
can only send one qubit, so there is attention to developing the other meth-
ods, all of which can transmit multiple qubits including qudits (quantum 
digits with more than two values). The technology-based methods in 
 particular may be able to expand arbitrarily in the number of qudits in 
waveguide transmission and time and frequency-binning (Table 10.4).

10.4.1  Physics: Angular momentum

Physics-based photonic qubit encoding involves the natural angular 
momentum attributes of particle movement. Angular momentum is a 
quantized measure of a particle’s rotational activity in rolling, spinning, 
and orbiting. Qubit encoding makes use of two forms of angular momen-
tum, SAM and OAM. SAM is associated with the circular polarization of 
a particle’s momentum. OAM is related to the spatial structure of the 
particle’s wave movement in a helical orbit.

10.4.1.1  Polarization: SAM

Polarization is the most frequently used method for photon encoding. In 
SAM encoding, three pairs of polarization (opposite) states are used to 
encode information in the particle’s rotational movement: Horizontal and 
vertical, left and right, and opposite diagonals. The techniques for produc-
ing polarization qubits are straightforward to implement and have become 

Table 10.4.  Photon encoding methods.

No. Encoding Method Qubit Encoding Qubit Capacity

Physics-based encoding: Angular momentum

1 Polarization: Spin angular momentum H/V, L/R, Diagonals Single

2 Spatial modes: Orbital angular momentum Left/right Multiple

Technology-based encoding: Time and frequency bins

3 Propagation path in waveguide 0/1 (qubit) 0/1/2 (qutrit) Multiple

4 Time-bin, frequency-bin Early/late arrival bins Multiple

Source: Adapted from Flamini et al. (2018, p. 3).
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the standard method used in most applications for the encoding and 
manipulation of quantum information. Polarization qubits can be coupled 
easily to other degrees of freedom to produce hybrid entangled states. 
In advanced transmission, polarization qubits are coupled to other degrees 
of freedom possessed by single photons such as OAM, propagation path, 
and time-frequency (energy) to create high-dimensional entangled states. 
Polarized qubits are an efficient resource for quantum computation 
and quantum communications networks. However, the shortcoming is 
that polarization qubits can only carry one qubit of information, and as 
quantum information networks expand, other methods such as OAM are 
needed to transmit multiple qubits.

10.4.1.2  Spatial Modes: OAM

OAM (with allowable states: Left and Right) is a growing method of pho-
ton encoding as the technique can be used to send multiple qubits. In 
OAM encoding, attention is given to the particle’s helical spiraling orbit 
along a line of propagated movement through space (visualized as if the 
particle were tracing a DNA strand’s helical shape). The spatial distribu-
tion of the front of the propagating wave (wavefront) is measured by two 
terms, an internal origin-independent term associated with the helical 
(twisted) wavefront, and an external origin-dependent term. Quantum 
information processing based on OAM makes most use of the internal 
twisted wavefront term. Qubit values are encoded as Left and Right in 
relation to the helical movement of the wavefront.

The mathematics of OAM is nontrivial. OAM is carried by optical 
vortices (singularities) that are described by a phase term (angular coordi-
nate) and an unbounded integer. An integral is evaluated around the vortex 
(singularity) for a field with the phase term. A key measure is another term 
which is used to measure topological charge (q) that counts the number of 
helices in the phase profile (and which can be manipulated with so-called 
q-plates). An important attribute for qubit management is that single 
 photons are assessed as carrying quantized values of OAM given by the 
topological charge (the number of helices in the phase profile).

Various techniques are used to produce OAM states. Most frequently 
employed are spatial light modulators (which can modify the intensity or 
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phase of the light beam at each point), cylindrical lenses, and diffraction 
gratings in the form of holograms. Spatial light modulators are widely 
used in optical communication and optical tweezers. A newer innovation 
is spiral wave plates, whose thickness increases in a transparent spiral 
structure so that light experiences a phase gradient during the propagation. 
However, spiral wave plates are limited by cost, wavelength selectivity, 
and reliable qubit generation as compared to other methods. Another tool 
is q-plates (q referring to topological charge), which apply a plate structure 
to manipulate photons. Q-plates are proving useful for generating multiple 
degree of freedom entanglement in qubits with polarization and OAM.

10.4.1.3  Polarization versus OAM encoding

One trade-off between polarization and OAM is that polarization is a 
straightforward established method whereas orbital angular moment is a 
more complicated emerging model. However, only one qubit at a time can 
be sent with polarization, and multiple qubits transmitted with OAM 
encoding, so there is interest in developing the technology. Another trade-
off between the two techniques is the ease and reliability of qubit recogni-
tion. Polarization encoding only requires resolving two components (easily 
managed with the existing equipment of waveplates and polarizing beam 
splitters), but the number of OAM modes is potentially unbounded and dif-
ficult to characterize. The same methods are used to produce and recognize 
OAM qubits, and continue to be developed, as mentioned, for example, 
spatial light modulators, spiral phase plates, and q-plates. Once generated 
and identified, OAM states can be manipulated with a high degree of con-
trol such that quantum information can be encoded in an essentially infinite 
Hilbert space. Hence, it is possible that, if unlocking technology to control 
OAM qubits, it could be a scalable technology of the future.

10.4.2  Technology: Path and time-frequency bins

10.4.2.1  Propagation path waveguide encoding

Path encoding is the representation of qubits in terms of their occupy-
ing modes in the waveguide and propagating along these paths. 
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Waveguide arrays inherently use a spatial separation and coupling 
method between modes, so are a natural structure for designating 
qubits and qudits. Qubits (optical modes) are generated and encoded 
directly into an available location in the waveguide path or fiber. 
Encoding is generic, a 0 or 1 (or more for qudits) based the assigned 
location in the waveguide path. Due to the structured setup, path-
encoded qubits and qudits map directly onto existing photonic inte-
grated circuits. Photonic integrated circuits have high stability and 
complexity, and this allows the configuration of most of the relevant 
features of applications in quantum computing and communication 
technologies. Accurate control over path-encoded qubits for universal 
manipulation is possible with relatively low cost and technological 
requirements as compared to the other encoding methods.

10.4.2.2  Time-based encoding: Time, frequency, energy

The Heisenberg uncertainty principle implicates the special relationship 
of conjugate pairs such as location-momentum and time-energy. The 
canonical interpretation is being able to know a particle’s location but not 
its speed, and vice versa. The relationship is structured as a gradient of 
being able to know more about a particle’s location by knowing less about 
its speed. Aside from location-momentum, the other main conjugate pair 
is time-energy. In this context, the time and energy relationship is trans-
lated as time-frequency or the wave energy as measured by frequency, and 
is likewise structured as a gradient (more time precision is less energy 
(frequency) precision).

Time-based encoding is deployed by different mechanisms. One is 
that the particle wave’s time is encoded into bins (two or arbitrarily 
more), one arriving before the other. Analogously, the second mecha-
nism is that the particle wave’s frequency (energy) is encoded into bins 
(two or arbitrarily more), also arriving at different intervals. Imany 
et al. (2019), for example, make use of 16-bins each of time and fre-
quency divisions for 32 total bins. This manner of qubit or qudit encod-
ing is labeled as Early/late arrival in time or frequency (with as many 
designations as needed), per being directed by the photonic device into 
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the different time and frequency. A further mechanism is that through 
their conjugate pair relationship, the particle wave’s time and fre-
quency attributes can be entangled together or converted into one 
another.

Describing time-bin encoding in more detail, time is a natural and 
effective resource for writing information onto single-photon quantum 
states. Time-bin encoding involves coding time into different bins. The 
standard method uses an encoder (interferometer) with one arm that is 
longer than the other. The allowed qubit states are Early Time and Late 
Time, to distinguish between the photons taking the short path and those 
taking the longer path. The temporal delay must be smaller than one 
wavelength, and longer than the coherence length of each photon, to 
allow a reliable discrimination of the arrival times. Proper dynamic con-
trol of the temporal delay is needed to compensate for mechanic and 
thermal instabilities, but in general, the precision of using time as a 
degree of freedom offers various advantages over other encoding 
schemes. Time-bin encoding is suitable for integrated photonic devices, 
in which photons can be generated, manipulated and measured without 
the need for external encoding devices. Time-encoded qubits are resilient 
to the noise that can damage polarization qubits (such as depolarizing 
media or decoherence and mode dispersion). Time-frequency encoding 
offers advantages over polarization and spatial-mode encodings because 
multiple spectral modes are supported in the waveguides and optical 
fibers with minimal dispersion, and zero cross-talk. Further, time-bin 
encoding has been proposed as a suitable scheme for quantum walks and 
boson sampling.

Frequency-bin encoding proceeds in the same manner of using early-
late arrival bins. Such methods have been demonstrated in quantum 
 computing (to operate cluster states) and quantum communications net-
works. Particularly for quantum communications applications, frequency-
encoded qubits are in parallel with existing methods and thus might be 
useful in applications such as quantum key distribution and quantum state 
teleportation. For example, time-frequency quantum key distribution pro-
tocols suggest taking advantage of the low decoherence risk available in 
frequency-based qubits (Nunn et al., 2013).
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10.5  High-dimensional Quantum Entanglement

10.5.1  Theoretical development

10.5.1.1  Qudits and optimal information content

In high-dimensional entanglement, particles or qubits are entangled in 
more than one dimension (such as polarization, spatial modes, propaga-
tion path, and time-frequency bins). High-dimensional quantum entangle-
ment is necessary to produce qudits. The basic unit of quantum information 
is the qubit (quantum information bit). A qubit is a two-state quantum 
mechanical system used for computing, as the quantum version of the 
classical bit. However, qubits are just one example of the broader class of 
qudits (quantum information digits). As a quantum mechanical entity, a 
unit of quantum information can exist in any number of states. A qubit is 
a binary quantum information bit taking the values of 0 and 1, and exists 
in a superposition of 0 and 1 before measurement. A qutrit is a trinary 
quantum information bit taking the values of 0, 1, and 2, and exists in the 
0, 1, and 2 states until measured. Qudits can scale to arbitrarily large quan-
tum systems. At least as many as seven-qudit systems have been tested 
(Fonseca et al., 2018).

For simplicity and ease of implementation, the binary qubit has been 
the focus of quantum information implementation. However, optical sys-
tems are now taking greater advantage of higher-dimensional qudits. In 
computation theory, there may be an optimal qudit number for a given 
system. DNA appears to be one example of an optimal encoding system 
(Szathmary, 2003). The four-digit information code (ATCG; adenine, thy-
mine, cytosine, and guanine) contains the genetic instructions used in the 
development and functioning of all known living organisms. Technically, 
there are five bases as RNA adds an intelligence and security layer by 
transcribing T (thymine) as U (uracil) so that DNA and RNA strands are 
readily identifiable.

Systems of greater complexity may have a more than binary informa-
tion encoding structure. In certain computational tasks, it is known that 
greater-than-binary structures are optimal. For example, the three-qutrit 
code is an efficient self-contained nine-state holographic quantum error 
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correction code (Harlow, 2017). Likewise in information theory, quantum 
communication protocols based on larger alphabets may offer certain 
advantages (Hayden & Penington, 2019). Quantum error correction and 
information theory point to the benefit of higher information capacity also 
possibly conferring increased resistance to noise (an ancilla of extra bits 
may be effectively built into high capacity information encoding struc-
tures). Such functionality could be helpful in quantum key distribution in 
cryptography, for example.

Several physical systems already allow for the encoding of higher-
dimensional quantum information in the form of qudits. Quantum photon-
ics is one of the first and most developed. All three of the primary 
approaches to quantum computing (photonics, trapped ions, and super-
conducting circuits) allow for qudit-based information encoding which 
could substantially speed the development of the industry. Other qudit-
enabled physical systems include a variety of benchtop quantum experi-
mental setups such as Rydberg atoms, polar-molecules, cold atomic 
ensembles, and solid-state defects (Erhard et al., 2020).

10.5.1.2  Greenberger–Horne–Zeilinger (GHZ) state

Quantum computing is not constrained to the qubit, or to the notion of 
entanglement being applicable to just two particles and one dimension. 
This broader landscape has been acknowledged from the beginning. 
However, concretization has led to a focus on the simplest and most prac-
tical formulations as the first step. Works by Einstein et al. (1935) and 
Schrödinger (1935) examine in particular how quantum systems are 
related to the position and momentum of two strongly correlated (entan-
gled) particles. Toward the practical agenda of realization, Bohm (1951) 
proposed the idea of investigating two entangled spin-1/2 particles (i.e. 
two-state systems called qubits). Bell (1964) formulated an experimen-
tally testable theorem, which has become central to Bell pair entangle-
ment in quantum communications.

Now in photonics, there is starting to be more of an emphasis on 
higher-dimension multi-particle systems, which increase the Hilbert space 
exponentially. A well-known multi-particle system formulation is the 
GHZ (Greenberger–Horne–Zeilinger) state (Greenberger et al., 1989). 
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The GHZ state is an entangled quantum state involving at least three sub-
systems (particle states or qubits). The multi-particle state is used to 
encode quantum information and test quantum systems, as a standard 
target state or “Hello world” application in multi-particle systems. The 
GHZ state is useful as more than a demonstration case, its multi-particle 
entanglement might be used for quantum error correction schemes. Shor 
(1995, p. 2) notes that entanglements of three or more qubits can always 
be accomplished by a sequence of two-bit entanglements.

A key difference between the two-dimensional qubit and the GHZ 
state is that the N-partite observables do not form a commuting set of 
observables and are non-Hermitian. However, all observables have the 
multi-partite and high-dimensional GHZ state as a common eigenstate, 
thus still predict an outcome with certainty. All attempts to generalize the 
GHZ argument use local unitary observables and thus have complex 
eigenvalues. This is in contrast to the prevailing view in physics that 
physical observables must have real eigenvalues (Dirac, 1981). GHZ 
states point to the need to clarify the general definitions of the properties 
a physical observable should obey.

From an experimental standpoint, GHZ states consist of three or more 
entities that are entangled with one another. The GHZ argument for three 
and more particles in two dimensions has been generalized to an arbitrary 
number of local dimensions or degrees of freedom (Ryu et al., 2013). The 
GHZ state has been demonstrated in more than two dimensions, in that a 
three-dimensional three-party GHZ state was realized using the OAM of 
optical states (Erhard et al., 2018b). A four-party GHZ state with 32 
dimensions in each of two degrees of freedom (time and frequency) has 
also been realized (Imany et al., 2019). The method encodes high-dimen-
sional units of information (qudits) in time and frequency degrees of 
freedom using on-chip sources. Specifically, two frequency-bin entangled 
photons (each carrying two 32-dimensional qudits) are used to realize a 
four-party high-dimensional GHZ occupying a Hilbert space equivalent to 
that of 20 qubits.

These experiments highlight the need to investigate high-dimensional 
entanglement and related research questions (such as whether physical 
observables must have real eigenvalues as Dirac suggested or might 
have complex eigenvalues as suggested by generalizations of the GHZ 
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multi-particle entanglement theory). One practical use is to understand 
superconducting materials and how they may be used to build quantum 
computing systems. It is known that exotic phenomena arise if the quan-
tum system size (in terms of number and dimensionality) grows to exten-
sive numbers. Some examples of exotic phenomena are superconductivity, 
superfluids, and Bose–Einstein condensates. These systems are not well-
understood and pose significant theoretical as well as experimental chal-
lenges. Novel physics might be revealed a deeper understanding of these 
large and highly correlated quantum systems.

10.5.2  Experimental implementation

High-dimensional entanglement refers to particles or qubits that are 
entangled in more than one dimension. The number of particles could be 
one or more, and the key point is that they are entangled on the basis of 
more than one dimension. The same techniques used to encode photonic 
qubits in general are also used to entangle them on the basis of one or 
more dimensions. The first question is whether a single-photon or a multi-
photon system is being entangled. The second question is which dimen-
sions (degrees of freedom) of entanglement are being used in the system, 
which could be polarization, spatial modes, propagation path, and time-
frequency bins, or a combination of them (Table 10.5). The first step in 
producing high dimensional entanglement states is creating photons and 
photon pairs. The standard method for creating photon pairs is with a laser 
pulse to a nonlinear crystal. The second step is entangling them within one 
or more degrees of freedom.

Table 10.5.  High-dimensional quantum entanglement.

No. Degrees of Freedom Description Qubit Encoding

1 Polarization Spin angular momentum H/V, L/R, Diagonals

2 Spatial modes Orbital angular momentum Left/right

3 Propagation path Path of waveguide travel 0/1 (qubit), 0/1/2 (qutrit)

4 Time-frequency bins Successive bins Early/late arrival bins

5 Hybrid entanglement Multimode entanglement Various
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10.5.2.1  Polarization: Spin angular momentum

It is relatively straightforward to entangle photonic qubits on the dimen-
sion of polarization. Also, polarization qubits couple readily to all other 
degrees of freedom used in hybrid entangled states, namely, OAM, propa-
gation path, and time-frequency (energy) together in high-dimensional 
entangled states. As such, polarization is often the first designated degree 
of freedom used in hybrid entanglement.

10.5.2.2  Spatial modes: OAM

OAM entanglement is an active experimental research frontier (Erhard 
et al., 2018a). The OAM describes the wavefront of photons (spatial 
modes) as they spiral in a helical motion. The main feature of these modes 
is singularities within the phase, which can be manipulated. The amount 
of OAM corresponds to the direction and number of windings of the phase 
around the singularities. At the singularity, the phase is not defined, which 
results in a doughnut-shaped intensity distribution.

A quantum state of two photons generated within a nonlinear crystal 
can be described according to their amount of OAM. The exact distribu-
tion of the complex coefficients describing the OAM of the photon pair is 
called the spiral-spectrum, and depends on the length of the crystal and 
other factors. Entangled spatial states are created by manipulating the 
crystal pumping process that generates the photon pair. This is accom-
plished by counteracting the spiral-spectrum (that describes the photon 
wavefront) with a corresponding superposition of different OAM quanta 
in the pump beam. The process can be incorporated into automated filter-
ing techniques. More technically, a helical (twisted) phase structure leads 
to a quantized amount of OAM characterized in terms of ћ (the reduced 
Planck’s constant). Photons with +1ћ of OAM have a phase structure that 
varies azimuthally from 0 to 2π, and leads to a vortex along the beam axis. 
OAM modes exist in a superposition between +1ћ and −1ћ (encoded as 
Left and Right) (Allen et al., 1992).

The nonlinear crystal is pumped to produce a photon pair which is 
aligned based on OAM, such that the resulting quantum state is a coherent 
superposition of the photon pair. The result of creating OAM-entangled 
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photon pairs in a single nonlinear crystal is that the two-dimensional spatial 
field of the photons can be relayed into the entangled two-photon quantum 
states. OAM is straightforward to create and interpret. First, OAM entan-
glement can be generated with a single nonlinear crystal. Since OAM is 
conserved within the production process, it can be used to yield high-
dimensionally entangled photon pairs directly. Second, there are several 
known techniques for manipulating and measuring OAM photon states.

10.5.2.3  Propagation path waveguide encoding

Another way to create high-dimensionally entangled photon pairs is in the 
transmission waveguide after pair production has occurred. The wave-
guide propagation path encoding method also relies on momentum in the 
sense of the intrinsic momentum conservation of photons. The momentum 
conservation property allows the coherent emission of a single-photon 
pair on a cone. The photon pair takes up opposite positions on the emis-
sion cone due to momentum conservation. Evenly spaced on the emission 
cone, the photon pair can be collected with single-mode fiber pairs to 
 create a d-dimensionally entangled quantum state of two photons in their 
respective fibers or waveguide paths. Quantum information encoded in the 
waveguide path degree of freedom uses off-the-shelf bulk optical elements 
(standard beam splitters and phase-shifters) and existing integrated optics 
(silicon chips with interferometric stability).

10.5.2.4  Time-based encoding: Time, frequency, energy

Quantum information stored in time-bins or frequency-bins related to 
single photons is well-suited to entanglement generation for transmission 
over large distances using free-space links or optical fibers. One way to 
create entanglement between two photons in the time-bin domain is to use 
two indistinguishable laser pulses separated by a fixed time difference. 
Each laser pulse can create a photon pair within the nonlinear crystal. If 
there is in principle no information available in which of the two pulses 
the photon pair A-B has been created, the resulting state can be written as 
a superposition of the two creation times (denoted as Early and Late). 
Likewise, frequency-bins are created by early-late arrival designations.
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Given the conjugate pair trade-off status of time and frequency 
(energy), the two degrees of freedom are a natural place to begin the 
hybrid entanglement of multiple degrees of freedom. Starting from 
time-bin encoding (with allowed states of Early Time and Late Time 
arrival), the scheme can be extended to multiple states by correlating the 
arrival time with the frequency (energy) of the photon. Ansari et al. 
(2020), for example, demonstrate two-photon quantum correlations in 
the time-frequency domain. Similarly, Kaiser et al. (2016) present an 
experimental method for measuring time-energy entanglement in wave-
length division multiplexed (WDM) quantum networks. A related appli-
cation is Nunn et al. (2013) who make use of time-to-frequency 
conversion in their time-frequency quantum key distribution scheme 
with entangled photon pairs. Finally, Imany et al. (2019) realize a four-
party GHZ state with 32 dimensions, 16 each in two degrees of freedom 
(time and frequency).

10.5.2.5  Hybrid entanglement: Multiple degrees of freedom

Multiple degrees-of-freedom entanglement extends beyond the time- 
frequency conjugate pair relationship to include any variety of degrees of 
freedom, often starting with polarization as the cornerstone. The general 
concept is achieving high-dimensional quantum states that entangle single 
photons on the basis several degrees of freedom simultaneously. One 
demonstration employs the polarization, OAM, and time-frequency 
degrees of freedom to create a 12-dimensionally entangled quantum state 
in three degrees of freedom (Barreiro et al., 2005). In a similar demonstra-
tion, Wang et al. (2018) created an 18-qubit entangled state, a GHZ state 
encoded in six photons with three degrees of freedom (polarization, path, 
and spatial modes). One advantage of hybrid degrees of freedom is that 
they can use deterministic CNOT gates, which are important super-dense 
coding and super-dense quantum teleportation applications. Various con-
figurations of the polarization, spatial, and time-frequency degrees of 
freedom can be employed to generate strong and verifiable two-photon 
entanglement. These correlations could enable applications such as 
 quantum state teleportation, quantum key distribution, and remote state 
preparation.
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10.5.2.6  Degrees of freedom conversion

A further flexibility in degrees of freedom entanglement involves the pos-
sibility of converting one degree of freedom to another. In such an 
approach, entanglement created in waveguide path of travel degree of 
freedom, for example, can be converted directly into OAM entanglement 
(Fickler et al., 2014). This is achieved by using the mode sorter between 
OAM and the waveguide path in reverse. To generate a three-path entan-
gled two-photon state, a nonlinear crystal can be used to produce pairs of 
photons that illuminate a three-slit mask. The consecutive mode sorter is 
then used to transform the path information to OAM states while main-
taining the entanglement encoded in the path of travel degree of freedom. 
Such interfaces allow the creation and manipulation of quantum states 
locally on-chip using the path degree of freedom, and then the further 
downstream connection to distant chips via a quantum link encoded in the 
OAM degree of freedom.

10.5.2.7  Planck’s constant

The expressions h and ħ (h-bar) are widely used in quantum mechanics to 
refer to Planck’s constant. Planck’s constant is the amount of change in 
energy per change in frequency (in particle wave movement). Planck’s 
constant is measured in Joules/second per cycle units, and its value is 
6.626 × 10−34 Joules/second (a very small number). The other formulation 
of Planck’s constant is ħ, which is the reduced Planck’s constant, mea-
sured in units of Joules/second Radians, 1.055 × 10−34 Joules/second/
radian. Planck’s constant divided by 2π results in the name h-bar, repre-
senting h divided by 2π. The term ħ, (instead of h), is often used as a more 
natural simplified expression of angular frequency in physics.

Planck’s constant is based on the idea that energy is quantized (into 
discrete packets or tiers). Energy is discrete and also based on frequency 
or oscillation waves. A formula can be written as E = hf to denote  
the relationship that Energy (E) is equal to a constant (h) multiplied by 
frequency (f). Per observed spectra, the value of Planck’s constant can 
be computed as 6.626 × 10−34 joule-seconds. The constant h is a pro-
portionality constant (energy divided by frequency) that describes the 
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relationship between energy and frequency, the amount of change in 
energy per change in frequency. In the same format, Einstein later associ-
ated energy directly to the electromagnetic wave in Special Relativity 
(1905) with the formula E = mc2, that energy is equal to mass multiplied 
by the speed of light squared. The formula directly associates energy with 
a quantum or minimal element of the energy of the electromagnetic wave.
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Chapter 11

Optical Machine Learning and 
Quantum Networks

Today, the second quantum revolution is in full swing and promises to 
revolutionize areas such as computation, communication, metrology, 
and imaging

— Erhard et al. (2020, p. 1)

Abstract

This chapter discusses quantum optical machine learning as the corre-
sponding version of quantum machine learning for optical platforms to 
test and develop quantum algorithms. Quantum networks as the center-
piece of global quantum computing are presented in the context of a  
full-stack protocols proposal including heralded (confirmed) entangle-
ment generation, quantum teleportation, and end-to-end qubit delivery. 
A global quantum clock network of entangled network-wide GHZ 
(Greenberger–Horne–Zeilinger) states is proposed.

11.1  Quantum Optical Machine Learning

Optical quantum computing is an approach to quantum computing that 
uses all-optical components, in the three input-processing-output steps of 
single-photon sources, photonic integrated circuits, and single-photon 
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detectors (O’Brien, 2007). Optical neural networks are a neural network 
implementation using optical components (Shen et al., 2017). Quantum 
optical neural networks are machine learning applications run on quantum 
optical  networks (Steinbrecher et al., 2019) (Table 11.1).

11.1.1  Optical quantum computing

It was understood that scalable all-optical quantum computing would be a 
possibility at least as early as 2001, but advances in equipment were nec-
essary to make it feasible (O’Brien, 2007, p. 1567). Such experimental 
developments in integrated photonics and nanofabrication have indeed 
enabled integrated circuits with many thousands of optoelectronic compo-
nents (Harris et al., 2018). Photonics has experienced a componentry 
revolution similar to that of electronics in a strong effort toward the min-
iaturization of optical components and dielectric materials in the 2010s 
(Flamini et al., 2018, p. 6). Integrated optical circuits have special design 
needs and architectures built with directional couplers that have additional 
geometries to account for deformation-induced wave phase shifts. 
Rendering these and other aspects reconfigurable by using fused silicon 
materials has been a substantial advance. The result is low propagation 
losses, low birefringence, full operations from visible to infrared, good 
 coupling efficiency with single mode fibers, and low temperature depen-
dence. There have also been advances in the precision of photon genera-
tion and detection equipment.

The upshot is that a number of components are readily implementable 
using state-of-the-art integrated quantum photonics. The most important 
capability is that matrix multiplication can be realized across optical 
modes via arrays of beam splitters and programmable phase shifts. 
Another important feature is the incorporation of optical nonlinearities. 

Table 11.1.  Quantum optical machine learning.

No. Advance Description

1 Optical quantum computing All-optical component quantum computer

2 Optical neural networks Machine learning on optical networks

3 Quantum optical neural networks Machine learning on quantum optical networks
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Both optical linearities and nonlinearities play a role in optical quantum 
computing. The nuance is that on the one hand, the first step in realizing 
optical circuits is optical linearity, the ability to perform linear transforma-
tions. An example is encoding qubits in the polarization of photons and 
then implementing arbitrary linear operations on the two polarization 
modes by using a series of wave plates. On the other hand, nonlinear 
transforms are also useful in optical circuits and not typically possible in 
nonoptical quantum circuits. Optical quantum computing offers a substan-
tial advantage over other quantum computing methods as nonlinear pro-
cessing is automatically included.

11.1.2  Optical neural networks

Optical neural networks can be realized in integrated photonic circuits 
or in free space. Integrated photonic circuits are preferable as they are 
smaller and programmable. In general, neural network architectures are 
structured as a series of linear and nonlinear activations. In each layer, 
information propagates through the neural network via linear combina-
tion (matrix multiplication), followed by a nonlinear activation function 
applied to the result from the linear combination. Particularly in con-
temporary deep neural networks, the nonlinear activation function is 
important for being able to access the hidden layers of the network 
(otherwise they are engaged as a single linear layer) to deliver the 
promise of machine learning in finding higher-order relationships in 
input data. In optical neural networks, optical linear activation is real-
ized with waveguide interconnects (or free space interconnects in the 
free space model). Optical nonlinear activation is achieved with a satu-
rable absorber, a Kerr medium, or a nonlinear optical thermal effect 
(Pierangeli et al., 2018).

Shen et al. (2017) demonstrate a quantum neural network with a pro-
grammable nanophotonic processor in a cascaded array of 56 program-
mable Mach–Zehnder interferometers. The implementation is based on 
the idea that a matrix can be decomposed into components which can be 
instantiated in an optical architecture using a beam splitter, phase shifter, 
and attenuator. By tuning the phase shifter (which can perform summation 
operations) in the interferometers, it is possible to compute matrix 

b4362_Ch11.indd   237b4362_Ch11.indd   237 4/29/2022   6:34:10 PM4/29/2022   6:34:10 PM



b4362  Quantum Computing for the Brain 6"×9"

238  Quantum Computing for the Brain

multiplications for any size of input. Nonlinear activation is achieved with 
a saturable absorber.

The intuition is that with photonics (operating at the speed of light), 
optical neural networks might offer an intrinsic speed advantage over 
conventional neural networks which are limited by electronic clock rates. 
In principle, optical neural networks could be three orders of magnitude 
faster than electronic neural networks (Ibid., p. 441). A speed advantage 
might be provided in three ways. First, neural networks rely heavily on 
matrix multiplication. Matrix multiplication inputs such as linear transfor-
mations (and certain nonlinear transformations) can be performed at the 
speed of light. Experimentally, optical processing has been detected at 
extremely fast rates exceeding 100 GHz in photonic networks, using ger-
manium waveguide photodetectors on silicon (Vivien et al., 2012).

Second, inherent optical nonlinearities in materials and components 
can be used to directly implement the nonlinear operations used in neural 
networks. Nonlinear operations are more readily implemented in optical 
networks than in electronic networks. Third, once a neural network is 
trained, the architecture can be passive in the sense that the computation 
on the optical signals can be performed without any additional energy 
input. The idea is that in optical neural networks, matrix multiplication is 
(almost) free. The architecture of optical neural networks demonstration 
is comprised of three optical processing units (Table 11.2).

First, there is an optical inference unit which is used to perform 
 arbitrary unitary matrix multiplications on the input optical signals. 
The unitary matrix is obtained through the network of the 56 

Table 11.2.  Optical machine learning components.

No. Processing Unit Operation

1 Optical interference unit Perform unitary matrix multiplication on optical 
signal inputs

2 Optical amplification unit Generalize the unitary matrix to arbitrary matrix 
operations

3 Optical nonlinearity unit Apply the nonlinear activation function 
(via saturable absorber)
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interferometers. Second, there is an optical amplification unit which is used 
to generalize the unitary matrix to arbitrary matrix operations. In general, 
any arbitrary matrix can be generated using optical interference and linear 
amplification. Third, there is an optical nonlinearity unit which is used to 
apply the nonlinear activation function with the saturation absorption 
method. Saturable absorption is based on the fact that many materials 
respond to external light signals in a nonlinear way with respect to light 
intensity. Such saturable absorption, as one of the most commonly used 
optical nonlinearities, is deployed as a saturable absorber nonlinear func-
tion. The optical neural network is tested on the MNIST handwriting data-
set (N = 786) and achieves a less than 10% error rate. With these three 
units, the optical neural network is able to perform computations in a way 
that is mathematically equivalent to that of a traditional artificial neural 
network.

11.1.2.1  All-optical waveguide platforms

Shen et al.’s (2017) nanophotonic integrated circuits are a good demon-
stration; however, they require directional couplers and phase modulators 
that occupy too much space to expand optical neural networks to more 
than 1,000 neurons. Thus, large-scale and fast programmable photonic 
neural networks had not been achieved as of 2020 (Sui et al., 2020). 
An active research trajectory supporting this work is the investigation of 
nano-optical components and nonlinear materials that can be integrated in 
optical waveguides such as black phosphorus (a two-dimensional material 
with high electron mobility) (Cheng et al., 2020) and plasmonic nanolas-
ers (Vyshnevyy & Fedyanin, 2018). In other research, Feldmann et al. 
(2019) demonstrate an all-optical neurosynaptic system that is capable of 
supervised and unsupervised learning. The work uses wavelength division 
multiplexing (WDM) to implement a scalable circuit architecture for pho-
tonic neural networks. Through WDM, a photonic neural network circuit 
is realized that performs optical pattern recognition. Photonic spiking 
neural networks (SNNs) have also been demonstrated in the form of 
 neuromorphic silicon photonic networks that perform machine learning 
(Tait et al., 2017).
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11.1.2.2  All-optical reservoir computing

The work discussed so far from Shen et al. (2017), Tait et al. (2017), and 
Feldmann et al. (2019) all relies upon integrated optical waveguide plat-
forms. An alternative method, all-optical reservoir computing, uses fiber 
components based on a semiconductor optical amplifier array on a chip, 
with a neural network format based on directional couplers, fibers, and 
amplifiers (Sui et al., 2020, p. 70778). One innovative proposal with reser-
voir computing is for a living optical neural network to combat brain tumors 
(Pierangeli et al., 2018). The idea is to harness brain tumor pathologies as 
a novel architecture to study. The work uses an approach to learning 
machines that does not require training the network but instead employs 
large-scale random mixing with trained input and output. The architecture is 
an optical reservoir computing structure, with lasers accessing living three-
dimensional brain tumor models, and organizing their componentry to detect 
similar cancer morphodynamics (with laser-induced hyperthermia that is 
inaccessible by other optical imaging techniques). Shining coherent light 
into biological tissue produces a wavefront-shaping method that can be used 
to characterize the sample. Uses of the technique include probing the effects 
of chemotherapy inhibiting tumor growth and developing a cytotoxicity 
assay.

11.1.3  Quantum optical machine learning

Optical neural networks process classical and quantum information at the 
speed of light, and are compatible with silicon technology, but lack scal-
ability and require expensive componentry (Krenn et al., 2016). Thus, 
given the implicated capabilities of quantum computing and existing 
quantum optics methods, a natural step is quantum optical neural net-
works. Steinbrecher et al. (2019) propose and test such a model for quan-
tum optical neural networks. The blueprint provides an architecture for 
machine learning running optical quantum computers. The work maps the 
features of classical neural networks onto the quantum domain to realize 
quantum optical machine learning. The quantum optical neural network 
setup is used to perform a range of quantum information processing tasks 
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with the aid of machine learning. The method relies on the ability to train 
the learning system using only a subset of all possible inputs (input–out-
put pairs from some family of quantum states). To validate and bench-
mark the system, a Greenberger–Horne–Zeilinger (GHZ) state is prepared 
and machine learning is applied to both Ising and Bose–Hubbard 
Hamiltonians. The quantum optical machine learning network is then 
tested on newly developed protocols for quantum optical state compres-
sion, quantum reinforcement learning, and one-way quantum repeaters.

An important application of quantum optical machine learning could 
be quantum circuit design. In quantum computing, a considerable chal-
lenge is finding the best circuit to compute a problem given the quantum 
state inputs. The circuit is the circuit architecture (gate order) and the 
parameterizations of the unitary operators. Machine learning could be 
applied to learn representations of quantum systems in which circuit 
decompositions are unknown, and to find optimal compiled implementa-
tions of known circuits.

Machine learning is a foundational infrastructural technology that is 
leading to sophisticated algorithm design and dedicated hardware devel-
opment, particularly for quantum computing platforms. It may be possible 
to enhance the capabilities of machine learning by leveraging features 
unique to quantum computing as a physical platform. This work argues 
that many of the features that are natural to quantum optics (such as mode 
mixing and optical nonlinearity) can be mapped directly to neural net-
works, and the system trained to implement both coherent quantum opera-
tions and classical machine learning tasks.

The benefit of this work is that it establishes the generic infrastruc-
tural technology of machine learning on the optical quantum computing 
platform. This means the possibility of applying machine learning to the 
other quantum optical topics discussed here such as boson sampling, 
global photonic networks, and tabletop ion traps, ultracold atoms, and 
superconducting materials to extend these platforms, for example in the 
idea of bosonic quantum simulators. Future work is implied as the 
machine learning architecture only accommodates discrete variables and 
there is some industry development to also include continuous variable 
quantum neural networks (Killoran et al., 2019).
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11.1.3.1  GHZ state preparation and Hamiltonian simulation

The quantum optical neural network is validated by making sure that it 
can learn elementary quantum tasks, such as quantum state preparation, 
measurement, and quantum gates. Specifically, Bell-state projection, GHZ 
state generation, and the implementation of the controlled NOT (CNOT) 
gate are demonstrated as being representative of optical quantum informa-
tion processing tasks.

Next, the learning model is demonstrated for both Ising and  
Bose–Hubbard Hamiltonians. The task involves quantum simulation to 
mimic the evolution of known quantum systems of interest described a 
Hamiltonian. First an Ising model is tested. In the n = 2 spin case, the 
quantum optical neural network is trained on a set of 20 random two-
photon states and tested on 50 different states to reliably converge to an 
optimum. In the n = 3 spin case, there is a relatively high average test 
error (10.1%). The higher error in the larger system motivates the need 
to implement more sophisticated training methods such as backpropaga-
tion and layer-wise training to train a deeper quantum optical neural 
network.

A Hamiltonian more natural to photons in optical modes is also exam-
ined, in the Bose–Hubbard model. The learning task involves identifying 
the optimal number of layers required to express a strongly interacting 
Bose–Hubbard model on a square lattice. Increasing the number of layers 
reduces the error on the test set, suggesting that deeper networks can 
express a richer class of quantum functions such as Hamiltonians. Five 
layers are found to provide a reasonable trade-off between error (1%) and 
computational tractability.

11.1.3.2  New protocols

The work develops new protocols for quantum optical state compression, 
reinforcement learning, and one-way quantum repeaters. A quantum 
 optical autoencoder protocol is proposed for the application of quantum 
information compression. A reinforcement learning protocol is designed 
for the classical machine learning controls task of balancing an 
inverted pendulum. A one-way quantum repeater protocol is developed as 

b4362_Ch11.indd   242b4362_Ch11.indd   242 4/29/2022   6:34:10 PM4/29/2022   6:34:10 PM



b4362  Quantum Computing for the Brain6"×9" 

 Optical Machine Learning and Quantum Networks  243

a quantum error correction code based on loss tolerance as the analog to 
forward error correction in classical communications (Table 11.3).

11.1.3.3  Quantum optical autoencoder

Photons play a central role in quantum communications networks, either 
as information carriers or by mediating other interactions. However, pho-
ton transmission is sensitive to loss and hence there is a research focus on 
increasing the communication rate by reducing the photon number while 
maintaining the information content. Quantum autoencoders are proposed 
as an information compression technique (by encoding a family of quan-
tum states onto a lower-dimensional manifold called the latent space) 
(Romero et al., 2017). Similar to classical autoencoders, a quantum auto-
encoder likewise learns to generalize from a small training set and is able 
to compress other states from the same family of data that it has not previ-
ously seen. Quantum autoencoders have been proposed for applications 
in quantum communications networks, and as a subroutine to augment 
variational algorithms in finding more efficient device-specific ansatzes 
(guesses as to optimal wavefunction operation).

The work defines a protocol for a quantum autoencoder to learn a 
compressed representation of quantum states. The quantum optical auto-
encoder encodes input states in the Fock basis (Hilbert space of multiple 
qubits). A choice of a family of states that is relevant to quantum chemis-
try on NISQ processors is selected, the set of ground states of molecular 
hydrogen. The training states are the set of four ground states of Hydrogen 
(H2). The method demonstrates a convergence to a fidelity of over 90%. 
Such a quantum optical autoencoder protocol might be used for quantum 
information compression in quantum networks to more efficiently and 
reliably exchange information between nodes.

Table 11.3.  Quantum optical machine learning protocols.

No. Protocol Application

1 Quantum optical autoencoder Quantum information compression

2 Reinforcement learning Control task: Balancing an inverted pendulum

3 One-way quantum repeater Quantum loss tolerance codes QECC
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11.1.3.4  Quantum reinforcement learning

A standard reinforcement learning problem is the challenge of balancing 
an inverted pendulum. Classical deep reinforcement learning uses a policy 
network to solve the problem. A policy network is an iterative sampling 
process (somewhat similar to Monte Carlo analysis) in which a network 
takes an observation vector as input and outputs a probability distribu-
tion over the space of allowed actions. Then the probability vector is 
sampled to choose an action, a new observation is taken, and the process 
is repeated to find the best balancing scheme (Barto et al., 1983).

Machine learning outputs are in the form of probability distributions, 
so policy networks are a natural application. This work involves the setup 
of a cart moving along a frictionless track, with a pole on a hinge attached 
to the top. The network received four input values at each time step (the 
position of the cart, its velocity, the angle of the pole with respect to the 
track, and the time derivative of that angle) and decides whether to apply 
a unit of force in the plus or minus direction. The simulation runs until a 
boundary condition is reached (the cart goes off the track or the pole falls 
over). The fitness goal is the maximum number of time steps before 
failure.

Five training cycles (with different starting conditions) are applied 
using a six-layer quantum optical neural network. For each cycle, a batch 
size of 100 is used to determine the approximate gradient, and the fitness 
is averaged over 80 distinct runs of the network. Hyperparameters (layer 
depth, batch size, and averaging group) are tuned using linear sweeps to 
direct the network. The result is that overall network fitness increases with 
each training generation, suggesting that the network consistently learns 
to balance the pole for longer times, generalizing examples it has previ-
ously seen to new instances of the problem.

11.1.3.5  One-way quantum repeaters

In classical communications networks, a number of error correction 
 techniques are used to recover lost or damaged information. However, 
these generally do not apply to quantum communications because quan-
tum information cannot be copied or measured per the no-cloning and 
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no-measurement principles. Loss still occurs in quantum networks, 
though, and therefore loss correction techniques are important for quan-
tum communications over long distances and to protect qubits in photonic 
quantum computing (Pant et al., 2017). A one-way quantum repeater is 
designed to protect against such loss, and performs a role similar to that 
of forward error correction in classical communications. A one-way quan-
tum repeater is essentially a quantum error correcting code for restoring 
quantum information given a certain loss tolerance. In quantum networks, 
the idea is to distribute the information over several qubits in such a way 
that even if loss or errors occur, the original information can be recon-
structed. A single physical qubit is encoded in an ancilla (extra qubits) of 
logical qubits in a code structure such that the original message can be 
recompiled from a subset of safely received qubits.

In this work, the physical qubits with the original message and the 
logically encoded ancilla qubits are sent through a lossy channel. The 
quantum optical machine learning network uses a cost function to learn 
the best error correcting code structure for an example problem. The 
result is a (4,2) code, a two-mode code such that there can be single-
photon recovery (within a maximum loss tolerance of four qubits) to 
repair a quantum state without having to issue a new round trip com-
munication between the sender and the receiver. Due to the complexity 
of the problem, a backpropagation method was developed and gradi-
ent-based optimization methods were used to achieve accuracy in the 
training. The network reached numerical precision at 50 layers. An 
explicit optical construction of a one-way quantum repeater was previ-
ously unknown. Quantum repeaters are also used to create high-fidelity 
entanglement.

11.2  Global Quantum Networks

This section discusses an experimentally tested quantum network stack 
implementation. The work highlights a real-life demonstration of theoreti-
cal concepts and suggests that quantum networks are more of a near-term 
than may have been thought. Entanglement, for example, is not merely a 
quantum mechanical property, but a concretized protocol used in the long-
distance network transfer of qubits.
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Dahlberg et al. (2019) present a proposal for global quantum net-
works, the two central aspects of which are a full protocol stack of quan-
tum network layers and the ability to certifiably transmit long-distance 
entanglement. The plan draws from novel networking architectures such 
as software-defined networks, data center protocols, content delivery net-
works, and cloud computing, and extends the team’s roadmap for the 
quantum internet (Wehner et al., 2018).

11.2.1  End-to-end qubits

A global communications network is necessarily optical. Dahlberg et al. 
(2019) therefore select nitrogen vacancy in diamond as a currently avail-
able state-of-the-art quantum optical processing platform that can pro-
duce end-to-end entangled qubits. In the nitrogen vacancy platform, 
qubits are created by exploiting atomic structures in the nitrogen vacancy 
centers in diamond lattices (Childress & Hanson, 2013). In a diamond 
lattice, a so-called nitrogen vacancy center is formed by replacing a car-
bon atom with a nitrogen atom, and by removing a neighboring carbon 
atom (thereby creating a vacancy). The vacancy structure allows elec-
trons to be trapped to form a spin-one system. Two of the levels of the 
spin-one state are used as a qubit. Around the vacancy center, there is also 
an abundance of carbon-13 atoms which interact with the qubit (via elec-
tron spin) and can be manipulated to perform gate logic and serve as 
memory qubits.

Quantum gates are realized by applying microwave pulses to the elec-
tron spin of the carbon atom. The carbon atom spin rotates around the 
X-axis of a Bloch sphere (the Hilbert space of the qubit) in the positive (or 
negative) direction, with an angle that depends on the total number of 
pulses. With this manipulation, it is possible to perform quantum gates 
(unitary operations) on the carbon atom that are controlled by the state of 
the electron spin. Controlled rotations around other axes of the carbon 
atom are also performed in a similar manner. In addition, the carbon atom 
naturally rotates continuously around the Z-axis of the Bloch sphere, so 
other quantum gates can be applied on this basis by waiting for the appro-
priate rotation of the carbon atom.
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11.2.1.1  Quantum network stack with entanglement

The proposed quantum network architecture specifies a full-stack protocol 
for quantum hardware and software, particularly link layer protocols to 
produce entanglement and to deliver end-to-end qubit transmission. The 
quantum network stack is analogous to the Open Systems Interconnection 
(OSI) network stack, which is the standard model of interoperable layers 
in communications and computing systems (Sunshine, 1989). The OSI 
model is comprised of seven layers ranging from the most basic physical 
infrastructure to end-user application data (in layers of physical, data link, 
network, transport, session, presentation, and application). In the quantum 
network stack, the lower four tiers address the hardware-based physical 
treatment and transport specific to quantum entanglement, and there is no 
change to the top three layers (Table 11.4).

11.2.2  Long-distance entanglement

Reliable entanglement production and deliver is the central objective of 
the quantum network stack. The sheer physicality of quantum elements 
provides an advantage over classical networks in which abstraction is only 
available at higher layers. In quantum networks, entanglement is an inher-
ently connected property at the lowest physical levels. The link layer is 
primarily responsible for producing entanglement between two nodes that 

Table 11.4.  Quantum network stack with entanglement.

No. OSI Stack Unit Description Entanglement 

1 Application Data End-user End-user data presentation layers

2 Presentation Data Syntax —

3 Session Data Synchronization —

4 Transport Segments End-to-end connection Qubit transmission

5 Network Packets Packets Long-distance entanglement

6 Link Frames Frames Robust entanglement generation

7 Physical Bits Physical infrastructure Attempt entanglement generation

Source: Adapted from Dahlberg et al. (2019, p. 2).
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share a direct physical connection via an optical fiber. This is in opposi-
tion to classical networks in which the notion of a connection between a 
sender and a receiver must be abstracted and can only be managed at 
higher levels in the stack. Classical bits are distinct (not entangled) and 
shared states are established with higher-tier protocols. The disadvantage 
of quantum networks, however, is that new equipment and network recon-
figuration may be needed in order to produce and distribute entanglement 
on a network-wide basis. A “TCP/QIP” protocol can be envisioned to 
establish the transfer of “quantum internet protocol” traffic.

Quantum information is more secure than classical information since 
it cannot be copied or measured, and entanglement confers additional 
security. It is not necessarily possible to factorize joint qubit states into 
single qubit states, and this attribute is used to produce and identify 
entangled states. One way to generate entangled qubits in the quantum 
network is by computing the joint state of qubits as given by the tensor 
product of their individual states. The receiving end would have informa-
tion about decoding the tensor product method used.

11.2.2.1  Heralded (confirmed) entanglement

Entangled pairs are produced and connected over short-distance intervals 
to form longer-range entanglement in an operation known as entanglement 
swapping (Zukowski et al., 1993). A related procedure is entanglement 
distillation which increases the quality of entanglement. For example, if 
node A is entangled with B (a repeater node), and B with C, then B can 
perform entanglement swapping to create long-distance entanglement 
between the qubits at A and C. The procedure can be used iteratively to 
create entanglement through long chains of quantum repeaters (Munro 
et al., 2015). Other proposals for long-distance quantum networks avoid 
entanglement swapping by using quantum error correction, but require 
more densely placed repeater stations. Dahlberg et al. (2019) streamline 
the efficiency of entanglement swapping with the new wrinkle of heralded 
entanglement. Heralded entanglement incorporates a heralding (announce-
ment) signal confirming that entanglement has been established before 
proceeding with the transmission. The heralded entanglement method can 
be used with all forms of optical qubits.
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11.2.2.2  Use cases for quantum network entanglement

Two of the main use cases for quantum network entanglement are “mea-
sure directly” and “create and keep”. In the “measure directly” use case, 
applications are characterized by the fact that they consume the delivered 
pairs (by measuring them) as soon as they are available and do not store 
them. This is relevant for cryptography applications that use the entangled 
pairs to produce stronger than classical correlations such as in quantum 
key distribution and secure identification. In the “create and keep” use 
case, applications are those that need to store entangled pairs as a coordi-
nation credential. This is relevant for applications that need to send qubits 
via quantum teleportation (Bennett et al., 1993) or perform operations that 
depend on back and forth communication with another node such as sens-
ing and metrology (for example, in the quantum network of clocks 
(Komar et al., 2014).

11.2.2.3  Smart routing and SL A certification

Network-produced entanglement is a feature of the quantum network. The 
network layer is responsible for producing and routing entanglement 
between nodes on an automated or on-demand basis. Stored network 
intelligence can indicate the preferences and service level for smart rout-
ing decisions for the formation of long-distance links from pairwise links. 
The quantum smart network functionality allows time-controlled heralded 
entanglement nodes, for example, to perform certain preprogrammed 
actions in each time step. Service Level Agreements (SLAs) are a key 
feature in the quantum protocol stack to provide the certification of quan-
tum functionality and performance metrics (Lipinska et al., 2020).

11.2.2.4  Status of long-distance quantum entanglement

Experimental demonstrations of quantum entanglement transmission are 
constantly being exceeded. Short-lived entanglement has been produced 
over terrestrial distances of at least 100 km by sending photons on stan-
dard telecom fiber, and from space, at a distance of over 1,203 km with a 
satellite transmission (Yin et al., 2017). Basic applications can be realized 
using these kinds of point-to-point links, but the nodes would need to be 
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concatenated for the transmission of qubits over longer distances using 
entanglement swapping. In order to enable long-distance quantum com-
munication and the execution of complex quantum applications, long-
lived entanglement between two quantum nodes that are capable of 
storing and manipulating qubits is needed. To do so efficiently, a confir-
mation of entanglement generation through heralded entanglement is 
necessary. The record for producing heralded entanglement is 1.3 km, 
achieved by the same team in other work, also with the nitrogen vacancy 
solid-state platform (Hensen et al., 2015). Heralded long-lived entangle-
ment generation has also been demonstrated using remote ion traps 
(Moehring et al., 2007) and neutral atoms (Hofmann et al., 2012). The 
nitrogen vacancy platform, though, appears promising as several other 
capabilities have been demonstrated, qubit lifetimes of 1.46 seconds 
(Abobeih et al., 2018), entanglement production faster than it is lost, and 
entanglement-based qubit teleporting between separated nitrogen vacancy 
centers.

11.3  Global Quantum Clock Network

11.3.1  GHZ state and optical oscillators

The prospect of global quantum networks raises the issue of a world 
clock. The need for real-time global clocks in the worldwide smart net-
work infrastructure has been noted (dos Santos, 2019, p. 156). Such a 
quantum metrology application could serve as a real-time global time-
keeper. Komar et al. (2014) propose a protocol for a global quantum net-
work of clocks that brings together advances in quantum science and 
precision metrology. The enabling advances are the ability to transmit 
long-distance entanglement via satellite, and similarly, to deliver stable 
optical oscillators over long distances with coherent optical links. The 
basic idea is a “blockchain for atomic clocks” in the sense of having a 
global decentralized network for ultra-precise time-keeping.

The work develops a cooperative quantum protocol on the basis of 
entangled GHZ states for the operation of a network consisting of geo-
graphically remote optical atomic clocks. The Global Positioning System 
(GPS) is a familiar contemporary application enabled by time accuracy, 
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and a global quantum clock network is another. Atomic clocks exist but are 
not connected in a global network, which is needed for quantum network 
applications such as end-to-end qubit delivery and entanglement.

Placing tighter constraints on physical constants and their variation 
has resulted in precise measurements of gravitational potential and gravi-
tational wave detection, and the accuracy. The stability of optical clocks 
used in these measurements continues to improve, such that they now 
outperform microwave-based counterparts by orders of magnitude. The 
frequency stability of an optical clock, described as the fraction of the 
clock’s frequency fluctuations relative to its nominal operating frequency, 
reaches below an instability of 10−18 (has a precision of better than one 
part in 1018 being inaccurate) (McGrew et al., 2018). Optical atomic 
clocks (based on optical transitions in atoms and ions such as ytterbium, 
strontium, and aluminum) exploit an operating frequency that can exceed 
1,000 THz, evaluated on the basis of femtoseconds, which allows for an 
extremely precise measurement of time.

As impressive as this is, existing optical atomic clocks are starting to 
reach the quantum limit of the available numbers of atoms within such 
lattice-based clocks, and instability limits of 10−18 might be further 
extended with quantum entanglement. Local clock atoms could access a 
wider range of partner atoms, and time-keeping resolution, through quan-
tum correlated states.

11.3.1.1  Cooperative quantum clock network

The idea of the global quantum clock network is a cooperative clock pro-
tocol in which individual parties (satellite-based atomic clocks from dif-
ferent countries) allocate resources jointly in a global network involving 
entangled quantum states. In addition to operating their own clocks 
locally, the different nodes use network-wide entangled states to interro-
gate their respective local oscillators. The acquired information is sent to 
an alternating central node where it is used to stabilize a center-of-mass 
mode of the different local oscillators. Such a mechanism yields an ultra-
precise clock signal immediately accessible to all network members.

The global quantum clock network has a number of dispersed 
atomic clocks constituting the network nodes, each based on a large 
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number of atoms (clock qubits) serving as the frequency reference at 
different geographical locations. Each clock has its own independently 
operated local oscillator. The clock keeps the time by periodically inter-
rogating its qubits, and using the measurement data to stabilize the local 
oscillator frequency at the reference frequency of the atomic transition. 
In the conventional approach, each local oscillator interrogates its own 
qubits. Instead, in the cooperative approach, each network node allo-
cates some of its qubits toward the formation of entangled states with 
other network nodes. When interrogated within the quantum measure-
ment scheme, entangled network states provide ultra-precise informa-
tion about the deviation of the center-of-mass frequency of all the local 
oscillators from the atomic resonance, and the network rebalances 
accordingly.

Each clock cycle consists of three phases: Preparation of the clock 
atom state (initialization), interrogation by the local oscillator (measure-
ment), and correction of the frequency according to the measurement 
outcome (feedback) (Table 11.5). In the interrogation cycle, one of the 
nodes at random plays the role of the coordinating center which initiates 
the cycle, forms entangled GHZ states, collects teleportation measure-
ment data from the other nodes via classical channels, and local oscillator 
signals via optical links, to coordinate and feedback the center-of-mass 
signal. Stability feedback is based on the center-of-mass clock signal gen-
erated by the network, and securely distributed to the individual nodes. 
After a few cycles, the local oscillators (nodes) achieve an accuracy result-
ing from interrogating the atoms in the entire network.

Table 11.5.  Quantum world clock protocol.

No. Phase Description Enabling Advance

1 Initialization Entangle all network nodes in GHZ 
states

Quantum entanglement

2 Measurement Interrogate local oscillator and send 
status

Quantum teleportation

3 Feedback Update local oscillator center-of-
mass frequency

Optical oscillators 
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11.3.1.2  Step 1 initialization: Prepare network-wide GHZ states

In the initialization phase, network-wide entangled states are prepared. 
The most logical choice is to prepare a single network-wide GHZ state. 
Each node contains an identical number of clock atoms (qubits). The cen-
tral node has access to ancilla qubits besides the clock qubits. The central 
node creates a fully entangled state of one half of the ancilla qubits and its 
first clock qubit. Technically, this can be realized with a single qubit rota-
tion (on the first clock qubit) and a series of CNOT gates (between the first 
clock qubit and each ancilla qubit). The result is a GHZ state. In parallel, 
the central node uses the other half of its ancilla qubits to create single 
Bell pairs with each other node in the network (such as by using quantum 
repeater techniques to prepare high-fidelity entanglement). The result is 
that one part of the pair is stored at the center node, and the other part is 
stored at a remote node, forming entangled quantum states across the 
network. Each network node is entangled with the center.

The next step is for the central node to perform separate Bell measure-
ments on its ancilla qubit pairs. The act of measuring teleports the state of 
the ancilla qubit to the first clock qubit in the remote nodes (up to a local 
single-qubit rotation), which is performed after the measurement out-
comes are sent to the node via classical channels. The result of the indi-
vidual teleportations is a collective GHZ state stretching across the first 
qubits of all of the network nodes.

In the final entanglement step, all of the nodes (including the central 
node) extend the entanglement (from their Bell pair) to all of their remain-
ing clock qubits. To do this, each node performs a series of CNOT gates 
controlled on its first clock qubit and targets the other qubits. At the end 
of the protocol, all of the different nodes share a common GHZ state. 
The entanglement distribution can be achieved either via polarization-
entangled photons or frequency-entangled photons.

11.3.1.3  Step 2: Interrogation of local nodes

The second phase is that each node conducts a multi-period self- 
interrogation. During each time interval, clock qubits may pick up a rela-
tive phase. Due to the nonlocal character of the state, the phases 
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accumulate in the total state of the atoms. The collective phase is com-
puted at the end of each interrogation period. Specifically, to extract the 
phase information acquired by the different GHZ states, after each inter-
rogation period, the individual nodes measure their respective qubits, and 
evaluate the parity of the measurement outcomes. The nodes then send the 
parity information to the central node via a classical channel. The central 
node evaluates network parity by extracting individual phase information 
according to a secure protocol with its own measurement outcome figur-
ing into the decoding the phase information sent from the nodes. The 
central node is randomly assigned for each clock updating cycle.

11.3.1.4  Step 3: Feedback and local node clock updating

With the local time measurement parameters of each node known by the 
central node, the final step is updating the network nodes to the shared 
world time. At each node, the measured value of the oscillator phase field 
indicates the center-of-mass detuning amount (error), which the central 
node uses to stabilize the overall network. Each node sends its local oscil-
lator field to the center via phase-stable optical links, and the central node 
synthesizes the center-of-mass frequency by averaging the frequencies 
with equal weights. This can be implemented via the heterodyne beat of 
the local oscillator in the central node against each incoming laser signal. 
Synthesizing the beat frequencies allows the local oscillator of the central 
node to phase track the center-of-mass of each contribution. The central 
node distributes the stabilized clock signal to the network by sending 
individual respective error signals to the nodes, and also corrects its own 
local oscillator.

11.3.1.5  Time trust in the cooperative clock system

The advantage of the proposed quantum clock network is the ability to 
maintain and synchronize the time standards across multiple parties in 
real-time. There is no delay and all participants have constant access to the 
ultra-stable clock signal. There is an incentive structure inherent to the 
distributed architecture such that each node profits from clock stability 
enhanced by a factor proportional to the total number of parties in the 
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network. Further, the distributed scheme confers trust as each party has  
full access to their local clocks, and need not depend on one external  
clock.

11.3.2  Paper clocks

Surprisingly, at present, world time is calculated after the fact. International 
Atomic Time is a global time scale computed by taking the weighted aver-
age of 300 atomic clocks at 60 time laboratories around the world. The most 
stable clocks have the highest weight. Coordinated Universal Time (UTC) 
is based on International Atomic Time. No clock keeps the official version 
of UTC, because it is a “paper” time scale that can only be calculated after 
the data from the various international contributors are received. What is 
used as “time” in practice is a prediction (real-time version) of UTC that is 
often within a few nanoseconds of the official UTC calculations (Lombardi, 
2002, 5). The international contributors and their offsets are published on a 
monthly basis.
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Chapter 12

Connectome and Brain Imaging

New recording technologies are producing an amazing explosion of data 
on neural activity. These data reveal the simultaneous activity of 
 hundreds or even thousands of neurons

— Recanatesi et al. (2019, p. 1)

Abstract

This chapter discusses neuroscience as a “big data” field. Since the fruit 
fly connectome was only finished in 2018, next-generation methods such 
as quantum computing are likely necessary for the human connectome 
and a potential future era of personalized connectomics and disease 
management. Imaging relies on electron microscopy as the workhorse 
technique, light sheet microscopy (nonliving samples), and light field 
microscopy and calcium signaling (living samples), including whole-
brain activity recording in behaving organisms. A significant advance is 
molecular-scale resolution in expansion light field microscopy.

12.1  Connectomics

Connectomics is the production and study of connectomes, the compre-
hensive map or “wiring diagram” of all of the neural connections in 
the brain. One aim of connectomics is to connect brain structure with 
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function. The first connectome was completed for the roundworm 
(Caenorhabditis elegans), initially with electron micrographs (White 
et al., 1986), and later extended to a full neural circuitry database 
(Yamamoto & Achacoso, 1992). The fruit fly (Drosophila) connectome 
was completed in 2018 using an electron microscopy and volume recon-
struction approach (Zheng et al., 2018). Notably, about one half of the 
reconstructed cells were previously unknown, despite a substantial 
amount of prior work characterizing fruit fly cell types using a variety of 
methods (molecular genetics, light microscopy, and sparse neuroanatomi-
cal labeling techniques) (Scheffer et al., 2020). For the mouse (Mus mus-
culus), partial connectomes have been completed, including for the retina 
(Briggman et al., 2011) and the primary visual cortex (Bock et al., 2011). 
The status of connectome projects appears in Table 12.1.

The table highlights the difficulty of the connectome project, and how 
quantum methods might help. Even with modern technology, it took 
almost thirty years to progress from the worm (1992) to the fruit fly 
(2018) connectome. The mouse connectome is on the horizon, and the 
human connectome is more distant. The connectome challenge is reminis-
cent of the human genome project in the sense that the enormity of 
the project proved untenable with initial methods and inspired next- 
generation techniques to solve in reasonable time, much like the human 
connectome might prompt quantum models for its instantiation. The fly 
brain is already too large for conventional electron microscopy and cus-
tom high-throughput platform methods are required to obtain synaptic 
resolution. Being able to represent three-dimensional neural data directly 
in quantum computing models could obviate the need to convert and 

Table 12.1.  Whole-brain connectome projects.

Organism Neurons Synapses Ratio Volume Complete

Worm 302 7,500 25 5 × 104 1992

Fly 100,000 10,000,000 100 5 × 107 2018

Mouse 71,000,000 100,000,000,000 1,408 5 × 1011 NA

Human 86,000,000,000 242,000,000,000,000 2,814 5 × 1014 NA

Sources: Abbott et al. (2020, p. 1373) with Zheng et al. (2018) for fly, Herculano-Houzel et al. (2006) 
for mouse, and Martins et al. (2019) for human. Brain volume: Cubic microns.
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reconstruct datasets, in addition to providing vastly more computational 
capacity. The three-dimensional data inputs for quantum platforms could 
come from connectome tissue samples, or in vivo data acquired by  
noninvasive on-board neuronanorobots (Martins et al., 2016).

Analogous to personalized genomics, the farther future might be one 
of personalized connectomics. As a start, over 50 individual human con-
nectomes are available at the Virtual Brain (VirtualBrain.org) connectome-
based brain simulation platform (Triebkorn et al., 2020). These data 
could be used to develop healthy baseline and disease profiles for person-
alized pathology management based on the connectomics of brain disor-
ders (Fornito et al., 2015) and synaptome biomarkers (Cizeron et al., 
2020). Depending on the resolution, one estimate is that each human 
connectome would require one zettabyte (1,000 exabytes) of data, about 
1,000-fold more than a rat cortex, which could require an exabyte of data 
(Lichtman et al., 2014). This compares with IDC’s forecast that world-
wide data creation in 2020 was 59 zettabytes (Reinsel, 2020). The present 
goal of connectomics is to map the entire human brain. In the United 
States, the focus of this effort is the Human Connectome Project, spon-
sored by the National Institutes of Health (NIH). The program aims to 
build a network map of the human brain in healthy, living adults, through 
the Brain Initiative generally, and the Human Connectome Project spe-
cifically (van Essen et al., 2013). Other efforts exist in Europe (the Blue 
Brain Project (Markram et al., 2015)), China (the China Brain Project 
(Poo et al., 2016)), and Japan (Japan’s Brain/MINDS project (Okano 
et al., 2015)).

12.2  Brain Imaging

Imaging is a central focus in neuroscience, particularly whole-brain 
imaging. Connectome projects have led to new methods in high-
throughput imaging and recording techniques such that neuroscience 
data acquisition outpaces that of most other biomedical fields (Motta 
et al., 2019). In high-throughput connectomics, ongoing work from the 
Allen Institute demonstrates terabyte-scale processing for contemporary 
neuron reconstruction (Wang et al., 2019), and petabyte-scale next-
generation dataset acquisition methods (Yin et al., 2019). There are 
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roughly two phases, capturing data and working with data in reconstruc-
tion, simulation, and structural-to-functional analysis. As in other fields, 
computational power is a key contributor to the kinds of techniques and 
resulting knowledge that is now possible. Notably, Graphics Processing 
Units (GPUs) have made a difference in neuroscience data acquisition 
 processing times and analysis capabilities (Vescovi et al., 2017). 
Neuroscience might continue to benefit from the computational chip 
progression suggested as CPU-GPU-TPU-QPU.

A notable advance is single-molecule scale resolution that captures 
synaptic proteins at dendritic spines, myelination along axons, and pre-
synaptic densities at dopaminergic neurons with expansion light sheet 
microscopy (Gao et al., 2019). The general research aim of whole-brain 
neuroscience is full-volume, three-dimensional, whole-brain analysis at 
multiple spatial and temporal scales. Efforts in whole-brain neuroscience 
imaging can be divided into three areas (Table 12.2). First is connectome 
parcellation methods in humans performed with data from electroen-
cephalography (EEG), MEG, fMRI, and tractography techniques. Second 
is the high-throughput connectome imaging and volumetric reconstruc-
tion of preserved tissue samples with electron microscopy (the workhorse 
method) and light sheet microscopy (scanning excitation light in a 
 volume). Third is high-throughput recording (recording action potential 
activation with chemical and genetically encoded fluorescent reporters) 
in behaving animals, with light field microscopy and calcium imaging, 
analyzed with simulation or brain network frameworks.

Table 12.2.  Whole-brain imaging techniques.

No. Focus Techniques Focal Organism

1 Connectome parcellation EEG, MEG, fMRI, 
Tractography

Human

2 High-throughput connectome  
imaging in preserved tissue  
samples

Electron microscopy
Light sheet microscopy
X-ray microtomography

Mouse

3 High-throughput recording in 
behaving organisms

Light field microscopy
Calcium imaging

Fruit fly zebrafish
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12.2.1  Connectome parcellation

One of the primary challenges for connectomics projects is determining 
the parcellations of the brain. Parcellation is the segmenting of the brain 
into functionally distinct parcels, regions with distinct architecture, con-
nectivity, or topography (as opposed to other segmentation methods such 
as same-size segments). Glasser et al. (2016) conduct one the first whole-
cortex parcellations of the human brain, finding 180 brain regions per 
hemisphere. Multimodal fMRI data are used (n = 210) to identify both 
functional and structural organization. The work extends previous parcel-
lations which generally only covered a portion of the cortex and were 
based on only one neurobiological property (such as architecture, func-
tion, connectivity, or topography). A machine learning classifier was 
trained to recognize the multi-modal fingerprint of each cortical area, and 
was able to detect the presence of 96.6% of the cortical areas in new sub-
jects, replicating the group parcellation, and correctly locating areas in 
individuals with atypical parcellations. The analysis highlights the point 
that spatially contiguous areas in the brain are anatomically and function-
ally distinct, and an understanding is sought for how these differences in 
microstructural architecture, functional specialization, connectivity with 
other areas, and topology are related. The whole-brain parcellation 
method attempts to bring together brain structure and function in a more 
complex and realistic way.

Neuroscientists use various noninvasive techniques to measure activ-
ity within the brain. On the one hand, EEG is one of the most commonly 
used methods. A network of electrodes is attached to the scalp and reveals 
the patterns of electrical activity occurring in brain tissue. EEG is good at 
revealing electrical activity across the surface of the scalp, but is less 
effective at linking the observed activity to specific locations in the brain. 
On the other hand, another widely used method is functional magnetic 
resonance imaging (fMRI). A subject lies inside a scanner containing a 
large magnet. The scanner tracks changes in the level of oxygen at differ-
ent regions of the brain to provide a measure of how the activity of these 
regions changes over time. In contrast to EEG, fMRI is good at pinpoint-
ing the location of brain activity, but is only an indirect measure of brain 
activity as it depends on blood flow and several other factors. In terms of 
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understanding how the brain works, EEG and fMRI thus provide different 
pieces of an incomplete puzzle. Also, there is no easy way to fit these 
pieces together. One method is not necessarily interrelating the two data 
streams together directly, but rather understanding them in the broader 
context of a brain network model with various data streams governed by 
neural dynamics (Breakspear, 2017).

Another project does try to integrate simultaneously collected EEG 
and fMRI data together into one coherent model. Schirner et al. (2018) 
propose a brain network framework for integrating the two data streams, 
and use empirical EEG data (structure) to generate predictions of fMRI 
response (function). The work results in a connectome-based brain net-
work model that integrates structural and functional data with neural 
population dynamics and multiscale simulation. The simulations pre-
dicted resting-state fMRI time series and spatial network topologies for 
over twenty minutes of activity in subjects, which aligned with observa-
tions. The structural simulations also helped to reveal more about neuro-
physiological functional mechanisms that underlie empirical observations 
from different scales and modalities, including resting-state fMRI oscilla-
tions, excitation-inhibition balance, short and long-time scale spike-firing, 
fMRI power law scaling, and functional connectivity networks.

12.3  High-Throughput Connectome Imaging

12.3.1  Electron microscopy

Electron microscopy is the workhorse of neuroscience imaging, and sub-
stantial progress has been achieved in recent years in three-dimensional 
electron microscopy techniques (Eberle & Zeidler, 2018). Such advance 
applies to the life sciences in general, but neuroscience has been the main 
driver for developments regarding volumetric imaging. Scanning electron 
microscopy offers new insights into the organization of cells and tissues 
through volume-related imaging methods. In particular, multi-beam scan-
ning electron microscope is optimized to the imaging of large sample 
areas. Complemented by the commercialization of automated sample 
preparation robots, the mapping of large tissue volumes (cubic millimeter 
size) at high-resolution takes time, but is undertaken routinely.
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In a state-of-the-art microscopy-based connectomics effort, the Allen 
Institute develops a petabyte-scale automated imaging pipeline for map-
ping neuronal circuits with high-throughput transmission electron micros-
copy (Yin et al., 2019). The project images a two-petabyte dataset of 
26,500 images of a cubic millimeter of mouse visual cortex in just under 
six months with an array of six electron microscopes running autono-
mously 24/7. On the one hand, taking six months and requiring break-
through microscopy techniques to image one cubic millimeter of cortex 
seems primitive. On the other hand, the project underlines the challenge 
of the accurate three-dimensional imaging of the brain. It took six months 
to produce images of 26,500 tissue sections (from a 1 mm3 volume of 
mouse neocortex spanning four different visual areas) that comprise a 
two-petabyte dataset. A number of microscopy innovations are used, such 
as GridTape, an automated laser-milled tape that is drawn through the tun-
neling electron microscope grid structure (Graham et al., 2019). Despite 
the novel design, the imaging array is cost-effective in the sense of using 
mainly off-the-shelf camera and microscopy components.

Earlier work also conducted a big data mouse brain volumetric recon-
struction, on a smaller scale. The project collected 2,250 29-nm coronal 
brain slices (each section 1 mm2 for a total volume 0.13 mm3) from the 
somatosensory cortex of a young adult mouse. The work develops auto-
mated techniques to probe the structure of neural tissue at nanometer-
scale resolution, and produces an annotated database of 1,700 synapses 
from the partial cortical reconstruction (Kasthuri et al., 2015).

12.3.2  Light sheet microscopy

Light sheet microscopy is a high-speed optical method for reconstructing 
whole specimens in three dimensions (Keller et al., 2008). In this method, 
the sample is prepared with fluorescent proteins and illuminated with a 
thin sheet of light. The fluorescence emission is collected along an axis 
perpendicular to the illumination plane. Only in-focus fluorophores are 
excited, and it is possible to achieve optical sectioning in a wide-field 
configuration with high frame rates. Specimens are prepared by a clearing 
and mounting procedure. A further advance, confocal light sheet micros-
copy, demonstrates the micron-scale reconstruction of entire mouse brains 
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labeled with enhanced green fluorescent protein (Silvestri et al., 2013). 
Combining light sheet illumination and confocal detection, confocal light 
sheet microscopy allows more extensive imaging within macroscopic 
cleared specimens with high contrast and speed.

12.3.3  Expansion light sheet microscopy

These ideas are extended by the Boyden laboratory to obtain single- 
molecule resolution. The work combines lattice light-sheet microscopy 
with expansion microscopy for terabyte-scale image processing (Gao 
et al., 2019). The nanoscale lattice microscopy method is used to image 
the nanoscale spatial relationships between proteins across the thickness 
of the mouse cortex and the entire fruit fly brain. This includes synaptic 
proteins at dendritic spines, myelination along axons, and presynaptic 
densities at dopaminergic neurons, in every fruit fly brain region, with 
molecular contrast. The nanoscale lattice microscopy method solves the 
joint problem that optical microscopy offers insufficient resolution to 
reveal subcellular details, and electron microscopy lacks the throughput 
and molecular contrast to visualize specific molecular constituents. 
Molecular-level investigation is a substantial advance. A problem of inter-
est, for example, is the interaction of the vast array of molecular species 
that contribute to neural communication by many mechanisms in addition 
to the synaptic connections determined by electron microscopy connec-
tomics. The ability to probe molecular-level neural signaling at smaller-
than-synapse resolution is striking. This capability is well beyond models 
that include electrical action potentials, and synaptic communication, 
reaching to single-molecule resolution.

Obtaining contrast is a significant challenge in microscopy. Electron 
microscopy was used to complete the fruit fly connectome, imaging down 
to the level of individual ion channels and synaptic vesicles across the 
~0.03 mm3 volume of the fruit fly brain (Zheng et al., 2018). However, 
electron microscopy creates a grayscale image in which the segmentation 
of specific subcellular components and the tracing of the complete 
 arborization of specific neurons remain difficult. As a result, specific 
 proteins can rarely be identified unambiguously. The problems with 
 previous methods are as follows. Optical microscopy combined with 
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immunofluorescence and fluorescent proteins enables high sensitivity in 
the imaging of specific protein expression patterns in brain tissue, but has 
insufficient resolution for dense neural tracing or the precise localization 
of specific molecules within critical subcellular structures such as den-
dritic spines. A related method, diffraction-unlimited super-resolution 
fluorescence microscopy combines nanoscale resolution with protein-
specific contrast, but bleaches fluorophores too quickly for large-volume 
imaging and, like electron microscopy, would require months to years to 
image a single fruit fly brain.

Instead, expansion light sheet microscopy is a combination of expan-
sion microscopy, lattice light-sheet microscopy, and terabyte-scale image 
processing that achieves single-molecule sensitivity and ~60 × 60 × 
90 nm3 resolution at volumetric acquisition rates ~700× and 1200× faster 
than existing high-speed super-resolution (Tonnesen et al., 2018) and 
electron microscopy (Zheng et al., 2018) methods, respectively, at compa-
rable or higher resolution. Expansion microscopy is an advance previ-
ously developed by the Boyden laboratory (Chen et al., 2015). Expansion 
microscopy involves physically expanding a polymer network within a 
specimen to allow greater physical magnification. The method enables the 
ability to perform scalable super-resolution microscopy with diffraction-
limited microscopes.

12.3.4  X-ray microtomography

Aside from the electron microscopy workhorse, and advances in light 
sheet microscopy, another innovative method for cortical imaging is X-ray 
microtomography (Bonse & Busch, 1996). The advantage of X-ray 
microtomography is being able to probe brain connectivity in a  
nondestructive manner. In contrast to optical three-dimensional techniques, 
X-ray microtomography does not require tissue slicing or clearing, and 
allows the investigation of several cells within the same three-dimensional 
region of the brain. Fonseca et al. (2018) present a method for imaging 
whole neurons in the brain, combining synchrotron-based X-ray microto-
mography with a Golgi-Cox mercury-based staining protocol. Visualization 
of the single-cell morphology of intact neuronal tissues with X-ray meth-
ods had not been achieved previously due to incomplete staining protocols 
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and excessive sample artifacts. The Golgi-Cox method allows whole neu-
rons to be defined clearly due to a continuous and homogeneous cell-
staining procedure, which results in a reduced density of artifacts 
(scattered reflexive granules) that interfere with image segmentation. The 
whole neuron imaging method is demonstrated in mice, and suggested as 
a three-dimensional mapping technique suitable for both synchrotron and 
table-top tomograms.

Another team offers a technical improvement to the method, using a 
brighter X-ray source to record scans in minutes instead of hours (required 
by conventional X-ray tubes). In this work, Cole et al. (2018) note the 
problem that high-resolution microcomputed tomography with benchtop 
X-ray sources requires long scan times because of the heat load limitation 
on the anode. Instead, they present an alternative, a high-brightness 
plasma-based X-ray source that does not have this restriction. A demon-
stration of tomography of a centimeter-scale complex organism (mouse 
embryo) achieves equivalent quality to a commercial scanner. The impli-
cation is the possibility of recording such scans in minutes. The X-ray flux 
achievable with this approach scales with the laser repetition rate without 
compromising the source size, which allows the recording of high- 
resolution X-ray scans in minutes.

12.4  High-Throughput Recording

Optical techniques are central. Whereas light sheet microscopy is typi-
cally used to analyze nonliving samples, light field microscopy can be 
used to examine living tissue. Recording whole-brain activity in behaving 
organisms is a substantial research focus, primarily accomplished through 
light field microscopy and calcium imaging techniques.

12.4.1  Light field microscopy

Light should be interpreted as a field

— paraphrase of Michael Faraday (1846)

Light field microscopy is a scanning-free three-dimensional microscopic 
imaging method that treats light as a field. Such a light field is a vector 
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function that describes the amount of light flowing in every direction 
through every point in space. The space of all possible light rays is given 
by a five-dimensional function (the plenoptic function), and the magni-
tude of each ray is given by the radiance. The measure for the amount of 
light traveling along a ray is radiance. The idea of the light field was pro-
posed by Michael Faraday, that light too is a field, similar to the magnetic 
field. He supports a “view of the nature of matter which considers its 
ultimate atoms as centers of force”, with “the lines of force as being 
 perhaps the seat of vibrations of radiant phenomena” (Faraday, 1846).

Gershun introduces “the concept of the light field, as a part of space 
studied from the standpoint of transmission of radiant energy within that 
space” (Gershun, 1936, p. 56). Such a study of the light field consists of 
an investigation of the spatial distribution of luminous flux. The separate 
photons are disregarded and the assumption is made that radiant energy is 
continuous in time and space, and that the flux of the radiant energy varies 
continuously from point to point. Vector analysis is used to study the light 
field. Gershun notes that the light field is caused by electromagnetic phe-
nomena, but is different from the electromagnetic field. On the one hand, 
the study of the electromagnetic field involves considering the electric and 
magnetic forces caused by an elementary emitter. On the other hand, the 
study of the light field means treating bodies of finite size consisting of 
a great number of elementary emitters. In contrast with the elementary 
electromagnetic field, in the light field theory, there is a macrocosm with 
respect to time as well as space (Ibid.).

In operation, light field microscopy is a scanning-free technique for 
the high-speed volumetric imaging of weakly scattering or fluorescent 
specimens using optical microscopy. The method employs an array of 
microlenses to capture a four-dimensional light field in a single photo-
graphic exposure without the need for scanning. The recorded light field 
can then be used to reconstruct a full volume computationally. The idea is 
that by inserting a microlens array into the light path of a conventional 
microscope, it is possible to image both the lateral and the angular distri-
bution of light passing through the specimen volume in a single image 
(Levoy et al., 2006). The raw spatio-angular data can be post-processed 
with software to produce a full three-dimensional reconstruction of the 
object. Since the light field is captured in snapshots, the implied speed of 
the method is the frame rate of the camera (Broxton et al., 2013).
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Light field microscopy allows the investigation of dynamic behavior 
in the brain. A key problem is understanding how sensory inputs are 
mapped dynamically to the functional activity of neuronal populations 
and how this processing leads to behavior. One team uses light field 
microscopy to perform the simultaneous whole-brain functional imaging 
of neuronal activity at single-neuron resolution for an entire worm, a lar-
val zebrafish, and other organisms (Prevedel et al., 2014). The technique 
captures the dynamics of spiking neurons in volumes of ~700 μm × 
700 μm × 200 μm at 20 Hz. Measuring activity simultaneously in the 
whole-brain is important in understanding how different brain regions 
interact to process and control sensory inputs, internal states, and behav-
ior. Whole-brain recordings reveal not only which regions are involved in 
which functions but also overall brain network dynamics.

12.4.1.1  Fruit fly grooming and walking

Another team uses light field microscopy for the ultra-fast imaging of 
whole-brain activity (calcium and voltage) in behaving fruit flies (while 
walking, resting, or grooming) (Aimon et al., 2019). The fly brain’s fluo-
rescence is imaged using light field microscopy as the fly is constrained 
in position but can rest, walk, and groom. Data collection volumes are 
reconstructed (about 600 × 300 × 200 μm3 to encompass the whole-brain) 
using a known volumetric deconvolution method for light field micros-
copy. Unlike other microscopy techniques that are based on scanning 
(such as two-photon, confocal, or light-sheet microscopy), excitation light 
illuminates the entire brain continuously. All the photons emitted in the 
numerical aperture of the objective are used to reconstruct the image 
(minus approximately 40% loss through the objective, tube lens, micro-
lens array, and relay lenses). This maximizes the number of photons col-
lected (and thus the information about brain activity) per units of volume 
and time.

Whole-brain recordings provide a global perspective of the brain in 
action. This is already possible to some extent in humans, as fMRI allows 
the study of brain activity underlying behavior, but the technique has 
low spatial and temporal resolution. In animals, whole-brain imaging 
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techniques have allowed recorded activity at much higher resolutions than 
fMRI imaging but are still orders-of-magnitude slower than real-life neu-
ronal electrical activity. For example, scanning-based whole-brain imag-
ing in zebrafish and fruit fly larvae had respective frame rates of 12 Hz 
and 5 Hz. By contrast, light field microscopy makes it possible to image 
large volumes of scattering brain tissue at more than 100 Hz. Aimon et al. 
(2019) leverage this technique to record large-scale activity in the brain 
of behaving adult fruit flies. The near-whole brain can be imaged with 
a 20× objective at a frame rate up to 200 Hz and fluorescence recorded 
from pan-neuronally expressed calcium (GCaMP6) or voltage (ArcLight) 
probes.

Brain activity data are analyzed in short and long timescales. First, 
activity is mapped for specific stimuli and behaviors with short timescales 
while the fly rests, walks, and grooms. One finding is that dopamine neu-
rons, distributed over the whole-brain, have low activity during resting or 
grooming, but are strongly active during walking. Similarly, there is a 
global increase in overall neural activity when the fly is walking as com-
pared to resting, but only a small local increase in neural activity when 
grooming over resting.

Second, a computational method (principal component analysis 
 followed by independent component analysis) is applied to extract com-
ponents representing spatially distinct sources of activity over longer 
timescales. Activity is extracted from small brain regions or specific neu-
ron types, and identified with brain regions involved in behaviors such as 
turning left or right. Brain structures that respond to light and odor are 
consistent with previous reports, confirming the technique’s validity. 
Certain global activity maps for other stimuli and behaviors are obtained 
for the first time. Spatiotemporal maps are extracted of spatially distinct 
sources of activity as well as their time series. Evaluating time series data 
at different scales (voxels, regions, and components) provides insight into 
the dynamics of the brain network. For example, the widespread activity 
patterns observed during walking suggest that greater coordination 
between different brain areas may be involved than was previously 
thought. The method is a step toward the understanding of large-scale 
brain states, brain networks, and the mechanisms underlying behavior.
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12.4.2  Calcium imaging

Calcium imaging is a technique used to detect action potentials from cal-
cium ion-based fluorescence transients, tracing calcium signals as they 
propagate through the brain over time to produce maps of neural signaling 
networks. The benefit is being able to trace activity across a large brain 
area in space and time. To enumerate such functional brain networks, 
Mann et al. (2017) measure the functional connectivity in the brain of the 
adult fruit fly with whole-brain calcium imaging. The work is among the 
first to combine anatomical atlas data with whole-brain calcium imaging 
by aligning imaging results to brain atlas regions. Calcium imaging and 
template registration are used to extract and compare calcium signals 
across individual animals and create a composite picture. A well-known 
calcium indicator (GCaMP6m) and a red fluorescent protein (tdTomato) 
are expressed and tracked pan-neuronally. After extracting calcium sig-
nals from each atlas region, time series data are correlated between each 
region for each fly, providing quantifications of overall functional con-
nectivity. The calcium imaging and atlas registration technique has also 
been used to measure brain network activity at high spatial and temporal 
resolution in zebrafish and worms. The method confirms known relation-
ships between brain regions and identifies previously unknown connec-
tions. Overall, measuring resting-state functional connectivity delivers an 
advance in mapping functional brain networks (including identifying cor-
relations between midbrain and hindbrain) and in distinguishing normal 
neural activity from pathologies of disease and aging.

In other work, Lu et al. (2017) likewise capture calcium transients in 
vivo, by conducting video-rate (30 Hz) volumetric imaging through the 
creation of a Bessel beam. The problem with other methods is the limited 
brightness of calcium indicators and the inertia of laser scanning units. 
This makes it difficult to capture all available calcium transients in a vol-
ume at video rate while maintaining the ability to resolve synaptic struc-
tures such as dendritic spines and axonal boutons. One idea is to improve 
the method of focusing. Specifically in conventional methods, high-speed 
throughout is challenging for two-photon laser scanning microscopes 
because they depend on serial focal scanning and have limited indicator 
brightness. Instead, this work develops a Bessel focus scanning technique 
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by building an additional optical module to the microscope. The new 
module uses a spatial light modulator to flexibly control the depths of 
field such that it can generate an axially elongated Bessel focus. The 
resulting Bessel foci are optimized for in vivo brain imaging. The result is 
that the Bessel beam scanning method allows high-speed volume imaging 
rates (30 Hz) in sparsely labeled samples, while maintaining the ability to 
resolve dendritic spines and axonal boutons. The Bessel focus scanning is 
applied to fly brains with the pan-neuronal expression of the calcium indi-
cator GCaMP6f. The method is further used to illuminate the calcium 
dynamics of volumes of neurons and synapses in fruit flies, zebrafish 
larvae, mice, and ferrets that are imaged in vivo. Such video-rate methods 
might accelerate the capture of neural data.
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Chapter 13

Brain Networks

A neuron is a noise-limited device of restricted bandwidth

— Laughlin and Sejnowski (2003, p. 5)

Recent experimental advances are producing an avalanche of data on 
both neural connectivity and neural activity

— Ocker et al. (2017, p. 1)

Abstract

This chapter discusses brain networks as having similar design principles 
to those seen in human-made electronic networks for computing devices 
and communications networks. Neural design principles are specified 
in the areas of wiring and circuit layout, connectivity, energy consump-
tion, signal processing, signal-to-noise ratio, and network reconfigura-
tion (synaptic plasticity). Seeing cortical relations as brain networks has 
led to the development of network neuroscience and facilitates the AdS/
Brain multi-tier model of neural signaling.

13.1  Brain Networks’ Approach

The brain has long been studied as a computational machine, and is 
also starting to be recognized as a sophisticated communications network. 
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As a communications network, the brain transfers large amounts of infor-
mation between areas. Neurons can receive and deliver signals at perhaps 
as many as 10,000 synapses, and combine synaptic inputs, both linearly 
and nonlinearly, to implement a large repertoire of information processing 
operations (Koch, 1999). Sharpening the estimate, each neuron has about 
7,000 axon terminals from other neurons, but there is substantial redun-
dancy in the connectivity, so each neuron has effective connections from 
about 80 other neurons, mostly nearest neighbors (Cowan et al., 2016, 
p. 2). Through synaptic plasticity, neurons can change their connections 
and vary their signaling properties according to a variety of rules and 
dynamical changes. This suggests that brain networks can adapt to cir-
cumstances and change their properties according to experience, thus 
creating a powerful and flexible local and long-distance communica-
tions network. Some of the statistics highlighted in the brain networks’ 
approach appear in Table 13.1.

13.1.1  The brain as a communications network

The brain exhibits an economy of design principles that balance constraint 
with performance. Brains are remarkably efficient and operate according 

Table 13.1.  Summary of human brain statistics.

No. Brain Statistic

1 Weight of adult human brain: 1.2–1.4 kilograms (2.6–3.1 pounds); 2% body weight

2 Neurons: 86 billion, glia: 85 billion, synapses: 242 trillion (2,800 average/neuron)

3 Human firing rate estimate: 1 action potential per second per neuron (rat 5, cat 3–9, 
macaque 14–18 firing potentials per second)

4 Synaptic failure: 50–90%; only 10–20% of action potentials trigger release

5 Gray matter (outer layer) local area network and white matter (inner core 
processing layer) long-distance network, split in brain volume: 50/50

6 Energy consumption of the brain 20% for adults and 60% for infants

7 Volume fraction of wiring in the brain: 40–60% versus classical CPUs: up to 90%

Sources: (1): Bigos et al. (2015, p. 157); (2): Martins et al. (2019), von Bartheld et al. (2016); 
(3): Attwell and Laughlin (2001), Lennie (2003); Baddeley et al. (1997); (4): Atwell and Laughlin 
(2001), Sudhof (2004, p. 509); (5): Sampaio-Baptista and Johansen-Berg (2017); (6): Hofman (1983); 
(7): Laughlin and Sejnowski (2003, p. 2).
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to a narrow set of geometric, biophysical, and energy-related constraints. 
The brain is expensive in terms of space and resource consumption, but 
has evolved to an optimal configuration in the sense that functionality 
would be diminished if any design parameter were to be substantially 
altered. Resource use is connected to performance.

Laughlin and Sejnowski (2003) argue that cortical networks have 
evolved according to design principles similar to those used in human-
made electronic networks (computing devices and communications net-
works). Research suggests that the structure and function of neuronal 
networks are governed by the same basic principles of resource allocation 
and constraint minimization followed by human-made networks. Such 
discovery that neuronal networks follow simple design rules resembling 
those found in other networks is an interesting implication of universality 
in design principles. Simple design rules improve efficiency by minimiz-
ing the resources required to implement a given task. It is not surprising 
that brains have evolved to operate efficiently. Economy and efficiency are 
guiding principles that explain other biological mechanisms, for example, 
the way that the lungs, circulation, and mitochondria are constantly 
 interacting and regulating the supply of oxygen and energy to muscles 
(Weibel, 2000). To identify and explain these principles, it is necessary to 
derive and apply the structural relationships that underlie effective 
resource use and contribute to performance. A summary of the brain net-
work design principles is as follows:

1. Wiring and Circuit Layout: Geometrical wiring constraints make 
interconnects costly in circuit layout (volume) and use (energy 
consumption).

2. Connectivity: Sparse small-world connectivity in outermost gray 
 matter as a local area network and innermost white matter as a long-
distance network.

3. Energy Consumption: Signaling is expensive in energy consumption 
and constrains traffic volume; traffic volume and firing rate can be 
imputed from the energy required for signaling.

4. Signal Processing: Thresholding mechanism and high rate of synaptic 
failure (50–90%) (signal does not propagate) keeps the signaling 
energy budget low.
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5. Signal-to-Noise Ratio: Nonlinear molecular channel noise and signal-
to-noise ratio (square root of membrane ion channels) analysis sug-
gests existing axonal diameter (0.3 μm) would have a lower size limit 
of 0.1 μm.

6. Network Reconfiguration: Synaptic plasticity allows the cortical 
 network to reorganize signaling pathways in time and space including 
via local field potentials (extracellular electrical fields aggregating 
local synapse current).

The network configuration topics are geometrical wiring constraints, 
connectivity, energy consumption, signal processing, the signal-to-noise 
ratio, and network reconfiguration. The design principles are as follows. 
First, considering wiring and circuit layout, geometrical constraints on 
packing and wiring highlight that interconnects are costly in circuit layout 
(volume) and in use (energy consumption), and that the brain may be 
organized to reduce wiring costs. Second, regarding connectivity, the lay-
out of cortical areas minimizes the total lengths of the axons needed 
to join them by instantiating the outer-layer gray matter as a local area 
network and the inner-layer white matter as a long-distance network with 
sparse small-world connectivity. As physicist Sean Carroll notes, the 
“small-world network” concept may describe “not only the spatial organi-
zation of the connectome”, but also how temporal signals are hierarchi-
cally organized towards a “critical point” (Carroll, 2016, pp. 323–33). 
Third, energy consumption is a crucial constraint in brain network design. 
Signaling is expensive in terms of energy consumption and therefore con-
strains traffic volume. Traffic  volume and neural firing rates can be 
imputed from the signaling energy required. A general heuristic is that the 
human neural firing rate is one action potential per second per neuron.

Fourth, in signal processing, the brain’s high rate of synaptic failure 
(50–90%) and thresholding mechanism by which most incoming synaptic 
messages do not translate to an outbound signal serves to keep the overall 
energy budget for signaling low (half what it would be if more signals 
were propagated). Fifth, signal-to-noise ratio analysis (in a basic calcula-
tion as the square root of the number of membrane ion channels) suggests 
that the high degree of nonlinear molecular channel noise in neural signal-
ing means that the axon diameter (currently only 0.3 μm on average) 

b4362_Ch13.indd   280b4362_Ch13.indd   280 4/29/2022   6:34:21 PM4/29/2022   6:34:21 PM



b4362  Quantum Computing for the Brain6"×9" 

 Brain Networks  281

might be further optimized but would have a downside size limit of 
0.1 μm. Finally, network reconfiguration by synaptic plasticity is an 
important design principle that gives the brain the ability to reorganize 
itself in time and space per dynamical change. A key influence on synaptic 
plasticity is local field potentials, a sort of brain network path integral of 
extracellular electric fields, which reflect the summed activity of local 
synaptic currents and ion channels.

13.2  Wiring and Circuit Layout

In any network, one of the first design considerations is wiring. Wiring 
involves the efficient spatial organization of the system components based 
on how they are going to communicate. Since the brain is a dense and 
complex organ, whatever design principles might govern its economical 
layout are of chief interest. In brain network components and connection 
wiring terms, this means the size of the neurons, and the layout of neurons 
so as to reduce the length of their connections.

13.2.1  The brain is three-dimensional

The brain makes good use of its three dimensionality. That the brain is 
three-dimensional further suggests quantum computing as both domains 
are three-dimensional and the brain can be represented directly without 
translating three-dimensional information into alternative formats. Just 
like the wires connecting components in electronic chips, the connections 
between neurons occupy a substantial fraction of the total volume, and 
the wires (axons and dendrites) are expensive to operate because they 
 dissipate energy during signaling. Nature has an important benefit over 
electronic circuits because components are connected by wires in three-
dimensional space, whereas even the most advanced classical micropro-
cessor chips are only able to use a small number of layers of planar wiring. 
Quantum processing units more directly implement real-life nature in 
their three-dimensional accommodation.

The brain’s three-dimensional wiring may explain why the volume 
fraction of wiring in the brain (40–60%) is much lower than that in clas-
sical chips (up to 90%) (Laughlin and Sejnowski, 2003, p. 2). In classical 
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computer chips, the components are arranged to reduce the total length of 
the wiring. The brain’s three-dimensional geometry provides a substantial 
wiring advantage. Such brain wiring efficiency has been confirmed in 
C. elegans (the nematode worm). The worm has 302 neurons arranged in 
eleven clusters of ganglia. An analysis of alternative ganglion placements 
shows that the observed layout of ganglia indeed minimizes wire length 
(Cherniak, 1994). Fruit fly, mouse, and human connectome (wiring dia-
gram) projects may find the same kinds of efficient wiring layout princi-
ples at work.

13.2.1.1  Topographical projection

Brain wiring, and also projection is topographically organized. Projection 
is the broadcast signaling by which the brain communicates. The brain’s 
more recently evolved six-layer neocortex is able to target projection in a 
more efficient manner than the diffuse projection used by the older three-
layer structures of the brain such as the olfactory cortex and the hippo-
campus. In the primary visual cortex, for example, input and processing 
are co-located. Input from the visual field is processed by neighboring 
neurons in the cortex. Connectivity is much higher between neurons sepa-
rated by less than 1 mm than between neurons farther apart, reflecting the 
need for rapid, local processing within a cortical column (a stacked 
arrangement that minimizes wire length) (Markram, 2006). Since cortical 
neurons have elaborately branched dendritic trees (serving as input 
regions) and axonal trees (projecting the output to other neurons), it is 
possible to predict the best geometric patterns of connectivity.

13.2.1.2  Optimal ratios of axonal to dendritic arbor volumes

Using the principle of wiring economy, Chklovskii (2000) proposes a rule 
to specify the sizes of axonal arbors of input neurons and dendritic arbors 
of output neurons in a topographic projection. A topographic projection 
between two neuronal layers with different densities of neurons is consid-
ered and a divergence-convergence ratio is calculated. Given the number 
of output neurons connected to each input neuron (divergence) and the 

b4362_Ch13.indd   282b4362_Ch13.indd   282 4/29/2022   6:34:21 PM4/29/2022   6:34:21 PM



b4362  Quantum Computing for the Brain6"×9" 

 Brain Networks  283

number of input neurons synapsing on each output neuron (convergence), 
the widths of axonal and dendritic arbors which minimize the total volume 
of axons and dendrites is determined. Several projections between pairs of 
neuronal classes are considered, including for retinal, cerebellar, olfactory 
bulb, and neocortical neurons. The calculated ratio recapitulates known 
anatomical data, for example, in the case of cerebellar neurons, the theory 
predicts a ratio of dendritic and axonal arbor sizes of 58, and in the case 
of olfactory bulb neurons, the theory predicts the ratio of dendritic arbor 
diameters to be 10 (Chklovskii, 2000, p. 2117).

Economic principles are the basis for theory development. An 
assumption is made that space constraints require keeping the brain vol-
ume to a minimum. Since wiring (axons and dendrites) takes up a signifi-
cant fraction of the volume, evolution may have optimized axonal and 
dendritic arbors in a way that minimizes their total volume. Therefore, one 
way to explain existing arbor sizes is as a result of wiring optimization.

The geometric analysis of dendritic arbors continues as an active 
research frontier. Cugno et al. (2019) investigate synaptic transmission as 
a function of dendritic size and geometry. A biophysics approach is used 
to model reaction-diffusion events within the dendritic spine. The results 
indicate that geometric features (ellipsoid shape curvature analogous to 
harmonic functions) show concentrations along the dendritic spine head 
that play an important role in the spatiotemporal dynamics of signaling. 
Further, substantial changes in dendritic spine shape are indicative of neu-
ropathology development.

13.3  Connectivity

13.3.1  Gray matter and white matter

The cortex is composed of gray matter and white matter. The outer layer 
is gray matter, which contains the synapses, dendrites, cell bodies, and 
local axons of neurons that form the neural circuits that process informa-
tion. The innermost layer is white matter, the deep subcortical regions of 
heavily myelinated axons that undertake the core processing of the brain. 
The gray and white matter each make up about half of the total brain 
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volume (Sampaio-Baptista & Johansen-Berg, 2017) (Table 13.2). The 
gray matter is so-called as the area acquires a gray tone from the high 
concentration of neuronal cell bodies (Mercadante & Tadi, 2020).

13.3.1.1  Local gray matter and long-distance white matter

The prominent communication within white matter (the central core of the 
brain network) is long-distance communication between cortical areas. 
The communication emphasis of gray matter is short-distance communi-
cation within the local area. Hence, by analogy to telecommunications 
networks, the gray matter is a local area network and the white matter is 
a long-distance network. This might seem counterintuitive until consider-
ing that communication comes at a premium, so to the extent that 
 long-distance wiring connections can be minimized, the white matter 
represents an effective solution.

Research investigates the evolutionary relationship between gray and 
white matter in mammals (Zhang & Sejnowski, 2000). On the one hand, 
the thickness of gray matter, just a few millimeters, is nearly constant in 
species that range in brain volume over five orders of magnitude. On the 
other hand, the volume of the white matter scales approximately as the 
4/3 power of the volume of the gray matter. This might be explained by 
the need to maintain a fixed bandwidth of long-distance communication 
capacity per unit area of the cortex. The point is that the thickness of gray 

Table 13.2.  Cortical gray matter and white matter.

Brain Matter
Cortical 
Location

Prominent 
Communication

Brain 
Volume Composition

Gray matter Outermost 
layer

Short-distance 
communication 
in the local area

50% Axons, synapses, dendrites, 
cell bodies

White matter Innermost 
core layer

Long-distance 
communication 
between 
cortical areas

50% Heavily myelinated axons
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matter is constant but the volume of white matter grows at a 4/3 ratio 
indicating that total brain volume increases.

The design principle that can be inferred from this analysis is that the 
layout of cortical areas minimizes the total lengths of the axons needed to 
join them. The prominent folds in the structure of the human cortex allow 
the large cortical area to be densely packed in the skull, but also allow 
cortical areas around the convolutions to minimize wire length. This 
trade-off appears to strike a balance between the two opposing tendencies 
of transmission speed and component density. Unlike the wires in chips, 
reducing the diameter of neural wires reduces the speed at which signals 
travel, prolonging delays. However, it also reduces axon volume, and this 
allows neurons to be packed closer together, thus shortening delays. 
Neural wire diameters are subject to different design concerns and trade-
offs than those of less complex classical chips.

13.3.1.2  Sparse small-world connectivity

The overall connectivity in the cortex is very sparse, which also helps in 
reducing the volume occupied by long-range connections. The cortical 
column demonstrates this principle. Even for neurons specifically orga-
nized in a vertical column (only 1 mm in diameter) for efficient commu-
nication, the probability of any two cortical neurons having a direct 
connection is quite low, about one in a hundred (1.0%). The probability 
declines significantly to one in a million (0.0001%) for distant neurons. 
Similarly, the distribution of wire lengths on chips follows an inverse 
power law, so that shorter wires also dominate. In a computational analy-
sis of the brain, if a matrix were created with 1010 rows and columns to 
represent the connections between every pair of cortical neurons, it would 
have a relatively dense set of entries around the diagonal but only sparse 
entries outside the diagonal.

The sparse long-range connectivity of the cortex may offer some of 
the advantages of small-world connectivity. Small-world connectivity is a 
graph-theoretic principle of efficiency that means networks in which com-
munications paths are shorter than would be random. Indeed, the brain’s 
communications graph is extremely effective. Even though only a small 
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fraction of neurons are connected to distant cortical areas, this is enough 
to produce activity coordinated in distant parts the brain, as reflected in 
the synchronous firing of action potentials in these areas.

Brain networks are found to have not only small-world connectivity 
but also that of rich-club hubs (Lynn & Bassett, 2019). A rich-club hub 
is a centralized hub that links otherwise distant regions of the network. 
Connectome analysis of empirical brain networks shows that there is a 
widespread shift away from the geometric center of the network toward 
more peripheral interconnected frameworks in each hemisphere (with 
discrete clusters persisting around the anterior insula, and the anterior 
and posterior midline regions of the cortex) (Roberts et al., 2016). A rela-
tively small number of strong interhemispheric connections assimilate 
these structures into a rich-club hub. The rich-club hub’s connections  
are more heavily clustered locally as expected, but longer than would 
be predicted by geometry globally. The analysis highlights topological 
features that likely confer functional advantages but carry an additional 
metabolic cost.

13.4  Energy Consumption

In computer networks, as processor speeds increase, so too does energy 
dissipation, and thus cooling technology is critically important. Energy 
consumption also constrains neural processing. Nervous systems consume 
metabolic energy continuously at relatively high rates per gram, compa-
rable to those of heart muscle. Consequently, powering a brain is a major 
drain on an organism’s energy budget, typically consuming 2 to 10% of 
resting energy. In humans this proportion is 20% for adults and 60% for 
infants (Hofman, 1983).

A lot can be learned from the brain’s different states such as cogni-
tion, rest, sleep, and seizure. For example, deep anesthesia blocks neural 
signaling and halves the brain’s energy consumption. This is because 
anesthetics are thought to act through ion channel blockage and trigger 
changes in cellular membrane dynamics that lead to synaptic failure (Diao 
et al., 2014). The ratio suggests that under anesthesia, while one half of 
the brain’s overall energy budget is devoted to routing signals along axons 
and across synapses, the other half is supporting the maintenance of 
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resting potentials and the passive functions of neurons and glia. The ratio 
may be quite different in awake signaling states. Specific to the signaling 
operation, the cortical gray matter may use more than 75% of the energy 
available for signaling due to the rich interconnections between axons and 
synapses (Aiello et al., 2001).

13.4.1  Imputing traffic volume from energy consumption

An indirect analysis method imputes traffic volume from energy con-
sumption (Attwell & Laughlin, 2001). Taking the amount of energy pos-
sibly used for neuronal signaling as an input, the analysis derives the 
maximum volume of signal traffic that could be supported by the brain’s 
metabolic rate. For the cerebral cortex, the permissible traffic is less than 
one action potential per second for humans, and about five action poten-
tials per second per neuron for rats (Laughlin & Sejnowksi, 2003, p. 9; 
Lennie, 2003). In other animal species, a study of the visual cortex found 
rates of neural firing averaging 3–4 spikes per second for cats and 14–18 
spikes per second for macaques, and another study found 9 spikes per 
second for cats (Baddeley et al., 1997).

Other work in the neocortical simulation efforts of the whole-brain 
emulation project notes the difficulty of estimating an average firing 
rate due to the non-linear behavior of one neuron triggering another 
(Gerstner et al., 1997). Another variable in the firing rate of neural sig-
naling is the necessary refractory period, which is a few milliseconds in 
humans (Nicholls et al., 2012, p. 14). A general heuristic based on dif-
ferent analysis parameters estimates the human brain’s firing rate at 
about a one action potential per second per neuron. However, there 
could be considerable variability based on the type of neuron and the 
firing situation, and the ability to confirm analysis results experimen-
tally in vivo.

Irrespective of ascertaining an average human neural firing rate, the 
design point is that neurons are expensive. Since the brain responds 
quickly, and the permissible amount of traffic is remarkably low,  
metabolic limits may influence the way that information is processed. 
Research suggests that brains have countered metabolic constraint by 
adopting energy-efficient designs. These designs involve the 
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miniaturization of components, the elimination of superfluous signals, 
and the representation of information with efficient coding schemes.

13.4.2  Bandwidth

One estimate for the overall potential bandwidth of all of the neurons in 
the human cortex is one terabit per second (Laughlin & Sejnowski, 2003, 
p. 3). This assumes a maximum rate of 100 bits per second for each axon 
in the white matter. The figure compares to the level of bandwidth in the 
total world backbone capacity of the internet in 2002 (Ibid.). However, in 
the brain, such a capacity of one terabit per second would never be 
achieved in practice since only a fraction of cortical neurons are firing at 
any time. As a reference, TeleGeography estimated the global internet 
capacity at 295 Tbps (terabits per second, 1012 bps) in 2017 (Rebatta, 
2017).

13.5  Signal Processing

13.5.1  Signal conversion

Signal processing is a crucial task for any communications network to 
ensure that messages are sent and received with fidelity. Signals may be 
encoded for more efficient transfer. Telecommunications networks con-
vert incoming electrical signals to optical signals for long-haul transfer, 
and then back to electrical signals for delivery at the destination. Brain 
networks too convert initially electrical signals from the axon’s action 
potential into chemical signals that are sent across the synaptic channel by 
neurotransmitters. Then, neurotransmitter signals are converted back into 
electrical signals in the receiving dendrites in the postsynaptic density for 

Table 13.3.  Communications network signal conversion.

Communications 
Network Signal Ingress

Intermediate 
Transmission Signal Egress

Telecommunications Electrical Optical Electrical

Brain Electrical (axon) Chemical (synapse) Electrical (dendrite)
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onward routing via dendritic spikes, possibly ultimately to the axon in the 
receiving neuron (Table 13.3).

Synaptic signals received by dendrites may be excitatory or inhibitory, 
which has the effect of increasing or decreasing the net voltage that 
reaches the soma (the cell body from which the axon potential begins). 
If an appropriate threshold is reached, the stimulus is sent down the 
axon as an electrical action potential. Reaching the signaling threshold is 
determined by the all-or-none character of action potential generation as 
follows. Neurons are electrically excitable, due to maintenance of voltage 
gradients across their membranes. If the voltage changes by a large 
enough amount over a short interval, the neuron generates an all-or- 
nothing electrochemical pulse called an action potential.

The action potential travels rapidly along the axon until it reaches the 
presynaptic terminal at the bouton (large-headed end of the neuron). In the 
presynaptic terminal, the action potential is converted from an electrical 
to chemical signal with the activity of calcium channel ions. The signal is 
then disgorged from the presynaptic terminal active zone and crosses the 
synaptic cleft as a chemical message in the form of neurotransmitters. In 
the postsynaptic terminal of the dendrites (postsynaptic density), the 
chemical signal is processed and converted back into an electrical signal 
with dendritic spiking per the same membrane-based potential-triggering 
mechanisms. The general form of neural signaling is through chemical 
synapses as described, but exclusively electrical synapses are used in 
high-stakes rapid-signaling applications such as in the heart and fight-or-
flight escape reflexes.

13.5.1.1  Probabilistic signal transmission

The brain regulates signal traffic at the level of the individual synaptic 
connections between neurons. A typical cortical neuron receives informa-
tion from on the order of 10,000 synapses, but the probability that this 
information is converted to an action potential internally and ultimately 
passed on to other neurons by releasing neurotransmitter is very low, only 
10 to 50% (50 to 90% synaptic failure (Sudhof, 2004, p. 509)). The all-or-
none firing of action potentials means that a neuron rarely experiences the 
conditions of a large enough threshold of voltage changes over a short 
enough time interval to generate an action potential. Atwell and Laughlin 
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(2001) suggest that the high rate of synaptic failure might be an efficiency 
measure since the failure rate halves the energy consumption of gray mat-
ter. With so many neurons receiving synaptic inputs, there is no overall 
loss in information. Although information is not lost in healthy firing, the 
failure ratio degrades with the onset of pathology and is an early warning 
signal of deteriorating function (Budak & Michal Zochowski, 2019).

The mechanism for how the brain balances lossy signals against infor-
mation loss is not well understood. The brain exhibits sparse encoding 
schemes in which only a small proportion of cells are signaling at any one 
time. This minimizes energy while maintaining a high representational 
capacity since there are many different ways in which a small number of 
signals can be distributed among a large number of neurons.

However, large populations of neurons are expensive to maintain, and 
if neurons rarely signal, they are redundant. The optimum proportion of 
active cells may depend on the ratio between the cost of maintaining a 
neuron at rest and the extra cost of sending a signal. When signals are rela-
tively expensive, it is best to distribute a few of them among a large num-
ber of cells. When cells are expensive, it is more efficient to use a few of 
them and to have more or all of them signaling. Estimates of the ratio 
between the energy demands of signaling and maintenance suggest that, 
for maximum efficiency, between 1% and 16% of neurons should be 
active at any one time (Levy & Baxter, 1996). However, it is difficult to 
compare these predictions with experimental data.

Summarizing, the signal processing design problem is the situation of 
unreliable single neurons, noisy molecular signaling mechanisms, and 
redundant signal transmission, all toward the goal of reaching a relevant 
thresholding determination for signals to propagate. Levy and Baxter take 
an energy-efficiency view and argue that sparse coding improves energy 
efficiency and directs signaling. Baxter takes a statistical view and suggests 
that the brain economizes by sending impulses according to the statistical 
mean (calling the brain an “economy of impulses”) (Barlow, 1972, p. 385). 
However, from a biophysics lens, it is not clear whether the process could 
be made more efficient. Considering a larger-scale perspective of fields and 
gradients, it is not “synaptic failure” as much as a simple “lack of thresh-
olding” in constant ongoing operations. This suggests that the field gradient 
is an extremely effective means of signal construction and propagation.
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13.6  Signal-to-Noise Ratio

13.6.1  Ion channels

The brain evolved to be efficient, and it may not be possible to improve 
on this design in other ways too. Noise makes it costly to transfer informa-
tion along single neurons at high rates. Fundamentally, the neuron is a 
noise-limited device with restricted bandwidth. The brain’s signal-to-
noise ratio can be calculated to assess the effectiveness of the brain’s 
network transmission activities. The signal-to-noise ratio measures the 
amount of effective signal propagation per the amount of noise in the 
communications channel. The signal-to-noise ratio is most readily calcu-
lated as the square root of the number of synapses, which might be inter-
preted as the square root of the number of ion channels in the membrane 
available for signal transfer (White et al., 2000). The calculation takes a 
cue from diffusion, in that diffusive processes spread out by a factor of the 
square root of the relevant measure. The implication is that improving the 
information rate would require expensive changes. Doubling the signal-
to-noise ratio would mean quadrupling the number of ion channels in the 
membrane, increasing the current flow, and using much more energy. 
With this implied relationship between noise and energy cost, an energy-
efficient nervous system would be likely to divide information among a 
larger number of relatively noisy neurons of lower information capacity 
(as observed in the general splitting of retinal signals into “ON” and 
“OFF” pathways (von der Twer & MacLeod, 2001)), rather than a smaller 
number of high precision neurons.

13.6.1.1  Molecular channel noise is nonlinear

Continuing with the energy efficiency theme, one way to analyze the 
structural relationship between component miniaturization, energy con-
sumption, and noise is based on component size and throughput. Even 
though the axon diameter is only 0.3 μm (on average), sending action 
potentials along these wires consumes more than one-third of the energy 
supplied to cortical gray matter (Attwell & Laughlin, 2001). Thus, as with 
computer chips, an efficient layout and a high component density are 
essential for energy efficiency, but, as is also true for chips, 
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miniaturization raises problems about noise. In the brain, the signal-to-
noise ratio worsens if a neuron’s membrane area is reduced. The mem-
brane is the number of molecular pores or ion channels available to carry 
electrical signals from one neuron to another.

The noise produced by ion channels, and by other molecular signaling 
mechanisms such as synaptic vesicles, is potentially damaging to signaling 
performance. However, the effects of noise are often difficult to determine 
because they depend on interactions between signaling molecules in sig-
naling systems. The interactions are highly nonlinear and involve compli-
cated spatial effects. On the one hand, the basic action potential itself is 
highly nonlinear as produced by the cycling behavior of voltage-dependent 
sodium and potassium ion channels. On the other hand, complicated spatial 
effects arise from the diffusion of chemical messengers between neurons 
and the transmission of electrical signals within neurons. It is difficult to 
assess the overall complexities of molecular noise and diffusion in neural 
signaling. However, considering miniaturization, simulations indicate that 
channel noise places a ceiling on the wiring density of the brain by setting 
a lower limit of about 0.1 μm on axon diameter (White et al., 2000).

Some of the specific aspects and possibilities of measuring molecular 
channel noise have been analyzed in other research. Manwani et al. (1999) 
carry out a systematic investigation of the relationship between channel 
kinetics and the resulting membrane voltage noise using a stochastic 
Markov version of the Mainen–Sejnowski model of dendritic excitability 
in cortical neurons. They find that kinetic parameters which lead to an 
increase in membrane excitability (increasing channel densities and 
decreasing temperature) also lead to an increase in the magnitude of the 
sub-threshold voltage noise. Further, noise also increases as the mem-
brane is depolarized from rest toward threshold. This suggests that chan-
nel fluctuations may interfere with a neuron’s ability to function as an 
integrator of its synaptic inputs and may limit the reliability and precision 
of neural information processing.

13.6.1.2  Volumetric connectome data

Ideally, volumetric analysis from connectome projects might be used to 
elucidate the potential trade-offs between component miniaturization, 
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energy consumption, and noise. Braitenberg and Schutz (1998) made an 
early observation that (in 1 mm3 of mouse cortex) distinguished 105 neu-
rons, 108 synapses, and 4 km of axon. One conclusion from these data is 
that the brain may limit energy consumption by reducing the size and 
active area of components, a similar principle to that used in chip design. 
Braitenberg and Schutz’s research found about 100 synapses per 1 mm3 
of volumetric brain tissue. A recent study reconstructing a sub-volume of 
mouse neocortex surprisingly reported in a particular sample, 1,700 syn-
apses, at a density of one synapse per 1.13 mm3 (Kasthuri et al., 2015, 
p. 653). In another portion of the sample, the team found 193 dendrites 
and 1,407 unmyelinated axons (93% excitatory, 7% inhibitory).

In other work, the Allen Institute produced a petascale-dataset  
(2 petabytes) by imaging 26,500 tissue sections from a 1 mm3 volume of 
mouse neocortex but did not comment on the composition (Yin et al., 
2019). The effort relied on an array of six electron microscopes operating 
continuously, and took six months. These various potentially conflicting, 
unreconciled, and unreplicated analyses highlight the point that quantita-
tive metrics for the brain are not yet known, and further that the sought 
metrics may be incorrect for the underlying biological mechanisms. At 
minimum, given anatomical knowledge, the expectation would be many 
more synapses than axons in a given volume, and likewise, many more 
dendrites than axons in 1 mm3 of volumetric brain tissue. Connectome 
efforts are important for obtaining the brain’s wiring diagram, and other 
kinds of analytical progress are likely needed in accompaniment to elabo-
rate how the brain actually works.

13.7  Network Rewiring: Synaptic Plasticity

The noise and variability observed among neurons is compensated by 
synaptic plasticity (the ability of neurons to modify their signaling proper-
ties). Telecommunications networks reconfigure signals in space and time 
(through space-division, time-division, and wave-division multiplexing) 
and the brain also has much more synaptic plasticity that was initially 
realized in distributing signals efficiently in space and time. Synaptic 
plasticity likewise seems to have the ability to direct scarce resources to 
where they will be of greatest benefit.
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Synaptic plasticity enables the spatial relocation, and the short-term 
and long-term temporal reconfiguration of the brain. The cortical network 
is not a vast, fixed network whose connection strengths change slowly. 
Instead, cortical connectivity is highly dynamic, and changes on fast as 
well as slow timescales. This allows the cortex to be rapidly reconfigured 
to meet changing computational and communications needs. Whereas the 
initiation of action potentials takes place with millisecond precision, the 
throughput at cortical synapses is slower and probabilistic (Mainen & 
Sejnowski, 1995). On a short timescale of milliseconds to seconds, pre-
synaptic mechanisms briefly increase or decrease the probability of trans-
mission at cortical synapses, depending on the previous patterns of 
activity. On longer time scales, persistent correlated firing between the 
presynaptic and postsynaptic neurons can produce the long-term depres-
sion or long-term potentiation of the synaptic efficacy, depending on the 
relative timing of the spikes in the two neurons.

13.7.1  Neural signaling path integral

Local field potentials function as a path integral to describe neuronal fir-
ing. Local field potentials are extracellular electric fields that reflect the 
aggregate activity of local synaptic currents and ion channels on neurons 
and glia. The field potentials are generated by transient imbalances in ion 
concentrations in the intercellular space between neurons and glia due to 
cellular electrical activity. They are “local” because their main activity 
spreads out in a range of about a centimeter from their origin (in macaque) 
(Kajikawa & Schroeder, 2011). They are “potentials” because they are 
generated by the voltage that results from charge separation in the extra-
cellular space. They are “fields” because the extracellular charge separa-
tions create a local electric field. Local field potentials are implicated in 
the dynamic flow of information across biological neural networks. Since 
local field potentials are extracellular, experimental data are available and 
more easily obtainable than for intracellular signaling.

A problem in systems neuroscience is that the function of neurons is 
often cast in terms of stimuli and response. However, empirical data such 
as recordings from the visual cortex in behaving animals shows that a 
large fraction of neural activity is not predictable from direct stimulus 
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alone. Larger-scale network activity including local field potentials also 
plays a role. The local field potential is a composite signal that receives 
contributions from multiple neural sources. A key research finding sug-
gests that the main factor that defines the amplitude of the local field 
potential is the geometry of the current sources (as opposed to the degree 
of synchronization of the signals or other explanations) (Herreras, 2016). 
Although the data may be more difficult to interpret than neural spikes due 
to the multiplicity of factors involved, a broader picture of neural signal-
ing necessarily includes these influences (Einevoll et al., 2013).

Local field potentials hint at how the larger-scale flow of information 
in cortical circuits may be regulated. Oscillations in the 20 to 80 Hertz 
range occur in local field potentials, leading to coherence between spikes 
and local field potential oscillations, that has been found to influence 
attention and working memory (Pesaran et al., 2002).

13.7.1.1  Implications of brain networks’ approach

Seeing the brain as a local and long-distance communications network with 
design constraints, traffic management, and signal conversion (electrical-
optical-electrical being similar to electrical-chemical-electrical) illumi-
nates a new approach to add to the arsenal for tackling the dynamical 
complexity of the brain. Brain network trade-offs are indicated in the 
efficiency and performance of various communications network attributes 
(circuit wiring, connectivity, energy consumption, signal processing, 
 signal-to-noise ratio, and network reconfiguration). The brain network 
description indicates how neurons, circuits, and signal transmission are 
designed to conserve space, materials, time, and energy, while delivering 
high performance and functionality.
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Chapter 14

Quantum Dynamics

[A]ll of the various conformations of the neuron and its various compo-
nents are simply morphological adaptations governed by laws of conser-
vation for time, space, and material

— Ramon y Cajal (1995 (1894), p. 116)

Abstract

This chapter discusses the foundational physics advances in the under-
standing of dynamics in quantum mechanical systems. Operator size 
and distribution growth are new levers for measuring the distribution 
of expectation values of operators acting on observables that produce 
dynamical behavior. Out-of-time-order correlation (OTOC) functions 
are applied to evolve thermofield double states (two entangled copies of 
a quantum state) back and forward in time to understand quantum infor-
mation scrambling (diffusion). The holographic Sachdev–Ye–Kitaev 
(SYK) model interprets operator growth as a solvable SYK model in 
the boundary to calculate aspects of particle momentum in the bulk. Any 
system with time translation symmetry breaking can be interpreted as a 
time superfluid, and possibly as a spacetime crystal.
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14.1  Dynamics of Quantum Systems

A contemporary topic in foundational physics research is predicting the 
dynamics of quantum system evolution over time. Quantum dynamics 
refers to the motion, energy, and momentum exchange of quantum 
mechanical systems. Quantum dynamics problems are nontrivial due to 
the 2n problem, that quantum systems become exponentially larger and 
more complicated as they evolve from the initial state. As a simple 
instantiation of a black hole and minimal realization of the AdS/CFT 
duality, the Sachdev–Ye–Kitaev (SYK) model is used to examine vari-
ous problems in quantum dynamics (Maldacena & Stanford, 2016). In a 
random matrix formulation of the SYK model, late-time chaotic dynam-
ics are indicated (Cotler et al., 2017). To understand a wider range of 
time scales and system evolution, operator-based formulations are 
employed.

Quantum systems are described by states and operators (mathemati-
cal functions) that act upon the states to describe the evolution of the 
system. Both states and operators grow and evolve over time. It is not 
possible to measure quantities directly in quantum mechanics without 
changing or destroying them. Instead, it is possible to measure the 
expectation values of operators acting on observable quantities, taking 
a distribution of many such expectation values to obtain an average, and 
this is how quantum systems are measured. The quantum state grows as 
the particle movements evolve from the initial 2n states. The quantum 
operator grows since more complicated mathematical terms may need 
to be added to act on the system which has also grown in size and 
complexity.

Since quantum systems are measured by the distribution of expecta-
tion values of operators acting on observables, operator growth is a natural 
and accessible lever for studying quantum dynamics. A contemporary 
focus is investigating operator growth, meaning the size and distribution 
of operator growth as quantum systems evolve over time. Quantum states 
grow as a function of the operators that act upon them, so the central 
problem is crystallized as understanding operator behavior. In particular, 
the growth of operator size and distribution are being studied in the con-
text of holography and quantum many-body problems.
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14.2  Operator Size and Distribution Growth

Operators grow in size as time evolves. The growth (and distribution) of 
the size of an operator is a manifestation of many aspects related to the 
quantum dynamics of a system. The canonical way to calculate operator 
size and growth is with the Heisenberg equation of motion. However, 
the Heisenberg equation of motion is only a general approximation and 
does not include temperature, so other more fine-grained approaches are 
sought.

The term operator “size” is a flexible term used to mean various 
things, including the size of the underlying system or the size of the opera-
tor after it has evolved in time. In the most basic sense, size refers to the 
number of particles in the system. Roberts et al. (2018), for example, 
evaluate the size distribution for N = 30 elementary fermions. In this work, 
“size” means the size of the basis element (the number of elementary 
fermions that appear in the product of the equations) (Roberts et al., 2018, 
p. 2). Likewise, Lin et al. (2019) indicate that the “size operator” counts 
the number of particles that are affected by applying the operator. In the 
more complex use of the term “size”, it may refer to aspects of the opera-
tor or the system after the time evolution. Nahum et al. (2018, p. 2) dis-
cuss operator “size” as the size of the region in which a time-evolved 
operator fails to commute with local operators. In general, operator “size” 
may have different meanings related to the size of the system and the size 
of the operators. Also, the terms “size operator” and “operator size” are 
used interchangeably. Since quantum systems are not measured directly 
but with operators, operators are sometimes seen as being synonymous 
with the underlying system states (even though operators are mathemati-
cal functions that act on the system states). In other work, thermal scale 
quanta are the object with “size” to be analyzed (Sekino & Susskind, 
2008, p. 2).

A quantum system typically has many operators and these operators 
interrelate. Further, there are different kinds of operator growth. For 
example, it has been elaborated that an operator might have both linear 
external spatial growth and exponential internal size growth (Qi & 
Streicher, 2019). In the simplest case, operators are assumed to be 
bosonic (force operators). However, if the operator of interest is fermionic 
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(a matter operator), the bosonic operator is converted. Bosonic operators 
are converted to fermionic operators by being multiplied with an anti-
commuting fermionic operator from an external system, for example.

Operator size and distribution growth are deployed as a standard tool 
to examine a number of more complex situations in quantum dynamics. 
Operator size is a key input to calculating out-of-time-order correlators 
(OTOCs) which are used to evolve quantum systems backward and for-
ward in time. OTOCs are in turn linked to the chaos, thermalization, and 
information scrambling of quantum systems.

14.3  The Holographic SYK Model

14.3.1  The Heisenberg uncertainty principle

The Heisenberg uncertainty principle states that it is not possible to know 
the precise position and the momentum of a particle at the same time. The 
formula for the Heisenberg uncertainty principle is the product of two 
terms: Uncertainty about where the particle is (its location) multiplied by 
the uncertainty about how fast it is moving (its speed). The minimal value 
of the product of these two uncertainties is Planck’s constant, a very small 
number referred to as “h” (h = 6.626 × 10−34 Joule-seconds). The 
Heisenberg uncertainty principle underlines two important aspects of 
quantum mechanics. First, there cannot be complete certainty about a 
particle’s location or speed. Second, there is a trade-off about what can be 
measured. Knowing more about the particle’s location means knowing 
less about its speed, and vice versa. Position-momentum (location-speed) 
are known as a conjugate pair. A conjugate pair is any pair of observable 
quantities of a particle or quantum system that obeys the Heisenberg 
uncertainty principle. These include position-momentum and energy-
time. Their minimal uncertainty product is Planck’s constant, in the trade-
off between being able to know more about one and less about the other.

14.3.1.1  Size-momentum correspondence and holographic SYK

One area of quantum dynamics research examines the relationship between 
size and momentum. Here, size means operator size and momentum means 
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the speed of the particle. As the Heisenberg uncertainty principle indicates, 
a particle is determined by both its location and its momentum (speed). 
Operators describe how a quantum system evolves, and grow themselves 
as the system evolves. Therefore, the size of the operator might be related 
to the behavior of the particle. A relationship can be formalized between 
the particle speed and the rate of change of operator size. The particle 
momentum seems to be encoded in the operator by which it evolves. Lin 
et al. (2019) articulate the operator size-particle momentum relationship in 
the finding that “the time derivative of size is the same as the bulk momen-
tum” (Lin et al., 2019, p. 40). The time derivative of operator size is equiva-
lent to the rate of growth of particle momentum.

The operator size-particle momentum relationship is interpreted 
through the AdS/CFT correspondence, in the flavor of AdS/SYK. The 
holographic SYK model interprets operator growth as a solvable SYK 
model in the boundary to calculate aspects of particle momentum as the 
bulk dual. Through the holographic SYK model, Lin et al. (2019) con-
struct symmetry generator operators for operator-state mapping and tem-
perature analysis between the bulk and the boundary domains. The work 
is a nice example of the SYK model in routine deployment. The corre-
spondence is shown as a mathematically rigorous relationship that links a 
complicated domain to a simpler domain such that the one can be solved 
from the other (Table 14.1).

Using the holographic SYK model to examine the relationship 
between operator size growth in the boundary and particle momentum in 

Table 14.1.  AdS/SYK: Operator size-particle momentum.

Domain Bulk Boundary 

AdS/CFT Quantum gravity Quantum field theory

AdS/SYK Near-extremal black hole (AdS2) SYK model

Model tractability Not easily solvable Solvable 

Size-momentum Particle momentum Operator size growth

Black hole dynamics Infalling gravitational attraction Operator chaotic size 

Size-momentum Scrambling time Chaotic operator growth

Black hole dynamics Jackiw–Teitelboim gravity SYK model
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the bulk is also of interest to the complexity debate. The complexity 
debate concerns the bulk-boundary relation of determining the computa-
tional complexity of preparing a quantum circuit in the boundary that 
corresponds to a bulk gravitational dual such as wormhole growth. The 
question centers around how the two domains (bulk and boundary) can 
have different growth rates yet somehow remain pegged in correspon-
dence with each other. An early solution was a proposal that complexity = 
volume (maximizing bulk volume over all related boundary surfaces 
explains boundary complexity) (Susskind, 2016). The proposal was sub-
sequently amended to complexity = action (evaluating the bulk gravita-
tional action on a selected chunk of spacetime explains boundary 
complexity) (Brown et al., 2016). The complexity debate intersects with 
the quantum dynamics OTOC investigation in that both approaches seek 
an understanding of operator size growth in the boundary.

The idea of momentum-dependent size is based on Feynman’s parton 
theory that more and more “wee partons” appear as a particle’s momen-
tum increases (Susskind, 2018). The main idea is the phenomenon of the 
size of a relativistic string growing with momentum. In the holographic 
model, radial momentum in the bulk or infalling gravitational attraction is 
related to operator size growth on the boundary. A key application is diag-
nosing quantum chaos with the growth of operator size, through the for-
mulation relating ordinary gravitational attraction in the bulk to the 
general properties of quantum chaos on the boundary (Ibid.).

Brown et al. (2018) extend the use of the size-momentum correspon-
dence (operator size growth in the boundary and particle momentum or 
volume in the bulk) to examine charged black holes. The work finds that 
the scrambling time for a charged black hole (Reissner–Nordstrom) is 
smaller than might be expected because boundary operator size grows so 
rapidly at early times that it is already quite large when it starts a later 
exponential growth phase.

Other work from Susskind and Zhao (2020) examines the connection 
between operator size growth, complexity increase, and bulk radial 
momentum. A gluon splitting model is used to study operator growth and 
complexity increase in the case of a vacuum (empty regime). The work 
starts incorporates JT/SYK as one of the simplest possible implementa-
tions of the correspondence. The bulk is Jackiw–Teitelboim (JT) gravity, 
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a simplified theory of gravitation with one space and one time dimension 
(much easier to compute than classical gravity with three space dimen-
sions and one time dimension). The boundary is the usual solvable SYK 
model. Through the JT/SYK interpretation, the relation between complex-
ity and momentum can be derived different ways, including from the sym-
metry generator operators proposed by Lin et al. (2019).

14.3.2  Out-of-time-order correlators

In the practical task of measuring operator growth, the standard method is 
computing OTOC functions (Swingle et al., 2016). OTOC functions are 
operators used to evolve a quantum system back or forward through time 
so that a comparative measurement may be taken. In particular, OTOC 
functions are used to measure the scrambling time (how quickly informa-
tion spreads out over the entire system such that a local measurement is 
not possible) (Hayden & Preskill, 2007). Black holes are found to be fast 
scramblers, meaning extremely efficient at spreading out information 
across the system (Sekino & Susskind, 2008). Further, many quantum 
systems display a chaotic dynamics, growing explosively, not even expo-
nentially but ballistically, at early time (Shenker & Stanford, 2014). 
OTOC functions can be formulated for discrete or continuous variables 
(Zhuang et al., 2019). In general, a theme is early exponential growth and 
then saturation (Table 14.2).

With these established methods of quantum system dynamics, the 
contemporary research targets the topics of chaos, thermalization, and 
information scrambling. Specific analysis is devoted to operator growth 
definitions, system expansion rates and bounds with the exponents defin-
ing system dynamics, differential growth rates of system attributes, and 
system characterization at early, intermediate, and late times.

Nahum et al. (2018) find that universal scaling forms of the OTOC 
can be obtained by using mappings to canonical problems in classical 
statistical mechanics such as the Ising model. The work shows that entan-
glement growth is generally smaller than operator growth, often by a ratio 
of one half (operator growth growing twice as fast as entanglement 
growth) (Nahum et al., 2018, p. 19). Operator size growth is also deployed 
in the following sense. Under Heisenberg time evolution, an initial 
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operator (localized near the spatial origin, for example) evolves into a 
vastly more complicated operator. Hence, a relevant “operator size” mea-
surement is the size of the region in which the time-evolved operator fails 
to commute with local operators (Nahum et al., 2018, p. 2).

In the same research trajectory, von Keyserlingk et al. (2018) use 
operator growth to derive exact formulas for the OTOC and entanglement 
growth. The finding is that at early times (before the arrival of the main 
wavefront), the OTOC grows exponentially (with an exponent that 
increases with the initial separation of the two operators involved). At 
longer times (in the course of system evolution), the OTOC saturates to 
one.

Xu and Swingle (2020) propose a universal form for the early growth 
region of the squared commutator in the OTOC (assuming there is well-
defined butterfly velocity). The work extends other work (Xu & Swingle, 
2019) aiming to reconcile various analysis scenarios, including extending 
formulations to a broader range of physical systems (other than the most 

Table 14.2.  Quantum dynamics research advances.

No. Quantum Dynamics Research Advance Reference

Established methods

1 Information scrambling in quantum systems Hayden and Preskill (2007)

2 Black holes are fast scramblers Sekino and Susskind (2008)

3 Chaotic dynamics and ballistic early time growth Shenker and Stanford (2014)

4 Scrambling measurement with OTOCs Swingle et al. (2016)

Contemporary findings

5 Entanglement growth is slower than operator 
growth

Nahum et al. (2018)

6 Early time OTOC grows exponentially then 
saturates 

von Keyserlingk et al. (2018)

7 Operator size evolves to scrambling time and 
saturates

Qi and Streicher (2019)

8 Operator growth is slower than system growth Lin et al. (2019)

9 Propose a universal form for the early growth 
region

Xu and Swingle (2020)
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chaotic). The idea is to study intermediate time evolution, as to how early 
exponential system growth (described by the Lyapunov exponent) gives 
way to a diffusively broadened scrambling wavefront. Whereas a sharp 
wavefront picture holds for the most chaotic systems, the diffusively 
broadened wavefront picture is more accurate for physical systems with 
finite degrees of freedom. The overall finding is that the local operator 
growth wavefront broadens diffusively for generic Hamiltonians in finite 
local Hilbert space.

14.3.2.1  Quantum dynamics and temperature

Qi and Streicher (2019) deploy a holographic SYK model that incorpo-
rates temperature to show how operator size evolves up to the scrambling 
time and then saturates. Notably, short-distance (UV) operators have the 
greatest effect, as opposed to bulk action, as previously thought. 
Temperature, though a crucial variable, has been difficult to include in 
quantum dynamics models. The traditional method is calculating the 
dynamics of the operator under Heisenberg system evolution, but this 
does not include temperature, so an improved model is needed. The work 
examines how operator size growth is related to OTOCs, chaos, and ther-
malization in a finite-temperature model. The result is the calculation of 
the full operator growth structure for the SYK model at all temperatures 
in fermionic systems.

14.3.2.2  The Heisenberg equation of motion

The Heisenberg evolution model does not contain temperature. Therefore, 
any effect of temperature must be abstracted into the matrix elements of 
the operator. This has largely meant that investigating temperature in the 
context of operator size has not been probed. One target of interest is 
determining the natural finite-temperature generalization of operator size. 
By including temperature, Qi and Streicher (2019) are able to characterize 
not only the average size of an operator but its entire size distribution. The 
effective size distribution of an operator at finite-temperature is defined by 
the proportional relationship it has to the thermal density operator.
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The Heisenberg equation of motion is applied to obtain the operator 
Hamiltonian. The operator’s relationship to other operators can also be 
inferred from the Heisenberg equation. Operators grow as they evolve in 
time and become intertwined with other operators. As an operator evolves, 
it becomes supported along other operators of increasing size. In some 
sense, operator growth is a measure of how intertwined (entangled) it is 
with other operators (how much one operator cross supports another). 
Hence, operator size growth is calculated by taking the operator inner 
product (the Frobenius inner product in a finite-dimensional Hilbert 
space). Since the Heisenberg equation of motion does not include tem-
perature, the process of system evolution needs to be supplemented to 
obtain a finer-grained measure of operator size distribution.

14.3.3  Thermofield double state

The aim is to understand the role of temperature in operator growth, 
as a next step in the quantum physics research agenda and since thermal-
ization is an important property in real-life systems. Temperature can be 
introduced by considering an operator with a thermal state. A basic and 
computable thermal state for studying thermodynamic properties is the 
thermofield double, an entangled state between two copies of a state 
such that the reduced density matrix (purification) of each copy is 
 thermal. The thermofield double state has a purification of thermal prop-
erties and a Hamiltonian that satisfies certain conditions. The operator 
and its average size can be measured directly by a finite-temperature 
four-point function.

To find the size distribution of a time-evolved thermal operator in 
general, a generating function is defined to describe the operator’s differ-
ent size moments. The generating function factorizes into a product of the 
generating function for the Gibbs state and a so-called connected piece. 
The connected piece is used to extract the size distribution of the thermal 
operator from the size distribution of the whole operator, and the opera-
tor’s thermal size is thereby defined.

To calculate the full operator size distribution, other generating func-
tions are constructed that include a weighting factor. First, the size distri-
bution of the thermal operator is studied by setting up a generating 
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function similar to a partition function. The generating function is defined 
for a certain size distribution based on a two-point function (with a twisted 
boundary condition) which determines the growth distribution. The two-
point function with the twisted boundary condition is used to solve the 
ladder kernel, which allows the computation of four-point functions in the 
SYK model. The ladder kernel is part of an SYK model solution that 
involves constructing ladder diagrams that can be summed by defining a 
kernel in a structure that corresponds to adding rungs to a ladder 
(Maldacena & Stanford, 2016, p. 5). Second, the fractional distance to 
scrambling for the operator is investigated. On average, the size increase 
induced by a single fermion is given by the fractional scrambling 
distance.

14.3.3.1  Implications for the holographic SYK model

The overall result is demonstrating how operator size evolves up to the 
scrambling time. In the model system, scrambling occurs when the aver-
age growth of the wavefunction reaches N/2 (the number of fermions in 
the system divided by two), a value which can be further fed into the full 
operator structure (Qi & Streicher, 2019, p. 20). Notably, the local interac-
tions have the strongest effect. The short-range (UV) operators offer a 
better microscopic picture of operator growth and distribution in the SYK 
model. The short-range operators evaluate the fractional distance of the 
operator to scrambling, and the results suggest interpreting the scrambling 
distance in the context of finite-temperature thermalization.

The results also obtain a more generic bulk-boundary relation for the 
holographic SYK model. The analysis indicates that the full-size wave-
function of the SYK fermion (boundary) relates to the full momentum 
wavefunction of the infalling particle (bulk). The average growth at low 
temperatures is similar to that shown by Brown et al. (2018) to exactly 
match the classical momentum dynamics of a boundary particle falling 
into a near-extremal black hole. The average growth of an SYK fermion 
exactly matches the average momentum of an infalling particle in an AdS2 
black hole. The universal form of the operator growth distribution pre-
cisely gives the squared coefficients of the AdS2 momentum bulk-to-
boundary propagator. Future work could perform the same kind of 
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analysis for different geometries. For example, it was found that adding 
the scrambling distance operator to the doubled SYK Hamiltonian 
causes the low-energy limit to eventually cross a Hawking-Page transi-
tion, forming a global AdS2 geometry instead of the more limited 
 geometry of an AdS2 black hole in an eternal traversable wormhole 
(Maldacena & Qi, 2018).

14.4  Superconductivity and Spacetime Superfluids

14.4.1  Time crystals

Quantum dynamics and operator growth are further defined in the notion 
of time crystals. Central to quantum dynamics is understanding system 
criticality. Symmetry breaking is typically the key moment bringing about 
a phase transition in any physical system. Predicting phase transition is 
not just useful for managing quantum systems, but a feature that can be 
exploited, for example, in superconducting materials for QPU chips 
(quantum processing unit). An increasing range of physical behavior is 
being understood on the basis of symmetry breaking and phase transition 
including the Higgs boson (by which particles acquire mass), high- 
temperature superconductors, quantum liquids, and spatial crystals 
(Richerme, 2017). Although symmetry breaking is well understood in 
many domains, time-translation symmetry has been articulated more 
recently. So-called “time crystals” are systems which spontaneously break 
time-translation symmetry, by analogy to ordinary crystals, which break 
spatial translational symmetries (Wilczek, 2012).

Time crystals (whose regular pattern or lowest-energy configurations 
are periodic in time rather than space) exist in periodically driven systems 
that do not reach thermal equilibrium. They have been demonstrated 
experimentally in two systems, by the Monroe laboratory with trapped 
ions (Zhang et al., 2016) and by the Lukin laboratory with nitrogen-
vacancy centers (spin impurities) in diamond (Choi et al., 2016). The 
usual inclination to describe symmetry breaking would be determining the 
expectation values of observables at thermal equilibrium. However, this is 
not possible in a system that does not exist at thermal equilibrium. Instead, 
it is necessary to look beyond thermal equilibrium to define a formulation 
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for time crystal dynamics. Such periodically driven systems are character-
ized by the lifetime of a symmetry breaking state diverging as the system 
size grows such that (in the thermodynamic limit), the system never 
reaches thermal equilibrium. Else et al. (2016) propose a formulation 
incorporating these aspects in the notion of Floquet time crystals (using 
Floquet periodic linear differential equations). The model of time- 
translation symmetry breaking also invokes the point that oscillation 
under time evolution requires the superposition of states whose phases 
wind at different rates. For example, whereas in the Ising ferromagnet, 
two states are degenerate in the thermodynamic limit, in a time crystal, 
they would need to have different eigenvalues and different rates of opera-
tor winding (proceeding).

14.4.1.1  Spacetime superfluids and temperature

Time crystals have a holographic correspondence-related interpretation. 
Lin et al. (2019) propose the notions of “time superfluid” and “spacetime 
superfluid” by analogy to superconductors. A basic definition of super-
conductors is that they break symmetry (by undergoing a phase transition 
at a critical temperature), and wormholes or thermofield double states also 
break symmetry. The setup of the two-sided wormhole experiment is a 
boundary with thermofield double states as ends of a wormhole that is 
connected through the bulk. The thermofield double states are two identi-
cal copies of a state that are initially entangled and then evolve on their 
own into nonidentical states. The wormhole or thermofield double state 
breaks time-translation symmetry in that the two sides of the system 
(effectively the right and left side of a partition) evolve separately (after 
having classical time dependence at the outset). Notably, any quantum 
state with an initial classical and then quantum time dependence may be 
a “time superfluid” in the sense that the time-translation symmetry is bro-
ken as the quantum system evolves over time.

The problem of interest is characterizing the distance between the 
two boundary regions connected by the wormhole. Both superconductors 
and two-sided wormholes break symmetry, have quantum and classical 
aspects, and have properties that are not defined for single particles but 
only emerge as collective macrostates when there are many particles. 
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In a specific example, the phase of a superconductor is a good classical 
variable in the large-N limit, but is not well-defined for a small number 
of fermions. Lin et al. (2019) develop a model for calculating the dis-
tance between the two wormhole boundaries with a similar variable: The 
relative time shift between the two sides of the thermofield double (since 
the two sides have independent time evolution, inevitably, one side will 
be growing faster than the other). A similar approach can be used to 
measure superconductors as wormholes. As the superconductor is mea-
sured with fermion two-point functions, the two-sided wormhole’s time 
shift variable is measured similarly with correlation functions. The 
wormhole case is even more distinct because time translation is also 
related to other symmetries. In particular, temperatures are also related 
between the two sides of an evolving system. Temperatures are con-
nected by acting with an overall dilation to the system which makes the 
wormhole longer. Also, increasing the value of the time shift is essen-
tially like adding a mass term. In the wormhole, both the time and space 
directions are related, so the state could be called a “spacetime super-
fluid” (Lin et al., 2019, p. 45).

14.4.1.2  UV–IR correlations: Order-disorder phase transition

The repeating pattern of the crystal can be seen in time or space as the 
spatial crystal or the time crystal. Likewise, the UV–IR relationship of 
short-range and long-range correlations in quantum systems can be seen 
in time or space. In particular, when correlations are seen in time, they can 
be formatted in the scale of temperature, to indicate the critical tempera-
ture of the superconducting phase transition (Table 14.3). Further, UV–IR 
correlations can also be seen in the frame of the trade-off between ordered 
and disordered systems in the context of system phase transition, 

Table 14.3.  Time-energy conjugate pair formulations.

No. Time Term Energy Term Formulation

1 Time Energy Time = 1/energy

2 Time Frequency Time = 1/frequency

3 Time Temperature Energy (kB) = Temperature (kB); Time = 1/temperature
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as operator phase-winding occurs at different rates in the quantum system 
toward the critical temperature, causing a condensate to become supercon-
ducting (in the form of charged scalar hair on a toy model black hole) 
(Hartnoll et al., 2020, p. 10).

References
Brown, A.R., Gharibyan, H., Streicher, A. et al. (2018). Falling toward charged 

black holes. Phys. Rev. D. 98(12):126016.
Brown, A.R., Roberts, D.A., Susskind, L. et al. (2016). Holographic complexity 

equals bulk action? Phys. Rev. Lett. 116(19):191301.
Choi, S., Choi, J., Landig, R. et al. (2016). Observation of discrete time- 

crystalline order in a disordered dipolar many-body system. Nature. 
543(7644):221–5.

Cotler, J.S., Gur-Ari, G., Hanada, M. et al. (2017). Black holes and random matri-
ces. J. High Energ. Phys. 1705:118.

Else, D.V., Bauer, B. & Nayak, C. (2016). Floquet time crystals. Phys. Rev. Lett. 
117(9):090402.

Hartnoll, S.A., Horowitz, G.T., Kruthoff, J. & Santos, J.E. (2020). Diving into a 
holographic superconductor. arXiv:2008.12786v2.

Hayden, P. & Preskill, J. (2007). Black holes as mirrors: Quantum information in 
random subsystems. J. High Energ. Phys. 0709:120.

Lin, H.W., Maldacena, J. & Zhao, Y. (2019). Symmetries near the Horizon. 
J. High Energ. Phys. 1908:049.

Maldacena, J. & Qi, X.-L. (2018). Eternal traversable wormhole. arXiv:1804.00491.
Maldacena, J. & Stanford, D. (2016). Comments on the Sachdev-Ye-Kitaev 

model. Phys. Rev. D. 94(10):106002.
Nahum, A., Vijay, S. & Haah, J. (2018). Operator spreading in random unitary 

circuits. Phys. Rev. X. 8(2):021014.
Qi, X.-L. & Streicher, A. (2019). Quantum epidemiology: Operator growth, 

 thermal effects, and SYK. J. High Energ. Phys. 1908:012.
Ramon y Cajal, S. (1995, 1894). Texture of the Nervous System of Man and the 

Vertebrates. Volume I. Trans. Swanson, N. & Swanson, L.W. Oxford: Oxford 
University Press.

Richerme, P. (2017). How to create a time crystal. Physics (American Physical 
Society). 10(5):1–2.

Roberts, D.A., Stanford, D. & Streicher, A. (2018). Operator growth in the SYK 
model. J. High Energ. Phys. 1806(122).

b4362_Ch14.indd   315b4362_Ch14.indd   315 4/29/2022   6:34:26 PM4/29/2022   6:34:26 PM



b4362  Quantum Computing for the Brain 6"×9"

316  Quantum Computing for the Brain

Sachdev, S. (2010). Strange metals and the AdS/CFT correspondence. J. Stat. 
Mech. 1011:P11022.

Sekino, Y. & Susskind, L. (2008). Fast scramblers. J. High Energ. Phys. 0810:065.
Shenker, S.H. & Stanford, D. (2014). Black holes and the butterfly effect. J. High 

Energ. Phys. 1403:067.
Susskind, L. (2016). Computational complexity and black hole horizons. Fortschr 

Physik. 64(1):24–43.
Susskind, L. (2018). Why do things fall? arXiv:1802.01198.
Susskind, L. & Zhao, Y. (2020). Complexity and momentum. arXiv:2006.03019v1.
Swingle, B., Bentsen, G., Schleier-Smith, M. & Hayden, P. (2016). Measuring the 

scrambling of quantum information. Phys. Rev. A. 94(4):040302.
von Keyserlingk, C.W., Rakovszky, T., Pollmann, F. & Sondhi, S.L. (2018). 

Operator hydrodynamics, OTOCs, and entanglement growth in systems 
without conservation laws. Phys. Rev. X. 8(2):021013.

Wilczek, F. (2012). Quantum time crystals. Phys. Rev. Lett. 109(16):160401.
Xu, S. & Swingle, B. (2019). Locality, quantum fluctuations, and scrambling. 

Phys. Rev. X. 9(3):031048.
Xu, S. & Swingle, B. (2020). Accessing scrambling using matrix product opera-

tors. Nat. Phys. 16:199–204.
Zhang, J., Hess, P.W., Kyprianidis, A. et al. (2016). Observation of a discrete time 

crystal. Nature. 543:217–20.
Zhuang, Q., Schuster, T., Yoshida, B. & Yao, N.Y. (2019). Scrambling and com-

plexity in phase space. Phys. Rev. A. 99(6):062334.

b4362_Ch14.indd   316b4362_Ch14.indd   316 4/29/2022   6:34:26 PM4/29/2022   6:34:26 PM



317

b4362  Quantum Computing for the Brain6"×9" 

Chapter 15

Neural Dynamics

The multiscale properties of spatiotemporal neural activity lead to  
mathematical challenges in both modeling strategies and analysis

— Coombes (2005, p. 91)

Abstract

This chapter discusses multiscalar neural dynamics models. Large-scale 
models of brain behavior, including neural ensemble, neural mass, and 
neural field theories, populated with empirical data, have a strong need 
for more capacious computational platforms such as those offered by 
quantum computing. Probability distributions of large-scale neural sig-
naling activity  cannot be calculated with traditional reaction-diffusion 
methods applied with linear and nonlinear Fokker–Planck equations. 
In neural state dynamics, seizures indicate a straightforward chaotic 
dynamics, but resting states suggest a more complex mix of multistabil-
ity and Hopf bifurcation, and active states in behaving brains are also 
likely to have complex dynamical behavior.

15.1  Multiscale Modeling

As the “Levels of Organization in the Brain” table in Chapter 1 indicates, 
the brain is a highly complex entity with behavior taking place on nine 
scale tiers across 12 orders of magnitude, from the smallest molecular 
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transmission to an organism moving in the world. Each scale tier has its 
own spatial and temporal dynamics, thus suggesting multiscalar modeling 
approaches for the brain. Further, the differing dynamics at the various 
scale tiers need to be integrated into a common model.

Formulations of neural dynamics are typically considered at four dif-
ferent scales (Table 15.1). These are at the level of the single neuron, small 
ensembles of similar types of neurons, group populations of neurons, and 
whole-brain analysis. Different models of dynamics are proposed for each 
scale tier, but for anything larger than a single neuron, oscillatory behavior 
is often a central feature, as well as the concept of a network that connects 
individual nodes to overall behavior. At the single-neuron scale, the 
dynamics are determined by the models of basic biological neurons, such 
as Hodgkin–Huxley, integrate-and-fire, and theta neurons. At the ensem-
ble level, there are dynamics models such as FitzHugh–Nagumo, 
Hindmarsh–Rose, and Morris–Lecor (Bassett et al., 2018, p. 568). At the 
larger-scale of the population group, Wilson–Cowan mean-field equations, 
Jansen–Rit neural mass models, and tractography are used (Woolrich & 
Stephan, 2013). At the scale of the whole-brain, neural field models supply 
dynamics including bifurcation, multistability, and phase transition.

15.1.1  Centrality of wavefunction modeling

In neural dynamics, the first concern is wavefunction modeling. The brain 
is known for its “brain waves” both literally and figuratively. Some por-
tion of neural activity is comprised of waves in the form of the EEG-
detectable potentials given off by the scalp, and the action potentials that 

Table 15.1.  Neural dynamics formulations by scale.

No. Scale Focus Dynamics Formulations

1 Single neuron Hodgkin–Huxley, integrate-and-fire, theta neurons

2 Local ensemble FitzHugh–Nagumo, Hindmarsh–Rose, Morris–Lecor

3 Population group 
(neural mass)

Neural mass models (Jansen–Rit), mean-field (Wilson–Cowan), 
tractography, oscillation, network models

4 Whole-brain 
(neural field)

Neural field models, Kuramoto oscillators, bifurcation, directed 
percolation phase transition, graph-based oscillation
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trigger neuronal firing. These are electrical waves, and chemical waves 
(calcium waves) too are involved in neural signaling.

EEG-detectable electrical waves have been studied for over a hundred 
years. These brain waves are not modeled with the standard quantum 
mechanical yet intractable Schrödinger wave equation, but with solvable 
effective nonlinear wave models (Nunez, 1974). Relating wave behavior 
between the local and global scale, by linking individually firing synapses 
to macroscale behavior such as movement and cognition, is an ongoing 
challenge in neuroscience. Although the electrical firing of neurons has 
been the predominant research focus, including because data are more 
readily available for this kind of activity, it is now appreciated that the 
fuller picture of brain behavior is more complex. Comprehensive neural 
signaling models would also need to incorporate the synaptic transfer of 
neurotransmitters (including via astrocyte calcium channel signaling), and 
the dendritic integration of incoming signals in the receiving neuron.

The centrality of wavefunction behavior in the brain’s electrical and 
chemical signaling processes suggests quantum mechanical approaches. 
Wavefunction modeling is an important research area, with increasing 
sophistication in the treatment of wave-like behavior in both physics and 
neuroscience. The four main wavefunctions by which the brain propagates 
neural signals are action potentials, neurotransmitter activity, astrocyte 
calcium signaling, and dendritic spikes.

15.1.1.1  Practical perspective: Scale and model integration

Wavefunction and multiscalar modeling are needed to investigate the 
brain at a wide range of levels since brain activity extends over many 
temporal and spatial scales. The scale tiers with the most data are single 
neurons, connectome tissue slices of partial brain volumes, and local field 
potentials. Data are collected from imaging modalities such as electroen-
cephalography (EEG), magnetoencephalography (MEG), and functional 
magnetic resonance imaging (fMRI) which are able to detect signals 
resulting from the aggregate activity of large numbers of neurons. In 
imaging, a key challenge is integrating electric potentials at different 
scales, such as EEG (large-scale) and local field potentials (medium-
scale), and then further relating these to functional imaging techniques 
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such as fMRI. Another challenge is not only integrating scales but also 
models, for example, how biophysical models are represented in compu-
tational models and further connected to neuropathology disease and 
treatment models.

Computational neuroscience is partly driven by the demand for  
next-generation multiscalar models to support experimental findings. 
Theoretical and empirical models evolve in lockstep. Several factors in 
particular are influencing the need for models that more rigorously con-
sider multiple temporal and spatial scales. First, data are often simultane-
ously acquired from EEG and fMRI, which requires the integration of 
structural and functional information. The problem arises acutely in con-
nectome projects, in the attempt to identify function from structure. 
Second, data are available for multiple modes of brain activity including 
rest, sleep, cognition, and seizure. There is a need to examine not only 
pathology, but also the healthy brain as a baseline norm. Third, there is a 
need for greater sophistication in the modeling of synaptic interactions 
with neurotransmitters, to understand among other aspects, their pharma-
cological impact.

15.1.1.2  Nonlinear dynamical systems approach

Although the causes of single neuron spikes are well understood, the pro-
cesses that determine collective neural behavior in cortical circuits across 
the large-scale systems of the brain are not. A systems biology approach 
using nonlinear dynamical systems theory is required. Models of nonlin-
ear dynamics are likely to be implicated in explaining adaptive cortical 
activity and the aberrant processes that underlie a number of brain disor-
ders. Dynamic models of large-scale brain activity are needed in the 
experimental context of brain imaging linked to pathology resolution. 
Macroscopic imaging data (from fMRI, EEG, and MEG) reflect the col-
lective activity of thousands of neurons. However, what is lacking is a 
broadly accepted mathematical theory (or theories) for the collective 
activity of neuronal populations. Without such organizing principles, the 
analysis of cognitive and functional neuroimaging data largely proceeds 
without formal biophysical models of the underlying large-scale neuronal 
activity (Breakspear, 2017, p. 340).
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15.2  Approaches to Collective Neural Behavior

In the theoretical and experimental literature, the main approaches to the 
modeling of large-scale collective neural behavior are neural ensemble, 
neural mass, and neural field models (Table 15.2). Neural ensemble mod-
els consider groups of individual neurons whose states are assumed to be 
uncorrelated. Neural mass models consider a local population of neurons 
interacting together as a group. Neural field models consider large-scale 
neural models that treat the entire cortex as a continuous sheet of signaling 
activity.

15.2.1  Nonlinear dynamical systems

A variety of methods are used in the study of nonlinear dynamical sys-
tems. An ongoing challenge is the problem of modeling three-body sys-
tems. Newton and Leibniz invented the calculus in the 1600s in response 
to the need for a dynamical systems theory to study celestial mechanics. 
Surprisingly, although the differential equations for the motion of two 
planetary bodies can be solved analytically, the motion of three bodies is 
exceedingly complex, and the resulting dynamical system is chaotic for 
most initial conditions and generally intractable. Hence, a “many-body 
problem” refers to a system with three or more entities. The complexity 
only grows in greater than three-body systems, especially in those involv-
ing millions of quantum mechanical particles or the brain with 86 million 
neurons and each neuron having on average 2,800 (Martins et al., 2019) 
or in an earlier estimate, as many as 10,000 synaptic connections (Koch, 
1999).

Table 15.2.  Approaches to collective neural behavior.

No. Approach Description

1 Neural ensemble 
models

Groups of individual neurons whose states are not 
correlated

2 Neural mass models Local populations of neurons interacting together 
as a group

3 Neural field models The entire cortex as a continuous sheet of 
signaling activity
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15.2.1.1  Stochastic calculus and diffusion

Stochastic calculus, the calculus of random processes, is central to model-
ing many-body problems. Integrals of stochastic processes are defined to 
model systems that behave randomly. A key process of concern is 
Brownian motion (the quantum mechanical “jiggling” of particles in con-
stant motion) and its relation to diffusion. The problem is describing how 
particles in motion react to system changes. Diffusion is the physical 
process of spreading out from higher to lower concentration, temperature, 
or pressure. Such diffusive processes apply to a wide range of areas in 
physical science and social science (the same mathematics may describe  
the diffusion of water and the diffusion of stock prices). Diffusion can be 
random or constant. An important influencing factor is the gradient, which 
is the change in one variable per the change in another (for example, the 
change in temperature with respect to a change in distance). The notion of 
a random walk (although not truly random in a multi-particle system due 
to collisions with other particles) is important in describing diffusion. 
Random walk theory suggests that a particle is governed by the overall 
kinetic energy in the system as a global variable that is influenced by 
changes in the diffusion variables (e.g. concentration, pressure, tempera-
ture). Stochastic calculus is widely used to model Brownian motion and 
diffusion, and the concept of diffusion is often applied to any complex 
system that involves large ensembles of individual elements.

15.2.2  Neural dynamics in large-scale models

Since stochastic calculus is used to model complex systems with large 
numbers of particle-many elements and random behavior that is not fully 
understood, these methods are often applied to large-scale brain dynamics 
modeling. The aim is to establish a neural dynamics model that reproduces 
the overall system behavior (the collective large-scale behavior of the 
brain). The approaches to large-scale neural modeling have different 
dynamics formulations, influenced by their statistical distributions 
(Table 15.3). In the three model types, the statistical distributions of col-
lective neural spiking are different. Empirical evidence supporting neural 
ensemble methods suggests that they are either normally distributed or are 
non-normally distributed but still have a recognized distribution (such as 
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bimodal or power law). The larger-scale models, neural mass and neural 
field, do not indicate a recognized statistical  distribution to explain collec-
tive neural firing behavior. Research questions thus target the problem that 
collective neural behavior generates unrecognized statistical distributions.

15.3  Neural Ensemble Models

The neural ensemble approach considers groups of individual neurons  
(a patch of cortex) whose states are assumed to be uncorrelated. Single-
neuron spikes are highly nonlinear. However, it is not clear how to incor-
porate such nonlinear microscale behavior of neurons into graduated tiers 
of macroscopic activity, and how different dynamics models might trans-
late across system scales. In neural ensemble modeling, differential equa-
tions are used to model pools of spiking neurons according to two key 
elements. There is a coupling term that represents synaptic interactions 
between neurons and promotes synchronization within the ensemble, and 
there is a stochastic term that disrupts this effect. The resulting ensemble 
dynamics reflect this mix of interneural coupling and nonlinear neural 
dynamics, and also include noise. Notably, this structure of linear syn-
chronization followed by nonlinear activation is the same that is used in 
the general model of machine learning.

In neural ensemble modeling, the assumption is made that the states 
of the neurons in the ensemble are not correlated. The impetus for this 
is the central limit theorem, in which the sum of uncorrelated random 
processes converges to a Gaussian probability distribution, even if the 
individual processes are highly non-Gaussian. The result is the so-called 

Table 15.3.  Collective neural behavior: Statistical distributions.

No. Approach Description Statistical Distribution

1 Neural ensemble 
models

Groups of individual 
neurons with 
uncorrelated states

Normal (Gaussian), non-Gaussian 
but known (e.g. power law)

2 Neural mass models Local population groups 
of interacting neurons

Unrecognized

3 Neural field models The cortex as a 
continuous sheet

Unrecognized
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“diffusion approximation” as a de facto standard arising in neural ensem-
ble modeling based on the assumption that whatever the underlying indi-
vidual nonlinearities, they can be averaged into system-level measures 
that are normally distributed and obey Gaussian statistics.

Applying the notion of “diffusion approximation”, the activity of the 
neural ensemble, consisting of nonlinear but uncorrelated spikes, can be 
reduced to a standard normal probability distribution described by simple 
linear statistics. The implication is that the activity of such an ensemble of 
neurons can be described by the mean and the variance of the firing rate. 
The mean firing rate reflects the response of the population to its total 
synaptic inputs and the variance reflects the dispersion of stochastic 
effects. The point is that the activity of an ensemble of neurons can be 
described by the mean and variance of the firing rate.

15.3.1  Fokker–Planck dynamics for normal distributions

The activity of the neural ensemble is captured by the mean and variance 
of the firing rate, and the dynamics are articulated by the Fokker–Planck 
equation. The Fokker–Planck equation is typically used to describe the 
dynamics of a linear, normally distributed ensemble because it estimates 
system change per evolution in time. In statistical physics, the Fokker–
Planck equation is a partial differential equation that describes the time 
evolution of the probability density function of particle velocity under the 
influence of drag forces, as in Brownian motion. The same equation can 
be generalized to other systems and different observables.

For a neural ensemble, a Fokker–Planck equation can be derived from a 
basic integrate-and-fire single-neuron model, together with the diffusion 
approximation (El Boustani & Destexhe, 2009). The Fokker–Planck equa-
tion captures the collective response of a neural population to a stimulus. 
Each neuron consolidates its own inputs and effectively submits an indepen-
dent vote to the collective. The mean firing rate is a passive summation of 
the individual neuron responses and encodes the average (most likely) pop-
ulation-based representation of received inputs. The Fokker–Planck equa-
tion also describes the dynamics of the population variance. As the inputs to 
the ensemble change, the Fokker–Planck equation captures the drift (of the 
mean) and the diffusion (change in the variance) of the ensemble activity.
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The Fokker–Planck equation is an analytically achievable model sug-
gesting how local neuron populations may represent their inputs collec-
tively. Using the Fokker–Planck equation reduces the thousands of 
degrees of freedom of a large-scale model of spiking neurons to a picture 
of neural dynamics that is driven by just two variables (the mean activity 
and the dispersion around the mean). Such dimensionality reduction is 
crucial to efforts to move beyond brute-force accounts of the brain (Huys 
et al., 2016). The Gaussian distribution maximizes the ratio of the entropy 
(information diversity) to the variance of the distribution.

15.3.1.1  Heavy tail distributions

To the extent that the statistics of a local ensemble are Gaussian, the stan-
dard (linear) Fokker–Planck equation may provide an accurate description 
of neural dynamics. However, converging evidence from a variety of neu-
ronal recording modalities suggests that the statistics of neural population 
activity are often heavy-tailed and non-Gaussian (Breakspear, 2017, 
p. 344).

A heavy-tailed distribution has tails that are heavier than an exponen-
tial distribution (Bryson, 1974). The tails are heavier, with the greater bulk 
indicating that the probability of extreme events is higher than normal. 
Sometimes “heavy tail” and “fat tail” are used to mean the same thing, for 
example, in finance with the black swan effect that high-magnitude events 
occur more frequently than expected (Taleb, 2007). However, “fat tail” 
refers to a specific subclass of heavy-tailed distributions that exhibit 
power law decay behavior as well as infinite variance. Every fat-tailed 
distribution is heavy-tailed, but not every heavy-tailed distribution is 
fat-tailed.

In neural signaling, heavy-tailed distributions are typically those in 
which the right tail is larger or heavier than that of an exponential distribu-
tion, closely following a Fisher–Tippett (double-exponential) distribution. 
This means that large-amplitude events occur by chance more often than 
expected for an exponential distribution because they are drawn from a 
heavier right-hand tail (Roberts et al., 2015). In the neural context, the 
heavy tails mean the occurrence of synchronized bursts of activity that 
violate the diffusion approximation. The synchronized activity consists of 
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erratic bursts of correlated states from the microscale to the macroscale 
that cause non-Gaussian fluctuations.

The heavy tails arise from fluctuations that are larger and more 
 frequent than those permitted under the diffusion approximation and 
 correspond to the formation of correlations among distant neurons. 
Correlations among neurons appear to arise from synchronization either 
in their firing or in the modulations of their firing rates. It seems that long-
range correlations occur when the underlying tendency for coupled 
dynamical systems to synchronize overwhelms the disruptive effects of 
the noise within the ensemble. The implication is that neurons do not 
simply filter their inputs and passively contribute to the ensemble mean, 
but synchronize themselves according to dynamic feedback from the 
mean in an active real-time feedback loop which acts to increase firing 
coherence. This is evidence of active behavior in synaptic integration.

The traditional (linear) Fokker–Planck equation depends on the diffusion 
approximation, namely, that the activity of neurons or groups of neurons is 
not correlated when measured at different points in the system of interest. 
However, real-life neuronal behavior is correlated. The Fokker–Planck equa-
tion is limited in that while it can accommodate local spike correlations 
among neurons within small circuits, on a larger-scale, it requires that correla-
tions between more distant neurons are weak, and disappear at the scale level 
of the entire system. The Fokker–Planck model therefore does not support 
long-range correlations. The correlation length in the model is considerably 
shorter than the spatial scale of the system. The reality exceeds the model.

15.3.2  Beyond linear Fokker–Planck equations

Breakspear (2017) is in some sense the Taleb of neural dynamics model-
ing in drawing attention to the fact that large-scale statistical activity in the 
brain is not normally distributed and that heavy tails are more prevalent 
than might be thought, just as the black swan effect indicates that high- 
magnitude events happen more frequently in real-life than might be 
thought (Taleb, 2007). Since the traditional neural ensemble method based 
on the diffusion approximation does not explain large-scale neural signal-
ing behavior, alternative models are needed to describe the short-distance 
(UV) and long-distance (IR) correlations that are observed in neural imag-
ing data. Two directions are taken, adjusted Fokker–Planck equations if 
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the statistical distributions are nonlinear but still recognized (e.g. bimodal 
or power law), or various oscillation-based and other models when the 
statistical distributions are unrecognized.

15.3.2.1  Recognized nonlinear probability distributions

In the case that collective neural firing statistics conform to other known 
probability distributions, they can be modeled with nonlinear or fractional 
variations of the Fokker–Planck equation. Of these, nonlinear Fokker–
Planck equations accommodate higher order interactions between the 
mean and noise terms. The result is that a system (such as a financial 
market) that becomes more volatile during high throughput (such as high-
volume trading) can be modeled with a nonlinear Fokker–Planck equa-
tion. Another variation, fractional Fokker–Planck equations, is based on a 
generalization of the calculus to model stochastic systems with persistent 
long-range correlations, as widely observed in neuroscience.

Longer-range correlations typically have slower timescales than 
shorter-range behavior. In an example of fractional calculus neuroscience 
research, Lundstrom et al. (2008) investigate how stimuli with complex 
temporal dynamics influence the dynamics of system adaptation and the 
resulting firing rate. The finding is that rodent neocortical pyramidal neu-
rons adapt with a time scale that depends on the time scale of changes in 
the stimulus statistics. The time scale adaptation is consistent with frac-
tional order differentiation, such that the neuron’s firing rate is a fractional 
derivative of stimulus parameters that vary more slowly.

The two non-standard Fokker–Planck equations (nonlinear and frac-
tional) are part of the broader domain of random field theory methods 
which can be adapted to non-Gaussian yet well-behaved scenarios. 
Random field theory is an emerging area of mathematics which defines 
results for smooth statistical maps. An assumption is made that values in 
a random field nevertheless have some degree of spatial correlation (Adler 
& Taylor, 2007). AdS/Mathematics approaches might apply.

15.3.2.2  Unknown probability distributions

In the case that collective neural firing statistics do not obey recognized 
probability distributions, there are two proposals for their modeling:  neural 
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mass and neural field models. Neural mass models consider a local 
 population of interacting neurons together as a group. Neural field 
 models treat the cortex as a continuous sheet. Analyzing unrecognized 
probability distributions in dynamical systems is a research frontier, and 
while an active area in theoretical physics, is not as well explored in 
neuroscience.

The brain modeling exercise undergoes a conceptual shift in transi-
tioning from small ensembles of neurons to the large-scale behavior of 
population groups (neural mass models) and whole-brain analysis (neural 
field theories). Probability distributions are no longer the main framework 
for analysis but rather networks of connected nodes. There may not be a 
significant distinction in methods between the two scale tiers, as both 
neural mass and neural field models draw from the same basic principles 
and neural mass models are themselves the building blocks of neural field 
models (Coombes & Byrne, 2019). The three approaches to collective 
neural behavior modeling (neural ensembles, neural mass, and neural field 
theories) appear in Table 15.4 along with their statistical distribution sta-
tus and neural dynamics models.

Table 15.4.  Collective neural behavior: Neural dynamics.

No. Level Description
Statistical 

Distribution Neural Dynamics

1 Neural ensemble 
models

Small groups of 
neurons, uncorrelated 
states

Normal 
(Gaussian)

Linear Fokker–Planck 
equation (FPE)

2 Neural ensemble 
models

Small groups of 
neurons, correlated 
states

Non-Gaussian 
but known 
(e.g. power 
law)

Nonlinear FPE, 
Fractional FPE

3 Neural mass 
models

Large-scale populations 
of interacting 
neurons

Unrecognized Wilson–Cowan, 
Jansen–Rit, Floquet 
model, Glass 
networks, ODE

4 Neural field 
models

Entire cortex as a 
continuous sheet

Unrecognized Wavefunction, PDE, 
Oscillation analysis
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15.3.3  Neural signaling: Orbits and bifurcation

The large-scale brain modeling of collective neural firing is generally based 
on a model of the interaction between some parts of the system that are stable 
and others that are unstable, and how they influence each other. The two 
central aspects may be orbits and activations. Activation or firing is modeled 
through bifurcation. A bifurcation is an instability, an attractor (organizing 
parameter) that changes dramatically, such as transitioning from a resting 
state to a firing state. A resting-to-firing bifurcation is triggered by the coor-
dination of information signals. Signaling information occurring around 
system critical points is modeled as orbits (just as those of a particle or astro-
nomical bodies) which in general may be regular and periodic, but have 
corrections and influencing effects. Dynamical instability is implicated in the 
formation of disease and assessed in biomedical modeling (Swan, 1984).

System critical points are related to stability. The basic model is the 
Turing instability, a violation of the Turing pattern. The Turing pattern is 
a reaction-diffusion model showing that two diffusible substances are 
likely to interact with each other to form a spatially periodic pattern irre-
spective of diverse initial circumstances (Turing, 1952). However, the 
Turing model is known to be insufficient at fully explaining nonlinear 
behavior in complex systems (Ermentrout & Cowan, 1979). Beyond-
Turing instability models are needed to account for the more complex 
nonlinearity observed in neural signaling behavior (Coombes, 2005). For 
signaling activation, many  models assess the Hopf bifurcation (Gardiner, 
2009), a system critical point at which a periodic orbit appears or disap-
pears due to a local change in stability (Byrne et al., 2019). A more 
advanced model is the Bogdanov–Takens bifurcation, which is codimen-
sional, as opposed to Hopf bifurcations and saddle-node bifurcations 
which have a codimensionality of one (Cowan et al., 2016). The codimen-
sion is the difference between the dimension of an object and the dimen-
sion of a smaller object contained within it.

15.3.3.1  Empirical data and oscillatory neural dynamics

These models could persist in the further attempt to study new kinds of 
whole-brain data as they become available. Empirical data (EEG) and 
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computational modeling (null hypothesis testing) support the oscillatory 
models of neural dynamics used in neural mass models and neural field 
theories. Such research models of observational data (applying the Hopf 
bifurcation) indicate multistability in healthy brain resting states, and 
bifurcation to a chaotic attractor in brains undergoing seizure (Breakspear, 
2017, p. 346). Multistability occurs in dynamical systems when system 
noise causes the states to jump erratically between two or more co- 
occurring phase-space attractors, each with their own basin of attraction, 
essentially as a noise-driven switch between multiple weakly stable states. 
In healthy brain resting states, an analysis finds the multistability of corti-
cal activity to switch between a high-amplitude, nonlinear 10 Hz oscilla-
tion (alpha rhythm) and low-amplitude filtered noise (Freyer et al., 2012). 
This is not unusual as other multistable neural patterns exist such as bin-
ocular rivalry and certain sensorimotor system behaviors. In the case of 
seizure, onset is found to correspond to the appearance of sustained high-
amplitude nonlinear oscillations, suggesting a bifurcation from the resting 
state to a limit cycle or chaotic attractor (Altenburg et al., 2003).

15.4  Neural Mass Models

15.4.1  Brain networks approach

Neural mass models consider the mass action of a local population of 
neurons interacting together as a group. The method attempts to reduce 
dimensionality while incorporating short-distance (UV) and long-distance 
(IR) correlations within a network structure. The idea is that “Each center 
is a pool of neurons acting in parallel with each other, and the action of 
each center is considered to be the sum of the actions of its neurons” 
(Freeman, 1975, p. 4). Neural mass models are widely used in large-scale 
brain modeling. At the individual node level, they are written in terms of 
a set of ordinary differential equations with a nonlinearity (spiking activa-
tion) that is typically a sigmoidal shape. Using structural data from brain 
atlases, neural mass models are connected in a network structure to inves-
tigate the emergence of functional dynamic states such as synchronous 
firing. Neural mass models are used in connectome projects and are 
empirically informed by tractography (a three-dimensional modeling 
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technique used to visually represent nerve tract data collected by diffusion 
MRI). A network framework is used to explicitly analyze transitions 
between the individual node level and the network level.

The coupling of neural mass models into a larger brain network 
 structure is accomplished through the growing knowledge of anatomical 
connectivity. Connectome data is helping to elucidate short-distance and 
long-distance correlations in the brain. One finding is that although long-
distance correlations play a role, the main form of collective neural activ-
ity is dense short-range connections that quickly (exponentially) diminish 
with distance (Horvat et al., 2016). As compared with other species 
(rodent and primate), the human brain has weaker long-distance connec-
tions, which could explain why humans are subject to disconnection-
related pathologies such as Alzheimer’s disease. Connectomics and 
tractography are good sources of accurate human anatomical information 
that facilitate this kind of study.

15.4.2  Technical aspects of neural mass methods

The statistical basis for neural mass models is investigating how an overall 
population of neurons behaves, as opposed to whether individual neuron 
states are correlated or not (as in neural ensemble models). Neural mass 
models are based on the assumption that the coherence between neurons 
in a population is so strong that the overall dynamics of a population of 
neurons resembles that of each single neuron. Accordingly, the overall 
population activity is modeled with the same conductance-based model as 
used in single-neuron models. The assumption is relaxed somewhat by 
replacing the all-or-nothing firing of individual neurons with a sigmoid-
shaped activation function that maps the average membrane potential to 
the mean firing rate. The breadth of the sigmoid function incorporates the 
variance of individual neural thresholds (Breakspear, 2017). An important 
difference between modeling projects using neural mass models and 
Fokker–Planck equations is that the variance is constant in neural mass 
models whereas it varies in Fokker–Planck equation-based methods. 
Neural mass models often consist of a conductance-based spiking excit-
atory neuron pool coupled to a passive local inhibitory pool and can 
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exhibit steady state, periodic, or chaotic oscillations such as through the 
mixing of fast and slow timescales.

In terms of dimensionality reduction, since there is a strong presence 
of coherence (indicated by signaling synchronization), a further assump-
tion is made that the ensemble activity is sufficiently close to the mean 
that the variance can be discarded. This reduces the number of dimen-
sions to one and allows multiple interacting local populations, such as 
excitatory and inhibitory neurons in different layers of the cortex, to be 
modeled by a small number of equations, each describing the mean activ-
ity of a neural population (Breakspear, 2017). The conductance-based 
models that describe the behavior of individual neurons can be translated 
into signals that comprise an equivalent neural mass, applied at the popu-
lation level (Woolrich & Stephan, 2013, p. 332). The point is that the 
dynamics within each network node incorporate both activity from the 
local population, and influences from farther regions in the form of sto-
chastic fluctuations (correlations), elements which have been difficult to 
combine in one model. Such large-scale brain network models produce a 
multiscale ensemble-of-ensembles with distinct principles of organiza-
tion operating at different scales (Breakspear & Stam, 2005). Neural mass 
models could be the start towards a set of universal principles for bridging 
scales and connecting a local patch of the cortex to the overall brain.

15.4.2.1  Oscillatory dynamics: Jansen–Rit neural mass model

A well-known neural mass model developed from empirical data is the 
Jansen–Rit model (1975). The model recapitulates a large variety of 
observed EEG-like waveforms and rhythms. The structure is the coupling 
of two models, with delays in the interconnections to simulate the synap-
tic connections within and between cortical areas. The delayed intercon-
nection of the two models makes it possible to replicate the spatial 
distribution of alpha and beta wave activity. Electrical potentials are 
 simulated by presenting pulses to the input of the coupled models. The 
simulations suggest that real-life scalp-recorded electrical potential is 
at least partially due to a phase reordering of the ongoing activity. 
Such Jansen–Rit structures of delay-coupled subsystems are one standard 
model of neural dynamics.
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Forrester et al. (2020) employ a network approach to find that local 
oscillatory dynamics can have a substantial role in shaping the large-scale 
functional connectivity patterns in the brain. The work uses data from 
the Human Connectome Project (van Essen et al., 2013) to develop a 
tractography-based network of structural connectivity. Within this net-
work connectivity structure, the research considers synchrony between 
neural subunits whose dynamics are described by a Jansen–Rit model. 
Specifically, connected pyramidal populations are analyzed, encoded in a 
connectivity matrix with elements describing both structural and func-
tional connectivity. The key finding is that structural connectivity heavily 
influences functional connectivity in certain structural cases, and other-
wise only has a weak influence. Functional connectivity is inherited 
robustly from structure when node dynamics are poised near a Hopf bifur-
cation, while structure only weakly influences functional connectivity 
near false bifurcations. Neural dynamics can be complicated to model as 
both global and local patterns of oscillation arising from structural con-
nections appear to impact the brain.

15.4.2.2  Non-smooth dynamics and the Floquet model

Coombes et al. (2018) extend the Wilson–Cowan mean-field model with 
Floquet (periodic) methods, to propose networks of piecewise intervals to 
study non-smooth dynamical systems. Neural models have mainly exam-
ined smooth dynamical systems (via low-dimensional coupled ordinary 
differential equations within a smooth sigmoidal firing rate nonlinearity), 
but might be improved by an understanding of non-smooth dynamical 
behavior. In both physics (Colombo et al., 2012) and neuroscience, there 
is an impetus to investigate non-smooth dynamical systems.

The main aim of neural mass models is elaborating the interrelation 
of individual nodes within the overall network. A key problem of interest 
is understanding stable periodic network states that nevertheless give way 
to discontinuous firing behavior. Coombes et al. (2018) proceed by 
replacing the smooth sigmoidal nonlinearities in neural mass models with 
more tractable functions as a piecewise linear alternative. Floquet theory 
(treating periodicity) is applied at both the node and the network level as 
a stability calculation measure, to assess spatiotemporal patterns arising 
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from instability (firing). Stability analysis is more complicated at the net-
work level and a model of Glass networks is incorporated to model the 
stability of periodic network states in neural mass models with discontinu-
ous interactions. Glass networks are used to study periodic and aperiodic 
switch-like behavior in biochemical networks (Glass & Kauffman, 1971). 
The result of the work is extending neural mass models to the network 
level by articulating the construction of periodic orbits, and completing an 
analysis of network states of discontinuous firing rates.

Floquet theory is the class of solutions to periodic linear differential 
equations in which there is a piecewise continuous periodic function. 
Piecewise functions are defined by multiple sub-functions applying to dif-
ferent intervals in the domain. Non-smooth dynamical models might 
apply to neural signaling because piecewise functions are consistent with 
other neural systems such as the human visual system.

15.5  Neural Field Models
Cortical neural tissues can be regarded mathematically as neural fields 
which form and propagate interacting patterns of excitation

— Amari (1977, p. 77)

For the robust treatment of the whole brain, neural field models are 
employed which consider the cortex as a continuous sheet. Transmitting 
information between brain regions produces waves of activity that fan out 
across the entire brain. Such brain waves are readily observed using  
noninvasive techniques such as EEG and MEG, and also appear in brain 
slices (Byrne et al., 2019). Both experimental and theoretical research 
indicates that EEG/MEG recordings and evoked potentials exhibit travel-
ing and standing waves (Nunez & Srinivasan, 2006). Neural field models 
are thus developed based on the needs of empirical science to describe 
wave states in the brain (Nunez, 1974). The word “field” denotes a con-
tinuous mathematical function in time and space, in the neural context, to 
relate the number densities of active excitatory and inhibitory synapses in 
each cortical tissue mass. EEG activity seems to be generated by synaptic 
current sources that can be characterized as “global fields of synaptic 
action” (Nunez & Srinivasan, 2006, p. 2424). Such synaptic action fields 
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are short-time modulations in the number densities of active excitatory 
and inhibitory synapses.

Neural field models have long been used as models of large-scale 
pattern formation in the cortex (Bressloff, 2012; Coombes, 2005). These 
models are typically structured as a system of nonlocal partial differen-
tial equations which describes the spatiotemporal evolution of coarse-
grained population variables, such as the firing rate of a neuronal 
population, the average synaptic current, and the mean membrane poten-
tial (Coombes et al., 2014). Nonlocality arises via spatial integrals that 
are meant to represent the influence of neurons at many different spatial 
locations onto the dynamics of a specific location. In the laboratory set-
ting, neural field models are essentially nonlinear wave models. Neural 
field theories attempt to account for a broad spectrum of empirically 
obtained wave-like data, such as the propagating fronts of oscillatory 
activity observed in sensory and motor cortices (Muller et al., 2014). The 
local connectivity footprint can be written as a wave equation, in the 
form of a partial differential equation with temporal and spatial deriva-
tives (Jirsa & Haken, 1996). Neural field models have been successful in 
describing neurophysiological phenomena such as EEG/MEG rhythms, 
working memory, binocular rivalry, and orientation tuning in the visual 
cortex (Byrne et al., 2019).

15.5.1  Statistical theory of neuron dynamics

Realizing the need to formulate a statistical theory of neuronal dynamics, 
the first neural field models focused on the description of excitatory spike 
activation and the propagation of large-scale brain activity (Beurle, 1956). 
Wilson and Cowan developed these ideas into a mean-field theory model 
that includes a second inhibitory layer and refractory behavior (accom-
modating the three quiescent, active, and refractory neuronal states) 
(Wilson & Cowan, 1972, 1973). Mean-field theory is a renormalization 
method in which the mean value of a field is taken as a solvable value that 
approximates a generally intractable system of underlying complexity by 
averaging over its degrees of freedom. Applications include recasting a 
wavefunction or lattice-based problem into the solvable model of a mean-
field theory.
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In the brain, connectivity patterns in the neocortex appear to follow a 
laminar arrangement, with strong vertical coupling between layers. Thus, 
cortical activity in models is often considered as occurring on a two-
dimensional plane, with the coupling between layers providing for near 
instantaneous vertical propagation. Synaptic input current is modeled as a 
function of the presynaptic firing rate function. The Wilson–Cowan mean-
field theory is aimed at describing spatially localized bumps (concentrated 
clusters of observed behavior) and confirmed with computer-simulated 
experiments that indicate recurring patterns of dynamics. Amari further 
develops the “standard neural field model” into a single equation (Amari, 
1975, 1977). Introducing a Mexican hat-type coupling function (local 
excitation coupled with long-range inhibition), the model is reduced to a 
single equation with a mix of excitatory and inhibitory connections that 
accurately computes spatially localized patterns. Subsequent work extends 
these ideas into a statistical neural field theory (Buice & Cowan, 2009) 
which considers system criticality by using path integral methods to make 
corrections to the mean-field theory approach. Adaptations to neural field 
theory methods persist, for example, in the investigation of criticality in 
models with very large deviations (Bressloff, 2015).

15.5.1.1  Oscillatory neural dynamics

Neural dynamics are elaborated in the Amari model (1977) via oscilla-
tory behavior. The dynamics of patterns in the neural field play an essen-
tial role in cortical information processing. An excitatory-inhibitory 
oscillation model is proposed in the form of a two-layer  network. In the 
model, a field’s dynamics depend on the mutual connections (entropy, 
correlations) within the field and the level of homogeneous stimulus the 
field receives. The neural field theory is an example of how nonhomo-
geneous pattern formation can occur in a homogeneous field. The prob-
lem of nonhomogeneous pattern formation from homogeneous fields 
has been studied extensively using the reaction-diffusion model, starting 
with Turing (1952) in the context of morphogenesis. The structure of 
Amari’s theory, which has an alternating linear (input function) and non-
linear (output function) structure, lends itself to the similar alternating 
linear-nonlinear structures of tensor networks (disentanglers and 
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isometries (Vidal, 2008)) and machine learning (max pooling, and convo-
lutions-activations (LeCun et al., 2015)). The problem frame of homoge-
neous fields giving rise to non-homogeneous pattern formation identified 
by Amari (1977) is similar to that of understanding stable periodic net-
work states that nevertheless give way to discontinuous firing behavior 
(Coombes et al., 2018). 

15.5.2  Neural field theory in practice

15.5.2.1  Multiscale models

In the empirical setting, Nunez et al. (2019) develop a biophysical frame-
work for the interpretation of electrophysiological data recorded at 
 multiple spatial scales of brain tissue. Microscale current sources at mem-
brane surfaces produce local field potentials, electrocorticography, and 
EEG data that need to be understood together in an overall macroscale 
model. The team conducts a columnar analysis to connect microscale cur-
rent sources to the macroscale. Microscale current source properties are 
determined by brain dynamics and the columnar structure of cortical tis-
sue. Specifically, macroscale current sources are defined at the macrocol-
umn scale (mm) and depend on several features of the microscale current 
source properties, such as magnitude, micro synchrony within columns, 
and distribution through the cortical depths. The proposed theoretical 
framework informs studies of EEG source localization and characteri-
zation, and could facilitate interpretations of brain dynamics including 
synchrony, functional connections between cortical locations, and other 
aspects of brain complexity.

15.5.2.2  Synchrony: Simultaneous arrival of signals

In other work, Nunez et al. (2015) investigate axon propagation 
speeds. Synaptic signals must have different speeds because they arrive 
simultaneously at the postsynaptic neuron despite having widely varying 
path lengths (Fields, 2013). Such synchrony appears to be achieved by 
farther away axons having higher propagation speeds, and nearby axons 
having slower speeds (an interesting puzzle given the relative basis of 
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“near” and “far”). For example, axons from peripheral retinal regions 
conduct faster than axons from neurons at the center of the retina to ensure 
the simultaneous arrival of impulses in the brain (Stanford, 1987). 
Myelination is also implicated as myelin-deficient rats showed that 
myelination was the primary factor producing uniform propagation 
latency despite variation in axon length (Lang & Rosenbluth, 2003).

Hence, myelination is known to be a factor in an axon’s potential 
speed. Propagation speed varies among different types of axons, and many 
axons are slowly conducting and unmyelinated. The human corpus callo-
sum is unmyelinated at birth, and about 30% of the fibers remain unmyelin-
ated in adults. The propagation time between the hemispheres was found to 
be 30 milliseconds through myelinated callosal fibers and 150–300 milli-
seconds through unmyelinated fibers (Fields, 2008). Demyelination pathol-
ogies severely limit signal conductance, and thus having higher-resolution 
tools to measure such degradation is of interest. To better assess the con-
duction time through axons from presynaptic neurons, Nunez et al. (2015) 
propose a closer analytical relationship between EEG functional connectiv-
ity measures. The specific recommendation is to examine the relation of 
narrow band (1 Hz) alpha and theta wave coherence to axon propagation.

15.5.2.3  Neural field theory simulation and filtering

Contemporary research often starts with traditional neural field theories as 
a base and adds new features. The mean-field model developed by Wilson 
and Cowan (1972) and the two-layer excitatory-inhibitory network model 
developed by Amari (1977) are the basic neural field models. Although 
there are many software tools for modeling single neurons and neuronal 
networks (such as NEURON, GENESIS, BRIAN, and NeoCortical 
Simulator), there have not been many options for larger-scale neuronal 
models. Sanz-Leon et al. (2018) present a user-ready software package, 
NFTsim, to facilitate the numerical simulation of a wide range of brain 
systems using continuum neural field modeling. The package code is writ-
ten in C++ and bundled with Matlab routines for the rapid quantitative 
analysis and visualization of the outputs. NFTsim is at the scale of the 
whole brain, in particular incorporating long-range pathways such as 
thalamocortical projections when generating macroscopic activity fields. 
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The multiscale nature of the model allows various neuroimaging tech-
niques (EEG, MEG, fMRI) to be integrated with neural field analysis.

Janvier and Robinson (2018) extend ongoing neural field theory work 
to model corticothalamic responses to visual stimuli. The result is transfer 
functions that embody key features in common with those of engineering 
control systems, which enables the interpretation of brain dynamics in 
terms of data filters. Corticothalamic dynamics are shown to be analogous 
to the classical proportional-integral-derivative (PID) filters that are 
widely used in engineering. The work concludes that neural dynamics can 
be interpreted within a control systems framework. This suggests the fur-
ther application of engineering concepts in filtering (such as gain tuning) 
to neural field theories. The method surpasses other control systems meth-
ods used to analyze neural dynamics such as Kalman filtering (Rao & 
Ballard, 1999), which become reduced or constrained forms of Bayesian 
learning under optimal estimation theory. Optimal control has been dem-
onstrated as an important method of biomedical modeling in drug delivery 
as disease states may be manifestations of unstable control loops (Swan, 
1984, p. 47; Moore, 2018), and is now being extended to quantum optical 
control (Boscain et al., 2020).

15.5.2.4  Firing synchrony within populations of neurons

Establishing models of firing synchronization within populations of neu-
rons is an important research topic in neural field theory. EEG scalp elec-
trodes typically capture the activity of about 109 cortical pyramidal cells 
and can only detect an electric field if all of the individual cell dipoles add 
coherently (da Silva & Rotterdam, 2005). Only being able to capture fully 
coherent synchronizations (looking for keys under the light) may ignore 
other more subtle synchronization and desynchronization processes oper-
ating within a population of neurons. These kinds of subtleties are also 
observed, as an increase and decrease of power in certain EEG/MEG 
frequency bands. The temporal variations are thought to be the result of 
changes in synchrony within the neural tissue. Consequently, neural field 
models need to incorporate dynamic within-population synchrony pro-
cesses to more accurately describe the evolution of large-scale spatio-
temporal brain rhythms.
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The usual method for modeling within-population synchronization 
is a spiking neural network model, a network-based on standard bio-
logical neuron models such as theta neurons or integrate-and-fire neu-
rons. Sometimes these models are too high-dimensional for the problem 
and need to be reduced. For example, spiking neural network models 
may admit an exact mean-field description, but without a spatial com-
ponent. It is important, however, to localize population signaling activ-
ity and synchronization in space and time. Byrne et al. (2019) construct 
a more precise and reduced neural field model based on spatially dis-
tributed theta neurons that incorporates within-population synchrony 
and synaptic coupling. The model recapitulates patterns seen in net-
works of spiking neurons such as bumps (spatially localized increases 
in population firing), breathers (stable breathing-type rhythms), and 
waves. The work provides a general mathematical procedure for linking 
microscopic dynamics to macroscopic dynamics. In addition, a beyond-
Turing instability analysis is given for spatially and temporally periodic 
patterns in neural behavior.

Byrne et al.’s (2019) model describes novel synchronization behavior, 
namely, exotic states (spatiotemporal patterns), which might further 
explain within-population synchronization processes. Applying instability 
analysis to articulate transitions from resting to signaling behavior, the 
finding is that Turing and Hopf unstable modes compete, resulting in a 
characteristically complex spatiotemporal pattern, in which temporal 
oscillations develop within each bump of a Turing pattern. The intersec-
tion point of the Turing and Hopf curves and the exotic spatiotemporal 
patterns are robust to changes in parameters. The surprise is that the Hopf 
bifurcation creates regional bistability in some cases, such that the signal-
ing network supports both local oscillations and dynamic global patterns. 
Such exotic state patterns have both a spatial and a temporal period. In this 
way, the brain is like a superconducting spacetime crystal, namely, 
becoming superconducting in the sense of undergoing a phase transition 
(from resting to signaling) based on periodic spatial and temporal  
behavior (Lin et al., 2019), which might possibly be further described by 
a Floquet (periodic) model (Else et al., 2016).

In the same research trajectory, Laing likewise develops a network of 
spatially extended theta neurons to demonstrate how large networks of 
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spiking neurons might self-organize in time in both synaptic (2015) and 
gap junction coupled systems (2016). Montbrio et al. (2015) also employ 
a spatially extended approach, in a reduced network based on quadratic 
integrate-and-fire neurons instead of theta neurons. The work indicates 
that spike generation in individual neurons introduces an effective 
 coupling between two biophysically relevant macroscopic quantities, the 
firing rate and the mean membrane potential, which together govern 
the evolution of the network. Further, a conformal mapping is used to 
relate the firing rate description to a low-dimensional description of the 
Kuramoto oscillation order parameter. This suggests a prototypical AdS/
Brain application in the sense of a mapping between higher and lower-
dimensional regimes.

The central idea is studying brain-wide signaling as a field theory. The 
flexibility of neural field models indicates their potential adaptability 
to more extensive physics-based modeling and quantum computational 
platforms. For example, it is possible to choose the model of space, and 
of time (Laing, 2016). It is also possible to choose and interchange coor-
dinate systems, between quadratic integrate-and-fire biological neuron 
model and theta neurons, for example (Byrne et al., 2019). Given the 
computational requirements of calculating the partial differential equa-
tions that define neural field theories, quantum computing platforms 
might be of aid. Greater computational capacity could allow more biologi-
cally realistic features to be incorporated into the models such as dendritic 
integration. Numerical advances have already enabled more complicated 
large-scale neural firing behavior to be described that is inaccessible to 
earlier methods (such as getting beyond the Heaviside firing rate function 
limit in the Amari equation, and beyond-Turing instability analysis with 
more sophisticated spatial and temporal periodicity models). Overall, 
neural field theories, and all models of neural dynamics, could see further 
development on quantum platforms.

15.5.3  Statistical neural field theory

Statistical neural field theory is a method developed by Cowan to extend 
the mean-field Wilson–Cowan equations to situations of criticality and 
to include fluctuation and correlation effects (Ohira & Cowan, 1993; 
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Buice & Cowan, 2009). The method includes many foundational physics 
formulations that extend traditional neuroscience models. Neural signal-
ing is modeled as a Markov process of Gaussian random walks consoli-
dated into random fields with path integrals, structured as a diffusion 
equation. The solution to the diffusion equation is a Gaussian propagator 
or Green’s function. The Green’s function plays the role of propagators 
that refer to two-point correlation functions (amplitudes or expectation 
values). From the Markov model, the master equation describing the 
overall system is written, through which further derivations include neu-
ral field equations, the neural spike Hamiltonian, and the renormalized 
action.

The neural dynamics are based on a random graph process, called 
directed percolation, which results in phase transition. Notably, 
Fokker–Planck equations are not used to model the dynamics, but 
rather a tripartite model of 3 × 3 matrices in the SU(3) Lie algebra 
group that better corresponds to the three states of neurons (quiescent, 
active, refractory). These dynamics lead to a nonlinear system whose 
renormalized action is that of Reggeon field theory (an early model of 
strong force scattering amplitudes). The result is that the transition 
from spontaneous neocortical activity around a critical point to large-
scale activity can be modeled as a nonequilibrium phase transition, in 
the same universality class as directed percolation, which describes the 
observed neural behavior of branching-aggregating neurons in random 
walks (Hinrichsen, 2000). The implication is that such a phase transi-
tion has a known mathematical signature characterized by certain criti-
cal exponents, and can be readily recognized in real-life experimental 
data (Buice & Cowan, 2009, p. 83).

State transitions are managed by ladder operators, a quantum 
 mechanical method by which first an annihilation operator (lowering 
operator) is applied to remove a particle from the initial state, and then 
a creation operator (raising operator) is applied to add a particle to the 
final (new) state. The ladder operators act on combinations of the tripar-
tite matrices to produce system state transitions. The mathematical ben-
efit is that the master equation for the system can be written algebraically 
in terms of easy-to-manipulate ladder operators. Coherent states 
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(oscillatory quantum states), used to represent statistics in quantum field 
theory, are used to interpret the Markov random fields. The neural action 
(equations of motion) is based on a Poisson initial state distribution and 
then a coherent state (oscillatory) Hamiltonian (Buice & Cowan, 2009, 
p. 63).

The neurons themselves are structured as a d-dimensional lattice. 
The neural state vector describes the possible configurations of the net-
work. A probability is assigned to each possible configuration, and the 
weighted probability configurations are summed over with a path inte-
gral to obtain the probability state vector of the system. Number density 
operators are used to count the number of neurons in the three different 
states, and also the electric current (excitation) coming onto the net-
work. The influx of excitation is computed by weighting the number 
density of active states by the weighting function of each active neuron. 
The result is that the master equation is written as an evolution operator 
that counts all the possible state transitions in and out of the system 
states, in terms of space and time, and is equal to the total energy of the 
system.

The statistical neural field theory, especially the dynamics structure of 
the directed percolation phase transition, has implications for further 
extension to time symmetry and superconducting models. An intrinsic 
property of the directed percolation phase transition is that it exhibits 
time-reversal symmetry (Buice & Cowan, 2009, p. 81), and thus might be 
modeled with out-of-time-order correlation functions (Swingle et al., 
2016), spacetime crystals (Lin et al., 2019), or at minimum Floquet peri-
odicity (Else et al., 2016). The link to superconducting is also through the 
phase transition structure as materials become superconducting when they 
reach a critical temperature and undergo a phase transition. The directed 
percolation phase transition has an upper critical dimension governing the 
transition from the critical point to a nonequilibrium phase transition. The 
critical exponent of four (Buice & Cowan, 2009, p. 83) may be interpreted 
in the context of the Ginzburg criterion for phase transition to supercon-
ductivity based on an expression involving 4π for the upper limit to the 
density of atomic vortices in material in the Landau–Ginzburg theory of 
superconducting (Hartnoll et al., 2018, p. 130).
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15.5.4  Quantum neural field theory

Contemporary neural field theories fall into four classes, each with vari-
ous models of neural dynamics (Table 15.5). These include empirically 
driven models (with dynamics described by multistability, Hopf bifurca-
tion, oscillation, and synchrony), theoretically driven models (with 
dynamics articulated by Floquet models and Hopf bifurcation), founda-
tional physics-driven statistical neural field theory (with directed percola-
tion phase transition dynamics), and network neuroscience models (with 
oscillatory graph-based dynamics).

In the empirical setting, neural field theories are proving successful in 
the interpretation of neuroimaging data, as indicated by Nunez et al. 
(2019), Breakspear (2017), and Valdes-Sosa et al. (2009), particularly 
using the mean-field theories of Jansen and Rit (1995) and Liley et al. 
(2002). These models could persist in the further attempt to study new 
kinds of whole-brain data as they become available. In theoretically driven 
approaches, promising expansions in mathematical analysis are suggested 
by Coombes et al. (2018) and Laing (2016) in the use of Floquet theory 
and Hopf bifurcation to develop beyond-Turing instabilities to character-
ize stable periodic network states that produce discontinuous firing behav-
ior. With its foundational physics-based roots, Cowan’s statistical neural 
field theory could be central to the implementation of neural field theories 
on quantum platforms (Swan et al., 2020). The neural field theory is struc-
tured as a master equation with Markov processes expressed as a solvable 
path integral. Bressloff (2015) and Chow and Buice (2015) have further 
adapted path integral methods to the specialized context of large-scale 

Table 15.5.  Neural field theory classes.

No. Focus Neural Dynamics

1 Empirically driven Multistability, Hopf bifurcation, oscillation, 
synchrony

2 Theoretically driven Floquet theory, Hopf bifurcation, beyond-Turing 
instability

3 Foundational physics-based Directed percolation on random graphs

4 Network-based Graph-based oscillation
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neural modeling. Finally, network neuroscience models with a conducive 
format of graph-based oscillatory structures of neural dynamics might be 
the most readily implemented neural field theories on quantum platforms 
(Bassett et al., 2018; Papadopoulos et al., 2020).

Neural field theories and other models of neural dynamics and large-
scale brain behavior highlight the relevance of physics-based neurosci-
ence approaches. The possibility of instantiating neural models on 
quantum computing platforms, together with the influx of greater stores 
of real-life whole-brain data, could greatly extend the reach, explanatory 
capability, and further innovation of these models. The physics-based 
underpinnings of neural field theories suggest their well-formedness for 
quantum implementation to target the bulk properties of the brain at rel-
evant scales and dynamics, including for projects that are difficult to man-
age at present such as dendritic integration.
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Chapter 16

Quantum Machine Learning

The wave function is the fundamental object in quantum physics and 
possibly the hardest to grasp in a classical world … the systematic 
machine learning of the wave function can reduce this complexity to a 
tractable computational form

— Carleo and Troyer (2017, p. 602)

Abstract

This chapter discusses quantum machine learning as one of the first 
mainstream applications of quantum computing. Modeling classical data 
as quantum wavefunction states allows hidden information in the under-
lying system to be accessed through wavefunction amplitude. A greater 
amount of information can be incorporated in the compact and complex 
format by encoding an exponentially large number of values into a set of 
qubits. Wavefunction approximation and quantum state simulation (with 
transformer neural networks) are central applications in using machine 
learning to study problems in quantum mechanics (ML/Q).

16.1  Machine Learning-Physics Collaboration

Quantum machine learning first and most basically means running 
machine learning algorithms on a quantum computer (ML/QC). The 
emblematic examples (discussed in the Quantum Computing 101 chapter) 
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are Farhi and Neven’s (2018) quantum neural networks and Grant et al.’s 
(2018) quantum tensor networks. Some of the first real-life quantum plat-
form demonstrations are Grant et al. (2018) on the IBM QX4 and 
Benedetti et al. (2019) with an ion trap platform. Quantum machine learn-
ing also means applying machine learning techniques to quantum 
mechanical problems and data (ML/Q), and the converse, applying quan-
tum mechanical ideas and methods to improve machine learning tech-
niques (Q/ML) (Table 16.1). The last two may be run on quantum or 
classical computers. The term “machine learning” is used generically in 
this work, although in practice is often synonymous with “deep learning” 
(networks with hidden layers that operate to find higher-order relation-
ships in input data) (Schulte & Lee, 2019). Machine learning is deployed 
in different forms such as kernel learning, neural networks, and tensor 
networks. ML/Q is discussed here and Q/ML in Chapter 17.

A further means of distinguishing Quantum Machine Learning is by 
which parts of a system (data, algorithms, and platforms) are classical or 
quantum (Table 16.2). The first level is data, which classically might 

Table 16.1.  Quantum machine learning terminology.

Abbr. Definition Sample Reference

ML/QC Running machine learning algorithms on a 
quantum computer

Farhi and Neven (2018); 
Grant et al. (2018)

ML/Q Applying machine learning to quantum 
mechanical problems and data

Carleo and Troyer (2017)

Q/ML Using quantum mechanical approaches to 
improve machine learning techniques

Stoudenmire and Schwab 
(2017)

Table 16.2.  Quantum data, algorithm, and platform.

Topic Classical Quantum

Data Facial recognition images Meson spectral data

Algorithm Loss function VQE, QAOA

Platform Desktop computer NISQ devices

Notes: VQE: Variational quantum eigensolvers; QAOA: Quantum approximate optimization 
algorithm; NISQ: Commercially available noisy intermediate-scale quantum devices.
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involve facial recognition images, and in the quantum sense, meson spec-
tral output from the Large Hadron Collider. Second is the algorithms 
deployed in the computation, whether classical algorithms such as a loss 
function, or quantum algorithms that have been designed specifically to 
operate on quantum data or run on a quantum platform. Third is the com-
putational platform, which could be a classical computer such as a desk-
top or cloud computing environment, or in the quantum domain, a NISQ 
device (currently available quantum computer with 50–100 qubits that 
does not require error correction). There could be different permutations 
such as running classical data on a quantum platform, or simulating quan-
tum systems with a classical computer.

A key focus is developing quantum algorithms and quantum circuits. 
Quantum algorithms mean writing new algorithms and adapting classical 
algorithms to the quantum environment, particularly to take advantage of 
quantum speedups in linear algebra and vector-based calculations. 
Quantum circuits entail mapping quantum algorithms to a computable 
gate logic structure to run on quantum computers or on classical comput-
ers simulating quantum computers. There are many resources available 
such as Google’s TensorFlow Quantum as a software framework for quan-
tum machine learning that includes quantum optimization, thermal state 
sampling, and Hamiltonian learning algorithms (Broughton et al., 2020).

Quantum machine learning has important practical applications in 
many areas such as quantum circuit design, quantum chemistry (molecu-
lar simulation and drug discovery), and quantum physics. There are also 
several theoretical formulations. For example, in an advanced application 
of holographic quantum machine learning (AdS/QML), Cottrell et al. 
(2019) suggest how machine learning might be used to learn the operator 
mappings between the left and right system evolutions in the thermofield 
double state. In other efforts, the Olshausen laboratory develops a body of 
theoretical work using machine learning for novel quantum formulations 
of renormalization group flow and entropy minimization (Hu et al., 2020).

16.1.1  Quantum machine learning overview

Quantum machine learning is addressed in different chapters based on the 
application class (Table 16.3). In the first application of running machine 
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learning algorithms on quantum computers (ML/QC), demonstrations of 
quantum neural networks (Farhi & Neven, 2018) and quantum tensor 
networks (Grant et al., 2018) are discussed in Quantum Computing 101 
(Chapter 7). The second application class is machine learning techniques 
applied to quantum mechanical problems (ML/Q), typified by approxi-
mating wavefunctions and energy levels with a restricted Boltzmann 
machine (Carleo and Troyer, 2017) and simulating quantum states on 
 classical computers with a transformer neural network implementa-
tion (Carrasquilla et al., 2019). These are discussed in Chapter 16. 
The third application class is quantum mechanical ideas and methods 
applied to improving machine learning techniques (Q/ML), elaborated in 
Chapters 17 and 18.

The persistent theme of Q/ML is quantum probabilistic methods. This 
means probability directed toward the identification of the emergent 
 collective behavior of complex systems with a large number of degrees of 
freedom, renormalization across system scales from the microscale to 
the macroscale, and the management of high dimensionality. A notable 
conceptual development is the idea of writing classical probability distri-
butions as quantum states. Two methods for this are becoming standard, 
the Born machine and the reduced density matrix. The Born machine, 

Table 16.3.  Approaches to quantum machine learning.

No. Class Approach Reference Chapter

1 ML/QC Quantum neural networks Farhi and Nevin (2018) 7

2 ML/QC Quantum tensor networks Grant et al. (2018) 7

3 ML/Q Restricted Boltzmann machine Carleo and Troyer (2017) 16

4 ML/Q Quantum transformer networks Carrasquilla et al. (2019) 16

5 Q/ML Born machine Cheng et al. (2018) 17

6 Q/ML Reduced density matrix Bradley et al. (2019) 17

7 Q/ML Pixel = spin (qubit) Stoudenmire and Schwab (2017) 17

8 Q/ML Wavelet = spin (qubit) Reyes and Stoudenmire (2020) 17

9 Q/ML Quantum kernel methods Schuld and Killoran (2019) 18

10 Q/ML Entanglement system design Martyn et al. (2020) 18

b4362_Ch16.indd   356b4362_Ch16.indd   356 4/29/2022   6:34:37 PM4/29/2022   6:34:37 PM



b4362  Quantum Computing for the Brain6"×9" 

 Quantum Machine Learning  357

introduced by Cheng et al. (2018), is used to interpret machine learning 
probability outputs according to the Born rule as opposed to the Boltzmann 
distribution and energy-based functions used in the classical Boltzmann 
machine. The reduced density matrix formulation is the quantum version 
of the classical marginal probability distribution, which notably elicits 
entanglement in classical systems by preserving system correlations as 
described by Bradley et al. (2019).

Another important conceptual advance is the idea that “pixel = spin” 
and “wavelet = spin”. This insight recognizes the machine learning image 
pixel as a quantum mechanical spin (and thus qubit) (Stoudenmire & 
Schwab, 2017). Likewise, a wavelet in machine learning sequential data 
is recognized as a quantum mechanical spin and qubit (Reyes & 
Stoudenmire, 2020). Advanced applications of Q/ML are presented in 
Chapter 18, quantum kernel methods (Schuld & Killoran, 2019) and the 
idea of using entanglement as a design principle (Martyn et al., 2020).

In other notable work establishing standardized tools, Huggins 
et al. (2019) introduce a framework for quantum machine learning 
using tensor networks. The research proposes a tensor network frame-
work for both discriminative and generative learning (supervised and 
unsupervised learning) which is based in tree tensor networks and 
matrix product state tensor networks, for use with both classical 
and quantum data with NISQ devices, demonstrated with a numerical 
experiment on MNIST data. A similar example of quantum machine 
learning using tensor networks is offered by Liu et al. (2019). In this 
work, classical images are transformed to vectors in a dn-dimensional 
Hilbert space, and the vectors (vectorized images) are mapped to a 
tree tensor network to predict the classes as outputs. The algorithm is 
tested on both the MNIST (handwriting recognition) and CIFAR (image 
recognition) databases.

Another tool is matrix quantum mechanics, a specialized version of 
quantum mechanics in which squared harmonic oscillators are written in 
the form of a large-N matrix (Han et al., 2020). The trace structure of the 
matrix allows the oscillators (matrix elements) to be coupled and interac-
tions to be defined between them, and the trace structure also gives rise to 
an emergent dimension of space (Han & Hartnoll, 2020).
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16.1.2  Structural similarities

A key motivation for quantum machine learning is that much more is 
understood about why certain methods work in addressing quantum 
mechanical problems than in machine learning problems (Martyn et al., 
2020). Machine learning is a notorious “black box” technology in that 
results are obtained (accurately classifying images, for example), but it is 
not understood precisely how. Quantum mechanical methods are much 
more transparent. The lack of understanding in machine learning hampers 
the ability to apply these methods to new classes of more complicated 
problems (Hassabis et al., 2017), even with recent tools such as trans-
former networks (Vaswani et al., 2017). A parallel is drawn between the 
two fields, arguing that the success in machine learning can be explained 
by the properties of fundamental physics. One suggestion of a dictionary 
is mapped between the two areas (Table 16.4).

Approaches to quantum machine learning start to articulate more spe-
cifically how the two domains are related. Structurally, quantum mechan-
ics and machine learning are large-scale systems with high-dimensional 
problem spaces, too large and unwieldy for anything other than statistical 
methods, and whose central task is finding a function that approximates 

Table 16.4.  Physics-machine learning dictionary.

No. Physics Machine Learning

1 Hamiltonian Surprisal — ln probability

2 Simple Hamiltonian Cheap learning (few layers)

3 Quadratic Hamiltonian Gaussian probability

4 Locality Sparsity

5 Symmetric Hamiltonian Convnet (convolutional networks)

6 Probability via Hamiltonian Softmaxing (scaling to sum to one)

7 Spin Bit

8 Free energy difference Kullback–Leibler divergence (relative entropy)

9 Effective theory Nearly lossless data distillation

10 Irrelevant operator Noise

11 Relevant operator Failure

Source: Adapted from Lin et al. (2017, p. 3).
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data. Both systems operate in a vast possibility space yet try to quickly 
truncate it to a relevant subset. Machine learning operates in the space of 
all equations, but expediently tries to find equations to describe a particu-
lar dataset. In natural language processing, for example, only a fraction of 
all grammatically correct phrases have meaning. Similarly, quantum states 
are not simply random vectors in the high-dimensional possibility space 
of all vectors, but have some sort of identifiable patterns based on direc-
tion and movement. The interest is only in a local Hamiltonian, not in the 
entire Hilbert space. Both systems are multiscalar, operating at multiple 
scales at different tiers with different dynamics.

The field of quantum machine learning is thus inspired by quantum 
mechanics and machine learning being naturally aligned in the way that 
the problems are set up as probabilistic movements through a larger pos-
sibility space of high-dimensional complexity and necessarily solved with 
indirect methods. These structural similarities suggest that quantum states 
can be represented with a neural network. It is not a stretch to see that the 
brain is a domain in which many of these properties also hold (a large-
scale high-dimensional possibility space with multiple dynamical levels 
which can be truncated to a subsystem of interest described by a wave-
function), and further the possibilities of quantum machine learning as a 
lens for studying the brain. Arguably, entire classes of recent findings in 
neuroscience with whole-brain modeling, big data acquisition, imaging, 
and multiscale models are only just beginning to be incorporated into 
machine learning models.

16.1.3  Problems in quantum mechanics

Some of the primary applications at which quantum machine learning is 
targeted are wavefunction approximation and quantum state simulation. In 
the application of machine learning to the study of quantum mechanical 
problems (ML/Q), the question arises as to exactly which problems might 
be most conducive to resolution (Table 16.5). The primary problem in 
quantum mechanics is wavefunction approximation. The Schrödinger 
equation describes wavefunctions mathematically, but is intractable to 
solve and so other methods that approximate wavefunctions are sought. 
The insight to use machine learning is motivated by the fact that neural 
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networks are function approximators, which is precisely what is needed for 
the quantum mechanical wavefunction. The generic task in machine learn-
ing is finding the best function to fit input data. Similarly, in quantum 
machine learning, the idea is to take particle spins and other quantum 
mechanical state data as input, and output a wavefunction. Also in the gen-
eral class of approximation applications are finding the ground state and 
excited energy levels of a system, and specifying quantum system dynam-
ics and time evolution behavior, including nonequilibrium dynamics at 
system criticality. The other main application class is simulating and bench-
marking quantum systems. Quantum machine learning applied to problems 
of approximation and simulation are discussed in the next sections.

16.1.3.1  Variational methods: The method of varying

Variational methods refer to a specific quantum mechanical technique for 
approximating wavefunctions. The term “variational methods” means 
using variation as a method, in the sense of varying trial-and-error guesses 
to determine a value. The method is variation — it is not that the methods 
vary. The variational method is applied by choosing a trial wavefunction 

Table 16.5.  Quantum mechanical problems for machine learning.

No. Quantum Mechanical Problem Reference

Approximation

1 Wavefunction approximation (amplitude and phase) Carleo and Troyer (2017)

2 Ground state and excited energy levels: Exact ground 
state properties of strongly interacting fermions

Stokes et al. (2020)

3 Quantum system dynamics and time evolution: 
Dynamical properties of high-dimensional systems

Eisert et al. (2015)

4 Criticality and nonequilibrium dynamics: Quantum 
system phase transition

Freericks et al. (2014)

Simulation

5 Quantum state measurement (tomography): 
Reconstruct quantum states

Paris and Rehacek (2004)

6 Quantum state simulation of GHZ states with a 
transformer neural network

Carrasquilla et al. (2019); 
Cha et al. (2020)

b4362_Ch16.indd   360b4362_Ch16.indd   360 4/29/2022   6:34:38 PM4/29/2022   6:34:38 PM



b4362  Quantum Computing for the Brain6"×9" 

 Quantum Machine Learning  361

that depends on one or more parameters, and solving for the values of the 
parameters for which the system energy is the lowest. The process is 
repeated several times to provide an overall profile for the wavefunction 
at the lowest energy values of the system.

The insight is that a lot of structural information is already known 
about quantum systems ahead of time (Montorsi, 1992). There are scale 
tiers of allowable energies in any quantum system. Since quantum sys-
tems are organized in discrete tiers of allowable energies, the idea is that 
to some extent, it may be possible to guess the scale tiers in a system. 
Further, a quantum system is bounded in important ways. First, the lower 
energy bound is zero. Second, energy tiers scale up from low to high. This 
governs the range of energies at any scale tier which limits the variational 
guessing activity to a more finitely solvable problem. Third, modern trial-
and-error guesses are performed by computer which means the process 
iterations can be essentially unlimited.

The variational method may target the lowest energy eigenstate or 
ground state of a system, or any higher-level excited states. For quantum 
machine learning, the problem is either taken directly as a quantum 
 system wavefunction approximation problem, or written in terms of an 
energy optimization problem. Conceptually in quantum machine learning, 
the variational method is seen as an efficient algorithm to find salient sig-
nals in a large possibility space, and can be implemented as a statistical 
sampling method. However, one of the drawbacks of all variational meth-
ods is that since they select a random spot and start guessing and boot-
strapping from there, they can get stuck in a local minimum and obtaining 
a global minimum is not guaranteed.

16.2  Wavefunction Approximation

16.2.1  Quantum state neural networks

Carleo and Troyer (2017) demonstrate the use of machine learning to 
solve quantum many-body problems, first examining basic quantum sys-
tems with interacting spins and then strongly coupled fermionic systems. 
The computational challenge of quantum many-body problems is the dif-
ficulty of describing the correlations encoded in the exponential 
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complexity of the many-body wavefunction. However, the idea is that the 
systematic machine learning of the wavefunction might reduce the com-
plexity to a tractable computational form, at least for certain physical 
systems. Generically, the machine learning model takes data as input and 
outputs a function that describes the data. The input data in this case are 
quantum states of a physical system, which are generated by a variational 
method, and the neural network is tasked with inferring the wavefunction 
that best describes the data. The goal is finding the ground state energy in 
a basic interacting spin system and recapitulating the unitary time evolu-
tion of a complex interacting system. The approach achieves high accu-
racy in the description of equilibrium and dynamical properties of 
prototypical interacting spins models in both one and two dimensions. 
Overall, the demonstration offers a new computational tool for solving 
quantum many-body problems. The basic input–output framework of the 
quantum state neural network appears in Table 16.6.

16.2.1.1  Traditional approaches to wavefunction modeling

The wavefunction is the fundamental object in quantum physics. It is a 
mathematical quantity containing all of the information about a quantum 
state, whether a single particle or complex molecules. In principle, an 
exponential amount of information is needed to fully encode a generic 
many-body quantum state (due to the 2n problem). However, a wavefunc-
tion can often be characterized by a much smaller amount of information 
than the maximum capacity of the corresponding Hilbert space would 
indicate. A small number of physical states, together with entanglement 
properties, are the building blocks used by modern approaches to solve the 
many-body Schrödinger equation with a limited amount of classical 
resources.

Table 16.6.  Quantum state neural network framework.

Focus Input Output

Generic Quantum state data Wavefunction

Specific Correlated quantum state data 
produced by variational methods

Ground state and time-dependent 
physical states of a quantum system
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The traditional methods of wavefunction modeling are stochastic 
approaches and compression approaches (Table 16.7). Each treats com-
plexity in a different way. Stochastic approaches sample a finite number 
of physically relevant configurations. Compression approaches compress 
the information content of the quantum state. Stochastic approaches 
include techniques such as quantum Monte Carlo methods, which rely on 
probabilistic frameworks and typically require a positive-semidefinite 
wavefunction. Compression approaches, instead use efficient representa-
tions of the wavefunction, most notably tensor networks (via matrix prod-
uct states or other general representations). However, these complexity 
management techniques are limited, in particular by the sign problem 
(phase problem) in quantum Monte Carlo, and the ability to address high-
dimensional systems in early tensor network models. Different or 
improved methods may be needed to target new classes of open problems 
such as fundamental questions ranging from the dynamical properties of 
high-dimensional systems to the exact ground state properties of strongly 
interacting fermions.

16.2.1.2  Motivation for machine learning

A theoretical problem lies at the heart of wavefunction modeling. This is 
a lack of understanding of the foundational physics involved in terms of 
finding a general strategy to reduce the exponential complexity of the full 
many-body wavefunction to its most essential features (Freericks et al., 
2014). The problem can be cast as one of dimension reduction and feature 
extraction at which machine learning excels. Machine learning has dem-
onstrated success in attacking these kinds of problems, for example, in 
image and speech recognition, and game playing. As an example, some of 

Table 16.7.  Wavefunction modeling: Complexity reduction.

Approach Class Focus Method Limitation

Stochastic  
approaches

Probabilistic  
frameworks

Quantum Monte 
Carlo

Sign problem

Compression 
approaches

Efficient wavefunction 
representation

Tensor networks High dimensionality
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the first applications of neural networks to physics have been used to 
study physical phenomena such as the phases of quantum matter 
(Carrasquilla & Melko, 2017). So far, these approaches have focused on 
the classification of complex phases of matter in which exact sampling of 
configurations from these phases is known, and thus it is possible to con-
firm the results. The challenging goal of solving a quantum many-body 
problem without prior knowledge of exact samples is an open problem for 
machine learning. Thus, it is of fundamental and practical interest to 
understand whether an artificial neural network can modify and adapt 
itself to describe and analyze a quantum system. This ability could be used 
to address quantum many-body problems in regimes that have been inac-
cessible to existing approaches.

16.2.1.3  Machine learning approach to wavefunction modeling

Carleo and Troyer (2017) introduce a representation of the wavefunction 
in terms of artificial neural networks specified by a set of internal param-
eters. A stochastic framework is presented for the reinforcement learning 
of the parameters to determine the best possible representation of both 
ground state and time-dependent physical states of a given quantum 
Hamiltonian. The parameters of the neural network are then optimized 
(trained), either by static variational Monte Carlo sampling, or by time-
dependent variational Monte Carlo sampling if dynamical properties are 
of interest. The accuracy of the approach is validated by studying the Ising 
and Heisenberg models in both one and two-dimensions. The quantum 
state neural network is demonstrated by obtaining state-of-the-art accu-
racy in both ground state and out-of-equilibrium dynamics. The time-
dependent approach effectively solves the sign problem that traditionally 
affects stochastic quantum Monte Carlo approaches.

16.2.1.4  Encoding quantum states

A key question is how quantum states are to be encoded for neural 
 network representation. A quantum system can be characterized as having 
N discrete-valued degrees of freedom (parameters), which may be 
spins, bosonic occupation numbers, or similar measures. The many-body 
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wavefunction is a mapping of the N-dimensional set of parameters to 
exponentially many complex numbers which fully specify the amplitude 
and the phase of a quantum state. The wavefunction is a computational 
black box such that when given a quantum state (as many-body configura-
tion parameters), it returns an amplitude and phase according a certain 
wavefunction of the parameters. The aim of quantum machine learning is 
to approximate the computational black box with a neural network, 
trained to best represent the wavefunction given the many-body quantum 
state inputs. In this example, the neural network encodes a many-body 
quantum state of N spins. For each value of the many-body spin configura-
tion received as input, the artificial neural network computes the value of 
the wavefunction.

There can be different choices of neural network architecture based 
on the task at hand. A straightforward choice in classical machine learning 
is a restricted Boltzmann machine with reinforcement learning. The 
restricted Boltzmann machine is selected as it has a standard neural net-
work structure with hidden layers which can be used to find unseen cor-
relations in the data. A reinforcement learning model is used because 
supervised learning with labeled data is not an option as samples for the 
exact wavefunction are unknown. The neural network is used to describe 
a standard quantum system (a spin ½ (fermionic) quantum system).

The restricted Boltzmann machine neural network is constituted by 
one visible layer of N nodes, corresponding to the physical spin variables 
in a chosen basis, and a single hidden layer of auxiliary (hidden) spin 
variables. In this restricted Boltzmann machine configuration, there is a 
single hidden layer of auxiliary spin variables (later, in running the neural 
network, the hidden variables density is set to four). This network descrip-
tion corresponds to a variational expression for the quantum states. The 
hidden spin variables and the parameter weights fully specify the response 
of the network to a given input state and are used to determine the wave-
function. The network weights are necessarily complex-valued in order to 
provide a complete description of the amplitude and phase of the wave-
functions. The input to the neural network is a quantum state and the 
output (response) is a specific amplitude and phase for a wavefunction 
that describes that quantum state at that moment. In the restricted 
Boltzmann machine, the first layer of the neural network receives the 
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inputs. Coefficients (weights) are attached to these inputs and a linear 
combination of the weighted inputs are passed (fed forward) to the hidden 
layer. The quantum machine learning steps are listed in Table 16.8.

16.2.1.5  Neural network mathematics

Representation theory provides the mathematical justification for the neu-
ral network’s ability to represent quantum states that describe intricate 
many-body wavefunctions. Established representability theorems suggest 
valid network approximations of high-dimensional functions, provided 
a sufficient level of smoothness and regularity is met in the function to 
be approximated (Le Roux & Bengio, 2008). In most physically rele-
vant situations, the many-body wavefunction reasonably satisfies these 
 requirements. Therefore, a neural network representation of quantum 
states should be broadly applicable.

One of the advantages of the neural network quantum states represen-
tation is that the quality of the network can be systematically improved 
upon by increasing the number of hidden variables. The correlations 
induced by the hidden units are intrinsically non-local in space and are 
therefore well suited to describe quantum systems in arbitrary dimension. 

Table 16.8.  Implementations steps: Quantum state neural network.

1 Describe quantum system with N discrete-valued degrees of freedom (e.g. spin)

2 Encode quantum states based on this description to use in variational methods

3 Choose machine learning architecture: Restricted Boltzmann machine (hidden 
layers) with reinforcement learning (unlabeled data)

4 Obtain data: Apply variational methods to encoded quantum states to guess 
possible wavefunction amplitudes and phases to use as neural network input

5 Obtain algorithm: Write an expression for the quantum many-body state with 
neural network theorems

6 Run the neural network to solve specific problems such as ground state energy

6a Static case: Recapitulate known spin models: The transverse-field Ising model and 
the antiferromagnetic Heisenberg model

6b Time-dependent case: Recapitulate quantum quenches in the coupling constants of 
two spin models (spin polarization and nearest-neighbor correlations)
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The number of hidden variables in neural network models plays a role 
analogous to the bond dimension in tensor networks. Another benefit of 
the neural network quantum states representation is that it can be formu-
lated in a symmetry-conserving fashion. For example, lattice translation 
symmetry can be used to reduce the number of variational parameters in 
the quantum state ansatz in the neural network. An architecture using 
stacks of convolutional restricted Boltzmann machines for shift-invariant 
feature learning has demonstrated this possibility.

From this theoretical background, neural network theorems are used 
to write a machine learning algorithm that provides the general expression 
for the quantum many-body state. The algorithm is implemented with the 
neural network and used to solve specific quantum many-body problems 
based on the machine learning of the network parameters (quantum state 
information). In the most interesting applications, the exact many-body 
state is unknown, and it is traditionally found by solving the static or time-
dependent Schrödinger equation for a given Hamiltonian. In such a case 
without samples for the exact wavefunction, it is not possible to find it 
with supervised learning. Therefore, a reinforcement learning approach is 
used in which the wavefunction is learned on the basis of feedback from 
variational principles.

16.2.1.6  Demonstration: Quantum spin systems’ ground states

To demonstrate the accuracy of the neural network quantum states repre-
sentation in the description of complex many-body quantum states, the 
work first focuses on the goal of finding the best neural network represen-
tation of the unknown ground state of a given Hamiltonian. A reinforce-
ment learning model is implemented to minimize the expectation value of 
the energy with respect to the network weights. This is achieved with an 
iterative scheme. At each iteration, a Monte Carlo sampling is taken for a 
given set of parameters. At the same time, stochastic estimates of the 
energy gradient are obtained. The energy gradient estimates are used to 
propose the next set of weights for an improved gradient descent optimi-
zation. The overall computational cost of this approach is comparable to 
that of standard ground state quantum Monte Carlo simulations. The itera-
tive variational method means that it is not necessary to know a network 
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weight at the outset. The method is to start by picking any possibly rele-
vant weight, determine if a rational energy calculation is obtained, and use 
that for the next iteration to see if the result is any better than the others, 
meanwhile building the gradient as a grid of the guesses.

The quantum state neural network method is validated in the test 
problem of finding the ground states in two prototypical known spin mod-
els, the transverse-field Ising model and the antiferromagnetic Heisenberg 
model. The Ising and Heisenberg models are considered in the case of 
both one-dimensional and two-dimensional lattices with periodic bound-
ary conditions. The optimal neural network structure is obtained for the 
ground states of the two spin models for a neural network hidden variables 
density of four and with imposed translational symmetries. The finding is 
that each filter (layer) learns specific correlation features emerging in the 
ground state wavefunction. For example, in the two-dimensional case, the 
neural network learns patterns corresponding to anti-ferromagnetic cor-
relations. The general behavior of the quantum state neural network is 
analogous to that observed in convolutional neural networks (CNNs), in 
which different layers similarly learn specific structures of the input data. 
In the quantum state neural network, feature maps act as effective filters 
on the spin configurations, to capture the most important quantum 
correlations.

16.2.1.7  Neural network-tensor network comparison

Machine learning algorithms can be implemented with different structural 
platforms (namely, kernel learning, neural networks, and tensor net-
works). The neural network approach used here is compared with tensor 
networks. The number of hidden variables in a neural network is analo-
gous to the bond dimension in a tensor network. Both mean the degree of 
precision in the network needed to achieve accuracy. The antiferromag-
netic Heisenberg model is compared in two cases. First considering 
the antiferromagnetic Heisenberg model (one-dimensional lattice) with 
periodic boundary conditions, the finding is that a standard tensor net-
work implementation (DMRG: density matrix renormalization group) 
would need a bond dimension of 160 to reach the same level of accuracy 
obtained with a hidden variables density of four in the neural network 
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model. This suggests that a more compact representation of quantum 
many-body states might be available with neural networks, in particular 
requiring three orders of magnitude fewer variational parameters than the 
corresponding matrix product state ansatz in tensor networks.

Second, the antiferromagnetic Heisenberg model is considered on a 
two-dimensional square lattice. The finding is that the neural network 
algorithm with the low hidden unit density (four) compares favorably 
with more sophisticated tensor network models (EPS and PEPS: entan-
gled pair states and projected entangled pair states) used for finite cluster 
analysis. A further result is that increasing the hidden unit density leads to 
a sizable improvement and consequently yields the best variational results 
reported so far for the two-dimensional antiferromagnetic Heisenberg 
model on finite lattices. Overall, when compared with tensor networks, 
the  quantum state neural network allows intrinsically nonlocal correla-
tions which might lead to more compact representations of many-body 
quantum states.

16.2.1.8  Demonstration: Time-dependent quantum dynamics

Having initiated the quantum state neural network to solve unknown 
ground state problems, it is next applied to the more complicated time-
dependent Schrödinger equation, in problems with known results. In this 
case, complex-valued and time-dependent network weights are defined 
which are trained to best reproduce the quantum dynamics at each 
moment in time. The Dirac–Frenkel time-dependent variational principle 
is used. The variational residuals are the objective functions to be mini-
mized as a function of the time derivatives of the weights. In the stochastic 
framework, this is achieved by a time-dependent variational Monte Carlo 
method which samples at each time and provides the best stochastic esti-
mate of the weights that minimize the function and computational cost. 
The time derivatives are used to obtain the structure of the complete time 
evolution of the quantum system.

To demonstrate the effectiveness of the quantum state neural network 
in the dynamical context, the unitary dynamics induced by quantum 
quenches in the coupling constants of the two different spin models are 
considered. In the transverse-field Ising model, nontrivial quantum 
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dynamics are introduced by means of an instantaneous change in the 
transverse-field. The system is initially prepared in the ground state of the 
transverse-field Ising model for some transverse-field, and then let to 
evolve under the action of the Hamiltonian. The results are compared with 
the analytical solution obtained from the fermionization of the transverse-
field Ising model for a one-dimensional chain with periodic boundary 
conditions. The quantum state neural network results recapitulate the 
known exact results for time-dependent transverse spin polarization. An 
alternative approach is used to assess system dynamics via quantum 
quenching in the antiferromagnetic Heisenberg model. In this case, quan-
tum quenches in the longitudinal coupling are noted while monitoring 
the time evolution of nearest-neighbor correlations. Again, the results for 
the time evolution compare favorably with known numerically exact 
dynamics (produced with matrix product states) for a system with open 
boundaries (Vidal, 2004).

16.2.1.9  Implications of quantum state neural networks

The quantum state neural network demonstrated in this work suggests that 
variational quantum states based on neural networks can be used to effi-
ciently capture the complexity of entangled many-body systems both in 
one and two dimensions. The restricted Boltzmann machines used here 
are relatively simple (with a hidden variables density of four and imposed 
translational symmetries), yet produce accurate results for both ground 
state and dynamical properties of prototypical spin models. The high 
accuracy obtained for the unitary dynamics confirms that neural network-
based approaches can be used to solve quantum many-body problems for 
both ground state properties and excited quantum states. These problems 
have been traditionally inaccessible to quantum Monte Carlo methods. 
However, the neural network representation allows for an effective solu-
tion of the sign problem that has hampered these kinds of stochastic 
schemes based on Feynman path integrals. In later work, the quantum 
state neural network approach is extended beyond interacting spin sys-
tems to study strongly coupled fermionic systems on a lattice (Stokes 
et al., 2020). The ground state of spinless fermions on a square lattice is 
approximated with nearest-neighbor interactions. The neural network 
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approach compares favorably with exact diagonalization results for 
energy-based and correlation functions in small systems.

16.3  Quantum Transformer Neural Networks

Aside from the approximation of wavefunctions and energy levels, the other 
main class of quantum machine learning applications applied to quantum 
mechanical problems is simulation and benchmarking. The characterization 
and validation of quantum systems is crucial for establishing the capability 
of quantum computing. Methods typically proceed by reconstructing the 
density matrix of quantum states. The density matrix is a matrix representa-
tion of the statistical state of a quantum system, as the (more complicated) 
quantum version of the classical probability distribution.

Quantum states can be measured with tomography or simulated with 
classical systems, including with machine learning methods. In quantum 
state tomography, the density matrix is reconstructed from projective mea-
surements on identically prepared copies of the quantum state (Paris & 
Rehacek, 2004). However, tomography is limited in technical capacity for 
examining the exponential Hilbert space of many-body states. Exact 
tomography techniques (such as maximum likelihood estimation) are 
slow and costly, and thus many experiments rely on indirect methods for 
error determination, and use randomized benchmarking. Instead, simulat-
ing quantum states on classical computers with machine learning tech-
niques is a promising alternative, and suggests the expedient processing of 
density matrix reconstruction and analysis.

These kinds of machine learning approaches, namely, deep neural 
networks and generative models, have been suggested for overcoming the 
curse of dimensionality in quantum state analysis. As discussed, Carleo 
and Troyer (2017) set the foundation for this approach by training a 
restricted Boltzmann machine to represent complex quantum many-body 
states. However, the expressibility of restricted Boltzmann machines and 
the scalability of training are often restricted to pure, positive quantum 
states and small mixed states, which limits their applicability at the scale 
of modern noisy quantum computers.

To support NISQ device analysis, Carrasquilla et al. (2019) imple-
ment a transformer neural network-based model to generate and simulate 
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quantum state data, and extend the model to analyze real-life quantum 
state data (3-qubit GHZ state data) published by IBMQ (Cha et al., 2020). 
The latter work proposes attention-based quantum tomography which 
adopts elements of the transformer neural network, a generative deep neu-
ral network for natural language processing, to the task of quantum state 
tomography. The attention-based quantum tomography approach recon-
structs a 6-qubit GHZ state and tests up to 90-qubit systems, indicating 
agreement with the traditional measurement of maximum likelihood esti-
mation. GHZ states (Greenberg–Horne–Zeilinger) are entangled quantum 
states involving at least three subsystems (particle states, or qubits) that 
are used to encode quantum information. Platform agnostic, the team also 
proposes a tensor network-based model for quantum state tomography 
(Torlai et al., 2020).

16.3.1  Transformer attention mechanism

The transformer neural network is a novel form of neural network 
used in natural language processing (Vaswani et al., 2017). Transformer-
based natural language models such as GPT-3 (Generative Pre-trained 
Transformer 3) are autoregressive language models that use deep learning 
to produce human-like text that is nearly indistinguishable from human-
written examples, the risks of which are debated (Brown et al., 2020). In 
the less controversial domain of quantum state analysis, the same proba-
bility features that are commonly used in language modeling and transla-
tion prove equally conducive to the study of quantum mechanics.

The transformer neural network is based on a deep learning model, 
but uses a probability-based attention mechanism as opposed to convolu-
tion or recurrence as in the traditional models of neural networks (CNNs) 
and recurrent neural networks (RNNs)). Sequence transduction in the 
usual RNN-based processing of natural language is a sequentially con-
strained memory function that is restricted to short-range correlations in 
the input data. Instead, the transformer neural network uses an attention-
based mechanism to study the correlations between all words in a sen-
tence simultaneously. The method is able to learn which long-range 
correlations between words are important to the overall meaning of the 
sentence, and effectively has access to both short-range and long-range 
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correlations in the underlying data. The method is called “attention” 
because the algorithm determines which elements are important to pay 
attention to in attributing meaning. For each input read into the encoding 
block of the transformer neural network, the attention-based mechanism 
takes into account several inputs simultaneously and decides which ones 
are important by attributing different weights to them.

16.3.1.1  Transformer neural networks and quantum states

The transformer neural network is a useful format for quantum state 
analysis for several reasons. First is the ability to model long-range cor-
relations (often suppressed in other quantum state models for sequential 
analysis). Second is the autoregressive nature of the model which is good 
at managing series data by modeling the current values of a series as a 
function of past values, and has a finite dynamic response to time series 
input. Third is the attention-based mechanism which allows a high degree 
of parallelization for the required computations. Fourth is that information 
about the spatial structure of the problem can be encoded which was not 
possible in other models.

Cha et al. (2020) consider prototypical autoregressive models com-
monly used in neural machine translation and language modeling based 
on transformer encoder blocks. The central element in the transformer 
architecture is the attention-based mechanism. The attention-based mech-
anism takes an embedding of the measurement outcomes, and computes 
an auto-correlation matrix in which the different measurement outcomes 
across the different qubits form the columns and rows. The embedding is 
a linear transformation performed on the original input. The attention-
based mechanism and its correlation matrix are used to introduce correla-
tions between qubits separated at any distance in the quantum system. 
This is analogous to a two-body Jastrow factor which likewise introduces 
pairwise long-distance correlations between the degrees of freedom (i.e. 
spins, qubits, electrons) in a wavefunction. In contrast to traditional 
sequential models based on RNNs (which suppress correlations beyond a 
certain length), attention-based networks are able to model systems exhib-
iting power-law correlations present in natural sequences as well as physi-
cal systems exhibiting (classical or quantum) critical behavior.
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As in the main transformer neural network formulation, the attention-
based mechanism is executed as a map between a query array, a key array 
and a value, and an output vector. The input is a query, weighted by some 
key-value. The query, keys, and values are linear transformations of the 
input vectors. The linear transformations give a dimensional embedding 
of the measurement outcomes at the different qubits as a parameter of the 
model. Analogously, the values and queries are calculated as a parameter-
ized linear transformation on the embedding. The primary attention 
mechanism used is in the form of a scaled dot-product. The input consists 
of queries, dimensional keys, and dimensional values, and the output is 
computed with a softmax (rescaling) function. The softmax function acts 
on the vector results of softmax-related matrix operations. The argument 
of the softmax function induces pairwise, all-to-all correlations between 
the qubits in the system. This resembles a Jastrow factor (a factor used for 
factorizing or simplifying quantum mechanical calculations). An efficient 
sampling scheme is used to update the transformer neural network after 
each gate application within the quantum circuit. The sampling scheme 
works well for a large number of qubits simulations with up to 90-qubit 
systems demonstrated.

Other aspects specific to the quantum state simulation network 
include a multi-head attention mechanism (with eight attention heads) so 
that instead of computing a single attention function, the queries, keys and 
values are projected multiple times with different, learned linear projec-
tions. Each projection is followed by the attention function in parallel. The 
network architecture is a fully connected position-wise feed-forward net-
work. The general layer structure is two linear transformations with a 
ReLU (rectified linear unit; square-shaped not s-shaped) activation in 
between. Each sublayer (which consists of the attention-based mechanism 
and the position-wise feed-forward mechanism) is followed by a layer 
normalization step. Since the transformer neural network model does not 
contain recurrence or convolutions, an enhancement is made to include 
information about the spatial ordering of the qubits by adding enhanced 
positional encodings to the input embeddings. The last element of the 
transformer neural network is a linear layer  followed by a softmax activa-
tion that outputs the conditional distribution. Several transformer neural 
network layers can be used together to improve the expressiveness of the 
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model, however, the one-layer transformer encoder architecture is suffi-
cient for modeling the relevant distributions in the test cases. The model 
is trained using the Adam Optimizer in Pytorch.

16.3.1.2  The attention mechanism

The network architecture of the transformer neural network is as follows. 
As in other neural sequence transduction models, there is an encoder-
decoder structure. The encoder maps an input sequence of symbol repre-
sentations to a sequence of continuous representations. The decoder 
generates an output sequence of symbols one element at a time. At each 
step, the model is autoregressive in the sense of consuming the previously 
generated symbols as additional input when generating the next input. 
The transformer neural network follows this general architecture using 
stacked attention-based mechanisms and point-wise fully connected 
 layers for both the encoder and decoder.

The attention function is defined as mapping a query and a set of key-
value pairs to an output, in which the query, keys, values, and output are 
all vectors. The output is computed as a weighted sum of the values, in 
which the weight assigned to each value is computed by a compatibility 
function of the query with the corresponding key.

The two most commonly used attention functions are additive 
attention and dot-product (multiplicative) attention. In a scaled dot-
product attention function, the input consists of queries, keys, and 
values (Vaswani et al., 2017, p. 3). The dot products of the query with 
all keys are computed and a softmax function is applied to obtain the 
weights on the values. Softmax is a function frequently used in 
machine learning that exponentiates and rescales a set of numbers so 
that they sum to one. The attention function is then computed on a set 
of queries simultaneously, packed together into a matrix. The keys and 
values are also packed together into matrices. The overall attention 
value is computed as the weighted average of the softmax applied to an 
expression of the query, key, and value matrices. A multi-head atten-
tion function can be used to compute the attention function in parallel, 
rather than the network being limited to performing a single attention 
function at a time.
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Chapter 17

Born Machine and Pixel = Qubit

Born machines acknowledge the probabilistic interpretation of quantum 
mechanics

— Cheng et al. (2018, p. 1)

Abstract

This chapter discusses probabilistic methods for quantum machine 
learning. One model is the Born machine which employs the Born 
rule to determine output probabilities (as opposed to the Boltzmann 
distribution-based energy function traditionally used in machine learn-
ing). Born machines are relevant to generative unsupervised (unlabeled 
data) learning, extending discriminative supervised learning approaches. 
Discriminative algorithms learn directly from data, but generative 
 algorithms learn the distribution of the data to produce new samples. 
Reduced density matrices are used to rewrite classical probability distri-
butions in quantum terms. A key insight is that pixel = spin (qubit) for 
point data, and wavelet = spin (qubit) for sequential data; an image pixel 
or wavelet equates to a spin value in a quantum system (qubit).

17.1  The Born Machine

Probability is central to machine learning. The chief aim of a machine 
learning algorithm is to learn the probability distribution of a dataset and 
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write a function that describes these data such that it can make accurate 
guesses about unseen data. The canonical machine learning approach is 
the Boltzmann machine (Ackley et al., 1985) which uses a probability 
model based on the Boltzmann distribution. The Born machine (Cheng 
et al., 2018) is an alternative probabilistic model for machine learning that 
is based on the Born rule. Using the Born rule to determine output prob-
abilities (rather than a Boltzmann distribution-based energy function) is 
proving successful in quantum machine learning, particularly to enable 
unsupervised generative learning models.

The Born machine reflects the contemporary awareness of the benefit 
of performing probabilistic modeling tasks with quantum-based methods, 
in particular by using the Born rule to find wavefunction probabilities.  
The Boltzmann machine and other machine learning approaches also  
use probability in many ways, including to assess the neural network 
 performance with an energy-related measure based on the Boltzmann 
distribution. What is new is the idea of using quantum-based methods (the 
Born rule) to perform probability-related tasks. The instantiation of this 
idea is a new class of machine learning methods collectively called Born 
machines.

The Born machine incorporates the Born rule which is a solvable 
probabilistic formulation of quantum mechanics. The Born rule gives the 
probability that a measurement of a quantum system will have a certain 
result. Specifically, the rule is that the probability density of finding a 
particle at a given point is proportional to the square of the magnitude of 
the particle’s wavefunction at that point (Born, 1926). The probabilistic 
interpretation of quantum mechanics naturally suggests modeling data 
distributions with a quantum state.

The advantages are that the Born machine is more quantum-compatible 
and more flexible than existing machine learning probability functions 
which are largely based on the Boltzmann distribution. The Born machine 
can operate on either classical or quantum data. The method translates 
input data into the form of a quantum state which the Born rule takes as 
input. A clear benefit of the Born machine is that it is by definition struc-
tured in a quantum mechanical format that is conducive to quantum com-
puting implementation.
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In general, a machine learning model is tasked with learning the prob-
ability distribution of input data. A probability equation is the functional 
form of the machine learning algorithm. In the Boltzmann machine (or 
traditional machine learning methods more generally), the probability 
distribution is modeled using an energy function. In the Born machine, the 
probability distribution is modeled using a quantum state. In the 
Boltzmann machine, the probability function equals the weighted sum of 
the observation values of the input data. In the Born machine, the proba-
bility function equals the weighted sum of the observation values of a 
quantum state (the expectation values of the observables that comprise a 
quantum state). Although structurally similar, the Born machine is able to 
treat quantum phenomena.

The Born machine is one of the latest proposals in wavefunction 
ansatz (guessing) methods. Various ansatz methods have been developed 
to express quantum states including variational Monte Carlo (random 
sampling), tensor network states, and artificial neural networks (Carleo & 
Troyer, 2017, discussed in the other chapter). In the Born rule, the wave-
function probability distributions are given by their squared norm. This 
eliminates the sign problem that makes other wavefunction ansatz such as 
Monte Carlo methods difficult to calculate.

Some of the research developments regarding Born machines are 
listed in Table 17.1. In terms of platform, Born machines are typically 
deployed on tensor networks (a quantum-compatible format) or directly 
onto quantum circuits. Subsequent work from the team proposing the 
Born machine discusses how to map a restricted Boltzmann machine to a 
tensor network to implement the Born machine (Chen et al., 2018). Other 
work proposes a tensor network-based formulation of the Born machine 
for unsupervised generative learning (Han et al., 2018) and a generic 
quantum circuit formulation of the Born machine (Liu & Wang, 2018).

Benedetti et al. (2018) propose a model of quantum circuit Born 
machines obtained by learning a GHZ (Greenberger–Horne–Zeilinger) 
state preparation process which could be deployed on NISQ devices such 
as an ion trap quantum computer. Glasser et al. (2019) propose a quantum 
circuit Born machine preparation based on factorization in which the 
 network demonstrates better expressive power in the probabilistic 
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interpretation of local quantum circuits. Alcazar et al. (2020) implement 
a generic quantum circuit Born machine for quantum finance, aimed at 
constructing portfolio optimization scenarios by using time series pricing 
data from the S&P500 stock market index.

17.1.1  Boltzmann machine versus born machine

The Boltzmann machine and the Born machine are two approaches to 
probabilistic modeling. The insight behind the Boltzmann machine is that 
probability distributions can be modeled by using an energy function 
according to the Boltzmann distribution. The insight underlying the Born 
machine is that probability distributions can be modeled by using a quan-
tum state per the Born rule. The two methods are complementary. The 
Boltzmann machine is the traditional method aimed at supervised learning 
on classical platforms. The Born machine is a contemporary probabilistic 
method designed to accommodate unsupervised generative learning on 
quantum platforms. Conceptually, both methods target the same problem 
of trying to describe the emergent collective behavior of complex systems 
with a large number of degrees of freedom by identifying probability 
 distributions in a large possibility space. The aim of both is to find a 
 function that describes input data, generically a function with the 
Boltzmann machine, and specifically a wavefunction with the Born 
machine (Table 17.2).

Table 17.1.  Born machine research advances.

No. Research Advance Reference

1 Introduce the Born machine Cheng et al. (2018)

2 Map Boltzmann machine to Born machine Chen et al. (2018)

3 Tensor network Born machines Han et al. (2018)

4 Quantum circuit Born machines: Generic Liu and Wang (2018)

5 Quantum circuit Born machines: GHZ state preparation Benedetti et al. (2019)

6 Quantum circuit Born machines: Locally purified states Glasser et al. (2019)

7 Quantum finance: Ion trap demonstration Alcazar et al. (2020)
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Originally proposed in 1985 (Ackley et al., 1985), the Boltzmann 
machine has become the backbone of modern machine learning. Boltzmann 
machines are named after the Boltzmann distribution in statistical 
mechanics, which is used in the machine learning algorithm’s sampling 
function, structured as an energy minimizing probability function. The 
energy-based function incorporates the Boltzmann distribution. The 
Boltzmann distribution is a probability distribution that gives the prob-
ability that a system is in a certain state as a function of the state’s energy 
and the temperature of the system. The formula includes Boltzmann’s 
constant (kB) as the proportionality factor that relates the average relative 
kinetic energy of particles in a gas with the thermodynamic temperature, 
and has a specific value of 1.380 649 × 10−23 Joules-Kelvin−1 (Tiesinga  
et al., 2021, p. 025010–3). The Boltzmann distribution can be used to 
calculate various problems ranging from single atoms to a large container 
of gas. The distribution indicates that states with lower energy always 
have a higher probability of being occupied.

17.1.2  Supervised versus unsupervised learning

The Born machine can be used for wavefunction ansatz and also unsuper-
vised generative learning. Statistical classification (machine learning) 

Table 17.2.  Boltzmann machine versus Born machine.

Topic Boltzmann Machine Born Machine

Model characterization Classical probabilistic model Modern probabilistic model

Machine learning focus Classical machine learning Quantum machine learning

Learning domain Supervised learning 
(discriminative algorithms)

Unsupervised learning 
(generative algorithms)

Approach derivation Statistical physics Quantum physics

Probability distribution Energy-based model Quantum state-based model

Probabilistic model Boltzmann distribution Born rule

Implied implementation Classical platform: Neural 
networks, GPU

Quantum platform: Tensor 
networks, quantum circuits

Emblematic reference Ackley et al. (1985) Cheng et al. (2018)
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consists of two main strategies, the discriminative approach and the 
 generative approach. Whereas discriminative algorithms learn directly 
from the data, generative algorithms learn the distribution of the data. 
Generative methods study how the probability of the data is generated, 
and from this, can generate or produce new samples (Goodfellow et al., 
2014). Generative methods can but do not necessarily create new data; 
the point is that the distribution is understood well enough to be able to 
generate additional samples.

The discriminative approach performs well in supervised learning, 
by classifying new data samples based on having learned from a labeled 
training dataset. However, most real-life data are not cleanly labeled and 
annotated as datasets conducive to supervised learning. Hence, generative 
modeling is a tool for characterizing unknown data by modeling probabil-
ity distributions to elicit features, categories, dimension, and other attri-
butes. Generative modeling may be able to identify natural features in 
datasets, and can use sampling methods which supervised learning can-
not. The generative approach is thus being developed for unsupervised 
learning (Table 17.3).

In the canonical task of classification, the two approaches compute 
classifiers with different statistical modeling methods. Discriminative 
classifiers model the conditional probability distribution, or no distribu-
tion, whereas generative classifiers model the joint probability distribu-
tion. Discriminative algorithms learn directly from the data and then try to 
classify new data. Generative algorithms learn the distribution of the data, 

Table 17.3.  Supervised (discriminative) versus unsupervised (generative) learning.

Topic Discriminative Generative

Learning domain Supervised learning Unsupervised learning

Model focus Learn directly from data Learn probability distribution  
of data

Probability focus Model conditional probabilities Model joint probabilities

Status Established Emerging and expanding

Notable examples Ongoing results from labeled 
datasets: Iris, MNIST,  
ImageNet

Generative adversarial 
networks, variational 
autoregressive networks
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and then try to classify new data or produce new data. Discriminative 
algorithms may outperform on targeted classification and regression tasks, 
and generative algorithms perform better at characterizing unknown data-
sets. In general, the two classes of models are complementary views of 
the same procedure, either modeling the data directly (discriminative 
approach) or modeling the distribution of the data (generative approach). 
Generative modeling learns the joint probability distribution of data.

17.1.3  Unsupervised generative learning

Several quantum machine learning projects use the Born rule to deter-
mine the output probabilities, rather than a Boltzmann distribution-based 
energy function as in classical machine learning (Table 17.4). In quantum 
machine learning, datasets are often mapped to the basis vectors of a 
Hilbert space. Then the algorithm proceeds by learning the two-point cor-
relations (joint probabilities in the generative model) between pairs of 
variables that are located at short or long distance from one another. First, 
Han et al. (2018) deploy a Born machine for unsupervised generative 
learning using matrix product states (a tensor network formulation) to 
model the probability distribution of unlabeled data samples. The proba-
bilistic model is structured as a matrix product state, which allows for 
adaptive learning and direct sampling (which is not possible in classical 
machine learning). Once the matrix product state wavefunction is identi-
fied, learning is achieved by adjusting the parameters of the wavefunction 
such that the distribution represented by the Born rule is as close as 

Table 17.4.  Born machine implementation examples.

No. Project Input Data Platform

1 Unsupervised generative 
learning

Bit string samples from 
Bars and Stripes, MNIST

Tensor network Born 
machine

2 Generative modeling to 
train shallow quantum 
circuits (NISQ devices)

Quantum state data Quantum circuit 
Born machine

3 Variational autoregressive 
networks

Bit string samples of 
thermal states

Quantum circuit 
Born machine
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possible to that of the data distribution. The generative modeling method 
is tested on standard datasets including Bars and Stripes (random binary 
patterns) and MNIST (handwritten digits). Data are translated to binary 
strings which are mapped to the basis vectors of a Hilbert space of dimen-
sion 2n. These are the input data for the matrix product state tensor 
 network to model in terms of joint probability distribution interpreted with 
the Born rule.

Second, Benedetti et al. (2018) propose a hybrid quantum-classical 
approach for generative modeling on gate-based NISQ devices. The 
2n amplitudes of the wavefunction are obtained from an n-qubit quantum 
circuit designed to construct and capture the correlations observed in a 
dataset, and a Born rule is used to determine the output probabilities. The 
Born rule is implemented by simulating a quantum circuit executed on 
NISQ hardware. The method is tested by learning a GHZ state preparation 
process for an ion trap quantum computer. The method is further tested 
by training circuits to prepare approximations of thermal states (which 
demonstrates the power of Born machines to approximate Boltzmann 
machines when the data have thermal-related features). The method might 
be implemented to prepare GHZ states and approximations of thermal 
states on NISQ platforms.

Third, the further reach of the Born machine approach can be seen in 
Liu et al.’s (2019) work in studying thermal quantum states. Born 
machines are good for the quantum machine learning of classical data, 
and also for the quantum machine learning of quantum problems involv-
ing thermal data that are inaccessible with other models. Liu et al.’s 
(2019) approach extends the variational quantum eigensolver (VQE) to 
accommodate thermal quantum states. The algorithm uses a variational 
autoregressive network to generate bit string samples of thermal states as 
input quantum states for the quantum circuit. The Born machine approach 
is used to interpret probability distribution results. Thermal observables 
can be examined such as variational free energy, entropy, and heat.  
A variational ansatz is obtained for the density matrix. The resulting 
model allows the ability to perform variational free energy calculations 
over density matrices efficiently. Applications of the approach are demon-
strated for systems with thermal properties and excitations of quantum 
lattice models.
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17.1.3.1  Born machine implications for quantum computing

Studying quantum mechanical systems (both baseline ground states and 
higher energy levels in the form of thermal states) presents a variety of 
challenges to classical computational approaches. First, classical algo-
rithms generally encounter the difficulties of diagonalizing (effectively 
representing in a matrix form) exponentially large Hamiltonians. Second, 
classical algorithms confront the sign problem that originates from the 
quantum nature of the problem. Third, even if the system can be written 
on an eigenbasis (factorized basis), there is still an intractable partition 
function (the configuration integral of all correlation functions in a quan-
tum system) which involves the summation of an exponentially large 
number of terms.

Quantum computing offers an attractive alternative for solving a num-
ber of these problems and modeling the complexities of thermal states in 
quantum mechanical systems. The most straightforward way to address 
the difficulties of classical computing is to directly realize the physical 
Hamiltonian on an analog quantum device and study the system at thermal 
equilibrium (van Houcke et al., 2012). Such an approach has been dem-
onstrated in the observation of topological phenomena in a programmable 
lattice of 1,800 qubits (King et al., 2018). However, this entails storing 
the entire wavefunction, which with 2n complex numbers, is not a scalable 
method.

A more general approach to quantum computing would be to study 
thermal properties with a universal gate model quantum computer. 
To accommodate the ground state, numerous modeling projects have been 
proposed. However, for more complex thermal systems at higher energy 
levels and away from equilibrium, additional algorithmic innovations are 
needed to prepare thermal quantum states on quantum circuits, particularly 
taking into account their unitary nature. As one example, quantum algo-
rithms have been proposed for preparing thermal Gibbs states on quantum 
computers (Terhal & DiVincenzo, 2000). Unfortunately, even a straightfor-
ward Gibbs state may not be feasible on NISQ devices with limited circuit 
depth. In a more complicated example, a variational  quantum algorithm is 
proposed for preparing thermofield double states (Wu & Hsieh, 2018), but 
implementation still requires additional quantum resources such as ancilla 
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qubits, as well as measuring and extrapolating Rényi entropies which are 
not feasible with NISQ devices. Further, assessing quantum time evolution 
in dynamical systems requires methods such as performing exponentially 
difficult tomography (quantum state reconstruction) on a growing number 
of qubits and the synthesis of multi-qubit unitaries.

To facilitate the modeling of more complex quantum systems such 
as thermal states, Martyn and Swingle (2019) develop an approach to 
prepare the thermal density matrix as a classical mixture of quantum pure 
states in the eigenbasis. The approach is useful for addressing certain situ-
ations. However, in this and other related proposals, the classical probabi-
listic model is either assumed to be factorized or expressed as an 
energy-based model (Boltzmann machine). The result is that the factor-
ized distribution is only an approximation of the Gibbs distribution in 
the eigenbasis. Energy-based models thus still face the problem of an 
intractable partition function which prevents the method from adequately 
sampling and learning.

Instead, the Born machine as a generative method might offer a 
 solution to the intractable partition function since the goal of generative 
modeling is to directly represent, learn, and sample from complex high-
dimensional probability distributions (Liu et al., 2019). Examples of gen-
erative models including autoregressive models, variational autoencoders, 
and generative adversarial networks have been demonstrated classically. 
For the quantum context, autoregressive models stand out since they sup-
port an unbiased gradient estimator for discrete variables, direct sampling, 
and tractable likelihood at the same time. The autoregressive models have 
reached state-of-the-art performance in modeling realistic data and found 
real-world applications in synthesizing natural speech and images. 
Variational optimization of the autoregressive network has been used for 
classical statistical physics problems. Quantum generalization of the 
autoregressive network has also been employed for ground state analysis 
of quantum many-body systems (Sharir et al., 2019).

Liu et al. (2019) propose and approach that combines quantum 
 circuits and classical autoregressive neural networks. The combined model 
parametrizes a variational density matrix as a classical mixture of quantum 
pure states, and the autoregressive network generates bit string samples as 
input states to the quantum circuit. One result is that the VQE is extended 
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to accommodate thermal quantum states. The Born machine approach is 
used to interpret probability distribution results. Thermal observables can 
be examined such as variational free energy, entropy, and heat. A varia-
tional ansatz is obtained for the density matrix. The resulting model allows 
variational free energy calculations to be performed over density matrices 
efficiently. Applications of the approach are demonstrated for systems 
with thermal properties and excitations of quantum lattice models.

The quantum circuit acts as a canonical transformation that brings the 
density matrix to a diagonal representation. Also, since the circuit approx-
imately diagonalizes the density matrix, it can be used for other purposes 
such as accelerated time evolution (Cirstoiu et al., 2020). One use of the 
approach could be to study the thermal properties of frustrated quantum 
systems which are otherwise prevented by the sign problem. It is also pos-
sible to employ the qubit efficient VQE scheme developed by Huggins 
et al. (2019) to study the thermal properties of quantum many-body sys-
tems on a quantum computer with the number of qubits being smaller than 
the number of degrees of freedom. In this scenario, the ansatz for the 
density matrix is a classical mixture of matrix product states. Variational 
ansatz for the density matrix can also be used in the quantum algorithm 
for nonequilibrium dynamics and steady states.

17.2  Probabilistic Methods: Reduced  
Density Matrix

The Born machine is one example of the bigger theme of probabilistic 
quantum models that use quantum-based methods to perform probability-
related tasks such as machine learning. There is a thought progression 
from merely considering the encoding of a binary-valued qubit in a quan-
tum circuit to having in mind a full-blown quantum state. A quantum state 
is all of the statistical information that describes a quantum system, 
namely, vectors of potential particle movement in a complex Hilbert 
space. One of the first steps toward the quantum state mindset is Cheng 
et al.’s (2018) noticing that the quantum mechanical Born rule can be used 
to determine the output probabilities in a machine learning algorithm. 
Then Bradley et al. (2019) notice that classical probability distributions 
can be modeled using quantum states. This quickly becomes standard as 
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Martyn et al. (2020) encode classical data into a quantum state as the 
routine process of embedding data into an exponentially large vector 
space, in which the vectors are wavefunctions that are tensor products 
that can be taken up easily by a quantum machine learning platform. What 
is different compared to earlier quantum machine learning implementa-
tions (Farhi & Neven, 2018; Grant et al., 2018) is that whereas the earlier 
focus was encoding qubits, the later focus is encoding a quantum state. 
To perform more sophisticated applications with a quantum computer, the 
input data must be encoded in a quantum state.

17.2.1  Modeling classical data with quantum states

Bradley et al. (2019) propose an algorithm for unsupervised generative 
learning based on a standard setup for a density matrix renormalization 
group (DMRG) tensor network model. The same formalism that is used to 
interpret the wavefunction in quantum mechanics is employed as a frame-
work to treat classical data, and further, take advantage of the quantum 
entanglement formulation to identify otherwise inaccessible correlations 
in classical data.

The mathematical problem of interest is determining the probability 
distribution of a generic set of sequences from a finite set of samples. 
Obtaining such probability distributions on datasets is a first and obvious 
analysis function in the characterization of data. A key insight is that 
 classical probability distributions can be modeled using quantum states. 
The work models classical input data with quantum states (both pure 
and entangled) and machine learns the probability distributions. 
Mathematically, the idea is to transition from finite sets to functions on 
finite sets. Functions on sets have more structure (such as entanglement) 
than the sets themselves, and the extra structure is meaningful.

The work is part of the ongoing shift from classical computing to 
quantum computing. The expansion from finite sets to functions on finite 
sets is relevant to quantum problem formulation because functions on 
finite sets have a natural Hilbert space structure. The work employs two 
known probabilistic quantum reformulations: The reduced density matrix 
as the quantum version of the marginal probability distribution, and the 
partial trace as the quantum version of marginalization (Table 17.5).
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The quantum version of the standard classical statistical probability 
distribution is the density matrix. The density matrix results from a den-
sity operator acting on the Hilbert space of the system, and provides the 
information describing a quantum state, in a statistical format. Complexity 
reduction techniques are applied to reduce unwieldy statistical models in 
both the classical and quantum setting. In classical statistics, a marginal 
probability distribution is often calculated to approximate the salient attri-
butes of the data as opposed to computing the full probability distribution 
which may be costly and unfeasible. The quantum version of the marginal 
probability distribution is the reduced density matrix, which is generated 
by a reduced density operator. The distinction is that the reduced density 
matrix holds enough information to reconstruct the entire joint probability 
distribution whereas the marginal probability distribution does not. The 
upshot is that the quantum approach is more effective at modeling classi-
cal probability distributions than classical methods.

17.2.1.1  Quantum entanglement found in classical data

The reduced density matrix contains more information than the marginal 
distribution. Since there is entanglement in quantum states, the reduced 
density matrix that describes the subsystems in the quantum system 
includes entanglement (information about relationships between comple-
mentary subsystems). This is in contrast to the classical picture in which 
the marginal probability distribution integrates out any information about 
complementary subsystems. From a quantum information-theoretic 

Table 17.5.  Comparison: Classical-quantum statistics.

No. Classical Statistics Quantum Statistics

1 Finite sets Functions on finite sets

2 Fixed space structure Hilbert space structure

3 Probability distribution Density matrix

Complexity reduction techniques

4 Marginal probability distribution Reduced density matrix

5 Marginalization Partial trace
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perspective, the reduced density matrix is a less-lossy form of information 
compression than the marginal probability distribution and may contain 
both short-range and long-range correlations. The additional information 
(entanglement) preserved in the reduced density matrix can be used to 
study the system in greater depth. Classical data would not be thought to 
have entanglement, but applying the quantum entanglement formalism, 
indeed correlations in the underlying data may be accessed.

The result is that classical data and classical probability distributions 
can be modeled with quantum states and exploited with the concept of 
entanglement. The ability to exploit quantum entanglement allows more 
system information to be encoded naturally in the model, and this leads to 
an enhanced ability to analyze the system of interest. The premise is that 
extra information is included in the quantum encoding structure in the 
reduced densities (in a richer but more compact format). The innovation 
is that with probabilistic quantum methods, quantum entanglement can be 
used to reveal correlations in classical data.

17.2.1.2  Practical implementation

In Bradley et al.’s (2019) implementation, the data are a generic set of 
sequences from a finite set of samples in classical data, represented as 
reduced density matrices, in which entanglement is preserved. The 
machine learning network and machine learning algorithm are the stan-
dard setup also used in the team’s other work (Stoudenmire & Schwab 
2017; Reyes & Stoudenmire, 2020). The machine learning network is a 
matrix product state tensor network. The machine learning network is 
trained with an adaptive algorithm (using alternating least squares) based 
on the DMRG algorithm.

Entanglement, as the “extra information” available in the quantum 
method of the reduced density matrix as compared to the classical  marginal 
probability distribution, is useful both for studying the underlying system 
and the model. In this case, the underlying system is the classical data 
encoded as quantum states such that entanglement reveals correlations that 
are not accessible with classical methods. The model is the tensor network, 
built to incorporate entanglement in the modeling of quantum many-body 
systems. Entanglement as the renormalized quantity in the quantum states 
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instantiated in the tensor network model reveals other kinds of information 
about the model. The training algorithm uses entanglement as feedback 
information contained in the reduced densities that allows the mechanics 
the algorithm to be refined by tabulating the generalization error of the 
resulting model. The feedback information (entanglement) is further used 
to produce an error estimate for the training.

17.2.1.3  Advantages of probabilistic quantum methods

Several benefits of quantum machine learning on tensor networks with 
probabilistic quantum methods are demonstrated. First, probabilistic 
quantum methods allow the creation of better models that do not integrate 
out relevant information. This leads to data compression as the second 
advantage. For quantum data, including a renormalization quantity such 
as entanglement allows the system to be compressed so that it may be 
tractably computed. For classical data, entanglement allows the system to 
be compressed such that it contains a richer level of information about 
relationships within the system for a greater level of computation about 
the system. From a practical perspective, probabilistic quantum methods 
can be used to construct efficient information compression protocols for 
the transfer of quantum information. Third, an important benefit of using 
tensor networks as opposed to neural networks for machine learning is 
their transparency. Tensor networks can be viewed as a sequence of 
related linear maps, which act together on a high-dimensional space. This 
allows generates a machine learning model which is particularly expres-
sive, and can be investigated to assess which architectural effects are 
 having the greatest contribution. The probabilistic quantum methods are 
portable to other machine learning techniques, including because the lin-
ear operations of the tensor network can be inspected (unlike the usual 
“black box” of machine learning methods).

17.2.2  Density matrices and density operators

The density matrix is the quantum analog to the classical probability 
 distribution. The density matrix is a matrix that describes the statistical 
state of a quantum system in complete detail. Using density matrices is 
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complicated but unavoidable since even if an overall system might be in a 
pure state, the various subsystems that comprise it might be in a variety of 
mixed states (states that are written as a combination of other states). 
Hence, a density matrix is used to describe the state of the composite 
system. Since a quantum system cannot be observed directly, the density 
matrix describes the system state as produced by the density operator. 
The density operator acts on the system to produce expectation values of 
system observables to generate the overall system state. The density 
matrix is the overall state, and the density operator produces the overall 
state.

The density matrix is a representation of all possible information 
about a quantum state or system. Since the density matrix is comprehen-
sive and elaborate, a reduced density matrix distilled from the overall 
system may be better for addressing a particular problem. Dirac proposed 
the notion of the reduced density matrix in 1930. The reduced density 
matrix is the partial trace of the density matrix. The reduced density 
matrix is calculated as the partial trace of the density matrix with fewer 
complex coefficients. For example, the state vectors in the full system 
might have over a hundred complex coefficients but the reduced density 
operator has only four. The reduced density operator describes the proper-
ties of the system leaving parts of it unobserved. Just as the density opera-
tor is used to produce the density matrix, the reduced density operator is 
used to produce the reduced density matrix. The reduced density operator 
describes the state of a composite system by reducing pure states and 
mixed states with many complex coefficients using a partial trace of 
the matrix.

The DMRG tensor network structure is designed specifically to 
accommodate the complexity of quantum mechanical system density 
matrices. The DMRG is extended to the calculation of reduced density 
matrices and partial trace matrix operations as the quantum analogs in 
complexity reduction. In classical probability distribution modeling, the 
marginal distribution is the probability distribution of a subset of variables 
without reference to other variables in the system (this contrasts with the 
conditional distribution which includes the relationships of the subset of 
variables with the other variables in the system). Marginalization is 
the technique of marginalizing or discarding the variables that are not 
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needed for a particular analysis as a complexity reduction technique. 
The corresponding technique to marginalization in the quantum domain 
is the partial trace in the sense that the reduced density matrix is calcu-
lated as the partial trace of the density matrix with fewer complex 
coefficients.

17.3  Tensor Networks: Pixel = Spin (Qubit)

Stoudenmire and Schwab (2017) propose one of the first machine learning 
implementations using tensor networks. A key insight is that an image 
pixel equates to a spin value in a quantum system (and hence its later 
translatability to a qubit in a quantum computing environment). The pro-
gram includes a quantum-inspired tensor network model for supervised 
machine learning, using tensor networks to encode pixel data as qubits or 
spins, and an adaptive loss function for the weight tensor. The work dem-
onstrates how algorithms for optimizing tensor networks can be translated 
to supervised learning tasks by using matrix product states (or tensor 
trains) to parametrize models for classifying images. The method is tested 
on the MNIST dataset (handwritten images) with a classification error of 
less than one percent.

17.3.1  Decomposition of high-dimensional vectors

The broad problem space is reducing the high dimensionality of the large 
vectors that arise in many areas of both quantum mechanical science (for 
example, chemistry, condensed matter, and materials science) and 
machine learning. The solution is simplifying more complicated problems 
into smaller solvable ones. Precisely one such a strategy for manipulating 
large vectors in quantum mechanics is decomposing them into a tensor 
network representation. Tensor networks incorporate low-order tensors, 
which yet still accurately reproduce high-order tensors through a particu-
lar geometry of tensor contractions.

Tensor networks are a strategy for truncating the possibility space into 
salient prospects. The idea behind tensor networks is decomposing a large 
tensor into contractions of smaller tensors. In a graph-theoretic represen-
tation, the tensors are the network nodes and the contractions are the lines 
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(edges) connecting them. Consequently, a large tensor, under a decompo-
sition, becomes a network. The wavefunction is precisely a large and 
unwieldy tensor in the form of 2n complex numbers. In the tensor net-
work, the wavefunction is decomposed into a 2n × M expression (M is 
parameters or degrees of freedom), which is solvable. A tensor network 
approximates the exponentially large set of components of a high-order 
tensor in terms of a much smaller set of parameters whose number only 
grows polynomially in the size of the input space. An important variable 
is the bond dimension (tensor rank) which controls the number of param-
eters of the model and can be tuned up or down to find the optimal model 
based on cost, expressibility, and lack of overfitting.

In the quantum mechanical application, tensor networks are good at 
focusing on a small part of the Hilbert space with relevant local structure, 
such as determining a ground state Hamiltonian, as captured by the tensor 
product structure. Tensor network states have been shown to be a tool 
for modeling many-body quantum states. For example, the matrix prod-
uct state (one-dimensional tensor network geometry) representation of 
ground states has been proven to be efficient for one-dimensional gapped 
local Hamiltonian (Landau et al., 2015). The idea is to apply the same 
kinds of tensor network techniques to machine learning for feature extrac-
tion, dimensionality reduction, and analyzing the expressibility of neural 
networks. The tensor network machine learning algorithm Stoudenmire 
and Schwab (2017) propose is outlined in Table 17.6.

17.3.1.1  Machine learning algorithm: Weighted data features

A standard structure for a machine learning algorithm is as follows. The 
method draws from kernel learning methods in which there are large vec-
tors that arise in nonlinear kernel learning, and these input vectors are 
mapped into a higher dimensional space via a feature map before being 
classified by a decision function. The aim is to find a function that is in 
the form of a weighted average of relevant features in input data. The 
expression is a weight coefficient (a weight vector as a coefficient) multi-
plied with the input data (which is structured as vectors of features). The 
learning network manipulates the weights in the weights times the fea-
tures expression to identify the most relevant features and weights. 
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Through this structural formulation, the network’s optimization algo-
rithms learn (test with small trail-and-error changes) a function that 
approximates the probability distribution of the underlying data. The 
challenge is that both the feature vector and the weight vector can be 
exponentially large or even infinite. The decomposition concept is applied 
in the tensor network approach to both elements. The process can be con-
sidered in two steps, first encoding the feature tensor from the input data, 
and second optimizing the weight tensor for the learning process. The 
overall aim is to approximate the probability distribution of the data. For 
data input, this means making a wavefunction (tensor product) of the fea-
ture map. The data feature tensor of the overall system (wavefunction) is 
a tensor product of individual image data feature tensors obtained by 
applying the local feature map to each input.

17.3.1.2  Step 1: Encoding input data into tensor networks

In quantum mechanics, tensor networks are used to combine independent 
system elements by taking the tensor product of individual state vectors to 
obtain the overall system state. Likewise, in applying tensor networks 
to machine learning, individual feature vectors are combined to obtain 
the overall feature map of the system. The feature map of the system is 

Table 17.6.  Implementations steps: Tensor network.

No. Implementation Steps (weight tensor × feature tensor = probability distribution)

1 Encode data: Make a wavefunction (tensor product) of the feature map of the 
input data. The data feature tensor of the overall system (wavefunction) is a 
tensor product of individual image data feature tensors obtained by applying 
the local feature map to each input

2 Network architecture: Set up the regularization and optimization of the weight 
tensor as a matrix product state tensor network representation

3 Training the network: Train the matrix product state tensor network with an 
adaptive algorithm based on the density matrix renormalization group 
(DMRG), sweeping iteratively back and forth through the network

4 Testing the network: Use the machine learning tensor network to solve specific 
problems such as image classification
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written as a tensor product of the individual feature vectors (which are 
generated as the local feature map applied to each input). Each data input 
is mapped to a d-dimensional vector. The overall feature map can be 
viewed as a vector in a dn-dimensional space or as an order-n tensor. The 
feature map has the same structure as a product state or a wavefunction.

A concrete example of the feature map construction can be seen with 
MNIST data inputs. The data are gray scale images with n pixels, each 
pixel ranging in value from 0.0 for white to 1.0 for black, and gray scales 
in between. The MNIST digits (originally 28 × 28 pixels) are scaled down 
to 14 × 14 by averaging clusters of four pixels. Each pixel value is mapped 
to a normalized two-component vector. The feature map for each pixel is 
the normalized wavefunction of a single qubit in which the spin-up state 
corresponds to a white pixel, the spin-down state to a black pixel, and a 
superposition corresponds to a gray pixel. The local feature maps thus 
map each input component to a d-dimensional vector. The full image 
is represented as a tensor product of the local vectors, and the overall 
feature map is a tensor product of the individual image feature vectors. 
In this representation, the input data images are encoded into the tensor 
network.

17.3.1.3  Step 2: Selecting network architecture

The second step is selecting the network architecture, which in this case 
is approximating the weight tensor with matrix product states. The overall 
machine learning formulation is the weight tensor multiplied with the 
feature vector tensor. Although both the feature vector tensor and the 
weight tensor may be unwieldy, the data encoding has already been speci-
fied and so special attention is given to the weight tensor. A way to regu-
larize and optimize the weight tensor efficiently is needed. The tensor 
network strategy is to represent this high-order weight tensor as a tensor 
network, meaning as the contracted product of lower-order tensors.

A tensor network approximates the exponentially large set of compo-
nents of a high-order tensor in terms of a much smaller set of parameters 
whose number only grows polynomially in the size of the input space. 
Here, the weight tensor is approximated as a matrix product state (one-
dimensional tensor network geometry), which has the advantage that 

b4362_Ch17.indd   398b4362_Ch17.indd   398 4/29/2022   6:34:50 PM4/29/2022   6:34:50 PM



b4362  Quantum Computing for the Brain6"×9" 

 Born Machine and Pixel = Qubit  399

methods for manipulating and optimizing matrix product states are well 
understood and highly efficient. Hence, a matrix product state decomposi-
tion of the weight tensor is defined. The matrix product state representa-
tion gives the learning network the ability to efficiently optimize the 
weights and adaptively change their number by varying a few tensors 
at a time (in close analogy to the DMRG algorithm used in physics). 
The matrix product state tensor network operates by taking the tensor 
products of the weights tensor and the data features tensor (the data 
 feature tensor of the system is the tensor product of the individual data 
feature tensors).

17.3.1.4  Step 3: Training the network

The matrix product state tensor network is trained using an adaptive algo-
rithm based on the DMRG algorithm. The machine learning goal is to find 
a suitable overall weight vector that gives the probability distribution 
of the data, structurally by minimizing a cost function corresponding 
to the model output. The learning algorithm manipulates the weights (in 
the weights times the features expression) to identify the most relevant 
features and weights. The weight tensor is optimized with a sweeping 
algorithm. The sweeping algorithm is based on the DMRG formulation 
which renormalizes across system dimensions, meaning in the sense of 
compactifying multiple scales in a system while preserving meaningful 
correlations.

Here, the sweeping algorithm optimizes the weights by sweeping 
back and forth along a matrix product state tensor network, iteratively 
minimizing a cost function that defines the classification task. The 
 strategy for reducing the cost function is to vary two neighboring matrix 
product state tensors at a time. The pairwise optimization of the tensors 
highlights the adaptability advantage of tensor networks. The usual 
machine learning method only varies just one parameter at a time in the 
loss function. However, the tensor network formulation provides the abil-
ity to vary two tensors thus giving a more sophisticated method for adap-
tively changing the matrix product state bond dimension (tensor rank). Per 
the singular value decomposition (a known decomposition method), the 
dimension of the matrix product state bond dimension can be chosen 
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adaptively (based on number of large singular values defined by a thresh-
old chosen in advance). Through the pairwise optimization, the matrix 
product state form of the weight tensor can be maximally compressed, 
including by different amounts on each bond, while still ensuring an over-
all decision function that is optimal.

17.3.1.5  Step 4: Testing real-life data

The machine learning tensor network is tested by executing the machine 
learning process on MNIST data. The MNIST dataset consists of 10,000 
handwritten digits that are gray scale images of the digits zero through 
nine. The sweeping algorithm is used to train the weights, and the algo-
rithm quickly converges in the number of passes, or sweeps over the 
matrix product state tensor network. In this analysis, typically only two or 
three sweeps were needed to see good convergence, with test error rates 
changing only by hundredths of a percent thereafter. Specifically, test 
error rates decreased rapidly as a function of the maximum matrix product 
state bond dimension. A bond dimension of 10 resulted in a 5% testing 
and training error rate, and with a bond dimension of 20, the error dropped 
to only 2%. The largest bond dimension tried was 120. After three sweeps, 
the error rates obtained were a test error of 0.97% (97 misclassified 
images out of the test set of 10,000 images) and a training set error of 
0.05% (32 misclassified images).

The bond dimension (tensor rank or Schmidt rank) is the dimension 
of the bond index connecting one tensor in the chain to the next. In typical 
physics applications, the matrix product state bond dimension can range 
from 10 to 10,000 or even more. For the most challenging physics sys-
tems, the idea is to allow as large a bond dimension as possible since a 
larger dimension means more accuracy. However, there is more of a focus 
on bond dimension optimization in the machine learning context. When 
using matrix product state in machine learning, the bond dimension con-
trols the number of parameters of the model. Thus, in contrast to physics 
applications, taking too large a bond dimension in machine learning might 
not be desirable as it could lead to overfitting. Also, more parameters are 
more costly. Sample code based on the ITensor library for Stoudenmire 
and Schwab’s machine learning tensor network model is available at 
https://github.com/emstoudenmire/TNML.
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17.3.1.6  Advantages of tensor networks for machine learning

The key advantages of a tensor network model for machine learning are 
dimensionality reduction, adaptivity, and direct sampling. First, the 
dimensionality advantage of tensor networks is that training the model 
scales linearly in the size of the training set. The cost for evaluating a data 
input is independent of the training set size. More specifically, the tensor 
network method delivers a family of learning models with a cost that is 
linear in the training set size for optimization, and independent of training 
set size for evaluation, despite using an expressive feature map (in which 
the dimension of feature space can be exponential in the size of the input 
space). Second, tensor networks are adaptive in ways that other machine 
learning techniques are not. The adaptivity advantage is that the dimen-
sions of tensor indices internal to the network grow and shrink during 
training to concentrate resources on the particular correlations within the 
data that are most useful for learning. Third, the tensor network form can 
be sampled directly unlike other “black box” machine learning methods. 
The tensor network presents opportunities to extract information hidden 
within the trained model and accelerate training by using techniques such 
as optimizing different internal tensors in parallel. This further means that 
given the sophistication of the tensor network model, certain subprocesses 
can be optimized directly. Overall, the tensor network machine learning 
method of mapping data into an extremely high-dimensional Hilbert space 
is likely to advantageous for producing models sensitive to high-order 
correlations among features in many contexts, such as analyzing the brain.

17.4  Tensor Networks: Wavelet = Spin (Qubit)

Another example of training of a tensor network structure to carry out a 
machine learning task is presented as follows. Reyes and Stoudenmire 
(2020) propose an algorithm for supervised learning using tensor net-
works. The algorithm first conducts a pre-processing step (to reduce the 
feature space representing the data and therefore the number of parame-
ters of the model) through a series of wavelet transforms approximated by 
the layers of a MERA tensor network. The algorithm second uses a matrix 
product state tensor network to act on the coarse-grained data, performing 
supervised learning on sequential data (DCASE audio files and mean 
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temperature data). The matrix product state tensor network is trained 
using an adaptive algorithm (using alternating least squares) based on the 
DMRG method. The matrix product state tensor network is used to repre-
sent the top layer of trainable weights.

The machine learning tensor network model presented by Reyes and 
Stoudenmire (2020) is used to learn sequential data (sound clip and aver-
age daily temperature) with a wavelet as the elemental unit or spin value 
that could be further encoded in a quantum computing environment. The 
method is extended from the Stoudenmire and Schwab (2017) machine 
learning tensor network model used to learn image data (MNIST) with the 
pixel being the elemental spin unit (Table 17.7).

Table 17.7.  Supervised tensor networks: Pixel and wavelet.

Image:  
Pixel = Spin (Qubit)

Sound/Time Series:  
Wavelet = Spin (Qubit)

Goal Find function = weight tensor × feature tensor (feature vectors, label)

Architecture Image pixel/MPS TN Wavelet transform/MPS TN

Spin (qubit) Pixel = Spin (qubit) Wavelet = Spin (qubit)

Step 1: Data 
encoding

The data feature tensor of the overall 
system (wavefunction) is a tensor 
product of individual image data 
feature tensors obtained by 
applying the local feature map to 
each input

The data feature tensor of the 
overall system 
(wavefunction) is a tensor 
product of wavelet transform 
amplitudes obtained by data 
preprocessing through a 
MERA tensor network

Step 2: Network 
architecture

Matrix product state tensor network

Step 3: Training 
the network

Network trained with an adaptive algorithm (using alternating least 
squares) based on the DMRG algorithm

Step 4: Testing 
real-life 
datasets

MNIST DCASE audio files 
(classification), mean 
temperature (linear 
regression)

Sequential data No (images) Yes (sequence is important)

Reference Stoudenmire and Schwab (2017) Reyes and Stoudenmire (2020)
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17.4.1  Wavelet transform

A wavelet is a wave-like oscillation with an amplitude that begins at zero, 
increases, and then decreases back to zero. Wavelets are crafted to have 
specific properties that make them useful for signal processing (for exam-
ple, to combine with the known portion of a damaged signal to rebuild the 
full signal). A wavelet transform is a manipulation that transforms a wave-
let such that it changes in time extension, but not in overall shape. This is 
allowed per the uncertainty principle of signal processing which describes 
the trade-off between time and frequency, much like the trade-off between 
position and velocity in the Heisenberg uncertainty principle.

For simple stationary signals, a Fourier transform is often applied as 
a signal processing technique, whereas a wavelet transform is used for 
nonstationary signals. The Fourier transform is a ubiquitous transforma-
tion which can be used to translate an input signal from the time domain 
to the frequency domain. Nonstationary signals, however, require analysis 
in both the time and the frequency domains. Wavelet transforms facilitate 
this type of analysis by transforming a signal into the time-frequency 
domain in which one or the other axis can be manipulated per the signal 
processing uncertainty principle.

To execute the wavelet transform, the wavelet is written as a vector 
and the inner product is taken for a subset of the signal. An integral per-
forms a summation over all the elements within that subset, and there is 
some degree of overlap with neighboring subsets. Using this method, the 
wavelet transformations of an input signal can be used to average and 
rescale the initial signal to one half its size (from size n to size n/2), while 
preserving local information in both the time and frequency domains. The 
preserved information is that which is associated with the part of the sig-
nal that varies most smoothly with the time index. Two standard types of 
wavelet transforms are the Haar transformation and the Daubechies-4 
transformation, respectively, summing over two or four elements of the 
subset of vector inner products. The benefit is reducing the size of the data 
by one half with each wavelet transform while preserving relevant infor-
mation (local time and frequency information). By preserving relevant 
local information across scales, the wavelet transform is a renormalization 
method.
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17.4.1.1  Wavelet transform equates to MERA tensor network

The key point for the tensor network context is that the wavelet transform 
equates to a MERA (multi-scale entanglement renormalization ansatz) 
tensor network. The MERA tensor network renormalizes entanglement 
across scales. The wavelet transform likewise renormalizes time and fre-
quency information across scales. In fact, preserving local time and fre-
quency information across system scales can be seen as constituting a 
definition of entanglement. Generically, entanglement is conceived as 
correlations between system elements. Local time and frequency relations 
amount to correlations. The wavelet transform/MERA implementation is 
proposed and demonstrated by Evenbly and White (2018). The data are 
fermionic modes. A wavelet transform of fermionic modes is realized in 
the form of a quantum circuit which is mapped to a MERA tensor net-
work. The model is used to calculate the ground state of a quantum critical 
Ising model. The insight is that the wavelet transform is a renormalization 
process just as MERA instantiates in the tensor network format. Hence, it 
is possible to realize a wavelet transform with a MERA tensor network.

17.4.1.2  Step 1: Data encoding: MERA tensor network

The machine learning algorithm used by Reyes and Stoudenmire (2020) 
first conducts a pre-processing step (to reduce the feature space repre-
senting the data and therefore the number of parameters of the model) 
through a series of wavelet transforms approximated by the layers of a 
MERA tensor network. The MERA is a tensor network model whose 
geometry and structure implements multiple coarse-grainings (renormal-
ization) of input variables (Vidal, 2007). The MERA network consists of 
alternating tree tensor layers (isometries) and disentangler layers as a 
family of tensor network factorizations that process information hierar-
chically. MERA preserves the computational advantages associated with 
tree-tensor networks, such as efficient marginalization, yet can be more 
expressive and powerful due to extra disentangler layers which mix 
branches of the tree.

Introducing tensors which connect subtrees could make computations 
with the resulting network prohibitively expensive. However, the MERA 
disentangler tensors are constrained to being unitary. Likewise, the main 
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layers of the network, tree tensors or isometry tensors, are constrained to 
obeying isometric conditions (one-to-one mappings). Due to these con-
straints, MERA computations can be carried out with a cost that scales 
polynomially in the dimensions of the internal indices of the network (i.e. 
efficiently). A typical operation for the MERA tensor network is to repre-
sent a probability distribution and calculate the marginal distribution and 
correlation functions. A specific application for a MERA tensor network 
is calculating the ground state of a local Hamiltonian in both gapless and 
gapped systems. The point is that the MERA architecture is comprised of 
alternating layers of tree tensors (isometries or one-to-one data mappings) 
and disentangler tensors (which capture information from other subtrees 
in the overall network).

In the wavelet analysis, specific isometries and disentanglers are used 
to parametrize the MERA layers which approximately compute the wave-
let coarse-graining transformations of input data. The process includes 
selecting different ways to approximate the Haar and Daubechies wavelet 
transforms. Specifically, each input data element is mapped into a rank-1 
matrix product state, and then acted on by MERA layers approximating 
Daubechies-4 wavelet transformation. Each subsequent layer of the 
MERA is constructed by encoding wavelet transforms into the disentan-
gler and isometry tensors. The work draws on the wavelet transform-
MERA relationship established by Evenbly and White (2016). Taking the 
input data, the MERA tensor network is used to perform a series of dis-
crete wavelet transforms to reduce the overall size of the data while simul-
taneously preserving local information within it (local relationships 
formatted as time and frequency relations). The result is that applying the 
MERA tensor network to the data is a pre-processing step which reduces 
the overall feature space representing the data and therefore the number of 
parameters required by the machine learning model.

Both MERA tensor networks and machine learning networks are 
composed of the same structure of alternating layers. MERA’s isometry 
(one-to-one) mappings followed by disentanglers (renormalizers) are 
similar to machine learning’s pooling layer followed by consolidation 
(convolution and activation) layer. Quantum machine learning structures 
can be further generalized to functions of alternating linear and nonlinear 
transformations (Han & Hartnoll, 2020).
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17.4.1.3  Steps 2 and 3: Network architecture and training

The machine learning algorithm is comprised of two steps, first is the 
coarse-graining of the input data through some number of discrete wavelet 
transforms, implemented as MERA tensor network layers. Second, the 
matrix product state tensor network developed by Stoudenmire and 
Schwab (2017) is used to represent the top layer of trainable weights. As 
in the previous work, the matrix product state tensor network is trained 
using an adaptive algorithm (using alternating least squares) based on the 
DMRG method. The technique sweeps back and forth between the first 
tensor and the last to optimize the algorithm (network structure).

The two-phase model is very powerful because it is essentially two 
tensor networks bolted together. The model’s capability derives from the 
fact that not only is the regular machine learning process adaptive (with 
trainable weights), but the process of coarse-graining the input data is also 
adaptive, and the two phases can feed and adapt relative to each other. The 
insight is that since tensors are multi-linear, controlled transformations of 
one tensor network into another are possible through established tech-
niques such as matrix factorization and tensor contraction. Thus, this 
construction takes advantage of the capability of one tensor network to 
transform into another. The benefit is that the amount of coarse graining 
can be adjusted during the training phase to adaptively discover the right 
number of coarse-graining steps needed to obtain the best results. The 
compound formulation is enabled by MERA’s structure as a tensor 
 network composed of multi-linear transformations. The model is trained 
by the network initially defining a larger number of coarse-graining 
steps, and then a smaller number of fine-grained steps in favor of the top 
tensor containing the adjustable model weights to reach the desired 
architecture.

The result of coarse-graining the input data through the series of 
wavelet transformations effectively reduces the size of the data by a factor 
of two after each transformation. Then the MERA tensor network optimi-
zation portion of the process works as follows. The form of the wavelet, 
as a wave-like oscillation with an amplitude that begins at zero, increases, 
and then decreases back to zero, suggests being written in a wavefunc-
tion format with different coefficients corresponding to the different 
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amplitudes. Deploying this format to encode the input data, the wavelet 
coefficients are decomposed into sequentially applied transformations. 
The interpretation is that each local feature vector can be considered as a 
“particle” whose state has coefficients given by the input components. The 
path the particle takes can be traced through the MERA, assigning appro-
priate transformations to it as it propagates through the tensors. With this 
construction, the optimal flow of data particles through the MERA can be 
derived (working out the result of applying the MERA layer to a patch of 
four adjacent input tensors at a time).

Thus, this two-phase process is followed to obtain the optimal 
machine learning function. The first step is the data encoding as wavelet 
transforms processed with a MERA tensor network and the second step is 
an MPS tensor network learning the feature weights tensor. The new 
wrinkle in this method is using MERA layers to approximate wavelet 
scaling functions as a preprocessing step. Relying on the presence of dis-
entanglers, the MERA network is able to approximate non-trivial families 
of wavelets with overlapping support such as Daubechies-4 wavelets. The 
resulting algorithms are tested with real-life datasets.

17.4.1.4  Step 4: Testing real-life datasets

The model was tested by performing supervised learning on DCASE 
audio files data and linear regression tasks on mean temperature data 
evaluated on the basis of the percentage of correctly labeled samples. For 
supervised learning, the DCASE set of audio classification data were 
used. The dataset consists of 15 batches (one batch per label), each con-
taining 234 ten-second audio clips for training. Each audio clip is a vector 
of 441,000 samples, and was embedded into a vector of 219 elements 
by padding with zeros. The problem was constrained to focus on binary 
classification, specifically distinguishing between “bus” and “beach” 
environment audio clips. Each dataset for the selected labels was coarse-
grained through Haar transformations before encoding the data into the 
Daubechies-4 wavelet MERA. The optimization was carried out over five 
sweeps.

For linear regression, a dataset of four years of daily temperature data 
(n = 1,462) was used. These data are available in a single data file of the 
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average daily temperatures of the Fisher River (near Dallas, Texas) recorded 
from January 1, 1988 to December 31, 1991 were used to construct input 
datasets for regression. Temperature data were labeled singly and in blocks 
to have a contiguous block of p temperatures as input for the MERA tensor 
network. The temperature immediately following this p block was assigned 
as the label for that training example. By shifting the starting index of the p 
block of temperatures, multiple examples could be constructed. In this way, 
the regression task was recast as a classification task over a continuous label. 
The optimization was carried out over forty sweeps.

The overall result is that the methods were tested by performing a 
classification task on audio data and a regression task on temperature 
time-series data, studying the dependence of training accuracy on the 
number of coarse-graining layers and showing how fine-graining through 
the network may be used to initialize models with access to finer-scale 
features. The further benefit of the chosen network architecture can be 
seen as follows. The accuracy of the model depends on the number of 
wavelet layers, and the input data can exhibit correlations at length scales 
that can be lost through the wavelet transformations. It is therefore impor-
tant to tailor the number of wavelets and initial size to the specific dataset 
being analyzed in order to maintain a desirable accuracy. The tensor net-
work setup gives an affordable and adaptive way to strike a balance 
between the efficiency and generalization gains obtained by coarse- 
graining versus model expressivity by trading off one for the other  
through the fine-graining procedure. One way to select the best number of 
layers would be to use too many intentionally, and then fine-grain until the 
gains in model performance begin to saturate.
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Chapter 18

Quantum Kernel Learning and 
Entanglement Design

Just like quantum computing, kernel methods perform implicit computa-
tions in a possibly intractably large Hilbert space through the efficient 
manipulation of data inputs

— Schuld and Killoran (2019, p. 1)

Abstract

This chapter discusses how quantum methods are used to improve 
machine learning techniques (Q/ML). The main approaches to machine 
learning are neural networks, tensor networks, and kernel learning, each 
of which has a quantum counterpart. Quantum kernel learning methods 
obeying the RKHS (reproducing kernel Hilbert space) formalism can 
be used to compute kernel functions at other scale dimensions of the 
system and have applications in quantum finance. The point is to have 
an analytical model that grows more slowly than the underlying system. 
Modeling classical data with wavefunctions finds hidden correlations, 
namely, how the system is entangled, which can be used as quantum 
system design principles.
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18.1  Quantum Kernel Methods

18.1.1  Machine learning approaches

There are three main approaches to machine learning: Neural networks, 
tensor networks, and kernel methods. Kernel methods is the technique of 
embedding data into a higher-dimensional feature space for simplified 
analysis. Functions in the higher-dimensional feature space are not com-
puted directly on data coordinates, but rather on a relevant kernel of the 
data supplied by kernel functions (distance measures between data points 
in the feature space). Kernel methods were deployed earlier in the history 
of machine learning (most successfully in the 1990s (Schuld & Killoran, 
2019, p. 1)), but were surpassed by neural networks in the “big data” and 
cloud computing era. However, the advent of quantum machine learning 
demands a wider range of approaches that include neural networks, and 
also emphasize tensor networks (to model quantum many-body problems) 
and kernel methods (to address high dimensionality).

Of the three machine learning approaches, neural networks are the 
least ready for quantum platforms and must be adapted. Tensor networks 
are “already-quantum” in the sense of having been derived to approximate 
wavefunctions, accommodate entanglement and renormalization, and 
solve other quantum mechanical problems. As such, tensor networks have 
a more straightforward path to implementation on quantum hardware than 
neural networks. Kernel methods are also “already-quantum” in that they 
share many parallels with quantum computing and can be readily con-
structed as quantum circuits. Both quantum computing (generally) and 
kernel methods (specifically) target the challenge of performing computa-
tions efficiently in an intractably large Hilbert space. Kernel methods have 
the additional benefit of being straightforward to implement using quan-
tum optical computing (favored for its more expansive qudits) with 
squeezed light states and optical coherent states (Table 18.1).

18.1.2  Kernel methods

Kernel methods are a class of machine learning algorithms used for pat-
tern analysis. In pattern analysis, the task is to find relations in datasets 
such as clusters, rankings, principal components, and correlations. Kernel 
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methods are named for their use of kernel functions. Kernel functions 
operate in an implicit high-dimensional feature space. They do not com-
pute the coordinates of the underlying data in the space, but rather calcu-
late the inner products between all the pairs of data in the feature space. 
The kernel, or salient description of the data, emerges as a similarity func-
tion over the inner products of the pairs of data points. The idea is that the 
kernel function operation is computationally cheaper than the explicit 
computation of the coordinates, but nevertheless yields relevant results. 
Kernel methods is an indirect technique and the approach of implicitly 
mapping data inputs into high-dimensional feature spaces for simplified 
calculation is sometimes called the kernel trick. These kinds of kernel 
functions are used to analyze many kinds of data including images, text, 
graphs, and sequential data. One of the best-known examples of kernel 
methods is support vector machines (SVMs).

SVMs are a supervised learning method applied to binary classifica-
tion problems. Given a set of training examples, each marked as belonging 
to one of two categories, the SVM training algorithm builds a model to 
assign new examples to one category or the other. The SVM model repre-
sents the data as points in space, mapped so that the examples of the sepa-
rate categories are divided by a clear gap. New examples are then mapped 
into that same space and predicted to belong to a category based on the 
side of the gap on which they fall.

The challenge is that when executed in a classical computing environ-
ment, both SVMs and kernel methods more generally do not scale well 
with the size of the feature space both in terms of data points and dimen-
sionality. One of the most significant limitations of classical algorithms 

Table 18.1.  Machine learning approaches and quantum status.

Approach Quantum Readiness Status Quantum Platform

Neural networks Must be quantum-adapted NISQ simulation (Farhi and 
Neven, 2018)

Tensor networks Already-quantum: Solve quantum 
many-body problems

IBM Q demo (Grant et al., 
2018)

Kernel methods Already-quantum: Compute problems 
in an intractably large Hilbert space

NISQ & Optical (Schuld 
and Killoran, 2019)
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using nonlinear kernels is that the kernel function has to be evaluated for 
all pairs of input feature vectors which themselves may be of substantially 
high dimension. This can lead to computationally excessive times during 
training and during the prediction process for a new data point. Hence, the 
ability to access quantum formulations provides an opportunity to resolve 
some of the scaling limits of kernel methods as deployed on classical 
platforms.

18.1.2.1  Kernel methods reduce dimensionality

Conceptually, kernel methods are a dimensionality reduction technique. 
The surprising discovery is that data become easier to analyze once they 
are mapped into a higher-dimensional feature space (Scholkopf & Smola, 
2002). In a high-dimensional space, it is easier to classify data as lines can 
be drawn (literally) to separate different classes of data into different 
spaces. The high dimensional environment makes it easier to identify rel-
evant features by which to classify the data. The kernel methods consist 
of formally embedding data into a higher-dimensional feature space and 
then using simple (linear) models to describe the data.

In the standard kernel method of SVMs, algorithms draw a decision 
boundary between two classes of data points by mapping the data into a 
feature space where they become linearly separable into categories. The 
dimensionality-management technique is that the algorithm does not 
explicitly perform computations with vectors in the feature space, but 
uses a kernel function that is defined on the domain of the original input 
data. The kernel function measures the distance between data points in 
the standard method by taking the pairwise inner products of two data 
inputs that have been mapped into the feature space. Many iterations of 
the kernel functions are performed for the classification algorithm to 
learn the best possibly function for the pattern recognition task at hand. 
A structural benefit of the kernel learning setup is that in the learning 
process, the machine learning algorithm can switch between kernels (data 
representation models) to test different model permutations. The practical 
benefit of kernel methods is having an iterative testing structure for a 
machine learning algorithm to learn by quickly cycling between many 
different possibilities. The theoretical benefit of kernel methods is being 
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able to define a lower-dimensional model that operates in a higher-
dimensional space.

18.1.2.2  Dimensionality reduction and squeezed light states

The aim of many quantum algorithms is to perform efficient computations 
in a Hilbert space that grows rapidly with the size of the quantum system. 
“Efficient” typically means that the number of operations applied to the 
system will grow at most polynomially with the system size. A standard 
quantum algorithm is the quantum Fourier transform (which is part of 
Shor’s factoring algorithm). The quantum Fourier transform uses polyno-
mial operations to perform a discrete Fourier transform on 2n amplitudes. 
Other kinds of quantum algorithms are used in quantum optical comput-
ing, for example, in global fiberoptic networks to produce squeezed states 
of light. Squeezed states are oscillatory waves whose phase or amplitude 
is squeezed (resulting in a reduced shape wave form) in order to reduce 
quantum noise (fluctuations and interference). Squeezed light states 
are used in communications networks as they have less quantum uncer-
tainty (noise) than other kinds of quantum states. The quantum algorithm 
for light state squeezing is a single operation applied to a light mode 
which formally manipulates the quantum state in an infinite-dimensional 
Hilbert space.

18.1.2.3  Quantum algorithm design

The consistent theme of the quantum algorithms in the quantum Fourier 
transform and light state squeezing examples is operating in a lower-
dimensional space than that of the quantum system being analyzed (the 
same premise as kernel methods). A quantum system that is growing 
exponentially needs to be matched with a corresponding algorithm that 
grows only linearly or polynomially if the problem is to remain 
tractable.

It would not be possible to compute quantum systems without tech-
niques for managing dimensionality growth. Hence, there are two related 
requirements for quantum algorithm design. First is the idea of calculating 
quantum systems on the basis of a lower-dimensional operation being 
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performed in a higher-dimensional space. Second is incorporating growth 
dynamics in that the lower-dimensional model needs to accommodate 
exponential growth in the underlying quantum system while itself scaling 
only linearly or polynomially. The result is that the elements in the quan-
tum system are not being calculated exactly, only approximately or on 
average. Quantum algorithms and quantum computing in general can be 
seen as a technique that performs implicit (indirect) computations in an 
intractably large Hilbert space by efficiently manipulating the underlying 
quantum system. The three dimensionality reduction methods of the 
 quantum Fourier transform, squeezed states, and kernel methods all 
instantiate the similar structure of performing indirect computations in an 
intractably large-dimensional space by efficiently manipulating data 
inputs (Table 18.2).

18.1.3  Quantum kernel methods

Schuld and Killoran (2019) formulate kernel methods for quantum 
machine learning. They develop a quantum machine learning algorithm 
that encodes inputs in a quantum state as a nonlinear feature map that then 
maps the data to a quantum Hilbert space. The quantum state data are 
generated by squeezed states of light. Quantum algorithms are run to ana-
lyze the input data in the high-dimensional feature space. Two approaches 
are developed, a hybrid classical-quantum method and a fully quantum 
method. In the hybrid approach, a classically intractable kernel is com-
puted by using a quantum device to estimate the inner products of the 
quantum states in the feature space. The kernel can then be fed into any 

Table 18.2.  Dimensionality reduction techniques.

No. Technique
Lower-Dimensional  

Computational System
Higher-Dimensional 

Quantum System

1 Fourier transform n-qubit system 2n-amplitude Hilbert space

2 Squeezed states Single operation (squeezing) Infinite-dimensional Hilbert 
space

3 Kernel methods Kernels as inner products of the 
distance between two data points

Higher-dimensional feature 
space
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classical kernel method downstream such as SVMs. In the quantum 
approach, a variational quantum circuit operates directly as an explicit 
classifier in the feature space to learn the decision boundary of the kernel 
function. The two approaches are tested with quantum simulators operat-
ing on standard two-dimensional datasets (circles, moons, and blobs). For 
example, with the fully quantum circuit model, the derived Fock space 
(multi-particle Hilbert space) classifier worked well on a “moons” dataset 
with 32 parameters, having a loss converging on zero after about 200 
iterations of a stochastic gradient descent algorithm. The method can be 
deployed on currently available NISQ devices.

The steps for implementing the quantum kernel method appear in 
Table 18.3. First, input data are encoded into feature maps. Then the fea-
ture maps are mapped into vectors (distance measures) in a Hilbert space. 
The inner products of the feature vectors (distance measures) are taken to 
write the kernel function. Each feature map has a separate kernel function 
(meaning that each different data encoding leads to a different feature map 
which leads to a different kernel function).

18.1.3.1  Quantum kernel methods: Feature map approach

A key point is that Schuld and Killoran’s (2019) method is not just a usual 
quantum kernel methods approach to machine learning algorithms that 
learn the best kernel functions to approximate data. Instead, the method 

Table 18.3.  Implementation steps: Quantum kernel methods.

1 Encode data (classical or quantum) and obtain feature map of data

2 Map feature map to Hilbert space = “feature Hilbert space”

3 Take inner products of the vectors in the feature Hilbert space

4 Obtain kernel function (measure of distance between data points)

5 Vary data encodings to obtain different kernel functions (kernel trick)

6 Find the best kernel function that describes the data

(a) Classical: Quantum device evaluates classically intractable kernel function and 
passes results to support vector machine or other classical interpretation method

(b) Quantum: Quantum device operates as a variational quantum circuit to learn the 
decision boundary of the kernel function directly in the Hilbert feature space
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uses the intermediary step of the feature map as a potentially generic 
 theoretical structure for quantum kernel methods. In the team’s adaptation 
of kernel methods for quantum machine learning, the core idea remains 
the same, namely, encoding data into a higher-dimensional feature space 
in which it is easier to analyze. The quantum kernel method encodes data 
inputs (classical or quantum) into a quantum state that is interpreted as a 
feature map, which is mapped to a potentially vastly higher-dimensional 
feature space. The data feature map on the Hilbert space can be called 
generically the “Hilbert feature space”.

The quantum kernel method derives kernels that are given by the inner 
product of quantum states in the Hilbert feature space. The same structural 
benefit of classical kernel methods persists in running the kernel trick. The 
machine learning algorithm cycles through different kernel function per-
mutations to learn the best model for the problem at hand (which in the 
quantum version means testing various data encodings among other 
aspects of the model). Also, as in classical kernel methods, the same argu-
ment holds in that even simple classifiers such as linear models may have 
enormous power in the Hilbert feature space. A further benefit of the 
feature map approach is that nonlinear transformations on the data are 
outsourced to the procedure of encoding inputs into a quantum state. The 
quantum circuit implements linear transformations and other formalisms 
for the task of performing nonlinear translations on the data, which in 
other quantum setups, usually involve costly workarounds such as post-
selection and repeat-until-success circuits.

18.1.4  Embedded data Hilbert spaces

A key innovation is the broader implication of the Hilbert feature space 
(data encoded as a Hilbert space feature map). The general idea is embed-
ding data into a quantum Hilbert space. Such embedded-data Hilbert 
spaces could become a standard feature in quantum machine learning. 
A generic pattern recognition capability could be built into quantum 
devices. Quantum devices could be machine learning-enabled from the 
beginning as a standard feature. Such a capability would further underline 
machine learning as a core infrastructural technology.
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The idea of embedding data into Hilbert spaces as a generic compu-
tational method, for machine learning or otherwise, highlights the even 
more fundamental concept of embedding. Embedding in quantum systems 
is not only useful for potentially enabling quantum circuits with a generic 
pattern recognition (machine learning) capability, but also for working 
with entanglement. Many exploitable features in quantum computing 
depend on the ability to embed or entangle data in systems. A standard 
technology feature of embedded-data Hilbert spaces could likewise  
standardize entanglement management in the ability to harness short-
range (UV) and long-range (IR) correlations in quantum systems. A list of 
generic features for quantum system design, many based on information-
theoretic formulations, appears in Table 18.4.

18.1.5  Quantum finance

18.1.5.1  Reproducing kernel Hilbert space formalism

The intent is to write a kernel function in the structure of a known formal-
ism called a reproducing kernel Hilbert space (RKHS). An RKHS is a 
Hilbert space generated by a kernel function that reproduces every possi-
ble function in the space. The RKHS is a bit like a short-cut or renormal-
ization tool for moving between system scales. The benefit of the RKHS 

Table 18.4.  Generic feature set for quantum computing.

No. Feature Description

1 Machine learning Pattern recognition, probability distribution function- 
finding

2 Entanglement 
manipulation

Exploit short-range (UV) and long-range (IR) 
correlations

3 Renormalization View system at multiple scales per attribute compression

4 Quantum error 
correction

Use ancilla (ancillary) qubits to correct and secure data

5 Information compression 
protocols

Transfer quantum states between locations
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formalism is being able to identify a kernel function at any scale tier of 
the underlying system without having to compute it directly. The underly-
ing system can be discrete or continuous, and involve nonlinear kernel 
functions.

The key idea is that with the RKHS formalism, kernel functions at even 
higher dimensions in the system can be readily obtained. The RKHS 
method avoids having to map the data feature vectors to higher- dimensional 
spaces and compute individual inner product pairwise similarity functions 
directly, effectively rederiving the kernel function for the system for each 
new set of dimensions. Instead, the laborious process of inner product cal-
culations of vectors can be streamlined. Having found the initial kernel 
function for the system in the form of an RKHS formalism means that the 
time-saving measure can be applied to extend the analysis to other higher-
dimensional characterizations of the system, according to the RKHS prop-
erty that kernels are additive.

18.1.5.2  Time series analysis and AdS/RKHS

A specific example of an RKHS formalism for kernel function derivation 
is in the quantum finance application of quantum SVMs proposed by 
Chatterjee and Yu (2017). The work uses optical coherent states (which 
have an inherent RKHS property) for the rapid calculation of radial 
 kernels (a nonlinear kernel function which is classically intractable). The 
inner products of the coherent states are used to write a Gaussian (radial) 
kernel function which can be used in the machine learning of patterns in 
large datasets, such as those generated in financial markets. The research 
is partially supported by the Chicago Mercantile Exchange (CME) foun-
dation. The quantum finance use case is deploying quantum kernel meth-
ods to find salient relationships in very large datasets extremely quickly, 
much faster than classical methods.

The quantum SVMs approach shows that coherent states reproduce 
the same kinds of radial kernels seen in classical SVMs, but substantially 
reduce the computational times of such kernels, especially in the high 
dimensional feature spaces of very large datasets. Further, an AdS/RKHS 
application may be possible. The use of reproducing kernels (RKHS) is 
not usually possible in classical algorithms due to their complexity. 
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However, algorithms such as those from anti-de Sitter space coherent 
states and Bessel function kernels from Poschl-Teller coherent states are 
now conceivable using coherent state-driven quantum kernel method 
approaches (Gazeau, 2009). The next step in this research trajectory is to 
understand more about the relationship between coherent states and the 
RKHS formalism.

In another quantum finance application, Alcazar et al. (2020) test 
quantum circuit Born machines on ion-trap quantum computers, outper-
forming classical methods (restricted Boltzmann machines) in a well-
known portfolio optimization problem in finance using time-series pricing 
data from asset subsets of the S&P500 stock market index. The work is 
also partially supported by the banking and finance industry.

18.1.6  Squeezed states of light

The quantum kernel method feature map approach developed by Schuld 
and Killoran (2019) uses squeezed states of light as a quantum data 
source. Squeezed states of light are interpreted as a feature map from the 
one-dimensional real input space of the squeezed states to the Hilbert 
space of Fock states (the Fock space, a multi-particle Hilbert space). The 
squeezing parameter can be changed to vary the machine learning model. 
An increased squeezing parameter (more highly squeezed input data) may 
improve model performance, up to some threshold. The resulting squeez-
ing-based quantum machine learning classifier can be implemented by 
optical quantum computers.

18.1.6.1  Squeezed states: Quantum noise reduction technique

Squeezed states are a manipulation applied to any kind of quantum 
wave or oscillatory state, by squeezing the phase or amplitude in order 
to have less quantum uncertainty than “regular” coherent (oscillating) 
states. The aim is to reduce the quantum uncertainty associated with 
measurement and noise. Squeezed states are particularly relevant in 
applications related to optics. Squeezed states of light were proposed in 
1983 (Walls, 1983) and demonstrated in 1985–1986 (Slusher, et al., 
1985; Wu, 1986).
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Squeezed states are a practical means of reducing and coping with 
quantum uncertainty. The problem is that quantum uncertainty becomes 
obvious when identical measurements of the same quantity (observable) 
on identical objects (such as modes of light) give different results (com-
puted as eigenvalues). In order to obtain the full picture, measurement 
statistics need to be recorded at many different phases. Squeezed states 
(wave forms with either phase or amplitude squeezed into a reduced 
shape) provide a more manageable solution to working with quantum 
uncertainty (which cannot be fully eliminated).

18.1.6.2  Global telecommunications networks

Squeezed states of light are the way that light is produced and managed in 
the global fiberoptic communication industry, and have also become 
workhorse techniques used in scientific applications such as gravitational 
wave analysis (Schnabel, 2017). The observables in squeezed light experi-
ments correspond exactly to those used in optical communication. 
Amplitude modulation and frequency modulation are the usual means of 
imprinting information on a carrier field. The measurement object is the 
mode that is characterized by the statistics of the eigenvalues in the phase 
measurement calculation. This particular measurement object is the 
modulation mode that is carried by the light beam. Signal reconstitution 
can be performed from the continuous spectrum of many modulation 
modes carried by the same light beam in standard communications net-
work equipment. The observables also correspond to the measurement 
quantities in laser interferometers, such as Sagnac interferometers which 
measure rotation changes and Michelson interferometers which are used 
in observing gravitational waves. Squeezed states of light thus have many 
applications in optical communication and measurement. Squeezed light 
states can be produced with off-the-shelf nonlinear optical equipment.

18.1.6.3  Continuous basis quantum systems

Quantum systems with a continuous basis are complicated to analyze. 
Many Hilbert space formulations produce the Dirac delta equation as a 
potential system kernel, but the expression is not square integrable, which 
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means that it cannot be an RKHS. Instead, it is necessary to incorporate 
the generalized coherent states formulation (for example, as elaborated by 
Klauder and Skagerstam (1985)). Coherent states are oscillatory quantum 
states, the quantum state of the quantum harmonic oscillator (a state with 
dynamics closely resembling the oscillatory behavior of a classical har-
monic oscillator). Whereas all quantum states are presumed to be in the 
form of a wavefunction, not all quantum states obey a regular oscillating 
form. Generalized coherent states is a formulation that offers a representa-
tion of the Hilbert space with the reproducing property which is necessary 
to define an RKHS in which the kernel is not the Dirac delta function. The 
best-known type of coherent states are optical coherent states which 
are the eigenstates of the non-Hermitian bosonic creation operator, with 
the associated kernel whose square is a radial basis function or Gaussian 
kernel as discussed by (Chatterjee & Yu, 2017) and expanded by Schuld 
and Killoran’s (2019) feature map method.

18.1.7  RHKS and machine learning

In the machine learning context, a RKHS is a Hilbert space of continuous 
linear functions. Such RKHSs have wide application in machine learning, 
quantum mechanics, complex systems, and harmonic analysis. This is 
because they reduce infinite-dimensional problems to finitely calculable 
problems. RKHSs are practically useful as a means of simplifying a 
loss minimization problem from an infinite-dimensional to a finite- 
dimensional optimization problem. Instead of explicitly optimizing over 
an infinite-dimensional RKHS, a machine learning setup can start with an 
implicit ansatz (guess) and solve a convex optimization problem based on 
certain parameters (Schuld & Killoran, 2019, p. 3).

The machine learning deployment is that RKHSs are used to construct 
ReLU-like nonlinear functions. ReLU (rectified linear unit) functions are 
commonly used activation functions in machine learning. The rectangular 
shape activates more quickly than slower acting s-curve shaped functions. 
The RKHS construction of ReLU functions implies the representation 
power of neural networks that use ReLU activations in the Hilbert space 
of continuous functions. Per the representer theorem, every function in 
a RKHS that minimizes a risk function can be written as a linear 
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combination of the kernel function evaluated at the training points 
(Scholkopf et al., 2001). RKHSs can be represented as bounded continu-
ous functions and as feature maps.

18.2  Entanglement as a Design Principle

This section considers entanglement as a design tool. Four deployment 
methods are discussed including entanglement in tensor network design, 
entanglement in modeling classical data with quantum states, entangle-
ment entropy as a quantum information measure, and entanglement for 
sequential data analysis (via wavelet transform). These are listed in 
Table 18.5 as, first, Martyn et al. (2020) explore entanglement properties 

Table 18.5.  Entanglement design for quantum systems.

No. Method Entanglement Use Findings

Entanglement as a tensor network design tool

1 Supervised learning on 
block product state TN

Measure range and extent of 
tensor network entanglement

IR correlations not 
needed for 
classification

Entanglement in modeling classical data with quantum states

2 Generative learning: 
DMRG-based MPS TN

Write classical data as quantum 
states & reduced density 
matrix

Entanglement preserves 
classical correlations

Entanglement entropy as a quantum information measure

3 8-qubit quantum circuit 
TTN and MERA  
TN

Use entanglement entropy to 
identify the best model class

Obtain best quantum 
circuit

4 Unitary tensor network: 
Hierarchical tree 
structure

Use entanglement entropy to 
calculate gain of whole 
given part

Useful for image 
pre-processing and 
fidelity

Entanglement for sequential data analysis (via wavelet transform)

5 Wavelet transform MERA 
& DMRG-based MPS 
TN

Renormalize entanglement as 
time and frequency 
correlations

Entanglement is key to 
adaptive learning
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as the amount and range of entanglement within a system with a super-
vised learning tensor network using block product states.

Second, Bradley et al. (2019) model classical data as quantum states, 
applying the quantum probabilistic method of the reduced density matrix 
instead of the classical marginal probability distribution, which retains 
salient system information across scales eliminating it via integration. The 
“extra information” or entanglement can be used as a design principle to 
study both the underlying system (classical data) and the tensor network 
model being used to analyze the data. The same formalism used to inter-
pret the wavefunction is used as a framework to treat classical data, and 
further, take advantage of the quantum entanglement formulation to iden-
tify correlations in the classical data.

Then, two projects incorporate entanglement as a quantum informa-
tion measure in the design of their models. Grant et al. (2018) use entan-
glement entropy as a core property of synthetic quantum states and model 
testing to identify the best models. Liu et al. (2019) calculate the entangle-
ment entropy of the underlying images as a pre-processing step before the 
classifier assesses fidelity. Finally, Reyes and Stoudenmire (2020) use 
wavelet transforms to effectively renormalize entanglement (in the form 
of local time and frequency correlations in sequential data).

18.2.1  Entanglement and tensor networks

Entanglement is an important property for characterizing a quantum sys-
tem. Having a method for quantifying entanglement (identify the correla-
tions between the parts of a system) is crucial. Some of the most relevant 
entanglement properties are the amount and range of entanglement within 
the system. This information can be used to obtain an UV–IR correlation 
profile of the interrelatedness of the subsystems. One team investigates 
quantum system entanglement properties with a supervised learning ten-
sor network model applied to MNIST data (Martyn et al., 2020). The 
work proposes a block product state (as opposed to a matrix product state) 
as a more restricted form of tensor network model for identifying the 
entanglement properties of the quantum system. In this research, the find-
ing is that long-range correlations in the quantum system may not be 

b4362_Ch18.indd   425b4362_Ch18.indd   425 4/29/2022   6:34:56 PM4/29/2022   6:34:56 PM



b4362  Quantum Computing for the Brain 6"×9"

426  Quantum Computing for the Brain

important for image classification. The practical implication is that quan-
tum machine learning systems may not need to include long-range cor-
relations, which reduces cost. Also, the work reminds one of information 
compression algorithms in video streaming that also use mostly short-
range correlations. These emerging universal principles and methods are 
a structural problem akin to that of the brain which also optimizes long-
range correlations maintained by the white matter.

The work begins with the pioneering effort of Stoudenmire and 
Schwab (2017) which has become a standardized basis for many machine 
learning tensor network models. Stoudenmire and Schwab’s model uses 
tensor networks for supervised image classification tested on the MNIST 
data set of handwritten digits. The more fundamental theoretical question 
raised by the model is exactly what quantum state the tensor network 
might be learning during the training. To identify this quantum state, 
Martyn et al. (2020) propose a plausible candidate state (constructed as a 
superposition of product states corresponding to the images in the training 
set) and investigate its entanglement properties. The resulting candidate 
quantum state is so robustly entangled that it cannot be approximated by 
the tensor network used by Stoudenmire and Schwab that incorporates 
matrix product states, and an alternative is needed.

To obtain a better understanding of the entanglement properties of a 
quantum-type system modeled with tensor networks, the team proposes a 
block product state structure instead of using the more familiar matrix 
product state structure. This method effectively treats the system as 
smaller blocks rather than as a whole. The block product structure restricts 
the entanglement to being within small blocks of n × n pixels (qubits). 
Different forms of block product states are examined, including nearest 
neighbor block product states and snake block product states, to assess the 
amount and range of entanglement in the machine learning system. The 
snake block product state performs best (snaking through the blocks in an 
s-curve fashion). The result is that block states in this model are extremely 
expressive (achieving a training accuracy of 99.97% with only n = 2). 
The interpretation is that long-range entanglement (correlations) may not 
be essential for image classification. The downside is that the current 
model overfits, and test accuracies are not competitive with other contem-
porary machine learning approaches. The model’s value is as a theoretical 
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investigatory tool for uncovering general principles regarding entangle-
ment in quantum machine learning tensor networks.

18.2.1.1  Blocks as a renormalization method

Blocks are a known renormalization method. Martyn et al. (2020) use a 
block product state tensor network as opposed to the more familiar MERA 
(multi-scale entanglement renormalization ansatz) tensor network. The aim 
of both is to renormalize entanglement across multiple scale levels within a 
system. There is a long history of blocks as a renormalization method. 
Renormalization refers to the renormalization group which is a mathemati-
cal apparatus that allows for the systematic investigation of the changes of 
a physical system as viewed at different scales. Particularly to address the 
2n problem of quantum mechanical systems, the idea is to calculate smaller 
subsets or blocks of the system instead of the system as a whole. The 2n 
problem in quantum mechanics is that the Hilbert space grows exponen-
tially with size (a spin-1/2 chain of length n has 2n degrees of freedom). The 
“blocking idea” of block spin (considering blocks of spins) was proposed 
by Kadanoff (1966) to define the components of a system at large distances 
as aggregates of components at shorter distances. Wilson (1971) provided 
the numerical formulation to formally calculate systems with the block idea. 
One modern tensor network version of renormalization is the density matrix 
renormalization group (DMRG) method which further develops the concept 
of blocks in a completely new way as self-resizing smart entities.

18.2.1.2  Density matrix renormalization group

The DMRG is a numerical variational technique (sampling method) 
used in quantum mechanical problem solving such as finding the lowest 
energy wavefunction of a Hamiltonian. The technique was proposed by 
White (1992) and is one of the most efficient methods for calculating one-
dimensional systems.

The method deploys blocks in an ingenious manner. The central idea 
is smart decomposition units that resize iteratively. The overall quantum 
system is decomposed into superblocks consisting of a sandwich of 
two blocks plus a middle. The insight is to expand each block iteratively 
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(staying within the system and retaining renormalization attributes). This 
improves on the previous method of appending an exogenous test block to 
a system block (resulting in failure as the external test block does not have 
access to information within the system). The problem is framed as having 
a complex multi-dimensional system and needing a means of expanding 
and testing permutations of sub-blocks within the system to determine its 
properties, and using some kind of smart decomposition structure to do so. 
The self-resizing block is a smart renormalization structure.

The DMRG method operates as follows. After a warm-up cycle, the 
method splits the system into two subsystems (blocks), which do not need to 
have equal size, and two sites in between. A set of representative states (for 
the ground state) has been chosen for the block during the warm-up. The set 
of the left block plus two sites in the middle plus the right block is known as 
the superblock. Now a candidate for the ground state of the superblock, which 
is a reduced version of the full system, may be found. The accuracy may not 
be good, but the method is iterative and improves as the process cycles.

The candidate ground state that has been found is projected into the 
Hilbert subspace for each block using a density matrix (juggernaut appa-
ratus of all information about a quantum state), hence the name DMRG 
method. The relevant states for each block are updated. One of the blocks 
grows at the expense of the other and the procedure is repeated. When the 
growing block reaches maximum size, the other starts to grow in its place. 
Each time the process returns to the original situation of blocks of equal 
size, a sweep is said to have been completed. In practice, only a few 
sweeps may be needed, for example, to obtain the precision formulation 
of a one-dimensional lattice.

The success of the DMRG method is due to overcoming the problems 
of previous renormalization group methods by connecting two blocks 
with the two sites in the middle rather than adding a single site to a block 
at each step, and by using the density matrix to identify the most impor-
tant states to keep at the end of each step.

18.2.2  Classical data and quantum states

A key insight in quantum computing is that classical data can be modeled 
with quantum states, and that this provides surprising visibility into 
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otherwise inaccessible correlations in the underlying data. One example is 
modeling classical probability distributions with quantum states (Bradley 
et al., 2019). The implication is that the same formalism used to interpret 
the wavefunction in quantum mechanics can be used as a framework for 
treating classical data, and take advantage of quantum entanglement for-
mulations to identify correlations in the classical data. Classical statistics 
are represented with a probability distribution, and further, to reduce com-
plexity, a marginal probability distribution. The quantum mechanical sta-
tistical equivalents are the density matrix and the reduced density matrix. 
The density matrix encapsulates all information about a quantum state in 
a statistical format.

The point is that the reduced density matrix contains more informa-
tion than the marginal distribution. The reduced density matrices hold 
efficient information to reconstruct the entire joint probability distribution 
whereas marginal probability distributions do not. The quantum method is 
therefore a more effective means of modeling classical probability distri-
butions. Since there is entanglement in quantum states, the reduced den-
sity matrix that describes the subsystems in the quantum system includes 
entanglement, which carries along information about complementary 
subsystems. This is in contrast to the classical picture in which the mar-
ginal probability distribution integrates out information about comple-
mentary subsystems.

A training algorithm based on the DMRG procedure uses the extra 
information (entanglement) contained in the reduced density matrices and 
instantiates it into a tensor network model. The extra information (entangle-
ment) is used to find previously unseen correlations in the underlying system 
(classical data) and is also used to study the model, by producing an error 
estimate for the training such that the model can be improved as well.

Entanglement, as the additional system information available in the 
quantum method of the reduced density matrix as compared to the classi-
cal marginal probability distribution is a design principle that can be 
deployed both for studying the underlying system and the model used to 
study it. Entanglement is the first and primary design principle as a quan-
tity that is present in quantum systems, increasingly accessible with quan-
tum probabilistic methods, and routinely renormalized in quantitative 
models such as tensor networks.
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18.2.3  Entanglement entropy

Two projects use entanglement as a quantum information measure in the 
design of their models. Grant et al. (2018) develop an 8-qubit quantum 
circuit to classify both classical data (Iris and MNIST) and entangled 
quantum data (self-generated) with tensor network models (TTN and 
MERA), and test the circuit with Iris data on a currently available quan-
tum computer (IBM QX4). Synthetic quantum states are created as an 
entangled data source with which to test and develop the quantum circuit. 
A key advance is the algorithm that is able to classify highly entangled 
quantum states, for which there is no known efficient classical method.

Ten different versions of the 8-qubit quantum circuit are produced and 
tested with the quantum data. A dataset of 5,000 quantum states is gener-
ated for each circuit. A quantum state is generated by randomizing all the 
single-qubit gates, and then executing the circuit on the initial state. The 
process is repeated many times to produce the quantum dataset for each 
circuit. The benefit of having quantum states data is that they can be fed 
directly into the quantum computer without additional processing. The 
quantum computer executes a machine learning classification algorithm 
with the task of identifying which of two circuit layouts generated a par-
ticular quantum state. The aim is to correctly classify the states most of 
the time and reduce the error in doing so.

Entanglement entropy is calculated to assess the results of the synthetic 
classification task based on the bipartite entanglement measure proposed 
by Bennett and DiVincenzo (2000). For each state (each of the 5,000 states 
of data for each circuit), the maximum bipartite entanglement entropy is 
computed over all possible partitions A and B of the 8 qubits. The maxi-
mum bipartite entanglement entropy is the degree to which the maximum 
entropy in partition A is equal to the maximum entropy in partition B. The 
assumption is that a circuit is implied to be well-formed if the entropy 
between its parts are equal. The more equally the entanglement entropy is 
balanced within the system, the better the circuit. Entanglement entropy is 
calculated to identify the best circuits. The range of entanglement entropy 
distributions is examined with the aim of finding an optimal threshold that 
classifies states correctly most of the time. Such a result indicates that the 
classification task is meaningful and reflected in the circuits.
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Liu et al. (2019) also use entanglement entropy as a machine learn-
ing tensor network design tool. Here, the entanglement entropy is com-
puted for each individual instance, not as quantum states, but as the 
underlying data (MNIST images). A four-way bipartite entanglement 
(up/down and left/right) measure is employed to assess the images before 
loading them into the classifier. Entanglement entropy is further used as 
a quantum information measure to distinguish the amount of information 
in one subsystem that can be gained by measuring an entangled subsys-
tem. Entanglement entropy is used to calculate the information gain from 
the whole given a part. The implied correspondence is between seeing a 
partial image and measuring the subsystem of the quantum state. The 
implication is that given a partial image, entanglement entropy quantifies 
the additional information that can be obtained from the whole image.
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Chapter 19

Brain Modeling and Machine Learning

[T]he human brain, the ultimate machine

— Paul Allen (2011, p. 304)

Abstract

This chapter discusses brain modeling approaches including compart-
mental neuroscience simulation, classical machine learning, and spiking 
neural networks in neuromorphic architectures. It is clear that quantum 
methods and platforms could extend these efforts. Of particular interest 
is the need to model the effects of nonlinear calcium signaling in syn-
aptic integration which requires the diffusion-reaction mathematics of 
partial differential equations (PDEs). Spiking neural network methods 
propose useful alternatives to classical machine learning’s backpropa-
gation as real-life temporal models cannot go backward to iteratively 
update network weights as permutations of the model cycle.

19.1  Brain Modeling

The brain, and particularly neural signaling, has long been the target of 
various modeling strategies. A fundamental advance was Hodgkin and 
Huxley’s (1952) proposal for how ion channels give rise to the action 
potential. The work resulted in the 1963 Nobel Prize in Physiology or 
Medicine for describing the propagation of electric signals in squid axons. 
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Contemporary neural signaling is often analyzed by starting with the 
Hodgkin–Huxley model as the basis for articulating the conduction of 
electrical impulses through the axon. What is new in neuroscience is the 
contemporary era of “big data” connectomics and imaging technologies 
and computational tools such as machine learning and quantum computing 
becoming standardized approaches. At present, there are three approaches 
to neuroscience modeling and the study of neural signaling — classical 
computational neuroscience, classical machine learning, and neuro-
morphic architectures and spiking neural networks (Table 19.1).

An open challenge is the situation that most computational platforms 
do not yet include full functionality for synaptic integration, one of the 
biggest problems in the domain. Synaptic integration (or dendritic integra-
tion) is the neuron’s information processing capability of aggregating 
thousands of incoming synaptic inputs from other neurons. Although 
many neuroscience modeling platforms support dendritic trees, most do 
not include full synaptic integration (Poirazi & Papoutsi, 2020). The prob-
lem is that the main method for modeling the effects of nonlinear calcium 
signaling in dendritic spiking activity requires the diffusion-reaction 
mathematics of partial differential equations (PDEs) which are difficult to 
include in neuroscience modeling applications. In classical computational 
neuroscience, some multicompartmental models (having separate com-
partments for axon-soma and dendritic activity) attempt to include a basic 
level of spatial synaptic integration functionality. Classical machine learn-
ing is primarily focused on neuron reconstruction and synapse detection 
in connectome projects, and hence synaptic integration is not yet a con-
cern. Neuromorphic architectures and spiking neural networks generally 
do not offer synaptic integration functionality. As the challenge is com-
plex, three-dimensional, and involves diffusion equations, it might be 

Table 19.1.  Neuroscience modeling approaches.

No. Modeling Category Platforms

1 Computational neuroscience NEURON, GENESIS, BRIAN, NEST

2 Classical machine learning Connectomics: TeraVR, DeepNeuron

3 Neuromorphic architectures and 
spiking neural networks

Neurogrid, SpiNNaker, BrainScaleS, 
DYNAP-SE, Pohoiki Beach, True North
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appropriate for quantum computing. Synaptic integration could be a key 
opportunity for quantum computing for the brain applications, including 
the possible emergence of a subfield devoted to quantum machine learn-
ing for synaptic integration.

19.1.1  Compartmental neuroscience models

Tikidji-Hamburyan et al. (2017) conduct a review of contemporary com-
putational neuroscience simulation platforms. The simulators are software 
programs that accommodate a range of single-neuron and brain network 
modeling (Table 19.2). Four simulators are selected as the three most 
popular (determined by the number of models using them in the ModelDB 
database), NEURON, GENESIS, and BRIAN, plus NEST as the lead-
ing simulator of the Human Brain Project. The standard platform is 
NEURON, which focuses on the intricacies of single-neuron modeling, 
and at the other end of the spectrum is NEST, which is used for network 
modeling and most easily maps to high-performance computing environ-
ments. BRIAN might be the most “quantum-ready” as it is a simulator for 
spiking neural networks (Goodman & Brette, 2008), and already incorpo-
rates machine learning, which is an add-on to the other simulators. Brette 
et al. (2007) also survey the market.

Although the brain processes to be modeled have simple intuitive 
explanations (for example, diffusion or voltage propagation in dendrites), 
the mathematical and computational implementation is not straight-
forward and requires knowledge of PDEs and numerical methods. 

Table 19.2.  Computational neuroscience simulators.

Range Single-Neuron Whole-Brain

Simulator NEURON GENESIS BRIAN NEST

Notable 
features

Detailed interaction 
models, 
education

Diffusion-reactions, 
nonlinear 
reconstruction

Most structured 
computational 
language

Large-scale 
networks, 
human 
connectome 
projects

Citations 1 (most) 2 3 4 (least)
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Neuroscientists and computer scientists typically work together to outline 
the problems and workflows, and implement the simulators. Ultimately, 
the simulators compile the most computationally intensive procedures 
into binary code, with the aim of maximizing computational performance. 
A detailed example of single-neuron modeling is described by Mainen 
and Sejnowski (1996), and brain networks in the Blue Brain and Human 
Brain Projects (Markram, 2012). Simulators can be categorized along the 
single-neuron to brain networks continuum (as in the table), by dynamics 
(with dynamics that are absent, discontinuous, or continuous), or by 
model class (single-compartment, two-compartment, or multicompart-
ment). The four simulators support all of the versions of neural dynamics 
and model classes, though in different ways and with a varying intensity 
of custom programming required. In the simulators, models of discontinu-
ous dynamics include minimal complexity, and although continuous 
dynamics models include some more complex features (the general 
dynamics of membrane potential as well as different types of neuron 
excitability), the biophysical nature of temporal integration is still 
extremely simplified.

19.1.1.1  Compartment model classes

In terms of model classes, the single-compartment model focuses on the 
axon and soma relation, and attempts to accurately model the biophysical 
processes of membrane potential dynamics. This includes factors such as 
cross-membrane currents and membrane capacitance, but not their spatial 
integration (the distribution of ion channels along dendrite trees). These 
are conductance-based models in which each cross-membrane current is 
represented as a nonlinear conductance that is connected to a battery with 
voltage equal to Nernst’s reversal potential. The conductance is a complex 
dynamic model with one or more dynamic variables. The classical exam-
ple of a single-compartment conductance-based model is the Hodgkin–
Huxley model (Hodgkin & Huxley, 1952).

Two-compartment models are the start toward a fuller spatial recon-
struction of neural signaling, and feature a basic representation of the 
axon and soma of a neuron in one compartment and the dendrites in the 
other. The strength of electrical coupling between the compartments and 
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their size is used to imitate different neuron morphologies. Ion channels 
are typically described by two voltage-dependent gating variables and 
one calcium-dependent variable with Boltzmann rate functions. A typical 
example is an implementation of the McCormick two-compartment model 
of a cortical pyramidal cell. This consists of a minimum of ten ion chan-
nels with sixteen activation-inactivation variables, each of which has  
two rate functions, plus calcium and sodium dynamics, and synaptic 
dynamics.

A multicompartment model is used for the full spatial reconstruction 
of neuron morphology including both axon-soma and dendrite activity. 
The difference between the two-compartment model and the full spatial 
reconstruction is a more detailed dendritic process in the form of the dis-
tribution of ion channels along dendrite trees. Multiple compartments 
are used to model different aspects of the signaling process, particularly 
the complex diffusion-reaction system of calcium signaling. Whereas the 
simpler axon-soma and dendrite processes can be modeled with ordinary 
differential equations (ODEs), a PDE formulation is required for the dif-
fusion-reaction of dendrites (Dayan & Abbott, 2001, p. 806) (Table 19.3).

The treatment of cross-membrane potential is at the heart of simula-
tion models. A cross-membrane electrical current depends on both inner 
and outer ion concentrations. The usual example of such a dependency is 
a calcium-dependent potassium current, in which conductance is a func-
tion of the intracellular calcium concentration. In simple models, calcium 
kinetics is usually defined as a first-order ODE, which is easy to embed 
into a single-compartment or two-compartment model. However, the 
dynamics of calcium concentration is much more complex than a 

Table 19.3.  Computational neuroscience model classes.

Parameter Single-Compartment Two-Compartment Multicompartment

Model topic Axon-soma Axon-soma and 
dendrite (basic)

Axon-soma and dendrite 
(advanced)

Signaling 
functionality

Electric signaling Electric signaling Electric and calcium 
signaling

Model focus Membrane dynamics Ion channels Diffusion-reaction system

Mathematics ODE ODE PDE
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first-order ODE in a real neuron. Calcium may be buffered by calmodulin 
and many other molecules pumped into or released from mitochondria 
and endoplasmic reticula. Calcium ions can diffuse inside a neuron both 
radially and along dendrites (longitudinal diffusion). A dendrite model 
is essentially a nonlinear diffusion-reaction system and hence the simula-
tor must support diffusion-reaction systems and their modeling method, 
PDEs.

The four simulators generally support the different model classes and 
dynamics. NEURON and GENESIS are more modular and BRIAN and 
NEST are more attuned to large-scale network models with simple indi-
vidual neurons. NEURON and GENESIS can fully support the complex 
intracellular diffusion-reaction system, while in NEST, individual neurons 
are considered mostly as point processes without geometrical representa-
tion. NEURON has a graphical user interface and allows various single-
compartment and multicompartment models that do not require any 
coding and is therefore more accessible and widely used for educational 
purposes. A further consideration is neuron-to-neuron communication, in 
which synapses (modeled as gap junctions) may require updating at each 
simulation step.

19.1.1.2  Synaptic integration

Synaptic integration is the neuron’s information processing capability of 
aggregating thousands of incoming synaptic inputs from other neurons. A 
problem that arises in modeling synaptic integration with computational 
neuroscience platforms is that real-life synaptic currents from other neu-
rons have complex nonlinear dynamics. However, in models, input cur-
rents are often treated as a direct current that is static, which results in 
linear current inputs, and overall an incomplete spatiotemporal progres-
sion in computational neuroscience models even when using multicom-
partmental models.

An overlay method is proposed as one solution to the too-basic linear 
dynamics of incoming signaling currents problem (Li et al., 2019). The 
work proposes an overlay to the existing point neuron model (in 
NEURON), in the form of a synaptic integration current that can capture 
a greater range of dendritic effects. The overlay consists of parametrizing  
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the interaction between each pair of synaptic inputs on the dendrites with 
a single coefficient. The result is a fast algorithm for neuronal simulation 
that includes the more realistic dynamics of a neuron with detailed den-
dritic morphology within the standard computational framework. The 
enhanced point neuron model incorporates an additional synaptic integra-
tion current arising from the nonlinear interaction between synaptic cur-
rents across spatial dendrites. The model captures the somatic voltage 
response of a neuron with complex dendrites and is capable of performing 
rich dendritic computations. This leads to an improved analysis of the 
decomposition of excitatory and inhibitory synaptic inputs, and the find-
ing that the impact of spike inhibition may have been underestimated in 
previous studies. The model includes the known dendritic filtering effect 
(that far-off signals are attenuated).

An unrelated team also presents a more robust model of nonlinear 
synaptic integration (Li et al., 2020). The finding is that excitatory synap-
tic currents (both fast and slow) have a much more complex dynamics (via 
oscillatory fluctuations) than expected, and that normal activity has a 
greater impact on integration than noise. Another consideration of nonlin-
ear synaptic integration models the postsynaptic density and dendritic 
shape as elliptical spheroids (Cugno et al., 2019). The research indicates 
that the curvature of dendritic geometry gives rise to pseudo-harmonic 
functions that can be used to predict the locations of minimal and maximal 
dendrite concentrations along the spine head and how this might be 
related to the processing of incoming signals.

In terms of testing models on neuromorphic processors (that imitate 
spiking neural networks by firing per a thresholding effect), synaptic inte-
gration is not always part of on-board chip functionality. Two neuromor-
phic computing projects may begin to incorporate greater support for 
dendritic trees in BrainScaleS (Schemmel et al., 2017) and for shared 
dendritic encoding in Neurogrid (Boahen et al., 2020). There is at least one 
existing neuromorphic processor, DYNAP-SE (Dynamic Neuromorphic 
Asynchronous Processor) from aiCTX, which offers neuron and synapse 
functionality (Moradi et al., 2018). The DYNAP-SE is a reconfigurable, 
general-purpose, mixed-signal Spiking Neural Network processor with 
analog circuits that can be used to emulate the biophysics of neurons and 
synapses in real-time. Nilsson et al. (2020) make use of the DYNAP-SE 
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neuromorphic chip, together with an excitatory-inhibitory pair combina-
tion method for synaptic integration. The method solves a problem in 
being less computationally and energetically costly than other multi-
compartmental and neuromorphic circuit methods, but is also a little less 
flexible.

For possible encoding on the BrainScaleS neuromorphic platform, 
Stockel and Eliasmith (2020) extend an existing neural engineering 
 framework (Eliasmith & Anderson, 2003) with nonlinear conductance-
based synapses. This addresses the problem that postsynaptic currents are 
usually treated as a linear superposition of filtered presynaptic events. 
Instead, the work develops biophysical phenomena as computational 
primitives, namely, synaptic filtering, and the nonlinear relationship 
between somatic input currents and neural response. The proposal rein-
forces the argument that biological computational models are much more 
powerful than is currently being exploited.

19.1.1.3  The future of compartmental models

The longer-term future of neuroscience modeling could feature a wider 
range of models including those that are compartmental among others. On 
the one hand, there are critiques of the insufficiencies of the compartmen-
tal model (Almog & Korngreen, 2016). The work argues that the compart-
mental method’s focus on single neurons is ad hoc and unrealistic. Given 
the interconnected behavior of the brain, an “immense expansion” in 
computer power might allow the instantiation of more realistic multineu-
ron models. Likewise, others argue that the intricacies of dendritic phe-
nomena such as the integration of spatially distributed synaptic inputs are 
beyond the scope of the existing point neuron models (Herz et al., 2006; 
Gerstner & Naud, 2009).

On the other hand, advances also continue to be made with the com-
partmental model, including in multineuron interaction. Mel (2016) uses 
a detailed compartmental model setup in NEURON in an ongoing body 
of work that investigates the dense network of connections through 
which pyramidal neurons exchange information. The compartmental 
model is applied to study the symmetry or asymmetry between a proxi-
mal and distal location on one dendrite. Individually, input signals behave 
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differently, but the problem of interest is characterizing the symmetry 
or asymmetry of the interaction between the two inputs when they are 
applied together. Various patterns arise, in particular a two-dimensional 
asymmetric sigmoidal function (a left-shifting in the sigmoid) and eventu-
ally a linearization of the input–output curve. The effect of a distal modu-
lator on a proximal input is not an increase in the excursion size but a 
left-shifting of the sigmoid. A two-dimensional asymmetric sigmoidal 
function is produced that is a two-dimensional nonlinearity. The impli-
cation is the brain has the ability to steer inputs proximally and distally 
and by doing so these modulatory effects can be tailored to nonlin-
ear asymmetric multi-dimensional sigmoidal interaction functions (Jin 
et al., 2018).

19.1.2  Theoretical neuroscience

The broader theoretical neuroscience concern is the right kinds of model-
ing approaches to address the complex reality of the brain. In the contem-
porary era of greater real-life data capture and computational modeling 
capacity, stalwart models are being examined and possibly superseded by 
new models. A key theme is extending the single neuron view to also 
consider the brain as an interconnected network of multiple neurons. 
Historical views have directed modeling activity. These include the “neu-
ron doctrine” proposing that the elementary biological unit in the brain is 
the active cell of the neuron (Ramon y Cajal, 1894), and Hebbian plastic-
ity which suggests modeling the brain as a single primitive at the single 
neuron level (Hebb, 1949). In one extension to Hebbian plasticity, Valiant 
(2018) proposes that cortical activity is built on a small collection of base 
primitives at the intermediate systems level. The four primitives are based 
on resource constraints on neuron numbers, connection numbers, and 
synaptic strengths, and include association, memorization, inductive 
learning, and hierarchical memory assignment.

19.1.2.1  Network neuroscience modeling

In ongoing work, Bassett et al. (2018) develop a brain networks view, 
instantiating neuroscience modeling with the graph-theoretic approach of 
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network science. An attractive aspect of the work is the system-
atic approach in attempting to elicit the bulk properties of the brain 
(Table 19.4). The method proposes theoretical model development in four 
phase-based transitions.

The first phase is the transition from data representation to first- 
principles theories. Concretely in the graph-theoretic approach, the data 
representation might be stored as a simple, temporal, multilayer, or anno-
tated graph. To reach a theory-based model, operations are performed on 
the data, for example, by combining the graph with a differential equation 
to specify the dynamics, evolution, and function of the network nodes and 
edges. The second phase is the transition from structure to function, a key 
aim in connectome projects. For example, a synthesis of extensive prior 
work in the macaque suggests that the pattern of 305 structural connec-
tions among 32 visual areas is consistent with a distributed hierarchy of 
information processing. The third phase is the transition from elementary 
descriptions to coarse-grained approximations, which might involve vari-
ous renormalization methods. Where, in quantum mechanical physics, 
individual quarks are a basic description that gives way to small masses, 
likewise in the brain, the firing of individual neurons is studied in larger-
scale models of neural behavior such as mean-field theories and neural 
mass models. The fourth phase is the transition from simplicity to com-
plexity as partial brain models are now giving way to an insistence on 
three-dimensional, whole-brain, full-volume descriptions.

Table 19.4.  Network neuroscience phase transitions.

No. Model Phase Transition Transition Example

1 From data representation to 
first-principles theory

Simple graph representation -> differential 
equation specifying dynamics

2 From structure to function 
(connectome projects)

305 macaque connectome structural 
connections -> 32 visual areas distributed 
hierarchy of information processing

3 From elementary descriptions 
to coarse-grained 
approximations

Quarks -> small mass; individual neuron 
firing -> mean-field or neural mass model

4 From simple to complex Partial brain -> whole-brain
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19.1.2.2  Empirical context: Brain–computer interfaces

Accurate neuroscience modeling is crucial to the operation of real-life 
brain–computer interfaces (BCIs). BCIs or brain–machine interfaces 
(BMIs) are a direct communications pathway between a wired brain and 
an external device. They seek to establish real-time bidirectional links 
between living brains and artificial actuators (in prosthetics, for example). 
Various BCI applications exist for the neural control of robotic and virtual 
actuator movement to direct upper and lower limb functions (Lebedev & 
Nicolelis, 2017). In the other direction, BCIs also deliver sensory feed-
back generated by external actuators to the brain. Studies find that BCIs, 
though artificial tools, are assimilated into the neurophysiological schema 
of the body (in primates).

A contemporary research topic in BCIs is more efficient algorithms 
for signal decoding and real-time control. Some of the approaches to con-
trol algorithms include machine learning, manifold geometry, and spiking 
neural networks. Machine learning methods are frequently used in the 
algorithmic decoders of brain signals in BCIs (Lebedev & Nicolelis, 2017, 
p. 792). New machine learning techniques are proposed based on the 
application of the least-squares complex-valued filter to analyze real-time 
EEG data related to BCIs (Smetanin et al., 2020). Such algorithms are 
relevant for the real-time control of BCIs for applications in which partici-
pants learn to modulate their own brain activity, previously prohibitive 
due to feedback delays. Other research from Petrosuan et al. (2020) pro-
poses the use of convolutional neural networks to decode BCI signals in a 
compact spatiotemporal format. What is new is the ability to tune both 
toward the decoding of target signals and away from interference, in both 
the spatial and the frequency domains. Such data might be conducive to 
wavelet transforms and implementation in the MERA-based quantum 
machine learning tensor networks proposed by (Reyes & Stoudenmire, 
2020).

Another team, Trautmann et al. (2019), propose a more scalable 
 geometric approach to estimate neural population dynamics that does 
not involve the traditional technique of spike sorting. Spike sorting is 
the attribution of action potentials to individual neurons. However,  
the method is not scalable as future generations of BCIs might have 
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increasing numbers of electrodes, instead of hundreds, maybe thousands 
or even millions (Stevenson & Kording, 2011). The geometric approach 
uses the theory of random projections which suggests the possibility of 
accurately estimating the geometry of low-dimensional manifolds from a 
small number of linear projections of the data. Multi-unit threshold cross-
ings are used in place of sorted neurons. The threshold crossings method 
applies to population-level analyses but is not applicable to situations 
involving only single neurons. Finally, the deployment of spiking mecha-
nisms has been suggested as a more natural activation of spike processing 
in BCIs (Serb et al., 2020).

19.2  Classical Machine Learning and Neuroscience

19.2.1  Machine learning and biomedicine

To mathematical biophysics, the [all-or-none threshold firing] theory 
contributes a tool for rigorous symbolic treatment of known nets and an 
easy method of constructing hypothetical nets

— McCulloch and Pitts (1943, p. 132)

McCulloch and Pitts propose one of the first models of artificial neural 
networks, suggesting that the “all-or-none” threshold firing character of 
neurons can be treated with propositional logic (1943, p. 115). Machine 
learning has ensued as a highly successful area of computer science for 
image, speech, and text recognition. Classical machine learning methods 
have also gained attention in the biomedical context, primarily in the use 
of imaging applications for pathology diagnosis. Several studies have 
indicated achieving expert-level performance in medical image interpreta-
tion tasks with machine learning algorithms.

One of the first projects was the demonstration of dermatologist-level 
classification of skin cancer with deep neural networks (Esteva et al., 
2017). A deep convolutional neural network is trained using a dataset of 
129,450 clinical images consisting of 2,032 different diseases. The neural 
network’s performance is tested against 21 board-certified dermatologists 
examining biopsy-proven clinical images. The neural network achieves 
performance on par with tested experts. The implication is that neural 
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networks might be able to help with diagnostic preprocessing and extend 
the reach of dermatologists. The human-level performance of medical 
professionals has been similarly demonstrated in other medical imaging 
tasks such as lymph node metastases detection in breast cancer (Bejnordi 
et al., 2017) and diabetic retinopathy detection (Gulshan et al., 2016).

In a more complicated diagnostic situation, Rajpurkar et al. (2018) 
demonstrate human-level performance in the evaluation of chest X-rays. 
A deep learning algorithm is used to classify clinically important abnor-
malities in chest radiographs at a performance level comparable to that of 
practicing board-certified radiologists. Chest radiography is the most com-
mon type of worldwide imaging examination, with over two billion proce-
dures performed each year. A convolutional neural network (CheXNeXt) 
is developed to concurrently detect the presence of fourteen different 
pathologies, including pneumonia, pleural effusion, pulmonary masses, 
and nodules in frontal-view chest radiographs. The network was trained 
and validated with a set of 420 images held out of the training data, con-
taining at least 50 cases of each of the original pathology labels.

19.2.2  Machine learning and neuroscience

19.2.2.1  Machine learning and brain tumors

Accurate pathological diagnosis is crucial for the optimal management 
of cancer patients. However, for the 100 known central nervous system 
tumor entities, standardization of the diagnostic process has been par-
ticularly challenging. There is a high degree of variability in the histo-
pathological diagnosis of many tumor types. To address this problem, 
Capper et al. (2018) present a machine learning approach to DNA 
methylation-based central nervous system tumor classification across all 
tumor types and age groups. The machine learning method consists of an 
unsupervised clustering analysis of reference cohort samples (n = 2,801) 
including using a dimensionality reduction technique. Individual sam-
ples are coded into respective pathology classes (n = 91). The algorithm 
then classifies new tissue methylation data based on these labels. The 
result suggests a prospective change in diagnosis in 12% of cases 
examined.
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The work is notable as central nervous system tumors are highly 
diverse clinically and biologically. Tumors encompass a wide spectrum 
from benign neoplasms that may be cured by surgery alone (such as pilo-
cytic astrocytoma) to highly malignant tumors that respond poorly to any 
therapy (such as glioblastoma). The research incorporates the full range of 
over 100 brain tumor types defined by the WHO classification of central 
nervous system tumors, including glioblastoma, ependymomas, glio-
neuronal tumors, and choroid plexus tumors (Louis et al., 2016).

19.2.2.2  Machine learning and neuropathologies of aging

In one practical application of machine learning and neuroscience, an 
automated machine learning technique for the EEG-based classification of 
Parkinson’s disease patients is proposed (Koch et al., 2019). The method 
consists of extracting 794 features from each of the 21 EEG channels, 
which results in a massive feature space that is classified with a Bayesian 
method. The approach is compared to the features commonly used during 
the clinical evaluation of EEG data, with the result that the automated 
model achieves a significantly higher accuracy (84.0%). Having a set of 
data-driven biomarkers for Parkinson’s disease could be helpful in deci-
sion-making about whether the invasive implantation of Deep Brain 
Stimulation devices would help patients.

In another practical application of machine learning and neuroscience, 
convolutional neural networks are used to analyze the aging of the human 
brain. Cole et al. (2016) perform machine learning analysis on fMRI neu-
roimaging data (n = 2,001) to accurately predict the chronological age of 
healthy people and deviations from healthy brain aging that have been 
associated with cognitive impairment and disease. The age predictions are 
generated using raw imaging data. The convolutional neural network 
brain-predicted age appears to represent an accurate, highly reliable, and 
genetically valid phenotype that has potential to be used as a biomarker of 
brain aging. The benefit of a baseline standard is substantially reducing 
the computation time for novel data, which speeds up the possibility of 
providing real-time information on brain health in clinical settings.

In similar research, Levakova et al. (2019) present a deep learning 
framework for the prediction of chronological age from structural MRI 
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scans (n = 10,176). The analysis examines the biomarkers of neurological 
disorders and brain aging in more detail. Using a convolutional neural 
network to analyze raw imaging data allows the identification of the brain 
regions that have the biggest contribution to brain aging, and an analysis 
of the underlying processes. The finding is that cavities containing cere-
bral spinal fluid, previously identified as general markers of atrophy, 
have the highest contribution to predicting brain age, and may be an early 
warning signal of pathology. These kinds of information about human 
brain aging health and pathology might be further combined with synapse 
lifespan data (Cizeron et al., 2020) to further indicate early-onset 
neuropathologies.

19.2.3  Machine learning and connectomics

One of the fastest-growing applications in machine learning neuroscience 
is connectomics. Connectome imaging is producing more data than most 
other biomedical fields (Motta et al., 2019). With the widespread use of 
high-throughput recording techniques for data acquisition, data analysis is 
now the current bottleneck, particularly neuron reconstruction and syn-
apse detection. Other data analysis imaging challenges include tracking 
cells in high-resolution videography, analyzing spike data from large-
scale electrode arrays, and detecting action potentials from calcium-based 
fluorescence transients, all of which might be facilitated with machine 
learning-related methods for image classification.

19.2.3.1  Neuron reconstruction: TeraVR and DeepNeuron

One of the primary focal areas in high-throughput connectomics and 
 neuroinformatics is neuron reconstruction. Such reconstruction entails 
converting high-resolution micro-imaging data to a usable description of 
morphology, distinguishing between neurons and glia, and including the 
three-dimensional spatial locations of a cell’s parts and its topological 
connections. The task involves single-neuron tracing (identification) and 
connectivity (synapse) detection. Neuron reconstruction is the first data 
annotation step toward being able to understand cell type, function, con-
nectivity, and development.
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The Allen Institute continues to develop various brain atlases, annota-
tion tools, and methods. Toward the task of whole-brain single-neuron 
reconstruction, an open-source virtual reality annotation system is pro-
posed, TeraVR (Wang et al., 2019). TeraVR is a virtual reality neuron 
reconstruction platform designed to manage terabyte-scale (whole-brain) 
imaging data. TeraVR integrates immersive and collaborative three-
dimensional visualization, interaction, and hierarchical streaming of tera-
voxel-scale images. The benefit of TeraVR is being able to annotate the 
precise full morphology of long-projecting neurons in whole mouse 
brains. TeraVR is based in intelligent tracing algorithms which can be 
bundled with deep learning neural networks such as DeepNeuron for 
accelerated neuron reconstruction. DeepNeuron is an open-source toolbox 
using deep learning networks for neuron reconstruction, in particular, 
detecting neuron signals, connecting neuronal signals into a tree, pruning 
and refining the tree morphology, and classifying dendrites and axons in 
real time (Zhou et al., 2018). DeepNeuron has been implemented as an 
Open-Source plugin in Vaa3D.

19.2.3.2  Neural connectivity: Synapse detection

In neuron reconstruction, after tracing a single neuron, the next step 
is identifying neural connectivity by detecting synapses. Unfortunately 
synapse detection may be equally as complex as neuron reconstruction 
and hence machine learning methods could likewise be indispensable 
(Dorkenwald et al., 2017). Steady improvements in automated electron 
microscopy segmentation suggest that the detection of synaptic connectiv-
ity could become the next focal point for innovation in the overall neuron 
reconstruction process (Staffler et al., 2017). In other work, Parag et al. 
(2018) present a method for automated synapse detection. The approach 
proposes a general-purpose synaptic connectivity detector that attributes 
the location and direction of a synapse simultaneously. In the algorithm, 
first, one deep fully convolutional neural network generates candidate 
synaptic connections from three-dimensional voxel data proximity predic-
tions. Then a second three-dimensional convolutional neural network 
prunes the set of candidates to produce the final detection of cleft and 
connectivity orientation. Experimental results indicate that the algorithm 
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outperforms the existing methods for determining synapses in both rodent 
and fruit fly brain projects.

19.2.3.3  Brain atlas annotation and deep learning network

Machine learning is also used in connectomics to check and backstop 
other methods, for example, in improving the quality of neuroscience 
tools such as brain atlases (Iqbal et al., 2019). The aim of a brain atlas is 
to serve as a standard reference guide to anatomical regions of interest in 
the brain. However, there can be considerable variability in acquired data 
due to brain size and form differences across individuals. Thus, machine 
learning techniques are applied to identify potential holes and inconsisten-
cies in the registration to render atlas data more coherent. The work pro-
ceeds from a project implementing a solution for neuron detection at 
multiple scales of analysis. A high-performance deep neural network 
detects neurons labeled with different genetic markers in a range of imag-
ing planes and imaging modalities. The work introduces a fully automated 
artificial intelligence-based method for whole-brain image processing to 
detect neurons in different brain regions during development (DeNeRD). 
The benefit is facilitating the task of mapping the structure of the mam-
malian brain at cellular resolution that requires capturing key anatomical 
features at the appropriate level of analysis.

19.2.3.4  Generative machine learning for unlabeled data

Since volumetric brain data is high-dimensional, machine learning con-
nectomics can move more quickly to generative machine learning meth-
ods that use unsupervised learning to classify unlabeled data. The higher 
dimensionality allows generative algorithms the ability to learn the distri-
bution of the data, as compared to discriminative algorithms that are 
restricted to learning directly from already-labeled data in supervised 
learning (Goodfellow et al., 2014). The upshot for connectomics is that 
large datasets can be labeled using only a small fraction of raw image data 
for training (Motta et al., 2019).

The functional imaging data of intracellular calcium transients is a 
good example. The source of calcium transients is action potentials in the 
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soma occurring at certain time points. The transformation of an action 
potential to the somatic calcium influx, calcium binding to the sensor 
proteins and its decay dynamics, as well as the sources of imaging noise, 
are all relatively well understood. Therefore, the generative model 
describing action potential-to-calcium data transformation is well con-
strained. This means that by optimizing the action potential time points to 
generate data that best resembles the measured data, it is possible to 
obtain the action potential time points as a result, which helps to create a 
temporal profile of activity.

However, significant advance may be required for the fully automated 
connectomic machine learning of unsupervised data. One estimate is that 
methods would need an improvement in classifier accuracy of about two 
orders of magnitude to reconstruct one neuron, and another seven orders 
of magnitude for the automated reconstruction of an entire mouse brain 
(Helmstaedter, 2015, p. 27). This can be compared to the automation 
improvements in classifying handwritten digits in the MNIST dataset 
which took fifteen years to gain one order of magnitude in machine learn-
ing error rate improvement.

19.2.4  Rapprochement

Given that machine learning was originally inspired by real-life models of 
the brain (Hopfield, 1982), an ongoing question is the right relationship 
between the fields of neuroscience and machine learning. Although there 
is some intuition that the disciplines are aligned, how to further enact this 
collaboration is unclear. For example, Arbib’s text book of brain theory 
and neural networks (2003) cites the two central questions, namely, “How 
does the brain work?” and “How can we build intelligent machines?” but 
does not discuss how the two might come together.

19.2.4.1  Machine learning applied to neuroscience

There are more proposals made by computer scientists for how neuro-
science might benefit from machine learning than the converse. In one 
example, a group of machine learning industry practitioners presents 
a deep learning framework for neuroscience (Richards et al., 2019). 
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The three central components of such a deep learning framework are 
the learning goal (expressed as an objective function (loss function) to 
be maximized or minimized), a set of learning rules (expressed as 
 synaptic weight updates), and the network architecture (the pathways 
and connections for information flow in the brain). Earlier work from 
the Google DeepMind team (Marblestone et al., 2016) highlights the 
cost function as a central principle in the operation of both the brain 
and artificial neural networks. In machine learning, cost functions and 
training procedures have become more complex and varied across lay-
ers and over time, complexities which could likewise inform the study 
of the brain.

19.2.4.2  Machine learning and neuroscience at odds

Chance et al. (2020) note that structural differences between neuroscience 
and machine learning may prevent a closer collaboration. They argue that 
differing priorities and perspectives exist between the two fields, largely 
motivated by end goals. On the one hand, neuroscience is directed by 
funding sources toward identifying disease pathologies for potential thera-
peutic targets. This translates into a culture that emphasizes defining and 
describing specific system components. As a result, neuroscience is pri-
marily focused on an understanding of form, the components of biological 
neural circuits, and mechanism, how neural circuits work. On the other 
hand, machine learning focuses on a much higher level of abstraction, in 
generating functions that describe data. Machine learning seeks to 
increase performance (with respect to an objective function), and requires 
demonstrated improvements on the performance of a specific task. 
Machine learning is primarily aimed at understanding how a system pro-
duces a solution at an algorithmic-level, rather than understanding the 
underlying mechanisms or the biological neural architectures. In contrast 
to neuroscience, machine learning is not interested in the underlying form. 
Therefore, it is not necessarily immediately clear how neuroscience can 
help in improving machine learning algorithms, or how machine learning 
can contribute to the understanding of form and mechanism in neurosci-
ence. However, the two fields continue to influence each other and there 
could be a broader exploration of potential synergies.
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19.2.4.3  Next-generation machine learning

A further problem surfaces regarding the potential limits of machine 
learning in general, suggesting that new approaches, biologically inspired 
and otherwise, are needed for further advance. Sejnowski, one of the sci-
entists who introduced the Boltzmann machine (Ackley et al., 1985) 
acknowledges the progress of deep learning, but thinks that “major break-
throughs” will be needed to achieve greater insight into the operation of 
the brain (Sejnowski, 2020). Similarly, an earlier opinion from Google 
DeepMind argued that machine learning methods had reached a plateau, 
and called for a return to neuroscience-inspired artificial intelligence 
(Hassabis et al., 2017). The work posits that a better understanding of 
biological brains could play a vital role in building the intelligent 
machines of the future, and suggests resynchronizing the fields of 
machine learning and neuroscience.

On the other hand, quantum machine learning, as one of the biggest 
advances in machine learning, is not biologically inspired. Neither are 
other recent advances such as generative neural networks (Goodfellow 
et al., 2014) and transformer neural networks (Vaswani et al., 2017). The 
longer-term future of machine learning could also draw from the physics-
based approach of random tensors (for dimensionality of three and 
greater), making use of color theory (the minimum number of colors to fill 
in a graph) and additional symmetries in the advance of finding the 1/N 
expansion (a perturbative expansion of quantum field theories) (Gurau, 
2016, 2011). Other approaches to machine learning and brain modeling 
such as neuromorphic computing and spiking neural networks are a return 
to a closer linkage with biological underpinnings.

19.3  Neuromorphics and Spiking Neural Networks

19.3.1  Neuromorphic computing

Neuromorphic computing refers to computing systems that mimic the 
neuro-biological architectures of the human nervous system (Monroe, 
2014). They are proposed as a next-generation computing platform that 
could extend beyond the limits of classical von Neumann architectures 
and operate on classical, quantum, and quantum optical platforms.
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The idea behind neuromorphic computing is to closely imitate natural 
neural structures, including by building time and dynamics into function-
ing. Instead of transmitting information constantly or at each propagation 
cycle as in classical computing systems, neuromorphic computing mecha-
nisms (like the neurons in the brain) transmit information only via thresh-
olding, when a membrane potential (an intrinsic quality of the neuron 
related to its membrane electrical charge) reaches a specific value. 
Neuromorphic engineering aims to build machines that better interact 
with natural environments by applying the principles of neuronal compu-
tation, including robust analog signaling, real-time dynamics, distributed 
complexity, and learning. These kinds of cognitive computing platforms 
suggest advantages in efficiency, fault tolerance, and adaptability over von 
Neumann architectures. Tasks for neuromorphic architectures involve pat-
tern analysis, decision making, optimization, and real-time system 
control.

19.3.1.1  Neuromorphic computing chips and projects

There are various large-scale neuromorphic chips and hardware projects. 
One of the first neuromorphic chips was introduced by Intel in 2017, 
Loihi, composed of 130,000 neurons. The chip uses an asynchronous 
spiking neural network to implement adaptive self-learning and event-
driven behavior (Davies et al., 2018). Meanwhile, other similar projects 
were announced, IBM’s TrueNorth brain-inspired computer chip with  
1 million neurons and 256 million synapses (Merolla et al., 2014), and 
Brainchip’s Akida neuromorphic system-on-chip with 1.2 million neurons 
and 10 billion synapses (Pele, 2019). In July 2019, Intel announced an  
8 million neuron neuromorphic system (Pohoiki Beach) comprised of  
64 Loihi chips. Other efforts involved with the EC Human Brain Project 
include Spikey (Pfeil et al., 2013), SpiNNaker (Furber et al., 2014) and 
BrainScaleS (Schemmel et al., 2017) (Table 19.5).

Neurogrid is an example of neuromorphic hardware architecture. 
There is a circuit board with 16 custom-designed chips (NeuroCores). 
Each core’s analog circuitry emulates 65,536 neurons. The neurons are 
connected using digital circuitry designed to maximize spiking through-
put and minimize energy consumption. The group filed for a patent in 
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2020 (Boahen et al., 2020) based on previous work (Boahen, 2014, 2017). 
A spiking neural network computing infrastructure is envisioned based on 
multi-layer kernel architecture, shared dendritic encoding, and the thresh-
olding of accumulated spiking signals.

19.3.2  Spiking neural networks

One of the main applications of neuromorphic computing is spiking 
 neural networks, which are the spiking-activation version of traditional 
artificial neural networks. Although artificial neural networks were ini-
tially inspired by the brain’s architecture, there are fundamental differ-
ences in their structure, neural computations, and learning rules as 
compared to the brain (Tavanaei et al., 2019). Spiking neural networks 
incorporate more of the rich features that are able to imitate real-life 
brain processing.

Spiking neural networks are a more recently developed technology 
than traditional artificial neural networks. One of the earliest feedforward 
hierarchical convolutional networks of spiking neurons was proposed by 
Masquelier and Thorpe (2007), notably for unsupervised learning. Work 
has ensued with over forty projects demonstrating a variety of spiking 
neural networks in deep, convolutional, and recurrent spiking neural net-
works (Tavanaei et al., 2019, p. 5). Although at present spiking neural 
networks sometimes lag behind traditional artificial neural networks in 
terms of performance, the gap is shrinking. Spiking neural networks also 
have advantages in requiring less programming and being more hardware 
friendly and energy-efficient than the alternative.

Table 19.5.  Large-scale neuromorphic computing projects.

No. Name Location/Sponsor Research Program

1 Neurogrid Stanford University Brains in Silicon program

2 True North IBM SyNAPSE program (DARPA)

3 Spikey University of Heidelberg FACETS/EC human brain project

4 SpiNNaker University of Manchester EC human brain project

5 BrainScaleS Kirchhoff Inst. for Physics EBRAINS/Human brain project
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19.3.2.1  Spike-based activation

One aspect that distinguishes neuromorphic computing from traditional 
computing is a threshold-based spike activation method. This is in con-
trast to nonspike activated artificial neural networks, in which neurons are 
typically characterized by a single, static, continuous-valued activation 
(despite the fact that activation is an evolving research frontier in artificial 
neural networks). Biological neurons, however, use discrete spikes to 
compute and transmit information, and the spike time and rate convey 
additional information (Gerstner et al., 2014). Theoretically imitating the 
brain, in neuromorphic computing, a spike primitive orchestrates inputs 
from multiple sources by temporally integrating their weighted sum and 
fires a single spike when this value crosses a threshold.

Spikes are discrete events that occur at analog times, and thus the 
spiking encoding scheme represents a hybrid between traditional analog 
and digital approaches that is capable of both expressiveness and robust-
ness to noise. The information representation scheme influences compu-
tational efficiency. Spike encoding as a cortical encoding strategy for 
neuronal computation algorithms is a sparse coding scheme with justifica-
tion in coding theory (Borst & Theunissen, 1999). The spiking activation 
integrates a small set of basic operations (delay, weighting, spatial sum-
mation, temporal integration, and thresholding) into a single device, 
which is capable of performing a variety of computations depending on 
how its parameters are configured. Such a distributed, asynchronous 
model processes information using both space and time, and is amenable 
to algorithms for unsupervised learning (Maass, 1997).

19.3.2.2  Backpropagation and the learning problem

A known challenge with spiking neural networks is the learning problem. 
Spiking neural networks are not able to learn with backpropagation as 
traditional artificial neural networks do. Backpropagation propagates error 
signals backward through time to update network weights, and allows 
neurons to participate in a network computation several times iteratively. 
Such a method is not possible in biological networks which are necessar-
ily subject to the forward-arrow of time, only “running time once”.
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Traditional artificial neural networks “learn” by varying the weights 
of individual nodes in a trial-and-error process by which the computa-
tional performance of the network improves. Gradient descent is calcu-
lated for a loss function that measures errors in the current network 
performance and gradients of the loss function are propagated backward 
through all network layers to each node. The backpropagation of errors 
method is a standard technique that has made a substantial contribution 
to the progress of artificial neural networks in optimizing the loss func-
tion, calculating the error contribution of each neuron after a batch of 
data is processed (Rumelhart et al., 1986). Backpropagation allows a 
significant reduction in combinatorial complexity as the highest-yield 
neurons can be upweighted retrospectively. In spiking neural networks, 
however, the potential use of backpropagation runs into the challenge 
that biology is subject to the forward-arrow of time. Also, from a techni-
cal perspective in algorithm implementation, the transfer function in 
spiking neural networks is usually nondifferentiable, which prevents the 
use of backpropagation.

19.3.2.3  Eligibility propagation synaptic plasticity

Ongoing work proposes e-prop (eligibility propagation) as the equivalent 
of backpropagation to enable learning in spiking recurrent neural net-
works (Bellec et al., 2020). The presence of slowly changing hidden vari-
ables offers a solution to the problem of how a spiking neural network can 
learn without error signals that propagate backward in time. In the experi-
mental setup, the hidden variables of neurons are changed slowly, generat-
ing eligibility traces that propagate forward over longer time spans, which 
coincide with instantaneous error signals arising later in the system. The 
e-prop method cannot make backward use of time, but does incorporate 
the future use of time, coordinating two separate temporal trajectories.

E-prop thus provides a synaptic plasticity rule that performs a func-
tion similar to backpropagation, by indicating which neurons are contrib-
uting more to the solution and should be up-weighted, but without having 
to go back in time (Gerstner et al., 2018). Drawing from neuroscience 
research, e-prop is based on a compound measure of two location-based 
features that have been discovered in the brain: Local eligibility traces and 
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targeted top-down learning signals. The first mechanism, local eligibility 
traces, is a finding that neurons in the brain maintain traces of preceding 
activity on the molecular-level (for example, in the form of calcium ions 
or activated CaMKII enzymes).

The second mechanism, targeted top-down learning signals, refers to 
an abundance of top-down neurotransmitter signaling involving dopa-
mine, acetylcholine, and neural firing (Sajad et al., 2019). Such targeted 
top-down signaling is related to a feedback loop called error-related nega-
tivity in which effective behavior requires evaluating the outcomes of 
actions and adapting performance to optimize consequences. Dopamine 
signals in particular have been found to be differentially directed to target 
populations of neurons, rather than being global (Engelhard et al., 2019). 
The effect of the two locality measures (local eligibility traces and tar-
geted top-down learning signals) functioning together is that the brain 
maintains a fading memory of events in which the presynaptic neuron 
fired before the postsynaptic neuron, which induces synaptic plasticity if 
followed by a top-down learning signal.

The e-prop method is implemented as a learning algorithm for a spik-
ing recurrent neural network. The result is that e-prop learns more slowly 
than backpropagation, but approximates the same performance. The 
e-prop algorithm is tested with a classical benchmark task (Mnih et al., 
2016) for learning intelligent behavior with a reward structure, winning 
Atari video games provided by the Arcade Learning Environment 
(Bellemare et al., 2013). To win the games, the agent must learn to extract 
salient information from the pixels of the game screen, and to infer the 
value of specific actions, even if rewards are obtained in the future. At the 
well-known Atari game of Pong, the e-prop method produced a competi-
tive score. In the more complicated Fishing Derby game requiring a 
memory-type function, the e-prop method exhibited two different learned 
behaviors, evading the shark and collecting fish. The salient skill demon-
strated was that the agent had to learn how to switch between the two 
behaviors as required by the situation.

The implication is that it is not possible to solve the problem of syn-
aptic plasticity in the brain without solving the problem of time, in coor-
dinating earlier time events that persist and later time events that influence 
them (local eligibility traces and targeted top-down learning signals).  
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This suggests the possibility of modeling synaptic plasticity with quantum 
information scrambling, such as with a thermofield double state (Brown 
et al., 2019) or a time superfluid (Lin et al., 2019) for coordinating the 
early and late-time arrival of signals. This could include testing it on exist-
ing quantum simulation platforms such as Rydberg atoms.

19.3.2.4  Wider application of spiking neural networks

Spiking neural networks is an active area of research. The main focus is 
solving the learning problem by finding alternatives to backpropagation, 
but the research also extends to other brain-inspired machine learning 
structures (using brain architectures to inspire new machine learning 
designs), and using spiking neural networks and machine learning to 
study the brain (Table 19.6). As there is ML/Q and Q/ML, there is  
ML/SNN and SNN/ML. The potential benefit is not just an effective spik-
ing neural network structure for artificial intelligence computing, but 
understanding more about how the brain may actually function.

Bellec et al. (2020) propose e-prop as an alternative to backpropaga-
tion that is a compound measure of local firing eligibility traces (calcium 
activations) and targeted top-down learning signals (dopamine signals). 
Another solution to the learning problem is bundling two networks 
together, a traditional neural network using backpropagation to produce 
analysis and inputs, that are then mapped to a spiking neural network 
(Kim et al., 2019). The method involves training a continuous-variable 

Table 19.6.  Spiking neural networks research applications.

No. Problem Target Description Network

1 Backpropagation Eligibility propagation not backpropagation RNN

2 Run two RNNs, transfer ANN input to SNN RNN

3 Approximate gradient backpropagation CNN

4 Brain-inspired machine 
learning

Dendrites as threshold-based linear units CNN

5 Multicompartmental neurons in deep learning CNN

6 Neuroscience Synaptic integration in fingertip response CNN

7 Sequential analysis of audio in the brain RNN
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rate recurrent neural network with biophysical constraints and transferring 
the learned dynamics and constraints to a spiking recurrent neural  
network. In another approach, Kaiser et al. (2020) employ learning  
algorithms that approximate backpropagation, using only local error func-
tions, that can be implemented in spiking neural networks. The key to the 
problem is realizing that learning dynamics in artificial neural networks 
and synaptic plasticity in spiking neural networks are similar. The method 
is tested on MNIST data.

Other research focuses on converting convolutional neural networks to 
spiking neural networks. Lee et al. (2020) propose an alternative machine 
learning algorithm to backpropagation that uses pseudo-derivatives to 
produce the leaky integrate-and-fire spiking temporality of spiking neural 
networks, thereby effectively training a deep convolutional spiking neural 
network. On the one hand, spiking neural networks are a powerful com-
puting paradigm, but only have shallow architectures. It is difficult to train 
deep spiking neural networks due to the discontinuous, nondifferentiable 
nature of the spike generation function. On the other hand, previous 
attempts to convert convolutional neural networks to spiking neural net-
works were unable to produce the threshold-based spiking threshold-
spiking temporal dynamics of spiking neural networks. Instead, the work 
uses a pseudo-derivative method that accounts for the leaky effect in the 
membrane potential of neurons. The algorithm approximately estimates 
the leaky effect by comparing total membrane potential value and obtains 
the ratio between leaky and nonleaky neurons. During the backpropagat-
ing phase, the pseudo-derivative of leaky neuronal function is estimated 
by combining the straight-through estimation and the leak correctional 
term. The deep spiking neural networks obtained superior classification 
accuracies in MNIST, SVHN, and CIFAR-10 datasets in comparison to 
the other networks trained with the spike-based algorithm.

Aside from focusing on alternatives to backpropagation in artificial 
neural networks, drawing from the computational power of brain architec-
tures to inspire new machine learning designs is another research theme. 
Jones and Kording (2020) develop a simple model of SNN/ML imple-
menting the dendrite as a sequence of threshold-based linear units as a 
special case of a sparse network. The resulting sparse ANN with binary 
dendritic tree constraints made up of nonlinear nodes was tested on 
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MNIST and CIFAR-10 datasets. The implication is that traditional neural 
network models may be severely underestimating the computational 
power of biological neurons, and that could be incorporated in machine 
learning networks. Guerguiev et al. (2017) likewise use spiking neural 
networks as brain architecture to inspire machine learning, here deploying 
multicompartmental neurons in the framework of a deep learning net-
work. Like neocortical pyramidal neurons, neurons in the model receive 
sensory information and higher-order feedback in (electronically) segre-
gated compartments. Due to the segregated feedback, neurons in different 
layers of the network are able to coordinate synaptic weight updates. As a 
result, the network learns to categorize images better than a single layer 
network. The result is that the algorithm takes advantage of multilayer 
architectures to identify useful higher-order representations which are the 
hallmark of deep learning.

Hay and Pruszynski (2019) use machine learning to model and 
explain the brain in regard to fingertip tactile response, proposing a syn-
aptic integration method with convolutional machine learning. The work 
focuses on a description of how the human tactile processing pathway 
innervates the fingertips of the hand and rapidly processes the orienta-
tion of edges moving across the fingertip. The synaptic integration is as 
follows. First, the work derives spiking models of human first-order 
tactile neurons that fit and predict responses to moving edges with high 
accuracy. Second, the model neurons are used in simulating the periph-
eral neuronal population that innervates a fingertip. Third, machine 
learning is applied to train classifiers to perform synaptic integration 
across the neuronal population activity. The result is that the synaptic 
integration across first-order neurons processes edge orientations with 
high acuity and speed. The machine learning model includes both fast-
decaying and slow-decaying excitatory and inhibitory synapses in the 
classifiers. The models suggest that the integration of fast-decaying 
(AMPA-like) synaptic inputs within short timescales is critical for dis-
criminating fine orientations, whereas integration of slow-decaying 
(NMDA-like) synaptic inputs refines discrimination and maintains 
robustness over longer timescales.

Also applying machine learning to studying the brain, for sequential 
analysis, Nicola and Clopath (2017) deploy a model of supervised 
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learning in spiking neural networks in sequential data models of songbird 
singing and storing and replaying a movie sequence.

19.4  Optical Spiking Neural Networks

The spiking neural network is developed for the optical platform (Tait 
et al., 2014). Just as spiking neural networks complement and extend the 
artificial neural networks, the optical spiking neural network is the similar 
complement to the optical neural network. Neuromorphic photonics is an 
emerging field incorporating photonics and neural network processing 
models, combining the advantages of both optics and electronics to build 
systems with high efficiency, high interconnectivity, and extremely high 
bandwidth (Shastri et al., 2018). Neuromorphic silicon photonics have the 
potential to integrate processing functions that might eventually vastly 
exceed the capabilities of electronics (Tait et al., 2017). Artificial neural 
networks began with Hopfield (1982) and were extended to spiking neural 
networks by Masquelier and Thorpe (2007). Optical neural networks were 
demonstrated by Woods and Naughton (2012), and extended to optical 
spiking neural networks by Tait et al. (2014) (Table 19.7).

In the optical setup, amplifiers manage the thresholding for the spike 
activation in optical spiking neural networks and the nonlinear activation 
in optical neural networks (Pierangeli et al., 2018). Feldmann et al. (2019) 
propose an all-optical spiking neurosynaptic network for supervised 
and unsupervised learning. The technique exploits wavelength division 

Table 19.7.  Optical spiking neural networks.

No. Network Description Year

1 Artificial neural network Computing system inspired by biological 
neural networks

1982

2 Spiking neural network Threshold activated neural network (more 
biologically realistic, adaptive)

2007

3 Optical neural network Neural network implementation using 
optical components

2012

4 Optical spiking neural 
network

On-chip optical architecture for high-
performance spiking laser neurons

2014
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multiplexing techniques to implement scalable circuit architecture for 
photonic neural networks.

Ultrafast laser neurons are one of the latest concepts (Nahmias et al. 
2020). A laser neuron is a nonlinear optoelectronic device that uses excit-
able laser dynamics to achieve biologically inspired spiking behavior. The 
functionality is demonstrated with simultaneous excitation, inhibition, 
and summation across multiple wavelengths. Ultrafast laser neurons could 
contribute to the implementation of linear operations such as matrix mul-
tiplications using photonic integrated circuit technology. The laser neuron 
is able to perform nonlinear operations in the photonic domain, including 
with a wavelength multiplexing protocol for large-scale system integra-
tion. Laser neurons represent an emerging class of optoelectronic nonlin-
ear processors that can be used to harness the bandwidth density and 
energy efficiency of photonic computing.
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Chapter 20

Conclusion: AdS/Brain Theory and 
Quantum Neuroscience

Creations appear outmoded when viewed from within the future they 
helped to create

— Jahren (2017, p. 186)

Abstract

This chapter argues that quantum neuroscience applications are needed 
not only given the complexity of the domain but also to obtain a causal 
understanding of disease. The AdS/Brain theory is introduced as the first 
multi-tier renormalized interpretation of the AdS/CFT correspondence, 
for implementation with bMERA (brain) random tensor networks with 
Floquet periodicity dynamics. Bulk-boundary pairs are outlined in the 
multi-tier composite neural signaling model that includes the scales of 
network, neuron, synapse, and molecule. Standard neuroscience quan-
tum circuits are proposed in a list of Millennium Prize-type challenges, 
and risks and limitations are discussed.

20.1  Quantum Computing for the Brain

The overall finding of this book is that a wide range of foundational 
 physics advances are being applied to neuroscience, and that many aspects 
of the computational neuroscience research program might migrate in a 
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straightforward though nontrivial manner to quantum computational plat-
forms. Such efforts might greatly extend the kinds of research and explan-
atory findings that are possible in the context of studying the brain, neural 
signaling, and neuropathologies. When seen in the light of future stan-
dards for neurological study, current approaches might appear primitive. 
However, these kinds of future-class advances could take years to develop. 

20.2  AdS/Brain Theory

20.2.1  Quantum neural signaling

New models for neural signaling are required as quantum computing is 
implicated as a computational platform and neural signaling is understood 
as a quantum domain. The “big data” explosion in neuroscience imaging 
output from connectomics and other projects has made it clear that super-
computers and other existing methods of computation cannot match the 
need for neural data modeling and interpretation. Simultaneously, quan-
tum computing is emerging as a vastly more scalable platform including 
with three-dimensional modeling capabilities appropriate to the represen-
tation of real-life phenomena such as neural signaling. Also, increasingly 
in the last decade, neural signaling has come to be appreciated as a far 
more complicated process than electrical action potential firing alone sug-
gests. A full picture of signaling requires synaptic integration (the neu-
ron’s information processing activities aggregating thousands of incoming 
signals). Synaptic integration involves an understanding of astrocyte cal-
cium signaling, protein cascades in dendritic arbors, and the proton and 
ion-based transfer of molecules, all of which take place on the quantum 
(atomic and subatomic) level. The implication is modeling neural signal-
ing processes with quantum-conducive computing systems.

20.2.1.1  AdS/Brain theory of neural signaling

Neuroscience and physics are related in the proposal of AdS/Brain as a 
composite theory of neural signaling at the quantum level. AdS/Brain is 
an interpretation of the AdS/CFT correspondence as a neural signaling 
model. An ongoing challenge in both physics and neuroscience is relating 
the microscale and the macroscale, articulating how collective microscale 
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behavior produces averaged group effects at the macroscale. The  
AdS/CFT correspondence continues to be one of the best tools for 
addressing within-system microscale-macroscale interrelation and short-
range and long-range correlations. The AdS/Brain theory can be proposed 
on this basis as a comprehensive theory of neural signaling.

What is new in the AdS/Brain theory is the multi-level correspon-
dence. The bulk-boundary setup of the correspondence is an attractive 
feature for interrogating one scale level from another, conceptually as 
nested tiers of Escher Circle Limit III (Figure 20.1). The AdS/Brain theory 
is a composite model of neural signaling in the form of a mathematical 
framework that incorporates the activity of neurons, glia, synapses, neu-
rotransmitters, and synaptic integration. The four scale tiers of brain net-
work, neuron, synapse, and molecular levels are all involved in the 
successful orchestration of signal transmission. Each pair of scale tiers has 
a bulk-boundary relationship, with the implication that the complicated 
activity occurring in each “bulk” volume can be written in a “boundary” 
field theory in one less dimension (Table 20.1).

Figure 20.1.  M.C. Escher’s “Circle Limit III”.

Source: © 2021 The M.C. Escher Company, The Netherlands. All rights reserved. www.mcescher.
com.
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The central requirement of the AdS/Brain theory is to provide a model 
for the consolidation of various spatial and temporal scales, each having a 
distinct dynamical regime, into one renormalized theoretical framework. 
The holographic correspondence is an apparatus that renormalizes the 
system across scale tiers. The result is that AdS/Brain emerges as a theory 
of comprehensive neural signaling at various renormalized spatial and 
temporal scales, each having its own dynamics, in a multi-tier interpreta-
tion of the AdS/CFT correspondence. The AdS/Brain theory is a compos-
ite, renormalization-based multiscalar model of neural signaling.

The AdS/Brain theory treats multiple scale tiers, and is a matrix quan-
tum mechanics interpretation of the AdS/CFT correspondence. Matrix 
mechanics is a mathematically consistent formulation of quantum 
mechanics that is equivalent to the Schrödinger wave formulation. The 
physical properties of particles are interpreted as matrices that evolve over 
time, in an algebraic method that produces the spectra of energy operators 
with ladder operators. The matrix quantum mechanics formulation 
addresses the fact that quantum systems have multiple dimensions, and 
need to be solved with multiple matrices (Han et al., 2020). With the 
matrix quantum mechanics format (algebraic operators), the AdS/Brain 
theory is further poised for implementation with quantum platforms.

20.2.1.2  Information-theoretic black hole-like physics

Beyond the theoretical renormalization and microscale-macroscale 
 justifications for the AdS/Brain theory, there is also a practical informa-
tion-theoretic argument that informs the theory’s potential implementa-
tion. This argument is that the brain, like many complex systems, exhibits 

Table 20.1.  AdS/Brain: Bulk-boundary scale tiers.

No. Tier Scale Signal AdS/Brain

1 Network 10−2 Local field potential Boundary — —

2 Neuron 10−4 Action potential Bulk Boundary —

3 Synapse 10−6 Dendritic spike — Bulk Boundary

4 Molecule 10−10 Ion charge — — Bulk
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aspects of black hole-like physics, and as such, can be studied with black 
hole models, the marquis example being the AdS/CFT correspondence. 
Enumerating the brain with black hole-like physics includes concepts 
such as UV–IR correlations, entropy, thermal states, fluctuations, super-
conducting phase transitions, quantum error correcting code spaces, and 
qudits. From a practical perspective, the term “black hole-like” means 
quantum information-theoretic formulations such as using entropy to 
measure short-range and long-range correlations in the system (i.e. how 
interrelated subsystems are within the system). Just as black hole-like 
physics is producing results studying quantum gravity in the laboratory, so 
too these methods might be used to study the brain.

20.2.1.3  Implementation of the AdS/Brain theory

A key advance in tackling the complexity of quantum mechanical systems 
is a shift from the analytical methods of traditional quantum mechanics to 
quantum field theory (Srednicki, 2007). Calculating particle-many sys-
tems in a full-fledged quantum field theory enables a progression in meth-
ods from cumbersome canonical quantization to path integrals which sum 
over particle activity. Inherent in the AdS/Brain theory is that the brain too 
should be seen not only as a quantum mechanical regime as its behavioral 
size dictates but also as a quantum field theory domain. This is warranted 
as the particle-many (neuron-many) activity of large-scale (whole-brain) 
neural signaling has been established in neural field theories expressed 
with path integral methods (Amari, 1977; Ohira & Cowan, 1993; Buice & 
Cowan, 2009; Bressloff, 2015; Chow & Buice, 2015).

Path integrals are suggested for the mathematical implementation of 
the AdS/Brain theory and a model for the tiered structure also needs to be 
selected. MERA tensor networks are an obvious choice given their renor-
malization and entanglement management capabilities, easily consolidat-
ing short-range and long-range correlations in very-large quantum 
systems. A bMERA (brain MERA) version is proposed to attend to the 
specific needs of a neural field theory. This is in parallel with other 
domain-specific suggested implementations of MERA such as cMERA 
(continuous spacetime MERA (Nozaki et al., 2012)) and dMERA (deep 
MERA fast layer contraction on NISQ devices (Kim & Swingle, 2017)).
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In the renormalization picture, the neural system correlations and 
fluctuations (that produce neural signaling behavior) are formatted as 
entanglement or entanglement entropy (in the AdS/CFT correspondence 
frame). The renormalization structure allows short-range and long-range 
correlations to be analyzed for their role in neural signaling. Most relevant 
to the AdS/Brain theory are UV–IR correlations in time and space. In 
space, this means local and long-distance connections, and proximal and 
distal relationships. In time, this means fast and slow time, the relationship 
between local fast signals and distant slow signals, and fast network pro-
cessing at the edge and the slower processing at the core.

The bMERA tensor network with the structure for investigating  
UV–IR correlations can be implemented with the random tensor network 
format of Hayden et al. (2016). This model extends the reach of the  
AdS/CFT correspondence to more generic setups in time and space, while 
recapitulating the Ryu–Takayanagi entropy entanglement formula and 
other known aspects of the holographic correspondence. However, the 
random tensor network formalism is not generalized to include dynamics. 
Thus, dynamics would need to be incorporated from correspondence-
based formulations for the quantum domain (Engelhardt & Wall, 2019). 
This could also include Floquet periodicity (Else et al., 2016) and space-
time superfluids (Lin et al., 2019), further interpreted into neural dynam-
ics based on bifurcation and oscillating graphs.

The AdS/Brain theory applies to various scale tiers and processes com-
prising a complicated particle-many bulk volume of activity that results in 
a clear event-driven action (a neural signal) on the boundary. Several bulk- 
boundary examples for AdS/Brain study are outlined in Table 20.2.

Overall, the AdS/Brain theory is articulated as a composite, renormal-
ization-based multiscalar model of neural signaling, for implementation 
with random tensor networks in a bMERA format. In the same research 
trajectory, the AdS/Brain correspondence has been suggested as an AdS/
BCI control theory for BCI neuronanorobot networks managed with quan-
tum platforms (Swan, 2022). This is in the context of proposals for neuro-
nanorobot fleets for on-board connectome mapping and disease-fighting 
in human brain-cloud interfaces (Martins et al., 2016, 2019). Other related 
work develops smart network field theories for quantum platforms (Swan 
et al., 2020).
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20.2.2  Risks and limitations

There are several potential risks and limitations concerning quantum neu-
roscience applications and the specific suggestion of the AdS/Brain theory 
for neural signaling. The first issue is that perhaps it is simply too early 
for quantum computing as a nascent and untested platform as to whether 
it will develop into the qubit or qudit sized machines needed to model a 
system like the brain with 86 billion neurons and 242 trillion synapses. 
However, it is clear that these kinds of computing platforms may arise and 
it is in fact precisely the complexity of the brain that could help to define 
the requirements for the domain. Quantum computing is central to fund-
ing objectives and national competitive initiatives for many countries. The 
second major critique could be that the AdS/CFT correspondence does not 
have such a liberal application as to extend all the way to holographic 
neuroscience for the study of neural signaling, and to a multi-tier interpre-
tation. However, the mathematical models that constitute the AdS/CFT 
correspondence have been proven to elicit new information about many 
other physical systems such as condensed matter materials that might 
have seemed improbable at the outset, and thus neuroscience-related 
applications are not unwarranted. There may be additional subtleties to 
AdS/Biology applications that the AdS/Brain theory might help to inform. 
Also, there is nothing to prevent a stratified series of bulk-boundary rela-
tionships in a multi-tier system.

Table 20.2.  Bulk-boundary: AdS/neural signaling.

No. Bulk Boundary

1 Sending neuron axon Electric action potential

2 Presynaptic terminal Glutamate release from active zone

3 Synaptic cleft Neurotransmitter transmission

4 Synaptic cleft Astrocyte calcium signaling

5 Postsynaptic density Ionotropic protein cascade (glutamate, GABA)

6 Postsynaptic density Metabotropic protein cascade (dopamine)

7 Dendritic arbor Excitatory/inhibitory spike

8 Dendrite to soma Outgoing action potential
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A third complaint could be that the brain’s space and time constraints, 
scale range, and diverse dynamical regimes render the overall domain too 
specific to be contemplated with any external lens, even a versatile model 
such as the AdS/CFT correspondence. However, this does not preclude 
the examination of the brain with such a model, and much may be learned 
in the process as has been found in the application of other physics-
intensive formulations to neural signaling both theoretically and empiri-
cally. Finally, these proposals could be defeated on the grounds that 
obtaining the requisite data for testing, particularly for subatomic synap-
tic integration processes, is unlikely in the near or even intermediate term, 
and thus the theories are fated to remain untestable conjectures. Here, 
though, strides in microscopy innovation for single-molecule resolution 
and sampling techniques in human pyramidal neurons, for example, sug-
gest that data acquisition may be possible to test setups of these theories 
at least to further direct their formulation. Overall, the potential risks and 
limitations are outweighed by the much greater possibilities of quantum 
neuroscience.

20.3  Millennium Prize-Type Challenges

20.3.1  NISQ device neuroscience applications

The bigger picture of grand challenges for quantum computing for the 
brain is to implement neural signaling theories (particularly related to 
synaptic integration) on the more capacious quantum computing platform 
with the large variety of available quantum methods. These include tensor 
networks, Born machines, reduced density matrices, wavelet transforms, 
quantum kernel learning, Rydberg atom arrays, ion traps, boson sampling 
graph-theoretic models, quantum optics, and spiking neural networks.

20.3.1.1  Physics-based time technologies

A central problem is studying UV–IR correlations in the brain, short-
range and long-range relations in microscale subsystems that produce 
macroscale behavior. Such UV–IR processes proceed in time and space, 
possibly with each scale level having its own dynamics. A number of 
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“time technologies” have emerged in foundational physics research that 
can be used to study nonlinear dynamical systems. These include out-
of-time-order correlation functions, information scrambling periods 
with ballistic and chaotic growth and saturation, Floquet periodicity, 
Hopf bifurcation, and continuous-time quantum walks. These quantum 
methods could increase the reserve of tools available for neural behav-
ior investigation.

20.3.1.2  Standard neuroscience quantum circuits

Standard quantum circuits could be developed for a variety of known 
brain modeling problems. One is instantiating the effects of nonlinear 
calcium signaling in dendritic spiking activity with partial differential 
equations and diffusion-reaction functions. Another is a quantum circuit 
for dendritic filtering that instantiates the attenuation properties of the 
dendritic membrane between the synapse and the soma (including vari-
ance in both charge and voltage) and UV–IR correlations, for example, 
in a bMERA (brain MERA) tensor network setup. A standard frame-
work for integrating the effects of excitatory and inhibitory postsynaptic 
potentials (EPSPs and IPSPs) is needed. Other standard circuits could 
instantiate the geometric configuration of dendritic spine heads, 
metabotropic-ionotropic neurotransmitter protein signaling cascades, 
and synaptotagmin protein trafficking in the presynaptic terminal. There 
could be quantum circuits and variational methods as tools for approxi-
mating the four main wavefunctions involved in neural signaling: action 
potentials, neurotransmitter diffusions, astrocyte calcium signaling 
waves, and dendritic spikes.

Specific research questions could be posed in the structure of 
Millennium Prize-type challenges as follows:

 1. AdS/Brain: Develop an AdS/CFT quantum circuit for a four-tier AdS/
Brain model (Harlow, 2017; Harlow & Shaghoulian, 2020)

 2. AdS/Brain: Simulate neural signaling SYK and scrambling Hamiltonians 
with Rydberg atoms (Belyansky et al., 2020)

 3. AdS/Brain: Implement an attention-based transformer neural network 
for neural signaling (Carrasquilla et al., 2019)
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 4. Quantum information theory: Investigate the brain as a fast-scrambler 
with Lyapunov exponent-based chaotic/ballistic dynamics (Kobrin 
et al., 2020; Swingle et al., 2016)

 5. Quantum walks for the brain: Design a continuous-time quantum 
walk with a Hadamard coin-flip operator for single-neuron tracing in 
a DeepNeuron network (Flamini et al., 2018; Wang et al., 2019)

 6. Quantum information theory: Create a Born machine implementation 
of neural signaling (Cheng et al., 2018)

 7. Quantum information theory: Implement a bMERA random tensor 
network with an efficient neural signaling alpha-bit (Hayden et al., 
2016; Haydon & Penington, 2019)

 8. Quantum photonics: Construct a high-dimensional entangled qudit 
neural signaling model with photonic encoding in a quantum optical 
neural network (Erhard et al., 2020; Steinbrecher et al., 2019)

 9. Quantum photonics: Develop holographic teleportation protocols 
with operator size winding and entanglement heralding to transmit a 
neural signaling state (Brown et al., 2019; Dahlberg et al., 2019)

10. Gaussian boson sampling: Design a neural firing model with graph-
theoretic boson sampling (Zhong et al., 2020; Schuld et al., 2019)

11. Superconducting: Implement Hopf bifurcation in a superconducting 
spacetime crystal Floquet model with Glass networks (Lin et al., 
2019; Else et al., 2016; Coombes et al., 2018)

12. Neural field theory: Instantiate Cowan’s neural statistical field theory 
in a bMERA tensor network (Buice & Cowan, 2009)

13. Neuronal gauge theory: Write a neuronal gauge theory with global 
symmetry rebalancing using gauge fields and a non-energy-based 
gauge invariant property (Sengupta et al., 2016)

Given that synaptic integration is a central problem in the modeling of 
neural signaling, a separate list of circuits for these quantum projects is 
provided as follows:

14. Synaptic integration: Write a quantum circuit to model the active  
nonlinear behavior of EPSP transmission that includes the filtering 
properties of the dendritic membrane between synapse and soma 
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integrating both far-off (distal) and near-by (proximate) signals for 
upstream transmission (Spruston et al., 2016; Williams & Atkinson, 
2008)

15. Synaptic integration: Develop a quantum algorithm for synaptic inte-
gration that includes the effects of both EPSPs and IPSPs, calcium 
signaling, and ionotropic and metabotropic protein cascades (Sheng 
& Kim, 2011; Suzuki et al., 2018)

16. Synaptic integration: Establish a standard quantum framework for 
human pyramidal neurons with proximal-distal asymmetric sigmoidal 
function activation (Mel, 2016; Jin et al., 2018)

17. Synaptic integration: Compose a quantum circuit for the wavefunc-
tion of graded calcium-mediated dendritic action potentials (Gidon 
et al., 2020)

18. Synaptic integration: Implement a harmonic oscillator quantum cir-
cuit to model the elliptical geometry of dendritic spine heads (Cugno 
et al., 2019)

19. Spiking neural networks: Model short and long spiking timescales 
with out-of-time-order correlation functions to develop a synaptic 
plasticity rule based on the spatiotemporal aspects of local eligibility 
traces and targeted top-down learning signals (Bellec et al., 2020; 
Boahen et al., 2020)

20. Presynaptic terminal: Employ a renormalization group method to 
describe the mathematics of synaptotagmins, calcium ions, and proton 
gradient transport of neurotransmitters into vesicles (Sudhof, 2013)

21. Glial behavior: Test a quantum circuit of calcium signaling and 
 neuron-glia-vasculature temporal integration (Allen & Eroglu, 2017; 
Jolivet et al., 2015)

22. Glia and Neuropathology: Develop a “quantum disease circuit” to 
study Alzheimer’s disease cells in false apoptosis expressing the 
Mertk receptor that triggers microglia and astrocyte phagocytosis 
(Damisah et al., 2020)

23. Glia and Neuropathology: Design a quantum circuit model of astro-
cyte and oligodendrocyte repair and toxicity in stroke and neurologi-
cal diseases such as autism and anxiety disorders (Scimemi, 2018; van 
Veenendaal et al., 2018)

b4362_Ch20.indd   479b4362_Ch20.indd   479 4/29/2022   6:35:10 PM4/29/2022   6:35:10 PM



b4362  Quantum Computing for the Brain 6"×9"

480  Quantum Computing for the Brain

20.4  The Future of Quantum Neuroscience

Three factors could indicate tipping points for the quantum computing 
industry: Chips, routers, and applications. The first is “the Intel of quan-
tum computing chips”, the potential advent of universal quantum process-
ing units (QPUs), ostensibly either superconducting chips or quantum 
optical processing chips, mass-produced in the semiconductor supply 
chain template. The second is “the Cisco of quantum networks”, equip-
ment manufacturers providing all-optical or optical-electrical intercon-
nects with cloud-connected quantum entanglement repeaters, routers, and 
switches to enable the “quantum internet”, global quantum networks for 
computing and communication. The third is “the GeoCities, MySpace, 
and Twitter of quantum computing”, making easy-to-use application soft-
ware that end users can readily engage. The mainstream adoption of quan-
tum computation could proceed quickly due to the convenience of cloud 
services (IDC estimates that in 2023, ~20 percent of organizations will be 
allocating ~20 percent of their annual IT budgets to quantum computing 
(West, 2021)). Although it may be possible to probe phenomena such 
black holes and quantum gravity in the laboratory (as discussed in chapter 
4), being able to utilize these experimental domains via cloud services 
greatly extends their range of accessibility and obviates the need for on-
site hardware setups.

Quantum finance (analyzing financial data with wavefunctions and 
other quantum formalisms) could be one of the first mainstream fields 
to develop in quantum computing as the industry is typically an early 
adopter of new technologies. The four main quantum finance application 
areas are option pricing, trading strategies, risk management, and portfo-
lio optimization. A progression from classical to digital (blockchains) to 
quantum finance is underway. Applications of interest include quantum 
amplitude estimation for option pricing (Stamatopoulos et al., 2020), 
quantum circuit Born machines for portfolio optimization (Alcazar et al., 
2020), and quantum photonic support vector machines for risk analysis 
(Chatterjee & Yu, 2017).

What might hamper the quantum computing industry is the thinking 
mentality that restricts the platform to a few niche applications such as 
finance and cryptography. On the one hand, the current idea is not 
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necessarily that individuals would walk around with quantum smart-
phones (with Ytterbium-171 isotopes at 1 Kelvin (−458°F)) in their 
pockets, but would use cloud-based applications that could be transpar-
ent to end users. On the other hand, the constant advances in miniaturiza-
tion and materials cannot be discounted. Technology that is increasingly 
carried alongside or onboard the human (both invasively and noninva-
sively) is a trend that is likely to continue, and opens greenfield possibili-
ties for the scalability and information security properties of quantum 
neuroscience applications. A quantum BCI is not out of the question 
when considering the next several decades of potential technological 
advance.

There is a wide-spread awareness of quantum computing as a plat-
form, but not of its capabilities. This is not a surprise as any new technol-
ogy is at first “a better horse” and only later, in the fuller roll-out and 
advent of novel applications, does its greater realization as “a car” come 
to be understood. While acknowledging the inherent unknown difficulties 
in the evolution path of new technologies, it is nevertheless possible to 
articulate application classes that could be available based on the scalable 
three-dimensional capability of quantum computing. Entertainment, pro-
totyping, and manufacturing have transitioned to three-dimensional envi-
ronments more in line with the experience of everyday life (Corke, 2019), 
but for the most part computing is still flat translations of the physical 
world. Quantum computing offers the possibility of seamless movement 
between the domains.

Quantum computing has been known for some time, perhaps initially 
in the D-Wave Systems (2007) demonstration of quantum computation by 
adiabatic evolution. Google’s announcement of achieving quantum advan-
tage in October 2019 drew further attention to the industry (Arute et al., 
2019). The risk, though, is that the thinking is a lot like that at the begin-
ning of the personal computer revolution in the sense of grossly underes-
timating the possibilities of the platform. For example, Bill Gates and 
Steve Allen (cofounders of Microsoft) initially tried to refer IBM’s PC 
project (for a 16-bit operating system) to another vendor (Digital 
Research), and only accepted the work later (Allen, 2011, p. 133). The 
result was MS-DOS (Microsoft disk operating system) and ultimately a 
worldwide installed base of a billion copies of Windows in 2010 (Ibid., 
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p. 181). Steve Wozniak (cofounder of Apple) presented the concept for the 
Apple II to his employer Hewlett-Packard, but they were not interested 
(Schlender & Tetzeli, 2015, p. 47). Thomas J. Watson, CEO of IBM like-
wise famously observed in 1943 that “I think there is a world market for 
maybe five computers” (Strohmeyer, 2008).

The pervasive industry thinking at the time was that personal comput-
ers were a niche market for hobbyists, but the category exploded into the 
ubiquity of personal computers, smartphones, and tablets, possibly now 
on the way to on-board quantum-controlled devices. The same could be 
true for quantum computing. It is known to exist, but not what its capabili-
ties might be in terms of a potentially transformative impact on all indus-
tries. The bigger possibility is that quantum computing could bring about 
a reconceptualization of computation, facilitated by quantum neurosci-
ence circuits with real-time three-dimensional highly secure biological 
data processing.

Computation at the level of quantum mechanics is required for the 
brain, not only as dictated by its complexity, but also to address the causal 
factors of disease. A substantial advance would be that of progressing to 
a systemic understanding of pathology that extends beyond what is still in 
many cases treating symptoms instead of underlying causes. Current 
methods for the study of the brain could be leapfrogged and comple-
mented by the conceptually different approaches offered by quantum 
neuroscience. Future-class applications could include personalized con-
nectomics, molecular-scale intervention, and local brain area networks 
with real-time biological data processing and neuronanorobot monitoring. 
Service delivery could be via quantum BCIs, CRISPR technologies, 
nanoparticles, and cellular therapeutics, possibly printed with home-based 
molecular assemblers. Success could be measured by improved quality of 
life (healthspan) metrics and reduced clinical instances of pathologies due 
to preventive approaches.

Although quantum computing is a nascent platform in need of error 
correction for requisite scalability, the present opportunity is to deploy the 
quantum mindset (thinking in terms of quantum mathematical and algo-
rithmic formulations) to define a new era of neuroscience investigation. A 
central focus is explaining the electrical and chemical signaling operations 
of the brain through spatiotemporal nonlinear dynamical models. This 
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work proposes the multi-tier AdS/Brain correspondence model of succes-
sive bulk-boundary tiers of network, neuron, synapse, and molecule. 
Ultimately, quantum neuroscience might enable robust multiscalar models 
that capture the nuance of the brain’s activities, and contribute to the tire-
less quest for an improved understanding of the sophisticated 1.5-kg 
organ, in virtue of possibly expanding its capabilities and protecting it 
from disease and decline. 
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Glossary

Abelian: Commuting (order of terms does not matter)

Action: Function used to calculate the equations of motion or path of a 
physical system

Adiabatic: Naturally evolving process to lowest energy configuration

AdS/Brain: AdS/CFT correspondence interpretation in neuroscience

AdS/CFT correspondence (anti-de Sitter space/conformal field the-
ory), gauge/gravity or holographic duality: Claim that a gravity theory 
(bulk) is equal to a gauge theory or quantum field theory (boundary) in 
one less dimension

Afferent: Incoming conducting impulses directed towards the central 
 nervous system

Amplitude (probability amplitude): The inner product between two 
state vectors in a quantum mechanical system (a complex number)

Amplitude encoding: A data vector represented by the amplitudes of a 
quantum state

Anderson localization: Absence of wave diffusion in a  disordered 
medium (a useful property of electron localization in semiconductors)
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Anisotropic: Different in different directions (versus isotropic: the same 
in all directions)

Ansatz: Guess, an educated guess, for example, of a wavefunction in 
quantum mechanics (exact methods are unavailable)

Anti-de Sitter (AdS) space: A toy model of real-life de Sitter space based 
on the negative hyperbolic geometry of a sphere (a maximally symmetric 
Lorentzian manifold with constant negative scalar curvature)

Artificial neural network: Computing system inspired by a biological 
neural network

Attention (learning mechanism): Machine learning method used in 
transformer neural networks as a tripartite mapping of query, keys, and 
values to assess data relevance

Attractor: (Complex systems) focal point around which a system orga-
nizes itself

Autoencoder (automatic encoding): Unsupervised learning technique 
(using Markov chains and principal component analysis) in which the 
system automatically learns a representation or encoding scheme for data 
with a reduced dimensionality representation

Autoregressive neural network: Neural network for time series (RNN 
alternative) modeling current values of a series as a function of past 
values

Avogadro’s number: About 6.022 × 1023 (0.6 billion billion); the number 
of molecules in 22.4 liters of gas at standard temperature and pressure

Backpropagation (of errors): Machine learning technique to optimize 
loss functions by calculating the error contribution of each neuron after a 
batch of data is processed

Bell pair: Particles entangled in a shared quantum state even over large 
distance

Bifurcation: Instability arising in a system when an attractor (organizing 
parameter) changes dramatically
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Black hole: Dense region of spacetime with gravity so strong that nothing 
can escape, not even light

Black hole information paradox: Puzzle as to how information that goes 
into a black hole evaporates later as Hawking radiation

Blind quantum computing: Quantum computing protocol with hidden 
input,  output, and task

Bloch sphere: Geometrical representation of the state space (Hilbert 
space) of the qubit

Bloch wave: Periodic wave

Boltzmann distribution: Probability that a system will be in a certain 
state given the state’s energy and the system’s temperature 

Boltzmann machine: Machine learning network of visible and hidden 
layers of processing units using a Boltzmann distribution-based energy 
function to evaluate output

Bond dimension (tensor rank): Dimension of the index linking  
tensors

Born machine: Probabilistic model of machine learning using the Born 
rule to determine output probabilities (versus Boltzmann machine)

Born rule: Probability that a measurement of a quantum system will have 
a certain result (the probability density of finding a particle at a given 
point is proportional to the square of the magnitude of the particle’s wave-
function at that point)

Boson: Force particle (photon) with integer spin (versus fermion)

Boson sampling: Statistical sampling of boson scattering output (classi-
cally intractable)

Bound state: A particle kept localized in a region of space by a 
potential

Bouton: Enlarged nerve ending forming a synapse
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Brain atlas: Brain map of serial sections along anatomical planes by 
dimension (latero-lateral (x), dorso-ventral (y), rostro-caudal (z)), and 
section (coronal, sagittal, transverse)

Brain–computer interface (BCI) or brain–machine interface (BMI): 
A direct communication pathway between a wired brain and an external 
device

Bump: (Neuroscience) spatially localized concentrated increase in neural  
population firing

Chaos: Dynamical systems whose apparently random states are governed 
by deterministic laws and sensitivity to initial conditions

Chaotic dynamics: Evolution of dynamical systems per identifiable 
parameters

Clifford algebra: Geometric algebra of spacetime (a vector space with a 
quadratic form) giving a complete picture of spin representations of all 
spin groups and their relationships

Clifford gates: Basic quantum gates (Pauli matrices, Hadamard gate, 
CNOT gate) that can be simulated efficiently on a classical computer  
(i.e. in polynomial time)

Clifford group: Unitaries that preserve the Pauli group under similarity 
transformations

Coherent state: An oscillatory quantum state (quantum harmonic oscillator)

Color code: Topological quantum error-correcting codes using more 
computationally efficient gauge-fixing instead of magic state distillation 
to execute non-Clifford gates

Complexity: Attribute of systems that are nonlinear, emergent, open, 
unpredictable, interdependent, self-organizing, and multiscalar in time 
and space

Computational complexity: Difficulty of computing a problem, the 
minimum number of (quantum) gates required to prepare a state or solu-
tion of the computation
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Condensate: Quantum collective wave; group state with the same phase 
and energy

Condensed matter physics: The study of the collective behavior of com-
plex assemblies of electrons, nuclei, magnetic moments, atoms, or qubits

Conformal field theory (CFT): Quantum field theory that is invariant 
under conformal transformations (mappings do not change the angle 
between corresponding curves)

Conjugate pair: Observable quantity pairs that obey the Heisenberg 
uncertainty principle: position/momentum, energy/time

Connectome: Map (wiring diagram) of all neural connections in the brain

Contraction (tensor): Simplification in tensor multiplication 

Correlation function: Required amplitude for particle propagation 
between two points

de Sitter space: Three-dimensional space of everyday reality

Deep learning: Machine learning networks with hidden layers to find 
higher-order relationships in data (shallow: 1–2 layers, deep: 3–8+ 
layers)

Degrees of freedom: System parameters; number of elements to charac-
terize a system

Dendritic integration: See Synaptic integration

Dendritic spikes: Action potentials generated and aggregated by den-
drites from postsynaptic density to soma

Density matrix: All information about a quantum state or system

Density matrix renormalization group (DMRG): Variational (sam-
pling) technique for finding the lowest-energy matrix product state wave-
function of a Hamiltonian

Diffeomorphism: One-to-one relationship (isomorphism) between 
smooth manifolds
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Diffeomorphism invariant: Invariant to diffeomorphism transformations 
(manifold changes). Example: gravity is a gauge theory because it is 
 diffeomorphism invariant

Diffusion: Physical spread from high to low concentration, temperature, 
or pressure

Diffusion equation: Partial differential equation used to describe the 
macroscopic behavior of particles in Brownian motion and Markov pro-
cesses such as random walks

Dirac delta function: Linear function from a space of all smooth func-
tions (a linear activation versus a Heaviside step function activation)

Discriminative learning: Machine learning method that learns directly 
from labeled data

Disentangler: (Tensor networks) transformation into less entangled state

Dressed electrons: (Superconducting) non free-floating electrons (con-
strained in a metal)

Eigenvector: (Linear algebra) a non-zero vector that changes (is stretched) 
by a scalar factor (the eigenvalue) in a linear transformation

Einstein field equations: (General relativity) a set of equations relating 
the geometry of spacetime to the distribution of matter within it (very hard 
to solve)

Electroencephalography (EEG): Electrophysiological monitoring method 
to record electrical activity in different parts of the brain

Endocytosis: Draw in, e.g. neurotransmitter recycling (versus exocytosis)

Entanglement: (Quantum mechanics) correlated physical properties 
between particles

Entanglement entropy: Measure of interrelated information between 
two quantum systems 

Entropy: The number of ways a system can be arranged, the degree of 
interrelatedness of subregions within a system, or the number of bits 
(qubits) required to encode and send a system state
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Escher Circle Limits: Image of a circle with a few fish in the center 
growing to a near-infinite number of fish at the edge; AdS space 
analogy

Excitatory postsynaptic potential (EPSP): A synaptic potential 
 rendering a postsynaptic neuron more likely to generate an action 
potential

Exocytosis: Expel outward, e.g. release of neurotransmitters (versus 
endocytosis)

Extremal black hole: Smallest possible black hole (in mass, charge, 
angular momentum)

Fast scrambling: System with rapid quantum information spread (e.g. 
black holes, the SYK model)

Fault tolerance: Preventing propagation of few-to-many errors

Fermi liquid: “Normal” metal phase with resistivity at low temperature 

Fermion: Matter particle (electron) with spin ½ (versus boson)

Feynman diagram: Path integral formulation of quantum field theory (a 
graphical representation of amplitudes as a weighted sum of all possible 
system histories)

Fish-counting metric: (Informal) geodesic; shortest curve through the 
bulk

Fisher information: An observable random variable’s information about 
an unknown parameter of a distribution

Floquet theory: Theory of periodically-driven systems (ordinary differ-
ential equations for solutions to periodic linear differential equations)

Fock space: Multi-particle Hilbert space

Fock state: Multi-particle state

Fokker–Planck equation: Partial differential equation of the time evolu-
tion of the probability density function of particle velocity under drag 
forces as in Brownian motion
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FTQC (fault-tolerant quantum computing): Error-corrected quantum 
computers

Gauge: Mathematical formalism rendering systems in discrete scale tiers

Gauge bosons: Force particles that are the quanta of gauge fields

Gauge field: A (vector) field generated by the Lie algebra that describes 
the gauge theory

Gauge fixing (choosing a gauge): Procedure for simplifying the redun-
dant degrees of freedom (characterization parameters) in a system

Gauge group (symmetry group): Lie group formed by possible gauge 
transformations

Gauge invariance: System property of a non-changing Lagrangian 
 (system dynamics function) under local transformations

Gauge theory: A field theory in which the Lagrangian (state of a dynamic 
system) is invariant under local transformations of certain Lie groups

Gauge transformation: Transformations between possible gauges (lev-
els) in a system

Gaussian boson sampling: Statistical sampling method (classically 
intractable)

Gaussian state: State whose distribution is Gaussian

General relativity: A geometry-based theory of gravity (versus Newton’s 
mass-based theory) describing how to find the curvature or the spacetime 
warping effect (i.e. gravity) of a given amount of mass and energy

Generative learning: Unsupervised machine learning method that  
learns the distribution of unlabeled data to generate new samples

Geodesic: Straight line in curved space, shortest curve between two 
points

Ghost imaging: (Quantum teleportation) transmission in which the qubit 
interacts only with its correlated partner photon (not with the photon used 
to image it)
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Ginzburg criterion: System criticality condition (critical exponent)

Ginzburg-Landau theory: (Superconductivity) the free energy of a 
superconductor near the superconducting transition (critical temperature) 
has the form of a field theory

Glass networks: Periodic switch-like behavior in biochemical networks

GPT-3 (generative pre-trained transformer 3): (Deep learning) 
 autoregressive language model producing human-like text nearly indistin-
guishable from human-written

Greenberger–Horne–Zeilinger (GHZ) state: Entangled quantum state 
involving at least three subsystems (qubits or particle states)

Green’s function: Mathematical operator used in correlation functions, 
can take the role of a propagator (Gaussian propagator)

Grover’s search algorithm: Quantum algorithm to find a particular reg-
ister in an unordered database

H (h): Planck’s constant in Joules/second per cycle units, 6.626 × 10−34 J⋅s, 
denoting the amount of energy change per change in frequency in quantum 
wave movement, expressed by the formula E = hf (associated with the 
energy of the electromagnetic wave in Special Relativity’s E = mc2)

H-bar (ħ): Reduced Planck’s constant in units of Joules/second Radians, 
1.055 × 10−34 J⋅s/radian. Planck’s constant divided by 2π, hence the name 
h-bar, used as a more natural expression of angular frequency in mathe-
matics and physics

Haar randomness: Stringent randomness condition (randomness drawn 
from a unitarily invariant ensemble of pure states)

Hadamard coin: Unitary operator action to update a binary property 
(spin or chirality)

Hadamard gate: Quantum gate which acts on one qubit to put it in a 
superposition state

Hafnian: Matrix function as the number of perfect matchings in the graph 
of an adjacency matrix (defined in Copenhagen (Latin: Hafnia))
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Hamiltonian: Operator used to calculate the energy levels of a system

Heaviside step function: Step function-based activation (versus Dirac 
delta function)

Heralded entanglement: Announced entanglement generation 

High-dimensional entanglement: Particles entangled in more than one 
dimension (e.g. time, space, polarization, propagation path)

Hilbert feature space: Data encoded as a Hilbert space feature map

Hilbert space: Infinite-dimension vector space of possible 
wavefunctions

Holevo’s theorem: Theorem placing an upper bound on accessible quan-
tum state information; used to facilitate quantum calculation 

Holographic principle: The information stored in a spatial volume is 
encoded in its boundary in one less dimension

Holography: Three-dimensional image embedded in a two-dimensional 
surface

Hopf bifurcation: System critical point (e.g. resting-to-firing state) at 
which a periodic orbit appears/disappears due to a local change in 
stability

Hubbard model: Classically intractable model of superconducting 
(describing the interaction between electrons of opposite spin by a single 
parameter (e.g. the metal-Mott shift))

Identity matrix: (Linear algebra) an n × n square matrix with ones on the 
main diagonal and zeros elsewhere (main diagonal: top left to bottom 
right)

Information theory: Theoretical approach to the quantification, storage, 
and communication of information

Inhibitory postsynaptic potential (IPSP): A synaptic potential 
 rendering a postsynaptic neuron less likely to generate an action 
potential
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Integrate-and-fire: Threshold-based single-neuron model of spike acti-
vation (per the integration of weighted incoming synaptic  
inputs)

Interference: Phase difference between two wavefunction amplitudes

Ising model: Ferromagnetic model of phase transition with all spins 
aligned at low or high energy, and fluctuating in between

Jackiw–Teitelboim (JT) gravity: Gravity theory with one space and one 
time dimension

Jansen–Rit model: (Neuroscience) the coupling of two models with 
delays in the interconnections to simulate the synaptic connections within 
and between cortical areas

Josephson junction: Mechanism based on the quantum tunneling of 
superconducting Cooper pairs used in quantum computing chips

Kernel: (Machine learning) a data sort based on the distance between 
points in a high-dimensional feature space

Kernel function: Distance measure between pairwise points (vector inner 
products) used to construct the properties of a data distribution

Kernel trick: Iterating through data representations (kernels) for best 
fit

Kondo effect: Explanation of how electrons in a metal scatter off mag-
netic impurities, which produces an increase in resistivity at low 
temperature

Kondo model: A model for metals with magnetic impurities (a single 
localized quantum impurity coupled to a large reservoir of electrons)

Kondo problem: (Condensed matter physics) the inability of theoretical 
methods prior to the renormalization group to explain a rise in the resistiv-
ity of impure metal samples (e.g. gold) at low temperature since resistivity 
usually decreases when temperature decreases

Kullback–Leibler (KL) divergence: Relative entropy, probability distri-
bution distance
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Ladder operator: (Raising or lowering operator) an operator that 
increases or decreases the eigenvalue of another operator, used in combi-
nation to change the state of a particle

Lagrangian: Function describing the state of a dynamic system in terms 
of position coordinates, time derivatives, and potential and kinetic energy

Langevin equation: Stochastic differential equation of the time evolution 
of a system subset

Laplacian: Operator representing the flux density of the gradient flow of 
a function

Large N: A very large number of the items at hand; dimensions, observ-
able values (e.g. scattering amplitudes), or system parameters (degrees of 
freedom)

Large-N limit: Quantum theory limit as the number of items gets close to 
infinity

Levi-Civita connection: Covariant derivative for differentiating tensors 
(as an operation on tangent bundles that differentiates vector fields)

Lie algebra: Local version of the Li group (global group object)

Lie group: A continuous group (allowing multiplication and division) 
that is a differentiable manifold (locally resembling Euclidean space)

Light field: Treating light as a 5D field (by analogy to the electromagnetic 
field)

Light field microscopy: Scanning-free 3D light-based microscopy

Light sheet microscopy: High-speed optical method for 3D reconstruc-
tion (only in-focus fluorophores are collected from the light sheet image 
of the sample)

Lindblad equation: Quantum version of the classical master equation 
(with system time evolution as a probabilistic combination of states)

Lorentzian invariance: Inertial-in-all-frames property of a spacetime 
manifold
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Lorentzian manifold: (General relativity) manifold upon which tensor 
fields are defined to represent spacetime in a geometrical view of gravity

Lyapunov exponent: Exponent increasing exponentially with time (mea-
suring the rate of separation of two trajectories) indicating chaos

Lyapunov time: Timescale on which a dynamical system is chaotic

Machine learning: Method in which computers perform tasks by relying 
on information patterns and inference as opposed to explicit instruction

Majorana fermions: Strongly coupled system with all-to-all random 
connections

Many-body problem: A quantum system with three or more entities 
(hard to model)

Markov chain: Stochastic model with event probability depending on the 
previous event

Markov chain Monte Carlo: Monte Carlo sampling method based on a 
Markov chain

Matrix quantum mechanics: Operator algebra formulation for multidi-
mensional matrices

MaxCut (maximum cut): Optimization algorithm (partition function) 
that efficiently divides data, finding the optimal (maximal) cut through a 
dataset

Mean-field theory: Mean value of a field taken as a solvable approxima-
tion of an intractable system of underlying complexity

Metric tensor (metric): Complete description of the geometric structure 
of a spacetime system, including time, space, distance, volume, and 
curvature

Mixed state: A quantum state that can be written as a mixture of other 
states (versus pure state)

Moment-generating function: Equation for calculating moments (expec-
tation values)
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Monte Carlo method: Statistical approach of taking repeated random 
samples to profile a system

Mott insulator: Class of materials that should conduct electricity, but 
insulates at low temperatures due to electron–electron interactions

Mott localization: Condensed matter phase transition from metallic to 
insulating behavior due to strong Coulomb repulsion of electrons

Motzkin model: Streamlined quantum mechanical optimization model 
(no energy scale)

Multi-scale entanglement renormalization ansatz (MERA): Tensor 
network with alternating layers of disentanglers and isometries that coarse 
grain (consolidate) a system between microscale and macroscale

Multistability: Noise-driven switching between multiple weakly stable states

Negentropy (negative entropy): Measure of distance to normality

Network neuroscience: Graph-theoretic study of the brain

Network science: Graph-theoretic representation of a system’s elements 
by nodes (vertices) and connections between them as links (edges)

Neural code: Hypothetical relationship between a neural stimulus and 
response

Neural ensemble: Collective behavior of a small group of neurons in 
uncorrelated states

Neural field theory: Large-scale model of collective brain behavior as a 
continuous field

Neural mass model: The mass action of a local population of neurons 
acting as a group

Neural network: Machine learning architecture inspired by the brain gen-
erally (typically consisting of alternating linear and nonlinear functions)

Neurite (neuronal process): A projection from a neuron’s cell body 

Neuromorphic computing: Computing circuits that mimic neuro-biolog-
ical architectures
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Neuron reconstruction: Conversion of imaging data to morphological 
description (with spatiotemporal topology)

Neuroscience physics: Neuroscience interpretation of foundational phys-
ics findings

NISQ (noisy intermediate-scale quantum) devices: Currently available 
quantum computers, ~50–100 qubits, without error correction

No-hair theorem: Black hole description based on mass, electric charge, 
and angular momentum (without any additional “hair”)

Non-abelian: Non-commuting (order of terms matters)

Non-Clifford gates: Quantum gates with greater logical depth that cannot 
be simulated efficiently on a classical computer (e.g. π/8 gate)

Non-Fermi liquid: Metal phase deviating from resistivity at low tempera-
ture (not explained by traditional superconducting theories)

Observable: (Quantum mechanics) a measurable system attribute

Omics: High-throughput analysis characterizing the entirety of a biologi-
cal phenomenon (e.g. genomics, proteomics, connectomics, synaptomics)

Operator: A function over a space of physical states to another space of 
physical states

Optical neural network: Neural network with all- optical components

Optical quantum computing: Quantum computing with all-optical com-
ponents (single-photon sources, photonic integrated circuits, and single-
photon detectors)

Ordinary differential equation (ODE): Equation with one unknown 
variable

OSI (open systems interconnection) model: Standard communications 
network model with 7-layers (physical, data link, network, transport, ses-
sion, presentation, application)

Out-of-time-order correlation (OTOC) functions: Functions (opera-
tors) used to evolve a quantum system back or forward in time
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Page time: Time evolution during which a black hole is reduced to half 
of its initial entropy or half of the surface area of its event horizon

Parcellation: Brain segmentation into functionally distinct regions

Partial differential equation (PDE): Equation with multiple unknown 
variables

Partition function: A function giving all aspects of a system

Path integral: Sum over all paths a particle can take through a space

Pauli group: 16-element group of the 2 × 2 identity matrix and all of the 
Pauli matrices for a quantum system

Pauli matrices: Three 2 × 2 matrices, describing angular momentum 
operators as observables of particle spin in Hilbert space (X, Y, Z); main-
stay of quantum mechanical manipulations

Pauli operator: Spin operator derived from Pauli matrices (often used for 
quantum system measurement)

Pauli-Z “plaquette” (face) operators: (Lattice gauge theory) smallest 
closed loop function enclosing the region between four lattice sites

Phase space: Space with all possible states of a system represented

Photonic quantum computing: See Optical quantum computing

Photonics: Generation, manipulation, transmission, and detection of pho-
tons (quantum units of light)

Piecewise function: Function with multiple sub-functions for different 
domain intervals

Planck’s constant: See H (h) and H-bar (ħ)

Plasma: Highly ionized state of matter (e.g. quark-gluon plasma)

Polarization: Property of light as to its direction of travel (oscillation)

Post-quantum cryptography: Cryptographic algorithms not easily 
breakable by quantum computers (likely lattice not factoring based)
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Postsynaptic density: In the receiving neuron, specialized protrusions 
from dendritic arbors (spines) as protein complexes that anchor neu-
rotransmitter receptors and reconvert chemical signals to electrical den-
dritic spikes to forward to the soma (cell body)

Presynaptic terminal: In the sending neuron, bouton (enlarged area) at 
nerve ending that converts electrical action potentials to neurotransmitters 
to release into the synaptic cleft

Probabilistic graphical model: Probabilistic model in which a graph 
expresses the conditional dependence structure between random 
variables

Probabilistic quantum models: Using quantum-based methods to per-
form probability-related tasks such as machine learning classification

Probability density: The probability that a particle will be at a certain 
position at a certain time or have a certain momentum (calculated by 
squaring the wavefunction amplitudes)

Pseudo-randomness: Close-to-randomness approximation that can be 
used more efficiently in computation

Pure state: A quantum state that cannot be written on the basis of other 
states (versus mixed state)

Quadratures: (Quantum optics) operators that represent the real and 
imaginary parts of the complex amplitude of an oscillatory wave

Quantization: System energy level or other physical parameter limited to 
and instantiated as discrete values

Quantum advantage: Quantum computers performing tasks that classi-
cal computers cannot

Quantum chaos: Seemingly random but deterministic growth eras (e.g. 
ballistic and saturation phases)

Quantum chromodynamics (QCD): The field theory of the strong 
force
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Quantum circuit: Quantum logic gates (sequential operations on qubits)

Quantum clock network: Global network of atomic clocks

Quantum computing: The use of engineered quantum systems to per-
form computation

Quantum dynamics: Motion, energy, and momentum exchange of quan-
tum systems

Quantum electrodynamics (QED): The field theory of the electromag-
netic field

Quantum error correction: Protecting quantum information from envi-
ronmental noise

Quantum error correcting code: Error diagnosis code, for example 
identifying a bit flip or (phase) sign flip

Quantum field theory: A theory of fundamental particle interaction 
based on quantized fields and forces (a classical field is quantized as an 
operator-valued function acting on a Hilbert space)

Quantum finance: (Econophysics) quantum physics applied to problems 
in finance: option pricing, trading strategies, risk management, and port-
folio optimization

Quantum gate: Building block of quantum computation in which a logi-
cal operation is performed on qubits (analogous to a classical gate)

Quantum gravity: Theory of gravity in domains with very small and very 
heavy objects (such as black holes and the Big Bang)

Quantum information: The state information of a quantum system

Quantum internet: Proposal for an ultra-fast ultra-secure internet with 
all-quantum components

Quantum key distribution (QKD): Quantum cryptography protocol to 
distribute random private keys among remote parties

Quantum machine learning: Machine learning algorithms run on quan-
tum platforms
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Quantum matter: Matter phases with quantum mechanical properties

Quantum mechanics: Framework for physical theories at the atomic 
scale (1 × 10−9 m) and below, formulated as many-particle (quanta) sys-
tems in Hilbert space

Quantum memory: Quantum mechanical version of computer memory

Quantum Monte Carlo: Application of Monte Carlo statistical sampling 
methods to quantum systems

Quantum network: (Global) network model of quantum computation, 
communication, or sensing

Quantum neural networks (QNNs): Neural networks based quantum 
mechanical principles 

Quantum neuroscience: Application of quantum information science 
methods to neuroscience

Quantum photonics: Generating, manipulating, transmitting, and detect-
ing light in regimes in which coherent control of individual quanta of the 
light field (photons) is possible

Quantum quench: Hamiltonian evolution per a sudden change in 
parameters

Quantum-secure cryptography: See Post-quantum cryptography

Quantum state: Information state of a quantum system (probability dis-
tribution of the outcomes of each possible system measurement)

Quantum teleportation: Sending quantum state information from one 
location to another (the quantum version of sending a fax)

Quantum tomography: Quantum state reconstruction method executed 
by measuring an ensemble of identical quantum states

Quantum volume: A benchmarking technique for NISQ devices based 
on approximating a specific class of random circuits and estimating the 
associated effective error rate
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Quantum walk: Quantum version of classical random walk based on 
coin-flip operators (e.g. Hadamard coin) and lattice graph propagation 
(discrete-time or continuous-time)

Quasi-particle: Single particle excitation (an ideal particle used in 
models)

Qubit (quantum information bit): Two-level quantum system, basic unit 
of quantum information used for computation (analogous to the classical 
binary bit)

Qubitization: Preparing a quantum state (in qubits) for quantum 
computation

Qudit (quantum information digit): Multilevel quantum information 
unit existing in any number of states. A qubit is in a superposition of 0 and 
1 before measurement; a qutrit in 0, 1, and 2, etc.

Random field: Function that takes a random value at each point in the 
domain

Random matrix: Matrix in which some or all elements are random 
variables

Random surface: Dynamically triangulated surfaces (random walks, 
branched polymers)

Random tensor: Generalization of random matrices (2D) to higher 
dimensions (3D+)

Random tensor networks: Tensor networks with each tensor chosen at 
random

Random walk: Markov process of left–right movement per a coin toss at 
each time step (versus quantum walk)

Reaction-diffusion system: Model describing the emergence of periodic 
patterns through local reactions that diffuse (spread out) over a domain

Reduced density matrix: Partial density matrix trace with fewer complex 
coefficients

Reduced density operator: Operator describing the state of a pure-mixed 
state system
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Reinforcement learning: Machine learning paradigm in which intelli-
gent agents maximize cumulative reward

ReLU (rectified linear unit): Machine learning activation function; the 
rectangular form acts more quickly than a sigmoid (s-curve shaped) 
function

Renormalization group: Mathematics enabling the investigation of a 
physical system at different scales

Rényi entropy: Generalized measure of four kinds of entropy: Shannon, 
Hartley, collision, and minimum entropy

Reproducing kernel Hilbert space (RKHS): Hilbert space described by 
a kernel function that reproduces every function in the space

Restricted Boltzmann machine: Machine learning method in which 
neurons are restricted to forming a bipartite graph in pair nodes from vis-
ible and hidden units

Rich-club hub: (Network science) a centralized hub that links distant 
regions of the network

Rydberg atom arrays: Experimental setup with atoms (alkali metals) in 
a highly excited state (Rydberg state) that is easy to measure (orders of 
magnitude larger than the ground state), has a long decay period, and an 
exaggerated response to electric and magnetic fields

Ryu-Takayanagi formula: Formalism that the entanglement entropy of a 
boundary region is equal to the area of a bulk minimal surface

Sachdev–Ye–Kitaev (SYK) model: Solvable model of strongly interact-
ing quantum systems (Majorana fermions with random all-to-all 
interactions)

Schmidt decomposition: Fixing gauge degrees of freedom in a matrix 
product state

Schrödinger equation: Quantum mechanical wavefunction equation 
(hard to solve)

Schwarzian: Conformal mapping operator invariant under certain 
transformations
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Schwarzschild black hole: Basic black hole with no charge or 
momentum

Scrambling: Measure of how quickly quantum information spreads out 
over an entire system so that a local measurement is not possible

Shor’s factoring algorithm: Period-finding function with quantum 
Fourier transform

Sign problem: Negative values arising in probability distributions of 
quantum many-body calculations (typically unsolvable with classical 
methods)

Small-world: (Network science) graph property of shorter-than-random 
paths

Softmax: Function that exponentiates and rescales a set of numbers to 
sum to one

Space crystal: 3D structure with a repeating pattern in space, unaltered in 
time

Special Relativity: Theory equating mass and energy (E = mc2), with 
time dilation effect

Spike sorting: Attributing action potentials to individual neurons

Spike train: Sequence of action potentials

Spiking activation: (Neuromorphic computation) threshold-based com-
putation activation

Spiking neural network: Biologically realistic neural network 
architecture

Spin: Intrinsic form of angular momentum carried by elementary particles

Spinors: More complicated version of vectors or tensors needed to 
describe particle spin

Squeezed state: Quantum state squeezed (reduced) for less quantum 
noise
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Stabilizer codes: Basic quantum error correction code (quantum version 
of linear codes); Pauli operators that measure entangled states and correct 
a corrupt quantum state (e.g. a bit flip or a spin flip) back to its original 
state (examples: toric code, surface code)

Standard Model of particle physics: Theory describing the electromag-
netic, weak, and strong forces, but not gravity, and classifying all known 
elementary particles

Statistical manifold: Riemannian manifold whose points are probability 
distributions

Stochastic calculus: Calculus integrating stochastic (random) processes

Strange attractor: (Complex systems) complex fractal orbit with unsta-
ble divergence

Strongly coupled system: Quantum system with high-intensity particle 
interactions

SU(N) special unitary group: Subgroup of the unitary group (group of  
n × n unitary matrices). Example: the Standard Model is a unified  
symmetry group of SU(3) (strong force) × SU(2) (weak force) × U(1) 
(electromagnetic force)

Superconductors: Materials that conduct electricity without resistance

Superfluid: Fluid with zero viscosity that flows without the loss of 
kinetic energy

Superposition: Simultaneous coexistence of multiple incompatible clas-
sical realities (an unobserved particle exists in all possible states until 
collapsed in a measurement)

Support vector machine: Supervised learning method for binary classi-
fication problems

Surface code: (Stabilizer code) error correction code via lattice-entangled 
qubits

Symmetry: System property of looking the same at different scales
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Symmetry breaking: Small fluctuations acting on a system crossing a 
critical point

Symmetry group (gauge group): Lie group formed by possible gauge 
transformations

Synaptic integration: (Dendritic integration) neuronal aggregation of 
thousands of incoming synaptic inputs from other neurons

Synaptic plasticity: The brain’s ability to rewire synapse strength and 
structure

Synaptome: (Similar to connectome) comprehensive map of synapses in 
the brain

Synaptosome: (Synapse proteome) the set of synapse proteins in the 
brain by location

Synaptotagmins: Family of calcium sensor proteins facilitating neu-
rotransmitter release

Tensor: A multidimensional array of numbers

Tensor networks: Tool to represent and solve many-body quantum states

Thermal states: States of a system at nonzero temperature

Thermofield double (TFD) state: Entangled state between two copies of 
a quantum state

Theta neuron: Biological neuron model based on oscillation-regulated 
bursts

Time crystal: Repeating structure that is periodic in time

Tomography: Imaging technique by reconstruction of wavefunction sec-
tions (e.g. fMRI)

Toric code: (Stabilizer code) error correction code with torus spin lattice 
topology

Trace: Sum of elements on the main diagonal of a matrix (upper left to 
bottom right)
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Traceless: A matrix whose trace is zero (the main diagonal sums to zero)

Tractography: Three-dimensional representation of nerve tracts from  
diffusion MRI data

Transformer neural network: Machine learning model with an 
 attention-based mechanism that simultaneously evaluates short-range and 
long-range correlations in input data as opposed to convolution (CNNs) or 
recurrence (RNNs)

Transverse: Data encoding in the plane perpendicular to the direction of 
travel

Tree tensor networks (TTN): Hierarchical tree structure formulation of 
tensor networks

Trotterization: Mathematical technique for approximating a continuous 
Hamiltonian (by the product of a large number of small discrete rotations 
on 1–2 qubits at a time)

Turing instability: Violation of the Turing pattern

Turing pattern: Spatially periodic pattern emerging between two diffus-
ible substances irrespective of initial circumstances

2n problem: Property of quantum mechanical systems that the Hilbert 
space grows exponentially with system size (a spin-1/2 chain of length  
n has 2n degrees of freedom)

Two-point correlation function: The average (expectation value) of  
field operators at different positions; the amplitude for the propagation of 
a particle between A and B

Unitarity: Property of system evolving only by the unitary operator

Unitary: System evolution by the unit operator (advancing linearly by 
one regular unit)

Unitary matrix: (Linear algebra) an n × n complex square matrix whose 
conjugate transpose is also its inverse, and both are equal to the Identity 
matrix (matrix U is unitary if U*U = UU* = I), which allows many 
transformations
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Unitary operator: Operator advancing a quantum system by one unit

Unitary transformation: The action of unitary operator to evolve a quan-
tum system forward

U(N) unitary group: A group of n × n unitary matrices

UV complete: A full bulk theory of quantum gravitation that can count 
black hole microstates in Lorentzian signature

UV cutoff: A model restricted to non-UV domains (i.e. long-range (IR) 
only)

UV–IR correlations: Short-range (ultraviolet (UV)) and long-range 
(infrared (IR)) correlations (UV and IR are used figuratively as the nearest 
and farthest reaches of a system, not literally as spectral wavelengths)

Variational calculus: The application of small changes (variations) to 
functions to find minima–maxima (geodesics)

Variational method: Statistical sampling method to approximate the 
ground state or excited state of a system by choosing a trial wavefunction, 
finding the lowest-energy expectation values, and repeating trial-and-error 
testing to establish the wavefunction profile

Variational quantum algorithms: Computational approximation meth-
ods for wavefunctions and quantum states. Examples: variational quantum 
eigensolver (VQE) and quantum approximate optimization algorithm 
(QAOA)

Vector: Arrow-based representation with a certain length and direction

Viscosity: Rate of perturbative excitation decay to system equilibrium

Wave: A propagating disturbance in a continuous medium or a physical 
field

Wavefunction: Quantitative description of a quantum state

Wavelet: Managed wave-like oscillations used in signal processing

Wavelet transform: Changing a wavelet in time extension but not shape 
(per the uncertainty principle time-frequency tradeoff)
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Wiener process: Stochastic process used to study Brownian motion and 
diffusion

Wormhole (Einstein-Rosen bridge): Speculative structure linking points 
in spacetime, based on a special solution of the Einstein field equations

Yang–Mills theory: Non-abelian (non-commutative) gauge theory upon 
which the Standard Model of particle physics is based
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