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Preface

The last few years have seen a dramatic upsurgence in interdisciplinary 
activity between solid state and particle physics. This arose primarily 
through the use of lattice cutoffs to study non-perturbative phenomena in 
the gauge theory of the strong interactions. However, the standard 
textbook treatments of field theory rely on more traditional perturbative 
techniques. This book is an attempt to introduce lattice techniques to the 
particle physicist with a basic background in relativistic quantum mech
anics. This work is not intended to be a review of the latest developments, 
which are rapidly evolving, but rather an exposition of some of the more 
established methods.

The presentation is in the framework of particle physics. Solid state 
physicists may be interested in why high energy theorists are borrowing 
many of their ideas, but they should not expect this book to address 
subjects primarily of interest to their field. Thus important topics such as 
two-dimensional spin models, critical exponents, and fixed point phenom
enology are only superficially mentioned.

I am grateful to the International School for Advanced Study in Trieste, 
Italy, and to my colleagues at Brookhaven for the opportunity to present 
series of lectures based on portions of this book.

vi



1
Quarks and gluons

Our prime candidate for a fundamental theory of strong hadronic forces 
is a model of quarks interacting through the exchange of non-Abelian 
gauge fields. The quark model represents a new level of substructure within 
hadronic particles such as the proton. We have several compelling reasons 
to believe in this next layer of matter.

First, the large cross sections observed in deeply inelastic lepton-hadron 
scattering indicate important structure at distance scales of less than 10“16 
centimeters, whereas the overall proton electromagnetic radius is of order 
IO-13 centimeters. The angular dependences observed in these experiments 
suggest that the underlying charged constituents carry half-integer spin. 
These studies have raised the question of whether it is theoretically possible 
to have pointlike objects in a strongly interacting theory. Asymptotically 
free non-Abelian gauge interactions offer this hope (Perkins, 1977).

A second impetus for a theory of quarks lies in low energy hadronic 
spectroscopy. Indeed, it was the successes of the eightfold way (Gell-Mann 
and Ne’eman, 1964) which originally motivated the quark model. We now 
believe that the existence of two ‘flavors’ of low mass quarks lies at the 
heart of the isospin symmetry in nuclear physics. Adding a somewhat 
heavier ‘strange’ quark to the theory gives rise to the celebrated multiplet 
structure in terms of representations of the group SU(3).

Third, we have further evidence for compositeness in the excitations of 
the low-lying hadrons. Particles differing in angular momentum fall neatly 
into place on the famous ‘Regge trajectories’ (Collins and Squires, 1968). 
In this way families of states group together as orbital excitations of some 
underlying system. The sustained rising of these trajectories with increasing 
angular momentum points toward strong long-range forces. This originally 
motivated the stringlike models of hadrons.

Finally, the idea of quarks became incontrovertible with the discovery 
of the ‘hydrogen atoms’ of elementary particle physics. The intricate 
spectroscopy of the charmonium and upsilon families is admirably 
explained in potential models for non-relativistic bound states of heavy 
quarks (Eichten et al., 1980).

1



2 Quarks, gluons and lattices

Despite these successes of the quark model, an isolated quark has never 
been observed. (Some hints of fractionally charged macroscopic pieces of 
matter may eventually prove to contain unbound quarks, or might be a 
sign of some new and even more exciting type of matter (LaRue, Phillips 
and Fairbank, 1981).) These basic constituents of matter do not copiously 
appear as free particles emerging from present laboratory experiments. 
This is in marked contrast to the empirical observation in hadronic physics 
that anything which can be created will be. The difficulty in producing 
quarks has led to the speculation of an exact confinement. Indeed, it may 
be simpler to imagine a constituent which can never be produced than an 
approximate imprisonment relying on some unnaturally effective sup
pression factor in a theory seemingly devoid of any large dimensionless 
parameters.

But how can we ascribe any reality to an object which cannot be 
produced? Are we just dealing with some sort of mathematical trick? We 
will now’argue that gauge theories potentially possess a simple mechanism 
for giving constituents infinite energy when in isolation. In this picture a 
quark-antiquark pair will experience an attractive force which remains 
non-vanishing even for asymptotically large separations. This linearly 
rising long-distance potential energy forms the basis of essentially all 
models of quark confinement.

We begin by coupling the quarks to a conserved ‘gluo-electric’ flux. In 
usual electromagnetism the electric field lines thus produced spread and 
give rise to the inverse square law Coulombic field. If in our theory we can 
now somehow eliminate massless fields, then a Coulombic spreading will 
no longer be a solution to the equations. If in removing the massless fields 
we do not destroy the Gauss law constraint that the quarks are the sources 
of electric flux, the electric lines must form into tubes of conserved flux, 
schematically illustrated in figure 1.1. These tubes will only end on the 
quarks and their antiparticles. A flux tube is a real physical object carrying 
a finite energy per unit length. This is the storage medium for the linearly 
rising interquark potential (Kogut and Susskind, 1974).

A simple model for this phenomenon is a type II superconductor 
containing magnetic monopole impurities. Because of the Meissner effect 
(Meissner and Ochsenfeld, 1933), a superconductor does not admit 
magnetic fields. However, if we force a hypothetical magnetic monopole 
into the system, its lines of magnetic flux must go somewhere. Here the 
role of the ‘gluo-electric’ flux is played by the magnetic field, which will 
bore a tube of normal material through the superconductor until it ends 
on an antimonopole or it leaves the boundary of the system. Such flux 
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tubes have been experimentally observed in applied magnetic fields 
(Huebner and Clem, 1974).

Another example of this mechanism occurs in the bag model (Chodos 
et al., 1975). Here the gluonic fields are unrestricted in the baglike interior 
of a hadron but forbidden by ad hoc boundary conditions from extending 
outside. In attempting to extract a single quark from a proton, one would 
draw out a long skinny bag carrying the gluo-electric flux of the quark back 
to the remaining constituents.

Fig. 1.1. A flux tube from a quark to an antiquark.

The above models may be interesting phenomenologically, but they are 
too arbitrary to be considered as the basis for fundamental theories. In 
their search for a more elegant model, theorists have been drawn to 
non-Abelian gauge fields. This dynamical system of coupled gluons begins 
like electrodynamics with a set of massless gauge fields interacting with the 
quarks. Using the freedom of an internal symmetry, the action includes 
self-couplings of the gluons. The bare massless fields are all charged with 
respect to each other. The confinement conjecture is that this input theory 
of massless charged particles is unstable to a condensation of the vacuum 
to a state in which only massive excitations can propagate. In such a state 
the gluonic flux around quarks should form into the tubes needed for linear 
confinement. Much of the recent effort in elementary particle theory has 
gone into attempts to show that this indeed takes place.

The confinement phenomenon makes the theory of the strong interac
tions qualitatively different from theories of the electromagnetic and 
weak forces. The fundamental fields of the Lagrangian do not manifest 
themselves in free hadronic spectrum. In not observing free quarks and 
gluons, we are led to the conjecture that all observable strongly interacting 
particles are gauge singlet bound states of these fundamental constituents.

In the usual quark model baryons are bound states of three quarks. Thus 
the gauge group should permit singlets to be formed from three objects 
in the fundamental representation. This motivates the use of SU(3) as the 
underlying group of the strong interactions. This internal symmetry must 
not be confused with the broken SU(3) represented in spectroscopic 
multiplets. Ironically, one of the original motivations for quarks has now 
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become an accidental symmetry. The symmetry considered here is hidden 
behind the confinement mechanism, which only permits us to observe 
singlet states.

For the presentation in this book we assume, perhaps too naively, that 
the nuclear interactions can be considered in isolation from the much 
weaker effects of electromagnetism, weak interactions, and gravitation. 
This does not preclude the possible application of the techniques presented 
here to the other interactions. Indeed, grand unification may be crucial for 
a consistent theory of the world. To describe physics at normal laboratory 
energies, however, only for the strong interaction must we go beyond 
well-established perturbative methods. Thus we frame our discussion 
around quarks and gluons.



2
Lattices

The best evidence we have for confinement in a non-Abelian gauge theory 
of the strong interactions comes by way of Wilson’s (1974) formulation 
on a space-time lattice. At first this prescription seems a little peculiar 
because the vacuum is not a crystal. Indeed, experimentalists work daily 
with relativistic particles showing no deviations from the continuous 
symmetries of the Lorentz group. Why, then, have theorists in recent years 
spent so much time describing field theory on the scaffolding of a space-time 
lattice?

The lattice represents a mathematical trick. It provides a cutoff removing 
the ultraviolet infinities so rampant in quantum field theory. As with any 
regulator, it must be removed after renormalization. Physics can only be 
extracted in the continuum limit, where the lattice spacing is taken to zero.

But infinities and the resulting need for renormalization have been with 
us since the beginnings of relativistic quantum mechanics. The program 
for electrodynamics has had immense success without recourse to discrete 
space. Why reject the time-honored perturbative renormalization pro
cedures in favor of a new cutoff scheme?

We are driven to the lattice by the rather unique feature of confinement 
in the strong interactions. This phenomenon is inherently non-perturbative. 
The free theory with vanishing coupling constant has no resemblance to 
the observed physical world. Renormalization group arguments, to be 
presented in detail in later chapters, indicate severe essential singularities 
when hadronic properties are regarded as functions of the gauge coupling. 
This contrasts sharply with the great successes of quantum electrodynamics, 
where perturbation theory was central. Most conventional regularization 
schemes are based on the Feynman expansion; some process is calculated 
until a divergence is met in a particular diagram, and this divergence is 
then removed. To go beyond the diagrammatic approach, one needs a 
non-perturbative cutoff. Herein lies the main virtue of the lattice, which 
directly eliminates all wavelengths less than twice the lattice spacing. This 
occurs before any expansions or approximations are begun.

On a lattice, a field theory becomes mathematically well-defined and can 
5
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be studied in various ways. Lattice perturbation theory, although somewhat 
awkward, recovers all the conventional results of other regularization 
schemes. Discrete space-time, however, is particularly well-suited for a 
strong coupling expansion. Remarkably, confinement is automatic in this 
limit where the theory reduces to one of quarks on the ends of strings with 
a finite energy per unit length. Most recent research has concentrated on 
showing that this phenomenon survives the continuum limit.

A lattice formulation emphasizes the close connections between field 
theory and statistical mechanics. Indeed, the strong coupling treatment is 
equivalent to a high temperature expansion. The deep ties between these 
disciplines are manifest in the Feynman path integral formulation of 
quantum mechanics (Feynman, 1948; Dirac, 1933, 1945). In Euclidian 
space, a path integral is equivalent to a partition function for an analogous 
statistical system. The square of the field theoretical coupling constant 
corresponds directly to the temperature. Thus, the particle physicist has 
available the full technology of the condensed matter theorist.

Confinement is natural in the strong coupling limit of the lattice theory; 
however, this is not the region of direct physical interest, for which a 
continuum limit is necessary. The coupling constant on the lattice represents 
a bare coupling at a length scale of the lattice spacing. Non-Abelian gauge 
theories possess the property of asymptotic freedom, which means that in 
the short distance limit the effective coupling goes to zero. This remarkable 
phenomenon allows predictions for the observed scaling behavior in deeply 
inelastic collisions. Indeed, this was one of the original motivations for a 
non-Abelian gauge theory of the strong interactions. The consequence for 
the lattice theory, however, is that the bare coupling must be taken to zero 
as the lattice spacing decreases towards the continuum limit. Thus we 
are inevitably led out of the high temperature regime and into a low 
temperature domain. Along the way in a general statistical system one 
might expect to encounter phase transitions. Such qualitative shifts in the 
physical characteristics of a system can only hamper the task of showing 
confinement in the non-Abelian theory. In later chapters we will present 
evidence that such troublesome transitions can be avoided in the four
dimensional SU(3) gauge theory of the nuclear force.

Although our ultimate goal with lattice gauge theory is an understanding 
of hadronic physics, many interesting phenomena arise which are peculiar 
to the lattice. We will see non-trivial phase structure occurring in a variety 
of models, some of which do not correspond to any continuum field 
theory. The lattice formulation is highly non-unique and thereby spurious 
transitions can be alternately introduced and removed. We will also see 
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that the statistical mechanics of gauge models displays curious analogies 
with magnetic systems in half the number of space-time dimensions. Even 
quantum electrodynamics shows interesting structure in certain lattice 
formulations. This rich spectrum of phenomena has led to the recent 
popularity of lattice field theories and motivates this book.



3
Path integrals 

and statistical mechanics

The Feynman path integral formulation of quantum mechanics reveals 
deep connections with statistical mechanics. This chapter is concerned with 
this relationship for the simple case of a non-relativistic particle in a 
potential. Starting with a partition function representing a path integral 
on an imaginary time lattice, we will show how a transfer matrix formalism 
reduces the problem to the diagonalization of an operator in the usual 
quantum mechanical Hilbert space of square integrable functions (Creutz, 
1977). In the continuum limit of the time lattice, we obtain the canonical
Hamiltonian. Except for our use of imaginary time, this treatment is 
identical to that in Feynman’s early work (Feynman, 1948).

We begin with the Lagrangian for a free particle of mass m moving in
potential V(x) L(x,x) = K(x)+V(x), (3.1)

tf(x) = ±mx2, (3.2)
where x is the time derivative of the coordinate x. Velocity-dependent 
potentials are beyond the scope of this book. Note the unconventional 
relative positive sign between the two terms in eq. (3.1). This is because 
we formulate the path integral directly in imaginary time. This improves 
mathematical convergence, yet leaves us with the usual Hamiltonian for 
diagonalization.

For any trajectory we have an action
S = Jdr£(x(Z),x(0), (3.3)

which appears in the path integral
Z = j[dx(z)]e-s. (3.4)

Here the integral is over all trajectories x(t). As it stands, eq. (3.4) is rather 
poorly defined. To characterize the possible trajectories we introduce a 
cutoff in the form of a time lattice. Putting our system into a time box of 
total length r, we divide this interval into

N=r/a, (3.5)
discrete time slices, where a is the timelike lattice spacing. Associated with 
8



Path integrals and statistical mechanics 9

the i ’th such slice is a coordinate xt. This construction is sketched in figure 
3.1. Replacing the time derivative of x with a nearest-neighbor difference, 
we reduce the action to a sum

S = aX
i

+ y(xi) (3.6)

The integral in eq. (3.4) is now defined as an integral over all the 
coordinates

(3.7)

Fig. 3.1. Dividing time into a lattice. (From Creutz and Freedman, 1981.)

Eq. (3.7) is precisely in the form of a partition function for a statistical 
system. We have a one-dimensional chain of coordinates xt. The action 
represents the inverse temperature times the Hamiltonian of the thermal 
analog. We will now show that evaluation of this partition function is 
equivalent to diagonalizing a quantum mechanical Hamiltonian obtained 
from this action with canonical methods. This is done via the transfer 
matrix.

The key to the transfer-matrix analysis is to note that the local nature 
of the action in eq. (3.6) permits us to write the partition function in the 
form of a matrix product .

Z = (3.8)

where the transfer-matrix elements are

t , lx ,x = exp -^(x'-x)2-^(y(x')+V(x)) . 
L 2a 2 J (3.9)
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This operator acts in the Hilbert space of square integrable functions, 
where the inner product is the standard

<^'|^> = Jdx^'*(x)^(x). (3.10)

We introduce the non-normalizable basis states {|x>} such that
|^> = jdx^(x)|x>, (3.11)

<x' | x> = — x), (3.12)

1 = Jdx|x> <x|. (3.13)

The canonically conjugate operators p and x satisfy
x|x> = x|x), (3.14)
[p,x] = -i, (3.15)

e-ipA|x> = |x+A>. (3.16)
In this Hilbert space the operator T is defined via its matrix elements 

<x'|T|x> = 7^, (3.17)
where Tx> x is given in eq. (3.8). With periodic boundary conditions for 
our lattice of N sites, the path integral is compactly expressed

Z = Tr(T7V). (3.18)
The operator T is easily written in terms of the conjugate variables p 

and x r
T= j dAe-ar^/2e~A2m^2a^-i^Ae-alZ(^^2. (3-19)

To prove this equation, simply check that the right hand side has the matrix 
elements of eq. (3.9). The integral over A is Gaussian and gives

T = (27ra//n)ie4aF(i) e4a^2/m e4aF(i). (3.20)
Connection with the usual quantum mechanical Hamiltonian appears in 
the small lattice spacing limit. When a is small, the exponents in eq. (3.20) 
combine to give T = {2ira/m^e~aH+0^\ (3.21)

where H = p2/(2m)+ V(x). (3.22)
This is just the canonical Hamiltonian corresponding to the Lagrangian 
in eq. (3.1).

The procedure for going from a path-integral to a Hilbert-space 
formulation of quantum mechanics consists of three steps. First define the 
path integral with a time lattice. Then construct the transfer matrix and 
the Hilbert space on which it operates. Finally, take the logarithm of the 
transfer matrix and identify the negative of the coefficient of the linear term 
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in the lattice spacing as the Hamiltonian. Physically, the transfer matrix 
propagates the system from one time to the next. Such time translations 
are generated by the Hamiltonian. Denoting the i’th eigenvalue of the 
transfer matrix by A,-, eq. (3.18) becomes

Z = SAf. (3.23)
i

As the number of time slices goes to infinity, this expression is dominated 
by the largest eigenvalue Ao

Z = A* x [1 + O(exp[-^ln(A0/A1)])]. (3.24)

Thus in statistical mechanics the thermodynamic properties of a system 
follow from this largest eigenvalue. In ordinary quantum mechanics the 
corresponding eigenvector is the lowest eigenstate of the Hamiltonian; it 
is the ground state or, in field theory, the vacuum. Note that in this 
discussion the connection between imaginary and real time is trivial. 
Whether the generator of time translations is H or iH, we still have the 
same operator to diagonalize.

In statistical mechanics one is often interested in correlation functions 
of the statistical variables. This corresponds to a study of the Green’s 
functions of the corresponding field theory. These are obtained upon 
insertion of polynomials of the fundamental variables into the path 
integral. We define the two-point function

<^> = (1/Z) ffndx^x^.e"5. (3.25)
J\k J

In terms of the transfer matrix, this reduces, for positive i—j\ to

(Xixt) = (l/ZjTriT^^xT^x). (3.26)

Taking the length of our time box to infinity while holding the separation 
of i and j fixed we obtain

<xf Xj> = <01 x(T/X^x 10>, (3.27)
where |0> is the ground state, which dominated in eq. (3.24). For a 
continuum limit, we hold the physical time between i and i fixed

r = (/—/) a, (3.28)
and let a go to zero. We now introduce the time-dependent operator

x(z) = e^xe-^, (3.29)
which corresponds to the quantum mechanical coordinate in the Heisen
berg representation, but rotated to our imaginary time. Defining a 
time-ordering instruction to include negative time separations in the 
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above, we identify
<xtx}> = <0|^(x(Z)x(0))|0>

= 0(t) <01 x(t) x(0) 10> + 0(-1) <01 x(0) x(z) 10>, (3.30) 

where 0(0 = {o /<o} (3-31)

This is a general result; the correlation functions of the statistical analog 
correspond directly with the time-ordered products of the corresponding 
quantum fields. It is precisely this point which allows the particle physicist 
to borrow technology from statistical mechanics.

In this chapter we have seen that statistical mechanics and quantum 
mechanics have deep mathematical connections. In general, a d-space-time 
dimensional quantum field theory is equivalent to a d-Euclidian dimen
sional classical statistical system.

Quantum statistical mechanics can also be related to quantum field 
theory. If we combine eqs (3.18) and (3.21) we obtain

Z = (27ra/m)N/2 Tr (e"^). (3.32)

If we now identify T=(aN)~\ (3.33)
and do not go to the large time limit, we see that a path integral in a 
periodic temporal box is itself a partition function at a temperature 
corresponding to the inverse of this periodic time. Thus the path integral 
formulation also enables us to study the quantum statistical mechanics of 
the original (d— l)-space dimensional theory. We will return to this point 
when we discuss gauge theories at finite physical temperatures and the 
resulting deconfining phase transitions.

Problems

1. Consider the harmonic oscillator with V(x) = %kx2. Diagonalize the 
| operator T of eq. (3.20). (Hint: find an operator of form |p2 +|w2x2 which 

commutes with T and can thus be simultaneously diagonalized.) (Creutz 
and Freedman, 1981.)

2. In the harmonic oscillator example, find the ‘propagator’ (x^x^).
3. Show that 0~2<(xf+1 — x^)2> diverges as a goes to zero. Show that the 

split point product fl-2<(xf+1 —x^Xx^ — x^)) approaches — <01/?210> in 
the continuum limit. Where does the minus sign come from?

4. Calculate the fluctuations in the propagator:
Wj) = <(xix;)2>-<x,x>>2.
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Show that the fluctuations in the split point product of problem 2 diverge 
as a goes to zero. Derive the virial theorem for the continuum theory:

<0|p2|0> = <o|xr(x)io>.

This gives the average momentum squared without large fluctuations.



4
Scalar fields

The simplest quantum field theory is that of a free scalar particle. On a 
lattice this becomes the Gaussian model of statistical mechanics. Here we 
will solve this system exactly to introduce lattice field theory. As with the 
conventional continuum theory, Fourier transform techniques are the key 
to this solution. We conclude this chapter with some general remarks on 
interacting scalar fields.

We begin with the standard Lagrangian density for a self-conjugate free 
fie,d (4.1)

Here 0(x) is a real function of the four space-time coordinates x^. The 
discussion here is easily generalized to an arbitrary number of dimensions 
and complex fields. The Greek indices denoting vector quantities run from 
one to four. A repeated index, as implied in eq. (4.1), is understood to be 
summed; however, as we work in Euclidian space, no metric tensor is 
implied. To every field configuration corresponds an action

S = jd4xJ^. (4.2)

The Feynman path integral is a sum over all configurations
Z = j[d0]e-5, (4.3)

where, as in the previous chapter, the integration measure needs definition.
We proceed directly to a four-dimensional hypercubic lattice. Thus we 

restrict our coordinates to the form
(4.4) 

where a is the lattice spacing and has four integer components. As an 
infrared cutoff, we allow the individual components of n to assume only 
a finite number N of independent values

-N/2<n^N/2. (4.5)
Outside this range we assume the lattice is periodic; we identify n with 
n+N. Thus our lattice has N* sites. We now replace the derivatives of <f> 
with nearest neighbor differences

(4.6)

14
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(4.7)

(4.8)

where the Kronecker function is defined 
fl, n = v\ 

'"’“IO, /4 + P.J 
The action is a sum

S = *4[S (^-<4n)7(2a2)+EmW2L 
{m,n} n

where {m, n} represents the set of all nearest-neighbor pairs of lattice sites. 
The path integration measure is now simply defined as an ordinary integral 
over each of the lattice fields

z= f(IId0B)e-s. (4.9)
J n

At this point we observe that the action is a quadratic form in the field 
variables S = tf>mMmn</>n, (4.10)

where M is an ^-dimensional square matrix and we adopt the usual 
summation convention on repeated indices. The integral in eq. (4.9) is of 
the standard Gaussian form and has the value

Z=|Af/27r|-i, (4.11)
where the vertical bars denote the determinant of the enclosed matrix. We 
will now introduce a Fourier transform on the lattice. This will diagonalize 
M and make the determinant trivial.

Let fn be an arbitrary complex function on the lattice sites. Its Fourier 
transform is defined

A = Flcnfn = 2/„ (4.12)
n

The index k also carries four integer valued components, each in the range 
of eq. (4.5). This linear transform is easily inverted with the identity

= 0 = NWn^. (4.13)
k fi

Thus we have (F"1)^ = 2V-4e-2,rlfcB/N = JV~4FJ„ (4.14)

or fn = N-^k^knlN- (4.15)
k

The utility of the Fourier series appears when we consider sums of local 
quadratic forms, such as appear in our lattice action. In particular, the 
useful identities ^gn = N-^gk (4-16)

n k
and 'Lftll+^gn = N-^gk^IN (4-17)

reduce the action to S = a*N~* ZI I2, (4.18)
*
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The Fourier transform has diagonalized M

where Mk = m2+2a-2Z(l-cos&itk^/N)). (4.19)

To evaluate the determinant of this matrix, first note that eq. (4.14) implies

Mmn = a*N~* S F* k Fnk Mk. (4.20)
fe

|AT-4F*| = |F|-1.
Thus we have the exact expression for our path integral

Z = 1 M/lit |-i = n (aWfc/27T)-l 
k

(4.21)

(4.22)

This equation is not very useful as it stands. To obtain Green’s functions, 
we consider external sources Jn on the lattice sites and coupled to the field
0. Consequently we generalize our action to

-^mn fin-
The partition function now depends on the sources

(4.23)

Z(J) = |'[d0]e~'S(J). (4.24)

This quantity is a generating function for the Green’s functions, which 
follow from differentiation with respect to the sources

<^Bi... = Z-1 j[dfl e-^„,... | J _ #

f d d )= Z"i —... — Z(J)
(dJni dJn^ J j_0 (4.25)

Completing the square in eq. (4.23) and shifting the integration in eq. (4.24)
gives the exact expression for this free-field generating function 

Z(J) = Z(0)exp(iJTO(M-1)mB Jn), (4.26)
where Z(0) is given in eq. (4.22). From this we see that the propagator or
two-point function is simply the inverse of the matrix M

Momentum space makes this inversion trivial

k

(4.27)

(4.28)

To put this expression into a more familiar form, we first take N to infinity 
and change the momentum sum into an integral with the replacements

= 2nkJ(Na), (4.29)

(4.30)
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(4.32)

(4.33)

(4.34)

(4.35)

=
J -77/

Here each component of q runs over the finite range
-nlcKq^itfa. (4.31)

This explicitly shows the momentum space effect of the lattice cutoff. The 
propagator now assumes the form 

d4# e-i9 x
..,a(2”r)4 m2 + 2a~2E[l — cos(a^)]’ 

a
where = ~ a("V “ nJ-
For the continuum limit a->0 we expand the cosine 

2<r2E(l — cos(a^)) = q2 + O(a2) 
/>■

f d4<y e-19®
and obtain <0m M = J + °^-

This is the familiar Feynman propagator function in Euclidian space.
Up to this point we have been considering a free field. Now we add an 

interaction term to our action
(4.36) 

n

The full potential felt by the field $ includes the mass term from eq. (4.8) 

^) = ^V2+W)« (4.37)
The minima of this function form the basis for semiclassical treatments, 
with which we will not concern ourselves here. As a concrete example, the 
usual </>* theory takes = p (4.38)

Here g0 is the bare coupling with the lattice cutoff in place. The full 
generating function of the interacting theory is still

Z(J) = j[d$6]e-s<J>. (4.39)

Note that the potential K(^) must be bounded below if this integral is to 
make any sense. In particular, the theory with negative coupling is sick, 
and therefore we do not expect analyticity at vanishing g0. Perturbation 
in g0 yields at best an asymptotic series (Dyson, 1952).

The usual perturbation expansion follows from a formal exploitation 
of eq. (4.25) to give

Z(J) = exp (S Fz(d/dJn)) Z0(J), (4.40)
n

where Z0(J) is the free-field generating function from eq. (4.26). An 
expansion of the exponent in this equation gives the Feynman series in 
terms of vertices from the interaction term and propagators from Z0(J).
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The Green’s functions, which follow by differentiating Z with respect 
to the sources, are the full n-point functions and include, in general, 
disconnected pieces. In particular, if 0 has a vacuum expectation value, 
one might prefer to subtract this and study the connected propagator

<^m <K>c = <K> ~ (4-41)
A general connected Green’s function is defined through the corresponding 
generating function, which is simply the logarithm of Z

F(J) = In (Z(J)), (4.42)
/ d d \

<9ini-^>e= • <4‘43>
1 aJn; / J-o

Note that in the statistical mechanical analog F(J) is proportional to the 
free energy.

We conclude this chapter with some brief remarks on the strong 
coupling expansion for this scalar theory. Considering the </>* theory of eq. 
(4.38), we change integration variables in the path integral from </> to gty, 
and we perform a similar formal manipulation to that giving eq. (4.40). 
Thus we find .

Z(glj) = g^Ni/* | [d^e^^e-^WniU

= g^'i*exp( n/(J„), (4.44)

where f(J) is an ordinary one-dimensional integral
foo

/(J)= d^e-^4--7^. (4.45)
J —00

An expansion of the exponential on the right hand side of eq. (4.44) forms 
the basis for a strong coupling expansion in powers of go K Unfortunately, 
in the continuum limit the matrix M grows, and therefore for fixed 
coupling we are no longer expanding in a small quantity. As we are more 
interested in gauge theories, we will not discuss here the techniques 
invented in attempts to overcome this problem. We only wish to emphasize 
that a strong coupling series is quite natural when the lattice is in place 
(Baker and Kincaid, 1979; Bender et al., 1981).

Problems

1. Verify equation (4.19).
2. Show that a rescaling of the field normalization puts the action in 

the form S =
m {mn}



Scalar fields 19

Show that in the continuum limit the ‘hopping constant’ K goes to unity 
at a rate dependent on the mass.

3. One might consider as a non-perturbative cutoff disregarding a field’s 
Fourier components which carry momentum larger than some cutoff 
parameter. How does this compare to the lattice cutoff in real space?



5
Fermions

In this chapter we turn to a subject that is still not completely understood, 
the lattice formulation of fermionic fields. These complications with spinor 
particles are already present at the free-field level; a straightforward 
generalization of the ideas in the last chapter does not give a simple particle 
spectrum. The action needs additional terms which vanish in the naive 
continuum limit. These terms, needed to eliminate certain lattice artifacts, 
tend to mutilate the classical symmetries of the theory. The extent to which 
this is necessary is still an open question.

Before proceeding to these topics, we must introduce the concepts of 
anticommuting numbers and integration over these variables. The path 
integral is no longer a sum, but a particular linear operation from functions 
of anticommuting variables into the complex numbers. We will also 
introduce anticommuting sources for the dynamical fields. A differentiation 
with respect to these sources gives the Green’s functions, as in the last 
chapter. Both integration and differentiation with anticommuting variables 
have useful analogous properties to ordinary integrals and derivatives; 
however, there are some amusing distinctions. In particular, fermionic 
integrals and derivatives involve essentially the same operation.

As in the previous chapter, we begin with the continuum Lagrangian 
density for a free field, in this case a four-component Dirac spinor

= (5.1)
A slash through a four-vector represents the usual sum

1=?^ (5.2)
where the y^ are a set of four-by-four Euclidian Dirac matrices satisfying 
the algebra = 7/l7y + 7„ = 28^ (5.3)

y| = 7? (5.4)

As usual, we define ijr = (5.5)
For future use we also introduce

ys = 7172 73 74 = yj- (5.6)

20
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A convenient representation for these matrices is

Vi = Xtr, 0/ (5.7)

=
/I
\0 -1/’ (5.8)

y5 =
ZO
V 0/'

(5.9)

The matrix elements here are themselves two-by-two matrices and the 
are the usual Pauli matrices zq j\

^ = (1 J, (5.10)

zo -no)’ (511>

Z1 0\*3 = (o <5’12)

Note that this Lagrangian is invariant under the substitution

^->e4V. (5.13)
This symmetry is directly related to the conservation of fermion number. 
When the mass m vanishes, the theory also has a ‘chiral’ or ‘y5’ symmetry 
under (5.14)

In a naive canonical treatment, these symmetries are generated by the 
currents .

= (515)

and = (516)

Careful perturbative analysis (Adler, 1969; Bell and Jackiw, 1969) 
indicates the impossibility of maintaining conservation of both these 
currents in the four-dimensional quantum theory. This ‘anomaly’ will not 
be derived here; we only note that it is deeply related to the difficulties 
encountered in the lattice formulation, which naively preserves these 
symmetries (Chodos and Healy, 1977; Nielsen and Ninomiya, 1981a, b; 
Kerler, 1981a; Becher and Joos, 1982; Rabin, 1982).

As in the previous chapter, we introduce a four-dimensional hypercubic 
lattice of N* sites. With each site m we associate an independent four- 
component spinor variable ijfm. To keep the lattice action simple we define 
the derivative symmetrically

+ (5J7)
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Summing the Lagrangian over all sites gives the lattice action

5 = S (5.18)
m, n

where ^mn=2a3^y^mv+Sp,,nl~^mp-^v,n)^aim^mn- (5-19)

Note that the symmetries of eq. (5.13) and, when m = 0, eq. (5.14) are still 
manifest. We now put this action into a path integral

Zo = j[d^d^]e-s. (5.20)

Unlike in the scalar case, this is not an ordinary integral, and needs further 
definition. We will first discuss such integrals for quadratic actions of the 
form of eq. (5.18) with an arbitrary matrix M. Later we will return to the 
specific theory in eq. (5.19).

We begin by requiring the integration variables to anticommute
[Kn, KU = IKU KU = IM KJU = 0, (5.21)

where a and fl are the usually suppressed spinor indices. This equation 
contrasts sharply with the canonical relations for Dirac operators in 
Hilbert space. In the path integral i/r and K are independent fermionic 
objects. As in the previous chapter, our integral is of an exponentiated 
quadratic form. We will see that its evaluation again reduces to knowing 
the determinant of M. Before proceeding, however, we find it advantageous 
at this point to introduce the concept of sources for the fermionic fields. 

As our fields anticommute, any sources coupled to them should behave 
similarly. We consider separate sources and for and 
respectively. Suppressing repeated site and spinor indices, we generalize the 
action to _ _

S = + — i/rc. (5.22)

We adopt the convention that all the spinor quantities b and c 
anticommute with themselves and each other. We wish to define the 
fermionic path integral such that the linear source terms can be eliminated 
by a simple completion of the square and a shift of the integration 
variables, in analogy to an ordinary integral. Thus we demand

Z = Zo exp ( - bM^c), (5.23)
where Zo is the sourceless integral from eq. (5.20). For the free field 
considered here, the overall factor of Zo is irrelevant to the evaluation of 
Green’s functions. In particular, the fermion propagator is given, as for 
scalar fields, by the inverse of the kinetic matrix M. However, in more 
general applications, i.e. with gauge fields, one may wish to have M to 
depend on other interacting fields. In this case we need the explicit 
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functional dependence of Zo on this matrix. We will now demonstrate that 
Zo is simply the determinant of M (Matthews and Salam, 1954).

To proceed, we need the concept of derivatives with respect to our 
fermionic sources. Such derivatives should satisfy

=Smn^ (5.24)Ldt>m J+
and a corresponding equation for the c’s. This generalizes ordinary 
differentiation, where one would have a commutator. Note that these 
anticommutation relations are precisely those of the creation and anni
hilation operators for fermions on the sites of our lattice

[b^,M,]+ = dmn^. (5.25)
We can realize these relations on a Fock space of states created by

(5.26)— 
m

on a ‘vacuum’ satisfying
^|0) = c“|0) = 0. (5.27)

Operating on this vacuum is equivalent to turning off the sources. This 
‘Euclidian vacuum’ should not be confused with the conventional Hilbert 
space state in Minkowski space, as found in the transfer matrix formalism 
discussed in the first chapter. We use a creation operator notation here for 
compactness and to avoid confusion from the fact that d/d£ is not really 
a usual derivative.

Our path integral with sources is an operator in this space. Operating 
on the vacuum from the right, we define the useful state

(Z| = (0| Z(Z>, c). (5.28)
Fermion Green’s functions are matrix elements between this state and the 
vacuum

j[d^ d^] e-• • • K K ■ • • K = (Z14 • •. < • • • b]n 10). (5.29) 

Our creation operators produce the ends of the external lines in a general 
correlation function.

Continuing toward our goal of evaluating Zo, we now present a useful 
identity on exponentials of quadratic forms in creation and annihilation 
operators. Let F and G be 7V4-by-7V4 symmetric matrices. We would like 
to take the expression

(^r(A) | = (01 e^c^Gc* (5.30)

and manipulate the creation operators to the left to obtain a single 
exponential of a quadratic form in the annihilation operators alone.
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Straightforward manipulations, which we invite the reader to perform, 
yield the identities

W)|6f = -(vJr(A)|(F-i-AG)-‘c, (5.31)
W) I = + (^(A)|(F-‘-AG)-*Z>. (5.32)

Using these in the derivative of expression (5.30) with respect to the 
parameter A gives a differential equation

4(5^1 = (^|[-Tr(G(F-1-AG)-1)+ft(F-1-AG)-1G(F-1-AG)-1c].
C1A

With the initial condition
(^(A = 0) | = (01 ebFc, (5.34)

we can integrate to obtain
(^ | = 11- AFG | (01 exp (btF'1 - AG)~1c). (5.35)

To verify that this is indeed a solution of eq. (5.33), make use of the 
well-known identity , rrr, „ _

| F| = exp [Tr (In F)]. (5.36)
With eq. (5.33) in hand, we return to our path integral and write

M = (5.37)
where I is the identity matrix. Treating M—I as a perturbation, we have

(Z| = (01 j[d^-d^]e-^-^+^exp(ct(Z-A/)6t). (5.38)

As before, the integral can be done by completing the square; however, 
now the normalization is truly arbitrary. We define

j[d^d^]e-^= 1. (5.39)
Thus we have

(Z | = (01 e-6c < (5.40)

This is exactly in the form needed for the identity in eq. (5.33), which gives 
the final result (z | = | M | (01 e-6M’‘c. (5.41)

Turning off the sources, we see that Zo is precisely the determinant of M
IM | = J[d^d^]e-^. (5.42)

Note the similarity of this with the boson result in eq. (4.22). The 
anticommuting fermion fields have moved the determinant from the 
denominator to the numerator. For scalar fields there is also an operator 
formalism parallel to that presented here. We invite the reader to work 
out the Bose analog of eq. (5.35).

This discussion paid no attention to the precise form of the kinetic matrix 
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M; we only used the quadratic nature of the fermion action. We now return 
to the specific case in eq. (5.19) and study the propagator

smn = Z0L j[d^d^]e-^^m^n. (5.43)

In our operator formalism we have
Smn = Z, l(Z|/4 410) = (5.44)

As in the last chapter, M is diagonalized and inverted with a Fourier 
transform. This gives

= a~^N~^M]c1^ilc^-ny/N. (5.45)
k

where Mk = m +ia-1 E sin (lirk/N). (5.46)

Still following the last chapter, we let our lattice size become large and 
replace sums over k with integrals

= 277^/(JVa), (5.47)

a~W4E^ [d^/(27r)4, (5.48)
k J

Mk = m+icr1 Z sin (aqj. (5.49)

If we now consider small lattice spacing and expand in powers of a, we 
find Mk = m+itf+O(a2). (5.50)

It thus appears that we have recovered the usual continuum fermion 
propagator. Unfortunately, more care is needed at the upper limits of the 
momentum integrals. When q^ is 7i/a, the periodic sine function in eq. (5.49) 
vanishes. Here the O(a2) terms cannot be neglected. Indeed, the propagator 
has no supression of momentum values near it/a\ therefore we must expect 
rapid variations in the fields from site to neighboring site. This precludes 
the above simple continuum limit and will also destroy any attempt to 
formulate a transfer matrix along the lines of chapter 3.

To isolate the large momentum region, consider one component of q^ 
and replace it with q)i = qll~'n/a (5.51)

over half the integration region
fir/a f*ir/2a

AqilM-k'=\ (dq^ + dqJM,1. (5.52)
J —n/a J -n/2a

For small lattice spacing, a finite range of the integration variables 
dominates each of these terms. Now an approximation along the lines of 
eq. (5.50) is valid. For each space-time dimension we have two independent 
regions where the theory gives a free fermion propagator in the continuum 



26 Quarks, gluons and lattices

limit. We actually have 24 = 16 independent fermion species, even though 
we initially seemed to have but one.

This multiplicity in the spectrum arose because we have implemented 
a regularization scheme that, when m = 0, keeps an exact y5 symmetry at 
all stages. It therefore cannot possess the known chiral anomaly. The 
theory has created extra species which cancel this phenomenon. Note that 
the new fermions use different y matrices; i.e. when we shift as in eq. (5.51), 
the sine function gives an extra negative sign

yAsin(^a) = -y^sin^a). (5.53)
This sign is absorbed by redefining yfl and therefore y5 as well. Those 
fermions associated with an odd number of components of q being shifted 
by n/a will transform under the conjugate of the rotation in eq. (5.14). We 
have equal numbers of states with each chirality.

Several solutions exist for this ‘doubling’ problem. Perhaps the simplest 
is to ignore it and say that the theory is automatically generating a large 
number of fermion ‘flavors.’ Indeed, real quarks do appear to come in 
several species. Nonetheless, it seems a bit far fetched to use an artifact 
of the lattice formulation to explain this degeneracy.

Observing that the problem only occurs when the magnitude of q is large, 
one might try artificially to exclude large components. In general this is 
dangerous because of completeness in the Fourier transform. Here, 
however, we can use the spinor index to partially do precisely this. By 
associating only a single spinor component with each site and putting 
different components on separate classes of sites, one effectively puts the 
components on smaller sublattices. This reduces the effective upper limit 
of the momentum integrals and thereby reduces some of the unwanted 
degeneracy. Such techniques have had considerable success in a Hamil
tonian formulation of the lattice theory, where continuous time removes 
half of the unwanted states (Kogut and Susskind, 1975; Banks et al., 1977).

The multiplicity problem arises from the periodic nature of the sine 
function appearing in the Fourier transform of the nearest-neighbor form 
for the lattice derivative. In a continuum theory, a derivative is simply a 
factor of the momentum in Fourier space. Thus another solution to the 
lattice degeneracy is to replace the sin of the momentum with the 
momentum itself. This defines a new lattice derivative which immediately 
kills the extra states. On returning to position space, this derivative no 
longer involves just nearby sites, but includes products of site variables 
with arbitrary separations. This keeps an apparent chiral symmetry; to see 
the anomaly requires a careful and somewhat controversial treatment of 
limits (Drell, Weinstein and Yankielowicz, 1976; Karsten and Smit, 1981).
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A utilitarian approach to the doubling problem is to add to the naive 
action new terms which suppress the extra states while vanishing in a 
continuum limit with the desired fermion species. To keep the action as 
local as possible, we require the new terms to involve nearest-neighbor 
pairs of lattice sites. This means that in momentum space these terms will 
involve only simple trigonometric functions of the momentum. An addition 
which accomplishes our needs replaces Mk with

= m + m-1ZyAsin(a^)4-ra-1S(l-cos(afA)). (5.54) 
// fi

Here r is an arbitrary parameter. Note that for small momentum the new 
term is of order the cutoff and thus drops out. However, when a component 
of q is near n/a. the addition increases the mass of the unwanted state by 
2r/a. In the continuum limit all the extra states go to infinite mass and 
only one species of mass m survives. Setting r to unity (Wilson, 1977), we 
obtain the position space form

= (a4w+4a3)<^„

+^3Z[(1 +ylt)^mv+^n+(l -y/z)<^_^, J. (5.55)

Whenever a quark moves from one site to the next, its wave function picks 
up a factor of 1 ± rather than the y^ from eq. (5.19). Note that (1 ± y^/2 
is a rank two projection

(5-56)

Tr(i(l±yA)) = 2. (5.57)
Thus part of the spinor field no longer propagates. This reduces the 
degeneracy by a factor of two for each dimension, exactly as needed to 
remove the extra states. This method is referred to as the projection 
operator technique of Wilson.

The simplicity of this method is convenient for calculation. However, 
it totally mutilates the chiral symmetry of the theory because the added 
piece is like a mass term for the unwanted fermions. This is probably more 
of a mutilation than necessary; with several flavors not all currents need 
to have an anomaly. Consequences of the related symmetries, such as 
Goldstone bosons, are masked in the projection operator formalism until 
one reaches the continuum. The extent to which these latent symmetries 
can survive in a lattice theory is still unclear.
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Problems

1. Derive the analog of eq. (5.35) for bosonic operators.
2. For a single pair of fermionic variables and derive the formulae 

Jd^d^T = Jd^d^"^ = 

Jd^d^^ = 0 

Jd^d^^^r = 1.

3. Rescale the fields to put eq. (5.55) in the form

^mn = + 4-^, nv + 0 “ 7p) ^fiiy-9^, np)’

where the4 hopping constant ’ Kapproaches 1 /8 for a continuum limit. This 
represents a critical point where the correlation length diverges when 
expressed in units of the lattice spacing.

4. We have discussed periodic boundary conditions. Is there any 
motivation for antiperiodic boundary conditions for fermionic fields? 
(Hint: what sign does a fermion loop wrapping around the lattice give to 
eq. (3.32)?)



6
Gauge fields

What is a gauge theory? This question may have more answers than there 
are physicists. In this discursive chapter we digress into discussing a few 
general definitions of a gauge theory and, in particular, a non-Abelian 
theory.

At the simplest level, a non-Abelian gauge theory is merely an embel
lishment of electromagnetism with an internal symmetry. Electromagnetic 
fields form the components of an antisymmetric tensor which is a 
four-dimensional curl of a vector potential

(6.1)
Yang and Mills (1954) proposed adding an isospin index to A^ and F^v 

A^A“, (6.2)
F^F*V. (63)

This trivial modification becomes not so trivial with the addition of a 
further antisymmetric piece to

= ^A“- A* +g0 f^A? A7. (6.4)
Here g0 is the bare gauge coupling constant, and faFr are the structure 
constants for some continuous group G.

We consider here only unitary groups. An element g of G is a matrix 
in the fundamental or defining representation. We parametrize the elements 
of G using a set of generators

Here the aF are parameters and the Aa are a set of Hermitian matrices which 
generate the group. The structure constants are defined from the com
mutation relations [Aa, A^] = i/a^A^. (6.6)

The generators are conventionally orthonormalized such that
Tr(AaA^) = |^. (6.7)

The simplest non-Abelian theory uses the group SU(2) which is generated 
by the Pauli matrices (eqs 5.10-12)

Aa = (6.8)
frfy = ^r. (6.9)

29
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Maxwell’s equations for electrodynamics follow from the Lagrangian 
density ^ = ^^+4^- (6-10)

Here represents an external source for the electromagnetic field. The 
non-Abelian theory begins with the same Lagrangian, except for an 
assumed sum over a suppressed isospin index and includes the extra 
term in eq. (6.4). The classical equation of motion for electromagnetism

(6.11)
picks up an extra piece in the non-Abelian theory and becomes

(6.12)
Here the ‘covariant derivative’ is defined

(D„ F^ = 5, F«„ +gJ^AP Fyv. (6.13)
The motivation for this definition will become clear when we discuss gauge 
transformations. The antisymmetry of F^ requires that the source satisfy 

(^7^ = 0. (6.14)
This is the non-Abelian analog of current conservation.

A convenient notation follows from using the group generators to define 
a matrix potential = (6.15)

Using eq. (6.7) we can invert this relation

^ = 2Tr(AM#). (6.16)
Similarly we define matrices for and 4. The expression for F^ in terms
of takes the simple form

MTo (6.17)
In this notation the Lagrangian density becomes

= 2 Tr (F^ F^) + 2 Tr (jA A^ (6.18)

We now turn to a second and probably the most popular definition of 
a gauge theory as a system possessing a local symmetry. Modification of 
the fields in a local region of space-time can leave the action unchanged. 
For electromagnetism this is the usual gauge symmetry under

A^A^N, (6.19)
where the gauge function A is an arbitrary function of the space-time 
coordinates. In the non-Abelian case, a gauge transformation is specified 
by a mapping of space into the gauge group. We associate a group element 
g(x) with each space-time point. In matrix notation, A^ transforms as

A^ -> g-'Ap g 4- (i/g0) g~^ g. (6.20)
To recover the electrodynamic transformation of eq. (6.19), consider g(x)
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to be a simple phase g(x) = e ^o^). (6.21)
Thus we can regard electromagnetism as a f/(l) gauge theory. Under 
eq. (6.20), transforms particularly simply

F^g-'F^g. (6.22)
The covariant derivative of eq. (6.13) can be generalized to act on any 

field transforming under the gauge transformation as some representation 
of the gauge group. Suppose the field fa transforms as

fa^R^fa. (6.23)
Here the matrices R^ satisfy the representation property

= (6.24)
For example, the field transforms as the adjoint representation

F^R^tg)!*,, (6.25)
where g~Wg = R^(g) W. (6.26)
Denote the generating matrices for the representation R by vfy such that

/Me5"^) = (e1“a',“)y. (6.27)
These generators satisfy an analog of eq. (6.6)

[ra,^] = i/a^. (6.28)
We now define the covariant derivative of

(Z>A = + ig0 (6.29)
The motivation for this definition is the simple gauge transformation 
property (6.30)

Note that for the equation of motion eq. (6.12) to remain simple under 
a gauge change, we must require that our source transform with the adjoint 
representation j^R*<W> (6.31)

or, in matrix notation j^g^jpg- (6.32)
We now turn to a third definition of a gauge theory as a theory of phases. 

Mandelstam (1962) and Yang (1975) have emphasized that the interaction 
of a particle with a gauge field involves a phase factor associated with any 
possible world line that the particle might traverse. In a non-Abelian 
theory, these path-dependent phase factors become matrices in the gauge 
group. Whenever a material particle traverses some contour in space-time, 
its wave function acquires a factor from electromagnetic interactions

^->^expfig0 f Adx] = U(P)fa (6.33)
\ Jp /
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where the integral is along the path in question. This factor is particularly 
simple for a particle at rest

U(P) = exp (ig0 Ao r), (6.34)
where t is the total time length of the path. The particle picks up an extra 
time oscillation at a rate proportional to its charge and the scalar potential. 
Thus its energy is increased by the scalar potential. Equation (6.33) 
generalizes this concept to any Lorentz frame.

For a non-Abelian theory we associate an element of the gauge group 
with any path. Consider a path

se [0,1], (6.35)
where 5 represents some parametrization of the points along the path in 
question. We define a group element for the portion of the path from x^(0) 
to x^s) via the differential equation

TI = (6'36)ds ds
For an initial condition we take

U(0)= 1. (6.37)
In eq. (6.36) is a matrix in the sense of eq. (6.15). We can formally solve 
this svstem of equations

(/ f* dx Wexp(j#oj (6.38)

where P.O. represents a ‘ path-ordering ’ instruction for the non-commuting 
matrices In a power series expansion of the exponential, the matrices 
are to be ordered as encountered along the path, the largest values of the 
parameter s being to the left. That the matrix t7(s) remains in the gauge 
group follows because it is a product of group elements associated with 
infinitesimal pieces of the contour.

Under the local gauge transformation of eq. (6.20), this path-ordered 
exponential is only sensitive to the gauge function at the endpoints of the 
Path U(s)^g-\x/l(s))U(s)g(x/l(0)). (6.39)

Consider the case where the path is a closed contour C. The trace of the 
group element corresponding to such a contour

B/(C) = Tr(U(C)) (6.40)
is independent of the starting point on the contour and is invariant under 
gauge changes. This is the Wilson loop operator and plays a key role in 
later chapters. The trace in this definition can be replaced by the character 
in any representation of the gauge group; however, unless otherwise 
specified, we use the fundamental defining representation.
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We end this chapter with a brief mention of yet another definition of 
a gauge theory. In a canonical Hamiltonian formalism one would like to 
write particle interactions in terms of operators involving local fields. 
Furthermore, discussions of Lorentz invariance are facilitated if these fields 
transform homogeneously under change of Lorentz frame. A gauge theory 
is one for which this is impossible (Weinberg, 1965). The interaction 
Hamiltonian necessarily involves the vector potential A^. A Lorentz 
transformation will in general change the gauge, in which case 
transforms inhomogeneously. Covariant gauges such as 8^ A^ = 0 circum
vent this problem but only at the expense of an indefinite metric quantum 
mechanical space.

That a description with local interactions requires the introduction of 
potentials is made clear in the Aharonov-Bohm (1959) experiment. A 
further consequence is the peculiar counting of degrees of freedom with 
a gauge particle. The potential A^ in electrodynamics has four components, 
yet the photon has only two physical polarizations. The longitudinal 
component is unphysical in that its value depends on gauge choice. The 
second extra degree of freedom disappears because the time component 
?l0 is not dynamical. None of the equations of motion involve the time 
derivative of Ao and thus its value is a function of the other variables. 
Elimination of Ao, however, generally introduces non-local objects. 
Indeed, Mandelstam (1962) has presented a non-local formulation of 
gauge theory without using potentials, but using the path-ordered integrals 
discussed above.

A lattice formulation rather severely mutilates Lorentz invariance at the 
outset. Thus this final definition of a gauge theory is not particularly useful 
here. The existence of unphysical degrees of freedom does persist on the 
lattice. We will return to this counting when we discuss the Hamiltonian 
formulation of lattice gauge theory.

Problems

1. Show that the structure constants defined in equation (6.6) are 
totally antisymmetric.

2. Verify the gauge transformation property of equation (6.39).
3. What are the generators r* for the adjoint representation defined in 

eq. (6.26)?
4. Calculate a rectangular Wilson loop for the field theory of free 

photons. Using any convenient regulator, show how the leading divergence 
scales with the loop perimeter. Show that the ratio of two such loops with 
the same perimeter and number of corners is finite as the cutoff is removed.



7
Lattice gauge theory

In this chapter we introduce Wilson’s (1974) elegant formulation of gauge 
fields on a space-time lattice. The idea is heavily motivated by the concept 
of a gauge field as a path-dependent phase factor. The basic degrees of 
freedom are group elements associated with bonds or straight-line paths 
connecting nearest neighbor pairs of lattice sites. The group element 
associated with an arbitrary path connecting a sequence of neighboring 
sites is the group product of these fundamental variables. This particular 
formulation is also remarkable in that the gauge freedom remains as an 
exact local symmetry.

Considering a general gauge group G, we associate an independent 
element of G with each nearest-neighbor pair of lattice sites (ij)

U^G. (7.1)
The indices i and j label the lattice sites at the ends of the bond on which 

is defined. We suppress those indices associated with the fact that
is itself a matrix in the gauge group. On traversing a link in the opposite 
direction, one should obtain the inverse element

= W1- (7.2)
We can define a vector potential by writing

(/0 = e^o^a. (7.3)
Here a is the lattice spacing and the Lorentz index p is the direction of 
the given bond. We use the matrix notation for Ap which is an element 
of the Lie algebra of the gauge group. The spatial coordinate associated 
with Ap should be in the vicinity of the link in question; for convenience 
we take it to lie half way along the bond

= (7.4)
In the continuum limit, this choice and the fact that should be 
path-ordered along the bond become irrelevant conventions.

We need an action to determine the dynamics of these field variables. 
The Lagrangian should reduce in the continuum limit to the classical 
Yang-Mills theory of the last chapter. The field strength is a generalized 
34
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curl of the potential. This suggests using integrals of around small closed 
contours. Thus motivated, Wilson proposed that the action should be a 
sum over all elementary squares of the lattice

S = ZSD. (7.5)
□

The action on each of these squares or ‘plaquettes’ is the trace of the 
product of the group elements surrounding the plaquette

SD = —(1/n) ReTr (17# Ujk Ukl Uu)]. (7.6)
Here the sites ij, k and I circulate about the square in question. The factor 
— 1 /n establishes normalization and sign conventions; n is the dimension 
of the group matrices. The normalization factor fl will be defined later. The 
additive constant in eq. (7.6) is chosen to make the action vanish whenever 
the group elements approach the identity. The trace in this equation can 
be in any representation; for now we only consider the fundamental one. 

The demonstration that this action reduces to the usual Yang-Mills 
theory begins with eq. (7.3) for the Uif in terms of the vector potential. 
Consider, for example, a plaquette with center at and oriented in the 
(^ v) = (1,2) plane. Writing out eq. (7.6) gives

SD = yff(l — (1 /w) ReTr (expig0^(x^-|a<^2) (7.7)
x expig^x^+ia^)

x exp-ig0^(^+ia<^2) 
x exp-ig0A2(x^la6^))).

We now consider vector potentials smooth enough that we can Taylor 
expand about x. A little suppressed algebra, which the reader should carry 
out for himself, yields

SD = Al “ (W ReTr exp (ig0 u2F12 + O(a4))). (7.8)
Here F12 is the field strength tensor including the non-linear terms in A 
arising from manipulation of the orderings of the exponentials in eq. (7.7). 
Expanding the exponential, we find

SD = (flgl/(2n))a^Tr(F212)^O(a^ (7.9)

The term of order a2 vanishes because for unitary groups, the only type 
considered here, the group generators are Hermitian. We now approximate 
the sum over all plaquettes with a space-time integral to obtain

S = (/?g2/(2n)) JiTr (F^FAP)d4x+O(a®). (7.10)

The factor of one-half under the integral comes from the symmetry under 
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fiv interchange. Thus we obtain the usual gauge theory action if we identify

= (7.11)

The terms with higher powers of the cutoff in eq. (7.10) vanish in the 
classical continuum limit. Because of divergences in the quantum theory, 
they can give rise to a finite renormalization of the coupling constant.

We now have our variables and Lagrangian. To proceed to the quantum 
theory, we insert the action into a path integral

Z = J(dL7)e--s<l7>. (7.12)

Here we integrate over all possible values for the gauge variables. As they 
are elements of a compact group, it is natural to use the invariant group 
measure for this integration. The next chapter discusses this measure in 
some detail.

Eq. (7.12) defines the partition function for the statistical system 
motivating this book. Correlation functions are expectation values as 
discussed in earlier chapters. If H is some function of the field variables 
U, then its expectation is defined

<77> = Z~^(dU)H(U)e-s^. (7.13)

In the quantum mechanical Hilbert space, this is the vacuum expectation 
value of the corresponding time-ordered operator.

Note that we have not included any gauge fixing terms in the path 
integral. In usual continuum formulations, such terms eliminate a diver
gence from integrating over all gauges. Here, however, the variables are 
elements of a compact group. As a consequence, the gauge orbits are 
themselves compact. For gauge-invariant observables, it is harmless to 
include an integral over all gauges. We will, however, need to introduce 
the concept of gauge fixing in order to formulate perturbation theory or 
to use the transfer matrix to find a Hamiltonian formalism. We will discuss 
these points later.

Up to this point we have been considering only pure gauge fields. 
Inclusion of quark degrees of freedom simply involves taking the fermionic 
action from chapter 3 and inserting a factor of Uq on the fermi field 
whenever a quark hops from site i to site j. The quark fields have an 
additional supressed internal symmetry index upon which this matrix acts. 
Adopting Wilson’s projection operator technique for dealing with species 
doubling, we take eq. (4.55) and write the action for the full interacting 
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gauge theory of quarks and gluons on a lattice

S = /?S(l-(l/n)ReTrI7D)

+|ia3S
{iJ}

+ (a4w0 + 4a3)S^^/. (7.14)
i

Here we have used several shorthand notations to keep the expression 
manageable. First, I7n represents the product of group elements around 
the plaquette in question. Second, the sum over {i,j} is over all nearest- 
neighbor pairs and includes one term for each ordering of i and j. Finally, 
e^ represents a unit vector in the direction from site i to site j. We have 
placed the subscript 0 on the mass m0 to emphasize that this is the bare 
mass and will need to be renormalized for a continuum limit of this 
interacting theory. It is straightforward to introduce other matter fields, 
such as scalars. As these do not seem to play any role in strong interaction 
physics, we will only briefly mention them in chapter 9, where we point 
out some peculiarities of the Higgs mechanism for generating gauge meson 
masses.

On a kinematic level, the lattice theory has by construction the 
appropriate classical continuum limit as the Yang-Mills theory. Before 
such a limit, however, the model still keeps many other aspects of a gauge 
theory. For one, we work directly with a theory of phases. Furthermore, 
a local gauge symmetry remains exact. If we associate an arbitrary group 
element gt with each lattice site, then the action is invariant under the 
Change U^giU^i

^gi^i
^i^igi1- (7-15)

Only the definition of a gauge theory in terms of the Lorentz properties 
of the fields appears to be irrelevant to the lattice formulation, which rather 
severely mutilates space-time symmetries.

Faithfulness to an exact gauge symmetry should not be a requirement 
of a cutoff scheme. Indeed, the physics of a renormalizable theory should 
not depend on the details of the regulator. Nevertheless, this elegant 
formalism introduced by Wilson greatly simplifies strong coupling treat
ments of confinement and has been nearly universally adopted in lattice 
treatments.
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Problems

1. Explicitly carry out the steps between eqs (7.7) and (7.10).
2. Consider taking the trace in eq. (7.8) in the adjoint rather than the 

fundamental representation of the group. What happens to eq. (7.11)?
3. Show that the fermionic terms in eq. (7.14) have the correct classical 

continuum limit.
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Group integration

Wilson’s use of the invariant measure in his definition of lattice gauge 
theory lends a flair of mathematical elegance to the subject. This measure 
is essential to the simplicity of the gauge symmetries in the cutoff theory. 
In this chapter we review some general properties of invariant integrals 
over compact Lie groups. We will explicitly display the measure for some 
simple cases and then discuss integrals over polynomials of SU(n) matrices.

To begin, we must have the basic properties of any integral
|dg (af (g)+bh(g)) = a Jdg/(g)+b Jdg h(g), (8.1)

Jdg/te)>0 whenever /te) > 0 for all g. (8.2)

Here f and h are arbitrary functions over the group and a and b are 
arbitrary complex numbers. We now impose the additional constraint that 
the measure be left-invariant

Jdg/(g) = Jdg/(g'g), (8.3)

where g' is an arbitrary fixed element of the group. In an ordinary integral, 
this corresponds to a shift of the integration variable. As we will only be 
considering compact groups, we can normalize the measure such that 

jdg 1 = 1. (8.4)

We will now show that this measure exists and is unique. We do this by 
first finding an expression for it under the assumption of its existence, and 
then we will show that this expression works.

To begin, we consider an arbitrary parametrization of the group 
elements in terms of a set of parameters oct where the index i runs from 
one to w, the dimension of the group manifold. We assume that as the 
parameters a run over some domain D of Rn, the corresponding group 
element runs once over the group

G = {g(a)|ae2)}. (8.5)

39
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The group multiplication is represented by a function a(/?,y) satisfying
g(a( P, y)) = g( P) g(y), (8.6)

where a, fl, and y all reside in D. We now wish to find a weight J(a) such 
that the group integral is an ordinary ^-dimensional integral

Jdgf(g) = jdai... dan J(a)/(g(a)). (8.7)

The integral on the right hand side of this equation is over the domain D. 
Writing the group invariance property in this notation gives

^dpj(P)f(g(P)) = ^dpJ(P)f(g&(7,p»), (8.8)

where y parametrizes the factor g' in eq. (8.3). We now change variables 
to a(y, fl) with the result

^dpj(p)f(g(p)) = Jda || \p)f (£(*)), (8-9)

where || ca./cp || represents the Jacobian determinant for the change of 
variables. Since this is true for arbitrary f, we conclude

= \\^/W\\-iJ{P). (8.10)
Taking p to the identity, denoted by e, we find

J(y) = K || 8(a( p, y))/Sp || ~11, _ e, (8.11)
where K = J(e) is a normalization factor, determined in magnitude with 
eq. (8.4). Thus the group measure is sifnply a Jacobian factor. It represents 
the shift of a small standard volume from near the identity to any point 
in the group.

If an invariant measure exists, eq. (8.11) is an expression for it. We must 
now show that this formula works. In particular, eq. (8.10) must be true 
for all p. We need to show that

is equal to
J(a( A y)) = K || 3(a(<J, a(/?, y)))/a<J||fd e

\\te(J,y)/Qp\\J(p) = K Sa(P,y) -1 8a(M)
QP

For this we need associativity, which implies 
a(5,a(/?,y)) = a(a(8,P), y).

Differentiating with respect to 3 gives

S-e

6a(<U(Z?,y))
S3

Sa.(p,y) 
Qp

(8.12)

(8.13)

(8.14)

(8.15)

Setting 3 to the identity gives the desired result.
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Barring a singular parametrization of the group, this analysis proves 
existence and uniqueness of the measure and provides a formal expression 
for it. We now show that the right- and left-invariant measures are the 
same. Clearly a modification of the above arguments will produce a 
measure which is right-invariant

j(dg)r/(g) = j(dg)r/(gg'). (8.16)

Suppose we now define

J (dg)'/(g) = j (dg)r/(g0 ggo *), (8.17)

where g0 is some arbitrary fixed element of the group. This new measure 
satisfies r r

J (dg)'/(ggi) = j (dg)r/(goggo ^i)

= {(dgVteoggo1) = j(dg)7(g), (8.18) 

where we have used the right-invariance of (dg)r. Thus (dg)z is also 
right-invariant. Uniqueness implies (dg)' = (dg)r. But now we can use 
right-invariance again in eq. (8.17) to obtain

|(dg)r/(g) = j(dg)r/(goggo1) = j(dg)r/(gog). (8.19) 

We conclude that the right measure is also left-invariant and, by uniqueness, 
the measures must be equal. Note that we have used compactness in a 
rather subtle way. If the integration measures cannot be normalized as in 
eq. (8.3), the various measures discussed here may differ by constant 
factors.

We note in passing that
jdg/OT) = jdg/fe). (8.20)

This follows because the left hand side defines another invariant measure 
which, by uniqueness, must equal the right hand side. In lattice gauge 
theory, the directions of the bonds do not enter in the measure.

Knowing of its existence may not be useful if the group combination 
law is complicated. A somewhat more explicit formula for the measure for 
groups of matrices follows from the definition of a metric tensor on the 

grOUp Mij = Tr(g-^ig)g-\8jg)), (8.21)

where the derivatives are with respect to the parameters a4

0fg =(8/3aj)g(a). (8.22)
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In terms of this metric, the invariant measure is
jdg/(g) = K jda | det (M) | l/fefa)), (8.23)

where the factor of K is again a normalization. This is a standard formula 
of differential geometry.

We now give some simple examples. For a discrete group the measure 
is an ordinary sum over the elements. For the group £7(1) of relevance to 
electrodynamics = (8,24)

r i fnthe measure is dg/(g) = — (8.25)
J 2n J

Functions over the group are periodic functions of the angle 0, Group- 
invariance is under shifts of phase.

For SU(2) we can parametrize the elements as the surface of a 
four-dimensional sphere (S3)

SU(2) = {a0 + ia-a|a2 + a2 = 1}. (8.26)
The matrices a are the Pauli matrices used in chapter 5 when we discussed 
fermions. With this parametrization the group measure assumes a parti
cularly simple form

jdg/fe) = T7-2 jdW(a8- !)/(?)• (8.27)

Here we use the shorthand notation
a2 = a|H-a-a. (8.28)

For SU(3) we refer the reader to the discussion by Beg and Ruegg (1965).
For many purposes an explicit form for the measure is unnecessary. In 

Monte Carlo simulations, to be discussed later, certain algorithms move 
randomly around in the group in a uniform manner and automatically 
generate the correct measure. For analytic work, many integrals can often 
be done using symmetry arguments. For example, the expression

Jdg7?a/?te) (8.29)

will vanish if Rap is a non-trivial irreducible matrix representation of the 
group. A group integral selects the singlet part of any function over the 
group. In particular, we have the relation

jdsxfilfe)...xRt(g) = ns(^i® (8.30)

where the character xR(g) denotes the trace of the matrix corresponding 
to g in representation R, and ns(R±... Rk) is the number of times the singlet 
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representation occurs in the direct product of the representations Rx to Rk. 
If R and R' are irreducible, we have the orthogonality of the characters

jdg^(g)X/r(g) = <JR,K,. (8-31)

For SC7(3) we have the integral
jdgCv3(g))3 = 1. (8.32)

For the strong coupling expansion we will need integrals of polynomials 
of the group elements in the fundamental representation. We now turn to 
a set of graphical rules for the evaluation of such integrals with the groups 
SU(n) (Creutz, 19786). We are interested in expressions of the form

/= jdggMi ...gj„>ng^1I1 (8.33)

where we explicitly indicate the matrix indices on the group elements. It 
is useful to introduce a generating function for these integrals

W(J9K) = Jdgexp(Tr(Jg+Xg-1)). (8.34)

Here J and K are arbitrary n-by-w matrices. To obtain the integral in eq. 
(8.33), we take derivatives of this generating function

Z=(^...TIA-)lF(J,X)|J_K_(1. (8.35)
W/.<. ZKlmkJ

Invariance of the group measure gives W the symmetry properties

W(J9 K) = W(K9 J) = IPfeo1 Jg15 gr1 Ag0), (836)

where g0 and gr are arbitrary SU(ri) matrices.
The generating function satisfies an interesting system of differential 

equations. Since gg-1 = 1, we have

(5/9*a) (0/04,) W(J9 K) = (8.37)

And since the determinant of an SU(ri) matrix is unity, we have

det (0/0J) W(J, K) = 1. (8.38)

Along with the initial condition
IF(0,0) = 1, (8.39)

these differential equations are sufficient to determine W. Several authors 
have studied these equations in the large n limit (Brower and Nauenberg, 
1980; Bars, 1981). We will solve them iteratively in powers of J and Kand 
give a graphical algorithm for evaluating the coefficients in this expansion.
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We first eliminate the K dependence in W using the expression for g”1 
in terms of the cofactors of g

= (COf(g))i;
= (!/("-l)!)e>,(8.40) 

where e denotes the totally antisymmetric tensor with n = 1. This allows 
us to solve eq. (8.37), replacing derivatives with respect to K by derivatives 
with respect to J

K) = exp (Tr (ATcof (0/0J))) W(J), (8.41)

where W(J) = W(J,K = 0) = Jdgexp(Tr(Jg)). (8.42)

To evaluate FF(J) we use the invariance of eq. (8.36), which now reads

W(J) = W4). (8.43)
In an appendix of Creutz (1978a) it is proven that any analytic function 
of /satisfying this symmetry property is a function only of the determinant 
of J. Thus we expand

W(J) = E a^det/y. (8.44)
i-o

Normalization of the integration measure implies
a0= 1. (8.45)

A recursion relation determining further at follows from the second 
differential equation, eq. (8.38). A tedious combinatoric exercise (Creutz,
1978Z>) shows

(det (8/8 J)) (det J)*’ = (72n?!(det/)W- 
v */•

From eqs (8.38), (8.44) and (8.46) we find

„ O-1)’ „
‘ (i+M-1)! <-v

With eq. (8.45), this is solved to give
2!3!... (n—1)!

Qi ~ i\(i+1)!... (i+n-1)! ’

Our final power series expression for W(J) is

(8.46)

(8.47)

(8.48)

(8.49)00 2!...(w—1)!

Note that the determinant of a matrix is simply expressed in terms of the 
antisymmetric tensor e

detJ=(l/n!)e<1...iBeA..jBJM1...Jin;n. (8.50)
A graphical notation is useful for carrying out the derivatives in eq.
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(8.35). We use directed line segments to denote group elements. In figure 
8.1 we illustrate the convention of upward directed lines representing 
factors of g while downward lines represent g-1. The ends of these line 
segments carry as labels the matrix indices of the respective elements. The 
line direction runs from the first to the second index, as shown in the figure. 
In figure 8.2 we show how the generic integral from eq. (8.33) appears in 
this notation.

/

Fig. 8.1 . Graphical representation of g and g-1 (Creutz, 1978^).

/1 Jn km

{ = A • • • A V • • • V

A in il im

Fig. 8.2 . The generic integral under consideration (Creutz, 19785).

(a) 6,

Fig. 8.3 . Representation of (a) the Kronecker symbol and (b) the antisymmetric 
tensor (Creutz, 19785).

We represent the Kronecker delta symbol with an undirected line 
connecting the indices i and j, as shown in figure 8.3a. The antisymmetric 
epsilon symbol appears as a vertex joining n lines from the indices 

to in. As the order of these lines is important, we attach to the vertex 
an arrow running from the first to the last index, as shown in figure 8.3/>. 
Finally, whenever two line segments are connected, a matrix product is 
understood; i.e., the indices associated with the connected ends are 
summed over.
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In the evaluation of group integrals, products of e symbols often occur. 
Some useful identities involving such products are:

^..An^..An = n^ (8.51)
= (8.52)

(8.53)
In our graphical notation these relations appear in figure 8.4.

Fig. 8.4. Some combinatoric identities (Creutz, 1978Z>).

Fig. 8.5. Replacing g-1 with the cofactors of g (Creutz, 19786).

Evaluation of a group integral consists of a replacement of the directed 
lines in figure 8.2 with vertices and undirected lines, thus expressing the 
result in terms of antisymmetric e and Kronecker 3 symbols. The first step 
in this procedure is to convert all directed lines into a set of lines directed 
only upward. This is accomplished using eq. (8.40), which is shown 
graphically in figure 8.5. If there were initially more downward than 
upward lines, it would be simplest to first use eq. (8.20), which says that 
the arrows on all lines can be simultaneously reversed. Once all lines have 
the same orientation, we use eqs (8.49) and (8.50) to reduce the integral 
to a sum of terms involving antisymmetric tensors. Note that the integral 
automatically vanishes unless the number of group lines is a multiple of n. 
Supposing we have np lines, where p is an integer, we display eq. (8.49) 
graphically in figure 8.6. The indicated sum over permutations is over all 
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topologically distinct ways of connecting the group indices to pairs of 
vertices. The factor in the figure already includes permutations of indices 
coupled to the same vertex pair and permutations of the vertex pairs. The 
resulting sum has (Mp)!/(p!(n!)p) terms.

Certain identities on the group elements have a simple graphical 
representation. For example, invariance of the Kronecker symbol

— $ib (8.54)

+ permutations
Fig. 8.6. Evaluation of the integral (Creutz, 1978&)-

Fig. 8.7. Invariance of the (a) Kronecker symbol and (b) antisymmetric tensor 
(Creutz, 1978£).

is shown in figure 8.7a. In terms of the sources J and K, this figure 
corresponds to eq. (8.37). Invariance of the antisymmetric symbol

Ziih ■■■^inineh -in = (8<55)

is shown in figure 8.76. Contracting the indices with an additional e symbol 
gives the graphical representation of eq. (8.38). Both the identities 
represented in figure 8.7 are valid regardless of any other lines present in 
the diagram.

We conclude this chapter with some simple examples to illustrate these 
rules. First consider p = 1 in figure 8.6. This immediately gives

j ... gtnin = (1/m!) e<i... tn eh (8.56)

In low-order strong coupling expansions a useful integral is

hjici ‘Ow- (8.57)
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This is evaluated graphically in figure 8.8 Here we first use figure 8.5 to 
direct all lines upwards, then we use figure 8.6 to eliminate these lines, and 
finally we use the identity from figure 8.4 to obtain the result

hjkl — (1/«)<M«- (8.58)
As a final example consider

1= Jdgg0(g-%gm„(g-‘)p,. (8.59)

Fig. 8.8. Evaluation of the integral fdgg^g*/ (Creutz, 19785).

Fig. 8.9. The integral fdgg^g^1 gmng~J (Creutz, 19785).

In figure 8.9 we use figure 8.5 to express I in terms of 2n upward lines. 
Use of figure 8.6 at this point would give an expression with (2n)!/(2!n!2) 
terms. Some simple tricks allow us to simplify this expression for general 
n. All terms in this sum have four, an even number, of e vertices both at 
the top and at the bottom of the diagram. These can all be eliminated using 
identities similar to those in figure 8.4. Thus the result must finally appear 
in terms of sets of Kronecker 3 symbols connecting separately indices at 
the top and bottom of the diagram. Furthermore, note that a Kronecker 
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8 cannot connect the indices i and m or j and n because they can be 
initially coupled only through an odd number of e vertices. Thus the final 
expression for the integral must take the form

I = a(8u 8mq 8jk 8np 4- 8^q 8mi 8jP
4- b(8u 8mq 8jp 8nk 4- 8iq 8mi 8jk 8np), (8.60) 

where only two independent coefficients are needed because of the kl< >pq 
symmetry of the integrand. The coefficients a and b can now be determined 
by multiplying by 8jk and using figure 8.7# to reduce the integral to that 

Fig. 8.10. Evaluation of the coefficients a and b. The closed circles represent 
^8^ = n (Creutz, 19786).

already evaluated in figure 8.8. This sequence of steps appears in figure 
8.10 and leads to the conclusion

a= l/(w2-l),

2. For SU(n) evaluate dgTr(gn).

b =— l/(n(n2—V)). (8.61)
Inserted into eq. (8.60), this gives the desired integral.

Problems

1. Show that for 2-by-2 matrices det (A) = |((Tr A)2 — Tr (/I2)). What is 
the corresponding formula for 3-by-3 matrices?
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3. Show that for irreducible representations R and R' 
^gXfl(g)XR'(glg) = dR^RR'XR^ 

where dR is the dimension of the matrices in the representation.
4. Prove eq. (8.23).



9
Gauge-invariance 

and order parameters

For the pure gauge theory without fermions, the formulation of Wilson 
emphasizes the analogy of lattice gauge theory with models of magnetism 
in statistical mechanics. The are much like ‘ spins ’ located on the bonds 
of the crystal. These variables then interact through the four-spin coupling 
in the Wilson action. Further pursuing this analogy, one might ask whether 
a lattice gauge theory can ever develop a spontaneous magnetization. In 
a ferromagnet, the spins develop a non-vanishing expectation value in the 
direction of the magnetization. Thus we might look for phases of lattice 
gauge theory where <t7y> + 0. (9.1)

We will now show that this is impossible in the Wilson theory.
In an ordinary magnet, such an expectation value represents a sponta

neous breaking of a global symmetry. The magnetization has to choose 
some direction in which to point. This may be determined either with 
appropriate boundary conditions or with a limit on a vanishingly small 
applied magnetic field. Once a direction is selected, it remains stable 
because of the infinite number of degrees of freedom in the thermodynamic 
limit. Thermal fluctuations cannot coherently shift the magnetization of 
a large crystal.

In lattice gauge theory, however, an expectation value as indicated in 
eq. (9.1) breaks the local symmetry of gauge invariance. Because the Wilson 
action is unchanged under the substitution

(9.2) 
one can arbitrarily rotate the direction of Uq. As this can be done without 
changing an infinite number of degrees of freedom, unlike the ferromagnet, 
thermal fluctuations will induce such rotations and ultimately average over 
all gauges (Elitzur, 1975). More formally, if we change variables on all 
other links emanating from site i

Uik^UijUik, (9.3)
then all dependence on cancels from the action and we have

<Uij> = ^dUijUij9 (9.4)

51
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which vanishes if Uy contains only non-trivial irreducible representations 
of the group. The magnetization vanishes in pure lattice gauge theory.

This is unfortunate because in a spin model the magnetization provides 
a useful order parameter for distinguishing phases. At high temperatures 
the system is disordered and the magnetization vanishes identically. If at 
lower temperatures the spins have an expectation value, then we are by 
definition in a ferromagnetic state. If we can show that at sufficiently low 
temperatures such a state exists, then we have proven that the system has 
a phase transition. In lattice gauge theory the expectation of always 
vanishes and therefore cannot be used to monitor phase changes.

As the problem is intimately entwined with gauge invariance, we should 
look for a gauge-invariant order parameter. Indeed, as the path integral 
runs over all gauges, the gauge non-invariant parts of any operator are 
removed from its expectation value. Thus we will concentrate our attention 
on quantities which are invariant under eq. (9.2). In the pure gauge theory, 
the simplest example of such an object is the trace of the product of four 
links around a plaquette, or essentially the action for the given plaquette. 
It expectation value represents the internal energy of the corresponding 
thermodynamic system and is given by a derivative of the partition 
function

P = < 1 - (1/n) Tr t/n> = i(W)logZ. (9.5)

The factor 1 /6 is the ratio of the number of sites to number of plaquettes 
on a four-dimensional lattice.

The ‘ average plaquette ’ P is an order parameter in the sense that it must 
exhibit singularities of the bulk thermodynamics. However it lacks the 
useful property of a magnetization in that it never vanishes identically 
except exactly at zero temperature. We cannot distinguish phases with the 
average plaquette vanishing in one and not another. Indeed, gauge
invariance precludes any local order parameter from having this property 
of a magnetization in a spin system. By local we mean involving the 
expectation of a function of gauge variables in a fixed finite domain of the 
crystal. Several years before Wilson’s work, Wegner (1971) used lattice 
gauge theory based on the group Z2 = { + 1} as an example of a class of 
models lacking local order parameters and yet having a non-trivial phase 
structure.

Despite its shortcomings as an order parameter, the average plaquette 
plays a major role in numerical work where it is the simplest variable to 
evaluate. Indeed, many transitions are easily seen as jumps or singularities 
in P as a function of the coupling. For example, in figure 9.1 we show P 
versus the inverse temperature fl for the gauge group Z2 on a four
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dimensional lattice. The points are from Monte Carlo analysis and the 
curves are based on strong coupling series and duality, all subjects of later 
discussion. The large jump in P is indicative of the strong first-order phase 
transition in this model.

A hypothetical unconfined phase of a gauge theory based on a continuous 
group should contain massless gauge bosons. Using a transfer matrix 
formalism to determine energies, we define the mass gap as the energy 
difference between the ground state and the first excited state. This 
quantity will vanish exactly in an unconfined phase with its free gluons.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

Fig. 9.1. The average plaquette for Z2 lattice gauge theory. The points are from 
Monte Carlo simulation and the curves from strong and weak coupling analysis. 
Note the discontinuity in P at the phase transition at = |log(l + V2) (Creutz, 
1980a).

In contrast, in a phase displaying confinement of massive quarks, we 
should have a spectrum of massive glueballs and bound states of quarks. 
Thus the mass gap is an order parameter which is expected to vanish in 
one phase but not another. In statistical mechanics language, the mass gap 
is the inverse of the correlation length. The expectation of two separated 
operators in a statistical system will generally display a correlation between 
the operators which falls with the distance between them. If for asymptotic
separations this falloff is exponential, then the coefficient of the decrease
is the mass gap m

C(r) ~ exp( — mr). (9.6)

This may be justified using a transfer matrix along the separation r. More 
physically, this equation represents a Yukawa exchange of the lightest 
particles on the theory. When the mass gap vanishes, we obtain power law 
forces as familiar in electrodynamics. Note that as an order parameter the 
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mass gap is not local in that its definition involves correlations between 
asymptotically separated operators.

The use of the mass gap as an order parameter becomes somewhat more 
complicated if in the confinement phase the hadronic spectrum happens 
to display a massless particle. This is not simply an academic point because 
such a behavior is expected when bare quark masses vanish. In this chiral 
limit, alluded to in chapter 3, y5 symmetry is probably manifested in a 
Nambu-Jona-Lasinio (1961) Goldstone (1961) mode with a vanishing 
pion mass. In this case a discussion of confinement in terms of the mass 
gap requires a spin analysis of the massless quanta.

For the pure gluon theory without quarks. Wilson has proposed another 
non-local order parameter. The trace of a product of links around a closed 
loop is a gauge-invariant construction. Its expectation value is called the 
Wilson loop

W{C) = <Tr n t/0>. (9.7)
ijeC

Here C denotes the loop in question and the group elements are ordered 
as encountered in circumnavigation of the contour. The simplest non-trivial 
Wilson loop is the average plaquette, defined in eq. (9.5) with an extra 
additive constant.

If a quark were to pass around the contour C, its wave function would 
pick up an internal symmetry rotation given by the product of the link 
variables encountered. The Wilson loop essentially measures the response 
of the gauge fields to an external quarklike source passing around its 
perimeter. For a timelike loop, this represents the production of a quark 
pair at the earliest time, moving them along the world lines dictated by 
the sides of the loop, and then annihilating at the latest time. If the loop 
is a rectangle of dimensions T by R, a transfer matrix argument suggests 
that for large T w(R,T) ~ exp (-£(/?) T), (9.8)

T->oo

where E(R) is the gauge field energy associated with static quark-antiquark 
sources separated by distance R. If the interquark energy for large 
separations grows linearly gfjq (99)

/?->oo

then we expect for large loops of long rectangular shape
W(R, T) ~ exp(-KRT). (9.10)

The loop expectation falls with the exponential of the area of the loop and 
the coefficient of this area law is the coefficient of the linear potential. 
Physically, this area law represents the action of the world sheet of a flux 
tube connecting the sources. This picture suggests that this area law 
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behavior should hold for arbitrarily shaped loops as long as they are 
larger than the cross sectional dimensions of a flux tube. In general we 
expect that with linear confinement

W(C) - exp( —XL4(C)), (9.11)
where A(C) is the minimal surface area enclosed with the loop C.

In a theory without confinement, the energy of a quark pair should not 
grow indefinitely with separation, but rather approach twice the self energy 
of an isolated quark. In such a situation the expectation value of the Wilson 
loop will decrease more slowly with loop size, in particular exponentially 
with the perimeter of the contour

IF(C) - exp(-MO)- (9.12)
Here p(C) is the perimeter and k is the self energy contained in the gauge 
fields around an isolated quarklike source. Some perimeter law behavior 
should always be present, even in a confining phase where an area law 
behavior dominates for large enough loops.

The coefficient of the area law provides another order parameter for 
lattice gauge theory. It vanishes identically in unconfined phases while 
remaining non-zero whenever quark sources experience a linear long-range 
potential. It has been extensively studied partly because of its simple flux 
tube interpretation and partly because of the ease of its evaluation in the 
strong coupling limit, to be discussed later. As it is directly related to the 
inter-quark potential, this coefficient is a physically meaningful parameter. 
In particular, it should be finite in the continuum limit of the pure gluonic 
theory. This is in contrast with the perimeter law behavior which should 
contain self energy divergences as the cutoff is removed. The area law is 
similar to the mass gap in that it represents a non-local order parameter. 
This is because of its definition in terms of the asymptotic behavior of a 
correlation function. It has the advantage over the mass gap in that it may 
be of value even for non-continuous groups such as Z2 which may lose 
confinement without the appearance of a massless particle.

The area law criterion for confinement loses its value when quarks are 
introduced as dynamical variables. In this situation widely separated 
sources will reduce their energy by creating a pair of quarks from the 
vacuum fluctuations and screening their long range gauge fields. Effectively, 
a large Wilson loop measures the potential between two mesons rather than 
simple bare quarks. If we knew how to calculate with the full theory, 
however, we would not need a criterion for confinement. All we need to 
do is calculate the mass spectrum and see if it agrees with laboratory 
experiments. Hopefully we will soon reach this stage.
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Similar interesting questions regarding order parameters arise in gauge 
theories of the weak interaction, where a Higgs (1964) mechanism 
generates masses for the gauge bosons. In these theories lattice techniques 
have played almost no role, primarily because perturbative methods are 
more than adequate for relevant phenomenology. In the standard 
presentation, an expectation value for the Higgs field first results in a 
massless Goldstone (1961) boson which is subsequently ‘eaten’ by the 
gauge field and becomes the longitudinal component of a massive vector 
boson.

On more detailed inspection, this concept of the Higgs field acquiring 
a vacuum expectation value is overly simplistic. In particular, this field, 
and thereby its expectation, is not gauge-invariant. In some gauges such 
as the temporal one the Higgs expectation value is necessarily zero (Creutz 
and Tudron, 1978; Frohlich, Morchio and Strocchi, 1981) and the vector 
meson mass is related to the behavior of the vacuum under time
independent gauge transformations which are non-trivial at spatial 
infinity.

In lattice gauge theory one usually integrates over all gauges. When a 
Higgs field is present, its direction is thus averaged over. We conclude that 
the Higgs phase of the theory does not possess a local order parameter 
in the sense discussed at the beginning of this chapter. As with the 
confinement question, we could use the mass gap as a non-local order 
parameter distinguishing the Higgs phase from the massless vector meson 
phase. But this raises a rather peculiar question. What is the difference 
between the Higgs and confinement phases? Indeed, both are expected to 
have mass gaps. Fradkin and Shenker (1979) have shown that in certain 
cases these phases are not distinct and one can analytically continue from 
one to the other. This occurs when the Higgs field is in the fundamental 
representation of the gauge group. In this case the concept of confinement 
becomes obscured by the fact that an external source can always be 
screened by Higgs particles. This phenomenon gives rise to an alternative 
set of words to describe the states in a weak interaction theory when the 
Higgs fields are in the fundamental representation. For example, the 
electron would be a confined bound state of a bare electron and a Higgs 
particle (Abbott and Farhi, 1981a, b).

We now leave the discussion of order parameters and turn to the 
question of gauge fixing in the lattice theory. In Wilson’s formulation, 
quantization does not require a choice of gauge. The integrals over the link 
variables are each over a compact domain and thus there cannot be any 
divergences arising from an integral over all gauges. This contrasts with 
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usual continuum formulations where the volume of the gauge orbits is 
infinite and some sort of gauge fixing becomes a necessity. In addition to 
regulating the conventional ultraviolet divergences of field theory, the 
Wilson prescription also cuts off the total gauge volume. On the other 
hand, the gauge invariance of the action still permits working within a fixed 
gauge without affecting the expectations of gauge-invariant operators, 
such as the Wilson loop. We will now discuss a special class of gauges which 
are particularly simple in the lattice theory (Creutz, 1977).

Let P(U) be some polynomial in the link variables which is invariant 
under the general gauge transformation of eq. (9.2). The following 
discussion goes through unchanged with other fields, such as those of 
quarks, present; however, for simplicity we consider only the pure gauge 
theory. Associated with this polynomial is a Green’s function

G(P) = Z-1j(d U) e“S(U) P(U). (9.13)

We begin the discussion with the consideration of a single link from site 
i to site j. Suppose that in evaluating the expectation in eq. (9.13) we forgot 
to integrate over that one link variable. Remarkably, we will now see that 
the result for G(P) would not be affected by our sloppiness. To see this 
formally we introduce a delta function on the gauge group. This has the 
properties f

J dg<J(g',g)/(g) = J dg£(g,g')/(g) =f(g')

%g, g') = <Xgo ggv go g'gi) (9-14)

for arbitrary g0 and gP Leaving link fixed at the element g rather than 
integrating over it as instructed in eq. (9.13) gives for the expectation of P

I(P,g) = Z1 j(dt/H(t7y,g)e-^>P(t/). (9.15)

Clearly if we integrate over g we get back to eq. (9.13)
G(P) = JdgZ(P,g), (9.16)

If we now consider the gauge transformation of eq. (9.2) and note the 
invariance of S(17), P(U), and the measure, we obtain

Z(P,g) = Z(P,gr1gg>). (9.17)
Since gt and g^ are arbitrary, we conclude that Z(P, g) is actually independent 
of g. Eq. (9.16) then tells us

Z(P,g) = G(P), (9.18)
which is what we set out to prove. To calculate a gauge-invariant Green’s 
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function we can set any particular link variable to an arbitrary group 
element and only integrate over the remaining variables.

The above process can be repeated to fix more link variables. The final 
result is that we can arbitrarily neglect to integrate over any set of as 
long as this set contains no closed loops. The fixed links should form a 
tree, which may be disconnected. The gauge is completely determined if 
we have a maximal tree, a tree to which the addition of any more links 
would create a closed loop. An example of such a maximal tree is shown

in figure 9.2. The Uy can be set to arbitrary group elements g^. The general 
formula for the Green’s function of our gauge-invariant operator is

G(P) = Z‘1 f(dl/) n <J(L/v,g0)e-5<^P(C). (9.19)
J {ij}eT J

Here T denotes the tree in question and {ij} refers to the link connecting 
sites i and i with arbitrary orientation.

A particularly simple gauge corresponds to setting all links in a 
particular direction to unity. This corresponds to an axial gauge where one 
component of the vector potential vanishes. Choosing the time direction, 
we obtain the Ao = 0 or temporal gauge. This gauge will be useful for the 
construction of a transfer matrix and a Hamiltonian formulation of the 
lattice gauge theory. This gauge is illustrated in figure 9.3 and still leaves 
the freedom of time-independent gauge transformations.

Note that in an axial gauge plaquettes parallel to that axis represent a 
simple two-spin coupling of the unfixed variables. The theory reduces to 
a set of one-dimensional spin chains interacting with each other via the 
four-spin coupling of the remaining plaquettes. In two space-time 
dimensions there is no interchain coupling and the pure gauge theory is 
equivalent to an exactly solvable one-dimensional spin system.
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Problems

1. Solve two-dimensional lattice gauge theory for pure gauge fields. 
Find an expression for the average plaquette in terms of simple integrals 
over the gauge group. Show that the model has no phase transitions. Show 
that the Wilson loops always exhibit an area law.

2. Consider lattice gauge theory defined by replacing 17D by the product 
of links around one-by-two rectangles and with the action being a sum over 
all such rectangles. Show that the two-dimensional model is no longer 
trivial. Show that the two-dimensional Z2 model has a phase transition.

3. Find a gauge fixing tree such that most of the unfixed links have a 
non-vanishing expectation value, even on an infinite lattice.

4. Given an arbitrary gauge fixing function f(U), show that our 
gauge-invariant Green’s function is given by

G(P) = Z-1 j(dC/)(/(tf)W))e-sP(C/),

where the Fadeev-Popov (1967) correction factor 0(17) is an integral of 
f over all gauges (Kerler, 198lb)

0(t/) = j(IIdgO/fetW)-

Show that (j) = 1 for the gauge fixing function in eq. (9.19).
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Strong coupling

In the statistical analog, the strong coupling regime is the high temperature 
limit. High temperature expansions are an old subject in solid state physics, 
but before Wilson’s work they were relatively unknown to particle 
theorists. Indeed, in the continuum theory the strong coupling limit is 
rather unnatural and difficult to treat. In contrast, on the lattice strong 
coupling is by far the simplest limit. One merely expands the Boltzmann 
factor in powers of the inverse temperature and evaluates the terms in the 
resulting series. In the gauge theory each power of /? is associated with a 
plaquette somewhere in the lattice. This gives a simple diagrammatic 
interpretation in terms of graphs built up from such plaquettes (Wilson, 
1974; 1975; Balian, Drouffe and Itzykson, 19756).

We begin our discussion with a rectangular Wilson loop in pure SU(n) 
lattice gauge theory without fermions

= Z1 f(dt/)e"5(l/n)Tr II Utj. (10.1) 
J ijeC

Here the curve C is the rectangle of dimensions I by J in lattice units, and 
the factor of 1 /n is inserted for convenience. As usual, the group elements 
are ordered as encountered in circumnavigating the contour. In figure 10.1 
we show such a curve for a three-by-three loop. Because the variables 
become random in the strong coupling limit, it is simplest to shift the action 
by a constant from the normalization used in eq. (7.6). Thus we take

S = -Z(fi/n) ReTrt/n 
□

= -S(/?/(2n))(Tr Uo + Tr C/£). (10.2)
□

We now observe that because
|(dt/) U„ = 0 (10.3)

all Wilson loops will vanish as fl goes to zero. Indeed, for each link in the 
contour we must bring down at least one corresponding link from an 
expansion of the exponential of the action if we are to avoid the zeros from 

60
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eq. (10.3). Correspondingly, every link from the action must have a 
partner, either from the action itself or the inserted loop. The first 
non-vanishing contribution in the strong coupling series comes from tiling 
the loop with plaquettes as shown in figure 10.2. Note the orientations 
of the loops in the figure; this is important for all SU(n) except S(7(2), for

x x x x x x x
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x—»—x—»—x—*—x 

x x x x

x x x x
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X X
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X X
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Fig. 10.1. A three-by-three Wilson loop.

x x x x x x x

Fig. 10.2. Tiling the loop with plaquettes.

which Tr is real. The simple integrals needed to evaluate this diagram 
are r

dg 1 = 1 (10.4)

for links outside the tiled region and

= (10.5)

within the loop. These integrals can all be combined graphically using the 
rules from the chapter on group integration. We obtain a factor of n-1 from 
each pair of bond variables and a factor of n from each site on the surface,
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including the boundary. Multiplying these with ^/(2n) for each plaquette 
brought down from the exponential of the action, we obtain the result

JF(/,J) ->
0^0

'(fi/(2n2))1J, n>2

W/4YJ, SU(2).
(10.6)

The difference for SU(2) arises from the non-oriented nature of the 
plaquettes.

At this lowest non-trivial order of strong coupling we already see an area 
law ~ erKA, (10.7)

where the area in physical units is
A = a*IJ (10.8)

and the string tension starts out
(— a-2log(/?/(2n2)), n>2) 

a -> 
z?->o P (—a~2log(/?/4), SC7(2).

This area law behavior will persist for arbitrarily shaped loops. The 
leading contribution in the small fl limit always follows from tiling the 
minimal surface bounded by the loop.

The existence of an area law behavior for the Wilson loop is a nearly 
universal phenomenon in the strong coupling limit. It occurs for all gauge 
groups in which no singlets appear in the direct product of the fundamental 
representation with any number of adjoint representations. This includes 
most but not all groups of interest. In physical terms, if a finite number 
of gluons can neutralize a source in the fundamental representation, then 
they will surround the edge of the large Wilson loop and give a perimeter 
law type of behavior. This occurs with the group SO(3) where a singlet 
occurs in the product of three spin-one representations. For large loops 
the leading strong coupling diagram is sketched in figure 10.3. This is a 
purely gluonic analog of the phenomenon discussed in chapter 9, where 
we argued that the area law is no longer a useful order parameter after 
quarks enter the theory.

To keep from writing equations for several cases, we now restrict 
ourselves to the group SU(3). Then the next contribution arises from 
replacing one of the tiling plaquettes with two of the opposite orientation. 
The resulting diagram appears in figure 10.4. The new integrals follow from 
eq. (8.56) of the chapter on group integration. Allowing for the insertion 
to be placed anywhere on the tiled surface, we obtain

J)= (^/18)JJ(1+/J^/12+O(^2)), (10.10)

a2^ = -log(^/18)-^/12+O(^). (10.11)
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Note that this particular correction to the leading order has the same 
geometric structure. We still consider the tiling of a minimal surface inside 
the loop and have only introduced a new type of tile. A simple change of 
variables permits the summation of all contributions of this type. Consider

Fig. 10.3. A strong coupling diagram for SO(3) gauge theory. This 
contribution falls exponentially with the perimeter of the loop.

x x x x x x x

Fig. 10.4. A new type of tile.

the character expansion of the exponentiated plaquette operator

exp(i/?ReTrC7n) = W)(l + S (10.12)
R * 1

Here the sum extends over all non-trivial irreducible representations of the 
group and %R is the trace or character in the corresponding representation. 
This sum is easily inverted using the orthogonality of the characters
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(eq. 8.31), with the result
N{fi) = JdC7exp(|/?ReTrt7), (10.13)

bR(JS) = 2V-* jd[7(xR C7)*exp(i/?ReTrt7). (10.14)

Using eq. (10.12), one replaces a sum over arbitrary powers of Tr t/n on 
any given plaquette with a sum over representations of the group, each 
occurring only once. For low orders in the strong coupling expansion one 
can rapidly perform the needed group integrals with the use of familiar 
combination rules to form singlets from the representations appearing on 
the adjacent plaquettes to any given link. The disadvantage of this method 
is that as the order increases we must keep track of higher and higher 
representations.

We will now illustrate this technique with an evaluation of the string 
tension a2K to an effective order /F. For SU(3) the first few coefficients in 
eq. (10.12) are />3 =/>5 = ^/6 + O(/?2), (10.15)

b9 = bt = /F/72 + O(/F) = bl/2 + O(bl), (10.16) 
bs = ^/36 + O(fi3) = bl + O(bl). (10.17)

Higher representations start with higher powers of To avoid needing 
further terms in eq. (10.15), we express the result in powers of b3. Note 
that the normalization N( /$) drops out of the calculation due to the division 
by Z in expectation values. As before, the leading term for our flat Wilson 
loop arises from tiling the minimal surface with fundamental plaquettes. 
Thus eq. (10.9) becomes

a2K — log(£3/3). (10.18)

However now we encounter no corrections to this formula until order b%. 
This next term comes from a non-minimal tiled surface obtained by placing 
a cubical bump on our tiled plane as shown in figure 10.5. This adds four 
new plaquettes to the surface and we find

PF(/, J) = (/>3/3)"(l + 47J(fe3/3)44-O(ft|)), (10.19)

a2K = -log (63/3) + 4(/>3/3)4 + O(/>53). (10.20)

The factor of four in front of the new term represents the fact that the bump 
on our surface can either project above or below the plane in either of the 
two remaining dimensions of our four-dimensional space-time.

The next contribution arises from the same basic picture as in figure 10.5 
but now with a non-trivial representation for the base of the cube. If we 
put a ‘floor’ on the bump using the 3 representation and reverse the 
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orientation of all plaquettes in the cap, we find
a*K = - log (fe3/3) 4- 4(Z>3/3)4 +12(Z>3/3)5 + O(/>|). (10.21)

With the bump’s floor in the sextet or octet representations, and with an 
appropriately oriented cap, we obtain contributions proportional to b6 or 
b8 multiplied by bf. By eq (10.16, 17) these terms are effectively of order 
bl

Fig. 10.5. An order b% correction to the string tension.

Fig. 10.6. A disconnected diagram.

At order bf a new type of contribution arises from the division by Z in 
evaluating expectation values. The partition function itself is a sum over 
disconnected diagrams. It serves to cancel diagrams with non-trivial 
representations on clusters of plaquettes completely isolated from the 
sources in the Wilson loop. For example, the diagram in figure 10.6 need 
not be evaluated. However, the division also removes some extra pieces 
if the cluster contributing to Z overlaps the connected numerator diagram. 
This gives a negative O(bf) contribution to the string tension, as illustrated 
in figure 10.7.

To complete the sixth-order strong coupling expansion for the string 
tension, we also must include the non-minimal bump illustrated in figure 
10.8. Combining all contributions, we obtain

a2K = — log(/>3/3) + 4(63/3)4+12(/>3/3)5—10(63/3)6 + O(#J). (10.22)
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Fig. 10.7. A contribution from the division by Z.

Fig. 10.9. The first few strong coupling approximations to the string tension. The 
curves A, B, C, and D respectively correspond to order 3, 4, 5, and 6 in powers 
of b3.
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Beyond this order the calculation becomes rapidly more tedious. Munster 
and Weisz (1980) have evaluated the coefficients to order A|2.

In figure 10.9 we plot the first four strong coupling expressions for a2K 
as functions of the basic inverse charge p. Note that for ft less than five 
the result appears rather stable. This suggests that the radius of convergence 
of the strong coupling series is of order five. Indeed, the theory is known 
to be analytic in the vicinity of vanishing /? (Osterwalder and Seiler, 1978). 
This contrasts with the usual perturbative expansion in coupling, which 
is known to be at best asymptotic (Dyson, 1952; Lipatov, 1977; Brezin, 
Le Guillou and Zinn-Justin, 1977a, 6).

Fig. 10.10. A strong coupling diagram for calculating the mass gap. The sides 
of the square tube are to be tiled with fundamental plaquettes.

In this purely gluonic theory another interesting quantity for strong 
coupling studies is the mass gap. This is most easily extracted from the 
exponential decay of the correlation between two plaquettes separated by 
a large distance. Thus we effectively study the effects of glueball exchange 
between two gauge-invariant operators. To leading order we have the 
diagram shown in figure 10.10, where the tube connecting the end 
plaquettes is tiled with fundamental plaquettes. This gives

amg = -4 log (*3/3)+O(Z>2). (10.23)
Using a similar analysis to that for the string tension, Munster (1980) gives 
the coefficients in this expansion to order bf.

Including the fermions in the strong coupling expansion is a straight
forward procedure. We recall the full action from chapter 7

S=^E(l-(l/rt)ReTr UD) 
□

+|ia3 E ^(1 4-y^e ) U0^ + (a4w0+4a3)E^^. (10.24) 
{ij} i
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In the strong coupling limit the gauge fields become random. This suggests 
treating the second term in eq. (10.24) as a perturbation. This ‘hopping’ 
term represents the movement of quarks between neighboring sites. Thus 
we begin with the static quark theory defined by the last term in the action 
and expand the exponential of the action in powers of the remaining 
terms. Strictly speaking, the resulting perturbation series is not solely in 
powers of g^2 because when a quark-antiquark pair moves as a unit from 
one site to another, the gauge fields can cancel out, regardless of how 
random they are. Even in the limit of go2 = 0, the theory is not exactly 
solvable and we must make a further expansion. The additional pertur
bative parameter is effectively the inverse quark mass in units of the lattice 
spacing.

At this point we introduce sources coupled to the various fields, as 
discussed in the chapter on fermions. This will allow us to reduce the strong 
coupling expansion to the manipulation of creation and annihilation 
operators. We add to the action terms linear in the external sources and 
in the field variables

Sf = S+X(W.-&O + X Tr(t/0V0+^4). (10.25)
i {ij}

Here b and c are anticommuting sources as discussed in chapter 5. For the 
gauge variables we introduce matrix valued sources J and J analogous to 
the quantities J and K used in the generating function for group integrals 
in chapter 8. Now, however, there are independent sources for every link 
in the lattice. As before, we obtain Green’s functions from derivatives with 
respect to the sources. We represent these derivatives as creation operators 
b+, c+, and J+ satisfying the commutation relations

[W+ = <*m, (10.26)

M]+ = <*M, (10.27)

= (10.28)

= (10.29)

with all other commutators or anticommutators, as appropriate, vanishing. 
We will turn off the sources by applying them to the ‘empty vacuum’ state 
satisfying 6 j 0) = q 10) = , 0) = 10) = 0. (10.30)

We remind the reader that in eqs (10.26-30) we supress spinor and internal 
symmetry indices. The site indices indicated explicitly here must not be 
confused with matrix indices on J and J.
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As in chapter 5, we define a generating state
(JF| = (O|J(d^d^dU) exp (-$,). (10.31)

Green’s functions follow from the formula

= z-\w\bt ...btnci... JO)’ <10-32)
where the partition function is simply

Z=(W\0). (10.33)
Because of the forthcoming analogy with the string model, we call the 

space in which these creation and annihilation operators act4 string space 
The operator creates a string bit pointing from site i to site J. The source 
bf creates an antiquark and cf a quark at site i. Of course one must not 
confuse these ‘quark’ states in string space with states in the physical 
Hilbert space of the Minkowski world. When we discuss the Hamiltonian 
formulation of lattice gauge theory, states in the latter space will be 
distinguished by angular brackets, | ^>.

Strong coupling perturbation theory begins with a breakup of the action 
into two parts S = So + S', (10.34)

where So is the static quark action

S0 = («X+4a»)S^ (10.35)
i

and S' contains the remaining terms in eq. (10.24). We now write the 
generating state in the form

(M^| = (PF0|exp(-S'(6+,c+, J+)). (10.36)
Here in S' all dependences on i/r, i/r, and U variables have been replaced 
with the corresponding source-creation operators. The unperturbed gen
erating state is

Wl = (01 f(d^d^dl/)exp(-S0-E(*t.^-^.ct)

-STr(^4 + ^4). (10.37) 
{ij}

Since So is quadratic in the anticommuting fields, the fermionic integral 
is easily done with a completion of the square

f(d^d^)exp(-S0- S(6<^i-^q)) = Aexp(-E^(4a3-Fwa4)"1ci).
J i i

(10.38)
The irrelevant normalization factor N is just the product over all sites of 
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(a4m0-|-4a3). The integral over gauge fields in eq. (10.37) was extensively 
discussed in chapter 8 for a single link. Thus we have

(dU)exp ( Z Tr = O WG(Jip Jo), (10.39)
W} U

where WG is the group-integration generating function of eq. (8.41).
Putting all factors together, we obtain the expression for the generating 

state (Wl = (0|exp(-£^(4a3+wa4)-^)n WG(Ji},Ji})
i ij

X exp (-|ia3 S 4(1 + eA) bj)

xexp(—/?£(! —(l/«)ReTr II J&). (10.40)
□ {«}€□

The strong coupling expansion follows from a power series treatment of 
the last two terms.

The four terms in eq. (10.40) have a simple interpretation in string space. 
The first term destroys quark-antiquark pairs at a single site, the second 
term destroys sets of string bits associated with nearest-neighbor pairs of 
sites, the third term creates quark-antiquark pairs separated by one lattice 
spacing and connected by a string bit pointing to the antiquark, and the 
last term creates elementary squares of string bits. This creation and 
destruction of quarks and string bits provides the basis of the diagrammatic 
rules.

Consider some particular Green’s function as in eq. (10.32). The 
graphical rules for calculating this quantity are read off from eq. (10.40):

(1) Draw a set of string bits, quarks, and antiquarks as created by the 
corresponding operators in eq. (10.32).

(2) Using the third factor in eq. (10.40), create string bits connecting 
quark-antiquark pairs to produce a configuration where every site has an 
equal number of quarks and antiquarks. With several types of quarks, each 
species must balance separately. Closed quark loops can also be generated 
at this stage. Every quark-string-antiquark combination generated by this 
rule gives a factor of to the amplitude. The spinor indices
on these gamma matrices will be contracted in rule (4).

(3) Use the last factor or ‘plaquette term’ in equation (10.40) to create 
elementary squares of string bits, thus generating a configuration where 
every nearest neighbor pairs of sites i, j has a set of string bits which can 
form a singlet in the gauge group. Thus for S(7(3) the number of bits from 
i to j minus the number from j to i must be a multiple of three. Each 
plaquette gives a factor of /?/6 to the diagram. A set of m identical 
plaquettes gives an additional factor of \/m\. Alternatively, we can use 
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the parameters bR of eq. (10.13) and dress the plaquettes in various 
representations taken one at a time.

(4) The first term in eq. (10.40) now serves to connect the quark and 
antiquark lines. They are paired up at each site individually, and in the 
process spinor, flavor, and the internal symmetry indices of the string 
bits are contracted. Each such ‘quark connection’ gives a factor of 
(4a3-F/na4)-1 to the amplitude.

(5) At this point we have built up the full diagram. We now begin to 
tear it down by doing the group integrals. For this purpose we may use 
the graphical rules from the chapter on group integration. If we are using 
the parameters bR, then these integrals proceed as in the discussion of the 
string tension at the beginning of this chapter.

(6) Some factors of minus one arise from the fermionic nature of the 
quarks. Each quark line forming an internal closed loop gives a factor of 
— 1. With the Green’s function in the standard ordering of eq. (10.32), if 
each is connected by a quark line to then there are no more factors; 
otherwise we must multiply by minus one to the number of transpositions 
necessary to put the ^’s in the same order as the ^’s they are connected 
to. This is the same rule which gives an ordinary Feynman diagram an extra 
minus sign for each interchange of external fermion lines.

(7) Sum over all distinct strong coupling diagrams up to the order 
desired.

(8) Divide by Z, the sum of all vacuum fluctuation diagrams. This will 
first of all remove contributions of totally disconnected parts of a diagram. 
In addition, as noted in the discussion of the string tension, non-trivial 
contributions arise when the vacuum fluctuation overlaps the diagrams in 
the numerator.

We now illustrate these rules with a simple example. Taking a single 
quark species, we study

(io.4i)
This is the two-point function for the composite pseudoscalar field y5 
Rule (1) instructs us to place quark-antiquark pairs at site i and site j as 
illustrated in figure 10.11. In this figure we let the vertical direction 
represent x0 and the horizontal direction represent In figure 10.12 we 
show one possible way of applying rule (2), thus adding quark-string- 
antiquark combinations so as to have all quarks paired with antiquarks. 
One dressing of the diagram with plaquettes following rule (3) is shown 
in figure 10.13. Making the quark connections with rule (4) gives figure 
10.14. Finally rule (5) is carried out with the repeated use of figure 8.8 to 
give figure 10.15. Combining the various factors, we obtain the contribution
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Fig. 10.11. The quark-antiquark pairs created by the correlation function in 

eq. (10.41) (Creutz, 1978a).
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Fig. 10.12. A set of quark-string-antiquark combinations pairing all quarks 

with antiquarks (Creutz, 1978a).

Q Q Q

of this diagram to the amplitude

-2Trr, (10.42)

where T is the product of the Dirac operators around the diagram 
Tr r = 2~8 Tr (y5( 1 + 7o) (1 + 71) (1 + y0) (1 + 71), 

y5(i-yo)2(i-y1)2) = i-
Note that eq. (10.42) can be put in the form

3(4a3+wa4)’2 Tr T (4 +ma)~v (J3/18/,

(10.43)

(10.44)
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Fig. 10.13. Dressing the diagram with plaquettes (Creutz, 1978a).

=(1/3)2

Fig. 10.15. Evaluation of the group integrals (Creutz, 1978a).

where p is the total quark line length in units of the lattice spacing and 
A is the area of the surface covered by plaquettes, measured in units of a2. 
This form provides the basis for the string analogy discussed below. Note 
also the high degree of cancellation of the factors of lattice spacing in eq. 
(10.42). Because of this the fermionic fields are often rescaled to give a 
factor of unity with each quark connection of rule (4). Then whenever a 
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quark ‘hops’ from site to site as in rule (2) we pick up a factor of
i(4+ma)-1 1(1+^ e^) = i AT* (1 + e0. (10.45)

In a naive continuum limit the ‘ hopping constant ’ Kh goes to 1 /8. At finite 
lattice spacing, the critical value of Kh representing vanishing bare quark 
mass can be substantially renormalized through interactions. The strong 
coupling expansion is effectively in powers of and Kh.

Equation (10.44) generalizes to all diagrams with the same topology as 
the diagram in figure 10.14, that is all diagrams with a single surface of 
plaquettes bounded by a quark line. This shows the striking connection 
between Wilson’s theory and an oriented string model where the action

Fig. 10.16. A class of diagrams contributing to meson propagators 
(Creutz, 1978a).

associated with a particular world sheet swept out by a string contains a 
term proportional to its area. In the strong coupling limit, the effective 
tension K in the string is the same quantity evaluated at the beginning of 
this chapter. In two-dimensional space-time this connection with the string 
model can be made precise (Bars, 1976). In four dimensions the picture 
is not the simple string model (Goddard et al., 1973) due to complicated 
interstring interactions arising in higher orders (Weingarten, 1980).

The string analogy provides a useful topological classification of strong 
coupling diagrams. For example, a prototype diagram contributing to the 
pseudoscalar two-point function of eq. (10.41) is illustrated in figure 10.16. 
In this diagram the world sheet built up of plaquettes has a hole rimmed 
with a quark loop. The result for such a diagram is

-|3(4a3+ma*)~2 Tr (T£) Tr (Tz) (4+map (/?/18)^, (10.46) 
where TE is the product of the Dirac matrices around the external loop, 
and rz is a similar product around the internal loop. Here the perimeter 
p is again the total quark line length and includes both the fermionic loops. 
The factor of 1 /3 in front of this expression represents the basis of the 1 /n 
topological expansion (t’Hooft, 1974). Each additional quark loop inserted 
into a world sheet of a string will give another factor of 1 /3. In figure 10.17 
we show a class of diagrams contributing to baryon structure. In strongly 
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coupled lattice gauge theory, the proton consists of three quarks at the end 
of strings connected in a ‘ F configuration.

As mentioned above, the strong coupling expansion is a simultaneous 
series in g^2 and Kh. In particular, the limit of infinite gj or vanishing ft with 
Kh remaining finite is not exactly solvable. In this extreme, no plaquettes 
can be generated. Consequently, the two quarks of a meson must hop from

Fig. 10.17. A class of strong coupling diagrams contributing to baryon 
propagation (Creutz, 1978a).

Fig. 10.18. A diagram giving a non-vanishing three-point function even in the 
limit of infinite gj.

site to site together. Nevertheless, the hadrons are not free particles because 
they can still exchange these zero radius mesons. For example, we have 
non-vanishing three-point vertices of the type illustrated in figure 10.18. 
Although one should not expect a great deal of detailed phenomenological 
success, this limit has received considerable attention as an interesting 
simplification for the study of chiral symmetry breaking in a confining 
theory.
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t’Hooft (1980) has suggested that there is an intimate connection 
between confinement and the phenomenon of chiral symmetry breaking. 
He argued that there are strong constraints which must be satisfied if a 
confining theory has massless bare fermion constituents and does not have 
massless Goldstone bosons associated with the chiral symmetry. 
The problem arises from the analytic structure of a three-point vertex 
constructed from two vector and one axial vector currents. The anomaly 
requires this object to be non-analytic at zero momentum transfer through 
the three channels. This requires real intermediate states of vanishing 
physical mass. Ina confining theory these could be either Goldstone bosons 
or massless baryons. Further arguments (Coleman and Witten, 1980; 
Banks et al., 1980) indicate the impossibility of the latter case in many 
theories, probably including the SU(3) theory of the strong interactions.

This situation appears to carry over to the strongly coupled lattice 
theory. Such investigations require some treatment of the doubling 
problems alluded to in chapter 5. As the infinite gj theory with finite Kh 
is not exactly solvable, further approximations such as large dimension 
(mean field theory) or large gauge group are needed. The results of these 
calculations are strong indications that the theory adopts the broken 
symmetry alternative with massless ‘pions’ and an expectation value for 
the order parameter (Blairon et al., 1981; Kluberg-Stern et al., 1981; 
Svetitsky et al., 1980).

Problems

1. Evaluate the diagram in figure 10.3 and show that it indeed gives a 
perimeter law.

2. Does strongly coupled SO(3) lattice gauge theory confine in the sense 
of having a mass gap?
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Weak coupling

Perturbation theory forms one of the mainstays in the development of 
modern theoretical particle physics. Indeed, the successes of perturbative 
quantum electrodynamics lie at the heart of our nearly universal adoption 
of renormalizable quantum field theory as the framework with which 
to describe elementary particle interactions. As our space-time lattice 
represents a regulator for ultraviolet divergences, in principle all pertur
bative results could be reproduced in this formalism. The basic expansion 
parameter gj represents the temperature in the analog statistical system. 
At low temperatures the important degrees of freedom are low energy 
excitations involving gentle long-wavelength variations of the fields. In 
magnetic systems the analogous excitations are referred to as spin waves 
and perturbation theory is a spin wave expansion.

Perturbative analysis did not motivate the original formulation of lattice 
gauge theory. Highly developed methods for calculation already exist for 
other cutoff schemes such as that of Pauli and Villars (1949) or dimensional 
continuation (Ashmore, 1972; Bollini and Giambiagi, 1972; t’Hooft and 
Veltman, 1972). Because of this, perturbation theory on a lattice has 
received little attention and remains rather awkward. In this short chapter 
we merely sketch spin wave techniques for lattice gauge theory. We will 
only evaluate the lowest order contribution to the average plaquette. It 
is somewhat ironic that this weak coupling regime has played such a minor 
role in lattice gauge theory and yet it is exactly this region to which we 
must go for a continuum limit, as will be discussed in the next chapters. 
The main virtue of the lattice remains in non-perturbative analysis.

We limit this discussion to the pure gauge theory with partition function 
Z = |(d(7)exp(—^E(l—(l/«)ReTr £/a)). (11.1)

As the inverse coupling 0 becomes large, this integral is increasingly 
dominated by C/D near the identity. Perturbation theory begins with a 
saddle point approximation taken at this maximum of the exponentiated 
action. We parametrize the plaquette operators

UD = exp (iAa<t>f5), (11.2) 
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where the matrices A“ generate the group and are normalized as in eqs 
(6.6-7). To leading order we have

1 - (1/n) Re Tr l/n = (l/(4n)) wfe + O&fa), (11.3) 
and Z becomes

Z = J(dt/)exp(-(^/(4»))wg]w& + O(^)). (11.4)

For large the exponential is highly suppressed unless
w = O(/M) = O(gQ). (11.5)

Thus the w4 terms in eq. (11.4) are of order the coupling constant squared.
To proceed we would like to evaluate the leading behavior of the integral 

in eq. (11.4) in the Gaussian approximation. Here we encounter a technical 
difficulty in that the integrand is not damped in all directions when 
considered as a function of the link variables U^. Indeed, a gauge 
transformation can arbitrarily alter any given link and yet leave the action 
unchanged. Gauge fixing is an essential first step in the perturbative 
analysis. Our integrand receives a Gaussian damping only for those 
directions which do not represent gauge degrees of freedom.

The details of the gauge choice will be unimportant to the discussion 
here. One possibility is to set all timelike links to the identity, i.e. work 
in the ‘temporal’ gauge, and then on the spacelike surface t — 0 to do the 
additional gauge fixing necessary to eliminate the freedom of time
independent gauge transformations. If we now select any particular link, 
its value will be driven to the identity when fl goes to infinity. There is a 
non-uniformity to this limit because links far from the hypersurface t = 0 
are less constrained than those near it. For this technical reason we impose 
an infrared cutoff by working on a finite lattice.

After the gauge fixing, one quarter of the links are no longer variables. 
The remaining links are driven to the identity, about which we can expand

l+iA^+OHA (1L6)

I c^ + 0(o>2). (11.7)

The integration measure in the vicinity of the identity takes the simple form 

dUtj = (J+O(^))^^, (11.8)

where the weight J wiH ultimately be absorbed as an irrelevant constant. 
Here nff is the number of group generators. Now the partition function 
assumes the form

Z = K fn^^exp[(-^P”M + O(^3)]. (H-9)
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Here K is an overall constant factor and P-1 is a large matrix operating 
in the space of the variables In this form the partition function looks 
much like that discussed for a free field in chapter 4. The operator D is 
the propagator for the gauge gluons and enters into the Feynman diagrams 
of the theory. The 6>(/?o>3) terms are of order the coupling constant. They 
generate the vertices of the perturbative expansion.

Fig. 11.1. The average plaquette for SU(3) lattice gauge theory. The curves are the 
leading strong and weak coupling approximations and the points are from Monte 
Carlo analysis on 44 and 64 lattices.

For actual calculations these lattice propagators are quite cumbersome. 
However we can obtain some information on the average plaquette with 
very little effort. As our integral is now Gaussian, its value is a determinant

Z = K'\D/fi\Kl + O(j3-1)). (11.10)
The matrix D has the dimensionality of the parameter space after gauge 
fixing; consequently, it is a square matrix of ^rigN* rows. Here the factor 
of 3 is the number of non-fixed links per site. Removing a factor of ft from 
each row of the matrix, we find

Z = K'\D\lp-*n,N,i\\ + O(0-1)). (11.11)
For the average plaquette this implies

P = -(l/(6M))(8/8/?)logZ
= V(4^) + O(^-^. (11.12)
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This result has a simple interpretation in statistical mechanics. We have 
3ng TV4 physical variables distributed over 67V4 plaquettes. If we give each 
degree of freedom jfcT = 1 /(2/?) average energy, then we obtain exactly eq. 
(11.12). This simple counting of variables receives corrections at higher 
temperatures where the non-linear interactions come into play.

In figure 11.1 we summarize the leading strong and weak coupling 
results for the gauge group SU{3)

P = 1 —^/18—/?2/216 + O(/?3)

2. What is the leading weak coupling behavior for the average plaquette
in Zs lattice gauge theory?

= 2//?+O(^"2). (11.13)
The points in the graph are the true values for the plaquette from Monte 
Carlo analysis.

Problems

1. Show that in the weak coupling regime the parameter b3 of the last 
chapter behaves as w) _ 3(|



12 
Renormalization and the 

continuum limit

Regarding the lattice merely as an ultraviolet cutoff, ultimately we must 
consider the continuum limit. As when removing any regulator, observable 
quantities should approach their physical values. On the lattice, however, 
it is often convenient to measure dimensionful quantities, such as masses, 
in lattice units. For example, the mass of the first excitation in units of the 
spacing a gives the correlation length

(12.1)

In the continuum limit m should remain finite while our yardstick of length 
a becomes singular. Thus we are interested in obtaining a divergent 
correlation length. In statistical mechanics language, this is the expected 
behavior at a second order phase transition. For a continuum limit of a 
field theory defined with a lattice cutoff, we should find the points in the 
coupling parameter space where the corresponding statistical model 
exhibits critical behavior. The needed critical phenomenon does not occur 
in the strong coupling region of lattice gauge theory. From eq. (10.23) we 
see that the correlation length goes to zero as fl becomes small. To take 
a continuum limit we must search for second order phase transitions at 
intermediate and small coupling.

As soon as we begin discussing the removal of an ultraviolet cutoff, we 
must address the question of renormalization. Indeed, quantum field 
theory is notorious for the plethora of divergences which must be removed 
in calculations of physical observables. The bare charges and masses which 
appear in the Lagrangian are in general not well defined and need 
renormalization. The bare couplings acquire an implicit cutoff dependence 
chosen in such a manner that physical quantities have a finite limit when 
the cutoff is removed. For a well-defined renormalizable theory, this 
procedure should yield unique finite limits for all observables.

In general there are many possible renormalization schemes. In quantum 
electrodynamics one usually fixes the physical electron mass and the 
coefficient of the long-range Coulomb force. These parameters of the 
continuum theory determine the bare mass and charge when a cutoff is

81
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in place. In a confining theory, such as we want for the strong interactions, 
the choice is less obvious. One popular selection for non-perturbative 
studies of the pure gauge theory without fermions is the coefficient K of 
the Wilson loop area law, which equals the coefficient of the long-distance 
linear potential between external sources with quark quantum numbers. 
Another possible choice would be the mass of some physical bound state, 
such as the lightest glueball.

All of the quantities mentioned in the previous paragraph are defined 
in terms of long-range effects. This is clear for the long-distance potentials, 
but it also applies to a particle mass as this parameter determines how 
the particle propagates over extended distances. It is, however, often 
convenient to consider physical observables involving only finite length 
scales. For example, in traditional perturbative renormalization-group 
discussions one studies vertex functions in momentum space with all legs 
off-shell at some arbitrarily selected momentum scale /4. Alternatively, one 
might be interested in some interparticle force at a finite range r. By varying 
these parameters p or r, one studies the interrelationships of physics on 
different length scales.

For now we will restrict our discussion to a theory, such as quarkless 
gauge theory, which has only one bare dimensionless coupling parameter, 
g0. A general physical observable H is a function of the bare coupling as 
well as the cutoff scale of length a and the scale r on which H is defined

H = H(r,a,g.{a)), (12.2)
Here we have explicitly shown the cutoff dependence of the bare coupling 
gQ(a). The precise form of this dependence depends on the details of the 
renormalization scheme. For simplicity, we assume that If is dimensionless; 
if it were not we could simply multiply by the appropriate power of r to 
make it so. For example, from an interparticle force F(r) construct H = r2F.

As a becomes small and we approach the continuum limit, H should 
lose cutoff dependence. It should do this while retaining a non-trivial 
dependence on the scale r. This can only occur at special values of g0 where 
critical behavior involving vastly different length scales occurs. To see this 
more explicitly, consider changing the cutoff by a factor of two. For small 
cutoff H should not change appreciably if g0 is appropriately adjusted

H(r,la,g^a)) = H(r,a, g0(a)) + O(a2). (12.3)
In general there are two classes of dimensional parameters which set the 
scale for the order-a2 corrections in this equation. First, of course, is the 
scale r used to define H. In addition, however, we must consider the 
long-range physical parameters characterizing the continuum theory. In 
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particular, regardless of how large r is, we must expect corrections of order 
a2m2 where m is some typical mass in the physical particle spectrum. The 
lattice theory should only be expected to approximate continuum physics 
when the lattice spacing is smaller than both the scale under consideration 
and the characteristic size of a strongly interacting particle. Of course, if 
we adopt the renormalization scheme of holding H{r, a,gQ{a)) fixed at the 
given scale, then by definition there are no corrections to eq. (12.3). 
However, we will now consider varying r in order to compare physics on 
different length scales and therefore we should remember that these 
corrections are in principle there.

Since H is dimensionless, we can scale a factor of two from both r and 
a in eq. (12.3) to give

H(2r,a,g0(|a)) = 7f(r,a,g0(a)) + O(^). (12.4)
This equation shows the correlation between the bare coupling for two 
values of the cutoff and the measured observable at two different length 
scales. The process leading to this result is now iterated to give the pivotal 
relation H{2r,a,gQ(a/2^)) = H(r,a,g0(a/2”)) + O(a*). (12.5)

This formula allows us to study the renormalization of gQ as follows. 
Assume that for some fixed values of r and a we know the functional 
dependence of H(r,a,g^ and #(2r,a,g0) on the bare coupling. Suppose 
further that at scale r and in the continuum limit H has the value Ho:

lim/f(r,a,g0(a)) = H0. (12.6)
a->o

Consider a graph of H(r, a,g0) as a function of g0. Neglecting finite cutoff 
corrections, we find g0(a) as the value of g0 where H passes through Ho. 
Now from H(2r,a,gQ) we find the bare coupling at half this cutoff using
eq‘ (12 4) H(2r, a,g^a)) = Ho. (12.7)

Once we know g0(|a), we define by 
Ht = H(r,a,g0Qa)). (12.8)

Equation (12.5) now tells us how to find g0(|a) ■
77(2r,a,g0(ia)) = /71. (12.9)

Iterating gives Hn = H(r, a, g0(a/2n)), (12.10)
H(2r,a,g0(a/2n+1)) = Hn. (12.11)

Graphically, this procedure generates a ‘staircase’ as illustrated in figure 
12.1. This picture is drawn for an asymptotically free theory where 
go(0) = 0.

In figure 12.2 we sketch a situation where the functions H(r,a,ga) and
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H

8q\2) 8o®

Fig. 12.1. The staircase construction for an asymptotically free theory 
(Creutz, 1981a).

Fig. 12.2. An example of a non-trivial fixed point (Creutz, 1981a).

H(2r, a, g0) cross each other at a non-vanishing coupling. Here the staircase 
asymptotically approaches this crossing point. At this renormalization- 
group fixed point gF, physics becomes scale invariant

//(r,a,gF) = H(2r,a,gF). (12.12)
Note that gF can be approached either from stronger or weaker coupling.
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As the bare charge at some very small cutoff passes through gF, the 
corresponding initial value HQ drastically changes as we go from a staircase 
on one side of gF to the other. Long-distance physics depends non- 
analytically on the bare coupling and we have a phase transition in the 
corresponding statistical mechanical system. The critical exponents of the 
transition are related to the relative slopes of H(r, a, g0) and H(2r, a, gQ) near 
the critical point. The absolute slopes of these functions depend on the 
initial value of a/r used in their definition.

Fig. 12.3. A theory without a non-trivial continuum limit.

The above examples represent conventional ultraviolet attractive fixed 
points. One could also imagine a situation where at some point gF 
eq. (12.12) again holds but

(\(d/dg)H(r,a,g)\-\(d/dg)H(2r,a,g)\)\g.eF > 0. (12.13)
In this case the staircase construction leads one away from gF. A 
continuum limit at such an ultraviolet repulsive fixed point is at best 
possible only if gQ is exactly gF.

Another possible situation is that at some stage in the renormalization 
process eq. (12.11) has no solution. Such a case is illustrated in figure 12.3. 
At a certain point in the construction it is no longer possible to maintain 
H at its desired physical value regardless of what goes to the bare charge. 
Several authors (Kogut and Wilson, 1974; Baker and Kincaid, 1979; 
Bender et al., 1981; Freedman, Smolensky and Weingarten, 1982) have 
suggested that this may be the case for four-dimensional 04 theory, which 
may therefore not have a non-trivial continuum limit.
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The flows of the coupling illustrated in the above discussion represent 
a simplified version of the multidimensional flows discussed by Wilson 
(1971a, b). In particle physics we are usually interested in the continuum 
limit of a theory specified by a few renormalizable coupling constants. In 
statistical mechanics, however, the above rescaling procedure is often 
discussed in reverse. Starting with a simple model on a lattice of small 
spacing, one attempts to find an effective theory on a larger lattice spacing 
but with equivalent physics on long length scales. In general an increasing 
number of parameters is needed as such a process is iterated.

The above discussion of the dependence of the bare coupling on cutoff 
is often formulated in differential form. If our renormalization prescription 
is to set H at scale r to HQ for all values of the cutoff a, then we have the 
equation
a(d/da)Jf(r,a,g0(a)) = 0

= a(0/0fl)//(r,a,go)+y(go)(0/0go)^(r,a)go). (12.14) 
This is a form of the renormalization group equation (Gell-Mann and Low, 
1954; Petermann and Stueckelberg, 1953). The renormalization group 
function y(g0) is defined

7(go) = a(d/da)g0(a). (12.15)
Knowledge of y(g0) determines the cutoff dependence of g0 up to an 
integration constant. Notice that once a renormalization prescription has 
been selected, then g0 and a are no longer independent variables. We can 
freely trade off cutoff dependences for dependence on g0 and vice versa. 
This interplay between dimensionful and dimensionless parameters forms 
the basis of the phenomenon of dimensional transmutation, the subject of 
the next chapter.

Zeros in the renormalization group function y(g0) correspond to the 
scale-invariant crossing points discussed earlier in this chapter. As the 
lattice spacing becomes small, the bare coupling approaches a fixed point

limg0(a) = gF. (12.16)

Equation (12.15) then implies
y(gp) = 0. (12.17)

Note furthermore that for g0 near gF we have

yteo) = a(d/dfl)g0(a) ( > °’go > gF ) (12.18)
1 <0,go<gFJ

Thus for an ultraviolet attractive fixed point, such as being considered here, 
the first non-vanishing derivative of y must be positive.
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In general the precise form of y will vary with the details of the 
renormalization scheme. In particular, y depends on the choice of physical 
observable H and the scale r on which it is measured. Nevertheless, those 
zeros of y representing ultraviolet-attractive fixed points must be universal 
if the continuum limit is to be unique. The scheme dependence of the 
renormalization group function appears already in the strong coupling 
limit. First consider the renormalization prescription of holding the string 
tension fixed. Application of eq. (10.9) to 517(3) gives the strong coupling 

expression = a-qOg(3gJ(a))+O(g^). (12.19)

If K is independent of a, a derivative gives
0 = a(d/da) K = - 2^+(2/(tz2g0))y(g0) +... (12.20)

Using eq. (12.19) to eliminate a2 in favor of g0, we have
y(go) = folog(3g2)+... (12.21)

Note that this does not vanish in strong coupling; therefore, one must look 
elsewhere for a continuum theory.

Now suppose that, instead of using the string tension, we renormalize 
by holding the mass gap fixed. Equation (10.23) gives

mg = a~Mlog(3g2) + O(g0-2). (12.22)
Proceeding in analogy with eqs (12.19-21), we find

0 = a(d/da)mg = -m^ + (8/(ag0))y(g0)4-... (12.23)
y(go) = ^olog(3g2)+... (12.24)

Note the change in the normalization between eqs (12.21) and (12.24). 
Away from a zero of y(g0) the lattice spacing is not small. This influences 
the relationships among observables and can appear as a scheme depen
dence of the renormalization-group function.

Problems

1. What does it physically mean to change the initial value Ho in eq. 
(12.7)?

2. Suppose near a fixed point gF that the renormalization-group 
function behaves as y(g0) = (g0 —gF) A + O((g0 —gF)2). Show that the cor
relation length diverges at gF as

£ oc (gt-gp)~1,A-
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Asymptotic freedom 

and dimensional transmutation

In this chapter we return to the weak coupling limit of non-Abelian gauge 
theories. At the level of tree Feynman diagrams, relativistic field theory 
has no divergences and thus needs no renormalization. The bare coupling 
acquires cutoff dependence only after divergent one-loop diagrams are 
encountered. This implies that in the perturbative limit of our gauge theory 
of quarks and gluons

yfeo) = *W (13.1)

At the outset we know that one zero of the renormalization group function 
occurs at vanishing coupling. For this root to be ultraviolet attractive and 
therefore useable for a continuum limit requires a positive sign for the first 
non-vanishing term in this perturbative expansion. Politzer (1973) and 
Gross and Wilczek (1973a, b) first calculated the relevant term for non- 
Abelian gauge theories. Defining the coefficients y0 and from the 
asymptotic series

yteo) = n So+7i So+o(gi), (13.2)

we have the result for SU(ri) gauge theory with nf fermionic species

y0 = (1 / 16zr2) (1 ln/3 — 2/^/3). (13.3)
Thus as long as

nf< lln/2, (13.4)

the fixed point at the origin can potentially give a continuum limit. The 
two-loop contribution (Caswell, 1974; Jones, 1974) is

71 = (1/16t72)2(34w2/3 — lOnnf/3-nfin2-l)/«). (13.5)

Although in general y(g0) is scheme dependent, these first two terms in 
its perturbative expansion are not. Consider two different schemes both 
defining a bare coupling as a function of cutoff: g0(a) and gi(a). In the weak 
coupling limit each formulation should reduce to the classical Yang-Mills 
theory, and thus to lowest order they must agree

g'o=go + cgo + 0(g$, 1 <
go = g'o-cgo+0(g'')i)J

88
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We now calculate the new renormalization group function

7'feo) = a(d/d«)go = (3gi/0go)y(?o)
= (1 + 3cgl) (y0 gg+gjj)+O(g?)

= yo^3+yig;8+W). (13.7)
To order g'J all dependence on the parameter c cancels.

Thus far our discussion of the renormalization group has been in terms 
of the bare charge in the theory with a cutoff in place. This is a natural 
procedure in the lattice theory; however, the renormalization group is still 
useful in the continuum theory if we define a finite renormalized coupling 
constant. Like the generic physical function H of the last chapter, a 
renormalized coupling is first of all an observable which remains finite in 
the continuum limit

lim gR(r, a,gQ(a)) = gR(r). (13.8)
a->0

In general, the renormalized coupling gR retains a dependence on the scale 
r of its definition. The masses and radii of the physical particles determine 
the typical dimensions for this dependence.

Secondly, to be properly called a renormalization of the classical 
coupling, gR should be normalized such that it reduces to the bare coupling 
in lowest order perturbation theory when the cutoff is still in place.

go) = go+O(go)« (13.9)
Beyond this, the definition of gR is totally arbitrary. In particular, given 
any physical observable H satisfying the perturbative expansion

/f(r,u,g0) = Ao-F^gJ+O^), (13.10)
we can define a renormalized coupling

g^r) = (H-h.)/hv (13.11)
For perturbative purposes one often uses a renormalized three-gluon 
vertex with all legs at a given scale of momentum, representing the inverse 
of the scale r, and with a gauge fixing imposed.

In the continuum limit it should be possible to re-express physical 
observables such as H in terms of renormalized quantities. The renorm
alized perturbation expansion then takes the form

H(r,r',gR(r')) = Ao + hr g*R + O(g*R). (13.12)
Here r represents the scale on which H is defined and r' is the scale used 
to define the renormalized coupling. In general the coefficients in this series 
will differ from those in eq. (13.10); however to second order they 
agree. As r' is selected for convenience, changing its value should not 
alter real physical observables. This gives rise to the usual continuum 
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renormalization-group equation
rz(d/dr') H(r, r', gR(r')) = 0 = r'(6/8r') H+yR(gR) H. (13.13)

Here we have introduced the renormalized renormalization-group 
function yR(gR) =r(d/dr)gR(r). (13.14)

We can now draw a remarkable connection between this renormal
ization-group function and the one defined earlier for the bare coupling. 
When the cutoff is still in place, gR is a function of the scale r, the cutoff 
a, and the bare coupling g0

gR = gn(r9a9gQ).
However, since we are working with a dimensionless coupling, gR can 
depend directly on r and a only through their ratio. This simple application 
of dimensional analysis implies

r(^r)gR = ^a^/Qa)gR. (13.15)
Now, as we renormalize the theory, gR should become a function of r alone 
as a goes to zero, and we have

a(0g«/0a)+(0gB/0go)a(0go/0«) = 0- (13.16)
Using the above equations and an analysis similar to that in eq. (13.7), 
We find Yr(Zr) = YogR + Ti£R + °teR)- (13.17)

The renormalized and bare y functions have the same first two terms in 
their perturbative expansions. Indeed, it was through consideration of the 
renormalized coupling that y0 and y1 were first calculated.

Far from the weak coupling region, there is no simple relationship 
between the bare and renormalized y functions. Perverse definitions (or not 
so perverse; see problem 1) of the renormalized coupling can lead to zeros 
in yR which have no counterpart in the bare quantities.

The perturbative expansion of yR has important experimental conse
quences. If we consider the continuum limit to be taken at g0 = 0, and if 
gR is ever small enough that the first terms dominate in eq. (13.17), then 
the renormalized coupling itself will be driven to zero as r becomes small. 
Not only does the bare coupling vanish, but any effective coupling becomes 
arbitrarily weak when the scale of measurement decreases. This is the 
physical implication of asymptotic freedom; phenomena involving only 
short-distance effects may be accurately described with the perturbative 
expansion. Indeed, asymptotically free gauge theories were first invoked 
for the strong interactions as an explanation of the apparently free parton 
behavior manifested in the structure functions of deeply inelastic scattering 
of leptons from hadrons.
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Returning to the bare renormalization-group function, we wish to 
investigate how rapidly g0 decreases with cutoff. Separating the variables 
in the form .

ago (13.18)yogo+yigo+0(go) d<loga>’ 

we can integrate to obtain the result
go2 = y0log(a-2A0-2) + (71/y0)log(log(a-2A0-2) + O(g02)). (13.19)

Here the parameter Ao represents a constant of integration. This equation 
indicates the well-known logarithmic decrease of the coupling with scale. 
The subscript on Ao is to remind us that it has been defined from the bare 
charge and with the Wilson lattice cutoff. For the renormalized coupling, 
this equation should be rewritten for gR with the cutoff a replaced by r 
and with a possibly different integration constant AR.

The constant appearing upon integration of the renormalization-group 
equation represents a yardstick for measurement of the scales of the strong 
interactions. Its value is scheme dependent as can be seen by considering 
two different bare couplings related as in eq. (13.6). From the analog of 
eq. (13.19) for g'o with its own Aq, we see

log(A;7A|) = c/y0, (13.20)
where c is the parameter appearing in eq. (13.6). Thus, perturbation theory 
relates the values of Ao in two different schemes. Furthermore, this requires 
only a one-loop calculation even though two loops were needed to define 
Ao through eq. (19).

Hasenfratz and Hasenfratz (1980) were the first to perform the necessary 
one-loop calculations to relate Ao and Afl. Defining the renormalized 
coupling from the three-gluon vertex in the Feynman gauge and with all 
legs carrying momentum /i2 = r-2, they found

Afi/A0= (13.21)I 83.5,St7(3), /

for the pure gauge theory. Note that not only is A scheme dependent, but 
that different definitions can vary by rather large factors. The original 
calculation of these numbers was rather tedious, involving intermediate 
definitions of the coupling and evaluation of one-loop diagrams with the 
lattice regulator. These numbers have been verified with calculationally 
more efficient techniques based on a study of the quantum fluctuations 
around a slowly varying classical background field (Dashen and Gross, 
1981). These calculations have been extended to other lattice actions and 
to theories with fermions (Weisz, 1981; Kawai, Nakayama and Seo, 1981).

We have been discussing the bare coupling as a function of the lattice 
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spacing. A useful alternative considers the coupling as a parameter which 
determines the cutoff. Inverting eq. (13.19), we have

a = Ao-^|7o)-ri/(M)exp(- l/(27ogi))(l +O(g|)). (13.22)
Note the essential singularity at vanishing bare coupling. The perturbative 
renormalization group is about to give us non-perturbative information. 
Multiplying by the corresponding mass, we can obtain the weak coupling 
dependence of a correlation length on the lattice

ma = r1 = (^/A0)(g|r0)-ri/(2rS)exp(-l/(2y0gi))(l + O(g|)). (13.23) 
If m is the mass of a physical particle and remains finite in the continuum 
limit, then its value in units of Ao is given by the coefficient of the weak 
coupling dependence indicated in eq. (13.23).

For the above discussion we could elect to work with the correlation 
length between operators which select any desired set of quantum numbers, 
such as spin, parity, etc. Thus the mass of any particle in units of Ao is 
the coefficient of the weak coupling dependence of some correlation 
function, as in eq. (13.23). Furthermore, Ao is universal, determined solely 
by the initial cutoff scheme. It will drop out of any dimensionless ratio of 
masses, which is then determined uniquely by the theory. This brings us 
to the remarkable conclusion that for pure gauge fields the strong 
interactions have no free parameters. The cutoff is absorbed into g0(a), 
which in turn is absorbed into the renormalization-group dependence of 
eq. (13.23). The only remaining dimensional parameter is Ao, which merely 
sets the scale for all other masses. In a theory considered in isolation, one 
may define Ao to be unity. Coleman and Weinberg (1973) have given this 
process, wherein a dimensionless parameter g0 and a dimensionful one a 
manage to ‘eat’ each other, the marvelous name ‘dimensional transmu
tation’.

In the theory including quarks, their masses represent new parameters. 
Indeed these are the only parameters in the theory of the strong interactions. 
In the limit where the bare quark masses vanish, referred to as the chiral 
limit, we return to a zero parameter theory. In this approximation to the 
physical world, the pion mass is expected to vanish and all dimensionless 
observables should be uniquely determined by the theory. This applies not 
only to mass ratios, such as of the rho mass to the proton, but as well to 
quantities such as the pion-nucleon coupling constant, once regarded as 
a parameter for a perturbative expansion. As the chiral approximation has 
been rather successful in the predictions of current algebra, we hope that 
eventually we may develop the techniques to calculate these quantities. If 
they seriously disagree with experiment, the theory is wrong because there 
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are no parameters to adjust. Given a qualitative agreement, a fine tuning 
of the small quark masses should give the pion its mass and complete the 
theory.

The exciting idea of a parameter-free theory is sadly lacking from 
treatments of the other interactions such as electromagnetism or the weak 
force. There the coupling a = 1/137 is treated as a parameter. One might 
optimistically hope for inclusion of the appropriate non-perturbative ideas 
into a grand unified scheme ultimately rendering a and the quark and 
lepton masses calculable.

The renormalization group is indeed a rich subject. We have only 
touched on a few uses which we will find valuable in later chapters. Perhaps 
the most remarkable result of this chapter is that a perturbative analysis 
of the renormalization-group function can give important non-perturbative 
conclusions, such as eq. (13.23).

Problems

1. Define gR(r) to be proportional to r2 times the force between two 
quarks separated by a distance r. Argue that the corresponding 
renormalization-group function in the full theory of strong interactions 
including quark loops must exhibit a zero at non-vanishing gR.

2. Show that the term in eq. (13.19) is needed to properly define
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Mean field theory

We have seen that confinement arises naturally in the strong coupling limit 
of the lattice theory, whereas the continuum limit with asymptotic freedom 
drives us toward the weak coupling regime. Desiring the qualitative 
features of confinement to persist in the continuum limit, we would like 
to be able to pass smoothly from high to low temperature in our statistical 
analog. This leads to the hope that SU(3) lattice gauge theory has no phase 
transitions separating the strong and weak coupling domains.

Do we expect phase transitions in lattice gauge theory? In the chapter 
on discrete groups, we will show that indeed deconfining transitions do 
exist in some toy models. In this chapter we will present some non-rigorous 
arguments based on mean field theory which suggests that any gauge group 
potentially displays phase transitions in enough space-time dimensions. 
The approximation in mean field theory requires each variable to interact 
directly with a large number of neighbors; consequently, it is effectively 
a large dimension simplification.

The application of mean field theory to gauge systems has had a 
somewhat murky history. In its simplest form it ignores Elitzur’s theorem, 
discussed in chapter 9. A link variable is assumed to have an expectation 
value, which is then calculated with a self-consistency condition. Rigor
ously, however, this expectation must vanish because the link is a gauge
variant object. Recent formulations (Drouffe, 1981; Flyvbjerg, Lautrup 
and Zuber, 1982) present mean field theory as a saddle point approximation 
which gives rise to a consistent expansion in inverse dimension. Gauge 
rotations appear as zero point modes in the first-order corrections and 
restore Elitzur’s theorem. As our goal here is to motivate possible phase 
transitions in lattice gauge theory, we will present this approximation in 
a simple and heuristic form (Balian, Drouffe and Itzykson, 1974). In 
general, the mean field approach underestimates thermal fluctuations. For 
the second-order transitions in magnetic systems, the results overestimate 
critical temperatures, possibly by an infinite factor.

To emphasize the different predictions for spin and gauge models, we 
first illustrate the technique for the Ising model. Placing a spin st from 
94
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the set Z2 = {1, — 1} on each site of a rf-dimensional hypercubic lattice, we 
consider the partition function

Z= Zexp(^E stsfi, (14.1)
{»} W}

where each spin is summed over and the sum in the exponent is over all 
nearest-neighbor pairs of sites {ij}.

We wish to find an approximate expression for the magnetization, the 
expectation value for any given spin

M=<O. (14.2)
We begin by considering a particular site i and replacing the spins on all 
neighboring sites with their average value M. Then the Boltzmann 
probability for the spin on site i to have value st becomes

P(sf) = exp (2^M^)/(2 cosh (2d/3M)), (14.3)
where the factor 2d counts the number of neighbors to site i, and the 
denominator normalizes the probability. Requiring that the average value 
of is also Af, we obtain the self-consistency condition

M = tanh(2^M). (14.4)
For small /?, this equation has the unique solution M = 0. Mean field 
theory correctly predicts that the magnetization vanishes at high tempera
tures. In contrast, whenever

0>fimf=U(2d) (14.5)
eq. (14.4) also has a non-trivial solution with M > 0 (as well as a symmetric 
one at M < 0). A graphical solution of eq. (14.4) is illustrated in figure 14.1. 
To see that the latter solution is the favored one, consider eq. (14.4) 
iteratively. If initially M is slightly positive, the expectation of will be 
increased and driven towards the non-vanishing solution. Thus mean field 
theory predicts a phase transition at /3mf. For larger the system is 
predicted to spontaneously magnetize. In table 14.1 we compare this 
prediction with the known critical temperatures fic for the Ising model in 
1, 2, 3, and 4 dimensions (Fisher and Gaunt, 1964).

Table 14.1.

d fimf fle

1 0.500 OO
2 0.250 0.441
3 0.167 0.222
4 0.125 0.150
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Note that the critical temperatures are always overestimated, for d = 1 
by an infinite factor. The approximation does, however, improve as d 
increases.

This analysis predicts a continuous transition for the Ising model in any 
number of dimensions. As fl decreases to flmf, the non-trivial solution to 
eq. (14.4) decreases smoothly to zero. This will contrast sharply with the 
gauge theory, where all transitions are predicted to be first order; 
thermodynamics changes discontinuously at the phase transition.

Fig. 14.1. Graphical solution of eq. (14.4) above and below the mean-field 
critical point.

In this example it was relatively easy to use physical arguments to 
determine which solution of eq. (14.4) was the relevant one. For the 
generalization to gauge theories it is useful to reformulate the technique 
in variational form (Peierls, 1938). For this purpose we use a convexity 
inequality on the exponential function. Given any function f over some 
set X = {%} and a normalized measure p(x) such that

J p(x)dx=l, (14.6)

then, because the exponential function is convex, we have

<eO e<'>. (14.7)

Here the averages are with respect to the measure p(x)

<f> = f f(x)p(x)dx.
J X

(14.8)
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For the application of this inequality to the Ising system, we first add 
and subtract a source term to the action

Z = Eexp(/?Z sfs)+H'£si-H'£si), (14.9)
{*} Wl i i

where H will become a variational parameter. For our measure p(x) we 
take (*

| pW/Mdx^SexpCHS^W/dexp^EsJ). (14.10)
J X si si

Applying the convexity inequality with this measure gives

Z > exp (2Vd(d^tanh2(7f) —77 tanh(Tf)+log (2 cosh (77)))), (14.11) 

where Nd represents the number of sites on our lattice. This translates into 
a bound on the free energy

pF =-N~d log (Z)^pFmf(H)

= —dp tanh2 (H)+H tanh (H) - log (2 cosh (77)). (14.12)

Minimizing the right hand side with respect to the parameter H optimizes 
the bound and gives rise to the relation

(d/dH)pFmf = 0 = sech2 7/ (-2^ tanh H+H). (14.13)

Note that this is equivalent to eq. (14.4) with the identification H = 2dpM. 
For low temperatures it is the non-zero root of this equation which 
minimizes the bound in eq. (14.12). In figure 14.2 we plot the mean-field 
free energy as a function of H for the cases p = l.l/?w/,/?m/ and /?m//l.l.

The terms in the mean-field free energy have a simple thermodynamical 
interpretation. The piece — dp tanh2 H is a potential energy driving H to 
non-zero values. The remainder 77 tanh H— log (2 cosh 77) represents an 
approximation to an entropy factor trying to disorder the system. Which 
term wins depends on the value of p.

With this formalism in hand, we can proceed directly to the gauge theory. 
We consider the pure SU(n) gauge theory normalized as in chapter 10 and 
study the partition function

Z = f(dt/)exp ((/?/«)ETr C7n). (14.14)
J □

Adding and subtracting (H/n) E ReTr Uy from the action allows us to 
W}

use the measure
- |(dC7)e(H/n)IBeTrt7/(t7)

j p(x)f(x)dx-+ J—----------------------------(14.15) 
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in the convexity inequality. This gives the bound 
ftF=-N~^gZ^ftFmf{H)

= -ld(d- l)ftt(H)* + dHt(H) — dlog(c(H)). (14.16)
Here we have generalized the hyperbolic functions to arbitrary groups

c(77) = Jd/Ze(H/w)ReTrCZ, (14.17)

t(H) = cCH)-1 fdCZ «-1ReTr t/e(H/n)ReTr{7. (14.18)

Fig. 14.2. The mean-field free energy for the Ising model. The curves A, B, and 
C are for ft 10% above, exactly on, and 10% below ftmi, respectively.

The factor |J(J— 1) in eq. (14.16) is the number of plaquettes per site on 
a rf-dimensional lattice. Note that for S17(3) t(H) is simply the parameter 
b3/3 of chapter 10, evaluated for ft = H. Differentiating Fmf with respect 
to H to find the extrema gives the consistency condition

(-2d(d-l)ftt(Hy + dH)dt(H)/dH = 0 (14.19)
or

H = 2(d—l)ftt(H)3. (14.20)
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The function t(H) vanishes at H = 0. Thus 77 = 0 is always a solution 
of eq. (14.20). At high temperatures this is the only solution. At low 
temperatures further roots develop; however, in contrast to the Ising case, 
the root at the origin always represents a local minimum of Fm/. The 
potential term begins quarticly in H and thus the entropy piece will always 
dominate for small enough H. As ft is increased another minimum develops 
at positive H. If ft is large enough these new minima can be lower than

Fig. 14.3. The mean-field free energy as a function of H for several values of 
ft with the group Sl/(3) and d = 4.

the one at the origin. Here we see one dramatic difference from the Ising 
system; the transitions are predicted to be first order, with a discontinuous 
jump in the parameter H from zero to non-zero values. In figure 14.3 we 
plot the mean-field free energy as a function of H for several values of ft 
for SU(3) in four space-time dimensions.

Mean field theory predicts first-order phase transitions for all gauge 
groups. This prediction should only be trusted for large space-time 
dimensionality. If strong coupling arguments for confinement are to be 
relevant to the asymptotically-free continuum limit of lattice gauge theory, 
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four dimensions must be inadequate for the mean field analysis to apply 
when the gauge group is S£7(3). In future chapters we will argue that this 
is the case. However, in four dimensions many gauge groups do give rise 
to phase transitions. Improved versions of mean field theory give rather 
accurate estimates for the transition temperatures (Flyvbjerg et al., 1982).

Problems

1. Consider the partition function of eq. (14.1) with the variables st in 
the group Z3 = {1, exp (+ 2m)} and a real part taken under the sum in the 
exponent. Show that mean field theory predicts a first-order transition for 
this model.

2. Prove the convexity inequality, eq. (14.7).



15
The Hamiltonian approach

We have been concentrating on the Euclidian path integral approach to 
lattice gauge theory. An alternative formulation, first advocated by Kogut 
and Susskind (1975), keeps a continuous time variable and only considers 
three-dimensional space as discrete. Working in the temporal gauge 
Ao = 0, they define a Hamiltonian which is a function of the space 
components of the gauge field and a set of conjugate momenta. This 
formulation also permits a strong coupling expansion, which is now an 
application of quantum mechanical perturbation theory.

In this chapter we will derive the Kogut-Susskind Hamiltonian from the 
Wilson theory using the transfer matrix in direct analogy with the 
discussion in chapter 3. In this way we will see the equivalence of the two 
approaches. Which is preferable depends on taste and the particular 
question being asked. In the Wilson theory, space-time symmetry is more 
apparent, the particle spectrum is given by the singularity structure of 
Green’s functions, and we have the simple analogy with statistical 
mechanics. In the Kogut-Susskind approach, we deal with a conventional 
quantum mechanical system with a well-defined Hamiltonian, the spectrum 
of the theory is directly the spectrum of this Hamiltonian, and phase 
transitions represent level crossings in the infinite volume limit.

As we wish to consider the continuous time limit of the Wilson theory, 
we introduce a different lattice spacing a0 for the time direction. This gives 
the timelike plaquettes a different shape than the spacelike ones and the 
details of the argument in chapter 7 on the classical continuum limit must 
be slightly modified. The couplings on spacelike and timelike plaquettes 
are no longer equal in the action

S = -&STrC7D-£ZTrC7n. (15.1)
8 t

Here the notation means that the first sum is over spacelike plaquettes only 
and the second over timelike ones. To obtain a proper classical limit we 
should take 

A = 2na0/(g$a), 
fit = 2na/(g?a0),

(15.2)
(15.3)

101
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where a continues to denote the spacelike lattice spacing. As a0 goes to 
zero with fixed a, /3S goes to zero and goes to infinity.

The above argument is essentially classical. For the quantum theory we 
have seen that the bare charge is cutoff-scheme dependent. In particular, 
the spacelike and timelike couplings may correspond to different A 
parameters in the sense discussed in chapter 13. Indeed, if we do not allow 
for such a change in relative spacelike and timelike scales, the speed of light 
may need to be renormalized (Shigemitsu and Kogut, 1981; Hasenfratz 
and Hasenfratz, 1981). Therefore we introduce two bare couplings and
their geometric mean _ _ „ o x5 fts = Inajigld), (15.4)

A = 2na/(gfa0), (15.5)

g2H=gsgf (15.6)
The subscript on gH stands for the Hamiltonian formulation. As with any 
bare couplings, these must all agree to lowest order

gl = g2t + O(gt) = g*H + O(g*H). (15.7)
Introducing a cutoff dependence into the couplings and taking a continuum 
limit at the asymptotically free fixed point, we conclude

g2M/gl{a) 1. (15.8)
a-*o

To proceed toward the Hamiltonian formulation, we now go to the 
temporal gauge. Fixing all timelike links to the identity, we see that a 
timelike plaquette represents a coupling between two spacelike links at 
subsequent times. Separating out time dependences, we relabel the sites 
with two indices, i and t, such that the first corresponds to the spatial 
coordinates and a01 represents the time. In this notation the unfixed links 
carry a time index and two space indices t. The pure gauge theory action 
is now
S = -(2a/(g|a0)) E ReTr(^e+it/V3)~(2a0/(gJa))Z ReTr(C/D3), 

{tfM □,* (15.9)
where the second sum is over all spacelike plaquettes and all times.

In analogy with chapter 3 we wish to find a Hilbert space and an 
operator T such that

Z= (dt/)e-'s = TrT2V, (15.10)

where N is the number of discrete times and we have imposed periodic 
boundary conditions. From the logarithm of T we will obtain the 
Hamiltonian. The first term in eq. (15.9) will generate the kinetic energy 
and the second, the potential.
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The space in which T operates is a direct product of spaces of 
square-integrable functions over the gauge group. A state | in this space 
is specified by a wave function ^(t/) which is a function of link variables 
Uij which are group elements associated with each bond of a spacelike 
lattice. The inner product in this space is

<W> = J(d(/)^+(C/)^(l/). (15.11)

For simplicity we use the same notation as for the path integral, but in 
eq. (15.11) only spacelike variables enter. We can expand the states of this 
space in the non-normalizable basis {|17>}, where a state in this set is 
determined by a group element on each spacelike bond. These satisfy 
a condition that the reversed links are not independent

U„ = (15.12)

The overlap of states in this basis is

<int/> = nw^x (15.13)
{Vi

where the delta function over the group was introduced in chapter 9, 
eq. (9.14). The completeness statement is

1 = J(d<7)|L7><L7|. (15.14)

The general state takes the form
|^> = j(d£7)|£/>^((7). (15.15)

Working in this Hilbert space, one may write down by inspection the 
matrix elements of an operator satisfying eq. (15.10)

<l/'|T|C7> =exp((2a/(g?a0))S ReTr(C/^)) 
m

X exp ((2a0/(gf a)) Z Re Tr (UD)) (15.16)

Just as we expressed T for quantum mechanics in terms of the operators 
p and x, we would like to write this T in terms of some simple operators 
in the present Hilbert space. We begin by defining a set of matrix valued 
operators Utj and unitary operators A0(g), where g is an element of the 
gauge group

Uy\U> = (7O.|17>,

and Rtj does not alter any other links. The operators U clearly are the 
analog of the coordinate x in ordinary quantum mechanics. The operators

(15.17)

(15.18)
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Ri}(g) satisfy the group representation property

Ri)(g)Rij(g') = Rt}(gg'). (15.19)
They translate the variables U and thus are related to the canonical 
momentum, in a sense which will be made more precise shortly. In terms 
of these quantities, T takes the form

T = (n( jdg Ri}(g) exp ((2a/(gt a0)) Re Trg))

x exp ((2a0/(gf a)) g Re Tr tfD), (15.20)

where UD is the product of the Uq around the corresponding plaquette.
We now wish to consider the limit as aQ goes to zero. As aQ becomes 

small, the integrals in eq. (15.20) become dominated by group elements 
near the identity. We parametrize the elements as in chapter 6

g = ei^aAa = eio>A? (15.21)

where Tr (AaA^) = (15.22)
[Aa,A^] = i/aW. (15.23)

The invariant group measure takes the form

dg = J(w)IW. (15.24)
a

The only properties of the Jacobean function J that we will need are that 
in a neighborhood of the identity it is regular and non-vanishing and that

J(w) = J(-w), (15.25)
which follows because dg = dg-1.

As with any representation of the group, the operator J?^(g) can be 
written in terms of a set of generators for that representation

= exp (iwa/^) = exp (ia> • Z0). (15.26)

In our Hilbert space the are Hermitian operators satisfying
= (15.27)

[lfj,Uij] = —AccUi}, (15.28)
[IfrU^U^, (15.29)
[«] = 0 = [Ptj, Ry(g)]. (15.30)

The operators corresponding to different links all commute. In eq. (15.30) 
we have introduced the quadratic Casimir operator for the group

= (15-31)
a

These operators may be all represented by differential operators in the 
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group parameters. For example, with the group 1/(1) = {exp (i#)}, we have 
a single generator A = and

/0=24d/d^. (15.32)

To consider a link in the reversed direction, first note that eq. (15.12)
carries over to the operators „

ut} = u]t.
The connection between /y and ljt follows from

This implies for the generators

(15.33)

(15.34)

^|t7> = -G(C/y)“^|t/>, (15.35)
where G(g)“^ denotes the adjoint representation of the group

g~Wg = G(g)“W. (15.36)
As this is a real orthogonal representation, we have

= (15.37)
Thus the quadratic Casimir does not depend on the direction chosen for 
the link.

With this bit of group theory in hand, we return to the transfer matrix 
and insert eqs (15.21), (15.24) and (15.26) into eq. (15.20)

T = (II ( [(II dwa) J(w) exp (iZy • w) exp ((2a/(g? a0)) Tr cos (w. A))) 
(Oi J CL

X exp ((2u0/(g2 a))S Re Tr Gn). (15.38)
□

When a0 goes to zero, the integral over w is dominated by w near the 
maximum of Tr cos (w ■ A). For a unitary group this maximum always occurs 
near w = 0. We expand about this point

Trcos(wA) = n —iw2 + O(w4). (15.39)
Inserting this into eq. (15.38), we do the Gaussian w integrals to obtain 
the result T = ^exp (_ H+ 0(a2g)^ (15 40)

where K is an irrelevant constant factor and

H = (&/gs) «gW(2<0) Z /?,+(2/teH *))2 ReTr t/D). (15.41)
W} □

This is the Kogut-Susskind Hamiltonian.
The two terms in eq. (15.41) have a direct interpretation in analogy to 

the usual continuum gauge theory Hamiltonian. The second term is a sum 
over spacelike plaquettes and represents the lattice form of the magnetic 
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field squared. The first term involves the canonical momenta and represents 
the electric field squared. Indeed, the operator 1^ corresponds directly to 
the flux of electric field passing through link ij.

In eq. (15.41) we have removed a factor of gt/gs so that the remainder 
of the Hamiltonian only depends on the mean, gH. Note that by virtue 
of eq. (15.8), this prefactor approaches unity in the continuous space limit. 
Thus for spectrum calculations in the continuum, we can ignore this factor. 
The coupling gH has its own associated A parameter, defined in analogy 
with eq. (13.19). As indicated there, the relationship of this parameter with 
any other scheme can be determined perturbatively. Hasenfratz and 
Hasenfratz (1981) have calculated

. ( = 0.84, n = 2
Ah/A0

I = 0.91,n = 3.
(15.42)

The above Hamiltonian possesses a large amount of symmetry due to 
the remaining gauge freedom of the theory. As we have only specified the 
temporal gauge, we can still do time-independent gauge transformations. 
An operator that performs such a transformation at space site i is

Jt(g)= n ^(g), (15.43)
{ij} => i

where the product extends over all bonds emanating from site i. This is 
a symmetry operator which commutes with the Hamiltonian. All physical 
states should be singlets under this operation in the sense that

W> = l^>« (15.44)
In terms of the generators lij9 this amounts to

Z W> = 0. (15.45)
{ij} => i

This equation says that the net electric flux out of any site is zero. Thus 
we have a discrete version of Gauss’s law. Alternatively we could study 
external sources by allowing some sites to be other than a gauge singlet. 
Note that the counting of degrees of freedom parallels continuum treat
ments. The temporal gauge has removed timelike links as variables. 
Gauss’s law removes one variable per group generator on each site. Thus 
the final theory has two degrees of freedom for each gauge boson, as 
expected from the possible polarizations in the continuum theory.

A strong coupling series is easily formulated for this Hamiltonian. When 
gH is large, the electric term dominates. The kinetic part of the Hamiltonian 
is diagonalized by placing all links into singlet states with l^ = 0. The 
natural basis of states for the strong coupling expansion is in terms of 
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definite representations of the gauge group on each link. The potential or 
magnetic term in the Hamiltonian then acts as a perturbation which 
excites links into intermediate states involving higher representations. The 
first correction involves the excitation of the links around a single plaquette 
into the fundamental representation. For further details we refer the reader 
to the review by Kogut (1979).

Here we have only considered pure gauge fields. The Hamiltonian is 
easily extended to include fermionic or other matter fields. With fermions 
one again has the doubling problem alluded to in chapter 5 except that 
one factor of two is saved because time is continuous.



16
Discrete groups and duality

On a discrete space-time lattice the notion of continuity is lost. Remarkably, 
this gives us more freedom in formulating a gauge theory. Whereas 
classical continuum gauge fields require a continuous gauge group for 
non-triviality, this is no longer so in the Wilson theory. Indeed, it is 
straightforward to consider the lattice link variables to be elements of some 
finite discrete group. The simplest such model considers elements of the 
group Z2 = {1, — 1} and represents a gauge-invariant interaction of a set 
of Ising spins. Wegner (1971) first introduced this system as an example 
of a case with non-trivial phase structure but without a local order 
parameter.

An amusing point is that although the classical theory based on a 
discrete group has no continuum limit, this does not necessarily carry over 
to the quantum theory. If the system has a second-order phase transition 
at an appropriate zero of its renormalization group function, one should 
be able to define a continuum quantum field theory.

One reason to study discrete variables is that the resulting models are 
often inherently more amenable to analysis. For example, the two
dimensional Ising model is exactly solvable for the thermodynamic 
functions, and yet it has a non-trivial ferromagnetic phase transition. A 
hope with gauge theories is to gain some insight into the nature of their 
phase structures. Furthermore, these models provide a useful testing 
ground for new techniques.

In this chapter we concentrate on the cyclic groups ZP, where the 
elements are the P’th roots of unity. These models are all Abelian and as

oo we approach the (7(1) model. Obtaining the phase structure of the 
latter is essential because this is the gauge group of electrodynamics. Any 
attempt to understand quark confinement must also explain why QED, the 
prototype gauge theory, does not confine.

We shall use the ZP gauge models in four dimensions as a framework 
for the discussion of duality transformations. This technique, which has 
also been extensively developed for spin systems (Savit, 1980; Cardy, 1980) 
relates the strong and weak coupling domains and in some cases determines 
108
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phase transition temperatures exactly. Under duality, the thermodynamic 
functions of a model map onto a related system but with different 
couplings. Singularities either occur in dual pairs or are restricted to special 
self-dual points. Historically, this was first applied to the Ising model and 
gave an exact determination of the critical point (Kramers and Wannier, 
1941). The extension to gauge theories is direct (Balian, Drouffe and 
Itzykson, 1975a; Korthals-Altes, 1978; Yoneya, 1978).

As in the usual formulation of lattice gauge theory, our variables are 
elements of the gauge group, which we take to be ZP:

U^eZp = {e^/p\k = 0, ...,P-1}. (16.1)
Absorbing a factor of — 1 in the action, the path integral is

Z = Z e5(CZ). (16.2)
UeZp

Again as in the usual theory, the action is a sum over the plaquettes of 
the lattice S(C7) = S Sn(t/n). (16.3)

□
In the normal case SD(L7D) is the real part of the trace of (7D. We deviate 
slightly at this point because the discussion of duality is simplified if we 
consider a more general action per plaquette. To interpret es as a 
Boltzmann weight, we require to be a real function. So that the 
orientation of the plaquettes is irrelevant, we also require

(16.4)
Beyond these constraints, the action is arbitrary. For a general gauge group 
one usually requires that SD is a class function over the group. For an 
Abelian group such as considered here all functions are class functions.

With any gauge group the general plaquette action has a character
expansion Sn(U) = ZfinXn(U)9 

n
(16.5)

where xn represents the trace in the n’th irreducible representation of the 
group. For ZP there are precisely P such representations, all one
dimensional and given by

Rn(U) = Un, n = 0, ...,P—1. (16.6)
The representation property

Rn(U) Rn(U') = Rn(UUf) (16.7)
is a trivial consequence of the Abelian nature of the group. To combine 
representations we have the rule

Rm(U) Rn(U) = Rm+n(U), (16.8)
where the index m+n is understood modulo P. The orthogonality of the 
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characters is
P-1 Z Rm(U) Rn(U) = P~l Z Um+n = 8m, P_n. (16.9) 

u u
The crucial point which results in a simple duality structure for the Zp 
theories is that the combination rule for characters has precisely the same 
structure as the original group. The dual theory will again be a ZP theory. 
Duality has been much less useful in other theories, such as with non- 
Abelian groups, where the representation structure is more complicated.

With the above representations, eq. (16.5) becomes

SD(U) = Z0nUn. (16.10)
n

In terms of these variables the constraint of eq. (16.4) becomes

Pn=PP-n- (16.H)
The parameter /?0 is simply an overall normalization, irrelevant to thermo
dynamics but convenient to keep. Character orthogonality inverts 
eq. (16.5) with the result

fin = P-^U-SD(U). (16.12)
u

For the discussion of duality it is convenient to expand the Boltzmann 
weight e5a<u> = Z bnUn, (16.13)

n

where bn = P~^U~nes^ (16.14)
u

and eq. (16.11) becomes bn = bP_n. (16.15)

Up to a factor of bQi these are the parameters which proved so useful in 
the strong coupling expansion. The energy shift represented by /?0 becomes 
an overall scale factor in the bn. Thermodynamics depends on the latter 
parameters only in a projective sense.

To proceed, we take the path integral and insert the character expansion 
of eq. (16.14) for each plaquette. This gives a sum over an integer 
associated with every elementary square of the lattice. Pulling this sum to 
the outside, the partition function is

z= z (n*nn)n(Z( n (16.16)

Here the innermost product is over the six plaquettes containing the link 
ij. The sum over the Uy is immediate from the orthogonality relations and 
gives z= E (16.17)

where the Kronecker delta is understood modulo P in its indices. The factor 
of P multiplying the delta functions occurs because we have not normalized 
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our sums over the group. We now wish to make an appropriate change of 
variables which will enable us to do some of the sums with the Kronecker 
functions.

The factor (16.18)

involves the six plaquettes containing the link ij. In figure 16.1 we illustrate 
four of these, the remaining two utilize the unvisualized fourth dimension. 
The key to simplify this construct is to go to the dual lattice. We associate 
a new site with the center of each of the hypercubes of the original lattice.

Fig. 16.1. Four of the six plaquettes containing the link ij. The remaining two 
utilize the fourth dimension.

For each site, link, plaquette, cube or hypercube on the original lattice there 
is a one-to-one correspondence with a hypercube, cube, plaquette, link or 
site, respectively, on the dual lattice. For example, dual to a link is the cube 
representing the common boundary of the two hypercubes which are dual 
to the ends of the link in question. Furthermore, the duality mapping can 
carry a sense of orientation if we invent a four-dimensional ‘ left hand ’ rule. 
For example, for the dual of a link in the positive t direction, we have a 
three-dimensional cube in xyz space. We can then adopt the convention 
that all plaquettes on this cube are oriented to the left when viewed from 
its center. For all other directions, we make even permutations on the 
indices x,y, z, and t. The dual of a plaquette is another plaquette, common 
to the four cubes which are dual to the links of the original plaquette. The 
orientation of the dual plaquette is specified by the above convention on 
any one of the original plaquette’s links.

The utility of the dual mapping for the ZP problem begins to appear 
with the observation that the six plaquettes needed in eq. (16.18) are dual 
to the set of six plaquettes which forms the three-dimensional cube dual 
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to the link ij. Regarded on the dual lattice, the partition function is a sum 
over integers associated with each plaquette but subject to the constraint 
that the sum of these variables over any three-dimensional cube is zero 
modulo P, where the plaquettes are oriented with the appropriate handed 
rule. The next step is to solve this constraint.

If each of these dual plaquette variables were a modulo P sum of integers 
associated with the links of the dual lattice, then the constraint of eq. 
(16.18) would be automatically satisfied. This is because each link variable 
would occur twice, once in each orientation, in forming the cube variable 
and would thus cancel out. Remarkably, this solution of the constraint 
equation is unique up to gauge transformations. To see this, consider a 
completely fixed gauge in the sense discussed in chapter 9. Thus we set to 
zero all link variables on a maximal tree containing no closed loops. Any 
unfixed link must then form a unique closed loop with a set of fixed links. 
To solve the constraint, we set this link to the sum, modulo P, of the 
plaquette variables on any two-dimensional surface with this loop as its 
boundary. The constraint condition on cubes permits deformation of this 
surface and thus assures the uniqueness of the selection procedure. If we 
now undo the gauge fixing, we obtain PN* gauge equivalent configurations 
giving the dual plaquette variables as sums over the corresponding links.

This process eliminates the delta functions in eq. (16.17) and replaces 
the sum over plaquette variables with one over the dual link quantities

Z = p37v4 z n6 (16.19)
{ni}} □ D

Here is the modulo P sum of the ntj around the given plaquette. We 
now identify with an element of ZP in the natural way

C/n =e2™a/p, (16.20)
and do a character expansion for bn

= = (16.21)
u n

where this equation defines the dual action S(Ua). In terms of these new 
variables we reproduce the original partition function but with a new set 
of parameters bn

The relation between b and b is simply a linear transformation
~ ^nm 

h — A * b un ^nm um>

where A is the unitary matrix which generates discrete Fourier transforms
Anm = (16.24)

Z(b) = Z(b). (16.22)



Discrete groups and duality 113

This matrix has the properties
/I-1 = A* (unitarity), (16.25)

A = AT (symmetric), (16.26)

U2kn = ^,P-n, (16.27)
A* = I. (16.28)

Equation (16.22) is the key consequence of duality for the ZP models. 
We note that the criterion of eq. (16.15) for orientation invariance 
automatically carries over to the dual variables because

Ap-n, m An,p-m- (16.29)
However, duality does not always result in a physically sensible model. If 
any of the bn are negative, then one cannot interpret them as new 
Boltzmann weights as in eq. (16.21). For those domains of the parameter 
space which are dual to another physical model, we have an interesting 
constraint on the singularities which can occur in the partition function. 
These must either occur in pairs, dual to each other, or must occur at 
self-dual points where b — b. There are examples of each of these 
possibilities.

To illustrate these ideas in a more specific case, we now turn to the Z2 
theory. Here the variables are from the set {1, — 1} and the action is

Sn(£7) = A+AtA (16.30)
The parameters bQ and br follow from the expansion

exp (A U) = cosh (A) + <7sinh (A). (16.31)
This immediately gives

A = exp (A) cosh (A), 1
/>i = exp(/?0) sinh(^). / (16.32)

Inverting these equations gives

A = i log «b0 -b1)/(bo+bj). / (16'33)

The Fourier matrix A is
, i/l 1\^ = 24(1 _J- (16.34)

This gives the dual variables

= 2-1(60+/,^. j
(16.35)

= 2~i(50 -5i)J
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(16.36)

In terms of the variables and & we have 
A = +i log (sinh (2&)), 
A=ilog(tanh(^)).

The change in merely represents an overall normalization. The shift in 
however, represents a non-trivial change in the model. Small maps 

onto large & and vice versa. Knowledge of the thermodynamic functions 
of the model in, say, the weak coupling regime determines, via eq. (16.22) 
and its derivatives, the corresponding functions in strong coupling. One 
point maps onto itself; this self duality occurs at

A = |log(l+2i) = 0.4406867... (16.37)
At exactly this coupling, numerical work has demonstrated that the model 
has a strong first-order phase transition, exhibited in chapter 9, figure 9.1 
(Creutz, Jacobs and Rebbi, 1979a).

Returning now to general P, various contours in the multiparameter 
space reduce to standard models. The simple Wilson ZP theory considers 
only and /?±1. In this system for P = 2, 3, and 4, the model maps onto 
itself under duality. Monte Carlo analysis (Creutz, Jacobs, and Rebbi, 
1979ft) indicates strong first-order phase transitions at the self-dual points. 
At P = 5 or more, the model ceases to be exactly self-dual, the dual model 
requiring more than just and Numerical work on these models 
indicates two second-order phase transitions, one moving to larger as 
P increases, and the other remaining in the 17(1) limit. These features can 
be understood in terms of duality with a slightly modified one-parameter 
action which is self-dual.

The Villain (1975) variation of the Wilson theory considers the action

^□(£7)= X e4^-2^)\ (16.38)
Z—oo

where the angle 6 is defined

U = eie, —n < 0 «= ir. (16.39)
For this action the parameters bn are given by the double sum

bn = P-1 £ S exp(-n/3(m/P-l)2-2mmn/P). (16.40)
m-1 Z—oo

To simplify this, we first complicate it by replacing the sum over I with 
an integral over a continuous angle and inserting a sum of delta functions 
from the formula

E 6(l—0/2n) = S eike. (16.41)
Z—oo fc—-oo
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This gives

bn = P~i £ S f°° {dei2n)exp{-^O-2nm/P)2-2Ttmn/P+\kO).
W-1 fc—00 J —00

(16.42) 
The theta integral is now Gaussian and yields

bn = P-'Qitfi)-^ S S exp(-|A:7/3-2mw(«+*)/P)- (16.43)
A;—oo m -1

The sum over m constrains n+k to be zero modulo P. Thus we do this 
sum and replace the sum over A: by a sum over multiples of P. This gives 
the final result

6„ = (27r/?)-i £ exp(-l(P7/?)(fc-„/P)2). (16.44)
fc—00

If we now return all the way back to eq. (16.21) and interpret this as the 
dual Boltzmann weight, we see that it has the same form as in eq. (16.38) 
but with p mapped onto

(16.45)

We have a self-dual model with the self-dual point at

P = (2tt)4p. (16.46)

As the parameter P goes to infinity the model goes over into £7(1). To 
avoid confinement in electrodynamics formulated with this lattice 
prescription, this model should exhibit a deconfining phase transition to 
a photon phase at weak coupling. Guth (1980) has rigorously proven the 
existence of such a transition. If the transition persists in the finite P 
models, then the latter must, by duality, have another transition at the dual 
point. This second transition, a consequence of the discreteness of the 
group, should move towards zero temperature with ft growing as P2 as P 
becomes large (Elitzur, Pearson, and Shigemitsu, 1979; Horn, Weinstein, 
and Yankielowicz, 1979; Ukawa, Windey and Guth, 1980). This is the 
empirically observed behavior for the Wilson theory, of which the Villain 
form is an approximation more amenable to analytic treatment.

Problems

1. Show that the two-dimensional Ising model is self-dual.
2. Show that the three-dimensional Z2 gauge theory is dual to the 

three-dimensional Ising model.
3. Consider the P state gauge Potts model where all bn except 60 are 

equal to each other. Show that this model is self-dual. This system has a 
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single first-order phase transition at the self-dual point (Kogut, Pearson, 
Shigemitsu and Sinclair, 1980).

4. Show the self-duality of the Wilson Z4 model with only the couplings 
fit and



17
Migdal-Kadanoff recursion relations

In the chapter on mean field theory, we saw that with large space-time 
dimensionality, lattice gauge theories should exhibit first-order phase 
transitions. In contrast, in two dimensions the gauge systems reduce to 
simple one-dimensional spin chains (problem 1 of chapter 9) which exhibit 
no thermodynamical singularities. It is of crucial importance to know at 
what intermediate dimension the phase structure ceases to be non-trivial. 
Indeed, we want four space-time dimensions to be at or below this critical 
dimensionality for non-Abelian gauge groups so that we can use strong 
coupling techniques for the study of the confinement problem.

A similar question arises in spin models, where with large, such as three, 
dimensions ferromagnetic transitions occur whereas in one dimension 
long-range order is impossible without long-range forces. In the case of 
magnetic systems, there are rigorous theorems (Peierls, 1935; Mermin and 
Wagner, 1966; Coleman, 1973) which severely restrict the possible ordering 
in two dimensions for theories with a continuous symmetry group. The 
massless spin waves associated with a ferromagnetic state develop severe 
infrared singularities which disorder the system. Without a decoupling of 
the long-wavelength spin wave, which occurs in free field theory and with 
the (/(I) symmetry, these models cannot exhibit a massless phase. This 
gives us a compelling reason to believe that two is the critical dimensionality 
for spin systems with nearest-neighbor interactions. Indeed, ferromagne
tism should not occur in these models when the symmetry is non-Abelian 
and the spin waves do not decouple. Unfortunately, we do not have such 
strong arguments for gauge theories.

From a renormalization group point of view, the phase structure of a 
theory appears when we compare the system on lattices with different 
spacing. As discussed in chapter 12, we have a second-order transition at 
a fixed point where physics does not change when we alter either the scale 
of measurement or the lattice spacing. The Migdal-Kadanoff recursion 
relations represent a simple approximate method for comparing theories 
with different lattice spacings (Migdal, 1975a, b; Kadanoff, 1976; 1977).

The virtue of this technique is that it provides a simple method for 
117
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obtaining an approximate renormalization group function. Its primary 
drawback lies in the difficulty of assessing the severity of the approximations 
involved. The procedure becomes exact in one or two dimensions for spin 
or gauge models, respectively. In contrast to mean field methods, the 
recursion should become less accurate as the dimension is increased. A 
particularly desirable feature of the method is that it correctly predicts two 
as the critical dimensionality for magnetic systems.

When applied to gauge theories in d dimensions, this approximate 
recursion gives precisely the same relation as for a spin model in d/2 
dimensions. This immediately implies that four is the critical dimensionality 
for continuous gauge groups. In this sense, the absence of a phase 
transition in a four-dimensional non-Abelian gauge theory corresponds 
directly to the absence of ferromagnetism in two dimensions. Indeed, 
before the application of Monte Carlo methods to gauge systems, this was 
the strongest evidence for quark confinement in the standard gauge model 
of the strong interactions.

The d to d/2 correspondence between gauge and spin models predicts 
a similar structure for the (7(1) model of electrodynamics and the ‘planar’ 
or ‘ XY9 model in two dimensions. In recent years the latter model has been 
the subject of considerable interest in solid state physics. It exhibits an 
infinite-order phase transition to a weak coupling phase with correlation 
functions which fall for large separations as a power of distance. This 
power is a continuously varying function of the coupling (Kosterlitz and 
Thouless, 1973). For the gauge theory of electrodynamics, this is consistent 
with the existence of a massless photon phase, which was mentioned in 
the last chapter. The renormalized electric charge is expected to be a 
continuously varying function of the bare coupling.

Although the Migdal-Kadanoff relations appear to correctly predict the 
critical dimensionality and the existence of at least some transitions, it can 
misidentify their nature. The Z2 gauge model in four dimensions is 
predicted to be similar to the two-dimensional Ising model, whereas the 
former has a strong first-order transition and the latter, second order. For 
the (7(1) models discussed in the previous paragraph, the gauge model 
appears to be second order (Lautrup and Nauenberg, 1980a; DeGrand and 
Toussaint, 1980; Bhanot, 1981; Moriarty and Pietarinen, 1982) while the 
spin transition is of infinite order (Kosterlitz and Thouless, 1973).

We begin our detailed discussion with a demonstration of the technique 
on a trivial example, the one-dimensional Ising model. We consider a chain 
of N spins, each from the set Z2 = {1, — 1}. These interact through a 
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nearest-neighbor coupling and give the partition function

Z= Eexpf I (A+AWi)\ (17.1)
{sj \l-l /

As in the last chapter, we find it convenient to keep the normalization /?0 
as a free parameter even if it is irrelevant to the thermodynamic singularities. 
For simplicity we treat the system as periodic, s^+1 = We now go to 
a transfer matrix formalism and write

Z = Tr(TN). (17.2)
Here T is the two-by-two matrix describing the interaction between 
neighboring spins

T = e^o

In this example, the Migdal-Kadanoff relation merely represents an 
initial ‘decimation’ or sum over every other spin. In terms of the transfer 
matrix, we write (consider N even)

Z = Tr(T,JV/2), (17.4)

o ( e~^i \
where T' = T2 = e& R, R, . (17.5)

The new couplings are given by

^ = 2^0 + |log(4cosh(2A)X (17.6)
& = |log (cosh (2£)). (17.7)

Thus the theory with parameters and & has the same physics as the 
model on a lattice of twice the spacing but with different couplings and

We can use this relation to take the lattice spacing to zero and obtain 
a continuum limit. This process requires repeatedly adjusting the couplings 
so as to maintain a constant correlation length in physical rather than 
lattice units. The parameter merely represents a zero point energy which 
cannot cause thermodynamic singularities. Thus we should concentrate on 
the physically relevant variable Equation (17.7) relates with cutoff 
a to its value with a lattice spacing of 2a.

^(2a) = j log (cosh (2&(a))). (17.8)

In a continuum limit must go to a fixed point of this recursion relation. 
The two fixed points in this one-dimensional model are at = 0 and

= oo. The former of these is ultraviolet repulsive and the latter 
ultraviolet attractive in the sense discussed in chapter 12. This theory is
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asymptotically free in as much as we must go to infinite or zero 
‘temperature’ for the continuum limit. This is the same behavior conjec
tured for the four-dimensional gauge theory of the strong interactions.

For further analysis, it is convenient to diagonalize T and find its 
eigenvalues. This is done directly via the character expansion of the 
exponentiated action in terms of the variables bn of the last chapter.

Ts,8' = bt + l^ss', (17.9)

where Z>0 = cosh (A), j (17 10)
br = e^o sinh (/7J. J

Up to a factor of two, these variables are the eigenvalues of T. The 
orthogonality of the characters now implies

(T*)8S, = 2(bl + blss'). (17.11)
The factor of two arises because we have not normalized the sums over 
spins. Normally we set f dg = 1, but here we have taken £1=2. The recur
sion relation for the variables bt is thus a simple power

^ = 26?. (17.12)
This generalizes to all groups. A decimation is a generalized convolution 

and becomes simple in the transform space of the characters. If the spins 
are considered as elements g of some group, we consider the partition 
function r

Z = (ndg^expdS^g^)), (17.13)
J i i

where SL is the contribution to the action from a single link. We now 
expand the nearest-neighbor interaction in characters of the irreducible 
representations of the group

exp (SL(g)) = ^bR xR(g) = exp (E pR ^R(g)). (17.14)
R R

A decimation in this model will utilize the orthogonality

\<igX*R(g)xM) = (17.15)

where dR is the dimension of the matrices in the representation (problem 
3 of chapter 8). This gives

b'R = d~RWR. (17.16)

We assume for a physical theory that bR is real and that for every 
representation its conjugate occurs in eq. (17.14) with an equal coefficient.

Up to this point the recursion relations have been exact. In going to 
higher dimensions, approximations become necessary. Consider the two
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dimensional Ising model with partition function

Z = Xexp(E(/?0+/?1Mj)), (17.17)
{»<} {0}

where the variables are again from Z2 and the sum in the exponential is 
over all nearest neighbor pairs of sites on an N-by-N two-dimensional 
square lattice. We would like to begin with a decimation or sum over every 
other site in the x direction, for example those variables on sites with odd 
x coordinate. In figure 17.1 we show a portion of the lattice and label by

X
531 a31

X
5 32

X
°32

X
5 33

X X X X X
*21 a2i S 22 022 ^23

X X X X X
5 n On s 12 Oil s 13

Fig. 17. 1. A portion of a two-dimensional lattice. We wish to sum over the 
spins labeled by a.

Fig. 17. 2. A decimation generates non-nearest-neighbor couplings such as the 
diagonal bonds illustrated here.

a those sites we wish to sum over. This should leave a model with action 
depending only on the remaining sites, labeled by s in the figure. Although 
in principle this can be done exactly, a complication arises because the new 
theory will in general involve non-nearest-neighbor interactions. This is 
schematically shown in figure 17.2. Indeed, the decimation will introduce 
couplings between spins on adjacent unsummed x rows but arbitrarily 
separated in the y direction. To keep the recursion relations manageable, 
some truncation is necessary. The simple Migdal-Kadanoff procedure 
eliminates these long distance interactions via the trick of bond moving.

The non-local couplings arise because the a variables are coupled in the 
y direction. If these troublesome couplings were not present, then the sum 
over the a would reproduce the one-dimensional recursion on the x 
direction bonds. The Migdal-Kadanoff approximation consists of neg
lecting the y couplings of the a variables and compensating for them by 
increasing the strength of the y couplings between the unsummed s
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variables. Effectively the bonds between the a are moved one site over to 
give a double strength y bond between sites with even x coordinate. This 
bond moving is illustrated in figure 17.3. On the decimated lattice the new 
y coupling becomes (17 18)

where the superscript indicates the direction associated with the coupling. 
The x bonds now receive the one-dimensional recursion from eqs (17.6) 
and (17.7) ^->2/?0+llog(4cosh(2/?f)), (17.19)

log (cosh (2/?f)). (17.20)

------------x------------------ x---------------------X--------------------x--------------------x-------------

------------ x------------------x--------------------- x--------------------X--------------------x-------------

Fig. 17. 3. Moving bonds to reduce the decimation to the one-dimensional case.

The next step is to repeat the decimation in the y direction and modify 
the couplings with x and y interchanged in the above equations. The net 
result is /?^4^+|log(4cosh(4^)), (17.21)

-> jlog (cosh (4/?f)), (17.22)

/??->4^+log(4cosh(2/?f)), (17.23)
log (cosh (2/?f)). (17.24)

Unfortunately the sequential decimation has lost the symmetry of the 
theory under interchange of the x and y axes. We will repair this 
momentarily but first note that this recursion does have a fixed point at 
the asymmetric couplings

p* = = 0.609377863... (17.25)
To recover the xy symmetry of the model we consider the respective 

decimations in an infinitesimal manner. Thus, we first perform the change 
of the lattice spacing in the x direction not by a factor of two, but by a 
factor of (1 + A). The corresponding change in the x couplings is most
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apparent with the variables bR, which become raised to the (1 + A) power. 
For the general model, eq. (17.16) is replaced by

b'R = d~R^ = bR + bR\^(bR/dR)^O{^). (YI26)
For the y bond moving we increase the strength of the by a factor of 
(1 + A). Keeping only the leading terms in A, we repeat the decimation in 
the y direction. Both the x and y couplings change equally and become

Fr = Pr + Wr+ Z(0^/9M^log(^/^')) A. (17.27)R'
As the change in the lattice spacing is aA, we obtain the Migdal-Kadanoff 
approximation to the renormalization group function

ad0R/da = ^ + Z(0^/S^)^log(^/^). (17.28)R'
The generalization to d dimensions is immediate; a decimation in any 
direction requires bond moving in all the J— 1 orthogonal coordinates. The 
final formula is

adflR/da = (d-1)^ + 1 (d^/0M^log(^/^). (17.29) 
R'

Applied to the variable fa in the Ising model, this reduces to
adfa/da = (d-1 )& + sinh(&)cosh(&)log(tanh(^)). (17.30) 

At d = 2, this has a fixed point at
/?1 = llog(l+2i), (17.31)

which remarkably is the exact result, as predicted by duality. As d goes 
to unity, the fixed point goes to infinity. Using the asymptotic forms for 
the hyperbolic functions, we obtain for the fixed point

fa=l(d-iyi + O(^). (17.32)
Thus we say that unity represents the critical dimensionality for the Ising 
model.

For a model based on a continuous group, the recursion relations 
predict two as the critical dimensionality. Physically this follows because 
at weak coupling the exponentiated action strongly peaks near the identity 
element of the group and approximates a Gaussian in the group parameter 
space. The decimation in the x direction convolutes these Gaussians, 
increasing their width by a factor of (14-A). In contrast, the bond moving 
decreases the widths of the Gaussians on orthogonal bonds by a factor 
(1 -I-A)-1. For precisely two dimensions these operations are done equally 
on all bonds and the leading effects cancel.

To see this in more detail, it is convenient to introduce a new variable 
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which simplifies the form of the recursion relation. We define 
A = log (WOW)

= log(^(W«)log6o), (17.33)
where bQ is the b parameter for the singlet representation

= Jdgexp(SL(g)). (17.34)

The variable fR has several nice properties. First, it is readily calculable 
from bQ alone. Second, being a function of the ratio of two b parameters, 
it is independent of the overall normalization represented in /0. Finally, 
the recurrence relation assumes a ‘linearized’ form

adfR/da = (1+(^1)S^0/W)A. (17.35)
R'

We now consider the weak coupling limit of a truncated action with only 
a single coupling ft representing the fundamental group representation. The 
parameter Z>0 is then f

ft0 = dge^ReTr(sr). (17.36)

From this we define the corresponding/ variable

/= log(JpWWogO, (17.37)
where dF is the dimension of the group matrix g. The recursion relation 
for^ls a(d/da)/=(l+(rf~lWW- (17.38)

If we now let ft become large, the integral in eq. (17.36) receives its 
dominant contribution from g near the identity, where we write

g = eiwA, (17.39)
ReTr(g) = dF-&* + O(<S). (17.40)

Here Aa are the group generators, of which there are nff. Straightforward 
Gaussian integration gives

/=V(W) + O(^-2). (17.41)

Inserting this into eq. (17.38) gives
a(d/da)ft = (rf-2)/?+O(l), (17.42)

which shows the critical nature of two dimensions. The 0(1) term depends 
on the details of the quartic term in the action as well as the group 
measure. This sensitivity presumably is a signal of overextension of the 
approximations in the recursion relations; nevertheless, Kadanoff (1977) 
has given heuristic arguments which suggest a negative sign for this 
correction in two-dimensional non-Abelian theories. This supports the 
perturbative prediction of asymptotic freedom in these models (Polyakov, 
1975).
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With this machinery in hand, the generalization to gauge theories is 
direct. Indeed, this extension is almost trivial with the choice of an 
appropriate gauge. In d dimensions, to do a decimation along, say, the x 
axis, it is natural to work in the axial gauge where the links along that axis 
are all set to the identity. We then have a set of coupled one-dimensional 
chains of spins, as discussed in the chapter on gauge fixing. Suppose we 
now take those plaquettes which are transverse to the decimation direction 
and move those with odd x coordinate back one site. Then we can integrate 
the variables with odd x coordinate. In this procedure, the decimation on 
the plaquettes parallel to the x axis is precisely that of the one-dimensional 
spin system. After the decimation in one direction, we undo the gauge fixing 
along that axis and repeat the entire process along another. Continuing 
to make an infinitesimal decimation in every direction gives the Migdal- 
Kadanoff approximation for the renormalization group function in a 
gauge theory

a(d/da)/?fi = (d-2)#B+2S(3#a/0M^'log^'- (17.43)R'
The parameters fiR and bR are defined in analogy with eq. (17.14) with SL 
replaced by SD and g{g*+1 replaced by l/D. The factor d— 2 in the first 
term arises because for any plaquette we perform bond moving for the d— 2 
dimensions orthogonal to that plaquette, while the other two dimensions 
in the plane of the plaquette give the factor of two in the second term.

This is the result advertised at the beginning of this chapter. Up to an 
overall factor of two, the recursion relation is identical to that for the spin 
system in d/2 dimensions. The correspondence appears because the spin 
interaction is along one-dimensional bonds while the gauge interaction 
utilizes two-dimensional plaquettes. The important prediction is that the 
critical dimensionalities in the gauge theory are twice those of the spin 
models. Thus our four-dimensional world represents a critical case for 
continuous gauge groups.

Problems

1. As Jgoes to infinity, what happens to the fixed point of eq. (17.30)? 
Which should be more reliable, this prediction or that of mean field theory?

2. Consider an action with a quartic term
SL(g) = (Jf+>2 + C^ + O(W«))

in the analysis leading to eq. (17.42). Find the 0(1) terms in the latter 
equation in terms of the parameters C and the integration measure 
dg = dnf (o (Jo4-w2 4- O(<u4)).
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3. Consider the general ZP model discussed in the last chapter. Show 
that the processes of bond moving and decimation interchange under 
duality. Thus the infinitesimal recursion relation respects the duality 
symmetry and gives the exact result in eq. (17.31).

4. What does the Migdal-Kadanoff relation predict for the behavior of 
the correlation length near the critical point of the two-dimensional Ising 
model?
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Monte Carlo simulation I: the method

The lattice formulation reduces the Feynman path formula for the gauge 
theory into a multiple ordinary integral. This suggests that, at least for 
finite size systems, one might attempt to numerically evaluate the partition 
function. A moments thought, however, reveals that the high multidimen
sionality of the integrals makes conventional mesh techniques impractical. 
For example, consider a 104 site lattice, a size fairly typical for numerical 
work. Such a system has 40000 link variables. If we now take the simplest 
possible gauge theory, that with gauge group Z2, the partition function 
becomes an ordinary sum. But this sum has an enormous number of terms, 
that number being

24oooo= 1.58 x 1012041. (18.1)
Even if we could add one term in the time it takes light to pass by a proton 
and continue for the age of the universe, we would not put a perceptible 
dent in the sum.

The appearance of such large numbers immediately suggests a statistical 
treatment. Indeed, there are also an enormous number of ways to place 
molecules of H2O into a glass and yet one only needs a few to determine 
the thermodynamic properties of water. The goal of the Monte Carlo 
approach is to provide a small number of configurations which are typical 
of thermal equilibrium in the statistical analog. Whereas the super- 
astronomical number of terms indicated in eq. (18.1) can never be summed 
exactly, it is straightforward to store the few tens of thousands of numbers 
characterizing typical configurations which strongly dominate the sum.

A Monte Carlo program begins with some initial configuration of the 
fields stored as an array in a computer memory. It then sequentially makes 
pseudo-random changes on these variables in such a manner that the 
ultimate probability density for encountering any configuration C is 
proportional to the famous Boltzmann factor

(18.2)

where S(Q is the action associated with the given configuration. In this 
chapter, to emphasize the connection with statistical mechanics, we

127
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explicitly display the factor of which we previously absorbed in the 
definition of the action. Our goal is to use the computer as a ‘heat bath’ 
at inverse temperature (I.

The Monte Carlo simulation technique is quite old in statistical physics 
(Metropolis et al., 1953). It provides the possibility of performing ‘experi
ments’ on virtual ‘crystals’ with interactions governed by an arbitrary 
Hamiltonian of choice. This in principle enables isolation of various 
dynamical features and their role in such phenomena as phase transitions. 
Furthermore, as the entire configuration is stored, any desired correlation 
function is in principle available. The technique converges well in both high 
and low temperature regimes and interpolates nicely in between. This latter 
point is of particular import to the particle physicist, who desires to relate 
the Wilson demonstration of confinement in strong coupling to the 
continuum field theory obtained in the weak coupling limit.

As with real experiments, Monte Carlo simulations have certain inherent 
sources of error. Statistical fluctuations are always present, and only 
decrease with the square root of the computing time. This can be a serious 
handicap if one is interested in some detailed parameter displaying 
fluctuations comparable to the signal. Then one must run a hundred times 
longer to merely reduce the errors to 10%. In addition, systematic effects 
may arise from the finite lattice size and spacing. For the four-dimensional 
systems considered here, the linear size of the lattice is necessarily quite 
limited, eight to ten sites on a side being typical. (At this writing, the largest 
lattice yet studied for a gauge theory had 164 sites; Bhanot and Rebbi, 
1981.) Finally, a systematic error arises in determining when equilibrium 
has been reached; in particular, one must worry about being trapped in 
some metastable state.

Many of these systematic effects are readily amenable to further study. 
The lattice size is easily varied over a limited range and indeed observation 
of finite size effects can provide useful information on the states of the 
theory (Brower, Creutz and Nauenberg, 1982). Different initial conditions 
can test for thermal equilibrium; some possible starting states will be 
discussed later. Finite lattice spacing effects are of interest because they 
are tied to the renormalization of the bare coupling, as extensively 
discussed in chapters 12 and 13.

Regarding the computer as merely a heat bath immediately suggests the 
most intuitive Monte Carlo algorithm (Yang, 1963). We successively touch 
this heat bath to all the links in the lattice. A real thermal source in contact 
with a link would cause that variable to fluctuate thermally throughout 
the group manifold. When the source is removed, the link would be left 
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in any of its allowed states with a probability given by the associated 
Boltzmann weight. For example, to mimic this process for the gauge group 
Z2 = {1, — 1}, one would begin by calculating the probability of the given 
link to be left in the state 4-1

P(l) = e-^/Ce-^^+e-^"1)). (18.3)
Here S(± 1) is the action evaluated with the link in question in the 
corresponding state and all other links held fixed at their current values. 
Note that if the action is local, that is if only nearby links are directly 
coupled, then this probability depends solely on these nearby links. The 
algorithm continues by asking the computer for a randomly selected 
number from a uniform distribution between zero and one. If P(l) exceeds 
this number, the link is set to unity, otherwise it is set to —1. The 
entire procedure is then repeated on the next link and so forth until the 
entire lattice is covered. This represents one Monte Carlo iteration and 
generates the next state in a Markov chain of configurations.

These ideas are applicable to any group. The ‘heat bath’ algorithm 
replaces each group element with a new value selected randomly with a 
weighting given by the current exponentiated action. When applied to an 
ensemble of states, this gives a new ensemble which is closer to an 
equilibrium ensemble in a sense that we will shortly make precise.

When the group manifold is intricate, the above selection procedure for 
new group elements may be impractical or too time consuming to 
implement efficiently. For this reason computationally simpler algorithms 
are often used. These are also constructed to bring one closer to equilibrium, 
but may require more iterations to achieve the same convergence. If each 
iteration takes less computer time than a heat bath selection, there can be 
a net gain.

To design alternative procedures, we need a criterion for determining 
when an algorithm for randomly changing an ensemble of configurations 
will tend towards equilibrium. In general, each state in the Monte Carlo 
sequence results from a Markovian process applied to the previous 
configuration. Each stage in the algorithm is thus specified by a probability 
distribution P(C, Q for taking configuration C into Cf. An obvious 
necessary condition on P is that it leave an equilibrium ensemble in 
equilibrium. Thus the Boltzmann weights should be an eigenvector of P

= v p(C, (18.4)
c

Remarkably, if the algorithm has eventual access to any configuration, this 
is also a sufficient condition for any ensemble to ultimately approach the 
Boltzmann distribution of eq. (18.2).
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To demonstrate this claim, we need a notion of ‘distance’ between 
ensembles. Suppose we have two ensembles E and E', each of many 
configurations. Denote the probability density for configuration C in E or 
£' by p(C) or p'(C), respectively. Then we define the distance between E 
and E' as the sum ||£-£q| = S|XC)-/(C)|, (18.5)

c
where the sum is over all possible configurations. Now suppose that E' 
resulted from the application of a Monte Carlo algorithm satisfying 
eq. (18.4) to ensemble E. This means that

p'(C) = ZP(C,C)p(C). (18.6)
c

As P(C, Q is a probability, it satisfies
P(C,Q>0, (18.7)

£P(C',C) = 1. (18.8)

We can now compare the distance of E' from equilibrium with the distance 
of E from equilibrium

l|£'~£eqll = EIZ/(C,C)(p(C')-peq(C'))|

< E tP(C,C)\p(C)—peq(C)\ = ||£—£eq||. (18.9)
c.c

We conclude that the algorithm reduces the distance of an ensemble from 
equilibrium. Note that if P(C, C') never vanishes, this inequality is strict 
unless we are already in equilibrium.

To insure that an algorithm has the equilibrium distribution as an 
eigenvector, most algorithms in practice are based on products of steps 
each satisfying a condition of detailed balance

P(C',Qe~^(C) = P(C,C)e-^<cX (18.10)
Summing over the second index C' and using eq. (18.8) immediately gives 
the eigenvector eq. (18.4).

The detailed balance condition, which is sufficient but not necessary for 
the approach to equilibrium, far from uniquely specifies the matrix 
P(C, C). The heat bath algorithm automatically satisfies the condition 
because P(C, C) is independent of C and proportional to the Boltzmann 
weight for C. Metropolis et al. (1953) used the detailed balance criterion 
to formulate another algorithm which, because of calculational simplicity, 
has become the most popular in practice. For the gauge theory, we begin 
with the selection of a trial U' as a tentative replacement for some link 
variable U. The test variable is selected with a distribution PT(U, U') which 
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must be symmetric in U and U'

PT(U, U') = PT(U\ U). (18.11)

Beyond this constraint, PT is arbitrary and may be selected empirically to 
optimize convergence. Normally it is best if U' has a weighting towards 
the old value of U. Once U' is chosen, we evaluate the tentative new action 
S(U') for comparison with its old value S(U). If the action is lowered, that 
is if the new configuration has a larger Boltzmann weight, then this change 
is accepted. The detailed balance condition then determines the remainder 
of the algorithm: if the action is raised the change must be accepted with 
conditional probability exp(—/3(S(U') —

A simple way to implement this procedure is to obtain U' by multiplying 
U with a random group element from a table, where this table is itself of 
random elements with a convenient weighting towards the identity. The 
table should contain enough elements to generate for the group and should 
contain the inverse of each of its elements in order to satisfy eq. (18.11).

The Metropolis algorithm described above has an essential dependence 
on two parameters. The first is the weighting of the random changes 
towards the identity. This peaking should become more severe at low 
temperatures where large changes would be routinely rejected. A popular 
criterion for selecting this distribution is to make the acceptance probability 
at any step roughly 50%.

A second parameter in the algorithm is the number of trial changes 
attempted on any given link before going on to the next. In most statistical 
problems this is taken to be one; however, for the gauge theory the 
interaction is rather complicated and requires considerable arithmetic to 
evaluate. This means that it can be extremely beneficial to do as good a 
job as possible in selecting the stochastic changes. In terms of real 
computer time involved in reaching equilibrium, it is usually of value to 
test ten or more new elements, during which time the multiplication of 
neighboring elements appearing in the action need not be repeated. Note 
that as the number of tries, or ‘hits’ increases, the Metropolis algorithm 
approaches the heat bath. This is because repeating the procedure on one 
link will ultimately bring that link into thermal equilibrium with its 
temporarily fixed neighbors. This is what the heat bath does in one step. 
To determine an optimum number of hits, one can simply make a few trial 
runs on a small lattice to study the convergence in real time.

Although the Metropolis procedure brings an ensemble closer to 
equilibrium by less per iteration than the heat bath, it has the advantage 
of being extremely simple. The detailed form of the group measure is not 
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needed; the algorithm automatically generates it with a random walk 
around the group. Furthermore, to change the form of the action or group 
is straightforward. Nevertheless, for groups with simple enough manifolds 
the heat bath algorithm may be rather elegantly implemented.

To illustrate some techniques for generating variables with a given 
weight, we will now discuss the heat bath generation of SU(2) elements 
for the gauge theory with the Wilson action (Creutz, 19806). First we need 
a source of random numbers uniformly distributed between zero and one. 
Such generators are standard in most high level computer languages, and 
we assume a good one has been provided (Knuth, 1969). The important 
point for our purposes is that calls to such a generator are extremely fast, 
comparable to a multiplication, and thus usually represent only a minor 
part of the time of a simulation.

Given a source of random numbers with such a uniform distribution, 
we can easily produce a random sequence with an arbitrary distribution. 
Suppose we have some positive function f(x) on the unit interval and wish 
to generate points with a weighting proportional to /. For simplicity 
assume that f is bounded; if not, make a change of variables to make it 
so. Without loss of generality, we assume that /(x) is bounded by unity. 
Using the given random number generator, we obtain a trial number for 
the first element of our weighted sequence. Calling this number x, we obtain 
a second random number and accept x if the new random variable is less 
than /(x). This is repeated many times to form a sequence of accepted 
values of x. As the probability of accepting any x is proportional to /(x), 
the sequence has the desired weighting.

This process will be inefficient if the function f is strongly peaked. In 
this case we may need to generate many points before one is accepted. If 
one knows approximately where the peak is and its form, one may be able 
to change variables to spread it out. This forms the basis for the following 
SU(2) algorithm.

While working on a particular link (y), we need consider only the 
contribution to the action coming from the six plaquettes containing that 
link. If we denote by 0a, a = 1,..., 6, the six products of three link variables 
which interact with the link in question, then the probability distribution 
for the new link variable under the heat bath algorithm is

dp(U)-dUexpf^Trft/ £ t/aY). (18.12)
\ \ a = 1 //

For SU(2) the trace is automatically real. In chapter 8 we parametrized 
SU(2) as the surface of a four-dimensional sphere

SU(2) = {a0 + ia-a|a* + a2 = U, (18.13) 
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where a represents the Pauli matrices. The invariant group measure is 
uniform over this sphere

dl/~dW(a2-l). (18.14)
This representation shows the useful property that a sum over any number 
of St/(2) elements is proportional to another element of the group. In 
particular, we have 6

Z Ua = kU, (18.15)
a = 1

where U is an element of SU(2) and k is the determinant
6 ~ iS ua .fc = (18.16)

The utility of this observation appears when we use the invariance of the 
group measure to absorb U

dp(UU~l) ~ d£/exp(i^tTr U) - d4a<J(a2-l)exp(^Jta0). (18.17) 
Thus we have found the peak in the exponentiated action and rotated it 
to the identity. We have reduced the problem to generating points 
randomly on the surface of the unit sphere in four dimensions with an 
exponential weighting along the aQ direction. Given an element U generated 
in this manner, we replace the link variable on the lattice with the product

U^ = UU-1. (18.18)
To generate the appropriately weighted points on the sphere, we first 

do the integration over the magnitude of a with the delta function and 
obtain dt/exp^Tr U) ~ JdaodQ(l-a*)iexp(/?fcao). (18.19) 

Here dQ is the differential solid angle for the vector a, which has length 
(1 — a2)l We need the generate a0 in the interval (—1,1) with probability 
densdy ~ (1 (j^da, (18.20) 

and the direction for a is totally random. For moderate to large /?, the 
dominant peaking in eq. (18.20) comes from the exponential factor. This 
can be removed with a change of variables from aQ to

z = exp(/?fca0). (18.21)
Equation (18.20) now becomes

dp(z) = dz(l -^2Ar2log2z)i. (18.22)
The generation of z can proceed as outlined earlier; with the random 
number generator a trial z is selected randomly in the allowed interval

e"2^ z < e+2^ (18.23)
and this is rejected with the probability given on the right hand side of 
eq. (18.22). Repeating this until a z is accepted, one reconstructs a0 by 
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taking a logarithm. The final step in the algorithm is to randomly select the 
direction for a. This can be done in a variety of ways; for example, one 
could generate a random point in the interior of a three-dimensional sphere 
and use its direction from the origin. Note that in the above discussion 
several tricks special to the group S(7(2) were used. To find corresponding 
tricks for a new group or even a new action can be tedious and thus most 
simulations in practice have turned to the Metropolis algorithm.

Monte Carlo computer programs tend to be physically rather short and 
straightforward. They begin with a set of nested loops over the various 
links. The selection of the new variables, such as outlined above, involves 
only a few rather simple operations. The multiple loops result in these steps 
being repeated on the order of a million times. The SU(2) procedure is 
readily implementable so that it requires less than 200 microseconds per 
link on a CDC 7600 computer. The group SU(3) with a reasonably 
optimized algorithm uses one to two milliseconds per link on the same 
machine. In both these cases, the majority of the time is spent multiplying 
the neighboring group elements. In practice it is usually computer time 
rather than storage which limits these programs. For SU(2) it is convenient 
to store the four components of a^ for each link, resulting in a relatively 
modest 160000 numbers for a 104 site lattice.

We now turn to describe some simple Monte Carlo ‘experiments’. An 
obvious first question involves the time required to reach equilibrium. 
When we are not operating near a phase transition this time can be 
remarkably short. In figure 18.1 we show the results of several runs with 
the heat bath algorithm on the group SU(2). The coupling constant was 
set to the constant value o A _2 ~ ~/? = 4g0= 2.3 (18.24)
which was selected as representative of the slowest convergence occurring 
with this model. Runs are shown on four-dimensional lattices of from 44 
to 104 sites. Each iteration represents one application of the heat bath 
algorithm to every lattice link; on the 104 lattice one such step represents 
40000 new SU(2) elements. As a function of the number of iterations, we 
plot the average plaquette or expectation of the action

P = <1 —|Tr t/n>, (18.25)
discussed in chapter 9. For each size lattice, two different initial configur
ations were studied. The + symbols represent an ordered start, with all 
link matrices set to the identity. This ground state of the statistical system 
corresponds to beginning at zero temperature. In contrast, the crosses 
represent an initial configuration where each element was selected ran
domly, uniformly in the invariant measure, from the entire group. In this 
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case we start at infinite temperature. Thus we approach equilibrium from 
opposite extremes. Note that in all cases convergence appears to be 
essentially complete after only 20 to 30 iterations. Thermal fluctuations, 
which must always be present, are quite apparent on the small lattices but 
become relatively small on the 104 site system.
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Fig. 18.1. Several Monte Carlo runs with the group SU(2) (Creutz, 1980/>).

The situation can be considerably less advantageous if a phase transition 
is nearby. In figure 18.2 we show the convergence of the t/(l) theory on 
a 64 lattice at /? = 1.0. On an infinite lattice this system exhibits a 
second-order phase transition at /? = 1.012±.005 (Lautrup and Nauen- 
berg, 1980a; DeGrand and Toussaint, 1980; Bhanot, 1981). In addition to 
the rather slow convergence when compared to the SU(2) case, note the 
large fluctuations, characteristic of critical behavior.

The above runs illustrate the two simplest initial conditions, correspon
ding to zero and infinite temperature. In the case of a first-order transition 
such initial states can result in the lattice being caught in a metastable state. 
As in a real experiment, a random (ordered) lattice can be supercooled 
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(superheated) substantially below (above) the transition temperature 
without settling in a reasonable time into the correct phase. To aid in 
approaching equilibrium one can add a ‘seed’ consisting of an ordered 
(disordered) piece of the lattice. This motivates a third interesting initial 
configuration consisting of a lattice which is half ordered and half 
disordered. For example, links from sites with fourth coordinate less than 
half the lattice size could be randomized and the remainder ordered. In

64 lattice
0= 1.0
• Random start
♦ Ordered start
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Fig. 18.2. Two Monte Carlo runs with the €7(1) model near its critical point.

figure 18.3 we show several Metropolis algorithm runs with such a start 
for the gauge group Z2 on an 83 by 20 lattice (Creutz, Jacobs, and Rebbi, 
1979 ft). Several values of temperature are selected near the transition point 
as calculated in chapter 16. The figure shows a linear drift characteristic 
of one phase ‘dissolving’ the other. The aimless drift very near the 
transition indicates that this method can rather accurately determine the 
temperature of the phase change. Indeed, this is analogous to putting some 
ice in water to determine its melting point.

The fact that convergence is fast away from phase transitions and slow 
near them suggests another type of experiment. Upon heating and then
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cooling the system through a range of temperatures, regions of slow 
convergence will appear as hysteresis effects. This provides a technique for 
rapidly locating regions of coupling for further study. In figure 18.4 we 
show the results of such thermal cycling on the SU(2) model in four and 
five space-time dimensions and the 17(1) = SO(2) theory in four dimensions. 
Each point in this figure was obtained by running on the order of twenty 
iterations with the heat bath algorithm from either a hotter or cooler 
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Fig. 18.3. Several Monte Carlo runs for the Z2 model with mixed phase initial 
conditions. From the top down, these runs take fi from 0.41 to 0.47 in steps of 
0.01 (Creutz, Jacobs and Rebbi, 1979a).

configuration. As a check on normalizations, we also plot the lowest order 
strong and weak coupling results. Phase transitions are to be suspected in 
those regions where the heating and cooling cycles do not agree, as clearly 
observed for the five-dimensional SU(2) and four-dimensional 17(1) 
models. Further analysis in the transition region suggests that the 17(1) 
transition is second order (Lautrup and Nauenberg, 1980a) and the 
five-dimensional SU(2) transition is first order. As the latter fits the 
prediction of mean field theory, we conclude that d = 5 is close to d = oo.
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This is further supported by the fact that the U( 1) model in five dimensions 
also exhibits a first-order transition (Bhanot and Creutz, 1980).

The hysteresis seen in figure 18.4c may at first seem a bit surprising 
because the transition is believed to be second order and should have a 
continuous internal energy regarded as a function of the temperature.

1.0 1.5 2.0
&

Fig. 18.4. Thermal cycles on several of the models (Creutz, 1979).

However, this thermal cycle was rather rapid, and, as figure 18.2 shows, 
a few tens of iterations are insufficient for relaxation of the energy near the 
critical point. Repeating this type of experiment at different cycle rates does 
indeed provide information on the nature of a transition. With a strong 
first order phase change, superheating and supercooling result in a 
hysteresis cycle which is reasonably stable in shape and relatively inde
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pendent of the speed with which the system is heated or cooled. The closing 
of the cycle is predominantly determined by the temperatures at which 
metastable minima of the free energy disappear. In contrast, the cycle 
associated with a second-order transition tends to close continuously as 
the experiment becomes more adiabatic.

The four-dimensional SU(2) model exhibits a sharp contrast to the other 
systems in figure 18.4. It displays no clear structure other than a fairly rapid 
crossover from strong to weak coupling behavior at /? around two. Careful 
analysis of the specific heat in this region shows a definite peak but no 
signal of a real singularity (Lautrup and Nauenberg, 1980ft). This result 
supports the desired absence of a phase transition in this non-Abelian 
system. In figure 11.1 we showed the internal energy of the SU(3) model 
as obtained from Monte Carlo analysis. It exhibits a rapid crossover 
qualitatively similar to the SU(2) case.

Problem

1. On your home computer, write a Monte Carlo program to simulate 
the one-dimensional Ising model. Calculate the internal energy as a 
function of temperature and compare with the exact result.

2. Devise a heat bath algorithm for the gauge group t/(l).
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Monte Carlo simulation II: measuring 

observables

Regarding the lattice as merely an ultraviolet cutoff, we would like to use 
the Monte Carlo simulation technique for the calculation of some physical 
numbers characteristic of the continuum field theory. At the outset it is 
not clear how well this can be done with the rather limited lattices available. 
For believable results we must make the lattice spacing smaller than 
relevant hadronic scales and yet have the overall lattice larger than the scale 
of physics we are measuring. A lattice of order 10 sites in any given 
direction leaves little leeway in such an analysis. Furthermore, the 
renormalization group discussion of chapter 13 points out that we should 
expect an exponential dependence of the lattice spacing on coupling 
constant. At best only a very narrow range of coupling can be useful in 
extracting physical numbers.

To counteract this pessimism, we have the remarkable experimental fact 
that the scaling behavior predicted by asymptotic freedom appears in deep 
inelastic scattering experiments at the precociously low momentum 
transfers of order 2 GeV (Perkins, 1977). Thus our 104 site lattices may give 
interesting results for physics at energy scales down to a few hundred MeV, 
exactly where strong confinement forces should come into play. Thus we 
may hope to relate a few features of long- and short-distance quark 
dynamics.

We should attempt to measure a quantity which has a finite continuum 
limit; that is, we must extract a physical observable. The average plaquette, 
which dominated the above Monte Carlo discussion, is proportional to the 
expectation value of the action density and is expected at the perturbative 
level to have ultraviolet divergences. The simplest physical observable for 
extraction from a Monte Carlo analysis is K, the coefficient of the linear 
long-range interquark potential. This may be found by measuring large 
Wilson loops and looking for the area law falloff discussed in chapter 9. 
Measuring distances in lattice units, one actually determines the dimen
sionless combination a2K as a function of the bare coupling gj. If the linear 
potential survives the continuum limit, the weak coupling behavior of this 
combination should follow the prediction of the renormalization group as 
140
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discussed in chapter 13.

a2*=(jVA|)(y0g|^^ (19.1)
Conversely, verification of this behavior will provide strong evidence for 
the survival of the linear potential when the cutoff is removed.

In general the behavior of a Wilson loop can be quite complicated. In 
addition to the area law piece dominant for large loops, there should be 
perimeter dependence from the self energies of the quark sources and yet 
further corrections from perturbative gluon exchange across the loop. As 
the coupling is reduced and the continuum limit approached, the perimeter 
piece should diverge and dominate for any fixed size loop. To eliminate 
this distraction, it is convenient to consider ratios of loops with different 
areas but the same perimeter. In particular, define (Creutz, 1980c)

zr rx i /IF(/,J) W(J- 1,J- 1)\ )- ln(n^(z,y—i)i,^>)’ (9,2)

where W(I, J) denotes the expectation of a rectangular Wilson loop of 
lattice dimensions I by J. In these quantities any perimeter dependence or 
constant factors in the loops will cancel. Whenever the loops are dominated 
by an area law, ^(/, J) directly measures the string tension

X->a*K. (19.3)
This occurs either when land fare large or when the bare coupling is large. 
However, in the weak coupling limit gluon exchange should dominate and 
X will have a perturbative expansion

xU,J) = O(g& (19.4)
For example the weak coupling expression for the one-by-one loop implies 

x(l,1)=f^/l6+^)’ (19.5)
\gl/3 + O(g*), SU(3).I

Such a power behavior is in marked contrast to the essential singularity 
on the right hand side of eq. (19.26). To summarize, for strong coupling 
we expect all x(Z, J) to become the area law coefficient but as gf is reduced, 
smaller loops should give a x deviating from the true a2K. Thus the curves 
of x(f, J) for all I and J should form an envelope along the curve of the 
string tension. For weak coupling this envelope should satisfy eq. (19.1).

In figure 19.1 we plot x(L /), for I up to four, as a function of gQ2 for 
the gauge group SU(2). At strong coupling the large loops have large 
relative errors but are consistent with x approaching the values from 
smaller loops. The graph also indicates the strong coupling limit for the 
stnng tension = ln +(1 9.6) 
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The weak coupling behavior of eq. (19.1) is shown as a band representing 
values of the parameter Ao in the range

Ao = (1.3 ± 0.2) x 10“2M SU(2). (19.7)
This error is a purely subjective estimate.

Fig. 19.1. Extracting the string tension for SU(2) (Creutz, 1980c).

Figure 19.2 shows the same quantities for the gauge group SU(3) on a 
64 site lattice (Creutz and Moriarty, 1982Z>). On this smaller lattice, only 
loops up to 3-by-3 were used. For this theory the strong coupling 
expansion gives = in(3g?)+<?(g-2). (19.8)

Note that the corrections for SU(3) begin in a lower order of the strong 
coupling expansion than for the SU(2) case in eq. (19.6). The weak 
coupling band for Ao is now

Ao = (6.0±1.0)x10-3M SU(3). (19.9)
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When first obtained, these small numbers were quite surprising, coming 
as they do from theories with no small dimensionless parameters. However, 
as discussed in chapter 13, the value of Ao is strongly dependent on 
renormalization scheme. There we quoted the results of Hasenfratz and

Fig. 19.2. Extracting the string tension for SU(3) (Creutz and Moriarty, 19826).

Hasenfratz, relating the lattice Ao to the more conventional scale AR 
defined by the three-point vertex in Feynman gauge and at a given scale 
in momentum space

Ar=(57.5A0, su&y n910)
I 83.5AO, SU(3). J

These large factors compensate the small numbers for Ao.
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To compare these results with real experiments, we need some idea as 
to the expected value for K. This is provided by the string model (Goddard 
et al., 1973), wherein a rotating string gives rise to a Regge trajectory of 
particle states. The slope of this trajectory in terms of the string tension 
is

a! = (2nKy\ (19.11)
Using the phenomenological a' = 1.0 GeV-2, we find

Ki = 400 MeV = (14 tons)i (19.12)

Combining this with eq. (19.9) and (19.10), we conclude

= 200 ±35 MeV. (19.13)
The current phenomenological value for this parameter is rather uncertain 
but consistent with this value. Such a direct comparison should be regarded 
with some caution, however, because the above calculation does not take 
account of virtual quark effects.

Despite its uncertainties, the above analysis is a rather remarkable, first 
principles calculation of a physical parameter relating opposite distance 
extremes. The scale A relates to short-distance scaling phenomena and K 
represents long-distance confinement effects. Their ratio is a number 
totally inaccessible to perturbative treatments. It characterizes the solution 
of a hopefully non-trivial four-dimensional field theory.

A second number of interest for Monte Carlo analysis is the mass gap 
or correlation length of the theory. This was discussed as a possible order 
parameter in chapter 9. In the pure gluon theory this is the mass of their 
lightest bound state, often referred to as a ‘glueball.’ In principle this 
quantity appears in a Yukawa law falloff of the correlation between two 
widely separated sources. Attempts to directly look for such correlations 
between plaquette operators have been plagued with statistical errors 
(Bhanot and Rebbi, 1981). Indeed, this correlation becomes swamped by 
the thermal fluctuations for a separation exceeding only a few lattice 
spacings. This problem can be circumvented with a combination of a 
variational method with the Monte Carlo analysis. For the plaquette- 
plaquette correlation at a short separation of only one or two sites, more 
than just exchange of the lightest state will be important. This means that 
a fit to a Yukawa law falloff will give an upper bound on the glueball mass. 
Using a linear combination of simple operators, for example loops of 
perimeter up to six links, and finding that combination that minimizes the 
falloff of the correlation with separation, one can improve the upper bound 
to a reliable estimate. Effectively, one is attempting to construct an 
operator which projects the desired state out of the spectrum. This analysis 
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is usually further simplified by projecting out states of zero momentum. 
This is easily accomplished with a sum over translations transverse to the 
correlation distance.

Repeating this analysis for several values of coupling gives the functional 
dependence of the correlation length measured in lattice units. As with the 
string tension, one can check for the exponential dependence predicted by 
the renormalization group. The coefficient of this behavior gives the 
glueball mass in units of the lattice parameter Ao. The use of operators 
with certain discrete lattice symmetries readily generalizes the method to 
extract the mass of the lightest state with a given set of quantum numbers.

Several groups have developed this technique for the pure S(7(2) and 
SU(3) theories (Berg, Billoire, and Rebbi, 1982; Berg and Billoire, 1982a&; 
Ishikawa, Schierholz and Teper, 1982). For the lightest state with S17(3) 
these authors find

w/A0 = 300-350. (19.14)
In physical units this represents 700-1000 MeV, an experimentally in
triguing value, although the effects of mixing with normal quark states are 
unknown. Going on to other quantum numbers, the above authors suggest 
extremely rich physics in the 1-2 GeV range.

We now come to a third physical parameter which is relatively easy to 
extract from the Monte Carlo analysis but more difficult to compare with 
real experiments. In chapter 3 we noted that a finite time length for the 
lattice permitted the study of finite physical temperatures in the physical 
quantum system. Thus using a four-dimensional lattice which is smaller 
in one direction than the others enables us to study the quantum statistical 
mechanics of pure non-Abelian gauge fields. Actually, the time dimension 
of the lattice may be varied in a combination of two ways, one by reducing 
the number of sites in that direction and the other by changing the timelike 
lattice spacing by means of a different coupling on timelike plaquettes, as 
used in the Hamiltonian discussion of chapter 15.

The interest in such finite temperature studies is the expectation of a real 
phase transition (Polyakov, 1978; Susskind, 1979). At low temperatures 
we should have the quark-confining vacuum with thermal fluctuations 
producing a dilute ideal gas of glueballs. At high temperatures, however, 
the vacuum can fill with a spaghetti of flux tubes. In such a pasta, an extra 
flux tube from an odd quark would quickly become lost. Thus we expect 
a transition to an unconfined phase in which quarks can wander freely 
away from each other.

We can regard our finite time system as representing the classical 
statistical mechanics of a three-dimensional slab of link variables. The 
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deconfining transition corresponds to the spontaneous breaking of a global 
symmetry in this model. Consider a spacelike hypersurface passing 
between the sites of the slab, and consider multiplying each link variable 
that passes through this surface by an element from the center of the gauge 
group, for example — 1 for SU(2). Any plaquette must pass through the 
hypersurface an even number of times, equally in the two possible 
directions, and the extra factors will cancel. The action for the statistical 
system thus has a global symmetry under the center of the gauge group.

To monitor this symmetry, one can define Wilson loops with a net 
winding number in the timelike direction on the periodic lattice. The 
simplest such loop is just the trace of the product of all timelike links 
associated with a particular three-space position. In our toroidal geometry, 
such a loop is actually a straight line, a ‘Wilson line’. These loops must 
each pass through the spacelike hypersurface an odd number of times and 
are thus not invariant under the global symmetry. We thus have an order 
parameter in the sense that a signal for the deconfining transition is the 
appearance of a spontaneous ‘magnetization’ with such loops.

A quarklike source on the lattice would produce a periodic world line 
along one of these loops. For an isolated quark, the product of link 
variables along this world line gives the gauge field interaction with the 
source. A vanishing expectation value for the loop is indicative of an 
infinite energy for an isolated quark in the confined phase. In contrast, a 
finite ‘magnetization’ represents the self energy of the quark in interaction 
with the gauge field soup.

To see that such a transition might well be expected, temporarily 
consider the extreme case of a one time-site lattice. The ‘Wilson line’ 
degenerates into the trace of the one timelike link at any given site. This 
link variable essentially degenerates into a spinlike variable. Indeed, for 
an Abelian group these ‘spins’ decouple from the spacelike loops and 
become a nearest-neighbor spin model in the three space dimensions. Such 
models in general have ferromagnetic transitions. For the non-Abelian case 
there remains a coupling the timelike and spacelike links, and we are left 
with a spin-gauge model with a global symmetry which can break 
spontaneously.

We have been discussing this deconfining transition in the pure glue 
theory without dynamical quarks. Remarkably, the plasma of flux tubes 
is sufficiently complicated that it can screen a source carrying a non-trivial 
representation of the gauge group center. This can never be accomplished 
with a finite number of gluons, each of which is in the adjoint representation 
and blind to the center. Note the contrast with an adjoint source, which 
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would be screened in both phases. In the full theory with quark loops, 
quark pairs can always be ‘ popped ’ from the vacuum to screen any source. 
In this case it is unclear what to use for an order parameter, although 
presumably the existence of the deconfining transition is stable to the 
introduction of dynamical quarks.

Several groups have used these ‘Wilson lines’ to locate the critical 
temperatures for the pure St/(2) and Sl/(3) deconfining transitions 
(McLerran and Svetitsky, 1981; Kuti, Polonyi and Szlachanyi, 1981; 
Engels, Karsch, Satz and Montvay, 1981; Kajantie, Montonen and 
Pietarinen, 1981). Varying the bare coupling and the number of time sites, 
one can compare the dimensionless product of the lattice spacing and the 
critical temperature with the renormalization group prediction, in analogy 
to the string tension and mass gap analysis. For SU(3) the observed 
transition temperature is T/A ^90 (19 15)

or in physical units Tc % 200 MeV. (19.16)
A peculiar feature of this number is its relative smallness in comparison 
to the glueball mass estimates. As we are considering the quarkless theory, 
the lightest states above the vacuum have energies large compared to 
eq. (19.16). This means that just below the transition temperature the 
vacuum is quite empty, only a low density of isolated glueballs are excited 
by thermal fluctuations.

An interesting unsettled question is the order of this transition (Svetitsky 
and Yaffe, 1982). For SU(2) the symmetry being broken is Z2 and 
presumably the transition is second order in analogy to the Ising model. 
However, for SU(3) we have a Z3 symmetry and the situation is less clear. 
Mean field theory for Z3 systems typically predicts first-order transitions 
(problem 1 of chapter 14). As three dimensions is above the critical 
dimensionality for discrete symmetry breaking, this prediction must be 
considered seriously. Indeed, the simple Z3 spin model, the three-state 
Potts (1952) model, does exhibit a first-order transition in three dimensions, 
although the latent heat is quite small (Blote and Swendsen, 1979). Current 
Monte Carlo studies of the SU(3) deconfining transition are not yet able 
to determine its order. This question may have some relevance to the 
evolution of the very early universe.

Temperatures of the order in eq. (19.16) may be experimentally attainable 
for short times in heavy ion collisions. The relevance of the above 
calculations for this case is unclear for two reasons. First, such experiments 
entail a high quark density, and in the above discussion we considered the 
pure glue theory. Secondly, this temperature is above, although not by a 
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large factor, a hypothetical maximum temperature of order 140 MeV 
where large numbers of pions would begin to be produced, consuming 
further kinetic energy forced into the system (Hagedorn, 1970). Indeed, 
other phase transitions related to pionic physics and/or chiral symmetry 
breaking may occur well before deconfinement is attained (Kogut et al., 
1982). In any case, temperatures in the few hundred MeV range promise 
rich physics for future experimental studies.

Up to this point our discussion of Monte Carlo simulation has avoided 
the question of Fermion fields. This is a rapidly evolving subject and 
therefore the remainder of this chapter is likely to soon be obsolete. The 
essential difficulty with including quarks in a numerical treatment is that 
the corresponding path integral is not an ordinary sum, but rather an 
intricate linear operation from the space of anticommuting variables into 
the complex numbers. Indeed, the exponentiated action is an operator and 
cannot be directly compared with real random numbers.

This problem can be immediately (foolishly?) circumvented by first 
integrating out the anticommuting variables analytically. As discussed in 
the chapter on fermionic integration, this gives a determinant when the 
action is quadratic in the anticommuting variables, as is usually the case 
in practice. This leaves us with an ordinary integral over the gauge fields, 
to which straightforward Monte Carlo methods are in principle applicable. 
The main difficulty with this approach is that the determinant is of an 
extremely large matrix, the number of rows being the product of the 
number of sites with the ranges of the spinor index, the internal gauge 
symmetry index, and the flavor index. For interesting sized systems, this 
is a many-thousand-dimensional matrix. As the time required to take a 
determinant of a matrix grows with the cube of its dimension, such direct 
calculations are prohibitively long. Furthermore, naively this determinant 
needs to be evaluated each time any gauge link is updated. Thus a 
simulation would seem to require evaluating an impossible determinant 
many thousands of times.

The actual situation is somewhat better because of various tricks. The 
fermionic matrix has an enormous number of zero elements. Because the 
interaction is local, no elements directly couple distant sites. Changes in 
a link variable alter only a small fraction of the remaining matrix elements. 
Considering a Metropolis et al. (1953) type of algorithm with a small step 
size, one can confine oneself to study small changes in a small part of the 
matrix. This still requires the inverse of the matrix, but as the gauge 
interaction will have stochastic errors anyway, hopefully one does not need 
the exact inverse. Approximate methods based on iterative schemes 
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(Weingarten and Petcher, 1981), Monte Carlo simulation with extra boson 
fields (Fucito et al. 1981; Scalapino and Sugar, 1981), and random walks 
through the matrix (Kuti, 1982) for finding the inverses of large matrices 
are under active investigation.

Despite these tricks, the fermionic problem is still extremely intensive 
in its demands on computer resources. An interesting approximation has 
been reasonably successful in approximately reproducing the hadronic 
spectrum (Hamber and Parisi, 1981; Weingarten, 1982; Marinari, Parisi 
and Rebbi, 1981). Instead of evaluating the determinant many times to 
allow it to feed back into the gauge field dynamics, this approximation 
considers the inversion of the fermionic matrix in a gauge field configur
ation obtained in a simulation of the pure quarkless theory. This 
determines how a quark would propagate in such a fixed background field. 
The basic approximation is the neglect of the feedback of the fermions on 
the gauge field. In perturbation theory, this amounts to the sum over all 
diagrams without any internal virtual quark loops. In a sense it represents 
the zero flavor limit.

Taking the expectation value of products of the propagators, one can 
study the propagation of bound state combinations with various meson 
or baryon quantum numbers. Neglecting internal loops in such systems 
amounts to considering only valence quarks and ignoring ‘sea’ quarks in 
the simple quark model. The experimental fact that a valence quark picture 
works fairly well suggests that the approximation may not be unreasonable. 
Internal loops are responsible for the splitting from the p meson, a 
relatively small effect. From a less optimistic point of view, neglecting 
virtual quark pairs neglects the decay of the p meson.

Mass estimates are obtained from the long-distance decrease of the 
meson and baryon propagators. The calculation begins with two para
meters, the bare quark mass and the bare charge, which becomes related 
to the lattice spacing via the renormalization group. Thus two masses must 
be used to set these bare parameters. One is usually taken as the pion mass 
and the other either the Regge slope or the p mass. The most surprising 
result of these calculations is the ability to obtain a pion considerably 
lighter than the other hadrons with their typical scale of order one GeV. 
The approximation shows a signal of chiral symmetry breaking with the 
pion as a Goldstone boson. Note that one usually regards such a particle 
as a coherent excitation on a vacuum which is a condensate of elementary 
constituent pairs. To see such an effect while neglecting quark loops in the 
pion propagator is quite remarkable.

Several other predictions for observables should be available from this 
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valence approximation. One can consider the valence quark propagation 
through three point vertices to obtain information on magnetic moments, 
form factors, and decay rates. The main missing feature of the procedure 
lies in states where strong mixing with pure glue states is important, as 
expected to be the case for the 7 and if mesons.

As mentioned earlier, Monte Carlo work with fermions is rapidly 
evolving. Hopefully the above discussion of the difficulties with fermionic 
integration will soon become obsolete as the approaches and computer 
technology improve.

Problem

1. Derive the connection between the Regge slope and the string tension 
(eq. 19.11).



20
Beyond the Wilson action

The imposition of an ultraviolet cutoff is a highly non-unique procedure. 
Even in the framework of a lattice theory, innumerable variations are 
possible. Several decades of success with perturbative quantum electro
dynamics had led to the lore that the removal of any regulator yields the 
unique renormalized theory depending only on a small number of physical 
couplings and masses. Indeed, renormalizability is often regarded as a 
primary constraint on models for fundamental interactions.

On a non-perturbative level, however, little is rigorously known about 
even the existence of any four-dimensional theory, let alone its uniqueness. 
In some cases the theory may depend on even less parameters than 
suggested in perturbative analysis; for example, as discussed in chapter 13, 
Yang-Mills theories should undergo dimensional transmutation with 
dimensionless ratios being determined independent of any coupling 
constants.

The Monte Carlo technique provides an opportunity for non- 
perturbative exploration of cutoff dependence. Thus we can begin nu
merically to address these questions of the uniqueness of the continuum 
limit. In this chapter we discuss some of the simple variations of the Wilson 
scheme from this viewpoint of universality.

A simple alternative to the Wilson model places a vector field on the 
lattice sites and uses an action obtained by replacing derivatives in the 
continuum Yang-Mills Lagrangian with nearest-neighbor differences. 
This would be naively similar to the procedure followed in chapter 4 for 
scalar fields. This differs from the conventional lattice gauge theory in two 
important respects. First, the cutoff theory no longer has an exact local 
symmetry. This should not matter if the gauge breaking terms go away 
sufficiently rapidly in the continuum limit, but will complicate the renor
malization procedure. Second, the integral over gauges is no longer 
compact. The path integral will not be well-defined until gauge fixing is 
imposed. Because of its awkwardness, little work has been done with such 
a scheme, although Patrasciou, Seiler and Stametescu (1981) have done 
some preliminary Monte Carlo studies. They have not as yet seen the area
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law for large loops, but this is probably due to a renormalization of the 
bare charge making the linear potential appreciable only at extremely 
strong coupling.

Remaining closer in spirit to the Wilson formulation, Edgar (1982) 
considered replacing the plaquette with the two-by-one Wilson loop as the 
fundamental term in the action. In two space-time dimensions with the 
gauge group Z2 this model is equivalent to the Ising model and therefore 
must have a phase transition, unlike the two-dimensional Wilson theory, 
which is trivial. The model possesses some extra global symmetries which 
can be broken; indeed, Edgar has seen a first-order phase transition in this 
'fenetre' model with the gauge group SU(2) in four dimensions. The moral 
of this is that the mere presence or absence of a phase transition is not 
a universal property of the gauge group. As we will see again later in this 
chapter, when the lattice spacing is not small, variations on the action can 
introduce new phenomena as lattice artifacts.

Drawing still closer to the Wilson theory, one can keep the action a class 
function of the group elements associated with the plaquettes, but change 
the detailed form of that function. We have already done that to some 
extent when we discussed duality and the Migdal-Kadanoff recursion 
relations, and we will pursue such generalizations further here. Manton 
(1980) presented a particularly simple alternative, taking for the action on 
a plaquette Sn(L7) = (20.1)

where d is the minimal distance in the group manifold between the element 
U and the identity I. The concept of a distance in the group manifold is 
formulated in terms of the metric tensor briefly mentioned in chapter 8. 
This metric is unique up to an overall normalization. In the case of S'1/(2) 
the distance is simply

rf(L/1? l/2) oc arc cos Q Tr (20.2)

The Manton action is convenient for analytic work in the weak coupling 
limit. It is, however, singular for those elements with maximum distance 
from the identity, such as — Zfor SU(2). An amusing technical consequence 
of this singularity is that the transfer matrix is never positive definite 
(Grosse and Kuhnelt, 1981).

Another generalization, similar in spirit but different in detail from that 
of Manton, is the ‘heat kernel’ or generalized Villain (1975) action 
(Drouffe, 1978; Menotti and Onofri, 1981). This is based on the desire that 
the Boltzmann weight or exponentiated action

B(Ud) = exp (- Sn(A C/D)) (20.3) 
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should peak strongly near the identity element for weak coupling but 
should become uniform over the group for a simple strong coupling limit. 
This is reminiscent of expectation for the evolution of the temperature 
distribution in a piece of material shaped like the group manifold and 
initially possessing a spike in temperature at the identity. As time proceeds, 
the temperature spike should spread and eventually become uniformly 
distributed over the manifold. These ideas can be made mathematically 
precise using a group-theoretical generalization of the Laplacian to 
formulate a heat equation. Recall from chapter 8 the metric tensor

= Trfe-W^'W))’ (20.4)
where the derivatives are with respect to the variables which parameterize 
the group manifold. In terms of this, the invariant Laplace operator is given 
by the standard formula of differential geometry

V2 = det (M )4 (S/3a<) det (M)i (20.5)
We now define the heat equation

V2K(t, g) = - (d/dr) K(t, g), (20.6)
where for convenience we have set the thermal diffusion coefficient to unity. 
For an initial condition we take

K(0,g) = S(g9I). (20.7)
The heat kernel action is directly identified with the solution of this 
equation at a time given by the coupling constant

Qso^,u) = (20.8)

This action has the technical advantage over the Manton form of being 
smooth over the entire group manifold and giving rise to a positive definite 
transfer matrix.

Both the Manton and heat kernel actions have been subjected to Monte 
Carlo analysis (Lang, Rebbi, Salomonson and Skagerstam, 1981). The 
string tension was extracted as discussed in the last chapter. For comparison 
with the Wilson action results, the scheme dependence of the parameters 
must be calculated perturbatively. The results showed deviations of20-40% 
from the theoretical expectations for their ratios, assuming that the 
physical string tension is universal. This should be regarded as the 
uncertainty due to the practical fact that the lattice spacing must be kept 
fairly large and therefore higher terms in the renormalization group 
function can be important.

Going on to another variant of the action, we note that an interesting 
change in the qualitative phase structure of the SU(2) theory results from 
merely changing the trace of a plaquette to the corresponding trace in the 
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adjoint representation (Greensite and Lautrup, 1981; Halliday and 
Schwimmer, 1981a). This amounts to working directly with the group 
SO(3). In figure 20.1 we show a thermal cycle on this model with a 54 site 
lattice. Figure 20.2 shows the evolution of this system from ordered and
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Fig. 20. 1. A thermal cycle with SO(3) lattice gauge theory on a 54 site lattice. The 
open circles represent heating; the crosses, cooling. (From Bhanot and Creutz, 
1981.)
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Fig. 20. 2. Monte Carlo runs on SO(3) lattice gauge theory at the transition 
temperature, ft = 2.5. The open circles represent an ordered start, the crosses, 
random (Bhanot and Creutz, 1981).

disordered starts at the estimated transition temperature. These figures 
indicate a rather clear first-order transition.

As far as the classical limit is concerned, SO(3) and St/(2) Yang-Mills 
theories are identical. They only differ because of global properties which
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can come into play when quantum fluctuations bring plaquette operators 
far from the identity. The new transition is a lattice artifact which only 
shows up when the lattice spacing is not small. This is similar to the 
situation with the fenetre action mentioned earlier.

One possible explanation of this SO(3) transition is in terms of Z2 
monopole excitations. These arise because the SO(3) representation of 
SU(2) does not see the Z2 center of the group. A plaquette variable near 
— /in the group SU(2) has the same energy as one near /. This can be used 
to define a Dirac string as a sequence of plaquettes near —/. Several closely 
related schemes for making this concept precise have been presented (Mack 
and Petkova, 1979; Tomboulis, 1981; Halliday and Schwimmer, 19816; 
Brower, Kessler and Levine, 1982). We will follow Halliday and Schwim
mer, who consider a slight modification of the theory. To make the action 
insensitive to the group center, they introduce a new set of variables {<rn}, 
each from the group Z2 = {+1, — 1} and located on the lattice plaquettes. 
The new partition function is

Z= £ f(dl7)exp(Z/?crDTr(l70)). (20.9)
{o-D}J □

As the action is linear in <rD, that part of the sum can be carried out to 
give f

Z= (dl/)exp(ESa(t/a)), (20.10)
J □

where SD(C/) = log(2cosh(^Tr I/)). (20.11)

Being an even function of Tr U, this quantity does not see the group center. 
Monte Carlo simulation (Halliday and Schwimmer, 19816) has shown that 
this variation of the SO(3) theory also has a first-order phase transition.

The quantity <rD is essentially a Dirac string variable; when it is 
positive, is weighted towards the identity, and when it is negative, C7D 
prefers to be near — /. The precise position of the Dirac string is unphysical 
because it can be moved around by absorbing factors of — 1 into the link 
variables. However, in this process the ends of the string do not move; 
consequently, a natural definition of a monopole is to count the number 
of negative string variables entering any given three-dimensional cube and 
to say that a monopole is in that cube if this number is odd. On a 
four-dimensional lattice the monopoles will trace out world lines, and the 
strings sweep out world sheets. Halliday and Schwimmer measured the 
density of these monopole world lines in their simulation and found a sharp 
discontinuity at the transition temperature. The monopole density is not 
an order parameter in the sense of a magnetization for a spin system 
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because thermal fluctuations prevent it from ever being exactly zero at any 
finite temperature. Nevertheless, it does provide a useful quantity to 
describe what is physically occurring at the transition.

The monopoles are easily supressed by giving them an ad hoc mass term. 
This motivates the more general partition function

Z= E [(dU)exp(E^DTr(UD) + AE II <rD), (20.12)
{o'qJJ □ C Dec

where the new sum in the exponent is over all three-dimensional cubes of 
the lattice. The presence of a monopole in any cube is now penalized by 
a factor of e~2A. As A becomes large, the product of string variables over 
the surface of any cube must go to unity. An elementary exercise shows 
that once this has occurred there exists a set of Z2 variables on the links 
such that any <rD is the product of these around the given plaquette. In 
this event, all Z2 factors are readily absorbed in the invariant SU(2) 
measure and the theory goes over into the usual SU(2) theory, which 
appears not to have any phase transitions. The limit /?^0 in eq. (20.12) 
gives rise to a rather complicated looking Z2 theory. However, under a 
duality transformation as discussed in chapter 16, this model turns into 
the usual four-dimensional Ising model with its second-order phase 
transition. Halliday and Schwimmer provided Monte Carlo evidence that 
as A is increased, the SO(3) transition moves to smaller ft and eventually 
becomes the Ising transition. The place where the transition changes from 
first to second order is not known.

An alternative means for supressing monopoles is to add to the action 
of eq. (20.9) an effective potential for the variables <rD. Thus we could 
consider

z= E
As the parameter y goes to infinity, all <rn are driven to unity and we again 
return to the pure SU(2) theory. As <rD is a Dirac string variable, the new 
term adds an effective energy per unit length to the strings. With non-zero 
the strings become physical because moving them around will now change 
the total action in proportion to the total change in string length.

The action in eq. (20.13) is linear in <rn. These variables can be summed 
out to give an action dependent on the C7n only, as in eq. (20.10), but now

SQ(U) = log(2cosh(^Tr U+y)). (20.14)
Unlike in eq. (20.11), this is no longer insensitive to the group center. 
Expanding this action in characters

Sn(U) = Z0RxR(U) (20.15)
R

J (dU) exp ( E /?<rn Tr (U) + y E <rD). (20.13)
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will give rise to terms with both integer and half-integer spin representations 
of SU(2). Only the half-integer terms distinguish the group center. The 
action in eq. (20.14) has not been simulated directly, but it motivates a 
simpler form obtained by taking just the spin one-half and spin one terms 
in eq. (20.15) (Bhanot and Creutz, 1981).

SD(IZ) = iZ?Tr(C/)+i^Tr^(C7). (20.16)
Here Tr4 denotes the trace or character in the adjoint or spin one 
representation. The factors in front of the couplings and flA are inserted 
for normalization convenience.

The theory defined by eq. (20.16) has several interesting limits. For 
vanishing ftA it reduces to the ordinary Wilson SU(2) model, which we 
believe exhibits no phase transitions. In contrast, the limit of vanishing ft 
gives the SO(3) model, which we saw in figures 20.1 and 20.2 to have a 
first-order transition. The third interesting limit occurs as fiA goes to 
infinity. In this case all plaquettes are forced to lie in the center of the gauge 
group. This means that up to a gauge transformation all links are 
themselves driven to the center. Thus for SU(2) the model becomes a Z2 
gauge theory with coupling As discussed in chapter 16, this model has 
a strong first-order phase transition at the self-dual point. At the outset, 
therefore, we know that the model of eq. (20.16) must have non-trivial 
phase structure, with two first-order lines entering the phase diagram.

Monte Carlo simulations have explored the evolution of these transitions 
into the two coupling plane (Bhanot and Creutz, 1981). The resulting phase 
diagram is shown in figure 20.3. Note that the Z(2) and SO(3) transitions 
are stable and meet at a triple point located at

(/?,/?J = (0.55 ±0.03,2.34 ±0.03). (20.17)
A third first-order line extends from this point and aims toward the Wilson 
axis but terminates before reaching it at a critical point located at

(OJ = (1.57 ±0.05,0.78 ±0.05). (20.18)
This line points directly at the position of the peak in the specific heat of 
the ordinary SU(2) model (Lautrup and Nauenberg, 19806). That peak 
may be interpreted as a remnant of this transition, a shadow of its critical 
endpoint.

We can use this system to test the uniqueness of the continuum limit. 
The connection between the bare charge and the parameters is

g0-2 = ^/4±2^/3. (20.19)
A continuum limit requires taking gj to zero; however, this can be done 
along many paths in the plane. Conventionally concentration is 
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placed on the Wilson trajectory ^ = 0, Along that line no 
singularities are encountered. Thus we have the usual claim that confine
ment, which is present in strong coupling, should persist into the weak 
coupling domain. However, an equally justified path would be, for 
example, /3 = ftA oo. In this case we cross a first-order transition. Because 
one can continue around it in our larger coupling constant space, the 
transition is not deconfining and is simply an artifact of the lattice action.

Fig. 20.3. Phase diagram for SU(2) lattice gauge theory with fundamental and 
adjoint couplings (Bhanot and Creutz, 1981).

To test whether physical observables are indeed independent of direction 
in this plane, we can consider Wilson loops in the weak coupling regime. 
The loop by itself is not an observable because of self-energy divergences 
(Dotsenko and Vergeles, 1980; also recall problem 4 of chapter 6). These 
divergences should cancel in ratios of loops with the same perimeters and 
numbers of sharp comers. This leads us to consider the ratios

- W{I,L)W{J,KY (20-20)

where J) denotes the rectangular Wilson loop of dimensions /-by-J 
in lattice units. Wishing to compare points which give similar physics, we 
can consider for each value of ftA the value of ft for which some R ratio 
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has a particular value. In figure 20.4 we show points from Monte Carlo 
simulation for 7?(2,2,3,3) having the values 0.87 and 0.93. The dashed 
lines in the figure represent constant bare charge from eq. (20.19). This 
particular simulation was performed with a 120-element subgroup ap
proximating SU(2). This is a good approximation where we are working, 
but does give rise to an extra transition to a highly ordered state at large

Fig. 20.4. Points of constant ‘physics’ as obtained from R(2,2,3,3) = 0.87 
(solid circles) and 0.93 (open circles) (Bhanot and Creutz, 1981).

values of inverse coupling. The location of this ‘ discreteness ’ transition line 
is also indicated in figure 20.4.

If physics is indeed similar at all points along one of these contours of 
constant R ratio, then it should not matter which ratio we chose. In 
figure 20.5 we show several such ratios as functions of fiA along the 
R(2,2,3,3) = 0.87 contour. The comparison is quite good considering that 
finite cutoff corrections are ignored. Note that in this comparison the bare 
charge is far from being a constant. Along the 0.87 contour of ‘constant 
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physics’, gj varied from less than unity to nearly 4 in the measured region. 
Such variation is permissible and perhaps even expected since the bare 
charge is unobservable and should depend on the cutoff prescription. The 
dependence can be characterized by a fiA dependent renormalization scale 
A0(/?x). The expected dependence of the renormalization scale on the new 
coupling [1A is calculable in perturbation theory (Gonzales-Arroyo and 
Korthals-Altes, 1982; Bhanot and Dashen, 1982). In the vicinity of the

R

-0.5 0.5 1.0
Pa

Fig. 20.5. Various R ratios along the R(2,2,3,3) = 0.87 contour (Bhanot and 
Creutz, 1981).

Wilson action, that is when lflAal < 0.5, the prediction works reasonably 
well. However, as we approach the critical endpoint at positive fiA, large 
deviations from the points in figure 20.4 are found. This indicates that 
important additional physics is affecting the Monte Carlo results. We are 
seeing lattice artifacts near the new critical point. For negative fiA where 
the bare coupling becomes large, the agreement with the perturbative result 
is again poor. This can presumably be understood because of higher terms 
in the renormalization group function coming into play as the coupling 
increases (Grossman and Samuel, 1983).
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This analysis indicates the privileged role played by the Wilson action. 
It appears to lie in a middle region where the scaling of asymptotic freedom 
appears on the modest lattices available to Monte Carlo simulation.

As the parameter 0A increases relative to /?, the extremum of the action 
at U = — /changes from a maximum to a minimum. This occurs along the 
line = 3/?/8. (20.21)

Finally, along the 0A axis the two minima are degenerate. Note that the 
critical endpoint lies slightly above the line in eq. (20.21). Bhanot (1982) 
has studied a similar two-coupling 517(3) theory and finds a critical 
endpoint near the appearance of new minima of the plaquette action for 
group elements lying in the group center. As the n of SU(ri) increases 
beyond four, those elements of the group center near the identity become 
minima of the action even for the conventional Wilson action (Bachas and 
Dashen, 1982). This observation correlates well with the Monte Carlo 
results that the Wilson 517(4), SU(5) and SU(6) theories all display 
first-order phase transitions (Creutz, 19816; Moriarty, 1981; Creutz and 
Moriarty, 1982a). Presumably a negative flA removes the extraneous action 
minima and will permit continuation around these transitions, which 
would therefore not be deconfining.

In the last few chapters we have seen that Monte Carlo simulation indeed 
provides a powerful tool. The technique not only permits calculation of 
observables, but also opens a way to investigate questions of existence and 
uniqueness. These investigations of the solutions of non-trivial quantum 
field theories indicate that we are truly at an exciting time in the 
development of elementary particle physics.

Problems

1. Show that if the product of the <rD variables in eq. 12 is unity for 
every three-dimensional cube, then these parameters can be written as the 
product of Z2 variables on the links surrounding the corresponding 
plaquettes.

2. Verify the assertion that the pA -> oo limit of the theory defined by 
eq. (20.16) is indeed a Z2 gauge theory.

3. Consider a three-parameter generalized SU(2)-SO(3) action with 
both the A term of eq. (20.12) and the term of eq. (20.13). Discuss the 
various two parameter limits of this model.
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