

Quick Recursion

Recursion is the best tool for working with trees and graphs. But
perhaps you’ve studied recursion and decided it’s too complicated.
You just can’t think that way. That limits the kind of programming
you can do.

Good news! Recursion is actually easy. It’s just badly taught.

See, many instructors talk about how the computer does it. They go
on and on about what happens at each level of the recursion and
how each level relates to other levels. The problem is that you can’t
think in multiple levels. Nobody can. And you don’t have to.

This book will show you how you can write recursive programs.
Once you understand a few simple rules, you will wonder why
you ever thought recursion was complicated. You’ll be able to
write recursive programs quickly and easily.

Well, as quick and easy as programming ever is, anyway.

http://taylorandfrancis.com
http://taylorandfrancis.com

Quick Recursion

David Matuszek

http://taylorandfrancis.com

First edition published 2023
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2023 David Matuszek

Reasonable efforts have been made to publish reliable data and information, but the author and
publisher cannot assume responsibility for the validity of all materials or the consequences of their
use. The authors and publishers have attempted to trace the copyright holders of all material
reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and
let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted,
reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means,
now known or hereafter invented, including photocopying, microfilming, and recording, or in
any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.
com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA
01923, 978-750-8400. For works that are not available on CCC please contact
mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks
and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloguing-in-Publication Data
Names: Matuszek, David L., author.
Title: Quick recursion / David Matuszek.
Description: First edition. | Boca Raton : Taylor and Francis, 2023. | Series: Quick
programming | Includes bibliographical references and index.
Identifiers: LCCN 2022041466 (print) | LCCN 2022041467 (ebook) | ISBN 9781032417585
(paperback) | ISBN 9781032417592 (hardback) | ISBN 9781003359616 (ebook)
Subjects: LCSH: Recursive programming. | Recursion theory.
Classification: LCC QA76.6 .M369 2023 (print) | LCC QA76.6 (ebook) | DDC 005.13/1--dc23/
eng/20221107
LC record available at https://lccn.loc.gov/2022041466
LC ebook record available at https://lccn.loc.gov/2022041467

ISBN: 978-1-032-41759-2 (hbk)
ISBN: 978-1-032-41758-5 (pbk)
ISBN: 978-1-003-35961-6 (ebk)

DOI: 10.1201/9781003359616

Typeset in Minion
by MPS Limited, Dehradun

www.copyright.com
www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
https://lccn.loc.gov/2022041466
https://lccn.loc.gov/2022041467
https://doi.org/10.1201/9781003359616

To all my students
past, present, and future

http://taylorandfrancis.com
http://taylorandfrancis.com

Contents

Author, xi

Preface, xiii

Chapter 1 ■ Understanding Recursion 1
1.1 A Note on Languages 1

1.2 Recursive Definitions 1

1.3 A Simple Recursive Procedure 5

1.4 Factorial 8

1.5 The Principle of Information Hiding 9

1.6 When to Use Recursion 15

1.7 When Not to Use Recursion 16

1.8 The Four Rules 16

1.8.1 Rule 1. Handle the Base Cases First 17
1.8.2 Rule 2. Recur Only with a Simpler

Case 17
1.8.2.1 An Aside: The Collatz

Conjecture 19
1.8.3 Rule 3. Don’t Use External Variables 20

1.8.3.1 Deep Copies 23
1.8.4 Rule 4. Don’t Look Down 25

vii

1.9 What the Computer Does 27

1.10 Removing Recursion 28

1.11 Tail Recursion 30

1.12 Recursive Drawings 31

1.13 Fortran and Lisp 33

Chapter 2 ■ Data Structures 35
2.1 Arrays 35

2.1.1 Array Maximum 35
2.1.2 Quicksort 37

2.2 Lists 40

2.2.1 Lists in Java 41
2.2.2 Lists in Python 43
2.2.3 Accumulators 45

2.3 Binary Trees 46

2.3.1 Printing Binary Trees 50
2.3.2 Counting Nodes 51

2.4 Trees 53

2.4.1 Parse Trees 54
2.4.2 Indirect Recursion 55

Chapter 3 ■ Backtracking 57
3.1 The Backtracking Algorithm 58

3.2 Nonrecursive Backtracking 60

3.3 Keeping Backtracking Simple 62

3.4 Pruning and Four Coloring 63

3.5 Binary Tree Search I 68

3.6 Binary Tree Search II 72

3.7 Tree and Graph Searches 75

3.8 Debugging Techniques 77

viii ▪ Contents

3.9 The Frog Puzzle 83

3.10 Frogs Accumulator 88

■ Afterword 91

Appendix A: Quicksort in Java, 93

Appendix B: Quicksort in Python, 95

Appendix C: Binary Tree Search in Java, 97

Appendix D: Binary Tree Search in Python, 101

Appendix E: Java Debugging, 103

Appendix F: Python Debugging, 107

Appendix G: Frog Puzzle in Java, 111

Appendix H: Frog Puzzle in Python, 117

Appendix I: Map Coloring in Java, 121

Appendix J: Map Coloring in Python, 125

Appendix K: Lists in Python, 129

Appendix L: Trees in Java, 133

Index, 141

Contents ▪ ix

http://taylorandfrancis.com
http://taylorandfrancis.com

Author

I ’M DAVID MATUSZEK, known to most of my students as
“Dr. Dave.”

I wrote my first program on punched cards in 1963, and
immediately got hooked.

I taught my first computer classes in 1970, as a graduate student in
Computer Science at The University of Texas in Austin. I
eventually got my PhD from there, and I’ve been teaching ever
since. Admittedly, I spent over a dozen years in industry, but even
then I taught as an adjunct for Villanova university.

I finally escaped from industry and joined the Villanova faculty
full time for a few years, then moved to the University of
Pennsylvania, where I directed a master’s program (MCIT,
master’s in computer and information technology) for students
coming into computer science from another discipline.

Throughout my career, my main interests have been in artificial
intelligence (AI) and programming languages. I’ve used a lot of
programming languages.

I retired in 2017, but I can’t stop teaching, so I’m writing a series of
“quick start” books on programming and programming
languages. I’ve also written two science fiction novels, Ice Jockey
and All True Value, and I expect to write more. Check them out!

xi

If you find this book useful, it would be wonderful if you
would post a review. Reviews, even critical ones, help to sell
books.

And hey, if you’re a former student or colleague of mine, drop
me a note. I’d love to hear from you!

david.matuszek@gmail.com

xii ▪ Author

Preface

R ECURSION IS CONSIDERED TO BE AN “ADVANCED” TOPIC.
It shouldn’t be.

When my oldest daughter was in high school, she was deeply
involved in a multiplayer dungeon (MUD) game. She implemented
an email system for it, using a language called Forth, which uses
recursion extensively.

When she went to college, she took a programming class. After a
week or so she called home and asked me, “Daddy, what are loops
for?” When I explained, she said, “Why not just use recursion? It’s
so much simpler.”

I agree.

xiii

http://taylorandfrancis.com
http://taylorandfrancis.com

C H A P T E R 1

Understanding
Recursion

1.1 A NOTE ON LANGUAGES
Any programming book needs examples, and examples have to
be in some language.

This book uses two well-known languages, Java and Python 3.
The code is kept simple, without any language-specific “tricks,”
so it should be accessible even to programmers who know nei-
ther of these languages.

That said, it is impossible to avoid all language-specific features
and still have working code. Python uses indentation to show
nesting of statements, while Java uses braces. To remove leading
blanks, Python uses strip() while Java uses trim(). Differences
such as these should not greatly obscure the examples.

1.2 RECURSIVE DEFINITIONS
A recursive definition is a definition in which the thing being
defined occurs as part of its own definition.

DOI: 10.1201/9781003359616-1 1

https://doi.org/10.1201/9781003359616-1

Sounds circular, doesn’t it? Circular definitions, in computer
science as elsewhere, are valueless and should be avoided. The
distinction between a recursive and a circular definition lies in the
use of the work “part.” Any recursive definition has two parts:

1. a noncircular part, or basis, which is like an ordinary de-
finition, and directly specifies some objects that fit the
definition; and

2. a recursive (circular) part, which allows you to use the
objects that fit the definition in determining whether new
objects also fit the definition.

Some examples should clarify these ideas.

Here is an ordinary definition:

Vowel: one of the letters “a,” “e,” “i,” “o,” “u,” or “y.”

Clearly, there are exactly six things that fit the above definition of
a vowel. Now consider the following circular definition:

Yowl: any yowl followed by a vowel.

By this definition, any yowl followed by a vowel is also a yowl;
thus, if we could find one thing which is a yowl, then any things
formed by adding vowels to that yowl would themselves be
yowls. The problem is in finding that first yowl. Since we have no
place to start, the definition is circular, and valueless.

Now consider the following definition:

Howl:

1. the letter “h,” or

2. any howl followed by a vowel.

2 ▪ Quick Recursion

This definition is recursive. The first part is an ordinary definition,
and tells us that the letter “h” is a howl; this gives us a basis, or
place to start. The second part is the recursive part; it tells us that,
since “h” is a howl, so are “ha,” “he,” “hi,” “ho,” “hu,” and “hy.”
But since these are howls too, so also must be “haa,” “hae,” …,
“hyy,” …. “haaeeuooeea,” etc.

Note that this is a “good” definition in the sense that some things
are howls, some things are not howls, and it is easy to tell from
the definition which are which. The “circularity” of the second
part of the definition causes no harm because the first part
provides a basis.

Recursion abounds in computer science. A typical definition of
“identifier” (or “variable name”), for example, is as follows.

Identifier:

1. a letter, or

2. an identifier followed by a letter, digit, or underscore.

Notice that the definitions of both “howl” and “identifier” allow
arbitrarily long strings. It is possible to write recursive definitions
which limit the size of the things being defined, but in general
this is neither easy nor desirable. Instead, if there must be limits,
they are set by some external agency. Some programming lan-
guages, for example, allow arbitrarily long identifiers, but require
that two different identifiers must differ in the first k characters,
where k is set by the implementation. In the same way, the
maximum length of a howl might be determined by your lung
capacity.

You have probably noticed that the above definitions don’t have
to be recursive; they could be made into ordinary definitions by

Understanding Recursion ▪ 3

using the phrase “any number of …,” which can be implemented
with a loop. This is true—we don’t need recursion. In fact, re-
cursion is never absolutely necessary, merely useful.

The definitions we have considered so far have all been examples
of direct recursion. For an example of indirect recursion, con-
sider the following pair of definitions (adapted from Lisp):

S-expression: an identifier or a list.

List: a sequence consisting of

1. a left parenthesis,

2. zero or more S-expressions separated by blanks, and

3. a right parenthesis.

Thus, the following things are lists (and also S-expressions):

()

(ZIP ZAP ZOT)

(ONE (TWO THREE) ((FOUR)) FIVE)

(() IXOHOXI ())

These definitions are mutually recursive: each is defined in
terms of the other. The basis for the S-expression is an identifier,
while the basis for the list is the sequence ().

To show that these definitions “work,” consider the S-expression
(NOT (HARD)).

1. (NOT (HARD)) is an S-expression because it is a list.

4 ▪ Quick Recursion

2. (NOT (HARD)) is a list because it consists of a left par-
enthesis, the two S-expressions NOT and (HARD), and a right
parenthesis.

3. NOT is an S-expression because it is an identifier.

4. (HARD) is an S-expression because it is a list.

5. (HARD) is a list because it consists of a left parenthesis, the
S-expression HARD, and a right parenthesis.

6. HARD is an S-expression because it is an identifier.

Q.E.D.

Of course you don’t have to go through this complete process
every time you see an S-expression, but we were being very
formal.

Now is a good time to put in a plug for the usefulness of re-
cursion. The definition of “list” given above may seem confusing
at first (if you’re not used to recursive definitions), but I chal-
lenge anyone to write a reasonable definition of “list” which is
equivalent to the one given above, yet does not use any form of
recursion.

1.3 A SIMPLE RECURSIVE PROCEDURE
A recursive procedure (or function, or method, or subroutine) is
a procedure that calls itself to do part of the work.

Again, the trick is in the use of the word “part.” If it called itself
to do all of the work, the result would be an infinite recursion
(the recursive equivalent of an infinite loop). Just as a loop does
some part of the work during each iteration of the loop, so must
a recursive procedure do some part of the work at each level of
recursion, until eventually all the work is done.

Understanding Recursion ▪ 5

We’ll start with a simple example. This will be a function to ask
the user a question that requires a yes or no answer. If the user
responds with a word beginning with ‘y’ or ‘Y,’ the function will
return True. If the user’s response begins with ‘n’ or ‘N,’ the
function will return False.

In Python:

def ask_yes_or_no(question):
answer = input(question + ' ').strip().lower()
if len(answer) > 0:

if answer[0] == 'y':
return True

if answer[0] == 'n':
return False

print('Please answer with yes or no.')

Now what?

In Java:

private static boolean askYesOrNo(String question) {
char answer = ' ';
System.out.print(question + " ");
String line = scanner.nextLine();
if (line.length() > 0) {

answer = line.toLowerCase().charAt(0);
if (answer == 'y') return true;
if (answer == 'n') return false;

}
System.out.println("Please answer with yes or no.");
// Now what?

}

Without recursion, the obvious thing to do is to embed the code
in a loop and set some kind of a flag to indicate whether the user

6 ▪ Quick Recursion

has responded correctly. If the user doesn’t answer with a yes or
no, then complain and go through the loop again.

Instead of doing that, what if we just called the method again,
and returned whatever it returned?

In Python:

def ask_yes_or_no(question):
answer = input(question + ' ').strip().lower()
if len(answer) > 0:

if answer[0] == ‘y':
return True

if answer[0] == 'n':
return False

print('Please answer with yes or no.')

return ask_yes_or_no(question)

In Java:

private static boolean askYesOrNo(String question) {
char answer = ' ';
System.out.print(question + " ");
String line = scanner.nextLine();
if (line.length() > 0) {

answer = line.toLowerCase().charAt(0);
if (answer == 'y') return true;
if (answer == 'n') return false;

}
System.out.println("Please answer with yes or no.");

return askYesOrNo(question);
}

This code could result in an infinite recursion, but that will only
happen if the user never provides an acceptable response. For

Understanding Recursion ▪ 7

code that doesn’t require a user response, a few simple rules (to
be described) must be followed.

1.4 FACTORIAL
The usual first example of recursion is the factorial function. We
will use it for the same reason everyone else does: It is simple.

The factorial of a positive integer n, written n!, is the product of all
the positive integers from 1 up to and including n. Thus, we have

1! == 1
2! == 1 ∗ 2 == 2
3! == 1 ∗ 2 ∗ 3 == 6
4! == 1 ∗ 2 ∗ 3 ∗ 4 == 24

and so on.

Note that, for example, 4! == 1 ∗ 2 ∗ 3 ∗ 4 == (1 ∗ 2 ∗ 3) ∗ 4 ==
3! ∗ 4, and in general n! == (n - 1)! ∗ n. This leads to the
following recursive definition:

The factorial of a positive integer n is

1. 1, if n == 0 (base case), or

2. (n - 1)! ∗ n, if n > 0 (recursive part).

This definition leads immediately to the following Python
program:

def factorial(n):
"Computes the factorial of its argument."
if n == 0:

return 1
else:

return factorial(n - 1) ∗ n

8 ▪ Quick Recursion

Or the equivalent Java program:

public static int factorial(int n) {
if (n == 0) return 1;
else return n ∗ factorial(n - 1);

}

This function has a base case (when n == 0) and a recursive part
(when n is positive), and it does part of the work (multiplying
by n) at each level of the recursion. Thus it seems as though the
function might possibly work. But if this is the first time you
have seen recursion, you may not be comfortable with it.

Some authors suggest that the best way to understand a recursive
function is to trace through it, keeping track of what happens at
every call and every return of the function. By all means work
through such a trace, if doing so helps you believe recursion can
actually work. But you should never think of tracing through a
recursive procedure as a means of understanding, such a pro-
cedure. “Tracing through” has probably kept thousands of
people from ever really understanding recursion. The purpose of
this book is to describe a better technique.

1.5 THE PRINCIPLE OF INFORMATION HIDING
Perhaps the single most important tool we have for controlling
the complexity of programs is modularization: breaking a
single complex program up into several simpler, logically in-
dependent computations. Depending on the programming
language, these are called by various names: functions, methods,
procedures, etc.

Whenever a program is broken into two parts, there comes into
being an interface between them. This interface consists of the
parameter list, any global or common variables they may share
between them, any results returned or exceptions raised, and often

Understanding Recursion ▪ 9

more subtle ways of information transmission. If modularization
is to succeed in reducing complexity, this interface must be kept as
narrow and as explicit as possible.

The best way to keep the interface narrow is to ensure that each
routine does just one thing, and that that thing can be easily
described in an English sentence with few or no “buts” and
“excepts” in it. Keeping parameter lists short and avoiding global
variables can also help.

The best way to make the interface explicit is to ensure, when-
ever possible, that all information transmission occurs via the
parameter list, not through global variables. There are those who
feel global variables should be avoided entirely, but I don’t take
such an extreme position. It is often more convenient to have
global access to arrays and other large data structures; just take
special care not to modify them accidentally.

Side effects should also be avoided. The main effect of a routine
is the thing it’s supposed to do; side effects are the little extra
things it does. Side effects are dangerous even when they’re
intentional. For example, if a function factorial(n) com-
putes n!, that’s its main effect; but if it also stores the result in a
global variable, that’s a side effect. This is bad because it hap-
pens in the factorial function, but errors that result from this
side effect will show up in any code which calls factorial.
Since these routines may themselves be correct, the likely result
is that the programmer spends hours trying to debug the wrong
routines.

We are now in a position to state the Principle of Information
Hiding: Every routine should mind its own business. No routine
should meddle in the affairs of another. Or, somewhat more
formally,

10 ▪ Quick Recursion

• A routine should use only the information provided to it,
preferably via its parameter list. If it must access global
data, that fact must be clearly and unambiguously specified.

• A routine should return a single result (in Python, this
could be a tuple of values) and do nothing else. If it must
modify global data, that fact must be clearly and un-
ambiguously specified.

• A routine should be independent of its context. For ex-
ample, if some routine calls a sort method,

• that routine should neither know nor care just how the
sort method operates, so long as the sorting happens,

• and in addition, the sort method should neither know
nor care why its calling routine wants the sorting done.

Similar rules hold for classes and objects. An object holds various
kinds of data; the class of the object holds methods to manipulate
that data. An object’s data should be accessed and modified only
by the methods given in its class, never from outside the class.

Here are three simple examples of violations of the Principle
of Information Hiding. In each case, the function is supposed to
return the minimum or maximum value in a non-empty list of
integers. Can you spot the violations?

def minimum1(numbers):
"""Return the smallest number in a list."""
numbers.sort()
return numbers[0]

def minimum2(numbers):
"""Return the smallest number in a list."""
global i
min = numbers[0]
for i in range(1, len(numbers)):

Understanding Recursion ▪ 11

if numbers[i] < min:
min = numbers[i]

return min

def maximum(numbers):
"""Return the largest number in a list."""
max = 0
for i in range(0, len(numbers)):

if numbers[i] > max:
max = numbers[i]

return max

The answers are given at the end of this section.

These examples are trivial, and in real life are not likely to cause
major problems. Things get worse when the rest of the program
gets more interesting.

The following skeleton program controls a two-player game be-
tween the human and the computer, in which the players alternate
moves. The Principle of Information Hiding has been largely
respected in this example; indeed, it is impossible to deduce from
the program just which game is being played.

def main():
setup()
player = choose_who_goes_first()
game_over = False
while not game_over:

if player == 'human':
move = ask_human_for_move()
(game_over, result) = make_move(player, move)
player = 'computer'

else: # player == 'computer'
move = decide_move()
(game_over, result) = make_move(player, move)
player = 'human'

12 ▪ Quick Recursion

print("Game over!")
print(result)

def ask_human_for_move():
move = input('Enter your move: ')
if legal_move(move):

return move
else:

print("That's not legal. Try again.")
return ask_human_for_move()

It is possible to understand this program and verify its correctness,
given very simple assumptions about what the called routines
do. For example, we would expect choose_who_goes_first() to
somehow decide who plays first and to set its parameter to
“human” or “computer” accordingly. All information relevant
to the operation of the main program is fully specified in the
parameter lists.

I have not shown any of the declarations. There could be a
structured variable “board” which represents a playing board; if
there is only one of it, and if it is used by all routines, it might be
a good idea to make “board” a global variable rather than to put
it in the parameter list of every routine.

Now consider an alternate version of the same program.

def main():
global k
setup()
choose_who_goes_first()
while not game_over:

if player == 'human':
ask_human_for_move()
check_if_move_is_legal()
k = k - 1
make_move()

Understanding Recursion ▪ 13

else: # player == 'computer'
decide_move()
k = k + 1
make_move()

print("Game over!")
print(result)

Due to the many violations of the Principle of Information
Hiding, it is impossible to tell whether the program is correct or
not, without extensive reference to the called routines.

• What routine or routines update player? Do they do it in
such a way that the main program works?

• If the human’s move is not legal, has player already been
updated?

• How does make_move know whose move to make?

• Where is result determined?

• When does the game end? Where is this determined?

• Is k being initialized properly? Computed properly? What
is it anyway, and where is it used?

It may seem at this point that we have drifted away from the topic of
recursion, and perhaps we have, since the Principle of Information
Hiding applies to all programs. As we shall see in a later section,
however, it has a special importance for recursive programs.

Answers to questions about information hiding violations:

1. minimum1: Sorting the list is a rather drastic side effect.

2. minimum2: The function changes the global variable “i.”

3. maximum: This function assumes that the list is not
composed entirely of negative numbers.

14 ▪ Quick Recursion

The last of these (maximum) deserves a little more explanation. As
a general-purpose function, it is an error to assume that the
input is not a list of negative numbers. As part of a program
where this never occurs, the function will work, but it assumes
too much about its context. At some future date, code may be
added to the program which violates this assumption. The best
solution is to fix the code; next best is to modify the comment to
specify “… in a list of numbers, not all of which are negative.”

1.6 WHEN TO USE RECURSION
It is an easily proved fact that you never need recursion; any
recursive program can be changed into a non-recursive one that
uses a stack. (In the same way you can prove that any program
could be written in absolute binary.)

The best answer to the question of when to use recursion is,
simply, when you happen to find it useful. You never just set out to
“use recursion,” any more than you just set out to “use a loop.”
You program; sometimes you use a loop, sometimes you use an
array, sometimes you do input/output, and sometimes you recur.

But that’s not a very useful answer when you’re first getting
started. We’ll try to be more specific.

One good rule of thumb is to use recursion when you are processing
recursively defined data structures. If you try to evaluate an ar-
ithmetic expression, for example, parentheses may be used to en-
close a “subexpression” which must be evaluated first, and is an
expression in its own right. If you’re writing code to evaluate ar-
ithmetic expressions, there are only two reasonable ways to do this:
recursively, or by “simulating” recursion with an explicit stack.

Another (equivalent) rule is to handle nested structures with re-
cursion. As an example, in many languages, any statement may be

Understanding Recursion ▪ 15

nested in an if statement, even another if statement. There is a
clear use for recursion in any processor (compiler, preprocessor,
interpreter, debugger, pretty printer) for such a language.

Finally, programs that use a single stack can often be written
more clearly as recursive programs which don’t use a stack.
(Programs that use two or more stacks, however, often cannot be
rewritten as recursive programs without any stacks; but the proof
is beyond the scope of this manuscript.)

1.7 WHEN NOT TO USE RECURSION
Every recursive call uses additional memory. The current values
of the parameters and other variables at every level must be kept
in storage. Modern computers have enough memory that this is
usually not an issue—but it can be.

Most programming languages will simply let a recursion run
until memory is exhausted, at which point the program will
crash. Python, however, sets an arbitrary, but very reasonable,
maximum recursion depth of 1000.

Note: Python’s depth limit can be changed by calling
sys.setrecursionlimit(limit).

Most recursively defined data structures are nowhere near this
deep. For example, a balanced binary tree containing one billion
nodes would only be about 30 levels deep.

Lists, like arrays, may have thousands of elements. For these, a
method that recurs for every element may be impractical, and a
less storage-intensive loop should be used.

1.8 THE FOUR RULES
Here we propose four rules which, if understood and followed,
will result in working recursive programs. Once you become

16 ▪ Quick Recursion

comfortable with recursion you will realize that these rules are
not absolute, and can be violated for good cause, if care is taken;
but stick with them for now.

1. Handle the base cases first.

2. Only recur with a simpler case.

3. Don’t use external variables.

4. Don’t look down.

1.8.1 Rule 1. Handle the Base Cases First
A base case is a task that can be computed directly with no need
for recursion. For example, in the factorial program, the only
base case is n == 0, and the result returned is 1. Other programs
may have multiple base cases, each directly computable. The first
thing any recursive program should do is test for base cases.

Often there is a choice between using recursion and using a loop.
If efficiency is critical, a loop is usually the better choice.
Otherwise, the simpler alternative should be chosen.

The purpose of a base case isn’t to avoid recursion altogether.
The purpose of a base case is to stop a recursion. That brings us
to the second rule.

1.8.2 Rule 2. Recur Only with a Simpler Case
This rule is crucial for preventing circularity and infinite re-
cursion. If you ever, even once, recur with the same (or harder)
problem, your program immediately disappears off into Cloud-
Cuckoo Land.

Every recursive call should be with a simpler case of the same kind
of problem. But what does it mean to be “simpler”? If the problem

Understanding Recursion ▪ 17

is numeric and the base case is zero, then simpler may mean with a
smaller number. If the problem is processing an array, simpler
might mean with a smaller array, or a smaller part of an array.
Simpler might mean a more nearly sorted array, a shorter ar-
ithmetic expression, a shorter list, or just about anything else, so
long as it is in some way “closer” to a base case.

In addition, the solution of the simpler case must also be useful
in solving the harder case. For example, 10! can be computed by
solving the simpler case of 9! and then multiplying this result by
10. To evaluate the expression 3 ∗ (2 + 4), it is first necessary to
evaluate the subexpression (2 + 4).

Once you have established your base cases, those are the “sim-
plest” cases, and “simpler” is anything that is in some clear way
“closer” to one or more of those base cases. Sometimes it is ob-
vious when we are getting closer, as in the factorial function: As
long as n is greater than 0, clearly n − 1 is closer to 0. Similarly,
when we evaluate expressions, it may be obvious that a shorter
expression is a simpler one; or perhaps it is an expression with
fewer parentheses, or fewer arithmetic operators. When you write
a recursive function, you must be clear in your mind just when a
problem is “closer” to the base case (hence “simpler”), and you
must stick to it.

Suppose we try to speed up the factorial function by doing two
multiplications at each level of recursion, rather than just one.
We might get

def bad_factorial(n):
if n == 0:

return 1
else:

return n ∗ (n - 1) ∗ bad_factorial(n - 2)

18 ▪ Quick Recursion

Or in Java:

public static int badFactorial(int n) {
if (n == 0) return 1;
else return n ∗ (n - 1) ∗ factorial(n - 2);

}

This doesn’t work. Before you read any further, try to figure out
the error for yourself. Then figure out the simple fix.

The problem is that n - 2 isn’t necessarily “closer” to 0 than n is.
In particular, if n is odd, so is n - 2, and soon we will overshoot 0
and try to compute the factorials of -1,-3,-5, and so on. It is part
of the notion of “closer” that (in a finite system), if we get closer
enough times, sooner or later we will get there. (This can be
corrected by changing the test to if n == 0 or n == 1.)

So you have to be careful that your notion of “closer” will sooner
or later get you there.

If this all sounds vague and mysterious, don’t panic. For any
particular, concrete problem, it is 99% certain that it will be ob-
vious what meaning to attach to the word “simpler.” But do take
20 seconds, before you rush ahead with the program, to decide
what the word means. Then each time you write a recursive call,
make sure you recur with a simpler problem.

1.8.2.1 An Aside: The Collatz Conjecture
It is almost always easy to determine whether a recursive case is
closer to the base case. However, the Collatz conjecture is a rare
counterexample. In Python,

def collatz(n):
if n == 1:

return 1

Understanding Recursion ▪ 19

elif n % 2 == 0:
return collatz(n // 2) # integer division

else:
return collatz(3 ∗ n + 1)

The conjecture is that the collatz function will terminate for all
positive integers. There is only one base case: If n is 1, the result is
one. Therefore, if the function does terminate, the result will be 1.

Does it terminate? If n is even, collatz is called with half of n,
which is closer to 1. But if n is odd, collatz is called with 3 ∗ n + 1,
which is larger than n but even, so the parameter will come down
again, just not as far.

The Collatz conjecture has mathematicians stumped. It has been
checked by computer programs for all values up to 268, and always
terminates. There must be some measure by which both n/2
and 3n + 1 are “closer” to one, but it obviously isn’t just the size of
the number. A mathematical proof of termination has yet to be
discovered.

1.8.3 Rule 3. Don’t Use External Variables
Local variables are variables that can only be used inside the
function in which they are defined; they are inaccessible outside
the function. But it goes deeper than that. Local variables can
only be used in one particular instantiation (call) of a function.
If the function is called again, it uses a whole new set of local
variables.

Suppose you have two functions, A and B. If function A calls
function B, here’s what happens:

1. When A calls B, all the local variables of A are tucked away
in a safe place, inaccessible to B (or anything else).

20 ▪ Quick Recursion

2. If A calls B with arguments, the values of those arguments
are copied into B’s parameters.

3. New storage locations are allocated for all the local vari-
ables of B, including the variables in B’s parameter list. This
storage allocation may happen immediately, or it may
happen as needed by function B.

4. Function B executes its code, using the values in its new
storage locations. When done, function B returns a single
result to A, and all storage used by all the local variables of
B is recycled.

5. When A receives a result from B, all its local variables are
brought “out of hiding,” still with the same values they had
when B was called.

Here’s the key point: All those same actions occur when a func-
tion calls itself. The local variable names are reused for the new
values, and their previous values are restored when the call
returns.

Global variables are different. Consider the following sequence:

1. Compute a value for x,

2. make a recursive call,

3. use x, expecting it to have the value you computed in (1).

If x is a local variable, there is no problem. Variable x will not be
changed by the recursive call. But if x is a global variable, it will
be changed by the recursive call. Step (1) above changes it.

Local variables don’t cause any problems. They just don’t. They
are safe from whatever happens at other levels of the recursion.

Understanding Recursion ▪ 21

However, if a recursive routine uses and modifies an external
variable, such as a global, then you can only understand and debug
the routine by understanding how the calling routine manipulates
the variable and also how the called routine manipulates the
variable. This requires you to think about many levels of the re-
cursive routine, all at the same time. For most programmers (and
possibly all programmers), this is impossible.

There are two ways in which you can safely use an external
variable in a recursive routine:

• Never change the value of an external variable, only look at
it; or,

• Never use the value of an external variable, only change it
(a counter, for example).

This doesn’t mean that you cannot both use and change a global
variable in a recursive method; you can, but it becomes very
difficult to reason about.

It is helpful to understand that a variable can only hold a limited
amount of information, typically four bytes (depending on the
system). Four bytes is enough to hold quite large integers,
floating point numbers, booleans, and pointers, but it isn’t en-
ough to hold complex values like arrays, lists, sets, tuples, or
dictionaries. These larger structures are stored elsewhere, and a
pointer to them is stored in the variable.

A recursive routine thus may access four types of variables:

1. Local variables, which are declared inside the routine itself,
and are totally safe.

2. Parameters that are “passed by value,” that is, the actual
value of the argument can fit in a single variable, and it is

22 ▪ Quick Recursion

this value which is copied into the parameter. Such para-
meters act like local variables.

3. Global variables, which are external to the routine. Any
change to a global variable is visible everywhere. It is safe
to only look at them, and it is safe to only update them
(for example, incrementing a counter), but trying to work
with them in any meaningful way will quickly lead to in-
comprehensible code.

4. Parameters that are “passed by reference.” Arrays, lists, and
other data structures cannot fit in a single variable, so what
is copied into the parameter is a reference (or pointer) to
the actual value. These behave like global variables.

Moral: Make sure all your variables are either local or are
by-value parameters. If you can’t, make sure you never
change the value of a global variable or parameter. And if
you must alter global variables, think long and hard about
what you’re doing.

Technical Note: Starting in Python 3, integers can be of
unlimited size. A variable holding a very large integer would
normally hold a reference, rather than the actual value.
However, large numbers are immutable, so integers continue
to behave as they have always done, regardless of how large
they are.

Fortunately, it is easy to get into the habit of avoiding globals.
You don’t have to think through the reasons each time. Just
avoid them.

1.8.3.1 Deep Copies
You never need a complex data structure to be a global variable;
it can always be passed around as a parameter. Doing so is ef-
ficient because what you are actually passing is a reference
(pointer) to the data structure.

Understanding Recursion ▪ 23

Modifying a data structure within a recursive function has the
same problems as modifying a global variable. Since what you
have is a reference to the data structure, any modifications to it
happen at all levels of the recursion.

Sometimes the whole point of the recursive function is to modify
the data structure. In this case, a simpler case (Rule 2) is usually
to use just part of the data structure.

Other times, a data structure might be modified on a trial-and-
error basis, for example when searching for a solution, after which
the changes must be undone. Undoing changes can be efficient but
error-prone. Another approach is to pass a copy of the data
structure rather than the original; the entire copy can be discarded
when the function returns, leaving the original untouched.

Copies can be shallow or deep. A shallow copy is a simple copy of
all the top-level values in the data structure. For example, con-
sider the following Python array:

a = [1, [2, 3], 4]

(Python calls this a list, but it’s actually more like an array.) The
variable a now holds a reference to the array. If we do a simple
assignment, b = a, the reference is copied into b, so that now a
and b both refer to the same array. Again, it is the reference that
is copied, not the actual array. The same thing happens when a is
passed to b as a parameter.

b = a
b[0] = 10
b[1][0] = 20
print(a) # prints [10, [20, 3], 4]

Python has a copy method. The array a has three values: the
integer 1, a reference to the array [2, 3], and the integer 4. When

24 ▪ Quick Recursion

the array itself is copied, these three values are the ones that are
copied into the new array.

b = a.copy()
b[0] = 10
b[1][0] = 20
print(a) # prints [1, [20, 3], 4]

The value 1 in array a was not changed, but the value 2 was
changed to 20. This happened because only the reference to the
array [2, 3] was copied, not the complete array. A deep copy, on
the other hand, copies the entire structure.

import copy
a = [1, [2, 3], 4]
b = copy.deepcopy(a)
b[0] = 10
b[1][0] = 20
print(a) # prints [1, [2, 3], 4]

Copying a data structure can be expensive, and deep copying
even more expensive, but if you must make tentative modifica-
tions to a data structure in a recursive function, you may need to
work on a copy.

1.8.4 Rule 4. Don’t Look Down
When you reach a recursive call, don’t go back to the top of your
routine and start working through it all over again. Don’t try to
“trace through” recursive calls. That way lies madness.

Consider this: if you are working your way through a complex
but non-recursive routine, and it calls a sorting routine, do you
drop everything and rush off to see if the sorting routine works?
Of course not. You simply assume that the sorting routine works
(if you have doubts you save them for later), and keep going in
the routine you’re checking. Rule 4 simply says to treat all calls
this way, even recursive ones.

Understanding Recursion ▪ 25

It may seem odd at first to assume the called routine works,
when that called routine happens to be the very one you’re
checking. However, you must do so: the human mind does have
limitations. Pretend, if it helps, that you are not actually recur-
ring, but rather calling an entirely different routine (which
happens to have the same name) that you know to be correct.

What is involved here is perhaps best described as a “leap of faith.”
You have to learn to trust recursion; to believe that, if you can get
the routine correct at this level, then you don’t have to worry about
any deeper levels. Until you can bring yourself to make this
commitment, you will be compelled to look down into the re-
cursion, and you will never untangle what you see there.

Think about rules one to three, and try to convince yourself
logically that a program written according to these rules ought to
work. Then, even if you can’t yet manage rule four, pretend you
do when you write your program.

Now run your program. It will have errors, of course—programs
always do—but steadfastly refuse to look down. Go over rules one,
two, and three, and make sure you didn’t violate one of these.
Next, go over the program the same way you always would,
looking for errors that have nothing to do with the recursion itself
(the error doesn’t have to be in the recursion, remember). If this
too fails, get help.

Don’t even think about looking down, for this one simple
reason: it doesn’t help.

If the notion of “faith” bothers you, think about the novice
programmer who complains that his program can’t be wrong, so
the computer must have made a mistake. You may have once
done this yourself. In time, all programmers learn to trust the
computer; now you must learn to trust recursion.

26 ▪ Quick Recursion

1.9 WHAT THE COMPUTER DOES
This section is optional; feel free to skip it.

Here’s the factorial function again.

def factorial(n):
if n == 0:

return 1
else:

return factorial(n - 1) ∗ n

Suppose the program calls factorial with 3. What happens?

1. The value 3 is assigned to the local variable n.

• n is not zero, so the function “remembers” that n is 3, (it
puts 3 on a stack) and calls factorial with 2.

2. The value 2 is assigned to the local variable n.

• n is not zero, so the function puts 2 on a stack and calls
factorial with 1.

3. The value 1 is assigned to the local variable n.

• n is not zero, so the function puts 1 on a stack and calls
factorial with 0.

4. The value 0 is assigned to the local variable n.

• n is zero, so the function returns 1.

5. The function pops the 1 from the stack (it was put on the
stack in step 3).

• The function multiplies the 1 from the function call by
the 1 from the stack, and returns 1.

6. The function pops the 2 from the stack (it was put on the
stack in step 2).

Understanding Recursion ▪ 27

• The function multiplies the 1 from the function call by
the 2 from the stack, and returns 2.

7. The function pops the 3 from the stack (it was put on the
stack in step 1).

• The function multiplies the 2 from the function call by
the 3 from the stack, and returns 6.

8. The function returns with 6 as the final result.

According to many textbooks, this is how you are supposed to
understand recursion. It doesn’t work for me, and it probably
doesn’t work for you.

1.10 REMOVING RECURSION
As has been mentioned, recursion is never necessary; anything
that can be done with recursion can also be done using stacks
and loops.

A stack is a first-in last-out data structure. That is, values can be
added to the stack, and they can be taken from the stack, but
they will be removed in the opposite order from which they were
added. Think of a stack of books—you can add a book to the top
of the stack, or take a book from the top of the stack. If you put
several books onto a stack, the first book will be at the bottom of
the stack, and it will be the last book you can get to.

Java has a Stack class. Python doesn’t, but Python lists can be
used like stacks. Here are the basic operations in the Java Stack
class, along with the equivalent list operations in Python.

• stack.push(value)—adds value to the stack. In Python, use
list.append(value).

• stack.pop()—removes and returns the top value. In Python,
use list.pop().

28 ▪ Quick Recursion

• stack.peek()—returns the top value of the stack but does
not remove it. In Python, use list [-1].

• stack.empty()—tests if the stack is empty. In Python, use
list == [].

The way recursion is implemented “under the hood” is fairly
simple. All local values are pushed onto a stack when the re-
cursive call is made and restored from the stack when the call
returns. This can be simulated with a loop, exiting the loop when
the base case is reached.

Here again is the recursive version:

def r_factorial(n):
"""Compute the factorial of its argument."""
if n == 0:

return 1
else:

return r_factorial(n - 1) ∗ n

And here is a version that uses a stack to simulate recursion:

def factorial(n):
"""Compute the factorial of its argument."""
stack = []
while n != 0:

stack.append(n) # "push"
n = n - 1

fac = 1
while stack != []:

n = stack.pop()
fac = fac ∗ n

return fac

In the non-recursive version, putting n on the stack and setting
n to n – 1 is the equivalent of saving the local variable n and

Understanding Recursion ▪ 29

making a recursive call with n – 1. Popping the stack and putting
the top value back in n is the equivalent of returning from a re-
cursive call.

Clearly, the recursive version factorial is simpler; the point is
to show that recursion can be implemented by using a stack.
The main reason one might wish to do so is that recursion,
especially very deep recursion (thousands of levels), can be
computationally expensive, due to the amount of space re-
quired by the stack.

1.11 TAIL RECURSION
A function is tail recursive if the recursion is the very last thing
done in the function. If the function contains more than one
recursive call, it is tail recursive if every recursive call is the last
operation in the function.

Consider, once more, the factorial function.

def factorial(n):
"""Compute the factorial of its argument."""
if n == 0:

return 1
else:

return factorial(n - 1) ∗ n

This function is not tail recursive. The recursive call occurs in the
last statement of the function, but it is not the last thing done;
after the recursive call, the result of that call is multiplied by n.

The factorial function can be made tail-recursive by pulling the
multiplication into an extra parameter (an accumulator) and
providing a user-facing function (a façade) to call it. This is a
technique that will be discussed in more detail later. For the
present, here is the code.

30 ▪ Quick Recursion

def factorial(n):
return fac(n, 1)

def fac(n, acc):
if n == 0:

return acc
else:

return fac(n - 1, n ∗ acc)

In a recursive function, every call gives you a new set of local
variables. The advantage of tail recursion is that local variables
are not used again after the recursive call. Because they are not
used again, there is no need to create a new set; the existing
variables can be reused. This makes it much simpler to replace
the recursion with a loop.

def factorial(n):
acc = 1
while n != 0:

acc = n ∗ acc
n = n - 1

return acc

Some languages, such as Scala, are sometimes able to detect tail
recursion and perform this optimization by themselves. For other
languages, including Python and Java, it is up to the programmer
to do the optimization manually.

1.12 RECURSIVE DRAWINGS
No description of recursion would be complete without at least a
mention of recursive drawings.

As an example, draw a square. At each corner of the square, draw a
square half as large, centered at that corner. For each of those
squares, draw squares half as large, centered at each of the corners
of those squares. Continue until the squares get too small. The
result will look something like Figure 1.1.

Understanding Recursion ▪ 31

Recursive drawings can be made in both Python and Java, but it’s a
lot of work. The Processing “language” is basically a layer on top of
either Python or Java that provides very nice drawing tools.

Here is a program to make the above drawing in Processing,
using Python syntax:

size(400, 400)
background(255)
rectMode(CENTER)
noFill()

FIGURE 1.1 Recursive squares.

32 ▪ Quick Recursion

def squares(x, y, size):
if size < 12:

return
square(x, y, size)
half = size / 2
squares(x - half, y - half, half)
squares(x + half, y - half, half)
squares(x - half, y + half, half)
squares(x + half, y + half, half)

squares(200, 200, 175)

(The built-in square method is the one that does the actual
drawing.) Here is the same program in Java:

public void settings() {
size(400, 400);

}
void squares(int x, int y, int size) {

if (size < 12) return;
square(x, y, size);
int half = size / 2;
squares(x - half, y - half, half);
squares(x + half, y - half, half);
squares(x - half, y + half, half);
squares(x + half, y + half, half);

}

void draw() {
background(255);
rectMode(CENTER);
noFill();
squares(200, 200, 175);

}

1.13 FORTRAN AND LISP
The two most important programming languages from the
1950s, Fortran and Lisp, are still in use, although they have

Understanding Recursion ▪ 33

evolved considerably. Both have had an immense influence on
the programming languages we use today. It can be argued that
modern, conventional languages are structurally most like
Fortran, but incorporate most of the ideas from Lisp.

Fortran was used for numerical processing; it was built around
numbers, arrays, and loops. Early versions had no symbols or
lists and did not support recursion.

Lisp was used for nonnumerical processing (in particular, what
we today would call “artificial intelligence” applications). It was
built around lists, symbols, and recursion. It had numbers
(awkwardly) but not arrays or loops.

It should therefore be no surprise that, while recursion can
sometimes be useful for dealing with arrays, it is far more im-
portant in working with lists and other recursively defined data
structures.

34 ▪ Quick Recursion

C H A P T E R 2

Data Structures

2.1 ARRAYS
An array is a sequence of values, all of the same data type, stored
in contiguous memory locations. Any element can be efficiently
accessed by its index in the array. In most languages, the
minimum index is zero and the maximum index is the size of
the array minus one.

2.1.1 Array Maximum
This time we will devise a recursive Python program to find the
maximum value in an array. Again, it would be better to do this
without recursion, but it is difficult to find simple examples that
really need recursion, at least until we have discussed some re-
cursively defined data structures.

When looking for the maximum value in a nonempty array, what
is a simpler problem of the same sort? Obviously, finding the
maximum of a smaller array. So we will plan to recur only with
smaller arrays, and our base case will be the smallest array—that is,
an array of only one element.

DOI: 10.1201/9781003359616-2 35

https://doi.org/10.1201/9781003359616-2

Here is one approach: Take a number from one end of the array;
recursively find the maximum of the remaining array; compare
the maximum to the one number taken, and the maximum is the
larger of these. For a base case, the maximum of a single-element
array is that element.

While this approach is workable, it isn’t very interesting. Here’s an
approach I like better: Divide the array (approximately) in half;
recursively find the maximum of each half; return the larger of
these two maxima as the grand maximum. Again, the base case is a
one-element array, with that one element as the maximum.

This logic translates easily into Python code.

def maximum(numbers):
"""Find the maximum value in list 'numbers'."""
if len(numbers) == 1:

return numbers[0]
mid = len(numbers) // 2 # integer division
leftmax = maximum(numbers[0:mid])
rightmax = maximum(numbers[mid:len(numbers)])
if leftmax > rightmax:

return leftmax
else:

return rightmax

Note: Array slicing (the [mid:len] syntax) makes a
copy of that part of the array, so the above function is
much less efficient than it might appear.

The same algorithm isn’t quite as easy in Java, which does not
support passing in part of an array as an argument. Instead, we
use a helper method that takes two additional arguments, the
lower bound and the upper bound of an interval in the array. No
copying is involved, so this will be much more efficient than
the Python version.

36 ▪ Quick Recursion

public static int maximum(int[] numbers) {
return maxHelper(numbers, 0, numbers.length - 1);

}

private static int maxHelper(int[] numbers,
int lo, int hi) {

if (lo == hi) return numbers[lo];
int mid = (lo + hi) / 2;
int leftmax = maxHelper(numbers, lo, mid);
int rightmax = maxHelper(numbers, mid + 1, hi);
if (leftmax > rightmax) return leftmax;
else return rightmax;

}

Do these programs satisfy the four rules?

1. Do they handle the base case(s) first? Yes, if there is
only one number in the array interval, that number is
returned.

2. Do they recur only with a simpler case? Yes, there are two
recursions, each with either a smaller array or an array
interval of size 1.

3. Do they have side effects that interfere with the calling pro-
gram? No, because every variable is local, and the numbers
list or array is not changed.

4. Do we need to “look down” into the recursion, or other-
wise consider what is happening at some other level? No,
we don’t.

And we’re done.

2.1.2 Quicksort
Quicksort is one of the most widely used sorting algorithms, and
it is inherently recursive.

Data Structures ▪ 37

Quicksort was invented by one of the programming greats, Tony
Hoare. At the time he was unable to implement the algorithm in
Autocode, which did not support recursion. When attending a
course on Algol 60, one of the first programming languages
(after Lisp) to support recursion, he was able to do so.

The trickiest part of writing a quicksort algorithm is not the
recursive part, but is instead a nonrecursive method, usually
called partition, that it uses.

The partition method takes three parameters: an array, a
smallest index, and a largest index. Then, the partition method:

1. chooses any number from within the given array interval
(often the first number, because that’s easy), and uses this
number as the pivot;

2. rearranges the numbers in the array interval so that the
numbers less than the pivot precede all the numbers
larger than the pivot, and the pivot is in between the
two groups (numbers equal to the pivot may be in either
group); and

3. returns the index at which the pivot value ended up.

For example, given the array

[5, 7, 1, 9, 8, 2, 3, 2, 9, 4, 5, 1, 3]

the partition method might choose 5 as the pivot, produce the
array

[2, 3, 1, 1, 4, 2, 3, 5, 9, 8, 5, 9, 7]

and return 7 as the index of the pivot.

38 ▪ Quick Recursion

In this example, all the numbers less than 5 are to the left of the
pivot (the first 5), and all the numbers greater than 5 are to the
right of the pivot. (Another 5 happened to end up to the right of
the pivot.) Note that the array is not yet sorted, merely divided
into numbers less than or equal to the pivot and numbers greater
than or equal to the pivot.

As mentioned, the code for partition tends to be difficult to
program correctly. Since partition is not itself recursive, we
will leave the actual code to Appendix A for Java and Appendix B
for Python.

Here is the code for quicksort, first in Python:

def quicksort(array, left, right):
if left < right:

p = partition(array, left, right)
quicksort(array, left, p - 1)
quicksort(array, p + 1, right)

then in Java:

public static void quicksort(int[] array,
int left,
int right) {

if (left < right) {
int p = partition(array, left, right);
quicksort(array, left, p - 1);
quicksort(array, p + 1, right);

}
}

Is this a correct recursion?

• The base case is when left is greater than or equal to right.
There is nothing more to do, and quicksort terminates.

Data Structures ▪ 39

• Each recursive call is with a smaller part of the array, so the
difference right - left decreases until it becomes zero or
negative.

• The methods are self-contained, using no global variables.

• quicksort uses another method, partition. The pro-
grammer must understand what this method does, but
understanding how it works is irrelevant to understanding
quicksort itself.

Here’s a call to quicksort in Python:

quicksort(array, 0, len(array) - 1)

Here’s a call to quicksort in Java:

Quicksort.quicksort(array, 0, array.length - 1);

Finally, it should be noted that, while quicksort is extremely
fast on average, it can be inefficient in some cases. Unfortunately,
a worst case occurs when it is applied to an array that is already
sorted. Many of the various modifications to quicksort are an
attempt to deal with this problem.

2.2 LISTS
A list is either empty, or it has a head (a first element) and a tail
(a list of all the remaining elements). This is a recursive defini-
tion with the empty list serving as a base case.

The elements of a list may be a value of any sort, including other
lists. This allows for some fairly complex structures to be built.

Every list must come to an end, and that occurs when the tail is
the empty list. An empty list can be represented by the value
null (in Java) or None (in Python).

40 ▪ Quick Recursion

There are only a very few basic operations on a list. They are as
follows:

• Test if the list is empty.

• Get the head of a nonempty list.

• Get the tail of a nonempty list.

• Construct a new list with a given head and a given tail.

2.2.1 Lists in Java
Recursion is best demonstrated using singly linked lists, which
Java does not provide. The practical programmer should use
Java’s more complex lists, but for instructional purposes we will
implement and use a simple singly linked list class.

Here’s all the code needed for a basic implementation of a list
type (in Java):

public class List {
public Object head;
public List tail;

public List(Object head, List tail) {
this.head = head;
this.tail = tail;

}
}

The above code includes a constructor and provides direct access
to the head and the tail. To test if a list is empty, test if it is
equal to null. To test if something is a (nonempty) list, use
Java’s instanceof operator.

Almost all list algorithms follow the same mantra: Do some-
thing with the head and recur with the tail, stopping when the

Data Structures ▪ 41

list is empty. This is a special case of the usual approach to re-
cursion: An empty list is a base case, and the tail of a list is
simpler than the entire list.

One of the things we might want to do with lists is to test whether
two lists are equal, that is, they have equal elements in the same
order. Conceptually, this is very easy: Two lists are equal if their
heads are equal and their tails are equal. As is frequently the case
in Java, the need to check for null greatly complicates the code.
The head of a list may be null because it contains an empty list as
a member. The tail of a list will be null if the element is the last
thing in the list. Any expression of the form x.equals(y) will be
in error if x could possibly be null.

It is surprisingly difficult to write a single equals method for
lists, but pulling the null tests into a separate function (eq)
results in readable code.

@Override
public boolean equals(Object obj) {

if (! (obj instanceof List)) return false;
List that = (List) obj;
return eq(this.head, that.head) &&

eq(this.tail, that.tail);
}

Java requires that the parameter to equals be of type Object.
Therefore, we must next check the type of the parameter obj,
and return false if it isn’t a List. Then we can use a cast to save
obj in variable that of type List. Once the bureaucracy is sa-
tisfied, the actual work is done in the return statement.

The helper function eq can be used to avoid nullPointer-
Exceptions with any types of objects, using the equals method
defined for obj1.

42 ▪ Quick Recursion

private static boolean eq(Object obj1, Object obj2) {
if (obj1 == null) return obj2 == null;
return obj1.equals(obj2);

}

Another important operation is to test whether a given value is a
member of a list. The method eq can again be used as a helper
method.

public static boolean member(Object obj, List lst) {
if (lst == null) return false;
if (eq(obj, lst.head)) return true;
return member(obj, lst.tail);

}

The member method tests whether a value is a top-level member
of a list. If we want to know whether a value exists anywhere in a
list, possibly in a sublist or sub-sublist, we need a slightly more
complex method.

public static boolean deepMember(Object obj, List lst) {
if (lst == null) return false;
if (eq(obj, lst.head)) return true;
if (lst.head instanceof List &&

deepMember(obj, (List) lst.head)) return true;
return deepMember(obj, lst.tail);

}

2.2.2 Lists in Python
According to the usual definition, a singly linked list (or briefly, list)
is a linear data structure that has a head (first element) and a tail (all
the remaining elements, in some order). Access to these two values,
the head and the tail, is very efficient; access to any other values
involves stepping through the intervening values to get to them.

Python has a data structure called a “list,” but it is actually a
complex data structure that has features of both arrays and lists.

Data Structures ▪ 43

This is convenient for many applications, but using it as if it were a
singly linked list would be inefficient, and therefore inadvisable.

It is easy to write a List class in Python that has the usual
characteristics of a singly linked list. Such a class could begin like
this:

class List:
def __init__(self, head, tail=None):

"""Construct a List."""
self.head = head
self.tail = tail

As a first example of using the List class, we will count the
number of elements in a list, using the aforementioned mantra,
“Do something with the head and recur with the tail.” In this
case, what we do with the head is simply count it.

def length(lst):
"""Count the top-level elements in a List."""
if lst == None:

return 0
return 1 + length(lst.tail)

In order to print a list, we will need a method to represent it as a
string. Here is an implementation of the __str__ method, as it
would occur inside the List class.

def __str__(self):
"""Return a string representation

of this List."""
return '[' + self.contents() + ']'

def contents(self):
"""Return a string representation of

the contents of this List."""
s = str(self.head)

44 ▪ Quick Recursion

if self.tail != None:
s += ', ' + self.tail.contents()

return s

In this code, only the helper method contents is recursive;
the __str__ method simply add brackets around the result.

Additional list methods in Python (equality testing, member,
deepMember) are provided in Appendix K.

2.2.3 Accumulators
It’s easy to copy a list recursively; simply make a new list with a
copy of the head and a copy of the tail.

def list_copy(lst):
if lst == None:

return None
return List(lst.head, list_copy(lst.tail))

The above code makes a shallow copy, which is adequate for the
purposes of this section.

Now consider the problem of creating a new list containing the
same elements as a given list, but in reverse order. One way to do
this is to use an accumulator: an additional parameter that in-
crementally builds, or accumulates, the final result.

The user of the reverse method should not have to know about
the accumulator, and certainly should not have to provide one
in the correct form. Hence we provide a façade method that
takes a single list parameter and calls another function to do the
actual work.

def reverse(self):
return self.rev(self, None)

Data Structures ▪ 45

def rev(self, lst, acc=None):
if lst == None:

return acc
return lst.rev(lst.tail,

List(lst.head, acc))

Each call of rev plucks an item from the original list (lst.head),
adds it to the list being accumulated (List(lst.head, acc)),
and recurs with the shorter original list (lst.tail) and the
list being accumulated. When all the elements of the original list
have been processed (lst == None), the complete reversed list is
in acc.

This follows the conventional method for a recursive list method:
Handle the base case (lst == None) first, then do something with
the head and recur with the tail. The accumulator is simply an-
other variable that goes along for the ride.

The Java code is similar. Since Java allows methods to be over-
loaded (multiple methods may have the same name if the
parameter lists are different), we can use the same name for both
the façade method and the main method.

public List reverse() {
return reverse(this, null);

}

private List reverse(List lst, List acc) {
if (lst == null) return acc;
return reverse(lst.tail,

new List(lst.head, acc));
}

2.3 BINARY TREES
We will define a binary tree (Figure 2.1) as either empty or
consisting of a root node (object) that contains three parts:

46 ▪ Quick Recursion

• A value, which could be anything,

• A left child, which is a binary tree; and

• A right child, which is a binary tree.

Binary trees are defined recursively: A (non-empty) binary tree
consists of a value and two other binary trees. The values in each
node are the user data, while the (references to) other binary
trees provide the structure.

Note: Yes, this definition allows a binary tree to be empty
(null or None). This lets us think of a node as always
having two children, one or both of which may be empty,
and this simplifies programming. In mathematics, an empty
binary tree would be called a degenerate case.

All nodes are reachable (by one or more steps) from the root
node. In general, it is only possible to move “down” in the binary
tree (from parent to child), not “up” (from child to parent). A
node that has neither a left child nor a right child is called a leaf
and is used as the base case in many applications.

There are some other constraints that a binary tree must sa-
tisfy. A binary tree is not allowed to contain cycles; that is, a
node may not have one of its own ancestors as a child. In
addition, some (but not all) implementations insist that each
node except the root has exactly one parent; this prevents

FIGURE 2.1 A binary tree.

Data Structures ▪ 47

having shared subtrees, in which there may be more than one
path from the root to a given node. Other implementations
may have other kinds of constraints.

Checking these constraints is complicated. Library implementa-
tions of binary trees must do all this work, but it isn’t needed here.
In this book, we need only the simplest implementations to il-
lustrate recursive techniques.

Here’s a definition of a BinaryTree class in Java:

public class BinaryTree {
public Object value;
BinaryTree left = null;
BinaryTree right = null;

BinaryTree(Object value,
BinaryTree left,
BinaryTree right) {

this.value = value;
this.left = left;
this.right = right;

}

BinaryTree(Object value) {
// shortcut for making a leaf
this(value, null, null);
}

}

As defined above, the “value” in each node is type String. To
make a more general binary tree, it could be Object. Even
better, this class could be genericized, so that the binary tree
could contain values of only some designated type. Our goal
here, however, is to keep things simple, and that means ignoring
generics.

48 ▪ Quick Recursion

Here’s the equivalent code in Python.

class BinaryTree(object):
def __init__(self, value, left=None, right=None):

self.value = value
self.left = left
self.right = right

With these constructors, trees have to be built from the bottom up.
To construct a node, its child nodes must already have been de-
fined. The example tree given above can be constructed like this:

In Java:

static BinaryTree makeTree() {
BinaryTree root, a, b, c, d, e, f, g, h, i, j;
g = new BinaryTree("G");
h = new BinaryTree("H");
i = new BinaryTree("I");
j = new BinaryTree("J");
c = new BinaryTree("C");
d = new BinaryTree("D", g, null);
e = new BinaryTree("E", h, i);
f = new BinaryTree("F", null, j);
a = new BinaryTree("A", c, d);
b = new BinaryTree("B", e, f);
return new BinaryTree("Root", a, b);

}

And in Python:

def make_tree():
g = BinaryTree('G')
h = BinaryTree('H')
i = BinaryTree('I')
j = BinaryTree('J')
c = BinaryTree('C')
d = BinaryTree('D', g, None)

Data Structures ▪ 49

e = BinaryTree('E', h, i)
f = BinaryTree('F', None, j)
a = BinaryTree('A', c, d)
b = BinaryTree('B', e, f)
return BinaryTree('Root', a, b)

Binary trees will be used in a later section. Meanwhile, let’s ex-
amine some recursive routines for manipulating binary trees.

2.3.1 Printing Binary Trees
Suppose we want to print a binary tree. Neither Java nor Python
can print our binary trees in a useful fashion without some as-
sistance. In Java, we will need to override the toString method;
in Python we need to supply a __str__ method.

One reasonable way to print a binary tree is this:

• If a node has children, print its value; then, in parentheses,
print its left subtree and its right subtree. Print "null" or
"None" for a missing subtree.

• If a node is a leaf, just print its value.

With this approach, the example binary tree would print as

Root(A(C, D(G, null)), B(E(H, I), F(null, J)))

in Java, and

Root(A(C, D(G, None)), B(E(H, I), F(None, J)))

in Python. In both cases, the code is very simple. In Java,

@Override
public String toString() {

if (left == null && right == null) {
return value.toString();

50 ▪ Quick Recursion

}
return value + "(" + left + ", " + right + ")";

}

and in Python,

def __str__(self):
if (self.left == None and

self.right == None):
return str(self.value)

return (str(self.value) + "(" +
str(self.left) + ", " +
str(self.right) + ")")

Are there base cases? Yes, whenever we reach a leaf, we don’t recur.

Is each recursion simpler, that is, nearer a base case? Yes, each
recursive call is with a child of the current node, so each re-
cursive call is closer to the leaves. There is a caveat, however. A
well-formed binary tree has no cycles; no node has a child that is
also one of its ancestors. If this condition is violated, an infinite
recursion will result.

Are globals used? No, each method is self-contained.

We can conclude from this that the recursive logic is correct.
That does not, of course, guarantee that the implementation will
be free of bugs; testing is still required.

2.3.2 Counting Nodes
As another quick example, we wish to count the nodes in a binary
tree.

Any node in a binary tree may be regarded as the root of a binary
tree. From any node, its parent (if it has one) is not accessible.
Therefore we can think of any node in a binary tree as being a

Data Structures ▪ 51

root node with two subtrees, a left subtree and a right subtree.
The number of nodes in a binary tree is therefore 1 (the root
node), plus the number of nodes in its left subtree, plus the
number of nodes in its right subtree.

A first cut at the node-counting method is therefore (in Python):

def count_nodes(bt):
return (1

+ count_nodes(bt.left)
+ count_nodes(bt.right)

This isn’t quite right. It does work its way “down” the binary tree
toward the leaves, but what happens once it gets there? There is
no base case.

We can make this complicated. We can say: If a node has no
right child and no left child, then it’s a leaf, so count it as 1 and
don’t recur. If it has only a left child, then add 1 to the result and
recur on the left child. If it has only a right child, then add 1 to
the result and recur on the right child. This would work.

There is a much simpler approach. By our definition, a binary
tree could be empty, so we can always recur on both the left child
and the right child. If the recursive call is with None (an empty
tree), that tree clearly contains no nodes, and 0 should be the
value returned by the recursion.

Base cases, you will remember, go first.

def count_nodes(bt):
if bt == None:

return 0
return (1

+ count_nodes(bt.left)
+ count_nodes(bt.right))

52 ▪ Quick Recursion

The logic is identical for Java.

static int countNodes(BinaryTree bt) {
if (bt == null) return 0;
return (1

+ countNodes(bt.left)
+ countNodes(bt.right));

}

So the base case is an empty node, the recursive case is always with a
smaller subtree, and there are no global variables to cause confusion.

2.4 TREES
Whereas a binary tree consists of a root node containing a value
and up to two children, a (general) tree consists of a root node
containing a value and any number of children.

A BinaryTree class definition starts out like this:

public class BinaryTree {
public Object value;
BinaryTree leftChild = null;
BinaryTree rightChild = null;
…

}

In contrast, the definition of a Tree class starts out like this:

public class Tree {
public Object value;
private ArrayList children;

or with generics,

public class Tree<V> {
public V value;
private ArrayList<Tree<V>> children;

Data Structures ▪ 53

The code is similar in Python.

class Tree:
def __init__(self, value):

self.value = value
self.children = []

A Java implementation of a Tree class is provided in Appendix L.

2.4.1 Parse Trees
Every time a program is compiled, in virtually any language, the
compiler creates a parse tree. This is a tree that represents the
structure of a program. For example, the small code fragment

if a > b:
temp = a
a = b
b = temp

is turned into a tree somewhat like the one in Figure 2.2.

This parse tree can then be translated into another language
(perhaps assembler), or it could be interpreted directly.

FIGURE 2.2 A parse tree.

54 ▪ Quick Recursion

Here is some pseudocode to suggest how that might be done.

function interpret(node):
if node type is "if":

if (interpret first child):
interpret second child

else:
interpret third child (if present)

else if node type is [something else]
[do something else]

2.4.2 Indirect Recursion
A recursive method is simply another kind of method. There is
nothing unusual about one recursive method calling another.

Earlier we defined a Python method __str__ which is auto-
matically called whenever a List object is to be printed or other-
wise converted to a string. Now we can do the same for trees.

def __str__(self):
s = str(self.value)
if self.children != None:

s += str(self.children)
return s

This method is not obviously recursive. Given a Tree, it will
return a string representation of the value in the root node and,
if the root node has children, a string representation of the list
of children. However, those children will themselves be Trees.
When each child is converted to a string, it will be done by using
the __str__ method in the Tree class.

In other words, getting a string representation of a Tree involves
calling a method to get a string representation of a list, which
involves calling the method to get string representations of Trees.
This is an example of indirect recursion.

Data Structures ▪ 55

Does the above method terminate? Although it isn’t placed first
in the method, the above Tree method does have a base case
when self.children == None. Each call works its way down the
tree, so the base case will eventually be reached on every branch.
If we can assume that stepping through a list terminates, then the
procedure as a whole will terminate.

56 ▪ Quick Recursion

C H A P T E R 3

Backtracking

B ACKTRACKING IS A FORM of recursion.

The usual scenario is that you are faced with a number of options,
and you must choose one of these. After you make your choice you
will get a new set of options; just what set of options you get de-
pends on what choice you made. This procedure is repeated over
and over until you reach a final state. If you made a good sequence
of choices, your final state is a goal state; if you didn’t, it isn’t.

Conceptually, you start at the root of a tree; the tree probably has
some good leaves and some bad leaves, though it may be that the
leaves are all good or all bad. You want to get to a good leaf. At
each node, beginning with the root, you choose one of its chil-
dren to move to, and you keep this up until you get to a leaf.

Suppose you get to a bad leaf. You can backtrack to continue the
search for a good leaf by revoking your most recent choice and
trying out the next option in that set of options. If you run out of
options, revoke the choice that got you here, and try another
choice at that node. If you end up at the root with no options
left, there are no good leaves to be found.

DOI: 10.1201/9781003359616-3 57

https://doi.org/10.1201/9781003359616-3

The following shows how backtracking might proceed on the
tree in Figure 3.1:

1. Starting at Root, your options are A and B. You choose A.

2. At A, your options are C and D. You choose C.

3. C is bad. Go back to A.

4. At A, you have already tried C, and it failed. Try D.

5. D is bad. Go back to A.

6. At A, you have no options left to try. Go back to Root.

7. At Root, you have already tried A. Try B.

8. At B, your options are E and F. Try E.

9. E is good. Congratulations!

In this example we drew a picture of a tree. The tree is an abstract
model of the possible sequences of choices we could make. There is
also a data structure called a tree, but sometimes we don’t have a data
structure to tell us what choices we have. (If we do have an actual tree
data structure, backtracking on it is called depth-first tree searching.)

3.1 THE BACKTRACKING ALGORITHM
Here is the algorithm (in pseudocode) for doing backtracking,
starting from a given node n:

FIGURE 3.1 A tree with one good leaf.

58 ▪ Quick Recursion

function solvable(n):
if n is a leaf node:

if n is a goal node, return true
else return false

else:
for each child c of n:

if solvable(c), return true
return false

Notice that the algorithm is expressed as a boolean function.
This is essential to understanding the algorithm. If solvable(n)
is true, that means node n is part of a solution—that is, node n is
one of the nodes on a path from the root to some goal node. We
say that n is solvable. If solvable(n) is false, then there is no
path that includes n to any goal node.

How does this work?

• If any child of n is solvable, then n is solvable.

• If no child of n is solvable, then n is not solvable.

Hence, to decide whether any non-leaf node n is solvable (part of
a path to a goal node), all you have to do is test whether any child
of n is solvable. This is done recursively, on each child of n. In
the above code, this is done by the lines

for each child c of n:
if solvable(c), return true

return false

Eventually, the recursion will “bottom out” at a leaf node. If the
leaf node is a goal node, it is solvable; if the leaf node is not a goal
node, it is not solvable. This is our base case. In the above code,
this is done by the lines

Backtracking ▪ 59

if n is a leaf node:
if n is a goal node, return true
else return false

The backtracking algorithm is simple and important. You should
understand it thoroughly. Another way of stating it is as follows:

To search a tree:

1. If the tree consists of a single leaf, test whether it is a goal
node, and return the result;

2. Otherwise, search the subtrees of this tree until you find
one containing a goal node, or until you have searched
them all without finding a goal node.

In the above, we have assumed that any goal node would be a
leaf. The algorithm can easily be adapted to the case where goal
nodes may occur within the tree, not just at the leaves.

3.2 NONRECURSIVE BACKTRACKING
Backtracking is a rather typical recursive algorithm, and any
recursive algorithm can be rewritten as a stack algorithm. In fact,
that is how your recursive algorithms are translated into ma-
chine or assembly language.

boolean solve(Node n):
put node n on the stack
while the stack is not empty:

topnode = the node at the top of the stack
if topnode is a leaf:

if it is a goal node, return true
else pop it off the stack

else:
if topnode has untried children:

push the next untried child onto the stack

60 ▪ Quick Recursion

else pop the node off the stack
return false

Starting from the root, the only nodes that can be pushed onto the
stack are the children of the node currently on the top of the stack,
and these are only pushed on one child at a time; hence, the nodes
on the stack always describe a valid path in the tree. Nodes are
removed from the stack only when it is known that they have no
goal nodes among their descendants. Therefore, if the root node
gets removed (making the stack empty), there must have been no
goal nodes at all, and no solution to the problem.

When the stack algorithm terminates successfully, the nodes on
the stack form (in reverse order) a path from the root to a goal
node.

Similarly, when the recursive algorithm finds a goal node, the
path information is embodied (in reverse order) in the sequence
of recursive calls. Thus as the recursion unwinds, the path can
be recovered one node at a time, by (for instance) printing the
node at the current level, or storing it in an array.

Here is the recursive backtracking algorithm, modified slightly to
print (in reverse order) the nodes along the successful path:

boolean solve(Node n) {
if n is a leaf node {

if the leaf is a goal node {
print n
return true

}
else return false

} else {
for each child c of n {

if solve(c) succeeds {
print n

Backtracking ▪ 61

return true
}

}
return false

}
}

3.3 KEEPING BACKTRACKING SIMPLE
All of these versions of the backtracking algorithm are pretty
simple, but when applied to a real problem, they can get pretty
cluttered up with details. Even determining whether the node is a
leaf can be complex: for example, if the path represents a series
of moves in a chess endgame problem, the leaves are the
checkmate and stalemate solutions.

To keep the program clean, therefore, tests like this should be
encapsulated in methods. In a chess game, for example, you could
test whether a node is a leaf by writing a gameOver method (or you
could even call it isLeaf). This method would encapsulate all the
ugly details of figuring out whether any possible moves remain.

Notice that the backtracking algorithms require us to keep track,
for each node on the current path, which of its children have
been tried already (so we don’t have to try them again). In the
above code, we made this look simple, by just saying for each
child c of n. In reality, it may be difficult to figure out what the
possible children are, and there may be no obvious way to step
through them. In chess, for example, a node can represent one
arrangement of pieces on a chessboard, and each child of that
node can represent the arrangement after some piece has made a
legal move. How do you find these children, and how do you
keep track of which ones you’ve already examined?

The most straightforward way to keep track of which children of
the node have been tried is as follows: Upon initial entry to the

62 ▪ Quick Recursion

node (that is, when you first get there from above), make a list of
all its children. As you try each child, take it off the list. When
the list is empty, there are no remaining untried children, and
you can return “failure.” This is a simple approach, but it may
require quite a lot of additional work.

There is an easier way to keep track of which children have been
tried, if you can define an ordering on the children. If there is an
ordering, and you know which child you just tried, you can
determine which child to try next.

For example, you might be able to number the children 1 through
n, and try them in numerical order. Then, if you have just tried
child k, you know that you have already tried children 1 through
k - 1, and you have not yet tried children k + 1 through n. Or, if
you are trying to color a map with just four colors, you can always
try red first, then yellow, then green, then blue. If child yellow fails,
you know to try child green next. If you are searching a maze, you
can try choices in the order left, straight, and right (or perhaps
north, east, south, west).

It isn’t always easy to find a simple way to order the children of a
node. In the chess game example, you might number your pieces
(or perhaps the squares of the board) and try them in numerical
order; but in addition, each piece may also have several moves,
and these must also be ordered.

You can probably find some way to order the children of a node.
If the ordering scheme is simple enough, you should use it; but if
it is too cumbersome, you are better off keeping a list of untried
children.

3.4 PRUNING AND FOUR COLORING
One of the things that simplifies a binary tree search is that, at
each choice point, you can ignore all the previous choices.

Backtracking ▪ 63

Previous choices don’t give you any information about what you
should do next; as far as you know, both the left and the right
child are equally likely to be solutions. In many problems,
however, you may be able to eliminate children immediately,
without recursion. This is called pruning.

Consider, for example, the problem of four-coloring a map. It is a
theorem of mathematics that any map on a plane, no matter how
convoluted the countries are (so long as they are not in separate,
unconnected pieces), can be colored with at most four colors, so
that no two countries that share a border are the same color.

Here is one way that we can represent the map shown in
Figure 3.2 in Java:

void createMap() {
map = new int[13][];
map[0] = new int[] { 1, 2, 3, 9, 12 };
map[1] = new int[] { 0, 2, 5 };

FIGURE 3.2 A map to color with four colors.

64 ▪ Quick Recursion

map[2] = new int[] { 0, 1, 3, 4, 5 };
map[3] = new int[] { 0, 2, 4, 6, 8, 9 };
map[4] = new int[] { 2, 3, 5, 6, 7, 8 };
map[5] = new int[] { 1, 2, 4, 8, 11 };
map[6] = new int[] { 3, 4, 7, 8 };
map[7] = new int[] { 4, 6, 8 };
map[8] = new int[] { 3, 4, 5, 6, 7, 9, 10, 11 };
map[9] = new int[] { 0, 3, 8, 10, 12 };
map[10] = new int[] { 8, 9, 11, 12 };
map[11] = new int[] { 5, 8, 10, 12};
map[12] = new int[] { 0, 9, 10, 11 };

}

This problem can be viewed as a decision tree. Starting with a
completely uncolored map (the root of the decision tree), we
have a choice of four different colors for the root node. Having
picked a color for the root node, we now have a choice of four
colors for the next node (one of its children). And so on.

To color a map, first choose a color for the first country, then a
color for the second country, and so on, until all countries are
colored. Here are two ways to do this:

Method 1. For each country, recur with each possible
color, and continue until there are no more countries.
When all countries have been colored, check whether we
are at a goal node (the map is correctly colored), and if
not, backtrack.

Method 2. For each country, try only those colors that have
not already been used for an adjacent country, and recur.
Backtrack if no color can be used. If and when we run out
of countries, we have successfully colored the map.

In this section, we use Java to describe a backtracking algorithm
that solves the map coloring problem. The complete code for

Backtracking ▪ 65

Java can be found in Appendix I, and the equivalent code for
Python in Appendix J.

The colors are represented by integers, from RED=1 to BLUE=4,
while 0 indicates that a country has not yet been colored. We
define the following helper methods. The helper method code
isn’t displayed here because it’s not important for understanding
how the backtracking works.

• boolean goodColoring()

• Used by method 1 to test (at a leaf node) whether the
entire map is colored correctly.

• boolean okToColor(int country, int color)

• Used by method 2 to check, at every node, whether there
is an adjacent node already colored with the given color.

Method 1 does not do any pruning, but tries each possible col-
oring until it finds one that works:

boolean explore1(int country, Color color) {
if (country >= map.length)

return goodColoring();
mapColors[country] = color;
for (Color c : Color.values()) {

if (explore1(country + 1, c)) {
return true;

}
}
mapColors[country] = Color.NONE;
return false;

}

Method 2 prunes by eliminating a color for a country if some
adjacent country already has that color:

66 ▪ Quick Recursion

boolean explore2(int country, Color color) {
if (country >= map.length)

return true;
if (okToColor(country, color)) {

mapColors[country] = color;
for (Color i : Color.values()) {

if (explore2(country + 1, i))
return true;

}
}
return false;

}

The two methods seem pretty similar. You might expect the
method that does pruning to be faster, and you would be correct.
You might, however, be surprised at just how much faster it is.
Here is a typical timing result:

Method 1: 2355638070 ns.

Method 2: 20516 ns.

In other words, method 1 takes about 115 thousand times longer on
this particular problem. The difference is that the second method
stops searching as soon as it detects that, with the choices made so
far, no solution is possible. When coloring a country, if an adjacent
country already has that color, it does not explore further.

Because Python is a dynamic language, it is inherently slower
than Java. Here are the results of a run in Python:

Method 1: 575.22 seconds (almost 10 minutes)

Method 2: 0.0574 seconds

Backtracking ▪ 67

In this trial, method 1 is almost exactly one hundred thousand
times slower, very comparable to the results in Java.

The point is not that Python is slower than Java; today’s com-
puters are fast enough that the difference matters only in a
few kinds of resource-intensive programs. Rather, the point is
that the expense of backtracking is exponential on the size of
the problem. To deal with anything other than toy problems,
pruning is not a luxury, but a necessity.

3.5 BINARY TREE SEARCH I
For starters, let’s do the simplest possible example of back-
tracking, which is searching an actual tree. We will also use the
simplest kind of tree, a binary tree.

Reminder: A binary tree is a data structure composed of
nodes. One node is designated as the root node. Each
node has a value, a left child, and a right child, where
each child could be “empty” (null or None). A node
with only empty children is called a leaf.

For our purposes, we will say that the value in a node will be its
name, and in addition the node will contain a boolean value to
tell whether it is a goal node. The first example in this chapter
(which we repeat here) shows a binary tree (Figure 3.3).

FIGURE 3.3 A tree with one good leaf.

68 ▪ Quick Recursion

Here’s a definition of a BinaryTree class in Java (slightly
modified from the version given earlier):

public class BinaryTree {
String name;
BinaryTree leftChild = null;
BinaryTree rightChild = null;
boolean isGoalNode = false;

BinaryTree(String name,
BinaryTree left,
BinaryTree right,
boolean isGoalNode) {

this.name = name;
leftChild = left;
rightChild = right;
this.isGoalNode = isGoalNode;

}
}

As defined above, the “value” in each node is its name, of type
String. To make a more special-purpose binary tree, this class
should be genericized, so that the binary tree could contain va-
lues of any type. Our goal here, however, is to keep things
simple, and that means ignoring generics.

Another unusual thing about the above code is that every node in a
binary tree is marked as to whether it is a goal node. In an actual
program, this would involve computation (Are there three Xs in a
row? Is the opponent’s king in check?). Again, the goal is simplicity.

Here’s the equivalent code in Python.

class BinaryTree(object):

def __init__(self, name, left_child,
right_child, is_goal_node):

Backtracking ▪ 69

self.name = name
self.left_child = left_child
self.right_child = right_child
self.is_goal_node = is_goal_node

Next we will create a TreeSearch class, and in it we will define
a method makeTree() which constructs the above binary tree.
In Java:

static BinaryTree makeTree() {
BinaryTree root, a, b, c, d, e, f;
c = new BinaryTree("C", null, null, false);
d = new BinaryTree("D", null, null, false);
e = new BinaryTree("E", null, null, true);
f = new BinaryTree("F", null, null, false);
a = new BinaryTree("A", c, d, false);
b = new BinaryTree("B", e, f, false);
root = new BinaryTree("Root", a, b, false);
return root;

}

And in Python:

def make_tree():
c = BinaryTree('C', None, None, False)
d = BinaryTree('D', None, None, False)
e = BinaryTree('E', None, None, True)
f = BinaryTree('F', None, None, False)
a = BinaryTree('A', c, d, False)
b = BinaryTree('B', e, f, False)
root = BinaryTree('Root', a, b, False)
return root

Notice the order in which the tree nodes were constructed. Our
constructor requires values for the left subtree and the right
subtree, so either we have to construct those first, or we have to
go back later and fill them in. In other words, we have to work
from the leaves up to the root.

70 ▪ Quick Recursion

Here’s a main method in Java to create a binary tree and try to
solve it:

public static void main(String args[]) {
BinaryTree tree = makeTree();
System.out.println(solvable(tree));

}

And Python:

def main():
tree = make_tree()
print(solvable(tree))

And finally, here is the recursive backtracking routine (in pseu-
docode) to “solve” the binary tree by finding a goal node. This
code only determines whether there is a goal node; it does not
report how to get to it from the root.

function solvable(binaryTree):
1. if node is null/None, return false
2. if node is a goal node return true
3. if solvable(node.leftChild), return true
4. if solvable(node.rightChild), return true
5. return false

}

Here’s what the numbered lines are doing:

1. A null node is not solvable. This statement is so that we can
call this method with the children of a node, without first
checking whether those children actually exist.

2. If the node we are given is a goal node, return success.

3. See if the left child of node is solvable, and if so, conclude
that node is solvable. We will only get to this line if node is
non-null and is not a goal node.

Backtracking ▪ 71

4. See if the right child of node is solvable, and if so, conclude
that node is solvable. We will only get to this line if node is
neither null nor a goal node, and if the left child of node
is not solvable.

5. If we get here, neither child of node is solvable, so node
itself is not solvable.

This program runs correctly and, when used with the above ex-
ample tree, returns true as the result.

3.6 BINARY TREE SEARCH II
There is a problem with the code that we have developed so far.
Our solvable method returns a boolean result: true if there is a
solution, false if there is not. We might want to know more
than that. We might want to know how to get to a solution; that
is, what path do we follow to get to a goal state?

If we are doing things recursively, the solution is to accumulate
the results in a list. When a goal node is found, create a list and
put that node in it. Then, as the recursion “unwinds,” put each
node in turn into the list.

Java has lists, of course, but they are complex and use non-
standard terminology. For our purposes we will instead use the
List class defined in Section 2.2.1. Python’s lists are much
simpler, so we will use those directly.

Again, we use strings as the values in the list (the head), and this
could be generalized. For simplicity, head and tail are publicly
available variables, not methods.

Now, instead of a solvable method that only returns true or
false, we can write a solve method that returns a path from the
root node to the goal. Here it is in Java:

72 ▪ Quick Recursion

/**
* Find goal node and report path.
*/
static List solve(BinaryTree node) {

List temp;
if (node == null) {

return null;
}
if (node.isGoalNode) {

return new List(node.name, null);
}
temp = solve(node.leftChild);
if (temp != null) {

return new List(node.name, temp);
}
temp = solve(node.rightChild);
if (temp != null) {

return new List(node.name, temp);
}
return null;

}

And in Python:

def solve(node):
"""Find goal node and report path."""
if node == None:

return None

if node.is_goal_node:
return [node.name]

temp = solve(node.left_child)
if temp != None:

return [node.name] + temp

temp = solve(node.right_child)

Backtracking ▪ 73

if temp != None:
return [node.name] + temp

return None

Now, if we call solve with the BinaryTree that we have been
using as an example, it produces a list as a result. If we print the
list, we get … well, Python prints something useful, but in Java,
we get something like List@6d06d69c. If we want to actually see
the results, we need to add a toString method to our List class.
We might as well do that recursively.

We begin with some pseudocode:

function toString(list):
if the tail is null, return the head
else return head + toString(the tail)

This recursive method takes a list as a parameter. Unfortunately,
the toString method, in order to properly override the version
inherited from Object, cannot have parameters. For this reason,
we move the recursion into a helper method, contents, and
have toString call contents.

@Override
public String toString() {

String s = ("[");
s += contents(this);
return s + ("]");

}

private String contents(List list) {
if (list.tail == null) {

return list.head + " ";
} else {

return list.head + " " + contents(list.tail);
}

}

74 ▪ Quick Recursion

With this addition, the resultant list prints as [Root B E].

If the above code looks familiar, it is because we have previously
written the equivalent function in Python.

Complete code for binary tree searching is given in Appendix C
for Java and in Appendix D for Python.

3.7 TREE AND GRAPH SEARCHES
A node in a binary tree may have a left child, a right child, or
neither or both of these. A node in a (general) tree, on the other
hand, may have any number of children.

To search a (finite) binary tree for a goal node, the algorithm is
really quite simple.

To search from a node:
if the node doesn't exist, return false.
if the node is a goal node, return success.
if searching from the left child succeeds,

return success.
if searching from the right child succeeds,

return success.
return failure.

The algorithm for searching a general tree is practically the same,

To search from a node:
if the node is a goal node,

return success.
for each child of the node:

if searching from that child succeeds,
return success.

return failure.

Binary trees and general trees do not contain cycles. That is, by
going “down” into a tree, following links to children, you will never
find yourself back at the same node you started from.

Backtracking ▪ 75

Graphs may contain cycles. By going from one node to the next,
you might find yourself back where you started. Graphs are
not hierarchically organized and do not have one distinguished
root node, so instead of referring to the children of a node, we
talk about its neighbors—the other nodes you can get to from
this node.

Searching a graph is like searching a tree, except that we want to
avoid getting stuck in a cycle, visiting the same nodes over and
over again. In principle, this is simple—any time we visit a node
we’ve been to before, call that a failure. After all, we didn’t find
anything the last time we were here, so we won’t this time, either.

To search from a node:
if the node is a goal node,

return success.
if we've been at this node before,

return failure.
for each neighbor of the node:

if searching from that neighbor succeeds,
return success.

return failure.

There are two basic ways to tell if we’ve been at a node before.

1. When we get to the node, look for a mark. If there is one, we
know we’ve been there before, so we don’t need to search from
there again. Otherwise, mark it and continue the search.

• A marking algorithm both looks at values in the graph and
changes them. This is contrary to our general advice not
to do both in a recursion. However, in this case, we don’t
have to consider other levels of the recursion—either we’ve
been to this node before, or we haven’t.

2. Keep a set of all the nodes we’ve been to, and look to see if
this node is in that set. If not, add it to the set.

76 ▪ Quick Recursion

As an example, suppose you want to get from Smallville to
Metropolis. You have a map on which the cities are nodes, and
two cities are neighbors if there is a highway from one to the
other, with no intervening cities. A simple graph search will
(eventually) find a path from one to the other.

This example suggests a number of ways in which the search
might be improved. We might have distances marked on each
highway between two cities, and we would prefer to minimize
distances. We might know that Metropolis is east of Smallville,
so we would prefer to go in that direction. Some roads might
be toll roads, which we can take if there isn’t a better alternative.
Some roads might be one-way. And so on.

Most libraries provide list, binary tree, and tree objects, but not
graph objects. Because of the high variability in types and uses of
graphs, there is not a “best” way to represent a graph, nor is there
a best way to search a graph. Implementation of graph structures
is usually left up to the individual programmer.

3.8 DEBUGGING TECHNIQUES
Often our first try at a program doesn’t work, and we need to
debug it.

We have emphasized that one should not “look down” into a re-
cursion when trying to write or understand a recursive routine.
Debuggers are sometimes helpful, but using one to debug a recursive
routine strongly encourages just this approach, because you can only
see the state of the program from moment to moment. Using print
statements can be much more helpful for this kind of debugging; they
allow you to see the overall structure, and to match calls with results.

There are some simple tricks to making effective use of print
statements. These tricks can be applied to any program, but are
especially useful when you are trying to debug recursive routines.

Backtracking ▪ 77

Trick #1: Indent when you print method entries and exits.
Often, the best debugging technique is to print every
method call and return (or at least the most important
ones). You probably want to print, for each method, what
parameters it came in with, and what value it leaves with.
However, if you just print a long list of these, it’s hard to
match up method exits with their corresponding entries.
Indentation that shows the level of nesting can help.

Indenting requires keeping track of the current level of indenta-
tion. This can be done with an additional parameter, or with the
use of a global variable. The use of global variables is strongly
discouraged in general, but if a global variable is used only for
this one purpose, it should not affect the proper functioning of
the code.

Trick #2: Use specialized print methods for debugging.
Don’t clutter up your actual code more than you must.
Also, remember that code inserted for debugging pur-
poses can itself contain bugs, or (in the worst case) can
affect the results, so be very careful with it.

When debugging, it is useful to see what arguments each func-
tion is called with, and what value it returns. This is some of the
same information provided by a debugger, but printed, so it can
be seen all at once. For tracing the binary tree search, we will use
the following methods:

• void enter(BinaryTree node)—Prints the name of the
function being entered and the value of its parameter, then
increases the indentation level. A call to this method will be
the first line of each function we want to trace.

• boolean yes()—Reduces the indentation level, prints an
exit message, and returns true. We will replace each re-
turn true with return yes().

78 ▪ Quick Recursion

• boolean no()—Reduces the indentation level, prints an
exit message, and returns false. We will replace each
return false with return no().

• String name(BinaryTree node)—A helper method to
return the name of the node, or null if given a null node.

As written, these debugging methods are specific to the tree search
problem; more general versions are given in Appendix E for Java
and Appendix F for Python.

Here is an implementation of the methods in Java.

static String indent = "";

static String name(BinaryTree node) {
if (node == null) return null;
else return node.name;

}

static void enter(BinaryTree node) {
System.out.println(indent + "Entering solvable(" +

name(node) + ")");
indent = indent + "| ";

}

static boolean yes(BinaryTree node) {
indent = indent.substring(3);
System.out.println(indent + "solvable(" +

name(node) + ") returns true");
return true;

}

static boolean no(BinaryTree node) {
indent = indent.substring(3);
System.out.println(indent + "solvable(" +

name(node) + ") returns false");
return false;

}

Backtracking ▪ 79

To use this code, we modify solvable. Here is the original version:

static boolean solvable(BinaryTree node) {
if (node == null) return false;
if (node.isGoalNode) return true;
if (solvable(node.leftChild)) return true;
if (solvable(node.rightChild)) return true;
return false;

}

Here is the modified version:

static boolean solvable(BinaryTree node) {
enter(node);
if (node == null) return no(node);
if (node.isGoalNode) return yes(node);
if (solvable(node.leftChild)) return yes(node);
if (solvable(node.rightChild)) return yes(node);
return no(node);

}

And here is the result:

Entering solvable(Root)
| Entering solvable(A)
| | Entering solvable(C)
| | | Entering solvable(null)
| | | solvable(null) returns false
| | | Entering solvable(null)
| | | solvable(null) returns false
| | solvable(C) returns false
| | Entering solvable(D)
| | | Entering solvable(null)
| | | solvable(null) returns false
| | | Entering solvable(null)
| | | solvable(null) returns false
| | solvable(D) returns false
| solvable(A) returns false

80 ▪ Quick Recursion

| Entering solvable(B)
| | Entering solvable(E)
| | solvable(E) returns true
| solvable(B) returns true
solvable(Root) returns true

Trick #3: Never discard your debugging statements.
Writing debugging statements is programming, too. Often
it’s as much work to debug the debugging statements as it is
to debug the actual program. Once your program is
working, why throw this code away?

Obviously, you don’t want to print out all this debugging in-
formation from a program you are ready to submit (or to turn
over to your manager). You could comment out the debugging
calls, but that can be a lot of work. What’s more, in the above
example, you would have to replace every return yes(node) with
return true, and every return no(node) with return false. All
these changes might introduce new bugs into your program.

The simple solution is to make your debugging statements con-
ditional. For example,

static final boolean debugging = false;

static void enter(BinaryTree node) {
if (debugging) {

System.out.println(indent +
"Entering solvable(" +

name(node) +
")");

indent = indent + "| ";
}

}

static boolean yes(BinaryTree node) {
if (debugging) {

Backtracking ▪ 81

indent = indent.substring(3);
System.out.println(indent +

"solvable(" +
name(node) +
") returns true");

}
return true;

}

static boolean no(BinaryTree node) {
if (debugging) {

indent = indent.substring(3);
System.out.println(indent +

"solvable(" +
name(node) +
") returns false");

}
return false;

}

In industry, actual programs often have multiple flags to control
different aspects of debugging. Don’t worry too much about
making your code larger; modern compilers will notice that since
the variable debugging is final, it can never be true, and the
debugging code will be discarded.

Trick #4: To find out how you got to a particular place in
the code, create an Exception and print its stack trace.

Since an Exception is an object like any other, you can create
and throw your own exceptions. However, Java programmers
don’t always realize that you can create an Exception without
throwing it. Instead, you can simply use it to print out a stack
trace. For example, the following code

new Exception("Alpha").printStackTrace(System.out);

82 ▪ Quick Recursion

will print out a message something like this, and the program
will then continue normally. That is, the above code just acts like
a print statement.

java.lang.Exception: Alpha
at TreeSearch.solvable(TreeSearch.java:53)
at TreeSearch.solvable(TreeSearch.java:57)
at TreeSearch.main(TreeSearch.java:72)
etc.

A similar trick works in Python.

import traceback
traceback.print_stack()

3.9 THE FROG PUZZLE
The following puzzle is sometimes called the “frog puzzle.” You
have some number n of frogs facing right and the same number
of toads facing left. The playing board consists simply of a line of
2n + 1 spaces on which to put the frogs and toads. Start with the
right-facing frogs on the left end, the left-facing toads at the right
end, and a single free space in between. The goal is to reverse the
positions of the frogs and toads (Figure 3.4A and 3.4B)

FIGURE 3.4A Starting position of the frog puzzle.

FIGURE 3.4B Desired final position.

Backtracking ▪ 83

The frogs and toads can only move forward; they cannot back
up. At each move, a frog or toad can either

• move one space ahead, if that space is clear, or

• jump ahead over exactly one frog or toad, if the space just
beyond that frog or toad is clear.

For example, you could make the sequence of moves shown in
Figures 3.4C–3.4H.

FIGURE 3.4C Starting position of the frog puzzle.

FIGURE 3.4D Frog has moved ahead.

FIGURE 3.4E Toad has jumped frog.

FIGURE 3.4F Frog has moved ahead.

FIGURE 3.4G Frog has jumped toad.

84 ▪ Quick Recursion

Now to the program. The main program will initialize the board,
and call a recursive backtracking routine to attempt to solve the
puzzle. The backtracking routine will either succeed and print
out a winning path, or it will fail, and the main program will
have to print out the bad news.

The backtracking method below is named solveAndPrint. It
has no way to return a solution; rather, it just prints its results as
it returns from finding a goal state. The method has to check
whether it is at a leaf, which in this case means a position from
which no further moves are possible.

Each possible move will result in a new board position, and these
new board positions are the children of the current board posi-
tion. Hence to find the children of a node (that is, of a board
position), we need only find the possible moves from that node.
Remember that it is also highly desirable to find an order on
these possible moves.

Here, it is time to stop and take thought. To make progress, we
must analyze the game to some extent. Probably a number of
approaches would work, and what follows is based on the way I
worked it out. If you were to program this puzzle, you might find
a different but equally valid approach.

First, notice that if a frog or toad has a move, that move is
unique: if it can move ahead one square, then it cannot jump. If
it can jump, it cannot move ahead one square. This suggests that
to find the possible moves, we might assign numbers to the frogs
and toads, and check each one in turn. When we have looked at

FIGURE 3.4H Toad has moved ahead; no more moves are possible.

Backtracking ▪ 85

all the frogs and toads, we have looked at all the possible moves.
This would require having a table to keep track of where each
frog or toad is, or else somehow “marking” each one with its
number and searching the board each time to find the one we
want. Neither alternative is very attractive.

Next, notice that for a given board position, each frog or toad
occupies a unique space. Hence, instead of talking about moving
a particular frog or toad, we can talk about moving the frog or
toad in a particular space. If a move is possible from a given
space, then that must be the only move possible from that space,
because if the frog or toad in that space has a move, it is unique.
There is a slight complication because not every space contains a
frog or toad, but at least the spaces (unlike the frogs and toads)
stay in one place.

Now we have a simpler ordering of moves to use in our program.
Just check, in order, the 2n + 1 spaces of the board. For each
space, either there is exactly one move, or no move is possible.
With this understanding, we can write a canMove method to
determine whether a move is possible from a given position:

• If the position is empty, no move is possible;

• If the position contains a right-facing frog, the method
checks for a move or jump to the right;

• If the position contains a left-facing toad, the method
checks for a move or jump to the left.

We write another method makeMove that will take a board and a
position, make a move from that position, and return as its value
a new board. (We could write this somewhat more efficiently by
changing the old board, rather than creating a new one, but here
we are more concerned with simplicity.)

86 ▪ Quick Recursion

Here is the central backtracking method in Python:

def solve_and_print(board):
"""Recursively solve the puzzle and print

the reversed sequence of boards."""
if puzzle_solved(board):

return True
for i in range(0, len(board)):

if can_move(board, i):
new_board = make_move(board, i)
if solve_and_print(new_board):

print_board(board)
return True

return False

And in Java:

/**
* Recursively solve the puzzle and print
* the reversed sequence of boards.
*/
boolean solveAndPrint(String[] board) {

if (puzzleSolved(board)) {
return true;

}
for (int position = 0;

position < BOARD_SIZE;
position++) {

if (canMove(board, position)) {
String[] newBoard =

makeMove(board, position);
if (solveAndPrint(newBoard)) {

printBoard(newBoard);
return true;

}
}

}
return false;

}

Backtracking ▪ 87

Along with canMove and makeMove, we are using methods
puzzleSolved and printBoard with meanings that should be
obvious.

Here is some output from the Java version of the program; the
output from Python is similar:

Toad Toad Toad [] Frog Frog Frog
Toad Toad Toad Frog [] Frog Frog
Toad Toad [] Frog Toad Frog Frog
Toad [] Toad Frog Toad Frog Frog
Toad Frog Toad [] Toad Frog Frog
Toad Frog Toad Frog Toad [] Frog
Toad Frog Toad Frog Toad Frog []
Toad Frog Toad Frog [] Frog Toad
Toad Frog [] Frog Toad Frog Toad
[] Frog Toad Frog Toad Frog Toad
Frog [] Toad Frog Toad Frog Toad
Frog Frog Toad [] Toad Frog Toad
Frog Frog Toad Frog Toad [] Toad
Frog Frog Toad Frog [] Toad Toad
Frog Frog [] Frog Toad Toad Toad
Frog Frog Frog [] Toad Toad Toad

Notice that the solution is given in reverse order: Frogs start out
on the left and toads on the right, as in the last line. This is
because once a solution is found, it is printed out from the re-
cursive routine as that routine unwinds. To return a solution,
rather than just print it out, the steps should be saved in a stack,
and the stack returned to the calling program.

Complete programs for the frog puzzle are given in Appendix G
for Java and Appendix H for Python.

3.10 FROGS ACCUMULATOR
In the previous section, we implemented the Frog Puzzle, using a
rather awkward solveAndPrint method. As the name implied,

88 ▪ Quick Recursion

the method was not able to return a solution to the caller; it
could only print the solution (in reverse order). Mixing I/O and
computation together in a single function is poor style. Using a
façade method and an accumulator, we can now write a purely
computational solve method.

List solve(String[] board) {
return new List(board, solve(board, null));

}

private List solve(String[] board, List acc) {
if (puzzleSolved(board)) {

return new List(board, acc);
}
for (int position = 0;

position < BOARD_SIZE;
position++) {

if (canMove(board, position)) {
String[] newBoard =

makeMove(board, position);
List result = solve(newBoard, acc);
if (result != null) {

return new List(newBoard, result);
}

}
}
return null;

}

We can mirror this logic in Python:

def solve(board):
"""Façade method."""
return [board] + solve2(board, [])

def solve2(board, acc):
"""Recursively solve the frog puzzle."""
if puzzle_solved(board):

return [board] + acc

Backtracking ▪ 89

for i in range(0, len(board)):
if can_move(board, i):

new_board = make_move(board, i)
result = solve2(new_board, acc)
if result != []:

return [new_board] + result
return []

The above functions are essentially correct, but with a minor
problem: The final (solved) board occurs twice at the end of the
list. This occurs in part because, in our simple implementation,
we cannot distinguish between an empty list and a failure flag;
both are represented by null (Java) or None (Python). The
problem can be corrected by moving the puzzle_solved test
further down into the function.

def solve2(board, acc):
"""Recursively solve the frog puzzle."""
for i in range(0, len(board)):

if can_move(board, i):
new_board = make_move(board, i)
if puzzle_solved(new_board):

return [new_board] + acc
result = solve2(new_board, acc)
if result != []:

return [new_board] + result
return []

The same change in logic can be applied to the Java version.

With this change, the test for the base case is not the first thing
done by the method. That makes the method somewhat harder
to understand, but still not terribly difficult.

90 ▪ Quick Recursion

Afterword

R ecursion is all too often considered to be an “advanced” topic.
While this little volume has covered a number of advanced

topics that involve recursion—tail recursion, pruning, recursive
data structures, the use of accumulators, and backtracking—
recursion itself is simple.

As an experiment, I began using some recursive examples in my
introductory programming courses, without even mentioning
the term “recursion.” The course had a laboratory setting where I
and my assistants went from student to student, helping them
with their problems, so it was easy to tell which concepts caused
difficulty. Beginners had all the usual problems, such as getting
loop indices correct and deciding when to use functions, but the
occasional use of recursion caused no additional problems.

As the saying goes, “When your only tool is a hammer, every
problem looks like a nail.” Recursion is another tool in your
programming toolbox. Sometimes it’s the right tool; sometimes
it isn’t. Throughout this book, I’ve tried to suggest appropriate
uses, but in the end, your own experience will be your best guide.

DOI: 10.1201/9781003359616-4 91

https://doi.org/10.1201/9781003359616-4

http://taylorandfrancis.com
http://taylorandfrancis.com

Appendix A:
Quicksort in Java

public static void quicksort(int[] array,
int left,
int right) {

if (left < right) {
int p = partition(array, left, right);
quicksort(array, left, p - 1);
quicksort(array, p + 1, right);

}
}

static int partition(int[] arr, int lo, int hi) {
int pivot = arr[hi];
int i = lo - 1;
for (int j = lo; j < hi; j++) {

if (arr[j] < pivot) {
i += 1;
swap(arr, i, j);

}
}
swap(arr, i + 1, hi);
return i + 1;

}

93

static void swap(int[] arr, int i, int j) {
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;

}

94 ▪ Appendix A: Quicksort in Java

Appendix B:
Quicksort in Python

def quicksort(array, left, right):
if left < right:

p = partition(array, left, right)
quicksort(array, left, p - 1)
quicksort(array, p + 1, right)

def partition(arr, lo, hi):
pivot = arr[hi]
i = lo - 1
for j in range(lo, hi):

if arr[j] < pivot:
i += 1
arr[i], arr[j] = arr[j], arr[i]

arr[i + 1], arr[hi] = arr[hi], arr[i + 1]
return i + 1

95

http://taylorandfrancis.com
http://taylorandfrancis.com

Appendix C:
Binary Tree Search
in Java

public class BinaryTree {
String name;
BinaryTree leftChild = null;
BinaryTree rightChild = null;
boolean isGoalNode = false;

BinaryTree(String name,
BinaryTree left,
BinaryTree right,
boolean isGoalNode) {

this.name = name;
leftChild = left;
rightChild = right;
this.isGoalNode = isGoalNode;

}
}

public class List {
public String head;
public List tail;

97

public List(String head, List tail) {
this.head = head;
this.tail = tail;

}

@Override
public String toString() {

String s = ("[");
s += contents(this);
return s + ("]");

}

private String contents(List list) {
if (list.tail == null) {

return list.head + " ";
} else {

return list.head + " " + contents(list.tail);
}

}
}

public class TreeSearch {

static BinaryTree makeTree() {
BinaryTree root, a, b, c, d, e, f;
c = new BinaryTree("C", null, null, false);
d = new BinaryTree("D", null, null, false);
e = new BinaryTree("E", null, null, true);
f = new BinaryTree("F", null, null, false);
a = new BinaryTree("A", c, d, false);
b = new BinaryTree("B", e, f, false);
root = new BinaryTree("Root", a, b, false);
return root;

}

static boolean solvable(BinaryTree node) {
if (node == null) return false;
if (node.isGoalNode) return true;
if (solvable(node.leftChild)) return true;

98 ▪ Appendix C: Binary Tree Search in Java

if (solvable(node.rightChild)) return true;
return false;

}

static List solve(BinaryTree node) {
List temp;
if (node == null) {

return null;
}
if (node.isGoalNode) {

return new List(node.name, null);
}
temp = solve(node.leftChild);
if (temp != null) {

return new List(node.name, temp);
}
temp = solve(node.rightChild);
if (temp != null) {

return new List(node.name, temp);
}
return null;

}

public static void main(String args[]) {
BinaryTree tree = makeTree();
System.out.println(solvable(tree));
System.out.println(solve(tree));

}
}

Appendix C: Binary Tree Search in Java ▪ 99

http://taylorandfrancis.com
http://taylorandfrancis.com

Appendix D:
Binary Tree Search
in Python

class BinaryTree(object):

def __init__(self, name, left_child,
right_child, is_goal_node):

self.name = name
self.left_child = left_child
self.right_child = right_child
self.is_goal_node = is_goal_node

def make_tree():
c = BinaryTree('C', None, None, False)
d = BinaryTree('D', None, None, False)
e = BinaryTree('E', None, None, True)
f = BinaryTree('F', None, None, False)
a = BinaryTree('A', c, d, False)
b = BinaryTree('B', e, f, False)
root = BinaryTree('Root', a, b, False)
return root

101

def solvable(node):
if node == None: return False
if node.is_goal_node: return True
if solvable(node.left_child): return True
if solvable(node.right_child): return True
return False

def solve(node):
if node == None:

return None
if node.is_goal_node:

return [node.name]
temp = solve(node.left_child)
if temp != None:

return [node.name] + temp
temp = solve(node.right_child)
if temp != None:

return [node.name] + temp
return None

def main():
tree = make_tree()
print(solvable(tree))
print(solve(tree))

main()

102 ▪ Appendix D: Binary Tree Search in Python

Appendix E:
Java Debugging

H ERE IS A MORE GENERAL version of the debugging methods
enter, yes, and no that are described in the text. Java

varargs are used for the parameters of the method being de-
bugged, and redundant printing has been eliminated. In addi-
tion, the global variable debugging has been added to make it
easy to turn debugging on and off.

static String indent = "";
static boolean debugging = false;

static void enter(String method, Object … args) {
if (! debugging) return;
String[] strs = new String[args.length];
for (int i = 0; i < args.length; i++) {

strs[i] = "" + args[i];
}
String s = indent + method + "(";
s += String.join(", ", strs) + ")";
System.out.println(s);
indent = indent + "| ";

}

103

static boolean yes() {
if (! debugging) return true;
indent = indent.substring(3);
System.out.println(indent + "true");
return true;

}

static boolean no() {
if (! debugging) return false;
indent = indent.substring(3);
System.out.println(indent + "false");
return false;

}

For methods that return an object of some kind, rather than a
boolean, it is tempting to write something like

static Object result(Object obj) {
if (! debugging) return obj;
indent = indent.substring(3);
System.out.println(indent + obj);
return obj;

}

Unfortunately, while this method can accept any kind of object (or
primitive) as an argument, it will return a value of type Object,
and this is likely to be unacceptable to the calling program. One
solution is to write multiple methods, each with a different type of
parameter, for example,

static BinaryTree result(BinaryTree obj) {
if (! debugging) return obj;
indent = indent.substring(3);
System.out.println(indent + obj);
return obj;

}

static String result(String obj) {
if (! debugging) return obj;

104 ▪ Appendix E: Java Debugging

indent = indent.substring(3);
System.out.println(indent + obj);
return obj;

}

and so on. Alternatively, the debugging methods could be put in
a class of their own (probably a good idea) and could be gen-
ericized (probably much less helpful).

Appendix E: Java Debugging ▪ 105

http://taylorandfrancis.com
http://taylorandfrancis.com

Appendix F:
Python Debugging

T HE DEBUGGING TECHNIQUE described in the text can also be
employed in Python. Two global variables are used: indent,

to control the indentation level; and debugging, to turn de-
bugging on or off.

• Put enter(args) at the entrance to any method you want
to trace. Any number of arguments may be supplied.

• Replace every return True with return yes().

• Replace every return False with return no().

• Replace every return or return None with return
nothing().

• Replace every return value with return result(value).

This can result in a large number of changes in the code, but
using the debugging variable means that these changes do not
have to be reversed. For example, the solve method in the tree
search example changes from:

107

def solve(node):
"""Find goal node and report path."""
if node == None:

return None

if node.is_goal_node:
return [node.name]

temp = solve(node.left_child)
if temp != None:

return [node.name] + temp

temp = solve(node.right_child)
if temp != None:

return [node.name] + temp

return None

To:

def solve(node):
"""Find goal node and report path."""
enter(node)
if node == None:

return nothing()

if node.is_goal_node:
return result([node.name])

temp = solve(node.left_child)
if temp != None:

return result([node.name] + temp)

temp = solve(node.right_child)
if temp != None:

return result([node.name] + temp)

return nothing()

108 ▪ Appendix F: Python Debugging

The tracing methods used are displayed below. All but enter
have essentially the same structure. In fact, only enter and
result are needed; the others are mere convenience functions.

indent = ""
debugging = True

def enter(*args):
if not debugging: return
import inspect
global indent
fargs = [str(x) for x in args]
print(indent + inspect.stack()[1].function +
str(fargs))
indent += "| "

def yes():
if not debugging: return True
global indent
indent = indent[3:]
print(indent + "True")
return True

def no():
if not debugging: return False
global indent
indent = indent[3:]
print(indent + "False")
return False

def result(value):
if not debugging: return value
global indent
indent = indent[3:]
print(indent + str(value))
return value

def nothing():
if not debugging: return None

Appendix F: Python Debugging ▪ 109

global indent
indent = indent[3:]
print(indent + "None") # can be omitted
return None

The call inspect.stack()[1].function in the above code may
be unfamiliar. It returns the name of the calling method, so that
this does not have to be supplied as a parameter.

110 ▪ Appendix F: Python Debugging

Appendix G:
Frog Puzzle in Java

import java.util.Arrays;

public class FrogPuzzle {
static final int BOARD_SIZE = 7;
static String frog = "Frog";
static String toad = "Toad";
static String empty = "[]";

public static void main(String[] args) {
FrogPuzzle bt = new FrogPuzzle();
String[] board = new String[BOARD_SIZE];
setup(board);
bt.solveAndPrint(board);
bt.printBoard(board);

}

/**
* Create initial board.
*/
private static void setup(String[] board) {

int length = board.length;
int half = length / 2;
for (int i = 0; i < half; i++) {

111

board[i] = frog;
board[length - 1 - i] = toad;

}
board[half] = empty;

}

/**
* Initial solution method: Recursively solve
* the puzzle and print the reversed sequence
* of boards.
*/
boolean solveAndPrint(String[] board) {

if (puzzleSolved(board)) {
return true;

}
for (int position = 0;

position < BOARD_SIZE;
position++) {

if (canMove(board, position)) {
String[] newBoard =

makeMove(board, position);
if (solveAndPrint(newBoard)) {

printBoard(newBoard);
return true;

}
}

}
return false;

}

/**
* Façade method for revised solution.
*/
List solve(String[] board) {

return new List(board, solve(board, null));
}

/**
* Improved solution method: Recursively solve

112 ▪ Appendix G: Frog Puzzle in Java

* the frog puzzle and return the solution.
*/
private List solve(String[] board, List acc) {

for (int position = 0;
position < BOARD_SIZE;
position++) {

if (canMove(board, position)) {
String[] newBoard =

makeMove(board, position);
if (puzzleSolved(newBoard)) {

return new List(newBoard, acc);
}
List result = solve(newBoard, acc);
if (result != null) {

return new List(newBoard, result);
}

}
}
return null;

}

/**
* Print the frog puzzle board.
*/
private void printBoard(String[] board) {

for (String a : board) {
System.out.print(a + " ");

}
System.out.println();

}

/**
* Move the frog or toad at board[index],
* returning a new board, not the original.
*/
private String[] makeMove(String[] board,

int index) {
int next = -1;
if (board[index] == frog) {

Appendix G: Frog Puzzle in Java ▪ 113

if (isEmpty(board, index + 1)) {
next = index + 1;

}
else next = index + 2;

}
else {

if (isEmpty(board, index - 1)) {
next = index - 1;

}
else next = index - 2;

}
String[] nextBoard =

Arrays.copyOf(board, board.length);
nextBoard[next] = board[index];
nextBoard[index] = empty;
return nextBoard;

}

/**
* Is move possible from board[index]?
*/
private boolean canMove(String[] board,

int index) {
if (board[index] == frog) {

return isEmpty(board, index + 1) ||
isEmpty(board, index + 2);

}
if (board[index] == toad) {

return isEmpty(board, index - 1) ||
isEmpty(board, index - 2);

}
return false;

}

/**
* Is board[index] a legal location and empty?
*/
private boolean isEmpty(String[] board,

int index) {

114 ▪ Appendix G: Frog Puzzle in Java

return index >= 0 &&
index < board.length &&
board[index] == empty;

}

/**
* Test if the goal has been reached.
*/
private boolean puzzleSolved(String[] board) {

int half = board.length / 2;
for (int i = 0; i < half; i++) {

if (board[i] != toad) return false;
}
if (board[half] == empty) {

// printBoard(board);
return true;

}
return false;

}
}

Appendix G: Frog Puzzle in Java ▪ 115

http://taylorandfrancis.com
http://taylorandfrancis.com

Appendix H:
Frog Puzzle in Python

frog = 'frog'
toad = 'toad'
empty = ' '

def setup(size):
"""Create initial puzzle state."""
board = [empty] * size
for i in range(0, size // 2):

board[i] = frog
board[-i - 1] = toad

return board

def can_move(board, index):
"""Is move possible from board[index]?"""
if board[index] == frog:

return (is_empty(board, index + 1) or
is_empty(board, index + 2))

if board[index] == toad:
return (is_empty(board, index - 1) or

is_empty(board, index - 2+))
return False

117

def is_empty(board, index):
"""Is board[index] a legal location and empty?"""
return (index >= 0 and

index < len(board) and
board[index] == empty)

def make_move(board, index):
"""Move the frog or toad at board[index],

returning a new board, not the original."""
next_board = board[:]
if board[index] == frog:

if board[index + 1] == empty:
next = index + 1

else:
next = index + 2

else: # toad
if board[index - 1] == empty:

next = index - 1
else:

next = index - 2
next_board[next] = board[index]
next_board[index] = empty
return next_board

def solve_and_print(board):
"""Initial solution method: Recursively

solve the puzzle and print the reversed
sequence of boards."""

if puzzle_solved(board):
return True

for i in range(0, len(board)):
if can_move(board, i):

new_board = make_move(board, i)
if solve_and_print(new_board):

print_board(board)
return True

return False

118 ▪ Appendix H: Frog Puzzle in Python

def solve(board):
"""Façade method for revised solution."""
return [board] + solve2(board, [])

def solve2(board, acc):
"""Improved solution method: Recursively

solve the frog puzzle."""
for i in range(0, len(board)):

if can_move(board, i):
new_board = make_move(board, i)
if puzzle_solved(new_board):

return [new_board] + acc
result = solve2(new_board, acc)
if result != []:

return [new_board] + result
return []

def print_board(board):
"""Print the frog puzzle board."""
print('-' * (7 * len(board) + 1))
print('|', ' | '.join(board), '|')
print('-' * (7 * len(board) + 1))

def puzzle_solved(board):
"""Test if the goal has been reached."""
half = len(board) // 2
for i in range(0, half):

if board[i] != toad:
return False

if board[half] == empty:
print_board(board)
return True

return False

def main():
board = setup(7)
print_board(board)
solve_and_print(board)

main()

Appendix H: Frog Puzzle in Python ▪ 119

http://taylorandfrancis.com
http://taylorandfrancis.com

Appendix I:
Map Coloring in Java

public class ColoredMap {

public enum Color {
RED, YELLOW, GREEN, BLUE, NONE

}

Color[] mapColors = new Color[] {
Color.NONE, Color.NONE,
Color.NONE, Color.NONE,
Color.NONE, Color.NONE,
Color.NONE, Color.NONE,
Color.NONE, Color.NONE,
Color.NONE, Color.NONE,
Color.NONE

};
int map[][];
Debugging db = new Debugging();

void createMap() {
map = new int[13][];
map[0] = new int[] { 1, 2, 3, 9, 12 };
map[1] = new int[] { 0, 2, 5 };
map[2] = new int[] { 0, 1, 3, 4, 5 };

121

map[3] = new int[] { 0, 2, 4, 6, 8, 9 };
map[4] = new int[] { 2, 3, 5, 6, 7, 8 };
map[5] = new int[] { 1, 2, 4, 8, 11 };
map[6] = new int[] { 3, 4, 7, 8 };
map[7] = new int[] { 4, 6, 8 };
map[8] = new int[] { 3, 4, 5, 6, 7, 9, 10, 11 };
map[9] = new int[] { 0, 3, 8, 10, 12 };
map[10] = new int[] { 8, 9, 11, 12 };
map[11] = new int[] { 5, 8, 10, 12};
map[12] = new int[] { 0, 9, 10, 11 };

}

/**
* Tries all possible map colorings
* until getting a four-colored map.
*/
boolean explore1(int country, Color color) {

if (country >= map.length)
return goodColoring();

mapColors[country] = color;
for (Color c : Color.values()) {

if (explore1(country + 1, c)) {
return true;

}
}
mapColors[country] = Color.NONE;
return false;

}

/**
* Uses pruning to find a four-colored map.
*/
boolean explore2(int country, Color color) {

// Backtracking with pruning
if (country >= map.length)

return true;
if (okToColor(country, color)) {

mapColors[country] = color;
for (Color i : Color.values()) {

122 ▪ Appendix I: Map Coloring in Java

if (explore2(country + 1, i))
return true;

}
}
return false;

}

/**
* Returns true if no country adjacent to this
* one has already been given this color.
*/
boolean okToColor(int country, Color color) {

if (color == Color.NONE) return false;
for (int i = 0; i < map[country].length; i++) {

int ithAdjCountry = map[country][i];
if (mapColors[ithAdjCountry] == color) {

return false;
}

}
return true;

}

/**
* Return true if the map is properly colored.
*/
boolean goodColoring() {

for (int i = 0; i < map.length; i++) {
for (int j = 0; j < map[i].length; j++) {

if (mapColors[i] ==
mapColors[map[i][j]]) {

return false;
}

}
}
return true;

}

void printMap() {
for (int i = 0; i < mapColors.length; i++) {

Appendix I: Map Coloring in Java ▪ 123

System.out.println("map[" + i + "] is " +
mapColors[i]);

}
}

public static void main(String args[]) {
ColoredMap m;
long ns;

m = new ColoredMap();
m.createMap();
ns = System.nanoTime();
m.explore1(0, Color.RED);
ns = System.nanoTime() - ns;
m.printMap();
System.out.println(ns + " ns.\n");

m = new ColoredMap();
m.createMap();
ns = System.nanoTime();
m.explore2(0, Color.RED);
ns = System.nanoTime() - ns;
m.printMap();
System.out.println(ns + " ns.\n");

}
}

124 ▪ Appendix I: Map Coloring in Java

Appendix J:
Map Coloring in
Python

import time

colors = ['RED', 'YELLOW', 'GREEN', 'BLUE', 'NONE']

def create_map():
global map, map_colors
map_colors = [None] * 13
map = [None] * 13
map[0] = [1, 2, 3, 9, 12]
map[1] = [0, 2, 5]
map[2] = [0, 1, 3, 4, 5]
map[3] = [0, 2, 4, 6, 8, 9]
map[4] = [2, 3, 5, 6, 7, 8]
map[5] = [1, 2, 4, 8, 11]
map[6] = [3, 4, 7, 8]
map[7] = [4, 6, 8]
map[8] = [3, 4, 5, 6, 7, 9, 10, 11]
map[9] = [0, 3, 8, 10, 12]
map[10] = [8, 9, 11, 12]

125

map[11] = [5, 8, 10, 12]
map[12] = [0, 9, 10, 11]

def explore1(country, color):
"""Tries all possible map colorings

until finding one that works."""
if country >= len(map):

return good_coloring();
map_colors[country] = color
for c in colors:

if explore1(country + 1, c):
return True;

return False

def explore2(country, color):
"""Uses pruning to ignore map

colorings that cannot work."""
if country >= len(map):

return True
if ok_to_color(country, color):

map_colors[country] = color
for c in colors:

if explore2(country + 1, c):
return True

return False

def ok_to_color(country, color):
"""Returns true if this color is not

in use by any adjacent country."""
if color == 'NONE':

return False
for i in range(0, len(map[country])):

ith_adj_country = map[country][i]
if (map_colors[ith_adj_country] == color):

return False
return True

def good_coloring():
"""Returns true if a four-coloring

126 ▪ Appendix J: Map Coloring in Python

has been found."""
for i in range(0, len(map)):

for j in range(0, len(map[i])):
if map_colors[i] == map_colors[map[i][j]]:
return False

return True

def main():
global map_colors

m = create_map()
start = time.time()
explore2(0, 'RED')
print(map_colors)
end = time.time()
print("time: ", end - start)

m = create_map()
start = time.time()
explore1(0, 'RED')
print(map_colors)
end = time.time()
print("time: ", end - start)

main()

Appendix J: Map Coloring in Python ▪ 127

http://taylorandfrancis.com
http://taylorandfrancis.com

Appendix K:
Lists in Python

P YTHON’S “LISTS” BEAR LITTLE resemblance to conventional
singly linked lists. In most cases, it is easier to treat Python’s

lists as arrays, and use loops rather than recursion to process
them. Recursion should be used for data structures which, unlike
Python’s lists, are recursively defined.

The following is code for a simple implementation of singly
linked lists.

class List:
def __init__(self, head, tail=None):

"""Construct a List."""
self.head = head
self.tail = tail

def __str__(self):
"""Return a string representation

of this List."""
return '[' + self.contents() + ']'

def contents(self):
"""Return a string representation of

129

the contents of this List."""
s = str(self.head)
if self.tail != None:

s += ' ' + self.tail.contents()
return s

def __eq__(self, other):
"""Test if this List equals other."""
if type(other) != List:

return False
if self == []:

return other == [];
if other == []:

return False
return (self.head == other.head and

self.tail == other.tail)

Within the class, we use the word self to refer to the list being
operated on. For methods outside the class, we will use the
variable lst. It is inadvisable to spell this as ‘list,’ because
doing so would replace the usual meaning of that word.

def to_List(lst):
"""Convert Python list to List."""
if lst == []:

return None
if type(lst[0]) == list:

head = to_List(lst[0])
else:

head = lst[0]
return List(head, to_List(lst[1:]))

def member(x, lst):
"""Test if x is a top-level element

of List lst."""
if lst == None: # out of elements

return False
if lst.head == x:

130 ▪ Appendix K: Lists in Python

return True
else:

return member(x, lst.tail)

def deep_member(x, lst):
"""Test if x is a member, at any level,

of List lst."""
if lst == None:

return False
if lst.head == x:

return True
if type(lst.head) == List:

if deep_member(x, lst.head):
return True

return deep_member(x, lst.tail)

def length(lst):
"""Return the number of top-level

elements in List lst."""
if lst == None:

return 0
return 1 + length(lst.tail)

Appendix K: Lists in Python ▪ 131

http://taylorandfrancis.com
http://taylorandfrancis.com

Appendix L:
Trees in Java

T HE FOLLOWING IS A REASONABLY complete implementation of a
general Tree class. It includes a parse method for con-

verting a string representation of a Tree into a Tree of Strings.

import java.util.ArrayList;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.StringTokenizer;

/**
* General tree class.
*/
public class Tree<V> {

public V value;
private ArrayList<Tree<V>> children;

/**
* Constructs a single Tree node with the given value.
*/
public Tree(V value) {

this.value = value;

133

children = new ArrayList<Tree<V>>();
}

/**
* Tests whether the given Object is a Tree
* that is equal to this Tree.
*/
@Override
public boolean equals(Object o) {

if (!(o instanceof Tree)) {
return false;

}
Tree<?> that = (Tree) o;

if (! eq(this.value, that.value)) {
return false;

}
return this.children.equals(that.children);

}

/**
* Tests whether two possibly null values are equal.
*/
private static boolean eq(Object o1, Object o2) {

if (o1 == null) {
return o2 == null;

}
return o1.equals(o2);

}

/**
* Returns a list of the children of this node.
* If the node has no children, an empty list
* is returned.
*/
public List<Tree<V>> children() {

return children;
}

134 ▪ Appendix L: Trees in Java

/**
* Returns the i-th child of this node.
*/
public Tree<V> getChild(int i) {

return children.get(i);
}

/**
* Adds a node as the new last child of this tree.
*/
public Tree<V> addChild(Tree<V> newChild)

throws IllegalArgumentException {
if (newChild.contains(this)) {

String message = this + " is already in " +
newChild;

throw new IllegalArgumentException(message);
}
children.add(newChild);
return this;
}

/**
* Creates a new node with the given value and
* adds it as the last child of this Tree node.
*/
public Tree<V> addChild(V val) {

children.add(new Tree<V>(val));
return this;

}

/**
* Returns a string representing this tree.
* The string does not contain newlines.
* The general form of the output is:
* value(child child … child)<.
*/
@Override
public String toString() {

if (children.size() == 0) {

Appendix L: Trees in Java ▪ 135

return value.toString();
}
String result = value + "(";
boolean first = true;
for (Tree<V> child : children) {

if (!first)
result += " ";

first = false;
result += child.toString();

}
return result + ")";

}

/**
* Prints this tree as an indented structure.
*/
public void print() {

print(this, "");
}

/**
* Prints the tree as an indented structure,
* with the root indented by the given amount.
*/
private void print(Tree<V> node, String indent) {

if (node == null) {
return;

}
System.out.println(indent + node.value);
for (Iterator<Tree<V>> iter =

node.children.iterator();
iter.hasNext();) {
print(iter.next(), indent + " ");

}
}

/**
* Returns a string that, if printed, will show
* the given node as an indented tree structure.
*/

136 ▪ Appendix L: Trees in Java

public String toMultilineString() {
return toMultilineString(this, "");

}

/**
* Returns a string that, if printed, will show the
* given node as an indented tree structure, with
* the initial line prefixed by the indent string.
*/
private String toMultilineString(Tree<V> node,
String indent) {

if (node == null) {
return "";

}
String result = indent + node.value + "\n";
if ("block".equals(node.value .toString())) {

indent += "|";
}
for (Iterator<Tree<V>> iter =

node.children.iterator();
iter.hasNext();) {
Tree<V> next = iter.next();
result += toMultilineString(next,
indent + " ");

}
return result;

}

/**
* Parses a string of the general form
* value(child, child, … , child) and returns the
* corresponding tree. Children may be separated
* by commas and/or spaces.
* Node values are all Strings.
*/
public static Tree<String> parse(String s)

throws IllegalArgumentException {
StringTokenizer tokenizer =

Appendix L: Trees in Java ▪ 137

new StringTokenizer(s, " (),", true);
List<String> tokens = new LinkedList<String>();
while (tokenizer.hasMoreTokens()) {

String token = tokenizer.nextToken();
if (token.trim().length() == 0) continue;
if (token.equals(",")) continue;
tokens.add(token);

}
Tree<String> result = parse(tokens);
if (tokens.size() > 0) {

throw new IllegalArgumentException(
"Leftover tokens: " + tokens);

}
return result;

}

/**
* Parses and returns one tree, consisting of
* a value and possible children (enclosed in
* parentheses), starting at the first element
* of tokens. Returns null if this token is a
* close parenthesis, or if there are no
* more tokens.
*/
private static Tree<String> parse(List<String>
tokens)

throws IllegalArgumentException {
// No tokens -- return null
if (tokens.size() == 0) {

return null;
}
// Get the next token and remove it from the list
String token = tokens.remove(0);
// If the token is an open parenthesis
if (token.equals("(")) {

throw new IllegalArgumentException(
"Unexpected open parenthesis before " +
tokens);

}

138 ▪ Appendix L: Trees in Java

// If the token is a close parenthesis, we are
// at the end of a list of children
if (token.equals(")")) {

return null;
}
// Make a tree with this token as its value
Tree<String> tree = new Tree<String>(token);
// Check for children
if (tokens.size() > 0 &&

tokens.get(0).equals("(")) {
tokens.remove(0);
Tree<String> child;
while ((child = parse(tokens)) != null) {

tree.addChild(child);
}

}
return tree;

}

/**
* Tests whether this tree contains the node
* passed in as a parameter.
*/
public boolean contains(Tree<V> node) {

if (this == node)
return true;

for (Tree<V> child : children) {
if (child.contains(node))

return true;
}
return false;

}
}

Appendix L: Trees in Java ▪ 139

http://taylorandfrancis.com
http://taylorandfrancis.com

Index

accumulator, 30, 45, 88
Algol, 60, 38
array, 35
array maximum, 35
artificial intelligence, 34
ask_yes_or_no method, 6
Autocode, 38

backtracking, 57
backtracking algorithm, 58
backtracking, non-recursive, 60
bad_factorial example, 18
base case, 8, 17
basis, 2
binary tree, 46
binary tree search, 68, 72
binary trees, printing, 50
BinaryTree class (Java), 48
BinaryTree class (Python), 49

child nodes, keeping track of, 62
children, numbering, 63
circular definition, 2
Collatz conjecture, 19
conditional debugging, 81
counting nodes, 51
createMap method, 64
cycles, 75

data structures, 15
debugging example, 80

debugging techniques, 77
debugging tricks, 78, 81, 82
decision tree, 65
deep copy, 25
deepMember method, 43
degenerate case, 46
depth limit, 16
depth-first tree searching, 58
direct recursion, 4
do something with the head, 41
don’t look down, 25

empty (stack operation), 29
empty binary tree, 47
enter method, 78
eq function, 42
explore method, 66
external variables, 20

factorial function, 8
factorial function, tracing, 19
factorial, stack version, 29
faith, 26
façade method, 30, 45
first-in last-out, 28
Fortran, 33
four coloring a map, 63
four rules, 16, 17
frog puzzle, 83
frogs accumulator, 88

141

game, 09
goal state, 57
goodColoring method, 66
graph searching, 75

hammer, 91
head, 40, 43
howl, 2

identifier, 3
index, 35
indirect recursion, 4, 5, 55
interface, 9

leaf, 47
leap of faith, 26
left child, 47
Lisp, 4, 33
list, 40
List class (Java), 41
List class (Python), 44
list, printing, 44
list, recursively defined, 4
list_copy method, 45
local variables, 20

main effect, 10
makeTree methods, 49, 70
marking algorithm, 76
member method, 43
memory, 16
Metropolis, 76
mutual recursion, 4

nail, 91
name method, 79
narrow interface, 10
neighbors of a node, 76
nested structures, 15
no method, 79
nodes, counting, 51
non-recursive backtracking, 60

okToColor method, 66
overloaded method, 46

parse trees, 54
partition, 38
peek (stack operation), 29
pivot, 38
pointer, 23
pop (stack operation), 28
Principle of Information Hiding, 10
printing binary trees, 50
Processing, 32
pruning, 63
push (stack operation), 28

Quicksort, 37

recur with the tail, 41
recursion, when not to use, 16
recursion, when to use, 15
recursive definition, 1
recursive drawings, 31
recursive part, 8
recursive procedure, 5
reference, 23
removing recursion, 28
rev method, 46
reverse method, 45
right child, 47

S-expression, 4
Scala, 31
set of nodes, 76
setrecursionlimit, 16
shallow copy, 24
shared subtrees, 48
side effect, 10
simpler case, recur with, 17
singly linked list, 43
Smallville, 76
solvable function, 59, 71
solvable method, 59

142 ▪ Index

solve method, 61, 72
solveAndPrint method, 85
squares method, 33
stack, 15, 28
stack trace, 82
subexpression, 15
subtree, 52

tail, 40, 43
tail recursion, 30
timing, effect of pruning on, 67
toad puzzle, 83

toString method, 74
tracing through, 9
tree, 53
Tree class, 53
tree searching, 75

variable name, 3
violations of information hiding, 11
vowel, 2

yes method, 78
yowl, 2

Index ▪ 143

http://taylorandfrancis.com
http://taylorandfrancis.com

	Cover
	Half Title
	Title Page
	Copyright Page
	Dedication
	Contents
	Author
	Preface
	Chapter 1. Understanding Recursion
	1.1 A Note on Languages
	1.2 Recursive Definitions
	1.3 A Simple Recursive Procedure
	1.4 Factorial
	1.5 The Principle of Information Hiding
	1.6 When to Use Recursion
	1.7 When Not to Use Recursion
	1.8 The Four Rules
	1.8.1 Rule 1. Handle the Base Cases First
	1.8.2 Rule 2. Recur Only with a Simpler Case
	1.8.2.1 An Aside: The Collatz Conjecture

	1.8.3 Rule 3. Don't Use External Variables
	1.8.3.1 Deep Copies

	1.8.4 Rule 4. Don't Look Down

	1.9 What the Computer Does
	1.10 Removing Recursion
	1.11 Tail Recursion
	1.12 Recursive Drawings
	1.13 Fortran and Lisp

	Chapter 2. Data Structures
	2.1 Arrays
	2.1.1 Array Maximum
	2.1.2 Quicksort

	2.2 Lists
	2.2.1 Lists in Java
	2.2.2 Lists in Python
	2.2.3 Accumulators

	2.3 Binary Trees
	2.3.1 Printing Binary Trees
	2.3.2 Counting Nodes

	2.4 Trees
	2.4.1 Parse Trees
	2.4.2 Indirect Recursion

	Chapter 3. Backtracking
	3.1 The Backtracking Algorithm
	3.2 Nonrecursive Backtracking
	3.3 Keeping Backtracking Simple
	3.4 Pruning and Four Coloring
	3.5 Binary Tree Search I
	3.6 Binary Tree Search II
	3.7 Tree and Graph Searches
	3.8 Debugging Techniques
	3.9 The Frog Puzzle
	3.10 Frogs Accumulator

	Afterword
	Appendix A. Quicksort in Java
	Appendix B. Quicksort in Python
	Appendix C. Binary Tree Search in Java
	Appendix D. Binary Tree Search in Python
	Appendix E. Java Debugging
	Appendix F. Python Debugging
	Appendix G. Frog Puzzle in Java
	Appendix H. Frog Puzzle in Python
	Appendix I. Map Coloring in Java
	Appendix J. Map Coloring in Python
	Appendix K. Lists in Python
	Appendix L. Trees in Java
	Index

