ADDISON-WESLEY DATA & ANALYTICS SERIES

QUICK START GUIDE IO

LARGE
LANGUAGE
MODELS

Strategies and Best Practices
for using ChatGPT and Other LLMs

Early

Release

RAW & UNEDITED
-

P SINAN OZDEMIR

ADDISON-WESLEY DATA & ANALYTICS SERIES

QUICK START GUIDE I©

LARGE
LANGUAGE
MODELS

Strategies and Best Practices
for using ChatGPT and Other LLMs

Earl
Relea)ée |

RAW & UNEDITED
.

SINAN OZDEMIR

Quick Start Guide to Large Language
Models

Strategies and Best Practices for using ChatGPT and Other LLMs
Sinan Ozdemir

Addison-Wesley

Contents at a Glance

Preface

Part I: Introduction to Large L.anguage Models

1. Overview of Large L.anguage Models

2. Launching an Application with Proprietary Models
3. Prompt Engineering with GPT3

4. Fine-Tuning GPT3 with Custom Examples
Part II: Getting the most out of LI.Ms
5. Advanced Prompt Engineering Techniques

6. Building a Recommendation Engine
7. Combining Transformers

8. Fine-Tuning Open-Source L.I.Ms
9. Deploying Custom LLMs to the Cloud

Table of Contents

Preface

Part I: Introduction to Large L.anguage Models
Chapter 1: Overview of Large L.anguage Models

What Are Large Language Models (LLLLMs)?
Popular Modern LLMs

Domain-Specific .LILMs

Applications of LLMs
Chapter 2: Launching an Application with Proprietary Models

Introduction

The Task

Solution Overview

The Components

Putting It All Together
The Cost of Closed-Source

Summary
Chapter 3: Prompt Engineering with GPT3

Introduction

Prompt Engineering
Working with Prompts Across Models

Building a Q/A bot with ChatGPT

Summary
Chapter 4: Fine-Tuning GPT3 with Custom Examples

Overview of Transfer Learning & Fine-tuning

Overview of GPT3 Fine-tuning API

Using Fine-tuned GPT3 Models to Get Better Results
Part II: Getting the most out of LI.Ms

Chapter 5: Advanced Prompt Engineering Techniques
Input/Output Validation

Chain of Thought Prompting

Prompt Chaining Workflows

Preventing against Prompt Injection Attacks

Building a bot that can execute code on our behalf
Chapter 6: Building a Recommendation Engine

Overview of Siamese BERT Architectures

Fine-Tuning BERT for Classifying + Tagging Items

Fine-Tuning Siamese BERT for Recommendations
Chapter 7: Combining Transformers

Overview of Vision Transformer

Building an Image Captioning System with GPT-J
Chapter 8: Fine-Tuning Open-Source LL.Ms

Overview of T5
Building Translation/Summarization Pipelines with T5

Chapter 9: Deploying Custom LLMs to the Cloud

Overview of Cloud Deployment

Best Practices for Cloud Deployment

Preface

The advancement of Large Language Models (LLMs) has revolutionized the
field of Natural Language Processing in recent years. Models like BERT, T5,
and ChatGPT have demonstrated unprecedented performance on a wide
range of NLP tasks, from text classification to machine translation. Despite
their impressive performance, the use of LLMs remains challenging for many
practitioners. The sheer size of these models, combined with the lack of
understanding of their inner workings, has made it difficult for practitioners

to effectively use and optimize these models for their specific needs.

This practical guide to the use of LLMs in NLP provides an overview of the
key concepts and techniques used in LL.Ms and explains how these models
work and how they can be used for various NLP tasks. The book also covers
advanced topics, such as fine-tuning, alignment, and information retrieval
while providing practical tips and tricks for training and optimizing LLMs for

specific NLP tasks.

This work addresses a wide range of topics in the field of Large Language
Models, including the basics of LL.Ms, launching an application with
proprietary models, fine-tuning GPT3 with custom examples, prompt
engineering, building a recommendation engine, combining Transformers,
and deploying custom LLM:s to the cloud. It offers an in-depth look at the
various concepts, techniques, and tools used in the field of Large Language

Models.

Topics covered:

Coding with Large Language Models (LLMs)

Overview of using proprietary models

OpenAl, Embeddings, GPT3, and ChatGPT

Vector databases and building a neural/semantic information retrieval system

Fine-tuning GPT3 with custom examples

Prompt engineering with GPT3 and ChatGPT

Advanced prompt engineering techniques

Building a recommendation engine

Combining Transformers

. Deploying custom LLMs to the cloud

Part I: Introduction to Large Language
Models

Overview of Large Language Models

Ever since an advanced artificial intelligence (Al) deep learning model called
the Transformer was introduced by a team at Google Brain in 2017, it has
become the standard for tackling various natural language processing (NLP)
tasks in academia and industry. It is likely that you have interacted with a
Transformer model today without even realizing it, as Google uses BERT to
enhance its search engine by better understanding users’ search queries. The
GPT family of models from OpenAl have also received attention for their

ability to generate human-like text and images.

2001 2014 - 2017
Neural Language ' ; Seq2seq +
Models ‘ Attention
| | :
: 0
P 2013] WAL = 2017 - Present
e e encoding .5 B - v Transformers +
semantic meaning | " W | e Large Language
with Word2veg | ™ Femome s s Models

Figure 1.1 A brief history of Modern NLP highlights using deep learning to

tackle language modeling, advancements in large scale semantic token
embeddings (Word2vec), sequence to sequence models with attention
(something we will see in more depth later in this chapter), and finally the

Transformer in 2017.

These Transformers now power applications such as GitHub’s Copilot
(developed by OpenAl in collaboration with Microsoft), which can convert
comments and snippets of code into fully functioning source code that can

even call upon other LLMs (like in Listing 1.1) to perform NLP tasks.

Jsing the Copilot LLM to get an output from Facebook’s BART LLM

from transformers import pipeline

def classify text(email):

Use Facebook's BART model to classify an email int

Args:
email (str): The email to classify
Returns:
str: The classification of the email
COPILOT START. EVERYTHING BEFORE THIS COMMENT WA
classifier = pipeline(
'zero-shot-classification', model="'facebook/ba

labels = ['spam', 'not spam']
hypothesis template = 'This email is {}.'

results = classifier(
email, labels, hypothesis template=hypothesis

return results['labels'][0]
COPILOT END

4 T 2

In this listing, I use Copilot to take in only a Python function definition and
some comments I wrote and wrote all of the code to make the function do
what I wrote. No cherry-picking here, just a fully working python function

that I can call like this:
classify _text('hi I am spam') # spam

It appears we are surrounded by LLMs, but just what are they doing under the

hood? Let’s find out!

What Are Large Language Models (LLMs)?

Large language models (LLMs) are Al models that are usually (but not
necessarily) derived from the Transformer architecture and are designed to
understand and generate human language, code, and much more. These

models are trained on vast amounts of text data, allowing them to capture the

complexities and nuances of human language. LLMs can perform a wide
range of language tasks, from simple text classification to text generation,

with high accuracy, fluency, and style.

In the healthcare industry, LLMs are being used for electronic medical record
(EMR) processing, clinical trial matching, and drug discovery. In finance,
LLMs are being utilized for fraud detection, sentiment analysis of financial
news, and even trading strategies. LLMs are also used for customer service
automation via chatbots and virtual assistants. With their versatility and
highly performant natures, Transformer-based LLMs are becoming an

increasingly valuable asset in a variety of industries and applications.

Note

I will use the term understand a fair amount in this text. I am
usually referring to “Natural Language Understanding” (NLU)
which is a research branch of NLP that focuses on developing
algorithms and models that can accurately interpret human
language. As we will see, NLU models excel at tasks such as
classification, sentiment analysis, and named entity
recognition. However, it is important to note that while these
models can perform complex language tasks, they do not

possess true understanding in the way humans do.

The success of LL.LMs and Transformers is due to the combination of several

ideas. Most of these ideas had been around for years but were also being
actively researched around the same time. Mechanisms such as attention,
transfer learning, and scaling up neural networks which provide the
scaffolding for Transformers were seeing breakthroughs right around the
same time. Figure 1.1 outlines some of the biggest advancements in NLP in

the last few decades, all leading up to the invention of the Transformer.

The Transformer architecture itself is quite impressive. It can be highly
parallelized and scaled in ways that previous state of the art NLP models
could not be, allowing it to scale to much larger data sets and training times
than previous NLP models. The Transformer uses a special kind of attention
calculation called self-attention to allow each word in a sequence to “attend
to” (look to for context) all other words in the sequence, enabling it to capture
long-range dependencies and contextual relationships between words. Of
course, no architecture is perfect. Transformers are still limited to an input
context window which represents the maximum length of text it can process

at any given moment.

Since the advent of the Transformer in 2017, the ecosystem around using and
deploying Transformers has only exploded. The aptly named “Transformers”
library and its supporting packages have made it accessible for practitioners
to use, train, and share models, greatly accelerating its adoption and being
used by thousands of organizations and counting. Popular LLM repositories
like Hugging Face have popped up, providing access to powerful open-source

models to the masses. In short, using and productionizing a Transformer has

never been easier.

That’s where this book comes in.

My goal is to guide you on how to use, train, and optimize all kinds of LL.Ms
for practical applications while giving you just enough insight into the inner
workings of the model to know how to make optimal decisions about model

choice, data format, fine-tuning parameters, and so much more.

My aim is to make using Transformers accessible for software developers,
data scientists, analysts, and hobbyists alike. To do that, we should start on a

level playing field and learn a bit more about LL.Ms.
Definition of LL.Ms

To back up only slightly, we should talk first about the specific NLP task that
LLMs and Transformers are being used to solve and provides the foundation
layer for their ability to solve a multitude of tasks. Language modeling is a
subfield of NLP that involves the creation of statistical/deep learning models
for predicting the likelihood of a sequence of tokens in a specified
vocabulary (a limited and known set of tokens). There are generally two
kinds of language modeling tasks out there: autoencoding tasks and

autoregressive tasks Figure 1.2)

Note

The term token refers to the smallest unit of semantic

meaning created by breaking down a sentence or piece of text
into smaller units and are the basic inputs for an LLM. Tokens
can be words but also can be “sub-words” as we will see in
more depth throughout this book. Some readers may be
familiar with the term “n-gram” which refers to a sequence of

n consecutive tokens.

Autoregressive language models are trained to predict the next token in a
sentence, based only on the previous tokens in the phrase. These models
correspond to the decoder part of the transformer model, and a mask is
applied to the full sentence so that the attention heads can only see the tokens
that came before. Autoregressive models are ideal for text generation and a

good example of this type of model is GPT.

Autoencoding language models are trained to reconstruct the original
sentence from a corrupted version of the input. These models correspond to
the encoder part of the transformer model and have access to the full input
without any mask. Autoencoding models create a bidirectional representation
of the whole sentence. They can be fine-tuned for a variety of tasks such as
text generation, but their main application is sentence classification or token

classification. A typical example of this type of model is BERT.

Ifyoudon't _ atthe sign, you will get a ticket.

@ 95% Autoencoding Language Models
ask a model to fill in missing words
from any portion of a phrase from a
V o known vocabulary

Autoregressive Language Models
T ask a model to generate the next
R most likely token of a given phrase
from a known vocabulary

If you don't .

mind, want, have

Figure 1.2 Both the autoencoding and autoregressive language modeling task

involves filling in a missing token but only the autoencoding task allows for

context to be seen on both sides of the missing token.

To summarize, Large Language Models (LLMs) are language models that are
either autoregressive , autoencoding, or a combination of the two. Modern
LLMs are usually based on the Transformer architecture which is what we
will use but they can be based on another architecture. The defining feature of
LLMs is their large size and large training datasets which enables them to
perform complex language tasks, such as text generation and classification,

with high accuracy and with little to no fine-tuning.

Table 1.1 shows the disk size, memory usage, number of parameters, and

approximate size of the pre-training data for several popular large language

models (LLMs). Note that these sizes are approximate and may vary

depending on the specific implementation and hardware used.

Table 1.1 Comparison of Popular Large Language Models (LLMs)

Disk Size | Memory Usage | Parameters Training Data Size

LLM (~GB) (~GB) (~millions) (~GB)

BERT-Large 1.3 3.3 340 20
GPT-2 117M B 15 T1¥ 40
GPT-2 1.5B 6 16 1,500 40
GPT-3 175B 700 2,000 175,000 570
T5-11B 45 40 11,000 750
RoBERTa-Large 1.5 3.5 355 160
ELECTRA-Large 1.3 3:3 335 20

But size is everything. Let’s look at some of the key characteristics of LLMs

and then dive into how LL.Ms learn to read and write.

Key Characteristics of LL.Ms

The original Transformer architecture, as devised in 2017, was a sequence-

to-sequence model, which means it had two main components:

An encoder which is tasked with taking in raw text, splitting them up into its
core components (more on this later), converting them into vectors (similar to
the Word2vec process), and using attention to understand the context of the

text

A decoder which excels at generating text by using a modified type of

attention to predict the next best token

As shown in Figure 1.3, The Transformer has many other sub-components
that we won’t get into that promotes faster training, generalizability, and
better performance. Today’s LL.Ms are for the most part variants of the
original Transformer. Models like BERT and GPT dissect the Transformer
into only an encoder and decoder (respectively) in order to build models that

excel in understanding and generating (also respectively).

Output
Probabiliies

The encoder is great at e
understanding text ovas
orward
-LAdd & Norm) Mlt-Head
Fead Attention
Forward y - M=
L=
M = - Add .‘-’»a'm :
gy T Vizhea The decoder is great at
Liti-Head Multi-Haad 2
Attention Attantion
— — generating text
LL‘_ v’ o —_——
Positional Positionsal
Encoding ®_(? E_ Encoding
Ingwat Output
Embedding Embedding
l T

Inputs Outputs
shifted right)

Figure 1.3 The original Transformer has two main components: an encoder
which is great at understanding text, and a decoder which is great at
generating text. Putting them together makes the entire model a “sequence to

sequence” model.

In general, LLMs can be categorized into three main buckets:

Autoregressive models, such as GPT, which predict the next token in a
sentence based on the previous tokens. They are effective at generating

coherent free-text following a given context

Autoencoding models, such as BERT, which build a bidirectional

representation of a sentence by masking some of the input tokens and trying

to predict them from the remaining ones. They are adept at capturing
contextual relationships between tokens quickly and at scale which make

them great candidates for text classification tasks for example.

Combinations of autoregressive and autoencoding, like T5, which can use
the encoder and decoder to be more versatile and flexible in generating text.
It has been shown that these combination models can generate more diverse
and creative text in different contexts compared to pure decoder-based
autoregressive models due to their ability to capture additional context using

the encoder.

- Original Sequence to Sequence
Transformer

Can be trained on and perform
autoencoding & autoregressive
language modeling tasks

e.g.T5

- Encoder only models .

- Trained on autoencoding '
language modeling task - Decoder only models
- Excel at understanding text - Trained on autoregressive
language modeling task
E.g. BERT Family - Excel at generating text
E.g. GPT Family

Figure 1.4 A breakdown of the key characteristics of LLMs based on how

they are derived from the original Transformer architecture.

Figure 1.4 shows the breakdown of the key characteristics of LL.Ms based on

these three buckets.
More Context Please

No matter how the LLM is constructed and what parts of the Transformer it

is using, they all care about context (Figure 1.5). The goal is to understand

each token as it relates to the other tokens in the input text. Beginning with
the popularity of Word2vec around 2013, NLP practitioners and researchers
were always curious about the best ways of combining semantic meaning
(basically word definitions) and context (with the surrounding tokens) to
create the most meaningful token embeddings possible. The Transformer
relies on the attention calculation to make this combination a reality.

2,

'I love my pet Python'
VS n

'TI love coding 1n Python'

Figure 1.5 LLMs are great at understanding context. The word “Python” can
have different meanings depending on the context. We could be talking about

a snake, or a pretty cool coding language.

Choosing what kind of Transformer derivation you want isn’t enough. Just
choosing the encoder doesn’t mean your Transformer is magically good at
understanding text. Let’s take a look at how these LLMs actually learn to

read and write.

How LL.Ms Work

How an LLM is pre-trained and fine-tuned makes all the difference between
an alright performing model and something state of the art and highly
accurate. We’ll need to take a quick look into how LLMs are pre-trained to
understand what they are good at, what they are bad at, and whether or not

we would need to update them with our own custom data.
Pre-training

Every LLM on the market has been pre-trained on a large corpus of text data
and on specific language modeling related tasks. During pre-training, the
LLM tries to learn and understand general language and relationships
between words. Every LLM is trained on different corpora and on different

tasks.

BERT, for example, was originally pre-trained on two publicly available text

corpora (Figure 1.6):

English Wikipedia - a collection of articles from the English version of
Wikipedia, a free online encyclopedia. It contains a range of topics and
writing styles, making it a diverse and representative sample of English

language text

At the time 2.5 billion words.

T'he BookCorpus - a large collection of fiction and non-fiction books. It was

created by scraping book text from the web and includes a range of genres,

from romance and mystery to science fiction and history. The books in the
corpus were selected to have a minimum length of 2000 words and to be

written in English by authors with verified identities

800M words.

and on two specific language modeling specific tasks (Figure 1.7):

The Masked Language Modeling (MLM) task (AKA the autoencoding task)

—this helps BERT recognize token interactions within a single sentence.

T'he Next Sentence Prediction Task—this helps BERT understand how tokens

interact with each other between sentences.

s wi e o Comiboiors Gy snem |8
*’ - i
b g y Arici sk Memd Vawsours Wewhokey | each Wikdned Q
Wikwens English Wikipedia B
e e Eerydeprlls oo Wparin, e fes a0 oo
it o e oo™ v S P i Mk Pags. s il Pupes
LE Tha Englinh 'Wikipsdia = fha Feplsh-lispusgs aFins o s fes i ancyciopedin, Wiepssia. §w lsunsed or 15 Jsrusny 201 e Siegedin's English Wikipedia
il 4 irnd i, el Al B3, ian s e eicien of ey im0 8 00877 M ol Wiy T, 5% o s in ol Wikipuacing einng i ihe
W, Ergins- briguags sbon The #hem has giachly decesd iom A Fan 57 pioe n 200 fuin the gt ol Wikiperdas n ol —
iaruanas ¥ Tha msifions cne-Silineih sl wis e on 10 Sy 50717 The Dagheh Wesia as mesd (s b 8 bl o o, i
Cues LR OF @il of poveeage. ™ 1 % ine gest esryTiopen v meveTied LB
Cramt . viriasion in whieh Soal afcies v oy basee Engias vecabuiary. Thers s sise b Ovd Esgish "__
oy 7, el 28, Irad incySaior” versian kor te Mide ©ngiss Wiipsd [er maid] WARIPEDIA
i " T Do T ok
s . § Paorpaing din Terssann L
" # B Trstof ol e aneyempad
5 1 Wapedam [——
i 3§ Caghsr Winpeia st rumbers Cromd by vvny Vs, |ty R
......... s S bt U
¥ Hugging Face Madild Dataiits Pricing Rédourced W' . Log In Sign Up
bookcoxpus
Dataset Structure) Updateon Github <7 Use in dataset Bbeary
Data Instance W T
. 20 Explone dataset = Edit Datasst Tags
1 Fitlds
3 Splits
Gitaast Criiion Dataset Card for "bookcorpus”
yhnehwwinitecom L2487 MB

Dataset Summary A5 0 WE ETSLATMB

Baooks are a rich source of both fine-grained infarmatian, how a character, an

Figure 1.6 BERT was originally pre-trained on English Wikipedia and the
BookCorpus. More modern LL.Ms are trained on datasets thousands of times

larger.

Pre-training on these corpora allowed BERT (mainly via the self-attention
mechanism) to learn a rich set of language features and contextual
relationships. The use of large, diverse corpora like these has become a
common practice in NLP research, as it has been shown to improve the

performance of models on downstream tasks.

Note

The pre-training process for an LLM can evolve over time as
researchers find better ways of training LL.Ms and phase out
methods that don’t help as much. For example within a year of
the original Google BERT release that used the Next Sentence
Prediction (NSP) pre-training task, a BERT variant called
RoBERTa (yes, most of these LLLM names will be fun) by
Facebook Al was shown to not require the NSP task to match
and even beat the original BERT model’s performance in

several areas.

Depending on which LLM you decide to use, it will likely be pre-trained
differently from the rest. This is what sets LL.Ms apart from each other. Some
LLMs are trained on proprietary data sources including OpenAI’s GPT
family of models in order to give their parent companies an edge over their

competitors.

We will not revisit the idea of pre-training often in this book because it’s not
exactly the “quick” part of a “quick start guide” but it can be worth knowing
how these models were pre-trained because it’s because of this pre-training
that we can apply something called transfer learning to let us achieve the

state-of-the-art results we want, which is a big deal!

Masked Language Modelling (MLM) Next Sentence Prediction (NSP)

“Istanbul is a great [MASK] to visit” A: “Istanbul is a great city to visit”
4> B: “l was just there.”

Did sentence B come directly after

sentence A? Yes or No
Figure 1.7 BERT was pre-trained on two tasks: the autoencoding language

Guess the word

modeling task (referred to as the “masked language modeling” task) to teach
it individual word embeddings and the “next sentence prediction” task to help

it learn to embed entire sequences of text.
Transfer Learning

Transfer learning is a technique used in machine learning to leverage the
knowledge gained from one task to improve performance on another related
task. Transfer learning for LLMs involves taking an LLM that has been pre-
trained on one corpus of text data and then fine-tuning it for a specific
“downstream” task, such as text classification or text generation, by updating

the model’s parameters with task-specific data.

The idea behind transfer learning is that the pre-trained model has already
learned a lot of information about the language and relationships between
words, and this information can be used as a starting point to improve

performance on a new task. Transfer learning allows LLMs to be fine-tuned

for specific tasks with much smaller amounts of task-specific data than it
would require if the model were trained from scratch. This greatly reduces
the amount of time and resources required to train LL.Ms. Figure 1.8 provides

a visual representation of this relationship.

Fine-tuning

Once a LLM has been pre-trained, it can be fine-tuned for specific tasks.
Fine-tuning involves training the LLM on a smaller, task-specific dataset to
adjust its parameters for the specific task at hand. This allows the LLM to
leverage its pre-trained knowledge of the language to improve its accuracy
for the specific task. Fine-tuning has been shown to drastically improve
performance on domain-specific and task-specific tasks and lets LL.Ms adapt

quickly to a wide variety of NLP applications.

Downstream task 1
ki x v
| Eg. sequence classification

j 7 \.\.. ’J'-’_,- 5

\ .| Downstream task 2
Transfer Learning Model Sl et Eg. question/answering

Pre-train on an I:
self-supervised .

task to teach the

Eq. BERT for NLP or
model a general g Downstream task 3

: Resnet for images
concept (like 9 | Eg. token classification
language) _
Fine-tune madelh‘“-.m
on task/domain ™
specific

supervised task

Figure 1.8 The general transfer learning loop involves pre-training a model

on a generic dataset on some generic self-supervised task and then fine-

tuning the model on a task-specific dataset.

Figure 1.9 shows the basic fine-tuning loop that we will use for our models in
later chapters. Whether they are open-sourced or closed-sourced the loop is

more or less the same:

We define the model we want to fine-tune as well as any fine-tuning

parameters (e.g., learning rate)

We will aggregate some training data (the format and other characteristics

depend on the model we are updating)

Ne compute losses (a measure of error) and gradients (information about how

to change the model to minimize error)

We update the model through backpropagation — a mechanism to update

model parameters to minimize errors

If some of that went over your head, not to worry: we will rely on pre-built
tools from Hugging Face’s Transformers package (Figure 1.9) and OpenAl’s
Fine-tuning API to abstract away a lot of this so we can really focus on our

data and our models.

Note

You will not need a Hugging Face account or key to follow

along and use any of this code apart from very specific

advanced exercises where [will call it out.

Attention

The name of the original paper that introduced the Transformer was called
“Attention is all you need”. Attention is a mechanism used in deep learning
models (not just Transformers) that assigns different weights to different
parts of the input, allowing the model to prioritize and emphasize the most
important information while performing tasks like translation or
summarization. Essentially, attention allows a model to “focus” on different
parts of the input dynamically, leading to improved performance and more
accurate results. Before the popularization of attention, most neural networks
processed all inputs equally and the models relied on a fixed representation of
the input to make predictions. Modern LLMs that rely on attention can
dynamically focus on different parts of input sequences, allowing them to

weigh the importance of each part in making predictions.

#

The Al community
building the future.

T

Figure 1.9 The Transformers package from Hugging Face provides a neat

and clean interface for training and fine-tuning LLMs.

To recap, LLMs are pre-trained on large corpora and sometimes fine-tuned
on smaller datasets for specific tasks. Recall that one of the factors behind the
Transformer’s effectiveness as a language model is that it is highly
parallelizable, allowing for faster training and efficient processing of text.
What really sets the Transformer apart from other deep learning architectures
is its ability to capture long-range dependencies and relationships between
tokens using attention. In other words, attention is a crucial component of
Transformer-based LLMs, and it enables them to effectively retain
information between training loops and tasks (i.e. transfer learning), while

being able to process lengthy swatches of text with ease.

Attention is attributed for being the most responsible for helping LLMs learn

(or at least recognize) internal world models and human-identifiable rules. A

Stanford study in 2019 showed that certain attention calculations in BERT
corresponded to linguistic notions of syntax and grammar rules. For example,
they noticed that BERT was able to notice direct objects of verbs,
determiners of nouns, and objects of prepositions with remarkably high

accuracy from only its pre-training. These relationships are presented visually

in Figure 1.10.

There is research that explores what other kinds of “rules” LLMs are able to
learn simply by pre-training and fine-tuning. One example is a series of
experiments led by researchers at Harvard that explored an LLM’s ability to
learn a set of rules to a synthetic task like the game of Othello (Figure 1.11).
They found evidence that an LLM was able to understand the rules of the

game simply by training on historical move data.

Head 8-10
- Direct objects attend to their verbs
- 86.8% accuracy at the dobj relation

Head 8-11

- Noun modifiers (e.g., determiners) attend
to their noun

- 94.3% accuracy at the det relation

[CLS] [CLS] [CL5] [CLS]
It It It It [CLsly [CLS]
‘ ’ Thes The
goes .goes declined < _~declined [?.:i Li:S] as-year-old: 45-year-old
on -on to to i lcateg TOTMEN farmer
to to discussff _-discuss mr;;z:;c:a;e-\' Y IE:FII:E;;ZE General, |* General
plug; splug its il its in1"'-_ in Electricy) | | Electric
adt a plans -plans the the Co.. -Co,)
fewdh fe for Pl e g executive BxBCutive
e o 0 g 9 figures, figures
diversified, | diversified upgrading;' ~upgrading NEW~— new it it
Fidelity-\f' 1 Fidelity its\\ A its :‘a‘: Irf:; will, ¥ wil
[LT) 5
funds’ ' |} -funds current(\ current muddied muddied eas:::-- \ W 2:5ier
by by duck 5 duct Mo
B prodct QR sro e~ \{ the e\ s
name name ines %0 line 19 9 Hime. -
[SEP] [SEP] [SEP] [SEP] Ll RER [SEP] (SEP]
Head 7-6 Head 4-10
- Possessive Ermum and apostrophes - Passive auxiliary verbs attend to the
attend to the head of the corresponding NP verb they modi
- 80.5% accuracy at the poss relation - 82.5% accuracy at the auxpass relation
[CLS] [CLS]
many-, many But- But
emplayees,t emplayees in in
[CLS], [CLS] are are [CLS] the the
Not, Not working, | —“working This absence- absence
[hig at \ at market ! of of]
A S — " ke has panicky panicky
AUkopRR y gt L5 R\ A — been trading trading
: 7 g|ant~\t giant very . ,
power-hitter . power-hitter Renton AR Renton badly its its
MeGwire- :\ S MeGwire LAY i damaged presence presence
LA TN Wash, Wash, ' ki i
LN : never: never
T 2 i\ [SEP) \[SEP] overtly overtly
[SEP]———[SEP) plant \ Vplant P fel
[SEP] A[sen] [SEP] \[SEP]

Figure 1.10 Research has probed into LL.Ms to uncover that they seem to be

recognizing grammatical rules even when they were never explicitly told

these rules.

Pre-intervention Probe Result Post-intervention Probe Result Pre-intervention Probe Result Post-intervention Probe Result
at tha 5th Layer al the Sth Layer at the Gth Layer at the 6th Layer

1 23 48 K 70 1 2 3 4 546 7 8

Pre-intervention Probe Result Post-intervention Proba Result Pre-intervention Probe Result Post-intervention Prabe Result
at the 7th Layer at the 7th Layer at the 8th Layer at the Bth Layer

Figure 1.11 LLMs may be able to learn all kinds of things about the world,

whether it be the rules and strategy of a game or the rules of human language.

For any LLM to learn any kind of rule, however, it has to convert what we
perceive as text into something machine readable. This is done through a

process called embedding.

Embeddings

Embeddings are the mathematical representations of words, phrases, or
tokens in a large-dimensional space. In NLP, embeddings are used to
represent the words, phrases, or tokens in a way that captures their semantic

meaning and relationships with other words. There are several types of

embeddings, including position embeddings, which encode the position of a
token in a sentence, and token embeddings, which encode the semantic

meaning of a token (Figure 1.12).

i Fi y
Input ‘ [CLs} || my || dog || is (‘M [SEP] | he || likes plaﬂ ##ing || [SEP] 11 tokens
Token ' , _
Embeddings Eicsi || Emy || Edog || Es || Ecue || Eiserr || Ene || Eues | | Eptay | | Evving | | Eiser {11, 766}
+ + + + * + + + + + + +
Segment
Embeddings B | En || Ea [Ba B BEa || Bs || Bs | Bs | Es || Es (11, 768)
+ + + + * + + + + & & .
Position '
Embeddings - ED | El E? E3 E4 ES EG ; E? EB ; EB EID | (11, 768)

Each of these rectangles represents a vector of shape (1, 768) (assuming BERT-base)
Final
processed
input has
shape
{11, 768)

Figure 1.12 An example of how BERT uses three layers of embedding for a
given piece of text. Once the text is tokenized, each token is given an
embedding and then the values are added up, so each token ends up with an
initial embedding before any attention is calculated. We won’t focus too
much on the individual layers of LLM embeddings in this text unless they
serve a more practical purpose but it is good to know about some of these

parts and how they look under the hood!

LLMs learn different embeddings for tokens based on their pre-training and

can further update these embeddings during fine-tuning.

Tokenization

Tokenization, as mentioned previously, involves breaking text down into the
smallest unit of understanding - tokens. These tokens are the pieces of
information that are embedded into semantic meaning and act as inputs to the
attention calculations which leads to ... well, the LLM actually learning and
working. Tokens make up an LLMs static vocabulary and don’t always
represent entire words. Tokens can represent punctuation, individual
characters, or even a sub-word if a word is not known to the LLM. Nearly all
LLMs also have special tokens that have specific meaning to the model. For
example, the BERT model has a few special tokens including the [CLS]
token which BERT automatically injects as the first token of every input and
is meant to represent an encoded semantic meaning for the entire input

sequence.

Readers may be familiar with techniques like stop words removal, stemming,
and truncation which are used in traditional NLP. These techniques are not
used nor are they necessary for LLMs. LLMs are designed to handle the
inherent complexity and variability of human language, including the usage
of stop words like “the” and “an” and variations in word forms like tenses
and misspellings. Altering the input text to an LLM using these techniques
could potentially harm the performance of the model by reducing the

contextual information and altering the original meaning of the text.

Tokenization can also involve several preprocessing steps like casing, which
refers to the capitalization of the tokens. There are two types of casing:

uncased and cased. In uncased tokenization, all the tokens are lowercased and

usually accents from letters are stripped, while in cased tokenization, the
capitalization of the tokens is preserved. The choice of casing can impact the
performance of the model, as capitalization can provide important

information about the meaning of a token. An example of this can be found in

Figure 1.13.

Note

It is worth mentioning that even the concept of casing has
some bias to it depending on the model. To uncase a text -
lowercasing and stripping of accents - is a pretty Western style
preprocessing step. I myself speak Turkish and know that the
umlaut (e.g. the O in my last name) matters and can actually
help the LLM understand the word being said. Any language
model that has not been sufficiently trained on diverse corpora

may have trouble parsing and utilizing these bits of context.

Uncased Tokenization Cased Tokenization

Removes accents and Does nothing to the input
lower-cases the input

Cafe Dupont --> cafe dupont Café Dupont --> Café Dupont

Figure 1.13 The choice of uncased versus cased tokenization depends on the

task. Simple tasks like text classification usually prefer uncased tokenization
while tasks that derive meaning from case like Named Entity Recognition

prefer a cased tokenization.

Figure 1.14 shows an example of tokenization, and in particular, an example
of how LLMs tend to handle Out of Vocabulary (OOV) phrases. OOV
phrases are simply phrases/words that the LLM doesn’t recognize as a token
and has to split up into smaller sub-words. For example, my name (Sinan) is
not a token in most LL.Ms (story of my life) so in BERT, the tokenization
scheme will split my name up into two tokens (assuming uncased

tokenization):
sin - the first part of my name

##an - a special sub-word token that is different from the word “an” and is

used only as a means to split up unknown words

“Sinan loves a beautiful day”

the “##" indicates a subword ~_

[“[CLS]’ l.l'sin.l'l,;.}.f##ann’ lﬂ'ﬂ'e‘s’ rfaﬂ" ”bEHUtifIJl”, "da‘f", H[SEP]H]

BERT's tokenizer handles OOV tokens (out of vocabulary /
previously unknown) by breaking them up into smaller chunks of
known tokens
Figure 1.14 Any LLM has to deal with words they’ve never seen before.

How an LM tokenizes text can matter if we care about the token limit of an

LLM.

Some LLMs limit the number of tokens we can input at any one time so how
an LLM tokenizes text can matter if we are trying to be mindful about this

limit.

So far, we have talked a lot about language modeling - predicting
missing/next tokens in a phrase, but modern LLMs also can also borrow from
other fields of AI to make their models more performant and more
importantly more aligned - meaning that the Al is performing in accordance
with a human’s expectation. Put another way, an aligned LLM has an

objective that matches a human’s objective.

Beyond Language Modeling—Alignment + RLHF

Alignment in language models refers to how well the model can respond to
input prompts that match the user’s expectations. Standard language models
predict the next word based on the preceding context, but this can limit their
usefulness for specific instructions or prompts. Researchers are coming up
with scalable and performant ways of aligning language models to a user’s
intent. One such broad method of aligning language models is through the

incorporation of reinforcement learning (RL) into the training loop.

RL with Human Feedback (RLHF) is a popular method of aligning pre-
trained LLMs that uses human feedback to enhance their performance. It

allows the LL.M to learn from feedback on its own outputs from a relatively

small, high-quality batch of human feedback, thereby overcoming some of
the limitations of traditional supervised learning. RLHF has shown
significant improvements in modern LLMs like ChatGPT. RLHF is one
example of approaching alignment with RL, but there are other emerging

approaches like RL with Al feedback (e.g. Constitutional Al).

Let’s take a look at some of the popular LL.Ms we’ll be using in this book.

Popular Modern LLMs

BERT, T5, and GPT are three popular LL.Ms developed by Google, Google,
and OpenAl respectively. These models differ in their architecture pretty
greatly even though they all share the Transformer as a common ancestor.
Other widely used variants of LLMs in the Transformer family include
RoBERTa, BART (which we saw earlier performing some text

classification), and ELECTRA.
BERT

BERT (Figure 1.15) is an autoencoding model that uses attention to build a
bidirectional representation of a sentence, making it ideal for sentence

classification and token classification tasks.

BERT uses the encoder of the Transformer and ignores the decoder to
become exceedingly good at processing/understanding massive amounts of

text very quickly relative to other, slower LLMs that focus on generating text

one token at a time. BERT-derived architectures, therefore, are best for
working with and analyzing large corpora quickly when we don’t need to

write free text.

Bi-directional Encoder Representation from Transformers

g 1

Auto-encoding

Language Relwng o The encoder is

Model Uses only the altention taken from the
Encoder from the Transformer
Transformer architecture

Figure 1.15 BERT was one of the first LLMs and continues to be popular for

many NLP tasks that involve fast processing of large amounts of text.

BERT itself doesn’t classify text or summarize documents but it is often used
as a pre-trained model for downstream NLP tasks. BERT has become a
widely used and highly regarded LL.M in the NLP community, paving the

way for the development of even more advanced language models.
GPT-3 and ChatGPT

GPT (Figure 1.16), on the other hand, is an autoregressive model that uses
attention to predict the next token in a sequence based on the previous tokens.
The GPT family of algorithms (including ChatGPT and GPT-3) is primarily
used for text generation and has been known for its ability to generate natural

sounding human-like text.

Generative Pre-trained Transformers

Auto-regressive The decoder is
Language decoders are taken from the
Model trained on Transformer
huge corpora architecture
of data

Figure 1.16 The GPT family of models excels at generating free text aligned

with a user’s intent.

GPT relies on the decoder portion of the Transformer and ignores the encoder
to become exceptionally good at generating text one token at a time. GPT-
based models are best for generating text given a rather large context
window. They can also be used to process/understand text as we will see in
an upcoming chapter. GPT-derived architectures are ideal for applications

that require the ability to freely write text.

TS

T5 is a pure encoder/decoder transformer model that was designed to perform

several NLP tasks, from text classification to text summarization and

generation, right off the shelf. It is one of the first popular models to be able
to boast such a feat, in fact. Before T5, LLMs like BERT and GPT-2
generally had to be fine-tuned using labeled data before they could be relied

on to perform such specific tasks.

Text to Text Transfer Transformer

Relying on A pure
s: Sueeqnuceen:neotdoe| transfer transformer
SO learning using both the
and a fifth “t”! ; .
encoder an
decoder

Figure 1.17 T5 was one of the first LLLMs to show promise in solving

multiple tasks at once without any fine-tuning.

T5 uses both the encoder and decoder of the Transformer to become highly
versatile in both processing and generating text. T5-based models can
perform a wide range of NLP tasks, from text classification to text
generation, due to their ability to build representations of the input text using
the encoder and generate text using the decoder (Figure 1.17). T5-derived
architectures are ideal for applications that require both the ability to process

and understand text and generate text freely.

T5’s ability to perform multiple tasks with no fine-tuning spurred the
development of other versatile LL.Ms that can perform multiple tasks with
efficiency and accuracy with little/no fine-tuning. GPT-3, released around the

same time at T5, also boasted this ability.

These three LLMs are highly versatile and are used for various NLP tasks,
such as text classification, text generation, machine translation, and sentiment
analysis, among others. These three LL.Ms, along with flavors (variants) of

them will be the main focus of this book and our applications.

Domain-Specific LLMs

Domain-specific LLLMs are LLMs that are trained specifically in a particular
subject area, such as biology or finance. Unlike general-purpose LLMs, these
models are designed to understand the specific language and concepts used

within the domain they were trained on.

One example of a domain-specific LLM is BioGPT (Figure 1.18); a domain-
specific LLM that is pre-trained on large-scale biomedical literature. The
model was developed by the AT healthcare company, Owkin, in collaboration
with Hugging Face. The model is trained on a dataset of over 2 million
biomedical research articles, making it highly effective for a wide range of
biomedical NLP tasks such as named entity recognition, relationship

extraction, and question-answering.

BioGPT, whose pre-training encoded biomedical knowledge and domain-

specific jargon into the LLM, can be fine-tuned on smaller datasets, making it
adaptable for specific biomedical tasks and reducing the need for large

amounts of labeled data.

e {raINININE
===% inference [the relation between A and B is R.]
source | prompt target larget
BioGPT
l source | prompt l target | ‘ source 1 prompt |
[text] [we can conclude that] [the interaction between Aand B is R\ [text] [we can conclude that)

Figure 1.18 BioGPT is a domain-specific Transformer model pre-trained on
large-scale biomedical literature. BioGPT’s success in the biomedical domain

has inspired other domain-specific LLMs such as SciBERT and BlueBERT.

The advantage of using domain-specific LLMs lies in their training on a
specific set of texts. This allows them to better understand the language and
concepts used within their specific domain, leading to improved accuracy and
fluency for NLP tasks that are contained within that domain. By comparison,
general-purpose LL.Ms may struggle to handle the language and concepts

used in a specific domain as effectively.

Applications of LLMs

As we’ve already seen, applications of LLMs vary widely and researchers
continue to find novel applications of LLMs to this day. We will use LLMs in

this book in generally three ways:

Using a pre-trained LL.M’s underlying ability to process and generate text

with no further fine-tuning as part of a larger architecture.

For example, creating an information retrieval system using a pre-trained

BERT/GPT.

Fine-tuning a pre-trained LL.M to perform a very specific task using Transfer

Learning.

For example, fine-tuning T5 to create summaries of documents in a specific

domain/industry.

Asking a pre-trained LLM to solve a task it was pre-trained to solve or could

reasonably intuit.
For example, prompting GPT3 to write a blog post.
For example, prompting T5 to perform language translation..

These methods use LLMs in different ways and while all options take

advantage of an LLM’s pre-training, only option 2 requires any fine-tuning.

Let’s take a look at some specific applications of LLMs.

Classical NLP Tasks

A vast majority of applications of LL.Ms are delivering state of the art results
in very common NLP tasks like classification and translation. It’s not that we
weren’t solving these tasks before Transformers and LLMs, it’s just that now
developers and practioners can solve them with comparatively less labeled
data (due to the efficient pre-training of the Transformer on huge corpora)

and with a higher degree of accuracy.

Text Classification

The text classification task assigns a label to a given piece of text. This task is
commonly used in sentiment analysis, where the goal is to classify a piece of
text as positive, negative, or neutral, or in topic classification, where the goal
is to classify a piece of text into one or more predefined categories. Models
like BERT can be fine-tuned to perform classification with relatively little

labeled data as seen in Figure 1.19.

positive 0%
negative 0.1
Classification Layers
JRI'I'_LS] Istanbul |:;{is Ra great Rrl:i't',,r R|5[F']
1 1 ! t t 1 1
Encoder 12
Pre-trained BERT Encoder 1
4 ! t ! ! } }
E[t:lj| Istanbul Eis Ea great Eciw E[SEPI

Figure 1.19 A peek at the architecture of using BERT to achieve fast and
accurate text classification results. Classification layers usually act on that
special [CLS] token that BERT uses to encode the semantic meaning of the

entire input sequence.

Text classification remains one of the most globally recognizable and
solvable NLP tasks because when it comes down to it, sometimes we just

need to know whether this email is “spam” or not and get on with our days!
Translation Tasks

A harder and yet still classic NLP task is machine translation where the goal
is to automatically translate text from one language to another while

preserving meaning and context. Traditionally, this task is quite difficult

because it involves having sufficient examples and domain knowledge of
both languages to accurately gauge how well the model is doing but modern
LLMs seem to have an easier time with this task again due to their pre-

training and efficient attention calculations.
Human Language <> Human Language

One of the first applications of attention even before Transformers was for
machine translation tasks where Al models were expected to translate from
one human language to another. T5 was one of the first LLMs to tout the
ability to perform multiple tasks off the shelf (Figure 1.20). One of these

tasks was the ability to translate English into a few languages and back.

| “translate English to German: That is good.”

"Das ist gut."]
course is jumping well."

[“cola sentence: The

"not ac:eptable“]

on the grass. sentence2: A rhino

“stsb sentencel: The rhino grazed
is grazing in a field."

"summarize: state authorities
dispatched emergency crews tuesday to
survey the damage after an onslaught

of severe weather in mississippi..”

"six people hospitalized after
a storm in attala county."

Figure 1.20 T5 could perform many NLP tasks off the shelf, including

grammar correction, summarization, and translation.

Since T5, language translation in LL.Ms has only gotten better and more
diverse. Models like GPT-3 and the latest T5 models can translate between

dozens of languages with relative ease. Of course this bumps up against one

major known limitation of LLMs that they are mostly trained from an

English-speaking/usually American point of view so most LLMs can handle

English well and non-English languages, well, not as well.

SQL Generation

If we consider SQL as a language, then converting English to SQL is really

not that different from converting English to French (Figure 1.21). Modern

LLMs can already do this at a basic level off the shelf, but more advanced

SQL queries often require some fine-tuning.

A human's input to

GPT-3, providing
crucial context like

the table schema

Postgras Tabli
HHH
Table: Llsers

Schema: id (bigint), email (varchar), name (varchar), date joined (timestamp)

Table: Product

Schema: id (bigint), user (key to User), name {varchar), date created (timestamp)

Hid

By only using these tables, write a functioning 5QL query to: Show me how many products
gach user is using

S0OL

HAH The LLM's response
SELECT u.name, COUNT{p.id) AS product_count

in green shows a
FROM Users u

fully functioning SQL
JOIN Product p ON w.id = p.user Q y 9 ; Q
GROUP BY u.name query that takes into

account the schema

provided

Figure 1.21 Using GPT-3 to generate functioning SQL code from an (albeit

simple) Postgres schema

If we expand our thinking of what can be considered a “translation” then a lot

of new opportunities lie ahead of us. For example, what if we wanted to

“translate” between English and a series of wavelengths that a brain might

interpret and execute as motor functions. I’m not a neuro-scientist or

anything, but that seems like a fascinating area of research!
Free Text Generation

What first caught the world’s eye in terms of modern LLMs like ChatGPT
was their ability to freely write blogs, emails, and even academic papers. This
notion of text generation is why many LLMs are affectionately referred to as
“Generative AI”, although that term is a bit reductive and imprecise. I will
not often use the term “Generative AI” as the specific word “generative” has
its own meaning in machine learning as the analogous way of learning to a
“discriminative” model. For more on that, check out my first book: The

Principles of Data Science)

We could for example prompt (ask) ChatGPT to help plan out a blog post
like in Figure 1.22. Even if you don’t agree with the results, this can help
humans with the “tabula rasa” problem and give us something to at least edit

and start from rather than staring at a blank page for too long.

i Can you write 3 major bullet points for a blog post | want to write on best
places to go on a first date in San Francisco?

Sure! Here are three major bullet points you could cover in your blog post on
the best places to go on a first date in San Francisco:

1. Romantic Walks and Views: San Francisco is known for its stunning views
and romantic locations. Take your date on a stroll through the iconic
Golden Gate Park, explore the picturesque Palace of Fine Arts, or enjoy
the view of the city from Coit Tower. These locations offer the perfect
backdrop for a romantic first date.

2. Food and Drinks: San Francisco is a foodie's paradise, and there are
countless amazing restaurants and bars to choose from. Head to the
trendy Mission district for some delicious tacos, burritos, and margaritas,
or try some fresh seafood at Fisherman's Wharf. And don't forget about
the city's famous sourdough bread and Ghirardelli chocolate!

3. Fun Activities: If you're looking for something more active and
adventurous, San Francisco has plenty of options for a fun first date. Rent
a tandem bike and ride across the Golden Gate Bridge, take a ferry to
Alcatraz Island, or explore the famous Haight-Ashbury neighborhood.
There's always something exciting to do in the City by the Bay!

Figure 1.22 ChatGPT can help ideate, scaffold, and even write entire blog

posts

Note

I would be remiss if I didn’t mention the controversy that

LLMs like this can cause at the academic level. Just because

an LLM can write entire blogs or even essays doesn’t mean
we should let them. Just like how the internet caused some to
believe that we’d never need books again, some argue that
ChatGPT means that we’ll never need to write anything again.
As long as institutions are aware of how to use this technology
and proper regulations/rules are put in place, students and
teachers alike can use ChatGPT and other text-generation-

focused Als safely and ethically.

We will be using ChatGPT to solve a few tasks in this book. We will rely on
ChatGPT’s ability to contextualize information in its context window and
freely write back (usually) accurate responses. We will mostly be interacting
with ChatGPT through the Playground and the API provided by OpenAl as

this model is not open source.

Information Retrieval / Neural Semantic Search

LLMs encode information directly into their parameters via pre-training and
fine-tuning but keeping them up to date with new information is tricky. We
either have to further fine-tune the model on new data or run the pre-training
steps again from scratch. To dynamically keep information fresh, we will
architect our own information retrieval system with a vector database (don’t
worry we will go into more details on all of this in the next chapter). Figure

1.23 shows an outline of the architecture we will build.

Custom Knowledge Base in a
vector database

L

\ . : Second LLM to
T80 008 J undlérl-sr;qa::jagttext | Retrieve Candidates | " 0 oo o s _Fnalls
L for a better search of Results
(e.g. BERT) :
experience

Figure 1.23 Our neural semantic search system will be able to take in new
information dynamically and be able to retrieve relevant documents quickly

and accurately given a user’s query using LLMs.

We will then add onto this system by building a ChatGPT-based chatbot to

conversationally answer questions from our users.

Chatbots

Everyone loves a good chatbot, right? Well, whether you love them or hate
them, LLMSs’ capacity for holding a conversation is evident through systems
like ChatGPT and even GPT-3 (as seen in Figure 1.24). The way we architect
chatbots using LL.Ms will be quite different from the traditional way of
designing chatbots through intents, entities, and tree-based conversation
flows. These concepts will be replaced by system prompts, context, and

personas — all of which we will dive into in the coming chapters.

We have our work cut out for us. I’'m excited to be on this journey with you

and I’m excited to get started!

I am a chatbot. My ultimate goal is to respond with a proper functioning SQL query to pull
the data that the human asked for. Only use the following tables:

Table: Users
Schema: id (bigint), email (varchar), name (varchar), date joined (timestamp)

Table: Product
Schema: id (bigint), user (key to User), name (varchar), date created (timestamp)

--- BEGIN CHAT ---

Human: begins chat

Bot: How can I help?

Human: I need to pull some data

Bot: What kind of data do you need?

Human: Can you show me how many users are in the DB?

Bot: Sure, I can help with that. The following SQL query should do the trick:
SELECT COUNT(*) FROM Users;

Figure 1.24 ChatGPT isn’t the only LLM that can hold a conversation. We
can use GPT-3 to construct a simple conversational chatbot. The text
highlighted in green represents GPT-3’s output. Note that before the chat
even begins, I inject context to GPT-3 that would not be shown to the end-

user but GPT-3 needs to provide accurate responses.

Summary

LLMs are advanced Al models that have revolutionized the field of NLP.
LLMs are highly versatile and are used for a variety of NLP tasks, including
text classification, text generation, and machine translation. They are pre-

trained on large corpora of text data and can then be fine-tuned for specific

tasks.

Using LLMs in this fashion has become a standard step in the development of
NLP models. In our first case study, we will explore the process of launching

an application with proprietary models like GPT-3 and ChatGPT. We will get
a hands-on look at the practical aspects of using LLMs for real-world NLP

tasks, from model selection and fine-tuning to deployment and maintenance.

Semantic Search with L1.Ms

Introduction

In the last chapter, we explored the inner workings of language models and
the impact that modern LL.Ms have had on NLP tasks like text classification,
generation, and machine translation. There is another powerful application of

LLMs that has been gaining traction in recent years: semantic search.

Now you might be thinking that it’s time to finally learn the best ways to talk
to ChatGPT and GPT-4 to get the optimal results, and we will do that as early
as the next chapter, I promise. In the meantime, I want to show you what else
we can build on top of this novel transformer architecture. While text-to-text
generative models like GPT are extremely impressive in their own right, one
of the most versatile solutions that Al companies offer is the ability to

generate text embeddings based on powerful LLMs.

Text embeddings are a way to represent words or phrases as vectors in a
high-dimensional space based on their contextual meaning within a corpus of
text data. The idea is that if two phrases are similar (we will explore that
word in more detail later on in this chapter) then the vectors that represent
those phrases should be close together and vice versa. Figure 2.1 shows an

example of a simple search algorithm. When a user searches for an item to

buy — say a magic the gathering trading card they might simply search for “a
vintage magic card”. The system should then embed the query such that if
two text embeddings that are near each other should indicate that the phrases

that were used to generate them are similar.

A vintage magic kit

_ﬂ MAGIC CARD 88|

This caed s thes axact one
. i 4 loaaking Tor

magic card

_—

A Vintage Magic Card

Figure 2.1 Vectors that represent similar phrases should be close together
and those that represent dissimilar phrases should be far apart. In this case,
if a user wants a trading card they might ask for “a vintage magic card”. A
proper semantic search system should embed the query in such a way that it
ends up near relevant results (like “magic card”) and far apart from non
relevant items (like “a vintage magic kit”) even if they share certain

keywords.

This map from text to vectors can be thought of as a kind of hash with
meaning. We can’t really reverse vectors back to text but rather they are a
representation of the text that has the added benefit of carrying the ability to

compare points while in their encoded state.

LLM-enabled text embeddings allow us to capture the semantic value of
words and phrases beyond just their surface-level syntax or spelling. We can
rely on the pre-training and fine-tuning of LL.Ms to build virtually unlimited
applications on top of them by leveraging this rich source of information

about language use.

This chapter introduces us to the world of semantic search using LLMs to
explore how they can be used to create powerful tools for information
retrieval and analysis. In the next chapter, we will build a chatbot on top of
GPT-4 that leverages a fully realized semantic search system that we will

build in this chapter.

Without further ado, let’s get right into it, shall we?

The Task

A traditional search engine would generally take what you type in and then
give you a bunch of links to websites or items that contain those words or
permutations of the characters that you typed in. So if you typed in “Vintage
Magic the Gathering Cards” on a marketplace, you would get items with a

title/description that contains combinations of those words. That’s a pretty

standard way to search, but it’s not always the best way. For example I might
get vintage magic sets to help me learn how to pull a rabbit out of a hat. Fun

but not what I asked for.

The terms you input into a search engine may not always align with the exact
words used in the items you want to see. It could be that the words in the
query are too general, resulting in a slew of unrelated findings. This issue
often extends beyond just differing words in the results; the same words
might carry different meanings than what was searched for. This is where
semantic search comes into play, as exemplified by the earlier-mentioned

Magic: The Gathering cards scenario.
Asymmetric Semantic Search

A semantic search system can understand the meaning and context of your
search query and match it against the meaning and context of the documents
that are available to retrieve. This kind of system can find relevant results in a
database without having to rely on exact keyword or n-gram matching but
rather rely on a pre-trained LLM to understand the nuance of the query and

the documents (Figure 2.2).

“Magic Card”
UATIE P BOLL SO
This cand | the Sasl one
e i looking for
® o
"A vintage magic card”
® O
“A Vintage Magic Kit"

Figure 2.2 A traditional keyword-based search might rank a vintage magic
kit with the same weight as the item we actually want whereas a semantic

search system can understand the actual concept we are searching for

The asymmetric part of asymmetric semantic search refers to the fact that
there is generally an imbalance between the semantic information (basically
the size) of the input query and the documents/information that the search
system has to retrieve. For example, the search system is trying to match
“magic the gathering card” to paragraphs of item descriptions on a
marketplace. The four-word search query has much less information than the

paragraphs but nonetheless it is what we are comparing.

Asymmetric semantic search systems can get very accurate and relevant
search results, even if you don’t use the exact right words in your search.

They rely on the learnings of LLMs rather than the user being able to know

exactly what needle to search for in the haystack.

I am of course, vastly oversimplifying the traditional method. There are many
ways to make them more performant without switching to a more complex
LLM approach and pure semantic search systems are not always the answer.
They are not simply “the better way to do search”. Semantic algorithms have

their own deficiencies like:

They can be overly sensitive to small variations in text, such as differences in

capitalization or punctuation.

They struggle with nuanced concepts, such as sarcasm or irony that rely on

localized cultural knowledge.

They can be more computationally expensive to implement and maintain than
the traditional method, especially when launching a home-grown system with

many open-source components.

Semantic search systems can be a valuable tool in certain contexts, so let’s

jump right into how we will architect our solution.

Solution Overview

The general flow of our asymmetric semantic search system will follow these

steps:

PART I - Ingesting documents (Figure 2.3)

Collect documents for embedding

Create text embeddings to encode semantic information

Store embeddings in a database for later retrieval given a query

Database

Store embedded documents

Documents -

potentially chunked ~ Text embedder

Figure 2.3 Zooming in on Part I, storing documents will consist of doing
some pre-processing on our documents, embedding them, and then storing

them in some database

PART II - Retrieving documents (Figure 2.4)

User has a query which may be pre-processed and cleaned

Retrieve candidate documents

Re-rank the candidate documents if necessary

Return the final search results

Database

'

Er:gbsgn?u:gto Retrieve Candidates [l List of

Query / Question o g ! ~ Optional Re-ranking — poc
documents in ‘ esults
database

Figure 2.4 Zooming in on Part II, when retrieving documents we will have to
embed our query using the same embedding scheme as we used for the
documents and then compare them against the previously stored documents

and return the best (closest) document

The Components

Let’s go over each of our components in more detail to understand the

choices we’re making and what considerations we need to take into account.
Text Embedder

As we now know, at the heart of any semantic search system is the text
embedder. This is the component that takes in a text document, or a single
word or phrase, and converts it into a vector. The vector is unique to that text

and should capture the contextual meaning of the phrase.

The choice of the text embedder is critical as it determines the quality of the

vector representation of the text. We have many options in how we vectorize

with LLMs, both open and closed source. To get off of the ground quicker,
we are going to use OpenAl’s closed-source “Embeddings” product. In a

later section, I’ll go over some open-source options.

OpenAl’s “Embeddings” is a powerful tool that can quickly provide high-
quality vectors, but it is a closed-source product, which means we have
limited control over its implementation and potential biases. It’s important to
keep in mind that when using closed-source products, we may not have
access to the underlying algorithms, which can make it difficult to

troubleshoot any issues that may arise.

What makes pieces of text “similar”

Once we convert our text into vectors, we have to find a mathematical
representation of figuring out if pieces of text are “similar” or not. Cosine
similarity is a way to measure how similar two things are. It looks at the
angle between two vectors and gives a score based on how close they are in
direction. If the vectors point in exactly the same direction, the cosine
similarity is 1. If they’re perpendicular (90 degrees apart), it’s 0. And if they
point in opposite directions, it’s -1. The size of the vectors doesn’t matter,

only their orientation does.

Figure 2.5 shows how the cosine similarity would help us retrieve documents

given a query.

Cosine of the angle
between A and B (8)

AandB are

embeddings of
queries / items
A-B=|A||B| cosf

cosine similarity = 5¢(A, B) := cos(8) = ﬁ
Angle between A
and Cis large =
A Vinkage Mg Card Cosine similarity is

= A smaller

[\
A vinitage mage kit
C L]
- B

FagIC Card : mage: cand

A Vintage Magic Card

® B
C ‘{ @ Angle between A
_‘* .
and B is small 2

Cosine similarity is
larger

& vintage magic it

Figure 2.5 In an ideal semantic search scenario, the Cosine Similarity
(formula given at the top) gives us a computationally efficient way to
compare pieces of text at scale, given that embeddings are tuned to place
semantically similar pieces of text near each other (bottom). We start by
embedding all items — including the query (bottom left) and then checking the

angle between them. The smaller the angle, the larger the cosine similarity

(bottom right)

We could also turn to other similarity metrics like the dot product or the
Euclidean distance but OpenAl embeddings have a special property. The
magnitudes (lengths) of their vectors are normalized to length 1, which

basically means that we benefit mathematically on two fronts:

Cosine similarity is identical to the dot product

Cosine similarity and Euclidean distance will result in the identical rankings

TL;DR: Having normalized vectors (all having a magnitude of 1) is great
because we can use a cheap cosine calculation to see how close two vectors
are and therefore how close two phrases are semantically via the cosine

similarity.

OpenAl’s embedding

Getting embeddings from OpenAl is as simple as a few lines of code (Listing
2.1). As mentioned previously, this entire system relies on an embedding
mechanism that places semantically similar items near each other so that the
cosine similiarty is large when the items are actually similar. There are
multiple methods we could use to create these embeddings, but we will for
now rely on OpenAl’s embedding engines to do this work for us. Engines are
different embedding mechanism that OpenAl offer. We will use their most

recent engine that they recommend for most use-cases.

Setting text embeddings from OpenAl

Importing the necessary modules for the script to ru
import openai
from openai.embeddings utils import get embeddings, ge

Setting the OpenAI API key using the value stored in
openai.api_key = os.environ.get('OPENAI API KEY')

Setting the engine to be used for text embedding
ENGINE = 'text-embedding-ada-002'

Generating the vector representation of the given te
embedded text = get embedding('I love to be vectorized

Checking the length of the resulting vector to ensur
len(embedded_ text) == '1536'

1 | 1] [3

It’s worth noting that OpenAl provides several engine options that can be
used for text embedding. Each engine may provide different levels of
accuracy and may be optimized for different types of text data. At the time of
writing, the engine used in the code block is the most recent and the one they

recommend using.

Additionally, it is possible to pass in multiple pieces of text at once to the

“get_embeddings” function, which can generate embeddings for all of them
in a single API call. This can be more efficient than calling “get_embedding”
multiple times for each individual text. We will see an example of this later

OI1l.

Open-source Embedding Alternatives

While OpenAlI and other companies provide powerful text embedding
products, there are also several open-source alternatives available for text
embedding. A popular one is the bi-encoder with BERT, a powerful deep
learning-based algorithm that has been shown to produce state-of-the-art
results on a range of natural language processing tasks. We can find pre-
trained bi-encoders in many open source repositories, including the Sentence
Transformers library, which provides pre-trained models for a variety of

natural language processing tasks to use off the shelf.

A bi-encoder involves training two BERT models, one to encode the input
text and the other to encode the output text (Figure 2.6). The two models are
trained simultaneously on a large corpus of text data, with the goal of
maximizing the similarity between corresponding pairs of input and output
text. The resulting embeddings capture the semantic relationship between the

input and output text.

Bi-Encoder
+

Cosine-Similarity

/\

u '
4 4
pooling pooling
4 4
BERT BERT
f f
Sentence A SentenceB

Figure 2.6 A bi-encoder is trained in a unique way with two clones of a
single LLM trained in parallel to learn similarities between documents. For
example, a bi-encoder can learn to associate questions to paragraphs so they

appear near each other in a vector space

Listing 2.2 is an example of embedding text with a pre-trained bi-encoder

with the “sentence_transformer” package:

Setting text embeddings from a pre-trained open source bi-encoder

Importing the SentenceTransformer library
from sentence_transformers import SentenceTransformer

Initializing a SentenceTransformer model with the 'm

model = SentenceTransformer(
'sentence-transformers/multi-qa-mpnet-base-cos-v1')

Defining a list of documents to generate embeddings
docs = [
"Around 9 Million people live in London",
"London is known for its financial district"

Generate vector embeddings for the documents

doc_emb = model.encode(
docs, # our documents (an iterab
batch _size=32, # batch the embeddings by
show progress bar=True # display a progress bar

The shape of the embeddings is (2, 768), indicating
doc_emb.shape # == (2, 768)

g |F 1 b

This code creates an instance of the ‘SentenceTransformer’ class, which is
initialized with the pre-trained model ‘multi-qa-mpnet-base-cos-v1’. This
model is designed for multi-task learning, specifically for tasks such as
question-answering and text classification. This one in particular was pre-
trained using asymmetric data so we know it can handle both short queries

and long documents and be able to compare them well. We use the ‘encode’

function from the SentenceTransformer class to generate vector embeddings
for the documents, with the resulting embeddings stored in the ‘doc_emb’

variable.

Different algorithms may perform better on different types of text data and
will have different vector sizes. The choice of algorithm can have a
significant impact on the quality of the resulting embeddings. Additionally,
open-source alternatives may require more customization and fine-tuning
than closed-source products, but they also provide greater flexibility and
control over the embedding process. For more examples of using open-source

bi-encoders to embed text, check out the code portion of this book!

Document Chunker

Once we have our text embedding engine set up, we need to consider the
challenge of embedding large documents. It is often not practical to embed
entire documents as a single vector, particularly when dealing with long
documents such as books or research papers. One solution to this problem is
to use document chunking, which involves dividing a large document into

smaller, more manageable chunks for embedding.

Max Token Window Chunking

One approach to document chunking is max token window chunking. This is
one of the easiest methods to implement and involves splitting the document

into chunks of a given max size. So if we set a token window to be 500, then

we’d expect each chunk to be just below 500 tokens. Having our chunks all

be around the same size will also help make our system more consistent.

One common concern of this method is that we might accidentally cut off
some important text between chunks, splitting up the context. To mitigate
this, we can set overlapping windows with a specified amount of tokens to
overlap so we have tokens shared between chunks. This of course introduces
a sense of redundancy but this is often fine in service of higher accuracy and

latency.

Let’s see an example of overlapping window chunking with some sample text
(Listing 2.3). Let’s begin by ingesting a large document. How about a recent

book I wrote with over 400 pages?

‘ngesting an entire textbook

Use the PyPDF2 library to read a PDF file
import PyPDF2

Open the PDF file in read-binary mode
with open('../data/pds2.pdf', 'rb') as file:

Create a PDF reader object
reader = PyPDF2.PdfReader(file)

Initialize an empty string to hold the text

principles of ds =

Loop through each page in the PDF file
for page in tqgdm(reader.pages):

Extract the text from the page
text = page.extract_ text()

Find the starting point of the text we want
In this case, we are extracting text startin
principles of ds += '\n\n' + text[text.find('’

Strip any leading or trailing whitespace from the re
principles of _ds = principles of ds.strip()

1 | i [3

And now let’s chunk this document by getting chunks of at most a certain

token size (Listing 2.4).

Zhunking the textbook with and without overlap

Function to split the text into chunks of a maximum
def overlapping chunks(text, max_tokens = 500, overlap
max_tokens: tokens we want per chunk
overlapping factor: number of sentences to start e

Split the text using punctuation
sentences = re.split(r'[.?!]"', text)

Get the number of tokens for each sentence

n_tokens = [len(tokenizer.encode(+ sentence))

chunks, tokens so far, chunk =[], 0, []

Loop through the sentences and tokens joined tog
for sentence, token in zip(sentences, n_tokens):

If the number of tokens so far plus the numb
than the max number of tokens, then add the
the chunk and tokens so far
if tokens so _far + token > max_tokens:
chunks.append(". ".join(chunk) + ".")
if overlapping factor > 0:
chunk = chunk[-overlapping factor:]
tokens _so far = sum([len(tokenizer.enc
else:
chunk = []
tokens _so far = ©

If the number of tokens in the current sente
tokens, go to the next sentence
if token > max_tokens:

continue

Otherwise, add the sentence to the chunk and
chunk.append(sentence)
tokens _so far += token + 1

return chunks

split = overlapping chunks(principles of ds, overlappi
avg length = sum([len(tokenizer.encode(t)) for t in sp
print(f'non-overlapping chunking approach has {len(spl
non-overlapping chunking approach has 286 documents wi

with 5 overlapping sentences per chunk

split = overlapping chunks(principles_of ds, overlappi
avg length = sum([len(tokenizer.encode(t)) for t in sp
print(f'overlapping chunking approach has {len(split)}
overlapping chunking approach has 391 documents with a

1 | 1] | k

With overlap, we see an increase in the number of document chunks but
around the same size. The higher the overlapping factor, the more
redundancy we introduce into the system. The max token window method
does not take into account the natural structure of the document and may
result in information being split up between chunks or chunks with

overlapping information, confusing the retrieval system.

Finding Custom Delimiters

To help aid our chunking method, we could search for custom natural
delimiters. We would identify natural white spaces within the text and use
them to create more meaningful units of text that will end up in document

chunks that will eventually get embedded (Figure 2.7).

Max token Window Method with Natural Whitespace Chunking
overlap with no overlap

Figure 2.7 Max-token chunking (on the left) and natural whitespace
chunking (on the right) can be done with or without overlap. The natural

whitespace chunking tends to end up with non-uniform chunk sizes.

Let’s look for common whitespaces in the textbook (Listing 2.5).

“hunking the textbook with natural whitespace

Importing the Counter and re libraries
from collections import Counter

import re

Find all occurrences of one or more spaces in 'princ
matches = re.findall(r'[\s]{1,}', principles_of_ds)

The 5 most frequent spaces that occur in the documen
most_common_spaces = Counter(matches).most common(5)

Print the most common spaces and their frequencies
print(most_common_spaces)

[('" ', 82259),
('\n', 9220),
(' ', 1592),
("\n\n', 333),
('\n ', 250)]

The most common double white space is two newline characters in a row
which is actually how I earlier distinguished between pages which makes
sense. The most natural whitespace in a book is by page. In other cases, we
may have found natural whitespace between paragraphs as well. This method
is very hands-on and requires a good amount of familiarity and knowledge of

the source documents.

We can also turn to more machine learning to get slightly more creative with

how we architect document chunks.

Using Clustering to Create Semantic Documents

Another approach to document chunking is to use clustering to create
semantic documents. This approach involves creating new documents by
combining small chunks of information that are semantically similar (Figure
2.8). This approach requires some creativity, as any modifications to the
document chunks will alter the resulting vector. We could use an instance of
Agglomerative clustering from scikit-learn, for example, where similar

sentences or paragraphs are grouped together to form new documents.

Important Document Important Document

Chunk 2

Chunk 1 Page 2

Chunk 3
Page 4
Natural Whitespace Chunking Grouping natural chunks by
with no overlap semantic similarity

Figure 2.8 We can group any kinds of document chunks together by using
some separate semantic clustering system (shown on the right) to create
brand new documents with chunks of information in them that are similar to

each other.

Let’s try to cluster together those chunks we found from the textbook in our

last section (Listing 2.6).

Clustering pages of the document by semantic similarity

from sklearn.cluster import AgglomerativeClustering
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np

Assume you have a list of text embeddings called "em
First, compute the cosine similarity matrix between
cosine_sim matrix = cosine_similarity(embeddings)

Instantiate the AgglomerativeClustering model

agg clustering = AgglomerativeClustering(
n_clusters=None, # the algorithm will dete
distance threshold=0.1, # clusters will be formed
affinity="precomputed', # we are providing a prec
linkage="complete’ # form clusters by iterat

Fit the model to the cosine distance matrix (1 - sim

agg clustering.fit(1 - cosine_sim matrix)

Get the cluster labels for each embedding
cluster_labels = agg clustering.labels_

Print the number of embeddings in each cluster

unique_labels, counts = np.unique(cluster labels, retu

for label, count in zip(unique_labels, counts):
print(f'Cluster {label}: {count} embeddings"')

Cluster 0: 2 embeddings
Cluster 1: 3 embeddings
Cluster 2: 4 embeddings

This approach tends to yield chunks that are more cohesive semantically but
suffer from pieces of content being out of context with surrounding text. This
approach works well when the chunks you start with are known to not
necessarily relate to each other i.e. chunks are more independent of one

another.

Use Entire Documents Without Chunking

Alternatively, it is possible to use entire documents without chunking. This
approach is probably the easiest option overall but will have drawbacks when
documents are far too long and we hit a context window limit when we
embed the text. We also might fall victim to the documents being filled with
extraneous disparate context points and the resulting embeddings may be
trying to encode too much and may suffer in quality. These drawbacks

compound for very large (multi-page) documents.

Table 2.1 Outlining different document chunking methods with pros and cons

Type of

Chunking Description Pros Cons
max-token The document is split | Simple and easy to | May cut off context in
window into fixed-size implement. between chunks,
chunking with windows, with each resulting in loss of
no overlap window representing information.

a separate document

chunk.
max-token The document is split | Simple and easy to | May result in redundant
window into fixed-size implement. information across
chunking with overlapping windows. different chunks.
overlap
Chunking on Natural white spaces | Can result in more | May be time-
natural in the document are | meaningful chunks | consuming to find the
delimiters used to determine the | that correspond to | right delimiters.

boundaries of each
chunk.

natural breaks in
the document.

Clustering to Similar document Can create more Requires more
create semantic | chunks are combined | meaningful computational resources
documents together to form documents that and may be more

larger semantic capture the overall | complex to implement.

documents. meaning of the

document.

Use entire The entire document | Simple and easy to | May suffer from a
documents is treated as a single | implement. context window for
without chunk. embedding, resulting in
chunking extraneous context that

may affect the quality
of the embedding.

It is important to consider the trade-offs between chunking and using entire
documents when selecting an approach for document embedding (Table 2.1).
Once we decide how we want to chunk our documents, we need a home for
the embeddings we create. Locally, we can rely on matrix operations for
quick retrieval, but we are building for the cloud here, so let’s look at our

database options.

Vector Databases

A vector database is a data storage system that is specifically designed to
both store and retrieve vectors quickly. This type of database is useful for
storing embeddings generated by an LLM which encode and store the
semantic meaning of our documents or chunks of documents. By storing
embeddings in a vector database, we can efficiently perform nearest-neighbor

searches to retrieve similar pieces of text based on their semantic meaning.

Pinecone

Pinecone is a vector database that is designed for small to medium-sized
datasets (usually ideal for less than 1 million entries). It is easy to get started
with Pinecone for free, but it also has a pricing plan that provides additional
features and increased scalability. Pinecone is optimized for fast vector
search and retrieval, making it a great choice for applications that require
low-latency search, such as recommendation systems, search engines, and

chatbots.

Open-source Alternatives

There are several open-source alternatives to Pinecone that can be used to
build a vector database for LLM embeddings. One such alternative is
Pgvector, a PostgreSQL extension that adds support for vector data types and
provides fast vector operations. Another option is Weaviate, a cloud-native,
open-source vector database that is designed for machine learning
applications. Weaviate provides support for semantic search and can be
integrated with other machine learning tools such as TensorFlow and
PyTorch. ANNQY is an open-source library for approximate nearest
neighbor search that is optimized for large-scale datasets. It can be used to

build a custom vector database that is tailored to specific use cases.

Re-ranking the Retrieved Results

After retrieving potential results from a vector database given a query using a
similarity like cosine similarity, it is often useful to re-rank them to ensure
that the most relevant results are presented to the user (Figure 2.9). One way
to re-rank results is by using a cross-encoder, which is a type of transformer
model that takes pairs of input sequences and predicts a score indicating how
relevant the second sequence is to the first. By using a cross-encoder to re-
rank search results, we can take into account the entire query context rather
than just individual keywords. This of course will add some overhead and
worsen our latency but it could help us in terms of performance. I will take

the time to outline some results in a later section to compare and contrast

using and not using a cross-encoder.

I'm a Data Scientist 018 042 0.75 0,025
2% 98% (019,012, 0.75,0.025..]
‘ .
1 I'work as a Data Scientist

[0.2,0.123,0.75, 0.025...] ‘

| am a biologist . (019,078, 0.55, 0.058...) ™

@ I'm a data analyst { [0.33,0123,0.05,019..] -
[0.82,093,065,029..) B

| am a chamist :
Cross-Encoder Bi-encoder

o

| am a Data Scientist | work as a Data Scientist

Figure 2.9 A cross-encoder (left) takes in two pieces of text and outputs a
similarity score without returning a vectorized format of the text. A bi-
encoder (right), on the other hand, embeds a bunch of pieces of text into
vectors up front and then retrieves them later in real time given a query (e.g.

looking up “I’m a Data Scientist”)

One popular source of cross-encoder models is the Sentence Transformers
library, which is where we found our bi-encoders earlier. We can also fine-
tune a pre-trained cross-encoder model on our task-specific dataset to
improve the relevance of search results and provide more accurate

recommendations.

Another option for re-ranking search results is by using a traditional retrieval
model like BM25, which ranks results by the frequency of query terms in the
document and takes into account term proximity and inverse document

frequency. While BM25 does not take into account the entire query context,

it can still be a useful way to re-rank search results and improve the overall

relevance of the results.

API

We now need a place to put all of these components so that users can access

the documents in a fast, secure, and easy way. To do this, let’s create an API.

FastAPI

FastAPI is a web framework for building APIs with Python quickly. It is
designed to be both fast and easy to set up, making it an excellent choice for
our semantic search API. FastAPI uses the Pydantic data validation library to
validate request and response data and uses the high-performance ASGI

server, uvicorn.

Setting up a FastAPI project is straightforward and requires minimal
configuration. FastAPI provides automatic documentation generation with
the OpenAPI standard, which makes it easy to build API documentation and

client libraries. Listing 2.7 is a skeleton of what that file would look like.

~astAPI skeleton code

import hashlib
import os
from fastapi import FastAPI

from pydantic import BaseModel

app = FastAPI()

openai.api_key = os.environ.get('OPENAI API KEY', '')
pinecone_key = os.environ.get('PINECONE_KEY', '')

Create an index in Pinecone with necessary propertie
def my hash(s):

Return the MD5 hash of the input string as a hex
return hashlib.md5(s.encode()).hexdigest()

class DocumentInputRequest(BaseModel):
define input to /document/ingest

class DocumentInputResponse(BaseModel):

define output from /document/ingest

class DocumentRetrieveRequest(BaseModel):
define input to /document/retrieve

class DocumentRetrieveResponse(BaseModel):
define output from /document/retrieve

API route to ingest documents

@app.post("/document/ingest", response model=DocumentI
async def document _ingest(request: DocumentInputReques
Parse request data and chunk it
Create embeddings and metadata for each chunk
Upsert embeddings and metadata to Pinecone
Return number of upserted chunks
return DocumentInputResponse(chunks count=num_chun

API route to retrieve documents
@app.post("/document/retrieve"”, response_model=Documen
async def document retrieve(request: DocumentRetrieveR
Parse request data and query Pinecone for matchi
Sort results based on re-ranking strategy, if an
Return a list of document responses
return DocumentRetrieveResponse(documents=document

if __name__ == "_main__":

uvicorn.run("api:app"”, host="0.0.0.0", port=8000,

1 1] [b

For the full file, be sure to check out the code repository for this book!

Putting It All Together

We now have a solution for all of our components. Let’s take a look at where

we are in our solution. Items in bold are new from the last time we outlined

this solution.

PART I - Ingesting documents

Collect documents for embedding - Chunk them

Create text embeddings to encode semantic information - OpenAl’s

Embedding

Store embeddings in a database for later retrieval given a query - Pinecone

PART II - Retrieving documents

User has a query which may be pre-processed and cleaned - FastAPI

Retrieve candidate documents - OpenAI’s Embedding + Pinecone

Re-rank the candidate documents if necessary - Cross-Encoder

Return the final search results - FastAPI

With all of these moving parts, let’s take a look at our final system

architecture in Figure 2.10.

Asymmetric Semantic Search

Adding Documeants. @ Retrieving Documents ﬂ

*

[¥
2 P i
OpenAl & Pinecone
| Ask query 8.9
Grab relevant documents password mset
L . fram vector database for androad
Embed each documen ino a vechor Stors embedded documants 0 Fa 5 tA P |
using OpenAls Embeddings product in vector database d
Ristum finad resalts
0 user
Documents Embadded 3
1o query Documants Re-grger rduly ==

Ranked
Rsults

Figure 2.10 Our complete semantic search architecture using two closed-
source systems (OpenAl and Pinecone) and an open source API framework

(FastAPI)

We now have a complete end to end solution for our semantic search. Let’s

see how well the system performs against a validation set.
Performance

I’ve outlined a solution to the problem of semantic search, but I want to also
talk about how to test how these different components work together. For
this, let’s use a well-known dataset to run against: the BoolQ dataset - a
question answering dataset for yes/no questions containing nearly 16K
examples. This dataset has pairs of (question, passage) that indicate for a
given question, that passage would be the best passage to answer the

question.

Table 2.2 outlines a few trials I ran and coded up in the code for this book. I

use combinations of embedders, re-ranking solutions, and a bit of fine-tuning

to try and see how well the system performs on two fronts:

>erformance - as indicated by the top result accuracy. For each known pair
of (question, passage) in our BoolQ validation set - 3,270 examples, we will
test if the system’s top result is the intended passage. This is not the only
metric we could have used. The sentence_transformers library has other

metrics including ranking evaluation, correlation evaluation, and more

_atency - I want to see how long it takes to run through these examples using
Pinecone, so for each embedder, I reset the index and uploaded new vectors
and used cross-encoders in my laptop’s memory to keep things simple and
standardized. Measured in minutes it took to run against the validation set of

the Bool(Q dataset

Table 2.2 Performance results from various combinations against the BoolQ

validation set

Embedder Re-ranking Top Result Time to run Notes
method Accuracy evaluation
(using
Pinecone)
OpenAl none 0.85229 18 minutes Easiest to run
by far
(closed source)
OpenAl Cross- 0.83731 27 minutes about 50%
encoder/mmarc slowdown
T p— o-mMiniLMv2- compa_red to
T L12-H384-vl not using the
cross-encoder
(open source) wilhme
accuracy boost
OpenAl Cross- 0.84190 27 minutes A newer cross-
encoder/ms- encoder
(closed source) e pecfomed
MinLM-L-12- better on the
v2 task, but still
not beating
(open source) gggnlf}ng
OpenAl CTOSS- 27 minutes Still didn’t beat
encoder/ms- 0.84954 only using
losed _ marco- OpenAl but
(glosed source] MiniLM-L-12- cross encoder’s
v2 accuracy
improved
compared to the
(open source -
and fine tuned
for 2 epochs on
boolQ training
data)
sentence- none 0.85260 16 minutes Barely beats
transformers/m OpenAl’s

ulti-qa-mpnet- standard
base-cos-vl embedding
with (fine-
tuning on the

open-source : ;
(op) bi-encoder. It is

also slightly
faster because
embedding is
performed
using compute
and not via
API.
sentence- Cross- (.84343 25 minutes Fine-tuned
transformers/m | encoder/ms- cross-encoder
ulti-ga-mpnet- | marco- 1s still not
base-cos-v1 MiniLM-L-12- giving
v2 noticeable
bump 1n
(open-source) :
performance
(open source
and fine tuned
for 2 epochs on
boolQ training
data)

Some experiments I didn’t try include the following:

Fine-tuning the cross-encoder for more epochs and spending more time
finding optimal learning parameters (e.g. weight decay, learning rate

scheduler, etc)

Jsing other OpenAl embedding engines

‘ine-tuning an open-source bi-encoder on the training set

Note that the models I used for the cross-encoder and the bi-encoder were
both specifically pre-trained on data that is similar to asymmetric semantic
search. This is important because we want the embedder to produce vectors
for both short queries and long documents and place them near each other

when they are related.

Let’s assume we want to keep things simple to get things off of the ground
and use only the OpenAl embedder and do no re-ranking (row 1) in our
application. Let’s consider the costs associated with using FastAPI, Pinecone,

and OpenAl for text embeddings.

The Cost of Closed-Source

We have a few components in play and not all of them are free. Fortunately
FastAPI is an open-source framework and does not require any licensing
fees. Our cost with FastAPI is hosting which could be on a free tier
depending on what service we use. I like Render which has a free tier but also
pricing starts at $7/month for 100% uptime. At the time of writing, Pinecone
offers a free tier with a limit of 100,000 embeddings and up to 3 indexes, but
beyond that, they charge based on the number of embeddings and indexes
used. Their Standard plan charges $49/month for up to 1 million embeddings

and 10 indexes.

OpenAl offers a free tier of their text embedding service, but it is limited to

100,000 requests per month. Beyond that, they charge $0.0004 per 1,000
tokens for the embedding engine we used - Ada-002. If we assume an
average of 500 tokens per document, the cost per document would be
$0.0002. For example, if we wanted to embed 1 million documents, it would

cost approximately $200.

If we want to build a system with 1 million embeddings, and we expect to
update the index once a month with totally fresh embeddings, the total cost

per month would be:

Pinecone Cost = $49

OpenAl Cost = $200

FastAPI Cost = $7

Total Cost = $49 + $200 + $7 = $256/month

A nice binary number :) Not intended but still fun.

These costs can quickly add up as the system scales, and it may be worth
exploring open-source alternatives or other strategies to reduce costs - like
using open-source bi-encoders for embedding or Pgvector as your vector

database.

Summary

With all of these components accounted for, our pennies added up, and
alternatives available at every step of the way, I’ll leave you all to it. Enjoy
setting up your new semantic search system and be sure to check out the
complete code for this - including a fully working FastAPI app with
instructions on how to deploy it - on the book’s code repository and
experiment to your heart’s content to try and make this work as well as

possible for your domain-specific data.

Stay tuned for our next chapter where we will build on this API with a

chatbot built using GPT-4 and our retrieval system.

First Steps with Prompt Engineering

Introduction

In our previous chapter, we built a semantic search system that leveraged the
power of Large Language Models (LLMs) to find relevant documents based
on natural language queries. The system was able to understand the meaning
behind the queries and retrieve accurate results, thanks to the pre-training of

the LLMs on vast amounts of text.

However, building an effective LL.M-based application can require more than
just plugging in a pre-trained model and feeding it data and we might want to
lean on the learnings of massively large language models to help complete

the loop. This is where prompt engineering begins to come into the picture.
Prompt Engineering

Prompt engineering involves crafting prompts that effectively communicate
the task at hand to the LLM, leading to accurate and useful outputs (Figure
3.1). It is a skill that requires an understanding of the nuances of language,
the specific domain being worked on, and the capabilities and limitations of

the LLM being used.

@OpenAI

Translate the following from English to a SQL query.

The Prompt

English: Sum up the amount column from the users table

SELECT SUM(amount) FROM users;
Q The LLM's Response

cohere

The Prompt
INFUT
Correct the grammar of this sentance.
They went to the store and buy food.
The LLM's Response

OUTPUT

They went to the store and bought food.

Figure 3.1 Prompt engineering is how we construct inputs to LLMs to get a

desired output.

In this chapter, we will delve deeper into the art of prompt engineering,
exploring techniques and best practices for crafting effective prompts that
lead to accurate and relevant outputs. We will cover topics such as structuring
prompts for different types of tasks, fine-tuning models for specific domains,

and evaluating the quality of LLM outputs.

By the end of this chapter, you will have the skills and knowledge needed to
create powerful LL.M-based applications that leverage the full potential of

these cutting-edge models.
Alignment in Language Models

Alignment in language models refers to how well the model can understand
and respond to input prompts that are in line with what the user expected. In
standard language modeling, a model is trained to predict the next word or
sequence of words based on the context of the preceding words. However,
this approach does not allow for specific instructions or prompts to be given

to the model, which can limit its usefulness for certain applications.

Prompt engineering can be challenging if the language model has not been
aligned with the prompts, as it may generate irrelevant or incorrect responses.
However, some language models have been developed with extra alignment
features, such as Constitutional Al-driven Reinforcement Learning from Al
Feedback (RLAIF) from Anthropic or Reinforcement Learning with Human
Feedback (RLHF) in OpenAI’s GPT series, which can incorporate explicit

instructions and feedback into the model’s training. These alignment

techniques can improve the model’s ability to understand and respond to
specific prompts, making them more useful for applications such as question-

answering or language translation (Figure 3.2).

Is the Earth flat?

GPT-3 before alignment (2020)

Yes.
What is the fastest way to travel from east to west?

The fastest way to travel from east to west is by going south to north.
Are two east/west roads the same?

Yes,

Is the Earth flat? GPT-3 after alignment (2022)

No, the Earth is not flat. It is widely accepted that the Earth is a sphere, although

it is sometimes referred to as an oblate spheroid due to its slightly flattened shape.
Figure 3.2 Even modern LLMs like GPT-3 need alignment to behave how we
want them to. The original GPT-3 model released in 2020 is a pure auto-
regressive language model and tries to “complete the thought” and gives me
some misinformation pretty freely. In January 2022, GPT-3’s first aligned
version was released (InstructGPT) and was able to answer questions in a

more succinct and accurate manner.

This chapter will focus on language models that have been specifically
designed and trained to be aligned with instructional prompts. These models
have been developed with the goal of improving their ability to understand
and respond to specific instructions or tasks. These include models like GPT-
3, ChatGPT (closed-source models from OpenAl), FLAN-T5 (an open-
source model from Google), and Cohere’s command series (closed-source),
which have been trained using large amounts of data and techniques such as
transfer learning and fine-tuning to be more effective at generating responses
to instructional prompts. Through this exploration, we will see the beginnings
of fully working NLP products and features that utilize these models, and
gain a deeper understanding of how to leverage aligned language models’ full

capabilities.

Just Ask

The first and most important rule of prompt engineering for instruction
aligned language models is to be clear and direct in what you are asking for.
When we give an LLM a task to complete, we want to make sure that we are
communicating that task as clearly as possible. This is especially true for

simple tasks that are straightforward for the LL.M to accomplish.

In the case of asking GPT-3 to correct the grammar of a sentence, a direct
instruction of “Correct the grammar of this sentence” is all you need to get a
clear and accurate response. The prompt should also clearly indicate the

phrase to be corrected (Figure 3.3).

Just asking with a

direct instruction
Correct the grammar of this sentence

They went to the store and buy food

They went to the store to buy food C
The LLM's direct

response
Figure 3.3 The best way to get started with an LLM aligned to answer

queries from humans is to simply ask.

Note

Many figures are screenshots of an LLM’s playground.
Experimenting with prompt formats in the playground or via
an online interface can help identify effective approaches,
which can then be tested more rigorously using larger data

batches and the code/API for optimal output.

To be even more confident in the LLLM’s response, we can provide a clear
indication of the input and output for the task by adding prefixes. Let’s take
another simple example asking GPT-3 to translate a sentence from English to

Turkish.
A simple “just ask” prompt will consist of three elements:

A direct instruction: “Translate from English to Turkish.” which belongs at

the top of the prompt so the LLM can pay attention to it (pun intended) while

reading the input, which is next

The English phrase we want translated preceded by “English:” which is our

clearly designated input

A space designated for the LLM to answer to give it’s answer which we will

add the intentionally similar prefix “Turkish:”

These three elements are all part of a direct set of instructions with an
organized answer area. By giving GPT-3 this clearly constructed prompt, it

will be able to recognize the task being asked of it and fill in the answer

correctly (Figure 3.4).

Clear and concise
instruction

Prefixes to denote Translate from English to Turkish

the input and output
English: How do I call a cab from the airport?

Turkish: Havalimanindan taksi gagirmak igin nasil yapanm?
Q The LLM's Response

aligned with what
the user wanted

Figure 3.4 This more fleshed out version of our just ask prompt has three
components: a clear and concise set of instructions, our input prefixed by an
explanatory label and a prefix for our output followed by a colon and no

further whitespace.

We can expand on this even further by asking the GPT-3 to output multiple

options for our corrected grammar by asking GPT-3 to give results back as a

numbered list (Figure 3.5).

The prompt asks for
multiple options as a
numbered list

Correct the grammar of this sentence. If there are multiple correct options, give
them in a numbered list.

They went to the store and buy food.

1. They went to the store and bought food.
2. They went to the store to buy food. The LLM's RESPDHSE

aligned with what

the user wanted
Figure 3.5 Part of giving clear and direct instructions is telling the LLM how

to structure the output. In this example, we ask GPT-3 to give grammatically

correct versions as a numbered list.

Therefore, when it comes to prompt engineering, the rule of thumb is simple:
when in doubt, just ask. Providing clear and direct instructions is crucial to

getting the most accurate and useful outputs from an LLM.
Few-shot Learning

When it comes to more complex tasks that require a deeper understanding of

language, giving an LLM a few examples can go a long way in helping an

LLM produce accurate and consistent outputs. Few-shot learning is a
powerful technique that involves providing an LL.M with a few examples of a

task to help it understand the context and nuances of the problem.

Few-shot learning has been a pretty major focus of research in the field of
LLMs. The creators of GPT-3 even recognized the potential of this technique,
which is evident from the fact that the original GPT-3 research paper was

titled “Language Models are Few-Shot Learners”.

Few-shot learning is particularly useful for tasks that require a certain tone,
syntax, or style, and for fields where the language used is specific to a
particular domain. Figure 3.6 shows an example of asking GPT-3 to classify
a review as being subjective or not. Basically this is a binary classification

task.

Few-shot

(expected "No")

Reviaw: This movie sucks
Subjective: Yas
HiH

Raviaw: This tv show talks about the ocean

Subjective: No
HaH

Review: This boak had a lot of flaws

Subjective: Yes
Hed

Review: The book was about WWII

Subjective: No

Few-shot
(expected "Yes")

Review: This movie sucks
Subjective: Yes

HAH

Review: This tv show talks about the ocean
Subjective: No

Hith

Reviaw: This book had a lot of flaws
Subjective: Yes

HHEH

Review: The book was not amazing
Subjective: Yes

Vs

No Few-shot

(expected "No")

Revigw: The boak was sbout WWII
Subjective

I found the book to be incredibly informative and interesting. It provided a detailed look at
the events of WWII and the people invalved. The author did a great job of bringing the
history ta life and making it accessible to readers. T would highly recommend this book to

anyone Interestad In learning more about WWII

Vs
No Few-shot

(expected "Yes")

Review: The book was not amazing
Subjective: I didn't enjoy the book.

Figure 3.6 A simple binary classification for whether a given review is

subjective or not. The top two examples show how LLMs can intuit a task’s

answer from only a few examples where the bottom two examples show the

same prompt structure without any examples (referred to as “zero-shot”) and

cannot seem to answer how we want it to.

In the following figure, we can see that the few-shot examples are more likely

to produce expected results because the LLM can look back at some

examples to intuit from.

Few-shot learning opens up new possibilities for how we can interact with
LLMs. With this technique, we can provide an LLLM with an understanding
of a task without explicitly providing instructions, making it more intuitive
and user-friendly. This breakthrough capability has paved the way for the
development of a wide range of LL.M-based applications, from chatbots to

language translation tools.
Output Structuring

LLMs can generate text in a variety of formats, sometimes with too much
variety. It can be helpful to structure the output in a specific way to make it
easier to work with and integrate into other systems. We’ve actually seen this
previously in this chapter when we asked GPT-3 to give us an answer in a
numbered list. We can also make an LLM give back structured data formats

like JSON (JavaScript Object Notation) as the output Figure 3.7).

“Just asking” gave us

avalid JSON
response, but maybe Translate from English to Turkish. Give the final answer as a valid JSOMN
not exactly what we
wanted. English: How do I call a cab from the airport?
JSON: {"Soru”; "Havalimanindan taksi cadimak icin nasil yapanm?"}
Mote;
Sonu” is
Turkigh for
‘Question” VS
A one-shot EXBF‘I‘IFﬂE Translate from English to Turkish. Give the final answer a5 a valid JSON like this
% English: (the english input phrase)
JSON: {"anglish": "(the input phrase)”, "turkish™: "(tha translated Turkish varsion"}

English: How da I call a cab from the airport?

with what we want

Figure 3.7 Simply asking GPT-3 to give a response back as a JSON (top)
does give back a valid JSON but the keys are also in Turkish which may not
be what we want. We can be more specific in our instruction by giving a one-
shot example (bottom) which makes the LLM output the translation in the

exact JSON format we requested.

By structuring LLM output in structured formats, developers can more easily
extract specific information and pass it on to other services. Additionally,
using a structured format can help ensure consistency in the output and

reduce the risk of errors or inconsistencies when working with the model.

Prompting Personas

Specific word choices in our prompts can greatly influence the output of the
model. Even small changes to the prompt can lead to vastly different results.
For example, adding or removing a single word can cause the LL.M to shift
its focus or change its interpretation of the task. In some cases, this may
result in incorrect or irrelevant responses, while in other cases, it may

produce the exact output desired.

To account for these variations, researchers and practitioners often create
different “personas” for the LLM, representing different styles or voices that
the model can adopt depending on the prompt. These personas can be based
on specific topics, genres, or even fictional characters, and are designed to

elicit specific types of responses from the LLLM (Figure 3.8).

No Persona

Answer this question as if you were a store attendant,
Rude Persona
Question: Where are the carrots?
Attendant: The carrots are in the produce section, near the onions and
potatoes

Answer this guestion as if you were a rude store attendant
Fun Persona

Question: Where are the carrots?
Attendant: *Points® Over there

Answer this question as if you were a excitable store attendant
Question: Where are the carrots?

Attendant: Right this way! Follow me and I'll show you where the carrots

are! They're just over here, ready for you to grab!
Horrible Persona

Outside-the-box
Persona
Answaer this question as if you were an anti-semitic store attendant.
Question: Where are the carrots?
Attendant: We don't carry any food here, especially not for Jews
Answer this question as if you were a pirate store attendant
Question: Where are the carrots?

Attendant: We don't sell carrots here at the pirate store, mate. We've got
plenty of grog and booty for ye though!

Figure 3.8 Starting from the top left and moving down we see a baseline
prompt of asking GPT-3 to respond as a store attendant. We can inject some
more personality by asking it to respond in an “excitable” way or even as a
pirate! We can also abuse this system by asking the LLM to respond in a rude
manner or even horribly as an anti-Semite. Any developer who wants to use
an LLM should be aware that these kinds of outputs are possible, whether

intentional or not. We will talk about advanced output validation techniques

in a future chapter that can help mitigate this behavior.

By taking advantage of personas, LLLM developers can better control the
output of the model and end-users of the system can get a more unique and

tailored experience.

Personas may not always be used for positive purposes. Just like any tool or
technology, some people may use LLMs to evoke harmful messages like if
we asked an LLM to imitate an anti-Semite like in the last figure. By feeding
the LLMs with prompts that promote hate speech or other harmful content,
individuals can generate text that perpetuates harmful ideas and reinforces
negative stereotypes. Creators of LL.Ms tend to take steps to mitigate this
potential misuse, such as implementing content filters and working with
human moderators to review the output of the model. Individuals who want
to use LLMs must also be responsible and ethical when using LL.Ms and
consider the potential impact of their actions (or the actions the LLM take on

their behalf) on others.

Working with Prompts Across Models

Prompts are highly dependent on the architecture and training of the language
model, meaning that what works for one model may not work for another.
For example, ChatGPT, GPT-3 (which is different from ChatGPT), T5, and
models in the Cohere command series all have different underlying

architectures, pre-training data sources, and training approaches, which all

impact the effectiveness of prompts when working with them. While some
prompts may transfer between models, others may need to be adapted or re-

engineered to work with a specific model.

In this section, we will explore how to work with prompts across models,
taking into account the unique features and limitations of each model to
develop effective prompts that can guide language models to generate the

desired output.
ChatGPT

Some LLMs can take in more than just a single “prompt”. Models that are
aligned to conversational dialogue like ChatGPT can take in a system
prompt and multiple “user” and “assistant” prompts (Figure 3.8). The system
prompt is meant to be a general directive for the conversation and will
generally include overarching rules and personas to follow. The user and
assistant prompts are messages between the user and the LL.M respectively.
For any LLM you choose to look at, be sure to check out their documentation

for specifics on how to structure input prompts.

User Message (prompt)

"Hey can you help me out?”

0

SYSTEM PROMPT)
Assistant Message (ChatGPT)
——
r 3 "Of course! How can | help?”
you are a friendly
and helpful chatbot
that ...”
User Message (prompt)
“I need help with"
Assistant Message (ChatGPT)
e

“You got it!”

Figure 3.8 ChatGPT takes in an overall system prompt as well as any

number of user and assistant prompts that simulate an ongoing conversation.

Cohere

We’ve already seen Cohere’s command series of models in action previously
in this chapter but as an alternative to OpenAl, it’s a good time to show that
prompts cannot always be simply ported over from one model to another.
Usually we need to alter the prompt slightly to allow another LLM to do its

work.

Let’s return to our simple translation example. Let’s ask OpenAl and Cohere

to translate something from English to Turkish (Figure 3.9).

®openAr cohere

INFUT

Translate to Turkish

Where is the nearest restaurant?

Same exact prompt
Translate to Turkish. TR Cﬁ doesn't work in Cohere
Nearby restaurant is here,
Where is the nearest restaurant?

En yakin restoran nerede?
INFUT

Translate to Turkish

|
Correct! English: Where is the nearest restaurant?

Turkish

Q A slight modification

makes the LLM do what
we nead!

QUTPUT

En yakin restoran nerede?

Figure 3.9 OpenAI’s GPT-3 can take a translation instruction without much
hand-holding whereas the cohere model seems to require a bit more

Structure.

It seems that the Cohere model I chose required a bit more structuring than
the OpenAl version. That doesn’t mean that the Cohere is worse than GPT-3,
it just means that we need to think about how our prompt is structured for a

given LLM.

Open-Source Prompt Engineering

It wouldn’t be fair to talk about prompt engineering and not talk about open-
source models like GPT-J and FLAN-T5. When working with them, prompt
engineering is a critical step to get the most out of their pre-training and fine-
tuning which we will start to cover in the next chapter. These models can
generate high-quality text output just like their closed-source counterparts but
unlike closed-source models like GPT and Cohere, open-source models offer
greater flexibility and control over prompt engineering, enabling developers
to customize prompts and tailor output to specific use cases during fine-

tuning.

For example, a developer working on a medical chatbot may want to create
prompts that focus on medical terminology and concepts, while a developer
working on a language translation model may want to create prompts that
emphasize grammar and syntax. With open-source models, developers have
the flexibility to fine-tune prompts to their specific use cases, resulting in

more accurate and relevant text output.

Another advantage of prompt engineering in open-source models is
collaboration with other developers and researchers. Open-source models
have a large and active community of users and contributors, which allows
developers to share their prompt engineering strategies, receive feedback, and
collaborate on improving the overall performance of the model. This
collaborative approach to prompt engineering can lead to faster progress and

more significant breakthroughs in natural language processing research.

It pays to remember how open-source models were pre-trained and fine-tuned

(if they were at all). For example, GPT-J is simply an auto-regressive

language model, so we’d expect things like few shot prompting to work

better than simply asking a direct instructional promp, t whereas FLAN-T5

was specifically fine-tuned with instructional prompting in mind so while

few-shots will still be on the table, we can also rely on the simplicity of just

asking (Figure 3.10).

GPT-J 6B

« EleutherAl
« Open-source
« No alignment

Review: This movie sucks

Subjective: Yes

(L]

Review: This tv shaw was about the aeean

Faw-shot works Subjective: No
ane

pretty well
% Review: This book had a lot of flaws
Subjective: Yes

()
Rieview: The book was about Wil
Subjective: No

| am a newbide to Ubuntu
Instruction

Prompting falls cicht tin

<pitti=

<pitti>ah, cood! you just happened to install at the

FLAN-TS XXL

» Google
« Open-source
« Instruction alignment

Reeview: This mewie sucks
bt Yy
L1

Review: This by show was about the poean
sl FLAN-TS seams to
Subqectivi: No

i Cp not be as good at
Review: This bk had a ot of flaws this task, even with

Subjectie: Yoy few-shot
-

Revew: The book was sboul Wi
Subyective

Yo

Translate to German: My name is Sinan

Instruction

@ Prompting works
will

Ich bim Sinan.

Figure 3.10 Open source models can vary drastically in how they were

trained and how they expect prompts. Models like GPT-J which is not

instruction aligned has a hard time answering a direct instruction (bottom

left) whereas FLAN-T5 which was aligned to instructions does know how to

accept instructions (bottom right). Both models are able to intuit from few-

shot learning but FLAN-T5 seems to be having trouble with our subjective
task. Perhaps a great candidate for some fine-tuning! Coming soon to a

chapter near you.

Building a Q/A bot with ChatGPT

Let’s build a very simple Q/A bot using ChatGPT and the semantic retrieval
system we built in the last chapter. Recall that one of our API endpoints is

used to retrieve documents from our BoolQ dataset given a natural query.

Note

Both ChatGPT (GPT 3.5) and GPT-4 are conversational
LLMs and take in the same kind of system prompt as well as
user prompts assistant prompts. When I say we are using
ChatGPT, we could be using either GPT 3.5 or GPT-4. Our
repository uses the most up to date model (which at the time

of writing is GPT-4).

All we need to do to get off the ground is:

Jesign a system prompt for ChatGPT

search for context in our knowledge with every new user message

Inject any context we find from our DB directly into ChatGPT’s system

prompt

et ChatGPT do its job and answer the question

Figure 3.11 outlines these high level steps:

QA Chaibol with ChatGeT

O FastAPI Ask query e.g.

“wihat are fixed costs?”

2
retrieve results fram our Vector Database

4
ChatGPT returns
conversational response

3
Daliver highly confident
results to ChatGPT

Figure 3.11 A 10,000 foot view of our chatbot that uses ChatGPT to provide

a conversational interface in front of our semantic search API.

To dig into it one step deeper, Figure 3.12 shows how this will work at the
prompt level, step by step:

Starting State Bot's first turn

Knowieoge Base EYSTEM PROMPT Usar Messags [prompt) Knowksdgs Basa SYSTEM PROMPT Usar Mastaga (prmpt]
gy wial i Booad Crila T “Heey witant are Tund costs ¥
O whils “Trca whales U
alten - aiten.
Y A “yind e A Mrienadly
_______ e ol chati 2] ek ks Assistant Message (ChatGRT)
that can only BNl G iy = 3 .
- e questions P BT QUL Ve onty
Chishiafy.." hased on 3 Eremistry..* Exbiaind isf1 it
knowindge base” ol base”
T acongmics, .. T scnomics, ..* E::srunhuwdp
Bl W SRS,
------- S Contest from H
Inwiedine
ot il vy “Boma other very basa oss in
wsnful infgrmation™ usahd information” sk sl
oot
User's second turn Bot's second turn
Knrbncign lase SYSTEM PROMPT Usar Misssge [promyt) Knawledge Basa SVETEM PROMET Uner Mowsage (prompt|
“Hay what e fosd CotsT “Hry whit ar fisd conts
e whiakes [L “Orca whales
aftan often.”
“you are a friandly “you v o briendly
_______ v haph chattot ik Agwstant Messgs [ChatGeT] o sl chiot Adaritant Massiie (ChardeT)
that can orly ; T : :
o et qeelions b “uclogy wd answer questions Fored cotts ar¥
Ghesmisny. " Dasad on & Cramisry..” based on a
Knewindgn s knawleige hase” |
....... o . =
I econmmics, " 2 I LONGMIC, .~ From the knowiedge g
Fromm the inowlecie ol No decument in the B 0 conomics, L
....... P I AR,
knowlodge base |l
“Soeme ather very fits the bill “Som other very
sl icrmation” st information” Ravicant Mussage (ChmsOPT)

=

Figure 3.12 Starting from the top left and reading left to right, these four
states represent how our bot is architected. Every time a user says something
that surfaces a confident document from our knowledge base, that document
is inserted directly into the system prompt where we tell ChatGPT to only use

documents from our knowledge base.

Let’s wrap all of this logic into a Python class that will have a skeleton like in

Listing 3.1.

A ChatGPT Q/A bot

Define a system prompt that gives the bot context th
SYSTEM_PROMPT = "'’

You are a helpful Q/A bot that can only reference mate
All context was pulled from a knowledge base.

If a user asks anything that is not "from the knowledg

Define the ChatbotGPT class
class ChatbotGPT():

Define the constructor method for the class

def _init (self, system prompt, threshold=.8):
Initialize the conversation list with the sy
Set a threshold for the similarity score bet
pass

Define a method to display the conversation in a
def display conversation(self):
Iterate through each turn in the conversatio
Get the role and content of the turn
Print out the role and content in a readable
pass

Define a method to handle the user's input
def user_turn(self, message):

Add the user's input as a turn in the conver
Get the best matching result from the knowle
Check if the confidence score between the us
Add the context from the knowledge base to t
Generate a response from the ChatGPT model u
Add the GPT-3.5 response as a turn in the co

H O H OHF OH O H OH OH

Return the assistant's response
pass

4 1L 2

A full implementation of this code using GPT-4 is in the book’s repository

and Figure 3.13 presents a sample conversation we can have with it.

System: You are a helpful G/A bot that can only reference material from a knowledge base,

If a user asks anything that is not “from the knowledge base”, say that you cannot answer.
From the knowladge base: "{{sconomics Informatian})” 3 Our system

From the knowledge base: "{{baseball information}}” Pmmpt el
____________ ChatGPT to not
User: what are fived costs? answer questions
outside of the

Assistant: In economics, fised costs, indirect costs or overheads are business expenses that are not

dependent on the level of goods or services produced by the busingss, They tend to be time-related, domain
such as salaries or rents being paid per manth, and are often referred 1o as overhead costs

Answering User: How old is Obama? y
guestionsina -

conversational

format User: how many innings are in a game of baseball?

% Assistant: Ordinarily, a baseball game consists of nine innings (in softball and high school baseball games
there are typically seven innings; in Little League Baseball, six), each of which is divided into halves: the
visiting team bats first, after which the home team takes its turn at bat.

User: thanks so much!

Assistant You're welcome! If you have any more guestions related to the knowledge base, feel free to
ask.

Figure 3.13 Asking our bot about information from the BoolQ dataset yields

cohesive and conversational answers whereas when I ask about Barack

Obama’s age (which is information not present in the knowledge base) the Al
politely declines to answer even though that is general knowledge it would

try to use otherwise.

As a part of testing, I decided to try something out of the box and built a new
namespace in the same vector database (Thank you, Pinecone) and I chunked
documents out of a PDF of a Star Wars-themed card game I like. I wanted to
use the chatbot to ask basic questions about the game and let ChatGPT

retrieve portions of the manual to answer my questions. Figure 3.14 was the

result!

System: You are a helpful OfA bot that can only reference material from a knowledge base. Our bot can now
It @ user asks anything that is not “from the knowledge base”, say that you cannot answaer,

answer questions
From the explicit usable knowledge base: {{information from game manuall) about uirtually
"""""" anything with the
User: How do | know which cards start in my deck? :

right knowledge

Assistant: To determing which cards start in your deck, you need to choose a faction (either Empire or Rebel) and then shuffle base

together the 10 starter cards that match your chosen faction. The Rebed starter cards include 7 Aliiance Shutties, 2 Rebel Troopers,
and 1 Temple Guardian. Tha Empane starter cards include 7 Impsrial Shuttles, 2 Stormtroopers, and 1 Inguisitor, This shuffled group
of 10 cards will be your player deck, which you should place facedown near your base deck

User: what are fiwed costs?

Assistant: I'm sorry, but the question is not related to the knowledge base | have been provided with. Can you please provide mone
context or clarify the topsc you are asking about?

Tied to a new
knowledge base,
this question is
now out of scope

Figure 3.14 The same architecture and system prompt against a new
knowledge base of a card game manual. Now I can ask questions in the

manual but my questions from BoolQ are no longer in scope.

Not bad at all if I may say so.

Summary

Prompt engineering, the process of designing and optimizing prompts to
improve the performance of language models can be fun, iterative, and
sometimes tricky! We saw many tips and tricks on how to get started such as
understanding alignment, just asking, few-shot learning, output structuring,
prompting personas, and working with prompts across models. We also built
our own chatbot using ChatGPT’s prompt interface that was able to tie into

the API we built in the last chapter.

There is a strong correlation between proficient prompt engineering and
effective writing. A well-crafted prompt provides the model with clear
instructions, resulting in an output that closely aligns with the desired
response. When a human can comprehend and create the expected output
from a given prompt, it is indicative of a well-structured and useful prompt
for the LLM. However, if a prompt allows for multiple responses or is in
general vague, then it is likely too ambiguous for an LLM. This parallel
between prompt engineering and writing highlights that the art of writing
effective prompts is more like crafting data annotation guidelines or engaging

in skillful writing than it is similar to traditional engineering practices.

Prompt engineering is an important process for improving the performance of
language models. By designing and optimizing prompts, language models

can better understand and respond to user inputs. In a later chapter, we will

revisit prompt engineering with some more advanced topics like LLM output
validation, chain of thought prompting to force an LLM to think out loud, and

chaining multiple prompts together into larger workflows.

4

Fine-Tuning GPT3 with Custom Examples [This

content is currently in development.]

This content is currently in development.

Part II: Getting the most out of LLMs

Advanced Prompt Engineering Techniques [This

content is currently in development.]

This content is currently in development.

6

Building a Recommendation Engine [This content is

currently in development.]

This content is currently in development.

Combining Transformers [This content is currently in

development.]

This content is currently in development.

8

Fine-Tuning Open-Source LL.Ms [This content is

currently in development.]

This content is currently in development.

Deploying Custom LIL.Ms to the Cloud [This content is

currently in development.]

This content is currently in development.

	Cover Page
	Title Page
	Contents at a Glance
	Table of Contents
	Preface
	Part I: Introduction to Large Language Models
	1. Overview of Large Language Models
	What Are Large Language Models (LLMs)?
	Popular Modern LLMs
	Domain-Specific LLMs
	Applications of LLMs

	2. Launching an Application with Proprietary Models
	Introduction
	The Task
	Solution Overview
	The Components
	Putting It All Together
	The Cost of Closed-Source
	Summary

	3. Prompt Engineering with GPT3
	Introduction
	Prompt Engineering
	Working with Prompts Across Models
	Building a Q/A bot with ChatGPT
	Summary

	4. Fine-Tuning GPT3 with Custom Examples [This content is currently in development.]

	Part II: Getting the most out of LLMs
	5. Advanced Prompt Engineering Techniques [This content is currently in development.]
	6. Building a Recommendation Engine [This content is currently in development.]
	7. Combining Transformers [This content is currently in development.]
	8. Fine-Tuning Open-Source LLMs [This content is currently in development.]
	9. Deploying Custom LLMs to the Cloud [This content is currently in development.]

