

Quick Start Guide to Large Language
Models

Strategies and Best Practices for using ChatGPT and Other LLMs

Sinan Ozdemir

Addison-Wesley

Contents at a Glance

Preface

Part I: Introduction to Large Language Models

1. Overview of Large Language Models

2. Launching an Application with Proprietary Models

3. Prompt Engineering with GPT3

4. Fine-Tuning GPT3 with Custom Examples

Part II: Getting the most out of LLMs

5. Advanced Prompt Engineering Techniques

6. Building a Recommendation Engine

7. Combining Transformers

8. Fine-Tuning Open-Source LLMs

9. Deploying Custom LLMs to the Cloud

Table of Contents

Preface

Part I: Introduction to Large Language Models

Chapter 1: Overview of Large Language Models

What Are Large Language Models (LLMs)?

Popular Modern LLMs

Domain-Specific LLMs

Applications of LLMs

Chapter 2: Launching an Application with Proprietary Models

Introduction

The Task

Solution Overview

The Components

Putting It All Together

The Cost of Closed-Source

Summary

Chapter 3: Prompt Engineering with GPT3

Introduction

Prompt Engineering

Working with Prompts Across Models

Building a Q/A bot with ChatGPT

Summary

Chapter 4: Fine-Tuning GPT3 with Custom Examples

Overview of Transfer Learning & Fine-tuning

Overview of GPT3 Fine-tuning API

Using Fine-tuned GPT3 Models to Get Better Results

Part II: Getting the most out of LLMs

Chapter 5: Advanced Prompt Engineering Techniques

Input/Output Validation

Chain of Thought Prompting

Prompt Chaining Workflows

Preventing against Prompt Injection Attacks

Building a bot that can execute code on our behalf

Chapter 6: Building a Recommendation Engine

Overview of Siamese BERT Architectures

Fine-Tuning BERT for Classifying + Tagging Items

Fine-Tuning Siamese BERT for Recommendations

Chapter 7: Combining Transformers

Overview of Vision Transformer

Building an Image Captioning System with GPT-J

Chapter 8: Fine-Tuning Open-Source LLMs

Overview of T5

Building Translation/Summarization Pipelines with T5

Chapter 9: Deploying Custom LLMs to the Cloud

Overview of Cloud Deployment

Best Practices for Cloud Deployment

Preface

The advancement of Large Language Models (LLMs) has revolutionized the

field of Natural Language Processing in recent years. Models like BERT, T5,

and ChatGPT have demonstrated unprecedented performance on a wide

range of NLP tasks, from text classification to machine translation. Despite

their impressive performance, the use of LLMs remains challenging for many

practitioners. The sheer size of these models, combined with the lack of

understanding of their inner workings, has made it difficult for practitioners

to effectively use and optimize these models for their specific needs.

This practical guide to the use of LLMs in NLP provides an overview of the

key concepts and techniques used in LLMs and explains how these models

work and how they can be used for various NLP tasks. The book also covers

advanced topics, such as fine-tuning, alignment, and information retrieval

while providing practical tips and tricks for training and optimizing LLMs for

specific NLP tasks.

This work addresses a wide range of topics in the field of Large Language

Models, including the basics of LLMs, launching an application with

proprietary models, fine-tuning GPT3 with custom examples, prompt

engineering, building a recommendation engine, combining Transformers,

and deploying custom LLMs to the cloud. It offers an in-depth look at the

various concepts, techniques, and tools used in the field of Large Language

Models.

Topics covered:

 Coding with Large Language Models (LLMs)

 Overview of using proprietary models

 OpenAI, Embeddings, GPT3, and ChatGPT

 Vector databases and building a neural/semantic information retrieval system

 Fine-tuning GPT3 with custom examples

 Prompt engineering with GPT3 and ChatGPT

 Advanced prompt engineering techniques

 Building a recommendation engine

 Combining Transformers

10. Deploying custom LLMs to the cloud

Part I: Introduction to Large Language
Models

1

Overview of Large Language Models

Ever since an advanced artificial intelligence (AI) deep learning model called

the Transformer was introduced by a team at Google Brain in 2017, it has

become the standard for tackling various natural language processing (NLP)

tasks in academia and industry. It is likely that you have interacted with a

Transformer model today without even realizing it, as Google uses BERT to

enhance its search engine by better understanding users’ search queries. The

GPT family of models from OpenAI have also received attention for their

ability to generate human-like text and images.

Figure 1.1 A brief history of Modern NLP highlights using deep learning to

tackle language modeling, advancements in large scale semantic token

embeddings (Word2vec), sequence to sequence models with attention

(something we will see in more depth later in this chapter), and finally the

Transformer in 2017.

These Transformers now power applications such as GitHub’s Copilot

(developed by OpenAI in collaboration with Microsoft), which can convert

comments and snippets of code into fully functioning source code that can

even call upon other LLMs (like in Listing 1.1) to perform NLP tasks.

 Using the Copilot LLM to get an output from Facebook’s BART LLM

from transformers import pipeline

def classify_text(email):
 """
 Use Facebook's BART model to classify an email into "spam" or "not spam"

 Args:
 email (str): The email to classify
 Returns:
 str: The classification of the email
 """
 # COPILOT START. EVERYTHING BEFORE THIS COMMENT WAS INPUT TO BART
 classifier = pipeline(
 'zero-shot-classification', model='facebook/bart-large-mnli')

 labels = ['spam', 'not spam']
 hypothesis_template = 'This email is {}.'

 results = classifier(
 email, labels, hypothesis_template=hypothesis_template)

 return results['labels'][0]
 # COPILOT END

In this listing, I use Copilot to take in only a Python function definition and

some comments I wrote and wrote all of the code to make the function do

what I wrote. No cherry-picking here, just a fully working python function

that I can call like this:

classify_text('hi I am spam') # spam

It appears we are surrounded by LLMs, but just what are they doing under the

hood? Let’s find out!

What Are Large Language Models (LLMs)?

Large language models (LLMs) are AI models that are usually (but not

necessarily) derived from the Transformer architecture and are designed to

understand and generate human language, code, and much more. These

models are trained on vast amounts of text data, allowing them to capture the

complexities and nuances of human language. LLMs can perform a wide

range of language tasks, from simple text classification to text generation,

with high accuracy, fluency, and style.

In the healthcare industry, LLMs are being used for electronic medical record

(EMR) processing, clinical trial matching, and drug discovery. In finance,

LLMs are being utilized for fraud detection, sentiment analysis of financial

news, and even trading strategies. LLMs are also used for customer service

automation via chatbots and virtual assistants. With their versatility and

highly performant natures, Transformer-based LLMs are becoming an

increasingly valuable asset in a variety of industries and applications.

Note

I will use the term understand a fair amount in this text. I am

usually referring to “Natural Language Understanding” (NLU)

which is a research branch of NLP that focuses on developing

algorithms and models that can accurately interpret human

language. As we will see, NLU models excel at tasks such as

classification, sentiment analysis, and named entity

recognition. However, it is important to note that while these

models can perform complex language tasks, they do not

possess true understanding in the way humans do.

The success of LLMs and Transformers is due to the combination of several

ideas. Most of these ideas had been around for years but were also being

actively researched around the same time. Mechanisms such as attention,

transfer learning, and scaling up neural networks which provide the

scaffolding for Transformers were seeing breakthroughs right around the

same time. Figure 1.1 outlines some of the biggest advancements in NLP in

the last few decades, all leading up to the invention of the Transformer.

The Transformer architecture itself is quite impressive. It can be highly

parallelized and scaled in ways that previous state of the art NLP models

could not be, allowing it to scale to much larger data sets and training times

than previous NLP models. The Transformer uses a special kind of attention

calculation called self-attention to allow each word in a sequence to “attend

to” (look to for context) all other words in the sequence, enabling it to capture

long-range dependencies and contextual relationships between words. Of

course, no architecture is perfect. Transformers are still limited to an input

context window which represents the maximum length of text it can process

at any given moment.

Since the advent of the Transformer in 2017, the ecosystem around using and

deploying Transformers has only exploded. The aptly named “Transformers”

library and its supporting packages have made it accessible for practitioners

to use, train, and share models, greatly accelerating its adoption and being

used by thousands of organizations and counting. Popular LLM repositories

like Hugging Face have popped up, providing access to powerful open-source

models to the masses. In short, using and productionizing a Transformer has

never been easier.

That’s where this book comes in.

My goal is to guide you on how to use, train, and optimize all kinds of LLMs

for practical applications while giving you just enough insight into the inner

workings of the model to know how to make optimal decisions about model

choice, data format, fine-tuning parameters, and so much more.

My aim is to make using Transformers accessible for software developers,

data scientists, analysts, and hobbyists alike. To do that, we should start on a

level playing field and learn a bit more about LLMs.

Definition of LLMs

To back up only slightly, we should talk first about the specific NLP task that

LLMs and Transformers are being used to solve and provides the foundation

layer for their ability to solve a multitude of tasks. Language modeling is a

subfield of NLP that involves the creation of statistical/deep learning models

for predicting the likelihood of a sequence of tokens in a specified

vocabulary (a limited and known set of tokens). There are generally two

kinds of language modeling tasks out there: autoencoding tasks and

autoregressive tasks Figure 1.2)

Note

The term token refers to the smallest unit of semantic

meaning created by breaking down a sentence or piece of text

into smaller units and are the basic inputs for an LLM. Tokens

can be words but also can be “sub-words” as we will see in

more depth throughout this book. Some readers may be

familiar with the term “n-gram” which refers to a sequence of

n consecutive tokens.

Autoregressive language models are trained to predict the next token in a

sentence, based only on the previous tokens in the phrase. These models

correspond to the decoder part of the transformer model, and a mask is

applied to the full sentence so that the attention heads can only see the tokens

that came before. Autoregressive models are ideal for text generation and a

good example of this type of model is GPT.

Autoencoding language models are trained to reconstruct the original

sentence from a corrupted version of the input. These models correspond to

the encoder part of the transformer model and have access to the full input

without any mask. Autoencoding models create a bidirectional representation

of the whole sentence. They can be fine-tuned for a variety of tasks such as

text generation, but their main application is sentence classification or token

classification. A typical example of this type of model is BERT.

Figure 1.2 Both the autoencoding and autoregressive language modeling task

involves filling in a missing token but only the autoencoding task allows for

context to be seen on both sides of the missing token.

To summarize, Large Language Models (LLMs) are language models that are

either autoregressive , autoencoding, or a combination of the two. Modern

LLMs are usually based on the Transformer architecture which is what we

will use but they can be based on another architecture. The defining feature of

LLMs is their large size and large training datasets which enables them to

perform complex language tasks, such as text generation and classification,

with high accuracy and with little to no fine-tuning.

Table 1.1 shows the disk size, memory usage, number of parameters, and

approximate size of the pre-training data for several popular large language

models (LLMs). Note that these sizes are approximate and may vary

depending on the specific implementation and hardware used.

Table 1.1 Comparison of Popular Large Language Models (LLMs)

But size is everything. Let’s look at some of the key characteristics of LLMs

and then dive into how LLMs learn to read and write.

Key Characteristics of LLMs

The original Transformer architecture, as devised in 2017, was a sequence-

to-sequence model, which means it had two main components:

 An encoder which is tasked with taking in raw text, splitting them up into its

core components (more on this later), converting them into vectors (similar to

the Word2vec process), and using attention to understand the context of the

text

 A decoder which excels at generating text by using a modified type of

attention to predict the next best token

As shown in Figure 1.3, The Transformer has many other sub-components

that we won’t get into that promotes faster training, generalizability, and

better performance. Today’s LLMs are for the most part variants of the

original Transformer. Models like BERT and GPT dissect the Transformer

into only an encoder and decoder (respectively) in order to build models that

excel in understanding and generating (also respectively).

Figure 1.3 The original Transformer has two main components: an encoder

which is great at understanding text, and a decoder which is great at

generating text. Putting them together makes the entire model a “sequence to

sequence” model.

In general, LLMs can be categorized into three main buckets:

 Autoregressive models, such as GPT, which predict the next token in a

sentence based on the previous tokens. They are effective at generating

coherent free-text following a given context

 Autoencoding models, such as BERT, which build a bidirectional

representation of a sentence by masking some of the input tokens and trying

to predict them from the remaining ones. They are adept at capturing

contextual relationships between tokens quickly and at scale which make

them great candidates for text classification tasks for example.

Combinations of autoregressive and autoencoding, like T5, which can use

the encoder and decoder to be more versatile and flexible in generating text.

It has been shown that these combination models can generate more diverse

and creative text in different contexts compared to pure decoder-based

autoregressive models due to their ability to capture additional context using

the encoder.

Figure 1.4 A breakdown of the key characteristics of LLMs based on how

they are derived from the original Transformer architecture.

Figure 1.4 shows the breakdown of the key characteristics of LLMs based on

these three buckets.

More Context Please

No matter how the LLM is constructed and what parts of the Transformer it

is using, they all care about context (Figure 1.5). The goal is to understand

each token as it relates to the other tokens in the input text. Beginning with

the popularity of Word2vec around 2013, NLP practitioners and researchers

were always curious about the best ways of combining semantic meaning

(basically word definitions) and context (with the surrounding tokens) to

create the most meaningful token embeddings possible. The Transformer

relies on the attention calculation to make this combination a reality.

Figure 1.5 LLMs are great at understanding context. The word “Python” can

have different meanings depending on the context. We could be talking about

a snake, or a pretty cool coding language.

Choosing what kind of Transformer derivation you want isn’t enough. Just

choosing the encoder doesn’t mean your Transformer is magically good at

understanding text. Let’s take a look at how these LLMs actually learn to

read and write.

How LLMs Work

How an LLM is pre-trained and fine-tuned makes all the difference between

an alright performing model and something state of the art and highly

accurate. We’ll need to take a quick look into how LLMs are pre-trained to

understand what they are good at, what they are bad at, and whether or not

we would need to update them with our own custom data.

Pre-training

Every LLM on the market has been pre-trained on a large corpus of text data

and on specific language modeling related tasks. During pre-training, the

LLM tries to learn and understand general language and relationships

between words. Every LLM is trained on different corpora and on different

tasks.

BERT, for example, was originally pre-trained on two publicly available text

corpora (Figure 1.6):

 English Wikipedia - a collection of articles from the English version of

Wikipedia, a free online encyclopedia. It contains a range of topics and

writing styles, making it a diverse and representative sample of English

language text

• At the time 2.5 billion words.

The BookCorpus - a large collection of fiction and non-fiction books. It was

created by scraping book text from the web and includes a range of genres,

from romance and mystery to science fiction and history. The books in the

corpus were selected to have a minimum length of 2000 words and to be

written in English by authors with verified identities

• 800M words.

and on two specific language modeling specific tasks (Figure 1.7):

 The Masked Language Modeling (MLM) task (AKA the autoencoding task)

—this helps BERT recognize token interactions within a single sentence.

 The Next Sentence Prediction Task—this helps BERT understand how tokens

interact with each other between sentences.

Figure 1.6 BERT was originally pre-trained on English Wikipedia and the

BookCorpus. More modern LLMs are trained on datasets thousands of times

larger.

Pre-training on these corpora allowed BERT (mainly via the self-attention

mechanism) to learn a rich set of language features and contextual

relationships. The use of large, diverse corpora like these has become a

common practice in NLP research, as it has been shown to improve the

performance of models on downstream tasks.

Note

The pre-training process for an LLM can evolve over time as

researchers find better ways of training LLMs and phase out

methods that don’t help as much. For example within a year of

the original Google BERT release that used the Next Sentence

Prediction (NSP) pre-training task, a BERT variant called

RoBERTa (yes, most of these LLM names will be fun) by

Facebook AI was shown to not require the NSP task to match

and even beat the original BERT model’s performance in

several areas.

Depending on which LLM you decide to use, it will likely be pre-trained

differently from the rest. This is what sets LLMs apart from each other. Some

LLMs are trained on proprietary data sources including OpenAI’s GPT

family of models in order to give their parent companies an edge over their

competitors.

We will not revisit the idea of pre-training often in this book because it’s not

exactly the “quick” part of a “quick start guide” but it can be worth knowing

how these models were pre-trained because it’s because of this pre-training

that we can apply something called transfer learning to let us achieve the

state-of-the-art results we want, which is a big deal!

Figure 1.7 BERT was pre-trained on two tasks: the autoencoding language

modeling task (referred to as the “masked language modeling” task) to teach

it individual word embeddings and the “next sentence prediction” task to help

it learn to embed entire sequences of text.

Transfer Learning

Transfer learning is a technique used in machine learning to leverage the

knowledge gained from one task to improve performance on another related

task. Transfer learning for LLMs involves taking an LLM that has been pre-

trained on one corpus of text data and then fine-tuning it for a specific

“downstream” task, such as text classification or text generation, by updating

the model’s parameters with task-specific data.

The idea behind transfer learning is that the pre-trained model has already

learned a lot of information about the language and relationships between

words, and this information can be used as a starting point to improve

performance on a new task. Transfer learning allows LLMs to be fine-tuned

for specific tasks with much smaller amounts of task-specific data than it

would require if the model were trained from scratch. This greatly reduces

the amount of time and resources required to train LLMs. Figure 1.8 provides

a visual representation of this relationship.

Fine-tuning

Once a LLM has been pre-trained, it can be fine-tuned for specific tasks.

Fine-tuning involves training the LLM on a smaller, task-specific dataset to

adjust its parameters for the specific task at hand. This allows the LLM to

leverage its pre-trained knowledge of the language to improve its accuracy

for the specific task. Fine-tuning has been shown to drastically improve

performance on domain-specific and task-specific tasks and lets LLMs adapt

quickly to a wide variety of NLP applications.

Figure 1.8 The general transfer learning loop involves pre-training a model

on a generic dataset on some generic self-supervised task and then fine-

tuning the model on a task-specific dataset.

Figure 1.9 shows the basic fine-tuning loop that we will use for our models in

later chapters. Whether they are open-sourced or closed-sourced the loop is

more or less the same:

1. We define the model we want to fine-tune as well as any fine-tuning

parameters (e.g., learning rate)

2. We will aggregate some training data (the format and other characteristics

depend on the model we are updating)

3. We compute losses (a measure of error) and gradients (information about how

to change the model to minimize error)

4. We update the model through backpropagation – a mechanism to update

model parameters to minimize errors

If some of that went over your head, not to worry: we will rely on pre-built

tools from Hugging Face’s Transformers package (Figure 1.9) and OpenAI’s

Fine-tuning API to abstract away a lot of this so we can really focus on our

data and our models.

Note

You will not need a Hugging Face account or key to follow

along and use any of this code apart from very specific

advanced exercises where I will call it out.

Attention

The name of the original paper that introduced the Transformer was called

“Attention is all you need”. Attention is a mechanism used in deep learning

models (not just Transformers) that assigns different weights to different

parts of the input, allowing the model to prioritize and emphasize the most

important information while performing tasks like translation or

summarization. Essentially, attention allows a model to “focus” on different

parts of the input dynamically, leading to improved performance and more

accurate results. Before the popularization of attention, most neural networks

processed all inputs equally and the models relied on a fixed representation of

the input to make predictions. Modern LLMs that rely on attention can

dynamically focus on different parts of input sequences, allowing them to

weigh the importance of each part in making predictions.

Figure 1.9 The Transformers package from Hugging Face provides a neat

and clean interface for training and fine-tuning LLMs.

To recap, LLMs are pre-trained on large corpora and sometimes fine-tuned

on smaller datasets for specific tasks. Recall that one of the factors behind the

Transformer’s effectiveness as a language model is that it is highly

parallelizable, allowing for faster training and efficient processing of text.

What really sets the Transformer apart from other deep learning architectures

is its ability to capture long-range dependencies and relationships between

tokens using attention. In other words, attention is a crucial component of

Transformer-based LLMs, and it enables them to effectively retain

information between training loops and tasks (i.e. transfer learning), while

being able to process lengthy swatches of text with ease.

Attention is attributed for being the most responsible for helping LLMs learn

(or at least recognize) internal world models and human-identifiable rules. A

Stanford study in 2019 showed that certain attention calculations in BERT

corresponded to linguistic notions of syntax and grammar rules. For example,

they noticed that BERT was able to notice direct objects of verbs,

determiners of nouns, and objects of prepositions with remarkably high

accuracy from only its pre-training. These relationships are presented visually

in Figure 1.10.

There is research that explores what other kinds of “rules” LLMs are able to

learn simply by pre-training and fine-tuning. One example is a series of

experiments led by researchers at Harvard that explored an LLM’s ability to

learn a set of rules to a synthetic task like the game of Othello (Figure 1.11).

They found evidence that an LLM was able to understand the rules of the

game simply by training on historical move data.

Figure 1.10 Research has probed into LLMs to uncover that they seem to be

recognizing grammatical rules even when they were never explicitly told

these rules.

Figure 1.11 LLMs may be able to learn all kinds of things about the world,

whether it be the rules and strategy of a game or the rules of human language.

For any LLM to learn any kind of rule, however, it has to convert what we

perceive as text into something machine readable. This is done through a

process called embedding.

Embeddings

Embeddings are the mathematical representations of words, phrases, or

tokens in a large-dimensional space. In NLP, embeddings are used to

represent the words, phrases, or tokens in a way that captures their semantic

meaning and relationships with other words. There are several types of

embeddings, including position embeddings, which encode the position of a

token in a sentence, and token embeddings, which encode the semantic

meaning of a token (Figure 1.12).

Figure 1.12 An example of how BERT uses three layers of embedding for a

given piece of text. Once the text is tokenized, each token is given an

embedding and then the values are added up, so each token ends up with an

initial embedding before any attention is calculated. We won’t focus too

much on the individual layers of LLM embeddings in this text unless they

serve a more practical purpose but it is good to know about some of these

parts and how they look under the hood!

LLMs learn different embeddings for tokens based on their pre-training and

can further update these embeddings during fine-tuning.

Tokenization

Tokenization, as mentioned previously, involves breaking text down into the

smallest unit of understanding - tokens. These tokens are the pieces of

information that are embedded into semantic meaning and act as inputs to the

attention calculations which leads to ... well, the LLM actually learning and

working. Tokens make up an LLMs static vocabulary and don’t always

represent entire words. Tokens can represent punctuation, individual

characters, or even a sub-word if a word is not known to the LLM. Nearly all

LLMs also have special tokens that have specific meaning to the model. For

example, the BERT model has a few special tokens including the [CLS]

token which BERT automatically injects as the first token of every input and

is meant to represent an encoded semantic meaning for the entire input

sequence.

Readers may be familiar with techniques like stop words removal, stemming,

and truncation which are used in traditional NLP. These techniques are not

used nor are they necessary for LLMs. LLMs are designed to handle the

inherent complexity and variability of human language, including the usage

of stop words like “the” and “an” and variations in word forms like tenses

and misspellings. Altering the input text to an LLM using these techniques

could potentially harm the performance of the model by reducing the

contextual information and altering the original meaning of the text.

Tokenization can also involve several preprocessing steps like casing, which

refers to the capitalization of the tokens. There are two types of casing:

uncased and cased. In uncased tokenization, all the tokens are lowercased and

usually accents from letters are stripped, while in cased tokenization, the

capitalization of the tokens is preserved. The choice of casing can impact the

performance of the model, as capitalization can provide important

information about the meaning of a token. An example of this can be found in

Figure 1.13.

Note

It is worth mentioning that even the concept of casing has

some bias to it depending on the model. To uncase a text -

lowercasing and stripping of accents - is a pretty Western style

preprocessing step. I myself speak Turkish and know that the

umlaut (e.g. the Ö in my last name) matters and can actually

help the LLM understand the word being said. Any language

model that has not been sufficiently trained on diverse corpora

may have trouble parsing and utilizing these bits of context.

Figure 1.13 The choice of uncased versus cased tokenization depends on the

task. Simple tasks like text classification usually prefer uncased tokenization

while tasks that derive meaning from case like Named Entity Recognition

prefer a cased tokenization.

Figure 1.14 shows an example of tokenization, and in particular, an example

of how LLMs tend to handle Out of Vocabulary (OOV) phrases. OOV

phrases are simply phrases/words that the LLM doesn’t recognize as a token

and has to split up into smaller sub-words. For example, my name (Sinan) is

not a token in most LLMs (story of my life) so in BERT, the tokenization

scheme will split my name up into two tokens (assuming uncased

tokenization):

 sin - the first part of my name

 ##an - a special sub-word token that is different from the word “an” and is

used only as a means to split up unknown words

Figure 1.14 Any LLM has to deal with words they’ve never seen before.

How an LLM tokenizes text can matter if we care about the token limit of an

LLM.

Some LLMs limit the number of tokens we can input at any one time so how

an LLM tokenizes text can matter if we are trying to be mindful about this

limit.

So far, we have talked a lot about language modeling - predicting

missing/next tokens in a phrase, but modern LLMs also can also borrow from

other fields of AI to make their models more performant and more

importantly more aligned - meaning that the AI is performing in accordance

with a human’s expectation. Put another way, an aligned LLM has an

objective that matches a human’s objective.

Beyond Language Modeling—Alignment + RLHF

Alignment in language models refers to how well the model can respond to

input prompts that match the user’s expectations. Standard language models

predict the next word based on the preceding context, but this can limit their

usefulness for specific instructions or prompts. Researchers are coming up

with scalable and performant ways of aligning language models to a user’s

intent. One such broad method of aligning language models is through the

incorporation of reinforcement learning (RL) into the training loop.

RL with Human Feedback (RLHF) is a popular method of aligning pre-

trained LLMs that uses human feedback to enhance their performance. It

allows the LLM to learn from feedback on its own outputs from a relatively

small, high-quality batch of human feedback, thereby overcoming some of

the limitations of traditional supervised learning. RLHF has shown

significant improvements in modern LLMs like ChatGPT. RLHF is one

example of approaching alignment with RL, but there are other emerging

approaches like RL with AI feedback (e.g. Constitutional AI).

Let’s take a look at some of the popular LLMs we’ll be using in this book.

Popular Modern LLMs

BERT, T5, and GPT are three popular LLMs developed by Google, Google,

and OpenAI respectively. These models differ in their architecture pretty

greatly even though they all share the Transformer as a common ancestor.

Other widely used variants of LLMs in the Transformer family include

RoBERTa, BART (which we saw earlier performing some text

classification), and ELECTRA.

BERT

BERT (Figure 1.15) is an autoencoding model that uses attention to build a

bidirectional representation of a sentence, making it ideal for sentence

classification and token classification tasks.

BERT uses the encoder of the Transformer and ignores the decoder to

become exceedingly good at processing/understanding massive amounts of

text very quickly relative to other, slower LLMs that focus on generating text

one token at a time. BERT-derived architectures, therefore, are best for

working with and analyzing large corpora quickly when we don’t need to

write free text.

Figure 1.15 BERT was one of the first LLMs and continues to be popular for

many NLP tasks that involve fast processing of large amounts of text.

BERT itself doesn’t classify text or summarize documents but it is often used

as a pre-trained model for downstream NLP tasks. BERT has become a

widely used and highly regarded LLM in the NLP community, paving the

way for the development of even more advanced language models.

GPT-3 and ChatGPT

GPT (Figure 1.16), on the other hand, is an autoregressive model that uses

attention to predict the next token in a sequence based on the previous tokens.

The GPT family of algorithms (including ChatGPT and GPT-3) is primarily

used for text generation and has been known for its ability to generate natural

sounding human-like text.

Figure 1.16 The GPT family of models excels at generating free text aligned

with a user’s intent.

GPT relies on the decoder portion of the Transformer and ignores the encoder

to become exceptionally good at generating text one token at a time. GPT-

based models are best for generating text given a rather large context

window. They can also be used to process/understand text as we will see in

an upcoming chapter. GPT-derived architectures are ideal for applications

that require the ability to freely write text.

T5

T5 is a pure encoder/decoder transformer model that was designed to perform

several NLP tasks, from text classification to text summarization and

generation, right off the shelf. It is one of the first popular models to be able

to boast such a feat, in fact. Before T5, LLMs like BERT and GPT-2

generally had to be fine-tuned using labeled data before they could be relied

on to perform such specific tasks.

Figure 1.17 T5 was one of the first LLMs to show promise in solving

multiple tasks at once without any fine-tuning.

T5 uses both the encoder and decoder of the Transformer to become highly

versatile in both processing and generating text. T5-based models can

perform a wide range of NLP tasks, from text classification to text

generation, due to their ability to build representations of the input text using

the encoder and generate text using the decoder (Figure 1.17). T5-derived

architectures are ideal for applications that require both the ability to process

and understand text and generate text freely.

T5’s ability to perform multiple tasks with no fine-tuning spurred the

development of other versatile LLMs that can perform multiple tasks with

efficiency and accuracy with little/no fine-tuning. GPT-3, released around the

same time at T5, also boasted this ability.

These three LLMs are highly versatile and are used for various NLP tasks,

such as text classification, text generation, machine translation, and sentiment

analysis, among others. These three LLMs, along with flavors (variants) of

them will be the main focus of this book and our applications.

Domain-Specific LLMs

Domain-specific LLMs are LLMs that are trained specifically in a particular

subject area, such as biology or finance. Unlike general-purpose LLMs, these

models are designed to understand the specific language and concepts used

within the domain they were trained on.

One example of a domain-specific LLM is BioGPT (Figure 1.18); a domain-

specific LLM that is pre-trained on large-scale biomedical literature. The

model was developed by the AI healthcare company, Owkin, in collaboration

with Hugging Face. The model is trained on a dataset of over 2 million

biomedical research articles, making it highly effective for a wide range of

biomedical NLP tasks such as named entity recognition, relationship

extraction, and question-answering.

BioGPT, whose pre-training encoded biomedical knowledge and domain-

specific jargon into the LLM, can be fine-tuned on smaller datasets, making it

adaptable for specific biomedical tasks and reducing the need for large

amounts of labeled data.

Figure 1.18 BioGPT is a domain-specific Transformer model pre-trained on

large-scale biomedical literature. BioGPT’s success in the biomedical domain

has inspired other domain-specific LLMs such as SciBERT and BlueBERT.

The advantage of using domain-specific LLMs lies in their training on a

specific set of texts. This allows them to better understand the language and

concepts used within their specific domain, leading to improved accuracy and

fluency for NLP tasks that are contained within that domain. By comparison,

general-purpose LLMs may struggle to handle the language and concepts

used in a specific domain as effectively.

Applications of LLMs

As we’ve already seen, applications of LLMs vary widely and researchers

continue to find novel applications of LLMs to this day. We will use LLMs in

this book in generally three ways:

 Using a pre-trained LLM’s underlying ability to process and generate text

with no further fine-tuning as part of a larger architecture.

 For example, creating an information retrieval system using a pre-trained

BERT/GPT.

 Fine-tuning a pre-trained LLM to perform a very specific task using Transfer

Learning.

 For example, fine-tuning T5 to create summaries of documents in a specific

domain/industry.

 Asking a pre-trained LLM to solve a task it was pre-trained to solve or could

reasonably intuit.

 For example, prompting GPT3 to write a blog post.

 For example, prompting T5 to perform language translation..

These methods use LLMs in different ways and while all options take

advantage of an LLM’s pre-training, only option 2 requires any fine-tuning.

Let’s take a look at some specific applications of LLMs.

Classical NLP Tasks

A vast majority of applications of LLMs are delivering state of the art results

in very common NLP tasks like classification and translation. It’s not that we

weren’t solving these tasks before Transformers and LLMs, it’s just that now

developers and practioners can solve them with comparatively less labeled

data (due to the efficient pre-training of the Transformer on huge corpora)

and with a higher degree of accuracy.

Text Classification

The text classification task assigns a label to a given piece of text. This task is

commonly used in sentiment analysis, where the goal is to classify a piece of

text as positive, negative, or neutral, or in topic classification, where the goal

is to classify a piece of text into one or more predefined categories. Models

like BERT can be fine-tuned to perform classification with relatively little

labeled data as seen in Figure 1.19.

Figure 1.19 A peek at the architecture of using BERT to achieve fast and

accurate text classification results. Classification layers usually act on that

special [CLS] token that BERT uses to encode the semantic meaning of the

entire input sequence.

Text classification remains one of the most globally recognizable and

solvable NLP tasks because when it comes down to it, sometimes we just

need to know whether this email is “spam” or not and get on with our days!

Translation Tasks

A harder and yet still classic NLP task is machine translation where the goal

is to automatically translate text from one language to another while

preserving meaning and context. Traditionally, this task is quite difficult

because it involves having sufficient examples and domain knowledge of

both languages to accurately gauge how well the model is doing but modern

LLMs seem to have an easier time with this task again due to their pre-

training and efficient attention calculations.

Human Language <> Human Language

One of the first applications of attention even before Transformers was for

machine translation tasks where AI models were expected to translate from

one human language to another. T5 was one of the first LLMs to tout the

ability to perform multiple tasks off the shelf (Figure 1.20). One of these

tasks was the ability to translate English into a few languages and back.

Figure 1.20 T5 could perform many NLP tasks off the shelf, including

grammar correction, summarization, and translation.

Since T5, language translation in LLMs has only gotten better and more

diverse. Models like GPT-3 and the latest T5 models can translate between

dozens of languages with relative ease. Of course this bumps up against one

major known limitation of LLMs that they are mostly trained from an

English-speaking/usually American point of view so most LLMs can handle

English well and non-English languages, well, not as well.

SQL Generation

If we consider SQL as a language, then converting English to SQL is really

not that different from converting English to French (Figure 1.21). Modern

LLMs can already do this at a basic level off the shelf, but more advanced

SQL queries often require some fine-tuning.

Figure 1.21 Using GPT-3 to generate functioning SQL code from an (albeit

simple) Postgres schema

If we expand our thinking of what can be considered a “translation” then a lot

of new opportunities lie ahead of us. For example, what if we wanted to

“translate” between English and a series of wavelengths that a brain might

interpret and execute as motor functions. I’m not a neuro-scientist or

anything, but that seems like a fascinating area of research!

Free Text Generation

What first caught the world’s eye in terms of modern LLMs like ChatGPT

was their ability to freely write blogs, emails, and even academic papers. This

notion of text generation is why many LLMs are affectionately referred to as

“Generative AI”, although that term is a bit reductive and imprecise. I will

not often use the term “Generative AI” as the specific word “generative” has

its own meaning in machine learning as the analogous way of learning to a

“discriminative” model. For more on that, check out my first book: The

Principles of Data Science)

We could for example prompt (ask) ChatGPT to help plan out a blog post

like in Figure 1.22. Even if you don’t agree with the results, this can help

humans with the “tabula rasa” problem and give us something to at least edit

and start from rather than staring at a blank page for too long.

Figure 1.22 ChatGPT can help ideate, scaffold, and even write entire blog

posts

Note

I would be remiss if I didn’t mention the controversy that

LLMs like this can cause at the academic level. Just because

an LLM can write entire blogs or even essays doesn’t mean

we should let them. Just like how the internet caused some to

believe that we’d never need books again, some argue that

ChatGPT means that we’ll never need to write anything again.

As long as institutions are aware of how to use this technology

and proper regulations/rules are put in place, students and

teachers alike can use ChatGPT and other text-generation-

focused AIs safely and ethically.

We will be using ChatGPT to solve a few tasks in this book. We will rely on

ChatGPT’s ability to contextualize information in its context window and

freely write back (usually) accurate responses. We will mostly be interacting

with ChatGPT through the Playground and the API provided by OpenAI as

this model is not open source.

Information Retrieval / Neural Semantic Search

LLMs encode information directly into their parameters via pre-training and

fine-tuning but keeping them up to date with new information is tricky. We

either have to further fine-tune the model on new data or run the pre-training

steps again from scratch. To dynamically keep information fresh, we will

architect our own information retrieval system with a vector database (don’t

worry we will go into more details on all of this in the next chapter). Figure

1.23 shows an outline of the architecture we will build.

Figure 1.23 Our neural semantic search system will be able to take in new

information dynamically and be able to retrieve relevant documents quickly

and accurately given a user’s query using LLMs.

We will then add onto this system by building a ChatGPT-based chatbot to

conversationally answer questions from our users.

Chatbots

Everyone loves a good chatbot, right? Well, whether you love them or hate

them, LLMs’ capacity for holding a conversation is evident through systems

like ChatGPT and even GPT-3 (as seen in Figure 1.24). The way we architect

chatbots using LLMs will be quite different from the traditional way of

designing chatbots through intents, entities, and tree-based conversation

flows. These concepts will be replaced by system prompts, context, and

personas – all of which we will dive into in the coming chapters.

We have our work cut out for us. I’m excited to be on this journey with you

and I’m excited to get started!

Figure 1.24 ChatGPT isn’t the only LLM that can hold a conversation. We

can use GPT-3 to construct a simple conversational chatbot. The text

highlighted in green represents GPT-3’s output. Note that before the chat

even begins, I inject context to GPT-3 that would not be shown to the end-

user but GPT-3 needs to provide accurate responses.

Summary

LLMs are advanced AI models that have revolutionized the field of NLP.

LLMs are highly versatile and are used for a variety of NLP tasks, including

text classification, text generation, and machine translation. They are pre-

trained on large corpora of text data and can then be fine-tuned for specific

tasks.

Using LLMs in this fashion has become a standard step in the development of

NLP models. In our first case study, we will explore the process of launching

an application with proprietary models like GPT-3 and ChatGPT. We will get

a hands-on look at the practical aspects of using LLMs for real-world NLP

tasks, from model selection and fine-tuning to deployment and maintenance.

2

Semantic Search with LLMs

Introduction

In the last chapter, we explored the inner workings of language models and

the impact that modern LLMs have had on NLP tasks like text classification,

generation, and machine translation. There is another powerful application of

LLMs that has been gaining traction in recent years: semantic search.

Now you might be thinking that it’s time to finally learn the best ways to talk

to ChatGPT and GPT-4 to get the optimal results, and we will do that as early

as the next chapter, I promise. In the meantime, I want to show you what else

we can build on top of this novel transformer architecture. While text-to-text

generative models like GPT are extremely impressive in their own right, one

of the most versatile solutions that AI companies offer is the ability to

generate text embeddings based on powerful LLMs.

Text embeddings are a way to represent words or phrases as vectors in a

high-dimensional space based on their contextual meaning within a corpus of

text data. The idea is that if two phrases are similar (we will explore that

word in more detail later on in this chapter) then the vectors that represent

those phrases should be close together and vice versa. Figure 2.1 shows an

example of a simple search algorithm. When a user searches for an item to

buy – say a magic the gathering trading card they might simply search for “a

vintage magic card”. The system should then embed the query such that if

two text embeddings that are near each other should indicate that the phrases

that were used to generate them are similar.

Figure 2.1 Vectors that represent similar phrases should be close together

and those that represent dissimilar phrases should be far apart. In this case,

if a user wants a trading card they might ask for “a vintage magic card”. A

proper semantic search system should embed the query in such a way that it

ends up near relevant results (like “magic card”) and far apart from non

relevant items (like “a vintage magic kit”) even if they share certain

keywords.

This map from text to vectors can be thought of as a kind of hash with

meaning. We can’t really reverse vectors back to text but rather they are a

representation of the text that has the added benefit of carrying the ability to

compare points while in their encoded state.

LLM-enabled text embeddings allow us to capture the semantic value of

words and phrases beyond just their surface-level syntax or spelling. We can

rely on the pre-training and fine-tuning of LLMs to build virtually unlimited

applications on top of them by leveraging this rich source of information

about language use.

This chapter introduces us to the world of semantic search using LLMs to

explore how they can be used to create powerful tools for information

retrieval and analysis. In the next chapter, we will build a chatbot on top of

GPT-4 that leverages a fully realized semantic search system that we will

build in this chapter.

Without further ado, let’s get right into it, shall we?

The Task

A traditional search engine would generally take what you type in and then

give you a bunch of links to websites or items that contain those words or

permutations of the characters that you typed in. So if you typed in “Vintage

Magic the Gathering Cards” on a marketplace, you would get items with a

title/description that contains combinations of those words. That’s a pretty

standard way to search, but it’s not always the best way. For example I might

get vintage magic sets to help me learn how to pull a rabbit out of a hat. Fun

but not what I asked for.

The terms you input into a search engine may not always align with the exact

words used in the items you want to see. It could be that the words in the

query are too general, resulting in a slew of unrelated findings. This issue

often extends beyond just differing words in the results; the same words

might carry different meanings than what was searched for. This is where

semantic search comes into play, as exemplified by the earlier-mentioned

Magic: The Gathering cards scenario.

Asymmetric Semantic Search

A semantic search system can understand the meaning and context of your

search query and match it against the meaning and context of the documents

that are available to retrieve. This kind of system can find relevant results in a

database without having to rely on exact keyword or n-gram matching but

rather rely on a pre-trained LLM to understand the nuance of the query and

the documents (Figure 2.2).

Figure 2.2 A traditional keyword-based search might rank a vintage magic

kit with the same weight as the item we actually want whereas a semantic

search system can understand the actual concept we are searching for

The asymmetric part of asymmetric semantic search refers to the fact that

there is generally an imbalance between the semantic information (basically

the size) of the input query and the documents/information that the search

system has to retrieve. For example, the search system is trying to match

“magic the gathering card” to paragraphs of item descriptions on a

marketplace. The four-word search query has much less information than the

paragraphs but nonetheless it is what we are comparing.

Asymmetric semantic search systems can get very accurate and relevant

search results, even if you don’t use the exact right words in your search.

They rely on the learnings of LLMs rather than the user being able to know

exactly what needle to search for in the haystack.

I am of course, vastly oversimplifying the traditional method. There are many

ways to make them more performant without switching to a more complex

LLM approach and pure semantic search systems are not always the answer.

They are not simply “the better way to do search”. Semantic algorithms have

their own deficiencies like:

 They can be overly sensitive to small variations in text, such as differences in

capitalization or punctuation.

 They struggle with nuanced concepts, such as sarcasm or irony that rely on

localized cultural knowledge.

 They can be more computationally expensive to implement and maintain than

the traditional method, especially when launching a home-grown system with

many open-source components.

Semantic search systems can be a valuable tool in certain contexts, so let’s

jump right into how we will architect our solution.

Solution Overview

The general flow of our asymmetric semantic search system will follow these

steps:

 PART I - Ingesting documents (Figure 2.3)

1. Collect documents for embedding

2. Create text embeddings to encode semantic information

3. Store embeddings in a database for later retrieval given a query

Figure 2.3 Zooming in on Part I, storing documents will consist of doing

some pre-processing on our documents, embedding them, and then storing

them in some database

 PART II - Retrieving documents (Figure 2.4)

1. User has a query which may be pre-processed and cleaned

2. Retrieve candidate documents

3. Re-rank the candidate documents if necessary

4. Return the final search results

Figure 2.4 Zooming in on Part II, when retrieving documents we will have to

embed our query using the same embedding scheme as we used for the

documents and then compare them against the previously stored documents

and return the best (closest) document

The Components

Let’s go over each of our components in more detail to understand the

choices we’re making and what considerations we need to take into account.

Text Embedder

As we now know, at the heart of any semantic search system is the text

embedder. This is the component that takes in a text document, or a single

word or phrase, and converts it into a vector. The vector is unique to that text

and should capture the contextual meaning of the phrase.

The choice of the text embedder is critical as it determines the quality of the

vector representation of the text. We have many options in how we vectorize

with LLMs, both open and closed source. To get off of the ground quicker,

we are going to use OpenAI’s closed-source “Embeddings” product. In a

later section, I’ll go over some open-source options.

OpenAI’s “Embeddings” is a powerful tool that can quickly provide high-

quality vectors, but it is a closed-source product, which means we have

limited control over its implementation and potential biases. It’s important to

keep in mind that when using closed-source products, we may not have

access to the underlying algorithms, which can make it difficult to

troubleshoot any issues that may arise.

What makes pieces of text “similar”

Once we convert our text into vectors, we have to find a mathematical

representation of figuring out if pieces of text are “similar” or not. Cosine

similarity is a way to measure how similar two things are. It looks at the

angle between two vectors and gives a score based on how close they are in

direction. If the vectors point in exactly the same direction, the cosine

similarity is 1. If they’re perpendicular (90 degrees apart), it’s 0. And if they

point in opposite directions, it’s -1. The size of the vectors doesn’t matter,

only their orientation does.

Figure 2.5 shows how the cosine similarity would help us retrieve documents

given a query.

Figure 2.5 In an ideal semantic search scenario, the Cosine Similarity

(formula given at the top) gives us a computationally efficient way to

compare pieces of text at scale, given that embeddings are tuned to place

semantically similar pieces of text near each other (bottom). We start by

embedding all items – including the query (bottom left) and then checking the

angle between them. The smaller the angle, the larger the cosine similarity

(bottom right)

We could also turn to other similarity metrics like the dot product or the

Euclidean distance but OpenAI embeddings have a special property. The

magnitudes (lengths) of their vectors are normalized to length 1, which

basically means that we benefit mathematically on two fronts:

 Cosine similarity is identical to the dot product

 Cosine similarity and Euclidean distance will result in the identical rankings

TL;DR: Having normalized vectors (all having a magnitude of 1) is great

because we can use a cheap cosine calculation to see how close two vectors

are and therefore how close two phrases are semantically via the cosine

similarity.

OpenAI’s embedding

Getting embeddings from OpenAI is as simple as a few lines of code (Listing

2.1). As mentioned previously, this entire system relies on an embedding

mechanism that places semantically similar items near each other so that the

cosine similiarty is large when the items are actually similar. There are

multiple methods we could use to create these embeddings, but we will for

now rely on OpenAI’s embedding engines to do this work for us. Engines are

different embedding mechanism that OpenAI offer. We will use their most

recent engine that they recommend for most use-cases.

Getting text embeddings from OpenAI

Importing the necessary modules for the script to run
import openai
from openai.embeddings_utils import get_embeddings, get_embedding

Setting the OpenAI API key using the value stored in the environment variable 'OPENAI_API_KEY'
openai.api_key = os.environ.get('OPENAI_API_KEY')

Setting the engine to be used for text embedding
ENGINE = 'text-embedding-ada-002'

Generating the vector representation of the given text using the specified engine.
embedded_text = get_embedding('I love to be vectorized', engine=ENGINE)

Checking the length of the resulting vector to ensure it is the expected size (1536)
len(embedded_text) == '1536'

It’s worth noting that OpenAI provides several engine options that can be

used for text embedding. Each engine may provide different levels of

accuracy and may be optimized for different types of text data. At the time of

writing, the engine used in the code block is the most recent and the one they

recommend using.

Additionally, it is possible to pass in multiple pieces of text at once to the

“get_embeddings” function, which can generate embeddings for all of them

in a single API call. This can be more efficient than calling “get_embedding”

multiple times for each individual text. We will see an example of this later

on.

Open-source Embedding Alternatives

While OpenAI and other companies provide powerful text embedding

products, there are also several open-source alternatives available for text

embedding. A popular one is the bi-encoder with BERT, a powerful deep

learning-based algorithm that has been shown to produce state-of-the-art

results on a range of natural language processing tasks. We can find pre-

trained bi-encoders in many open source repositories, including the Sentence

Transformers library, which provides pre-trained models for a variety of

natural language processing tasks to use off the shelf.

A bi-encoder involves training two BERT models, one to encode the input

text and the other to encode the output text (Figure 2.6). The two models are

trained simultaneously on a large corpus of text data, with the goal of

maximizing the similarity between corresponding pairs of input and output

text. The resulting embeddings capture the semantic relationship between the

input and output text.

Figure 2.6 A bi-encoder is trained in a unique way with two clones of a

single LLM trained in parallel to learn similarities between documents. For

example, a bi-encoder can learn to associate questions to paragraphs so they

appear near each other in a vector space

Listing 2.2 is an example of embedding text with a pre-trained bi-encoder

with the “sentence_transformer” package:

Getting text embeddings from a pre-trained open source bi-encoder

Importing the SentenceTransformer library
from sentence_transformers import SentenceTransformer

Initializing a SentenceTransformer model with the 'multi-qa-mpnet-base-cos-v1' pre-trained model

model = SentenceTransformer(
 'sentence-transformers/multi-qa-mpnet-base-cos-v1')

Defining a list of documents to generate embeddings for
docs = [
 "Around 9 Million people live in London",
 "London is known for its financial district"
]

Generate vector embeddings for the documents
doc_emb = model.encode(
 docs, # our documents (an iterable of strings)
 batch_size=32, # batch the embeddings by this size
 show_progress_bar=True # display a progress bar

)

The shape of the embeddings is (2, 768), indicating a length of 768 and two embeddings generated
doc_emb.shape # == (2, 768)

This code creates an instance of the ‘SentenceTransformer’ class, which is

initialized with the pre-trained model ‘multi-qa-mpnet-base-cos-v1’. This

model is designed for multi-task learning, specifically for tasks such as

question-answering and text classification. This one in particular was pre-

trained using asymmetric data so we know it can handle both short queries

and long documents and be able to compare them well. We use the ‘encode’

function from the SentenceTransformer class to generate vector embeddings

for the documents, with the resulting embeddings stored in the ‘doc_emb’

variable.

Different algorithms may perform better on different types of text data and

will have different vector sizes. The choice of algorithm can have a

significant impact on the quality of the resulting embeddings. Additionally,

open-source alternatives may require more customization and fine-tuning

than closed-source products, but they also provide greater flexibility and

control over the embedding process. For more examples of using open-source

bi-encoders to embed text, check out the code portion of this book!

Document Chunker

Once we have our text embedding engine set up, we need to consider the

challenge of embedding large documents. It is often not practical to embed

entire documents as a single vector, particularly when dealing with long

documents such as books or research papers. One solution to this problem is

to use document chunking, which involves dividing a large document into

smaller, more manageable chunks for embedding.

Max Token Window Chunking

One approach to document chunking is max token window chunking. This is

one of the easiest methods to implement and involves splitting the document

into chunks of a given max size. So if we set a token window to be 500, then

we’d expect each chunk to be just below 500 tokens. Having our chunks all

be around the same size will also help make our system more consistent.

One common concern of this method is that we might accidentally cut off

some important text between chunks, splitting up the context. To mitigate

this, we can set overlapping windows with a specified amount of tokens to

overlap so we have tokens shared between chunks. This of course introduces

a sense of redundancy but this is often fine in service of higher accuracy and

latency.

Let’s see an example of overlapping window chunking with some sample text

(Listing 2.3). Let’s begin by ingesting a large document. How about a recent

book I wrote with over 400 pages?

Ingesting an entire textbook

Use the PyPDF2 library to read a PDF file
import PyPDF2

Open the PDF file in read-binary mode
with open('../data/pds2.pdf', 'rb') as file:

 # Create a PDF reader object
 reader = PyPDF2.PdfReader(file)

 # Initialize an empty string to hold the text

 principles_of_ds = ''

 # Loop through each page in the PDF file
 for page in tqdm(reader.pages):

 # Extract the text from the page
 text = page.extract_text()

 # Find the starting point of the text we want to extract
 # In this case, we are extracting text starting from the string ']'
 principles_of_ds += '\n\n' + text[text.find(']')+2:]

Strip any leading or trailing whitespace from the resulting string
principles_of_ds = principles_of_ds.strip()

And now let’s chunk this document by getting chunks of at most a certain

token size (Listing 2.4).

Chunking the textbook with and without overlap

Function to split the text into chunks of a maximum number of tokens. Inspired by OpenAI
def overlapping_chunks(text, max_tokens = 500, overlapping_factor = 5):
 '''
 max_tokens: tokens we want per chunk
 overlapping_factor: number of sentences to start each chunk with that overlaps with the previous chunk
 '''

 # Split the text using punctuation
 sentences = re.split(r'[.?!]', text)

 # Get the number of tokens for each sentence
 n_tokens = [len(tokenizer.encode(" " + sentence)) for sentence in sentences]

 chunks, tokens_so_far, chunk = [], 0, []

 # Loop through the sentences and tokens joined together in a tuple
 for sentence, token in zip(sentences, n_tokens):

 # If the number of tokens so far plus the number of tokens in the current sentence is greater
 # than the max number of tokens, then add the chunk to the list of chunks and reset
 # the chunk and tokens so far
 if tokens_so_far + token > max_tokens:
 chunks.append(". ".join(chunk) + ".")
 if overlapping_factor > 0:
 chunk = chunk[-overlapping_factor:]
 tokens_so_far = sum([len(tokenizer.encode(c)) for c in chunk])
 else:
 chunk = []
 tokens_so_far = 0

 # If the number of tokens in the current sentence is greater than the max number of
 # tokens, go to the next sentence
 if token > max_tokens:
 continue

 # Otherwise, add the sentence to the chunk and add the number of tokens to the total
 chunk.append(sentence)
 tokens_so_far += token + 1

 return chunks

split = overlapping_chunks(principles_of_ds, overlapping_factor=0)
avg_length = sum([len(tokenizer.encode(t)) for t in split]) / len(split)
print(f'non-overlapping chunking approach has {len(split)} documents with average length {avg_length:.1f} tokens')
non-overlapping chunking approach has 286 documents with average length 474.1 tokens

with 5 overlapping sentences per chunk
split = overlapping_chunks(principles_of_ds, overlapping_factor=5)
avg_length = sum([len(tokenizer.encode(t)) for t in split]) / len(split)
print(f'overlapping chunking approach has {len(split)} documents with average length {avg_length:.1f} tokens')
overlapping chunking approach has 391 documents with average length 485.4 tokens

With overlap, we see an increase in the number of document chunks but

around the same size. The higher the overlapping factor, the more

redundancy we introduce into the system. The max token window method

does not take into account the natural structure of the document and may

result in information being split up between chunks or chunks with

overlapping information, confusing the retrieval system.

Finding Custom Delimiters

To help aid our chunking method, we could search for custom natural

delimiters. We would identify natural white spaces within the text and use

them to create more meaningful units of text that will end up in document

chunks that will eventually get embedded (Figure 2.7).

Figure 2.7 Max-token chunking (on the left) and natural whitespace

chunking (on the right) can be done with or without overlap. The natural

whitespace chunking tends to end up with non-uniform chunk sizes.

Let’s look for common whitespaces in the textbook (Listing 2.5).

Chunking the textbook with natural whitespace

Importing the Counter and re libraries
from collections import Counter

import re

Find all occurrences of one or more spaces in 'principles_of_ds'
matches = re.findall(r'[\s]{1,}', principles_of_ds)

The 5 most frequent spaces that occur in the document
most_common_spaces = Counter(matches).most_common(5)

Print the most common spaces and their frequencies
print(most_common_spaces)

[(' ', 82259),
 ('\n', 9220),
 (' ', 1592),
 ('\n\n', 333),
 ('\n ', 250)]

The most common double white space is two newline characters in a row

which is actually how I earlier distinguished between pages which makes

sense. The most natural whitespace in a book is by page. In other cases, we

may have found natural whitespace between paragraphs as well. This method

is very hands-on and requires a good amount of familiarity and knowledge of

the source documents.

We can also turn to more machine learning to get slightly more creative with

how we architect document chunks.

Using Clustering to Create Semantic Documents

Another approach to document chunking is to use clustering to create

semantic documents. This approach involves creating new documents by

combining small chunks of information that are semantically similar (Figure

2.8). This approach requires some creativity, as any modifications to the

document chunks will alter the resulting vector. We could use an instance of

Agglomerative clustering from scikit-learn, for example, where similar

sentences or paragraphs are grouped together to form new documents.

Figure 2.8 We can group any kinds of document chunks together by using

some separate semantic clustering system (shown on the right) to create

brand new documents with chunks of information in them that are similar to

each other.

Let’s try to cluster together those chunks we found from the textbook in our

last section (Listing 2.6).

Clustering pages of the document by semantic similarity

from sklearn.cluster import AgglomerativeClustering
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np

Assume you have a list of text embeddings called `embeddings`
First, compute the cosine similarity matrix between all pairs of embeddings
cosine_sim_matrix = cosine_similarity(embeddings)

Instantiate the AgglomerativeClustering model
agg_clustering = AgglomerativeClustering(
 n_clusters=None, # the algorithm will determine the optimal number of clusters based on the data
 distance_threshold=0.1, # clusters will be formed until all pairwise distances between clusters are greater than 0.1
 affinity='precomputed', # we are providing a precomputed distance matrix (1 - similarity matrix) as input
 linkage='complete' # form clusters by iteratively merging the smallest clusters based on the maximum distance between their components
)

Fit the model to the cosine distance matrix (1 - similarity matrix)
agg_clustering.fit(1 - cosine_sim_matrix)

Get the cluster labels for each embedding
cluster_labels = agg_clustering.labels_

Print the number of embeddings in each cluster
unique_labels, counts = np.unique(cluster_labels, return_counts=True)
for label, count in zip(unique_labels, counts):
 print(f'Cluster {label}: {count} embeddings')

Cluster 0: 2 embeddings
Cluster 1: 3 embeddings
Cluster 2: 4 embeddings
...

This approach tends to yield chunks that are more cohesive semantically but

suffer from pieces of content being out of context with surrounding text. This

approach works well when the chunks you start with are known to not

necessarily relate to each other i.e. chunks are more independent of one

another.

Use Entire Documents Without Chunking

Alternatively, it is possible to use entire documents without chunking. This

approach is probably the easiest option overall but will have drawbacks when

documents are far too long and we hit a context window limit when we

embed the text. We also might fall victim to the documents being filled with

extraneous disparate context points and the resulting embeddings may be

trying to encode too much and may suffer in quality. These drawbacks

compound for very large (multi-page) documents.

Table 2.1 Outlining different document chunking methods with pros and cons

It is important to consider the trade-offs between chunking and using entire

documents when selecting an approach for document embedding (Table 2.1).

Once we decide how we want to chunk our documents, we need a home for

the embeddings we create. Locally, we can rely on matrix operations for

quick retrieval, but we are building for the cloud here, so let’s look at our

database options.

Vector Databases

A vector database is a data storage system that is specifically designed to

both store and retrieve vectors quickly. This type of database is useful for

storing embeddings generated by an LLM which encode and store the

semantic meaning of our documents or chunks of documents. By storing

embeddings in a vector database, we can efficiently perform nearest-neighbor

searches to retrieve similar pieces of text based on their semantic meaning.

Pinecone

Pinecone is a vector database that is designed for small to medium-sized

datasets (usually ideal for less than 1 million entries). It is easy to get started

with Pinecone for free, but it also has a pricing plan that provides additional

features and increased scalability. Pinecone is optimized for fast vector

search and retrieval, making it a great choice for applications that require

low-latency search, such as recommendation systems, search engines, and

chatbots.

Open-source Alternatives

There are several open-source alternatives to Pinecone that can be used to

build a vector database for LLM embeddings. One such alternative is

Pgvector, a PostgreSQL extension that adds support for vector data types and

provides fast vector operations. Another option is Weaviate, a cloud-native,

open-source vector database that is designed for machine learning

applications. Weaviate provides support for semantic search and can be

integrated with other machine learning tools such as TensorFlow and

PyTorch. ANNOY is an open-source library for approximate nearest

neighbor search that is optimized for large-scale datasets. It can be used to

build a custom vector database that is tailored to specific use cases.

Re-ranking the Retrieved Results

After retrieving potential results from a vector database given a query using a

similarity like cosine similarity, it is often useful to re-rank them to ensure

that the most relevant results are presented to the user (Figure 2.9). One way

to re-rank results is by using a cross-encoder, which is a type of transformer

model that takes pairs of input sequences and predicts a score indicating how

relevant the second sequence is to the first. By using a cross-encoder to re-

rank search results, we can take into account the entire query context rather

than just individual keywords. This of course will add some overhead and

worsen our latency but it could help us in terms of performance. I will take

the time to outline some results in a later section to compare and contrast

using and not using a cross-encoder.

Figure 2.9 A cross-encoder (left) takes in two pieces of text and outputs a

similarity score without returning a vectorized format of the text. A bi-

encoder (right), on the other hand, embeds a bunch of pieces of text into

vectors up front and then retrieves them later in real time given a query (e.g.

looking up “I’m a Data Scientist”)

One popular source of cross-encoder models is the Sentence Transformers

library, which is where we found our bi-encoders earlier. We can also fine-

tune a pre-trained cross-encoder model on our task-specific dataset to

improve the relevance of search results and provide more accurate

recommendations.

Another option for re-ranking search results is by using a traditional retrieval

model like BM25, which ranks results by the frequency of query terms in the

document and takes into account term proximity and inverse document

frequency. While BM25 does not take into account the entire query context,

it can still be a useful way to re-rank search results and improve the overall

relevance of the results.

API

We now need a place to put all of these components so that users can access

the documents in a fast, secure, and easy way. To do this, let’s create an API.

FastAPI

FastAPI is a web framework for building APIs with Python quickly. It is

designed to be both fast and easy to set up, making it an excellent choice for

our semantic search API. FastAPI uses the Pydantic data validation library to

validate request and response data and uses the high-performance ASGI

server, uvicorn.

Setting up a FastAPI project is straightforward and requires minimal

configuration. FastAPI provides automatic documentation generation with

the OpenAPI standard, which makes it easy to build API documentation and

client libraries. Listing 2.7 is a skeleton of what that file would look like.

FastAPI skeleton code

import hashlib
import os
from fastapi import FastAPI

from pydantic import BaseModel

app = FastAPI()

openai.api_key = os.environ.get('OPENAI_API_KEY', '')
pinecone_key = os.environ.get('PINECONE_KEY', '')

Create an index in Pinecone with necessary properties

def my_hash(s):
 # Return the MD5 hash of the input string as a hexadecimal string
 return hashlib.md5(s.encode()).hexdigest()

class DocumentInputRequest(BaseModel):
 # define input to /document/ingest

class DocumentInputResponse(BaseModel):
 # define output from /document/ingest

class DocumentRetrieveRequest(BaseModel):
 # define input to /document/retrieve

class DocumentRetrieveResponse(BaseModel):
 # define output from /document/retrieve

API route to ingest documents

@app.post("/document/ingest", response_model=DocumentInputResponse)
async def document_ingest(request: DocumentInputRequest):
 # Parse request data and chunk it
 # Create embeddings and metadata for each chunk
 # Upsert embeddings and metadata to Pinecone
 # Return number of upserted chunks
 return DocumentInputResponse(chunks_count=num_chunks)

API route to retrieve documents
@app.post("/document/retrieve", response_model=DocumentRetrieveResponse)
async def document_retrieve(request: DocumentRetrieveRequest):
 # Parse request data and query Pinecone for matching embeddings
 # Sort results based on re-ranking strategy, if any
 # Return a list of document responses
 return DocumentRetrieveResponse(documents=documents)

if __name__ == "__main__":
 uvicorn.run("api:app", host="0.0.0.0", port=8000, reload=True)

For the full file, be sure to check out the code repository for this book!

Putting It All Together

We now have a solution for all of our components. Let’s take a look at where

we are in our solution. Items in bold are new from the last time we outlined

this solution.

 PART I - Ingesting documents

1. Collect documents for embedding - Chunk them

2. Create text embeddings to encode semantic information - OpenAI’s

Embedding

3. Store embeddings in a database for later retrieval given a query - Pinecone

 PART II - Retrieving documents

1. User has a query which may be pre-processed and cleaned - FastAPI

2. Retrieve candidate documents - OpenAI’s Embedding + Pinecone

3. Re-rank the candidate documents if necessary - Cross-Encoder

4. Return the final search results - FastAPI

With all of these moving parts, let’s take a look at our final system

architecture in Figure 2.10.

Figure 2.10 Our complete semantic search architecture using two closed-

source systems (OpenAI and Pinecone) and an open source API framework

(FastAPI)

We now have a complete end to end solution for our semantic search. Let’s

see how well the system performs against a validation set.

Performance

I’ve outlined a solution to the problem of semantic search, but I want to also

talk about how to test how these different components work together. For

this, let’s use a well-known dataset to run against: the BoolQ dataset - a

question answering dataset for yes/no questions containing nearly 16K

examples. This dataset has pairs of (question, passage) that indicate for a

given question, that passage would be the best passage to answer the

question.

Table 2.2 outlines a few trials I ran and coded up in the code for this book. I

use combinations of embedders, re-ranking solutions, and a bit of fine-tuning

to try and see how well the system performs on two fronts:

1. Performance - as indicated by the top result accuracy. For each known pair

of (question, passage) in our BoolQ validation set - 3,270 examples, we will

test if the system’s top result is the intended passage. This is not the only

metric we could have used. The sentence_transformers library has other

metrics including ranking evaluation, correlation evaluation, and more

2. Latency - I want to see how long it takes to run through these examples using

Pinecone, so for each embedder, I reset the index and uploaded new vectors

and used cross-encoders in my laptop’s memory to keep things simple and

standardized. Measured in minutes it took to run against the validation set of

the BoolQ dataset

Table 2.2 Performance results from various combinations against the BoolQ

validation set

Some experiments I didn’t try include the following:

1. Fine-tuning the cross-encoder for more epochs and spending more time

finding optimal learning parameters (e.g. weight decay, learning rate

scheduler, etc)

2. Using other OpenAI embedding engines

3. Fine-tuning an open-source bi-encoder on the training set

Note that the models I used for the cross-encoder and the bi-encoder were

both specifically pre-trained on data that is similar to asymmetric semantic

search. This is important because we want the embedder to produce vectors

for both short queries and long documents and place them near each other

when they are related.

Let’s assume we want to keep things simple to get things off of the ground

and use only the OpenAI embedder and do no re-ranking (row 1) in our

application. Let’s consider the costs associated with using FastAPI, Pinecone,

and OpenAI for text embeddings.

The Cost of Closed-Source

We have a few components in play and not all of them are free. Fortunately

FastAPI is an open-source framework and does not require any licensing

fees. Our cost with FastAPI is hosting which could be on a free tier

depending on what service we use. I like Render which has a free tier but also

pricing starts at $7/month for 100% uptime. At the time of writing, Pinecone

offers a free tier with a limit of 100,000 embeddings and up to 3 indexes, but

beyond that, they charge based on the number of embeddings and indexes

used. Their Standard plan charges $49/month for up to 1 million embeddings

and 10 indexes.

OpenAI offers a free tier of their text embedding service, but it is limited to

100,000 requests per month. Beyond that, they charge $0.0004 per 1,000

tokens for the embedding engine we used - Ada-002. If we assume an

average of 500 tokens per document, the cost per document would be

$0.0002. For example, if we wanted to embed 1 million documents, it would

cost approximately $200.

If we want to build a system with 1 million embeddings, and we expect to

update the index once a month with totally fresh embeddings, the total cost

per month would be:

Pinecone Cost = $49

OpenAI Cost = $200

FastAPI Cost = $7

Total Cost = $49 + $200 + $7 = $256/month

A nice binary number :) Not intended but still fun.

These costs can quickly add up as the system scales, and it may be worth

exploring open-source alternatives or other strategies to reduce costs - like

using open-source bi-encoders for embedding or Pgvector as your vector

database.

Summary

With all of these components accounted for, our pennies added up, and

alternatives available at every step of the way, I’ll leave you all to it. Enjoy

setting up your new semantic search system and be sure to check out the

complete code for this - including a fully working FastAPI app with

instructions on how to deploy it - on the book’s code repository and

experiment to your heart’s content to try and make this work as well as

possible for your domain-specific data.

Stay tuned for our next chapter where we will build on this API with a

chatbot built using GPT-4 and our retrieval system.

3

First Steps with Prompt Engineering

Introduction

In our previous chapter, we built a semantic search system that leveraged the

power of Large Language Models (LLMs) to find relevant documents based

on natural language queries. The system was able to understand the meaning

behind the queries and retrieve accurate results, thanks to the pre-training of

the LLMs on vast amounts of text.

However, building an effective LLM-based application can require more than

just plugging in a pre-trained model and feeding it data and we might want to

lean on the learnings of massively large language models to help complete

the loop. This is where prompt engineering begins to come into the picture.

Prompt Engineering

Prompt engineering involves crafting prompts that effectively communicate

the task at hand to the LLM, leading to accurate and useful outputs (Figure

3.1). It is a skill that requires an understanding of the nuances of language,

the specific domain being worked on, and the capabilities and limitations of

the LLM being used.

Figure 3.1 Prompt engineering is how we construct inputs to LLMs to get a

desired output.

In this chapter, we will delve deeper into the art of prompt engineering,

exploring techniques and best practices for crafting effective prompts that

lead to accurate and relevant outputs. We will cover topics such as structuring

prompts for different types of tasks, fine-tuning models for specific domains,

and evaluating the quality of LLM outputs.

By the end of this chapter, you will have the skills and knowledge needed to

create powerful LLM-based applications that leverage the full potential of

these cutting-edge models.

Alignment in Language Models

Alignment in language models refers to how well the model can understand

and respond to input prompts that are in line with what the user expected. In

standard language modeling, a model is trained to predict the next word or

sequence of words based on the context of the preceding words. However,

this approach does not allow for specific instructions or prompts to be given

to the model, which can limit its usefulness for certain applications.

Prompt engineering can be challenging if the language model has not been

aligned with the prompts, as it may generate irrelevant or incorrect responses.

However, some language models have been developed with extra alignment

features, such as Constitutional AI-driven Reinforcement Learning from AI

Feedback (RLAIF) from Anthropic or Reinforcement Learning with Human

Feedback (RLHF) in OpenAI’s GPT series, which can incorporate explicit

instructions and feedback into the model’s training. These alignment

techniques can improve the model’s ability to understand and respond to

specific prompts, making them more useful for applications such as question-

answering or language translation (Figure 3.2).

Figure 3.2 Even modern LLMs like GPT-3 need alignment to behave how we

want them to. The original GPT-3 model released in 2020 is a pure auto-

regressive language model and tries to “complete the thought” and gives me

some misinformation pretty freely. In January 2022, GPT-3’s first aligned

version was released (InstructGPT) and was able to answer questions in a

more succinct and accurate manner.

This chapter will focus on language models that have been specifically

designed and trained to be aligned with instructional prompts. These models

have been developed with the goal of improving their ability to understand

and respond to specific instructions or tasks. These include models like GPT-

3, ChatGPT (closed-source models from OpenAI), FLAN-T5 (an open-

source model from Google), and Cohere’s command series (closed-source),

which have been trained using large amounts of data and techniques such as

transfer learning and fine-tuning to be more effective at generating responses

to instructional prompts. Through this exploration, we will see the beginnings

of fully working NLP products and features that utilize these models, and

gain a deeper understanding of how to leverage aligned language models’ full

capabilities.

Just Ask

The first and most important rule of prompt engineering for instruction

aligned language models is to be clear and direct in what you are asking for.

When we give an LLM a task to complete, we want to make sure that we are

communicating that task as clearly as possible. This is especially true for

simple tasks that are straightforward for the LLM to accomplish.

In the case of asking GPT-3 to correct the grammar of a sentence, a direct

instruction of “Correct the grammar of this sentence” is all you need to get a

clear and accurate response. The prompt should also clearly indicate the

phrase to be corrected (Figure 3.3).

Figure 3.3 The best way to get started with an LLM aligned to answer

queries from humans is to simply ask.

Note

Many figures are screenshots of an LLM’s playground.

Experimenting with prompt formats in the playground or via

an online interface can help identify effective approaches,

which can then be tested more rigorously using larger data

batches and the code/API for optimal output.

To be even more confident in the LLM’s response, we can provide a clear

indication of the input and output for the task by adding prefixes. Let’s take

another simple example asking GPT-3 to translate a sentence from English to

Turkish.

A simple “just ask” prompt will consist of three elements:

 A direct instruction: “Translate from English to Turkish.” which belongs at

the top of the prompt so the LLM can pay attention to it (pun intended) while

reading the input, which is next

 The English phrase we want translated preceded by “English:” which is our

clearly designated input

 A space designated for the LLM to answer to give it’s answer which we will

add the intentionally similar prefix “Turkish:”

These three elements are all part of a direct set of instructions with an

organized answer area. By giving GPT-3 this clearly constructed prompt, it

will be able to recognize the task being asked of it and fill in the answer

correctly (Figure 3.4).

Figure 3.4 This more fleshed out version of our just ask prompt has three

components: a clear and concise set of instructions, our input prefixed by an

explanatory label and a prefix for our output followed by a colon and no

further whitespace.

We can expand on this even further by asking the GPT-3 to output multiple

options for our corrected grammar by asking GPT-3 to give results back as a

numbered list (Figure 3.5).

Figure 3.5 Part of giving clear and direct instructions is telling the LLM how

to structure the output. In this example, we ask GPT-3 to give grammatically

correct versions as a numbered list.

Therefore, when it comes to prompt engineering, the rule of thumb is simple:

when in doubt, just ask. Providing clear and direct instructions is crucial to

getting the most accurate and useful outputs from an LLM.

Few-shot Learning

When it comes to more complex tasks that require a deeper understanding of

language, giving an LLM a few examples can go a long way in helping an

LLM produce accurate and consistent outputs. Few-shot learning is a

powerful technique that involves providing an LLM with a few examples of a

task to help it understand the context and nuances of the problem.

Few-shot learning has been a pretty major focus of research in the field of

LLMs. The creators of GPT-3 even recognized the potential of this technique,

which is evident from the fact that the original GPT-3 research paper was

titled “Language Models are Few-Shot Learners”.

Few-shot learning is particularly useful for tasks that require a certain tone,

syntax, or style, and for fields where the language used is specific to a

particular domain. Figure 3.6 shows an example of asking GPT-3 to classify

a review as being subjective or not. Basically this is a binary classification

task.

Figure 3.6 A simple binary classification for whether a given review is

subjective or not. The top two examples show how LLMs can intuit a task’s

answer from only a few examples where the bottom two examples show the

same prompt structure without any examples (referred to as “zero-shot”) and

cannot seem to answer how we want it to.

In the following figure, we can see that the few-shot examples are more likely

to produce expected results because the LLM can look back at some

examples to intuit from.

Few-shot learning opens up new possibilities for how we can interact with

LLMs. With this technique, we can provide an LLM with an understanding

of a task without explicitly providing instructions, making it more intuitive

and user-friendly. This breakthrough capability has paved the way for the

development of a wide range of LLM-based applications, from chatbots to

language translation tools.

Output Structuring

LLMs can generate text in a variety of formats, sometimes with too much

variety. It can be helpful to structure the output in a specific way to make it

easier to work with and integrate into other systems. We’ve actually seen this

previously in this chapter when we asked GPT-3 to give us an answer in a

numbered list. We can also make an LLM give back structured data formats

like JSON (JavaScript Object Notation) as the output Figure 3.7).

Figure 3.7 Simply asking GPT-3 to give a response back as a JSON (top)

does give back a valid JSON but the keys are also in Turkish which may not

be what we want. We can be more specific in our instruction by giving a one-

shot example (bottom) which makes the LLM output the translation in the

exact JSON format we requested.

By structuring LLM output in structured formats, developers can more easily

extract specific information and pass it on to other services. Additionally,

using a structured format can help ensure consistency in the output and

reduce the risk of errors or inconsistencies when working with the model.

Prompting Personas

Specific word choices in our prompts can greatly influence the output of the

model. Even small changes to the prompt can lead to vastly different results.

For example, adding or removing a single word can cause the LLM to shift

its focus or change its interpretation of the task. In some cases, this may

result in incorrect or irrelevant responses, while in other cases, it may

produce the exact output desired.

To account for these variations, researchers and practitioners often create

different “personas” for the LLM, representing different styles or voices that

the model can adopt depending on the prompt. These personas can be based

on specific topics, genres, or even fictional characters, and are designed to

elicit specific types of responses from the LLM (Figure 3.8).

Figure 3.8 Starting from the top left and moving down we see a baseline

prompt of asking GPT-3 to respond as a store attendant. We can inject some

more personality by asking it to respond in an “excitable” way or even as a

pirate! We can also abuse this system by asking the LLM to respond in a rude

manner or even horribly as an anti-Semite. Any developer who wants to use

an LLM should be aware that these kinds of outputs are possible, whether

intentional or not. We will talk about advanced output validation techniques

in a future chapter that can help mitigate this behavior.

By taking advantage of personas, LLM developers can better control the

output of the model and end-users of the system can get a more unique and

tailored experience.

Personas may not always be used for positive purposes. Just like any tool or

technology, some people may use LLMs to evoke harmful messages like if

we asked an LLM to imitate an anti-Semite like in the last figure. By feeding

the LLMs with prompts that promote hate speech or other harmful content,

individuals can generate text that perpetuates harmful ideas and reinforces

negative stereotypes. Creators of LLMs tend to take steps to mitigate this

potential misuse, such as implementing content filters and working with

human moderators to review the output of the model. Individuals who want

to use LLMs must also be responsible and ethical when using LLMs and

consider the potential impact of their actions (or the actions the LLM take on

their behalf) on others.

Working with Prompts Across Models

Prompts are highly dependent on the architecture and training of the language

model, meaning that what works for one model may not work for another.

For example, ChatGPT, GPT-3 (which is different from ChatGPT), T5, and

models in the Cohere command series all have different underlying

architectures, pre-training data sources, and training approaches, which all

impact the effectiveness of prompts when working with them. While some

prompts may transfer between models, others may need to be adapted or re-

engineered to work with a specific model.

In this section, we will explore how to work with prompts across models,

taking into account the unique features and limitations of each model to

develop effective prompts that can guide language models to generate the

desired output.

ChatGPT

Some LLMs can take in more than just a single “prompt”. Models that are

aligned to conversational dialogue like ChatGPT can take in a system

prompt and multiple “user” and “assistant” prompts (Figure 3.8). The system

prompt is meant to be a general directive for the conversation and will

generally include overarching rules and personas to follow. The user and

assistant prompts are messages between the user and the LLM respectively.

For any LLM you choose to look at, be sure to check out their documentation

for specifics on how to structure input prompts.

Figure 3.8 ChatGPT takes in an overall system prompt as well as any

number of user and assistant prompts that simulate an ongoing conversation.

Cohere

We’ve already seen Cohere’s command series of models in action previously

in this chapter but as an alternative to OpenAI, it’s a good time to show that

prompts cannot always be simply ported over from one model to another.

Usually we need to alter the prompt slightly to allow another LLM to do its

work.

Let’s return to our simple translation example. Let’s ask OpenAI and Cohere

to translate something from English to Turkish (Figure 3.9).

Figure 3.9 OpenAI’s GPT-3 can take a translation instruction without much

hand-holding whereas the cohere model seems to require a bit more

structure.

It seems that the Cohere model I chose required a bit more structuring than

the OpenAI version. That doesn’t mean that the Cohere is worse than GPT-3,

it just means that we need to think about how our prompt is structured for a

given LLM.

Open-Source Prompt Engineering

It wouldn’t be fair to talk about prompt engineering and not talk about open-

source models like GPT-J and FLAN-T5. When working with them, prompt

engineering is a critical step to get the most out of their pre-training and fine-

tuning which we will start to cover in the next chapter. These models can

generate high-quality text output just like their closed-source counterparts but

unlike closed-source models like GPT and Cohere, open-source models offer

greater flexibility and control over prompt engineering, enabling developers

to customize prompts and tailor output to specific use cases during fine-

tuning.

For example, a developer working on a medical chatbot may want to create

prompts that focus on medical terminology and concepts, while a developer

working on a language translation model may want to create prompts that

emphasize grammar and syntax. With open-source models, developers have

the flexibility to fine-tune prompts to their specific use cases, resulting in

more accurate and relevant text output.

Another advantage of prompt engineering in open-source models is

collaboration with other developers and researchers. Open-source models

have a large and active community of users and contributors, which allows

developers to share their prompt engineering strategies, receive feedback, and

collaborate on improving the overall performance of the model. This

collaborative approach to prompt engineering can lead to faster progress and

more significant breakthroughs in natural language processing research.

It pays to remember how open-source models were pre-trained and fine-tuned

(if they were at all). For example, GPT-J is simply an auto-regressive

language model, so we’d expect things like few shot prompting to work

better than simply asking a direct instructional promp, t whereas FLAN-T5

was specifically fine-tuned with instructional prompting in mind so while

few-shots will still be on the table, we can also rely on the simplicity of just

asking (Figure 3.10).

Figure 3.10 Open source models can vary drastically in how they were

trained and how they expect prompts. Models like GPT-J which is not

instruction aligned has a hard time answering a direct instruction (bottom

left) whereas FLAN-T5 which was aligned to instructions does know how to

accept instructions (bottom right). Both models are able to intuit from few-

shot learning but FLAN-T5 seems to be having trouble with our subjective

task. Perhaps a great candidate for some fine-tuning! Coming soon to a

chapter near you.

Building a Q/A bot with ChatGPT

Let’s build a very simple Q/A bot using ChatGPT and the semantic retrieval

system we built in the last chapter. Recall that one of our API endpoints is

used to retrieve documents from our BoolQ dataset given a natural query.

Note

Both ChatGPT (GPT 3.5) and GPT-4 are conversational

LLMs and take in the same kind of system prompt as well as

user prompts assistant prompts. When I say we are using

ChatGPT, we could be using either GPT 3.5 or GPT-4. Our

repository uses the most up to date model (which at the time

of writing is GPT-4).

All we need to do to get off the ground is:

1. Design a system prompt for ChatGPT

2. Search for context in our knowledge with every new user message

3. Inject any context we find from our DB directly into ChatGPT’s system

prompt

4. Let ChatGPT do its job and answer the question

Figure 3.11 outlines these high level steps:

Figure 3.11 A 10,000 foot view of our chatbot that uses ChatGPT to provide

a conversational interface in front of our semantic search API.

To dig into it one step deeper, Figure 3.12 shows how this will work at the

prompt level, step by step:

Figure 3.12 Starting from the top left and reading left to right, these four

states represent how our bot is architected. Every time a user says something

that surfaces a confident document from our knowledge base, that document

is inserted directly into the system prompt where we tell ChatGPT to only use

documents from our knowledge base.

Let’s wrap all of this logic into a Python class that will have a skeleton like in

Listing 3.1.

A ChatGPT Q/A bot

Define a system prompt that gives the bot context throughout the conversation and will be amended with content from our knowledge base.
SYSTEM_PROMPT = '''
You are a helpful Q/A bot that can only reference material from a knowledge base.
All context was pulled from a knowledge base.
If a user asks anything that is not "from the knowledge base", say that you cannot answer.
'''

Define the ChatbotGPT class
class ChatbotGPT():

 # Define the constructor method for the class
 def __init__(self, system_prompt, threshold=.8):
 # Initialize the conversation list with the system prompt as the first turn
 # Set a threshold for the similarity score between the user's input and the knowledge base
 pass

 # Define a method to display the conversation in a readable format
 def display_conversation(self):
 # Iterate through each turn in the conversation
 # Get the role and content of the turn
 # Print out the role and content in a readable format
 pass

 # Define a method to handle the user's input
 def user_turn(self, message):

 # Add the user's input as a turn in the conversation
 # Get the best matching result from the knowledge base using Pinecone
 # Check if the confidence score between the user's input and the document meets the threshold
 # Add the context from the knowledge base to the system prompt if we meet the threshold
 # Generate a response from the ChatGPT model using OpenAI's API
 # Add the GPT-3.5 response as a turn in the conversation
 # Return the assistant's response
 pass

A full implementation of this code using GPT-4 is in the book’s repository

and Figure 3.13 presents a sample conversation we can have with it.

Figure 3.13 Asking our bot about information from the BoolQ dataset yields

cohesive and conversational answers whereas when I ask about Barack

Obama’s age (which is information not present in the knowledge base) the AI

politely declines to answer even though that is general knowledge it would

try to use otherwise.

As a part of testing, I decided to try something out of the box and built a new

namespace in the same vector database (Thank you, Pinecone) and I chunked

documents out of a PDF of a Star Wars-themed card game I like. I wanted to

use the chatbot to ask basic questions about the game and let ChatGPT

retrieve portions of the manual to answer my questions. Figure 3.14 was the

result!

Figure 3.14 The same architecture and system prompt against a new

knowledge base of a card game manual. Now I can ask questions in the

manual but my questions from BoolQ are no longer in scope.

Not bad at all if I may say so.

Summary

Prompt engineering, the process of designing and optimizing prompts to

improve the performance of language models can be fun, iterative, and

sometimes tricky! We saw many tips and tricks on how to get started such as

understanding alignment, just asking, few-shot learning, output structuring,

prompting personas, and working with prompts across models. We also built

our own chatbot using ChatGPT’s prompt interface that was able to tie into

the API we built in the last chapter.

There is a strong correlation between proficient prompt engineering and

effective writing. A well-crafted prompt provides the model with clear

instructions, resulting in an output that closely aligns with the desired

response. When a human can comprehend and create the expected output

from a given prompt, it is indicative of a well-structured and useful prompt

for the LLM. However, if a prompt allows for multiple responses or is in

general vague, then it is likely too ambiguous for an LLM. This parallel

between prompt engineering and writing highlights that the art of writing

effective prompts is more like crafting data annotation guidelines or engaging

in skillful writing than it is similar to traditional engineering practices.

Prompt engineering is an important process for improving the performance of

language models. By designing and optimizing prompts, language models

can better understand and respond to user inputs. In a later chapter, we will

revisit prompt engineering with some more advanced topics like LLM output

validation, chain of thought prompting to force an LLM to think out loud, and

chaining multiple prompts together into larger workflows.

4

Fine-Tuning GPT3 with Custom Examples [This
content is currently in development.]

This content is currently in development.

Part II: Getting the most out of LLMs

5

Advanced Prompt Engineering Techniques [This
content is currently in development.]

This content is currently in development.

6

Building a Recommendation Engine [This content is
currently in development.]

This content is currently in development.

7

Combining Transformers [This content is currently in
development.]

This content is currently in development.

8

Fine-Tuning Open-Source LLMs [This content is
currently in development.]

This content is currently in development.

9

Deploying Custom LLMs to the Cloud [This content is
currently in development.]

This content is currently in development.

	Cover Page
	Title Page
	Contents at a Glance
	Table of Contents
	Preface
	Part I: Introduction to Large Language Models
	1. Overview of Large Language Models
	What Are Large Language Models (LLMs)?
	Popular Modern LLMs
	Domain-Specific LLMs
	Applications of LLMs

	2. Launching an Application with Proprietary Models
	Introduction
	The Task
	Solution Overview
	The Components
	Putting It All Together
	The Cost of Closed-Source
	Summary

	3. Prompt Engineering with GPT3
	Introduction
	Prompt Engineering
	Working with Prompts Across Models
	Building a Q/A bot with ChatGPT
	Summary

	4. Fine-Tuning GPT3 with Custom Examples [This content is currently in development.]

	Part II: Getting the most out of LLMs
	5. Advanced Prompt Engineering Techniques [This content is currently in development.]
	6. Building a Recommendation Engine [This content is currently in development.]
	7. Combining Transformers [This content is currently in development.]
	8. Fine-Tuning Open-Source LLMs [This content is currently in development.]
	9. Deploying Custom LLMs to the Cloud [This content is currently in development.]

