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Preface

It’s been over 10 years since I was first introduced to R. Back then, I was a young
product development manager at DoubleClick, a company that sold advertising
software for managing online ad sales. I was working on inventory prediction: esti-
mating the number of ad impressions that could be sold for a given search term, web
page, or demographic characteristic. I wanted to play with the data myself, but we
couldn’t afford a piece of expensive software like SAS or MATLAB. I looked around
for a little while, trying to find an open-source statistics package, and stumbled on
R. Back then, R was a bit rough around the edges and was missing a lot of the features
it has today (like fancy graphics and statistics functions). But R was intuitive and
easy to use; I was hooked. Since that time, I’ve used R to do many different things:
estimate credit risk, analyze baseball statistics, and look for Internet security threats.
I’ve learned a lot about data and matured a lot as a data analyst.

R, too, has matured a great deal over the past decade. R is used at the world’s largest
technology companies (including Google, Microsoft, and Facebook), the largest
pharmaceutical companies (including Johnson & Johnson, Merck, and Pfizer), and
at hundreds of other companies. It’s used in statistics classes at universities around
the world and by statistics researchers to try new techniques and algorithms.

Why I Wrote This Book
This book is designed to be a concise guide to R. It’s not intended to be a book about
statistics or an exhaustive guide to R. In this book, I tried to show all the things that
R can do and to give examples showing how to do them. This book is designed to
be a good desktop reference.

I wrote this book because I like R. R is fun and intuitive in ways that other solutions
are not. You can do things in a few lines of R that could take hours of struggling in
a spreadsheet. Similarly, you can do things in a few lines of R that could take pages
of Java code (and hours of Java coding). There are some excellent books on R, but
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I couldn’t find an inexpensive book that gave an overview of everything you could
do in R. I hope this book helps you use R.

When Should You Use R?
I think R is a great piece of software, but it isn’t the right tool for every problem.
Clearly, it would be ridiculous to write a video game in R, but it’s not even the best
tool for all data problems.

R is very good at plotting graphics, analyzing data, and fitting statistical models using
data that fits in the computer’s memory. It’s not as good at storing data in compli-
cated structures, efficiently querying data, or working with data that doesn’t fit in
the computer’s memory.

Typically, I use a scripting language like Perl, Python, or Ruby to preprocess files
before using them in R. (If the files are really big, I’ll use Pig.) It’s technically possible
to use R for these problems (by reading files one line at a time and using R’s regular
expression support), but it’s pretty awkward. To hold large data files, I usually use
Hadoop. Sometimes I use a database like MySQL, PostgreSQL, SQLite, or Oracle
(when someone else is paying the license fee).

What’s New in the Second Edition?
This edition isn’t a total rewrite of the first book. But I have tried to improve the
book in a few significant ways:

• There are new chapters on ggplot2 and using R with Hadoop.

• Formatting changes should make code examples easier to read.

• I’ve changed the order of the book slightly, grouping the plotting chapters to-
gether.

• I’ve made some minor updates to reflect changes in R 2.14 and R 2.15.

• There are some new sections on useful tools for manipulating data in R, such
as plyr and reshape.

• I’ve corrected dozens of errors.
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R License Terms
R is an open-source software package, licensed under the GNU General Public
License (GPL).1 This means that you can install R for free on most desktop and
server machines. (Comparable commercial software packages sell for hundreds or
thousands of dollars. If R were a poor substitute for the commercial software pack-
ages, they might have limited appeal. However, I think R is better than its commercial
counterparts in many respects.)

Capability
You can find implementations for hundreds (maybe thousands) of statistical
and data analysis algorithms in R. No commercial package offers anywhere near
the scope of functionality available through the Comprehensive R Archive Net-
work (CRAN).

Community
There are now hundreds of thousands (if not millions) of R users worldwide.
By using R, you can be sure that you’re using the same software your colleagues
are using.

Performance
R’s performance is comparable, or superior, to most commercial analysis pack-
ages. R requires you to load data sets into memory before processing. If you
have enough memory to hold the data, R can run very quickly. Luckily, memory
is cheap. You can buy 32 GB of server RAM for less than the cost of a single
desktop license of a comparable piece of commercial statistical software.

Examples
In this book, I have tried to provide many working examples of R code. I deliberately
decided to use new and original examples, instead of relying on the data sets included
with R. I am not implying that the included examples are not good; they are good.
I just wanted to give readers a second set of examples. In most cases, the examples
are short and simple and I have not provided them in a downloadable form. How-
ever, I have included example data and a few of the longer examples in the nut
shell R package, available through CRAN. To install the nutshell package, type the
following command on the R console:

> install.packages("nutshell")

1. There is some controversy about GPL licensed software and what it means to you as a corporate
user. Some users are afraid that any code they write in R will be bound by the GPL. If you are
not writing extensions to R, you do not need to worry about this issue. R is an interpreter, and
the GPL does not apply to a program just because it is executed on a GPL-licensed interpreter.

If you are writing extensions to R, they might be bound by the GPL. For more information,
see the GNU foundation’s FAQ on the GPL: http://www.gnu.org/licenses/gplfaq. However, for
a definite answer, see an attorney. If you are worried about a specific application, see an
attorney.
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How This Book Is Organized
I’ve broken this book into parts:

• Part I, R Basics, covers the basics of getting and running R. It’s designed to help
get you up and running if you’re a new user, including a short tour of the many
things you can do with R.

• Part II, The R Language, picks up where the first section leaves off, describing
the R language in detail.

• Part III, Working with Data, covers data processing in R: loading data into R,
transforming data, and summarizing data.

• Part IV, Data Visualization, describes how to plot data with R.

• Part V, Statistics with R, covers statistical tests and models in R.

• Part VI, Additional Topics, contains chapters that don’t belong elsewhere: tun-
ing R programs, writing parallel R programs, and Bioconductor.

• Finally, I included an Appendix describing functions and data sets included
with the base distribution of R.

If you are new to R, install R and start with Chapter 3. Next, take a look at Chap-
ter 5 to learn some of the rules of the R language. If you plan to use R for plotting,
statistical tests, or statistical models, take a look at the appropriate chapter. Make
sure you look at the first few sections of the chapter, because these provide an over-
view of how all the related functions work. (For example, don’t skip straight to
“Random forests for regression” on page 448 without reading “Example: A Simple
Linear Model” on page 401.)

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords. (When showing input and output on the
R console, I use constant width text to show prompts and other information
produced by the R interpreter.)

Constant width bold
Shows commands or other text that should be typed literally by the user. (When
showing input and output on the R console, I use constant width bold text to
show you what I typed, including comments.)

Constant width italic
Shows text that should be replaced with user-supplied values or by values de-
termined by context.
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This icon indicates a tip, suggestion, or general note.

This icon indicates a warning or a caution.

In this book, I will sometimes show commands that I entered on my operating system
prompt (i.e., in a Bash shell on Linux), and sometimes show commands that I en-
tered in the R console. For commands that I entered in the operating system shell,
I use a $ character to show the prompt; for commands entered in the R console, I
will use > or + to show the prompt. (In either case, don’t type the prompt character.)

Using Code Examples
This book is here to help you get your job done. In general, you may use the code
in this book in your programs and documentation. You do not need to contact us
for permission unless you’re reproducing a significant portion of the code. For ex-
ample, writing a program that uses several chunks of code from this book does not
require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quot-
ing example code does not require permission. Incorporating a significant amount
of example code from this book into your product’s documentation does require
permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “R in a Nutshell by Joseph Adler.
Copyright 2012 Joseph Adler, 978-1-449-31208-4.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-demand
digital library that delivers expert content in both book and video form
from the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and
creative professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for or-
ganizations, government agencies, and individuals. Subscribers have access to thou-
sands of books, training videos, and prepublication manuscripts in one fully search-
able database from publishers like O’Reilly Media, Prentice Hall Professional,
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Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal
Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Red-
books, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill,
Jones & Bartlett, Course Technology, and dozens more. For more information about
Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/r_in_a_nutshell_2e.

To comment or to ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our
website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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I
R Basics

This part of the book covers the basics of R: how to get R, how to install it, and how
to use packages in R. It also includes a quick tutorial on R and an overview of the
features of R.





1
Getting and Installing R

This chapter explains how to get R and how to install it on your computer.

R Versions
Today, R is maintained by a team of developers around the world. Usually, there is
an official release of R twice a year, in April and in October. I’ve checked the code
in this book against 2.15.1, but if you have an earlier or later version of R installed,
don’t worry.

R hasn’t changed that much in the past few years: usually there are some bug fixes,
some optimizations, and a few new functions in each release. There have been some
changes to the language, but most of these are related to somewhat obscure features
that won’t affect most users. (For example, the type of NA values in incompletely
initialized arrays was changed in R 2.5.) Don’t worry about using the exact version
of R that I used in this book; any results you get should be very similar to the results
shown in this book. If there are any changes to R that affect the examples in this
book, I’ll try to add them to the official errata online.

Additionally, I’ve given some example filenames below for the current release. The
filenames usually have the release number in them. So don’t worry if you’re reading
this book and don’t see a link for R-2.15.1-win32.exe but see a link for R-2.73.5-
win32.exe instead; just use the latest version and you should be fine.

Getting and Installing Interactive R Binaries
R has been ported to every major desktop computing platform. Because R is open
source, developers have ported R to many different platforms. Additionally, R is
available with no license fee.

If you’re using a Mac or a Windows machine, you’ll probably want to download the
files yourself and then run the installers. (If you’re using Linux, I recommend using
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a port management system like Yum to simplify the installation and updating pro-
cess; see “Linux and Unix Systems” on page 5.) Here’s how to find the binaries.

1. Visit the official R website. On the site, you should see a link to “Download.”

2. The download link actually takes you to a list of mirror sites. The list is organ-
ized by country. You’ll probably want to pick a site that is geographically close,
because it’s likely to also be close on the Internet, and thus fast. I usually use
the link for the University of California, Los Angeles, because I live in California.

3. Find the right binary for your platform and run the installer.

There are a few things to keep in mind, depending on what system you’re using.

Building R from Source
It’s standard practice to build R from source on Linux and Unix systems, but not
on Mac OS X or Windows platforms. It’s pretty tricky to build your own binaries
on Mac OS X or Windows, and it doesn’t yield a lot of benefits for most users.
Building R from source won’t save you space (you’ll probably have to download
a lot of other stuff, like LaTeX), and it won’t save you time (unless you already
have all the tools you need and have a really, really slow Internet connection). The
best reason to build your own binaries is to get better performance out of R, but
I’ve never found R’s performance to be a problem, even on very large
data sets. If you’re interested in how to build your own R, see “Building your
own” on page 521.

Windows
Installing R on Windows is just like installing any other piece of software on Win-
dows, which means that it’s easy if you have the right permissions, difficult if you
don’t. If you’re installing R on your personal computer, this shouldn’t be a problem.
However, if you’re working in a corporate environment, you might run into some
trouble.

If you’re an “Administrator” or “Power User” on Windows XP, installation is
straightforward: double-click the installer and follow the on-screen instructions.

There are some known issues with installing R on Microsoft Windows Vista. In
particular, some users have problems with file permissions. Here are two approaches
for avoiding these issues:

• Install R as a standard user in your own file space. This is the simplest approach.

• Install R as the default Administrator account (if it is enabled and you have
access to it). Note that you will also need to install packages as the Administrator
user.

For a full explanation, see http://cran.r-project.org/bin/windows/base/rw-FAQ.html
#Does-R-run-under-Windows-Vista_003f.

Currently, CRAN releases only 32-bit builds of R for Microsoft Windows. These are
tested on 64-bit versions of Windows and should run correctly.
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Mac OS X
The current version of R runs on both PowerPC- and Intel-based Mac systems run-
ning Mac OS X 10.5 (Leopard) and higher. If you’re using an older operating system,
or an older computer, you can find older versions on the website that may work
better with your system.

You’ll find three different R installers for Mac OS X: a three-way universal binary
for Mac OS X 10.5 (Leopard) and higher, a legacy universal binary for Mac OS X
10.4 and higher with supplemental tools, and a legacy universal binary for Mac
OS X 10.4 and higher without supplemental tools. See the CRAN download site for
more details on the differences among these versions.

As with most applications, you’ll need to have the appropriate permissions on your
computer to install R. If you’re using your personal computer, you’re probably OK:
you just need to remember your password. If you’re using a computer managed by
someone else, you may need that person’s help to install R.

The universal binary of R is made available as an installer package; simply download
the file and double-click the package to install the application. The legacy R installers
are packaged on a disk image file (like most Mac OS X applications). After you
download the disk image, double-click it to open it in the finder (if it does not au-
tomatically open). Open the volume and double-click the R.mpkg icon to launch
the installer. Follow the directions in the installer, and you should have a working
copy of R on your computer.

Linux and Unix Systems
Before you start, make sure that you know the system’s root password or have sudo
privileges on the system you’re using. If you don’t, you’ll need to get help from the
system administrator to install R.

Installation using package management systems

On a Linux system, the easiest way to install R is to use a package management
system. These systems automate the installation process: they fetch the R binaries
(or sources), get any other software that’s needed to run R, and even make upgrading
to the latest version easy.

For example, on Red Hat (or Fedora), you can use Yum (which stands for
“Yellowdog Updater, Modified”) to automate the installation. For example, on a
64-bit x86 Linux platform running Linux, open a terminal window and type:

$ sudo yum install R.x86_64

You’ll be prompted for your password, and if you have sudo privileges, R should be
installed on your system. Later, you can update R by typing:

$ sudo yum update R.x86_64

And, if there is a new version available, your R installation will be upgraded to the
latest version.
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If you’re using another Unix system, you may also be able to install R. (For example,
R is available through the FreeBSD Ports system at http://www.freebsd.org/cgi/cvsweb
.cgi/ports/math/R/.) I haven’t tried these versions but have no reason to think they
don’t work correctly. See the documentation for your system for more information
about how to install software.

Installing R from downloaded files

If you’d like, you can manually download R and install it later. Currently, there are
precompiled R packages for several flavors of Linux, including Red Hat, Debian,
Ubuntu, and SUSE. Precompiled binaries are also available for Solaris.

On Red Hat–style systems, you can install these packages through the Red Hat
Package Manager (RPM). For example, suppose that you downloaded the file
R-2.15.1.fc10.i386.rpm to the directory ~/Downloads. Then you could install it with
a command like:

$ rpm -i ~/Downloads/R-2.15.1.fc10.i386.rpm

For more information on using RPM, or other package management systems, see
your user documentation.
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2
The R User Interface

If you’re reading this book, you probably have a problem that you would like to
solve in R. You might want to:

• Check the statistical significance of experimental results

• Plot some data to help understand it better

• Analyze some genome data

The R system is a software environment for statistical computing and graphics. It
includes many different components. In this book, I’ll use the term “R” to refer to
a few different things:

• A computer language

• The interpreter that executes code written in R

• A system for plotting computer graphics described using the R language

• The Windows, Mac OS, or Linux application that includes the interpreter,
graphics system, standard packages, and user interface

This chapter contains a short description of the R user interface and the R console
and describes how R varies on different platforms. If you’ve never used an interactive
language, this chapter will explain some basic things you will need to know in order
to work with R. We’ll take a quick look at the R graphical user interface (GUI) on
each platform and then talk about the most important part: the R console.

The R Graphical User Interface
Let’s get started by launching R and taking a look at R’s graphical user interface on
different platforms. When you open the R application on Windows or Max OS X,
you’ll see a command window and some menu bars. On most Linux systems, R will
simply start on the command line.
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Windows
By default, R is installed into %ProgramFiles%R (which is usually C:\Program Files
\R) and installed into the Start menu under the group R. When you launch R in
Windows, you’ll see something like the user interface shown in Figure 2-1.1 Inside
the R GUI window, there is a menu bar, a toolbar, and the R console.

Figure 2-1. R user interface on Windows XP

Mac OS X
The default R installer will add an application called R to your Applications folder
that you can run like any other application on your Mac. When you launch the R
application on Mac OS X systems, you’ll see something like the screen shown in
Figure 2-2. Like the Windows system, there is a menu bar, a toolbar with common
functions, and an R console window.

On a Mac OS system, you can also run R from the terminal without using the GUI.
To do this, first open a terminal window. (The terminal program is located in the
Utilities folder inside the Applications folder.) Then enter the command “R” on the
command line to start R.

1. Yes, these are old screen shots. R has not changed very much, so we kept these the same in
the second edition.
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Linux and Unix
On Linux systems, you can start R from the command line by typing:

$ R

Notice that it’s a capital “R”; filenames on Linux are case sensitive. (And don’t type
the “$” character; that’s just the Unix prompt.)

Unlike the default applications for Mac OS and Windows, this will start an inter-
active R session on the command line itself. If you prefer, you can launch R in an
application window similar to the user interface on other platforms. To do this, use
the following command:

$ R -g Tk &

This will launch R in the background running in its own window, as shown in
Figure 2-3. Like the other platforms, there is a menu bar with some common func-
tions, but unlike the other platforms, there is no toolbar. The main window acts as
the R console.

Figure 2-2. R user interface on Mac OS X
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Figure 2-3. The interface for R on Fedora

Additional R GUIs
If you’re a typical desktop computer user, you might find it surprising to discover
how little functionality is implemented in the standard R GUI. The standard R
GUI implements only very rudimentary functionality through menus: reading
help, managing multiple graphics windows, editing some source and data files,
and some other basic functionality. There are no menu items, buttons, or palettes
for loading data, transforming data, plotting data, building models, or doing any
interesting work with data. Commercial applications like SAS, SPSS, and S-PLUS
include UIs with much more functionality.

Several projects are aiming to build an easier-to-use GUI for R:

Rcmdr
The Rcmdr project is an R package that provides an alternative GUI for R.
You can install it as an R package. It provides some buttons for loading data
and menu items for many common R functions.

Rkward
Rkward is a slick GUI front end for R. It provides a palette and menu-driven
UI for analysis, data-editing tools, and an IDE for R code development. It’s
still a young project and currently works best on Linux platforms (though
Windows builds are available). It is available from http://sourceforge.net/apps/
mediawiki/rkward/.
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R Productivity Environment
Revolution Computing recently introduced a new IDE called the R Produc-
tivity Environment. This IDE provides many features for analyzing data: a
script editor, object browser, visual debugger, and more. The R Productivity
Environment is currently available only for Windows, as part of Revolution
R Enterprise.

RStudio
RStudio is a popular, open source IDE for working with R. To learn more,
see “RStudio” on page 15.

You can find a list of additional projects at http://www.sciviews.org/_rgui/. This
book does not cover any of these projects in detail. However, you should still be
able to use this book as a reference for all of these packages because they all use
(and expose) R functions.

The R Console
The R console is the most important tool for using R. The R console is a tool that
allows you to type commands into R and see how the R system responds. The com-
mands that you type into the console are called expressions. A part of the R system
called the interpreter will read the expressions and respond with a result or an error
message. Sometimes, you can also enter an expression into R through the menus.

If you’ve used a command line before (for example, the cmd.exe program on Win-
dows) or a language with an interactive interpreter such as LISP, this should look
familiar.2 If not, don’t worry. Command-line interfaces aren’t as scary as they look.
R provides a few tools to save you extra typing, to help you find the tools you’re
looking for, and to spot common mistakes. Besides, you have a whole reference book
on R that will help you figure out how to do what you want.

Personally, I think a command-line interface is the best way to analyze data. After I
finish working on a problem, I want a record of every step that I took. (I want to
know how I loaded the data, if I took a random sample, how I took the sample,
whether I created any new variables, what parameters I used in my models, etc.) A
command-line interface makes it very easy to keep a record of everything I do and
then re-create it later if I need to.

When you launch R, you will see a window with the R console. Inside the console,
you will see a message like this:

R version 2.15.1 (2012-06-22) -- "Roasted Marshmallows"
Copyright (C) 2012 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
Platform: x86_64-apple-darwin9.8.0/x86_64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.

2. Incidentally, R has quite a bit in common with LISP: both languages allow you to compute
expressions on the language itself, both languages use similar internal structures to hold data,
and both languages use lots of parentheses.
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You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

  Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

[R.app GUI 1.52 (6188) x86_64-apple-darwin9.8.0]

[History restored from /Users/jadler/.Rapp.history]

This window displays some basic information about R: the version of R you’re run-
ning, some license information, quick reminders about how to get help, and a com-
mand prompt.

By default, R will display a greater-than sign (“>”) in the console (at the beginning
of a line, when nothing else is shown) when R is waiting for you to enter a command
into the console. R is prompting you to type something, so this is called a prompt.

For example, suppose that you typed 17 + 3 on the console. You would see some-
thing similar to this:

> 17 + 3
[1] 20

This means:

• I entered “17 + 3” into the R command prompt.

• The computer responded by writing “[1] 20” (I’ll explain what that means in
Chapter 3).

If you would like to try this yourself, then type “17 + 3” at the command prompt
and press the Enter key. You should see a response like the one shown above. In this
book, I will show text that I have typed in boldface. So, when you see an entry like
this in the book:

> 17 + 3
[1] 20

that means that I typed “17 + 3” into the console but that all the other text was
generated by R. (Your terminal probably won’t display text you have entered in
bold.)

Sometimes, an R command doesn’t fit on a single line. If you enter an incomplete
command on one line, the R prompt will change to a plus sign (“+”). Here’s a simple
example:

> 1 * 2 * 3 * 4 * 5 *
+ 6 * 7 * 8 * 9 * 10
[1] 3628800
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This could cause confusion in some cases (such as in long expressions that contain
sums or inequalities). On most platforms, command prompts, user-entered text,
and R responses are displayed in different colors to help clarify the differences.
Table 2-1 presents a summary of the default colors.

Table 2-1. Text colors in R interactive mode

Platform Command prompt User input R output

Mac OS X Purple Blue Black

Microsoft Windows Red Red Blue

Linux Black Black Black

Command-Line Editing
On most platforms, R provides tools for looking through previous commands.3 You
will probably find the most important line edit commands are the up and down
arrow keys. By placing the cursor at the end of the line, you can scroll through
commands by pressing the up arrow or the down arrow. The up arrow lets you look
at earlier commands, and the down arrow lets you look at later commands. If you
would like to repeat a previous command with a minor change (such as a different
parameter), or if you need to correct a mistake (such as a missing parenthesis), you
can do this easily.

You can also type history() to get a list of previously typed commands.4

R also includes automatic completions for function names and filenames. Type the
Tab key to see a list of possible completions for a function or a filename.

Batch Mode
R’s interactive mode is convenient for most ad hoc analyses, but typing in every
command can be inconvenient for some tasks. Suppose that you wanted to do the
same thing with R multiple times. (For example, you may want to load data from
an experiment, transform it, generate three plots as Portable Document Format
[PDF] files, and then quit.) R provides a way to run a large set of commands in
sequence and save the results to a file. This is called batch mode.

One way to run R in batch mode is from the system command line (not the R con-
sole). By running R from the system command line, it’s possible to run a set of
commands without starting R. This makes it easier to automate analyses, as you can
change a couple of variables and rerun an analysis. For example, to load a set of
commands from the file generate_graphs.R, you would use a command like this:

3. On Linux and Mac OS X systems, the command line uses the GNU readline library and
includes a large set of editing commands. On Windows platforms, a smaller number of editing
commands is available.

4. As of this writing, the history command does not work completely correctly on Mac OS X.
The history command will display the last saved history, not the history for the current session.
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$ R CMD BATCH generate_graphs.R

R would run the commands in the input file generate_graphs.R, generating an output
file called generate_graphs.Rout with the results. You can also specify the name of
the output file. For example, to put the output in a file labeled with today’s date (on
a Mac or Unix system), you could use a command like this:

$ R CMD BATCH generate_graphs.R generate_graphs_`date "+%y%m%d"`.log

If you’re generating graphics in batch mode, remember to specify the output device
and filenames. For more information about running R from the command line, in-
cluding a list of the available options, run R from the command line with the
--help option:

$ R --help

One key disadvantage of running R using the command R CMD BATCH is that your
scripts cannot access the system’s standard input. Luckily, there is a second com-
mand for running R in batch mode: the RScript command. You can execute a script
with a command like this:

$ RScript generate_graphs.R

Additionally, you can write executable scripts using RScript. Here’s an example of
how to do this (on Linux, Mac OS, or other Unix-like systems). First, create a file
called hello_world.R with the following contents:

#! /usr/bin/env RScript

print("Hello world!");

Next, type the following command to make the script executable:

$ chmod +x hello_world.R

Now you can execute this command like any other command:

$ ./hello_world.R 
[1] "Hello world!"

We will use this ability in “Hadoop Streaming” on page 568.

Finally, you can also run commands in batch mode from inside R. To do this, you
can use the source command; see the help file for source for more information.

Using R Inside Microsoft Excel
If you’re familiar with Microsoft Excel, or if you work with a lot of data files in Excel
format, you might want to run R directly from inside Excel. The RExcel software
lets you do just that (on Microsoft Windows systems). You can find information
about this software at http://rcom.univie.ac.at/. This site also includes a single in-
staller that will install R plus all the other software you need to use RExcel.

If you already have R installed, you can install RExcel as a package from CRAN. The
following set of commands will download RExcel, configure the RCOM server, in-
stall RDCOM, and launch the RExcel installer:
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> install.packages("RExcelInstaller", "rcom", "rsproxy")
> # configure rcom
> library(rcom)
> comRegisterRegistry()
> library(RExcelInstaller)
> # execute the following command in R to start the installer for RDCOM
> installstatconnDCOM()
> # execute the following command in R to start the installer for REXCEL
> installRExcel()

Follow the prompts within the installer to install RExcel.

After you have installed RExcel, you will be able to access RExcel from a menu item.
If you are using Excel 2007, you will need to select the “Add-Ins” ribbon to find this
menu, as shown in Figure 2-4. To use RExcel, first select the R Start menu item. As
a simple test, try doing the following:

1. Enter a set of numeric values into a column in Excel (for example, B1:B5).

2. Select the values you entered.

3. On the RExcel menu, go to the item Put R Var → Array.

4. A dialog box will open, asking you to name the object you are creating in Excel.
Enter v and press the Enter key. This will create an array (in this case, just a
vector) in R with the values that you entered with the name v.

5. Now, select a blank cell in Excel.

6. On the RExcel menu, go to the item Get R Value → Array.

7. A dialog box will open, prompting you to enter an R expression. As an example,
try entering (v - mean(v)) / sd(v). This will rescale the contents of v, changing
the mean to 0 and the standard deviation to 1.

8. Inspect the results that have been returned within Excel.

For some more interesting examples of how to use RExcel, take a look at the Demo
Worksheets under this menu. You can use Excel functions to evaluate R expressions,
use R expressions in macros, and even plot R graphics within Excel.

RStudio
One of the most popular ways to run R has become RStudio. RStudio is a free, open-
source integrated development environment (IDE) for R. A screen shot of R Studio
is shown in Figure 2-5.

Unlike the standard R GUI, RStudio tiles windows on the screen and puts different
windows in different tabs. Additionally, you can install RStudio on a Linux server
and access R from a web browser! To learn more about RStudio and download a
copy, see http://www.rstudio.org.
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Figure 2-4. Accessing RExcel in Microsoft Excel 2007

Figure 2-5. R Studio
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Other Ways to Run R
There are several open-source projects that allow you to combine R with other
applications:

As a web application
The rApache software allows you to incorporate analyses from R into a web
application. (For example, you might want to build a server that shows sophis-
ticated reports using R lattice graphics.) For information about this project, see
http://biostat.mc.vanderbilt.edu/rapache/.

As a server
The Rserve software allows you to access R from within other applications. For
example, you can produce a Java program that uses R to perform some calcu-
lations. As the name implies, Rserve is implemented as a network server, so a
single Rserve instance can handle calculations from multiple users on different
machines. One way to use Rserve is to install it on a heavy-duty server with lots
of CPU power and memory, so that users can perform calculations that they
couldn’t easily perform on their own desktops. For more about this project, see
http://www.rforge.net/Rserve/index.html.

As we described above, you can also use R Studio to run R on a server and access
if from a web browser.

Inside Emacs
The ESS (Emacs Speaks Statistics) package is an add-on for Emacs that allows
you to run R directly within Emacs. For more on this project, see http://ess.r
-project.org/.
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3
A Short R Tutorial

This chapter contains a short tutorial of R with a lot of examples.

If you’ve never used R before, this is a great time to start it up and try playing with
it. There’s no better way to learn something than by trying it yourself. You can follow
along by typing in the same text that’s shown in the book. Or, try changing it a little
bit to see what happens. (For example, if the sample code says “3 + 4,” try typing
3 - 4 instead.)

If you’ve never used an interactive language before, take a look
at Chapter 2 before you start. That chapter contains an overview
of the R environment, including the console. Otherwise, you
might find the presentation of the examples—and the termi-
nology—confusing.

Basic Operations in R
Let’s get started using R. When you enter an expression into the R console and press
the Enter key, R will evaluate that expression and display the results (if there are
any). If the statement results in a value, R will print that value. For example, you
can use R to do simple math:

> 1 + 2 + 3
[1] 6
> 1 + 2 * 3
[1] 7
> (1 + 2) * 3
[1] 9

The interactive R interpreter will automatically print an object returned by an ex-
pression entered into the R console. Notice the funny “[1]” that accompanies each
returned value. In R, any number that you enter in the console is interpreted as a
vector. A vector is an ordered collection of numbers. The “[1]” means that the index
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of the first item displayed in the row is 1. In each of these cases, there is also only
one element in the vector.

You can construct longer vectors using the c(...) function. (c stands for “com-
bine.”) For example:

> c(0, 1, 1, 2, 3, 5, 8)
[1] 0 1 1 2 3 5 8

is a vector that contains the first seven elements of the Fibonacci sequence. As an
example of a vector that spans multiple lines, let’s use the sequence operator to
produce a vector with every integer between 1 and 50:

> 1:50
[1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22
[23] 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
[45] 45 46 47 48 49 50

Notice the numbers in the brackets on the left-hand side of the results. These indicate
the index of the first element shown in each row.

When you perform an operation on two vectors, R will match the elements of the
two vectors pairwise and return a vector. For example:

> c(1, 2, 3, 4) + c(10, 20, 30, 40)
[1] 11 22 33 44
> c(1, 2, 3, 4) * c(10, 20, 30, 40)
[1]  10  40  90 160
> c(1, 2, 3, 4) - c(1, 1, 1, 1)
[1] 0 1 2 3

If the two vectors aren’t the same size, R will repeat the smaller sequence multiple
times:

> c(1, 2, 3, 4) + 1
[1] 2 3 4 5
> 1 / c(1, 2, 3, 4, 5)
[1] 1.0000000 0.5000000 0.3333333 0.2500000 0.2000000
> c(1, 2, 3, 4) + c(10, 100)
[1]  11 102  13 104
> c(1, 2, 3, 4, 5) + c(10, 100)
[1]  11 102  13 104  15
Warning message:
In c(1, 2, 3, 4, 5) + c(10, 100) :
  longer object length is not a multiple of shorter object length

Note the warning if the second sequence isn’t a multiple of the first.

In R, you can also enter expressions with characters:

> "Hello world."
[1] "Hello world."

This is called a character vector in R. This example is actually a character vector of
length 1. Here is an example of a character vector of length 2:

> c("Hello world", "Hello R interpreter")
[1] "Hello world" "Hello R interpreter"
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(In other languages, like C, “character” refers to a single character, and an ordered
set of characters is called a string. A string in C is equivalent to a character value in R.)

You can add comments to R code. Anything after a pound sign (“#”) on a line is
ignored:

> # Here is an example of a comment at the beginning of a line
> 1 + 2 + # and here is an example in the middle
+ 3
[1] 6

Functions
In R, the operations that do all the work are called functions. We’ve already used a
few functions above (you can’t do anything interesting in R without them). Func-
tions are just like what you remember from math class. Most functions are in the
following form:

f(argument1, argument2, ...)

Where f is the name of the function, and argument1, argument2, . . . are the arguments 
to the function. Here are a few more examples:

> exp(1)
[1] 2.718282
> cos(3.141593)
[1] -1
> log2(1)
[1] 0

In each of these examples, the functions took only one argument. Many functions
require more than one argument. You can specify the arguments by name:

> log(x=64, base=4)
[1] 3

Or, if you give the arguments in the default order, you can omit the names:

> log(64,4)
[1] 3

Not all functions are of the form f(...). Some of them are in the form of opera-
tors.1 For example, we used the addition operator (“+”) above. Here are a few ex-
amples of operators:

> 17 + 2
[1] 19
> 2 ^ 10
[1] 1024
> 3 == 4
[1] FALSE

1. When you enter a binary or unary operator into R, the R interpreter will actually translate the
operator into a function; there is a function equivalent for each operator. We’ll talk about this
more in Chapter 5.
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We’ve seen the first one already: it’s just addition. The second operator is the ex-
ponentiation operator, which is interesting because it’s not a commutative operator.
The third operator is the equality operator. (Notice that the result returned is
FALSE; R has a Boolean data type.)

Variables
Like most other languages, R lets you assign values to variables and refer to them by
name. In R, the assignment operator is <-. Usually, this is pronounced as “gets.” For
example, the statement:

x <- 1

is usually read as “x gets 1.” (If you’ve ever done any work with theoretical computer
science, you’ll probably like this notation: it looks just like algorithm pseudocode.)

After you assign a value to a variable, the R interpreter will substitute that value in
place of the variable name when it evaluates an expression. Here’s a simple example:

> x <- 1
> y <- 2
> z <- c(x,y)
> # evaluate z to see what's stored as z
> z
[1] 1 2

Notice that the substitution is done at the time that the value is assigned to z, not
at the time that z is evaluated. Suppose that you were to type in the preceding three
expressions and then change the value of y. The value of z would not change:

> y <- 4
> z
[1] 1 2

I’ll talk more about the subtleties of variables and how they’re evaluated in Chap-
ter 8.

R provides several different ways to refer to a member (or set of members) of a
vector. You can refer to elements by location in a vector:

> b <- c(1,2,3,4,5,6,7,8,9,10,11,12)
> b
 [1]  1  2  3  4  5  6  7  8  9 10 11 12
> # let's fetch the 7th item in vector b
> b[7]
[1] 7
> # fetch items 1 through 6
> b[1:6]
[1] 1 2 3 4 5 6
> # fetch only members of b that are congruent to zero (mod 3)
> # (in non-math speak, members that are multiples of 3)
> b[b %% 3 == 0]
[1]  3  6  9 12

You can fetch multiple items in a vector by specifying the indices of each item as an
integer vector:
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> # fetch items 1 through 6
> b[1:6]
[1] 1 2 3 4 5 6
> # fetch 1, 6, 11
> b[c(1,6,11)]
[1]  1  6 11

You can fetch items out of order. Items are returned in the order they are
referenced:

> b[c(8,4,9)]
[1] 8 4 9

You can also specify which items to fetch through a logical vector. As an example,
let’s fetch only multiples of 3 (by selecting items that are congruent to 0 mod 3):

> b %% 3 == 0
 [1] FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE
[12]  TRUE
> b[b %% 3 == 0]
[1]  3  6  9 12

In R, there are two additional operators that can be used for assigning values to
symbols. First, you can use a single equals sign (“=”) for assignment.2 This operator
assigns the symbol on the left to the object on the right. In many other languages,
all assignment statements use equals signs. If you are more comfortable with this
notation, you are free to use it. However, I will be using only the <- assignment
operator in this book because I think it is easier to read. Whichever notation you
prefer, be careful because the = operator does not mean “equals.” For that, you need
to use the == operator:

> one <- 1
> two <- 2
> # This means: assign the value of "two" to the variable "one"
> one = two
> one
[1] 2
> two
[1] 2
> # let's start again
> one <- 1
> two <- 2
> # This means: does the value of "one" equal the value of "two"
> one == two
[1] FALSE

In R, you can also assign an object on the left to a symbol on the right:

> 3 -> three
> three
[1] 3

2. Note that you cannot use the <- operator when passing arguments to a function; you need to
map values to argument names using the “=” symbol. Using the <- operator in a function will
assign the value to the variable in the current environment and then pass the value returned
to the function. This might be what you want, but it probably isn’t.
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In some programming contexts, this notation might help you write clearer code. (It
may also be convenient if you type in a long expression and then realize that you
have forgotten to assign the result to a symbol.)

A function in R is just another object that is assigned to a symbol. You can define
your own functions in R, assign them a name, and then call them just like the built-
in functions:

> f <- function(x,y) {c(x+1, y+1)}
> f(1,2)
[1] 2 3

This leads to a very useful trick. You can often type the name of a function to see
the code for it. Here’s an example:

> f
function(x,y) {c(x+1, y+1)}

Introduction to Data Structures
In R, you can construct more complicated data structures than just vectors. An
array is a multidimensional vector. Vectors and arrays are stored the same way in-
ternally, but an array may be displayed differently and accessed differently. An array
object is just a vector that’s associated with a dimension attribute. Here’s a simple
example.

First, let’s define an array explicitly:

> a <- array(c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), dim=c(3, 4))

Here is what the array looks like:

> a
     [,1] [,2] [,3] [,4]
[1,]    1    4    7   10
[2,]    2    5    8   11
[3,]    3    6    9   12

And here is how you reference one cell:

> a[2,2]
[1] 5

Now, let’s define a vector with the same contents:

> v <- c(1,2,3,4,5,6,7,8,9,10,11,12)
> v
 [1]  1  2  3  4  5  6  7  8  9 10 11 12

A matrix is just a two-dimensional array:

> m <- matrix(data=c(1,2,3,4,5,6,7,8,9,10,11,12),nrow=3,ncol=4)
> m
     [,1] [,2] [,3] [,4]
[1,]    1    4    7   10
[2,]    2    5    8   11
[3,]    3    6    9   12

24 | Chapter 3: A Short R Tutorial



Arrays can have more than two dimensions. For example:

> w <- array(c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),dim=c(3,3,2))
> w
, , 1

     [,1] [,2] [,3]
[1,]    1    4    7
[2,]    2    5    8
[3,]    3    6    9

, , 2

     [,1] [,2] [,3]
[1,]   10   13   16
[2,]   11   14   17
[3,]   12   15   18

> w[1,1,1]
[1] 1

R uses very clean syntax for referring to part of an array. You specify separate indices
for each dimension, separated by commas:

> a[1,2]
[1] 4
> a[1:2,1:2]
     [,1] [,2]
[1,]    1    4
[2,]    2    5

To get all rows (or columns) from a dimension, simply omit the indices:

> # first row only
> a[1,]
[1]  1  4  7 10
> # first column only
> a[,1]
[1] 1 2 3
> # you can also refer to a range of rows
> a[1:2,]
     [,1] [,2] [,3] [,4]
[1,]    1    4    7   10
[2,]    2    5    8   11
> # you can even refer to a noncontiguous set of rows
> a[c(1,3),]
     [,1] [,2] [,3] [,4]
[1,]    1    4    7   10
[2,]    3    6    9   12

In all the examples above, we’ve just looked at data structures based on a single
underlying data type. In R, it’s possible to construct more complicated structures
with multiple data types. R has a built-in data type for mixing objects of different
types, called lists. Lists in R are subtly different from lists in many other languages.
Lists in R may contain a heterogeneous selection of objects. You can name each
component in a list. Items in a list may be referred to by either location or name.
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Here is an example of a list with two named components:

> # a list containing two strings
> e <- list(thing="hat", size="8.25")
> e
$thing
[1] "hat"

$size
[1] "8.25"

You may access an item in the list in multiple ways:

> e$thing
[1] "hat"
> e[1]
$thing

[1] "hat"
> e[[1]]
[1] "hat"

A list can even contain other lists:

> g <- list("this list references another list", e)
> g
[[1]]
[1] "this list references another list"

[[2]]
[[2]]$thing
[1] "hat"

[[2]]$size
[1] "8.25"

A data frame is a list that contains multiple named vectors that are the same length.
A data frame is a lot like a spreadsheet or a database table. Data frames are partic-
ularly good for representing experimental data. As an example, I’m going to use
some baseball data. Let’s construct a data frame with the win/loss results in the
National League (NL) East in 2008:

> teams <- c("PHI","NYM","FLA","ATL","WSN")
> w <- c(92, 89, 94, 72, 59)
> l <- c(70, 73, 77, 90, 102)
> nleast <- data.frame(teams,w,l)
> nleast
  teams  w   l
1   PHI 92  70
2   NYM 89  73
3   FLA 94  77
4   ATL 72  90
5   WSN 59 102
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You can refer to the components of a data frame (or items in a list) by name using
the $ operator:

> nleast$w
[1] 92 89 94 72 59

Here’s one way to find a specific value in a data frame. Suppose that you wanted to
find the number of losses by the Florida Marlins (FLA). One way to select a member
of an array is by using a vector of Boolean values to specify which item to return
from a list. You can calculate an appropriate vector like this:

> nleast$teams=="FLA"
[1] FALSE FALSE  TRUE FALSE FALSE

Then you can use this vector to refer to the right element in the losses vector:

> nleast$l[nleast$teams=="FLA"]
[1] 77

You can import data into R from another file or from a database. See Chapter 11 for
more information on how to do this.

In addition to lists, R has other types of data structures for holding a heterogeneous
collection of objects, including formal class definitions through S4 objects.

Objects and Classes
R is an object-oriented language. Every object in R has a type. Additionally, every
object in R is a member of a class. We have already encountered several different
classes: character vectors, numeric vectors, data frames, lists, and arrays.

You can use the class function to determine the class of an object. For example:

> class(teams)
[1] "character"
> class(w)
[1] "numeric"
> class(nleast)
[1] "data.frame"
> class(class)
[1] "function"

Notice the last example: a function is an object in R with the class function.

Some functions are associated with a specific class. These are called methods. (Not
all functions are tied closely to a particular class; the class system in R is much less
formal than that in a language like Java.)

In R, methods for different classes can share the same name. These are called generic
functions. Generic functions serve two purposes. First, they make it easy to guess
the right function name for an unfamiliar class. Second, generic functions make it
possible to use the same code for objects of different types.
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For example, + is a generic function for adding objects. You can add numbers to-
gether with the + operator:

> 17 + 6
[1] 23

You might guess that the addition operator would work similarly with other types
of objects. For example, you can also use the + operator with a date object and a
number:

> as.Date("2009-09-08") + 7
[1] "2009-09-15"

By the way, the R interpreter calls the generic function print on any object returned
on the R console. Suppose that you define x as:

> x <- 1 + 2 + 3 + 4

When you type:

> x
[1] 10

the interpreter actually calls the function print(x) to print the results. This means
that if you define a new class, you can define a print method to specify how objects
from that new class are printed on the console. Some functions take advantage of
this functionality to do other things when you enter an expression on the console.3

I’ll talk about objects in more depth in Chapter 7 and classes in Chapter 10.

Models and Formulas
To statisticians, a model is a concise way to describe a set of data, usually with a
mathematical formula. Sometimes, the goal is to build a predictive model with
training data to predict values based on other data. Other times, the goal is to build
a descriptive model that helps you understand the data better.

R has a special notation for describing relationships between variables. Suppose that
you are assuming a linear model for a variable y, predicted from the variables x1,
x2, ..., xn. (Statisticians usually refer to y as the dependent variable, and x1, x2, ...,
xn as the independent variables.) In equation form, this implies a relationship like:

In R, you would write the relationship as y ~ x1 + x2 + ... + xn, which is a formula
object.

3. A very important example of this is lattice graphics. Plotting functions in the lattice library
return lattice objects but don’t plot results. If you call a lattice function on the R console, the
console will print the object, thus plotting the results. However, if you call a lattice function
within another function, or in a script, R will not plot the results unless you explicitly print
the lattice object.
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As an example, let’s use the cars data set (which is included in the base package).
This data set was created during the 1920s and shows the speed and stopping dis-
tance for a set of different cars. We’ll look at the relationship between speed and
stopping distance. We’ll assume that the stopping distance is a linear function of
speed. So let’s try to use a linear regression to estimate the relationship. The formula
is dist~speed. We’ll use the lm function to estimate the parameters of a linear model.
The lm function returns an object of class lm, which we will assign to a variable called
cars.lm:

> cars.lm <- lm(formula=dist~speed,data=cars)

Now, let’s take a quick look at the results returned:

> cars.lm

Call:
lm(formula = dist ~ speed, data = cars)

Coefficients:
(Intercept)        speed
    -17.579        3.932

As you can see, printing an lm object shows you the original function call (and thus
the data set and formula) and the estimated coefficients. For some more information,
we can use the summary function:

> summary(cars.lm)

Call:
lm(formula = dist ~ speed, data = cars)

Residuals:
    Min      1Q  Median      3Q     Max
-29.069  -9.525  -2.272   9.215  43.201

Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -17.5791     6.7584  -2.601   0.0123 *
speed         3.9324     0.4155   9.464 1.49e-12 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 15.38 on 48 degrees of freedom
Multiple R-squared: 0.6511,     Adjusted R-squared: 0.6438
F-statistic: 89.57 on 1 and 48 DF,  p-value: 1.490e-12

As you can see, the summary option shows you the function call, the distribution
of the residuals from the fit, the coefficients, and information about the fit. By the
way, it is possible to simply call the lm function or to call summary(lm(...)) and not
assign a name to the model object:

> lm(dist~speed,data=cars)

Call:
lm(formula = dist ~ speed, data = cars)
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Coefficients:
(Intercept) speed
    -17.579 3.932

> summary(lm(dist~speed,data=cars))

Call:
lm(formula = dist ~ speed, data = cars)

Residuals:
    Min      1Q  Median      3Q     Max
-29.069  -9.525  -2.272   9.215  43.201

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -17.5791     6.7584  -2.601   0.0123 *
speed         3.9324     0.4155   9.464 1.49e-12 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 15.38 on 48 degrees of freedom
Multiple R-squared: 0.6511,    Adjusted R-squared: 0.6438
F-statistic: 89.57 on 1 and 48 DF,  p-value: 1.490e-12

In some cases, this can be more convenient. However, you often want to perform
additional analyses, such as plotting residuals, calculating additional statistics, or
updating a model to add or subtract variables. By assigning a name to the model,
you can make your code easier to understand and modify. Additionally, refitting a
model can be very time consuming for complex models and large data sets. By as-
signing the model to a variable name, you can avoid these problems.

Charts and Graphics
R includes several packages for visualizing data: graphics, grid, and lattice. Usu-
ally, you’ll find that functions within the graphics and lattice packages are the most
useful.4 If you’re familiar with Microsoft Excel, you’ll find that R can generate all of
the charts that you’re familiar with: column charts, bar charts, line plots, pie charts,
and scatter plots. Even if that’s all you need, R makes it much easier than Excel to
automate the creation of charts and to customize them. However, there are many,
many more types of charts available in R, many of them quite intuitive and elegant.

To make this a little more interesting, let’s work with some real data. We’re going
to look at all field goal attempts in the National Football League (NFL) in 2005.5

For those of you who aren’t familiar with American football, here’s a quick explan-
ation. A team can attempt to kick a football between a set of goalposts to receive 3

4. Other packages are available for visualizing data. For example, the RGobi package provides
tools for creating interactive graphics.

5. The data was provided by Aaron Schatz of Pro Football Prospectus. For more information, see
the Football Outsiders website at http://www.footballoutsiders.com/, or you can find its annual
books at most bookstores—both online and “brick and mortar.”
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points. If it misses the field goal, possession of the ball reverts to the other team (at
the spot on the field where the kick was attempted). We’re going to take a look at
kick attempts in the NFL in 2005.

First, let’s take a quick look at the distribution of distances. R provides a function,
hist, that can do this quickly for us. Let’s start by loading the appropriate data set.
(The data set is included in the nutshell package; see the Preface for information on
how to obtain this package.)

> library(nutshell)
> data(field.goals)

Let’s take a quick look at the names of the columns in the field.goals data frame:

> names(field.goals)
 [1] "home.team"    "week" "qtr" "away.team"
 [5] "offense"      "defense"      "play.type"    "player"
 [9] "yards" "stadium.type"

Now, let’s just try the hist command:

> hist(field.goals$yards)

This produces a chart like the one shown in Figure 3-1. (Depending on your system,
if you try this yourself, you may see a differently colored and formatted chart. I
tweaked a few graphical parameters so the charts would look good in print.) I wanted
to see more detail about the number of field goals at different distances, so I modified
the breaks argument to add more bins to the histogram:

> hist(field.goals$yards, breaks=35)

Figure 3-1. Histogram of field goal attempts with default settings
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You can see the results of this command in Figure 3-2. R also features many other
ways to visualize data. A great example is a strip chart. This chart just plots one point
on the x-axis for every point in a vector. As an example, let’s look at the distance of
blocked field goals. We can distinguish blocked field goals with the play.type
variable in the field.goals data frame. Let’s take a quick look at how many blocked
field goals there were in 2005. We’ll use the table function to tabulate the results:

> table(field.goals$play.type)

FG aborted FG blocked    FG good      FG no
8 24 787 163

Figure 3-2. Histogram of field goal distances, showing more bins

Now we’ll select only observations with blocked field goals. We’ll add a little jitter
so we can see individual points. Finally, we will also change the appearance of the
points using the pch argument:

> stripchart(field.goals[field.goals$play.type=="FG blocked",]$yards,
+            pch=19, method="jitter")

The results are shown in Figure 3-3.

As a second example, let’s use the cars data set, which is included in the base pack-
age. The cars data set consists of a set of 50 observations:

> data(cars)
> dim(cars)
[1] 50  2
> names(cars)
[1] "speed" "dist"
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Each observation contains the speed of the car and the distance required to stop.
Let’s take a quick look at the contents of this data set:

> summary(cars)
     speed           dist
 Min.   : 4.0   Min.   :  2.00
 1st Qu.:12.0   1st Qu.: 26.00
 Median :15.0   Median : 36.00
 Mean   :15.4   Mean   : 42.98
 3rd Qu.:19.0   3rd Qu.: 56.00
 Max.   :25.0   Max.   :120.00

Let’s plot the relationship between vehicle speed and stopping distance:

> plot(cars, xlab = "Speed (mph)", ylab = "Stopping distance (ft)",
+   las = 1, xlim = c(0, 25))

The plot is shown in Figure 3-4. At a quick glance, we see that stopping distance is
roughly proportional to speed.

Figure 3-4. Plot of data in the cars data set

Figure 3-3. Strip chart showing field goal attempt distances
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Let’s try one more example, this time using lattice graphics. Lattice graphics provide
some great tools for drawing pretty charts, particularly charts that compare different
groups of points. By default, the lattice package is not loaded; you will get an error
if you try calling a lattice function without loading the library. To load the library,
use the following command:

> library(lattice)

We will talk more about R packages in Chapter 4.

For example data, we’ll look at how American eating habits changed between 1980
and 2005.6

The consumption data set is available in the nutshell package. It contains 48 ob-
servations, each showing the amount of a commodity consumed (or produced) in a
specific year. Data is available only for years that are multiples of 5 (so there are six
unique years between 1980 and 2005). The amount of food consumed is given by
Amount, the type of food is given by Food, and the year is given by Year.

Two of the variables are numeric vectors: Amount and Year. However, two of them
are an important data type that we haven’t seen yet: factors. A factor is an R object
type that is used to compactly represent a vector of categorical values. Factors are
used in many modeling functions. You can create a factor from another vector (typ-
ically a character vector) using the factor function. In this data frame, the values
Food and Units are factors. (We’ll discuss vectors in more detail in “Vec-
tors” on page 86.)

To help reveal trends in the data, I decided to use the dotplot function. (This function
resembles line charts in Excel.) Specifically, we’d like to look at how the Amount varies
by Year. We’d like to separately plot the trend for each value of the Food variable.
For lattice graphics, we specify the data that we want to plot through a formula, in
this case, Amount ~ Year | Food. A formula is an R object that is used to express a
relationship between a set of variables.

If you’d like, you can try plotting the relationship using the default settings:

> library(nutshell)
> library(lattice)
> data(consumption)
> dotplot(Amount~Year|Food, consumption)

I found the default plot hard to read: the axis labels were too big, the scale for each
plot was the same, and the stacking didn’t look right to me. So I tuned the presen-
tation a little bit. Here is the version that produced Figure 3-5:

> dotplot(Amount ~ Year | Food,data=consumption,
+   aspect="xy",scales=list(relation="sliced", cex=.4))

6. I obtained the data from the 2009 Statistical Abstract of the United States, a terrific book of
data about the United States that is published by the Census Bureau. I took a subset of the
data, keeping consumption for only the largest categories. You can find this data at http://www
.census.gov/compendia/statab/cats/health_nutrition/food_consumption_and_nutrition.html.
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Figure 3-5. Lattice plot showing American changes in American eating habits, 1980–2005

The aspect option changes the aspect ratios of each plot to try to show changes from
45° angles (making changes easier to see). The scales option changes how the axes
are drawn. I’ll discuss lattice plots in more detail in Chapter 14, explaining how to
use different options to tune the look of your charts.

Getting Help
R includes a help system to help you get information about installed packages. To
get help on a function, for example glm, you would type:

> help(glm)

or, equivalently:

> ?glm

To search for help on an operator, you need to place the operator in backquotes:

> ?`+`
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If you’d like to try the examples in a help file, you can use the example function to
automatically try them. For example, to see the example for glm, type:

> example(glm)

You can search for help on a topic, for example “regression,” using the
help.search function:

> help.search("regression")

This can be very helpful if you can’t remember the name of a function; R will return
a list of relevant topics. There is a shorthand for this command as well:

> ??regression

To get the help file for a package, you can sometimes use one of the commands
above. However, you can also use the help option for the library command to get
more complete information. For example, to get help on the grDevices library, you
would use the following function:

> library(help="grDevices")

Some packages (especially packages from Bioconductor) include at least one
vignette. A vignette is a short document that describes how to use the package, com-
plete with examples. You can view a vignette using the vignette command. For
example, to view the vignette for the affy package (assuming that you have installed
this package), you would use the following command:

> vignette("affy")

To view available vignettes for all attached packages, you can use the following
command:

> vignette(all=FALSE)

To view vignettes for all installed packages, try this command:

> vignette(all=TRUE)
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4
R Packages

A package is a related set of functions, help files, and data files that have been bundled
together. Packages in R are similar to modules in Perl, libraries in C/C++, and classes
in Java.

Typically, all the functions in the package are related: for example, the stats package
contains functions for doing statistical analysis. To use a package, you need to load
it into R (see “Loading Packages” on page 40 for directions on loading packages).

R offers an enormous number of packages: packages that display graphics, packages
for performing statistical tests, and packages for trying the latest machine learning
techniques. There are also packages designed for a wide variety of industries and
applications: packages for analyzing microarray data, packages for modeling credit
risks, and packages for social sciences.

Some of these packages are included with R: you just have to tell R that you want
to use them. Other packages are available from public package repositories. You can
even make your own packages. This chapter explains how to use packages.

An Overview of Packages
To use a package in R, you first need to make sure that it has been installed into a
local library.1 By default, packages are read from one system-level library, but you
can add additional libraries.

Next, you need to load the packages into your current session. You might be won-
dering why you need to load packages into R in order to use them. First, R’s help
system slows down significantly when you add more packages to search. (I know
this from personal experience: I loaded dozens of packages into R while writing this
book, and the help system slowed to a crawl.) Second, it’s possible that two packages
have objects with the same name. If every package were loaded into R by default,
you might think you were using one function but really be using another. Even

1. If you’re a C/C++ programmer, don’t get confused; “library” means something different in R.
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worse, it’s possible for there to be internal conflicts: two packages may both use
functions with names like “fit” that work very differently, resulting in strange and
unexpected results. By loading only packages that you need, you can minimize the
chance of these conflicts.

Listing Packages in Local Libraries
To get the list of packages loaded by default, you can use the getOption command
to check the value of the defaultPackages value:

> getOption("defaultPackages")
[1] "datasets"  "utils"     "grDevices" "graphics"  "stats"
[6] "methods"

This command omits the base package; the base package implements many key
features of the R language and is always loaded.

If you would like to see the list of currently loaded packages, you can use
the .packages command (note the parentheses around the outside):

> (.packages())
[1] "stats"     "graphics"  "grDevices" "utils"     "datasets"  "methods"
[7] "base"

To show all packages available, you can use the all.available option with the
packages command:

> (.packages(all.available=TRUE))
 [1] "KernSmooth" "MASS"       "base"       "bitops"     "boot"
 [6] "class"      "cluster"    "codetools"  "datasets"   "foreign"
[11] "grDevices"  "graphics"   "grid"       "hexbin"     "lattice"
[16] "maps"       "methods"    "mgcv"       "nlme"       "nnet"
[21] "rpart"      "spatial"    "splines"    "stats"      "stats4"
[26] "survival"   "tcltk"      "tools"      "utils"

You can also enter the library() command with no arguments, and a new window
will pop up showing you the set of available packages.

Included Packages
R comes with a number of different packages (see Table 4-1 for a list). Some of
these packages (like base, graphics, grDevices, methods, and utils) implement
basic features of the R language or R environment. Other packages provide com-
monly used statistical modeling tools (like cluster, nnet, and stats). Other pack-
ages implement sophisticated graphics (grid and lattice), contain examples
(datasets), or contain other frequently used functions. In many cases, you won’t
need to get any other packages.
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Table 4-1. Packages included with R

Package name Loaded by
default

Description

base ✓ Basic functions of the R language, including arithmetic, I/
O, programming support

boot  Bootstrap resampling

class Classification algorithms, including nearest neighbors,
self-organizing maps, and learning vector quantization

cluster Clustering algorithms

codetools Tools for analyzing R code

compiler Byte code compiler for R

datasets ✓ Some famous data sets

foreign Tools for reading data from other formats, including Stata,
SAS, and SPSS files

graphics ✓ Functions for base graphics

grDevices ✓ Device support for base and grid graphics, including sys-
tem-specific functions

grid Tools for building more sophisticated graphics than the
base graphics

KernSmooth Functions for kernel smoothing

lattice An implementation of Trellis graphics for R: prettier graph-
ics than the default graphics

MASS Functions and data used in the book Modern Applied Sta-
tistics with S by Venables and Ripley; contains a lot of useful
statistics functions

methods ✓ Implementation of formal methods and classes introduced
in S version 4 (called S4 methods and classes)

mgcv Functions for generalized additive modeling and gener-
alized additive mixed modeling

nlme Linear and nonlinear mixed-effects models

nnet Feed-forward neural networks and multinomial log linear
models

parallel Support for parallel computation, including random-num-
ber generation.

rpart Tools for building recursive partitioning and regression
tree models

spatial Functions for Kriging and point pattern analysis

splines Regression spline functions and classes

stats ✓ Functions for statistics calculations and random number
generation; includes many common statistical tests, prob-
ability distributions, and modeling tools

stats4 Statistics functions as S4 methods and classes
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Package name Loaded by
default

Description

survival Survival analysis functions

tcltk Interface to Tcl/Tk; used to create platform-independent
UI tools

tools Tools for developing packages

utils ✓ A variety of utility functions for R, including package man-
agement, file reading and writing, and editing

Loading Packages
By default, not all packages are loaded into R. If you try to use a function from a
package that hasn’t been loaded, you’ll get an error:

> # try to use rpart before loading it
> fit <- rpart(Kyphosis ~ Age + Number + Start, data=kyphosis)
Error: could not find function "rpart"

To load a package in R, you can use the library() command. For example, to load
the package rpart (which contains functions for building recursive partition trees),
you would use the following command:

> library(rpart)

(There is a similar command, require(), that takes slightly different arguments. For
more about require, see the R help files.)

If you’re more comfortable using a GUI, you can browse for packages and load them
using the GUI. If you choose to use this interface to find packages, make sure that
you include the appropriate library command with your scripts to prevent errors
later.

Loading Packages on Windows and Linux
On Microsoft Windows, you can use the library function to load packages. Alter-
natively, you can select “Load package” from the Packages menu in the GUI. This
will bring up a window showing a list of packages that you can choose to load.

Loading Packages on Mac OS X
The Mac OS X R environment is a little fancier than the other versions. Like the
other versions, you can use the library() function. Otherwise, you can select
Package Manager from the “Packages & Data” menu. The Package Manager UI, as
shown in Figure 4-1, lets you see which packages are loaded, load packages, and
even browse the help file for a package.
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Exploring Package Repositories
You can find thousands of R packages online. The two biggest sources of packages
are CRAN (Comprehensive R Archive Network) and Bioconductor, but some
packages are available elsewhere. (If you know Perl, you’ll notice that CRAN is very
similar to CPAN, the Comprehensive Perl Archive Network.) CRAN is hosted by
the R Foundation (the same nonprofit organization that oversees R development).
The archive contains a very large number of packages (there were 1,698 packages
on February 24, 2009), covering a wide number of different applications. CRAN is
hosted on a set of mirror sites around the world. Try to pick an archive site near you:
you’ll minimize download times and help reduce the server load on the R Founda-
tion.

Bioconductor is an open-source project for building tools to analyze genomic data.
Bioconductor tools are built using R and are distributed as R packages. The Bio-
conductor packages are distributed separately from R, and most are not available
on CRAN. There are dozens of different packages available directly through the
Bioconductor project.

Figure 4-1. Mac OS X Package Manager
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R-Forge is another interesting place to look for packages. The R-Forge site contains
projects that are in progress, and it provides tools for developers to collaborate. You
may find some interesting packages on this site, but please be sure to read the dis-
claimers and documentation, because many of these packages are works in progress.

R includes the ability to download and install packages from other repositories.
However, I don’t know of other public repositories for R packages. Most R projects
simply use CRAN to host their packages. (I’ve even seen some books that use CRAN
to distribute sample code and sample data.)

Exploring R Package Repositories on the Web
R provides good tools for installing packages within the GUI but doesn’t provide a
good way to find a specific package. Luckily, it’s pretty easy to find a package on
the Web.

You can browse through the set of available packages with your web browser. Here
are some places to look for packages.

Repository URL

CRAN See http://cran.r-project.org/web/packages/ for an authoritative list, but you should try to find your local
mirror and use that site instead

Bioconductor http://www.bioconductor.org/packages/release/Software.html

R-Forge http://r-forge.r-project.org/

However, you can also try to find packages with a search engine. I’ve had good luck
finding packages by using Google to search for “R package” plus the name of the
application. For example, searching for “R package multivariate additive regression
splines” can help you find the mda package, which contains the mars function. (Of
course, I discovered later that the earth package is a better choice for this algorithm,
but we’ll get to that later.)

Finding and Installing Packages Inside R
Once you figure out what package you want to install, the easiest way to do it is
inside R.

Windows and Linux GUIs

Installing packages through the Windows GUI is pretty straightforward.

1. (Optional) By default, R is set to fetch packages from the “CRAN” and “CRAN
(extra)” categories. To pick additional sets of packages, choose “Select reposi-
tories” from the Packages menu. You can choose multiple repositories.

2. From the Packages menu, select “Install package(s)”.
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3. If this is the first time you are installing a package during this session, R will ask
you to pick a mirror. (You’ll probably want to pick a site that is geographically
close, because it’s likely to also be close on the Internet, and thus fast.)

4. Click the name of the package that you want to install and press OK.

R will download and install the packages that you have selected.

Note that you may run into issues installing packages, depending on the permissions
assigned to your user account. If you are using Windows XP, and your account is a
member of the Administrators group, you should have no problems. If you are using
Windows Vista, and you installed R in your own directory, you should have no
issues. Otherwise, you may need to run R as an Administrator in order to install
supplementary packages.

Mac OS X GUI

On Mac OS X, there is a slightly different user interface for package installation. It
shows a little more information than the Windows version, but it’s a little more
confusing to use.

1. From the Package and Data menu, select Package Installer. (See Figure 4-1 for
a picture of the installer window.)

2. (Optional) In the top-left corner of the window is a menu that allows you to
select the category of packages you would like to download. Initially, this is set
to “CRAN (binaries).”

3. Click the Get List button to display the available set of packages.

4. You can use the search box to filter the list to show only packages that match
the name you are looking for. (Note: you have to click the Get List button before
the search will return results.)

5. Select the set of packages that you want to install and press the Install Selected
button.

By default, R will install packages at the system level, making them available to all
users. If you do not have the appropriate permissions to install packages globally,
or if you would like to install them elsewhere, then select an alternative location.
Additionally, R will not install the additional packages on which your packages
depend. You will get an error if you try to load a package and have not installed
other packages on which it is dependent.

R console

You can also install R packages directly from the R console. Table 4-2 shows the set
of commands for installing packages from the console. As a simple example, suppose
that you wanted to install the packages tree and maptree. You could accomplish this
with the following command:

> install.packages(c("tree","maptree"))
trying URL 'http://cran.cnr.Berkeley.edu/bin/macosx/universal/contrib/
2.9/tree_1.0-26.tgz'
Content type 'application/x-gzip' length 103712 bytes (101 Kb)
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opened URL
==================================================
downloaded 101 Kb

trying URL 'http://cran.cnr.Berkeley.edu/bin/macosx/universal/contrib/
2.9/maptree_1.4-5.tgz'
Content type 'application/x-gzip' length 101577 bytes (99 Kb)
opened URL
==================================================
downloaded 99 Kb

The downloaded packages are in
     /var/folders/gj/gj60srEiEVq4hTWB5lvMak+++TM/-Tmp-//RtmpIXUWDu/
downloaded_packages

This will install the packages to the default library specified by the
variable .Library. If you’d like to remove these packages after you’re done, you can
use remove.packages. You need to specify the library where the packages were
installed:

> remove.packages(c("tree", "maptree"),.Library)

Table 4-2. Common package installation commands

Command Description

installed.packages Returns a matrix with information about all currently installed packages.

available.packages Returns a matrix of all packages available on the repository.

old.packages Returns a matrix of all currently installed packages for which newer versions are available.

new.packages Returns a matrix showing all currently uninstalled packages available from the package
repositories.

download.packages Downloads a set of packages to a local directory.

install.packages Installs a set of packages from the repository.

remove.packages Removes a set of installed packages.

update.packages Updates installed packages to the latest versions.

setRepositories Sets the current list of package repositories.

Installing from the command line

You can also install downloaded packages from the command line. (There is actually
a set of different commands that you can issue to R directly from the command line,
without launching the full R shell.) To do this, you run R with the CMD INSTALL
option. For example, suppose that you had downloaded the package aplpack
(“Another Plotting PACKage”). For Mac OS X, the binary file is called apl-
pack_1.1.1.tgz. To install this package, change to the directory where the package
is located and issue the following command:

$ R CMD INSTALL aplpack_1.1.1.tgz
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If successful, you’ll see a message like the following:

* Installing to library '/Library/Frameworks/R.framework/Resources/library'
* Installing *binary* package 'aplpack' ...
* DONE (aplpack)

Installing Packages From Other Repositories
Not all packages are hosted on public R repositories. Luckily, you can get a package
that makes it easy to install packages from other places. The devtools library includes
tools for installing packages from popular git repositories and other URLs. (We’ll
use devtools later in the book to install R/Hadoop from GitHub.)

For example, Hadley Wickham uses GitHub to host the development version of
ggplot2. To install the latest development version of ggplot2, you can use the fol-
lowing command:

> # if you haven't installed devtools, start with this command:
> install.packages("devtools")

> # otherwise just type this
> library(devtools)
> install_github("ggplot2")

For more information, see the help file for devtools.

Custom Packages
Building your own packages is a good idea if you want to share code or data with
other people, or if you just want to pack it up in a form that’s easy to reuse. This
section explains the easy way to create your own packages.

Creating a Package Directory
To build a package, you need to place all the package files (code, data, documenta-
tion, etc.) inside a single directory. You can create an appropriate directory structure
using the R function package.skeleton:

package.skeleton(name = "anRpackage", list,
environment = .GlobalEnv,
path = ".", force = FALSE, namespace = FALSE,
code_files = character())

This function can also copy a set of R objects into that directory. Here’s a description
of the arguments to package.skeleton.

Argument Description Default

name A character value specifying a name for the new package “anRpackage” (as a side note, this may be
the least-useful default value for any R
function)

list A character vector containing names of R objects to add
to the package
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Argument Description Default

environment The environment in which to evaluate list .GlobalEnv

path A character vector specifying the path in the file system “.”

force A Boolean value specifying whether to overwrite files,
if a directory name already exists at path

FALSE

namespace A Boolean value specifying whether to add a namespace
to the package

FALSE

code_files A character vector specifying the paths of files containing
R code

character()

For this book, I created a package called nutshell containing most of the data sets
used in this book:

> package.skeleton(name="nutshell",path="~/Documents/book/current/")
Creating directories ...
Creating DESCRIPTION ...
Creating Read-and-delete-me ...
Saving functions and data ...
Making help files ...
Done.
Further steps are described in
'~/Documents/book/current//nutshell/Read-and-delete-me'.

The package.skeleton function creates a number of files. There are directories
named “man” (for help files), “R” (for R source files), and “data” (for data files).
One of the most important is the DESCRIPTION file, at the root of the created
directory. Here is the file that was generated by the package.skeleton function:

Package: nutshell
Type: Package
Title: What the package does (short line)
Version: 1.0
Date: 2012-03-13
Author: Who wrote it
Maintainer: Whom to complain to <yourfault@somewhere.net>
Description: More about what it does (maybe more than one line)
License: What license is it under?

Many of these items are self-explanatory, although a couple of items require more
explanation. Additionally, there are a few useful optional items:

LazyLoad
LazyLoad controls how objects (including data) are loaded into R. If you set
LazyLoad to yes (the default), then data files in the packages are not loaded into
memory. Instead, promise objects are loaded for each data package. You can
still access the objects, but they take up (almost) no space.

LazyData
LazyData works like LazyLoad but specifies what to do (specifically) with data
files.
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Depends
If your package depends on other packages to be installed (or on certain versions
of R), you can specify them with this line. For example, to specify that your
package requires R 2.8 or later and the nnet package, you would add the line:

Depends: R(>= 2.8), nnet

R includes a set of functions that help automate the creation of help files for pack-
ages: prompt (for generic documentation), promptData (for documenting data files),
promptMethods (for documenting methods of a generic function), and promptClass
(for documenting a class). See the help files for these functions for additional
information.

You can add data files to the data directory in several different forms: as R data files
(created by the save function and named with either a .rda or a .Rdata suffix), as
comma-separated value files (with a .csv suffix), or as an R source file containing R
code (with a .R suffix).

Building the Package
After you’ve added all the materials to the package, you can build it from the com-
mand line on your computer (not the R shell). To make sure that the package com-
plies with CRAN rules and builds correctly, use the check command. For the previ-
ous example, we would use the following command:

$ R CMD check nutshell

You can get more information about the CMD check command by entering R CMD
CHECK --help on the command line. To build the package, you would use the fol-
lowing command:

$ R CMD build nutshell

As above, help is available through the --help option. If you’re really interested in
how to build R packages, see the manual Writing R Extensions, available at http://
cran.r-project.org/doc/manuals/R-exts.pdf.
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II
The R Language

This part gives an overview of the R programming language.

In keeping with the “Nutshell” theme, this isn’t an exhaustive explanation of the
inner workings of R. It is a more organized and thorough overview of R than that
given in the tutorial chapter with some useful reference tables.





5
An Overview of the R Language

Learning a computer language is a lot like learning a spoken language (only much
simpler). If you’re just visiting a foreign country, you might learn enough phrases to
get by without really understanding how the language is structured. Similarly, if
you’re just trying to do a couple of simple things with R (like drawing some charts),
you can probably learn enough from examples to get by.

However, if you want to learn a new spoken language really well, you have to learn
about syntax and grammar: verb conjugation, proper articles, sentence structure,
and so on. The same is true with R: if you want to learn how to program effectively
in R, you’ll have to learn more about the syntax and grammar.

This chapter gives an overview of the R language, designed to help you understand
R code and write your own. I’ll assume that you’ve spent a little time looking at R
syntax (maybe from reading Chapter 3). Here’s a quick overview of how R works.

Expressions
R code is composed of a series of expressions. Examples of expressions in R include
assignment statements, conditional statements, and arithmetic expressions. Here
are a few examples of expressions:

> x <- 1
> if (1 > 2) "yes" else "no"
[1] "no"
> 127 %% 10
[1] 7

Expressions are composed of objects and functions. You may separate expressions
with new lines or with semicolons. For example, here is a series of expressions sep-
arated by semicolons:

> "this expression will be printed"; 7 + 13; exp(0+1i*pi)
[1] "this expression will be printed"
[1] 20
[1] -1+0i
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Objects
All R code manipulates objects. The simplest way to think about an object is as a
“thing” that is represented by the computer. Examples of objects in R include nu-
meric vectors, character vectors, lists, and functions. Here are some examples of
objects:

> # a numerical vector (with five elements)
> c(1,2,3,4,5)
[1] 1 2 3 4 5

> # a character vector (with one element)
> "This is an object too"
[1] "This is an object too"

> # a list
> list(c(1,2,3,4,5),"This is an object too", " this whole thing is a list")
[[1]]
[1] 1 2 3 4 5

[[2]]
[1] "This is an object too"

[[3]]
[1] " this whole thing is a list"

> # a function
> function(x,y) {x + y}
function(x,y) {x + y}

Symbols
Formally, variable names in R are called symbols. When you assign an object to a
variable name, you are actually assigning the object to a symbol in the current en-
vironment. (Somewhat tautologically, an environment is defined as the set of sym-
bols that are defined in a certain context.) For example, the statement:

> x <- 1

assigns the symbol “x” to the object “1” in the current environment. For a more
complete discussion of symbols and environments, see Chapter 8.

Functions
A function is an object in R that takes some input objects (called the arguments of
the function) and returns an output object. All work in R is done by functions. Every
statement in R—setting variables, doing arithmetic, repeating code in a loop—can
be written as a function. For example, suppose that you had defined a variable
animals pointing to a character vector with four elements: “cow,” “chicken,” “pig,”
and “tuba.” Here is a statement that assigns this variable:

> animals <- c("cow", "chicken", "pig", "tuba")

52 | Chapter 5: An Overview of the R Language



Suppose that you wanted to change the fourth element to the word “duck.” Nor-
mally, you would use a statement like this:

> animals[4] <- "duck"

This statement is parsed into a call to the [<- function. So you could actually use
this equivalent expression:1

> `[<-`(animals,4,"duck")

In practice, you would probably never write this statement as a function call; the
bracket notation is much more intuitive and much easier to read. However, it is
helpful to know that every operation in R is a function. Because you know that this
assignment is really a function call, it means that you can inspect the code of the
underlying function, search for help on this function, or create methods with the
same name for your own object classes.2

Here are a few more examples of R syntax and the corresponding function calls:

> # pretty assignment
> apples <- 3
> # functional form of assignment
> `<-`(apples,3)
> apples
[1] 3

> # another assignment statement, so that we can compare apples and oranges
> `<-`(oranges,4)
> oranges
[1] 4

> # pretty arithmetic expression
> apples + oranges
[1] 7
> # functional form of arithmetic expression
> `+`(apples,oranges)
[1] 7

> # pretty form of if-then statement
> if (apples > oranges) "apples are better" else "oranges are better"
[1] "oranges are better"
> # functional form of if-then statement
> `if`(apples > oranges,"apples are better","oranges are better")
[1] "oranges are better"
> x <- c("apple","orange","banana","pear")

> # pretty form of vector reference
> x[2]
[1] "orange"

1. This expression acts slightly differently, because the result is not printed on the R console.
However, the result is the same:

> animals
[1] "cow"     "chicken" "pig"     "duck"

2. See Chapter 10 for more information on object-oriented programming using R.
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> # functional form or vector reference
> `[`(x,2)
[1] "orange"

Objects Are Copied in Assignment Statements
In assignment statements, most objects are immutable. Immutable objects are a
good thing: for multithreaded programs, immutable objects help prevent errors. R
will copy the object, not just the reference to the object. For example:

> u <- list(1)
> v <- u
> u[[1]] <- "hat"
> u
[[1]]
[1] "hat"

> v
[[1]]
[1] 1

This applies to vectors, lists, and most other primitive objects in R.

This is also true in function calls. Consider the following function, which takes two
arguments: a vector x and an index i. The function sets the ith element of x to 4 and
does nothing else:

> f <- function(x,i) {x[i] = 4}

Suppose that we define a vector w and call f with x = w and i = 1:

> w <- c(10, 11, 12, 13)
> f(w,1)

The vector w is copied when it is passed to the function, so it is not modified by the
function:

> w
[1] 10 11 12 13

The value x is modified inside the context of the function. Technically, the R inter-
preter copies the object assigned to w and then assigns the symbol x to point at the
copy. We will talk about how you can actually create mutable objects, or pass ref-
erences to objects, when we talk about environments.
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Although R will behave as if every assignment makes a new copy
of an object, in many cases R will actually modify the object in
place. For example, consider the following code fragment:

> v <- 1:100
> v[50] <- 27

R does not actually copy the vector when the 50th element is
altered; instead, R modifies the vector in place. Semantically,
this is identical, but the performance is much better. See the R
Internals Guide for more information about how this works.

Everything in R Is an Object
In the last few sections, most examples of objects were objects that stored data:
vectors, lists, and other data structures. However, everything in R is an object: func-
tions, symbols, and even R expressions.

For example, function names in R are really symbol objects that point to function
objects. (That relationship is, in turn, stored in an environment object.) You can
assign a symbol to refer to a numeric object and then change the symbol to refer to
a function:

> x <- 1
> x
[1] 1
> x(2)
Error: could not find function "x"
> x <- function(i) i^2
> x
function(i) i^2
> x(2)
[1] 4

You can even use R code to construct new functions. If you really wanted to, you
could write a function that modifies its own definition.

Special Values
There are a few special values that are used in R.

NA
In R, the NA values are used to represent missing values. (NA stands for “not
available.”) You may encounter NA values in text loaded into R (to represent missing
values) or in data loaded from databases (to replace NULL values).

If you expand the size of a vector (or matrix or array) beyond the size where values
were defined, the new spaces will have the value NA:

> v <- c(1,2,3)
> v
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[1] 1 2 3
> length(v) <- 4
> v
[1]  1  2  3 NA

Inf and -Inf
If a computation results in a number that is too big, R will return Inf for a positive
number and -Inf for a negative number (meaning positive and negative infinity,
respectively):

> 2 ^ 1024
[1] Inf
> - 2 ^ 1024
[1] -Inf

This is also the value returned when you divide by 0:

> 1 / 0
[1] Inf

NaN
Sometimes, a computation will produce a result that makes little sense. In these
cases, R will often return NaN (meaning “not a number”):

> Inf - Inf
[1] NaN
> 0 / 0
[1] NaN

NULL
Additionally, there is a null object in R, represented by the symbol NULL. (The symbol
NULL always points to the same object.) NULL is often used as an argument in functions
to mean that no value was assigned to the argument. Additionally, some functions
may return NULL. Note that NULL is not the same as NA, Inf, -Inf, or NaN.

Coercion
When you call a function with an argument of the wrong type, R will try to coerce
values to a different type so that the function will work. There are two types of
coercion that occur automatically in R: coercion with formal objects and coercion
with built-in types.

With generic functions, R will look for a suitable method. If no exact match exists,
then R will search for a coercion method that converts the object to a type for which
a suitable method does exist. (The method for creating coercion functions is de-
scribed in “Creating Coercion Methods” on page 131.)

Additionally, R will automatically convert between built-in object types when ap-
propriate. R will convert from more specific types to more general types. For exam-
ple, suppose that you define a vector x as follows:
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> x <- c(1, 2, 3, 4, 5)
> x
[1] 1 2 3 4 5
> typeof(x)
[1] "double"
> class(x)
[1] "numeric"

Let’s change the second element of the vector to the word “hat.” R will change the
object class to character and change all the elements in the vector to char:

> x[2] <- "hat"
> x
[1] "1"   "hat" "3"   "4"   "5"  
> typeof(x)
[1] "character"
> class(x)
[1] "character"

Here is an overview of the coercion rules:

• Logical values are converted to numbers: TRUE is converted to 1 and FALSE to 0.

• Values are converted to the simplest type required to represent all information.

• The ordering is roughly logical < integer < numeric < complex < character < list.

• Objects of type raw are not converted to other types.

• Object attributes are dropped when an object is coerced from one type to
another.

You can inhibit coercion when passing arguments to functions by using the AsIs
function (or, equivalently, the I function). For more information, see the help file
for AsIs.

Many newcomers to R find coercion nonintuitive. Strongly typed languages (like
Java) will raise exceptions when the object passed to a function is the wrong type
but will not try to convert the object to a compatible type. As John Chambers (who
developed the S language) describes:

In the early coding, there was a tendency to make as many cases “work” as
possible. In the later, more formal, stages the conclusion was that converting
richer types to simpler automatically in all situations would lead to confusing,
and therefore untrustworthy, results.3

In practice, I rarely encounter situations where values are coerced in undesirable
ways. Usually, I use R with numeric vectors that are all the same type, so coercion
simply doesn’t apply.

The R Interpreter
R is an interpreted language. When you enter expressions into the R console (or run
an R script in batch mode), a program within the R system, called the interpreter,

3. From [Chambers2008], p. 154.
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executes the actual code that you wrote. Unlike C, C++, and Java, there is no need
to compile your programs into an object language. Other examples of interpreted
languages are Common Lisp, Perl, and JavaScript.

All R programs are composed of a series of expressions. These expressions often take
the form of function calls. The R interpreter begins by parsing each expression,
translating syntactic sugar into functional form. Next, R substitutes objects for sym-
bols (where appropriate). Finally, R evaluates each expression, returning an object.
For complex expressions, this process may be recursive. In some special cases (such
as conditional statements), R does not evaluate all arguments to a function. As an
example, let’s consider the following R expression:

> x <- 1

On an R console, you would typically type x <- 1 and then press the Enter key. The
R interpreter will first translate this expression into the following function call:

`<-`(x, 1)

Next, the interpreter evaluates this function. It assigns the constant value 1 to the
symbol x in the current environment and then returns the value 1.

Let’s consider another example. (We’ll assume it’s from the same session, so that
the symbol x is mapped to the value 1.)

> if (x > 1) "orange" else "apple"
[1] "apple"

Here is how the R interpreter would evaluate this expression. I typed if (x > 1)
"orange" else "apple" into the R console and pressed the Enter key. The entire line
is the expression that was evaluated by the R interpreter. The R interpreter parsed
this expression and identified it as a set of R expressions in an if-then-else control
structure. To evaluate that expression, the R interpreter begins by evaluating the
condition (x > 1). If the condition is true, then R would evaluate the next statement
(in this example, "orange"). Otherwise, R would evaluate the statement after the
else keyword (in this example, "apple"). We know that x is equal to 1. When R
evaluates the condition statement, the result is false. So R does not evaluate the
statement after the condition. Instead, R will evaluate the expression after the else
keyword. The result of this expression is the character vector "apple". As you can
see, this is the value that is returned on the R console.

If you are entering R expressions into the R console, then the interpreter will pass
objects returned to the console to the print function.

Some functionality is implemented internally within the R system. These calls are
made using the .Internal function. Many functions use .Internal to call internal R
system code. For example, the graphics function plot.xy is implemented us-
ing .Internal:

> plot.xy
function (xy, type, pch = par("pch"), lty = par("lty"), col = par("col"), 
    bg = NA, cex = 1, lwd = par("lwd"), ...) 
.Internal(plot.xy(xy, type, pch, lty, col, bg, cex, lwd, ...))
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<bytecode: 0x11949f828>
<environment: namespace:graphics>

In a few cases, the overhead for calling .Internal within an R function is too high.
R includes a mechanism to define functions that are implemented completely
internally.

You can identify these functions because the body of the function contains a call to
the function .Primitive. For example, the assignment operator is implemented
through a primitive function:

> `<-`
.Primitive("<-")

This mechanism is used for only a few basic functions where performance is critical.
You can find a current list of these functions in [RInternals2009].

Seeing How R Works
To end this overview of the R language, I wanted to share a few functions that are
convenient for seeing how R works. As you may recall, R expressions are R objects.
This means that it is possible to parse expressions in R, or partially evaluate expres-
sions in R, and see how R interprets them. This can be very useful for learning how
R works or for debugging R code.

As noted above, the R interpreter goes through several steps when evaluating state-
ments. The first step is to parse a statement, changing it into proper functional form.
It is possible to view the R interpreter to see how a given expression is evaluated. As
an example, let’s use the same R code fragment that we used in “The R Inter-
preter” on page 57:

> if (x > 1) "orange" else "apple"
[1] "apple"

To show how this expression is parsed, we can use the quote() function. This func-
tion will parse its argument but not evaluate it. By calling quote, an R expression
returns a “language” object:

> typeof(quote(if (x > 1) "orange" else "apple"))
[1] "language"

Unfortunately, the print function for language objects is not very informative:

> quote(if (x > 1) "orange" else "apple")
if (x > 1) "orange" else "apple"

However, it is possible to convert a language object into a list. By displaying the
language object as a list, it is possible to see how R evaluates an expression. This is
the parse tree for the expression:

> as(quote(if (x > 1) "orange" else "apple"),"list")
[[1]]
`if`

[[2]]
x > 1
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[[3]]
[1] "orange"

[[4]]
[1] "apple"

We can also apply the typeof function to every element in the list to see the type of
each object in the parse tree:4

> lapply(as(quote(if (x > 1) "orange" else "apple"), "list"),typeof)
[[1]]
[1] "symbol"

[[2]]
[1] "language"

[[3]]
[1] "character"

[[4]]
[1] "character"

In this case, we can see how this expression is interpreted. Notice that some parts
of the if-then statement are not included in the parsed expression (in particular, the
else keyword). Also, notice that the first item in the list is a symbol. In this case, the
symbol refers to the if function. So, although the syntax for the if-then statement is
different from a function call, the R parser translates the expression into a function
call before evaluating the expression. The function name is the first item, and the
arguments are the remaining items in the list.

For constants, there is only one item in the returned list:

> as.list(quote(1))
[[1]]
[1] 1

By using the quote function, you can see that many constructions in the R language
are just syntactic sugar for function calls. For example, let’s consider looking up the
second item in a vector x. The standard way to do this is through R’s bracket nota-
tion, so the expression would be x[2]. An alternative way to represent this expression
is as a function: `[`(x,2). (Function names that contain special characters need to
be encapsulated in backquotes.) Both of these expressions are interpreted the same
way by R:

> as.list(quote(x[2]))
[[1]]
`[`

4. As a convenient shorthand, you can omit the as function because R will automatically coerce
the language object to a list. This means you can just use a command like:

> lapply(quote(if (x > 1) "orange" else "apple"),typeof)

Coercion is explained in “Coercion” on page 56.
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[[2]]
x

[[3]]
[1] 2

> as.list(quote(`[`(x,2)))
[[1]]
`[`

[[2]]
x

[[3]]
[1] 2

As you can see, R interprets both of these expressions identically. Clearly, the op-
eration is not reversible (because both expressions are translated into the same parse
tree). The deparse function can take the parse tree and turn it back into properly
formatted R code. (The deparse function will use proper R syntax when translating
a language object back into the original code.) Here’s how it acts on these two bits
of code:

> deparse(quote(x[2]))
[1] "x[2]"
> deparse(quote(`[`(x,2)))
[1] "x[2]"

As you read through this book, you might want to try using quote, substitute,
typeof, class, and methods to see how the R interpreter parses expressions.
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6
R Syntax

Every expression in R can be rewritten as a function call. However, R has some
special syntax to write common operations like assignments, lookups, and numer-
ical expressions more naturally. This chapter gives an overview of how to write valid
R expressions. It’s not intended to be a formal or complete description of all valid
syntax in R, but just a readable description of how to write valid R expressions.1

Constants
Let’s start by looking at constants. Constants are the basic building blocks for data
objects in R: numbers, character values, and symbols.

Numeric Vectors
Numbers are interpreted literally in R:

> 1.1
[1] 1.1
> 2
[1] 2
> 2^1023
[1] 8.988466e+307

You may specify values in hexadecimal notation by prefixing them with 0x:

> 0x1
[1] 1
> 0xFFFF
[1] 65535

1. You could write R code as a series of function calls with lots of function calls. This would look
a lot like LISP code, with all the parentheses. Incidentally, the S language was inspired by LISP
and uses many of the same data structures and evaluation techniques that are used by LISP
interpreters.
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By default, numbers in R expressions are interpreted as double-precision floating-
point numbers, even when you enter simple integers:

> typeof(1)
[1] "double"

If you want an integer, you can use the sequence notation or the as function to obtain
an integer:

> typeof(1:1)
[1] "integer"
> typeof(as(1, "integer"))
[1] "integer"

The sequence operator a:b will return a vector of integers between a and b. To com-
bine an arbitrary set of numbers into a vector, use the c function:

> v <- c(173, 12, 1.12312, -93)

R allows a lot of flexibility when entering numbers. However, there is a limit to the
size and precision of numbers that R can represent:

> # limits of precision
> (2^1023 + 1) == 2^1023
[1] TRUE
> # limits of size
> 2^1024
[1] Inf

In practice, this is rarely a problem. Most R users will load data from other sources
on a computer (like a database) that also can’t represent very large numbers.

R also supports complex numbers. Complex values are written as real_part
+imaginary_parti. For example:

> 0+1i ^ 2
[1] -1+0i
> sqrt(-1+0i)
[1] 0+1i
> exp(0+1i * pi)
[1] -1+0i

Note that the sqrt function returns a value of the same type as its input; it will return
the value 0+1i when passed -1+0i but will return an NaN value when just passed the
numeric value -1:

> sqrt(-1)
[1] NaN
Warning message:
In sqrt(-1) : NaNs produced

Character Vectors
A character object contains all the text between a pair of quotes. Most commonly,
character objects are denoted by double quotes:

> "hello"
[1] "hello"

64 | Chapter 6: R Syntax



A character string may also be enclosed by single quotes:

> 'hello'
[1] "hello"

This can be convenient if the enclosed text contains double quotes (or vice versa).
Equivalently, you may also escape the quotes by placing a backslash in front of each
quote:

> identical("\"hello\"", '"hello"')
[1] TRUE

> identical('\'hello\'', "'hello'")
[1] TRUE

These examples are all vectors with only one element. To stitch together longer
vectors, use the c function:

> numbers <- c("one", "two", "three", "four", "five")
> numbers
[1] "one"   "two"   "three" "four"  "five"

Symbols
An important class of constants is symbols. A symbol is an object in R that refers to
another object; a symbol is the name of a variable in R. For example, let’s assign the
numeric value 1 to the symbol x:

> x <- 1

In this expression, x is a symbol. The statement x <- 1 means “map the symbol x to
the numeric value 1 in the current environment.” (We’ll discuss environments in
Chapter 8.)

A symbol that begins with a character and contains other characters, numbers, pe-
riods, and underscores may be used directly in R statements. Here are a few examples
of symbol names that can be typed without escape characters:

> x <- 1
> # case matters
> x1 <- 1
> X1 <- 2
> x1
[1] 1
> X1
[1] 2
> x1.1 <- 1
> x1.1_1 <- 1

Some symbols contain special syntax. In order to refer to these objects, you enclose
them in backquotes. For example, to get help on the assignment operator (<-), you
would use a command like this:

?`<-`

If you really wanted to, you could use backquotes to define a symbol that contains
special characters or starts with a number:
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> `1+2=3` <- "hello"
> `1+2=3`
[1] "hello"

Not all words are valid as symbols; some words are reserved in R. Specifically, you
can’t use if, else, repeat, while, function, for, in, next, break, TRUE, FALSE, NULL,
Inf, NaN, NA, NA_integer_, NA_real_, NA_complex_, NA_character_, ..., ..1, ..2, ..
3, ..4, ..5, ..6, ..7, ..8, or ..9.

You can redefine primitive functions that are not on this list. For example, when
you start R, the symbol c normally refers to the primitive function c, which combines
elements into vectors:

> c
function (..., recursive = FALSE)  .Primitive("c")

However, you can redefine the symbol c to point to something else:

> c <- 1
> c
[1] 1

Even after you redefine the symbol c, you can continue to use the “combine” function
as before:

> v <- c(1, 2, 3)
> v
[1] 1 2 3

See Chapter 2 for more information on the combine function.

Operators
Many functions in R can be written as operators. An operator is a function that takes
one or two arguments and can be written without parentheses.

One familiar set of operators is binary operators for arithmetic. R supports arithmetic
operations:

> # addition
> 1 + 19
[1] 20

> # multiplication
> 5 * 4
[1] 20

R also includes notation for other mathematical operations, including moduli,
exponents, and integer division:

> # modulus
> 41 %% 21
[1] 20?

> # exponents
> 20 ^ 1
[1] 20
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> # integer division
> 21 %/% 2
[1] 10

You can define your own binary operators. User-defined binary operators consist of
a string of characters between two % characters. To do this, create a function of two
variables and assign it to an appropriate symbol. For example, let’s define an oper-
ator %myop% that doubles each operand and then adds them together:

> `%myop%` <- function(a, b) {2*a + 2*b}
> 1 %myop% 1
[1] 4
> 1 %myop% 2
[1] 6

Some language constructs are also binary operators. For example, assignment, in-
dexing, and function calls are binary operators:2

> # assignment is a binary operator
> # the left side is a symbol, the right is a value
> x <- c(1, 2, 3, 4, 5)

> # indexing is a binary operator too
> # the left side is a symbol, the right is an index
> x[3]
[1] 3

> # a function call is also a binary operator
> # the left side is a symbol pointing to the function argument
> # the right side are the arguments
> max(1, 2)
[1] 2

There are also unary operators that take only one variable. Here are two familiar
examples:

> # negation is a unary operator
> -7
[1] -7

> # ? (for help) is also a unary operator
> ?`?`

Order of Operations
You may remember from high school math that you always evaluate mathematical
expressions in a certain order. For example, when you evaluate the expression 1 +
2 • 5, you first multiply 2 and 5 and then add 1. The same thing is true in computer

2. Don’t be confused by the closing bracket in an indexing operation or the closing parenthesis
in a function call; although this syntax uses two symbols, both operations are still technically
binary operators. For example, a function call has the form f(arguments), where f is a function
and arguments are the arguments for the function.
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languages like R. When you enter an expression in R, the R interpreter will always
evaluate some expressions first.

In order to resolve ambiguity, operators in R are always interpreted in the same order.
Here is a summary of the precedence rules:

• Function calls and grouping expressions

• Index and lookup operators

• Arithmetic

• Comparison

• Formulas

• Assignment

• Help

Table 6-1 shows a complete list of operators in R and their precedence.

Table 6-1. Operator precedence, from the help(syntax) file

Operators (in order of priority) Description

( { Function calls and grouping expressions (respectively)

[ [[ Indexing

:: ::: Access variables in a namespace

$ @ Component / slot extraction

^ Exponentiation (right to left)

- + Unary operators for minus and plus

: Sequence operator

%any% Special operators

* / Multiply, divide

+ - Binary operators for add, subtract

< > <= >= == != Ordering and comparison

! Negation

& && And

| || Or

~ As in formulas

-> ->> Rightward assignment

= Assignment (right to left)

<- <<- Assignment (right to left)

? Help (unary and binary)

For a current list of built-in operators and their precedence, see the help file for
syntax.
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Assignments
Most assignments that we’ve seen so far simply assign an object to a symbol. For
example:

> x <- 1
> y <- list(shoes="loafers", hat="Yankees cap", shirt="white")
> z <- function(a, b, c) {a ^ b / c}
> v <- c(1, 2, 3, 4, 5, 6, 7, 8)

There is an alternative type of assignment statement in R that acts differently: as-
signments with a function on the left-hand side of the assignment operator. These
statements replace an object with a new object that has slightly different properties.
Here are a few examples:

> dim(v) <- c(2, 4)

> v[2, 2] <- 10

> formals(z) <- alist(a=1, b=2, c=3)

There is a little bit of magic going on behind the scenes. An assignment statement
of the form:

fun(sym) <- val

is really syntactic sugar for a function of the form:

`fun<-`(sym,val)

Each of these functions replaces the object associated with sym in the current envi-
ronment. By convention, fun refers to a property of the object represented by sym. If
you write a method with the name method_name<-, then R will allow you to place
method_name on the left-hand side of an assignment statement.

Expressions
R provides different constructs for grouping together expressions: semicolons,
parentheses, and curly braces.

Separating Expressions
You can write a series of expressions on separate lines:

> x <- 1
> y <- 2
> z <- 3

Alternatively, you can place them on the same line, separated by semicolons:

> x <- 1; y <- 2; z <- 3
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Parentheses
The parentheses notation returns the result of evaluating the expression inside the
parentheses:

(expression)

The operator has the same precedence as a function call. In fact, grouping a set of
expressions inside parentheses is equivalent to evaluating a function of one argument
that just returns its argument:

> 2 * (5 + 1)
[1] 12
> # equivalent expression
> f <- function (x) x
> 2 * f(5 + 1)
[1] 12

Grouping expressions with parentheses can be used to override the default order of
operations. For example:

> 2 * 5 + 1
[1] 11
> 2 * (5 + 1)
[1] 12

Curly Braces
Curly braces are used to evaluate a series of expressions (separated by new lines or
semicolons) and return only the last expression:

{expression_1; expression_2; ... expression_n}

Often, curly braces are used to group a set of operations in the body of a function:

> f <- function() {x <- 1; y <- 2; x + y}
> f()
[1] 3

However, curly braces can also be used as expressions in other contexts:

> {x <- 1; y <- 2; x + y}
[1] 3

The contents of the curly braces are evaluated inside the current environment; a new
environment is created by a function call but not by the use of curly braces:

> # when evaluated in a function, u and v are assigned
> # only inside the function environment
> f <- function() {u <- 1; v <- 2; u + v}
> u
Error: object "u" not found
> v
Error: object "v" not found
> # when evaluated outside the function, u and v are
> # assigned in the current environment
> {u <- 1; v <- 2; u + v}
[1] 3
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> u
[1] 1
> v
[1] 2

For more information about variable scope and environments, see Chapter 8.

The curly brace notation is translated internally as a call to the `{` function. (Note,
however, that the arguments are not evaluated the same way as in a standard
function.)

Control Structures
Nearly every operation in R can be written as a function, but it isn’t always
convenient to do so. Therefore, R provides special syntax that you can use in com-
mon program structures. We’ve already described two important sets of construc-
tions: operators and grouping brackets. This section describes a few other key
language structures and explains what they do.

Conditional Statements
Conditional statements take the form:

if (condition) true_expression else false_expression

or, alternatively:

if (condition) expression

Because the expressions expression, true_expression, and false_expression are not
always evaluated, the function if has the type special:

> typeof(`if`)
[1] "special"

Here are a few examples of conditional statements:

> if (FALSE) "this will not be printed"
> if (FALSE) "this will not be printed" else "this will be printed"
[1] "this will be printed"
> if (is(x, "numeric")) x/2 else print("x is not numeric")
[1] 5

In R, conditional statements are not vector operations. If the condition statement is
a vector of more than one logical value, then only the first item will be used. For
example:

> x <- 10
> y <- c(8, 10, 12, 3, 17)
> if (x < y) x else y
[1]  8 10 12  3 17
Warning message:
In if (x < y) x else y :
  the condition has length > 1 and only the first element will be used
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If you would like a vector operation, use the ifelse function instead:

> a <- c("a", "a", "a", "a", "a")
> b <- c("b", "b", "b", "b", "b")
> ifelse(c(TRUE, FALSE, TRUE, FALSE, TRUE), a, b)
[1] "a" "b" "a" "b" "a"

Often, it’s convenient to return different values (or call different functions) depend-
ing on a single input value. You can code these as

> switcheroo.if.then <- function(x) {
+   if (x == "a")
+     "camel"
+   else if (x == "b")
+     "bear"
+   else if (x == "c")
+     "camel"
+   else
+     "moose"
+ }

but that is verbose. A better alternative is to use the switch function:

> switcheroo.switch <- function(x) {
+   switch(x,
+     a="alligator",
+     b="bear",
+     c="camel",
+     "moose")
+ }

The first argument is a character value to switch on, the named arguments specify
what to do for each value of the argument, and an unnamed argument specifies the
default value. As you can see, these two expressions are equivalent:

> switcheroo.if.then("a")
[1] "camel"
> switcheroo.if.then("f")
[1] "moose"
> switcheroo.switch("a")
[1] "camel"
> switcheroo.switch("f")
[1] "moose"

Loops
There are three different looping constructs in R. Simplest is repeat, which just
repeats the same expression:

repeat expression

To stop repeating the expression, you can use the keyword break. To skip to the
next iteration in a loop, you can use the command next.

As an example, the following R code prints out multiples of 5 up to 25:

> i <- 5
> repeat {if (i > 25) break else {print(i); i <- i + 5;}}
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[1] 5
[1] 10
[1] 15
[1] 20
[1] 25

If you do not include a break command, the R code will be an infinite loop. (This
can be useful for creating an interactive application.)

Another useful construction is while loops, which repeat an expression while a con-
dition is true:

while (condition) expression

As a simple example, let’s rewrite the example above using a while loop:

> i <- 5
> while (i <= 25) {print(i); i <- i + 5}
[1] 5
[1] 10
[1] 15
[1] 20
[1] 25

You can also use break and next inside while loops. The break statement is used to
stop iterating through a loop. The next statement skips to the next loop iteration
without evaluating the remaining expressions in the loop body.

Finally, R provides for loops, which iterate through each item in a vector (or a list):

for (var in list) expression

Let’s use the same example for a for loop:

> for (i in seq(from=5, to=25, by=5)) print(i)
[1] 5
[1] 10
[1] 15
[1] 20
[1] 25

You can also use break and next inside for loops.

There are two important properties of looping statements to remember. First, results
are not printed inside a loop unless you explicitly call the print function. For
example:

> for (i in seq(from=5, to=25, by=5)) i

Second, the variable var that is set in a for loop is changed in the calling environment:

> i <- 1
> for (i in seq(from=5, to=25, by=5)) i
> i
[1] 25

Like conditional statements, the looping functions ̀ repeat`, ̀ while`, and ̀ for` have
type special, because expression is not necessarily evaluated.
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Looping Extensions
If you’ve used modern programming languages like Java, you might be disap-
pointed that R doesn’t provide iterators or foreach loops. Luckily, these mech-
anisms are available through add-on packages. (These packages were written by
Revolution Computing and are available through CRAN.)

Iterators are abstract objects that return elements from another object. Using iter-
ators can help make code easier to understand. Additionally, iterators can make
code easier to parallelize. To use iterators, you’ll need to install the iterators
package. Iterators can return elements of a vector, array, data frame, or other
object. You can even use an iterator to return values returned by a function (such
as a function that returns random values). To create an iterator in R, you would
use the iter function:

iter(obj, checkFunc=function(...) TRUE, recycle=FALSE,...)

The argument obj specifies the object, recycle specifies whether the iterator
should reset when it runs out of elements, and checkFunc specifies a function that
filters values returned by the iterator.

You fetch the next item with the function nextElem. This function will implicitly
call checkFunc. If the next value matches checkFunc, it will be returned. If it doesn’t
match, then the function will try another value. nextElem will continue checking
values until it finds one that matches checkFunc, or it runs out of values. When
there are no elements left, the iterator calls stop with the message “StopIteration.”

For example, let’s create an iterator that returns values between 1 and 5:

> library(iterators)
> onetofive <- iter(1:5)
> nextElem(onetofive)
[1] 1
> nextElem(onetofive)
[1] 2
> nextElem(onetofive)
[1] 3
> nextElem(onetofive)
[1] 4
> nextElem(onetofive)
[1] 5
> nextElem(onetofive)
Error: StopIteration

A second extension is the foreach loop, available through the foreach package.
Foreach provides an elegant way to loop through multiple elements of another
object (such as a vector, matrix, data frame, or iterator), evaluate an expression
for each element, and return the results. Within the foreach function, you assign
elements to a temporary value, just like in a for loop.

Here is the prototype for the foreach function:

foreach(..., .combine, .init, .final=NULL, .inorder=TRUE,
       .multicombine=FALSE,
       .maxcombine=if (.multicombine) 100 else 2,
       .errorhandling=c('stop', 'remove', 'pass'),
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       .packages=NULL, .export=NULL, .noexport=NULL,
       .verbose=FALSE)

Technically, the foreach function returns a foreach object. To actually evaluate
the loop, you need to apply the foreach loop to an R expression using the %do% or
%dopar% operators. That sounds weird, but it’s actually pretty easy to use in prac-
tice. For example, you can use a foreach loop to calculate the square roots of
numbers between 1 and 5:

> sqrts.1to5 <- foreach(i=1:5) %do% sqrt(i)
> sqrts.1to5
[[1]]
[1] 1

[[2]]
[1] 1.414214

[[3]]
[1] 1.732051

[[4]]
[1] 2

[[5]]
[1] 2.236068

The %do% operator evaluates the expression in serial, while the %dopar% can be used
to evaluate expressions in parallel. For more about parallel computing with R, see
Chapter 26.

Accessing Data Structures
R has some specialized syntax for accessing data structures. You can fetch a single
item from a structure, or multiple items (possibly as a multidimensional array) using
R’s index notation. You can fetch items by location within a data structure or by
name.

Data Structure Operators
Table 6-2 shows the operators in R used for accessing objects in a data structure.

Table 6-2. Data structure access notation

Syntax Objects Description

x[i] Vectors,
lists

Returns objects from object x, described by i. i may be an integer vector, character vector (of
object names), or logical vector. Does not allow partial matches. When used with lists, returns
a list. When used with vectors, returns a vector.

x[[i]] Vectors,
lists

Returns a single element of x, matching i. i may be an integer or character vector of length
1. Allows partial matches (with exact=FALSE option).

x$n Lists Returns object with name n from object x.

x@n S4 objects Returns element stored in object x in slot named n.
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Although the single-bracket notation and double-bracket notation look very similar,
there are three important differences. First, double brackets always return a single
element, while single brackets may return multiple elements. Second, when elements
are referred to by name (as opposed to by index), single brackets match only named
objects exactly, while double brackets allow partial matches. Finally, when used
with lists, the single-bracket notation returns a list, but the double-bracket notation
returns a vector.

I’ll explain how to use this notation below.

Indexing by Integer Vector
The most familiar way to look up an element in R is by numeric vector. As an ex-
ample, let’s create a very simple vector of 20 integers:

>  v <- 100:119

You can look up individual elements by position in the vector using the bracket
notation x[s], where x is the vector from which you want to return elements and s
is a second vector representing the set of element indices you would like to query.
You can use an integer vector to look up a single element or multiple elements:

> v[5]
[1] 104
> v[1:5]
[1] 100 101 102 103 104
> v[c(1, 6, 11, 16)]
[1] 100 105 110 115

As a special case, you can use the double-bracket notation to reference a single
element:

> v[[3]]
[1] 102

The double-bracket notation works the same as the single-bracket notation in this
case; see “Indexing by Name” on page 79 for an explanation of references that do
not work with the single-bracket notation.

You can also use negative integers to return a vector consisting of all elements except
the specified elements:

> # exclude elements 1:15 (by specifying indexes -1 to -15)
> v[-15:-1]
[1] 115 116 117 118 119

The same notation applies to lists:

> l <- list(a=1, b=2, c=3, d=4, e=5, f=6, g=7, h=8, i=9, j=10)
> l[1:3]
$a
[1] 1

$b
[1] 2
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$c
[1] 3

> l[-7:-1]
$h
[1] 8

$i
[1] 9

$j
[1] 10

You can also use this notation to extract parts of multidimensional data structures:

> m <- matrix(data=c(101:112), nrow=3, ncol=4)
> m
     [,1] [,2] [,3] [,4]
[1,]  101  104  107  110
[2,]  102  105  108  111
[3,]  103  106  109  112
> m[3]
[1] 103
> m[3,4]
[1] 112
> m[1:2,1:2]
     [,1] [,2]
[1,]  101  104
[2,]  102  105

If you omit a vector specifying a set of indices for a dimension, then elements for all
indices are returned:

> m[1:2, ]
     [,1] [,2] [,3] [,4]
[1,]  101  104  107  110
[2,]  102  105  108  111
> m[3:4]
[1] 103 104
> m[, 3:4]
     [,1] [,2]
[1,]  107  110
[2,]  108  111
[3,]  109  112

When selecting a subset, R will automatically coerce the result to the most appro-
priate number of dimensions. If you select a subset of elements that corresponds to
a matrix, R will return a matrix object; if you select a subset that corresponds to only
a vector, R will return a vector object. To disable this behavior, you can use the
drop=FALSE option:

> a <- array(data=c(101:124), dim=c(2, 3, 4))
> class(a[1, 1, ])
[1] "integer"
> class(a[1, , ])
[1] "matrix"
> class(a[1:2, 1:2, 1:2])
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[1] "array"
> class(a[1, 1, 1, drop=FALSE])
[1] "array"

It is possible to create an array object with dimensions of length 1. However, when
selecting subsets, R simplifies the returned objects.

It is also possible to replace elements in a vector, matrix, or array using the same
notation:

> m[1] <- 1000
> m
     [,1] [,2] [,3] [,4]
[1,] 1000  104  107  110
[2,]  102  105  108  111
[3,]  103  106  109  112
> m[1:2, 1:2] <- matrix(c(1001:1004), nrow=2, ncol=2)
> m
     [,1] [,2] [,3] [,4]
[1,] 1001 1003  107  110
[2,] 1002 1004  108  111
[3,]  103  106  109  112

It is even possible to extend a data structure using this notation. A special NA element
is used to represent values that are not defined:

> v <- 1:12
> v[15] <- 15
> v
 [1]  1  2  3  4  5  6  7  8  9 10 11 12 NA NA 15

You can also index a data structure by a factor; the factor is interpreted as an integer
vector.

Indexing by Logical Vector
As an alternative to indexing by an integer vector, you can also index through a
logical vector. As a simple example, let’s construct a vector of alternating true and
false elements to apply to v:

> rep(c(TRUE, FALSE), 10)
 [1]  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE
[12] FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE
> v[rep(c(TRUE, FALSE), 10)]
 [1] 100 102 104 106 108 110 112 114 116 118

Often, it is useful to calculate a logical vector from the vector itself:

> # trivial example: return element that is equal to 103
> v[(v==103)]
> # more interesting example: multiples of three
> v[(v %% 3 == 0)]
[1] 102 105 108 111 114 117

The index vector does not need to be the same length as the vector itself. R will
repeat the shorter vector, returning matching values:
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> v[c(TRUE, FALSE, FALSE)]
[1] 100 103 106 109 112 115 118

As above, the same notation applies to lists:

> l[(l > 7)]
$h
[1] 8

$i
[1] 9

$j
[1] 10

Indexing by Name
With lists, each element may be assigned a name. You can index an element by name
using the $ notation:

> l <- list(a=1, b=2, c=3, d=4, e=5, f=6, g=7, h=8, i=9, j=10)
> l$j
[1] 10

You can also use the single-bracket notation to index a set of elements by name:

> l[c("a", "b", "c")]
$a
[1] 1

$b
[1] 2

$c
[1] 3

You can also index by name using the double-bracket notation when selecting a
single element. It is even possible to index by partial name using the exact=FALSE
option:

> dairy <- list(milk="1 gallon", butter="1 pound", eggs=12)
> dairy$milk
[1] "1 gallon"
> dairy[["milk"]]
[1] "1 gallon"
> dairy[["mil"]]
NULL
> dairy[["mil",exact=FALSE]]
[1] "1 gallon"

Sometimes, an object is a list of lists. You can also use the double-bracket notation
to reference an element in this type of data structure. To do this, use a vector as an
argument. R will iterate through the elements in the vector, referencing sublists:

> fruit <- list(apples=6, oranges=3, bananas=10)
> shopping.list <- list (dairy=dairy, fruit=fruit)
> shopping.list
$dairy
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$dairy$milk
[1] "1 gallon"

$dairy$butter
[1] "1 pound"

$dairy$eggs
[1] 12

$fruit
$fruit$apples
[1] 6

$fruit$oranges
[1] 3

$fruit$bananas
[1] 10

> shopping.list[[c("dairy", "milk")]]
[1] "1 gallon"
> shopping.list[[c(1,2)]]
[1] "1 pound"

R Code Style Standards
Standards for code style aren’t the same as syntax, although they are sort of related.
It is usually wise to be careful about code style to maximize the readability of your
code, making it easier for you and others to maintain.

In this book, I’ve tried to stick to Google’s R Style Guide, which is available at http:
//google-styleguide.googlecode.com/svn/trunk/google-r-style.html. Here is a summary
of its suggestions:

Indentation
Indent lines with two spaces, not tabs. If code is inside parentheses, indent to
the innermost parentheses.

Spacing
Use only single spaces. Add spaces between binary operators and operands. Do
not add spaces between a function name and the argument list. Add a single
space between items in a list, after each comma.

Blocks
Don’t place an opening brace (“{”) on its own line. Do place a closing brace
(“}”) on its own line. Indent inner blocks (by two spaces).

Semicolons
Omit semicolons at the end of lines when they are optional.
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Naming
Name objects with lowercase words, separated by periods. For function names,
capitalize the name of each word that is joined together, with no periods. Try
to make function names verbs.

Assignment
Use <-, not = for assignment statements.

Don’t be confused by the object names. You don’t have to name objects things like
“field.goals” or “sanfrancisco.home.prices” or “top.bacon.searching.cities.” It’s just
convention.
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7
R Objects

All objects in R are built on top of a basic set of built-in objects. The type of an object
defines how it is stored in R. Objects in R are also members of a class. Classes define
what information objects contain, and how those objects may be used.

R provides some mechanisms for object-oriented programming (which doesn’t just
mean “programming with objects”). This chapter focuses on built-in objects and
how to use them and not on the object-oriented programming system. We’ll discuss
object-oriented programming features like class definitions, inheritance, and meth-
ods in Chapter 10.

Primitive Object Types
Table 7-1 shows all the built-in object types. I introduced these objects in Chap-
ter 3, so they should seem familiar. I classified the object types into a few categories
to make them easier to understand.

Basic vectors
These are vectors containing a single type of value: integers, floating-point
numbers, complex numbers, text, logical values, or raw data.

Compound objects
These objects are containers for the basic vectors: lists, pairlists, S4 objects, and
environments. Each of these objects has unique properties (described below),
but each of them contains a number of named objects.

Special objects
These objects serve a special purpose in R programming: any, NULL, and ....
Each of these means something important in a specific context, but you would
never create an object of these types.

R language
These are objects that represent R code; they can be evaluated to return other
objects.
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Functions
Functions are the workhorses of R; they take arguments as inputs and return
objects as outputs. Sometimes, they may modify objects in the environment or
cause side effects outside the R environment like plotting graphics, saving files,
or sending data over the network.

Internal
These are object types that are formally defined by R but which aren’t normally
accessible within the R language. In normal R programming, you will probably
never encounter any of the objects.

Bytecode Objects
If you use the bytecode compiler, R will generate bytecode objects that run on
the R virtual machine.

We’ll explore what each of these objects is used for in this chapter.

Table 7-1. Primitive object types in R

Category Object type Description Example

Vectors integer Naturally produced from sequences. Can be
coerced with the integer() function.

5:5 integer(5)

double Used to represent floating-point numbers
(numbers with decimals and large numbers).
On most modern platforms, this will be 8 bytes,
or 64 bits. By default, most numerical values
are represented as doubles. Can be coerced
with the double() function.

1 -1 2 ** 50 double(5)

complex Complex numbers. To use, you must include
both the real and the imaginary parts (even if
the real part is 0).

2+3i 0+1i exp(0+1i * pi)

character A string of characters (just called a string in
many other languages).

"Hello world."

logical Represents Boolean values. TRUE FALSE

raw A vector containing raw bytes. Useful for en-
coding objects from outside the R
environment.

raw(8) char
ToRaw("Hello")

Compound list A (possibly heterogeneous) collection of other
objects. Elements of a list may be named. Many
other object types in R (such as data frames)
are implemented as lists.

list(1, 2, "hat")

pairlist A data structure used to represent a set of
name-value pairs. Pairlists are primarily used
internally but can be created at the user level.
Their use is deprecated in user-level programs,
because standard list objects are just as effi-
cient and more flexible.

.Options pair
list(apple=1, pear=2,
banana=3)

S4 An R object supporting modern object-
oriented paradigms (inheritance, methods,
etc.). See Chapter 10 for a full explanation.
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Category Object type Description Example

environment An R environment describes the set of
symbols available in a specific context. An en-
vironment contains a set of symbol-value pairs
and a pointer to an enclosing environment. (For
example, you could use any in the signature of
a default generic function.)

.GlobalEnv new.env(par
ent = baseenv())

Special any An object used to mean that “any” type is OK.
Used to prevent coercion from one type to an-
other. Useful in defining slots in S4 objects or
signatures for generic functions.

setClass("Something",
representa
tion( data="ANY" ) )

NULL An object that means “there is no object.” Re-
turned by functions and expressions whose
value is not defined. The NULL object can have
no attributes.

NULL

... Used in functions to implement variable-
length argument lists, particularly arguments
passed to other functions.

N/A

R language symbol A symbol is a language object that refers to
other objects. Usually encountered when pars-
ing R statements.

as.name(x) as.symbol(x)
quote(x)

promise Promises are objects that are not evaluated
when they are created but are instead evalu-
ated when they are first used. They are used to
implement delayed loading of objects in pack-
ages.

> x <- 1;
> y <- 2;
> z <- 3
> delayedAssign("v",
c(x, y, z))

> # v is a promise

language R language objects are used when processing
the R language itself.

quote(function(x) { x +
1})

expression An unevaluated R expression. Expression ob-
jects can be created with the expression
function and later evaluated with the eval
function.

expression(1 + 2)

Functions closure An R function not implemented inside the R
system. Most functions fall into this category.
Includes user-defined functions, most func-
tions included with R, and most functions in R
packages.

f <- function(x) { x + 1}
print

special An internal function whose arguments are not
necessarily evaluated on call.

if [

builtin An internal function that evaluates its
arguments.

+ ^

bytecode Compiled R functions generated by the
compiler package

cmpfun(function(x) {x^2}

Internal char A scalar “string” object. A character vector is
composed of char objects. (Users can’t

N/A
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Category Object type Description Example
easily generate a char object but don’t ever
need to.)

bytecode A data type reserved for a future byte-code
compiler.

N/A

externalptr External pointer. Used in C code. N/A

weakref Weak reference (internal only). N/A

Vectors
When using R, you will frequently encounter the six basic vector types. R includes
several different ways to create a new vector. The simplest one is the c function,
which combines its arguments into a vector:

> # a vector of five numbers
> v <- c(.295, .300, .250, .287, .215)
> v
[1] 0.295 0.300 0.250 0.287 0.215

The c function also coerces all of its arguments into a single type:

> # creating a vector from four numbers and a char
> v <- c(.295, .300, .250, .287, "zilch")
> v
[1] "0.295" "0.3"   "0.25"  "0.287" "zilch"

You can use the c function to recursively assemble a vector from other data structures
using the recursive=TRUE option:

> # creating a vector from four numbers and a list of
> # three more
> v <- c(.295, .300, .250, .287, list(.102, .200, .303), recursive=TRUE)
> v
[1] 0.295 0.300 0.250 0.287 0.102 0.200 0.303

But beware of using a list as an argument, as you will get back a list:

> v <- c(.295, .300, .250, .287, list(.102, .200, .303), recursive=TRUE)
> v
[1] 0.295 0.300 0.250 0.287 0.102 0.200 0.303
> typeof(v)
[1] "double"
> v <- c(.295, .300, .250, .287, list(1, 2, 3))
> typeof(v)
[1] "list"
> class(v)
[1] "list"
> v
[[1]]
[1] 0.295

[[2]]
[1] 0.3
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[[3]]
[1] 0.25

[[4]]
[1] 0.287

[[5]]
[1] 1

[[6]]
[1] 2

[[7]]
[1] 3

Another useful tool for assembling a vector is the “:” operator. This operator creates
a sequence of values from the first operand to the second operand:

> 1:10
 [1]  1  2  3  4  5  6  7  8  9 10

A more flexible function is the seq function:

> seq(from=5, to=25, by=5)
[1]  5 10 15 20 25

You can explicitly manipulate the length of a vector through the length attribute:

> w <- 1:10
> w
 [1]  1  2  3  4  5  6  7  8  9 10
> length(w) <- 5
> w
[1] 1 2 3 4 5

Note that when you expand the length of a vector, uninitialized values are given the
NA value:

> length(w) <- 10
> w
 [1]  1  2  3  4  5 NA NA NA NA NA

Lists
An R list is an ordered collection of objects. Like vectors, you can refer to elements
in a list by position:

> l <- list(1, 2, 3, 4, 5)
> l[1]
[[1]]
[1] 1

> l[[1]]
[1] 1

Additionally, each element in a list may be given a name and then be referred to by
that name. For example, suppose we wanted to represent a few properties of a parcel
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(a real, physical parcel, to be sent through the mail). Suppose the parcel is destined
for New York, has dimensions of 2 inches deep by 6 inches wide by 9 inches long,
and costs $12.95 to mail. The three properties are all different data types in R: a
character, a numeric vector of length 3, and a vector of length 1. We could combine
the information into an object like this:

> parcel <- list(destination="New York", dimensions=c(2, 6, 9), price=12.95)

It is then possible to refer to each component individually using the $ notation. For
example, if we wanted to get the price, we would use the following expression:

> parcel$price
[1] 12.95

Lists are a very important building block in R, because they allow the construction
of heterogeneous structures. For example, data frames are built on lists.

Other Objects
There are some other objects that you should know about if you’re using R. Although
most of these objects are not formally part of the R language, they are used in so
many R packages, or get such special treatment in R, that they’re worth a closer look.

Matrices
A matrix is an extension of a vector to two dimensions. A matrix is used to represent
two-dimensional data of a single type. A clean way to generate a new matrix is with
the matrix function. As an example, let’s create a matrix object with three columns
and four rows. We’ll give the rows the names “r1,” “r2,” “r3,” and “r4,” and the
columns the names “c1,” “c2,” and “c3.”

> m <- matrix(data=1:12, nrow=4, ncol=3,
+             dimnames=list(c("r1", "r2", "r3", "r4"),
+                           c("c1", "c2", "c3")))
> m
   c1 c2 c3
r1  1  5  9
r2  2  6 10
r3  3  7 11
r4  4  8 12

It is also possible to transform another data structure into a matrix using the
as.matrix function.

An important note: matrices are implemented as vectors, not as a vector of vectors
(or as a list of vectors). Array subscripts are used for referencing elements and don’t
reflect the way the data is stored. (Unlike other classes, matrices don’t have an ex-
plicit class attribute. We’ll talk about attributes in “Attributes” on page 96.)
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Arrays
An array is an extension of a vector to more than two dimensions. Arrays are used
to represent multidimensional data of a single type. As above, you can generate an
array with the array function:

> a <- array(data=1:24, dim=c(3, 4, 2))
> a
, , 1

     [,1] [,2] [,3] [,4]
[1,]    1    4    7   10
[2,]    2    5    8   11
[3,]    3    6    9   12

, , 2

     [,1] [,2] [,3] [,4]
[1,]   13   16   19   22
[2,]   14   17   20   23
[3,]   15   18   21   24

Like matrices, the underlying storage mechanism for an array is a vector. (Like ma-
trices, and unlike most other classes, arrays don’t have an explicit class attribute.)

Factors
When analyzing data, it’s quite common to encounter categorical values. For ex-
ample, suppose you have a set of observations about people that includes eye color.
You could represent the eye colors as a character array:

> eye.colors <- c("brown", "blue", "blue", "green",
+  "brown", "brown", "brown")

This is a perfectly valid way to represent the information, but it can become ineffi-
cient if you are working with large names or a large number of observations. R
provides a better way to represent categorical values, by using factors. A factor is an
ordered collection of items. The different values that the factor can take are called
levels.

Let’s recode the eye colors as a factor:

> eye.colors <- factor(c("brown", "blue", "blue", "green",
+  "brown", "brown", "brown"))

The levels function shows all the levels from a factor:

> levels(eye.colors)
[1] "blue"  "brown" "green"

Printing a factor shows slightly different information than printing a character vec-
tor. In particular, notice that the quotes are not shown and that the levels are ex-
plicitly printed:
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> eye.colors
[1] brown blue  blue  green brown brown brown
Levels: blue brown green

In the eye color example, order did not matter. However, sometimes the order of
the factors matters for a specific problem. For example, suppose you had conducted
a survey and asked respondents how they felt about the statement “melon is deli-
cious with an omelet.” Furthermore, suppose that you allowed respondents to give
the following responses: Strongly Disagree, Disagree, Neutral, Agree, Strongly
Agree.

There are multiple ways to represent this information in R. You could code these as
integers (for example, on a scale of 1 to 5), although this approach has some draw-
backs. This approach implies a specific quantitative relationship between values,
which may or may not make sense. For example, is the difference between Strongly
Disagree and Disagree the same as the difference between Disagree and Neutral? A
numeric response also implies that you can calculate meaningful statistics based on
the responses. Can you be sure that a Disagree response and an Agree response
average out to Neutral?

To get around these problems, you can use an ordered factor to represent the re-
sponse of this survey. Here is an example:

> survey.results <- factor(
+   c("Disagree", "Neutral", "Strongly Disagree",
+     "Neutral", "Agree", "Strongly Agree",
+     "Disagree", "Strongly Agree", "Neutral",
+     "Strongly Disagree", "Neutral", "Agree"),
+   levels=c("Strongly Disagree", "Disagree",
+     "Neutral", "Agree", "Strongly Agree"),
+   ordered=TRUE)
> survey.results
 [1] Disagree Neutral Strongly Disagree
 [4] Neutral Agree Strongly Agree
 [7] Disagree Strongly Agree    Neutral
[10] Strongly Disagree Neutral Agree
5 Levels: Strongly Disagree < Disagree < Neutral < ... < Strongly Agree

As you can see, R will display the order of the levels when you display an ordered
factor.

Factors are implemented internally using integers. The levels attribute maps each
integer to a factor level. Integers take up a small, fixed amount of storage space, so
they can be more space efficient than character vectors. It’s possible to take a factor
and turn it into an integer array:

> # use the eye colors vector we used above
> eye.colors
[1] brown blue  blue  green brown brown brown
Levels: blue brown green
> class(eye.colors)
[1] "factor"
> # now create a vector by removing the class:
> eye.colors.integer.vector <- unclass(eye.colors)
> eye.colors.integer.vector
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[1] 2 1 1 3 2 2 2
attr(,"levels")
[1] "blue"  "brown" "green"
> class(eye.colors.integer.vector)
[1] "integer"

It’s possible to change this back to a factor by setting the class attribute:

> class(eye.colors.integer.vector) <- "factor"
> eye.colors.integer.vector
[1] brown blue  blue  green brown brown brown
Levels: blue brown green
> class(eye.colors.integer.vector)
[1] "factor"

Data Frames
Data frames are a useful way to represent tabular data. In scientific contexts, many
experiments consist of individual observations, each of which involves several dif-
ferent measurements. Often, the measurements have different dimensions, and
sometimes they are qualitative and not quantitative. In business contexts, data is
often kept in database tables. Each table has many rows, which may consist of mul-
tiple “columns” representing different quantities and which may be kept in multiple
formats. A data frame is a natural way to represent these data sets in R.

A data frame represents a table of data. Each column may be a different type, but
each row in the data frame must have the same length:

> data.frame(a=c(1, 2, 3, 4, 5), b=c(1, 2, 3, 4))
Error in data.frame(a = c(1, 2, 3, 4, 5), b = c(1, 2, 3, 4)) :
  arguments imply differing number of rows: 5, 4

Usually, each column is named, and sometimes rows are named as well. The col-
umns in a data frame are often referred to as “variables.”

Here is a simple example of a data frame, showing how frequently users search for
the word “bacon” in different cities around the world.1

This data set is included in the nutshell package. Alternatively, you can create it
manually with the following statement:

> top.bacon.searching.cities <- data.frame(
+      city = c("Seattle", "Washington", "Chicago",
+ "New York", "Portland", "St Louis",
+ "Denver", "Boston","Minneapolis", "Austin",
+ "Philadelphia", "San Francisco", "Atlanta",
+ "Los Angeles", "Richardson"),

1. The data was taken from Google Insights, http://www.google.com/insights/search/
#q=bacon&cmpt=q. The query was run on September 5, 2009, for data from 2004 through
2009.

The fact that I could find this information is a sign that there is too much data in the world.
It is probably good that you are learning to use R, or you would never be able to make sense
of it all.
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+      rank = c(100, 96, 94, 93, 93, 92, 90, 90, 89, 87,
+               85, 84, 82, 80, 80)
+   )

Here is what this data frame contains:

> top.bacon.searching.cities
            city rank
1        Seattle  100
2     Washington   96
3        Chicago   94
4       New York   93
5       Portland   93
6       St Louis   92
7         Denver   90
8         Boston   90
9    Minneapolis   89
10        Austin   87
11  Philadelphia   85
12 San Francisco   84
13       Atlanta   82
14   Los Angeles   80
15    Richardson   80

Data frames are implemented as lists with class data.frame:

> typeof(top.bacon.searching.cities)
[1] "list"
> class(top.bacon.searching.cities)
[1] "data.frame"

This means that the same methods can be used to refer to items in lists and data
frames. For example, to extract the rank column from this data frame, you could
use the expression top.bacon.searching.cities$rank.

Formulas
Very often, you need to express a relationship between variables. Sometimes, you
want to plot a chart showing the relationship between the two variables. Other times,
you want to develop a mathematical model. R provides a formula class that lets you
describe the relationship for both purposes.

Let’s create a formula as an example:

> sample.formula <- as.formula(y~x1+x2+x3)
> class(sample.formula)
[1] "formula"
> typeof(sample.formula)
[1] "language"

This formula means “y is a function of x1, x2, and x3.” Some R functions use more
complicated formulas. For example, in “Charts and Graphics” on page 30, we plot-
ted a formula of the form Amount~Year|Food, which means “Amount is a function of
Year, conditioned on Food.” Here is an explanation of the meaning of different items
in formulas:
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Variable names
Represent variable names.

Tilde (~)
Used to show the relationship between the response variables (to the left) and
the stimulus variables (to the right).

Plus sign (+)
Used to express a linear relationship between variables.

Zero (0)
When added to a formula, indicates that no intercept term should be included.
For example:

y~u+w+v+0

Vertical bar (|)
Used to specify conditioning variables (in lattice formulas; see “Customizing
Lattice Graphics” on page 312).

Identity function (I())
Used to indicate that the enclosed expression should be interpreted by its arith-
metic meaning. For example:

a+b

means that both a and b should be included in the formula. The formula:

I(a+b)

means that “a plus b” should be included in the formula.

Asterisk (*)
Used to indicate interactions between variables. For example:

y~(u+v)*w

is equivalent to:

y~u+v+w+I(u*w)+I(v*w)

Caret (^)
Used to indicate crossing to a specific degree. For example:

y~(u+w)^2

is equivalent to:

y~(u+w)*(u+w)

Function of variables
Indicates that the function of the specified variables should be interpreted as a
variable. For example:

y~log(u)+sin(v)+w

Some additional items have special meaning in formulas, for example s() for
smoothing splines in formulas passed to gam. We’ll revisit formulas in Chapter 14
and Chapter 20.
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Time Series
Many important problems look at how a variable changes over time, and R includes
a class to represent this data: time series objects. Regression functions for time series
(like ar or arima) use time series objects. Additionally, many plotting functions in R
have special methods for time series.

To create a time series object (of class "ts"), use the ts function:

ts(data = NA, start = 1, end = numeric(0), frequency = 1,
   deltat = 1, ts.eps = getOption("ts.eps"), class = , names = )

The data argument specifies the series of observations; the other arguments specify
when the observations were taken. Here is a description of the arguments to ts.

Argument Description Default

data A vector or matrix representing a set of observations over time
(usually numeric).

NA

start A numeric vector with one or two elements representing the
start of the time series. If one element is used, then it represents
a “natural time unit.” If two elements are used, then it repre-
sents a “natural time unit” and an offset.

1

end A numeric vector with one or two elements representing the
end of the time series. (Represented the same way as start.)

numeric(0)

frequency The number of observations per unit of time. 1

deltat The fraction of the sampling period between observations;
frequency=1/deltat.

1

ts.eps Time series comparison tolerance. The frequency of two time
series objects is considered equal if the difference is less than
this amount.

getOption("ts.eps")

class The class to be assigned to the result. "ts" for a single series, c("mts",
"ts") for multiple series

names A character vector specifying the name of each series in a mul-
tiple series object.

colnames(data) when not null,
otherwise "Series1",
"Series2", ...

The print method for time series objects can print pretty results when used with
units of months or quarters (this is enabled by default and is controlled with the
calendar argument to print.ts; see the help file for more details). As an example,
let’s create a time series representing eight consecutive quarters between Q2 2008
and Q1 2010:

> ts(1:8, start=c(2008, 2), frequency=4)
     Qtr1 Qtr2 Qtr3 Qtr4
2008 1    2    3
2009    4    5    6    7
2010    8

As another example of a time series, we will look at the price of turkey. The U.S.
Department of Agriculture has a program that collects data on the retail price of
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various meats. The data is taken from supermarkets representing approximately
20% of the U.S. market and then averaged by month and region. The turkey price
data is included in the nutshell package as turkey.price.ts:

> library(nutshell)
> data(turkey.price.ts)
> turkey.price.ts
      Jan  Feb  Mar  Apr  May  Jun  Jul  Aug  Sep  Oct  Nov  Dec
2001 1.58 1.75 1.63 1.45 1.56 2.07 1.81 1.74 1.54 1.45 0.57 1.15
2002 1.50 1.66 1.34 1.67 1.81 1.60 1.70 1.87 1.47 1.59 0.74 0.82
2003 1.43 1.77 1.47 1.38 1.66 1.66 1.61 1.74 1.62 1.39 0.70 1.07
2004 1.48 1.48 1.50 1.27 1.56 1.61 1.55 1.69 1.49 1.32 0.53 1.03
2005 1.62 1.63 1.40 1.73 1.73 1.80 1.92 1.77 1.71 1.53 0.67 1.09
2006 1.71 1.90 1.68 1.46 1.86 1.85 1.88 1.86 1.62 1.45 0.67 1.18
2007 1.68 1.74 1.70 1.49 1.81 1.96 1.97 1.91 1.89 1.65 0.70 1.17
2008 1.76 1.78 1.53 1.90

R includes a variety of utility functions for looking at time series objects:

> start(turkey.price.ts)
[1] 2001    1
> end(turkey.price.ts)
[1] 2008    4
> frequency(turkey.price.ts)
[1] 12
> deltat(turkey.price.ts)
[1] 0.08333333

We’ll revisit this time series later in the book.

Shingles
A shingle is a generalization of a factor to a continuous variable. A shingle consists
of a numeric vector and a set of intervals. The intervals are allowed to overlap (much
like roof shingles; hence the name “shingles”). Shingles are used extensively in the
lattice package. Specifically, they allow you to easily use a continuous variable as
a conditioning or grouping variable. See Chapter 14 for more information about the
lattice package.

Dates and Times
R includes a set of classes for representing dates and times:

Date
Represents dates but not times.

POSIXct
Stores dates and times as seconds since January 1, 1970, 12:00 A.M.

POSIXlt
Stores dates and times in separate vectors. The list includes sec (0–61)2, min
(0–59), hour (0–23), mday (day of month, 1–31), mon (month, 0–11), year

2. This makes it possible to represent leap seconds.
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(years since 1900), wday (day of week, 0–6), yday (day of year, 0–365), and
isdst (flag for “is daylight savings time”).

When possible, it’s a good idea to store date and time values as date objects, not as
strings or numbers. There are many good reasons for this. First, manipulating dates
as strings is difficult. The date and time classes include functions for addition and
subtraction. For example:

> date.I.started.writing <- as.Date("2/13/2009","%m/%d/%Y")
> date.I.started.writing
[1] "2009-02-13"
> today <- Sys.Date()
> today
[1] "2009-08-03"
> today - date.I.started.writing
Time difference of 171 days

Additionally, R includes a number of other functions for manipulating time and date
objects. Many plotting functions require dates and times.

Connections
R includes a special object type for receiving data from (or sending data to) appli-
cations or files outside the R environment. (Connections are like file pointers in C
or filehandles in Perl.) You can create connections to files, URLs, zip-compressed
files, gzip-compressed files, bzip-compressed files, Unix pipes, network sockets, and
FIFO (first in, first out) objects. You can even read from the system Clipboard (to
paste data into R).

To use connections, you create the connection, open the connection, use the con-
nection, and close the connection. For example, suppose you had saved some data
objects into a file called consumption.RData and wanted to load the data. R saves
files in a compressed format, so you would create a connection with the gzfile
command. Here is how to load the file using a connection:

> consumption.connection <- gzfile(description="consumption.RData",open="r")
> load(consumption.connection)
> close(consumption.connection)

Most of the time, you don’t have to explicitly open connections. Many functions for
reading or writing files (such as save, load, or read.table) will implicitly open con-
nections when you provide a filename or URL as argument. Connections can be
useful for reading data from nonstandard file types (such as bz-compressed files or
network connections).

See the help file for connection for more information.

Attributes
Objects in R can have many properties associated with them, called attributes. These
properties explain what an object represents and how it should be interpreted by R.
Quite often, the only difference between two similar objects is that they have
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different attributes.3 Some important attributes are shown in Table 7-2. Many ob-
jects in R are used to represent numerical data—in particular, arrays, matrices, and
data frames. So many common attributes refer to properties of these objects.

Table 7-2. Common attributes

Attribute Description

class The class of the object.

comment A comment on the object; often a description of what the object means.

dim Dimensions of the object.

dimnames Names associated with each dimension of the object.

names Returns the names attribute of an object. Results depend on object type; for example, it returns the name
of each data column in a data frame or each named object in an array.

row.names The name of each row in an object (related to dimnames).

tsp Start time for an object. Useful for time series data.

levels Levels of a factor.

There is a standard way to query object attributes in R. For an object x and attribute
a, you refer to the attribute through a(x). In most cases, there is a method to get the
current value of the attribute and a method to set a new value of the attribute.
(Changing attributes with these methods will alter the attributes in the current en-
vironment but will not affect the attributes in an enclosing environment.)

You can get a list of all attributes of an object using the attributes function. As an
example, let’s consider the matrix that we created in “Matrices” on page 88:

> m <- matrix(data=1:12, nrow=4, ncol=3,
+ dimnames=list(c("r1", "r2", "r3", "r4"),
+ c("c1", "c2", "c3")))

Now, let’s take a look at the attributes of this object:

> attributes(m)
$dim
[1] 4 3

$dimnames
$dimnames[[1]]
[1] "r1" "r2" "r3" "r4"

$dimnames[[2]]
[1] "c1" "c2" "c3"

The dim attribute shows the dimensions of the object, in this case four rows by three
columns. The dimnames attribute is a two-element list, consisting of the names for

3. You might wonder why attributes exist; the same functionality could be implemented with
lists or S4 objects. The reason is historical: Attributes predate most of R’s modern object
mechanisms. See Chapter 10 for a full discussion of formal objects in R.

Attributes | 97

R Objects



each respective dimension of the object (rows then columns). It is possible to access
each of these attributes directly, using the dim and dimnames functions, respectively:

> dim(m)
[1] 4 3
> dimnames(m)
[[1]]
[1] "r1" "r2" "r3" "r4"

[[2]]
[1] "c1" "c2" "c3"

There are convenience functions for accessing the row and column names:

> colnames(m)
[1] "c1" "c2" "c3"
> rownames(m)
[1] "r1" "r2" "r3" "r4"

It is possible to transform this matrix into another object class simply by changing
the attributes. Specifically, we can remove the dimension attribute (by setting it to
NULL), and the object will be transformed into a vector:

> dim(m) <- NULL
> m
 [1]  1  2  3  4  5  6  7  8  9 10 11 12
> class(m)
[1] "integer"
> typeof(m)
[1] "integer"

Let’s go back to an example that we used in “Introduction to Data Struc-
tures” on page 24. We’ll construct an array a:

> a <- array(1:12,dim=c(3,4))
> a
     [,1] [,2] [,3] [,4]
[1,]    1    4    7   10
[2,]    2    5    8   11
[3,]    3    6    9   12

Now let’s define a vector with the same contents:

> b <- 1:12
> b
 [1]  1  2  3  4  5  6  7  8  9 10 11 12

You can use R’s bracket notation to refer to elements in a as a two-dimensional array,
but you can’t refer to elements in b as a two-dimensional array, because b doesn’t
have any dimensions assigned:

> a[2,2]
[1] 5
> b[2,2]
Error in b[2, 2] : incorrect number of dimensions

At this point, you might wonder if R considers the two objects to be the same. Here’s
what happens when you compare them with the == operator:
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> a == b
     [,1] [,2] [,3] [,4]
[1,] TRUE TRUE TRUE TRUE
[2,] TRUE TRUE TRUE TRUE
[3,] TRUE TRUE TRUE TRUE

Notice what is returned: an array with the dimensions of a, where each cell shows
the results of the comparison. There is a function in R called all.equal that compares
the data and attributes of two objects to show if they’re “nearly” equal, and if they
are not explains why:

> all.equal(a,b)
[1] "Attributes: < Modes: list, NULL >"
[2] "Attributes: < names for target but not for current >"
[3] "Attributes: < Length mismatch: comparison on first 0 components >"
[4] "target is matrix, current is numeric"

If you just want to check whether two objects are exactly the same, but don’t care
why, use the function identical:

> identical(a,b)
[1] FALSE

By assigning a dimension attribute to b, b is transformed into an array and the two-
dimensional data access tools will work. The all.equal function will also show that
the two objects are equivalent:

> dim(b) <- c(3,4)
> b[2,2]
[1] 5
> all.equal(a,b)
[1] TRUE
> identical(a,b)
[1] TRUE

Class
An object’s class is implemented as an attribute. For simple objects, the class and
type are often closely related. For compound objects, however, the two can be
different.

Sometimes, the class of an object is listed with attributes. However, for certain
classes (such as matrices and arrays), the class is implicit. To determine the class of
an object, you can use the class function. You can determine the underlying type
of object using the typeof function.

For example, here is the type and class for a simple numeric vector:

> x <- c(1, 2, 3)
> typeof(x)
[1] "double"
> class(x)
[1] "numeric"

It is possible to change the class of an object in R, just like changing any other
attribute. For example, factors are implemented internally using integers and a map
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of the integers to the factor levels. (Integers take up a small, fixed amount of storage
space, so they can be much more efficient than character vectors.) It’s possible to
take a factor and turn it into an integer array:

> eye.colors.integer.vector
[1] 2 1 1 3 2 2 2
attr(,"levels")
[1] "blue"  "brown" "green"

It is possible to create an integer array and turn it into a factor:

> v <- as.integer(c(1, 1, 1, 2, 1, 2, 2, 3, 1))
> levels(v) <- c("what", "who", "why")
> class(v) <- "factor"
> v
[1] what what what who  what who  who  why  what
Levels: what who why

Note that there is no guarantee that the implementation of factors won’t change, so
be careful using this trick in practice.

For some objects, you need to quote them to prevent them from being evaluated
when the class or type function is called. For example, suppose that you wanted to
determine the type of the symbol x and not the object to which it refers. You could
do that like this:

> class(quote(x))
[1] "name"
> typeof(quote(x))
[1] "symbol"

Unfortunately, you can’t actually use these functions on every type of object. Specif-
ically, there is no way to isolate an any, ..., char, or promise object in R. (Checking
the type of a promise object requires evaluating the promise object, converting it to
an ordinary object.)
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8
Symbols and Environments

So far, we’ve danced around the concept of environments without explicitly defining
them. Every symbol in R is defined within a specific environment. An environment
is an R object that contains the set of symbols available in a given context, the objects
associated with those symbols, and a pointer to a parent environment. The symbols
and associated objects are called a frame.

Every evaluation context in R is associated with an environment. When R attempts
to resolve a symbol, it begins by looking through the current environment. If there
is no match in the local environment, then R will recursively search through parent
environments looking for a match.

Symbols
When you define a variable in R, you are actually assigning a symbol to a value in
an environment. For example, when you enter the statement:

> x <- 1

on the R console, it assigns the symbol x to a vector object of length 1 with the
constant (double) value 1 in the global environment. When the R interpreter eval-
uates an expression, it evaluates all symbols. If you compose an object from a set of
symbols, R will resolve the symbols at the time the object is constructed:

> x <- 1
> y <- 2
> z <- 3
> v <- c(x, y, z)
> v
[1] 1 2 3
> # v has already been defined, so changing x does not change v
> x <- 10
> v
[1] 1 2 3

101



It is possible to delay evaluation of an expression so that symbols are not evaluated
immediately:

> x <- 1
> y <- 2
> z <- 3
> v <- quote(c(x, y, z))
> eval(v)
[1] 1 2 3
> x <- 5
> eval(v)
[1] 5 2 3

It is also possible to create a promise object in R to delay evaluation of a variable
until it is (first) needed. You can create a promise object through the
delayedAssign function:

> x <- 1
> y <- 2
> z <- 3
> delayedAssign("v", c(x, y, z))
> x <- 5
> v
[1] 5 2 3

Promise objects are used within packages to make objects available to users without
loading them into memory. Unfortunately, it is not possible to determine if an object
is a promise object, nor is it possible to figure out the environment in which it was
created.

Working with Environments
Like everything else in R, environments are objects. Internally, R stores symbol
mappings in hash tables. In Chapter 24, I’ll show how some tricks for using envi-
ronment objects to write efficient R code.

Table 8-1 shows the functions in R for manipulating environment objects.

Table 8-1. Manipulating environment objects

Function Description

assign Assigns the name x to the object value in the environment envir.

get Gets the object associated with the name x in the environment envir.

exists Checks that the name x is defined in the environment envir.

objects Returns a vector of all names defined in the environment envir.

remove Removes the list of objects in the argument list from the environment envir. (List is an unfortunate
argument name, especially as the argument needs to be a vector.)

search Returns a vector containing the names of attached packages. You can think of this as the search
path in which R tries to resolve names. More precisely, it shows the list of chained parent envi-
ronments.

searchpaths Returns a vector containing the paths of attached packages.
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Function Description

attach Adds the objects in the list, data frame, or data file what to the current search path.

detach Removes the objects in the list, data frame, or data file what from the current search path.

emptyenv Returns the empty environment object. All environments chain back to this object.

parent.env Returns the parent of environment env.

baseenv The environment of the base package.

globalenv
or .GlobalEnv

Returns the environment for the user’s workspace (called the “global environment”). See “The
Global Environment” for an explanation of what this means.

environment Returns the environment for function fun. When evaluated with no arguments (or fun=NULL),
returns the current environment.

new.env Returns a new environment object.

To show the set of objects available in the current environment (or, more precisely,
the set of symbols in the current environment associated with objects), use the
objects function:

> x <- 1
> y <- 2
> z <- 3
> objects()
[1] "x" "y" "z"

You can remove an object from the current environment with the rm function:

> rm(x)
> objects()
[1] "y" "z"

The Global Environment
When a user starts a new session in R, the R system creates a new environment for
objects created during that session. This environment is called the global environ-
ment. The global environment is not actually the root of the tree of environments.
It’s actually the last environment in the chain of environments in the search path.
Here’s the list of parent environments for the global environment in my R
installation:

> x <- .GlobalEnv
> while (environmentName(x) != environmentName(emptyenv())) {
+      print(environmentName(parent.env(x))); x <- parent.env(x)}
[1] "tools:RGUI"
[1] "package:stats"
[1] "package:graphics"
[1] "package:grDevices"
[1] "package:utils"
[1] "package:datasets"
[1] "package:methods"
[1] "Autoloads"
[1] "base"
[1] "R_EmptyEnv"
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Every environment has a parent environment except for one: the empty environ-
ment. All environments chain back to the empty environment.

Environments and Functions
When a function is called in R, a new environment is created within the body of the
function, and the arguments of the function are assigned to symbols in the local
environment.1

As an example, let’s create a function that takes four arguments and does nothing
except print out the objects in the current environment:

> env.demo <- function(a, b, c, d) {print(objects())}
> env.demo(1, "truck", c(1,2,3,4,5), pi)
[1] "a" "b" "c" "d"

Notice that the objects function returns only the objects from the current environ-
ment, so the function env.demo only prints the arguments defined in that environ-
ment. All other objects exist in the parent environment, not in the local environment.

The parent environment of a function is the environment in which the function was
created. If a function was created in the execution environment (for example, in the
global environment), then the environment in which the function was called will be
the same as the environment in which the function was created. However, if the
function was created in another environment (such as a package), then the parent
environment will not be the same as the calling environment.

Working with the Call Stack
Although the parent environment for a function is not always the environment in
which the function was called, it is possible to access the environment in which a
function was called.2 Like many other languages, R maintains a stack of calling
environments. (A stack is a data structure in which objects can be added or sub-
tracted from only one end. Think about a stack of trays in a cafeteria; you can only
add a tray to the top or take a tray off the top. Adding an object to a stack is called
“pushing” the object onto the stack. Taking an object off of the stack is called “pop-
ping” the object off the stack.) Each time a new function is called, a new environment
is pushed onto the call stack. When R is done evaluating a function, the environment
is popped off the call stack.

Table 8-2 shows the functions for manipulating the call stack.

1. If you’re familiar with other languages and language lingo, you could say that R is a lexically
scoped language.

2. This allows symbols to be accessed as though R were dynamically scoped.
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Table 8-2. Manipulating the call stack

Function Description

sys.call Returns a language object containing the current function call (including arguments).

sys.frame Returns the calling environment.

sys.nframe Returns the number of the current frame (the position on the call stack). Returns 0 if called on the
R console.

sys.function Returns the function currently being evaluated.

sys.parent Returns the number of the parent frame.

sys.calls Returns the calls for all frames on the stack.

sys.frames Returns all environments on the stack.

sys.parents Returns the parent for each frame on the stack.

sys.on.exit Returns the expression used for on.exit for the current frame.

sys.status Returns a list with the results of calls to sys.calls, sys.parents, and sys.frames.

parent.frame Returns sys.frame(sys.parent(n)). In other words, returns the parent frame.

If you are writing a package in which a function needs to know the meaning of a
symbol in the calling context (and not in the context within the package), you can
do so with these functions. Some common R functions, like modeling functions, use
this trick to determine the meaning of symbols in the calling context. In specifying
a model, you pass a formula object to a modeling function. The formula object is a
language object; the symbol names are included in the formula but not in the data.
You can specify a data object like a data frame, but you don’t have to. When you
don’t specify the objects containing the variables, the model function will try to
search through the calling environment to find the data.

Evaluating Functions in Different Environments
You can evaluate an expression within an arbitrary environment using the eval
function:

eval(expr, envir = parent.frame(),
           enclos = if(is.list(envir) || is.pairlist(envir))
                       parent.frame() else baseenv())

The argument expr is the expression to be evaluated, and envir is an environment,
data frame, or pairlist in which to evaluate expr. When envir is a data frame or
pairlist, enclos is the enclosure in which to look for object definitions. As an example
of how to use eval, let’s create a function to time the execution of another expression.
We’d like the function to record the starting time, evaluate its arguments (an arbi-
trary expression) in the parent environment, record the end time, and print the
difference:

timethis <- function(...) {
   start.time <- Sys.time();
   eval(..., sys.frame(sys.parent(sys.parent())));
   end.time <- Sys.time();
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   print(end.time - start.time);
}

As an example of how this works, we’ll time an inefficient function that sets 10,000
elements in a vector to the value 1:

> create.vector.of.ones <- function(n) {
+   return.vector <- NA;
+   for (i in 1:n) {
+      return.vector[i] <- 1;
+   }
+   return.vector;
+ }
> # note that returned.vector is not defined
> returned.vector
Error: object 'returned.vector' not found
> # measure time to run function above with n=10000
> timethis(returned.vector <- create.vector.of.ones(10000))
Time difference of 1.485959 secs
> # notice that the function took about 1.5 seconds to run
> # also notice that returned.vector is now defined
> length(returned.vector)
[1] 10000

The timing part is neat, but the point of this function is to show that it is evaluating
the expression in the calling environment. Most important, notice that the symbol
returned.vector is now defined in that environment:

> length(returned.vector)
[1] 10000

This is a little off the subject, but here is a more efficient version of the same function:

> create.vector.of.ones.b <- function(n) {
+   return.vector <- NA;
+   length(return.vector) <- n;
+   for (i in 1:n) {
+      return.vector[i] <- 1;
+    }
+   return.vector;
+ }
> timethis(returned.vector <- create.vector.of.ones.b(10000))
Time difference of 0.04076099 secs

Three useful shorthands are the functions evalq, eval.parent, and local. When
you want to quote the expression, use evalq, which is equivalent to
eval(quote(expr), ...). When you want to evaluate an expression within the parent
environment, you can use the function eval.parent, which is equivalent to
eval(expr, parent.frame(n)). When you want to evaluate an expression in a new
environment, you can use the function local, which is equivalent to
eval(quote(expr), envir=new.env()).

As an example of how to use eval.parent, we can shorten the timing function from
the example above:

timethis.b <- function(...) {
   start.time <- Sys.time();
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   eval.parent(...);
   end.time <- Sys.time();
   print(end.time - start.time);
}

Sometimes, it is convenient to treat a data frame or a list as an environment. This
lets you refer to each item in the data frame or list by name as if you were using
symbols. You can do this in R with the functions with and within:

with(data, expr, ...)
within(data, expr, ...)

The argument data is the data frame or list to treat as an environment, expr is the
expression, and additional arguments in ... are passed to other methods. The func-
tion with evaluates the expression and then returns the result, while the function
within makes changes in the object data and then returns data.

Here are some examples of using with and within:

> example.list <- list(a=1, b=2, c=3)
> a+b+c
Error: object 'b' not found
> with(example.list, a+b+c)
[1] 6
> within(example.list, d<-a+b+c)
$a
[1] 1

$b
[1] 2

$c
[1] 3

$d
[1] 6

Adding Objects to an Environment
R provides a shorthand for adding objects to the current environment: attach. If you
have saved a set of objects to a data file with save, you can load the objects into the
current environment with attach.

Additionally, you can use attach to load all the elements specified within a data
frame or list into the current environment. Often, operators like $ are convenient for
accessing objects within a list or data frame, but sometimes it can be cumbersome
to do so:

attach(what, pos = 2, name = deparse(substitute(what)),
       warn.conflicts = TRUE)

The argument what is the object to attach (called a database), pos specifies the
position in the search path in which to attach the element within what, name is the
name to use for the attached database (more on what this is used for below), and
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warn.conflicts specifies whether to warn the user if there are conflicts. The database
can be a data frame, a list, or an R data file created with the save function.

When you’re done, you can remove all the objects in a data frame from the current
environment with the function detach:

detach(name, pos = 2, unload = FALSE)

In this function, the argument name specifies the name of the database to detach
(which corresponds to the argument name from attach), pos is the position in the
search path at which the database was attached, and unload specifies whether or not
to unload the namespace and S4 methods when a database is detached.

Be careful using attach. Often, I find myself working with multiple data frames with
identically named columns. Using attach can be confusing, because it is difficult to
keep track of the data frame from which each object came. It is often better to use
functions like transform to change values within a data frame or with to evaluate
expressions using values in a data frame.

Exceptions
You may have noticed that R sometimes gives you an error when you enter an invalid
expression. For example:

> 12 / "hat"
Error in 12/"hat" : non-numeric argument to binary operator

Other times, R may just give you a warning:

> if (c(TRUE,FALSE)) TRUE else FALSE
[1] TRUE
Warning message:
In if (c(TRUE, FALSE)) TRUE else FALSE :
  the condition has length > 1 and only the first element will be used

Like other modern programming languages, R includes the ability to signal excep-
tions when unusual events occur and catch to exceptions when they occur. If you
are writing your own R programs, it is usually a good idea to stop execution when
an error occurs and alert the user (or calling function). Likewise, it is usually a good
idea to catch exceptions from functions that are called within your programs.

It might seem strange to talk about exception handling in the context of environ-
ments, but exception handling and environments are closely linked. When an ex-
ception occurs, the R interpreter may need to abandon the current function and
signal the exception in the calling environment.

This section explains how the error-handling system in R works.

Signaling Errors
If something occurs in your code that requires you to stop execution, you can use
the stop function. For example, suppose that you had written a function called
dowork(filename) to automatically generate some charts and save them to a file
specified by the argument filename. Suppose that R couldn’t write to the file,
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possibly because the directory didn’t exist. To stop execution and print a helpful
error message, you could structure your code like this:

> doWork <- function(filename) {
+   if(file.exists(filename)) {
+     read.delim(filename)
+   } else {
+     stop("Could not open the file: ", filename)
+   }
+ }
> doWork("file that doesn't exist")
Error in doWork("file that doesn't exist") : 
  Could not open the file: file that doesn't exist

If something occurs in your code that you want to tell the user about, but which
isn’t severe enough to normally stop execution, you can use the warning function.
Reusing the example above, if the file “filename” already exists, then the
function will simply return the string "la la la". If the file does not exist, then the
function will warn the user that the file does not exist.

> doNoWork <- function(filename) {
+   if(file.exists(filename)) {
+     "la la la"
+   } else {
+     warning("File does not exist: ", filename)
+   }
+ }
> doNoWork("another file that doesn't exist")
Warning message:
In doNoWork("another file that doesn't exist") :
  File does not exist: another file that doesn't exist

If you just want to tell the user something, then you can use the message function:

> doNothing <- function(x) { 
+   message("This function does nothing.") 
+ }
> doNothing("another input value")
This function does nothing.

Catching Errors
Suppose that you are writing a function in R called foo that calls another function
called bar. Furthermore, suppose that bar sometimes generates an error, but you
don’t want foo to stop if the error is generated. For example, maybe bar tries to open
a file but signals an error when it can’t open the file. If bar can’t open the file, maybe
you want foo to try doing something else instead.

A simple way to do this is to use the try function. This function hides some of the
complexity of R’s exception handling. Here’s an example of how to use try:

> res <- try({x <- 1}, silent=TRUE)
> res
[1] 1
> res <- try({open("file that doesn't exist")}, silent=TRUE)
> res
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[1] "Error in UseMethod(\"open\") : \n  no applicable method for 'open'
applied to an object of class \"character\"\n"
attr(,"class")
[1] "try-error"

The try function takes two arguments, expr and silent. The first argument, expr,
is the R expression to be tried (often a function call). The second argument specifies
whether the error message should be printed to the R console (or stderr); the default
is to print errors. If the expression results in an error, then try returns an object of
class "try-error".

A more capable function is tryCatch. The tryCatch function takes three sets of ar-
guments: an expression to try, a set of handlers for different conditions, and a final
expression to evaluate. For example, suppose that the following call was made to
tryCatch:

tryCatch(expression, handler1, handler2, ..., finally=finalexpr)

The R interpreter would first evaluate expression. If a condition occurs (an error or
warning), R will pick the appropriate handler for the condition (matching the class
of the condition to the arguments for the handler). After the expression has been
evaluated, finalexpr will be evaluated. (The handlers will not be active when this
expression is evaluated.)
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9
Functions

Functions are the R objects that evaluate a set of input arguments and return an
output value. This chapter explains how to create and use functions in R.

The Function Keyword
In R, function objects are defined with this syntax:

function(arguments) body

where arguments is a set of symbol names (and, optionally, default values) that will
be defined within the body of the function, and body is an R expression. Typically,
the body is enclosed in curly braces, but it does not have to be if the body is a single
expression. For example, the following two definitions are equivalent:

f <- function(x,y) x + y
f <- function(x,y) {x + y}

Arguments
A function definition in R includes the names of arguments. Optionally, it may in-
clude default values. If you specify a default value for an argument, then the argu-
ment is considered optional:

> f <- function(x, y) {x + y}
> f(1,2)
[1] 3
> g <- function(x, y=10) {x + y}
> g(1)
[1] 11
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If you do not specify a default value for an argument, and you do not specify a value
when calling the function, you will get an error if the function attempts to use the
argument:1

> f(1)
Error in f(1) : 
  element 2 is empty;
   the part of the args list of '+' being evaluated was:
   (x, y)

In a function call, you may override the default value:

> g(1, 2)
[1] 3

In R, it is often convenient to specify a variable-length argument list. You might want
to pass extra arguments to another function, or you may want to write a function
that accepts a variable number of arguments. To do this in R, you specify an ellipsis
(...) in the arguments to the function.2

As an example, let’s create a function that prints the first argument and then passes
all the other arguments to the summary function. To do this, we will create a function
that takes one argument: x. The arguments specification also includes an ellipsis to
indicate that the function takes other arguments. We can then call the summary func-
tion with the ellipsis as its argument:

> v <- c(sqrt(1:100))
> f <- function(x,...) {print(x); summary(...)}
> f("Here is the summary for v.", v, digits=2)
[1] "Here is the summary for v."
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
    1.0     5.1     7.1     6.7     8.7    10.0

Notice that all of the arguments after x were passed to summary.

1. Note that you will get an error only if you try to use the uninitialized argument within the
function; you could easily write a function that simply doesn’t reference the argument, and it
will work fine. Additionally, there are other ways to check whether an argument has been
initialized from inside the body of a function. For example, the following function works
identically to the function g shown above (which included a default value for y in its definition):

> h <- function(x,y) {
+   args <- as.list(match.call())
+   if (is.null(args$y)) {
+     y <- 10
+   }
+   x + y
+ }

In practice, you should specify default values in the function signature to make your functions
as clear and easy to read as possible.

2. You might remember from Chapter 7 that “...” is a special type of object in R. The only place
you can manipulate this object is inside the body of a function. In this context, it means “all
the other arguments for the function.”
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It is also possible to read the arguments from the variable-length argument list. To
do this, you can convert the object ... to a list within the body of the function. As
an example, let’s create a function that simply sums all its arguments:

> addemup <- function(x,...) {
+    args <- list(...)
+    for (a in args) x <- x + a
+    x
+ }
> addemup(1, 1)
[1] 2
> addemup(1, 2, 3, 4, 5)
[1] 15

You can also directly refer to items within the list ... through the variables ..1, ..
2, to ..9. Use ..1 for the first item, ..2 for the second, and so on. Named arguments
are valid symbols within the body of the function. For more information about the
scope within which variables are defined, see Chapter 8.

Return Values
In an R function, you may use the return function to specify the value returned by
the function. For example:

> f <- function(x) {return(x^2 + 3)}
> f(3)
[1] 12

However, R will simply return the last evaluated expression as the result of a func-
tion. So it is common to omit the return statement:

> f <- function(x) {x^2 + 3}
> f(3)
[1] 12

In some cases, an explicit return value may lead to cleaner code.

Functions as Arguments
Many functions in R can take other functions as arguments. For example, many
modeling functions accept an optional argument that specifies how to handle miss-
ing values; this argument is usually a function for processing the input data.

As an example of a function that takes another function as an argument, let’s look
at sapply. The sapply function iterates through each element in a vector, applying
another function to each element in the vector and returning the results. Here is a
simple example:

> a <- 1:7
> sapply(a, sqrt)
[1] 1.000000 1.414214 1.732051 2.000000 2.236068 2.449490 2.645751
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This is a toy example; you could have calculated the same quantity with the expres-
sion sqrt(1:7). However, there are many useful functions that don’t work properly
on a vector with more than one element; sapply provides a simple way to extend
such a function to work on a vector. Related functions allow you to summarize every
element in a data structure or to perform more complicated calculations. See “Sum-
marizing Functions” on page 190 for information on related functions.

Anonymous Functions
So far, we’ve mostly seen named functions in R. However, because functions are just
objects in R, it is possible to create functions that do not have names. These are
called anonymous functions. Anonymous functions are usually passed as arguments
to other functions. If you’re new to functional languages, this concept might seem
strange, so let’s start with a very simple example.

We will define a function that takes another function as its argument and then ap-
plies that function to the number 3. Let’s call the function apply.to.three, and we
will call the argument f:

> apply.to.three <- function(f) {f(3)}

Now let’s call apply.to.three with an anonymous function assigned to argument
f. As an example, let’s create a simple function that takes one argument and multi-
plies that argument by 7:

> apply.to.three(function(x) {x * 7})
[1] 21

Here’s how this works. When the R interpreter evaluates the expression
apply.to.three(function(x) {x * 7}), it assigns the argument f to the anonymous
function function(x) {x * 7}. The interpreter then begins evaluating the expression
f(3). The interpreter assigns 3 to the argument x for the anonymous function. Fi-
nally, the interpreter evaluates the expression 3 * 7 and returns the result.

Anonymous functions are a very powerful tool used in many places in R. Above, we
used the sapply function to apply a named function to every element in an array.
You can also pass an anonymous function as an argument to sapply:

> a <- c(1, 2, 3, 4, 5)
> sapply(a, function(x) {x + 1})
[1] 2 3 4 5 6

This family of functions is a good alternative to control structures. Control struc-
tures are language features like if-then statements, loops, and go-to statements. For
example, suppose that you had a vector of numerical values and wanted to calculate
the square of each element. You could do this using a loop:

> v <- 1:20 
> w <- NULL 
> for (i in 1:length(v)) {w[i] <- v[i]^2} 
> w
[1] 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400

However, you can do the same thing using an “apply” statement like this:
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> v <- 1:20 
> w <- sapply(v, function(i) {i^2}) 
> w
[1] 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400

I think it’s more clear what the second code snippet does: it applies the function to
each element in v. (Additionally, the apply function will be faster. See “Lookup
Performance in R” on page 509 for more information.

By the way, it is possible to define an anonymous function and apply it directly to
an argument. Here’s an example:

> (function(x) {x+1})(1)
[1] 2

Notice that the function object needs to be enclosed in parentheses. This is because
function calls, expressions of the form f(arguments), have very high precedence
in R.3

Properties of Functions
R includes a set of functions for getting more information about function objects.
To see the set of arguments accepted by a function, use the args function. The
args function returns a function object with NULL as the body. Here are a few
examples:

> args(sin)
function (x) 
NULL
> args(`?`)
function (e1, e2) 
NULL
> args(args)
function (name) 
NULL
> args(lm)
function (formula, data, subset, weights, na.action, method = "qr", 
    model = TRUE, x = FALSE, y = FALSE, qr = TRUE, singular.ok = TRUE, 
    contrasts = NULL, offset, ...) 
NULL

3. If you omit the parentheses in this example, you will not initially get an error:

> function(x) {x+1}(1)
function(x) {x+1}(1)

This is because you will have created an object that is a function taking one argument (x) with
the body {x+1}(1). There is no error generated because the body is not evaluated. If you were
to assign this object to a symbol (so that you can easily apply it to an argument and see what
it does), you will find that this function attempts to call a function returned by evaluating the
expression {x + 1}. In order not to get an error or an input of class c, you would need to register
a generic function that took as input an object of class c (x in this expression) and a numerical
value (1 in this expression) and returned a function object. So omitting the parentheses is not
wrong; it is a valid R expression. However, this is almost certainly not what you meant to write.
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If you would like to manipulate the list of arguments with R code, then you may find
the formals function more useful. The formals function will return a pairlist object,
with a pair for every argument. The name of each pair will correspond to each ar-
gument name in the function. When a default value is defined, the corresponding
value in the pairlist will be set to that value. When no default is defined, the value
will be NULL. The formals function is available only for functions written in R (objects
of type closure) and not for built-in functions.

Here is a simple example of using formals to extract information about the argu-
ments to a function:

> f <- function(x, y=1, z=2) {x + y + z}
> f.formals <- formals(f)
> f.formals
$x

$y
[1] 1

$z
[1] 2

> f.formals$x

> f.formals$y
[1] 1
> f.formals$z
[1] 2

You may also use formals on the left-hand side of an assignment statement to change
the formal argument for a function. For example:

> f.formals$y <- 3
> formals(f) <- f.formals
> args(f)
function (x, y = 3, z = 2) 
NULL

R provides a convenience function called alist to construct an argument list. You
simply specify the argument list as if you were defining a function. (Note that for an
argument with no default, you do not need to include a value but still need to include
the equals sign.)

> f <- function(x, y=1, z=2) {x + y + z}
> formals(f) <- alist(x=, y=100, z=200)
> f
function (x, y = 100, z = 200) 
{
    x + y + z
}

R provides a similar function called body that can be used to return the body of a
function:
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> body(f)
{
    x + y + z
}

Like the formals function, the body function may be used on the left-hand side of an
assignment statement:

> f
function (x, y = 3, z = 2) 
{
    x + y + z
}
> body(f) <- expression({x * y * z})
> f
function (x, y = 3, z = 2) 
{
    x * y * z
}

Note that the body of a function has type expression, so when you assign a new
value it must have the type expression.

Argument Order and Named Arguments
When you specify a function in R, you assign a name to each argument in the func-
tion. Inside the body of the function, you can access the arguments by name. For
example, consider the following function definition:

> addTheLog <- function(first, second) {first + log(second)}

This function takes two arguments, called first and second. Inside the body of the
function, you can refer to the arguments by these names.

When you call a function in R, you can specify the arguments in three different ways
(in order of priority):

1. Exact names. The arguments will be assigned to full names explicitly given in
the argument list. Full argument names are matched first:

> addTheLog(second=exp(4), first=1)
[1] 5

2. Partially matching names. The arguments will be assigned to partial names ex-
plicitly given in the arguments list:

> addTheLog(s=exp(4), f=1)
[1] 5

3. Argument order. The arguments will be assigned to names in the order in which
they were given:

> addTheLog(1, exp(4))
[1] 5
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When you are using generic functions, you cannot specify the argument name of the
object on which the generic function is being called. You can still specify names for
other arguments.

When possible, it’s a good practice to use exact argument names. Specifying full
argument names does require extra typing, but it makes your code easier to read and
removes ambiguity.

Partial names are a deprecated feature because they can lead to confusion. As an
example, consider the following function:

> f <- function(arg1=10, arg2=20) {
+    print(paste("arg1:", arg1))
+    print(paste("arg2:", arg2))
+ }

When you call this function with one ambiguous argument, it will cause an error:

> f(arg=1)
Error in f(arg = 1) : argument 1 matches multiple formal arguments

However, when you specify two arguments, the ambiguous argument could refer to
either of the other arguments:

> f(arg=1, arg2=2)
[1] "arg1: 1"
[1] "arg2: 2"
> f(arg=1, arg1=2)
[1] "arg1: 2"
[1] "arg2: 1"

Side Effects
All functions in R return a value. Some functions also do other things: change vari-
ables in the current environment (or in other environments), plot graphics, load or
save files, or access the network. These operations are called side effects.

Changes to Other Environments
We have already seen some examples of functions with side effects. In Chapter 8,
we showed how to directly access symbols and objects in an environment (or in
parent environments). We also showed how to access objects on the call stack.

An important function that causes side effects is the <<- operator. This operator takes
the following form: var <<- value. This operator will cause the interpreter to first
search through the current environment to find the symbol var. If the interpreter
does not find the symbol var in the current environment, then the interpreter will
next search through the parent environment. The interpreter will recursively search
through environments until it either finds the symbol var or reaches the global en-
vironment. If it reaches the global environment before the symbol var is found, then
R will assign value to var in the global environment.

Here is an example that compares the behavior of the <- assignment operator and
the <<- operator:
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> x
Error: object "x" not found
> doesnt.assign.x <- function(i) {x <- i}
> doesnt.assign.x(4)
> x
Error: object "x" not found
> assigns.x <- function(i) {x <<- i}
> assigns.x(4)
> x
[1] 4

Input/Output
R does a lot of stuff, but it’s not completely self-contained. If you’re using R, you’ll
probably want to load data from external files (or from the Internet) and save data
to files. These input/output (I/O) actions are side effects, because they do things
other than just return an object. We’ll talk about these functions extensively in
Chapter 11.

Graphics
Graphics functions are another example of side effects in R. Graphics functions may
return objects, but they also plot graphics (either on screen or to files). We’ll talk
about these functions in Chapters 13 and 14.
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10
Object-Oriented Programming

At its heart, R is a functional programming language. But the R system includes some
support for object-oriented programming (OOP). OOP has become the most pop-
ular paradigm for organizing computer software; it’s used in most modern pro-
gramming languages (Java, C#, Ruby, and Objective C, among others) and in quite
a few old ones (Smalltalk, C++). Many R packages are written using R Objects,
including the core statistics package, lattice, and ggplot2.

You don’t need to use object-oriented programming techniques to work with R.
Writing functional programs is a fine practice. Many people believe that it is easier
to write programs using functional techniques, particularly when multiple parts of
a program run concurrently; this has led to a resurgence of new functional languages
like Scala and Clojure. I like functional programs but find object-oriented techniques
convenient for representing complicated objects (such as statistical models or
charts).

R includes two different mechanisms for object-oriented programming. As you may
recall, the R language is derived from the S language. S’s object-oriented program-
ming system evolved over time. Around 1990, S version 3 (S3) introduced class
attributes that allowed single-argument methods. Many R functions (such as the
statistical modeling software) were implemented using S3 methods, so S3 methods
are still around today. In S version 4 (S4), formal classes and methods were intro-
duced that allowed multiple arguments, more abstract types, and more sophisticated
inheritance. Many new packages were implemented using S4 methods (and you can
find S4 implementations of many key statistical procedures as well). In particular,
formal classes are used extensively in Bioconductor.

In this chapter, we’ll begin with the newer mechanism, because it is more robust
and flexible. I think it is wise to use S4 classes and methods for new software that
needs to represent abstract concepts and that it is not a good idea to implement new
S3 classes. However, you may want to change code that uses S3 classes and methods
or use S3 classes and methods in new software. In “Old-School OOP in R:
S3” on page 135, we’ll talk about how the S3 system works and how to mix S3 and
S4 classes.
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Overview of Object-Oriented Programming in R
Object-oriented programming is not the same thing as programming with objects.
R is a very object-centric language; everything in R is an object. However, there is
more to OOP than just objects. Here’s a short description of what object-oriented
programming means.

Key Ideas
As an example of how object-oriented programming is used in R, we’ll consider time
series.1 A time series is a sequence of measurements of a quantity over time. Meas-
urements are taken at equally spaced intervals. Time series have some properties
associated with them: a start time, an end time, a number of measurements, a fre-
quency, and so forth.

In OOP, we would create a “time series” class to capture information about time
series. A class is a formal definition for an object. Each individual time series object
is called an instance of the class. A function that operates on a specific class of objects
is called a method.

As a user of time series, you probably don’t care too much about how time series
are implemented. All you care about is that you know how to create a time series
object and manipulate the object through methods. The time series could be stored
as a data frame, a vector, or even a long text field. The process of separating the
interface from the implementation is called encapsulation.

Suppose that we wanted to track the weight history of people over time. For this
application, we’d like to keep all the same information as a time series, plus some
additional information on individual people. It would be nice to be able to reuse the
code for our time series class for objects in the weight history class. In OOP, it is
possible to base one class on another and just specify what is different about the new
class. This is called inheritance. We would say that the weight history class inher-
its from the time series class. We might also say that the time series class is a super-
class of the weight history class and that the weight history class is a subclass of the
time series class.

Suppose that you wanted to ask a question like “What is the period of the meas-
urements in the class?” Ideally, it would be nice to have a single function name for
finding this information, maybe called “period.” In OOP, allowing the same method
name to be used for different objects is called polymorphism.

Finally, suppose that we implemented the weight history class by creating classes
for each of its pieces: time series, personal attributes, and so on. The process of
creating a new class from a set of other classes is called composition. In some

1. You may have noticed that I picked an example of a class that is already implemented in R.
Time series objects are implemented by the ts class in the stats package. (I introduced ts
objects in “Time Series” on page 94.) The implementation in the stats package is an example
of an S3 class. We’ll talk more about what that means, and how to use S3 and S4 classes
together, next.
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languages (like R), a class can inherit methods from more than one other class. This
is called multiple inheritance.

Implementation Example
If you’re familiar with object-oriented programming in other languages (like Java),
you’ll find that most of the familiar concepts are included in R. However, the
syntax and structure in R are different. In particular, you define a class with a call
to a function (setClass) and define a method with a call to another function
(setMethod). Before we describe R’s implementation of object-oriented programming
in depth, let’s look at a quick example.

Let’s implement a class representing a time series. We’ll want to define a new object
that contains the following information:

• A set of data values, sampled at periodic intervals over time

• A start time

• An end time

• The period of the time series

Clearly, some of this information is redundant; given many of the attributes of a time
series, we can calculate the remaining attributes. Let’s start by defining a new class
called “TimeSeries.” We’ll represent a time series by a numeric vector containing
the data, a start time, and an end time. We can calculate units, frequency, and period
from the start time, end time, and the length of the data vector. As a user of the class,
it shouldn’t matter how we represent this information, but it does matter to the
implementer.

In R, the places where information is stored in an object are called slots. We’ll name
the slots data, start, and end. To create a class, we’ll use the setClass function:

> setClass("TimeSeries",
+   representation(
+     data="numeric",
+     start="POSIXct",
+     end="POSIXct"
+   )
+ )

The representation explains the class of the object contained in each slot. To create
a new TimeSeries object, we will use the new function. (The new function is a generic
constructor method for S4 objects.) The first argument specifies the class name; other
arguments specify values for slots:

> my.TimeSeries <- new("TimeSeries",
+    data=c(1, 2, 3, 4, 5, 6),
+    start=as.POSIXct("07/01/2009 0:00:00", tz="GMT",
+    format="%m/%d/%Y %H:%M:%S"),
+    end=as.POSIXct("07/01/2009 0:05:00", tz="GMT",
+    format="%m/%d/%Y %H:%M:%S")
+ )

Overview of Object-Oriented Programming in R | 123

Object-Oriented
Program

m
ing



There is a generic print method for new S4 classes in R that displays the slot names
and the contents of each slot:

> my.TimeSeries
An object of class "TimeSeries"
Slot "data":
[1] 1 2 3 4 5 6

Slot "start":
[1] "2009-07-01 GMT"

Slot "end":
[1] "2009-07-01 00:05:00 GMT"

Not all possible slot values are valid. We want to make sure that end occurs after
start and that the lengths of start and end are both exactly 1. We can write a function
to check the validity of a TimeSeries object. R allows you to specify a function that
will be used to validate a specific class. We can specify this with the setValidity
function:

> setValidity("TimeSeries",
+    function(object) {
+      object@start <= object@end &&
+      length(object@start) == 1 &&
+      length(object@end) == 1
+    }
+  )
Class "TimeSeries" [in ".GlobalEnv"]

Slots:

Name:     data   start     end
Class: numeric POSIXct POSIXct

You can now check that a TimeSeries object is valid with the validObject function:

> validObject(my.TimeSeries)
[1] TRUE

When we try to create a new TimeSeries object, R will check the validity of the new
object and reject bad objects:

> good.TimeSeries <- new("TimeSeries",
+     data=c(7, 8, 9, 10 ,11, 12),
+     start=as.POSIXct("07/01/2009 0:06:00", tz="GMT",
+ format="%m/%d/%Y %H:%M:%S"),
+     end=as.POSIXct("07/01/2009 0:11:00", tz="GMT",
+ format="%m/%d/%Y %H:%M:%S")
+  )
> bad.TimeSeries <- new("TimeSeries",
+     data=c(7, 8, 9, 10, 11, 12),
+     start=as.POSIXct("07/01/2009 0:06:00", tz="GMT",
+ format="%m/%d/%Y %H:%M:%S"),
+     end=as.POSIXct("07/01/1999 0:11:00", tz="GMT",
+ format="%m/%d/%Y %H:%M:%S")
+  )
Error in validObject(.Object) : invalid class "TimeSeries" object: FALSE
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(You can also specify the validity method at the time you are creating a class; see the
full definition of setClass for more information.)

Now that we have defined the class, let’s create some methods that use the class.
One property of a time series is its period. We can create a method for extracting
the period from the time series. This method will calculate the duration between
observations based on the length of the vector in the data slot, the start time, and
the end time:

> period.TimeSeries <- function(object) {
+   if (length(object@data) > 1) {
+     (object@end - object@start) / (length(object@data) - 1)
+   } else {
+     Inf
+   }
+ }

Suppose that you wanted to create a set of functions to derive the data series from
other objects (when appropriate), regardless of the type of object (i.e., polymor-
phism). R provides a mechanism called generic functions for doing this.2 You can
define a generic name for a set of functions (like “series”). When you call “series”
on an object, R will find the correct method to execute based on the class of the
object. Let’s create a function for extracting the data series from a generic object:

> series <- function(object) {object@data}
> setGeneric("series")
[1] "series"
> series(my.TimeSeries)
[1] 1 2 3 4 5 6

The call to setGeneric redefined series as a generic function whose default method
is the old body for series:

> series
standardGeneric for "series" defined from package ".GlobalEnv"

function (object)
standardGeneric("series")
<environment: 0x19ac4f4>
Methods may be defined for arguments: object
Use  showMethods("series")  for currently available ones.
> showMethods("series")
Function: series (package .GlobalEnv)
object="ANY"
object="TimeSeries"
    (inherited from: object="ANY")

As a further example, suppose we wanted to create a new generic function called
“period” for extracting a period from an object and wanted to specify that the func-
tion period.TimeSeries should be used for TimeSeries objects, but the generic
method should be used for other objects. We could do this with the following
commands:

2. In object-oriented programming terms, this is called overloading a function.
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> period <- function(object) {object@period}
> setGeneric("period")
[1] "period"
> setMethod(period, signature=c("TimeSeries"), definition=period.TimeSeries)
[1] "period"
attr(period,"package")
[1] ".GlobalEnv"
> showMethods("period")
Function: period (package .GlobalEnv)
object="ANY"
object="TimeSeries"

Now we can calculate the period of a TimeSeries object by just calling the generic
function period:

> period(my.TimeSeries)
Time difference of 1 mins

It is also possible to define your own methods for existing generic functions, such
as summary. Let’s define a summary method for our new class:

> setMethod("summary",
+   signature="TimeSeries",
+   definition=function(object) {
+     print(paste(object@start,
+     " to ",
+     object@end,
+ sep="", collapse=""))
+     print(paste(object@data, sep="", collapse=","))
+   }
+ )
Creating a new generic function for "summary" in ".GlobalEnv"
[1] "summary"
> summary(my.TimeSeries)
[1] "2009-07-01 to 2009-07-01 00:05:00"
[1] "1,2,3,4,5,6"

You can even define a new method for an existing operator:

> setMethod("[",
+   signature=c("TimeSeries"),
+   definition=function(x, i, j, ...,drop) {
+     x@data[i]
+   }
+ )
[1] "["
> my.TimeSeries[3]
[1] 3

(As a quick side note, this works for only some built-in functions. For example, you
can’t define a new print method this way. See the help file for S4groupGeneric for a
list of generic functions that you can redefine this way, and “Old-School OOP in R:
S3” on page 135 for an explanation on why this doesn’t always work.)
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Now let’s show how to implement a WeightHistory class based on the TimeSeries
class. One way to do this is to create a WeightHistory class that inherits from the
TimeSeries class but adds extra fields to represent a person’s name and height. We
can do this with the setClass command by stating that the new class inherits from
the TimeSeries class and specifying the extra slots in the WeightHistory class:

> setClass(
+   "WeightHistory",
+   representation(
+     height = "numeric",
+     name = "character"
+   ),
+   contains = "TimeSeries"
+ )

Now we can create a WeightHistory object, populating slots named in TimeSeries
and the new slots for WeightHistory:

> john.doe <- new("WeightHistory",
+   data=c(170, 169, 171, 168, 170, 169),
+   start=as.POSIXct("02/14/2009 0:00:00", tz="GMT",
+     format="%m/%d/%Y %H:%M:%S"),
+   end=as.POSIXct("03/28/2009 0:00:00",tz="GMT",
+     format="%m/%d/%Y %H:%M:%S"),
+   height=72,
+   name="John Doe")
> john.doe
An object of class “WeightHistory”
Slot "height":
[1] 72

Slot "name":
[1] "John Doe"

Slot "data":
numeric(0)

Slot "start":
[1] "2009-02-14 GMT"

Slot "end":
[1] "2009-03-28 GMT"

R will validate that the new TimeSeries object contained within WeightHistory is
valid. (You can test this yourself.)

Let’s consider an alternative way to construct a weight history. Suppose that we had
created a Person class containing a person’s name and height:

> setClass(
+   "Person",
+   representation(
+     height = "numeric",
+     name = "character"
+   )
+ )
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Now we can create an alternative weight history that inherits from both a
TimeSeries object and a Person object:

> setClass(
+   "AltWeightHistory",
+   contains = c("TimeSeries", "Person")
+ )

This alternative implementation works identically to the original implementation,
but the new implementation is slightly cleaner. This implementation inherits meth-
ods from both the TimeSeries and the Person classes.

Suppose that we also had created a class to represent cats:

> setClass(
+   "Cat",
+   representation(
+     breed = "character",
+     name = "character"
+   )
+ )

Notice that both Person and Cat objects contain a name attribute. Suppose that we
wanted to create a method for both classes that checked if the name was “Fluffy.”
An efficient way to do this in R is to create a virtual class that is a superclass of both
the Person and the Cat classes and then write an is.fluffy method for the superclass.
(You can write methods for a virtual class but can’t create objects from that class
because the representation of those objects is ambiguous.)

> setClassUnion(
+   "NamedThing",
+   c("Person", "Cat")
+ )

We could then create an is.fluffy method for the NamedThing class that would apply
to both Person and Cat objects. (Note that if we were to define a method of
is.fluffy for the Person class, this would override the method from the parent class.)
An added benefit is that we could now check to see if an object was a NamedThing:

> jane.doe <- new("AltWeightHistory",
+   data=c(130, 129, 131, 128, 130, 129),
+   start=as.POSIXct("02/14/2009 0:00:00", tz="GMT",
+      format="%m/%d/%Y %H:%M:%S"),
+   end=as.POSIXct("03/28/2009 0:00:00", tz="GMT",
+      format="%m/%d/%Y %H:%M:%S"),
+   height=67,
+   name="Jane Doe")
> is(jane.doe,"NamedThing")
[1] TRUE
> is(john.doe,"TimeSeries")
[1] TRUE
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Object-Oriented Programming in R: S4 Classes
Now that we’ve seen a quick introduction to object-oriented programming in R, let’s
talk about the functions for building classes in more depth.

Defining Classes
To create a new class in R, you use the setClass function:

setClass(Class, representation, prototype, contains=character(),
         validity, access, where, version, sealed, package,
         S3methods = FALSE)

Here is a description of the arguments to setClass.

Argument Description Default

Class A character value specifying the name for the new class. (This
is the only required argument.)

 

representation A named list of the different slots in the class and the object
name associated with each one. (You can specify “ANY” if you
want to allow arbitrary objects to be stored in the slot.)

 

prototype An object containing the default object for slots in the class.  

contains A character vector containing the names of the classes that
this class extends (usually called superclasses).

character()

validity A function that checks the validity of an object of this class.
(Default is no validity check.) May be changed later with
setValidity.

 

access Not used; included for compatibility with S-PLUS.  

where The environment in which to store the object definition. Default is the environment in which
setClass was called.

version Not used; included for compatibility with S-PLUS.  

sealed A logical value to indicate if this class can be redefined by calling
setClass again with the same class name.

 

package A character value specifying the package name for this class. Default is the name of the package
in which setClass was called.

S3methods A logical value specifying whether S3 methods may be written
for this class.

FALSE

To simplify the creation of new classes, the methods package includes two functions
for creating the representation and prototype arguments, called representation and
prototype. These functions are very helpful when defining classes that extend other
classes as a data part, have multiple superclasses, or combine extending a class and
slots.

Some slot names are prohibited in R because they are reserved for attributes. (By the
way, objects can have both slots and attributes.) Forbidden names include "class",
"comment", "dim", "dimnames", "names", "row.names" and "tsp".
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If a class extends one of the basic R types (as described in Table 10-1), there will be
a slot called .Data containing the data from the basic object type. R code that works
on the built-in class will work with objects of the new class; they will just act on
the .Data part of the object.

You can explicitly define an inheritance relationship with the setIs function. (This
is an alternative to using the contains argument for setClass.)

setIs(class1, class2, test=NULL, coerce=NULL, replace=NULL,
      by = character(), where = topenv(parent.frame()), classDef =,
      extensionObject = NULL, doComplete = TRUE)

To explicitly set a validation function for a class, you use the setValidity function:

setValidity(Class, method, where = topenv(parent.frame()) )

Whenever you create a new object, R will execute the initialize method of the class
(if the method is available). Programmers usually use the initialize method to cal-
culate values or create additional objects and assign them to slots. See “Meth-
ods” on page 132 for information on how to add a method for the generic function
initialize.

R also allows you to define a virtual class that is a superclass of several other classes.
This can be useful if the virtual class does not contain any data by itself but you want
to create a set of methods that can be used by a set of other classes. To do this, you
would use the setClassUnion function:

setClassUnion(name, members, where)

This function takes the following arguments.

Argument Description

name A character value specifying the name of the new superclass

members A character vector specifying the names of the subclasses

where The environment in which to create the new superclass

New Objects
You can create a new object in R through a call to the class’s new method. (In object-
oriented programming lingo, this is called a constructor.) Calling:

new(c,...)

returns a new object of class c. It is possible to fill data into the slots of the new object
by specifying named arguments in the call to new; each slot will be set to the value
specified by the corresponding named argument. If a method named initialize
exists for class c, then the function initialize will be called after the new object is
created (and the slots are filled in with the optional arguments).

Accessing Slots
You can fetch the value stored in slot slot_name of object object_name through a call
to the function slot(slot_name, object_name). R includes a special operator for
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accessing the objects stored inside another object that is a shorthand for the slot
function: the @ operator. This operator takes the form object_name@slot_name.

It is also possible to set the object stored in a slot with the familiar assignment op-
erator. For example, to set the “month” slot of a “birthdate” object to the value
“June,” you would call:

> birthdate@month <- "June"

or, alternatively:

> slot(birthdate, month) <- "June"

By default, when changing a value in an object, R will check the validity of the new
object. However, it is possible to override this check by using the check=FALSE option
when calling slot:

> slot(birthdate, month, check=FALSE) <- "June"

Doing so is usually unwise and unnecessary.

Working with Objects
To test whether an object o is a member of a class c, you can use the function
is(o, c). To test whether a class c1 extends a second class c2, you can use the
function extends(c1, c2).

To get a list of the slots associated with an object o, you can use the function slot
Names(o). To get the classes associated with those slots, use getSlots(o). To determine
the names of the slots in a class c, you can use the function slotNames(c). Somewhat
nonintuitively, getSlots(c) returns the set of classes associated with each slot.

Creating Coercion Methods
It is possible to convert an object o to class c by calling as(o, c).

To enable coercion for a class that you define, make sure to register coercion methods
with the setAs function:

setAs(from, to, def, replace, where = topenv(parent.frame()))

This function takes the following arguments.

Argument Description Default

from A character value specifying the class name of the input object.

to A character value specifying the class name of the output object.

def A function that takes an argument of type from and returns a value of type
to. In other words, a function that performs the conversion.

replace A second function that may be used in a replacement method (that is, the
method to use if the as function is used as the destination in an assignment
statement). This is a function of two arguments: from and value.

where The environment in which to store the definition. topenv(parent.frame())
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Methods
In Chapter 9, we showed how to use functions in R. An important part of a function
definition in R is the set of arguments for a function. As you may recall, a function
accepts only one set of arguments. When you assign a function directly to a symbol,
you can only call that function with a single set of arguments.

Generic functions are a system for allowing the same name to be used for many
different functions, with many different sets of arguments, from many different
classes.

Suppose that you define a class called meat and a class called dairy and a method
called serve. In R, you could assign one function to serve a meat object and another
function to serve a dairy object. You could even assign a third function that took
both a meat object and a dairy object as arguments and allowed you to serve both
of them together. This would not be kosher in some other languages, but it’s OK
in R.3

The first step in assigning methods is to create an appropriate generic function (if
the function doesn’t already exist). To do this, you use the setGeneric function to
create a generic method:

setGeneric(name, def= , group=list(), valueClass=character(),
where= , package= , signature= , useAsDefault= ,
genericFunction= , simpleInheritanceOnly = )

This function takes the following arguments.

Argument Description

name A character value specifying the name of the generic function.

def An optional function defining the generic function.

group An optional character value specifying the group generic to which this function belongs. See
the help file for S4groupGeneric for more information.

valueClass An optional character value specifying the name of the class (or classes) to which objects
returned by this function must belong.

where The environment in which to store the new generic function.

package A character value specifying the package name with which the generic function is associated.

signature An optional character vector specifying the names of the formal arguments (as labels) and
classes for the arguments to the function (as values). The class name “ANY” can be used to
mean that arguments of any type are allowed.

useAsDefault A logical value or function specifying the function to use as the default method. See the help
file for more information.

genericFunction Not currently used.

simpleInheritanceOnly A logical value specifying whether to require that methods be inherited through simple in-
heritance only.

3. In technical terms, R’s implementation is called parametric polymorphism.
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To associate a method with a class (or, more specifically, a signature with a generic
function), you use the setMethod function:

setMethod(f, signature=character(), definition,
where = topenv(parent.frame()),
valueClass = NULL, sealed = FALSE)

Here is a description of the arguments for setMethod.

Argument Description Default

f A generic function or the name of a generic function.

signature A vector containing the names of the formal arguments (as
labels) and classes for the arguments to the function (as
values). The class name “ANY” can be used to mean that
arguments of any type are allowed.

character()

definition The function to be called when the method is evaluated.

where The environment in which the method was defined. topenv(parent.frame())

valueClass Not used; included for backward compatibility. NULL

sealed Used to indicate if this class can be redefined by calling
setClass again with the same class name.

FALSE

Managing Methods
The methods package includes a number of functions for managing generic methods.

Function Description

isGeneric Checks if there is a generic function with the given name.

isGroup Checks if there is a group generic function with the given name.

removeGeneric Removes all the methods for a generic function and the generic function itself.

dumpMethod Dumps the method for this generic function and signature.

findFunction Returns a list of either the positions on the search list or the current top-level environment
on which a function object for a given name exists.

dumpMethods Dumps all the methods for a generic function.

signature Returns the names of the generic functions that have methods defined on a specific path.

removeMethods Removes all the methods for a generic function.

setGeneric Creates a new generic function of the given name.

The methods package also includes functions for managing methods.

Function Description

getMethod,
selectMethod

Returns the method for a particular function and signature.

existsMethod,
hasMethod

Tests if a method (specified by a specific name and signature) exists.
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Function Description

findMethod Returns the package(s) that contain a method for this function and signature.

showMethods Shows the set of methods associated with an S4 generic.

For more information on these functions, see the corresponding help files.

Basic Classes
Classes for built-in types are shown in Table 10-1; these are often called basic
classes. All classes are built on top of these classes. Additionally, it is possible to write
new methods for these classes that override the defaults.

Table 10-1. Classes of built-in types

Category Object Type Class

Vectors integer integer

double numeric

complex complex

character character

logical logical

raw raw

Compound list list

pairlist pairlist

S4  

environment environment

Special any  

NULL NULL

...  

R language symbol name

promise  

language call

expression expression

externalptr externalptr

Functions closure function

special function

builtin function

The vector classes (integer, numeric, complex, character, logical, and raw) all extend
the vector class. The vector class is a virtual class.
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More Help
Many tools for working with classes are included in the methods package, so you can
find additional help on classes with the command library(help="methods").

Old-School OOP in R: S3
If you want to implement a complex project in R, you should use S4 objects and
classes. As we saw above, S4 classes implement many features of modern object-
oriented programming languages: formal class definitions, simple and multiple in-
heritance, parameteric polymorphism, and encapsulation. Unfortunately, S3 classes
are implemented and used differently from S4 objects and don’t implement many
features that enable good software engineering practices.

Unfortunately, it’s very hard to avoid S3 objects in R because many important and
commonly used R functions were written before S4 objects were implemented. For
example, most of the modeling tools in the statistics package were written with S3
objects. In order to understand, modify, or extend this software, you have to know
how S3 classes are implemented.

S3 Classes
S3 classes are implemented through object attributes. An S3 object is simply a prim-
itive R object with additional attributes, including a class name. There is no formal
definition for an S3 object; you can manually change the attributes, including the
class. (S3 objects are very similar to objects in prototype-based languages such as
JavaScript.)

Above, we used time series as an example of an S4 class. There is an existing S3 class
for representing time series, called “ts” objects. Let’s create a sample time series
object and look at how it is implemented. Specifically, we’ll look at the attributes of
the object and then use typeof and unclass to examine the underlying object:

> my.ts <- ts(data=c(1, 2, 3, 4, 5), start=c(2009, 2), frequency=12)
> my.ts
     Feb Mar Apr May Jun
2009   1   2   3   4   5
> attributes(my.ts)
$tsp
[1] 2009.083 2009.417   12.000

$class
[1] "ts"

> typeof(my.ts)
[1] "double"
> unclass(my.ts)
[1] 1 2 3 4 5
attr(,"tsp")
[1] 2009.083 2009.417   12.000
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As you can see, a ts object is just a numeric vector (of doubles), with two attributes:
class and tsp. The class attribute is just the name “ts,” and the tsp attribute is just
a vector with a start time, end time, and frequency. You can’t access attributes in an
S3 object using the same operator that you use to access slots in an S4 object:

> my.ts@tsp
Error: trying to get slot "tsp" from an object (class "ts")
       that is not an S4 object

S3 classes lack the structure of S3 objects. Inheritance is implemented informally,
and encapsulation is not enforced by the language.4 S3 classes also don’t allow
parametric polymorphism. S3 classes do, however, allow simple polymorphism. It
is possible to define S3 generic functions and to dispatch by object type.

S3 Methods
S3 generic functions work by naming convention, not by explicitly registering meth-
ods for different classes. Here is how to create a generic function using S3 classes:

1. Pick a name for the generic function. We’ll call this gname.

2. Create a function named gname. In the body for gname, call UseMethod("gname").

3. For each class that you want to use with gname, create a function called
gname.classname whose first argument is an object of class classname.

Rather than fabricating an example, let’s look at an S3 generic function in R: plot:

> plot
function (x, y, ...)
UseMethod("plot")
<bytecode: 0x106c21140>
<environment: namespace:graphics>

When you call plot on a function, plot calls UseMethod("plot"). UseMethod looks at
the class of the object x. It then looks for a function named plot.class and calls
plot.class(x, y, ...).

For example, we defined a new TimeSeries class above. To add a plot method for
TimeSeries objects, we simply create a function named plot.TimeSeries:

> plot.TimeSeries <- function(object, ...) {
+   plot(object@data, ...)
+ }

So we could now call:

> plot(my.TimeSeries)

and R would, in turn, call plot.TimeSeries(my.TimeSeries).

The function UseMethod dispatches to the appropriate method, depending on the
class of the first argument’s calling function. UseMethod iterates through each class

4. If the attribute class is a vector with more than one element, then the first element is interpreted
as the class of the object, and other elements name classes that the object “inherits” from. That
makes inheritance a property of objects, not classes.
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in the object’s class vector, until it finds a suitable method. If it finds no suitable
method, UseMethod looks for a function for the class “default.” (A closely related
function, NextMethod, is used in a method called by UseMethod; it calls the next avail-
able method for an object. See the help file for more information.)

Using S3 Classes in S4 Classes
You can’t specify an S3 class for a slot in an S4 class. To use an S3 class as a slot in
an S4 class, you need to create an S4 class based on the S3 class. A simple way to do
this is through the function setOldClass:

setOldClass(Classes, prototype, where, test = FALSE, S4Class)

This function takes the following arguments.

Argument Description Default

Classes A character vector specifying the names of the old-style classes.  

prototype An object to use as a prototype; this will be used as the default object for
the S4 class.

 

where An environment specifying where to store the class definition. The top-level environment

test A logical value specifying whether to explicitly test inheritance for the
object. Specify test=TRUE if there can be multiple inheritance.

FALSE

S4Class A class definition for an S4 class or a class name for an S4 class. This will be
used to define the new class.

 

Finding Hidden S3 Methods
Sometimes, you may encounter cases where individual methods are hidden. The
author of a package may choose to hide individual methods in order to encapsulate
details of the implementation within the package; hiding methods encourages you
to use the generic functions. For example, individual methods for the generic method
histogram (in the lattice package) are hidden:

> library(lattice)
> methods(histogram)
[1] histogram.factor*  histogram.formula* histogram.numeric*

   Nonvisible functions are asterisked > histogram.factor()
Error: could not find function "histogram.factor"

Sometimes, you might want to retrieve the hidden methods (for example, to view
the R code). To retrieve the hidden method, use the function getS3method. For ex-
ample, to fetch the code for histogram.formula, try the following command:

> getS3method(f="histogram", class="formula")

Alternatively, you can use the function getAnywhere:

> getAnywhere(histogram.formula)
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III
Working with Data

This part of the book explains how to accomplish some common tasks with R:
loading data, transforming data, and saving data. These techniques are useful for
any type of data that you want to work with in R.





11
Saving, Loading, and Editing Data

This chapter explains how to load data into R, save data objects from R, and edit
data using R.

Entering Data Within R
If you are entering a small number of observations, entering the data directly into R
might be a good approach. There are a couple of different ways to enter data into R.

Entering Data Using R Commands
Many of the examples in Parts I and II show how to create new objects directly on
the R console. If you are entering a small amount of data, this might be a good
approach.

As we have seen before, to create a vector, use the c function:

> salary <- c(18700000, 14626720, 14137500, 13980000, 12916666)
> position <- c("QB", "QB", "DE", "QB", "QB")
> team <- c("Colts", "Patriots", "Panthers", "Bengals", "Giants")
> name.last <- c("Manning", "Brady", "Pepper", "Palmer", "Manning")
> name.first <- c("Peyton", "Tom", "Julius", "Carson", "Eli")
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It’s often convenient to put these vectors together into a data frame. To create a data
frame, use the data.frame function to combine the vectors:

> top.5.salaries <- data.frame(name.last, name.first, team, position, salary)
> top.5.salaries
  name.last name.first     team position   salary
1   Manning     Peyton    Colts       QB 18700000
2     Brady Tom Patriots       QB 14626720
3    Pepper     Julius Panthers       DE 14137500
4    Palmer     Carson  Bengals       QB 13980000
5   Manning Eli   Giants       QB 12916666

Using the Edit GUI
Entering data using individual statements can be awkward for more than a handful
of observations. (That’s why my example above included only five observations.)
Luckily, R provides a nice GUI for editing tabular data: the data editor.

To edit an object with the data editor, use the edit function. The edit function will
open the data editor and return the edited object. For example, to edit the top.
5.salaries data frame, you would use the following command:

> top.5.salaries <- edit(top.5.salaries)

Notice that you need to assign the output of the edit function to a symbol; otherwise,
the edits will be lost. The data editor is designed to edit tabular data objects, specif-
ically data frames and matrices. The edit function can be used with other types of
objects, such as vectors, functions, and lists, but it will open a text editor.

Alternatively, you can use the fix function. The fix function calls edit on its argu-
ment and then assigns the result to the same symbol in the calling environment. For
the example above, here is how you would use fix:

> fix(top.5.salaries)

On Microsoft Windows, there is a menu item “Data Editor...” under the Edit menu
that allows you to enter the name of an object into a dialog box and then calls fix
on the object.

Windows Data Editor

The data editor on Microsoft Windows is very intuitive. To edit a value, simply click
in the cell. To change the name of a column (or to change it from numeric to char-
acter), click on the column name and a window will pop up allowing you to make
those changes. You may add additional rows and columns simply by entering values
into empty cells (see Figure 11-1).

Mac OS X Data Editor

On Mac OS X, the edit window looks (and works) a bit differently. You may use the
data editor with data frames or matrices (see Figure 11-2).
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Figure 11-1. Editor window on Windows

Figure 11-2. Editor window on Mac OS X

You can click on a data cell to edit the value. The buttons on the top have the
following effects (from left to right): add a column, delete a column, add a row and
delete a row. You can change a column’s width by clicking on the lines separating
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that column from its neighbor and dragging it. You cannot change variable types or
names from this editor.

X Windows (Linux) Data Editor

A data editor GUI is also available on X Windows systems. Like the Microsoft Win-
dows version, you can edit the column names. For convenience, this editor includes
Copy, Paste, and Quit buttons (see Figure 11-3).

Figure 11-3. Data editor on X Windows

R Data Editor Versus Spreadsheets
The R data editor can be convenient for inspecting a data frame or a matrix or
maybe for editing a couple of values, but I don’t recommend using it for doing
serious work. If you have a lot of data to enter, I recommend using a real spread-
sheet or desktop database program. There are a few reasons for this.

First, the R data editor doesn’t provide an Undo or Redo function.

Second, the R data editor doesn’t make it very easy to save your work. There is no
Save button. To save, you need to periodically close the editor, save your work,
and then reopen the editor. Doing that is awkward and error prone; I would worry
about losing my work if I used this editor.
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Finally, spreadsheet programs often include data entry forms. (Desktop database
programs also often have data entry forms.) If you’re entering a complicated set
of data, filling out a form for each observation can be much easier than typing the
results into a form.

Saving and Loading R Objects
R allows you to save and load R data objects to external files.

Saving Objects with save
The simplest way to save an object is with the save function. For example, we could
use the following command to save the object top.5.salaries to the file
~/top.5.salaries.RData:

> save(top.5.salaries,file="~/top.5.salaries.RData")

In R, file paths are always specified with forward slashes (“/”), even on Microsoft
Windows. So, to save this file to the directory C:\Documents and Settings\me\My
Documents\top.5.salaries.rda, you would use the following command:

> save(top.5.salaries,
+   file="C:/Documents and Settings/me/My Documents/top.5.salaries.RData")

Note that the file argument must be explicitly named. (Nine out of 10 times, I forget
to do so.) Now you can easily load this object back into R with the load function:

> load("~/top.5.salaries.RData")

Incidentally, files saved in R will work across platforms. (For example, the data files
for this book were produced on Mac OS X but work on Windows and Linux.) You
can save multiple objects to the same file by simply listing them in the same save
command. If you want to save every object in the workspace, you can use the
save.image function. (When you quit R, you will be asked if you want to save your
current workspace. If you say yes, the workspace will be saved the same way as this
function.)

The save function is very flexible and can be used in many different ways. You can
save multiple objects, save to files or connections, and save in a variety of formats:

save(..., list =, file =, ascii =, version =, envir =,
     compress =, eval.promises =, precheck = )

You can omit any argument except the filename. The defaults for save are very sen-
sible: objects will be saved in a compressed binary format, and existing files won’t
be overwritten.

Here is a detailed description of the arguments to save.

Argument Description

... A set of symbols that name the objects to be saved. (This is a variable-length argument.)

list Alternatively, you may specify the objects to be saved in a character vector.
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Argument Description

file Specifies where to save the file. Both connections and filenames can be used.

ascii A logical value that indicates whether to write a human-readable representation of the data
(ascii=TRUE) or a binary representation (ascii=FALSE). Default is ascii=FALSE.

version A numeric value that indicates the file version. For R 0.99.0 through 1.3.1, use version=1. For R 1.4.0
through (at least) 2.8.1, use version=2. Default is version=2.

envir Specifies the environment in which to find the objects to be saved. Default is the environment in which
save was called (to be precise, parent.frame()).

compress A logical value that indicates whether to compress the file when saving it. (The effect is the same as
running gzip on an uncompressed file.) Default is compress=TRUE for binary files (ascii=FALSE)
and compress=FALSE for human-readable files (ascii=TRUE).

eval.promises A logical value that indicates whether promise objects should be forced before saving. Default is
eval.promises=TRUE.

precheck A logical value that indicates whether the save function should check if the object exists before saving
(and raise an error if it is). Default is precheck=TRUE.

Importing Data from External Files
One of the nicest things about R is how easy it is to pull in data from other programs.
R can import data from text files, other statistics software, and even spreadsheets.
You don’t even need a local copy of the file: you can specify a file at a URL, and R
will fetch the file for you over the Internet.

Text Files
Most text files containing data are formatted similarly: each line of a text file repre-
sents an observation (or record). Each line contains a set of different variables as-
sociated with that observation. Sometimes, different variables are separated by a
special character called the delimiter. Other times, variables are differentiated by
their location on each line.

Delimited files

R includes a family of functions for importing delimited text files into R, based on
the read.table function:

read.table(file, header, sep = , quote = , dec = , row.names, col.names,
as.is = , na.strings , colClasses , nrows =, skip = ,
check.names = , fill = , strip.white = , blank.lines.skip = ,
comment.char = , allowEscapes = , flush = , stringsAsFactors = ,
encoding = )

The read.table function reads a text file into R and returns a data.frame object. Each
row in the input file is interpreted as an observation. Each column in the input file
represents a variable. The read.table function expects each field to be separated by
a delimiter.

For example, suppose that you had a file called top.5.salaries.csv that contained the
following text (and only this text):
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name.last,name.first,team,position,salary
"Manning","Peyton","Colts","QB",18700000
"Brady","Tom","Patriots","QB",14626720
"Pepper","Julius","Panthers","DE",14137500
"Palmer","Carson","Bengals","QB",13980000
"Manning","Eli","Giants","QB",12916666

This file contains the same data frame that we entered in “Entering Data Using R
Commands” on page 141. Notice how this data is encoded:

• The first row contains the column names.

• Each text field is encapsulated in quotes.

• Each field is separated by commas.

To load this file into R, you would specify that the first row contained column names
(header=TRUE), that the delimiter was a comma (sep=","), and that quotes were used
to encapsulate text (quote="\""). Here is an R statement that loads in this file:

> top.5.salaries <- read.table("top.5.salaries.csv",
+   header=TRUE, sep=",", quote="\"")

The read.table function is very flexible and allows you to load files with many dif-
ferent properties. Here is a brief description of the options for read.table.

Argument Description Default

file The name of the file to open or, alternatively, the name
of a connection containing the data. You can even use a
URL. (This is the one required argument for
read.table.)

header A logical value indicating whether the first row of the file
contains variable names.

FALSE

sep The character (or characters) separating fields. When “”
is specified, any white space is used as a separator.

""

quote If character values are enclosed in quotes, this argument
should specify the type of quotes.

“”

dec The character used for decimal points. .

row.names A character vector containing row names for the returned
data frame.

col.names A character vector containing column names for the re-
turned data frame.

as.is A logical vector (the same length as the number of col-
umns) that specifies whether or not to convert character
values to factors.

!stringsAsFactors

na.strings A character vector specifying values that should be inter-
preted as NA.

NA

colClasses A character vector of class names to be assigned to each
column.

NA

nrows An integer value specifying the number of rows to read.
(Invalid values, such as negatives, are ignored.)

-1
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Argument Description Default

skip An integer value specifying the number of rows in the text
file to skip before beginning to read data.

0

check.names A logical value that specifies whether read.table
should check if the column names are valid symbol names
in R.

TRUE

fill Sometimes, a file might contain rows of unequal length.
This argument is a logical value that specifies whether
read.table should implicitly add blank fields at the
end of rows where some values were missing.

!blank.lines.skip

strip.white When sep !="", this logical value specifies whether
read.table should remove extra leading and trailing
white space from character fields.

FALSE

blank.lines.skip A logical value that specifies whether read.table
should ignore blank lines.

TRUE

comment.char read.table can ignore comment lines in input files if
the comment lines begin with a single special character.
This argument specifies the character used to delineate
these lines.

"#"

allowEscapes A logical value that indicates whether escapes (such as
“\n” for a new line) should be interpreted or if character
strings should be read literally.

FALSE

flush A logical value that indicates whether read.table
should skip to the next line when all requested fields have
been read in from a line.

FALSE

stringsAsFactors A logical value indicating whether text fields should be
converted to factors.

default.stringsAsFactors()

encoding The encoding scheme used for the source file. "unknown"

The most important options are sep and header. You almost always have to know
the field separator and know if there is a header field. R includes a set of convenience
functions that call read.table with different default options for these values (and a
couple of others). Here is a description of these functions.

Function header sep quote dec fill comment.char

read.table FALSE \" or \' . !
blank.lines.skip

#

read.csv TRUE , \" . TRUE

read.csv2 TRUE ; \" , TRUE

read.delim TRUE \t \" . TRUE

read.delim2 TRUE \t \" , TRUE

In most cases, you will find that you can use read.csv for comma-separated files or
read.delim for tab-delimited files without specifying any other options. (Except, I
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suppose, if you are in Europe, and you use commas to indicate the decimal point in
numbers. Then you can use read.csv2 and read.delim2.)

As another example, suppose that you wanted to analyze some historical stock quote
data. Yahoo! Finance provides this information in an easily downloadable form on
its website; you can fetch a CSV file from a single URL. For example, to fetch the
closing price of the S&P 500 index for every month between April 1, 1999, and April
1, 2009, you could use the following URL: http://ichart.finance.yahoo.com/table.csv
?s=%5EGSPC&a=03&b=1&c=1999&d=03&e=1&f=2009&g=m&ignore=.csv.

Conveniently, you can use a URL in place of a filename in R. This means that you
could load this data into R with the following expression:

> sp500 <- read.csv(paste("http://ichart.finance.yahoo.com/table.csv?",
+   "s=%5EGSPC&a=03&b=1&c=1999&d=03&e=1&f=2009&g=m&ignore=.csv", sep=""))
> # show the first 5 rows
> sp500[1:5,]

Date   Open   High    Low  Close      Volume Adj.Close
1 2009-04-01 793.59 813.62 783.32 811.08 12068280000    811.08
2 2009-03-02 729.57 832.98 666.79 797.87  7633306300    797.87
3 2009-02-02 823.09 875.01 734.52 735.09  7022036200    735.09
4 2009-01-02 902.99 943.85 804.30 825.88  5844561500    825.88
5 2008-12-01 888.61 918.85 815.69 903.25  5320791300    903.25

We will revisit this example in the next section.

If you’re trying to load a really big file, you might find that loading the file takes a
long time. It can be very frustrating to wait 15 minutes for a file to load, only to
discover that you have specified the wrong separator. A useful technique for testing
is to load only a small number of rows into R. For example, to load 20 rows, you
would add nrows=20 as an argument to read.table.

Many programs can export data as text files. Here are a few tips for creating text
files that you can easily read into R:

• For Microsoft Excel spreadsheets, you can export them as either comma-
delimited files (CSV files) or tab-delimited files (TXT files). When possible, you
should specify Unix-style line delimiters, not MS-DOS line delimiters. (MS-
DOS files end each line with “\n\r,” while Unix-style systems end lines with
“\n.”) There are two things to think about when choosing between CSV and
TXT files.

CSV files can be more convenient because (by default) opening these files in
Windows Explorer will open these files in Microsoft Excel. However, if you are
using CSV files, then you must be careful to enclose text in quotes if the data
contains commas (and, additionally, you must escape any quotation marks
within text fields). Tab characters occur less often in text, so tab-delimited files
are less likely to cause problems.

• If you are exporting data from a database, consider using a GUI tool to query
the database and export the results. It is possible to use command-line scripts
to export data using tools like SQL Plus, pgsSQL, or MySQL, but doing so is
often tricky.
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Here are a few options I have tried. If you are using Microsoft Windows, a good
choice is Toad for Data Analysts (available from http://www.toadsoft.com/tda/
tdaindex.html); this will work with many different databases. If you are export-
ing from MySQL, MySQL Query Browser is also a good choice; versions are
available for Microsoft Windows, Mac OS X, and Linux (you can download it
from http://dev.mysql.com/downloads/gui-tools/5.0.html). Oracle now produces
a free multi-platform query tool called SQL Developer. (You can find it at http:
//www.oracle.com/technology/products/database/sql_developer/index.html.)

Fixed-width files

To read a fixed-width format text file into a data frame, you can use the read.fwf
function:

read.fwf(file, widths, header = , sep = ,
         skip = , row.names, col.names, n = ,
         buffersize = , ...)

Here is a description of the arguments to read.fwf.

Argument Description Default

file The name of the file to open or, alternatively, the name of a
connection containing the data. (This is a required argument.)

 

widths An integer vector or a list of integer vectors. If the input file has
one record per line, then use an integer vector where each value
represents the width of each variable. If each record spans mul-
tiple lines, then use a list of integer vectors where each integer
vector corresponds to the widths of the variables on that line.
(This is a required argument.)

 

header A logical value indicating whether the first line of the file contains
variable names. (If it does,
the names must be delimited by sep.)

FALSE

sep The character used to delimit variable names in the header. \t

skip An integer specifying the number of lines to skip at the beginning
of the file.

0

row.names A character vector used to specify row names in the data frame.  

col.names A character vector used to specify column names in the data
frame.

 

n An integer value specifying the number of rows of records to read
into R. (Invalid values, such as negatives, are ignored.)

-1

buffersize An integer specifying the maximum number of lines to be read
at one time. (This value may be tuned to optimize performance.)

2000

Note that read.fwf can also take many arguments used by read.table, including
as.is, na.strings, colClasses, and strip.white.
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Using Other Languages to Preprocess Text Files
R is a very good system for numerical calculations and data visualization, but it’s
not the most efficient choice for processing large text files. For example, the U.S.
Centers for Disease Control and Prevention publishes data files containing infor-
mation on every death in the United States (see http://www.cdc.gov/nchs/data_ac
cess/Vitalstatsonline.htm). These data files are provided in a fixed-width format.
They are very large; the data file for 2006 was 1.1 GB uncompressed. In theory,
you could load a subset of data from this file into R using a statement like this:

> # data from ftp://ftp.cdc.gov/pub/Health_Statistics/
NCHS/Datasets/DVS/mortality/mort2006us.zip
> mort06 <- read.fwf(file="MORT06.DUSMCPUB",
+   widths= c(19,1,40,2,1,1,2,2,1,4,1,2,2,2,2,1,1,1,16,4,1,1,1,1,
+ 34,1,1,4,3,1,3,3,2,283,2,1,1,1,1,33,3,1,1),
+   col.names= c("X0","ResidentStatus","X1","Education1989",
+ "Education2003","EducationFlag","MonthOfDeath",
+ "X5","Sex","AgeDetail","AgeSubstitution",
+ "AgeRecode52","AgeRecode27","AgeRecode12",
+ "AgeRecodeInfant22","PlaceOfDeath","MaritalStatus",
+ "DayOfWeekofDeath","X15","CurrentDataYear",
+ "InjuryAtWork","MannerOfDeath","MethodOfDisposition",
+ "Autopsy","X20","ActivityCode","PlaceOfInjury",
+ "ICDCode","CauseRecode358","X24","CauseRecode113",
+ "CauseRecode130","CauseRecord39","X27","Race",
+ "BridgeRaceFlag","RaceImputationFlag","RaceRecode3",
+ "RaceRecord5","X32","HispanicOrigin","X33",
+ "HispanicOriginRecode","X34")
+ )

Unfortunately, this probably won’t work very well. First, R processes files less
quickly than some other languages. Second, R will try to load the entire table into
memory. The file takes up 1.1 GB as a raw text file. Many fields in this file are used
to encode categorical values that have a small number of choices (such as race)
but show the value as numbers. R will convert these character values from single
characters (which take up 1 byte) to integers (which take up 4 bytes). This means
that it will take a lot of memory to load this file into your computer.

As an alternative, I’d suggest using a scripting language like Perl, Python, or Ruby
to preprocess large, complex text files and turn them into a digestible form. (As a
side note, I usually write out lists of field names and lengths in Excel and then use
Excel formulas to create the R or Perl code to load them. That’s how I generated
all the code shown in this example.) Here’s the Perl script I used to preprocess the
raw mortality data file, filtering out fields I didn’t need and writing the results to
a CSV file:

#!/usr/bin/perl

# file to preprocess (and filter) mortality data

print "ResidentStatus,Education1989,Education2003,EducationFlag," .
      "MonthOfDeath,Sex,AgeDetail,AgeSubstitution,AgeRecode52," .
      "AgeRecode27,AgeRecode12,AgeRecodeInfant22,PlaceOfDeath," .
      "MaritalStatus,DayOfWeekofDeath,CurrentDataYear,InjuryAtWork," .
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      "MannerOfDeath,MethodOfDisposition,Autopsy,ActivityCode," .
      "PlaceOfInjury,ICDCode,CauseRecode358,CauseRecode113," .
      "CauseRecode130,CauseRecord39,Race,BridgeRaceFlag," .
      "RaceImputationFlag,RaceRecode3,RaceRecord5,HispanicOrigin," .
      "HispanicOriginRecode\n";

while(<>) {
    my ($X0,$ResidentStatus,$X1,$Education1989,$Education2003,
     $EducationFlag,$MonthOfDeath,$X5,$Sex,$AgeDetail,
     $AgeSubstitution,$AgeRecode52,$AgeRecode27,$AgeRecode12,
     $AgeRecodeInfant22,$PlaceOfDeath,$MaritalStatus,
     $DayOfWeekofDeath,$X15,$CurrentDataYear,$InjuryAtWork,
     $MannerOfDeath,$MethodOfDisposition,$Autopsy,$X20,$ActivityCode,
     $PlaceOfInjury,$ICDCode,$CauseRecode358,$X24,$CauseRecode113,
     $CauseRecode130,$CauseRecord39,$X27,$Race,$BridgeRaceFlag,
     $RaceImputationFlag,$RaceRecode3,$RaceRecord5,$X32,
     $HispanicOrigin,$X33,$HispanicOriginRecode,$X34)

= unpack("a19a1a40a2a1a1a2a2a1a4a1a2a2a2a2a1a1a1a16a4a1" .
"a1a1a1a34a1a1a4a3a1a3a3a2a283a2a1a1a1a1a33a3a1a1",
$_);

    print "$ResidentStatus,$Education1989,$Education2003,".
"$EducationFlag,$MonthOfDeath,$Sex,$AgeDetail,".
"$AgeSubstitution,$AgeRecode52,$AgeRecode27,".
"$AgeRecode12,$AgeRecodeInfant22,$PlaceOfDeath," .
"$MaritalStatus,$DayOfWeekofDeath,$CurrentDataYear,".
"$InjuryAtWork,$MannerOfDeath,$MethodOfDisposition,".
"$Autopsy,$ActivityCode,$PlaceOfInjury,$ICDCode,".
"$CauseRecode358,$CauseRecode113,$CauseRecode130,".
"$CauseRecord39,$Race,$BridgeRaceFlag,$RaceImputationFlag,".
"$RaceRecode3,$RaceRecord5,$HispanicOrigin," .
"$HispanicOriginRecode\n";

}

I executed this script with the following command (in an OS shell):

$ perl mortalities.pl < MORT06.DUSMCPUB > MORT06.csv

You can now load the data into R with a line like this:

> mort06 <- read.csv(file="~/Documents/book/data/MORT06.csv")

We’ll come back to this data set in the chapters on statistical tests and statistical
models.

Other functions to parse data

Most of the time, you should be able to load text files into R with the read.table
function. Sometimes, however, you might be provided with a file that cannot be read
correctly with this function. For example, observations in the file might span mul-
tiple lines. To read data into R one line at a time, use the function readLines:

readLines(con = stdin(), n = -1L, ok = TRUE, warn = TRUE,
encoding = "unknown")
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The readLines function will return a character vector, with one value corresponding
to each row in the file. Here is a description of the arguments to readLines.

Argument Description Default

con A character string (specifying a file or URL) or a connection containing the data to read. stdin()

n An integer value specifying the number of lines to read. (Negative values mean “read
until the end of the file.”)

-1L

ok A logical value specifying whether to trigger an error if the number of lines in the file is
less than n.

TRUE

warn A logical value specifying whether to warn the user if the file does not end with an EOL. TRUE

encoding A character value specifying the encoding of the input file. "unknown"

Note that you can use readLines interactively to enter data.

Another useful function for reading more complex file formats is scan:

scan(file = "", what = double(0), nmax = -1, n = -1, sep = "",
     quote = if(identical(sep, "\n")) "" else "'\"", dec = ".",
     skip = 0, nlines = 0, na.strings = "NA",
     flush = FALSE, fill = FALSE, strip.white = FALSE,
     quiet = FALSE, blank.lines.skip = TRUE, multi.line = TRUE,
     comment.char = "", allowEscapes = FALSE,
     encoding = "unknown")

The scan function allows you to read the contents of a file into R. Unlike readLines,
scan allows you to read data into a specifically defined data structure using the ar-
gument what.

Here is a description of the arguments to scan.

Argument Description Default

file A character string (specifying a file or URL) or a connection
containing the data to read.

""

what The type of data to be read. If all fields are the same type,
you can specify logical, integer, numeric, complex, charac-
ter, or raw. Otherwise, specify a list of types to read values
into a list. (You can specify the type of each element in the
list individually.)

double(0)

nmax An integer value specifying the number of values to read
or the number of records to read (if what is a list).
(Negative values mean “read until the end of the file.”)

-1

n An integer value specifying the number of values to read.
(Negative values mean “read until the end of the file.”)

-1

sep Character value specifying the separator between values.
sep="" means that any white space character is inter-
preted as a separator.

“”

quote Character value used to quote strings. if(identical(sep,
"\n")) "" else
"'\""
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Argument Description Default

dec Character value used for decimal place in numbers. "."

skip Number of lines to skip at the top of the file. 0

nlines Number of lines of data to read. Nonpositive values mean
that there is no limit.

0

na.strings Character values specifying how NA values are encoded. "NA"

flush A logical value specifying whether to “flush” any remaining
text on a line after the last requested item on a line is read
into what. (Commonly used to allow comments at the end
of lines or to ignore unneeded fields.)

FALSE

fill Specifies whether to add empty fields to lines with fewer
fields than specified by what.

FALSE

strip.white Specifies whether to strip leading and trailing white space
from character fields. Applies only when sep is specified.

FALSE

quiet If quiet=FALSE, scan will print a message showing how
many lines were read. If quiet=TRUE, then this message
is suppressed.

FALSE

blank.lines.skip Specifies whether to ignore blank lines. TRUE

multi.line If what is a list, allows records to span multiple lines. TRUE

comment.char Notes a character to be used to specify comment lines. ""

allowEscapes Specifies whether C-style escapes (such as \t for Tab char-
acter or \n for newlines) should be interpreted by scan or
read verbatim. If allowEscapes=FALSE, then they are
interpreted as special characters; if allowE
scapes=TRUE, then they are read literally.

FALSE

encoding A character value specifying the encoding of the input file. "unknown"

Like readLines, you can also use scan to enter data directly into R.

Other Software
Although many software packages can export data as text files, you might find it
more convenient to read their data files directly. R can read files in many other
formats. Table 11-1 shows a list of functions for reading (and writing) files in other
formats. You can find more information about these functions in the help files.
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Table 11-1. Functions to read and write data

File format Reading Writing

ARFF read.arff write.arff

DBF read.dbf write.dbf

Stata read.dta write.dta

Epi Info read.epi
info

Minitab read.mtp

Octave read.octa
ve

S3 binary files, data.dump files read.S

SPSS read.spss

SAS Permanent Dataset read.ssd

Systat read.sys
stat

SAS XPORT File read.xpor
t

Exporting Data
R can also export R data objects (usually data frames and matrices) as text files. To
export data to a text file, use the write.table function:

write.table(x, file = "", append = FALSE, quote = TRUE, sep = " ",
eol = "\n", na = "NA", dec = ".", row.names = TRUE,
col.names = TRUE, qmethod = c("escape", "double"))

There are wrapper functions for write.table that call write.table with different
defaults. These are useful if you want to create a file of comma-separated values, for
example, to import into Microsoft Excel:

write.csv(...)
write.csv2(...)

Here is a description of the arguments to write.table.

Argument Description Default

x Object to export.

file Character value specifying a filename or a connection object to which you would like to
write the output.

""

append A logical value indicating whether to append the output to the end of an existing file
(append=TRUE) or replace the file (append=FALSE).

FALSE

quote A logical value specifying whether to surround any character or factor values with quotes,
or a numeric vector specifying which columns to surround with quotes.

TRUE

sep A character value specifying the value that separates values within a row. ""
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Argument Description Default

eol A character value specifying the value to append on the end of each line. "\n"

na A character value specifying how to represent NA values. "NA"

dec A character value specifying the decimal separator in numeric values. "."

row.names A logical value indicating whether to include row names in the output or a numeric vector
specifying the rows from which row names should be included.

TRUE

col.names A logical value specifying whether to include column names or a character vector specifying
alternate names to include.

TRUE

qmethod Specifies how to deal with quotes inside quoted character and factor fields. Specify
qmethod="escape" to escape quotes with a backslash (as in C) or
qmethod="double" to escape quotes as double quotes (i.e., “ is transformed to “”).

"escape"

Importing Data From Databases
It is very common for large companies, healthcare providers, and academic institu-
tions to keep data in relational databases. This section explains how to move data
from databases into R.

Export Then Import
One of the best approaches for working with data from a database is to export the
data to a text file and then import the text file into R. In my experience dealing with
very large data sets (1 GB or more), I’ve found that you can import data into R at a
much faster rate from text files than you can from database connections.

For directions on how to import these files into R, see “Text Files” on page 146.

If you plan to extract a large amount of data once and then analyze the data, this is
often the best approach. However, if you are using R to produce regular reports or
to repeat an analysis many times, then it might be better to import data into R directly
through a database connection.

Database Connection Packages
In order to connect directly to a database from R, you will need to install some
optional packages. The packages you need depend on the database(s) to which you
want to connect and the connection method you want to use.

There are two sets of database interfaces available in R:

• RODBC. The RODBC package allows R to fetch data from ODBC (Open
DataBase Connectivity) connections. ODBC provides a standard interface for
different programs to connect to databases.

• DBI. The DBI package allows R to connect to databases using native database
drivers or JDBC drivers. This package provides a common database abstraction
for R software. You must install additional packages to use the native drivers
for each database.
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Often, you can choose from either option. You might wonder which package is the
better choice: RODBC or DBI? Here are a few features to consider.

• Driver availability. On Windows and Linux, you can easily find free ODBC
drivers for most common databases. On Mac OS X, it can be difficult to find
free ODBC drivers for a database. However, JDBC drivers are readily available
for each platform.

• Special features and performance. A native database interface might take
advantage of unique product features and be faster than a generic driver.

• Package availability. Not all packages will work on all platforms.

• Code quality. The DBI package is written using S4 objects and methods. Using
the DBI package can help you write better code.

In this section, I’ll show how to configure an ODBC connection to an SQLite data-
base on Microsoft Windows and Mac OS X. SQLite is a tool for storing databases
in files. It’s completely contained in a C library. This means that you can try the
examples in this section without installing a full database system.

For this example, we will use an SQLite database containing the Baseball Databank
database. You do not need to install any additional software to use this database.
This file is included in the nutshell package. To access it within R, use the following
expression as a filename: system.file("extdata", "bb.db", package = "nutshell").

RODBC
The R package for accessing databases through ODBC is the RODBC package.
Microsoft and Simba Technologies jointly developed ODBC in the late 1990s based
on a design from the SQL Access Group. In ODBC, different data sources are labeled
by database source names (DSNs).

Getting RODBC working

Before you can use RODBC, you need to configure the ODBC connection. You only
need to do this once; after you have configured R to communicate with your data-
base, you are ready to use RODBC inside R.

1. Install the RODBC package in R.

2. If needed, install the ODBC drivers for your platform.

3. Configure an ODBC connection to your database.

Here are directions for completing each step.

A quick way to install the RODBC package (if it is not
already installed) is with the install.packages function:

> install.packages("RODBC")
trying URL 'http://cran.cnr.Berkeley.edu/bin/macosx/universal/contrib/2.8/
    RODBC_1.2-5.tgz'
Content type 'application/x-gzip' length 120902 bytes (118 Kb)
opened URL
==================================================

Installing the RODBC package.
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downloaded 118 Kb

The downloaded packages are in
   /var/folders/gj/gj60srEiEVq4hTWB5lvMak+++TM/-Tmp-//Rtmp2UFF7o/
   downloaded_packages

You will get slightly different output when you run this command. Don’t worry
about the output unless you see an error message. If you want to make sure that the
package was installed correctly, try loading it in R:

> library(RODBC)

If there is no error message, then the package is now locally installed (and available).
For information about other methods for installing RODBC, see Chapter 4.

If you already have the correct ODBC drivers installed (for ex-
ample, to access a database from Microsoft Excel), then you can skip this step.
Table 11-2 shows some sources for ODBC drivers. (I haven’t used most of these
products and am not endorsing any of them.)

Table 11-2. Where to find ODBC drivers

Provider Database Platforms Website

MySQL MySQL Microsoft Windows,
Linux, Mac OS X, Solaris,
AIX, FreeBSD, others

http://dev.mysql.com/downloads/
connector/odbc/

Oracle Oracle Microsoft Windows,
Linux, Solaris

http://www.oracle.com/technol
ogy/tech/windows/odbc/index
.html

PostgreSQL PostgreSQL Microsoft Windows,
Linux, other Unix-like
platforms

http://www.postgresql.org/ftp/
odbc/versions/

Microsoft SQL Server Microsoft Windows http://msdn.microsoft.com/en-us/
data/aa937730.aspx

Data Direct Oracle, SQL Server, DB2,
Sybase, Teradata, MySQL,
PostgreSQL, others

Microsoft Windows,
Linux, other Unix
platforms

http://www.datadirect.com/prod
ucts/odbc/index.ssp

Easysoft Oracle, SQL Server, others Microsoft Windows, Linux http://www.easysoft.com/prod
ucts/data_access/index.html

Actual
Technologies

Oracle, SQL Server,
Sybase, MySQL,
PostgreSQL, SQLite

Mac OS X http://www.actualtechnologies
.com/

Installing ODBC drivers.
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Provider Database Platforms Website

OpenLink Software Oracle, SQL Server, DB2,
Sybase, MySQL,
PostgreSQL, others

Microsoft Windows, Mac
OS X, Linux, others

http://uda.openlinksw.com/odbc/

Christian Werner
Software

SQLite Microsoft Windows, Mac
OS X, Linux

http://www.ch-werner.de/sqli
teodbc/

Follow the directions for the driver you are using. For the example in this section, I
used the SQLite ODBC driver.

To use this free driver, you’ll need to compile and
install the driver yourself. Luckily, this process works flawlessly on Mac OS X
10.5.6.1 Here is how to install the drivers on Mac OS X:

1. Download the latest sources from http://www.ch-werner.de/sqliteodbc/. (Do not
download the precompiled version.) I used sqliteodbc-0.80.tar.gz. You can do
this with this command:

% wget http://www.ch-werner.de/sqliteodbc/sqliteodbc-0.80.tar.gz

2. Unpack and unzip the archive. You can do this with this command:

% tar xvfz sqliteodbc-0.80.tar.gz

3. Change to the directory of sources files:

% cd sqliteodbc-0.80

4. Configure the driver for your platform, compile the driver, and then install it.
You can do this with these commands:

% ./configure
% make
% sudo make install

Now you need to configure your Mac to use this driver.

1. Open the ODBC Administrator program (usually in /Applications/Utilities).

2. Select the Drivers tab and click Add.

3. Enter a name for the driver (like “SQLite ODBC Driver”) in the Description
field. Enter “/usr/local/lib/libsqlite3odbc.dylib” in the Driver File and Setup
File fields, as shown in Figure 11-4. Click the OK button.

4. Now select the User DSN tab or System DSN tab (if you want this database to
be available for all users). Click the Add button to specify the new database.

Example: SQLite ODBC on Mac OS X.

1. You may have to install Apple’s development tools to build this driver. (It’s a good idea to
install Apple’s developer tools anyway so that you can build R packages from source.) You
can download these from http://developer.apple.com/Tools/.
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Figure 11-4. Mac OS X ODBC Administrator: driver settings

5. You will be prompted to choose a driver. Choose SQLite ODBC Driver (or
whatever name you entered above) and click the OK button.

6. Enter a name for the data source, such as “bbdb.” You need to add a keyword
that specifies the database location. Click the Add button at the bottom of the
window. Select the Keyword field in the table and enter Database. Select the
Value field and enter the path to the database. (I entered “/Library/Frameworks/
R.framework/Resources/library/nutshell/extdata/bb.db” to use the example in
the nutshell package.) Figure 11-5 shows how this looks. Click OK when you
are done.

Figure 11-5. Mac OS X ODBC Administrator: adding a data source

The ODBC connection is now configured. You can test this with a couple of simple
commands in R (we’ll explain what these mean below):

> bbdb <- odbcConnect("bbdb")
> odbcGetInfo(bbdb)

DBMS_Name
"SQLite"
DBMS_Ver
"3.4.0"

Driver_ODBC_Ver
"03.00"

Data_Source_Name
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"bbdb"
Driver_Name

"sqlite3odbc.so"
Driver_Ver

"0.80"
ODBC_Ver

"03.52.0000"
Server_Name

"/Library/Frameworks/R.framework/Resources/library/nutshell/bb.db"

On Windows, you don’t have to build the drivers
from source. Here is how to get it working:

1. Download the SQLite ODBC installer package from http://www.ch-werner.de/
sqliteodbc/sqliteodbc.exe.

2. Run the installer, using the default options in the wizard.

3. Open the ODBC Data Source Administrator application. On Microsoft Win-
dows XP, you can find this in Administrative Tools (under Control Panels). You
can click the Drivers tab to make sure that the SQLite ODBC drivers are in-
stalled, as shown in Figure 11-6.

4. Next, you need to configure a DSN for your database. Go to the User DSN tab
(or System DSN if you want to share the database among multiple users) and
click the Add button. Select SQLite3 ODBC Driver and click Finish.

5. You will be prompted for configuration information as shown in Figure 11-7.
Enter a data source name of your choice (I used “bbdb”). Enter the path of the
database file or use the Browse button to browse for the file. (You can find the
path for the file in R using the expression system.file("extdata", "bb.db",
package="nutshell").) Enter 200 ms for the Lock Timeout, select NORMAL as
the Sync Mode, and click Don’t Create Database. When you are done, click OK.

You should now be able to access the bbdb file through ODBC. You can check that
everything worked correctly by entering a couple of commands in R:

> bbdb <- odbcConnect("bbdb")
> odbcGetInfo(bbdb)

DBMS_Name
"SQLite"
DBMS_Ver
"3.6.10"

Driver_ODBC_Ver
"03.00"

Data_Source_Name
"bbdb"

Driver_Name
"C:\\WINDOWS\\system32\\sqlite3odbc.dll"

Driver_Ver
"0.80"

ODBC_Ver
"03.52.0000"
Server_Name

"C:\\Program Files\\R\\R-2.10.0\\library\\nutshell\\data\\bb.db"

Example: SQLite ODBC on Windows.
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Figure 11-6. ODBC Data Source Administrator: Drivers tab

Figure 11-7. SQLite3 ODBC configuration

Using RODBC

Connecting to a database in R is like connecting to a file. First, you need to connect
to a database. Next, you can execute any database queries. Finally, you should close
the connection.

To establish a connection, use the odbcConnect function:

odbcConnect(dsn, uid = "", pwd = "", ...)

Opening a channel.
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You need to specify the DSN for the database to which you want to connect. If you
did not specify a username and password in the DSN, you may specify a username
with the uid argument and a password with the pwd argument. Other arguments are
passed to the underlying odbcDriverConnect function. The odbcConnect function
returns an object of class RODBC that identifies the connection. This object is usually
called a channel.

Here is how you would use this function for the example DSN, “bbdb”:

> library(RODBC)
> bbdb <- odbcConnect("bbdb")

You can get information about an ODBC con-
nection using the odbcGetInfo function. This function takes a channel (the object
returned by odbcConnect) as its only argument. It returns a character vector with
information about the driver and connection; each value in the vector is named.
Example output from this function is shown in “Example: SQLite ODBC on Mac
OS X” on page 159 and “Example: SQLite ODBC on Windows” on page 161.

To get a list of the tables in the underlying database that the connected user can
read, use the sqlTables function. This function returns a data frame with information
about the available tables:

> sqlTables(bbdb)
   TABLE_CAT TABLE_SCHEM TABLE_NAME TABLE_TYPE REMARKS
1       <NA> <NA> Allstar      TABLE    <NA>
2       <NA> <NA> AllstarFull      TABLE    <NA>
3       <NA> <NA> Appearances      TABLE    <NA>
4       <NA> <NA>      AwardsManagers      TABLE    <NA>
5       <NA> <NA>       AwardsPlayers      TABLE    <NA>
6       <NA> <NA> AwardsShareManagers      TABLE    <NA>
7       <NA> <NA>  AwardsSharePlayers      TABLE    <NA>
8       <NA> <NA> Batting      TABLE    <NA>
9       <NA> <NA> BattingPost      TABLE    <NA>
10      <NA> <NA> Fielding      TABLE    <NA>
11      <NA> <NA> FieldingOF      TABLE    <NA>
12      <NA> <NA> FieldingPost      TABLE    <NA>
13      <NA> <NA> HOFold      TABLE    <NA>
14      <NA> <NA> HallOfFame      TABLE    <NA>
15      <NA> <NA> Managers      TABLE    <NA>
16      <NA> <NA> ManagersHalf      TABLE    <NA>
17      <NA> <NA> Master      TABLE    <NA>
18      <NA> <NA> Pitching      TABLE    <NA>
19      <NA> <NA> PitchingPost      TABLE    <NA>
20      <NA> <NA> Salaries      TABLE    <NA>
21      <NA> <NA> Schools      TABLE    <NA>
22      <NA> <NA>      SchoolsPlayers      TABLE    <NA>
23      <NA> <NA> SeriesPost      TABLE    <NA>
24      <NA> <NA> Teams      TABLE    <NA>
25      <NA> <NA>     TeamsFranchises      TABLE    <NA>
26      <NA> <NA> TeamsHalf      TABLE    <NA>
27      <NA> <NA> xref_stats      TABLE    <NA>

To get detailed information about the columns in a specific table, use the
sqlColumns function:

Getting information about the database.
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> sqlColumns(bbdb,"Allstar")
  TABLE_CAT TABLE_SCHEM TABLE_NAME COLUMN_NAME DATA_TYPE   TYPE_NAME
1                          Allstar    playerID        12  varchar(9)
2                          Allstar      yearID         5 smallint(4)
3                          Allstar        lgID        12     char(2)
  COLUMN_SIZE BUFFER_LENGTH DECIMAL_DIGITS NUM_PREC_RADIX NULLABLE
1           9             9             10              0        0
2           4             4             10              0        0
3           2             2             10              0        0
  REMARKS COLUMN_DEF SQL_DATA_TYPE SQL_DATETIME_SUB CHAR_OCTET_LENGTH
1    <NA>                       12               NA             16384
2    <NA>          0             5               NA             16384
3    <NA>                       12               NA             16384
  ORDINAL_POSITION IS_NULLABLE
1                1          NO
2                2          NO
3                3          NO

You can also discover the primary keys for a table using the sqlPrimaryKeys function.

Finally, we’ve gotten to the interesting part: executing queries in the
database and returning results. RODBC provides some functions that let you query
a database even if you don’t know SQL.

To fetch a table (or view) from the underlying database, you can use the sqlFetch
function. This function returns a data frame containing the contents of the table:

sqlFetch(channel, sqtable, ..., colnames = , rownames = )

You need to specify the ODBC channel with the channel argument and the table
name with the sqtable argument. You can specify whether the column names and
row names from the underlying table should be used in the data frame with the
colnames and rownames arguments. The column names from the table will be used in
the returned data frame (this is enabled by default). If you choose to use row names,
the first column in the returned data is used for column names in the data frame
(this is disabled by default). You may pass additional arguments to this function,
which are, in turn, passed to sqlQuery and sqlGetResults (described below).

As an example, let’s load the content of the Teams table into a data frame called “t”:

> teams <- sqlFetch(bbdb,"Teams")
> names(teams)
 [1] "yearID"         "lgID"           "teamID"         "franchID"
 [5] "divID"          "Rank"           "G"              "Ghome"
 [9] "W"              "L"              "DivWin"         "WCWin"
[13] "LgWin"          "WSWin"          "R"              "AB"
[17] "H"              "2B"             "3B"             "HR"
[21] "BB"             "SO"             "SB"             "CS"
[25] "HBP"            "SF"             "RA"             "ER"
[29] "ERA"            "CG"             "SHO"            "SV"
[33] "IPouts"         "HA"             "HRA"            "BBA"
[37] "SOA"            "E"              "DP"             "FP"
[41] "name"           "park"           "attendance"     "BPF"
[45] "PPF"            "teamIDBR"       "teamIDlahman45" "teamIDretro"
> dim(teams)
[1] 2595   48

Getting data.
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After loading the table into R, you can easily manipulate the data using R commands:

> # show wins and losses for American League teams in 2008
> subset(teams,
+   subset=(teams$yearID==2008 & teams$lgID=="AL"),
+   select=c("teamID", "W", "L"))
     teamID   W   L
2567    LAA 100  62
2568    KCA  75  87
2571    DET  74  88
2573    CLE  81  81
2576    CHA  89  74
2577    BOS  95  67
2578    BAL  68  93
2582    MIN  88  75
2583    NYA  89  73
2585    OAK  75  86
2589    SEA  61 101
2592    TBA  97  65
2593    TEX  79  83
2594    TOR  86  76

There are related functions for writing a data frame to a database (sqlSave) or for
updating a table in a database (sqlUpdate); see the help files for these functions for
more information.

You can also execute an arbitrary SQL query in the underlying database. SQL is a
very powerful language; you can use SQL to fetch data from multiple tables, to fetch
a summary of the data in one (or more) tables, or to fetch specific rows or columns
from the database. You can do this with the sqlQuery function:

sqlQuery(channel, query, errors = , max =,  ..., rows_at_time = )

This function returns a data frame containing the rows returned by the query. As an
example, we could use an SQL query to select only the data shown above (wins and
losses by team in the American League in 2008):

> sqlQuery(bbdb,
+   "SELECT teamID, W, L FROM Teams where yearID=2008 and lgID='AL'")
   teamID   W   L
1     BAL  68  93
2     BOS  95  67
3     CHA  89  74
4     CLE  81  81
5     DET  74  88
6     KCA  75  87
7     LAA 100  62
8     MIN  88  75
9     NYA  89  73
10    OAK  75  86
11    SEA  61 101
12    TBA  97  65
13    TEX  79  83
14    TOR  86  76
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If you want to fetch data from a very large table, or from a very complicated query,
you might not want to fetch all the data at one time. The RODBC library provides
a mechanism for fetching results piecewise. To do this, you begin by calling
sqlQuery (or sqlFetch), but specify a value for max, telling the function the maximum
number of rows that you want to retrieve at one time. You can fetch the remaining
rows with the sqlGetResults function:

sqlGetResults(channel, as.is = ,  errors = , max = , buffsize = ,
              nullstring = , na.strings = , believeNRows = , dec = ,
              stringsAsFactors = )

The sqlQuery function actually calls the sqlGetResults function to fetch the results
of the query. Here is a list of the arguments for these two functions. (If you are using
sqlFetch, the corresponding function to fetch additional rows is sqlFetchMore.)

Argument Description Default

channel Specifies the channel for the underlying database.  

query A character value specifying the SQL query to execute.  

errors A logical value specifying what to do when an error is
encountered. When errors=TRUE, the function will
stop and display the error if an error is encountered. When
errors=FALSE, a value of -1 is returned.

TRUE

max An integer specifying the maximum number of rows to
return. Specify 0 for no maximum.

0 (meaning no maximum)

rows_at_time An integer specifying the number of rows to fetch from
the ODBC connection on each call to the underlying driver;
not all drivers allow values greater than 1. (Note that this
is a performance optimization; it doesn’t mean the same
thing as the max argument. For modern drivers, the pack-
age documentation suggests a value of 1,024.)

1

as.is A logical vector specifying which columns should be con-
verted to factors.

FALSE

buffsize An integer used to specify the buffer size for the driver. (If
you know the approximate number of rows that a query
will return, you can specify that value to optimize perfor-
mance.)

1000

nullstring Character values to be used for null values. NA

na.strings Character values to be mapped to NA values. "NA"

believeNRows A logical value that tells this function whether the row
counts returned by the ODBC driver are correct. (This is a
performance optimization.)

TRUE

dec The character used as the decimal point in decimal values. getOption("dec")

stringsAsFactors A logical value that specifies whether character value col-
umns not explicitly included in as.is should be con-
verted to factors.

default.stringsAsFactors()
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By the way, notice that the sqlQuery function can be used to execute any valid query
in the underlying database. It is most commonly used to just query results (using
SELECT queries), but you can enter any valid data manipulation language query
(including SELECT, INSERT, DELETE, and UPDATE queries) and data definition
language query (including CREATE, DROP, and ALTER queries).

Underlying Functions
There is a second set of functions in the RODBC package. The functions odbcQuery,
odbcTables, odbcColumns, and odbcPrimaryKeys are used to execute queries in the
database but not to fetch results. A second function, odbcFetchResults, is used to
get the results. The first four functions return status codes as integers, which is
not very R-like. (It’s more like C.) The odbcFetchResults function returns its results
in list form, which can also be somewhat cumbersome. If there is an error, you
can retrieve the message by calling odbcGetErrMsg.

Sometimes, it might be convenient to use these functions because they give you
greater control over how data is fetched from the database. However, the higher-
level functions described in this section are usually much more convenient.

When you are done using an RODBC channel, you can close it with
the odbcClose function. This function takes the connection name as its only
argument:

> odbcClose(bbdb)

Conveniently, you can also close all open channels using the odbcCloseAll function.
It is generally a good practice to close connections when you are done, because this
frees resources locally and in the underlying database.

DBI
As described above, there is a second set of packages for accessing databases in R:
DBI. DBI is not a single package, but instead is a framework and set of packages for
accessing databases. Table 11-3 shows the set of database drivers available through
this interface. One important difference between the DBI packages and the RODBC
package is in the objects they use: DBI uses S4 objects to represent drivers, connec-
tions, and other objects.

Table 11-3. DBI packages

Database Package

MySQL RMySQL

SQLite RSQLite

Oracle ROracle

PostgreSQL RPostgreSQL

Any database with a JDBC driver RJDBC

Closing a channel.
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As an example, let’s use the RSQLite package. You can install this package with the
following command:

> install.packages("RSQLite")

When you load this package, it will automatically load the DBI package as well:

> library(RSQLite)
Loading required package: DBI

If you are familiar with SQL but new to SQLite, you may want to review what SQL
commands are supported by SQLite. You can find this list at http://www.sqlite.org/
lang.html.

Opening a connection

To open a connection with DBI, use the dbConnect function:

dbConnect(drv, ...)

The argument drv can be a DBIDriver object or a character value describing the driver
to use. You can generate a DBIDriver object with a call to the DBI driver. The
dbConnect function can take additional options, depending on the type of database
you are using. For SQLite databases, the most important argument is dbname (which
specifies the database file). Check the help files for the database you are using for
more options. Even arguments for parameters like usernames are not the same
between databases.

For example, to create a driver for SQLite, you can use a command like this:

> drv <- dbDriver("SQLite")

To open a connection to the example database, we could use the following
command:

> con <- dbConnect(drv,
+   dbname=system.file("extdata", "bb.db", package="nutshell"))

Alternatively, we could skip creating the driver object and simply create the
connection:

> con <- dbConnect("SQLite,
+   dbname=system.file("extdata", "bb.db", package="nutshell"))

There are several reasons why it can be better to explicitly create a driver object.
First, you can get information about open connections if you can identify the driver.
Additionally, if you are concerned with resource consumption, it may be wise to
explicitly create a driver object, because you can free the object later. (See “Cleaning
up” on page 171 for more details.)

Getting DB information

There are several ways to get information about an open database connection object.
As noted above, DBI objects are S4 objects, so they have meaningful classes:

> class(drv)
[1] "SQLiteDriver"
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attr(,"package")
[1] "RSQLite"
> class(con)
[1] "SQLiteConnection"
attr(,"package")
[1] "RSQLite"

To get the list of connection objects associated with a driver object, use the dbList
Connections function:

> dbListConnections(drv)
[[1]]
<SQLiteConnection:(4580,0)>

You can get some basic information about a connection object, such as the database
name and username, through the dbGetInfo function:

> dbGetInfo(con)
$host
[1] "localhost"

$user
[1] "NA"

$dbname
[1] "/Library/Frameworks/R.framework/Resources/library/nutshell/data/bb.db"

$conType
[1] "direct"

$serverVersion
[1] "3.6.4"

$threadId
[1] -1

$rsId
integer(0)

$loadableExtensions
[1] "off"

To find the set of tables that you can access from a database connection, use the
dbListTables function. This function returns a character vector of table names:

> dbListTables(con)
 [1] "Allstar" "AllstarFull" "Appearances"
 [4] "AwardsManagers"      "AwardsPlayers"       "AwardsShareManagers"
 [7] "AwardsSharePlayers"  "Batting" "BattingPost"
[10] "Fielding" "FieldingOF" "FieldingPost"
[13] "HOFold" "HallOfFame" "Managers"
[16] "ManagersHalf" "Master" "Pitching"
[19] "PitchingPost" "Salaries" "Schools"
[22] "SchoolsPlayers"      "SeriesPost" "Teams"
[25] "TeamsFranchises"     "TeamsHalf" "xref_stats"

Importing Data From Databases | 169

Saving, Loading,
and Editing Data



To find the list of columns, use the List dbListFields function. This function takes
a connection object and a table name as arguments and returns a character vector
of column names:

> dbListFields(con,"Allstar")
[1] "playerID" "yearID"   "lgID"

Querying the database

To query a database using DBI and return a data frame with the results, use the
dbGetQuery function. This function requires a connection object and SQL statement
as arguments. Check the help files for your database for additional arguments.

For example, to fetch a list of the wins and losses for teams in the American League
in 2008, you could use the following query:

> wlrecords.2008 <- dbGetQuery(con,
+   "SELECT teamID, W, L FROM Teams where yearID=2008 and lgID='AL'")

To get information on all batters in 2008, you might use a query like this:

> batting.2008 <- dbGetQuery(con,
+   paste("SELECT m.nameLast, m.nameFirst, m.weight, m.height, ",
+ "m.bats, m.throws, m.debut, m.birthYear, b.* ",
+ "from Master m inner join Batting b ",
+ "on m.playerID=b.playerID where b.yearID=2008"))
> names(batting.2008)
 [1] "nameLast"  "nameFirst" "weight"    "height"    "bats"
 [6] "throws"    "debut"     "birthYear" "playerID"  "yearID"
[11] "stint"     "teamID"    "lgID"      "G" "G_batting"
[16] "AB" "R" "H" "2B" "3B"
[21] "HR" "RBI"       "SB" "CS" "BB"
[26] "SO" "IBB"       "HBP"       "SH" "SF"
[31] "GIDP"      "G_old"
> dim(batting.2008)
[1] 1384   31

This data set is used in other sections of this book as an example. For convenience,
it is included in the nutshell package.

You might find it more convenient to separately submit an SQL query and fetch the
results. To do this, you would use the dbSendQuery function to send a query and then
use fetch to get the results. The dbSendQuery function returns a DBIResult object
(actually, it returns an object from a class that inherits from DBIResult). You then
use the fetch function to extract data from the results object.

The dbSendQuery function takes the same arguments as dbGetQuery. The fetch func-
tion takes a result object res as an argument, an integer value n representing the
maximum number of rows to return, and additional arguments passed to the meth-
ods for a specific database driver. To fetch all records, you can omit n, or use n=-1.
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For example, the following R statements are equivalent to the dbGetQuery statements
shown above:

> res <- dbSendQuery(con,
+   "SELECT teamID, W, L FROM Teams where yearID=2008 and lgID='AL'")
> wlrecords.2008 <- fetch(res)

You can clear pending results using the dbClearResult function:

> # query to fetch a lot of results
> res <- dbSendQuery(con,"SELECT * from Master")
> # function to clear the results
> dbClearResult(res)
[1] TRUE

If an error occurred, you can get information about the error with the
dbGetException function:

> # SQL statement that will generate an error.
> # Notice that an error message is printed.
> res <- dbSendQuery(con,"SELECT * from non_existent_table")
Error in sqliteExecStatement(conn, statement, ...) :
  RS-DBI driver: (error in statement: no such table: non_existent_table)
> # now, manually get the error message
> dbGetException(con)
$errorNum
[1] 1

$errorMsg
[1] "error in statement: no such table: non_existent_table"

Finally, DBI provides some functions for reading whole tables from a database
or writing whole data frames to a database. To read a whole table, use the
dbReadTable function:

> batters <- dbReadTable(con, "Batting")
> dim(batters)
[1] 91457    24

To write a data frame to a table, you can use the dbWriteTable function. You can
check if a table exists with the dbExistsTable function, and you can delete a table
with the dbRemoveTable function.

Cleaning up

To close a database connection, use the dbDisconnect function:

> dbDisconnect(con)
[1] TRUE

You can also explicitly unload the database driver, freeing system resources, by using
the dbUnloadDriver function. With some databases, you can pass additional argu-
ments to this driver; see the help files for the database you are using for more
information.

> dbUnloadDriver(drv)
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TSDBI
There is one last database interface in R that you might find useful: TSDBI. TSDBI
is an interface specifically designed for time series data. There are TSDBI packages
for many popular databases, as shown in Table 11-4.

Table 11-4. TSDBI packages

Database Package

MySQL TSMySQL

SQLite TSSQLite

Fame TSFame

PostgreSQL TSPostgreSQL

Any database with an ODBC driver TSODBC

Getting Data from Hadoop
Today, one of the most important sources for data is Hadoop. To learn more about
Hadoop, including instructions on how to install R packages for working with Ha-
doop data on HDFS or in HBase, see “R and Hadoop” on page 549.
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12
Preparing Data

Back in my freshman year of college, I was planning to be a biochemist. I spent hours
and hours in the lab: mixing chemicals in test tubes, putting samples in different
machines, and analyzing the results. Over time, I grew frustrated because I found
myself spending weeks in the lab doing manual work and just a few minutes planning
experiments or analyzing results. After a year, I gave up on chemistry and became a
computer scientist, thinking that I would spend less time on preparation and testing
and more time on analysis.

Unfortunately for me, I chose to do data mining work professionally. Everyone loves
building models, drawing charts, and playing with cool algorithms. Unfortunately,
most of the time you spend on data analysis projects is spent on preparing data for
analysis. I’d estimate that 80% of the effort on a typical project is spent on finding,
cleaning, and preparing data for analysis. Less than 5% of the effort is devoted to
analysis. (The rest of the time is spent on writing up what you did.)

If you’re new to data analysis, you’re probably wondering what the big deal is about
preparing data. Suppose that you are getting some data off of your company’s web
servers, or out of a financial database, or from electronic patient records. It all came
from computers, so it’s perfect, right?

In practice, data is almost never stored in the right form for analysis. Even when data
is in the right form, there are often surprises in the data. It takes a lot of work to pull
together a usable data set. This chapter explains how to prepare data for analysis
with R.

Combining Data Sets
Let’s start with one of the most common obstacles to data analysis: working with
data that’s stored in two different places. For example, suppose that you wanted to
look at batting statistics for baseball players by age. In most baseball data sources
(like the Baseball Databank data), player information (like ages) is kept in different
files from performance data (like batting statistics). So you would need to combine
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two files to do this analysis. This section discusses several tools in R used for com-
bining data sets.

Pasting Together Data Structures
R provides several functions that allow you to paste together multiple data structures
into a single structure.

Paste

The simplest of these functions is paste. The paste function allows you to concate-
nate multiple character vectors into a single vector. (If you concatenate a vector of
another type, it will be coerced to a character vector first.)

> x <- c("a", "b", "c", "d", "e")
> y <- c("A", "B", "C", "D", "E")
> paste(x,y)
[1] "a A" "b B" "c C" "d D" "e E"

By default, values are separated by a space; you can specify another separator (or
none at all) with the sep argument:

> paste(x, y, sep="-")
[1] "a-A" "b-B" "c-C" "d-D" "e-E"

If you would like all of values in the returned vector to be concatenated with one
another (to return just a single value), then specify a value for the collapse argument.
The value of collapse will be used as the separator in this value:

> paste(x, y, sep="-", collapse="#")
[1] "a-A#b-B#c-C#d-D#e-E"

rbind and cbind

Sometimes, you would like to bind together multiple data frames or matrices. You
can do this with the rbind and cbind functions. The cbind function will combine
objects by adding columns. You can picture this as combining two tables horizon-
tally. As an example, let’s start with the data frame for the top five salaries in the
NFL in 2008:1

> top.5.salaries
  name.last name.first     team position   salary
1   Manning     Peyton    Colts       QB 18700000
2     Brady        Tom Patriots       QB 14626720
3    Pepper     Julius Panthers       DE 14137500
4    Palmer     Carson  Bengals       QB 13980000
5   Manning        Eli   Giants       QB 12916666

Now let’s create a new data frame with two more columns (a year and a rank):

> year <- c(2008, 2008, 2008, 2008, 2008)
> rank <- c(1, 2, 3, 4, 5)

1. Salary data is from http://sportsillustrated.cnn.com/football/nfl/salaries/2008/all.html. The
salary numbers are cap numbers, not cash salaries.
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> more.cols <- data.frame(year, rank)
> more.cols
  year rank
1 2008    1
2 2008    2
3 2008    3
4 2008    4
5 2008    5

Finally, let’s put together these two data frames:

> cbind(top.5.salaries, more.cols)
  name.last name.first     team position   salary year rank
1   Manning     Peyton    Colts       QB 18700000 2008    1
2     Brady Tom Patriots       QB 14626720 2008    2
3    Pepper     Julius Panthers       DE 14137500 2008    3
4    Palmer     Carson  Bengals       QB 13980000 2008    4
5   Manning Eli   Giants       QB 12916666 2008    5

The rbind function will combine objects by adding rows. You can picture this as
combining two tables vertically.

As an example, suppose that you had a data frame with the top five salaries (as shown
above) and a second data frame with the next three salaries:

> top.5.salaries
  name.last name.first     team position   salary
1   Manning     Peyton    Colts       QB 18700000
2     Brady Tom Patriots       QB 14626720
3    Pepper     Julius Panthers       DE 14137500
4    Palmer     Carson  Bengals       QB 13980000
5   Manning Eli   Giants       QB 12916666
> next.three
  name.last name.first    team position   salary
6     Favre      Brett Packers       QB 12800000
7    Bailey      Champ Broncos       CB 12690050
8  Harrison     Marvin   Colts       WR 12000000

You could combine these into a single data frame using the rbind function:

> rbind(top.5.salaries, next.three)
  name.last name.first     team position   salary
1   Manning     Peyton    Colts       QB 18700000
2     Brady Tom Patriots       QB 14626720
3    Pepper     Julius Panthers       DE 14137500
4    Palmer     Carson  Bengals       QB 13980000
5   Manning Eli   Giants       QB 12916666
6     Favre      Brett  Packers       QB 12800000
7    Bailey      Champ  Broncos       CB 12690050
8  Harrison     Marvin    Colts       WR 12000000

An extended example

To show how to fetch and combine together data and build a data frame for analysis,
we’ll use an example from the previous chapter: stock quotes. Yahoo! Finance allows
you to download CSV files with stock quotes for a single ticker.
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Suppose that you wanted a single data set with stock quotes for multiple securities
(say, the 30 stocks in the Dow Jones Industrial Average). You would need a way to
bind together the data returned by the query into a single data set. Let’s write a
function that can return historical stock quotes for multiple securities in a single
data frame. First, let’s write a function that assembles the URL for the CSV file and
then fetches a data frame with the contents.

Here is what this function will do. First, it will define the URL. (I determined the
format of the URL by trial and error: I tried fetching CSV files from Yahoo! Finance
with different ticker symbols and different date ranges until I knew how to construct
the queries.) We will use the paste function to put together all these different char-
acter values. Next, we will fetch the URL with the read.csv function, assigning the
data frame to the symbol tmp. The data frame has most of the information we want
but doesn’t include the ticker symbol. So we will use the cbind function to attach a
vector of ticker symbols to the data frame. (By the way, the function uses Date objects
to represent the date. I also used the current date as the default value for to, and the
date one year ago as the default value for from.)

Here is the function:

get.quotes <- function(ticker,
                       from=(Sys.Date()-365),
                       to=(Sys.Date()),
                       interval="d") {

 # define parts of the URL
 base <- "http://ichart.finance.yahoo.com/table.csv?";
 symbol <- paste("s=", ticker, sep="");

 # months are numbered from 00 to 11, so format the month correctly
 from.month <- paste("&a=",
  formatC(as.integer(format(from,"%m"))-1,width=2,flag="0"),
  sep="");
 from.day <- paste("&b=", format(from,"%d"), sep="");
 from.year <- paste("&c=", format(from,"%Y"), sep="");
 to.month <- paste("&d=",
  formatC(as.integer(format(to,"%m"))-1,width=2,flag="0"),
  sep="");
 to.day <- paste("&e=", format(to,"%d"), sep="");
 to.year <- paste("&f=", format(to,"%Y"), sep="");
 inter <- paste("&g=", interval, sep="");
 last <- "&ignore=.csv";

 # put together the url
 url <- paste(base, symbol, from.month, from.day, from.year,
              to.month, to.day, to.year, inter, last, sep="");

 # get the file
 tmp <- read.csv(url);

 # add a new column with ticker symbol labels
 cbind(symbol=ticker,tmp);
}
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Now let’s write a function that returns a data frame with quotes from multiple se-
curities. This function will simply call get.quotes once for every ticker in a vector of
tickers and bind together the results using rbind:

get.multiple.quotes <- function(tkrs,
from=(Sys.Date()-365),
to=(Sys.Date()),
interval="d") {

    tmp <- NULL;
    for (tkr in tkrs) {

if (is.null(tmp))
tmp <- get.quotes(tkr,from,to,interval)

else tmp <- rbind(tmp,get.quotes(tkr,from,to,interval))
}

    tmp
}

Finally, let’s define a vector with the set of ticker symbols in the Dow Jones Industrial
Average and then build a data frame with data from all 30 tickers:

>  dow.tickers <- c("MMM", "AA", "AXP", "T", "BAC", "BA", "CAT", "CVX",
+  "CSCO", "KO", "DD", "XOM", "GE", "HPQ", "HD", "INTC",
+  "IBM", "JNJ", "JPM", "KFT", "MCD", "MRK", "MSFT", "PFE",
+  "PG", "TRV", "UTX", "VZ", "WMT", "DIS")
> # date on which I ran this code
> Sys.Date()
[1] "2012-01-08"
> dow30 <- get.multiple.quotes(dow30.tickers)

We’ll return to this data set below.data

Merging Data by Common Fields
As an example, let’s return to the Baseball Databank database that we used in
“Importing Data From Databases” on page 156. In this database, player information
is stored in the Master table. Players are uniquely identified by the column playerID:

> dbListFields(con,"Master")
 [1] "lahmanID"     "playerID"     "managerID"    "hofID"
 [5] "birthYear"    "birthMonth"   "birthDay"     "birthCountry"
 [9] "birthState"   "birthCity"    "deathYear"    "deathMonth"
[13] "deathDay"     "deathCountry" "deathState"   "deathCity"
[17] "nameFirst"    "nameLast"     "nameNote"     "nameGiven"
[21] "nameNick"     "weight"       "height"       "bats"
[25] "throws"       "debut" "finalGame"    "college"
[29] "lahman40ID"   "lahman45ID"   "retroID"      "holtzID"
[33] "bbrefID"

Batting information is stored in the Batting table. Players are uniquely identified by
playerID in this table as well:

> dbListFields(con, "Batting")
 [1] "playerID"  "yearID"    "stint"     "teamID"    "lgID"
 [6] "G" "G_batting" "AB" "R" "H"
[11] "2B" "3B" "HR" "RBI"       "SB"
[16] "CS" "BB" "SO" "IBB"       "HBP"
[21] "SH" "SF" "GIDP"      "G_old"
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Suppose that you wanted to show batting statistics for each player along with his
name and age. To do this, you would need to merge data from the two tables. In R,
you can do this with the merge function:

> batting <- dbGetQuery(con, "SELECT * FROM Batting")
> master <- dbGetQuery(con, "SELECT * FROM Master")
> batting.w.names <- merge(batting, master)

In this case, there was only one common variable between the two tables: playerID:

> intersect(names(batting), names(master))
[1] "playerID"

By default, merge uses common variables between the two data frames as the merge
keys. So, in this case, we did not have to specify any more arguments to merge. Let’s
take a closer look at the arguments to merge (for data frames):

merge(x, y, by = , by.x = , by.y = , all = , all.x = , all.y = ,
      sort = , suffixes = , incomparables = , ...)

Here is a description of the arguments to merge.

Argument Description Default

x One of the two data frames to combine.

y One of the two data frames to combine.

by A vector of character values corresponding to column
names.

intersect(names(x), names(y))

by.x A vector of character values corresponding to column
names in x. Overrides the list given in by.

by

by.y A vector of character values corresponding to column
names in y. Overrides the list given in by.

by

all A logical value specifying whether rows from each data
frame should be included even if there is no match in
the other data frame. This is equivalent to an OUTER
JOIN in a database. (Equivalent to all.x=TRUE and
all.y=TRUE.)

FALSE

all.x A logical value specifying whether rows from data
frame x should be included even if there is no match
in the other data frame. This is equivalent to x LEFT
OUTER JOIN y in a database.

all

all.y A logical value specifying whether rows from data
frame x should be included even if there is no match
in the other data frame. This is equivalent to x RIGHT
OUTER JOIN y in a database.

all

sort A logical value that specifies whether the results should
be sorted by the by columns.

TRUE

suffixes A character vector with two values. If there are columns
in x and y with the same name that are not used in the
by list, they will be renamed with the suffixes given
by this argument.

suffixes = c(“.x”, “.y”)
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Argument Description Default

incomparables A list of variables that cannot be matched. NULL

By default, merge is equivalent to a NATURAL JOIN in SQL. You can specify other
columns to make it use merge like an INNER JOIN. You can specify values of ALL
to get the same results as OUTER or FULL joins. If there are no matching field names,
or if by is of length 0 (or by.x and by.y are of length 0), then merge will return the
full Cartesian product of x and y.

Transformations
Sometimes, there will be some variables in your source data that aren’t quite right.
This section explains how to change a variable in a data frame.

Reassigning Variables
One of the most convenient ways to redefine a variable in a data frame is to use the
assignment operator. For example, suppose that you wanted to change the type of
a variable in the dow30 data frame that we created above. When read.csv imported
this data, it interpreted the “Date” field as a character string and converted it to a
factor:

> class(dow30$Date)
[1] "factor"

Factors are fine for some things, but we could better represent the date field as a
Date object. (That would create a proper ordering on dates and allow us to extract
information from them.) Luckily, Yahoo! Finance prints dates in the default date
format for R, so we can just transform these values into Date objects using as.Date
(see the help file for as.Date for more information). So let’s change this variable
within the data frame to use Date objects:

> dow30$Date <- as.Date(dow30$Date)
> class(dow30$Date)
[1] "Date"

It’s also possible to make other changes to data frames. For example, suppose that
we wanted to define a new midpoint variable that is the mean of the high and low
price. We can add this variable with the same notation:

> dow30$mid <- (dow30$High + dow30$Low) / 2
> names(dow30)
[1] "symbol"    "Date"      "Open"      "High"      "Low"
[6] "Close"     "Volume"    "Adj.Close" "mid"

The Transform Function
A convenient function for changing variables in a data frame is the transform func-
tion. Formally, transform is defined as:

transform(`_data`, ...)

Transformations | 179

Preparing Data



Notice that there aren’t any named arguments for this function. To use transform,
you specify a data frame (as the first argument) and a set of expressions that use
variables within the data frame. The transform function applies each expression to
the data frame and then returns the final data frame.

For example, suppose that we wanted to perform the two transformations listed
above: changing the Date column to a Date format, and adding a new midpoint
variable. We could do this with transform using the following expression:

> dow30.transformed <- transform(dow30, Date=as.Date(Date),
+   mid = (High + Low) / 2)
> names(dow30.transformed)
[1] "symbol"    "Date"      "Open"      "High"      "Low"
[6] "Close"     "Volume"    "Adj.Close" "mid"
> class(dow30.transformed$Date)
[1] "Date"

Applying a Function to Each Element of an Object
When transforming data, one common operation is to apply a function to a set of
objects (or each part of a composite object) and return a new set of objects (or a new
composite object). The base R library includes a set of different functions for doing
this.

Applying a function to an array

To apply a function to parts of an array (or matrix), use the apply function:

apply(X, MARGIN, FUN, ...)

Apply accepts three arguments: X is the array to which a function is applied, FUN is
the function, and MARGIN specifies the dimensions to which you would like to apply
a function. Optionally, you can specify arguments to FUN as addition arguments to
apply arguments to FUN.) To show how this works, here’s a simple example. Let’s
create a matrix with five rows of four elements, corresponding to the numbers be-
tween 1 and 20:

> x <- 1:20
> dim(x) <- c(5, 4)
> x
     [,1] [,2] [,3] [,4]
[1,]    1    6   11   16
[2,]    2    7   12   17
[3,]    3    8   13   18
[4,]    4    9   14   19
[5,]    5   10   15   20

Now let’s show how apply works. We’ll use the function max because it’s easy to
look at the matrix above and see where the results came from.

First, let’s select the maximum element of each row. (These are the values in the
rightmost column: 16, 17, 18, 19, and 20.) To do this, we will specify X=x,
MARGIN=1 (rows are the first dimension), and FUN=max:
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> apply(X=x, MARGIN=1, FUN=max)
[1] 16 17 18 19 20

To do the same thing for columns, we simply have to change the value of MARGIN:

> apply(X=x, MARGIN=2, FUN=max)
[1]  5 10 15 20

As a slightly more complex example, we can also use MARGIN to apply a function over
multiple dimensions. (We’ll switch to the function paste to show which elements
were included.) Consider the following three-dimensional array:

> x <- 1:27
> dim(x) <- c(3, 3, 3)
> x
, , 1

     [,1] [,2] [,3]
[1,]    1    4    7
[2,]    2    5    8
[3,]    3    6    9

, , 2

     [,1] [,2] [,3]
[1,]   10   13   16
[2,]   11   14   17
[3,]   12   15   18

, , 3

     [,1] [,2] [,3]
[1,]   19   22   25
[2,]   20   23   26
[3,]   21   24   27

Let’s start by looking at which values are grouped for each value of MARGIN:

> apply(X=x, MARGIN=1, FUN=paste, collapse=",")
[1] "1,4,7,10,13,16,19,22,25" "2,5,8,11,14,17,20,23,26"
[3] "3,6,9,12,15,18,21,24,27"
> apply(X=x, MARGIN=2, FUN=paste, collapse=",")
[1] "1,2,3,10,11,12,19,20,21" "4,5,6,13,14,15,22,23,24"
[3] "7,8,9,16,17,18,25,26,27"
> apply(X=x, MARGIN=3, FUN=paste, collapse=",")
[1] "1,2,3,4,5,6,7,8,9"          "10,11,12,13,14,15,16,17,18"
[3] "19,20,21,22,23,24,25,26,27"

Let’s do something more complicated. Let’s select MARGIN=c(1, 2) to see which el-
ements are selected:

> apply(X=x, MARGIN=c(1,2), FUN=paste, collapse=",")
     [,1]      [,2]      [,3]
[1,] "1,10,19" "4,13,22" "7,16,25"
[2,] "2,11,20" "5,14,23" "8,17,26"
[3,] "3,12,21" "6,15,24" "9,18,27"
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This is the equivalent of doing the following: for each value of i between 1 and 3 and
each value of j between 1 and 3, calculate FUN of x[i][j][1], x[i][j][2], x[i][j][3].

Applying a function to a list or vector

To apply a function to each element in a vector or a list and return a list, you can
use the function lapply. The function lapply requires two arguments: an object X
and a function FUNC. (You may specify additional arguments that will be passed to
FUNC.) Let’s look at a simple example of how to use lapply:

> x <- as.list(1:5)
> lapply(x,function(x) 2^x)
[[1]]
[1] 2

[[2]]
[1] 4

[[3]]
[1] 8

[[4]]
[1] 16

[[5]]
[1] 32

You can apply a function to a data frame, and the function will be applied to each
vector in the data frame. For example:

> d <- data.frame(x=1:5, y=6:10)
> d
  x  y
1 1  6
2 2  7
3 3  8
4 4  9
5 5 10
> lapply(d,function(x) 2^x)
$x
[1]  2  4  8 16 32

$y
[1]   64  128  256  512 1024
> lapply(d,FUN=max)
$x
[1] 5

$y
[1] 10

Sometimes, you might prefer to get a vector, matrix, or array instead of a list. To do
this, use the sapply function. This function works exactly the same way as apply,
except that it returns a vector or matrix (when appropriate):
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> sapply(d, FUN=function(x) 2^x)
      x    y
[1,]  2   64
[2,]  4  128
[3,]  8  256
[4,] 16  512
[5,] 32 1024

Another related function is mapply, the “multivariate” version of sapply:

mapply(FUN, ..., MoreArgs = , SIMPLIFY = , USE.NAMES = )

Here is a description of the arguments to mapply.

Argument Description Default

FUN The function to apply.  

... A set of vectors over which FUN should be applied.  

MoreArgs A list of additional arguments to pass to FUN.  

SIMPLIFY A logical value indicating whether to simplify the returned array. TRUE

USE.NAMES A logical value indicating whether to use names for returned values. Names are taken from
the values in the first vector (if it is a character vector) or from the names of elements in that
vector.

TRUE

This function will apply FUN to the first element of each vector, then to the second,
and so on, until it reaches the last element.

Here is a simple example of mapply:

> mapply(paste,
+        c(1, 2, 3, 4, 5),
+        c("a", "b", "c", "d", "e"), 
+        c("A", "B", "C", "D", "E"),
+        MoreArgs=list(sep="-"))
[1] "1-a-A" "2-b-B" "3-c-C" "4-d-D" "5-e-E"

the plyr library

At this point, you’re probably confused by all the different apply functions. They all
accept different arguments, they’re named inconsistently, and they work differently.
Luckily, you don’t have to remember any of the details of these function if you use
the plyr package.

The plyr package contains a set of 12 logically named functions for applying another
function to an R data object and returning the results. Each of these functions takes
an array, data frame, or list as input and returns an array, data frame, list, or nothing
as output. (You can choose to discard the results.) Here’s a table of the most useful
functions:
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Input Array Output Data Frame Output List Output Discard Output

Array aaply adply alply a_ply

Data Frame daply ddply dlply d_ply

List laply ldply llply l_ply

All of these functions accept the following arguments:

Argument Description Default

.data The input data object

.fun The function to apply to the data NULL

.progress The type of progress bar (created with create_progress); choices include "none",
"text", "tk", and "win"

"none"

.expand If .data is a dataframe, controls how output is expanded; choose .expand=TRUE for 1d
output, .expand=FALSE for nd.

TRUE

.parallel Specifies whether to apply the function in parallel (through foreach) FALSE

... Other arguments passed to .fun

Other arguments depend on the input and output. If the input is an array, then these
arguments are available:

Argument Description Default

.margins A vector describing the subscripts to split up data by

If the input is a data frame, then these arguments are available:

Argument Description Default

.drop (or .drop_i for daply) Specifies whether to drop combinations of variables that do not appear in the
data input

TRUE

.variables Specifies a set of variables by which to split the data frame

.drop_o (for daply only) Specifies whether to drop extra dimensions in the output for dimensions of
length 1

TRUE

If the output is dropped, then this argument is available:

Argument Description Default

.print Specifies whether to print each output value FALSE

Let’s try to re-create some of our examples from above using plyr:

> # (1) input list, output list
> lapply(d, function(x) 2^x)
$x
[1]  2  4  8 16 32
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$y
[1]   64  128  256  512 1024
> # equivalent is llply
> llply(.data=d, .fun=function(x) 2^x)
$x
[1]  2  4  8 16 32

$y
[1]   64  128  256  512 1024
> # (2) input is an array, output is a vector
> apply(X=x,MARGIN=1, FUN=paste, collapse=",")
[1] "1,4,7,10,13,16,19,22,25" "2,5,8,11,14,17,20,23,26"
[3] "3,6,9,12,15,18,21,24,27"
> # equivalent (but note labels)
> aaply(.data=x,.margins=1, .fun=paste, collapse=",")

1 2
"1,4,7,10,13,16,19,22,25" "2,5,8,11,14,17,20,23,26"

3
"3,6,9,12,15,18,21,24,27"
> # (3) Data frame in, matrix out
> t(sapply(d, FUN=function(x) 2^x))
  [,1] [,2] [,3] [,4] [,5]
x    2    4    8   16   32
y   64  128  256  512 1024
> # equivalent (but note the additional labels)
> aaply(.data=d, .fun=function(x) 2^x, .margins=2)

X1   1   2   3   4    5
  x  2   4   8  16   32
  y 64 128 256 512 1024

Binning Data
Another common data transformation is to group a set of observations into bins
based on the value of a specific variable. For example, suppose you had some time
series data where time was measured in days, but you wanted to summarize the data
by month. There are several functions available for binning numeric data in R.

Shingles
We briefly mentioned shingles in “Shingles” on page 95. Shingles are a way to rep-
resent intervals in R. They can be overlapping, like roof shingles (hence the name).
They are used extensively in the lattice package, when you want to use a numeric
value as a conditioning value.

To create shingles in R, use the shingle function:

shingle(x, intervals=sort(unique(x)))

To specify where to separate the bins, use the intervals argument. You can use a
numeric vector to indicate the breaks or a two-column matrix, where each row rep-
resents a specific interval.
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To create shingles where the number of observations is the same in each bin, you
can use the equal.count function:

equal.count(x, ...)

Cut
The function cut is useful for taking a continuous variable and splitting it into dis-
crete pieces. Here is the default form of cut for use with numeric vectors:

# numeric form
cut(x, breaks, labels = NULL,
    include.lowest = FALSE, right = TRUE, dig.lab = 3,
    ordered_result = FALSE, ...)

There is also a version of cut for manipulating Date objects:

# Date form
cut(x, breaks, labels = NULL, start.on.monday = TRUE,
    right = FALSE, ...)

The cut function takes a numeric vector as input and returns a factor. Each level in
the factor corresponds to an interval of values in the input vector. Here is a descrip-
tion of the arguments to cut.

Argument Description Default

x A numeric vector (to convert to a factor).

breaks Either a single integer value specifying the number of break points or a numeric vector
specifying the set of break points.

labels Labels for the levels in the output factor. NULL

include.lowest A logical value indicating if a value equal to the lowest point in the range (if
right=TRUE) in a range should be included in a given bucket. If right=FALSE
indicates whether a value equal to the highest point in the range should be included.

FALSE

right A logical value that specifies whether intervals should be closed on the right and open
on the left. (For right=FALSE, intervals will be open on the right and closed on the left.)

TRUE

dig.lab Number of digits used when generating labels (if labels are not explicitly specified). 3

ordered_results A logical value indicating whether the result should be an ordered factor. FALSE

For example, suppose that you wanted to count the number of players with batting
averages in certain ranges. To do this, you could use the cut function and the
table function:

> # load in the example data
> library(nutshell)
> data(batting.2008)
> # first, add batting average to the data frame:
> batting.2008.AB <- transform(batting.2008, AVG = H/AB)
> # now, select a subset of players with over 100 AB (for some
> # statistical significance):
> batting.2008.over100AB <- subset(batting.2008.AB, subset=(AB > 100))
> # finally, split the results into 10 bins:
> battingavg.2008.bins <- cut(batting.2008.over100AB$AVG,breaks=10)
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> table(battingavg.2008.bins)
battingavg.2008.bins
(0.137,0.163] (0.163,0.189] (0.189,0.215]  (0.215,0.24]  (0.24,0.266]

4 6 24 67 121
(0.266,0.292] (0.292,0.318] (0.318,0.344]  (0.344,0.37]  (0.37,0.396]

132 70 11 5 2

Combining Objects with a Grouping Variable
Sometimes you would like to combine a set of similar objects (either vectors or data
frames) into a single data frame, with a column labeling the source. You can do this
with the make.groups function in the lattice package:

library(lattice)
make.groups(...)

For example, let’s combine three different vectors into a data frame:

> hat.sizes <- seq(from=6.25, to=7.75, by=.25)
> pants.sizes <- c(30, 31, 32, 33, 34, 36, 38, 40)
> shoe.sizes <- seq(from=7, to=12)
> make.groups(hat.sizes, pants.sizes, shoe.sizes)

data       which
hat.sizes1    6.25   hat.sizes
hat.sizes2    6.50   hat.sizes
hat.sizes3    6.75   hat.sizes
hat.sizes4    7.00   hat.sizes
hat.sizes5    7.25   hat.sizes
hat.sizes6    7.50   hat.sizes
hat.sizes7    7.75   hat.sizes
pants.sizes1 30.00 pants.sizes
pants.sizes2 31.00 pants.sizes
pants.sizes3 32.00 pants.sizes
pants.sizes4 33.00 pants.sizes
pants.sizes5 34.00 pants.sizes
pants.sizes6 36.00 pants.sizes
pants.sizes7 38.00 pants.sizes
pants.sizes8 40.00 pants.sizes
shoe.sizes1   7.00  shoe.sizes
shoe.sizes2   8.00  shoe.sizes
shoe.sizes3   9.00  shoe.sizes
shoe.sizes4  10.00  shoe.sizes
shoe.sizes5  11.00  shoe.sizes
shoe.sizes6  12.00  shoe.sizes

Subsets
Often, you’ll be provided with too much data. For example, suppose that you were
working with patient records at a hospital. You might want to analyze healthcare
records for patients between 5 and 13 years of age who were treated for asthma
during the past 3 years. To do this, you need to take a subset of the data and not
examine the whole database.

Other times, you might have too much relevant data. For example, suppose that you
were looking at a logistics operation that fills billions of orders every year. R can
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hold only a certain number of records in memory and might not be able to hold the
entire database. In most cases, you can get statistically significant results with a tiny
fraction of the data; even millions of orders might be too many.

Bracket Notation
One way to take a subset of a data set is to use the bracket notation. As you may
recall, you can select rows in a data frame by providing a vector of logical values. If
you can write a simple expression describing the set of rows to select from a data
frame, you can provide this as an index.

For example, suppose that we wanted to select only batting data from 2008. The
column batting.w.names$yearID contains the year associated with each row, so we
could calculate a vector of logical values describing which rows to keep with the
expression batting.w.names$yearID==2008. Now we just have to index the data frame
batting.w.names with this vector to select only rows for the year 2008:

> batting.w.names.2008 <- batting.w.names[batting.w.names$yearID==2008,]
> summary(batting.w.names.2008$yearID)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
   2008    2008    2008    2008    2008    2008

Similarly, we can use the same notation to select only certain columns. Suppose that
we wanted to keep only the variables nameFirst, nameLast, AB, H, and BB. We could
provide these in the brackets as well:

> batting.w.names.2008.short <-
+    batting.w.names[batting.w.names$yearID==2008,
+    c("nameFirst", "nameLast", "AB", "H", "BB")]

subset Function
As an alternative, you can use the subset function to select a subset of rows and
columns from a data frame (or matrix):

subset(x, subset, select, drop = FALSE, ...)

There isn’t anything you can do with subset that you can’t do with the bracket
notation, but using subset can lead to more readable code. Subset allows you to use
variable names from the data frame when selecting subsets, saving some typing. Here
is a description of the arguments to subset.

Argument Description Default

x The object from which to calculate a subset.

subset A logical expression that describes the set of rows to return.

select An expression indicating which columns to return.

drop Passed to `[`. FALSE

As an example, let’s recreate the same data sets we created above using subset:
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> batting.w.names.2008 <- subset(batting.w.names, yearID==2008)
> batting.w.names.2008.short <- subset(batting.w.names, yearID==2008,
+      c("nameFirst","nameLast","AB","H","BB"))

Random Sampling
Often, it is desirable to take a random sample of a data set. Sometimes, you might
have too much data (for statistical reasons or for performance reasons). Other times,
you simply want to split your data into different parts for modeling (usually into
training, testing, and validation subsets).

One of the simplest ways to extract a random sample is with the sample function.
The sample function returns a random sample of the elements of a vector:

sample(x, size, replace = FALSE, prob = NULL)

Argument Description Default

x The object from which the sample is taken

size An integer value specifying the sample size

replace A logical value indicating whether to sample with, or without, replacement FALSE

prob A vector of probabilities for selecting each item NULL

Somewhat nonintuitively, when applied to a data frame, sample will return a random
sample of the columns. (Remember that a data frame is implemented as a list of
vectors, so sample is just taking a random sample of the elements of the list.) So you
need to be a little more clever when you use sample with a data frame.

To take a random sample of the observations in a data set, you can use sample to
create a random sample of row numbers and then select these row numbers using
an index operator. For example, let’s take a random sample of five elements from
the batting.2008 data set:

> batting.2008[sample(1:nrow(batting.2008), 5), ]
       playerID yearID stint teamID lgID   G G_batting  AB  R  H 2B 3B
90648 izturma01   2008     1    LAA   AL  79 79 290 44 78 14  2
90280 benoijo01   2008     1    TEX   AL  44 3   0  0  0  0  0
90055 percitr01   2008     1    TBA   AL  50 4   0  0  0  0  0
91085  getzch01   2008     1    CHA   AL  10 10   7  2  2  0  0
90503 willijo03   2008     1    FLO   NL 102       102 351 54 89 21  5
      HR RBI SB CS BB SO IBB HBP SH SF GIDP G_old
90648  3  37 11  2 26 27   0   1  2  2    9    79
90280  0   0  0  0  0  0   0   0  0  0    0     3
90055  0   0  0  0  0  0   0   0  0  0    0     4
91085  0   1  1  1  0  1   0   0  0  0    0    10
90503 15  51  3  2 48 82   2  14  1  2    7   102

You can also use this technique to select a more complicated random subset. For
example, suppose that you wanted to randomly select statistics for three teams. You
could do this as follows:

> batting.2008$teamID <- as.factor(batting.2008$teamID)
> levels(batting.2008$teamID)
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 [1] "ARI" "ATL" "BAL" "BOS" "CHA" "CHN" "CIN" "CLE" "COL" "DET" "FLO"
[12] "HOU" "KCA" "LAA" "LAN" "MIL" "MIN" "NYA" "NYN" "OAK" "PHI" "PIT"
[23] "SDN" "SEA" "SFN" "SLN" "TBA" "TEX" "TOR" "WAS"
> # example of sample
> sample(levels(batting.2008$teamID), 3)
[1] "ATL" "TEX" "DET"
> # usage example (note that it's a different random sample of teams)
> batting.2008.3teams <- batting.2008[is.element(batting.2008$teamID,
+      sample(levels(batting.2008$teamID), 3)), ]
> # check to see that sample only has three teams
> summary(batting.2008.3teams$teamID)
ARI ATL BAL BOS CHA CHN CIN CLE COL DET FLO HOU KCA LAA LAN MIL MIN
  0   0   0   0   0   0  48   0   0   0   0   0   0  41   0  44   0
NYA NYN OAK PHI PIT SDN SEA SFN SLN TBA TEX TOR WAS
  0   0   0   0   0   0   0   0   0   0   0   0   0

This function is good for data sources where you simply want to take a random
sample of all the observations, but often you might want to do something more
complicated, like stratified sampling, cluster sampling, maximum entropy sampling,
or other more sophisticated methods. You can find many of these methods in the
sampling package. For an example using this package to do stratified sampling, see
“Machine Learning Algorithms for Classification” on page 477.

Summarizing Functions
Often, you are provided with data that is too fine grained for your analysis. For
example, you might be analyzing data about a website. Suppose that you wanted to
know the average number of pages delivered to each user. To find the answer, you
might need to look at every HTTP transaction (every request for content), grouping
together requests into sessions and counting the number of requests. R provides a
number of different functions for summarizing data, aggregating records together
to build a smaller data set.

tapply, aggregate
The tapply function is a very flexible function for summarizing a vector X. You can
specify which subsets of X to summarize, as well as the function used for
summarization:

tapply(X, INDEX, FUN = , ..., simplify = )

Here are the arguments to tapply.

Argument Description Default

X The object on which to apply the function (usually a vector).  

INDEX A list of factors that specify different sets of values of X over which to calculate FUN, each the
same length as X.

 

FUN The function applied to elements of X. NULL

... Optional arguments are passed to FUN.  
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Argument Description Default

simplify If simplify=TRUE, then if FUN returns a scalar, then tapply returns an array with the
mode of the scalar. If simplify=FALSE, then tapply returns a list.

TRUE

For example, we can use tapply to sum the number of home runs by team:

> tapply(X=batting.2008$HR, INDEX=list(batting.2008$teamID), FUN=sum)
ARI ATL BAL BOS CHA CHN CIN CLE COL DET FLO HOU KCA LAA LAN MIL MIN
159 130 172 173 235 184 187 171 160 200 208 167 120 159 137 198 111
NYA NYN OAK PHI PIT SDN SEA SFN SLN TBA TEX TOR WAS
180 172 125 214 153 154 124  94 174 180 194 126 117

You can also apply a function that returns multiple items, such as fivenum (which
returns a vector containing the minimum, lower-hinge, median, upper-hinge, and
maximum values) to the data. For example, here is the result of applying fivenum to
the batting averages of each player, aggregated by league:

> tapply(X=(batting.2008$H/batting.2008$AB),
+   INDEX=list(batting.2008$lgID),FUN=fivenum)
$AL
[1] 0.0000000 0.1758242 0.2487923 0.2825485 1.0000000

$NL
[1] 0.0000000 0.0952381 0.2172524 0.2679739 1.0000000

You can also use tapply to calculate summaries over multiple dimensions. For ex-
ample, we can calculate the mean number of home runs per player by league and
batting hand:

> tapply(X=(batting.2008$HR),
+   INDEX=list(batting.w.names.2008$lgID,
+     batting.w.names.2008$bats),
+   FUN=mean)

B        L        R
AL 3.058824 3.478495 3.910891
NL 3.313433 3.400000 3.344902

(As a side note, there is no equivalent to tapply in the plyr package.)

A function closely related to tapply is by. The by function works the same way as
tapply, except that it works on data frames. The INDEX argument is replaced by an
INDICES argument. Here is an example:

> by(batting.2008[, c("H", "2B", "3B", "HR")],
+   INDICES=list(batting.w.names.2008$lgID,
+     batting.w.names.2008$bats), FUN=mean)
: AL
: B

H 2B 3B HR
29.0980392  5.4901961  0.8431373  3.0588235
-----------------------------------------------------
: NL
: B

H         2B         3B         HR
29.2238806  6.4776119  0.6865672  3.3134328
-----------------------------------------------------
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: AL
: L

H 2B 3B HR
32.4301075  6.7258065  0.5967742  3.4784946
-----------------------------------------------------
: NL
: L

H 2B 3B HR
31.888372  6.283721  0.627907  3.400000
-----------------------------------------------------
: AL
: R

H 2B 3B HR
34.2549505  7.0495050  0.6460396  3.9108911
-----------------------------------------------------
: NL
: R

H 2B 3B HR
29.9414317  6.1822126  0.6290672  3.3449024

Another option for summarization is the function aggregate. Here is the form of
aggregate when applied to data frames:

aggregate(x, by, FUN, ...)

Aggregate can also be applied to time series and takes slightly different arguments:

aggregate(x, nfrequency = 1, FUN = sum, ndeltat = 1,
ts.eps = getOption("ts.eps"), ...)

Here is a description of the arguments to aggregate.

Argument Description Default

x The object to aggregate

by A list of grouping elements, each as long as x

FUN A scalar function used to compute the summary statistic no default for data frames; for time
series, FUN=SUM

nfrequency Number of observations per unit of time 1

ndeltat Fraction of the sampling period between successive observations 1

ts.eps Tolerance used to decide if nfrequency is a submultiple
of the original frequency

getOption("ts.eps")

... Further arguments passed to FUN

For example, we can use aggregate to summarize batting statistics by team:

> aggregate(x=batting.2008[, c("AB", "H", "BB", "2B", "3B", "HR")],
+    by=list(batting.2008$teamID), FUN=sum)
   Group.1   AB    H  BB  2B 3B  HR
1      ARI 5409 1355 587 318 47 159
2      ATL 5604 1514 618 316 33 130
3      BAL 5559 1486 533 322 30 172
4      BOS 5596 1565 646 353 33 173
5      CHA 5553 1458 540 296 13 235
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6      CHN 5588 1552 636 329 21 184
7      CIN 5465 1351 560 269 24 187
8      CLE 5543 1455 560 339 22 171
9      COL 5557 1462 570 310 28 160
10     DET 5641 1529 572 293 41 200
11     FLO 5499 1397 543 302 28 208
12     HOU 5451 1432 449 284 22 167
13     KCA 5608 1507 392 303 28 120
14     LAA 5540 1486 481 274 25 159
15     LAN 5506 1455 543 271 29 137
16     MIL 5535 1398 550 324 35 198
17     MIN 5641 1572 529 298 49 111
18     NYA 5572 1512 535 289 20 180
19     NYN 5606 1491 619 274 38 172
20     OAK 5451 1318 574 270 23 125
21     PHI 5509 1407 586 291 36 214
22     PIT 5628 1454 474 314 21 153
23     SDN 5568 1390 518 264 27 154
24     SEA 5643 1498 417 285 20 124
25     SFN 5543 1452 452 311 37  94
26     SLN 5636 1585 577 283 26 174
27     TBA 5541 1443 626 284 37 180
28     TEX 5728 1619 595 376 35 194
29     TOR 5503 1453 521 303 32 126
30     WAS 5491 1376 534 269 26 117

Aggregating Tables with rowsum
Sometimes, you would simply like to calculate the sum of certain variables in an
object, grouped together by a grouping variable. To do this in R, use the rowsum
function:

rowsum(x, group, reorder = TRUE, ...)

For example, we can use rowsum to summarize batting statistics by team:

> rowsum(batting.2008[,c("AB", "H", "BB", "2B", "3B", "HR")],
+   group=batting.2008$teamID)
      AB    H  BB X2B X3B  HR
ARI 5409 1355 587 318  47 159
ATL 5604 1514 618 316  33 130
BAL 5559 1486 533 322  30 172
BOS 5596 1565 646 353  33 173
CHA 5553 1458 540 296  13 235
CHN 5588 1552 636 329  21 184
CIN 5465 1351 560 269  24 187
CLE 5543 1455 560 339  22 171
COL 5557 1462 570 310  28 160
DET 5641 1529 572 293  41 200
FLO 5499 1397 543 302  28 208
HOU 5451 1432 449 284  22 167
KCA 5608 1507 392 303  28 120
LAA 5540 1486 481 274  25 159
LAN 5506 1455 543 271  29 137
MIL 5535 1398 550 324  35 198
MIN 5641 1572 529 298  49 111
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NYA 5572 1512 535 289  20 180
NYN 5606 1491 619 274  38 172
OAK 5451 1318 574 270  23 125
PHI 5509 1407 586 291  36 214
PIT 5628 1454 474 314  21 153
SDN 5568 1390 518 264  27 154
SEA 5643 1498 417 285  20 124
SFN 5543 1452 452 311  37  94
SLN 5636 1585 577 283  26 174
TBA 5541 1443 626 284  37 180
TEX 5728 1619 595 376  35 194
TOR 5503 1453 521 303  32 126
WAS 5491 1376 534 269  26 117

Counting Values
Often, it can be useful to count the number of observations that take on each possible
value of a variable. R provides several functions for doing this.

The simplest function for counting the number of observations that take on a value
is the tabulate function. This function counts the number of elements in a vector
that take on each integer value and returns a vector with the counts.

As an example, suppose that you wanted to count the number of players who hit
0 HR, 1 HR, 2 HR, 3 HR, and so on. You could do this with the tabulate function:

> HR.cnts <- tabulate(batting.w.names.2008$HR)
> # tabulate doesn't label results, so let's add names:
> names(HR.cnts) <- 0:(length(HR.cnts) - 1)
> HR.cnts
 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22
92 63 45 20 15 26 23 21 22 15 15 18 12 10 12  4  9  3  3 13  9  7 10
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
 4  8  2  5  2  4  0  1  6  6  3  1  2  4  1  0  0  0  0  0  0  0  0
46 47
 0  1

A related function (for categorical values) is table. Suppose that you are presented
with some data that includes a few categorical values (encoded as factors in R) and
wanted to count how many observations in the data had each categorical value. To
do this, you can use the table function:

table(..., exclude = if (useNA == "no") c(NA, NaN), useNA = c("no",
    "ifany", "always"), dnn = list.names(...), deparse.level = 1)

The table function returns a table object showing the number of observations that
have each possible categorical value.2 Here are the arguments to table.

2. If you are familiar with SAS, you can think of table as the equivalent to PROC FREQ.
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Argument Description Default

... A set of factors (or objects that can be coerced into factors).

exclude Levels to remove from factors. if (useNA == "no") c(NA,
NaN)

useNA Indicates whether to include NA values in the table. c("no", "ifany",
"always")

dnn Names to be given to dimensions in the result. list.names(...)

deparse.level As noted in the help file: “If the argument dnn is not supplied,
the internal function list.names is called to compute the ‘dim-
name names’. If the arguments in ... are named, those names
are used. For the remaining arguments, deparse.level = 0
gives an empty name, deparse.level = 1 uses the supplied
argument if it is a symbol, and deparse.level = 2 will deparse
the argument.”

1

For example, suppose that we wanted to count the number of left-handed batters,
right-handed batters, and switch hitters in 2008. We could use the data frame
batting.w.names.2008 defined above to provide the data and table to tabulate the
results:

> table(batting.w.names.2008$bats)

  B   L   R
118 401 865

To make this a little more interesting, we could make this a two-dimensional table
showing the number of players who batted and threw with each hand:

> table(batting.2008[,c("bats", "throws")])
    throws
bats   L   R
   B  10 108
   L 240 161
   R  25 840

We could extend the results to another dimension, adding league ID:

, , lgID = AL

    throws
bats   L   R
   B   4  47
   L 109  77
   R  11 393

, , lgID = NL

    throws
bats   L   R
   B   6  61
   L 131  84
   R  14 447
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Another useful function is xtabs, which creates contingency tables from factors using
formulas:

xtabs(formula = ~., data = parent.frame(), subset, na.action,
      exclude = c(NA, NaN), drop.unused.levels = FALSE)

The xtabs function works the same as table, but it allows you to specify the group-
ings by specifying a formula and a data frame. In many cases, this can save you some
typing. For example, here is how to use xtabs to tabulate batting statistics by batting
arm and league:

> xtabs(~bats+lgID, batting.2008)
    lgID
bats  AL  NL
   B  51  67
   L 186 215
   R 404 461

The table function only works on factors, but sometimes you might like to calculate
tables with numeric values as well. For example, suppose you wanted to count the
number of players with batting averages in certain ranges. To do this, you could use
the cut function and the table function:

> # first, add batting average to the data frame:
> batting.w.names.2008 <- transform(batting.w.names.2008, AVG = H/AB)
> # now, select a subset of players with over 100 AB (for some
> # statistical significance):
> batting.2008.over100AB <- subset(batting.2008, subset=(AB > 100))
> # finally, split the results into 10 bins:
> battingavg.2008.bins <- cut(batting.2008.over100AB$AVG,breaks=10)
> table(battingavg.2008.bins)
battingavg.2008.bins
(0.137,0.163] (0.163,0.189] (0.189,0.215]  (0.215,0.24]  (0.24,0.266]

4 6 24 67 121
(0.266,0.292] (0.292,0.318] (0.318,0.344]  (0.344,0.37]  (0.37,0.396]

132 70 11 5 2

Reshaping Data
Very often, you are presented with data that is in the wrong “shape.” Sometimes,
you might find that a single observation is stored across multiple lines in a data
frame. This happens very often in data warehouses. In these systems, a single table
might be used to represent many different “facts.” Each fact might be associated
with a unique identifier, a timestamp, a concept, and an observed value. To build a
statistical model or to plot results, you might need to create a version of the data in
which each line contains a unique identifier, a timestamp, and a column for each
concept. So you might want to transform this “narrow” data set to a “wide” format.

Other times, you might be presented with a sparsely populated data frame that has
a large number of columns. Although this format might make analysis straightfor-
ward, the data set might also be large and difficult to store. So you might want to
transform this wide data set into a narrow one.
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Transposing matrices and data frames

A very useful function is t, which transposes objects. The t function takes one ar-
gument: an object to transpose. The object can be a matrix, vector, or data frame.
Here is an example with a matrix:

> m <- matrix(1:10, nrow=5)
> m
     [,1] [,2]
[1,]    1    6
[2,]    2    7
[3,]    3    8
[4,]    4    9
[5,]    5   10
> t(m)
     [,1] [,2] [,3] [,4] [,5]
[1,]    1    2    3    4    5
[2,]    6    7    8    9   10

When you call t on a vector, the vector is treated as a single column of a matrix. So
the value returned by t will be a matrix with a single row:

> v <- 1:10
> v
 [1]  1  2  3  4  5  6  7  8  9 10
> t(v)
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10

Reshaping data frames and matrices

R includes several functions that let you change data between narrow and wide
formats. Let’s use a small table of stock data to show how these functions work.
First, we’ll define a small portfolio of stocks. Then we’ll get monthly observation for
the first three months of 2009:

> my.tickers <- c("GE", "GOOG", "AAPL", "AXP", "GS")
> my.quotes <- get.multiple.quotes(my.tickers, from=as.Date("2009-01-01"),
+     to=as.Date("2009-03-31"), interval="m")
> my.quotes
   symbol       Date   Open   High    Low  Close    Volume Adj.Close
1      GE 2009-03-02   8.29  11.35   5.87  10.11 277426300     10.11
2      GE 2009-02-02  12.03  12.90   8.40   8.51 1949288ls00    8.51
3      GE 2009-01-02  16.51  17.24  11.87  12.13 117846700     11.78
4    GOOG 2009-03-02 333.33 359.16 289.45 348.06   5346800    348.06
5    GOOG 2009-02-02 334.29 381.00 329.55 337.99   6158100    337.99
6    GOOG 2009-01-02 308.60 352.33 282.75 338.53   5727600    338.53
7    AAPL 2009-03-02  88.12 109.98  82.33 105.12  25963400    105.12
8    AAPL 2009-02-02  89.10 103.00  86.51  89.31  27394900     89.31
9    AAPL 2009-01-02  85.88  97.17  78.20  90.13  33487900     90.13
10    AXP 2009-03-02  11.68  15.24   9.71  13.63  31136400     13.45
11    AXP 2009-02-02  16.35  18.27  11.44  12.06  24297100     11.90
12    AXP 2009-01-02  18.57  21.38  14.72  16.73  19110000     16.51
13     GS 2009-03-02  87.86 115.65  72.78 106.02  30196400    106.02
14     GS 2009-02-02  78.78  98.66  78.57  91.08  28301500     91.08
15     GS 2009-01-02  84.02  92.20  59.13  80.73  22764300     80.29
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Now let’s keep only the Date, Symbol, and Close columns:

> my.quotes.narrow <- my.quotes[,c("symbol", "Date", "Close")]
> my.quotes.narrow
   symbol       Date  Close
1      GE 2009-03-02  10.11
2      GE 2009-02-02   8.51
3      GE 2009-01-02  12.13
4    GOOG 2009-03-02 348.06
5    GOOG 2009-02-02 337.99
6    GOOG 2009-01-02 338.53
7    AAPL 2009-03-02 105.12
8    AAPL 2009-02-02  89.31
9    AAPL 2009-01-02  90.13
10    AXP 2009-03-02  13.63
11    AXP 2009-02-02  12.06
12    AXP 2009-01-02  16.73
13     GS 2009-03-02 106.02
14     GS 2009-02-02  91.08
15     GS 2009-01-02  80.73

We can use the unstack function to change the format of this data from a stacked
form to an unstacked form:

> unstack(my.quotes.narrow, form=Close~symbol)
     GE   GOOG   AAPL   AXP     GS
1 10.11 348.06 105.12 13.63 106.02
2  8.51 337.99  89.31 12.06  91.08
3 12.13 338.53  90.13 16.73  80.73

The first argument to unstack specifies the data frame. The second argument,
form, uses a formula to specify how to unstack the data frame. The right side of the
formula represents the vector to be unstacked (in this case, symbol). The left side
indicates the groups to create (in this case Close).

Notice that the unstack operation retains the order of observations but loses the Date
column. (It’s probably best to use unstack with data in which there are only two
variables that matter.) You can also transform data the other way, stacking obser-
vations to create a long list:

> unstacked <- unstack(my.quotes.narrow, form=Close~symbol)
> stack(unstacked)
   values  ind
1   10.11   GE
2    8.51   GE
3   12.13   GE
4  348.06 GOOG
5  337.99 GOOG
6  338.53 GOOG
7  105.12 AAPL
8   89.31 AAPL
9   90.13 AAPL
10  13.63  AXP
11  12.06  AXP
12  16.73  AXP
13 106.02   GS
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14  91.08   GS
15  80.73   GS

R includes a more powerful function for changing the shape of a data frame: the
reshape function. Before explaining how to use this function (it’s a bit complicated),
let’s use a couple of examples to show what it does.

First, suppose that we wanted each row to represent a unique date and each column
to represent a different stock. We can do this with the reshape function:

> my.quotes.wide <- reshape(my.quotes.narrow, idvar="Date",
+    timevar="symbol", direction="wide")
> my.quotes.wide

Date Close.GE Close.GOOG Close.AAPL Close.AXP Close.GS
1 2009-03-02    10.11     348.06     105.12     13.63   106.02
2 2009-02-02     8.51     337.99      89.31     12.06    91.08
3 2009-01-02    12.13     338.53      90.13     16.73    80.73

Parameters for reshape are stored as attributes of the created data frame:

> attributes(my.quotes.wide)
$row.names
[1] 1 2 3

$names
[1] "Date"       "Close.GE"   "Close.GOOG" "Close.AAPL" "Close.AXP"
[6] "Close.GS"

$class
[1] "data.frame"

$reshapeWide
$reshapeWide$v.names
NULL

$reshapeWide$timevar
[1] "symbol"

$reshapeWide$idvar
[1] "Date"

$reshapeWide$times
[1] GE   GOOG AAPL AXP  GS
Levels: GE GOOG AAPL AXP GS

$reshapeWide$varying
     [,1]       [,2]         [,3]         [,4]        [,5]
[1,] "Close.GE" "Close.GOOG" "Close.AAPL" "Close.AXP" "Close.GS"

Alternatively, we could have each row represent a stock and each column represent
a different date:

> reshape(my.quotes.narrow, idvar="symbol", timevar="Date", direction="wide")
   symbol Close.2009-03-02 Close.2009-02-02 Close.2009-01-02
1      GE 10.11 8.51 12.13
4    GOOG 348.06 337.99 338.53
7    AAPL 105.12 89.31 90.13
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10    AXP            13.63            12.06            16.73
13     GS           106.02            91.08            80.73

We could even go in the opposite direction:

> reshape(my.quotes.wide)
                      Date symbol Close.GE
2009-03-02.GE   2009-03-02     GE    10.11
2009-02-02.GE   2009-02-02     GE     8.51
2009-01-02.GE   2009-01-02     GE    12.13
2009-03-02.GOOG 2009-03-02   GOOG   348.06
2009-02-02.GOOG 2009-02-02   GOOG   337.99
2009-01-02.GOOG 2009-01-02   GOOG   338.53
2009-03-02.AAPL 2009-03-02   AAPL   105.12
2009-02-02.AAPL 2009-02-02   AAPL    89.31
2009-01-02.AAPL 2009-01-02   AAPL    90.13
2009-03-02.AXP  2009-03-02    AXP    13.63
2009-02-02.AXP  2009-02-02    AXP    12.06
2009-01-02.AXP  2009-01-02    AXP    16.73
2009-03-02.GS   2009-03-02     GS   106.02
2009-02-02.GS   2009-02-02     GS    91.08
2009-01-02.GS   2009-01-02     GS    80.73

By the way, you can also use reshape to create columns for multiple data values at
once:

> my.quotes.oc <- my.quotes[,c("symbol", "Date", "Close", "Open")]
> my.quotes.oc
   symbol       Date  Close   Open
1      GE 2009-03-02  10.11   8.29
2      GE 2009-02-02   8.51  12.03
3      GE 2009-01-02  12.13  16.51
4    GOOG 2009-03-02 348.06 333.33
5    GOOG 2009-02-02 337.99 334.29
6    GOOG 2009-01-02 338.53 308.60
7    AAPL 2009-03-02 105.12  88.12
8    AAPL 2009-02-02  89.31  89.10
9    AAPL 2009-01-02  90.13  85.88
10    AXP 2009-03-02  13.63  11.68
11    AXP 2009-02-02  12.06  16.35
12    AXP 2009-01-02  16.73  18.57
13     GS 2009-03-02 106.02  87.86
14     GS 2009-02-02  91.08  78.78
15     GS 2009-01-02  80.73  84.02
> # now, let's change the shape of this data frame:
> reshape(my.quotes.oc, timevar="Date", idvar="symbol", direction="wide")
   symbol Close.2009-03-02 Open.2009-03-02 Close.2009-02-02
1      GE            10.11            8.29             8.51
4    GOOG           348.06          333.33           337.99
7    AAPL           105.12           88.12            89.31
10    AXP            13.63           11.68            12.06
13     GS           106.02           87.86            91.08
   Open.2009-02-02 Close.2009-01-02 Open.2009-01-02
1            12.03            12.13           16.51
4           334.29           338.53          308.60
7            89.10            90.13           85.88
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10           16.35            16.73           18.57
13           78.78            80.73           84.02

The tricky thing about reshape is that it is actually two functions in one: a function
that transforms long data to wide data and a function that transforms wide data to
long data. The direction argument specifies whether you want a data frame that is
“long” or “wide.”

When transforming to wide data, you need to specify the idvar and timevar argu-
ments. When transforming to long data, you need to specify the varying argument.

By the way, calls to reshape are reversible. If you have an object d that was created
by a call to reshape, you can call reshape(d) to get back the original data frame:

reshape(data, varying = , v.names = , timevar = , idvar = , ids = , times = ,
        drop = , direction, new.row.names = , sep = , split = )

Here are the arguments to reshape.

Argument Description Default

data A data frame to reshape.  

varying A list of variables in the wide format that should be assigned to
unique rows in the long format. Usually given as a list of variable
names, but can be a matrix of names or a vector of names. (You
can also use integers in this argument, which are used to index
names [data].)

NULL

v.names Names of variables in the long format that should be assigned to
columns in the wide format.

NULL

timevar The variable in the long format that identifies unique observations
for the same group or individual (when going from the long to the
wide format).

"time"

idvar The variable in the long format that identifies unique groups or
individuals (when going from the long to the wide format).

"id"

ids The values to use for a new idvar variable. 1:NROW(data)

times The values to use for a new timevar variable. seq_along( vary
ing[[1]])

drop A vector of variable names to exclude from reshaping. NULL

direction A character value that specifies the reshaping direction: “wide”
reshapes long data to wide data, and “long” reshapes wide data
to long data.

 

new.row.names A logical value. When reshaping long data to wide data, specifies
whether to create new row names from the values of the id and
time variables.

NULL

sep A character value. The reshape function will attempt to guess values
for v.names and v.times when moving from wide to long data.
This variable specifies the separator that is used in the variable
names.

"."
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Argument Description Default

split As noted in the description for sep, reshape will attempt to split
variable names into v.names and v.times. If the relationship
between the variables is more complicated than just concatenation
with a single value, reshape can still automatically guess values
for v.names and v.times. See the help file for more information.

if (sep=="")
{ list(regexp= "[A-
Za-z][0-9]",
include=TRUE) } else
{ list(regexp=sep,
include=FALSE,
fixed=TRUE) }

Using the Reshape Library

Many R users (like me) find the built-in functions for reshaping data (like stack,
unstack, and reshape) confusing. Luckily, there’s an alternative. Hadley Wickham
(the author of ggplot2) has developed a library called reshape with a much more
intuitive model for getting data into the right form. (Don’t confuse the reshape li-
brary with the reshape function.)

Reshape uses an intuitive model to describe how to manipulate
data tables. Hadley observed that if you had detailed transactional data, then you
could easily manipulate that data into many different forms. Quite often, you could
take an existing table of data, turn it into a list of transactions, and then shape it into
a different form. He called the process of turning a table of data into a set of trans-
actions melting, and the process of turning the list of transactions into a table casting.

Let’s see how melting and casting work, using the same data that
we used above to show how much easier the reshape library is. First, let’s melt the
quote data.

> # call melt using the default settings
> my.molten.quotes <- melt(my.quotes)
Using symbol, Date as id variables
> # just show the first few lines
> head(my.molten.quotes)
  symbol       Date variable  value
1     GE 2009-03-02     Open   8.29
2     GE 2009-02-02     Open  12.03
3     GE 2009-01-02     Open  16.51
4   GOOG 2009-03-02     Open 333.33
5   GOOG 2009-02-02     Open 334.29
6   GOOG 2009-01-02     Open 308.60

Now that we have the data into a molten form, it’s very straightforward to transform
it with cast. Here are a few examples:

> # prices by date for just GE
> cast(data=my.molten.quotes, variable~Date, subset=(symbol=='GE'))
   variable   2009-01-02   2009-02-02   2009-03-02
1      Open 16.51 12.03 8.29
2      High 17.24 12.90 11.35
3       Low 11.87 8.40 5.87
4     Close 12.13 8.51 10.11
5    Volume 117846700.00 194928800.00 277426300.00
6 Adj.Close 10.75 7.77 9.23

Melting and Casting.

Examples of reshape.
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> # Closing prices for each stock by date
> cast(data=my.molten.quotes, symbol~Date, subset=(variable=='Adj.Close'))
  symbol 2009-01-02 2009-02-02 2009-03-02
1     GE      10.75       7.77       9.23
2   GOOG     338.53     337.99     348.06
3   AAPL      90.13      89.31     105.12
4    AXP      15.70      11.32      12.79
5     GS      77.85      88.31     102.79
> # Return a list of quotes by symbol and date
> cast(data=my.molten.quotes, Date~variable|symbol)
$GE
        Date  Open  High   Low Close    Volume Adj.Close
1 2009-01-02 16.51 17.24 11.87 12.13 117846700     10.75
2 2009-02-02 12.03 12.90  8.40  8.51 194928800      7.77
3 2009-03-02  8.29 11.35  5.87 10.11 277426300      9.23

$GOOG
        Date   Open   High    Low  Close  Volume Adj.Close
1 2009-01-02 308.60 352.33 282.75 338.53 5727600    338.53
2 2009-02-02 334.29 381.00 329.55 337.99 6158100    337.99
3 2009-03-02 333.33 359.16 289.45 348.06 5346800    348.06

$AAPL
        Date  Open   High   Low  Close   Volume Adj.Close
1 2009-01-02 85.88  97.17 78.20  90.13 33487900     90.13
2 2009-02-02 89.10 103.00 86.51  89.31 27394900     89.31
3 2009-03-02 88.12 109.98 82.33 105.12 25963400    105.12

$AXP
        Date  Open  High   Low Close   Volume Adj.Close
1 2009-01-02 18.57 21.38 14.72 16.73 19110000     15.70
2 2009-02-02 16.35 18.27 11.44 12.06 24297100     11.32
3 2009-03-02 11.68 15.24  9.71 13.63 31136400     12.79

$GS
        Date  Open   High   Low  Close   Volume Adj.Close
1 2009-01-02 84.02  92.20 59.13  80.73 22764300     77.85
2 2009-02-02 78.78  98.66 78.57  91.08 28301500     88.31
3 2009-03-02 87.86 115.65 72.78 106.02 30196400    102.79

Cool, huh? I find reshape much easier to use than other functions for reshaping data.
Now that we’ve seen how melt and cast work, let’s dive into the two functions in
more detail.

melt is a generic function; the reshape package includes methods for data
frames, arrays, and lists. Here’s an overview of the arguments for each form.

melt.data.frame(data, id.vars, measure.vars, variable_name, na.rm,
  preserve.na, ...)

Here is a description of the arguments to melt.data.frame:

melt.
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Argument Description Default

data The data frame to melt.

id.vars ID variables (variables used to identify each unique observa-
tion).

All non-measure variables. If neither
id.vars nor measure.vars is specified,
assumes all factor and character
variables are measured.

measure.vars Measured variables (variables that describe the thing being
measured).

All non-ID variables. If neither
id.vars nor measure.vars is specified,
assumes all variables that are nei-
ther factor nor character variables
are measured.

variable_name The name of the variable that stores the names of the original
variables.

"variable"

na.rm Tells melt what to do with NA values. !preserve.na

preserve.na Deprecated; opposite of na.rm. TRUE

... Other arguments are ignored.

For multi-dimensional arrays, melt is conceptually more simple. You simply need
to specify the dimensions to keep, and melt will melt the array.

melt.array(data, varnames, ...)

Here is a description of the arguments to the array form:

Argument Description Default

data The array to melt

varnames A vector All dimensions (dimnames(data))

... Other arguments are ignored

Finally, the list form of melt will recursively melt each element in the list, join the
results, and return the joined form:

melt.list(data, ..., level)

Argument Description Default

data The list of items to melt

level 1

... Other arguments are passed to recursive calls to melt

After you have melted your data, you use cast to reshape the results. Here is
a description of the arguments to cast:

cast(data, formula, fun.aggregate=NULL, ..., margins, subset, df, fill,
  add.missing, value = guess_value(data))

Cast.
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Argument Description Default

data A molten data frame (typically created by melt).

formula A description of the output data frame as a formula, in the form
x_variable + x_2 ~ y_variable + y_2 ~ z_variable
~ ... | list_variable + ... Use an ellipsis to mean “all vari-
ables not otherwise mentioned in the formula” and “.” to represent “no
variables.”

...~variable

fun.aggre-
gate

An aggregation function. If you want to aggregate the molten data in
the output, specify an aggregation function to describe how to aggregate
the data.

NULL

... Arguments passed to fun.aggregate.

margins Variables on which to compute margins, specified as a vector of variable
names, or TRUE to use all variables or FALSE to use none.

FALSE

subset A logical vector that describes which observations in the molten data to
include in the cast form.

TRUE

df “An argument used internally,” according the to the documentation. FALSE

fill Value with which to fill in missing combinations when
add.missing=TRUE

NULL

add.missing Fill in missing combinations. FALSE

value Name of value column. guess_value(data)

Data Cleaning
Even when data is in the right form, there are often surprises in the data. For example,
I used to work with credit data in a financial services company. Valid credit scores
(specifically, FICO credit scores) always fall between 340 and 840. However, our
data often contained values like 997, 998, and 999. These values did not mean that
the customer had really super credit; instead, they had special meanings like “in-
sufficient data” or there might be duplicate records in the data. Again, suppose that
you were analyzing data on patients at a hospital. Often, the same doctor might see
multiple patients with the same first and last names, so multiple patients may be
rolled up into a single record incorrectly. However, sometimes the same patient
might see multiple doctors, creating multiple records in the database for the same
patient.

Data cleaning doesn’t mean changing the meaning of data. It means identifying
problems caused by data collection, processing, and storage processes and modify-
ing the data so that these problems don’t interfere with analysis.

Finding and Removing Duplicates
Data sources often contain duplicate values. Depending on how you plan to use the
data, the duplicates might cause problems. It’s a good idea to check for duplicates
in your data (if they aren’t supposed to be there).

R provides some useful functions for detecting duplicate values.
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Suppose that you accidentally included one stock ticker twice (say, GE) when you
fetched stock quotes:

> my.tickers.2 <- c("GE", "GOOG", "AAPL", "AXP", "GS", "GE")
> my.quotes.2 <- get.multiple.quotes(my.tickers.2, from=as.Date("2009-01-01"),
+   to=as.Date("2009-03-31"), interval="m")

R provides some useful functions for detecting duplicate values such as the
duplicated function. This function returns a logical vector showing which elements
are duplicates of values with lower indices. Let’s apply duplicated to the data frame
my.quotes.2:

> duplicated(my.quotes.2)
 [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[12] FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE

As expected, duplicated shows that the last three rows are duplicates of earlier rows.
You can use the resulting vector to remove duplicates:

> my.quotes.unique <- my.quotes.2[!duplicated(my.quotes.2),]

Alternatively, you could use the unique function to remove the duplicate values:

> my.quotes.unique <- unique(my.quotes.2)

Sorting
Two final operations that you might find useful for analysis are sorting and ranking
functions.

To sort the elements of an object, use the sort function:

> w <- c(5, 4, 7, 2, 7, 1)
> sort(w)
[1] 1 2 4 5 7 7

Add the decreasing=TRUE option to sort in reverse order:

> sort(w, decreasing=TRUE)
[1] 7 7 5 4 2 1

You can control the treatment of NA values by setting the na.last argument:

> length(w)
[1] 6
> length(w) <- 7
> # note that by default, NA.last=NA and NA values are not shown
> sort(w)
[1] 1 2 4 5 7 7
> # set NA.last=TRUE to put NA values last
> sort(w, na.last=TRUE)
[1]  1  2  4  5  7  7 NA
> # set NA.last=FALSE to put NA values first
> sort(w, na.last=FALSE)
[1] NA  1  2  4  5  7  7
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Sorting data frames is somewhat nonintuitive. To sort a data frame, you need to
create a permutation of the indices from the data frame and use these to fetch the
rows of the data frame in the correct order. You can generate an appropriate per-
mutation of the indices using the order function:

order(..., na.last = , decreasing = )

The order function takes a set of vectors as arguments. It sorts recursively by each
vector, breaking ties by looking at successive vectors in the argument list. At the end,
it returns a permutation of the indices of the vector corresponding to the sorted
order. (The arguments na.last and decreasing work the same way as they do for
sort.) To see what this means, let’s use a simple example. First, we’ll define a vector
with two elements out of order:

> v <- c(11, 12, 13, 15, 14)

You can see that the first three elements (11, 12, 13) are in order, and the last two
(15, 14) are reversed. Let’s call order to see what it does:

> order(v)
[1] 1 2 3 5 4

This means “move row 1 to row 1, move row 2 to row 2, move row 3 to row 3, move
row 4 to row 5, move row 5 to row 4.” We can return a sorted version of v using an
indexing operator:

> v[order(v)]
[1] 11 12 13 14 15

Suppose that we created the following data frame from the vector v and a second
vector u:

> u <- c("pig", "cow", "duck", "horse", "rat")
> w <- data.frame(v, u)
> w
   v     u
1 11   pig
2 12   cow
3 13  duck
4 15 horse
5 14   rat

We could sort the data frame w by v using the following expression:

> w[order(w$v),]
   v     u
1 11   pig
2 12   cow
3 13  duck
5 14   rat
4 15 horse

As another example, let’s sort the my.quotes data frame (that we created earlier) by
closing price:
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> my.quotes[order(my.quotes$Close),]
   symbol       Date   Open   High    Low  Close    Volume Adj.Close
2      GE 2009-02-02  12.03  12.90   8.40   8.51 194928800      8.51
1      GE 2009-03-02   8.29  11.35   5.87  10.11 277426300     10.11
11    AXP 2009-02-02  16.35  18.27  11.44  12.06  24297100     11.90
3      GE 2009-01-02  16.51  17.24  11.87  12.13 117846700     11.78
10    AXP 2009-03-02  11.68  15.24   9.71  13.63  31136400     13.45
12    AXP 2009-01-02  18.57  21.38  14.72  16.73  19110000     16.51
15     GS 2009-01-02  84.02  92.20  59.13  80.73  22764300     80.29
8    AAPL 2009-02-02  89.10 103.00  86.51  89.31  27394900     89.31
9    AAPL 2009-01-02  85.88  97.17  78.20  90.13  33487900     90.13
14     GS 2009-02-02  78.78  98.66  78.57  91.08  28301500     91.08
7    AAPL 2009-03-02  88.12 109.98  82.33 105.12  25963400    105.12
13     GS 2009-03-02  87.86 115.65  72.78 106.02  30196400    106.02
5    GOOG 2009-02-02 334.29 381.00 329.55 337.99   6158100    337.99
6    GOOG 2009-01-02 308.60 352.33 282.75 338.53   5727600    338.53
4    GOOG 2009-03-02 333.33 359.16 289.45 348.06   5346800    348.06

You could sort by symbol and then by closing price using the following expression:

> my.quotes[order(my.quotes$symbol, my.quotes$Close),]
   symbol       Date   Open   High    Low  Close    Volume Adj.Close
2      GE 2009-02-02  12.03  12.90   8.40   8.51 194928800      8.51
1      GE 2009-03-02   8.29  11.35   5.87  10.11 277426300     10.11
3      GE 2009-01-02  16.51  17.24  11.87  12.13 117846700     11.78
5    GOOG 2009-02-02 334.29 381.00 329.55 337.99   6158100    337.99
6    GOOG 2009-01-02 308.60 352.33 282.75 338.53   5727600    338.53
4    GOOG 2009-03-02 333.33 359.16 289.45 348.06   5346800    348.06
8    AAPL 2009-02-02  89.10 103.00  86.51  89.31  27394900     89.31
9    AAPL 2009-01-02  85.88  97.17  78.20  90.13  33487900     90.13
7    AAPL 2009-03-02  88.12 109.98  82.33 105.12  25963400    105.12
11    AXP 2009-02-02  16.35  18.27  11.44  12.06  24297100     11.90
10    AXP 2009-03-02  11.68  15.24   9.71  13.63  31136400     13.45
12    AXP 2009-01-02  18.57  21.38  14.72  16.73  19110000     16.51
15     GS 2009-01-02  84.02  92.20  59.13  80.73  22764300     80.29
14     GS 2009-02-02  78.78  98.66  78.57  91.08  28301500     91.08
13     GS 2009-03-02  87.86 115.65  72.78 106.02  30196400    106.02

Sorting a whole data frame is a little strange. You can create a suitable permutation
using the order function, but you need to call order using do.call for it to work
properly. (The reason for this is that order expects a list of vectors and interprets the
data frame as a single vector, not as a list of vectors.) Let’s try sorting the
my.quotes table we just created:

> # what happens when you call order on my.quotes directly: the data
> # frame is interpreted as a vector
> order(my.quotes)
  [1]  61  94  96  95  31  62  77 107  70  76 106  46  71  40 108  63
 [17] 116  32  86  78  47 115  85  72  55  41  33 117  87  48  56  42
 [33] 102  57 105 101  97  98 104 103 100  99  75  73  69  74  44 120
 [49]  90  67  45  39  68  43  37  38  83 113  84 114  89 119  60  54
 [65]  59  53  82 112  88 118  52  58  93  92  18  21  24  27  30  17
 [81]  20  23  26  29  16  19  22  25  28  91  66  64  36  65  34  35
 [97]  80 110  81 111  79 109  51  49  50   7   8   9  10  11  12   1
[113]   2   3   4   5   6  13  14  15
> # what you get when you use do.call:
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> do.call(order,my.quotes)
 [1]  3  2  1  6  5  4  9  8  7 12 11 10 15 14 13
> # now, return the sorted data frame using the permutation:
> my.quotes[do.call(order, my.quotes),]
   symbol       Date   Open   High    Low  Close    Volume Adj.Close
3      GE 2009-01-02  16.51  17.24  11.87  12.13 117846700     11.78
2      GE 2009-02-02  12.03  12.90   8.40   8.51 194928800      8.51
1      GE 2009-03-02   8.29  11.35   5.87  10.11 277426300     10.11
6    GOOG 2009-01-02 308.60 352.33 282.75 338.53   5727600    338.53
5    GOOG 2009-02-02 334.29 381.00 329.55 337.99   6158100    337.99
4    GOOG 2009-03-02 333.33 359.16 289.45 348.06   5346800    348.06
9    AAPL 2009-01-02  85.88  97.17  78.20  90.13  33487900     90.13
8    AAPL 2009-02-02  89.10 103.00  86.51  89.31  27394900     89.31
7    AAPL 2009-03-02  88.12 109.98  82.33 105.12  25963400    105.12
12    AXP 2009-01-02  18.57  21.38  14.72  16.73  19110000     16.51
11    AXP 2009-02-02  16.35  18.27  11.44  12.06  24297100     11.90
10    AXP 2009-03-02  11.68  15.24   9.71  13.63  31136400     13.45
15     GS 2009-01-02  84.02  92.20  59.13  80.73  22764300     80.29
14     GS 2009-02-02  78.78  98.66  78.57  91.08  28301500     91.08
13     GS 2009-03-02  87.86 115.65  72.78 106.02  30196400    106.02
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IV
Data Visualization

This part of the book explains how to plot data with R.





13
Graphics

There are many different ways to plot graphics in R. In this book, we’ll focus on the
three most popular packages: graphics, lattice, and ggplot2.

The graphics package contains a wide variety of functions for plotting data. It is easy
to customize or modify charts with the graphics package, or to interact with plots
on the screen. The lattice package contains an alternative set of functions for plot-
ting data. Lattice graphics are well suited for splitting data by a conditioning variable.
Finally, ggplot2 uses a different metaphor for graphics, allowing you to easily and
quickly create stunning charts. This chapter gives an overview of the graphics
package. We’ll explain how to use lattice graphics in Chapter 14, and ggplot2 in
Chapter 15.

An Overview of R Graphics
R includes tools for drawing most common types of charts, including bar charts, pie
charts, line charts, and scatter plots. Additionally, R can also draw some less-familiar
charts like quantile-quantile (Q-Q) plots, mosaic plots, and contour plots. The fol-
lowing table shows many of the charts included in the graphics package.

Graphics package function Description

barplot Bar and column charts

dotchart Cleveland dot plots

hist Histograms

density Kernel density plots

stripchart Strip charts

qqnorm (in stats package) Quantile-quantile plots

xplot Scatter plots

smoothScatter Smooth scatter plots

qqplot (in stats package) Quantile-quantile plots

213



Graphics package function Description

pairs Scatter plot matrices

image Image plots

contour Contour plots

persp Perspective charts of three-dimensional data

interaction.plot Summary of the response for two-way combinations of factors

sunflowerplot Sunflower plots

You can show R graphics on the screen or save them in many different formats.
“Graphics Devices” on page 246 explains how to choose output methods. R gives
you an enormous amount of control over graphics. You can control almost every
aspect of a chart. “Customizing Charts” on page 247 explains how to tweak the
output of R to look the way you want. This section shows how to use many common
types of R charts.

Scatter Plots
To show how to use scatter plots, we will look at cases of cancer in 2008 and toxic
waste releases by state in 2006. Data on new cancer cases (and deaths from cancer)
are tabulated by the American Cancer Society; information on toxic chemicals re-
leased into the environment is tabulated by the U.S. Environmental Protection
Agency (EPA).1

The sample data is included in the nutshell package:

> library(nutshell)
> data(toxins.and.cancer)

To show a scatter plot, use the plot function. plot is a generic function (you can
“plot” many different types of objects); plot also can draw many types of objects,
including vectors, tables, and time series. For simple scatter plots with two vectors,
the function that is called is plot.default:

plot(x, y = NULL, type = "p",  xlim = NULL, ylim = NULL,
     log = "", main = NULL, sub = NULL, xlab = NULL, ylab = NULL,
     ann = par("ann"), axes = TRUE, frame.plot = axes,
     panel.first = NULL, panel.last = NULL, asp = NA, ...)

Here is a description of the arguments to plot.

1. Data from both can be found in the Statistical Abstract of the United States, available online at
http://www.census.gov/compendia/statab/.
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Argument Description Default

x, y The data to be plotted. You may specify two separate vec-
tors, x and y. Otherwise, you may specify a time series,
formula, list, or matrix with two or more columns; see the
help file for xy.coords for more details.

type A character value that specifies the type of plot:
type="p" for points, type="l" for lines, type="o"
for overplotted points and lines, type="b" for points
joined by lines, type="s" for stair steps, type="h" for
histogram-style vertical lines, or type="n" for no points
or lines.

"p"

xlim A numeric vector with two values specifying the x limits
of the plot.

NULL

log A character value that specifies which axes should be plot-
ted with a logarithmic scale. Use log="" for neither,
log="x" for the x-axis, log="y" for the y-axis, and
log="xy" for both.

""

main The main title for the plot. NULL

sub The subtitle for the plot. NULL

xlab The label for the x-axis. NULL

ylab The label for the y-axis. NULL

ann If ann=TRUE, then axis titles and overall titles are
included with plots. If ann=FALSE, then these annota-
tions are not included.

par("ann")

axes A logical value that specifies whether axes should
be drawn.

TRUE

frame.plot A logical value that specifies whether a box should be
drawn around the plot.

axes

panel.first An expression that is evaluated after the axes are drawn
but before points are plotted.

NULL

panel.last An expression that is evaluated after the points
are plotted.

NULL

asp A numeric value that specifies the aspect ratio of the plot
(as y/x).

NA

... Additional graphical parameters. (See “Graphical Param-
eters” on page 247 for more information.)

Now let’s try our first plot. Let’s compare the overall cancer rate (number of cancer
deaths divided by state population) to the presence of toxins (total toxic chemicals
release divided by state area):

> # use with so that we don't have to keep typing the
> # data frame name
> attach(toxins.and.cancer)
> plot(total_toxic_chemicals/Surface_Area, deaths_total/Population)
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The chart is shown in Figure 13-1. Perhaps there is a stronger correlation between
airborne toxins and lung cancer:

> plot(air_on_site/Surface_Area, deaths_lung/Population)

This chart is shown in Figure 13-2. Suppose that you wanted to know which states
were associated with which points. R provides some interactive tools for
identifying points on plots. You can use the locator function to tell you the coor-
dinates of a specific point (or set of points). To do this, first plot the data. Next, type
locator(1). Then click on a point in the open graphics window. As an example,
suppose that you plotted the data above, typed locator(1), and then clicked on the
point in the upper-right corner. You would see output like this in the R console:

> locator(1)
$x
[1] 0.002499427

$y
[1] 0.0008182696

Figure 13-1. Total toxins and new cancer cases

Another useful function for identifying points is identify. This function can be used
to interactively label points on a plot. To use identify with the data above, you
would enter:

> identify(air_on_site/Surface_Area, deaths_lung/Population,
+   State_Abbrev)

While this command is running, you can click on individual points on the chart,
and R will label those points with state names.
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Figure 13-2. Toxins released by air and lung cancer deaths per capita

If you wanted to label all the points at once, you could use the text function to add
labels to the plot. Here is how I drew the plot shown in Figure 13-3:

> plot(air_on_site/Surface_Area, deaths_lung/Population,
+   xlab="Air Release Rate of Toxic Chemicals",
+   ylab="Lung Cancer Death Rate")
> text(air_on_site/Surface_Area, deaths_lung/Population,
+   labels=State_Abbrev,
+   cex=0.5,
+   adj=c(0,-1))

Notice that I have added some extra arguments to refine the appearance of the plot.
The xlab and ylab arguments are used to add labels to the x- and y-axes. The text
function draws a label next to each point. I tweaked the size placement of the labels
using the cex and adj arguments; see “Graphical Parameters” on page 247 for more
information.

Is this relationship significant? It is actually statistically significant (see “Correlation
tests” on page 384), but we don’t have enough information to make a good argu-
ment that there is a causal relationship.
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Figure 13-3. Toxins released by air and lung cancer deaths per capita, cleaned up

The plot function is a good choice if you want to plot two columns of data on one
chart. However, suppose that you have more columns of data to plot, perhaps split
into different categories. Or, suppose that you want to plot all the columns of one
matrix against all the columns of another matrix. To plot multiple sets of columns
against one another, you can use the matplot function:

matplot(x, y, type = "p", lty = 1:5, lwd = 1, pch = NULL,
        col = 1:6, cex = NULL, bg = NA,
        xlab = NULL, ylab = NULL, xlim = NULL, ylim = NULL,
        ..., add = FALSE, verbose = getOption("verbose"))

Matplot accepts the following arguments.

Argument Description Default

x, y Vectors or matrices containing the data to be plotted. The number
of rows and columns should match.

If x is not specified, then
x=1:ncol(y). If y is not speci-
fied, then y=x; x=1:ncol(y).

type A character vector specifying the types of plots to generate. Use
type="p" for points, type="l" for lines, type="b" for both,
type="c" for the lines part alone of "b", type="o" for both
overplotted points and lines, type="h" for histogram-like (or
high-density) vertical lines, type="s" for stair steps,
type="S" for other steps, or type="n" for no plotting.

"p"
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Argument Description Default

lty A vector of line types. See “Graphical parameters by
name” on page 253 for more details.

1:5

lwd A vector of line widths. See “Graphical parameters by
name” on page 253 for more details.

1

pch A vector of plotting characters. See “Graphical parameters by
name” on page 253 for more details.

NULL

col A vector of colors. See “Graphical parameters by
name” on page 253 for more details.

1:6

cex A vector of character expansion sizes. See “Graphical parameters
by name” on page 253 for more details.

NULL

bg A vector of background colors for plot symbols. See “Graphical
parameters by name” on page 253 for more details.

NA

xlab, ylab Character values specifying x- and y-axis labels. NULL

xlim, ylim Numeric values specifying ranges for the x- and y-axes. NULL

... Additional graphical parameters that are passed to par. NULL

add A logical value indicating whether to add to the current plot or to
generate a new plot.

FALSE

verbose A logical value indicating whether to write information to the con-
sole describing what matplot did.

getOption("verbose")

Many arguments to matplot have the same names as standard arguments to par.
However, because matplot generates multiple plots at the same time, these argu-
ments can be specified as vectors of multiple values when called by matplot. For
more details on standard arguments, see “Graphical Parameters” on page 247.

If you are plotting a very large number of points, then you may prefer the function
smoothScatter, which plots the density of points by shading different regions of the
plot different shades, depending on the density of points in each region:

smoothScatter(x, y = NULL, nbin = 128, bandwidth,
colramp = colorRampPalette(c("white", blues9)),
nrpoints = 100, pch = ".", cex = 1, col = "black",
transformation = function(x) x^.25,
postPlotHook = box,
xlab = NULL, ylab = NULL, xlim, ylim,
xaxs = par("xaxs"), yaxs = par("yaxs"), ...)

For an example of smoothScatter, see “Correlation and Covariance” on page 354.

If you have a data frame with n different variables and you would like to generate a
scatter plot for each pair of values in the data frame, try the pairs function. As an
example, let’s plot the hits, runs, strikeouts, walks, and home runs for each Major
League Baseball (MLB) player who had more than 100 at bats in 2008. To do this,
we would use the following R statement:

> library(nutshell)
> data(batting.2008)
> pairs(batting.2008[batting.2008$AB>100, c("H", "R", "SO", "BB", "HR")])
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The result is shown in Figure 13-4.

Figure 13-4. Pairs example

Plotting Time Series
R includes tools for plotting time series data. The plot function has a method for
time series:

plot(x, y = NULL, plot.type = c("multiple", "single"),
xy.labels, xy.lines, panel = lines, nc, yax.flip = FALSE,
mar.multi = c(0, 5.1, 0, if(yax.flip) 5.1 else 2.1),
oma.multi = c(6, 0, 5, 0), axes = TRUE, ...)

The arguments x and y specify ts objects, panel specifies how to plot the time series
(by default, lines), and other arguments specify how to break time series into dif-
ferent plots (as in lattice). As an example, we’ll plot the turkey price data:

> library(nutshell)
> data(turkey.price.ts)
> plot(turkey.price.ts)

The results are shown in Figure 13-5. As you can see, turkey prices are very seasonal.
There are huge sales in November and December (for Thanksgiving and Christmas)
and minor sales in spring (probably for Easter).
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Figure 13-5. Time series plot

Another way to look at seasonal effects is with an autocorrelation plot (which is also
called a correlogram; see Figure 13-6). This plot shows how correlated points are
with each other, by difference in time. You can also plot the autocorrelation function
for a time series (which can be helpful for looking at cyclical effects). The plot is
generated by default when you call acf, which computes the autocorrelation func-
tion. (Alternatively, you can generate the autocorrelation function with acf and then
plot it separately.) Here is how to generate the plot for the turkey price data:

> acf(turkey.price.ts)

Figure 13-6. Autocorrelation function plot

As you can see, points are correlated over 12-month cycles (and inversely correlated
over 6-month cycles). Time series analysis is discussed further in Chapter 23.
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Bar Charts
To draw bar (or column) charts in R, use the barplot function.

As an example, let’s look at doctoral degrees awarded in the United States between
2001 and 2006:2

> doctorates <- data.frame (
+   year=c(2001, 2002, 2003, 2004, 2005, 2006),
+   engineering=c(5323, 5511, 5079, 5280, 5777, 6425),
+   science=c(20643, 20017, 19529, 20001, 20498, 21564),
+   education=c(6436, 6349, 6503, 6643, 6635, 6226),
+   health=c(1591, 1541, 1654, 1633, 1720, 1785),
+   humanities=c(5213, 5178, 5051, 5020, 5013, 4949),
+   other=c(2159, 2141, 2209, 2180, 2480, 2436)
+ )

Or, if you prefer, you can just load the data from the nutshell package:

> library(nutshell)
> data(doctorates)

Now let’s transform this into a matrix for plotting:

> # make this into a matrix:
> doctorates.m <- as.matrix(doctorates[2:7])
> rownames(doctorates.m) <- doctorates[, 1]
> doctorates.m
     engineering science education health humanities other
2001 5323   20643      6436   1591       5213  2159
2002 5511   20017      6349   1541       5178  2141
2003 5079   19529      6503   1654       5051  2209
2004 5280   20001      6643   1633       5020  2180
2005 5777   20498      6635   1720       5013  2480
2006 6425   21564      6226   1785       4949  2436

The barplot function can’t work with a data frame, so we’ve created a matrix object
for this problem with the data.

Let’s start by just showing a bar plot of doctorates in 2001 by type:

> barplot(doctorates.m[1, ])

As you can see from Figure 13-7, by default R shows the y-axis along with the size
of each bar, but it does not show the x-axis. R also automatically uses column names
to name the bars. Suppose that we wanted to show all the different years as bars
stacked next to one another. Suppose that we also wanted the bars plotted hori-
zontally and wanted to show a legend for the different years. To do this, we could
use the following expression to generate the chart shown in Figure 13-8:

> barplot(doctorates.m, beside=TRUE, horiz=TRUE, legend=TRUE, cex.names=.75)

2. As with many other examples in this book, this data was taken from the Statistical Abstract of
the United States, 2009. This data comes from http://www.census.gov/compendia/statab/tables/
09s0785.xls.
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Figure 13-7. Simple bar plot example

Figure 13-8. Horizontal juxtaposed bar plot example

Finally, suppose that we wanted to show doctorates by year as stacked bars. To do
this, we need to transform the matrix so that each column is a year and each row is
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a discipline. We also need to make sure that there is enough room to see the legend,
so we’ll extend the limits on the y-axis:

> barplot(t(doctorates.m), legend=TRUE, ylim=c(0, 66000))

The chart generated by this expression is shown in Figure 13-9.

Figure 13-9. Stacked bar plot example

Here is a detailed description of barplot:

barplot(height, width = 1, space = NULL,
names.arg = NULL, legend.text = NULL, beside = FALSE,
horiz = FALSE, density = NULL, angle = 45,
col = NULL, border = par("fg"),
main = NULL, sub = NULL, xlab = NULL, ylab = NULL,
xlim = NULL, ylim = NULL, xpd = TRUE, log = "",
axes = TRUE, axisnames = TRUE,
cex.axis = par("cex.axis"), cex.names = par("cex.axis"),
inside = TRUE, plot = TRUE, axis.lty = 0, offset = 0,
add = FALSE, args.legend = NULL, ...)

The barplot function is very flexible; here is a description of the arguments to
barplot.

Argument Description Default

height Either a numeric vector or a numeric matrix representing the values
to be plotted. If values are given as a matrix and beside=FALSE,
then the bars are stacked. If beside=TRUE, then the bars are plotted
next to one another.

224 | Chapter 13: Graphics



Argument Description Default

width A numeric vector representing the widths of the bars. 1

space If beside=FALSE, a numeric value indicating
the amount of space between bars. You specify the space as a fraction
of the average column width. If beside=TRUE, then you can specify
a two-element vector, where the first element specifies the space
within a group and the second represents the space between groups.

if (is.matrix(height)
& beside=TRUE) c(0, 1)
else 0.2

names.arg A character vector specifying the names to be plotted for each bar (or
group of bars).

if
(is.matrix(height))
col.names(height)
else names(height)

legend.text A character vector or a logical value. If a logical value is given, then
a legend is generated using the row names of height. If a character
vector is given, then those character values are used instead. This
function is mostly useful when height is a matrix (and there are two
different dimensions that need labels).

NULL

beside A logical value indicating whether columns should be stacked or
drawn beside one another. Meaningful only when height is a
matrix.

FALSE

horiz A logical value specifying the direction to draw the bars. If
horiz=FALSE, then bars are drawn vertically from left to right. If
horiz=TRUE, then bars are drawn horizontally from bottom to top.

FALSE

density A numeric value that specifies the density of shading lines in lines per
inch. density=NULL means that no lines are drawn.

NULL

angle A numeric value that specifies the slope of the shading lines (in
degrees).

45

col A vector of colors to use for the bars (or bar components). Gray is used if height is a vector;
a gamma-corrected gray palette
if height is a matrix.

border The color to be used for the border of the bars. par("fg")

main A character value to be used as the overall title. NULL

sub A character value to be used as a subtitle. NULL

xlab A character value to use as the label for the x-axis. NULL

ylab A character value to use as the label for the y-axis. NULL

xlim Limits for the x-axis. NULL

ylim Limits for the y-axis. NULL

xpd A logical value indicating if bars should be allowed to go outside the
region.

TRUE

log A character value specifying whether axis scales should be
logarithmic.

""

axes A logical value indicating whether axes should be drawn. TRUE

axisnames If axisnames=TRUE and names.arg is not null, then the second
axis is drawn and labeled.

TRUE
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Argument Description Default

cex.axis A numeric value specifying the size of numeric axis labels relative to
other text (cex.axis=1 means full size).

par("cex.axis")

cex.names A numeric value specifying the size of axis names relative to other
text (cex.axis=1 means full size).

par("cex.axis")

inside A logical value that indicates whether to draw lines separating bars
when beside=TRUE.

TRUE

plot A logical value indicating whether to plot the chart. TRUE

axis.lty The line type for the axis. 0

offset A numeric vector indicating how much bars should be shifted relative
to the x-axis.

0

add A logical value indicating if bars should be added to an existing plot. FALSE

args.legend A list of arguments to pass to legend (if legend.text is used). NULL

... Additional arguments passed to other graphical routines used inside
barplot (typically, arguments to par).

Pie Charts
One of the most popular ways to plot data is the pie chart. Pie charts can be an
effective way to compare different parts of a quantity, though there are lots of good
reasons not to use pie charts.3 You can draw pie charts in R using the pie function:

pie(x, labels = names(x), edges = 200, radius = 0.8,
    clockwise = FALSE, init.angle = if(clockwise) 90 else 0,
    density = NULL, angle = 45, col = NULL, border = NULL,
    lty = NULL, main = NULL, ...)

Here is a description of the arguments to pie.

Argument Description Default

x A vector of nonnegative numeric values that will be plotted.

labels An expression to generate labels, a vector of character strings, or another object
that can be coerced to a graphicsAnnot object and used as labels.

names(x)

edges A numeric value indicating the number of segments used to draw the outside of
the pie.

200

radius A numeric value that specifies how big the pie should be. (Parts of the pie are cut
off for values over 1.)

0.8

3. A lot of people dislike pie charts. I think they are good for saying, “Look how much bigger this
number is than this number,” and they are very good at taking up lots of space on a page. Pie
charts are not good at showing subtle differences between the size of different slices; search
for “why pie charts are bad” on Google, and you’ll come up with dozens of sites explaining
what’s wrong with them. Or just check the help file for pie, which says, “Pie charts are a very
bad way of displaying information. The eye is good at judging linear measures and bad at
judging relative areas. A bar chart or dot chart is a preferable way of displaying this type of
data.”
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Argument Description Default

clockwise A logical value indicating whether slices are drawn clockwise
or counterclockwise.

FALSE

init.angle A numeric value specifying the starting angle for the slices (in degrees). if (clock
wise) 90 else
0

density A numeric value that specifies the density of shading lines in lines per inch.
density=NULL means that no lines are drawn.

NULL

angle A numeric value that specifies the slope of the shading lines (in degrees). 45

col A numeric vector that specifies the colors to be used for slices. If col=NULL, then
a set of six pastel colors is used.

NULL

border Arguments passed to the polygon function to draw each slice. NULL

lty The line type used to draw each slice. NULL

main A character string that represents the title. NULL

As a simple example, let’s use pie charts to show what happened to fish caught in
the United States in 2006:

> # 2006 fishery data from 
> #   http://www.census.gov/compendia/statab/tables/09s0852.xls
> # units are millions of pounds of live fish
> domestic.catch.2006 <- c(7752, 1166, 463, 108)
> names(domestic.catch.2006) <- c("Fresh and frozen",
+    "Reduced to meal, oil, etc.", "Canned", "Cured")
> # note: cex.6 setting shrinks text size by 40% so you can see the labels
> pie(domestic.catch.2006, init.angle=100, cex=.6)

As shown in Figure 13-10, most of the fish (by weight) was sold fresh or frozen.

Figure 13-10. Pie chart

Plotting Categorical Data
The graphics package includes some very useful, and possibly unfamiliar, tools for
looking at categorical data.
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Suppose that you want to look at the conditional density of a set of categories de-
pendent on a numeric value. You can do this with a conditional density plot, gen-
erated by the cdplot function:

cdplot(x, y,
  plot = TRUE, tol.ylab = 0.05, ylevels = NULL,
  bw = "nrd0", n = 512, from = NULL, to = NULL,
  col = NULL, border = 1, main = "", xlab = NULL, ylab = NULL,
  yaxlabels = NULL, xlim = NULL, ylim = c(0, 1), ...)

Here is the form of cdplot when called with a formula:

cdplot(formula, data = list(),
  plot = TRUE, tol.ylab = 0.05, ylevels = NULL,
  bw = "nrd0", n = 512, from = NULL, to = NULL,
  col = NULL, border = 1, main = "", xlab = NULL, ylab = NULL,
  yaxlabels = NULL, xlim = NULL, ylim = c(0, 1), ...,
  subset = NULL)

The cdplot function uses the density function to compute kernel density estimates
across the range of numeric values and then plots these estimates. Here is the list of
arguments to cdplot.

Argument Description Default

x, y, formula,
data

Arguments used to specify the data to plot. You may specify either a numeric vector
x containing data to plot and a factor vector y containing grouping information or a
formula and a data frame (data) in which to evaluate the formula.

subset A vector specifying the subset of values to be used when plotting. (Applies only when
using a formula and a data frame.)

NULL

plot Logical value specifying whether the conditional densities should be plotted. TRUE

tol.ylab A numeric vector that specifies a “tolerance parameter” for y-axis labels. If the difference
between two labels is less than this parameter, then they are plotted equidistantly.

0.05

ylevels A character or numeric vector that specifies the order in
which levels should be plotted.

NULL

bw The “smoothing bandwidth” to use when plotting. See the help file for density for
more details.

"nrd0"

n A numeric value specifying the number of points at which the density is estimated. 512

from A numeric value specifying the lowest point at which the density is estimated. NULL

to A numeric value specifying the highest point at which the density is estimated. NULL

col A vector of fill colors for the different conditional values. NULL

border Border color for shaded polygons. 1

main Main title. ""

xlab x-axis label. NULL

ylab y-axis label. NULL

yaxlabels Character vector for labeling different conditional variables. NULL

xlim Range of x variables to plot. NULL

ylim Range of y variables to plot. c(0, 1)
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Argument Description Default

... Other arguments passed to density.  

As an example, let’s look at how the distribution of batting hand varies by batting
average among MLB players in 2008:

> batting.w.names.2008 <- transform(batting.2008,
+      AVG=H/AB, bats=as.factor(bats), throws=as.factor(throws))
> cdplot(bats~AVG,data=batting.w.names.2008,
+      subset=(batting.w.names.2008$AB>100))

The results are shown in Figure 13-11. As you can see, the proportion of switch
hitters (bats=="B") increases with higher batting average.

Figure 13-11. Conditional density plot

Suppose, instead, that you simply wanted to plot the proportion of observations for
two different categorical variables. R also provides tools for visualizing this type of
data. One of the most interesting charts available in R for showing the number
of observations with certain properties is the mosaic plot. A mosaic plot shows a set
of boxes corresponding to different factor values. The x-axis corresponds to one
factor and the y-axis to another factor. To create a mosaic plot, use the mosaicplot
function. Here is the form of the mosaicplot function for a contingency table:

mosaicplot(x, main = deparse(substitute(x)),
           sub = NULL, xlab = NULL, ylab = NULL,
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sort = NULL, off = NULL, dir = NULL,
color = NULL, shade = FALSE, margin = NULL,
cex.axis = 0.66, las = par("las"),
type = c("pearson", "deviance", "FT"), ...)

There is also a method for mosaicplot that allows you to specify the data as a formula
and data frame:

mosaicplot(formula, data = NULL, ...,
main = deparse(substitute(data)), subset,
na.action = stats::na.omit)

Here is a description of the arguments to mosaicplot.

Argument Description Default

x, formula,
data

Specifies the data to be plotted. You may specify either a con-
tingency table x or a formula and a data frame (data). (If the
variables in formula are defined in the current environment,
then you may omit data.)

subset A vector that specifies which values in data to plot.

main A character value specifying the main title for the plot. deparse(substitute(x))

sub A character value specifying the subtitle for the plot. NULL

xlab A character value specifying the label for the x-axis. NULL

ylab A character value specifying the label for the y-axis. NULL

sort An integer vector that describes how to sort the variables in x.
Specified as a permutation of 1:length(dim(x)).

NULL

off A numeric vector that specifies the spacing between each level
of the mosaic as a percentage.

NULL

dir A character vector that specifies which direction to plot each
vector in x. Use "v" for vertical and "h" for horizontal.

NULL

color A logical value or character vector specifying colors to use for
color shading. You may use color=TRUE for a gamma-correc-
ted color palette, color=NULL for grayscale, or
color=FALSE for unfilled boxes.

NULL

shade A logical value (or numeric vector) specifying whether to produce
“extended mosaic plots” to visualize standardized residuals of a
log-linear model for the table by color and outline of the mosaic’s
tiles. You may specify shade=FALSE for standard plots,
shade=TRUE for extended plots, or a numeric vector with up
to five elements specifying cut points of the residuals.

FALSE

margin A list of vectors containing marginal totals to fit in a log-linear
model. See the help file for loglin for more information.

NULL

cex.axis A numeric value specifying the magnification factor to use for
axis annotation text.

0.66

las Specifies the style of the axis labels. par("las")

type A character string indicating the type of residuals to plot. Use
type="pearson" for components of Pearson’s chi-squared,

c("pearson", "deviance",
"FT")
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Argument Description Default
type="deviance" for components of the likelihood ratio chi-
squared, or type="FT" for the Freeman-Tukey residuals.

na.action A function that specifies what mosaicplot should do if the data
contains variables to be cross-tabulated that contain NA values.

A function that omits NA values
(specifically, stats::na.omit)

... Additional graphical parameters passed to other methods.

As an example, let’s create a mosaic plot showing the number of batters in the MLB
in 2008. On the x-axis, we’ll show batting hand (left, right, or both), and on the y-
axis we’ll show throwing hand (left or right). This function can accept either a matrix
of values or a formula and a data frame. In this example, we’ll use a formula and a
data frame. The plot is shown in Figure 13-12:

> mosaicplot(formula=bats~throws, data=batting.w.names.2008, color=TRUE)
> dev.off()

Figure 13-12. Mosaic plot

Another chart that is very similar to a mosaic plot is a spine plot. A spine plot shows
different boxes corresponding to the number of observations associated with two
factors. Figure 13-13 shows an example of a spine plot using the same batting data
we used in the mosaic example:

> spineplot(formula=bats~throws, data=batting.w.names.2008)

An Overview of R Graphics | 231

Graphics



Another function for looking at tables of data is assocplot. This function plots a set
of bar charts, showing the deviation of each combination of factors from independ-
ence. (These are also called Cohen-Friendly association plots.) As an example, let’s
look at the same data for batting and throwing hands:

> assocplot(table(batting.w.names.2008$bats, batting.w.names.2008$throws),
+   xlab="Throws", ylab="Bats")

Figure 13-13. Spine plot

The resulting plot is shown in Figure 13-14. Other useful plotting functions include
stars and fourfoldplot. See the help files for more information.

Three-Dimensional Data
R includes a few functions for visualizing three-dimensional data. All of these func-
tions can be used to plot a matrix of values. (Row indices correspond to x values,
column indices to y values, and values in the matrix to z values.)

As an example of multidimensional data, I used elevation data for Yosemite Valley
in Yosemite National Park (you can find a map at http://www.nps.gov/yose/planyour
visit/upload/yosevalley2008.pdf). The sample data I used for my examples is included
in the nutshell library.
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Getting Elevation Data
I downloaded the Yosemite data from the U.S. Geological Survey. Specifically, I
used the National Map Seamless Server (available at http://seamless.usgs.gov/web
site/seamless/viewer.htm). This service allows you to search for a specific location
and select a region from which to obtain elevation data. After you select the area
that you want to export, a window will pop up called the “Request Summary
Page.” There will be a link on this page to “Modify Data Request.” Click this link
to modify the defaults, choose to export the data in GridFloat format, save the
options, and download the file. The name of the file I downloaded was
NED_09216343.zip, though the name of your file will be different.

Unzip the downloaded file. There are many different files inside the archive, in-
cluding a lot of information about the request. The most important files are
the .hdr file (which contains information you need to load the data) and the .flt
file (which contains the data). Here is what was contained in the
ned_09216343.hdr file that I downloaded:

ncols 562
nrows 253
xllcorner     -119.68111111082
yllcorner     37.699166665986
cellsize      0.00027777777779647
NODATA_value  -9999
byteorder     LSBFIRST

Figure 13-14. Association plot example
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The GridFloat format saves the topological data as a stream of 4-byte floating-
point values. You can load this into R using the readBin function. As noted in this
file, there were 562 × 253 four-byte values encoded in little-endian format. So I
loaded the data with the following statement:

> yosemite <- readBin(
+  "~/Documents/book/data/NED_09216343/ned_09216343.flt",
+  what="numeric", n=562*253, size=4, endian="little")

I then assigned dimensions with this statement:

> dim(yosemite) <- c(562,253)

Feel free to grab your own data samples for experimentation.

To view a three-dimensional surface, use the persp function. This function draws a
plot of a three-dimensional surface for a specific perspective. (It does, of course,
draw in only two dimensions.) If you want to show your nonstatistician friends that
you are doing really cool math stuff with R, this is the function that draws the coolest
plots:

persp(x = seq(0, 1, length.out = nrow(z)),
      y = seq(0, 1, length.out = ncol(z)),
      z, xlim = range(x), ylim = range(y),
      zlim = range(z, na.rm = TRUE),
      xlab = NULL, ylab = NULL, zlab = NULL,
      main = NULL, sub = NULL,
      theta = 0, phi = 15, r = sqrt(3), d = 1,
      scale = TRUE, expand = 1,
      col = "white", border = NULL, ltheta = -135, lphi = 0,
      shade = NA, box = TRUE, axes = TRUE, nticks = 5,
      ticktype = "simple", ...)

Here is a description of the values to persp.

Argument Description Default

x, y Numeric vectors that explain what each dimension of z represents. (Specifically,
x is a numeric vector representing the x values for each row in z, and y is a
numeric vector representing the y values for each column in z.)

x = seq(0, 1,
length.out =
nrow(z)) sy =
seq(0, 1,
length.out =
ncol(z))

z A matrix of values to plot.

xlim, ylim,
zlim

Numeric vectors with two values, representing the range of values to plot for x,
y, and z, respectively.

xlim =
range(x) ylim
= range(y),
zlim =
range(z, na.rm
= TRUE)

xlab, ylab,
zlab

Character values specifying titles to plot for the x-, y-, and z-axes. NULL

main A character value specifying the main title for the plot. NULL
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Argument Description Default

sub A character value specifying the subtitle for the plot. NULL

theta A numeric value that specifies the azimuthal direction of the viewing angle. 0

phi A numeric value that specifies the colatitude of the viewing angle. 15

r The distance of the viewing point from the center of the plotting box. sqrt(3)

d A numeric value that can be used to increase or decrease the perspective effect. 1

scale A logical value specifying whether to maintain aspect ratios when plotting. TRUE

expand A numeric factor used to expand (when z > 1) or shrink (when z < 1) the z
coordinates.

1

col The color of the surface facets. "white"

border The color of the lines drawn around the surface facets. NULL

ltheta If specified, the surface is drawn as if illuminated from the direction specified by
azimuth ltheta and colatitude lphi.

-135

lphi See the explanation for ltheta. 0

shade An exponent used to calculate the shade of the surface facets. See the help file
for more information.

NA

box A logical value indicating whether a bounding box for the surface should be drawn. TRUE

axes A logical value indicating whether axes should be drawn. TRUE

nticks A numeric value specifying the number of ticks to draw on each axis. 5

ticktype A character value specifying the types of ticks drawn here. Use
ticktype="simple" for arrows pointing in the direction of increase and
ticktype="detailed" to show simple tick marks.

"simple"

... Additional graphical parameters. See “Graphical Parameters” on page 247.

As an example of three-dimensional data, let’s take a look at Yosemite Valley.
Specifically, let’s look toward Half Dome. To plot this elevation data, I needed to
make two transformations. First, I needed to flip the data horizontally. In the data
file, values move east to west (or left to right) as x indices increase and from north
to south (or top to bottom) as y indices increase. Unfortunately, persp plots y co-
ordinates slightly differently. Persp plots increasing y coordinates from bottom to
top. So I selected y indices in reverse order. Here is an R expression to do this:

> # load the data:
> library(nutshell)
> data(yosemite)
> # check dimensions of data
> dim(yosemite)
[1] 562 253
> # select all 253 columns in reverse order
> yosemite.flipped <- yosemite[,seq(from=253, to=1)]

Next, I wanted to select only a square subset of the elevation points. To do this, I
selected only the rightmost 253 columns of the yosemite matrix using an expression
like this:

> yosemite.rightmost <- yosemite[nrow(yosemite) - ncol(yosemite) + 1,]
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Note the “+ 1” in this statement; that’s to make sure that we take exactly 253 col-
umns. (This is to avoid a fencepost error.)

To plot the figure, I rotated the image by 225° (through theta=225) and changed the
viewing angle to 20° (phi=20). I adjusted the light source to be from a 45° angle
(ltheta=45) and set the shading factor to 0.75 (shade=.75) to exaggerate topological
features. Putting it all together, here is the code I used to plot Yosemite Valley looking
toward Half Dome:

> # create halfdome subset in one expression:
> halfdome <- yosemite[(nrow(yosemite) - ncol(yosemite) + 1):562,
+   seq(from=253,to=1)]
> persp(halfdome,col=grey(.25), border=NA, expand=.15,
+   theta=225, phi=20, ltheta=45, lphi=20, shade=.75)

The resulting image is shown in Figure 13-15.

Figure 13-15. Perspective view of Yosemite Valley

Another useful function for plotting three-dimensional data is image. This function
plots a matrix of data points as a grid of boxes, color coding the boxes based on the
intensity at each location:

image(x, y, z, zlim, xlim, ylim, col = heat.colors(12),
      add = FALSE, xaxs = "i", yaxs = "i", xlab, ylab,
      breaks, oldstyle = FALSE, ...)

Here is a description of the arguments to image.

Argu-
ment

Description Default

x, y (Alternatively, you may pass x an argument that is a list containing elements
named x, y, and z.)

z A matrix of values to plot.

xlim,
ylim

Two-element numeric vectors that specify the range of values in x and y that
should be plotted.
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Argu-
ment

Description Default

zlim The range of values for z for which colors should be plotted.

col A vector of colors to plot. Typically generated by functions like rainbow,
heat.colors, topo.colors, or terrain.colors.

heat.colors(12)

add A logical value that specifies whether the plot should be added to the existing
plot.

FALSE

xaxs,
yaxs

Style for the x- and y-axes; see “Graphical parameters by name”
on page 253.

xlab="i",
ylab="i"

xlab, ylab Labels for the x and y values.

breaks An integer value specifying the number of break points for colors. (There must
be at least one more color than break point.)

oldstyle If oldstyle=TRUE, then the midpoints of the color intervals are equally
spaced between the limits. If oldstyle=FALSE, then
the range is split into color intervals of equal size.

FALSE

... Additional arguments to par.

To plot the Yosemite Valley data using image, I needed to make several tweaks. First,
I needed to specify an aspect ratio that matched the dimensions of the data by setting
asp=253/562 (note that this is a standard graphics parameter passed to par). Then I
specified a range of points on the y dimension to make sure that data was plotted
from top to bottom (y=c(1,0)). Finally, I specified a set of 32 grayscale colors for
this plot (col=sapply((0:32)/32,gray)). Here is an expression that generates an im-
age plot from the Yosemite Valley data:

> image(yosemite, asp=253/562, ylim=c(1,0), col=sapply((0:32)/32, gray))

The results are shown in Figure 13-16.

A closely related tool for looking at multidimensional data, particularly in biology,
is the heat map. A heat map plots a single variable on two axes, each representing a
different factor. The heatmap function plots a grid, where each box is encoded with
a different color depending on the size of the dependent variable. It may also plot a
tree structure (called a dendrogram) to the side of each plot showing the hierarchy
of values. As you might have guessed, the function for plotting heat maps in R is
heatmap:

heatmap(x, Rowv=NULL, Colv=if(symm)"Rowv" else NULL,
distfun = dist, hclustfun = hclust,
reorderfun = function(d,w) reorder(d,w),
add.expr, symm = FALSE, revC = identical(Colv, "Rowv"),
scale=c("row", "column", "none"), na.rm = TRUE,
margins = c(5, 5), ColSideColors, RowSideColors,
cexRow = 0.2 + 1/log10(nr), cexCol = 0.2 + 1/log10(nc),
labRow = NULL, labCol = NULL, main = NULL,
xlab = NULL, ylab = NULL,
keep.dendro = FALSE, verbose = getOption("verbose"), ...)
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Figure 13-16. Image example: Yosemite Valley

Another useful function for plotting three-dimensional data is contour. The
contour function plots contour lines, connecting equal values in the data:

contour(x = seq(0, 1, length.out = nrow(z)),
y = seq(0, 1, length.out = ncol(z)),
z,
nlevels = 10, levels = pretty(zlim, nlevels),
labels = NULL,
xlim = range(x, finite = TRUE),
ylim = range(y, finite = TRUE),
zlim = range(z, finite = TRUE),
labcex = 0.6, drawlabels = TRUE, method = "flattest",
vfont, axes = TRUE, frame.plot = axes,
col = par("fg"), lty = par("lty"), lwd = par("lwd"),
add = FALSE, ...)

Here is a table showing the arguments to contour.

Argument Description Default

x, y Numeric vectors specifying the location of grid lines at which
values in the matrix z are measured. (Alternatively, you may
specify a single matrix for x and omit y and z.)

x=seq(0, 1,
length.out=nrow(z))
y=seq(0, 1,
length.out=ncol(z))

z A numeric vector containing values to be plotted.

nlevels Number of contour levels. (Used only if levels is not specified.) 10

levels A numeric vector of levels at which to draw lines. pretty(zlim, nlevels)

labels A vector of labels for the contour lines. NULL
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Argument Description Default

xlim, ylim, zlim Numeric vectors of two elements specifying the range of x, y,
and z values to include in the plot.

xlim = range(x, finite
= TRUE) ylim =
range(y, finite =
TRUE) zlim = range(z,
finite = TRUE)

labcex Text scaling factor for contour labels. 0.6

drawlabels A logical value specifying whether to draw contour labels. TRUE

method Character value specifying where to draw contour labels. Options
include method="simple", method="edge", and
method="flattest".

"flattest"

vfont A character vector with two elements specifying the font to use
for contour labels. vfont[1] specifies a Hershey font family;
vfont[2] specifies a typeface within the family.

 

axes A logical value indicating whether to print axes. TRUE

frame.plot A logical value indicating whether to draw a box around the plot. axes

col A color for the contour lines. par("fg")

lty A type of lines to draw. par("lty")

lwd A width for the lines. par("lwd")

add A logical value specifying whether to add the contour lines to an
existing plot (add=TRUE) or to create a new plot (add=FALSE).

FALSE

... Additional arguments passed to plot.window, title,
Axis, and box.

 

The following expression generates a contour plot using the Yosemite Valley data:

> contour(yosemite, asp=253/562, ylim=c(1, 0))

As with image, we needed to flip the y-axis and to specify an aspect ratio. The results
are shown in Figure 13-17.

Contours are commonly added to existing image plots.

Plotting Distributions
When performing data analysis, it’s often very important to understand the shape
of a data distribution. Looking at a distribution can tell you whether there are outliers
in the data, or whether a certain modeling technique will work on your data, or
simply how many observations are within a certain range of values.

The best-known technique for visualizing a distribution is the histogram. In R, you
can plot a histogram with the hist function. As an example, let’s look at the number
of plate appearances (PAs) for batters during the 2008 MLB season. Plate appear-
ances count the number of times a player had the opportunity to bat; plate appear-
ances include all times a player had a hit, made an out, reached on error, walked,
was hit by pitch, hit a sacrifice fly, or hit a sacrifice bunt.
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You can load this data set from the nutshell package:

> library(nutshell)
> data(batting.2008)

Let’s calculate the plate appearances for each player and then plot a histogram. The
resulting histogram is shown in Figure 13-18:

> # PA (plate appearances) =
> #   AB (at bats) + BB (base on balls) + HBP (hit by pitch) +
> #   SF (sacrifice flies) + SH (sacrifice bunts)
> batting.2008 <- transform(batting.2008,
+   PA=AB+BB+HBP+SF+SH)
> hist(batting.2008$PA)

The histogram shows that there were a large number of players with fewer than 50
plate appearances. If you were to perform further analysis on this data (for example,
looking at the average on-base percentage [OBP]), you might want to exclude these
players from your analysis. As we will show in “Proportion Test De-
sign” on page 398, you will need much larger sample sizes than 50 plate appearances
to draw conclusions with the data.

Let’s try generating a second histogram, this time excluding players with fewer than
25 at bats. We’ll also increase the number of bars, using the breaks argument to
specify that we want 50 bins:

> hist(batting.2008[batting.2008$PA>25, "PA"], breaks=50, cex.main=.8)

The second histogram is shown in Figure 13-19.

Figure 13-17. Contour example: Yosemite Valley
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A closely related type of chart is the density plot. Many statisticians recommend
using density plots instead of histograms because they are more robust and easier
to read. To plot a density plot from the plate appearance data (for batters with more
than 25 plate appearances), we use two functions.

First, we use density to calculate the kernel density estimates. Next, we use plot to
plot the estimates. We could plot the diagram with an expression like this:

> plot(density(batting.2008[batting.2008$PA>25, "PA"]))

A common addition to a kernel density plot is a rug. A rug is essentially a strip plot
shown along the axis, with each point represented by a short line segment. You can
add a rug to the kernel density plot with an expression like:

> rug(batting.2008[batting.2008$PA>25, "PA"])

The final version of the density plot is shown in Figure 13-20.

Another way to view a distribution is the quantile-quantile (Q-Q) plot. Quantile-
quantile plots compare the distribution of the sample data to the distribution of a
theoretical distribution (often a normal distribution). As the name implies, they plot
the quantiles from the sample data set against the quantiles from a theoretical
distribution. If the sample data is distributed the same way as the theoretical distri-
bution, all points will be plotted on a 45° line from the lower-left corner to the upper-
right corner. Quantile-quantile plots provide a very efficient way to tell how a
distribution deviates from an expected distribution.

You can generate these plots in R with the qqnorm function. Without arguments, this
function will plot the distribution of points in each quantile, assuming a theoretical
normal distribution. The plot is shown in Figure 13-21:

Figure 13-18. Histogram showing the distribution of plate appearances in 2008
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> qqnorm(batting.2008$AB)

If you would like to compare two actual distributions, or compare the data distri-
bution to a different theoretical distribution, then try the function qqplot.

Box Plots
Another very useful way to visualize a distribution is a box plot. A box plot is a
compact way to show the distribution of a variable. The box shows the interquartile
range. The interquartile range contains values between the 25th and 75th percentile;
the line inside the box shows the median. The two “whiskers” on either side of the
box show the adjacent values. A box plot is shown in Figure 13-22.

The adjacent values are intended to show extreme values, but they don’t always
extend to the absolute maximum or minimum value. When there are values far
outside the range we would expect for normally distributed data, those outlying
values are plotted separately. Specifically, here is how the adjacent values are
calculated: the upper adjacent value is the value of the largest observation that is less
than or equal to the upper quartile plus 1.5 times the length of the interquartile

Figure 13-19. Histogram showing the number of plate appearances for players with over 25
plate appearances in 2008
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range; the lower adjacent value is the value of the smallest observation that is greater
than or equal to the lower quartile less 1.5 times the length of the interquartile range.
Values outside the range of the whiskers are called outside values and are plotted
individually.

To plot a box plot, use the boxplot function. Here is the default method of
boxplot for vectors:

boxplot(x, ..., range = 1.5, width = NULL, varwidth = FALSE,
notch = FALSE, outline = TRUE, names, plot = TRUE,
border = par("fg"), col = NULL, log = "",
pars = list(boxwex = 0.8, staplewex = 0.5, outwex = 0.5),
horizontal = FALSE, add = FALSE, at = NULL)

And here is the form of boxplot when a formula is specified:

boxplot(formula, data = NULL, ..., subset, na.action = NULL)

Here is a description of the arguments to boxplot.

Figure 13-20. Density plot of plate appearances with rug
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Argu-
ment

Description Default

formula A formula of the form y ~ grp, where y is a variable to be plotted and grp is a
variable describing a set of different plotting groups.

data A data frame (or list) in which the variables used in formula are defined.

subset A vector specifying a subset of observations to use in plotting.

x A vector specifying values to plot.

... Additional vectors to plot (or graphical parameters to pass to bxp). Each additional
vector is plotted as an additional box.

range A numeric value that determines the maximum amount that the whiskers extend
from the boxes.

1.5

width A numeric vector specifying the widths of the boxes being plotted. NULL

varwidth If varwidth=TRUE, then each box is drawn with a width proportional to the square
root of the number of observations represented by the box. If var
width=FALSE, boxes are plotted with the same width.

FALSE

Figure 13-21. Quantile-quantile plot
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Argu-
ment

Description Default

notch If notch=TRUE, then a “notch” is drawn in the boxes. Notches are drawn at
+/-1.58 IQR/sqrt(n); see the help file for boxplot.stats for an explan-
ation of what they mean.

FALSE

outline A logical value specifying whether outliers should be drawn. TRUE

names A character vector specifying the group names used to label each box plot.  

plot If plot=TRUE, then the box plots are plotted. If plot=FALSE, then boxplot returns
a list of statistics that could be used to draw a box plot; see the help file for
boxplot for more details.

TRUE

border A character vector specifying the color to use for the outline of each box plot. par("fg")

col A character vector specifying the color to use for the background of each box plot. NULL

log A character value indicating whether the x-axis (log="x"), y-axis (log="y"),
both axes (log="xy"), or neither axis (log="") should be plotted with a log-
arithmic scale.

""

pars A list of additional graphical parameters passed to bxp. list(boxweb
= 0.8, sta
pleweb =
0.5, outwex
= 0.5)

horizontal A logical value indicating whether the boxes should be drawn horizontally
(horizontal=TRUE) or vertically (horizontal=FALSE).

FALSE

add A logical value specifying whether the box plot should be added to an existing chart
(add=TRUE) or if a new chart should be drawn (add=FALSE).

FALSE

at A numeric vector specifying the locations at which each box plot should be drawn. 1:n, where n is the
number of boxes

Figure 13-22. Box plot components
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As an example, let’s look at the team batting data from 2008. We’ll restrict the data
to include only American League teams (it’s too hard to read a plot with 30 boxes,
so this cuts it to 16) and include only players with over 100 plate appearances (to
cut out marginal players with a small number of plate appearances). Finally, let’s
adjust the text size on the axis so that all the labels fit. Here is the expression:

> batting.2008 <- transform(batting.2008,
+   OBP=(H+BB+HBP)/(AB+BB+HBP+SF))
> boxplot(OBP~teamID,
+   data=batting.2008[batting.2008$PA>100 & batting.2008$lgID=="AL",],
+   cex.axis=.7)

The results are shown in Figure 13-23.

Figure 13-23. Box plot showing on-base percentage for players in the AL in 2008

Graphics Devices
Graphics in R are plotted on a graphics device. You can manually specify a graphics
device or let R use the default device. In an interactive R environment, the default is
to use the device that plots graphics on the screen. On Microsoft Windows, the
windows device is used. On most Unix systems, the X11 device is used. On Mac
OS X, the quartz device is used. You can generate graphics in common formats using
the bmp, jpeg, png, and tiff devices. Other devices include postscript, pdf, pictex
(to generate LaTeX/PicTeX), xfig, and bitmap.

Most devices allow you to specify the width, height, and point size of the output
(with the width, height, and pointsize arguments, of course). For devices that
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generate files, you can usually use the argument name file.4 When you are done
writing a graphic to a file, call the dev.off function to close and save the file.

In writing this book, I used the png function to generate the graphics printed in this
book. For example, I used the following code to produce the first plot in “Scatter
Plots” on page 214:

> png("scatter.1.pdf", width=4.3, height=4.3, units="in", res=72)
> attach(toxins.and.cancer)
> plot(total_toxic_chemicals/Surface_Area, deaths_total/Population)
> dev.off()

Customizing Charts
There are many ways to change how R plots charts. The most intuitive is through
arguments to a charting function. Another way to customize charts is by setting
session parameters. An additional way to change a chart is through a function that
modifies a chart (for example, adding titles, trend lines, or more points). Finally, it
is possible to write your own charting functions from scratch.

This section describes common arguments and parameters for controlling how
charts are plotted.

Common Arguments to Chart Functions
Conveniently, most charting functions in R share some arguments. Here is a table
of common arguments for charting functions.

Argument Description

add Should this plot be added to the existing plots on the device, or should the device be cleaned first?

axes Controls whether axes will be plotted on the chart.

log Controls whether points are plotted on a logarithmic scale.

type Controls the type of graph being plotted.

xlab, ylab Labels for x- and y-axes.

main Main title for the plot.

sub Subtitle for the plot.

Graphical Parameters
This section describes the graphical parameters available in the graphics package.
In most cases, you can specify these parameters as arguments to graphics functions.
However, you can also use the par function to set graphics parameters. The par

4. For postscript, pdf, pictex, xfig, and bitmap, the name of the argument is file. For bmp, jpeg,
png, and tiff, the name of the argument is filename. However, you can safely use the argument
name file because of the way R’s argument matching rules work. In general, this isn’t a good
practice, but it’s easier than trying to remember the difference between the different devices.
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function sets the graphics functions for a specific graphics device. These new settings
will be the defaults for any new plot until you close the device.

The par function can be useful if you want to set parameters once and then plot
multiple charts. It can also be useful if you want to use the same set of parameters
many times. You could write a function to set the right parameters and then call it
each time you want to plot some charts:

> my_graphics_params <- function () {
+    par(some graphics parameters)
+ }

You can check or set the values of these parameters for the active device through the
par function. If there is no active device, then par will open the default device.

To check the value of a parameter with par, use a character string to specify the value
name. To set a parameter’s value, use the parameter name as an argument name.
To get a vector showing all graphical parameters, simply call par with no arguments.
Almost all parameters can be read or written. (The only exceptions are cin, cra, csi,
cxy, and din, which can only be read.)

For example, the parameter bg specifies the background color for plots. By default,
this parameter is set to “transparent”:

> par("bg")
[1] "transparent"

You could use the par function to change the bg parameter to “white”:

> par(bg="white")
> par("bg")
[1] "white"

“Graphical parameters by name” on page 253 gives details about each graphical
parameter by name. However, check the help file for each function to make sure
that the parameter means what you think it means. Sometimes, plotting functions
have arguments with the same name as graphics parameters to par that do different
things. For example, the function points has an argument named bg that means “the
background color used in points drawn with this function.”

Annotation

Titles and axis labels are called chart annotation. You can control chart annotation
with the ann parameter. (If you set ann=FALSE, then titles and axis labels are not
printed.)

Margins

R allows you to control the size of the margin around a plot. Figure 13-24 shows
how this works. The whole graphics device is called the device region. The area where
data is plotted is called the plot region.

Use the mai argument to specify the margin size in inches and use mar to specify the
margin in lines of text. If you are using mar, you can use mex to control how big a line
of text is in the margin (compared with the rest of the plot). To control the margins
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around titles and labels, use the mgp parameter. To check the overall dimensions of
a device (in inches), you can use the read-only parameter din.

By default, R maximizes the use of available space out to the margins (pty="m"), but
you can easily ask R to use a square region by setting pty="s".

Multiple plots

In R, you can plot multiple charts within the same chart area. You can do this with
the standard graphics functions by setting the mfcol parameter for a device. For
example, to plot six figures within the plot area in three rows of two columns, you
would set mfcol as follows:

> par(mfcol=c(3, 2))

Each time a new figure is plotted, it will be plotted in a different row or column
within the device, starting with the top-left corner. Plots are then added one at a
time, first filling each column from top to bottom, and moving to the next column
to the right when each column is filled. For example, let’s plot six different figures:

> png("~/Documents/book/current/figs/multiplefigs.1.pdf",
+   width=4.3, height=6.5, units="in", res=72)
> par(mfcol=c(3, 2))
> pie(c(5, 4, 3))
> plot(x=c(1, 2, 3, 4, 5), y=c(1.1, 1.9, 3, 3.9, 6))
> barplot(c(1, 2, 3, 4, 5))
> barplot(c(1, 2, 3, 4, 5), horiz=TRUE)
> pie(c(5, 4, 3, 2, 1))
> plot(c(1, 2, 3, 4, 5, 6), c(4, 3, 6, 2, 1, 1))
> dev.off()

The result of these commands is shown in Figure 13-25.

Figure 13-24. Margins around graphics area
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If a matrix of subplots is being drawn on a graphics device, you can specify the next
plot location using the argument mfg=c(row, column, nrows, ncolumns).

Figure 13-26 shows an example of how margins and plotting areas are defined when
using multiple figures. Within the device region are a set of figure regions corre-
sponding to each individual figure. Within each figure region, there is a plot region.

Figure 13-25. Multiple-figure example
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There is an outer margin that surrounds the figure area; you may control these with
the parameters omi, oma, and omd. Within each figure, as with all plots, there is a
second margin area, controlled by mai, mar, and mex. (If you are writing your own
graphics functions, you may find it useful to use the xpd parameter to control where
graphics are clipped.)

To find the size of the current plot area (within the grid), check the parameter pin.
To get the coordinates of the plot region, check the parameter plt. To find the
dimensions of the current plot area using normalized device coordinates, use the
parameter fig.5

You may find it easier to use the functions layout or split.screen. Better still, use
the packages grid or lattice.

Text properties

Many parameters control the way text is shown within a plot.

The parameter ps specifies the default point size of text. A second param-
eter, cex, specifies a default scaling factor for text. You may specify additional scaling
factors for different types of text: cex.axis for axis annotation, cex.lab for x and y
labels, cex.main for main titles, and cex.sub for subtitles. In many cases, all three
parameters are used to find the size of a line of text. Here is an example of how this
works. To determine the point size for a chart title, multiply ps * cex * cex.main.

Text size.

5. Normalized device coordinates map the overall chart space onto a 1 × 1 area. (So, x coordinates
vary between 0 and 1 and y coordinates between 0 and 1.)

Figure 13-26. Multiple figure layout
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You may use the read-only parameters cin, cra, csi, and cxy to check the size of
characters.

The font is specified through the family argument. Somewhat confusingly,
the text style is specified through the font argument. You can specify the style for
the axis with font.axis, for labels with font.lab, for main titles with font.main, and
for subtitles with font.sub.

To control how text is aligned, use the adj parameter. To
change the spacing between lines of text, use the lheight parameter.

To rotate each character, use the crt parameter. To rotate whole strings,
use the srt parameter.

Line properties

You can also change the way lines are drawn. To change the line end style, use
lend. To change the line join style, use ljoin and lmiter. Line type is specified by
lty and line width by lwd. To change the way boxes are drawn around plots, use the
bty parameter.

Colors

You can change the default background color with bg and the default foreground
color with fg. The default plotting color is specified by col. Use col.axis to change
the color of axes, col.lab to change the color of labels, col.main to change the color
of the main title, and col.sub to change the color of the subtitle.

You can specify colors in many different ways: as a string, using RGB (red/green/
blue) components, or referencing a palette by integer index. To get a list of valid
color names, use the colors function. To specify a color using RGB components,
use a string of the form "#RRGGBB", where RR, GG, and BB are hexadecimal values
specifying the amount of red, green, and blue, respectively. To view or change a
color palette, use the palette function. Other functions are available for specifying
colors, including rgb, hsv, hcl, gray, and rainbow.

Axes

The argument lab controls how axes are annotated. To change the style of axis labels,
use las. To change the margin for the axis title, labels, and lines, use mgp.

You can specify the size of tick marks in lines of text with tcl, or as a fraction of the
plot area with tck. To change the minimum and maximum tick mark locations, use
xaxp and yaxp. To change the way intervals are calculated, use xaxs and yaxs. To
remove the x-axis or y-axis, use xaxt="n" or yaxt="n".

You can also change the orientation of axis labels with the las parameter.

Points

You can change the symbol used for points with the pch argument. To get a list of
point types, use the points function.

Typeface.

Alignment and spacing.

Rotation.
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Graphical parameters by name

Here is a table showing all the graphical parameters available in R that can be set
with par.6

Parameter Description Mnemonic Default

adj Controls how text is justified in text, mtext, and title strings.
Set adj=0 for left-justified text, adj=1 for right-justified
text, and adj=0.5 for centered text.

0.5

ann If ann=TRUE, then axis titles and overall titles are included
with plots. If ann=FALSE, these annotations are not in-
cluded. Used by high-level functions that call
plot.default.

ANNotation TRUE

ask Within an interactive session, if ask=TRUE, then the user
is asked for input before a new chart is drawn.

FALSE

bg The background color for the device region. transparent

bty The type of box to draw around a plot. Use bty="o" for a
box on all sides; bty="l" for the left and bottom only;
bty="7" for top and right only; bty="]" for right side,
bottom, and top only; bty="c" for left side, bottom, and
top only; bty="u" for left, right, and bottom only; and
bty="n" for no box. To draw the box, use the box function.

Box TYpe (val-
ues correspond
to the shape of
the letter)

Box on all sides ("o")

cex This parameter controls the size of text and plotted points.
cex=1 means “normal size”; cex=0.75 means “shrink
the text and points to 75% of normal size.” This parameter
is reset when the device size changes.

Character
EXpansion

1

cex.axis Text magnification for axis notations, relative to cex. 1

cex.lab Text magnification for x and y labels, relative to cex. 1

cex.main Text magnification for main titles, relative to cex. 1.2

cex.sub Text magnification for subtitles, relative to cex. 1

cin Character size in inches. (Equivalent to cra, just with
different units.)

Character size
in INches

c(0.15, 0.2)

col Default plotting color. black

col.axis Color for axis annotation. black

col.lab Color for axis labels. black

6. Incidentally, I generated this table with R code like this:

print_pars <- function() {
     for (n in names(par())) {

p <- par(n);
if (length(p) == 1) {

print(paste(n,p,sep="="));
} else {

print(paste(n,"=c(",paste(p,collapse=","),sep="",")"));
}

     }
}
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Parameter Description Mnemonic Default

col.main Color for main titles. black

col.sub Color for subtitles. black

cra Character size in pixels. Character size
in RAsters

c(10.8, 14.4)

crt A numeric value that specifies (in degrees) how individual
characters should be rotated. Use srt for whole strings.

Character
RoTation

0

csi Height of default size characters in inches. Same as
par("cin")[2].

0.2

cxy Default character size in user coordinate units. c(0.02604167,
0.03875969)

din Device dimensions in inches. Dimensions in
INches

c(7, 7)

err Degree of error reporting. Currently does nothing. 0

family Name of font family used to draw text. Common values
include “serif”, “sans”, “mono”, and Hershey fonts. (See
help file for Hershey for more information.)

fg Color for foreground of plots. black

fig A numeric vector that specifies the coordinates of the figure
area.

c(0, 1, 0, 1)

fin The figure area dimensions in inches. c(7, 7)

font An integer that specifies what “font” to use in text (though
this really means “style”). Use font=1 for normal,
font=2 for bold, font=3 for italic, font=4 for bold and
italic, and font=5 to substitute the Adobe Symbol font.

1

font.axis The “font” to be used for axis annotation. 1

font.lab The “font” to be used for x and y labels. 1

font.main The “font” to be used for the main plot titles. 2

font.sub The “font” to be used for plot subtitles. 1

lab A numeric vector with three elements (x, y, len) that
specifies the way that axes are annotated. x and y specify
the approximate number of tick marks on the x- and y-axes,
and len specifies the label length.

Controls
whether to plot
a black Labra-
dor retriever in
the middle of
the plot instead
of your data

c(5, 5, 7)

las Specifies the style of axis labels. Use las=0 for parallel to
the axis, las=1 for horizontal, las=2 for perpendicular,
and las=3 for vertical. (Also used in mtext.)

0

lend Specifies the style of line ends. Use lend=0 or
lend="round" for rounded ends, len=1 or
lend="butt" for butt line caps and lend=2 or
lend="square" for square caps.

Line END "round"
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Parameter Description Mnemonic Default

lheight Specifies the height of a line when spacing multiple lines
of text.

Line HEIGHT
multiplier

1

ljoin Specifies the style for joining lines. Use ljoin=0 or
ljoin="round" for round line joins, ljoin=1 or
ljoin="mitre" for mitred line joins and, ljoin=2 or
ljoin="bevel" for beveled line joins.

Line JOIN style "round"

lmitre Controls when mitred line joins are converted to beveled
joins.

Line MITRE
limit

10

lty Line type. You can specify a numeric value (0=blank,
1=solid, 2=dashed, 3=dotted, 4=dotdash, 5=longdash,
6=twodash) or a character value (“blank”, “solid”,
“dashed”, “dotted”, “dotdash”, “longdash”, or “twodash”).

Line TYpe solid (1)

lwd A positive number specifying line width. Line WiDth 1

mai A numeric vector c(bottom, left, top, right)
that specifies margin size in inches.

MArgin size in
Inches

c(1.02, 0.82,
0.82, 0.42)

mar A numeric vector c(bottom, left, top, right)
that specifies margin size, in number of lines.

MARgin size in
lines

c(5.1, 4.1,
4.1, 2.1)

mex Specifies the expansion factor used for line size in mar. (The
exact relationship is mai=mar*mex*csi.)

Margin EXpan-
sion factor

1

mfcol This parameter allows you to split a graphics device into a
“matrix” of subplots. This parameter is a numeric vector
with two values: c(nrows, ncols). nrows represents
a number of rows, and ncols represents a number of
columns. When more than one row and column are speci-
fied, R will split the device area into the specified number
of rows and columns.

 c(1, 1)

mfg If a matrix of subplots is being drawn on a graphics device,
you can use mfg to specify the next plot to be drawn. Speci-
fied as c(row, column, nrows, ncolumns).
(When queried, this returns the location of the last figure
plotted.)

 c(1, 1, 1, 1)

mfrow Identical to mfcol.  c(1, 1)

mgp A numeric vector with three values that controls the margin
line for an axis title. mgp[1] is used for the title;
mgp[2:3] is used for the axis.

 c(3, 1, 0)

mkh The height of symbols when pch is an integer. (As of R 2.9.0,
this parameter has no effect.)

 0.001

new A logical value that indicates whether the plotting routine
should pretend that the graphics device has been freshly
initialized (and is thus empty). Used to plot a figure on top
of another one.

 FALSE

oma A numeric vector c(bottom, left, top, right)
that specifies the outer margin in lines.

Outer MArgin in
lines

c(0, 0, 0, 0)
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Parameter Description Mnemonic Default

omd A numeric vector c(bottom, left, top, right)
that specifies the outer margin as a fraction of the size of
the whole device. (For example, a value of 0 means the
leftmost or top value, and a value of 0.5 means dead center.)

Outer Margin in
Device
coordinates

c(0, 1, 0, 1)

omi A numeric vector c(bottom, left, top, right)
that specifies the outer margin in inches.

Outer Margin in
Inches

c(0, 0, 0, 0)

pch Specifies the default point type. Symbols can be specified
as numbers (see the help file for the points function to
get a complete list of values) or as a character. Some com-
mon values are pch=19: solid circle, pch=20: bullet
(smaller circle), pch=21: filled circle, pch=22: filled
square, pch=23: filled diamond, pch=24: filled triangle
point up, pch=25: filled triangle point down.

Point
CHaracter

1

pin The dimensions of the current plot in inches. Plot in INches c(5.76, 5.16)

plt A vector that specifies the coordinates of the plot region as
fractions of the figure region.

 c(0.1171429,
0.9400000,
0.1457143,
0.8828571)

ps An integer value specifying the point size of text (not sym-
bols).

Point Size 12

pty Specifies the type of plotting region. Use pty="s" for
square, pty="m" to maximize the use of space.

 m

smo Specifies how smooth circles and arcs should be. (Currently
ignored.)

 1

srt Specifies the rotation of strings in degrees. (Used only by
text.)

 0

tck The length of tick marks. Specified as a fraction of the
width or height of the plotting region (whichever is small-
est).

 NA

tcl The length of tick marks as a fraction of the height of a line
of text.

 -0.5

usr A vector c(x1, x2, y1, y2) that specifies the extreme
values of user coordinates in the plotting region. (Note that
these values are scaled exponentially when a logarithmic
scale is used.)

 c(0, 1, 0, 1)

xaxp Controls how tick marks are shown in the x-axis. Specified
as a vector c(x1, x2, n). When a linear scale is being
used, specifies the minimum (x1) and maximum (x2)
tick mark locations and the number of tick marks. When a
logarithmic scale is being used, these parameters mean
something else: x1 is the lowest power of 10, x2 is the
highest power of 10, and n specifies the number of tick
marks plotted for each power of 10.

 c(0, 1, 5)

xaxs Controls the calculation method used to find axis intervals
on the x-axis. The regular method, xaxs="r", extends the

 r
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Parameter Description Mnemonic Default
data range by 4% on each side and then tries to find pretty
labels. The internal method, xaxs="i", tries to find labels
within the data range. (There are other valid values, but
they aren’t currently implemented.)

xaxt Specifies the x-axis type. Use xaxt="n" for no axis; any
other value to plot an axis.

 s

xlog A logical value that specifies whether the scale of the x-axis
is logarithmic.

 FALSE

xpd Controls clipping. Use xpd=FALSE to clip to the plot region,
xpd=TRUE to clip to the figure region, and xpd=NA to clip
to the device region.

 FALSE

yaxp Controls how tick marks are shown in the y-axis. See
xaxp for a full explanation.

 c(0, 1, 5)

yaxs Controls the calculation method used to find axis intervals
on the y-axis. See xaxs for a full explanation.

 r

yaxt Specifies the y-axis type. Use xaxt="n" for no axis; any
other value to plot an axis.

 s

ylog A logical value that specifies whether the scale of the y-axis
is logarithmic.

 FALSE

Basic Graphics Functions
It is possible to use these functions to either modify an existing chart or to draw a
chart yourself from scratch. Many of these functions are called from higher-level
graphics functions. These higher-level functions pass extra arguments to these
lower-level functions. So even if you do not plan to use these functions directly, you
may find it useful to pass arguments to them to customize charts.

Here is a table of low-level graphics functions called by the higher-level graphics
functions listed above. (You can often look at arguments for the low-level graphics
functions to determine how to customize the look of plots generated with the high-
level functions.)

High-level function Low-level functions

plot title, plot.new, plot.xy, plot.window, points, lines, axis, box,
xy.coords

matplot plot

pairs plot, points

barplot title, plot.window, title, axis

pie plot.window, polygon, lines, text, title

dotchart plot.window, mtext, abline, points, axis, box, title

coplot axis, plot.new, plot.window, points, grid

cdplot plot, axis, box
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High-level function Low-level functions

mosaicplot polygon, text, segments, title

spineplot axis, plot, rect, axis

persp title, persp (internal)

image plot, image (internal)

contour plot.window, title, Axis, box, contour (internal)

heatmap image, axis, plot, title

hist plot

qqnorm plot

qqplot plot

boxplot bxp

bxp points, polygon, segments, axis, Axis, title, box, plot.new,
plot.window

points plot.xy

lines plot.xy

points

You can plot points on a chart using the points function:

points(x, y = NULL, type = "p", ...)

This can be very useful for adding an additional set of points to an existing plot
(typically a scatter plot), usually with a different color or plot symbol. Most of the
same arguments for the plot function apply to points. The most useful arguments
are col (to specify the foreground color for plotted points), bg (to specify the back-
ground color of plotted points), pch (to specify the plotting character), cex (to specify
the size of plotted points), and lwd (to specify the line width for plotted symbols).

You can also add points to an existing matrix plot with matpoints:

matpoints(x, y, type = "p", lty = 1:5, lwd = 1, pch = NULL,
          col = 1:6, ...)

lines

A similarly useful function is lines:

lines(x, y = NULL, type = "l", ...)

Like points, this is often used to add to an existing plot. The lines function plots a
set of line segments on an existing plot. (The values in x and y specify the intersections
between the line segments.) As with points, many arguments for plot also apply to
lines. Some especially useful arguments are lty (line type), lwd (line width), col (line
color), lend (line end style), ljoin (line join style), and lmitre (line mitre style).

You can also add lines to an existing plot with matlines:

matlines (x, y, type = "l", lty = 1:5, lwd = 1, pch = NULL,
          col = 1:6, ..
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curve

To plot a curve on the current graphical device, you can use the curve function:

curve(expr, from = NULL, to = NULL, n = 101, add = FALSE,
      type = "l", ylab = NULL, log = NULL, xlim = NULL, ...)

Here is a description of the arguments to the curve function.

Argument Description Default

expr The expression to plot (written as a function of x) or the name of a
function to plot.

 

from The lowest x value at which expr is evaluated. NULL

to The highest x value at which expr is evaluated. NULL

n A positive integer value specifying the number of values at which to
evaluate expr between the x limits (specified by xlim).

101

add A logical value indicating whether to add the curve to the current
plot.

FALSE

type Specifies the plot type. Use type="p" for points, type="l" for
lines, type="o" for overplotted points and lines, type="b" for
points joined by lines, type="c" for empty points joined by lines,
stype="s" or type="S" for stair steps, type="h" for
histogram-like vertical lines, or type="n" to plot nothing.

"l"

ylab A character value specifying the label for the y-axis. ylab

log A logical value specifying whether to plot on a logarithmic scale. log

xlim A numeric vector with two values specifying the lowest and highest
x values to plot.

NULL

... Additional arguments passed to plot.  

text

You can use the text function to add text to an existing plot. (We used the text
function to label points on a scatter plot in “Scatter Plots” on page 214.)

text (x, y = NULL, labels = seq_along(x), adj = NULL,
     pos = NULL, offset = 0.5, vfont = NULL,
     cex = 1, col = NULL, font = NULL, ...)

Here are the arguments to text.

Argument Description Default

x, y These arguments specify the coordinates at which the text
labels will be drawn.

y=NULL

labels A vector of character values specifying the text values that should
be drawn on the chart.

seq_along(x)

adj A numeric vector with one or two values (each between 0 and 1). If
one value is used, it represents the horizontal adjustment. If two
values are used, the first represents the horizontal adjustment, and
the second represents the vertical adjustment.

NULL
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Argument Description Default

pos A numeric value that specifies where the text should be positioned.
Use pos=1 for below, pos=2 for left, pos=3 for above, and
pos=4 for right. Overrides values specified in adj.

NULL

offset A numeric value that specifies the offset of the labels in terms of
character widths. (Valid only when pos is specified.)

0.5

vfont A character vector with two elements specifying the font to use for
labels. vfont[1] specifies a Hershey font family; vfont[2]
specifies a typeface within the family.

NULL

cex Numeric value specifying the character expansion factor. 1

col Specifies the color of plotted text. NULL

font Specifies the font to be used for the plotted text. NULL

... Additional graphical parameters.

For an example of how to use the text function, see “Scatter Plots” on page 214.

abline

To plot a single line across the plot area, you can use the abline function:

abline(a = NULL, b = NULL, h = NULL, v = NULL, reg = NULL,
       coef = NULL, untf = FALSE, ...)

Here is a description of the arguments to abline.

Argument Description Default

a The intercept for the line. NULL

b The slope for the line. NULL

h A numeric vector of y values for horizontal lines. NULL

v A numeric vector of x values for vertical lines. NULL

reg Specifies an object with a coef method. NULL

coef A numeric vector with two elements specifying the intercept and
slope.

NULL

untf A logical value specifying whether to “untransform” the line; if one
or both axes are in logarithmic coordinates and untf=true, then
the line is shown in original coordinates. Otherwise, the line is plotted
in transformed coordinates.

NULL

... Additional graphical parameters. See “Graphical Parame-
ters” on page 247 for more details.

Typically, you would use one call to abline to draw a single line. For example:

> # draw a simple plot as a background
> plot(x=c(0, 10), y=c(0, 10))
> # plot a horizontal line at y=4
> abline(h=4)
> # plot a vertical line at x=3
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> abline(v=3)
> # plot a line with a y-intercept of 1 and slope of 1
> abline(a=1, b=1)
> # plot a line with a y-intercept of 10 and slope of -1,
> # but this time, use the coef argument:
> abline(coef=c(10, -1))

However, you can also specify multiple arguments, and abline will plot all of the
specified lines. For example:

> # plot a grid of lines between 1 and 10:
> abline(h=1:10, v=1:10)

If you just want to plot a grid on a plot, you might want to use the grid function
instead:

grid(nx = NULL, ny = nx, col = "lightgray", lty = "dotted",
     lwd = par("lwd"), equilogs = TRUE)

polygon

To draw a polygon, you can use the polygon function:

polygon(x, y = NULL, density = NULL, angle = 45,
        border = NULL, col = NA, lty = par("lty"), ..

The x and y arguments specify the vertices of the polygon. For example, the following
expression draws a 2 × 2 square on a graph centered at (3, 3):

> polygon(x=c(2, 2, 4, 4), y=c(2, 4, 4, 2))

For the special case where you just need to draw a rectangle, you can use the rect
function:

rect(xleft, ybottom, xright, ytop, density = NULL, angle = 45,
     col = NA, border = NULL, lty = par("lty"), lwd = par("lwd"),
     ...)

segments

To draw a set of line segments connecting pairs of points, you can use the
segments function:

segments(x0, y0, x1, y1,
         col = par("fg"), lty = par("lty"), lwd = par("lwd"),
         ...)

This function draws a set of line segments from each pair of vertices specified by
(x0[i],y0[i]) to (x1[i], y1[i]).

legend

The legend function adds a legend to a chart:

legend(x, y = NULL, legend, fill = NULL, col = par("col"),
       lty, lwd, pch,
       angle = 45, density = NULL, bty = "o", bg = par("bg"),
       box.lwd = par("lwd"), box.lty = par("lty"), box.col = par("fg"),
       pt.bg = NA, cex = 1, pt.cex = cex, pt.lwd = lwd,
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       xjust = 0, yjust = 1, x.intersp = 1, y.intersp = 1,
       adj = c(0, 0.5), text.width = NULL, text.col = par("col"),
       merge = do.lines && has.pch, trace = FALSE,
       plot = TRUE, ncol = 1, horiz = FALSE, title = NULL,
       inset = 0, xpd, title.col = text.col)

Here is a list of arguments to legend. (Many of these also can be passed along as
arguments to functions that draw legends.)

Argument Description Default

x, y The coordinates at which the legend will be positioned. y=NULL

legend A character vector to appear in the legend.

fill A character vector specifying a color associated with each legend
label. If specified, boxes filled with these colors are shown next to
the labels.

NULL

col The color of lines appearing in the legend. par("col")

lty The line type for lines appearing in the legend.

lwd The line width for lines appearing in the legend.

pch A vector of values specifying point characters appearing in the
legend.

angle Angle of shading lines. 45

density Density of shading lines. NULL

bty Box type for box drawn around the legend. "o"

bg Background color for the legend box. par("bg")

box.lwd Line width for the legend box. par("lwd")

box.lty Line type for the legend box. par("lty")

box.col Line color for the legend box. par("fg")

pt.bg Background color for points shown in the legend box (if pch is
specified).

NA

cex Character expansion value for legend relative to par("cex"). 1

pt.cex Expansion factor for points in the legend. cex

pt.lwd Line width for points in the legend. lwd

xjust Specifies how the legend should be justified relative to the x
location. Use xjust=0 for left justification, xjust=0.5 to center,
and xjust=1 for right justification.

0

yjust Specifies how the legend should be justified relative to the
y location.

1

x.intersp Character “interspacing factor” for horizontal spacing. 1

y.intersp Character “interspacing factor” for vertical spacing. 1

adj String adjustment for legend text. c(0, 0.5)

text.width Width of legend text in user coordinates. NULL

text.col Color used for legend text. par("col")
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Argument Description Default

merge If merge=TRUE, merge points and lines but not filled boxes. do.lines && has.pch

trace Logical value. If trace=TRUE, shows how legend calculates stuff. FALSE

plot Logical value. If plot=FALSE, calculations are returned but no
legend is drawn.

TRUE

ncol Specifies the number of columns to draw in the legend. 1

horiz Specifies whether the legend should be laid out vertically
(horiz=FALSE) or horizontally (horiz=TRUE).

FALSE

title A character value to be placed at the top of the legend box. NULL

inset Inset distance from the margins. Specified as a fraction of the plot
region.

0

xpd Controls clipping while the legend is being drawn. See “Graphical
parameters by name” on page 253 for more details.

title.col Color for title. text.col

title

To annotate a plot, use the title function:

title(main = NULL, sub = NULL, xlab = NULL, ylab = NULL,
      line = NA, outer = FALSE, ...)

This function adds a main title (main), a subtitle (sub), an x-axis label (xlab), and a
y-axis label (ylab). Specify a value of line to move the labels outward from the edge
of the plot. Specify outer=TRUE if you would like to place labels in the outer margin.

axis

To add axes to a plot, use the axis function:

axis(side, at = NULL, labels = TRUE, tick = TRUE, line = NA,
     pos = NA, outer = FALSE, font = NA, lty = "solid",
     lwd = 1, lwd.ticks = lwd, col = NULL, col.ticks = NULL,
     hadj = NA, padj = NA, ...)

Here is a table of arguments to axis. (Many of these arguments can be passed to
functions that draw axes.)

Argument Description Default

side An integer value specifying where to draw the axis. Use side=1 for
below, side=2 for left, side=3 for above, and side=4 for right.

at A numeric vector specifying points at which tick marks are drawn.
(If not specified, uses the same method as axTicks to compute
“pretty” tick mark locations.)

NULL

labels Either a logical value or a vector. If logical, specifies whether numeric
annotations are added at tick marks. If a vector is specified, each
value specifies the label to place at each tick mark.

TRUE

tick A logical value specifying if tick values and an axis will be drawn. TRUE
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Argument Description Default

line The number of lines into the margin at which the axis will be drawn.
(Can be used to add space between plotted values and the axis.) Use
line=NA for no space.

NA

pos The coordinate at which the axis will be drawn. (If not NA, overrides
line.)

NA

outer A logical value specifying whether the axis should be drawn in the
outer margin. Use outer=FALSE to draw the axis in the standard
margin.

FALSE

font Font for axis text. NA

lty Line type for axis line and tick marks. "solid"

lwd Line width for axis line. 1

twd.ticks Line width for tick marks. lwd.ticks

col Color for axis line. col

col.ticks Color for tick marks. col.ticks

hadj Adjustment for all labels parallel to the reading direction. See
“Graphical Parameters” on page 247 for more information on the
parameter adj.

NA

padj Adjustment for all labels perpendicular to the reading direction. See
“Graphical Parameters” on page 247 for more information on the
parameter adj.

NA

... Other graphical parameters. See “Graphical Parame-
ters” on page 247 for more information.

box

The box function can be used to draw a box around the current figure region. This
can be useful when plotting multiple figures within a graphics device:

box(which = "plot", lty = "solid", ...)

The which argument specifies where to draw the box. Values for which include “plot,”
“figure,” “inner,” and “outer”). You might find the box argument useful for showing
these different regions.

mtext

The mtext function can be used to add text to a margin of a plot:

mtext(text, side = 3, line = 0, outer = FALSE, at = NA,
      adj = NA, padj = NA, cex = NA, col = NA, font = NA, ...)

Use the side parameter to specify where to plot the text (side = 1 for bottom, side =
2 for left, side = 3 for top, and side = 4 for right). The line argument specifies where
to write the text, in terms of “margin lines” (starting at 0 for closest to the plot area).
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trans3d

To add lines or points to a perspective plot (from persp), you might find the function
trans3d convenient:

trans3d(x,y,z, pmat)

This function takes vectors of points x, y, and z and translates them into the correct
screen position. The argument pmat is a perspective matrix that is used for translation.
The persp function will return an appropriate perspective matrix object for use by
trans3d.
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14
Lattice Graphics

The lattice package provides a different way to plot graphics in R. Lattice graphics
look different from standard R graphics, are created with different functions, and
have different options. Lattice functions make it easy to do some things that are hard
to do with standard graphics, such as plotting multiple plots on the same page or
superimposing plots. Additionally, most lattice functions produce clean, readable
output by default. This chapter shows what lattice graphics can do and explains how
to use them.

The real strength of the lattice package is in splitting a chart into different panels
(shown in a grid), or groups (shown with different colors or symbols) using a con-
ditioning or grouping variable. This chapter includes many examples that start with
a simple chart and then split it into multiple pieces to answer a question raised by
the original plot.

History
In the early 1990s, Richard Becker and William Cleveland (two researchers at Bell
Labs) built a revolutionary new system for displaying data called Trellis graphics.
(You can find more information about the Trellis software at http://cm.bell-labs.com/
cm/ms/departments/sia/project/trellis/.) Cleveland devised a number of novel plots
for visualizing data based on research into how users visualize information.1

The lattice package is an implementation of Trellis graphics in R.2 You may notice
that some functions still contain the Trellis name. The lattice package includes
many types of charts that will be familiar to most readers, such as scatter plots, bar
charts, and histograms. But it also includes some plots that you may not have seen
before, such as dot plots, strip plots, and quantile-quantile plots. This chapter will

1. See [Cleveland1993] for more information.

2. It’s not exactly the same as the S version, but unless you want to use old S/S+ code, the
differences probably will not matter to you.
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show you how to use different types of charts, familiar and unfamiliar, in the
lattice package.

An Overview of the Lattice Package
Lattice graphics consist of one or more rectangular drawing areas called panels. The
data assigned to each panel is referred to as a packet. Lattice functions work by calling
one or more panel functions, which actually plot the packets within panels. To
change the appearance of a plot, you can specify arguments to the plotting function
or change the panel function.

How Lattice Works
Here is what typically happens in a lattice session:

1. The end user calls a high-level lattice plotting function.

2. The lattice function examines the calling arguments and default parameters,
assembles a lattice object, and returns the object. (Note that the class of the
object is actually “trellis.” This means that many of the methods that act on an
object, like print or plot, are named plot.trellis or print.trellis.)

3. The user calls print.lattice or plot.lattice with the lattice object as an argu-
ment. (This typically happens automatically on the R console.)

4. The function plot.lattice sets up the matrix of panels, assigns packets to dif-
ferent panels (specified by the argument packet.panel) and then calls the panel
function specified in the lattice object to draw the individual panels.

Lattice graphics are extremely modular; they share many high-level functions (like
plot.lattice) and low-level functions (like panel.axis, which draws axes). This
means that they share many common arguments. It also means that you can cus-
tomize the appearance of lattice graphics by creating substitute components.

A Simple Example
There are many arguments to lattice functions, but in this section we’ll focus on a
handful of key arguments for specifying what data to plot.

As you may have noticed, functions in the graphics package don’t have completely
consistent arguments. Many of them share some common parameters (see “Cus-
tomizing Charts” on page 247), but many of them have different names for argu-
ments with the same purpose. (For example, data for barplot is specified with the
height argument, while data for plot is specified with x and y.) Arguments within
the lattice package are much more consistent.

You can always specify the data to plot using a formula and a data frame. Let’s create
a simple data set and plot a scatter plot with xyplot:

> d <- data.frame(x=c(0:9), y=c(1:10), z=c(rep(c("a", "b"), times=5)))
> d
   x  y z
1  0  1 a

268 | Chapter 14: Lattice Graphics



2  1  2 b
3  2  3 a
4  3  4 b
5  4  5 a
6  5  6 b
7  6  7 a
8  7  8 b
9  8  9 a
10 9 10 b

To plot this data frame, we’ll use the formula y~x and specify the data frame d. The
first argument given is the formula. (The argument used to be called “formula” and
is currently named x. The help files for lattice warn not to pass this as a named
argument, possibly because the name may change again.) To specify the data frame
containing the plotting data, we use the argument data:

> xyplot(y~x, data=d)

The resulting plot is shown in Figure 14-1. Formulas in the lattice package can also
specify a conditioning variable. The conditioning variable is used to assign data
points to different panels. For example, we can plot the same data shown above in
two panels, split by the conditioning variable z. To do this, we will change the for-
mula to y~x|z:

> library(lattice)
> xyplot(y~x|z, data=d)

Figure 14-1. Simple scatter plot example

The scatter plot with the conditioning variable is shown in Figure 14-2. As you can
see, the data is now split into two panels. If you would prefer to see the two data
series superimposed on the same plot, you can specify a grouping variable. To do
this, use the argument groups to specify the grouping variable(s):

> xyplot(y~x, groups=z, data=d)
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Figure 14-2. Simple scatter plot with conditioning variable

As shown in Figure 14-3, the two data series are represented by different symbols.
(If you try this example yourself using the R console, the different groups will be
plotted in different colors. To make the charts readable in black and white, I gen-
erated the charts using special settings.)

Figure 14-3. Scatter plot with grouping variable

Using Lattice Functions
The easiest way to use lattice graphics is by calling a high-level plotting function.
Most of these functions are the equivalent of a similar function in the graphics
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package. Here’s a table showing how standard graphics functions map to lattice
functions.

Graphics package function Trellis package function Description

barplot barchart Bar and column charts

dotchart dotplot Cleveland dot plots

hist histogram Histograms

Two functions: density and plot.density densityplot Kernel density plots

stripchart stripplot Strip charts

No function in graphics package; qqnorm in stats package qqmath Quantile-quantile plots

xplot xyplot Scatter plots

No function in graphics package; qqplot in stats package qq Quantile-quantile plots

pairs splom Scatter plot matrices

image levelplot Image plots

contour contourplot Contour plots

persp cloud, wireframe Perspective charts of
three-dimensional data

When you call a high-level lattice function, it does not actually plot the data. Instead,
each of these functions returns a lattice object. To actually show the graphic, you
need to use a print or plot command. If you simply execute a lattice function on
the R command line, R runs print automatically, so the graphic is shown. However,
if you call a lattice function inside another function or inside a script and you want
to show the results, make sure that you actually call print.

For some (but not all) lattice functions, it is possible to specify the source data in
multiple forms. For example, the function histogram can also accept data arguments
as factors or numeric vectors. These methods are provided for convenience where
appropriate. For example, I frequently plot contingency tables as bar charts, so I
often use the table method of barchart. Here is a table of data types accepted by
different lattice functions.

Trellis function Data types

barchart Array, formula, matrix, numeric vector, table

dotplot Array, formula, matrix, numeric vector, table

histogram Factor, formula, numeric vector

densityplot Formula, numeric vector

stripplot Formula, numeric vector

qqmath Formula, numeric vector

xyplot Formula

qq Formula

splom Data frame formula, matrix
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Trellis function Data types

levelplot Array, formula, matrix, table

contourplot Array, formula, matrix, table

cloud Formula, matrix, table

wireframe Formula, matrix

For more details on arguments to lattice functions, see “Customizing Lattice Graph-
ics” on page 312.

Custom Panel Functions
With standard graphics, you could easily superimpose points, lines, text, and other
objects on existing charts. It’s possible to do the same thing with lattice graphics,
but it’s a little trickier.

In order to add extra graphical elements to a lattice plot, you need to use a custom
panel function. As we described above, low-level panel functions actually plot
graphics. The high-level functions simply specify how data is divided between pan-
els, and how different elements (legends, strips, axes, etc.) need to be added. To add
extra elements to a lattice chart, you need to change the panel function.

As a simple example, let’s add a diagonal line to Figure 14-2. To do this, we’ll create
a new custom panel function that calls both panel.xyplot and panel.abline. The
new panel function will pass along its arguments to panel.xyplot. We’ll specify a
line that crosses the y-axis at 1 (through the a=1 argument to panel.abline) and has
slope 1 (through the b=1 argument to panel.abline). Here’s the code to generate this
chart:

xyplot(y~x|z, data=d,
   panel=function(...){
      panel.abline(a=1,b=1)
      panel.xyplot(...)
   }
)

As you can see, the chart with the custom panel function (Figure 14-4) is identical
to the chart we showed above for multiple panels (Figure 14-2, shown previously),
except with the addition of the diagonal lines.

High-Level Lattice Plotting Functions
This section describes high-level lattice functions. (We’ll cover panel functions in
the next section.) We’ll start with functions for plotting a single vector of values,
then functions for plotting two variables, then functions for plotting three variables,
and some other functions that build on these functions.
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Univariate Trellis Plots
In this section, I’m going to use the same data set for most of the examples: births
in the United States during 2006.3 The original data file contains a record for every
birth in the United States during 2006, but the version included in the nutshell
package contains only a 10% sample. Each record includes the following variables:

DOB_MM
Month of birth

DOB_WK
Day of week of birth

MAGER
Mother’s age

TBO_REC
Total birth order

WTGAIN
Weight gain (by mother)

SEX
Sex of the child (M or F)

APGAR5
Apgar score

Figure 14-4. Scatter plot showing custom panel function

3. This data set is available from http://www.cdc.gov/nchs/data_access/Vitalstatsonline.htm. I used
the 2006 Birth Data File in this book. The data file is 3.1 GB uncompressed, which is way too
big to load easily into R on a machine with only 4 GB. I used a Perl script to parse this file and
return a limited number of records in CSV format.
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DMEDUC
Mother’s education

UPREVIS
Number of prenatal visits

ESTGEST
Estimated weeks of gestation

DMETH_REC
Delivery method

DPLURAL
“Plural” births (i.e., single, twins, triplets, etc.)

DBWT
Birth weight (in grams)

It takes a little while to process the raw data, so I’ve included a 10% sample of this
data set within the nutshell package as births2006.smpl.

Processing the Birth Data
The natality files are gigantic; they’re approximately 3.1 GB uncompressed. That’s
a little larger than R can easily process, so I used Perl to translate these files to a
form easily readable by R. (It’s possible to read and parse individual lines in R
using the function scan, but I found that a little bit cumbersome. Perl is a lot cleaner
and easier.) First, I used the following Perl script to process the raw file:

#! /usr/bin/perl
print "DOB_MM,DOB_WK,MAGER,TBO_REC,WTGAIN,SEX,APGAR5," .
      "DMEDUC,UPREVIS,ESTGEST,DMETH_REC,DPLURAL,DBWT\n";

while(<>) {
    my ($trash1,$DOB_MM,$trash2,$DOB_WK,$trash3,$MAGER,$trash4,

$DMEDUC,$trash5,$TBO_REC,$trash6,$UPREVIS,$trash7,
$WTGAIN,$trash8,$DMETH_REC,$trash9,$APGAR5,$trash10,
$DPLURAL,$trash11,$SEX,$trash12,$ESTGEST,$trash13,$DBWT)
= unpack("a18a2a8a1a59a2a65a2a59a1a52a2a4a2a125" .

"a1a11a2a6a1a12a1a9a2a15a4", $_);
    print "$DOB_MM,$DOB_WK,$MAGER,$TBO_REC,$WTGAIN,$SEX,$APGAR5," .

"$DMEDUC,$UPREVIS,$ESTGEST,$DMETH_REC,$DPLURAL,$DBWT\n";
}

Next, I used the following R code to construct the data set:

births2006.raw <- read.csv("~/Documents/book/data/births2006.csv")

dmeth_rec <- function(X) {
     f <- function(tst) {

switch(tst,'Vaginal', 'C-section', '', '', '',
'', '', '', 'Unknown');
}

     as.factor(as.character(sapply(X,f)));
     }

274 | Chapter 14: Lattice Graphics



udmeth_rec <- function(X) {
     f <- function(tst) {
          switch(tst,
               'Vaginal (not VBAC)', # 1
               'VBAC',               # 2
               'Primary C-section',  # 3
               'Repeat C-section',   # 4
               '', # 5
               '', # 6
               '', # 7
               '', # 8
               'Unstated' # 9
               );
          }
     as.factor(as.character(sapply(X,f)));
     }

dmeduc <- function(X) {
     f <- function(tst) {
          switch(tst,
               'Not on certificate',
            '0'='No formal education',
            '1'='1 Years of elementary school',
            '2'='2 Years of elementary school',
            '3'='3 Years of elementary school',
            '4'='4 Years of elementary school',
            '5'='5 Years of elementary school',
            '6'='6 Years of elementary school',
            '7'='7 Years of elementary school',
            '8'='8 Years of elementary school',
            '9'='1 year of high school',
            '10'='2 years of high school',
            '11'='3 years of high school',
            '12'='4 years of high school',
            '13'='1 year of college',
            '14'='2 years of college',
            '15'='3 years of college',
            '16'='4 years of college',
            '17'='5 or more years of college',
            '99'='Not stated'
               );
          }
     as.factor(as.character(sapply(X,f)));
     }

tbo_rec <- function(x) { ifelse(x==9,NA,x) }

wtgain <- function(x) { ifelse(x==99,NA,x) }

apgar5 <- function(x) { ifelse(x==99,NA,x) }

estgest <- function(x) { ifelse(x==99,NA,x) }

dbwt <- function(x) { ifelse(x==9999,NA,x) }

dplural <- function(X) {
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     f <- function(tst) {
switch(tst,'1 Single','2 Twin','3 Triplet',
'4 Quadruplet', '5 Quintuplet or higher')

}
     as.factor(as.character(sapply(X,f)));
     }

births2006 <- transform(births2006.raw,
     TBO_REC=tbo_rec(TBO_REC),
     WTGAIN=wtgain(WTGAIN),
     APGAR5=apgar5(APGAR5),
     DMETH_REC=dmeth_rec(DMETH_REC),
     DMEDUC=dmeduc(DMEDUC),
     DPLURAL=dplural(DPLURAL),
     DBWT=dbwt(DBWT)
     );

Finally, I took a 10% sample of the original data set so that it would fit in the
nutshell package:

> births2006.idx <- sample(1:nrow(births2006),427323)
> births2006.smpl <- births2006[births2006.idx,]
> dim(births2006.smpl)
[1] 427323     13

Bar charts

To draw bar charts with Trellis graphics, use the function barchart. The default
method for barchart accepts a formula and a data frame as arguments:

barchart(x,
data,
panel = lattice.getOption("panel.barchart"),
box.ratio = 2,
...)

You specify the formula with the argument x and the data frame with the argument
data. (I’ll explain the rest of the arguments below.) However, you can also call
barchart on an object of class table:

barchart(x, data, groups = TRUE,
origin = 0, stack = TRUE, ..., horizontal = TRUE)

To call barchart with an object of class table, simply call barchart with the argument
x set to a table. (You shouldn’t specify an argument for data; if you do, barchart will
print a warning and ignore the argument.)

By default, the charts are actually drawn by the panel function panel.barchart:

panel.barchart(x, y, box.ratio = 1, box.width,
horizontal = TRUE,
origin = NULL, reference = TRUE,
stack = FALSE,
groups = NULL,
col = if (is.null(groups)) plot.polygon$col

else superpose.polygon$col,
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border = if (is.null(groups)) plot.polygon$border
else superpose.polygon$border,

lty = if (is.null(groups)) plot.polygon$lty
else superpose.polygon$lty,

lwd = if (is.null(groups)) plot.polygon$lwd
else superpose.polygon$lwd,

...)

Let’s start by calculating a table of the number of births by day of week and then
printing a bar chart to show the number of births by day of week. It’s the first time
that we’re using lattice graphics, so let’s start by loading the lattice package:

> library(lattice)
> births.dow <- table(births2006.smpl$DOB_WK)
> barchart(births.dow)

The results are shown in Figure 14-5. This is the default format for the barchart
function: horizontal bars, a frame along the outside, tick marks, and turquoise-
colored bars (on screen).

Figure 14-5. Births by day of week

Notice that many more babies are born on weekdays than on weekends. That’s a
little surprising: you might think that the number of births would be nearly the same,
regardless of the day of the week. We’ll use lattice graphics to explore this data set
further, to see if we can better understand this phenomenon.

You might wonder if there is a difference in the number of births because of the
delivery method; maybe doctors just schedule a lot of cesarean sections on weekdays,
and natural births occur all the time. This is the type of question that the lattice
package is great for answering. Let’s start by eliminating records where the delivery
method was unknown and then tabulate the number of births by day of week and
method:
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> births2006.dm <- transform(
+   births2006.smpl[births2006.smpl$DMETH_REC != "Unknown",],
+    DMETH_REC=as.factor(as.character(DMETH_REC)))
> dob.dm.tbl <- table(WK=births2006.dm$DOB_WK, MM=births2006.dm$DMETH_REC)

Now let’s plot the results:

> barchart(dob.dm.tbl)

The chart is shown in Figure 14-6. By default, barchart prints stacked bars with no
legend. In Trellis terminology, the different colors show different groups. It does
look like both types of births are less common on weekends, but it’s tough to com-
pare the number of each type of birth in this chart. Also, notice that the different
shades aren’t labeled, so it’s not immediately obvious what each shade represents.
Let’s try to change the way the chart is displayed.

Figure 14-6. Births by day of week and method

As an alternative, let’s try unstacking the bars (by specifying stack=FALSE) and adding
a legend (by specifying auto.key=TRUE):

> trellis.device(device.pdf, color=FALSE,
+   filename="~/Documents/book/current/figs/incoming/rian_1507.pdf",
+   width=4.3, height=4.3, units="in", res=72)
> barchart(dob.dm.tbl, stack=FALSE, auto.key=TRUE)

The results are shown in Figure 14-7. It’s a little easier to see that both types of births
decrease on weekends, but it’s still a little difficult to compare values within each
group. (When I try to focus on each group, I get distracted by the other group.)
Different colored groups aren’t the best choice for this data, so let’s try a different
approach.

First, let’s try changing this chart in two ways. We’ll split it into two different panels
by telling barchart not to group by color, using the groups=FALSE argument. Second,
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we’ll change to columns (using the horizontal=FALSE argument), so we can easily
compare the different values:

> barchart(dob.dm.tbl, horizontal=FALSE, groups=FALSE)

The new chart is shown in Figure 14-8. The two different charts are in different
panels. Now, we can more clearly see what’s going on. The number of vaginal births
decreases on weekends, by maybe 25% to 30%. However, C-sections drop by 50%
to 60%. As you can see, lattice graphics let you quickly try different ways to present
information, helping you zero in on the method that best illustrates what is hap-
pening in the data.

Figure 14-8. Births by day of week and method: two panels of columns

Figure 14-7. Births by day of week and method: unstacked bars
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Dot plots

A good alternative to bar charts are Cleveland dot plots. Like bar charts, dot plots
are useful for showing data where there is a single point for each category. Visually,
they seem a lot less “busy” to me than bar charts, so I like using them to summarize
larger data tables. To show dot plots in R, use the function dotplot:

dotplot(x,
data,
panel = lattice.getOption("panel.dotplot"),
...)

Much like barchart, the default method expects you to specify the data in a formula
and a data frame, but there is a method for plotting tables as well:

## S3 method for class 'table':
dotplot(x, data, groups = TRUE, ..., horizontal = TRUE)

As an example of dotplot, let’s look at a chart of data on births by day of week. Is
the pattern we saw above a seasonal pattern? First, we’ll create a new table counting
births by month, week, and delivery method:

> dob.dm.tbl.alt <- table(WEEK=births2006.dm$DOB_WK,
+   MONTH=births2006.dm$DOB_MM,
+   METHOD=births2006.dm$DMETH_REC)

Next, we’ll plot the results using a dot plot. In this plot, we’ll keep on grouping, so
that different delivery methods are shown in different colors (groups=TRUE). To help
highlight differences, we’ll disable stacking values (stack=FALSE). Finally, we’ll print
a key so that it’s obvious what each symbol represents (auto.key=TRUE):

> dotplot(dob.dm.tbl.alt, stack=FALSE, auto.key=TRUE, groups=TRUE)

The results are shown in Figure 14-9. (To make the results print nicely, I generated
these charts with the default black-and-white color scheme. If you try this yourself,
the table may look slightly different. Depending on your platform, you’ll probably
see hollow blue circles for C-section births and hollow purple sections for vaginal
births.) As you can see, there are slight seasonal differences, but the overall pattern
remains the same.

As another example of dot plots, let’s look at the tire failure data. In 2003, the Na-
tional Highway Traffic Safety Administration (NHTSA) began a study into the du-
rability of radial tires on light trucks. (This was three years after the Firestone recall
of tires for Ford Explorers.) The NHTSA performed the tests in Phoenix, because it
felt that the hot and dry conditions would be unusually stressful for tires (and be-
cause it had noted that many tire failures occur in the American Southwest). Over
the next few years, it conducted hundreds of different tests on tires and released
the data to the public. (See http://www.nhtsa.gov/portal/site/nhtsa/menuitem
.8027fe7cfb6e727568d07a30343c44cc for links to this study.)

Tests were carried out on six different types of tires. Following is a table of the
characteristics of the tires.

280 | Chapter 14: Lattice Graphics



Tire Size Load
Index

Speed
Rating

Brand Model OE
Vehicle

OE Model

B P195/65R15 89 S BF Goodrich Touring T/A Chevy Cavalier

C P205/65R15 92 V Goodyear Eagle GA Lexus ES300

D P235/75R15 108 S Michelin LTX M/S Ford,
Dodge

E 150 Van,
Ram Van
1500

Figure 14-9. Number of births by day of week by month
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Tire Size Load
Index

Speed
Rating

Brand Model OE
Vehicle

OE Model

E P265/75R16 114 S Firestone Wilderness AT Chevy/
GMC

Silverado,
Tahoe,
Yukon

H LT245/75R16/E 120/116 Q Pathfinder ATR A/S OWL NA NA

L 255/65R16 109 H General Grabber ST
A/S

Mercedes ML320

As an example, we’re going to look at one particular batch of tests from this study.
The test was called a “Stepped-Up Speed to Failure” test. In this test, tires were
mounted on testing devices. The testing facility then conducted a number of basic
tests on the tires to check that they were intact. The test facility then proceeded to
test the tires at increasing speeds until the tires failed. Specifically, the testing facility
tested each tire at a specific speed for 1 hour, and then it proceeded to increase the
speed in 10-km/h increments until either (a) the tire failed or (b) a prescribed limit
was reached for each tire. (The limit was dependent on the speed rating for the tire.)
After the limit was reached, the test was run continuously until the tire failed. The
test data set is in the package nutshell, under the name tires.sus.

The data set contains a lot of information, but we’re going to focus on only three
variables. Time_To_Failure is the time before each tire failed (in hours),
Speed_At_Failure_km_h is the testing speed at which the tire failed, and Tire_Type is
the type of tire tested. We know that tests were run at only certain stepped speeds;
despite the fact that speed is a numeric variable, we can treat it as a factor. So we
can use dot plots to show the one continuous variable (time to failure) by the speed
at failure for each different type of tire:

> library(nutshell)
> data(tires.sus)
> dotplot(as.factor(Speed_At_Failure_km_h)~Time_To_Failure|Tire_Type,
+   data=tires.sus)

The result is shown in Figure 14-10. This diagram lets us clearly see how quickly
tires failed in each of the tests. For example, all type D tires failed quickly at the
testing speed of 180 km/h, but some type H tires lasted a long time before failure.
We’ll revisit this example in “Comparing means” on page 372.

Histograms

A very popular chart for showing the distribution of a variable is the histogram. You
can plot histograms in the trellis package with the function histogram:

histogram(x,
data,
allow.multiple, outer = TRUE,
auto.key = FALSE,
aspect = "fill",
panel = lattice.getOption("panel.histogram"),
prepanel, scales, strip, groups,
xlab, xlim, ylab, ylim,
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type = c("percent", "count", "density"),
nint = if (is.factor(x)) nlevels(x)
else round(log2(length(x)) + 1),
endpoints = extend.limits(range(as.numeric(x), finite = TRUE),

prop = 0.04),
breaks,
equal.widths = TRUE,
drop.unused.levels = lattice.getOption("drop.unused.levels"),
...,
lattice.options = NULL,
default.scales = list(),
subscripts,
subset)

Figure 14-10. Time to failure and speed at failure for different types of tires

By default, histograms are drawn by panel.histogram:

panel.histogram(x,
breaks,
equal.widths = TRUE,
type = "density",
nint = round(log2(length(x)) + 1),
alpha, col, border, lty, lwd,
...)

High-Level Lattice Plotting Functions | 283

Lattice Graphics



As an example of histograms, let’s look at average birth weights, grouped by number
of births:

> histogram(~DBWT|DPLURAL, data=births2006.smpl)

The results are shown in Figure 14-11. Notice that the panels are ordered alphabet-
ically by the conditioning variable. (That’s why the group names have the numbers
at the front.) Also notice that the histogram function tries to fill in all the available
space with squarish panels. This helps make each chart readable by itself but makes
it difficult to compare the different groups.

Figure 14-11. Histogram of birth weights by number of births

To make it easier to compare groups, we can explicitly stack the charts on top of
each other using the layout variable:

> histogram(~DBWT|DPLURAL, data=births2006.smpl, layout=c(1, 5))

The resulting chart is shown in Figure 14-12. As you can see, birth weights are
roughly normally distributed within each group, but the mean weight drops as the
number of births increases.
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Density plots

If you’d like to see a single line showing the distribution, instead of a set of columns
representing bins, you can use kernel density plots. To draw them in R, use the
function densityplot:

densityplot(x,
data,
allow.multiple = is.null(groups) || outer,
outer = !is.null(groups),
auto.key = FALSE,

Figure 14-12. Histogram of birth weights by number of births: vertically stacked
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aspect = "fill",
panel = lattice.getOption("panel.densityplot"),
prepanel, scales, strip, groups, weights,
xlab, xlim, ylab, ylim,
bw, adjust, kernel, window, width, give.Rkern,
n = 50, from, to, cut, na.rm,
drop.unused.levels = lattice.getOption("drop.unused.levels"),
...,
lattice.options = NULL,
default.scales = list(),
subscripts,
subset)

By default, panels are drawn by panel.densityplot:

panel.densityplot(x, darg, plot.points = "jitter", ref = FALSE,
groups = NULL, weights = NULL,
jitter.amount, type, ...

Let’s redraw the example above, replacing the histogram with a density plot. By
default, densityplot will draw a strip chart under each chart, showing every data
point. However, because the data set is so big (there are 427,432 observations), we’ll
tell densityplot not to do this by specifying plot.points=FALSE:

> densityplot(~DBWT|DPLURAL,data=births2006.smpl,
+   layout=c(1,5), plot.points=FALSE)

The results are shown in Figure 14-13. One advantage of density plots over histo-
grams is that you can stack them on top of one another and still read the results. By
changing the conditioning variable (DPLURAL) to a grouping variable, we can stack
these charts on top of one another:

> densityplot(~DBWT, groups=DPLURAL, data=births2006.smpl,
+   plot.points=FALSE, auto.key=TRUE)

The superimposed density plots are shown in Figure 14-14. As you can see, it’s easier
to compare distribution shapes (and centers) by superimposing the charts.

Strip plots

A good alternative to histograms are strip plots, especially when there isn’t much
data to plot. Strip plots look similar to dot plots, but they show different information.
Dot plots are designed to show one value per category (often a mean or a sum), while
strip plots show many values. You can think of strip plots as one-dimensional scatter
plots. To draw strip plots in R, use the stripplot function:

stripplot(x,
data,
panel = lattice.getOption("panel.stripplot"),
...)

By default, panels are drawn by panel.stripplot:

panel.stripplot(x, y, jitter.data = FALSE,
factor = 0.5, amount = NULL,
horizontal = TRUE, groups = NULL,
...)
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As an example of a strip plot, let’s look at the weights of babies born in sets of four
or more. There were only 44 observations in our data set that match this description,
so a strip plot is a reasonable way to show density. In this case, we’ll use the
subset argument to specify the set of observations we want to plot and add some
random vertical noise to make the points easier to read by specifying
jitter.data=TRUE:

> stripplot(~DBWT, data=births2006.smpl,
+   subset=(DPLURAL=="5 Quintuplet or higher" |
+           DPLURAL=="4 Quadruplet"),
+   jitter.data=TRUE)

Figure 14-13. Density plots showing birth weight by number of babies
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The resulting chart is shown in Figure 14-15.

Univariate quantile-quantile plots

Another useful plot that you can generate within the lattice package is the quantile-
quantile plot. A quantile-quantile plot compares the distribution of actual data val-
ues to a theoretical distribution. Specifically, it plots quantiles of the observed data
against quantiles of a theoretical distribution. If the plotted points form a straight
diagonal line (from top right to bottom left), then it is likely that the observed data
comes from the theoretical distribution. Quantile-quantile plots are a very powerful
technique for seeing how closely a data set matches a theoretical distribution (or
how much it deviates from it).

To plot quantile-quantile plots using lattice graphics, use the function qqmath:

qqmath(x,
       data,
       allow.multiple = is.null(groups) || outer,
       outer = !is.null(groups),
       distribution = qnorm,

Figure 14-14. Superimposed density plots showing birth weight by number of babies
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       f.value = NULL,
       auto.key = FALSE,
       aspect = "fill",
       panel = lattice.getOption("panel.qqmath"),
       prepanel = NULL,
       scales, strip, groups,
       xlab, xlim, ylab, ylim,
       drop.unused.levels = lattice.getOption("drop.unused.levels"),
       ...,
       lattice.options = NULL,
       default.scales = list(),
       subscripts,
       subset)

Figure 14-15. Weight of babies born in sets of four or more

By default, panels are drawn by panel.qqmath:

panel.qqmath(x, f.value = NULL,
             distribution = qnorm,
             qtype = 7,
             groups = NULL, ...
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By default, the function qqmath compares the sample data to a normal distribution.
If the sample data is really normally distributed, you’ll see a vertical line. As an
example, let’s plot 100,000 random values from a normal distribution to show what
qqmath does:

> qqmath(rnorm(100000))

The results are shown in Figure 14-16.

Figure 14-16. Quantile-quantile plot for random values from normal distribution

Let’s plot a set of quantile-quantile plots for the birth weight data. Because the data
set is rather large, we’ll plot only a random sample of 50,000 points:

qqmath(~DBWT|DPLURAL,
       data=births2006.smpl[sample(1:nrow(births2006.smpl), 50000), ],
       pch=19,
       cex=0.25,
       subset=(DPLURAL != "5 Quintuplet or higher"))

As you can see from Figure 14-17, the distribution of birth weights is not quite
normal.
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As another example, let’s look at real estate prices in San Francisco in
2008 and 2009. This data set is included in the nutshell package as
sanfrancisco.home.sales. (See “More About the San Francisco Real Estate Prices
Data Set” on page 294 for more information on this data set.) Here is how to load
the data:

> library(nutshell)
> data(sanfrancisco.home.sales)

Intuitively, it doesn’t make sense for real estate prices to be normally distributed.
There are far more people with below-average incomes than above-average incomes.
The lowest recorded price in the data set is $100,000; the highest is $9,500,000.
Let’s take a look at this distribution with qqmath:

> qqmath(~price, data=sanfrancisco.home.sales)

The distribution is shown in Figure 14-18. As expected, the distribution is not nor-
mal. It looks exponential, so let’s try a log transform:

> qqmath(~log(price), data=sanfrancisco.home.sales)

A log transform yields a distribution that looks pretty close to normally distributed
(see Figure 14-19). Let’s take a look at how the distribution changes based on the
number of bedrooms. To do this, we’ll split the distribution into groups and change
the way the points are plotted. Specifically, we’ll plot smooth lines instead of indi-
vidual points. (Point type is actually an argument for panel.xyplot, which is used to
draw the chart.) We’ll add a key to the plot (using auto.key=TRUE). We’ll pass an
explicit subset as an argument to the function instead of using the subset argument.
(This helps clean up the key, which would show unused factor levels otherwise.)

> qqmath(~log(price), groups=bedrooms,
+   data=subset(sanfrancisco.home.sales,

Figure 14-17. Quantile-quantile plots for birth weights
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+   !is.na(bedrooms) & bedrooms > 0 & bedrooms < 7),
+   auto.key=TRUE, drop.unused.levels=TRUE, type="smooth")
> dev.off()

Figure 14-18. Quantile-quantile plot of San Francisco real estate prices

Figure 14-19. Quantile-quantile plot of log-scaled property prices
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Notice that the lines are separate, with higher values for higher numbers of bedrooms
(see Figure 14-20). We can do the same thing for square footage (see Fig-
ure 14-21). (I used the function cut2 from the package HMisc to divide square footages
into six even quantiles.)

> library(Hmisc)
> qqmath(~log(price), groups=cut2(squarefeet, g=6),
+   data=subset(sanfrancisco.home.sales, !is.na(squarefeet)),
+   auto.key=TRUE, drop.unused.levels=TRUE, type="smooth")

Figure 14-20. Quantile-quantile plots of logs of property prices for different numbers of
bedrooms

Here the separation is even more clear. We can see the same separation by neigh-
borhood. (We’ll come back to this analysis in Chapter 20.)
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Figure 14-21. Quantile-quantile plots of logs of property prices for different numbers of square
feet

More About the San Francisco Real Estate Prices Data Set
In a few places in this chapter (and again in Chapters 20 and 21), we’ll use a data
set consisting of real estate sale prices in San Francisco between February 13, 2008,
and July 14, 2009:

> names(sanfrancisco.home.sales)
 [1] "street"     "city"       "zip" "saledate"   "price"
 [6] "bedrooms"   "squarefeet" "lotsize"    "yearbuilt"  "condolike"

In the San Francisco Bay area, real estate sales are published in the newspapers
once a week. I put together this data set by compiling information from multiple
papers. The reason I’m including 17 months of data is because that was what was
available when I wrote this chapter. The data set contains 3,281 observations and
10 variables:

street
Street address for the property.
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city
City in which the property was located. (In this data set, it’s 'San
Francisco' for every observation.)

zip
Zip code for the property.

saledate
Approximate date on which the sale was recorded. (Different papers some-
times disagree by a day or two.)

price
Sales price for the property.

bedrooms
A count of the number of bedrooms.

squarefeet
Interior space in square feet.

lotsize
Lot size in square feet.

yearbuilt
Year in which the property was built.

condolike
Variable derived from street, to indicate if the address was qualified by a unit
number. (Indicates the presence of a '#' in the variable street.)

latitude, longitude
Geographic coordinates for the property.

This is a real data set, so it’s not completely clean.4 It contains data compiled from
many sources: real estate listings, self-reported data, government records. So there
may be errors and inconsistencies in the data. Moreover, there are some missing
values.

I picked this data set as an example because I had some questions about the way
that real estate data is reported in the media. Writers often talk about the number
of sales, or the median price, or the price per square foot. I wanted to know a little
more about real estate prices. Is there a premium for bedrooms (above square
footage)? When the market slowed down in the housing bust, did it slow down
across all price points? How sensitive are median prices to one-time events (like a
large new condominium building)?

In case you’re wondering where this data came from, here’s a detailed explanation:

• First, I downloaded real estate sales listings from San Francisco Bay area
newspaper websites. (I wrote a spider to grab and parse the data.) This is how
I got sale dates, street addresses, sales prices, bedroom counts, home sizes,
lot sizes, and years built.

• Next, I got latitude and longitude information for each address from different
web services. I merged these files together outside R (using SQLite).

4. It’s not completely dirty, either. I spent some time cleaning up and correcting the data:
removing blatant duplicates, adding years to some recent condo listings, and a few other
fixes.
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• I downloaded neighborhood information from Zillow.com. You can down-
load neighborhood data from http://www.zillow.com/howto/api/neighbor
hood-boundaries.htm. (By the way, it’s hard to do what Zillow.com does. See
“Machine Learning Algorithms for Regression” on page 437 for some ex-
amples of price prediction.)

• Finally, I loaded the data into R, merged in neighborhood information, and
finished creating the data set.

Here is the code that I used to put the data set together. I used some special pack-
ages for reading spatial data in order to load the neighborhood data and determine
in which neighborhood each home was located:

# load in the shapefile
library(sp)
library(maptools)
# ca.neighborhood.shapes <- read.shape("ZillowNeighborhoods-CA.shp")
ca.neighborhood.shapes <- readShapePoly("ZillowNeighborhoods-CA.shp")
# extract san francisco coordinates
sf.neighborhood.shapes <-
  ca.neighborhood.shapes[ca.neighborhood.shapes$CITY=="San Francisco",]
# function to look up shapes
neighborhood <- function(s, lon, lat) {
   names <- s$NAME;
   for (name in names) {
      lons <- s[s$NAME==name,]@polygons[[1]]@Polygons[[1]]@coords[,1];
      lats <- s[s$NAME==name,]@polygons[[1]]@Polygons[[1]]@coords[,2];
      res <- point.in.polygon(lon,lat,lons,lats);
      if (res==1) {

return(name);
}

   }
   return(NA);
}
map_neighborhoods <- function(s, lons, lats) {
   neighborhoods <- rep(NA,length(lons));
   for (i in 1:length(lons)) {
      neighborhoods[i] <- neighborhood(s, lons[i], lats[i]);
      }
   return(neighborhoods);
}
# loading sf data with coordinates
sanfrancisco.home.sales.raw <- read.csv("san_fran_re_sales_wcoors.csv")
# exclude bad coordinates (outside SF)
 sanfrancisco.home.sales.clean <- transform(sanfrancisco.home.sales.raw,
    latitude=ifelse(latitude>37.7&latitude<37.85,latitude,NA),
    longitude=ifelse(latitude>37.7&latitude<37.85,longitude,NA),
    date=as.Date(date,format="%m/%d/%Y"),
    lotsize=ifelse(lotsize<10000,lotsize,NA),
    month=cut(as.Date(date,format="%m/%d/%Y"),"month"),
    lotsize=ifelse(lotsize<15000,lotsize,NA)
 )
# transform date fields
# finally, build the data set with properly named neighborhoods
sanfrancisco.home.sales <- transform(sanfrancisco.home.sales.clean,
  neighborhood=map_neighborhoods(
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    sf.neighborhood.shapes, longitude, latitude))
save(sanfrancisco.home.sales,file="sanfrancisco.home.sales.RData")

Bivariate Trellis Plots
This section describes Trellis plots for plotting two variables. Many real data sets
(for example, financial data) record relationships between multiple numeric
variables. The tools in this section can help you examine those relationships.

Scatter plots

To generate scatter plots with the trellis package, use the function xyplot:

xyplot(x,
       data,
       allow.multiple = is.null(groups) || outer,
       outer = !is.null(groups),
       auto.key = FALSE,
       aspect = "fill",
       panel = lattice.getOption("panel.xyplot"),
       prepanel = NULL,
       scales = list(),
       strip = TRUE,
       groups = NULL,
       xlab,
       xlim,
       ylab,
       ylim,
       drop.unused.levels = lattice.getOption("drop.unused.levels"),
       ...,
       lattice.options = NULL,
       default.scales,
       subscripts = !is.null(groups),
       subset = TRUE)

Most of the work is done by the panel function panel.xyplot:

panel.xyplot(x, y, type = "p",
             groups = NULL,
             pch, col, col.line, col.symbol,
             font, fontfamily, fontface,
             lty, cex, fill, lwd,
             horizontal = FALSE, ...,
             jitter.x = FALSE, jitter.y = FALSE,
             factor = 0.5, amount = NULL)

As an example of a scatter plot, let’s take a look at the relationship between house
size and price. Let’s start with a simple scatter plot, showing size and price:

> xyplot(price~squarefeet, data=sanfrancisco.home.sales)

The results of this command are shown in Figure 14-22. It looks like there is a rough
correspondence between size and price (the plot looks vaguely cone shaped). This
chart is hard to read, so let’s try modifying it. Let’s trim outliers (sales prices over
4,000,000 and properties over 6,000 square feet) using the subset argument.
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Additionally, let’s take a look at how this relationship varies by zip code. San Fran-
cisco is a pretty big place, and not all neighborhoods are equally in demand. (You
probably know the cliché about the first three rules of real estate: location, location,
location.)

Figure 14-22. Scatter plot comparing house size and price

Before plotting the price data, let’s pick a subset of zip codes to plot. A few parts of
the city are sparsely populated (like the financial district, 94104) and don’t have
enough data to make plotting interesting. Also, let’s exclude zip codes where square
footage isn’t available:

> table(subset(sanfrancisco.home.sales, !is.na(squarefeet), select=zip))

94100 94102 94103 94104 94105 94107 94108 94109 94110 94111 94112
    2    52    62     4    44   147    21   115   161    12   192
94114 94115 94116 94117 94118 94121 94122 94123 94124 94127 94131
  143   101   124   114    92    92   131    71    85   108   136
94132 94133 94134 94158
   82    47   105    13

So we’ll exclude 94100, 94104, 94108, 94111, 94133, and 94158 because there are
too few sales to be interesting. (Note the strip argument. This simply prints the zip
codes with the plots.)
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> trellis.par.set(fontsize=list(text=7))
> xyplot(price~squarefeet|zip, data=sanfrancisco.home.sales,
+   subset=(zip!=94100 & zip!=94104 & zip!=94108 &
+           zip!=94111 & zip!=94133 & zip!=94158 &
+           price < 4000000 &
+           ifelse(is.na(squarefeet), FALSE, squarefeet < 6000)),
+   strip=strip.custom(strip.levels=TRUE))

The resulting plot is shown in Figure 14-23. Now the linear relationship is much
more pronounced. Note the different slopes in different neighborhoods. As you
might expect, some up-and-coming neighborhoods (like zip code 94110, which in-
cludes the Mission and Bernal Heights) are more shallowly sloped, while ritzy neigh-
borhoods (like zip code 94123, which includes the Marina and Cow Hollow) are
more steeply sloped.

Figure 14-23. Scatter plot comparing house size and price by zip code

We can make this slightly more readable by using neighborhood names. Let’s rerun
the code, conditioning by neighborhood. We’ll also add a diagonal line to each plot
(through a custom panel function) to make the charts even easier to read. We’ll also
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change the default points plotted to be solid (through the pch=19 argument) and
shrink them to a smaller size (through the cex=.2 argument):

> trellis.par.set(fontsize=list(text=7))
> dollars.per.squarefoot <- mean(
+   sanfrancisco.home.sales$price / sanfrancisco.home.sales$squarefeet,
+   na.rm=TRUE);
> xyplot(price~squarefeet|neighborhood,
+   data=sanfrancisco.home.sales,
+   pch=19,
+   cex=.2,
+   subset=(zip != 94100 & zip != 94104 & zip != 94108 &
+ zip != 94111 & zip != 94133 & zip != 94158 &
+ price < 4000000 &
+ ifelse(is.na(squarefeet), FALSE, squarefeet < 6000)),
+   strip=strip.custom(strip.levels=TRUE,
+   horizontal=TRUE,
+   par.strip.text=list(cex=.8)),
+   panel=function(...) {
+     panel.abline(a=0,b=dollars.per.squarefoot);
+     panel.xyplot(...);
+   }
+ )

This plot is shown in Figure 14-24.

Box plots in lattice

The San Francisco home sales data set was taken from a particularly interesting time:
the housing market crash. (The market fell a little late in San Francisco compared
with other cities.) Let’s take a look at how prices changed over time during this
period. We could plot just the median price or mean price, or the number of sales.
However, the lattice package gives us tools that will let us watch how the whole
distribution changed over time. Specifically, we can use box plots.

Box plots in the lattice package are just like box plots drawn with the graphics
package, as described in “Box Plots” on page 242. The boxes represent prices from
the 25th through the 75th percentiles (the interquartile range), the dots represent
median prices, and the whiskers represent the minimum or maximum values. (When
there are values that stretch beyond 1.5 times the length of the interquartile range,
the whiskers are truncated at those extremes.)
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Figure 14-24. Scatter plot comparing house size and price by neighborhood
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To show box plots with Trellis graphics, use the function bwplot:

bwplot(x,
       data,
       allow.multiple = is.null(groups) || outer,
       outer = FALSE,
       auto.key = FALSE,
       aspect = "fill",
       panel = lattice.getOption("panel.bwplot"),
       prepanel = NULL,
       scales = list(),
       strip = TRUE,
       groups = NULL,
       xlab,
       xlim,
       ylab,
       ylim,
       box.ratio = 1,
       horizontal = NULL,
       drop.unused.levels = lattice.getOption("drop.unused.levels"),
       ...,
       lattice.options = NULL,
       default.scales,
       subscripts = !is.null(groups),
       subset = TRUE)

This function will, in turn, call panel.bwplot:

panel.bwplot(x, y, box.ratio = 1,
box.width = box.ratio / (1 + box.ratio),
horizontal = TRUE,
pch, col, alpha, cex,
font, fontfamily, fontface,
fill, varwidth = FALSE,
notch = FALSE, notch.frac = 0.5,
...,
levels.fos,
stats = boxplot.stats,
coef = 1.5,
do.out = TRUE)

Let’s show a set of box plots, with one plot per month. We’ll need to round the date
ranges to the nearest month. A convenient way to do this in R is with the cut function.
Here’s the number of sales by month in this data set:

> table(cut(sanfrancisco.home.sales$saledate, "month"))

2008-02-01 2008-03-01 2008-04-01 2008-05-01 2008-06-01 2008-07-01
       139 230 267 253 237 198
2008-08-01 2008-09-01 2008-10-01 2008-11-01 2008-12-01 2009-01-01
       253 223 272 118 181 114
2009-02-01 2009-03-01 2009-04-01 2009-05-01 2009-06-01 2009-07-01
       123 142 116 180 150 85

As you may remember from above, the cutoff dates don’t fall neatly on the beginning
and ending of each month:
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> min(sanfrancisco.home.sales$saledate)
[1] "2008-02-13"
> max(sanfrancisco.home.sales$saledate)
[1] "2009-07-14"

So don’t focus too much on the volumes in February 2008 or July 2009. (Volume
was much lower in the spring.) Let’s take a look at the distribution of sales prices
by month. Here’s the code to present this data using the default representation:

> bwplot(price~cut(saledate, "month"), data=sanfrancisco.home.sales)

Unfortunately, this doesn’t produce an easily readable plot, as you can see in Fig-
ure 14-25. It’s clear that there are a large number of outliers that are making the plot
hard to see. Box plots assume a normal distribution, but this doesn’t make
intuitive sense for real estate prices (as we saw in “Univariate quantile-quantile
plots” on page 288). Let’s try plotting the box plots again, this time with the log-
transformed values. To make it more readable, we’ll change to vertical box plots
and rotate the text at the bottom:

> bwplot(log(price)~cut(saledate, "month"),
+   data=sanfrancisco.home.sales,
+   scales=list(x=list(rot=90)))

Figure 14-25. Box plot of real estate prices by month: first attempt
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Taking a look at the plot (shown in Figure 14-26), we can more clearly see some
trends. Median prices moved around a lot during this period, though the interquar-
tile range moved less. Moreover, it looks like sales at the high end of the market
slowed down quite a bit (looking at the outliers on the top and the top whiskers).
But, interestingly, the basic distribution appears pretty stable from month to month.

Figure 14-26. Box plot of real estate prices by month (log transformed)

Scatter plots matrices

If you would like to generate a matrix of scatter plots for many different pairs of
variables, use the splom function:

splom(x,
      data,
      auto.key = FALSE,
      aspect = 1,
      between = list(x = 0.5, y = 0.5),
      panel = lattice.getOption("panel.splom"),
      prepanel,
      scales,
      strip,
      groups,
      xlab,
      xlim,
      ylab = NULL,
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      ylim,
      superpanel = lattice.getOption("panel.pairs"),
      pscales = 5,
      varnames,
      drop.unused.levels,
      ...,
      lattice.options = NULL,
      default.scales,
      subset = TRUE)

Most of the work is done by panel.splom:

panel.splom(...)

Bivariate quantile-quantile plots

If you would like to generate quantile-quantile plots for comparing two distribu-
tions, use the function qq:

qq(x, data, aspect = "fill",
    panel = lattice.getOption("panel.qq"),
    prepanel, scales, strip,
    groups, xlab, xlim, ylab, ylim, f.value = NULL,
    drop.unused.levels = lattice.getOption("drop.unused.levels"),
    ...,
    lattice.options = NULL,
    qtype = 7,
    default.scales = list(),
    subscripts,
    subset)

Trivariate Plots
If you would like to plot three-dimensional data with Trellis graphics, there are
several functions available.

Level plots

To plot three-dimensional data in flat grids, with colors showing different values for
the third dimension, use the levelplot function:

levelplot(x,
          data,
          allow.multiple = is.null(groups) || outer,
          outer = TRUE,
          aspect = "fill",
          panel = lattice.getOption("panel.levelplot"),
          prepanel = NULL,
          scales = list(),
          strip = TRUE,
          groups = NULL,
          xlab,
          xlim,
          ylab,
          ylim,
          at,
          cuts = 15,
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pretty = FALSE,
region = TRUE,
drop.unused.levels = lattice.getOption("drop.unused.levels"),
...,
lattice.options = NULL,
default.scales = list(),
colorkey = region,
col.regions,
alpha.regions,
subset = TRUE)

Most of the work is done by panel.levelplot:

panel.levelplot(x, y, z,
subscripts,
at = pretty(z),
shrink,
labels,
label.style = c("mixed", "flat", "align"),
contour = FALSE,
region = TRUE,
col = add.line$col,
lty = add.line$lty,
lwd = add.line$lwd,
...,
col.regions = regions$col,
alpha.regions = regions$alpha)

As an example of level plots, we will look at the San Francisco home sales data set.
Let’s start by looking at the number of home sales in different parts of the city. To
do this, we’ll need to use that coordinate data in the San Francisco home sales data
set. Unfortunately, we can’t use the coordinates directly; the coordinates are too
precise, so the levelplot function simply plots a large number of points. (Try exe-
cuting levelplot(price~latitude+longitude) to see what I mean.)

We’ll need to break the data into bins and count the number of homes within each
bin. To do this, we’ll use the table and cut functions:

> attach(sanfrancisco.home.sales)
> levelplot(table(cut(longitude, breaks=40), 
+ cut(latitude, breaks=40)),
+ scales=list(y=list(cex=.5),
+ x=list(rot=90, cex=.5)))

This plot is shown in Figure 14-27. If we were interested in looking at the average
sales price by area, we could use a similar strategy. Instead of table, we’ll use the
tapply function to aggregate observations. And while we’re at it, we’ll cut out the
axis labels:

> levelplot(tapply(price,
+ INDEX=list(cut(longitude, breaks=40),
+ cut(latitude, breaks=40)),
+ FUN=mean),
+ scales=list(draw=FALSE))
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This plot is shown in Figure 14-28. And, of course, you can use conditioning values
with level plots. Let’s look at the number of home sales by numbers of bedrooms.
We’ll simplify the data slightly by looking at houses with zero to four bedrooms and
then houses with five bedrooms or more. We’ll also cut the number of breaks to
keep the charts legible:

> bedrooms.capped <- ifelse(bedrooms < 5, bedrooms, 5);
> levelplot(table(cut(longitude, breaks=25),
+                 cut(latitude, breaks=25),
+                 bedrooms.capped),
+           scales=list(draw=FALSE))

This figure is shown in Figure 14-29.

Contour plots

If you would like to show contour plots with lattice (which resemble topographic
maps), then use the contourplot function:

contourplot(x,
            data,
            panel = lattice.getOption("panel.contourplot"),
            cuts = 7,
            labels = TRUE,
            contour = TRUE,

Figure 14-27. Level plot showing number of sales by location
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pretty = TRUE,
region = FALSE,
...)

Figure 14-28. Level plot showing mean price by location

Cloud plots

To plot points in three dimensions (technically, projections into two dimensions of
the points in three dimensions), use the function cloud:

cloud(x,
      data,
      allow.multiple = is.null(groups) || outer,
      outer = FALSE,
      auto.key = FALSE,
      aspect = c(1,1),
      panel.aspect = 1,
      panel = lattice.getOption("panel.cloud"),
      prepanel = NULL,
      scales = list(),
      strip = TRUE,
      groups = NULL,
      xlab,
      ylab,
      zlab,
      xlim = if (is.factor(x)) levels(x) else range(x, finite = TRUE),
      ylim = if (is.factor(y)) levels(y) else range(y, finite = TRUE),
      zlim = if (is.factor(z)) levels(z) else range(z, finite = TRUE),
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      at,
      drape = FALSE,
      pretty = FALSE,
      drop.unused.levels,
      ...,
      lattice.options = NULL,
      default.scales =
      list(distance = c(1, 1, 1),
           arrows = TRUE,
           axs = axs.default),
      colorkey,
      col.regions,
      alpha.regions,
      cuts = 70,
      subset = TRUE,
      axs.default = "r")

Figure 14-29. Level plot showing number of sales by location for different numbers of
bedrooms
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By default, plots are drawn with panel.cloud:

panel.cloud(x, y, subscripts, z,
groups = NULL,
perspective = TRUE,
distance = if (perspective) 0.2 else 0,
xlim, ylim, zlim,
panel.3d.cloud = "panel.3dscatter",
panel.3d.wireframe = "panel.3dwire",
screen = list(z = 40, x = -60),
R.mat = diag(4), aspect = c(1, 1),
par.box = NULL,
xlab, ylab, zlab,
xlab.default, ylab.default, zlab.default,
scales.3d,
proportion = 0.6,
wireframe = FALSE,
scpos,
...,
at)

Wire-frame plots

Finally, if you would like to show a three-dimensional surface, use the function
wireframe:

wireframe(x,
data,
panel = lattice.getOption("panel.wireframe"),
...)

Other Plots
If you have fitted a model to a data set, the rfs function can help you visualize how
well the model fits the data:

rfs(model, layout=c(2, 1), xlab="f-value", ylab=NULL,
    distribution = qunif,
    panel, prepanel, strip, ...)

The rfs function plots residual and fit-spread (RFS) plots. As an example, we’ll use
the model described in “Example: A Simple Linear Model” on page 401. The ex-
ample is a linear model for runs scored in baseball games as a function of team
offensive statistics. For a full explanation, see Chapter 20; here we just want to show
what charts are plotted for linear models with the rfs function:

> rfs(runs.mdl)

The plot generated by this command is shown in Figure 14-30. Notice that the two
curves are S shaped. The residual plot is a quantile-quantile plot of the residuals;
we’d expect the plot to be linear if the data fit the assumed distribution. The default
distribution choice for rfs is a uniform distribution, which clearly isn’t right. Let’s
try generating a second set of plots, assuming a normal distribution for the residuals:

> rfs(runs.mdl, distribution=qnorm)
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The results are shown in Figure 14-31. Notice that the plots are roughly linear. We
expect a normally distributed error function for a linear regression model, so this is
a good thing.

Figure 14-31. RFS plot for runs model (normally distributed residuals)

Figure 14-30. RFS plot for runs model (uniformly distributed residuals)
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Customizing Lattice Graphics
Most lattice functions share common arguments; the same argument has a similar
effect in multiple functions. This section describes what each of those arguments
does. Additionally, this section explains how to fine-tune the output of lattice
functions.

Common Arguments to Lattice Functions
Lattice functions share many common arguments. Instead of explaining what each
function does separately I’ll explain them in a single table. (Note that the default
values for many of these arguments, in particular the panel functions, aren’t the same
among functions.)

Argument Description

x The object to plot. May be a formula, array, numeric vector, or table.

data When x is a formula, data is a data frame in which the function is evaluated.

allow.multiple Specifies how to interpret formulas of the form y1 + y2 ~ X | Z (where X is a function of multiple
variables and Z may also be a function of multiple variables). By default, if allow.multi
ple=TRUE, then the lattice function will plot both y1 ~ X | Z and y2 ~ X | Z superimposed on
the same panel. However, if you set allow.multiple=FALSE, then the lattice function will
plot I(y1 + y2) ~ X | Z (summing y1 + y2).

outer Specifies whether to superimpose plots or not when allow.multiple=TRUE and multiple
dependent variables are specified. When outer=FALSE, the plots are superimposed;
when outer=TRUE, plots are shown in different panels.

box.ratio For plots that show data in rectangles (bwplot, barchart, and stripplot), a numeric value
that specifies the ratio of the width of the rectangles to the inner rectangle space.

horizontal For plots that can be laid out vertically or horizontally (bwplot, dotplot, barchart and
stripplot), a logical value that specifies the direction to plot.

panel The panel function used to actually draw the plots.

aspect Specifies the aspect ratio to use for different panels. Allowable values are aspect="fill" to
fill the available space (the default), aspect="xy" to compute aspect ratios based on Cleveland’s
45° banking rule, and aspect="iso" for isometric scales.

groups Specifies a variable (or expression of variables) describing groups of data to pass to the panel
function. In most cases, groups specifies the sets of values to show in different colors or with
different symbols.

auto.key A logical value specifying whether to automatically draw a key showing the names of groups
corresponding to different colors or symbols. (The variables key and legend override auto.key.)

prepanel A function that takes the same arguments as panel and returns a list containing values xlim, ylim,
dx, and dy (and, less frequently, xat and yat). The prepanel function is used to determine how
much space is required to plot a panel. See the help files or [Sarkar2008] for more information.

strip A logical value specifying whether strips (that label panels) should be drawn.

xlab A character value specifying the label for the x-axis.

ylab A character value specifying the label for the y-axis.

scales A list that specifies how the x- and y-axes should be drawn.
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Argument Description

subscripts A logical value specifying whether a vector named subscripts should be passed to the panel
function. See the help files or [Sarkar2008] for more information.

subset Specifies the subset of values from data to plot. (By default, includes all values.) You can specify
a logical vector or an expression that can be evaluated within data. (Note: be careful of NA values
in subset vectors. Additionally, note that subset does not remove unused levels from plotted
factors, so keys may contain these values.)

xlim Specifies the minimum and maximum values for the x-axis.

ylim Specifies the minimum and maximum values for the y-axis.

drop.unused.levels A logical value (or a list outlining what to do for different components of x) specifying whether to
drop unused levels of factors.

default.scales A list giving the default value of scales. See the help files or [Sarkar2008] for more information.

lattice.options A list of plotting parameters, similar to par values for standard R graphics. See the help file for
lattice.options for more information.

... Arguments passed to the internal function trellis.skeleton.

trellis.skeleton
The following table shows arguments to trellis.skeleton, which are effectively
arguments to all high-level Trellis functions even when not listed.

Argument Description

as.table Specifies the order in which panels are drawn. Use as.table=FALSE to draw from left to right,
bottom to top or as.table=TRUE to draw from left to right, top to bottom.

between A list with components x and y specifying the space between panels.

key A list of arguments that define a legend of the components in the plot.

legend A list specifying a set of grid objects to be used as legends. See the help file for xyplot or
[Sarkar2008] for more details.

page A single-argument function to be called after drawing each page. (The argument is the page
number.)

main A character value or expression specifying the main title for the plot.

sub A character value or expression specifying the subtitle for the plot.

par.strip.text A list of parameters that control the strip text. (Includes col, cex, lines, abbreviate,
minlength, dot.)

layout A numeric vector specifying the number of rows, columns, and pages. You may specify a value of
0 for a dimension to mean “fit in as many as needed for this dimension to meet my request for the
other dimensions.” For example, c(1, 5) means “one column, five rows,” while c(0, 5) means
“as many columns as are needed with exactly five rows.”

skip A logical vector specifying which panels to skip printing.

strip.left A function to draw strips on the left side of each panel.

xlab.default Default label for x-axis when xlab is not specified.

ylab.default Default label for y-axis when ylab is not specified.
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Argument Description

xscale.components A function to determine axis notation for the x-axis. See the help file for
xscale.components.default for more information.

yscale.components A function to determine axis notation for the y-axis. See the help file for
xscale.components.default for more information.

axis A function that draws axis notation. See the help file for axis.default for more information.

perm.cond A numeric vector specifying a permutation of the conditioning variables. By default, the lattice
functions draw panels in the order in which the conditioning variables are specified; this variable
allows you to change that behavior. See the help file for more information.

index.cond A list of functions that can be used to subset or reorder the array of conditioning variables. See the
help file for xyplot for more information.

par.settings A list of parameters, such as those set with trellis.par.set. See below for a list of available
parameters.

plot.args A list of arguments to plot.trellis. (See below for a table of arguments.)

Controlling How Axes Are Drawn
You can control how axes are drawn in the lattice package by named values in the
argument scales. You may specify a single list for x- and y-axes or specify a list of
lists with separate x- and y-axes. (For example, to shrink all text by 50% and just
plot the x-axis as a base 2 logarithm, use the argument scales=list(cex=.5, x =
list(log = 2)).) Here is a table of the available arguments.

Argument Description

relation Determines how limits are calculated for each panel. Specify relation="same" to use the
same scale, relation="free" to determine different limits in each panel, and
relation="sliced" to keep the length the same in each panel but use different limits.

tick.number Suggested number of tick marks. Ignored for character values, factors, and shingles.

draw A logical value specifying whether to draw the axis.

alternating Specifies whether to alternate axis locations between panels. Specify alternating=TRUE to
alternate, alternating=FALSE not to alternate. Alternatively, you can specify a numeric vector
that describes what to do with each panel: 0 not to draw axes, 1 to draw bottom/left, 2 to draw top/
right, 3 to draw on both sides.

limits Limits for each axis; equivalent to xlim and ylim.

at A numeric vector describing where to plot tick marks (in native coordinates) or a list describing
where to plot tick marks for each panel.

labels Labels to accompany at, specified as a vector (or list of vectors).

cex A numeric value that controls the size of axis labels (“character expansion” factor). Can specify a vector
of length 2 to separately control left/bottom and right/top.

font, fontface,
fontfamily

Specify typeface for axis labels.

tck A numeric value specifying the length of the tick marks.

col Color of tick marks and labels.
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Argument Description

rot Angle to rotate axis labels. Can specify a vector of length 2 to separately control left/bottom and right/
top.

abbreviate A logical value specifying whether to abbreviate labels using the function abbreviate.

minlength An argument passed to function abbreviate if argument abbreviate=TRUE.

log Specifies whether to transform the data values to log scale prior to drawing and label the axis in log
scale. Specify log=FALSE not to transform the values, log="e" to transform using a natural
logarithm, or set log to another numeric value to use that base logarithm.

format The format to use for data/time variables; see the help file for strptime for more information.

axs Use axs="r" to pad date values on each side, axs="i" to use exact values.

Parameters
In “Graphical Parameters” on page 247, we talked about the set of graphical pa-
rameters available with conventional graphics in R. As you may recall, you could
use the function par to get or set default parameters. For example, to check the value
of the parameter cex:

> par("cex")
[1] 1

The namespace is not hierarchical; every parameter has a single name. Currently,
there are 70 different parameters available in the standard graphics package:

> length(par())
[1] 70

There is a similar mechanism for lattice graphics. It’s a little more complicated, but
it’s also a lot easier to understand than a single list of named items, and it’s a lot
more flexible.

To check the value of a setting, use the function trellis.par.get. As an example,
let’s check the values of the "axis.text" parameter, which controls the look of text
printed on axes:

> trellis.par.get("axis.text")
$alpha
[1] 1

$cex
[1] 0.8

$col
[1] "#000000"

$font
[1] 1

To change a setting, use trellis.par.set. To make the text even smaller, we could
change the parameter axis.text$cex to 0.5 with the following command:

> trellis.par.set(list(axis.text = list(cex = 0.5)))
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If you’d like a list of all settings, simply call trellis.par.get with no arguments. Or,
even better, try the function show.settings, which shows all the settings graphically:

> show.settings()

An example of the output of show.settings is shown in Figure 14-32. Lattice graphics
parameters are hierarchical; you can think of them as lists of lists. There are 34 high-
level groups of parameters describing how different components are drawn:

> names(trellis.par.get())
 [1] "grid.pars" "fontsize" "background"
 [4] "clip" "add.line" "add.text"
 [7] "plot.polygon"      "box.dot" "box.rectangle"
[10] "box.umbrella"      "dot.line" "dot.symbol"
[13] "plot.line" "plot.symbol"       "reference.line"
[16] "strip.background"  "strip.shingle"     "strip.border"
[19] "superpose.line"    "superpose.symbol"  "superpose.polygon"
[22] "regions" "shade.colors"      "axis.line"
[25] "axis.text" "axis.components"   "layout.heights"
[28] "layout.widths"     "box.3d" "par.xlab.text"
[31] "par.ylab.text"     "par.zlab.text"     "par.main.text"
[34] "par.sub.text"

Figure 14-32. Example of show.settings
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Here’s an explanation of what each of these groups of parameters controls:

grid.pars
A list of global parameters that can’t be set elsewhere, such as lex and lineend.

fontsize
Base font size for all text on the Trellis device.

background
Color of plot background.

clip
Controls clipping for panels and strips.

add.line, add.text
Specifies the appearance of lines or text plotted by helper functions like
panel.grid and panel.text.

plot.polygon
Specifies the appearance of bars in panels generated by panel.barchart and
panel.histogram.

box.dot, box.rectangle, box.umbrella
Specifies the appearance of points, rectangles, and umbrellas in panels plotted
by panel.bwplot.

dot.line
Specifies the appearance of lines in panels plotted by panel.dotplot.

dot.symbol
Specifies the appearance of lines in symbols plotted by panel.dotplot.

plot.line
Specifies the appearance of lines plotted by panel.xyplot, panel.densityplot,
and panel.cloud.

plot.symbol
Specifies the appearance of points plotted by panel.xyplot, panel.density
plot, and panel.cloud.

reference.line
Specifies the appearance of reference lines plotted by panel.grid and
panel.text.

strip.background, strip.shingle, strip.border
Specifies the default appearance of strips.

superpose.line, superpose.symbol, superpose.polygon
Specifies the appearance of lines, symbols, and polygons on superimposed
plots.

regions
Specifies how regions are plotted by panel.levelplot and panel.wireframe.

shade.colors
Specifies colors for plots by panel.levelplot and panel.wireframe.

axis.line, axis.text
Specifies how lines and text are plotted in axes.
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axis.components
Controls the appearance of axes.

layout.heights, layout.widths
Controls the height and width of panels in a lattice.

box.3d
Specifies the way boxes are drawn by panel.cloud and panel.wireframe.

par.xlab.text, par.ylab.text, par.zlab.text
Controls how text labels are plotted.

par.main.text, par.sub.text
Specifies defaults for main and subtitles.

Within these groups, there are more parameters. There are a total of 378 parameters.
However, there are only 46 unique parameters within these groups.5 Here is an
explanation of the most common subparameters (many of which are similar to stan-
dard graphical parameters):

alpha
Controls transparency.

border
Border color.

cex
Character expansion factor; size of this type relative to fontsize.

col
Color for lines and points.

fill
Color for fills.

font
Font face.

lineheight
Height of a line, as a multiple of text size.

lty
Line type.

lwd
Line width.

pch
Plotting character.

5. In case you’re curious, here’s the code I used to count them:

> # count the total number of parameters
> length(names(unlist(trellis.par.get())))
[1] 378
> # count the number of unique parameters
> n <- names(trellis.par.get())
> p <- NA
> for (i in 1:34) {p <- c(p,names(trellis.par.get(n[i])));}
> length(table(p))
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Here is an explanation of some of the nonstandard subparameters:

palette
Function generating color palette through parameter shade.colors.

text, points
Specifies text format through parameter fontsize.

panel, strip
Controls clipping for panels and strips in parameter clip.

top.padding, main, main.key.padding, key.top, key.axis.padding, axis.top, strip, panel,
axis.panel, between, axis.bottom, axis.xlab.padding, xlab, xlab.key.padding, key.bot-
tom, key.sub.padding, sub, bottom.padding

Parameters for layout.heights.

left.padding, key.left, key.ylab.padding, ylab, ylab.axis.padding, axis.left, axis.panel,
strip.left, panel, between, axis.right, axis.key.padding, key.right, right.padding

Parameters for layout.widths.

For more information, see the help files for par (in the graphics package), gpar (in
the grid package), or the help files for different panel functions.

plot.trellis
As we noted above, lattice functions do not plot results; they return lattice objects.
To plot a lattice object, you need to call print or plot on the lattice object.

The function that actually does the work is the plot.trellis function (which the
help file claims is an alias for the print.trellis function). It’s possible to control
how lattice objects are printed through arguments to plot.trellis. As shown above,
you can also pass these arguments to lattice functions through the plot.args argu-
ment. Here’s a list of arguments for plot.trellis.

Argument Description Default

x The Trellis object to plot.

position A vector of four numbers, c(xmin,
ymin, xmax, ymax), specifying
where to plot the object. Coordinates
are between 0 and 1 for both dimen-
sions.

split A vector of four integers, c(x, y,
nx, ny) , that says to position the
current plot at the x, y position in a
regular array of nx by ny plots.

more A logical value specifying whether
more plots will follow on the current
page.

FALSE

newpage A logical value specifying whether the
plot should be on a new page.

FALSE
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Argument Description Default

packet.panel A function that determines which
packet is plotted in which panel.

packet.panel.default

draw.in A grid viewport in which to draw the
plot.

NULL

panel.height A list of two components (x and
units) specifying the height of each
panel in the lattice plot.

lattice.getOption("layout.heights")$panel

panel.width A list of two components (x and
units) specifying the width of each
panel in the lattice plot.

lattice.getOption("layout.widths")$panel

save.object A logical value indicating whether to
“save” the last object printed. See the
help file for more information.

lattice.getOption("save.object")

panel.error A function that is executed if an error
occurs while plotting the panel.

lattice.getOption("panel.error")

prefix A character string to use as a prefix in
viewport names, to distinguish similar
plots. See the help file for more
information.

... Extra arguments: these are ignored.

strip.default
To change the way strips are drawn, you can specify your own strip function as an
argument to a lattice function. Strip functions are a little complicated to write from
scratch, so it is usually best to modify the strips by writing a new function that creates
a wrapper around the function strip.default:

strip.default(which.given,
which.panel,
var.name,
factor.levels,
shingle.intervals,
strip.names = c(FALSE, TRUE),
strip.levels = c(TRUE, FALSE),
sep = " : ",
style = 1,
horizontal = TRUE,
bg = trellis.par.get("strip.background")$col[which.given],
fg = trellis.par.get("strip.shingle")$col[which.given],
par.strip.text = trellis.par.get("add.text"))

The simplest way to modify the appearance of the strips is by using the function
strip.custom. This function accepts the same arguments as strip.default and re-
turns a new function that can be specified as an argument to a lattice function.

Here’s a description of the arguments to strip.default (and, in turn, to
strip.custom).

320 | Chapter 14: Lattice Graphics



Argument Description Default

which.given,
which.panel,
var.name,
factor.levels,
shingle.intervals

These arguments contain the data for actually drawing the
strip. (Probably not needed for strip.custom.)

 

strip.names A logical vector with two elements that specifies whether
to draw variable names in strips. strip.names[0] is
used for factors and strip.names[1] for shingles.

c(FALSE, TRUE)

strip.levels A logical vector with two elements that specifies whether
to draw variable values in strips. strip.names[0] is
used for factors and strip.names[1] for shingles.

c(TRUE, FALSE)

sep A character value specifying the separator if both name and
level are shown.

 

style An integer value specifying how the current level of a factor
is encoded. See the help file for more information.

 

horizontal A logical value specifying whether the labels should be
horizontal.

 

bg Specifies the background color. trel
lis.par.get("strip.back
ground")
$col[which.given]

fg Specifies the foreground color. trel
lis.par.get("strip.shin
gle") $col[which.given]

par.strip.text A list of parameters controlling the way text is drawn in the
script (such as col, cex, font).

trel
lis.par.get("add.text")

simpleKey
To customize the way that keys (or legends) are drawn for plots with multiple groups
of variables, you may specify a custom function to the key argument, or you may
use the auto.key argument to automatically draw a key using the simpleKey function.
If you specify autoKey=TRUE, then simpleKey is called with the default arguments to
generate the key. Alternatively, you can specify a list of arguments that are, in turn,
passed as arguments to simpleKey to draw the legend:

simpleKey(text, points = TRUE,
          rectangles = FALSE,
          lines = FALSE,
          col, cex, alpha, font,
          fontface, fontfamily,
          lineheight, ...)
draw.key(key, draw=FALSE, vp=NULL, ...)

Here is a description of the arguments to simpleKey.
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Argument(s) Description Default

text A character or expression vector specifying the text to be used to
describe groups

points A logical value specifying whether a key should be provided for points TRUE

rectangles A logical value specifying whether a key should be provided as filled
rectangles

FALSE

lines A logical value specifying whether a key should be provided for lines FALSE

col, cex, alpha, font, fontface,
fontfamily, lineheight

Graphical parameters that control different aspects of the key

Low-Level Functions
In “Custom Panel Functions” on page 272, we showed how to modify the appear-
ance of a chart through custom panel functions. The lattice package includes a
variety of different panel functions that you can use to customize your charts. You
can start with one of the included panel functions, use another panel function, or
even write your own.

Low-Level Graphics Functions
Here is a list of some primitive panel plotting functions available within the
lattice package. These are functions that are useful for writing your own panel
functions from scratch, though they can also be used in conjunction with higher-
level functions. (For example, you can use panel.text along with panel.barchart to
plot a bar chart with added text.)

Function(s) Description

llines, panel.line Plots lines

lpoints, panel.points Plots points

ltext, panel.text Plots text

lsegments, panel.segments Plots line segments

lpolygon, panel.polygons Plots polygons

larrows, panel.arrows Plots arrows

lrect, panel.rect Plots rectangles

panel.axis Plots axes

panel.superpose Superimposes panel functions on top of the same plot (by grouping value)

For more information on how to use these functions, see the help file for any of these
functions (such as llines).
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Panel Functions
Here is a list of some functions for adding to, or customizing the appearance of,
other panels. You can use these functions to add lines, text, and other graphical
elements to lattice graphics. For an example of using panel functions to modify the
appearance of a plot, see “Custom Panel Functions” on page 272.

Function Description

panel.abline Adds a line to the chart area of a panel.

panel.curve Adds a curve (defined by a mathematical expression) to the chart area of a panel.

panel.rug Adds a “rug” to a panel. (Rugs look a lot like strip plots; you can superimpose a rug to show
both exact points and groups in charts like density plots.)

panel.mathdensity Plots a probability distribution given by a distribution function.

panel.average Plots average values (grouped by a factor).

panel.fill Fills the panel with a specified color.

panel.grid Plots a reference grid.

panel.loess Adds a smooth curve (fitted by loess).

panel.lmline Plots a line fitted to the underlying data by a linear regression.

panel.refline Adds a line to the chart area of a panel; just like panel.abline, except with different
default settings (appropriate for, as you probably guessed, reference lines).

panel.qqmathline Adds a line through the points at the 25th and 75th percentile points of the sample and
theoretical distribution. (Mostly useful for Q-Q plots.)

panel.violin Draws violin plots. Usually used in place of box-and-whisker plots in box plots.

For more details on these functions, see the corresponding help files.
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15
ggplot2

Hadley Wickham’s ggplot21 has become one of the most popular R packages.
ggplot2 is a great tool for producing readable charts. But more importantly,
ggplot2 uses a language for describing how to plot data called the grammar of
graphics. In this chapter, I’ll explain how to use the grammar of graphics to produce
plots with ggplot2.

A Short Introduction
To explain ggplot2, we’ll start by looking at a very simple data set:2

> d <- data.frame(a=c(0:9), b=c(1:10), c=c(rep(c("Odd", "Even"), times=5)))
> d
   a  b    c
1  0  1  Odd
2  1  2 Even
3  2  3  Odd
4  3  4 Even
5  4  5  Odd
6  5  6 Even
7  6  7  Odd
8  7  8 Even
9  8  9  Odd
10 9 10 Even

Let’s think about what we want to show. We want to show how variable y varies
with variable x. (To start with, we’ll forget about showing which points belong in a
or b, and just plot points.) We’ll use the qplot (for “quick plot”) function to show
this relationship. Plotting points is the default for qplot, so we’ll call qplot with the
arguments x=a, y=b, and data=d:

1. There is also a ggplot package; it was superseded by ggplot2. We won’t cover ggplot in this
book.

2. This is almost the same as the data set I used to demonstrate lattice graphics, but I changed
the variable names slightly to make it clearer how variables were mapped in ggplot.
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> library(ggplot2)
> qplot(x=a, y=b, data=d)

The result is shown in Figure 15-1. Notice what we specified: a value to plot on an
x-axis, a value to plot on a y-axis, and a data set. We focused on describing the
relationship we wanted to show, not on the type of plot. That’s the key idea of
ggplot: you describe what you want to present, not how to present it.

Figure 15-1. Simplest qplot example

When you create a new plot with ggplot2, you are not actually plotting the data to
the screen. Instead, you are creating a new plot object. (This is very similar to how
the lattice package works.) When you type a plot command on the console, R will
create the object, and then the print method will be called on the object; the print
method actually draws the object on the screen. (It’s good to remember this because
calling ggplot2 functions within other functions will not plot the results unless you
call print within the function or return an object that can be printed later.) Suppose
that we assign the output of the first example to a variable like this:

> first.ggplot2.example <- qplot(x=a, y=b, data=d)
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The plot object is assigned to the variable first.ggplot2.example, but the result isn’t
printed. You can print the object with the statement:

> print(first.ggplot2.example)

or

> first.ggplot2.example

But you can also examine and manipulate the plot object. For example, ggplot2
objects have a summary method:

> summary(first.ggplot2.example)
data: a, b, c [10x3]
mapping:  x = a, y = b
faceting: facet_null()
-----------------------------------
geom_point:
stat_identity:
position_identity: (width = NULL, height = NULL)

This describes the content of the object very concisely. As we noted above, this
describes the underlying data frame, the mapping of variables in the data frame to
entities that are plotted, and the object we are plotting: points. (For now, we’ll ignore
the other statements; I’ll explain what it means in “The Grammar of Graph-
ics” on page 328.) But notice how clearly we can describe the content of the plot
using ggplot2.

Let’s customize the output of this plot to better understand the data. Just like in the
lattice package, we can pick facets and see the results in different panels:

> qplot(x=a, y=b, data=d, facets=~c)3

The results are shown in Figure 15-2. Notice that we use a formula to specify the
facets; you can specify as many faceting variables as you need. Unlike lattice graph-
ics, you can easily change the direction of the facets:

> qplot(x=a, y=b, data=d, facets=c~.)

The second faceting example is shown in Figure 15-3. Alternately, you can change
the color of the points to show which group they belong to, rather than presenting
it in another panel. Here is how to produce the plot shown in Figure 15-4:

> qplot(x=a, y=b, data=d, color=c)

The qplot function can also plot one-dimensional data. As an example, let’s pick
1,000 pseudo-random, normally distributed values:

> set.seed(123456789)
> e <- data.frame(f=rnorm(1000))
> str(e)

3. Hadley Wickam, author of ggplot2, suggested rewriting this as:

> qplot(x=a, y=b, data=d) + facet_wrap(~ c)

He prefers to use the face_wrap function to add facets to a ggplot2 object.
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'data.frame':   1000 obs. of  1 variable:
 $ x: num  0.505 0.396 1.416 -0.722 -0.618 ...

Now, let’s plot these with qplot:

> qplot(x=f, data=e)

The result is shown in Figure 15-5. Notice that qplot picks a histogram as the default
value. We could just as easily have plotted the density function:

> qplot(x=f, data=e, geom="density")

The density plot is shown in Figure 15-6.

To explain how these plots were generated, we’ll explore the grammar of graphics.

The Grammar of Graphics
Every time you draw a chart, you are actually doing many different things. You are:

• Defining the data that will be shown to the user

Figure 15-2. Faceting on the x-axis
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• Determining how to summarize or transform the data

• Determining the graphical objects that will be used to represent the data

• Determining how to divide the data, and how to show different partitions

• Determining how the chart looks

When you draw a chart with most conventional tools (such as spreadsheets and
presentation programs), you begin by picking a style of chart like a scatter plot, a
pie chart, or a bar chart for your data. You may then refine the chart slightly by
tweaking the size, color, and other visual parameters. These tools don’t reflect the
thought process in drawing a chart. If you have to summarize your data before plot-
ting (for example, when plotting a histogram), it can be awkward to do so. It is often
hard to tweak how the results are displayed. Worst of all, it can be difficult to pick
a different object to represent the data.

The grammar of graphics is designed to help separate each step of the charting pro-
cess. This can help you decide the best way to visualize data, and is especially helpful
for defining new types of plots. Each of these different aspects of the charting process

Figure 15-3. Faceting on the y-axis
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is given a name in ggplot2; the tool reflects the language. The ggplot2 package in-
cludes a variety of functions for altering each component of a plot. (The qplot func-
tion above simplifies this process by allowing you to use arguments to specify many
of these different components, and choose reasonable default values.)

Here is the name for each different component of a chart in the grammar of graphics:

Data
The data that is being visualized.

Mappings
Mappings between variables in the data and components of the chart.

Geometric Objects (geom)
The geometric objects that are used to display the data. For example, scatter
plots use geom_point, bar plots use geom_bar, and line plots use geom_abline.

Aesthetic Properties (aes)
The aesthetic properties determine how the plot looks. For example, typeface
sizes, label locations, and tick marks are all aesthetic properties.

Figure 15-4. Marking different sets of points with different colors
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Scales
Scales control how variables are mapped to aesthetics.

Coordinates
Coordinates describe how data is mapped to the plot. For example, you can use
simple Cartesian coordinates with coord_cartesian, polar coordinates with
coord_polar, or geographic projections with coord_map.

Statistical Transformations (stat)
Statistical transformations applied to the data to summarize the data. For ex-
ample, boxplots use stat_boxplot, lines use stat_abline, and histograms use
stat_bin.

Facets
Describes how the data is partitioned into subsets and how these different sub-
sets are plotted.

Positional adjustments
Provides fine-grained control of where data is plotted.

Figure 15-5. Single variable plotted with ggplot2 (as a histogram)
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You can use the summary method on a ggplot2 object to show each of these at-
tributes for a plot. As an example, let’s look at the density plot that we created
previously:

> thehistogram <- qplot(x=f, data=e, geom="density")
> summary(thehistogram)
data: x [1000x1]
mapping:  x = f
faceting: facet_null()
-----------------------------------
geom_density:
stat_density:
position_identity: (width = NULL, height = NULL)

The output shows us exactly how this plot maps to the grammar of graphics:

Data
A data set containing the variable x (with 1,000 values).

Figure 15-6. Single variable plotted with ggplot2 (as a density plot)
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Mappings
The “x” value in the plot is assigned to the variable x in the data frame.

Geometric Objects (geom)
The geometric object is geom_density, a smooth density plot.

Aesthetic Properties (aes)
We have not overridden any aesthetic properties.

Scales
We have not customized the scale.

Coordinates
We have not overridden the default coordinates.

Statistical Transformations (stat)
For the density plot, we have used a density function to summarize the data.

Facets
We did not facet the data.

Positional adjustments
We did not make any positional adjustments; we used the identity function.

This can be useful when trying to figure out what a chart is showing and tuning the
output to look the way you want. We’ll use this technique throughout this chapter.

A More Complex Example: Medicare Data
To help show how to use ggplot2 to solve problems, and to better understand the
grammar of graphics, I’ll use a real, complicated data example: U.S. Medicare cost
and outcome data. See “Medicare Data” on page 333 for more information.

Medicare Data
To demonstrate ggplot2, I tried to find a rich and complicated real-world data set.
You can download the data from the website Medicare; it’s straightforward to
load the raw data into R.

I have included several R data frames based on this data in the nutshell package:

outcome.of.care.measures.national
A small data set that shows the national average mortality and readmission
rates for heart attacks, heart failure, and pneumonia.

medicare.payments
A data set that shows the average payment to each hospital for 70 common
conditions. Average payments are available only for hospitals that treated a
sufficient number of patients with each condition; otherwise, HIPAA makes
it illegal to disclose this information.

medicare.payments.by.state
Similar to medicare.payments, but summarized at a state level.

For more details on these data sets, use the online help.
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Let’s start with a simple example: average mortality and readmission rates for three
common medical conditions. We’d like to compare national treatment effectiveness
statistics for three common diseases. This is a fairly simple data set: there is one
dimension (the readmission rate), three conditions (Heart Attack, Heart Failure, and
Pneumonia), and one factor variable (Measure) with two values (Mortality and Re-
admission). Here is the data:

> library(nutshell)
> data(outcome.of.care.measures.national)
> outcome.of.care.measures.national
      Condition     Measure Rate
1  Heart Attack   Mortality 15.9
2 Heart Failure   Mortality 11.3
3     Pneumonia   Mortality 11.9
4  Heart Attack Readmission 19.8
5 Heart Failure Readmission 24.8
6     Pneumonia Readmission 18.4

We’d like to show how the rates differ for each condition. We need to set
x=Condition, and we will set weight=Rate. (Notice that we didn’t set the y variable;
x is not a numerical value, so we need to treat x as a univariate plot. By default,
ggplot2 tabulates data for you, so ggplot2 would attempt to plot the value 2 for each
value of x.)

A bar chart is a good choice for this data, so we will tell qplot to use geom="bar" as
the geometric object. We’ll also tell ggplot2 to set the height of the bars to Rate by
specifying weight=Rate. Then, we will tell ggplot2 that we want to show each meas-
ure in a separate panel by setting facets=Measure~. And finally, we will set the fill
color of each bar to a different color, depending on the Measure variable by setting
fill=Measure. Putting it all together, we have the following plot object:

> bar.chart.example <- qplot(x=Condition,
+   data=outcome.of.care.measures.national,
+   geom="bar", weight=Rate, facets=Measure~., fill=Measure)
> summary(bar.chart.example)
data: Condition, Measure, Rate [6x3]
mapping:  fill = Measure, weight = Rate, x = Condition
faceting: facet_grid(Measure ~ )
-----------------------------------
geom_bar:
stat_bin:
position_stack: (width = NULL, height = NULL)

This corresponding plot is shown in Figure 15-7.

As an alternative, we might want to plot the bars adjacent to one another, grouped
together by condition, in a single panel. We can do this by dropping the facet variable
and setting position="dodge" to plot the different geometric objects adjacent to one
another. The result of this statement is shown in Figure 15-8.

> qplot(x=Condition, data=outcome.of.care.measures.national,
+   geom="bar", weight=Rate, fill=Measure, position="dodge")
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Both charts are effective ways of showing the data, but they can be used to make
different statements. The faceted version encourages the reader to compare the rates
for different conditions within each group of measures, while the dodged version
encourages the reader to compare rates for different measures within each group of
conditions.

So far, we’ve looked at a lot of really simple examples. But I think the place where
ggplot2 really shines is when you start looking at larger, more complicated data.
Let’s take a look at the Medicare payment information as an example. This data set
contains 140,722 records. Each record shows the average Medicare payment to, and
number of cases seen by, almost 3,300 different hospitals for 70 different conditions.

There are many different things to look at in this data, but I started with a simple
question: how does the number of patients treated by a hospital relate to the fees
charged to Medicare? Would large hospitals charge less money because patients
experienced fewer complications, or would large hospitals charge more because they
were better at gaming the system?

Figure 15-7. Outcome of care measures using facets
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Clearly, the average cost should vary greatly depending on the diagnosis; it would
make no sense to compare the cost of treating a heart attack in one hospital with the
cost of treating pneumonia in another hospital. We need to compare costs within
each diagnosis group, so we will group the data by diagnosis. To make the chart
legible, I cut down the results from 70 conditions to the three diagnosis groups for
heart failure: heart failure without complications or comorbidities, heart failure with
complications or comorbidities, and heart failure with major complications or co-
morbidities:

> heart.failure <- c("Heart failure and shock w/o CC/MCC",
+   "Heart failure and shock w MCC",
+   "Heart failure and shock w CC")

Let’s start simply. We’ll plot the average payment as a function of the number of
cases, setting the color of each point by the diagnosis. I’ll include only rows where
the diagnosis is a type of heart failure. We’ll set data=subset(medicare.payments,
Diagnosis.Related.Group %in% heart.failure) to define the data set. We want to
show the average payment as a function of the number of cases treated at the

Figure 15-8. Outcome of care measures using dodging
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hospital, so we’ll set x=Number.Of.Cases and y=Medicare.Average.Payment. Finally,
we’d like to be able to tell apart the different diagnoses. We’ll set each diagnosis to
a different color by setting color=Diagnosis.Related.Group. We’d like to just plot
each point on the axes, so we’ll take advantage of the default geometric object
(geom_point):

> payment.plot <- qplot(x=Number.Of.Cases, y=Medicare.Average.Payment,
+  data=subset(medicare.payments, Diagnosis.Related.Group %in% 
+  heart.failure), color=Diagnosis.Related.Group)

> summary(payment.plot)
data: Provider.Number, Hospital.Name, Address.1, Address.2,
  Address.3, City, State, ZIP.Code, County.Name, Phone.Number,
  Diagnosis.Related.Group, Medicare.Average.Payment,
  Number.Of.Cases, Footnote [9722x14]
mapping:  colour = Diagnosis.Related.Group, x = Number.Of.Cases,
 y = Medicare.Average.Payment
faceting: facet_null()
-----------------------------------
geom_point:
stat_identity:
position_identity: (width = NULL, height = NULL)

The plot is shown in Figure 15-9. As you can see, this plot isn’t very easy to read.
(Note that the number of patients is not shown when the number is small. This is
due to HIPPA regulations.) All the points clump together on the left, and it is difficult
to tell where most points lie.

Let’s make a few tweaks to improve the legibility of this plot. First, let’s transform
the x variable to a log scale, to remove the clumping in low numbers by setting
x=log(Number.Of.Cases). Next, we’ll make the points semi-opaque. This way, we
can see what regions have more points and which have fewer points. We do this by
specifying alpha=I(1/10). To help see the trend, we’ll add a smoothing line in ad-
dition to the points (geom=c("point","smooth")). And finally, we’ll change the y lim-
its to hide outliers. Here’s the statement to create the plot from scratch:

> heart.failure.cost.plot <-
+   qplot(x=log(Number.Of.Cases), y=Medicare.Average.Payment,
+     data=subset(medicare.payments,
+       Diagnosis.Related.Group %in% heart.failure),
+     color=Diagnosis.Related.Group, ylim=c(0, 20000),
+     alpha=I(1/10), geom=c("point", "smooth"))

But there is a more elegant way to do this. We will start by recreating the plot with
the alpha value and different y limits:

> payment.plot.alpha <- qplot(x=Number.Of.Cases,
+   y=Medicare.Average.Payment,data=subset(medicare.payments,
+   Diagnosis.Related.Group %in% heart.failure),
+   color=Diagnosis.Related.Group,alpha=I(1/10), ylim=c(0,20000))
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Next, we'll add the smoothing lines and change the scale:

> payment.plot.scaled <- payment.plot.alpha
+ scale_x_log10()   + geom_smooth()

> heart.failure.cost.plot.scaled <- payment.plot + scale_x_log10()
+   geom_point() + geom_smooth() + aes(alpha=I(1/10))

This form gives more informative values on the x axis (and it saves some typing).

Here is the description of the plot:

> summary(payment.plot.scaled)
data: Provider.Number, Hospital.Name, Address.1, Address.2, Address.3,
  City, State, ZIP.Code, County.Name, Phone.Number,
  Diagnosis.Related.Group, Medicare.Average.Payment,
  Number.Of.Cases, Footnote [9722x14]
mapping:  colour = Diagnosis.Related.Group, x = Number.Of.Cases,
  y = Medicare.Average.Payment
scales:   y, ymin, ymax, yend, yintercept, ymin_final, ymax_final,
  x, xmin, xmax, xend, xintercept
faceting: facet_null()

Figure 15-9. Number of heart failure cases and average payment (first attempt)

338 | Chapter 15: ggplot2



-----------------------------------
geom_point: alpha = 0.1
stat_identity: alpha = 0.1
position_identity: (width = NULL, height = NULL)

geom_smooth:
stat_smooth:
position_identity: (width = NULL, height = NULL)

There are a few features that we haven’t seen before. First, notice that there are two
sets of geom/stat/position parameters, corresponding to the points and lines. Ad-
ditionally, notice that the alpha property is passed along to each geometric object
function and statistic function, even though it does not have any meaning for all of
these.

The revised plot is shown in Figure 15-10.

Figure 15-10. Number of heart failure cases and average payment

A More Complex Example: Medicare Data | 339

ggplot2



Why did costs increase as the number of patients seen increased? I wondered if there
was a geographic trend; costs of living are very different in different states, and per-
haps Medicare charges adjust for these differences. To help understand these dif-
ferences, I wanted to see how costs varied by region, specifically by state.

To begin, I picked a data set that summarized Medicare payments by state:

> data(medicare.payments.by.state)
> medicare.payments.by.state.hf <- subset(medicare.payments.by.state, 
+   Diagnosis.Related.Group %in% heart.failure)

By default, R will order the output by the values of the factor values. The default
order is driven by the order that values appear in the source data; in the case of the
Medicare data, the values were ordered by state name. It is easy to find results for a
given state when the results are alphabetically sorted, but hard to spot trends. (You
can try plotting this data without reordering to see what I mean.)

To help us learn from the data, I wanted to sort the results from lowest to highest
payment. I didn’t want to sort the data; I just needed to reorder the levels in the State
factor. To do this, I used the reorder function to calculate a new factor, with levels
arranged by average payment:

> medicare.payments.by.state.hf$State <- with(medicare.payments.by.state.hf,
+   reorder(State, Medicare.Average.Payment.Maximum, mean))

Finally, I drew the dot plot shown in Figure 15-11.

> payment.dotplot <- qplot(x=Medicare.Average.Payment.Maximum, y=State, 
+   data=medicare.payments.by.state.hf,
+   color=Diagnosis.Related.Group)
> summary(payment.dotplot)
data: State, Diagnosis.Related.Group,
  Medicare.Average.Payment.Minimum,
  Medicare.Average.Payment.Maximum, Number.Of.Cases, Footnote
  [168x6]
mapping:  colour = Diagnosis.Related.Group,
  x = Medicare.Average.Payment.Maximum, y = State
faceting: facet_null()
-----------------------------------
geom_point:
stat_identity:
position_identity: (width = NULL, height = NULL)

At the top of the list are the Northern Mariana Islands, Alaska, and the Vir-
gin Islands—all isolated, expensive locations, and locations unlikely to have very
large hospitals. But next on the list are New York, Maryland, and California—all
states with high costs of living and large hospitals. Remember that Washington,
D.C., is right next to Maryland, and there are large VA hospitals in Maryland. Ac-
tually, there are also large VA hospitals in Hawaii as well, which is next on the list.
This was starting to make sense; it’s not that costs are increasing with volume, it’s
that both costs and volume are correlated with geography! Also, note that the
cheapest states are actually territories: Puerto Rico and American Samoa.
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Finally, I wanted to see if states that were adjacent to each other had similar costs.
To help visualize this, I wanted to show the average costs on a map, or as a choropleth
plot:

> library(maps)
> states <- map_data("state")
> library(datasets)
> state.name.map <- data.frame(abb=state.abb, region=tolower(state.name),
+   stringsAsFactors=FALSE)
> states <- merge(states, state.name.map, by="region")
> # merge the geography data with the numerical data
> toplot <- merge(states, medicare.payments.by.state,
+   by.x="abb", by.y="State")
> # make sure it's sorted correctly
> toplot <- toplot[order(toplot$order), ]
> # draw the plot
> qplot(long, lat,
+   data=subset(toplot,
+     Diagnosis.Related.Group=="Heart failure and shock w/o CC/MCC"),

Figure 15-11. Dotplot showing payments by state
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+   group=group, 
+   fill=Medicare.Average.Payment.Maximum, geom="polygon") +
+   opts(legend.position="bottom", legend.direction="vertical")

The resulting plot is shown in Figure 15-12.

Figure 15-12. Choropleth plot, showing costs by region

Quick Plot
As we saw above, the simplest way to use ggplot2 is with the qplot command:

qplot(x, y, ..., data, facets, margins, geom, stat,
  position, xlim, ylim, log, main, xlab, ylab

qplot is designed to pick default values that produce a readable plot (and uses helper
functions to help make those choices based on the inputs data), but you can control
how qplot works. Here is a description of the arguments to qplot:
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Argument Description Default

x X values.

y Y values. NULL

data (Optional) Data frame in which x and y are defined.

facets Describes facets to use as a formula. Uses facet_wrap for
one-sided formula or facet_grid for a two sided formula.

NULL

margins Enables displaying margins. FALSE

geom Specifies the geom to use as a vector of character values. "auto"
If x and y are specified, defaults to
"point"

If only x is specified, defaults to
"histogram"

stat Specifies statistics to use as a vector of character values. list(NULL)

position Specifies position adjustments. list(NULL)

xlim Limits for x-axis, as a vector of two values. c(NA,NA)

ylim Limits for y-axis, as a vector of two values. c(NA,NA)

log Specifies whether to display x-axis, y-axis, or both in log scale.
Use "" for neither, "x" for just the x-axis, "y" for just the y-
axis, and "xy" for both.

""

main The title for the plot as a character values. NULL

xlab The label for the x-axis. deparse(substitute(x))

ylab The label for the y-axis. deparse(substitute(y))

asp The y/x aspect ratio. NA

... Other aesthetic attributes passed to lower layers.

Creating Graphics with ggplot2
Above, we used the qplot function to build ggplot2 objects in one function call.
Sometimes, you may need more flexibility than qplot provides. Alternately, you may
want to write a more verbose description of your plot to make your code easier to
read. To do this, you create your plot in several parts:

1. You call the ggplot function to create a new ggplot object, define the input data,
and define aesthetic mappings

2. You add layers to the ggplot object

Note that you add layers (and options) to a ggplot object by using the + operator.

As an example, we could create a plot identical to the one we started with using
these statements:

> plt <- ggplot(data=d, mapping=aes(x=a, y=b)) + geom_point()
> summary(plt)
data: a, b, c [10x3]
mapping:  x = a, y = b
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faceting: facet_null()
-----------------------------------
geom_point: na.rm = FALSE
stat_identity:
position_identity: (width = NULL, height = NULL)

To create ggplot objects without qplot, you begin by using the ggplot function.

ggplot(data, mapping = aes(), ..., environment = globalenv())

Here is a description of the arguments to ggplot2:

Argument Description Default

data The default data frame for the plot

mapping Default list of aesthetic mappings for the plot aes()

environment Environment in which the aesthetics should occur globalenv()

...

The ggplot function returns a new ggplot object with no layers. You can’t actually
print a chart from this object because no layers are defined:

> ggplot(data=d, mapping=aes(x=a, y=b))
Error: No layers in plot

Typically, you specify aesthetic mappings with the aes function:

aes(x, y, ...)

The x argument specifies the x value, the y argument specifies the y value, and other
arguments specify aesthetics to map as name/value pairs. See the documentation for
ggplot2 for alternate ways to map aesthetics including aes_string and aes_auto. As
an example, to finish specifying a plot, you need to add layers. You can create a new
layer with the layer function:

layer(...)

You specify the geometric objects using short names like "point". Using our earlier
example, we could define our plot object with:

> plt <- ggplot(data=d, mapping=aes(x=a, y=b)) + layer("point")

The layer function allows you to specify geometric objects as name value pairs. You
do not need to specify the full function name, but simply need to part after geom_.

For reference, here is a description of the available geometric functions:

Geometric Function Description

geom_abline A line, specified by a slope and intercept

geom_area Area plot (a continuous analog to a bar plot)

geom_bar Bar plot

geom_bin2d Heatmap of two-dimensional bins

geom_blank Blank geometric object; doesn’t draw anything
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Geometric Function Description

geom_boxplot Box plot

geom_contour Contour plot

geom_crossbar Crossbar plot (like a box plot, but without the whiskers and extreme values)

geom_density Density plot

geom_density2d Two-dimensional density plot

geom_errorbar Error bars (typically added to other plots like bar plots, point plots, and line plots)

geom_errorbarh Horizontal error bars

geom_freqpoly Frequency polygon (similar to a histogram)

geom_hex Hexagonal objects (typically used with hexagonal binning)

geom_histogram Histogram

geom_hline A horizontal line

geom_jitter Points, automatically jittered

geom_line A line

geom_linerange An interval represented by a vertical line

geom_path A geometric path, connecting a set of points in order

geom_point Points

geom_pointrange A vertical line with a point in the middle (related to crossbars, boxplots, and line-ranges)

geom_polygon A polygon

geom_quantile A set of quantile lines from a quantile regression

geom_rect Two-dimensional rectangles

geom_ribbon A ribbon (a y range with continuous x values, like Tufte’s famous Napoleon’s march plot)

geom_rug A rug

geom_segment Line segments

geom_smooth A smoothed condition mean

geom_step A stepped plot connecting points

geom_text Text

geom_tile Tiles

geom_vline Vertical line

ggplot2 includes some convenience functions for applying a statistical transforma-
tion and adding a layer to a plot. Some of these functions are listed below.

Statistic Function Description

stat_abline Adds a line with a slope and intercept.

stat_bin Splits data into bins then plots as a histogram.

stat_bin2d Shows density across two dimensions using rectangles.

stat_binhex Shows density across two dimensions using hexagons.
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Statistic Function Description

stat_boxplot Creates a box-and-whiskers plot.

stat_contour Shows contours of three-dimensional data.

stat_density Plots density.

stat_density2d Plots density in two dimensions.

stat_function Superimposes a function.

stat_hline Adds a horizontal line.

stat_identity Plots data without a statistical transformation.

stat_qq Calculations for a quantile-quantile plot.

stat_quantile Continuous quantiles.

stat_smooth Adds a smoother.

stat_spoke Plots directional data at points (specifying location with x and y, and angle separately).

stat_sum Plots sums of unique values (typically on a scatter plot).

stat_summary Plots summarized data.

stat_unique Plots only unique values (removes duplicates).

stat_vline Plots a vertical line.

You can manually specify different scales with ggplot2; mapping data to different
scales lets you control how ggplot2 shows different densities, quantities, or other
values. Scales can specify ranges of colors, objects, or labels. The following table
shows some of these scale functions :

Scale function Description

scale_alpha Alpha channel values (grayscale).

scale_brewer Colors derived from scales shown on colorbrewer.org.

scale_continuous Continuous scales.

scale_date Dates.

scale_datetime Dates and times.

scale_discrete Discrete values.

scale_gradient Smooth gradients between two colors.

scale_gradient2 Smooth gradients among three colors.

scale_gradientn Smooth gradients among n colors.

scale_grey Grayscale colors.

scale_hue Evenly spaced hues.

scale_identity Uses values without scaling.

scale_linetype Shows differences as line patterns.

scale_manual Manually created discrete scales.

scale_shape Different shapes (“glyphs”) for different values.

scale_size Shows different values as different size objects.
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With ggplot2, you can plot data using several different coordinate systems:

Coordinate function Description

coord_cartesian Cartesian coordinates

coord_equal Equal scale coordinates

coord_flip Flipped Cartesian coordinates

coord_map Map projections

coord_polar Polar projections

coord_trans Transformed Cartesian coordinates

There are two options for faceting data bundled with the ggplot2 package:

Faceting function Description

facet_grid Lay out panels in a grid

facet_wrap Wraps a one-dimensional list of facets into two dimensions

When you are plotting multiple geometric objects (such as multiple bars), you can
specify where different objects should be plotted.

Position function Description

position_dodge Positions objects by dodging overlaps to the side (lays them out in a non-overlapping way)

position_fill Stacks overlapping objects on top of one another

postition_identity Doesn’t adjust the position

position_jitter Jitters objects

postion_stack Stacks objects

Learning More
Hadley Wickham wrote an excellent book about ggplot2, [Wickham2009] You can
also find more information about ggplot2 at the official website, including a chapter
from Hadley’s book on qplot and a reference manual for ggplot. Also see R Graphics
Cookbook.
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V
Statistics with R

This part of the book contains information about statistics in R: statistical tests,
statistical modeling, and other analysis tools.





16
Analyzing Data

This chapter describes a number of techniques for analyzing data in R. Many of the
functions described in this chapter are useful for preparing data for other analysis,
or are the building blocks for other analyses.

Summary Statistics
R includes a variety of functions for calculating summary statistics.

To calculate the mean of a vector, use the mean function. You can calculate minima
with the min function, or maxima with the max function. As an example, let’s use the
dow30 data set that we created in “An extended example” on page 175. This data set
is also available in the nutshell package:

> library(nutshell)
> data(dow30)
> mean(dow30$Open)
[1] 36.24574
> min(dow30$Open)
[1] 0.99
> max(dow30$Open)
[1] 122.45

For each of these functions, the argument na.rm specifies how NA values are treated.
By default, if any value in the vector is NA, then the value NA is returned. Specify
na.rm=TRUE to ignore missing values:

> mean(c(1, 2, 3, 4, 5, NA))
[1] NA
> mean(c(1, 2, 3, 4, 5, NA), na.rm=TRUE)
[1] 3

Optionally, you can also remove outliers when using the mean function. To do this,
use the trim argument to specify the fraction of observations to filter:

> mean(c(-1, 0:100, 2000))
[1] 68.4369
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> mean(c(-1, 0:100, 2000), trim=0.1)
[1] 50

To calculate the minimum and maximum at the same time, use the range function.
This returns a vector with the minimum and maximum value:

> range(dow30$Open)
[1]   0.99 122.45

Another useful function is quantile. This function can be used to return the values
at different percentiles (specified by the probs argument):

> quantile(dow30$Open, probs=c(0, 0.25, 0.5, 0.75, 1.0))
     0%     25%     50%     75%    100%
  0.990  19.655  30.155  51.680 122.450

You can return this specific set of values (minimum, 25th percentile, median, 75th
percentile, and maximum) with the fivenum function:

> fivenum(dow30$Open)
[1]   0.990  19.650  30.155  51.680 122.450

To return the interquartile range (the difference between the 25th and 75th percen-
tile values), use the function IQR:

> IQR(dow30$Open)
[1] 32.025

Each of the functions above can be useful on its own but can also be used with apply,
tapply, or another aggregation function to calculate statistics for a data frame or
subsets of a data frame.

The most convenient function for looking at summary information is summary. It is
a generic function that works on data frames, matrices, tables, factors, and other
objects. As an example, let’s take a look at the output of summary for the dow30 data
set that we used above:

> summary(dow30)
     symbol             Date           Open             High
 MMM    : 252   2008-09-22:  30   Min.   :  0.99   Min.   :  1.01
 AA     : 252   2008-09-23:  30   1st Qu.: 19.66   1st Qu.: 20.19
 AXP    : 252   2008-09-24:  30   Median : 30.16   Median : 30.75
 T      : 252   2008-09-25:  30   Mean   : 36.25   Mean   : 36.93
 BAC    : 252   2008-09-26:  30   3rd Qu.: 51.68   3rd Qu.: 52.45
 BA     : 252   2008-09-29:  30   Max.   :122.45   Max.   :122.88
 (Other):5970   (Other)   :7302
      Low             Close            Volume            Adj.Close
 Min.   :  0.27   Min.   :  0.75   Min.   :1.336e+06   Min.   :  0.75
 1st Qu.: 19.15   1st Qu.: 19.65   1st Qu.:1.111e+07   1st Qu.: 19.38
 Median : 29.55   Median : 30.10   Median :1.822e+07   Median : 29.41
 Mean   : 35.53   Mean   : 36.24   Mean   :5.226e+07   Mean   : 35.64
 3rd Qu.: 50.84   3rd Qu.: 51.58   3rd Qu.:4.255e+07   3rd Qu.: 50.97
 Max.   :121.62   Max.   :122.11   Max.   :2.672e+09   Max.   :122.11

As you can see, summary presents information about each variable in the data frame.
For numeric values, it shows the minimum, first quartile, median, mean, third quar-
tile, and maximum values. For factors, summary shows the count of the most frequent
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values. (Less frequent values are grouped into an “Other” category.) Summary doesn’t
show meaningful information for character values.

A popular alternative to summary is the str function. The str function displays the
structure of an object:

> str(dow30)
'data.frame':    7482 obs. of  8 variables:
 $ symbol   : Factor w/ 30 levels "MMM","AA","AXP",..: 1 1 1 1 1 1 1 1 1 1
  ...
 $ Date     : Factor w/ 252 levels "2008-09-22","2008-09-23",..: 252 251 250
  249 248 247 246 245 244 243 ...
 $ Open     : num  73.9 75.1 75.3 74.8 74.6 ...
 $ High     : num  74.7 75.2 75.5 75.5 74.9 ...
 $ Low      : num  73.9 74.5 74.5 74.5 74 ...
 $ Close    : num  74.5 74.6 74.9 75.4 74.7 ...
 $ Volume   : num  2560400 4387900 3371500 2722500 3566900 ...
 $ Adj.Close: num  74.5 74.6 74.9 75.4 74.7 ...

A useful (text-based) tool for looking at the distribution of a numeric vector is the
stem function:

stem(x, scale = 1, width = 80, atom = 1e-08)

The argument x is a numeric vector, scale controls the length of the plot, width
controls the width, and atom is a tolerance factor.

As an example of a stem plot, we’ll look at field goal attempts in the NFL during
2005. Specifically, we’ll look at the attempted distances for missed field goals. To
do this, we’ll use the subset function to select only missed field goals and then plot
the yards for each attempt:

> stem(subset(field.goals, play.type=="FG no")$yards)
  The decimal point is at the |
  20 | 0
  22 |
  24 |
  26 | 00
  28 | 0000000
  30 | 0000000
  32 | 00000000
  34 | 000
  36 | 0000
  38 | 00000000000000
  40 | 0000000000
  42 | 0000000000000000
  44 | 000000000000
  46 | 000000000000000000
  48 | 000000000000000000
  50 | 000000000000
  52 | 0000000000000000000
  54 | 0000
  56 | 000
  58 | 00
  60 | 00
  62 | 0
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Correlation and Covariance
Very often, when analyzing data, you want to know if two variables are correlated.
Informally, correlation answers the question, “When we increase (or decrease) x,
does y increase (or decrease), and by how much?” Formally, correlation measures
the linear dependence between two random variables. Correlation measures range
between −1 and 1; 1 means that one variable is a (positive) linear function of the
other, 0 means the two variables aren’t correlated at all, and −1 means that one
variable is a negative linear function of the other (the two move in completely op-
posite directions; see Figure 16-1).

Figure 16-1. Correlation (Source: http://xkcd.com/552/)

The most commonly used correlation measurement is the Pearson correlation sta-
tistic (it’s the formula behind the CORREL function in Excel):

where x̄ is the mean of variable x, and ȳ is the mean of variable y. The Pearson
correlation statistic is rooted in properties of the normal distribution and works best
with normally distributed data. An alternative correlation function is the Spearman
correlation statistic. Spearman correlation is a nonparametric statistic and doesn’t
make any assumptions about the underlying distribution:

Another measurement of how well two random variables are related is Kendall’s
tau. Kendall’s tau formula works by comparing rankings of values in the two random
variables, not by comparing the values themselves:
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In this formula, n is the length of the two random variables, nc counts the number
of concordant pairs, and nd counts the number of discordant pairs.

To compute correlations in R, you can use the function cor. This function can be
used to compute each of the correlation measures shown above:

cor(x, y = NULL, use = "everything",
     method = c("pearson", "kendall", "spearman"))

You can compute correlations on two vectors (assigned to arguments x and y), a
data frame (assigned to x with y=NULL), or a matrix (assigned to x with y=NULL). If you
specify a matrix or a data frame, then cor will compute the correlation between each
pair of variables and return a matrix of results.

The method argument specifies the correlation calculation. The use argument speci-
fies how the function should treat NA values. If you want an error raised when values
are NA, choose use="all.obs". If you would like the result to be NA when an element
is NA, choose use="everything". To omit cases where values are NA, choose
use="complete.obs". To omit cases where values are NA, but return NA if all values are
NA, specify use="na.or.complete". Finally, to omit pairs where at least one value is
NA, choose use="pairwise.complete.obs".

As an example, let’s look at the 2006 birth data that we used above. Specifically,
let’s ask whether the mother’s weight gain correlates with the baby’s weight. Let’s
start by selecting only valid birth weights and weight gain values. We’ll also exclude
premature births. (I picked gestation age > 35 weeks, though this might not tech-
nically be premature.) Finally, we’ll include only single births:

> births2006.cln <- births2006[
+   !is.na(births2006$WTGAIN) &
+   !is.na(births2006$DBWT) &
+   births2006$DPLURAL == "1 Single" &
+   births2006$ESTGEST>35,]

First, we’ll take a look at how these two variables are related. Because there are
3,232,884 observations, a normal scatter plot would be hard to read, so we’ll use
smoothScatter instead:

> smoothScatter(births2006.cln$WTGAIN, births2006.cln$DBWT)

The plot is shown in Figure 16-2. From this diagram, we’d expect to see a slight
correlation. (We wouldn’t expect a very strong correlation because of the big blob,
but the blob is angled a little bit.) Let’s compute the Pearson correlation:

> cor(births2006.cln$WTGAIN, births2006.cln$DBWT)
[1] 0.1750655

Let’s also calculate the Spearman correlation:

> cor(births2006.cln$WTGAIN, births2006.cln$DBWT, method="spearman")
[1] 0.1783328
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As you can see, both measures indicate that there is a modest correlation between
the two variables.

A closely related idea is covariance. Covariance is defined as:

which is the numerator of the Pearson correlation formula. You can compute cova-
riance in R using the cov function, which accepts the same arguments as cor:

cov(x, y = NULL, use = "everything",
    method = c("pearson", "kendall", "spearman"))

If you have computed a covariance matrix, you can use the R function cov2cor to
compute the correlation matrix.

You can also compute weighted covariance measurements using the cov.wt formula:

cov.wt(x, wt = rep(1/nrow(x), nrow(x)), cor = FALSE, center = TRUE,
       method = c("unbiased", "ML"))

Figure 16-2. Plot of birth weight as a function of mother’s weight gain
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Principal Components Analysis
Another technique for analyzing data is principal components analysis. Principal
components analysis breaks a set of (possibly correlated) variables into a set of un-
correlated variables.

In R, principal components analysis is available through the function prcomp in the
stats package:

## S3 method for class 'formula':
prcomp(formula, data = NULL, subset, na.action, ...)

## Default S3 method:
prcomp(x, retx = TRUE, center = TRUE, scale. = FALSE,
       tol = NULL, ...)

Here is a description of the arguments to prcomp.

Argument Description Default

formula In the formula method, specifies formula with no response variable, indicating columns of a
data frame to use in the analysis.

data An optional data frame containing the data specified in formula.

subset An optional vector specifying observations to include in the analysis.

na.action A function specifying how to deal with NA values.

x In the default method, specifies a numeric or complex matrix of data for the analysis.

retx A logical value specifying whether rotated variables should be returned. TRUE

center A logical value specifying whether values should be zero centered. TRUE

scale A logical value specifying whether values should be scaled to have unit variance. TRUE

tol A numeric value specifying a tolerance value below which components should be omitted. NULL

... Additional arguments passed to other methods.

As an example, let’s try principal components analysis on a matrix of team batting
statistics. Let’s start by loading the data for every team between 2000 and 2008.
We’ll use the SQLite database that we used in Chapter 13 and extract the fields we
want using an SQL query. (Because this is a book on R and not a book on baseball,
I renamed the common abbreviations to more intuitive names for plays.)

> library(RSQLite)
> drv <- dbDriver("SQLite")
> con <- dbConnect(drv,
+   dbname=system.file("extdata","bb.db", package="nutshell")
> team.batting.00to08 <- dbGetQuery(con,
+   paste(
+     'SELECT teamID, yearID, R as runs, ',
+   '   H-"2B"-"3B"-HR as singles, ',
+   '   "2B" as doubles, "3B" as triples, HR as homeruns, ',
+   '   BB as walks, SB as stolenbases, CS as caughtstealing, ',
+   '   HBP as hitbypitch, SF as sacrificeflies, ',
+   '   AB as atbats ',
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+   '   FROM Teams ',
+   '   WHERE yearID between 2000 and 2008'
+     )
+   )

You can also find this data already loaded in the team.batting.00to08 data set in the
nutshell package. Eventually, we’ll do some analysis on runs scored. For now, we’ll
use principal components analysis on the remaining variables in the matrix:

> batting.pca <- princomp(~singles+doubles+triples+homeruns+
+       walks+hitbypitch+sacrificeflies+
+       stolenbases+caughtstealing,
+       data=team.batting.00to08)
> batting.pca
Call:
princomp(formula = ~singles + doubles + triples + homeruns +
    walks + hitbypitch + sacrificeflies + stolenbases + caughtstealing,
    data = team.batting.00to08)

Standard deviations:
   Comp.1    Comp.2    Comp.3    Comp.4    Comp.5    Comp.6    Comp.7
74.900981 61.871086 31.811398 27.988190 23.788859 12.884291  9.150840
   Comp.8    Comp.9
 8.283972  7.060503

 9  variables and  270 observations.

The princomp function returns a princomp object. You can get information on the
importance of each component with the summary function:

> summary(batting.pca)
Importance of components:
                           Comp.1     Comp.2     Comp.3      Comp.4
Standard deviation     74.9009809 61.8710858 31.8113983 27.98819003
Proportion of Variance  0.4610727  0.3146081  0.0831687  0.06437897
Cumulative Proportion   0.4610727  0.7756807  0.8588494  0.92322841
                            Comp.5      Comp.6      Comp.7
Standard deviation     23.78885885 12.88429066 9.150840397
Proportion of Variance  0.04650949  0.01364317 0.006882026
Cumulative Proportion   0.96973790  0.98338107 0.990263099
                            Comp.8      Comp.9
Standard deviation     8.283972499 7.060503344
Proportion of Variance 0.005639904 0.004096998
Cumulative Proportion  0.995903002 1.000000000

To show the contribution of each variable to the components, you can use the
loadings method:

> loadings(batting.pca)

Loadings:
               Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7
singles         0.313  0.929 -0.136         0.136
doubles                      -0.437  0.121 -0.877
triples                                                   0.424
homeruns       -0.235        -0.383  0.825  0.324
walks          -0.914  0.328  0.150 -0.182
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hitbypitch -0.989
sacrificeflies 0.321
stolenbases 0.131  0.758  0.502 -0.307 -0.232
caughtstealing 0.208  0.104 0.813

Comp.8 Comp.9
singles
doubles -0.100
triples 0.775  0.449
homeruns
walks
hitbypitch
sacrificeflies  0.330 -0.882
stolenbases
caughtstealing -0.521  0.105

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7
SS loadings     1.000  1.000  1.000  1.000  1.000  1.000  1.000
Proportion Var  0.111  0.111  0.111  0.111  0.111  0.111  0.111
Cumulative Var  0.111  0.222  0.333  0.444  0.556  0.667  0.778

Comp.8 Comp.9
SS loadings     1.000  1.000
Proportion Var  0.111  0.111
Cumulative Var  0.889  1.000

There is a plot method for princomp objects that displays a “scree” plot of the var-
iance against each principal component:

> plot(batting.pca)

The results are shown in Figure 16-3. A second useful method for visualizing prin-
cipal components is the biplot (see Figure 16-4):

> biplot(batting.pca, cex=0.5, col=c("gray50", "black"))

Figure 16-3. Scree plot of batting.pca
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A biplot graphically displays the contributions of each of the variables to a pair of
principal components and also shows individual observations on the same scale.
This example shows the contribution of each variable to components 1 and 2. In-
dividual observations are also plotted on the chart. (I showed these in gray so that
you could more clearly see the plot of the projections.) As you can see, singles and
walks are the primary contributors to the first two components.

We’ll revisit this data example in more depth in “Example: A Simple Linear
Model” on page 401.

Note that there is a princomp function that does the same thing but works differently.
It calculates the principal components by using the eigen function on the correlation
or covariance matrix generated by the cor function. This function is included for
compatibility with S-PLUS (it produces the same results as the equivalent method
in S-PLUS). For more information on princomp, see the help file.

Factor Analysis
In most data analysis problems, there are some quantities that we can observe and
some that we cannot. The classic examples come from the social sciences. Suppose
that you wanted to measure intelligence. It’s not possible to directly measure an
abstract concept like intelligence, but it is possible to measure performance on dif-
ferent tests. You could use factor analysis to analyze a set of test scores (the observed
values) to try to determine intelligence (the hidden value).

Factor analysis is available in R through the function factanal in the stats package:

Figure 16-4. Biplot of batting.pca
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factanal(x, factors, data = NULL, covmat = NULL, n.obs = NA,
subset, na.action, start = NULL,
scores = c("none", "regression", "Bartlett"),
rotation = "varimax", control = NULL, ...)

Here is a description of the arguments to factanal.

Argument Description Default

x A formula or a numeric matrix to be used for analysis.

factors A numeric value indicating the number of factors to be fitted.

data A data frame in which to evaluate x (if x is a formula). NULL

covmat A covariance matrix (or a list returned by cov.wt). NULL

n.obs The number of observations (if covmat is specified). NA

subset Specifies which observations to include in the analysis.

na.action A function that specifies how to handle missing observations (if x is a formula).

start A matrix of starting values for the algorithm. NULL

scores A character value specifying the type of scores to produce. Use scores="none" for no
scores, scores="regression" for Thompson’s scores, or
"scores="Bartlett" for Bartlett’s weighted least squares scores.

"none"

rotation A character value naming the function for rotating the factors. "varimax"

control A list of control values for the fit.

Bootstrap Resampling
When analyzing statistics, analysts often wonder if the statistics are sensitive to a
few outlying values. Would we get a similar result if we were to omit a few points?
What is the range of values for the statistic? It is possible to answer these questions
for an arbitrary statistic using a technique called bootstrapping.

Formally, bootstrap resampling is a technique for estimating the bias of an estimator.
An estimator is a statistic calculated from a data sample that provides an estimate of
a true underlying value, often a mean, a standard deviation, or a hidden parameter.

Bootstrapping works by repeatedly selecting random observations from a data sam-
ple (with replacement) and recalculating the statistic. In R, you can use bootstrap
resampling through the boot function in the boot package:

library(boot)
boot(data, statistic, R, sim="ordinary", stype="i",
     strata=rep(1,n), L=NULL, m=0, weights=NULL,
     ran.gen=function(d, p) d, mle=NULL, simple=FALSE, ...)

Arguments to boot include the following.
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Argument Description Default

data A vector, matrix, or data frame containing the input data.

statistic A function that, when applied to the data, returns a vector containing the statistic of
interest. The function takes two arguments: the source data and a vector that specifies
which values to select for each bootstrap replicate. The meaning of the second argu-
ment is defined by stype.

R A numeric value specifying the number of bootstrap replicates.

sim A character value specifying the type of simulation. Possible values include
"ordinary", "parametric", "balanced", "permutation", and
"antithetic".

"ordinary"

stype A character value that specifies what the second argument to the statistic function
represents. Possible values of stype are "i" (indices), "f" (frequencies), and
"w" (weights).

"i"

strata An integer vector or factor specifying the strata for multisample problems. rep(1, n)

l A vector of influence values evaluated at the observations (when
sim="antithetic").

NULL

m Specifies the number of predictions at each bootstrap replicate. 0

weights A numeric vector of weights for data. NULL

ran.gen A function that describes how random values are generated (when
sim="parametric").

func
tion(d, p)
d

mle The second argument passed to ran.gen; typically, a maximum likelihood estimate
(hence the name).

NULL

simple Specifies the method for generating random values. Specifying simple=TRUE causes
values to be selected on each iteration, saving storage space but costing time.

FALSE

... Additional arguments passed to statistic.

As an example of boot, let’s look at real estate sale prices. Usually, the media reports
median sale prices in a region. We can use the bootstrap to look at how biased
median is as an estimator:

> b <- boot(data=home.sale.prices.june2008,
+   statistic = function(d,i) {median(d[i])},
+   R=1000)
> b
ORDINARY NONPARAMETRIC BOOTSTRAP
Call:
boot(data = home.sale.prices.june2008, statistic = function(d,

i) {
    median(d[i])
}, R = 1000)
Bootstrap Statistics :
    original  bias    std. error
t1*   845000   -3334    23287.27

The boot function tells us that the median is a very slightly biased estimator.
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17
Probability Distributions

Many statistical tests work by calculating a test statistic and then comparing the test
statistic to a value from a theoretical distribution. R provides a set of functions to
calculate densities, distributions, and quantiles for common statistical distributions.
You can also generate random values from these distributions. This section describes
how to use these functions (using the normal distribution as an example) and then
lists most functions included with the R stats library.

Normal Distribution
As an example, we’ll start with the normal distribution. As you may remember from
statistics classes, the probability density function for the normal distribution is:

To find the probability density at a given value, use the dnorm function:

dnorm(x, mean = 0, sd = 1, log = FALSE)

The arguments to this function are fairly intuitive: x specifies the value at which to
evaluate the density, mean specifies the mean of the distribution, sd specifies the
standard deviation, and log specifies whether to return the raw density (log=FALSE)
or the logarithm of the density (log=TRUE). As an example, you can plot the normal
distribution with the following command:

> plot(dnorm, -3, 3, main = "Normal Distribution")

The plot is shown in Figure 17-1.

The distribution function for the normal distribution is pnorm:

pnorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
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You can use the distribution function to tell you the probability that a randomly
selected value from the distribution is less than or equal to q. Specifically, it returns
p = Pr(x ≤ q). The value q is specified by the argument q, the mean by mean, and the
standard deviation by sd. If you would like the raw value p, then specify
log.p=FALSE; if you would like log(p), then specify log.p=TRUE. By default,
lower.tail=TRUE, so this function returns Pr(x ≤ q); if you would prefer Pr(x > q),
then specify lower.tail=FALSE. Here are a few examples of pnorm:

> # mean is zero, normal distribution is symmetrical, so
> # probability(q <= 0) is .5
> pnorm(0)
[1] 0.5
> # what is the probability that the value is less than
> # 1 standard deviation below the mean?
> pnorm(-1)
[1] 0.1586553
> # what is the probability that the value is within
> # 1.96 standard deviations of the mean?
> pnorm(1.96, lower.tail=TRUE) - pnorm(-1.96, lower.tail=TRUE)
[1] 0.9500042

You can plot the cumulative normal distribution with a command like this:

> plot(pnorm, -3, 3, main = "Cumulative Normal Distribution")

The plot is shown in Figure 17-2.

The quantile function is the reverse of the distribution function. Specifically, this
function returns q where p = Pr(x ≤ q). In R, you can calculate the quantile function
for the normal distribution with the function qnorm:

qnorm(p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)

Figure 17-1. Normal distribution
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As above, p specifies p where p = Pr(x ≤ q), mean specifies the mean of the distribution,
sd specifies the standard deviation, and lower.tail specifies whether p = Pr(x ≤ q)
(lower.tail=TRUE) or p = Pr(x > q) (lower.tail=FALSE). The argument log.p specifies
whether the input value is the logarithm of p (log.p=TRUE) or just p (log.p=FALSE).
Here are a few examples:

> # find the median of the normal distribution
> qnorm(0.5)
[1] 0
> qnorm(log(0.5), log.p=TRUE)
[1] 0
> # qnorm is the inverse of pnorm
> qnorm(pnorm(-1))
[1] -1
> # finding the left and right sides of a 95% confidence interval
> c(qnorm(.025), qnorm(.975))
[1] -1.959964  1.959964

Finally, it is possible to generate random numbers taken from the normal distribu-
tion. Selecting random numbers from a specific distribution can be useful in testing
statistical functions, in running simulations, in sampling methods, and in many
other contexts. To do this in R, use the function rnorm:

rnorm(n, mean = 0, sd = 1)

For example, you could generate 10,000 randomly selected values from a normal
distribution with a command like rnorm(10000). You could plot these with an ex-
pression like this:

> hist(rnorm(10000), breaks=50)

The plot is shown in Figure 17-3.

Figure 17-2. Cumulative normal distribution
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Figure 17-3. Histogram of 10,000 random values from a uniform distribution

Common Distribution-Type Arguments
Almost all the R functions that generate values of probability distributions work the
same way. They follow a similar naming convention:

• Probability density functions (PDFs) begin with “d.”1

• Distribution functions begin with “p.”

• Quantile functions begin with “q.”

• Random number generators begin with “r.”

Similarly, most types of functions share certain common arguments:

• For density functions: x, log

• For distribution functions: q, lower.tail, log.p

• For quantile functions: p, lower.tail, log.p

• For random numbers: n (except for hypergeometric distributions, where n is
renamed to nn)

This might make it easier to remember which function to use for which application
and which arguments you need to specify. Of course, you can always just look up
the right function to use in R’s help system. Or in this book.

Distribution Function Families
Here is a table showing the probability distribution functions available in R. In ad-
dition to the arguments listed above that are common to each type of function, there
are also some arguments that are common to each family.

1. For discrete distributions, these are technically probability mass functions (PMFs), though the
function names still begin with “d.”
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18
Statistical Tests

Many data problems boil down to statistical tests. For example, you might want to
answer a question like:

• Does this new drug work better than a placebo?

• Does the new website design lead to significantly more sales than the old design?

• Can this new investment strategy yield higher returns than an index fund?

To answer questions like these, you would formulate a hypothesis, design an ex-
periment, collect data, and use a tool like R to analyze the data. This chapter focuses
on the tools available in R for answering these questions.

To be helpful, I’ve tried to include enough description of dif-
ferent statistical methods to help remind you when to use each
method (in addition to how to find them in R). However,
because this is a Nutshell book, I can’t describe where these
formulas come from, or when they’re safe to use. R is a good
substitute for expensive, proprietary statistics software pack-
ages. However, R in a Nutshell isn’t a good substitute for a good
statistics course or a good statistics book.

I’ve broken this chapter into two sections: tools for continuous random variables
and tools for categorical random variables (or counts).

Continuous Data
This section describes tests that apply to continuous random variables. Many im-
portant measurements fall into this category, such as times, dollar amounts, and
chemical concentrations.
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Normal Distribution-Based Tests
We’ll start off by showing how to use some common statistical tests that assume the
underlying data is normally distributed. Normal distributions occur frequently in
nature, so this is often a good assumption.1

Comparing means

Suppose that you designed an experiment to show that some effect is true. You have
collected some data and now want to know if the data proves your hypothesis. One
common question is to ask if the mean of the experimental data is close to what the
experimenter expected; this is called the null hypothesis. Alternately, the experi-
menter may calculate the probability that an alternative hypothesis was true. Specif-
ically, suppose that you have a set of observations x1, x2, ..., xn with experimental
mean μ and want to know if the experimental mean is different from the null hy-
pothesis mean μ0. Furthermore, assume that the observations are normally dis-
tributed. To test the validity of the hypothesis, you can use a t-test. In R, you would
use the function t.test:

## Default S3 method:
t.test(x, y = NULL,
       alternative = c("two.sided", "less", "greater"),
       mu = 0, paired = FALSE, var.equal = FALSE,
       conf.level = 0.95, ...)

Here is a description of the arguments to the t.test function.

Argument Description Default

x A numeric vector of data values.

y A numeric vector of data values (use y=NULL for comparing a single vector of
values to a null hypothesis mean, mu, or a vector to compare vector x to vector
y).

NULL

alternative A character value specifying the alternative hypothesis. Use
alternative="two.sided" for a two-sided distribution,
alternative="less" for lower, and alternative="greater" for
higher.

c("two.sided",
"less",
"greater")

mu A numeric value specifying the value of the mean under the null hypothesis
(if testing a single vector of values) or the difference between the means (if
comparing the means of two vectors).

0

paired A logical value indicating if the vectors are paired. See the next section for a
description of how to use paired.

FALSE

var.equal A logical value indicating whether the variance of the two vectors is assumed
to be the same. If var.equal=TRUE, then the pooled variance is used. If
var.equal=FALSE, then the Welch method is used.

FALSE

1. One of the most famous results in probability theory is something called the central limit
theorem. The central limit theorem states, in a nutshell, that if x is the sum of a set of random
variables x1, x2, ..., xn, then the distribution of x approaches the normal distribution as n → ∞.
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Argument Description Default

conf.level The confidence interval. 0.95

... Optional values passed to other methods.

Let’s take a look at an example of how you would use the t.test function. We’ll use
the same example data that we used in “Dot plots” on page 280. Suppose that we
thought, a priori, that tires of type H should last for approximately nine hours until
failure.2 We’d like to compare the true mean of this data to the hypothetical mean
and determine if the difference was statistically significant using a t-test.

To load the sample data, use the following command:

> library(nutshell)
> data(tires.sus)

To begin, let’s extract a vector with the set of values in which we are interested and
calculate the true mean:

> times.to.failure.h <- subset(tires.sus,
+   Tire_Type=="H" &
+   Speed_At_Failure_km_h==160
+ )$Time_To_Failure
> times.to.failure.h
 [1] 10.00 16.67 13.58 13.53 16.83  7.62  4.25 10.67  4.42  4.25
> mean(times.to.failure.h)
[1] 10.182

As you can see, the true mean for these 10 tests was slightly longer than expected
(10.182). We can use the function t.test to check if this difference is statistically
significant:

> t.test(times.to.failure.h, mu=9)

     One Sample t-test

data:  times.to.failure.h 
t = 0.7569, df = 9, p-value = 0.4684
alternative hypothesis: true mean is not equal to 9 
95 percent confidence interval:
  6.649536 13.714464 
sample estimates:
mean of x 
   10.182

Here’s an explanation of the output from the t.test function. First, the function
shows us the test statistic (t = 0.7569), the degrees of freedom (df = 9), and the
calculated p-value for the test (p-value = 0.4684). The p-value means that the prob-
ability that the mean value from an actual sample was higher than 10.182 (or lower
than 7.818) was 0.4684.

2. This is a slightly contrived example, because I just made up the hypothetical mean value. In
reality, the mean value might come from another experiment (perhaps a published experiment,
where the raw data was not available). Or the mean value might have been derived from theory.
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The next line states the alternative hypothesis: the true mean is not equal to 9, which
we would reject based on the result of this test. Next, the t.test function shows the
95% confidence interval for this test, and, finally, it gives the actual mean. As a
statistician would say, this evidence does not imply that the true mean was not
equal to 9.

Another common situation is when you have two groups of observations, and you
want to know if there is a significant difference between the means of the two groups
of observations. You can also use a t-test to compare the means of the two groups.

Let’s pick another example from the tire data. Looking at the characteristics of the
different tires that were tested, notice that three of the six tires had the same speed
rating: S. Based on this speed rating, we would expect all three tires to last the same
amount of time in the test:

> times.to.failure.e <- subset(tires.sus,
+   Tire_Type=="E" & Speed_At_Failure_km_h==180)$Time_To_Failure
> times.to.failure.d <- subset(tires.sus,
+   Tire_Type=="D" & Speed_At_Failure_km_h==180)$Time_To_Failure
> times.to.failure.b <- subset(tires.sus,
+   Tire_Type=="B" & Speed_At_Failure_km_h==180)$Time_To_Failure

Let’s start by comparing the mean times until failure for tires of types D and E:

> t.test(times.to.failure.e, times.to.failure.d)

   Welch Two Sample t-test

data:  times.to.failure.e and times.to.failure.d 
t = -2.5042, df = 8.961, p-value = 0.03373
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval:
 -0.82222528 -0.04148901 
sample estimates:
mean of x mean of y 
 4.321000  4.752857

The results here are similar to the results from the single-sample t-test. In this case,
notice that the results were statistically significant at the 95% confidence interval;
tires of type E lasted longer than tires of type D.

As an another example, let’s compare tires of types E and B:

> t.test(times.to.failure.e, times.to.failure.b)

   Welch Two Sample t-test

data:  times.to.failure.e and times.to.failure.b 
t = -1.4549, df = 16.956, p-value = 0.1640
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval:
 -0.5591177  0.1027844 
sample estimates:
mean of x mean of y 
 4.321000  4.549167
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In this case, the difference in means was not significant between the two groups
(because the calculated p-value was 0.1640). Notice that the output in R is otherwise
identical; the t.test function doesn’t explicitly say if the results were significant or
not.

For two-sample t-tests, you can also use a formula to specify a t-test if the data is
included in a data frame, and the two groups of observations are differentiated by a
factor:

## S3 method for class 'formula':
t.test(formula, data, subset, na.action, ...)

The formula specifies the variables to use in the test.

As an example, let’s look at data on field goals kicked in the NFL during 2005.
Specifically, let’s look at the distance of successful field goals kicked in indoor and
outdoor stadiums. Many TV commentators talk about the difficulty of kicking field
goals outdoors, due to snow, wind, and so on. But does it make a significant differ-
ence in the distance of successful field goals? (Or, for that matter, in bad field goals?)
We can use a t-test to find out.

First, let’s put together the data set:

> library(nutshell)
> data(field.goals)
> good <- transform(
+   field.goals[field.goals$play.type=="FG good",
+     c("yards","stadium.type")],
+   outside=(stadium.type=="Out"))
> bad  <- transform(
+   field.goals[field.goals$play.type=="FG no",
+       c("yards","stadium.type")],
+     outside=(stadium.type=="Out"))

Now, let’s use the t.test function to compare the distance of field goals in indoor
and outdoor stadiums:

> t.test(yards~outside, data=good)

     Welch Two Sample t-test

data:  yards by outside 
t = 1.1259, df = 319.428, p-value = 0.2610
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval:
 -0.685112  2.518571 
sample estimates:
mean in group FALSE  mean in group TRUE 
           35.31707            34.40034

Although the average successful field goal length was about a yard longer, the dif-
ference is not significant at a 95% confidence level. The same is true for field goals
that missed:

> t.test(yards~outside, data=bad)
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     Welch Two Sample t-test

data:  yards by outside 
t = 1.2016, df = 70.726, p-value = 0.2335
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval:
 -1.097564  4.425985 
sample estimates:
mean in group FALSE  mean in group TRUE 

45.18421 43.52000

Was there a statistically significant difference in the distances that coaches attempted
to kick field goals? Let’s take a look:

> field.goals.inout <-
+   transform(field.goals,
+     outside=(stadium.type=="Out"))
> t.test(yards~outside, data=field.goals.inout)

     Welch Two Sample t-test

data:  yards by outside 
t = 1.5473, df = 401.509, p-value = 0.1226
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval:
 -0.3152552  2.6461541 
sample estimates:
mean in group FALSE  mean in group TRUE 

37.14625 35.98080

Again, the difference does not appear to be statistically significant at a 95% level.

Comparing paired data

Sometimes you are provided with paired data. For example, you might have two
observations per subject: one before an experiment and one after the experiment.
In this case, you would use a paired t-test. You can use the t.test function, specifying
paired=TRUE, to perform this test.

As an example of paired data, we can look at the SPECint2006 results. SPEC is an
organization that provides computer performance data using standardized tests. The
organization defines a number of different tests for different applications: database
performance, web server performance, graphics performance, and so on. For our
example, we’ll use a simple metric: the integer performance of different computers
on typical desktop computing tasks.

SPEC provides two different types of tests: tests with standard settings and tests that
are optimized for specific computers. As an example of paired data, we will compare
the unoptimized results (called “baseline”) with the optimized results, to see if there
is a statistically significant difference between the results. This data set is a good
example of paired data: we have two different test results for each computer system.
As an example, we will look only at single-chip, dual-core systems:

> library(nutshell)
> data(SPECint2006)
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> t.test(subset(SPECint2006,Num.Chips==1&Num.Cores==2)$Baseline,
+        subset(SPECint2006,Num.Chips==1&Num.Cores==2)$Result,
+        paired=TRUE)

   Paired t-test

data:  subset(SPECint2006, Num.Chips == 1 & Num.Cores == 2)$Baseline 
  and subset(SPECint2006, Num.Chips == 1 & Num.Cores == 2)$Result 
t = -21.8043, df = 111, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval:
 -1.957837 -1.631627 
sample estimates:
mean of the differences 

-1.794732

In this case, we can clearly see that the results were significant at the 95% confidence
interval. (This isn’t a very big surprise. It’s well known that optimizing compiler
settings and system parameters can make a big difference on system performance.
Additionally, submitting optimized results is optional: organizations that could not
tune their systems very well probably would not voluntarily share that fact.)

Comparing variances of two populations

To compare the variances of two samples from normal populations, R includes the
var.test function, which performs an F-test:

## Default S3 method:
var.test(x, y, ratio = 1,

alternative = c("two.sided", "less", "greater"),
conf.level = 0.95, ...)

## S3 method for class 'formula':
var.test(formula, data, subset, na.action, ...)

Let’s continue with the example from above. Is there a difference in the variance of
field goal lengths between indoor and outdoor stadiums? Let’s take a look:

> var.test(yards~outside, data=field.goals.inout)

     F test to compare two variances

data:  yards by outside 
F = 1.2432, num df = 252, denom df = 728, p-value = 0.03098
alternative hypothesis: true ratio of variances is not equal to 1 
95 percent confidence interval:
 1.019968 1.530612 
sample estimates:
ratio of variances 

1.243157

As you can see from the output above, the p-value is less than 0.05, indicating that
the difference in variance between the two populations is statistically significant. To
test that the variances in each of the groups (samples) are the same, you can use
Bartlett’s test. In R, this is available through the bartlett.test function:
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bartlett.test(x, ...)

## Default S3 method:
bartlett.test(x, g, ...)

## S3 method for class 'formula':
bartlett.test(formula, data, subset, na.action, ...)

Using the same example as above, let’s compare variances of the two groups using
the Bartlett test:

> bartlett.test(yards~outside, data=field.goals.inout)

     Bartlett test of homogeneity of variances

data:  yards by outside 
Bartlett's K-squared = 4.5808, df = 1, p-value = 0.03233

Comparing means across more than two groups

To compare the means across more than two groups, you can use a method called
analysis of variance (ANOVA).3 ANOVA methods are very important for statistics.
A full explanation of ANOVA requires an explanation of statistical models in R,
which are covered in Chapter 20.

A simple way to perform these tests is through aov:

aov(formula, data = NULL, projections = FALSE, qr = TRUE,
    contrasts = NULL, ...)

As an example, let’s consider the 2006 U.S. mortality data set. (I showed how to
load this data set in “Using Other Languages to Preprocess Text
Files” on page 151.) Specifically, we’ll look at differences in age at death by cause of
death. This is a pretty silly example; clearly, the average age at which people die of
natural causes is going to be higher than the age at which they die for other reasons.
However, this should help illustrate how the statistic works.

I mapped the disease codes in the original file into readable values and then sum-
marized causes into a small number of reasons. To do this, I created a function to
translate the numeric codes into character values. (I grouped together some common
causes of death.) The mort06.smpl data set is included in the nutshell package.

Let’s take a look at the summary statistics for age by cause:

> library(nutshell)
> data(mort06.smpl)
> tapply(mort06.smpl$age, INDEX=list(mort06.smpl$Cause), FUN=summary)
$Accidents
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
   0.00   31.00   48.00   50.88   73.00  108.00    8.00 

$`Alzheimer's Disease`
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 

3. This process is named for the analysis process, not for the results. It doesn’t compare variances;
it compares means by analyzing variances.
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  40.00   82.00   87.00   86.07   91.00  109.00 

$Cancer
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   0.00   61.00   72.00   70.24   81.00  107.00 

$`Chronic respiratory diseases`
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
   0.00   70.00   78.00   76.37   84.00  106.00    1.00 

$Diabetes
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
   0.00   63.00   75.00   72.43   83.00  104.00    1.00 

$`Heart Disease`
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
   0.00   70.00   81.00   77.66   88.00  112.00    4.00 

$Homicide
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
   0.00   22.00   28.00   32.19   42.00   92.00    2.00 

$`Influenza and pneumonia`
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
   0.00   76.00   84.00   80.16   90.00  108.00    1.00 

$Other
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
   0.00   60.00   78.00   70.44   87.00  110.00   10.00 

$Suicide
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
   8.00   32.00   45.00   46.14   57.00   97.00    2.00

Now let’s fit an ANOVA model to the data and show a summary of the model. To
do this in R, we simply need to use the aov function:

> aov(age~Cause, data=mort06.smpl)
Call:
   aov(formula = age ~ Cause, data = mort06.smpl)

Terms:
Cause Residuals

Sum of Squares  15727886  72067515
Deg. of Freedom 9    243034

Residual standard error: 17.22012 
Estimated effects may be unbalanced
29 observations deleted due to missingness

To get more information on ANOVA results, you can use the model.tables to print
information on aov objects:

## S3 method for class 'aov':
model.tables(x, type = "effects", se = FALSE, cterms, ...)
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The argument x specifies the model object, type specifies the type of results to print,
se specifies whether to compute standard errors, and cterms specifies which tables
should be compared. As an example, here is the output of model.tables for the cause
of death example above:

> model.tables(aov(age~Cause, data=mort06.smpl))
Tables of effects

 Cause 
    Accidents Alzheimer's Disease    Cancer
       -21.41 13.77    -2.056
rep  12363.00 7336.00 57162.000
    Chronic respiratory diseases  Diabetes Heart Disease Homicide

4.077    0.1343 5.371    -40.1
rep 12386.000 7271.0000     82593.000   1917.0
    Influenza and pneumonia     Other Suicide

7.863    -1.855  -26.15
rep 5826.000 52956.000 3234.00

As another example of aov, let’s consider weight gain by women during pregnancy:

> library(nutshell)
> data(births2006.smpl)
> births2006.cln <- births2006.smpl[births2006.smpl$WTGAIN<99 &
+   !is.na(births2006.smpl$WTGAIN),]
> tapply(X=births2006.cln$WTGAIN,
+   INDEX=births2006.cln$DOB_MM,
+   FUN=mean)
       1 2 3 4 5 6 
30.94405 31.08356 31.29317 31.33610 31.07242 30.92589 
       7 8 9       10       11       12 
30.57734 30.54855 30.25546 30.43985 30.79077 30.85564

It appears that weight gain increases slightly during winter months, but is this dif-
ference statistically significant? Let’s take a look:

> aov(WTGAIN~DOB_MM, births2006.cln)
Call:
   aov(formula = WTGAIN ~ DOB_MM, data = births2006.cln)

Terms:
DOB_MM Residuals

Sum of Squares     14777  73385301
Deg. of Freedom 1    351465

Residual standard error: 14.44986 
Estimated effects may be unbalanced

Often, it’s better to use lm to fit a linear model and then use the anova function to
extract information about analysis of variance. For large models, it is often more
efficient to use the update function to change an existing model than to create a new
model from scratch. See “Example: A Simple Linear Model” on page 401 for more
information on the lm function, model objects, and the update function. The anova
function presents results slightly differently than the aov function, as you can see in
this example:
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> mort06.smpl.lm <- lm(age~Cause, data=mort06.smpl)
> anova(mort06.smpl.lm)
Analysis of Variance Table

Response: age
Df   Sum Sq Mean Sq F value    Pr(>F)    

Cause 9 15727886 1747543  5893.3 < 2.2e-16 ***
Residuals 243034 72067515     297
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ANOVA calculations assume that the variance is equal across groups. When you
know this is not true (or suspect this is not true), you can use the oneway.test func-
tion to calculate whether two or more samples have the same mean:

oneway.test(formula, data, subset, na.action, var.equal = FALSE)

This is similar to calling t.test with var.equal=FALSE (and the calculation method
was also developed by Welch).

There are other functions for printing information about aov objects: proj returns a
list of matrices giving the projections of data onto the linear model, TukeyHSD returns
confidence intervals on the differences between the means of the levels of a factor
with the specified family-wise probability of coverage, and se.contrast returns the
standard errors for one or more contrasts in an aov object.

Pairwise t-tests between multiple groups

Sometimes, you’re not interested in just whether there is a difference across groups,
but would like to know more details about the differences. One way to do this is by
performing a t-test between every pair of groups. To do this in R, you can use the
pairwise.t.test function:

pairwise.t.test(x, g, p.adjust.method = p.adjust.methods,
pool.sd = !paired, paired = FALSE,
alternative = c("two.sided", "less", "greater"),  ...)

This function calculates pairwise comparisons among group levels with corrections
for multiple testing. The argument x specifies a vector of numeric values, and g
specifies a factor that is used to group values. The argument pool.sd specifies
whether to calculate a single standard deviation value across all groups and use this
for the test.

As an example, let’s return to the tire data that we used in the example above. When
we looked at the t.test function, we created three different vectors for the different
types of tires. Here we’ll just use the pairwise t-test to compare all the tires by type:

> pairwise.t.test(tires.sus$Time_To_Failure, tires.sus$Tire_Type)

   Pairwise comparisons using t tests with pooled SD 
data:  tires.sus$Time_To_Failure and tires.sus$Tire_Type 

  B       C      D       E       H     
C 0.2219  -      -       -       -     
D 1.0000  0.5650 -       -       -     

Continuous Data | 381

Statistical Tests



E 1.0000  0.0769 1.0000  -       -     
H 2.4e-07 0.0029 2.6e-05 1.9e-08 -     
L 0.1147  1.0000 0.4408  0.0291  0.0019

P value adjustment method: holm

As you can see, there is no statistically significant difference between the means of
a few pairs of groups (such as C and L, D and L, or D and E), but there is a significant
difference between some others (such as B and H, C and H, or E and L).

Testing for normality

To test if a distribution is normally distributed in R, you can use the Shapiro-Wilk
test for normality through the shapiro.test function:

shapiro.test(x)

Using the example above, let’s look at field goal lengths in the NFL in 2005. Was
the distribution of field goal lengths normally distributed? My first instinct is to take
a look at the distribution using a histogram or a quantile-quantile plot. Here is some
R code to plot both, side by side:

> par(mfcol=c(1, 2), ps=6.5)
> hist(fg_attempts$yards, breaks=25)
> qqnorm(fg_attempts$yards, pch=".")

The plot is shown in Figure 18-1. It seems plausible that the distribution was normal:
the distribution is roughly bell-curve shaped, and the quantile-quantile plot is
roughly linear. To get a more rigorous answer, we can use the Shapiro-Wilk test.
Here’s what the Shapiro-Wilk test tells us:

> shapiro.test(field.goals$yards)

     Shapiro-Wilk normality test

data:  field.goals$YARDS 
W = 0.9728, p-value = 1.307e-12

As you can tell from the p-value, it is quite likely that this data is not normally
distributed.

Testing if a data vector came from an arbitrary distribution

You can use the Kolmogorov-Smirnov test to see if a vector came from an arbitrary
probability distribution (not just a normal distribution):

ks.test(x, y, ...,
alternative = c("two.sided", "less", "greater"),
exact = NULL)

The argument x specifies the test data. The argument y specifies the arbitrary dis-
tribution; it can be a vector of data values, a character name for a probability dis-
tribution function, or a distribution function. (You can pass along additional
arguments to the distribution function.) The alternative argument allows you to
specify the alternative hypothesis, and the exact value specifies whether to calculate
exact values (for large x and y) or approximations.
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Using the example above, we can use the ks.test function. We’ll specify the normal
distribution (using the pnorm function):

> ks.test(field.goals$yards, pnorm)

  One-sample Kolmogorov-Smirnov test

data:  field.goals$yards 
D = 1, p-value < 2.2e-16
alternative hypothesis: two-sided 

Warning message:
In ks.test(field.goals$yards, pnorm) :
  cannot compute correct p-values with ties

Notice the warning message; ties are extremely unlikely for values from a true normal
distribution. If there are ties in the data, that is a good sign that the test data is not
actually normally distributed, so the function prints a warning.

Testing if two data vectors came from the same distribution

The Kolmogorov-Smirnov test can also be used to test the probability that two data
vectors came from the same distribution. As an example, let’s look at the
SPECint2006 data that we saw in “Comparing paired data” on page 376. What is
the probability that the benchmark data and the optimized data come from the same
distribution? We’ll compare the benchmark and optimized data using the ks.test
function, adding some jitter to the values to suppress the warning about ties:

> ks.test(jitter(subset(SPECint2006, Num.Chips==1&Num.Cores==2)$Baseline),
+   jitter(subset(SPECint2006, Num.Chips==1&Num.Cores==2)$Result))

   Two-sample Kolmogorov-Smirnov test

data:  jitter(subset(SPECint2006, Num.Chips == 1 & Num.Cores == 2)$Baseline) 

Figure 18-1. Distribution of field goal attempt distances in the NFL in 2005
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  and jitter(subset(SPECint2006, Num.Chips == 1 & Num.Cores == 2)$Result) 
D = 0.2143, p-value = 0.01168
alternative hypothesis: two-sided

The p-value of this test was 0.0168, which is much less than 0.05. So this test implies
that it was not likely that these two samples came from the same distribution.

Correlation tests

The functions in “Correlation and Covariance” on page 354 simply compute the
degree of correlation between pairs of vectors, but they don’t tell you if the correla-
tion is significant. If you’d like to check whether there is a statistically significant
correlation between two vectors, you can use the cor.test function:

## Default S3 method:
cor.test(x, y,

alternative = c("two.sided", "less", "greater"),
method = c("pearson", "kendall", "spearman"),
exact = NULL, conf.level = 0.95, ...)

## S3 method for class 'formula':
cor.test(formula, data, subset, na.action, ...)

For example, let’s look at how this function works on two obviously correlated
vectors:

> cor.test(c(1, 2, 3, 4, 5,  6,  7,  8), 
+ c(0, 2, 4, 6, 8, 10, 11, 14))

   Pearson's product-moment correlation

data:  c(1, 2, 3, 4, 5, 6, 7, 8) and c(0, 2, 4, 6, 8, 10, 11, 14) 
t = 36.1479, df = 6, p-value = 2.989e-08
alternative hypothesis: true correlation is not equal to 0 
95 percent confidence interval:
 0.9868648 0.9996032 
sample estimates:
     cor 
0.997712

And two less correlated vectors:

> cor.test(c(1, 2, 3, 4, 5, 6, 7, 8),
+ c(5, 3, 8, 1, 7, 0, 0, 3))

  Pearson's product-moment correlation

data:  c(1, 2, 3, 4, 5, 6, 7, 8) and c(5, 3, 8, 1, 7, 0, 0, 3) 
t = -1.2232, df = 6, p-value = 0.2671
alternative hypothesis: true correlation is not equal to 0 
95 percent confidence interval:
 -0.8757371  0.3764066 
sample estimates:
       cor 
-0.4467689
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Let’s revisit the data on environmental toxins and lung cancer that we examined in
“Scatter Plots” on page 214. This data compared the amount of airborne toxins
released in each state with the deaths by lung cancer in each state:

> cor.test(air_on_site/Surface_Area, deaths_lung/Population)

  Pearson's product-moment correlation

data:  air_on_site/Surface_Area and deaths_lung/Population 
t = 3.4108, df = 39, p-value = 0.001520
alternative hypothesis: true correlation is not equal to 0 
95 percent confidence interval:
 0.2013723 0.6858402 
sample estimates:
      cor 
0.4793273

The test shows that there appears to be a positive correlation between these two
quantities that is statistically significant. However, don’t infer that there is a causal
relationship between the rates of toxins released and the rates of lung cancer deaths.
There are many alternate explanations for this phenomenon. For example, states
with lots of dirty industrial activity may also be states with lower levels of income,
which, in turn, correlates with lower-quality medical care. Or, perhaps, states with
lots of industrial activity may be states with higher rates of smoking. Or maybe states
with lower levels of industrial activity are less likely to identify cancer as a cause of
death. Whatever the explanation, I thought this was a neat result.

Non-Parametric Tests
Although many real data sources can be approximated well by a normal distribution,
there are many cases where you know that the data is not normally distributed, or
you do not know the shape of the distribution. A good alternative to the tests de-
scribed in “Normal Distribution-Based Tests” on page 372 are non-parametric tests.
These tests can be more computationally intensive than tests based on a normal
distribution, but they may help you make better choices when the distribution is not
normally distributed.

Comparing two means

The Wilcoxon test is the non-parametric equivalent to the t-test:

## Default S3 method:
wilcox.test(x, y = NULL,

alternative = c("two.sided", "less", "greater"),
mu = 0, paired = FALSE, exact = NULL, correct = TRUE,
conf.int = FALSE, conf.level = 0.95, ...)

## S3 method for class 'formula':
wilcox.test(formula, data, subset, na.action, ...)
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The Wilcoxon test works by looking at the ranks of different elements in x and y;
the exact values don’t matter. To get the test statistic for x and y, you can calculate:

That is, look at all pairs of values (x[i], y[j]), counting the number of cases where
y[j] < x[i]. If the two vectors were both from the same distribution, you’d expect this
to be true for roughly half the pairs. The Wilcoxon distribution can be used to es-
timate the probability of different values for W; the p-value for the Wilcoxon test
comes from this distribution. Notice that there is no version of the Wilcoxon test
that compares a data sample with a hypothesized mean.

Let’s take a look at the same examples we used for t-tests. Let’s start by looking at
the times to failure for tires. As above, let’s start by comparing tires of type E to tires
of type D:

> wilcox.test(times.to.failure.e, times.to.failure.d)

   Wilcoxon rank sum test with continuity correction

data:  times.to.failure.e and times.to.failure.d 
W = 14.5, p-value = 0.05054
alternative hypothesis: true location shift is not equal to 0 

Warning message:
In wilcox.test.default(times.to.failure.e, times.to.failure.d) :
  cannot compute exact p-value with ties

Here’s an explanation of the output. The test function first shows the test statistic
(W = 14.5) and the p-value for the statistic (0.05054). Notice that this is different
from the result for the t-test. With the t-test, there was a significant difference be-
tween the means of the two groups, but with the Wilcoxon rank-sum test, the dif-
ference between the two groups is not significant at a 95% confidence level (though
it barely misses).

Also note the warning. The Wilcoxon test statistic is based on the rank order of the
observations, not their specific values. In our test data, there are a few ties:

> times.to.failure.d
[1] 5.22 4.47 4.25 5.22 4.68 5.05 4.3
> times.to.failure.e
 [1] 4.48 4.70 4.52 4.63 4.07 4.28 4.25 4.10 4.08 4.10

Because there was a tie, the function above actually used a normal approximation;
see the help file for more information.
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As with the standard t-test function, there is also a formula method for
wilcox.test. As above, let’s compare the distance of field goals made in indoor sta-
diums versus outdoor stadiums:

> wilcox.test(yards~outside, data=good)

Wilcoxon rank sum test with continuity correction

data:  YARDS by outside 
W = 62045, p-value = 0.3930
alternative hypothesis: true location shift is not equal to 0

Comparing more than two means

The Kruskal-Wallis rank-sum test is a non-parametric equivalent to ANOVA
analysis:

kruskal.test(x, ...)

## Default S3 method:
kruskal.test(x, g, ...)

## S3 method for class 'formula':
kruskal.test(formula, data, subset, na.action, ...

As an example, here is the output for the mortality data that we used as an example
for ANOVA statistics:

> kruskal.test(age~Cause, data=mort06.smpl)

    Kruskal-Wallis rank sum test

data:  age by Cause 
Kruskal-Wallis chi-squared = 34868.1, df = 9, p-value
< 2.2e-16

Comparing variances

To compare the variance among different groups using a nonparametric test, R in-
cludes an implementation of the Fligner-Killeen (median) test through the
fligner.test function:

## Default S3 method: 
fligner.test(x, g, ...)
## S3 method for class 'formula': 
fligner.test(formula, data, subset, na.action, ...)

Here is the output of fligner.test for the mortality data above:

> fligner.test(age~Cause, data=mort06.smpl)

     Fligner-Killeen test of homogeneity of variances

data:  age by Cause 
Fligner-Killeen:med chi-squared = 15788, df = 9,
p-value < 2.2e-16
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Difference in scale parameters

There are some tests in R for testing for differences in scale parameters. To use the
Ansari-Bradley two-sample test for a difference in scale parameters, use the function
ansari.test:

## Default S3 method:
ansari.test(x, y,

alternative = c("two.sided", "less", "greater"),
exact = NULL, conf.int = FALSE, conf.level = 0.95,
...)

## S3 method for class 'formula':
ansari.test(formula, data, subset, na.action, ...)

To use Mood’s two-sample test for a difference in scale parameters in R, try the
function mood.test:

## Default S3 method:
mood.test(x, y,

alternative = c("two.sided", "less", "greater"), ...)

## S3 method for class 'formula':
mood.test(formula, data, subset, na.action, ...)

Discrete Data
There is a different set of tests for looking at the statistical significance of discrete
random variables (like counts of proportions), and so there is a different set of func-
tions in R for performing those tests.

Proportion Tests
If you have a data set with several different groups of observations and are measuring
the probability of success in each group (or the fraction of some other characteristic),
you can use the function prop.test to measure whether the difference between
groups is statistically significant. Specifically, prop.test can be used for testing the
null hypothesis that the proportions (probabilities of success) in several groups are
the same or that they equal certain given values:

prop.test(x, n, p = NULL,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95, correct = TRUE)

As an example, let’s revisit the field goal data. Above, we considered the question,
“Is there a difference in the length of attempts indoors and outdoors?” Now we’ll
ask the question, “Is the probability of success the same indoors as it is outdoors?”

First, let’s create a new data set containing only good and bad field goals. (We’ll
eliminate blocked and aborted attempts; there were only 8 aborted attempts and 24
blocked attempts in 2005, but 787 good attempts and 163 bad [no good] attempts.)

> field.goals.goodbad <- field.goals[field.goals$play.type=="FG good" |
+                                    field.goals$play.type=="FG no", ]
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Now let’s create a table of successes and failures by stadium type:

> field.goals.table <- table(field.goals.goodbad$play.type,
+                            field.goals.goodbad$stadium.type)
> field.goals.table
            
             Both  In Out
  FG aborted    0   0   0
  FG blocked    0   0   0
  FG good      53 152 582
  FG no        14  24 125

The table isn’t quite right for prop.test; we need a table with two columns (one with
a count of successes and one with a count of failures), and we don’t want to show
empty factor levels. Let’s remove the two rows we don’t need and transpose the table:

> field.goals.table.t <- t(field.goals.table[3:4,])
> field.goals.table.t
      
       FG good FG no
  Both      53    14
  In       152    24
  Out      582   125

Now we’re ready to see if there is a statistically significant difference in success
among the three groups. We can simply call prop.test on the field
.goals.table.t object to check:

> prop.test(field.goals.table.t)

     3-sample test for equality of proportions without
     continuity correction

data:  field.goals.table 
X-squared = 2.3298, df = 2, p-value = 0.3120
alternative hypothesis: two.sided 
sample estimates:
   prop 1    prop 2    prop 3 
0.7910448 0.8636364 0.8231966

As you can see, the results are not significant.

Binomial Tests
Often, an experiment consists of a series of identical trials, each of which has only
two outcomes. For example, suppose that you wanted to test the hypothesis that
the probability that a coin would land on heads was 0.5. You might design an ex-
periment where you flipped the coin 50 times and counted the number of heads.
Each coin flip is an example of a Bernoulli trial. The distribution of the number of
heads is given by the binomial distribution.

R includes a function for evaluating such a trial to determine whether to accept or
reject the hypothesis:
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binom.test(x, n, p = 0.5,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95)

The argument x gives the number of successes, n gives the total number of trials, p
gives the probability of each success, alternative gives the alternative hypothesis,
and conf.level gives the returned confidence level.

As an example, let’s look at David Ortiz’s performance during the 2008 season. In
2008, he had a batting average of .264 (110 hits in 416 at bats). Suppose that he was
actually a .300 hitter—that the actual probability that he would get a hit in a given
at bat was 0.3. What were the odds that he hit .264 or less in this number of at bats?
We can use the function binom.test to estimate this probability:

> binom.test(x=110, n=416, p=0.3, alternative="less")

     Exact binomial test

data:  110 and 416 
number of successes = 110, number of trials = 416, p-value =
0.06174
alternative hypothesis: true probability of success is less than 0.3 
95 percent confidence interval:
 0.0000000 0.3023771 
sample estimates:
probability of success 

0.2644231

Unlike some other test functions, the p-value represents the probability that the
fraction of successes (0.26443431) was at least as far from the hypothesized value
(.300) after the experiment. We specified that the alternative hypothesis was “less,”
meaning that the p-value represents the probability that the fraction of successes
was less than 0.26443431, which in this case was 0.06174.

In plain English, this means that if David Ortiz was a “true” .300 hitter, the proba-
bility that he actually hit .264 or worse in a season was 0.06174.

Tabular Data Tests
A common problem is to look at a table of data and determine if there is a relationship
between two categorical variables. If there were no relationship, the two variables
would be statistically independent. In these tests, the hypothesis is that the two
variables are independent. The alternative hypothesis is that the two variables are
not independent.

Tables of data often come up in experimental contexts: there is one column of data
from a test population and one from a control population. In this context, the analyst
often wants to calculate the probability that the two sets of data could have come
from the same population (which would imply the same proportions in each). This
is an equivalent problem, so the same test functions can be used.

For small contingency tables (and small values), you can obtain the best results using
Fisher’s exact test. Fisher’s exact test calculates the probability that the deviation
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from the independence was greater than or equal to the sample quantities. So a high
p-value means that the sample data implies that the two variables are likely to be
independent. A low p-value means that the sample data implies that the two variables
are not independent.

In R, you can use the function fisher.test to perform Fisher’s exact test:

fisher.test(x, y = NULL, workspace = 200000, hybrid = FALSE,
control = list(), or = 1, alternative = "two.sided",
conf.int = TRUE, conf.level = 0.95,
simulate.p.value = FALSE, B = 2000)

Here is a description of the arguments to fisher.test.

Argument Description Default

x Specifies the sample data to use for the test. Either a matrix (representing a two-
dimensional contingency table) or a factor.

y Specifies the sample data to use for the test. If x is a factor, then y should be a
factor. If x is a matrix, then y is ignored.

NULL

workspace An integer value specifying the size of the workspace to use in the network
algorithm (in units of 4 bytes).

200000

hybrid For tables larger than 2 × 2, specifies whether exact probabilities should be
calculated (hybrid=FALSE) or an approximation should be used
(hybrid=TRUE).

FALSE

control A list of named components for low-level control of fisher.test; see the
help file for more information.

list()

or The hypothesized odds ratio for the 2 × 2 case. 1

alternative The alternative hypothesis. Must be one of "two.sided", "greater", or
"less".

"two.sided"

conf.int A logical value specifying whether to compute and return confidence intervals
in the results.

TRUE

conf.level Specifies the confidence level to use in computing the confidence interval. 0.95

simulate.p.value A logical value indicating whether to use Monte Carlo simulation to compute
p-values in tables larger than 2 × 2.

FALSE

B An integer indicating the number of replicates to use in Monte Carlo simulations. 2000

If you specify x and y as factors, then R will compute a contingency table from these
factors. Alternatively, you can specify a matrix for x containing the contingency
table.

Fisher’s exact test can be very computationally intensive for large tables, so statis-
ticians usually use an alternative test: chi-squared tests. Chi-squared tests are not
exactly the same as Fisher’s tests. With a chi-squared test, you explicitly state a
hypothesis about the probability of each event and then compare the sample distri-
bution to the hypothesis. The p-value is the probability that a distribution at least
as different from the hypothesized distribution arose by chance.
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In R, you can use the function chisq.test to calculate a chi-squared contingency
table and goodness-of-fit tests:

chisq.test(x, y = NULL, correct = TRUE,
p = rep(1/length(x), length(x)), rescale.p = FALSE,
simulate.p.value = FALSE, B = 200

Here is a description of the arguments to chisq.test.

Argument Description Default

x Specifies the sample data to use for the test. Either a matrix or a vector.

y Specifies the sample data to use for the test. If x is a factor, then y should
be a vector. If x is a matrix, then y is ignored.

NULL

correct A logical value specifying whether to apply continuity correction when
computing the test statistic for 2 × 2 tables.

TRUE

p A vector of probabilities that represent the hypothesis to test. (Note that
the default is to assume equal probability for each item.)

rep(1/
length(x),
length(x))

rescale.p A logical value indicating whether p needs to be rescaled to sum to 1. FALSE

simulate.p.value A logical value indicating whether to compute p-values using Monte Carlo
simulation.

FALSE

B An integer indicating the number of replicates to use in Monte Carlo
simulations.

200

If you specify x and y as vectors, then R will compute a contingency table from these
vectors (after coercing them to factors). Alternatively, you can specify a matrix for
x containing the contingency table.

As an example, let’s use the 2006 births data set. (For a detailed description of this
data set, see “Univariate Trellis Plots” on page 273.) We will take a look at the
number of male and female babies delivered during July 2006, by delivery method.
We’ll take a subset of births during July where the delivery method was known and
then tabulate the results:

> births.july.2006 <- births2006.smpl[births2006.smpl$DMETH_REC!="Unknown" &
+                                     births2006.smpl$DOB_MM==7, ]
> nrow(births2006.smpl)
[1] 427323
> nrow(births.july.2006)
[1] 37060
> method.and.sex <- table(
+     births.july.2006$SEX,
+     as.factor(as.character(births.july.2006$DMETH_REC)))
> method.and.sex

    C-section Vaginal
  F      5326   12622
  M      6067   13045

Note that the delivery methods were actually slightly unbalanced by gender during
July 2006:

392 | Chapter 18: Statistical Tests



> 5326 / (5326 + 6067)
[1] 0.46748
> 12622 / (12622 + 13045)
[1] 0.4917598

However, there isn’t an intuitive reason why this should be true. So let’s check
whether this difference is statistically significant: is the difference due to chance or
is it likely that these two variables (delivery method and sex) are independent? We
can use Fisher’s exact test to answer this question:

> fisher.test(method.and.sex)

     Fisher's Exact Test for Count Data

data:  method.and.sex 
p-value = 1.604e-05
alternative hypothesis: true odds ratio is not equal to 1 
95 percent confidence interval:
 0.8678345 0.9485129 
sample estimates:
odds ratio 
 0.9072866

The p-value is the probability of obtaining results that were at least as far removed
from independence as these results. In this case, the p-value is very low, indicating
that the results were very far from what we would expect if the variables were truly
independent. This implies that we should reject the hypothesis that the two variables
are independent.

As a second example, let’s look only at twin births. (Note that each record represents
a single birth, not a single pregnancy.)

> twins.2006 <- births2006.smpl[births2006.smpl$DPLURAL=="2 Twin" &
+ births2006.smpl$DMETH_REC != "Unknown",]
> method.and.sex.twins <-
+   table(twins.2006$SEX,
+         as.factor(as.character(twins.2006$DMETH_REC)))
> method.and.sex.twins

    C-section Vaginal
  F      4924    1774
  M      5076    1860

Now let’s see if there is a statistically significant difference in delivery methods be-
tween the two sexes:

> fisher.test(method.and.sex.twins)

    Fisher's Exact Test for Count Data

data:  method.and.sex.twins 
p-value = 0.67
alternative hypothesis: true odds ratio is not equal to 1 
95 percent confidence interval:
 0.9420023 1.0981529 
sample estimates:
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odds ratio 
  1.017083

In this case, the p-value (0.67) is very high, so it is very likely that the two variables
are independent.

We can look at the same table using a chi-squared test:

> chisq.test(method.and.sex.twins)

     Pearson's Chi-squared test with Yates' continuity
     correction

data:  method.and.sex.twins 
X-squared = 0.1745, df = 1, p-value = 0.6761

By the way, we could also have just passed the two factors to chisq.test, and
chisq.test would have calculated the contingency table for us:

> chisq.test(twins.2006$DMETH_REC, twins.2006$SEX)

     Pearson's Chi-squared test with Yates' continuity
     correction

data:  twins.2006$DMETH_REC and twins.2006$SEX 
X-squared = 0.1745, df = 1, p-value = 0.6761

As above, the p-value is very high, so it is likely that the two variables are independent
for twin births.

Let’s ask another interesting question: how many babies are born on weekdays
versus weekends? Let’s start by tabulating the number of births, by day of week,
during 2006:

> births2006.byday <- table(births2006.smpl$DOB_WK)
> births2006.byday

    1     2     3     4     5     6     7 
40274 62757 69775 70290 70164 68380 45683

Curiously, the number of births on days 1 and 7 (Sunday and Saturday, respectively)
are sharply lower than the number of births on other days. We can use a chi-squared
test to determine what the probability is that this distribution arose by chance. As
noted above, by default, we perform a chi-squared test under the assumption that
the actual probability of a baby being born on each day is given by the vector p=rep(1/
length(x), length(x)), which in this case is 1/7 for every day. So we’re asking what
the probability is that a distribution at least as unbalanced as the one above arose
by chance:

> chisq.test(births2006.byday)

     Chi-squared test for given probabilities

data:  births2006.byday 
X-squared = 15873.20, df = 6, p-value < 2.2e-16
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As you might have guessed, this effect was statistically significant. The p-value is
very, very small, indicating that it is very unlikely that this effect arose due to chance.
(Of course, with a sample this big, it’s not hard to find significant effects.)

The chisq.test function can also perform tests on multidimensional tables. As an
example, let’s build a table showing the number of births by day and month:

> births2006.bydayandmonth <- table(births2006.smpl$DOB_WK,
+                                   births2006.smpl$DOB_MM)
> births2006.bydayandmonth

       1    2    3    4    5    6    7
  1 3645 2930 2965 3616 2969 3036 3976
  2 5649 4737 4779 4853 5712 5033 6263
  3 6265 5293 5251 5297 6472 5178 5149
  4 5131 5280 6486 5173 6496 5540 5499
  5 5127 5271 6574 5162 5347 6863 5780
  6 4830 5305 6330 5042 4975 6622 5760
  7 3295 3392 3408 4185 3364 3464 4751

       8    9   10   11   12
  1 3160 3270 3964 2999 3744
  2 5127 4850 6167 5043 4544
  3 7225 5805 6887 5619 5334
  4 7011 5725 5445 6838 5666
  5 6945 5822 5538 6165 5570
  6 5530 7027 5256 5079 6624
  7 3686 4669 3564 3509 4396

As above, let’s check the probability that this distribution arose by chance under the
assumption that the probability of each combination was equal:

> chisq.test(births2006.bydayandmonth)

     Pearson's Chi-squared test

data:  births2006.bydayandmonth 
X-squared = 4729.620, df = 66,
p-value < 2.2e-16

Much like the one-dimensional table, we see that the effects are statistically signifi-
cant; it is very unlikely that this unbalanced distribution arose due to chance.

For three-way interactions, you can try a Cochran-Mantel-Haenszel test. This is
implemented in R through the mantelhaen.test function:

mantelhaen.test(x, y = NULL, z = NULL,
alternative = c("two.sided", "less", "greater"),
correct = TRUE, exact = FALSE, conf.level = 0.95)

To test for symmetry in a two-dimensional contingency table, you can use
McNemar’s chi-squared test. This is implemented in R as mcnemar.test:

mcnemar.test(x, y = NULL, correct = TRUE)
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Non-Parametric Tabular Data Tests
The Friedman rank-sum test is a non-parametric counterpart to two-way ANOVA
tests. In R, this is implemented through the friedman.test function:

friedman.test(y, ...)

## Default S3 method:
friedman.test(y, groups, blocks, ...)

## S3 method for class 'formula':
friedman.test(formula, data, subset, na.action, ...)

As examples, let’s look at some of the same tables we looked at above:

> friedman.test(method.and.sex.twins)

     Friedman rank sum test

data:  method.and.sex.twins 
Friedman chi-squared = 2, df = 1,
p-value = 0.1573

Just like the chi-squared test, the Friedman rank-sum test shows that it is very likely
that the two distributions are independent.
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19
Power Tests

When designing an experiment, it’s often helpful to know how much data you need
to collect to get a statistically significant sample (or, alternatively, the maximum
significance of results that can be calculated from a given amount of data). R provides
a set of functions to help you calculate these amounts.

Experimental Design Example
Suppose that you want to test the efficacy of a new drug for treating depression. A
common score used to measure depression is the Hamilton Rating Scale for De-
pression (HAMD). This measure varies from 0 to 48, where higher values indicate
increased depression. Let’s consider two different experimental design questions.
First, suppose that you had collected 50 subjects for the study and split them into
two groups of 25 people each. What difference in HAMD scores would you need to
observe in order for the results to be considered statistically significant?

We assume a standard deviation of 8.9 for this experiment.1 We’ll also assume that
we want a power of 0.95 for the experiment (meaning that the probability of a Type
II error is less than 0.05). To calculate the minimum statistically significant difference
in R, we could use the following expression:

> power.t.test(power=.95, sig.level=.05, sd=8.9, n=25)

     Two-sample t test power calculation 

n = 25
delta = 9.26214

sd = 8.9
      sig.level = 0.05

power = 0.95
    alternative = two.sided
 NOTE: n is number in *each* group

1. Number from http://www.fda.gov/OHRMS/DOCKETS/ac/07/slides/2007-4273s1_05.pdf.
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According to the output, the difference in means between the two groups would
need to be at least 9.26214 to be significant at this level. Suppose that we doubled
the number of subjects. What difference would be considered significant?

> power.t.test(power=.95, sig.level=.05, sd=8.9, n=50)

     Two-sample t test power calculation 

n = 50
delta = 6.480487

sd = 8.9
      sig.level = 0.05

power = 0.95
    alternative = two.sided

 NOTE: n is number in *each* group

As you can see, the power functions can be very useful for designing an experiment.
They can help you to estimate, in advance, how large a difference you need to see
between groups to get statistically significant results.

t-Test Design
If you are designing an experiment in which you will use a t-test to check the sig-
nificance of the results (typically, an experiment in which you calculate the mean
value of a random variable for a “test” population and a “control” population), then
you can use the power.t.test function to help design the experiment:

power.t.test(n = NULL, delta = NULL, sd = 1, sig.level = 0.05,
power = NULL,
type = c("two.sample", "one.sample", "paired"),
alternative = c("two.sided", "one.sided"),
strict = FALSE)

For this function, n specifies the number of observations (per group); delta is the
true difference in means between the groups; sd is the true standard deviation of the
underlying distribution; sig.level is the significance level (Type I error probability);
power is the power of the test (1 − Type II error probability); type specifies whether
the test is one sample, two sample, or paired; alternative specifies whether the test
is one or two sided; and strict specifies whether to use a strict interpretation in the
two-sided case. This function will calculate either n, delta, sig.level, sd, or power,
depending on the input. You must specify at least four of these parameters: n, delta,
sd, sig.level, power. The remaining argument must be null; this is the value that the
function calculates.

Proportion Test Design
If you are designing an experiment where you will be measuring a proportion (using
prop.test), you can use the power.prop.test function:

power.prop.test(n = NULL, p1 = NULL, p2 = NULL, sig.level = 0.05,
power = NULL,
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alternative = c("two.sided", "one.sided"),
strict = FALSE)

For this function, n specifies the number of observations (per group), p1 is the prob-
ability of success in one group, p2 is the probability of success in the other group,
sig.level is the significance level (Type I error probability), power is the power of
the test (1 − Type II error probability), alternative specifies whether the test is one
or two sided, and strict specifies whether to use a strict interpretation in the two-
sided case. This function will calculate either n, p1, p2, sig.level, or power, depend-
ing on the input. You must specify at least four of these parameters: n, p1, p2,
sig.level, power. The remaining argument must be null; this is the value that the
function calculates.

As an example of power.prop.test, let’s consider situational statistics in baseball.
Starting in the 2009 season, when ESPN broadcast baseball games, it displayed sta-
tistics showing how the batter performed in similar situations. More often than not,
the statistics were derived from a very small number of situations. For example,
ESPN might show that the hitter had 3 hits in 10 tries when hitting with 2 men on
base and 2 outs. These statistics sound really interesting, but do they have any
meaning? We can use prop.test to help find out.

Suppose that a hitter is batting with two men on base and two outs. The TV broad-
caster tells us that the batter’s average is .300 in these situations but only .260 in
other situations. Furthermore, let’s assume that the true probability that he gets a
hit in an at bat in other situations is .260. How many at bats would he need to have
in situations with two men on base and two outs in order for the .300 estimate to
be statistically significant at a 95% confidence level, with a power of 0.95?

> power.prop.test(p1=.260, p2=.300, sig.level=0.05,
+   power=.95, alternative="one.sided")

     Two-sample comparison of proportions power calculation 

n = 2724.482
p1 = 0.26
p2 = 0.3

      sig.level = 0.05
power = 0.95

    alternative = one.sided

 NOTE: n is number in *each* group

That’s right, the estimate is over 2,724 at bats. So let’s ask the opposite question:
what is the confidence we can have in the results? Let’s fix sig.level=0.05 and
power=0.95:

> power.prop.test(n=10, p1=.260, p2=.300, power=.95, 
+   sig.level=NULL, alternative="one.sided")

     Two-sample comparison of proportions power calculation 

n = 10
p1 = 0.26
p2 = 0.3
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      sig.level = 0.9256439
power = 0.95

    alternative = one.sided

 NOTE: n is number in *each* group 

> power.prop.test(n=10, p1=.260, p2=.300, power=NULL,
+   sig.level=.05,alternative="one.sided")

     Two-sample comparison of proportions power calculation 

n = 10
p1 = 0.26
p2 = 0.3

      sig.level = 0.05
power = 0.07393654

    alternative = one.sided

 NOTE: n is number in *each* group

With significance levels that low, I think it’s safe to say that most of these situational
statistics are nonsense.

ANOVA Test Design
If you are designing an experiment where you will be using ANOVA, you can use
the power.anova.test function:

power.anova.test(groups = NULL, n = NULL,
between.var = NULL, within.var = NULL,
sig.level = 0.05, power = NULL

For this function, groups specifies the number of groups, n specifies the number of
observations (per group), between.var is the variance between groups, within.var is
the variance within groups, sig.level is the significance level (Type I error proba-
bility), and power is the power of the test (1 − Type II error probability). This function
will calculate either groups, n, sig.level, between.var, power, within.var, or
sig.level, depending on the input. You must specify exactly six of these parameters,
and the remaining argument must be null; this is the value that the function
calculates.
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20
Regression Models

A regression model shows how a continuous value (called the response variable, or
the dependent variable) is related to a set of other values (called the predictors, stim-
ulus variables, or independent variables). Often, a regression model is used to predict
values where they are unknown. For example, warfarin is a drug commonly used as
a blood thinner or anticoagulant. A doctor might use a regression model to predict
the correct dose of warfarin to give a patient based on several known variables about
the patient (such as the patient’s weight). Another example of a regression model
might be for marketing financial products. An analyst might estimate the average
balance of a credit card customer (which, in turn, affects the expected revenue from
that customer).

Sometimes, a regression model is simply used to explain a phenomenon, but not to
actually predict values. For example, a scientist might suspect that weight is corre-
lated to consumption of certain types of foods but wants to adjust for a variety of
factors, including age, exercise, genetics (and, hopefully, other factors). The scientist
could use a regression model to help show the relationship between weight and food
consumed by including other variables in the regression. Models can be used for
many other purposes, including visualizing trends, analysis of variance tests, and
testing variable significance.

This chapter looks at regression models in R; classification models are covered in
Chapter 21. To show how to use statistical models in R, I will start with the simplest
type of model: linear regression models. (Specifically, I’ll use the least squares
method to estimate coefficients.) I’ll show how to build, evaluate, and refine a model
in R. Then I’ll describe functions in R for building more sophisticated types of
models.

Example: A Simple Linear Model
A linear regression assumes that there is a linear relationship between the response
variable and the predictors. Specifically, a linear regression assumes that a response
variable y is a linear function of a set of predictor variables x1, x2, ..., xn.
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As an example, we’re going to look at how different metrics predict the runs scored
by a baseball team.1 Let’s start by loading the data for every team between 2000 and
2008. We’ll use the SQLite database that we used in Chapter 13 and extract the
fields we want using an SQL query:

> library(RSQLite)
> drv <- dbDriver("SQLite")
> con <- dbConnect(drv,
+   dbname=system.file("extdata","bb.db", package="nutshell"))
> team.batting.00to08 <- dbGetQuery(con,
+   paste(
+     'SELECT teamID, yearID, R as runs, ',
+     '   H-"2B"-"3B"-HR as singles, ',
+     '   "2B" as doubles, "3B" as triples, HR as homeruns, ',
+     '   BB as walks, SB as stolenbases, CS as caughtstealing, ',
+     '   HBP as hitbypitch, SF as sacrificeflies, ',
+     '   AB as atbats ',
+     '   FROM Teams ',
+     '   WHERE yearID between 2000 and 2008'
+     )
+   )

Or, if you’d like, you can just load the file from the nutshell package:

> library(nutshell)
> data(team.batting.00to08)

Because this is a book about R and not a book about baseball, I renamed the common
abbreviations to more intuitive names for plays. Let’s look at scatter plots of runs
versus each other variable so that we can see which variables are likely to be most
important.

We’ll create a data frame for plotting, using the make.groups function:

> attach(team.batting.00to08);
> forplot <- make.groups(
+   singles        = data.frame(value=singles,       teamID,yearID,runs),
+   doubles        = data.frame(value=doubles,       teamID,yearID,runs),
+   triples        = data.frame(value=triples,       teamID,yearID,runs),
+   homeruns       = data.frame(value=homeruns,      teamID,yearID,runs),
+   walks          = data.frame(value=walks,         teamID,yearID,runs),
+   stolenbases    = data.frame(value=stolenbases,   teamID,yearID,runs),
+   caughtstealing = data.frame(value=caughtstealing,teamID,yearID,runs),
+   hitbypitch     = data.frame(value=hitbypitch,    teamID,yearID,runs),
+   sacrificeflies = data.frame(value=sacrificeflies,teamID,yearID,runs)
+   );
> detach(team.batting.00to08);

Now, we’ll generate the scatter plots using the xyplot function:

> xyplot(runs~value|which, data=forplot,
+   scales=list(relation="free"),

1. This example is closely related to the Batter Runs formula, which was popularized by Pete
Palmer and John Thorn in the 1984 book The Hidden Game of Baseball. The original Batter
Runs formula worked slightly differently: it predicted the number of runs above or below the
mean, and it had no intercept. For more about this problem, see [Adler2006].
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+   pch=19, cex=.2,
+   strip=strip.custom(strip.levels=TRUE,
+   horizontal=TRUE,
+   par.strip.text=list(cex=.8))
+ )

The results are shown in Figure 20-1. Intuitively, teams that hit a lot of home runs
score a lot of runs. Interestingly, teams that walk a lot score a lot of runs as well
(maybe even more than teams that score a lot of singles).

Figure 20-1. Scatter plots: runs as a function of different batter statistics

Fitting a Model
Let’s fit a linear model to the data and assign it to the variable runs.mdl. We’ll use
the lm function, which fits a linear model using ordinary least squares:

> runs.mdl <- lm(
+   formula=runs~singles+doubles+triples+homeruns+
+   walks+hitbypitch+sacrificeflies+
+   stolenbases+caughtstealing,
+   data=team.batting.00to08)
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R doesn’t show much information when you fit a model. (If you don’t print the
returned object, most modeling functions will not show any information, unless
there is an error.) To get information about a model, you have to use helper
functions.

Helper Functions for Specifying the Model
In a formula object, some symbols have special interpretations. Specifically, “+”,
“*”, “-”, and “^” are interpreted specially by R. This means that you need to use
some helper functions to represent simple addition, multiplication, subtraction, and
exponentiation in a model formula. To interpret an expression literally, and not as
a formula, use the identity function I(). For example, suppose that you want to
include only the product of variables a and b in a formula specification, but not just
a or b. If you specify a*b, this is interpreted as a, b, or a*b. To include only a*b, use
the identity function I() to protect the expression a*b:

lm(y~I(a*b))

Sometimes, you would like to fit a polynomial function. Writing out all the terms
individually can be tedious, but R provides a short way to specify all the terms at
once. To do this, you use the poly function to add all terms up to a specified degree:

poly(x, ..., degree = 1, coefs = NULL, raw = FALSE

As arguments, the poly function takes a vector x (or a set of vectors), degree to specify
a maximum degree to generate, coefs to specify coefficients from a previous fit (when
using poly to generate predicted values), and raw to specify whether to use raw and
not orthogonal polynomials. For more information on how to specify formulas, see
“Formulas” on page 92.

Getting Information About a Model
In R, statistical models are represented by objects; statistical modeling functions
return statistical model objects. When you fit a statistical model with most statistical
software packages (such as SAS or SPSS) they print a lot of diagnostic information.
In R, most statistical modeling functions do not print any information.

If you simply call a model function in R but don’t assign the model to a variable, the
R console will print the object. (Specifically, it will call the generic method print
with the object generated by the modeling function.) R doesn’t clutter your screen
with lots of information you might not want. Instead, R includes a large set of func-
tions for printing information about model objects. This section describes the func-
tions for getting information about lm objects. Many of these functions may also be
used with other types of models; see the help files for more information.

Viewing the model

For most model functions (including lm), the best place to start is with the print
method. If you are using the R console, you can simply enter the name of the returned
object on the console to see the results of print:
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> runs.mdl

Call:
lm(formula = runs ~ singles + doubles + triples + homeruns +
     walks + hitbypitch + sacrificeflies + stolenbases + caughtstealing,
     data = team.batting.00to08)

Coefficients:
   (Intercept) singles doubles         triples
    -507.16020 0.56705 0.69110 1.15836
      homeruns walks      hitbypitch  sacrificeflies
       1.47439 0.30118 0.37750 0.87218
   stolenbases  caughtstealing
       0.04369 -0.01533

To show the formula used to fit the model, use the formula function:

formula(x, ...)

Here is the formula on which the model function was called:

> formula(runs.mdl)
runs ~ singles + doubles + triples + homeruns + walks + hitbypitch +
    sacrificeflies + stolenbases + caughtstealing

To get the list of coefficients for a model object, use the coef function:

coef(object, ...)

Here are the coefficients for the model fitted above:

> coef(runs.mdl)
   (Intercept) singles doubles        triples
 -507.16019759     0.56704867     0.69110420     1.15836091
      homeruns walks     hitbypitch sacrificeflies
    1.47438916     0.30117665     0.37749717     0.87218094
   stolenbases caughtstealing
    0.04369407    -0.01533245

Alternatively, you can use the alias coefficients to access the coef function.

To get a summary of a linear model object, you can use the summary function. The
method used for linear model objects is:

summary(object, correlation = FALSE, symbolic.cor = FALSE, ...)

For the example above, here is the output of the summary function:

> summary(runs.mdl)

Call:
lm(formula = runs ~ singles + doubles + triples + homeruns +
    walks + hitbypitch + sacrificeflies + stolenbases + caughtstealing,
    data = team.batting.00to08)

Residuals:
     Min       1Q   Median       3Q      Max
-71.9019 -11.8282  -0.4193  14.6576  61.8743
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Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
(Intercept)    -507.16020   32.34834 -15.678  < 2e-16 ***
singles           0.56705    0.02601  21.801  < 2e-16 ***
doubles           0.69110    0.05922  11.670  < 2e-16 ***
triples           1.15836    0.17309   6.692 1.34e-10 ***
homeruns          1.47439    0.05081  29.015  < 2e-16 ***
walks             0.30118    0.02309  13.041  < 2e-16 ***
hitbypitch        0.37750    0.11006   3.430 0.000702 ***
sacrificeflies    0.87218    0.19179   4.548 8.33e-06 ***
stolenbases       0.04369    0.05951   0.734 0.463487
caughtstealing   -0.01533    0.15550  -0.099 0.921530
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 23.21 on 260 degrees of freedom
Multiple R-squared: 0.9144,    Adjusted R-squared: 0.9114
F-statistic: 308.6 on 9 and 260 DF,  p-value: < 2.2e-16

When you print a summary object, the following method is used:

print(x, digits = max(3, getOption("digits") - 3),
      symbolic.cor = x$symbolic.cor,
      signif.stars = getOption("show.signif.stars"), ...

Predicting values using a model

To get the vector of residuals from a linear model fit, use the residuals function:

residuals(object, ...)

To get a vector of fitted values, use the fitted function:

fitted(object, ...)

Suppose that you wanted to use the model object to predict values in another data
set. You can use the predict function to calculate predicted values using the model
object and another data frame:

predict(object, newdata, se.fit = FALSE, scale = NULL, df = Inf,
        interval = c("none", "confidence", "prediction"),
        level = 0.95, type = c("response", "terms"),
        terms = NULL, na.action = na.pass,
        pred.var = res.var/weights, weights = 1, ...)

The argument object specifies the model returned by the fitting function, newdata
specifies a new data source for predictions, and na.action specifies how to deal with
missing values in newdata. (By default, predict ignores missing values. You can
choose na.omit to simply return NA for observations in newdata with missing values.)
The predict function can also return confidence intervals for predictions, in addition
to exact values; see the help file for more information.
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Analyzing the fit

To compute confidence intervals for the coefficients in the fitted model, use the
confint function:

confint(object, parm, level = 0.95, ...)

The argument object specifies the model returned by the fitting function, parm
specifies the variables for which to show confidence levels, and level specifies the
confidence level. Here are the confidence intervals for the coefficients of the model
fitted above:

> confint(runs.mdl)
2.5 %       97.5 %

(Intercept)    -570.85828008 -443.4621151
singles 0.51583022    0.6182671
doubles 0.57449582    0.8077126
triples 0.81752968    1.4991921
homeruns 1.37432941    1.5744489
walks 0.25570041    0.3466529
hitbypitch 0.16077399    0.5942203
sacrificeflies    0.49451857    1.2498433
stolenbases      -0.07349342    0.1608816
caughtstealing   -0.32152716    0.2908623

To compute the influence of different parameters, you can use the influence
function:

influence(model, do.coef = TRUE, ...)

For more friendly output, try influence.measures:

influence.measures(model)

To get analysis of variance statistics, use the anova function. For linear models, the
method used is anova.lmlist, which has the following form:

anova.lmlist(object, ..., scale = 0, test = "F")

By default, F-test statistics are included in the results table. You can specify
test="F" for F-test statistics, test="Chisq" for chi-squared test statistics, test="Cp"
for Mallows’ Cp statistic, or test=NULL for no test statistics. You can also specify an
estimate of the noise variance σ2 through the scale argument. If you set scale=0 (the
default), then the anova function will calculate an estimate from the test data. The
test statistic and p-values compare the mean square for each row to the residual
mean square.
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Here are the ANOVA statistics for the model fitted above:

> anova(runs.mdl)
Analysis of Variance Table

Response: runs
                Df Sum Sq Mean Sq   F value    Pr(>F)
singles          1 215755  215755  400.4655 < 2.2e-16 ***
doubles          1 356588  356588  661.8680 < 2.2e-16 ***
triples          1    237     237    0.4403 0.5075647
homeruns         1 790051  790051 1466.4256 < 2.2e-16 ***
walks            1 114377  114377  212.2971 < 2.2e-16 ***
hitbypitch       1   7396    7396   13.7286 0.0002580 ***
sacrificeflies   1  11726   11726   21.7643 4.938e-06 ***
stolenbases      1    357     357    0.6632 0.4161654
caughtstealing   1      5       5    0.0097 0.9215298
Residuals      260 140078     539
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Interestingly, it appears that triples, stolen bases, and times caught stealing are not
statistically significant.

You can also view the effects from a fitted model. The effects are the uncorrelated
single degree of freedom values obtained by projecting the data onto the successive
orthogonal subspaces generated by the QR-decomposition during the fitting
process. To obtain a vector of orthogonal effects from the model, use the effects
function:

effects(object, set.sign = FALSE, ...)

To calculate the variance-covariance matrix from the linear model object, use the
vcov function:

vcov(object, ...)

Here is the variance-covariance matrix for the model fitted above:

> vcov(runs.mdl)
                (Intercept)       singles       doubles       triples
(Intercept)    1046.4149572 -6.275356e-01 -6.908905e-01 -0.8115627984
singles          -0.6275356  6.765565e-04 -1.475026e-04  0.0001538296
doubles          -0.6908905 -1.475026e-04  3.506798e-03 -0.0013459187
triples          -0.8115628  1.538296e-04 -1.345919e-03  0.0299591843
homeruns         -0.3190194  2.314669e-04 -3.940172e-04  0.0011510663
walks            -0.2515630  7.950878e-05 -9.902388e-05  0.0004174548
hitbypitch       -0.9002974  3.385518e-04 -4.090707e-04  0.0018360831
sacrificeflies    1.6870020 -1.723732e-03 -2.253712e-03 -0.0051709718
stolenbases       0.2153275 -3.041450e-04  2.871078e-04 -0.0009794480
caughtstealing   -1.4370890  3.126387e-04  1.466032e-03 -0.0016038175
                    homeruns         walks    hitbypitch sacrificeflies
(Intercept)    -3.190194e-01 -2.515630e-01 -0.9002974059   1.6870019518
singles         2.314669e-04  7.950878e-05  0.0003385518  -0.0017237324
doubles        -3.940172e-04 -9.902388e-05 -0.0004090707  -0.0022537124
triples         1.151066e-03  4.174548e-04  0.0018360831  -0.0051709718
homeruns        2.582082e-03 -4.007590e-04 -0.0008183475  -0.0005078943
walks          -4.007590e-04  5.333599e-04  0.0002219440  -0.0010962381
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hitbypitch     -8.183475e-04  2.219440e-04  0.0121132852  -0.0011315622
sacrificeflies -5.078943e-04 -1.096238e-03 -0.0011315622   0.0367839752
stolenbases    -2.041656e-06 -1.400052e-04 -0.0001197102  -0.0004636454
caughtstealing  3.469784e-04  6.008766e-04  0.0001742039  -0.0024880710

stolenbases caughtstealing
(Intercept)     2.153275e-01  -1.4370889812
singles -3.041450e-04   0.0003126387
doubles 2.871078e-04   0.0014660316
triples -9.794480e-04  -0.0016038175
homeruns       -2.041656e-06   0.0003469784
walks -1.400052e-04   0.0006008766
hitbypitch     -1.197102e-04   0.0001742039
sacrificeflies -4.636454e-04  -0.0024880710
stolenbases     3.541716e-03  -0.0050935339
caughtstealing -5.093534e-03   0.0241794596

To return the deviance of the fitted model, use the deviance function:

deviance(object, ...)

Here is the deviance for the model fitted above (though this value is just the residual
sum of squares in this case because runs.mdl is a linear model):

> deviance(runs.mdl)
[1] 140077.6

Finally, to plot a set of useful diagnostic diagrams, use the plot function:

plot(x, which = c(1:3,5),
     caption = list("Residuals vs Fitted", "Normal Q-Q",

"Scale-Location", "Cook's distance",
"Residuals vs Leverage",
expression("Cook's dist vs Leverage  " * h[ii] / (1 - h[ii]))),

     panel = if(add.smooth) panel.smooth else points,
     sub.caption = NULL, main = "",
     ask = prod(par("mfcol")) < length(which) && dev.interactive(),
     ...,
     id.n = 3, labels.id = names(residuals(x)), cex.id = 0.75,
     qqline = TRUE, cook.levels = c(0.5, 1.0),
     add.smooth = getOption("add.smooth"), label.pos = c(4,2),
     cex.caption = 1)

This function shows the following plots:

• Residuals against fitted values

• A normal Q-Q plot

• A scale-location plot of sqrt{| residuals |} against fitted values

• (Not plotted by default) A plot of Cook’s distances versus row labels

• A plot of residuals against leverages

• (Not plotted by default) A plot of Cook’s distances against leverage/(1 −
leverage)

There are many more functions available in R for regression diagnostics; see the help
file for influence.measures for more information on many of these.
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Refining the Model
Often, it is better to use the update function to refit a model. This can save you some
typing if you are using R interactively. Additionally, this can save on computation
time (for large data sets). You can run update after changing the formula (perhaps
adding or subtracting a term) or even after changing the data frame.

For example, let’s fit a slightly different model to the data above. We’ll omit the
variable sacrificeflies and add 0 as a variable (which means to fit the model with
no intercept):

> runs.mdl2 <- update(runs.mdl,formula=runs ~ singles + doubles +
+   triples + homeruns + walks + hitbypitch +
+   stolenbases + caughtstealing + 0)
> runs.mdl2

Call:
lm(formula = runs ~ singles + doubles + triples + homeruns +
     walks + hitbypitch + stolenbases + caughtstealing - 1,
     data = team.batting.00to08)

Coefficients:
       singles doubles triples        homeruns
       0.29823 0.41280 0.95664 1.31945

walks      hitbypitch     stolenbases  caughtstealing
       0.21352 -0.07471 0.18828 -0.70334

Details About the lm Function
Now that we’ve seen a simple example of how models work in R, let’s describe in
detail what lm does and how you can control it. A linear regression model is appro-
priate when the response variable (the thing that you want to predict) can be esti-
mated from a linear function of the predictor variables (the information that you
know). Technically, we assume that:

where y is the response variable, x1, x2, ..., xn are the predictor variables (or predic-
tors), c1, c2, ..., cn are the coefficients for the predictor variables, c0 is the intercept,
and ε is the error term. (For more details on the assumptions of the least squares
model, see “Assumptions of Least Squares Regression” on page 412.) The predictors
can be simple variables or even nonlinear functions of variables.

Suppose that you have a matrix of observed predictor variables X and a vector of
response variables Y. (In this sentence, I’m using the terms “matrix” and “vector”
in the mathematical sense.) We have assumed a linear model, so given a set of co-
efficients c, we can calculate a set of estimates ŷ for the input data X by calculating
ŷ = cX. The differences between the estimates ŷ and the actual values Y are called
the residuals. You can think of the residuals as a measure of the prediction error;
small residuals mean that the predicted values are close to the actual values. We
assume that the expected difference between the actual response values and the
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residual values (the error term in the model) is 0. This is important to remember: at
best, a model is probabilistic.2

Our goal is to find the set of coefficients c that does the best job of estimating Y given
X; we’d like the estimates ŷ to be as close as possible to Y. In a classical linear re-
gression model, we find coefficients c that minimize the sum of squared differences
between the estimates ŷ and the observed values Y. Specifically, we want to find
values for c that minimize:

This is called the least squares method for regression. You can use the lm function
in R to estimate the coefficients in a linear model:3

lm(formula, data, subset, weights, na.action,
   method = "qr", model = TRUE, x = FALSE, y = FALSE, qr = TRUE,
   singular.ok = TRUE, contrasts = NULL, offset, ...)

Arguments to lm include the following.

Argument Description Default

formula A formula object that specifies the form of the model to fit.

data A data frame, list, or environment (or an object that can be coerced to a data
frame) in which the variables in formula can be evaluated.

subset A vector specifying the observations in data to include in the model.

weights A numeric vector containing weights for each observation in data. NULL

na.action A function that specifies what lm should do if there are NA values in the
data. If NULL, lm uses na.omit.

getOp
tion("na.action"),
which defaults to na.fail

method The method to use for fitting. Only method="qr" fits a model, though
you can specify method="model.frame" to return a model frame.

"qr"

model A logical value specifying whether the “model frame” should be returned. TRUE

x Logical values specifying whether the “model matrix” should be returned. FALSE

y A logical value specifying whether the response vector should be returned. FALSE

2. By the way, the estimate returned by a model is not an exact prediction. It is, instead, the
expected value of the response variable given the predictor variables. To be precise, the
estimate ŷ means:

This observation is important when we talk about generalized linear models later.

3. To efficiently calculate the coefficients, R uses several matrix calculations. R uses a method
called QR-decomposition to transform X into an orthogonal matrix Q and an upper triangular
matrix R, where X = QR, and then calculates the coefficients as c = R−1QTY.
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Argument Description Default

qr A logical value specifying whether the QR-decomposition should be re-
turned.

TRUE

singular.ok A logical value that specifies whether a singular fit results in an error. TRUE

contrasts A list of contrasts for factors in the model, specifying one contrast for each
factor in the model. For example, for formula y~a+b, to specify a Helmert
contrast for a and a treatment contrast for b, you would use the argument
contrasts=(a="contr.helmert", b="contr.treatment").
Some options in R are "contr.helmert" for Helmert contrasts,
"contr.sum" for sum-to-zero contrasts, "contr.treatment" to
contrast each level with the baseline level, and "contr.poly" for con-
trasts based on orthogonal polynomials. See [Venables2002] for an explan-
ation of why contrasts are important and how they are used.

When contrasts=NULL
(the default), lm uses
the value from
options("contrasts")

offset A vector of offsets to use when building the model. (An offset is a linear term
that is included in the model without fitting.)

... Additional arguments passed to lower-level functions such as lm.fit (for
unweighted models) or lm.wfit (for weighted models).

Model-fitting functions in R return model objects. A model object contains a lot of
information about the fitted model (and the fitting operation). Different model ob-
jects contain slightly different information.

You may notice that most modeling functions share a few common variables:
formula, data, na.action, subset, weights. These arguments mean the same thing
for most modeling functions.

If you are working with a very large data set, you may want to consider using the
biglm function instead of lm. This function uses only p2 memory for p variables,
which is much less than the memory required for lm.

Assumptions of Least Squares Regression
Linear models fit with the least squares method are one of the oldest statistical
methods, dating back to the age of slide rules. Even today, when computers are
ubiquitous, high-quality statistical software is free, and statisticians have developed
thousands of new estimation methods, they are still popular. One reason why linear
regression is still popular is because linear models are easy to understand. Another
reason is that the least squares method has the smallest variance among all unbiased
linear estimates (proven by the Gauss-Markov theorem).

Technically, linear regression is not always appropriate. Ordinary least squares
(OLS) regression (implemented through lm) is guaranteed to work only when certain
properties of the training data are true. Here are the key assumptions:

1. Linearity. We assume that the response variable y is a linear function of the
predictor variables x1, x2, ..., cn.

2. Full rank. There is no linear relationship between any pair of predictor variables.
(Equivalently, the predictor matrix is not singular.) Technically, ∀ xi, xj, ∄ c
such that xi = cxj.
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3. Exogenicity of the predictor variables. The expected value of the error term ε is
0 for all possible values of the predictor variables.

4. Homoscedasticity. The variance of the error term ε is constant and is not cor-
related with the predictor variables.

5. Nonautocorrelation. In a sequence of observations, the values of y are not cor-
related with one another.

6. Exogenously generated data. The predictor variables x1, x2, ..., xn are generated
independently of the process that generates the error term ε.

7. The error term ε is normally distributed with standard deviation σ and mean 0.

In practice, OLS models often make accurate predictions even when one (or more)
of these assumptions are violated.

By the way, it’s perfectly OK for there to be a nonlinear relationship between some
of the predictor variables. Suppose that one of the variables is age. You could add
age^2, log(age), or other nonlinear mathematical expressions using age to the model
and not violate the assumptions above. You are effectively defining a set of new
predictor variables: w1 = age, w2 = age2, w3 = log(age). This doesn’t violate the
linearity assumption (because the model is still a linear function of the predictor
variables) or the full rank assumption (as long as the relationship between the new
variables is not linear).

If you want to be careful, you can use test functions to check if the OLS assumptions
apply:

• You can test for heteroscedasticity using the function ncvTest in the car (Com-
panion to Applied Regression) package, which implements the Breusch-Pagan
test. (Alternatively, you could use the bptest function in the lmtest library,
which implements the same test. The lmtest library includes a number of other
functions for testing for heteroscedasticity; see the documentation for more
details.)

• You can test for autocorrelation in a model using the function durbin.watson in
the car package, which implements the Durbin-Watson test. You can also use
the function dwtest in the library lmtest by specifying a formula and a data set.
(Alternatively, you could use the function bgtest in the lmtest package, which
implements the Breusch-Godfrey test. This functions also tests for higher-order
disturbances.)

• You can check that the predictor matrix is not singular by using the
singular.ok=FALSE argument in lm.

Incidentally, the example used in “Example: A Simple Linear Model” on page 401
is not heteroscedastic:

> ncv.test(runs.mdl)
Non-constant Variance Score Test
Variance formula: ~ fitted.values
Chisquare = 1.411893    Df = 1     p = 0.2347424
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Nor is there a problem with autocorrelation:

> durbin.watson(runs.mdl)
 lag Autocorrelation D-W Statistic p-value
   1     0.003318923      1.983938   0.884
 Alternative hypothesis: rho != 0

Or with singularity:

> runs.mdl <- lm(
+    formula=runs~singles+doubles+triples+homeruns+
+ walks+hitbypitch+sacrificeflies+
+ stolenbases+caughtstealing,
+    data=team.batting.00to08,singular.ok=FALSE)

If a model has problems with heteroscedasticity or outliers, consider using a resistant
or robust regression function, as described in “Robust and Resistant Regres-
sion” on page 414. If the data is homoscedastic and not autocorrelated, but the
error form is not normal, then a good choice is ridge regression, which is described
in “Ridge Regression” on page 417. If the predictors are closely correlated (and
nearly collinear), then a good choice is principal components regression, as de-
scribed in “Principal Components Regression and Partial Least Squares
Regression” on page 420.

Robust and Resistant Regression
Often, ordinary least squares regression works well even with imperfect data. How-
ever, it’s better in many situations to use regression techniques that are less sensitive
to outliers and heteroscedasticity. With R, there are alternative options for fitting
linear models.

Resistant regression

If you would like to fit a linear regression model to data with outliers, consider using
resistant regression. Using the least median squares (LMS) and least trimmed
squares (LTS) estimators:

library(MASS)
## S3 method for class 'formula':
lqs(formula, data, ...,
    method = c("lts", "lqs", "lms", "S", "model.frame"),
    subset, na.action, model = TRUE,

x.ret = FALSE, y.ret = FALSE, contrasts = NULL)

## Default S3 method:
lqs(x, y, intercept = TRUE, method = c("lts", "lqs", "lms", "S"),
    quantile, control = lqs.control(...), k0 = 1.548, seed, ...)

Robust regression

Robust regression methods can be useful when there are problems with
heteroscedasticity and outliers in the data. The function rlm in the MASS package fits
a model using MM-estimation:

414 | Chapter 20: Regression Models



## S3 method for class 'formula':
rlm(formula, data, weights, ..., subset, na.action,
    method = c("M", "MM", "model.frame"),
    wt.method = c("inv.var", "case"),
    model = TRUE, x.ret = TRUE, y.ret = FALSE, contrasts = NULL)

## Default S3 method:
rlm(x, y, weights, ..., w = rep(1, nrow(x)),
    init = "ls", psi = psi.huber,
    scale.est = c("MAD", "Huber", "proposal 2"), k2 = 1.345,
    method = c("M", "MM"), wt.method = c("inv.var", "case"),
    maxit = 20, acc = 1e-4, test.vec = "resid", lqs.control = NULL)

You may also want to try the function lmRob in the robust package, which fits a model
using MS- and S-estimation:

library(robust)
lmRob(formula, data, weights, subset, na.action, model = TRUE, x = FALSE,
            y = FALSE, contrasts = NULL, nrep = NULL,
            control = lmRob.control(...), genetic.control = NULL, ...)

Comparing lm, lqs, and rlm

As a quick exercise, we’ll look at how lm, lqs, and rlm perform on some particularly
ugly data: U.S. housing prices. We’ll use Robert Shiller’s home price index as an
example, looking at home prices between 1890 and 2009.4 First, we’ll load the data
and fit the data using an ordinary linear regression model, a robust regression model,
and a resistant regression model:

> library(nutshell)
> data(shiller.index)
> hpi.lm <- lm(Index~Year, data=shiller.index)
> hpi.rlm <- rlm(Index~Year, data=shiller.index)
> hpi.lqs <- lqs(Index~Year, data=shiller.index)

Now we’ll plot the data to compare how each method worked. We’ll plot the models
using the abline function because it allows you to specify a model as an argument
(as long as the model function has a coefficient function):

> plot(hpi, pch=19, cex=0.3)
> abline(reg=hpi.lm, lty=1)
> abline(reg=hpi.rlm, lty=2)
> abline(reg=hpi.lqs, lty=3)
> legend(x=1900, y=200, legend=c("lm", "rlm", "lqs"), lty=c(1, 2, 3))

As you can see from Figure 20-2, the standard linear model is influenced by big peaks
(such as the growth between 2001 and 2006) and big valleys (such as the dip between
1920 and 1940). The robust regression method is less sensitive to peaks and valleys
in this data, and the resistant regression method is the least sensitive.

4. The data is available from http://www.irrationalexuberance.com/.
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Subset Selection and Shrinkage Methods
Modeling functions like lm will include every variable specified in the formula, cal-
culating a coefficient for each one. Unfortunately, this means that lm may calculate
coefficients for variables that aren’t needed. You can manually tune a model using
diagnostics like summary and lm.influence. However, you can also use some other
statistical techniques to reduce the effect of insignificant variables or remove them
from a model altogether.

Stepwise Variable Selection
A simple technique for selecting the most important variables is stepwise variable
selection. The stepwise algorithm works by repeatedly adding or removing variables
from the model, trying to “improve” the model at each step. When the algorithm
can no longer improve the model by adding or subtracting variables, it stops and
returns the new (and usually smaller) model.

Note that “improvement” does not just mean reducing the residual sum of squares
(RSS) for the fitted model. Adding an additional variable to a model will not increase
the RSS (see a statistics book for an explanation of why), but it does increase model
complexity. Typically, AIC (Akaike’s information criterion) is used to measure the
value of each additional variable. The AIC is defined as AIC = − 2 ∗ log(L) + k ∗ edf,
where L is the likelihood and edf is the equivalent degrees of freedom.

Figure 20-2. Home prices and lm, rlm, and lqs models
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In R, you perform stepwise selection through the step function:

step(object, scope, scale = 0,
     direction = c("both", "backward", "forward"),
     trace = 1, keep = NULL, steps = 1000, k = 2, ...)

Here is a description of the arguments to step.

Argument Description Default

object An object representing a model, such as the objects returned by lm, glm, or aov.

scope An argument specifying a set of variables that you want in the final model and a list of all
variables that you want to consider including in the model. The first set is called the lower
bound, and the second is called the upper bound. If a single formula is specified, then it is
interpreted as the upper bound. To specify both an upper and a lower bound, pass a list with
two formulas labeled as upper and lower.

scale A value used in the definition of AIC for lm and aov models. See the help file for
extractAIC for more information.

0

direction Specifies whether variables should be only added to the model (direction="for
ward"), removed from the model (direction="backward"), or both (direc
tion="both").

"both"

trace A numeric value that specifies whether to print out details of the fitting process. Specify
trace=0 (or a negative number) to suppress printing, trace=1 for normal detail, and
higher numbers for even more detail.

1

keep A function used to select a subset of arguments to keep from an object. The function accepts
a fitted model object and an AIC statistic.

NULL

steps A numeric value that specifies the maximum number of steps to take before the
function halts.

1000

k The multiple of the number of degrees of freedom to be used in the penalty calculation
(extractAIC).

2

... Additional arguments for extractAIC.

There is an alternative implementation of stepwise selection in the MASS library: the
stepAIC function. This function works similarly to step but operates on a wider range
of model objects.

Ridge Regression
Stepwise variable selection simply fits a model using lm, but limits the number of
variables in the model. In contrast, ridge regression places constraints on the size of
the coefficients and fits a model using different computations.

Ridge regression can be used to mitigate problems when there are several highly
correlated variables in the underlying data. This condition (called multicollinear-
ity) causes high variance in the results. Reducing the number, or impact, of regressors
in the data can help reduce these problems.5

5. For example, see [Greene2007].
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In “Details About the lm Function” on page 410, we described how ordinary linear
regression finds the coefficients that minimize the residual sum of squares. Ridge
regression does something similar. Ridge regression attempts to minimize the sum
of squared residuals plus a penalty for the coefficient sizes. The penalty is a constant
λ times the sum of squared coefficients. Specifically, ridge regression tries to mini-
mize the following quantity:

To estimate a model using ridge regression, you can use the lm.ridge function from
the MASS package:

library(MASS)
lm.ridge(formula, data, subset, na.action, lambda = 0, model = FALSE,

x = FALSE, y = FALSE, contrasts = NULL, ...)

Arguments to lm.ridge are the following.

Argument Description Default

formula A formula object that specifies the form of the model to fit.

data A data frame, list, or environment (or an object that can be coerced to a data frame) in which
the variables in formula can be evaluated.

subset A vector specifying the observations in data to include in the model.

na.action A function that specifies what lm should do if there are NA values in the data. If NULL, lm
uses na.omit.

lambda A scalar or vector of ridge constants. 0

model A logical value specifying whether the “model frame” should be returned. FALSE

x Logical values specifying whether the “model matrix” should be returned. FALSE

y A logical value specifying whether the response vector should be returned. FALSE

contrasts A list of contrasts for factors in the model. NULL

... Additional arguments to lm.fit.

Lasso and Least Angle Regression
Another technique for reducing the size of the coefficients (and thus reducing their
impact on the final model) is the lasso. Like ridge regression, lasso regression puts
a penalty on the size of the coefficients. However, the lasso algorithm uses a different
penalty: instead of a sum of squared coefficients, the lasso sums the absolute value
of the coefficients. (In math terms, ridge uses L2-norms, while lasso uses L1-norms.)
Specifically, the lasso algorithm tries to minimize the following value:
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The best way to compute lasso regression in R is through the lars function:

library(lars)
lars(x, y, type = c("lasso", "lar", "forward.stagewise", "stepwise"),
    trace = FALSE, normalize = TRUE, intercept = TRUE, Gram,
    eps = .Machine$double.eps, max.steps, use.Gram = TRUE)

The lars function computes the entire lasso path at once. Specifically, it begins with
a model with no variables. It then computes the lambda values for which each
variable enters the model and shows the resulting coefficients. Finally, the lars al-
gorithm computes a model with all the coefficients present, which is the same as an
ordinary linear regression fit.

This function actually implements a more general algorithm called least angle re-
gression; you have the option to choose least angle regression, forward stagewise
regression, or stepwise regression instead of lasso. Here are the arguments to the
lars function.

Argument Description Default

x A matrix of predictor variables.

y A numeric vector containing the response variable.

type The type of model to fit. Use type="lasso" for lasso,
type="lar" for least angle regression, type="forward.stage
wise" for infinitesimal forward stagewise, and type="step
wise" for stepwise.

c("lasso", "lar", "for
ward.stagewise",
"stepwise")

trace A logical value specifying whether to print details as the function is
running.

FALSE

normalize A logical value specifying whether each variable will be standardized
to have an L2-norm of 1.

TRUE

intercept A logical value indicating whether an intercept should be included in
the model.

TRUE

Gram The X’X matrix used in the calculations. To rerun lars with slightly
different parameters, but the same underlying data, you may reuse
the Gram matrix from a prior run to increase efficiency.

eps An effective 0. .Machine$double.eps

max.steps A limit on the number of steps taken by the lars function.

use.Gram A logical value specifying whether lars should precompute the
Gram matrix. (For large N, this can be time consuming.)

TRUE

elasticnet
Both ridge regression and lasso regression are subsets of a family of models called
elastic net. Elastic nets are available in R through the function enet in the package
elasticnet. (Both the algorithm and code were developed by Hui Zou and Trevor
Hastie.)

enet(x, y, lambda, max.steps, normalize, intercept, trace, eps)
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Unfortunately, the enet function requires its input as a matrix and not as a data
frame and a formula. Here is a description of the parameters for enet:

Argument Description Default

x A matrix of predictor variables.

y A numeric vector containing the response variable.

lambda The quadratic penalty. Use lambda=0 for a lasso fit.

max.steps The maximum number of steps 50 * min(ncol(x), nrow(x)-1)

trace Specifies whether to print progress. FALSE

normalize A logical value indicating whether to normalize the input
before computing the fit.

TRUE

intercept A logical value indicating whether to center the predictors TRUE

eps An effective 0. .Machine$double.eps

Principal Components Regression and Partial Least Squares Regression
Ordinary least squares regression doesn’t always work well with closely correlated
variables. A useful technique for modeling effects in this form of data is principal
components regression. Principal components regression works by first transform-
ing the predictor variables using principal components analysis. Next, a linear re-
gression is performed on the transformed variables.

A closely related technique is partial least squares regression. In partial least squares
regression, both the predictor and the response variables are transformed before
fitting a linear regression. In R, principal components regression is available through
the function pcr in the pls package:

library(pls)
pcr(..., method = pls.options()$pcralg)

Partial least squares is available through the function plsr in the same package:

plsr(..., method = pls.options()$plsralg)

Both functions are actually aliases to the function mvr:

mvr(formula, ncomp, data, subset, na.action,
    method = pls.options()$mvralg,
    scale = FALSE, validation = c("none", "CV", "LOO"),
    model = TRUE, x = FALSE, y = FALSE, ...)

Nonlinear Models
The regression models shown above all produced linear models. In this section, we’ll
look at some algorithms for fitting nonlinear models when you know the general
form of the model.
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Generalized Linear Models
Generalized linear modeling is a technique developed by John Nelder and Robert
Wedderburn to compute many common types of models using a single framework.
You can use generalized linear models (GLMs) to fit linear regression models, logistic
regression models, Poisson regression models, and other types of models.

As the name implies, GLMs are a generalization of linear models. Like linear models,
there is a response variable y and a set of predictor variables x1, x2, ..., xn. GLMs
introduce a new quantity called the linear predictor. The linear predictor takes the
following form:

In a general linear model, the predicted value is a function of the linear predictor.
The relationship between the response and predictor variables does not have to be
linear. However, the relationship between the predictor variables and the linear pre-
dictor must be linear. Additionally, the only way that the predictor variables influ-
ence the predicted value is through the linear predictor.

In “Example: A Simple Linear Model” on page 401, we noted that a good way to
interpret the predicted value of a model is as the expected value (or mean) of the
response variable, given a set of predictor variables. This is also true in GLMs, and
the relationships between that mean and the linear predictor are what make GLMs
so flexible. To be precise, there must be a smooth, invertible function m such that:

The inverse of m (denoted by l above) is called the link function. You can use many
different function families with a GLM, each of which lets you predict a different
form of model. For GLMs, the underlying probability distribution needs to be part
of the exponential family of probability distributions. More precisely, distributions
that can be modeled by GLMs have the following form:

As a simple example, if you use the identity function for m and assume a normal
distribution for the error term, then η = μ and we just have an ordinary linear re-
gression model. However, you can specify some much more interesting forms of
models with GLMs. You can model functions with Gaussian, binomial, Poisson,
gamma, and other distributions, and use a variety of link functions, including iden-
tity, logit, probit, inverse, log, and other functions.

Nonlinear Models | 421

Regression M
odels



In R, you can model all of these different types of models using the glm function:

glm(formula, family = gaussian, data, weights, subset,
    na.action, start = NULL, etastart, mustart, offset, control = list(...),
    model = TRUE, method = "glm.fit", x = FALSE, y = TRUE, contrasts = NULL,
    ...)

Here are the arguments to glm.

Argument Description Default

formula A formula object that specifies the form of the model to fit.

family Describes the probability distribution of the disturbance term and
the link function for the model. (See below for information on
different families.)

gaussian

data A data frame, list, or environment (or an object that can be coerced
to a data frame) in which the variables in formula can be evalu-
ated.

weights A numeric vector containing weights for each observation in data.

subset A vector specifying the observations in data to include in the
model.

na.action A function that specifies what lm should do if there are NA values
in the data. If NULL, lm uses na.omit.

getOp
tion(“na.action”), which
defaults to na.fail

start A numeric vector containing starting values for parameters in the
linear predictor.

NULL

etastart A numeric vector containing starting values for the linear predictor.

mustart A numeric vector containing starting values for the vector of means.

offset A set of terms that are added to the linear term with a constant
coefficient of 1. (You can use an offset to force a variable, or a set
of variables, into the model.)

control A list of parameters for controlling the fitting process. Parameters
include epsilon (which specifies the convergence tolerance),
maxit (which specifies the maximum number of iterations), and
trace (which specifies whether to output information on each
iteration). See glm.control for more information.

glm.control(...), which,
in turn, has defaults
epsilon=1e-8,
maxit=25, trace=FALSE

model A logical value specifying whether the “model frame” should be
returned.

TRUE

method The method to use for fitting. Only method="glm.fit" fits a
model, though you can specify method="model.frame" to
return a model frame.

"glm.fit"

x Logical values specifying whether the “model matrix” should be
returned.

FALSE

y A logical value specifying whether the “response vector” should be
returned.

TRUE
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Argument Description Default

contrasts A list of contrasts for factors in the model. NULL

... Additional arguments passed to glm.control.  

GLM fits a model using iteratively reweighted least squares (IRLS).

As noted above, you can model many different types of functions using GLM. The
following function families are available in R:

binomial(link = "logit")
gaussian(link = "identity")
Gamma(link = "inverse")
inverse.gaussian(link = "1/mu^2")
poisson(link = "log")
quasi(link = "identity", variance = "constant")
quasibinomial(link = "logit")
quasipoisson(link = "log")

You may specify an alternative link function for most of these function families. Here
is a list of the possible link functions for each family.

Family function Allowed link functions Default link function

binomial “logit”, “probit”, “cauchit”, “log”, and “cloglog” “logit”

gaussian “identity”, “log”, and “inverse” “identity”

Gamma “inverse”, “identity”, and “log” “inverse”

inverse.gaussian “1/mu^2”, “inverse”, “identity”, and “log” “1/mu^2”

poisson “log”, “identity”, and “sqrt” “log”

quasi “logit”, “probit”, “cloglog”, “identity”, “inverse”, “log”, “1/mu^2”, and
“sqrt”, or use the power function to create a power link function

“identity”

quasibinomial  “logit”

quasipoisson  “log”

The quasi function also takes a variance argument (with default constant); see the
help file for quasi for more information.

If you are working with a large data set and have limited memory, you may want to
consider using the bigglm function in the biglm package.

As an example, let’s use the glm function to fit the same model that we used for lm.
By default, glm assumes a Gaussian error distribution, so we expect the fitted model
to be identical to the one fitted above:

> runs.glm <- glm(
+    formula=runs~singles+doubles+triples+homeruns+
+                 walks+hitbypitch+sacrificeflies+
+                 stolenbases+caughtstealing,
+    data=team.batting.00to08)
> runs.glm

Call:  glm(formula = runs ~ singles + doubles + triples + homeruns +
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walks + hitbypitch + sacrificeflies + stolenbases + caughtstealing,
data = team.batting.00to08)

Coefficients:
   (Intercept) singles doubles         triples
    -507.16020 0.56705 0.69110 1.15836
      homeruns walks      hitbypitch  sacrificeflies
       1.47439 0.30118 0.37750 0.87218
   stolenbases  caughtstealing
       0.04369 -0.01533

Degrees of Freedom: 269 Total (i.e. Null);  260 Residual
Null Deviance:    1637000
Residual Deviance: 140100 AIC: 2476

As expected, the fitted model is identical to the model from lm. (Typically, it’s better
to use lm rather than glm when fitting an ordinary linear regression model because
lm is more efficient.) Notice that glm provides slightly different information through
the print statement, such as the degrees of freedom, null deviance, residual deviance,
and AIC. We’ll revisit glm when talking about logistic regression models for classi-
fication; see “Logistic Regression” on page 467.

glmnet
The glmnet package fits a generalized linear model with penalized maximum likeli-
hood. In other words, this package combines GLM models with elastic net models,
using elastic net. (You can use this function to fit a model using ridge regression or
lasso with the correct set of parameters.) In practice, this can be useful if you need
to fit a time series model, a logistic regression model, or another type of linear model
with constraints on the coefficients. This is particularly useful for very large or wide
data sets.6 You fit a model using the glmnet function:

glmnet(x, y, family, weights, offset, alpha, nlambda, lambda.min.ratio,
  lambda, standardize, thresh,  dfmax, pmax, exclude, penalty.factor,
  maxit, type.gaussian)

Here is a description of the arguments to glmnet:

Argument Description Default

x A matrix of predictor variables.

y A numeric vector containing the response
variable.

family Specifies the family to use for fitting the
glm model. Choices include “gaussian”,
“binomial”, “poisson”, “multinomial”, and
“cox”

"gaussian"

6. The algorithm, and R package, were written by Friedman, Hastie, and Tibshirani, the authors
of [Hastie2009], the bible of machine learning. Jeremy Howard, the chief scientist of Kaggle,
thinks this is one of the two most useful algorithms for machine learning. To learn more about
this algorithm, see [Friedman2008].
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Argument Description Default

weights A vector of observation weights. 1 for each observation

offset A vector that is included in the linear pre-
dictor. Typically used with a Poisson family
to represent log of exposure time, or to re-
fine an existing fit.

NULL

alpha The elastic net mixing parameter; use
alpha=0 for the ridge penalty,
alpha=1 for the lasso penalty. See the
documentation for a more concise explan-
ation.

1

nlambda The number of lambda values. 100

lambda.min.ratio Smallest value for lambda as a fraction of
the highest lambda value. (The highest
value is derived from the data; see the help
file for more details.)

ifelse(nobs<nvars,0.01,0.0001)

lambda A user-supplied lambda sequence.  

standardize A logical flag indicating whether to stand-
ardize the data.

TRUE

max.steps The maximum number of steps. 50 * min(ncol(x), nrow(x)-1)

thresh Convergence threshold for coordinate de-
scent.

1e-07

dfmax Specifies a cap on the maximum number of
variables in the model.

nvars + 1

pmax Specifies a cap on the maximum number of
variables to be nonzero.

min(dfmax * 2, nvars)

exclude Indices of variables to be excluded from the
model.

penalty.factor Separate penalties to be applied for each
coefficient.

Default is identical penalties: rep(1, nvars)

maxit Maximum number of passes over the data. 100000

type.gaussian Choice of algorithm for Gaussian. The cova-
riance algorithm saves all inner products
ever computed; the naive algorithm recom-
putes these values. The default choices are
based on performance.

ifelse(nvars<500,"cova
riance","naive")

As a quick example, let’s fit a glmnet model to the 2008 team batting data:

> names(team.batting.00to08)
 [1] "teamID"         "yearID"         "runs"           "singles"
 [5] "doubles"        "triples"        "homeruns"       "walks"
 [9] "stolenbases"    "caughtstealing" "hitbypitch"     "sacrificeflies"
[13] "atbats"
> # for y, use columns 4 through 12, for x use runs
> # also, translate predictors to matrix
> br.glmnet <- glmnet(x=as.matrix(team.batting.00to08[, 4:12]),
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+   y=team.batting.00to08$runs, standardize=FALSE)
> summary(br.glmnet)

Length Class     Mode
a0 76    -none-    numeric
beta      684    dgCMatrix S4
df 76    -none-    numeric
dim 2    -none-    numeric
lambda     76    -none-    numeric
dev.ratio  76    -none-    numeric
nulldev     1    -none-    numeric
npasses     1    -none-    numeric
jerr 1    -none-    numeric
offset      1    -none-    logical
call 4    -none-    call
nobs 1    -none-    numeric

Printing the model object will show the number of non-zero coefficients (labeled
df, even though degrees of freedom only makes sense for lasso fits), percent devia-
tion, and lambda. Here’s a few lines of what print shows for the br.glmnet object
(truncated for brevity):

> br.glmnet

Call:  glmnet(x = as.matrix(team.batting.00to08[, 4:12]),
  y = team.batting.00to08$runs,      standardize = FALSE)

      Df    %Dev   Lambda
 [1,]  0 0.00000 3065.000
 [2,]  1 0.05115 2793.000
 [3,]  1 0.09362 2545.000

...
[27,]  4 0.85480  272.900
[75,]  8 0.91440    3.138
[76,]  8 0.91440    2.859

You can show the coefficients of the model at different values of the penalty param-
eter using the coef.glmnet function:

> coef(br.glmnet, s=1)
10 x 1 sparse Matrix of class "dgCMatrix"

1
(Intercept)    -505.10648378
singles 0.56812235
doubles 0.69273383
triples 1.12066388
homeruns 1.47182140
walks 0.30203653
stolenbases       0.03976671
caughtstealing    .
hitbypitch 0.36031017
sacrificeflies    0.83649361

Note how the coefficients are similar to the standard linear models, but how the
penalty causes the caught-stealing coefficient to vanish. (Also note the intercept
value.)
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More interestingly, you can plot how the coefficients change with the L1 norm of
the coefficents (or lambda or the explained deviance) using the plot.glmnet function:

> plot(br.glmnet)

The resulting plot is shown in Figure 20-3.

Figure 20-3. Coefficient profile for br.glmnet model

Nonlinear Least Squares
Sometimes you know the form of a model, even if the model is extremely nonlinear.

To fit nonlinear models (minimizing least squares error), you can use the nls
function:

nls(formula, data = parent.frame(), start, control = nls.control(),
    algorithm = c("default", "plinear", "port"), trace = FALSE,
    subset, weights, na.action, model = FALSE, lower = -Inf,
    upper = Inf, ...)

Here is a description of the arguments to the nls function.

Argument Description

formula A formula object that specifies the form of the model to fit.

data A data frame in which formula can be evaluated.

start A named list or named vector with starting estimates for the fit.

control A list of arguments to pass to control the fitting process (see the help file for
nls.control for more information).

algorithm The algorithm to use for fitting the model. Use algorithm="plinear" for
the Golub-Pereyra algorithm for partially linear least squares models and
algorithm="port" for the ‘nl2sol’ algorithm from the PORT library.

trace A logical value specifying whether to print the progress of the algorithm while
nls is running.
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Argument Description

subset An optional vector specifying the set of rows to include.

weights An optional vector specifying weights for observations.

na.action A function that specifies how to treat NA values in the data.

model A logical value specifying whether to include the model frame as part of the
model object.

lower An optional vector specifying lower bounds for the parameters of the model.

upper An optional vector specifying upper bounds for the parameters of the model.

... Additional arguments (not currently used).

The nls function is actually a wrapper for the nlm function. The nlm function is similar
to nls but takes an R function (not a formula) and a list of starting parameters as
arguments. It’s usually easier to use nls because nls allows you to specify models
using formulas and data frames, like other R modeling functions. For more infor-
mation about nlm, see the help file.

By the way, you can actually use nlm to fit a linear model. It will work, but it will be
slow and inefficient.

Survival Models
Survival analysis is concerned with looking at the amount of time that elapses before
an event occurs. An obvious application is to look at mortality statistics (predicting
how long people live), but it can also be applied to mechanical systems (the time
before a failure occurs), marketing (the amount of time before a consumer cancels
an account), or other areas.

In R, there are a variety of functions in the survival library for modeling survival data.

To estimate a survival curve for censored data, you can use the survfit function:

library(survival)
survfit(formula, data, weights, subset, na.action, etype, id, ...)

This function accepts the following arguments.

Argument Description

formula Describes the relationship between the response value and the predictors. The
response value should be a Surv object.

data The data frame in which to evaluate formula.

weights Weights for observations.

subset Subset of observation to use in fitting the model.

na.action Function to deal with missing values.

etype The variable giving the type of event.

id The variable that identifies individual subjects.
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Argument Description

type Specifies the type of survival curve. Options include "kaplan-meier",
"fleming-harrington", and "fh2".

error Specifies the type of error. Possible values are "greenwood" for the Greenwood
formula or "tsiatis" for the Tsiatis formula.

conf.type Confidence interval type. One of "none", "plain", "log" (the default), or
"log-log".

conf.lower A character string to specify modified lower limits to the curve; the upper limit
remains unchanged. Possible values are "usual" (unmodified), "peto", and
"modified".

start.time Numeric value specifying a time to start calculating survival information.

conf.int The level for a two-sided confidence interval on the survival curve(s).

se.fit A logical value indicating whether standard errors should be computed.

... Additional variables passed to internal functions.

As an example, let’s fit a survival curve for the GSE2034 data set. This data comes
from the Gene Expression Omnibus of the National Center for Biotechnology In-
formation (NCBI), which is accessible from http://www.ncbi.nlm.nih.gov/geo/. The
experiment examined how the expression of certain genes affected breast cancer
relapse-free survival time. In particular, it tested estrogen receptor binding sites.
(We’ll revisit this example in Chapter 25.)

First, we need to create a Surv object within the data frame. A Surv object is an R
object for representing survival information, in particular, censored data. Censored
data occurs when the outcome of the experiment is not known for all observations.
In this case, the data is censored. There are three possible outcomes for each obser-
vation: the subject had a recurrence of the disease, the subject died without having
a recurrence of the disease, or the subject was still alive without a recurrence at the
time the data was reported. The last outcome—the subject was still alive without a
recurrence—results in the censored values:

> library(survival)
> GSE2034.Surv <- transform(GSE2034,
+   surv=Surv(
+     time=GSE2034$months.to.relapse.or.last.followup,
+     event=GSE2034$relapse,
+     type="right"
+   )
+ )
> # show the first 26 observations:
> GSE2034.Surv$surv[1:26,]
 [1] 101+ 118+   9  106+  37  125+ 109+  14   99+ 137+  34   32  128+
[14]  14  130+  30  155+  25   30   84+   7  100+  30    7  133+  43

Now let’s calculate the survival model. We’ll just make it a function of the ER.status
flag (which stands for “estrogen receptor”):

> GSE2034.survfit <- survfit(
+   formula=surv~ER.Status,
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+   data=GSE2034.Surv,
+ )

The easiest way to view a survfit object is graphically. Let’s plot the model:

> plot(GSE2034.survfit, lty=1:2, log=T)
> legend(135, 1, c("ER+","ER-"), lty=1:2, cex=0.5)

The plot is shown in Figure 20-4. Note the different curve shape for each cohort.

Figure 20-4. Survival curves for the GSE2034 data

To fit a parametric survival model, you can use the survreg function in the
survival package:

survreg(formula, data, weights, subset,
        na.action, dist="weibull", init=NULL, scale=0,
        control,parms=NULL,model=FALSE, x=FALSE,
        y=TRUE, robust=FALSE, score=FALSE, ...)

Here is a description of the arguments to survreg.

Argument Description Default

formula A formula that describes the form of the model; the response is usually a
Surv object (created by the Surv function).

 

data A data frame containing the training data for the model.  

weights A vector of weights for observations in data.  

subset An expression describing a subset of observations in data to use for
fitting the model.

 

na.action A function that describes how to treat NA values. options()$na.action

dist A character value describing the form of the y variable (either
"weibull", "exponential", "gaussian", "logistic",
"lognormal", or "loglogistic") or a distribution like the ones in
survreg.distributions.

"weibull"

init Optional vector of initial parameters. NULL

scale Value specifying the scale of the estimates. Estimated if scale <= 0. 0

control A list of control values, usually produced by survreg.control.  
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Argument Description Default

parms A list of fixed parameters for the distribution function. NULL

model, x, y Logical values indicating whether to return the model frame, X matrix, or
Y vector (respectively) with the results.

FALSE

robust A logical value indicating whether to use “robust sandwich standard
methods.”

FALSE

score A logical value indicating whether to return the score vector. FALSE

... Other arguments passed to survreg.control.

You can compute the expected survival for a set of subjects (or individual expecta-
tions for each subject) with the function survexp:

library(survival)
survexp(formula, data, weights, subset, na.action, rmap, times,
    cohort = TRUE, conditional = FALSE, ratetable = survexp.us,
    scale = 1, npoints, se.fit, model = FALSE, x = FALSE, y = FALSE)

Here is a description of the arguments to survexp.

Argument Description Default

formula A formula object describing the form of the model. The (optional) response should
contain a vector of follow-up times, and the predictors should contain grouping
variables separated by + operators.

data A data frame containing source data on which to predict values.

weights A vector of weights for the cases.

subset An expression indicating which observations in data should be included in the
prediction.

na.action A function specifying how to deal with missing (NA) values in the data. options()
$na.action

times A vector of follow-up times at which the resulting survival curve is evaluated.
(This may also be included in the formula; see above.)

cohort A logical value indicating whether to calculate the survival of the whole cohort
(cohort=TRUE) or individual observations (cohort=FALSE).

TRUE

conditional A logical value indicating whether to calculate conditional expected survival.
Specify conditional=TRUE if the follow-up times are times of death, and
conditional=FALSE if the follow-up times are potential censoring times.

FALSE

ratetable A fitted Cox model (from coxph) or a table of survival times. survexp.us

scale A numeric value specifying how to scale the results. 1

npoints A numeric value indicating the number of points at which to calculate individual
results.

se.fit A logical value indicating whether to include the standard error of the predicted
survival.

model, x, y Specifies whether to return the model frame, the X matrix, or the Y vector in the
results.

FALSE for all three
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The Cox proportional hazard model is a nonparametric method for fitting survival
models. It is available in R through the coxph function in the survival library:

coxph(formula, data, weights, subset, na.action, init, control,
    ties = c("efron", "breslow", "exact"), singular.ok = TRUE,
    robust = FALSE, model = FALSE, x = FALSE, y = TRUE, tt, method = ties,
    ...)

Here is a description of the arguments to coxph.

Argument Description Default

formula A formula that describes the form of the model; the response must be a
Surv object (created by the Surv function).

data A data frame containing source data on which to predict values.

weights A vector of weights for the cases.

subset An expression indicating which observations in data should be fit.

na.action A function specifying how to deal with missing (NA) values in the data.

init A vector of initial parameter values for the fitting process. 0 for all variables

control Object of class coxph.control specifying the iteration limit and other
control options.

coxph.control(...)

method A character value specifying the method for handling ties. Choices include
"efron", "breslow", and "exact".

"efron"

singular.ok A logical value indicating whether to stop with an error if the X matrix is
singular or to simply skip variables that are linear combinations of other
variables.

TRUE

robust A logical value indicating whether to return a robust variance estimate. FALSE

model A logical value specifying whether to return the model frame. FALSE

x A logical value specifying whether to return the X matrix. FALSE

y A logical value specifying whether to return the Y vector. TRUE

... Additional arguments passed to coxph.control.

As an example, let’s fit a Cox proportional hazard model to the GSE2034 data:

> GSE2034.coxph <- coxph(
+    formula=surv~ER.Status,
+    data=GSE2034.Surv,
+  )
> GSE2034.coxph
Call:
coxph(formula = surv ~ ER.Status, data = GSE2034.Surv)

coef exp(coef) se(coef)       z    p
ER.StatusER+ -0.00378     0.996    0.223 -0.0170 0.99

Likelihood ratio test=0  on 1 df, p=0.986  n= 286
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The summary method for coxph objects provides additional information about the
fit:

> summary(GSE2034.coxph)
Call:
coxph(formula = surv ~ ER.Status, data = GSE2034.Surv)

  n= 286

coef exp(coef) se(coef)      z Pr(>|z|)
ER.StatusER+ -0.00378   0.99623  0.22260 -0.017    0.986

exp(coef) exp(-coef) lower .95 upper .95
ER.StatusER+    0.9962      1.004     0.644     1.541

Rsquare= 0   (max possible= 0.983 )
Likelihood ratio test= 0  on 1 df,   p=0.9865
Wald test            = 0  on 1 df,   p=0.9865
Score (logrank) test = 0  on 1 df,   p=0.9865

Another useful function is cox.zph, which tests the proportional hazards assumption
for a Cox regression model fit:

> cox.zph(GSE2034.coxph)
rho chisq        p

ER.StatusER+ 0.33  11.6 0.000655

There are additional methods available for viewing information about coxph fits,
including residuals, predict, and survfit; see the help file for coxph.object for more
information.

There are other functions in the survival package for fitting survival models, such
as cch, which fits proportional hazard models to case-cohort data. See the help files
for more information.

Smoothing
This section describes a number of functions for fitting piecewise smooth curves to
data. Functions in this section are particularly useful for plotting charts; there are
even convenience functions for using these functions to show fitted values in some
graphics packages.

Splines
One method for fitting a function to source data is with splines. With a linear model,
a single line is fitted to all the data. With spline methods, a set of different polyno-
mials is fitted to different sections of the data.

You can compute simple cubic splines with the spline function in the stats package:

spline(x, y = NULL, n = 3 * length(x), method = "fmm", xmin = min(x),
    xmax = max(x), xout, ties = mean)

Here is a description of the arguments to smooth.spline.
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Argument Description Default

x A vector specifying the predictor variable, or a two-column matrix specifying both the
predictor and the response variables.

y If x is a vector, then y is a vector containing the response variable. NULL

n If xout is not specified, then interpolation is done at n equally spaced points between
xmin and xmax.

3*length(x)

method Specifies the type of spline. Allowed values include "fmm", "natural",
"periodic", and "monoH.FC".

"fmm"

xmin Lowest x value for interpolations. min(x)

xmax Highest x value for interpolations. max(x)

xout An optional vector of values specifying where interpolation should be done.

ties A method for handling ties. Either the string "ordered" or a function that returns
a single numeric value.

mean

To return a function instead of a list of parameters, use the function splinefun:

splinefun(x, y = NULL, method = c("fmm", "periodic", "natural", "monoH.FC"),
ties = mean)

To fit a cubic smoothing spline model to supplied data, use the smooth.spline
function:

smooth.spline(x, y, w, df, spar,
  cv, all.knots, nknots, keep.data, df.offset,
  penalty, control.spar)

Here is a description of the arguments to smooth.spline.

Argument Description Default

x A vector specifying the predictor variable, or a two-column matrix specifying both the
predictor and the response variables.

y If x is a vector, then y is a vector containing the response variable. NULL

w An optional numeric vector containing weights for the input data. NULL

df Degrees of freedom.

spar Numeric value specifying the smoothing parameter. NULL

cv A logical value specifying whether to use ordinary cross-validation (cv=TRUE) or generalized
cross-validation (cv=FALSE).

FALSE

all.knots A logical value specifying whether to use all values in x as knots. FALSE

nknots An integer value specifying the number of knots to use when all.knots=FALSE. NULL

keep.data A logical value indicating whether the input data should be kept in the result. TRUE

df.offset A numeric value specifying how much to allow the df to be increased in cross-validation. 0

penalty The penalty for degrees of freedom during cross-validation. 1

control.spar A list of parameters describing how to compute spar (when not explicitly specified). See
the help file for more information.

list()
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For example, we can calculate a smoothing spline on the Shiller home price index.
This data set contains one annual measurement through 2006 but then has fractional
measurements after 2006, making it slightly difficult to align with other data:

> shiller.index[shiller.index$Year>2006,]
Year Real.Home.Price.Index

118 2007.125 194.6713
119 2007.375 188.9270
120 2007.625 184.1683
121 2007.875 173.8622
122 2008.125 160.7639
123 2008.375 154.4993
124 2008.625 145.6642
125 2008.875 137.0083
126 2009.125 130.0611

We can use smoothing splines to find values for 2007 and 2008:

> library(nutshell)
> data(shiller.index)
> shiller.index.spl <- smooth.spline(shiller.index$Year,
+   shiller.index$Real.Home.Price.Index)
> predict(shiller.index.spl,x=c(2007,2008))
$x
[1] 2007 2008

$y
[1] 195.6682 168.8219

Fitting Polynomial Surfaces
You can fit a polynomial surface to data (by local fitting) using the loess function.
(This function is used in many graphics functions; for example, panel.loess uses
loess to fit a curve to data and plot the curve.)

loess(formula, data, weights, subset, na.action, model = FALSE,
      span = 0.75, enp.target, degree = 2,
      parametric = FALSE, drop.square = FALSE, normalize = TRUE,
      family = c("gaussian", "symmetric"),
      method = c("loess", "model.frame"),
      control = loess.control(...), ...)

Here is a description of the arguments to loess.

Argument Description Default

formula A formula specifying the relationship between the response and the
predictor variables.

data A data frame, list, or environment specifying the training data for the
model fit. (If none is specified, then formula is evaluated in the
calling environment.)

weights A vector of weights for the cases in the training data.

subset An optional expression specifying a subset of cases to include in the
model.
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Argument Description Default

na.action A function specifying how to treat missing values. getOp
tion("na.action")

model A logical value indicating whether to return the model frame. FALSE

span A numeric value specifying the parameter α, which controls the de-
gree of smoothing.

0.75

enp.target A numeric value specifying the equivalent number of parameters to
be used (replaced span).

 

degree The degree of polynomials used. 2

parametric A vector specifying any terms that should be fit globally rather than
locally. (May be specified by name, number, or as a logical vector.)

FALSE

drop.square Specifies whether to drop the quadratic term for some predictors. FALSE

normalize A logical value specifying whether to normalize predictors to a com-
mon scale.

TRUE

family Specifies how fitting is done. Specify family="gaussian" to fit
by least squares, and family="symmetric" to fit with Tukey’s
biweight function.

"gaussian"

method Specifies whether to fit the model or just return the model frame. "loess"

control Control parameters for loess, typically generated by a call to
loess.control.

loess.control(...)

... Additional arguments are passed to loess.control.  

Using the same example as above:

> shiller.index.loess <- loess(Real.Home.Price.Index~Year, data=shiller.index)
> predict(shiller.index.loess, newdata=data.frame(Year=c(2007,2008)))
[1] 156.5490 158.8857

Kernel Smoothing
To estimate a probability density function, regression function, or their derivatives
using polynomials, try the function locpoly in the library KernSmooth:

library(KernSmooth)
locpoly(x, y, drv = 0L, degree, kernel = "normal",
        bandwidth, gridsize = 401L, bwdisc = 25,
        range.x, binned = FALSE, truncate = TRUE)

Here is a description of the arguments to locpoly.

Argument Description Default

x A vector of x values (with no missing values).  

y A vector of y values (with no missing values).  

drv Order of derivative to estimate. 0L

degree Degree of local polynomials. drv + 1

kernel Kernel function to use. Currently ignored (“normal” is used). "normal"

436 | Chapter 20: Regression Models



Argument Description Default

bandwidth A single value or an array of length gridsize that specifies the kernel bandwidth
smoothing parameter.

 

gridsize Specifies the number of equally spaced points over which the function is estimated. 401L

bwdisc Number of (logarithmically equally spaced) values on which bandwidth is discretized. 25

range.x A vector containing the minimum and maximum values of x on which to compute the
estimate.

 

binned A logical value specifying whether to interpret x and y as grid counts (as opposed to raw
data).

FALSE

truncate A logical value specifying whether to ignore x values outside range.x. TRUE

R also includes an implementation of local regression through the locfit function
in the locfit library:

library(locfit)
locfit(formula, data=sys.frame(sys.parent()), weights=1, cens=0, base=0,
       subset, geth=FALSE, ..., lfproc=locfit.raw)

Machine Learning Algorithms for Regression
Most of the models above assumed that you knew the basic form of the model
equation and error function. In each of these cases, our goal was to find the coeffi-
cients of variables in a known function. However, sometimes you are presented with
data where there are many predictive variables, and the relationships between the
predictors and responses are very complicated.

Statisticians have developed a variety of techniques to help model more complex
relationships in data sets and to predict values for large, complicated data sets. This
section describes a variety of techniques for finding not only the coefficients of a
model function but also the function itself.

In this section, I use the San Francisco home sales data set described in “More About
the San Francisco Real Estate Prices Data Set” on page 294. This is a pretty ugly data
set, with lots of nonlinear relationships. Real estate is all about location, and we have
several different variables in the data set that represent location. (The relationships
between these variables is not linear, in case you were worried.)

Before modeling, we’ll split the data set into training and testing data sets. Splitting
data into training and testing data sets (and, often, validation data sets as well) is a
standard practice when fitting models. Statistical models have a tendency to “over-
fit” the training data; they do a better job predicting trends in the training data than
in other data.

I chose this approach because it works with all the modeling functions in this section.
There are other statistical techniques available for making sure that a model doesn’t
overfit the data, including cross-validation and bootstrapping. Functions for cross-
validation are available for some models (for example, xpred.rpart for rpart trees);
look at the detailed help files for a package (in this case, with the command
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help(package="rpart")) to see if these functions are available for a specific modeling
tool. Bootstrap resampling is available through the boot library.

Because this section presents many different types of models, I decided to use a
simple, standard approach for evaluating model fits. For each model, I estimated
the root mean square (RMS) error for the training and validation data sets. Don’t
interpret the results as authoritative: I didn’t try too hard to tune each model’s pa-
rameters and know that the models that worked best for this data set do not work
best for all data sets. However, I thought I’d include the results because I was inter-
ested in them (in good fun) and thought readers would be as well.

Anyway, I wrote the following function to evaluate the performance of each
function:

calculate_rms_error <- function(mdl, train, test, yval) {
  train.yhat <- predict(object=mdl,newdata=train)
  test.yhat  <- predict(object=mdl,newdata=test)
  train.y    <- with(train,get(yval))
  test.y     <- with(test,get(yval))
  train.err  <- sqrt(mean((train.yhat - train.y)^2))
  test.err   <- sqrt(mean((test.yhat - test.y)^2))
  c(train.err=train.err,test.err=test.err)
}

To create a random sample, I used the sample function to pick 70% of values for the
training data. I saved the sample indices to a vector for later reuse (so that I could
derive the same sample later and allow you to use the same sample as well). I also
saved the sample indices to make it easy to define the testing data set.

> nrow(sanfrancisco.home.sales) * .7
[1] 2296.7
> sanfrancisco.home.sales.training.indices <-
+   sample(1:nrow(sanfrancisco.home.sales),2296)
> sanfrancisco.home.sales.testing.indices <-
+   setdiff(rownames(sanfrancisco.home.sales),
+           sanfrancisco.home.sales.training.indices)
> sanfrancisco.home.sales.training <-
   sanfrancisco.home.sales[sanfrancisco.home.sales.training.indices,]
> sanfrancisco.home.sales.testing <-
   sanfrancisco.home.sales[sanfrancisco.home.sales.testing.indices,]
> save(sanfrancisco.home.sales.training.indices,
+   sanfrancisco.home.sales.testing.indices,
+   sanfrancisco.home.sales,
+   file="~/Documents/book/current/data/sanfrancisco.home.sales.RData")

Note that the sampling is random, so you will get a different subset each
time you run this code. The vectors sanfrancisco.home.sales.training.indices and
sanfrancisco.home.sales.testing.indices that I used in this section are included
in the nutshell package. (Use the command data(sanfrancisco.home.sales) to
access them. The data sets sanfrancisco.home.sales.training and sanfran
cisco.home.sales.testing are not included.) You can use the same training and
testing sets to re-create the results in this section, or you can pick your own subsets.
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Regression Tree Models
Most of the models we have seen in this chapter are in the form of a single equation.
You can use the model to predict values by plugging new data values into a single
equation.

Tree models have a slightly different form. Instead of a single, compact equation,
tree models represent data by a set of binary decision rules. Instead of plugging
numbers into an equation, you follow the rules in a tree to determine the predicted
value. Tree models are very easy to interpret, but they don’t usually predict values
as accurately as other types of models. Tree models are particularly popular in med-
icine and biology, perhaps because they resemble the process that doctors use to
make decisions. In this section, we’ll show how to use some popular tree methods
for regression in R.

Recursive partitioning trees

One of the most popular algorithms for building tree models is classification and
regression trees, or CART. CART uses a greedy algorithm to build a tree from the
training data. Here’s an explanation of how CART works:

1. Grow the tree using the following (recursive) method:

A. Start with a single set containing all the training data.

B. If the number of observations is less than the minimum required for a split,
stop splitting the tree. Output the average of all the y-values in the training
data as the predicted value for the terminal node.

C. Find a variable xj and value s that minimizes the RMS error when you split
the data into two sets.

D. Repeat the splitting process (starting at step B) on each of the two sets.

2. Prune the tree using the following (iterative) method:

A. Stop if there is only one node in the tree.

B. Measure the cost/complexity of the overall tree. (The cost/complexity
measurement is a measurement that takes into account the number of ob-
servations in each node, the RMS prediction error, and the number of nodes
in the tree.)

C. Try collapsing each internal node on the tree and measure which subtree
has the best cost/complexity.

D. Repeat the process (starting at step A) on the subtree with the best cost/
complexity.

3. Output the tree with the lowest cost/complexity.
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R includes an implementation of classification and regression trees in the rpart
package. To fit a model, use the rpart function:

library(rpart)
rpart(formula, data, weights, subset, na.action = na.rpart, method,
      model = FALSE, x = FALSE, y = TRUE, parms, control, cost, ...)

Here are the arguments to rpart.

Argument Description Default

formula A formula describing the relationship between the re-
sponse and the predictor variables.

 

data A data frame to use for fitting the model.  

weights An optional vector of weights to use for the training data.  

subset An optional expression specifying which observations to
use in fitting the model.

 

na.action The function to call for missing values. na.rpart

method A character value that specifies the fitting method. Must
be one of "exp", "poisson", "class", or "anova".

If y is a survival object, then
method="exp"; if y has two columns then
method="poisson"; or y if a factor then
method="class"; otherwise
method="anova"

model A logical value specifying whether to keep the model
frame in the results.

FALSE

x A logical value specifying whether to return the x matrix
in the results.

FALSE

y A logical value specifying whether to return the y matrix
in the results.

TRUE

parms A list of parameters passed to the fitting function.  

control Options that control details of the rpart algorithm; see
rpart.control for more information.

 

cost A numeric vector of costs, one for each variable in the
model.

1 for all variables

... Additional argument passed to rpart.control.  

The CART algorithm handles missing values differently from many other modeling
algorithms. With an algorithm like linear regression, missing values need to be fil-
tered out in order for the math to work. However, CART takes advantage of the
rule-based model structure to handle missing values differently. When a value is
missing for an observation at a split, CART can instead split values using a surro-
gate variable. See the help files for rpart for more information on how to control the
process of finding and using surrogates.

440 | Chapter 20: Regression Models



As an example, let’s build a regression tree on the San Francisco home sales data set.
We’ll start off naively, adding some redundant information and fields that could
lead to a model that overfits the data:

> library(rpart)
> sf.price.model.rpart <- rpart(
+   price~bedrooms+squarefeet+lotsize+latitude+
+   longitude+neighborhood+month,
+   data=sanfrancisco.home.sales.training)

Let’s take a look at the model returned by this call to rpart. The simplest way to
examine the object is to use print.rpart to print it on the console. The output below
has been modified slightly to fit in this book:

> sf.price.model.rpart
n= 2296

node), split, n, deviance, yval
      * denotes terminal node

  1) root 2296 8.058726e+14  902088.0
    2) neighborhood=Bayview,Bernal Heights,Chinatown,Crocker Amazon,
         Diamond Heights,Downtown,Excelsior,Inner Sunset,Lakeshore,
         Mission,Nob Hill,Ocean View,Outer Mission,Outer Richmond,
         Outer Sunset,Parkside,Potrero Hill,South Of Market,
         Visitacion Valley,Western Addition 1524 1.850806e+14  723301.8
      4) squarefeet< 1772 1282 1.124418e+14  675471.1
        8) neighborhood=Bayview,Chinatown,Crocker Amazon,
             Diamond Heights,Downtown,Excelsior,Lakeshore,Ocean View,
             Outer Mission,Visitacion Valley 444 1.408221e+13  539813.1 *
        9) neighborhood=Bernal Heights,Inner Sunset,Mission,Nob Hill,
             Outer Richmond,Outer Sunset,Parkside,Potrero Hill,
             South Of Market,Western Addition 838 8.585934e+13  747347.3 *
      5) squarefeet>=1772 242 5.416861e+13  976686.0 *
    3) neighborhood=Castro-Upper Market,Financial District,Glen Park,
         Haight-Ashbury,Inner Richmond,Marina,Noe Valley,North Beach,
         Pacific Heights,Presidio Heights,Russian Hill,Seacliff,
         Twin Peaks,West Of Twin Peaks 772 4.759124e+14 1255028.0
      6) squarefeet< 2119 591 1.962903e+14 1103036.0
       12) neighborhood=Castro-Upper Market,Glen Park,Haight-Ashbury,
             Inner Richmond,Noe Valley,North Beach,Pacific Heights,
             Russian Hill,Twin Peaks,
             West Of Twin Peaks 479 1.185669e+14 1032675.0
         24) month=2008-02-01,2008-03-01,2008-06-01,2008-07-01,
               2008-08-01,2008-09-01,2008-10-01,2008-11-01,2008-12-01,
               2009-01-01,2009-02-01,2009-03-01,2009-04-01,2009-05-01,
               2009-06-01,2009-07-01 389 5.941085e+13  980348.3 *
         25) month=2008-04-01,2008-05-01 90 5.348720e+13 1258844.0
           50) longitude< -122.4142 81 1.550328e+13 1136562.0 *
           51) longitude>=-122.4142 9 2.587193e+13 2359389.0 *
       13) neighborhood=Financial District,Marina,Presidio Heights,
             Seacliff 112 6.521045e+13 1403951.0 *
      7) squarefeet>=2119 181 2.213886e+14 1751315.0
       14) neighborhood=Castro-Upper Market,Glen Park,Haight-Ashbury,
             Inner Richmond,Marina,Noe Valley,North Beach,Russian Hill,
             Twin Peaks,West Of Twin Peaks 159 1.032114e+14 1574642.0
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         28) month=2008-04-01,2008-06-01,2008-07-01,2008-10-01,
               2009-02-01,2009-03-01,2009-04-01,2009-05-01,
               2009-06-01,2009-07-01 77 2.070744e+13 1310922.0 *
         29) month=2008-02-01,2008-03-01,2008-05-01,2008-08-01,
               2008-09-01,2008-11-01,2008-12-01,
               2009-01-01 82 7.212013e+13 1822280.0
           58) lotsize< 3305.5 62 3.077240e+13 1598774.0 *
           59) lotsize>=3305.5 20 2.864915e+13 2515150.0
            118) neighborhood=Glen Park,Inner Richmond,Twin Peaks,
                   West Of Twin Peaks 13 1.254738e+13 1962769.0 *
            119) neighborhood=Castro-Upper Market,Marina,
                   Russian Hill 7 4.768574e+12 3541000.0 *
       15) neighborhood=Financial District,Pacific Heights,
             Presidio Heights,Seacliff 22 7.734568e+13 3028182.0
         30) lotsize< 3473 12 7.263123e+12 2299500.0 *
         31) lotsize>=3473 10 5.606476e+13 3902600.0 *

Notice the key on the second line of the output. (Each line contains the node number,
description of the split, number of observations under that node in the tree, deviance,
and predicted value.) This tree model tells us some obvious things, like that location
and size are good predictors of price. Reading a textual description of an rpart object
is somewhat confusing. The method plot.rpart will draw the tree structure in an
rpart object:

plot(x, uniform=FALSE, branch=1, compress=FALSE, nspace,
     margin=0, minbranch=.3, ...)

You can label the tree using text.rpart:

text(x, splits=TRUE, label, FUN=text, all=FALSE,
     pretty=NULL, digits=getOption("digits") - 3, use.n=FALSE,
     fancy=FALSE, fwidth=0.8, fheight=0.8, ...)

For both functions, the argument x specifies the rpart object; the other options
control the way the output looks. See the help file for more information about these
parameters. As an example, let’s plot the tree we just created above:

> plot(sf.price.model.rpart, uniform=TRUE, compress=TRUE, lty=3, branch=0.7)
> text(sf.price.model.rpart, all=TRUE,digits=7, use.n=TRUE, cex=0.4, xpd=TRUE)

As you can see from Figure 20-5, it’s difficult to read a small picture of a big tree.
To keep the tree somewhat readable, we have abbreviated neighborhood names to
single letters (corresponding to their order in the factor). Sometimes, the function
draw.tree in the package maptree can produce prettier diagrams. See “Classification
Tree Models” on page 478 for more details.
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Figure 20-5. rpart tree for the San Francisco home sales model

To predict a value with a tree model, you would start at the top of the tree and follow
the tree down, depending on the rules for a specific observation. For example, sup-
pose that we had a property in Pacific Heights with 2,500 square feet of living space
and a lot size of 5,000 square feet. We would traverse the tree starting at node 1,
then go to node 3, then node 7, then node 15, and, finally, land on node 31. The
estimated price of this property would be $3,902,600.

There are a number of other functions available in the rpart package for viewing (or
manipulating) tree objects. To view the approximate r-square and relative error at
each split, use the function rsq.rpart. The graphical output is shown in Fig-
ure 20-6; here is the output on the R console:

> rsq.rpart(sf.price.model.rpart)

Regression tree:
rpart(formula = price ~ bedrooms + squarefeet + lotsize + latitude +
    longitude + neighborhood + month, data = sanfrancisco.home.sales.training)

Variables actually used in tree construction:
[1] longitude    lotsize      month neighborhood squarefeet

Root node error: 8.0587e+14/2296 = 3.5099e+11

n= 2296
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CP nsplit rel error  xerror     xstd
1  0.179780      0   1.00000 1.00038 0.117779
2  0.072261      1   0.82022 0.83652 0.105103
3  0.050667      2   0.74796 0.83211 0.096150
4  0.022919      3   0.69729 0.80729 0.094461
5  0.017395      4   0.67437 0.80907 0.096560
6  0.015527      5   0.65698 0.82365 0.097687
7  0.015511      6   0.64145 0.81720 0.097579
8  0.014321      7   0.62594 0.81461 0.097575
9  0.014063      9   0.59730 0.81204 0.097598
10 0.011032     10   0.58323 0.81559 0.097691
11 0.010000     12   0.56117 0.80271 0.096216

As you can probably tell, the initial tree was a bit complicated. You can remove
nodes where the cost/complexity trade-off isn’t great by using the prune function:

prune(tree, cp, ...)

The argument cp is a complexity parameter that controls how much to trim the tree.
To help choose a complexity parameter, try the function plotcp:

plotcp(x, minline = TRUE, lty = 3, col = 1,
       upper = c("size", "splits", "none"), ...)

Figure 20-6. Plot from rsq.rpart(sf.price.model.rpart)

The plotcp function plots tree sizes and relative errors for different parameters of
the complexity parameter. For the example above, it looks like a value of 0.011 is a
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good balance between complexity and performance. Here is the pruned model (see
also Figure 20-7):

> prune(sf.price.model.rpart, cp=0.11)
n= 2296

node), split, n, deviance, yval
      * denotes terminal node

1) root 2296 8.058726e+14  902088.0
2) neighborhood=Bayview,Bernal Heights,Chinatown,Crocker Amazon,
      Diamond Heights,Downtown,Excelsior,Inner Sunset,Lakeshore,Mission,
      Nob Hill,Ocean View,Outer Mission,Outer Richmond,Outer Sunset,
      Parkside,Potrero Hill,South Of Market,Visitacion Valley,
      Western Addition 1524 1.850806e+14  723301.8 *
3) neighborhood=Castro-Upper Market,Financial District,Glen Park,
      Haight-Ashbury, Inner Richmond,Marina,Noe Valley,North Beach,
      Pacific Heights,Presidio Heights,Russian Hill,Seacliff,Twin Peaks,
      West Of Twin Peaks 772 4.759124e+14 1255028.0 *

Figure 20-7. Output of plotcp for the sf.prices.rpart model
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And if you’re curious, here is the error of this model on the training and test
populations:

> calculate_rms_error(sf.price.model.rpart,
+   sanfrancisco.home.sales.training,
+   sanfrancisco.home.sales.testing,
+   "price")
train.err  test.err
 443806.8  564986.8

The units, incidentally, are dollars.

There is an alternative implementation of CART trees available with R through the
tree package. It was written by W. N. Venables, one of the authors of [Vena-
bles2002]. He notes that tree can give more explicit output while running but rec-
ommends rpart for most users.

Patient rule induction method

Another technique for building rule-based models is the patient rule induction
method (PRIM) algorithm. PRIM doesn’t actually build trees. Instead, it partitions
the data into a set of “boxes” (in p dimensions). The algorithm starts with a box
containing all the data and then shrinks the box one side at a time, trying to maximize
the average value in the box. After reaching a minimum number of observations in
the box, the algorithm tries expanding the box again, as long as it can increase the
average value in the box. When the algorithm finds the best initial box, it then repeats
the process on the remaining observations, until there are no observations left. The
algorithm leads to a set of rules that can be used to predict values.

To try out PRIM in R, there are functions in the library prim:

prim.box(x, y, box.init=NULL, peel.alpha=0.05, paste.alpha=0.01,
     mass.min=0.05, threshold, pasting=TRUE, verbose=FALSE,
     threshold.type=0)

prim.hdr(prim, threshold, threshold.type)
prim.combine(prim1, prim2)

Bagging for regression

Bagging (or bootstrap aggregation) is a technique for building predictive models
based on other models (most commonly trees). The idea of bagging is to use boot-
strapping to build a number of different models and then average the results. The
weaker models essentially form a committee to vote for a result, which leads to more
accurate predictions.

To build regression bagging models in R, you can use the function bagging in the
ipred library:

library(ipred)
bagging(formula, data, subset, na.action=na.rpart, ...)

The formula, data, subset, and na.action arguments work the same way as in
most modeling functions. The additional arguments are passed on to the function
ipredbagg, which does all the work (but doesn’t have a method for formulas):
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ipredbagg(y, X=NULL, nbagg=25, control=rpart.control(xval=0),
                  comb=NULL, coob=FALSE, ns=length(y), keepX = TRUE, ...)

You can specify the number of trees to build by nbagg, control parameters for
rpart through control, a list of models to use for double-bagging through comb,
coob to indicate if an out-of-bag error rate should be computed, and ns to specify
the number of observations to draw from the learning sample.

Let’s try building a model on the pricing data using bagging. We’ll pick 100 rpart
trees (for fun):

> sf.price.model.bagging <- bagging(
+   price~bedrooms+squarefeet+lotsize+latitude+
+   longitude+neighborhood+month,
+   data=sanfrancisco.home.sales.training, nbagg=100)
> summary(sf.price.model.bagging)
       Length Class      Mode
y      1034   -none-     numeric
X         7   data.frame list
mtrees  100   -none-     list
OOB       1   -none-     logical
comb      1   -none-     logical
call      4   -none-     call

Let’s take a quick look at how bagging worked on this data set:

> calculate_rms_error(sf.price.model.bagging,
+     sanfrancisco.home.sales.training,
+     sanfrancisco.home.sales.testing,
+    "price")
train.err  test.err
 491003.8  582056.5

Boosting for regression

Boosting is a technique that’s closely related to bagging. Unlike bagging, the indi-
vidual models don’t all have equal votes. Better models are given stronger votes.

You can find a variety of tools for computing boosting models in R in the package
mboost. The function blackboost builds boosting models from regression trees,
glmboost from general linear models, and gamboost for boosting based on additive
models. Here we’ll just build a model using regression trees:

> library(mboost)
Loading required package: modeltools
Loading required package: stats4
Loading required package: party
Loading required package: grid
Loading required package: coin
Loading required package: mvtnorm
Loading required package: zoo
> sf.price.model.blackboost <- blackboost(
+   price~bedrooms+squarefeet+lotsize+latitude+
+   longitude+neighborhood+month,
+   data=sanfrancisco.home.sales.training)
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Here is a summary of the model object:

> summary(sf.price.model.blackboost)
Length Class Mode

ensemble       100   -none- list
fit 2296   -none- numeric
offset 1   -none- numeric
ustart 2296   -none- numeric
risk 100   -none- numeric
control 8   boost_control list
family 1   boost_family S4
response      2296   -none- numeric
weights       2296   -none- numeric
update 1   -none- function
tree_controls    1   TreeControl S4
data 1   LearningSampleFormula S4
predict 1   -none- function
call 3   -none- call

And here is a quick evaluation of the performance of this model:

> calculate_rms_error(sf.price.model.blackboost,
+     sanfrancisco.home.sales.training,
+     sanfrancisco.home.sales.testing,
+    "price")
train.err  test.err
  1080520   1075810

Random forests for regression

Random forests are another technique for building predictive models using trees.
Like boosting and bagging, random forests work by combining a set of other tree
models. Unlike boosting and bagging, which use an existing algorithm like CART
to build a series of trees from a random sample of the observations in the test data,
random forests build trees from a random sample of the columns in the test data.

Here’s a description of how the random forest algorithm creates the underlying trees
(using variable names from the R implementation):

1. Take a sample of size sampsize from the training data.

2. Begin with a single node.

3. Run the following algorithm, starting with the starting node:

A. Stop if the number of observations is less than nodesize.

B. Select mtry variables (at random).

C. Find the variable and value that does the “best” job splitting the observa-
tions. (Specifically, the algorithm uses MSE [mean square error] to measure
regression error, and Gini to measure classification error.)

D. Split the observations into two nodes.

E. Call step A on each of these nodes.

Unlike trees generated by CART, trees generated by random forest aren’t pruned;
they’re just grown to a very deep level.
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For regression problems, the estimated value is calculated by averaging the predic-
tion of all the trees in the forest. For classification problems, the prediction is made
by predicting the class using each tree in the forest and then outputting the choice
that received the most votes.

To build random forest models in R, use the randomForest function in the random
Forest package:

library(randomForest)
## S3 method for class 'formula':
randomForest(formula, data=NULL, ..., subset, na.action=na.fail)
## Default S3 method:
randomForest(x, y=NULL,  xtest=NULL, ytest=NULL, ntree=500,

mtry=if (!is.null(y) && !is.factor(y))
max(floor(ncol(x)/3), 1) else floor(sqrt(ncol(x))),
replace=TRUE, classwt=NULL, cutoff, strata,
sampsize = if (replace) nrow(x) else ceiling(.632*nrow(x)),
nodesize = if (!is.null(y) && !is.factor(y)) 5 else 1,
importance=FALSE, localImp=FALSE, nPerm=1,
proximity, oob.prox=proximity,
norm.votes=TRUE, do.trace=FALSE,
keep.forest=!is.null(y) && is.null(xtest), corr.bias=FALSE,
keep.inbag=FALSE, ...)

Unlike some other functions we’ve seen so far, randomForest will fail if called on data
with missing observations. So we’ll set na.action=na.omit to omit NA values. Addi-
tionally, randomForest cannot handle categorical predictors with more than 32 levels,
so we will cut out the neighborhood variable:

> sf.price.model.randomforest <- randomForest(
+   price~bedrooms+squarefeet+lotsize+latitude+
+   longitude+month,
+   data=sanfrancisco.home.sales.training,
+   na.action=na.omit)

The print method for randomForest objects returns some useful information about
the fit:

> sf.price.model.randomforest

Call:
 randomForest(formula = price ~ bedrooms + squarefeet + lotsize +

latitude + longitude + month,
data = sanfrancisco.home.sales.training,
na.action = na.omit)
Type of random forest: regression

Number of trees: 500
No. of variables tried at each split: 2

Mean of squared residuals: 258521431697
% Var explained: 39.78

Here is how the model performed:

> calculate_rms_error(sf.price.model.randomforest,
+     na.omit(sanfrancisco.home.sales.training),
+     na.omit(sanfrancisco.home.sales.testing),
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+    "price")
train.err  test.err
 241885.2  559461.0

As a point of comparison, here are the results of the rpart model, also with NA values
omitted:

> calculate_rms_error(sf.price.model.rpart,
+     na.omit(sanfrancisco.home.sales.training),
+     na.omit(sanfrancisco.home.sales.testing),
+    "price")
train.err  test.err
 442839.6  589583.1 

MARS
Another popular algorithm for machine learning is multivariate adaptive regression
splines, or MARS. MARS works by splitting input variables into multiple basis func-
tions and then fitting a linear regression model to those basis functions. The basis
functions used by MARS come in pairs: f(x) = {x − t if x > t, 0 otherwise} and g(x)
= {t − x if x < t, 0 otherwise}. These functions are piecewise linear functions. The
value t is called a knot.

MARS is closely related to CART. Like CART, it begins by building a large model
and then prunes back unneeded terms until the best model is found. The MARS
algorithm works by gradually building up a model out of basis functions (or products
of basis functions) until it reaches a predetermined depth. This results in an over-
fitted, overly complex model. Then the algorithm deletes terms from the model, one
by one, until it has pared back everything but a constant term. At each stage, the
algorithm uses generalized cross-validation (GCV) to measure how well each model
fits. Finally, the algorithm returns the model with the best cost/benefit ratio.

To fit a model using MARS in R, use the function earth in the package earth:

library(earth)
earth(formula = stop("no 'formula' arg"),
   data, weights = NULL, wp = NULL, scale.y = (NCOL(y)==1), subset = NULL,
   na.action = na.fail, glm = NULL, trace = 0,
   keepxy = FALSE, nfold=0, stratify=TRUE, ...)

Arguments to earth include the following.

Argument Description Default

formula A formula describing the relationship between the response and the predictor
variables.

stop("no
'formula' arg")

data A data frame containing the training data.  

weights An optional vector of weights to use for the fitting data. (It is especially optional,
because it is not supported as of earth version 2.3-2.)

NULL

wp A numeric vector of response weights. Must include a value for each column
of y.

NULL

scale.y A numeric value specifying whether to scale y in the forward pass. (See the
help file for more information.)

(NCOL(y)==1)
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Argument Description Default

subset A logical vector specifying which observations from data to include. NULL

na.action A function specifying how to treat missing values. Only na.fail is currently
supported.

na.fail

glm A list of arguments to glm. NULL

trace A numeric value specifying whether to print a “trace” of the algorithm execu-
tion.

0

keepxy A logical value specifying whether to keep x and y (or data), subset, and
weights in the model object. (Useful if you plan to use update to modify the
model at a later time.)

FALSE

nfold A numeric value specifying the number of cross-validation folds. 0

stratify A logical value specifying whether to stratify the cross-validation folds. TRUE

... Additional options are passed to earth.fit. There are many, many options
available to tune the fitting process. See the help file for earth for more
information.

The earth function is very flexible. By default, lm is used to fit models. Note that
glm can be used instead to allow finer control of the model. The function earth can’t
cope directly with missing values in the data set. To deal with NA values, you need
to explicitly deal with them in the input data. You could, for example, impute me-
dian values or model imputed values. In the example below, I picked the easy
solution and just used the na.omit function to filter them out.

Let’s build an earth model on the San Francisco home sales data set. We’ll add the
trace=1 option to show some details of the computation:

> sf.price.model.earth <- earth(
+    price~bedrooms+squarefeet+latitude+
+    longitude+neighborhood+month,
+    data=na.omit(sanfrancisco.home.sales.training), trace=1)
x is a 957 by 54 matrix: 1=bedrooms, 2=squarefeet, 3=latitude,
  4=longitude, 5=neighborhoodBernalHeights, 6=neighborhoodCastro-UpperMarket,
  7=neighborhoodChinatown, 8=neighborhoodCrockerAmazon,
  9=neighborhoodDiamondHeights, 10=neighborhoodDowntown,
  11=neighborhoodExcelsior, 12=neighborhoodFinancialDistrict,
  13=neighborhoodGlenPark, 14=neighborhoodHaight-Ashbury,
  15=neighborhoodInnerRichmond, 16=neighborhoodInnerSunset,
  17=neighborhoodLakeshore, 18=neighborhoodMarina,
  19=neighborhoodMission, 20=neighborhoodNobHill,
  21=neighborhoodNoeValley, 22=neighborhoodNorthBeach,
  23=neighborhoodOceanView, 24=neighborhoodOuterMission,
  25=neighborhoodOuterRichmond, 26=neighborhoodOuterSunset,
  27=neighborhoodPacificHeights, 28=neighborhoodParkside,
  29=neighborhoodPotreroHill, 30=neighborhoodPresidioHeights,
  31=neighborhoodRussianHill, 32=neighborhoodSeacliff,
  33=neighborhoodSouthOfMarket, 34=neighborhoodTwinPeaks,
  35=neighborhoodVisitacionValley, 36=neighborhoodWestOfTwinPeaks,
  37=neighborhoodWesternAddition, 38=month2008-03-01, 39=month2008-04-01,
  40=month2008-05-01, 41=month2008-06-01, 42=month2008-07-01,
  43=month2008-08-01, 44=month2008-09-01, 45=month2008-10-01,
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  46=month2008-11-01, 47=month2008-12-01, 48=month2009-01-01,
  49=month2009-02-01, 50=month2009-03-01, 51=month2009-04-01,
  52=month2009-05-01, 53=month2009-06-01, 54=month2009-07-01
y is a 957 by 1 matrix: 1=price
Forward pass term 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28,
     30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58,
     60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80
Reached delta RSq threshold (DeltaRSq 0.000861741 < 0.001)
After forward pass GRSq 0.4918 RSq 0.581
Prune method "backward" penalty 2 nprune 44: selected 36 of 44 terms, and 26
  of 54 predictors
After backward pass GRSq 0.5021 RSq 0.5724

The earth object has an informative print method, showing the function call and
statistics about the model fit:

> sf.price.model.earth
Selected 31 of 41 terms, and 22 of 55 predictors
Importance: squarefeet, neighborhoodPresidioHeights,
  latitude, neighborhoodSeacliff, neighborhoodNoeValley,
  neighborhoodCastro-UpperMarket, neighborhoodNobHill,
  lotsize, month2008-07-01, neighborhoodWesternAddition, ...
Number of terms at each degree of interaction: 1 30 (additive model)
GCV 216647913449    RSS 1.817434e+14    GRSq 0.5162424    RSq 0.5750596

The summary method will show the basis functions for the fitted model in addition
to information about the fit:

> summary(sf.price.model.earth)
Call: earth(formula=price~bedrooms+squarefeet+lotsize+latitude+
        longitude+neighborhood+month,
        data=na.omit(sanfrancisco.home.sales.training))

                               coefficients
(Intercept)                         1452882
h(bedrooms-3)                        130018
h(bedrooms-5)                       -186130
h(squarefeet-2690)                       81
h(2690-squarefeet)                     -178
h(lotsize-2495)                         183
h(lotsize-3672)                        -141
h(latitude-37.7775)              -112301793
h(37.7775-latitude)                -7931270
h(latitude-37.7827)               420380414
h(latitude-37.7888)              -188726623
h(latitude-37.8015)              -356738902
h(longitude- -122.464)             -6056771
h(-122.438-longitude)              -6536227
neighborhoodCastro-UpperMarket       338549
neighborhoodChinatown              -1121365
neighborhoodInnerSunset             -188192
neighborhoodMarina                 -2000574
neighborhoodNobHill                -2176350
neighborhoodNoeValley                368772
neighborhoodNorthBeach             -2395955
neighborhoodPacificHeights         -1108284
neighborhoodPresidioHeights         1146964
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neighborhoodRussianHill -1857710
neighborhoodSeacliff 2422127
neighborhoodWesternAddition -442262
month2008-03-01 181640
month2008-04-01 297754
month2008-05-01 187684
month2008-07-01 -322801
month2008-10-01 115435

Selected 31 of 41 terms, and 22 of 55 predictors
Importance: squarefeet, neighborhoodPresidioHeights, latitude,
  neighborhoodSeacliff, neighborhoodNoeValley,
  neighborhoodCastro-UpperMarket, neighborhoodNobHill,
  lotsize, month2008-07-01, neighborhoodWesternAddition, ...
Number of terms at each degree of interaction: 1 30 (additive model)
GCV 216647913449    RSS 1.817434e+14    GRSq 0.5162424    RSq 0.5750596

The output of summary includes a short synopsis of variable importance in the model.
You can use the function evimp to return a matrix showing the relative importance
of variables in the model:

evimp(obj, trim=TRUE, sqrt.=FALSE)

The argument obj specifies an earth object, trim specifies whether to delete rows in
the matrix for variables that don’t appear in the fitted model, and sqrt specifies
whether to take the square root of the GCV and RSS importances before normalizing
them. For the example above, here is the output:

> evimp(sf.price.model.earth)
col used nsubsets          gcv

squarefeet 2    1       30 100.00000000 1
neighborhoodPresidioHeights     31    1       29  62.71464260 1
latitude 4    1       28  45.85760472 1
neighborhoodSeacliff 33    1       27  33.94468291 1
neighborhoodNoeValley 22    1       25  22.55538880 1
neighborhoodCastro-UpperMarket   7    1       24  18.84206296 1
neighborhoodNobHill 21    1       23  14.79044745 1
lotsize 3    1       21  10.94876414 1
month2008-07-01 43    1       20   9.54292889 1
neighborhoodWesternAddition     38    1       19   7.47060804 1
longitude 5    1       18   6.37068263 1
neighborhoodNorthBeach 23    1       16   4.64098864 1
neighborhoodPacificHeights      28    1       14   3.21207679 1
neighborhoodMarina 19    1       13   3.25260354 0
neighborhoodRussianHill 32    1       12   3.02881439 1
month2008-04-01 40    1       10   2.22407575 1
bedrooms 1    1 8   1.20894174 1
neighborhoodInnerSunset 17    1 5   0.54773450 1
month2008-03-01 39    1 4   0.38402626 1
neighborhoodChinatown 8    1 3   0.24940165 1
month2008-10-01 46    1 2   0.15317304 1
month2008-05-01 41    1 1   0.09138073 1

rss
squarefeet 100.0000000 1
neighborhoodPresidioHeights     65.9412651 1
latitude 50.3490370 1
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neighborhoodSeacliff 39.2669043 1
neighborhoodNoeValley 28.3043535 1
neighborhoodCastro-UpperMarket  24.6223129 1
neighborhoodNobHill 20.6738425 1
lotsize 16.5523065 1
month2008-07-01 14.9572215 1
neighborhoodWesternAddition     12.8021914 1
longitude 11.4928253 1
neighborhoodNorthBeach 9.2983004 1
neighborhoodPacificHeights       7.3843377 1
neighborhoodMarina 7.0666997 1
neighborhoodRussianHill 6.5297824 1
month2008-04-01 5.1687163 1
bedrooms 3.6503604 1
neighborhoodInnerSunset 2.1002700 1
month2008-03-01 1.6337090 1
neighborhoodChinatown 1.1922930 1
month2008-10-01 0.7831185 1
month2008-05-01 0.4026390 1

The function plot.earth will plot model selection, cumulative distribution of resid-
uals, residuals versus fitted values, and the residual Q-Q plot for an earth object:

> plot(sf.price.model.earth)

The output of this call is shown in Figure 20-8. There are many options for this
function that control the output; see the help file for more information. Another
useful function for looking at earth objects is plotmo:

> plotmo(sf.price.model.earth)

Figure 20-8. Output of plot.earth
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The plotmo function plots the predicted model response when varying one or two
predictors while holding other predictors constant. The output of plotmo for the San
Francisco home sales data set is shown in Figure 20-9.

Figure 20-9. Output of plotmo

For the fun of it, let’s look at the predictions from earth:

> calculate_rms_error(sf.price.model.earth,
+      na.omit(sanfrancisco.home.sales.training),
+      na.omit(sanfrancisco.home.sales.testing),
+     "price")
train.err  test.err
 435786.1  535941.5

Neural Networks
Neural networks are a very popular type of statistical model. Neural networks were
originally designed to approximate how neurons work in the human brain; much of
the original research on neural networks came from artificial intelligence researchers.
Neural networks are very flexible and can be used to model a large number of dif-
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ferent problems. By changing the structure of neural networks, it’s possible to model
some very complicated nonlinear relationships. Neural networks are so popular that
there are entire academic journals devoted to them (such as Neural Networks, pub-
lished by Elsevier).

The base distribution of R includes an implementation of one of the simplest types
of neural networks: single-hidden-layer neural networks. Even this simple form of
neural network can be used to model some very complicated relationships in data
sets. Figure 20-10 is a graphical representation of what these neural networks look
like. As you can see, each input value feeds into each “hidden layer” node. The
output of each hidden-layer node feeds into each output node. What the modeling
function actually does is to estimate the weights for each input into each hidden
node and output node.

Figure 20-10. Single-hidden-layer, feed-forward neural network

The diagram omits two things: bias units and skip layer connectors. A bias unit is
just a constant input term; it lets a constant term be mixed into each unit. Skip layer
connections allow values from the inputs to be mixed into the outputs, skipping over
the hidden layer. Both of these additions are included in the R implementation.

In equation form, here is the formula for neural network models:
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The function gi used for the hidden nodes is the sigmoid function: σ(x) = ex/(1 +
ex). The function used for the output nodes is usually the identity function for re-
gression, and the softmax function for classification. (We’ll discuss the softmax
function in “Neural Networks” on page 482.) For classification models, there are
k outputs corresponding to the different levels. For regression models, there is only
one output node.

To fit neural network models, use the function nnet in the package nnet:

library(nnet)
## S3 method for class 'formula':
nnet(formula, data, weights, ...,
     subset, na.action, contrasts = NULL)

## Default S3 method:
nnet(x, y, weights, size, Wts, mask,
     linout = FALSE, entropy = FALSE, softmax = FALSE,
     censored = FALSE, skip = FALSE, rang = 0.7, decay = 0,
     maxit = 100, Hess = FALSE, trace = TRUE, MaxNWts = 1000,
     abstol = 1.0e-4, reltol = 1.0e-8, ...)

Arguments to nnet include the following.

Argument Description Default

formula A formula describing the relationship between the response and the
predictor variables.

data A data frame containing the training data.

weights An optional vector of weights to use for the training data.

... Additional arguments passed to other functions (such as the
nnet.default if using the nnet method, or optim).

subset An optional vector specifying the subset of observations to use in fitting
the model.

na.action A function specifying how to treat missing values.

contrasts A list of factors to use for factors that appear in the model. NULL

size Number of units in the hidden layer.

Wts Initial parameter vector. Randomly chosen, if
not specified

mask A logical vector indicating which parameters should be optimized. All parameters

linout Use linout=FALSE for logistic output units, linout=TRUE for lin-
ear units.

FALSE

entropy A logical value specifying whether to use entropy/maximum conditional
likelihood fitting.

FALSE

softmax A logical value specifying whether to use a softmax/log-linear model
and maximum conditional likelihood fitting.

FALSE

censored A logical value specifying whether to treat the input data as censored
data. (By default, a response variable value of c(1, 0, 1) means “both
classes 1 and 3.” If we treat the data as censored, then c(1, 0, 1) is
interpreted to mean “not 2, but possibly 1 or 3.”

FALSE
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Argument Description Default

skip A logical value specifying whether to add skip-layer connections from
input to output.

FALSE

rang A numeric value specifying the range for initial random weights.
Weights are chosen between -rang and rang.

0.7

decay A numeric parameter for weight decay. 0

maxit Maximum number of iterations. 100

Hess A logical value specifying whether to return the Hessian of fit. FALSE

trace A logical value specifying whether to print out a “trace” as nnet is
running.

TRUE

maxNWts A numeric value specifying the maximum number of weights. 1000

abstol A numeric value specifying absolute tolerance. (Fitting process halts if
the fit criterion falls below abstol.)

1.0e-4

reltol A numeric value specifying relative tolerance. (Fitting process halts if
the algorithm can’t reduce the error by reltol in each step.)

1.0e-8

There is no simple, closed-form solution for finding the optimal weights for a neural
network model. So the nnet function uses the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) optimization method of the optim function to fit the model.

Let’s try nnet on the San Francisco home sales data set. I had to play with the pa-
rameters a little bit to get a decent fit. I settled on 12 hidden units, linear outputs
(which is appropriate for regression), skip connections, and a decay of 0.025:

> sf.price.model.nnet <- nnet(
+   price~bedrooms+squarefeet+lotsize+latitude+
+   longitude+neighborhood+month,
+   data=sanfrancisco.home.sales.training, size=12,
+   skip=TRUE, linout=TRUE, decay=0.025, na.action=na.omit)
# weights:  740
initial  value 1387941951981143.500000
iter  10 value 292963198488371.437500
iter  20 value 235738652534232.968750
iter  30 value 215547308140618.656250
iter  40 value 212019186628667.375000
iter  50 value 210632523063203.562500
iter  60 value 208381505485842.656250
iter  70 value 207265136422489.750000
iter  80 value 207023188781434.906250
iter  90 value 206897724524820.937500
iter 100 value 206849625163830.156250
final  value 206849625163830.156250
stopped after 100 iterations

To view the model, you can use the print or summary methods. Neither is particularly
informative, though the summary method will show weights for all the units. Here is
a small portion of the output for summary (the omitted portion is replaced with an
ellipsis):
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> summary(sf.price.model.nnet)
a 55-12-1 network with 740 weights
options were - skip-layer connections  linear output units  decay=0.025
     b->h1     i1->h1     i2->h1     i3->h1     i4->h1     i5->h1
     12.59       9.83   21398.35   29597.88     478.93   -1553.28
    i6->h1     i7->h1     i8->h1     i9->h1    i10->h1    i11->h1
     -0.15      -0.27       0.34      -0.05      -0.31       0.16
...

Here’s how this model performed:

> calculate_rms_error(sf.price.model.nnet,
+      na.omit(sanfrancisco.home.sales.training),
+      na.omit(sanfrancisco.home.sales.testing),
+     "price")
train.err  test.err
 447567.2  566056.4

For more complex neural networks (such as networks with multiple hidden layers),
see the packages AMORE, neural, and neuralnet.

Project Pursuit Regression
Projection pursuit regression is another very general model for representing non-
linear relationships. Projection pursuit models have the form:

The functions gm are called ridge functions. The project pursuit algorithm tries to
optimize parameters for the parameters ωm by trying to minimize the sum of the
residuals. In equation form:

Project pursuit regression is closely related to the neural network models that we
saw above. (Note the similar form of the equations.) If we were to use the sigmoid
function for the ridge functions gm, projection pursuit would be identical to a neural
network. In practice, projection pursuit regression is usually used with some type
of smoothing method for the ridge functions. The default in R is to use Friedman’s
supersmoother function. (This function is actually pretty complicated and chooses
the best of three relationships to pick the best smoothing function. See the help file
for supsmu for more details. Note that this function finds the best smoother for the
input data, not the smoother that leads to the best model.)

To use projection pursuit regression in R, use the function ppr:

## S3 method for class 'formula':
ppr(formula, data, weights, subset, na.action,
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    contrasts = NULL, ..., model = FALSE)

## Default S3 method:
ppr(x, y, weights = rep(1,n),
    ww = rep(1,q), nterms, max.terms = nterms, optlevel = 2,
    sm.method = c("supsmu", "spline", "gcvspline"),
    bass = 0, span = 0, df = 5, gcvpen = 1, ...)

Arguments to ppr include the following.

Argument Description Default

formula/data/sub-
set/na.action, x/y

Specifies the data to use for modeling, depending on the form of the function.  

weights A vector of weights for each case.  

contrasts A list specifying the contrasts to use for factors. NULL

model A logical value indicating whether to return the model frame. FALSE

ww A vector of weights for each response. rep(1, q)

nterms Number of terms to include in the final model.  

max.terms Maximum number of terms to choose from when building the model. nterms

optlevel An integer value between 0 and 3, which determines how optimization is
done. See the help file for more information.

2

sm.method A character value specifying the method used for smoothing the ridge func-
tions. Specify sm.method="supsmu" for Friedman’s supersmoother,
sm.method="spline" to use the code from smooth.spline, or
sm.method="gcvspline" to choose the smoothing method with gcv.

"supsmu"

bass When sm.method="supsmu", a numeric value specifying the “bass” tone
control for the supersmoother algorithm.

0

span When sm.method="supsmu", a numeric value specifying the “span” con-
trol for the supersmoother.

0

df When sm.method="spline", specifies the degrees of freedom for the
spline function.

5

gcvpen When sm.method="gcvspline", a numeric value specifying the penalty
for each degree of freedom.

1

...  

Let’s try projection pursuit regression on the home sales data:

> sf.price.model.ppr <- ppr(
+   price~bedrooms+squarefeet+lotsize+latitude+
+   longitude+neighborhood+month,
+   data=sanfrancisco.home.sales.training, nterms=20)
> sf.price.model.ppr
Call:
ppr(formula = price ~ bedrooms + squarefeet + lotsize + latitude +
      longitude + neighborhood + month,
    data = sanfrancisco.home.sales.training,
    nterms = 20)
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Goodness of fit:
    20 terms
1.532615e+13

The summary function for ppr models prints out an enormous amount of information,
including the function call, goodness-of-fit measurement, projection pursuit vectors,
and coefficients of ridge terms; I have omitted the output from the book to save
space.

You can plot the ridge functions from a ppr model using the plot function. To plot
them all at the same time, I used the graphical parameter mfcol=c(4, 4) to plot them
on a 4 × 4 grid. (I also narrowed the margins to make them easier to read.)

par(mfcol=c(4,4), mar=c(2.5,2.5,1.5,1.5))
plot(sf.price.model.ppr)

The ridge functions are shown in Figure 20-11. I picked 12 explanatory variables,
which seemed to do best on the validation data (though not on the training data):

> calculate_rms_error(sf.price.model.ppr,
+      na.omit(sanfrancisco.home.sales.training),
+      na.omit(sanfrancisco.home.sales.testing),
+     "price")
train.err  test.err
 194884.8  585613.9
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Figure 20-11. Ridge functions from the projection pursuit model

Generalized Additive Models
Generalized additive models are another regression model technique for modeling
complicated relationships in high-dimensionality data sets. Generalized additive
models have the following form:

Notice that each predictor variable xj is first processed by a function fj and is then
used in a linear model. The generalized additive model algorithm finds the form of
the functions f. These functions are often called basis functions.

The simplest way to fit generalized additive models in R is through the function
gam in the library gam:
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gam(formula, family = gaussian, data, weights, subset, na.action,
       start, etastart, mustart, control = gam.control(...),
       model=FALSE, method, x=FALSE, y=TRUE, ...)

This implementation is similar to the version from S and includes support for both
local linear regression and smoothing spline basis functions. The gam package cur-
rently includes two different types of basis functions: smoothing splines and local
regression. The gam function uses a back-fitting method to estimate parameters for
the basis functions and also estimates weights for the different terms in the model
using penalized residual sum of squares.

When using the gam function to specify a model, you need to specify which type of
basis function to use for which term. For example, suppose that you wanted to fit a
model where the response variable was y and the predictors were u, v, w, and x. To
specify a model with smoothing functions for u and v, a local regression term for w,
and an identity basis function for x, you would specify the formula as y~s(u)+s(v)
+lo(w)+x.

Here is a detailed description of the arguments to gam.

Argument Description Default

formula A gam formula specifying the form of the model. (See the help
files for s and lo for more information on how to specify
options for the basis functions.)

 

family A family object specifying the distribution and link function.
See “Generalized Linear Models” on page 421 for a list of
families.

gaussian()

data A data frame containing the data to use for fitting. list

weights An optional numeric vector of weights for the input data. NULL

subset An optional vector specifying the subset of observations to
use in fitting the model.

NULL

na.action A function that indicates how to deal with missing values. options("na.action"), which is
na.omit by default

offset
(through
gam.fit)

A numeric value specifying an a priori known component to
include in the additive predictor during fitting.

NULL

start Starting values for the parameters in the additive predictors.  

etastart Starting values for the additive predictors.  

mustart Starting values for the vector of means.

control A list of parameters for controlling the fitting process. Use the
function gam.control to generate a suitable list (and see
the help file for that function to get the tuning parameters).

gam.control()

model A logical value indicating whether the model frame should be
included in the returned object.

FALSE

method A character value specifying the method that should be used
to fit the parametric part of the model. The only allowed values
are method="glm.fit" (which uses iteratively reweigh-

NULL
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Argument Description Default
ted least squares) or method="model.frame" (which
does nothing except return the model frame).

x A logical value specifying whether to return the X matrix (the
predictors) with the model frame.

FALSE

y A logical value specifying whether to return the Y vector (the
response) with the model frame.

TRUE

... Additional parameters passed to other methods (particularly,
gam.fit).

In R, there is an alternative implementation of generalized additive models available
through the function gam in the package mgcv:

library(mgcv)
gam(formula,family=gaussian(),data=list(),weights=NULL,subset=NULL,
    na.action,offset=NULL,method="GCV.Cp",
    optimizer=c("outer","newton"),control=gam.control(),scale=0,
    select=FALSE,knots=NULL,sp=NULL,min.sp=NULL,H=NULL,gamma=1,
    fit=TRUE,paraPen=NULL,G=NULL,in.out,...)

This function allows a variety of different basis functions to be used: thin-plate re-
gression splines (the default), cubic regression splines, and p-splines. The alternative
gam function will estimate parameters for the basis functions as part of the fitting
process using penalized likelihood maximization. The gam function in the mgcv pack-
age has many more options than the gam function in the gam package, but it is also a
lot more complicated. See the help files in the mgcv package for more on the technical
differences between the two packages.

Support Vector Machines
Support vector machines (SVMs) are a fairly recent algorithm for nonlinear models.
They are a lot more difficult to explain to nonmathematicians than most statistical
modeling algorithms. Explaining how SVMs work in detail is beyond the scope of
this book, but here’s a quick synopsis:

• SVMs don’t rely on all the underlying data to train the model. Only some ob-
servations (called the support vectors) are used. This makes SVMs somewhat
resistant to outliers (like robust regression techniques) when used for regres-
sion. (It’s also possible to use SVMs in the opposite way: to detect anomalies
in the data.) You can control the range of values considered through the
insensitive-loss function parameter epsilon.

• SVMs use a nonlinear transformation of the input data (like the basis functions
in additive models or kernels in kernel methods). You can control the type of
kernel used in SVMs through the parameter kernel.

• The final SVM model is fitted using a standard regression, with maximum like-
lihood estimates.

SVMs are black-box models; it’s difficult to learn anything about a problem by
looking at the parameters from a fitted SVM model. However, SVMs have become
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very popular, and many people have found that SVMs perform well in real-world
situations. (An interesting side note is that SVMs are included as part of the Oracle
Data Mining software, while many other algorithms are not.)

In R, SVMs are available in the library e1071,7 through the function svm:

library(e1071)
## S3 method for class 'formula':
svm(formula, data = NULL, ..., subset, na.action =
na.omit, scale = TRUE)
## Default S3 method:
svm(x, y = NULL, scale = TRUE, type = NULL, kernel =
"radial", degree = 3, gamma = if (is.vector(x)) 1 else 1 / ncol(x),
coef0 = 0, cost = 1, nu = 0.5,
class.weights = NULL, cachesize = 40, tolerance = 0.001, epsilon = 0.1,
shrinking = TRUE, cross = 0, probability = FALSE, fitted = TRUE,
..., subset, na.action = na.omit)

Other implementations are available through the ksvm and lssvm functions in the
kernlab library, svmlight in the klaR library, and svmpath in the svmpath library.

Let’s try building an svm model for the home sales data:

> sf.price.model.svm <- svm(
+   price~bedrooms+squarefeet+lotsize+latitude+
+   longitude+neighborhood+month,
+   data=sanfrancisco.home.sales.training)

Here is how the model performed:

> calculate_rms_error(sf.price.model.svm,
+   na.omit(sanfrancisco.home.sales.training),
+   na.omit(sanfrancisco.home.sales.testing),
+   "price")
train.err  test.err
 518647.9  641039.5

7. Incidentally, this is, by far, the worst-named package available on CRAN. It’s named for a
class given by the Department of Statistics, TU Wien. The package contains a number of very
useful functions: SVM classifiers, algorithms for tuning other modeling functions, naive Bayes
classifiers, and some other useful functions. It really should be called something like
“veryusefulstatisticalfunctions.”
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21
Classification Models

In Chapter 20, I provided an overview of R’s statistical modeling software for re-
gression problems. However, not all problems can be solved by predicting a con-
tinuous numerical quantity like a drug dose, or a person’s wage, or the value of a
customer. Often, an analyst’s goal is to classify an item into a category or maybe to
estimate the probability that an item belongs to a certain category. Models that
describe this relationship are called classification models.

This chapter gives an overview of R’s statistical modeling software for linear classi-
fication models.

Linear Classification Models
In this section, we’ll look at a few popular linear classification models.

Logistic Regression
Suppose that you were trying to estimate the probability of a certain outcome (which
we’ll call A) for a categorical variable with two values. You could try to predict the
probability of A as a linear function of the predictor variables, assuming y = c0 +
c1x1 + x2x2 + ... + cnxn= Pr(A). The problem with this approach is that the value of
y is unconstrained; probabilities are valid only for values between 0 and 1. A good
approach for dealing with this problem is to pick a function for y that varies between
0 and 1 for all possible predictor values. If we were to use that function as a link
function in a general linear model, then we could build a model that estimates the
probability of different outcomes. That is the idea behind logistic regression.

In a logistic regression, the relationship between the predictor variables and the
probability that an observation is a member of a given class is given by the logistic
function:
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The logit function (which is used as the link function) is:

Let’s take a look at a specific example of logistic regression. In particular, let’s look
at the field goal data set. Each time a kicker attempts a field goal, there is a chance
that the goal will be successful and a chance that it will fail. The probability varies
according to distance; attempts closer to the end zone are more likely to be success-
ful. To model this relationship, we’ll try to use a logistic regression. To begin, let’s
load the data and create a new binary variable for field goals that are either good or
bad:

> library(nutshell)
> data(field.goals)
> field.goals.forlr <- transform(field.goals,
+   good=as.factor(ifelse(play.type=="FG good","good","bad")))

Let’s take a quick look at the percentage of good field goals by distance. We’ll start
by tabulating the results with the table function:

> field.goals.table <- table(field.goals.forlr$good,
+   field.goals.forlr$yards)
> field.goals.table

       18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
  bad   0  0  1  1  1  1  0  0  0  3  5  5  2  6  7  5  3  0  4  3 11
  good  1 12 24 28 24 29 30 18 27 22 26 32 22 21 30 31 21 25 20 23 29

       39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
  bad   6  7  5  6 11  5  9 12 11 10  9  5  8 11 10  3  1  2  1  1  1
  good 35 27 32 21 15 24 16 15 26 18 14 11  9 12 10  2  1  3  0  1  0

       60 61 62
  bad   1  1  1
  good  0  0  0

We’ll also plot the results (as percentages):

> plot(colnames(field.goals.table),
+      field.goals.table["good",]/
+        (field.goals.table["bad",] + 
+ field.goals.table["good",]),
+   xlab="Distance (Yards)", ylab="Percent Good")

The resulting plot is shown in Figure 21-1. As you can see, field goal percentage
tapers off linearly between about 25 and 55 yards (with a few outliers at the end).
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Each individual field goal attempt corresponds to a Bernoulli trial; the number of
successful field goals at each position on the field will be given by a binomial distri-
bution. So we specify family="binomial" when calling glm. To model the probability
of a successful field goal using a logistic regression, we would make the following
call to glm:

> field.goals.mdl <- glm(formula=good~yards,
+   data=field.goals.forlr,
+   family="binomial")

Figure 21-1. Field goal percentage by distance during the 2005 NFL season

Just like lm, the glm function returns no results by default. The print method will
show some details about the model fit:

> field.goals.mdl

Call:  glm(formula = good ~ yards, family = "binomial", 
data = field.goals.forlr) 

Coefficients:
(Intercept) yards  
    5.17886     -0.09726  

Degrees of Freedom: 981 Total (i.e. Null);  980 Residual
Null Deviance:    978.9 
Residual Deviance: 861.2 AIC: 865.2
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And, as with lm, you can get more detailed results about the model object with the
summary method:

> summary(field.goals.mdl)

Call:
glm(formula = good ~ yards, family = "binomial", data = field.goals.forlr)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-2.5582   0.2916   0.4664   0.6979   1.3790  

Coefficients:
Estimate Std. Error z value Pr(>|z|)    

(Intercept)  5.178856   0.416201  12.443   <2e-16 ***
yards       -0.097261   0.009892  -9.832   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 978.90  on 981  degrees of freedom
Residual deviance: 861.22  on 980  degrees of freedom
AIC: 865.22

Number of Fisher Scoring iterations: 5

Let’s take a quick look at how well this model fits the data. First, let’s start by plotting
the field goals from 2005 as above:

> plot(colnames(field.goals.table),
+      field.goals.table["good",]/
+        (field.goals.table["bad",] + 
+ field.goals.table["good",]),
+   xlab="Distance (Yards)", ylab="Percent Good")

Next, we’ll add a line to this chart showing the estimated probability of success at
each point. We’ll create a function to calculate the probability and then use that
function to plot the curve:

> fg.prob <- function(y) {
+  eta <- 5.178856 + -0.097261 * y;
+  1 / (1 + exp(-eta))
+ }
> lines(15:65,fg.prob(15:65),new=TRUE)

The chart is shown in Figure 21-2. As expected from the statistics above, the model
look like it fits the data reasonably well.

For more than two (unordered) categories, you need to use a different method to
predict probabilities. One method is to use the multinom function:

multinom(formula, data, weights, subset, na.action,
contrasts = NULL, Hess = FALSE, summ = 0, censored = FALSE,
model = FALSE, ...)

This actually fits multinomial log-linear models using neural networks.
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Here is a description of the arguments to the multinom function.

Argument Description Default

formula A formula specifying the form of the model to fit.

data A data frame to use for the training data for the model.

weights An optional vector of weights for the training data.

subset An optional expression describing the set of observations to use for fitting the model.

na.action A function specifying how to treat missing values.

contrast A list of contrasts to use for factors appearing as variables in formula. NULL

Hess A logical value specifying whether the Hessian (observed observation matrix) should be
returned.

FALSE

summ An integer value describing the method used to summarize data. Use summ=0 not to sum-
marize, summ=1 or summ=2 to replace duplicate observations with a single observation (and
appropriately adjusting the weights), and summ=3 to also combine rows with the same
predictor variables but different response variables.

0

censored If the response variable is a matrix with more than two columns, changes how the values are
interpreted. If censored=FALSE, then values are interpreted as counts; if
censored=TRUE, then values of 1 are interpreted as possible values, and values of 0 as
impossible.

FALSE

model A logical value specifying whether the model matrix should be returned. FALSE

... Additional arguments passed to nnet.

Figure 21-2. Comparing predicted field goal success to actual success
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For more than two ordered categories, you can also use proportional odds linear
regression. To do this in R, you can use the polr function in the MASS package:

polr(formula, data, weights, start, ..., subset, na.action,
     contrasts = NULL, Hess = FALSE, model = TRUE,
     method = c("logistic", "probit", "cloglog", "cauchit"))

Here is a description of the arguments to the polr function.

Argument Description Default

formula A formula specifying the form of the model to fit.  

data A data frame to use for the training data for the model. (If omitted, variables from the
current environment are used instead.)

 

weights An optional vector of weights for the training data. 1

start A vector of initial values for the parameters in the form c(coefficients, zeta).  

... Additional arguments passed to the function optim.  

subset An optional expression describing the set of observations to use for fitting the model.  

na.action A function specifying how to treat missing values.  

contrasts A list of contrasts to use for factors appearing as variables in formula. NULL

Hess A logical value specifying whether the Hessian (observed observation matrix) should
be returned.

FALSE

model A logical value specifying whether the model matrix should be returned. TRUE

method Specifies the form of the model. Use method="logistic" for logistic,
method="probit" for probit, method="cloglog" for complementary log-log,
and method="cauchit" for a Cauchy latent variable.

"logistic"

Linear Discriminant Analysis
Linear discriminant analysis (LDA) is a statistical technique for finding the linear
combination of features that best separate observations into different classes. LDA
assumes that the data in each class is normally distributed and that there is a unique
covariance matrix for each class. To use linear discriminant analysis in R, use the
function lda:

library(MASS)
## S3 method for class 'formula':
lda(formula, data, ..., subset, na.action)

## Default S3 method:
lda(x, grouping, prior = proportions, tol = 1.0e-4,
    method, CV = FALSE, nu, ...)

## S3 method for class 'data.frame':
lda(x, ...)

## S3 method for class 'matrix':
lda(x, grouping, ..., subset, na.action)

Here is a description of the arguments to the lda function.
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Argument Description Default

formula A formula specifying the form of the model to fit.  

data If a formula is given, specifies a data frame for the training.  

x Specifies a matrix or data frame for the fitting data (when no formula is provided).  

grouping A factor specifying the response variable (when no formula is provided).  

prior A vector of prior probabilities for class membership (in the same order as the levels of
grouping).

proportions

tol A numeric value specifying a tolerance for testing if the input data is a singular matrix;
if the variance of any variable is less than tol^2, it will be rejected.

1.0e-4

subset A vector specifying the set of observations in data to include.  

na.action A function specifying how to deal with missing values.  

method The method for fitting. Use method="moment" for standard estimators,
method="mle" for MLEs, method="mve" to use cov.mve, or method="t" for
estimates based on the t-distribution.

 

CV A logical value specifying whether to use “leave-one-out” cross-validation. (See the
help file for more information.)

FALSE

nu A numeric value specifying degrees of freedom when method="t".  

... Arguments passed to other methods.  

A closely related function for classification is quadratic discriminant analysis
(QDA), available through the function qda. QDA looks for a quadratic combination
of features that best separate observations into different classes:

library(MASS)
qda(x, ...)

## S3 method for class 'formula':
qda(formula, data, ..., subset, na.action)

## Default S3 method:
qda(x, grouping, prior = proportions,
    method, CV = FALSE, nu, ...)

## S3 method for class 'data.frame':
qda(x, ...)

## S3 method for class 'matrix':
qda(x, grouping, ..., subset, na.action)

The arguments to qda are the same as the arguments to lda.

For the remainder of this chapter, I’ll rely on a single data set for examples: the
Spambase data set. The Spambase data set was created by Mark Hopkins, Erik
Reeber, George Forman, and Jaap Suermondt at Hewlett-Packard Labs. It includes
4,601 observations corresponding to email messages, 1,813 of which are spam. From
the original email messages, 58 different attributes were computed. This data set is
really nice to use in examples because it’s already been cleaned and preprocessed.
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Here is how I loaded the raw data into R:

> spambase <- read.csv(
+   file="~/Documents/book/data/spam/spambase.data.txt", header=FALSE)
> names(spambase) <- 
+   c("word_freq_make", "word_freq_address", "word_freq_all", "word_freq_3d",
+   "word_freq_our", "word_freq_over", "word_freq_remove",
+   "word_freq_internet", "word_freq_order", "word_freq_mail",
+   "word_freq_receive", "word_freq_will", "word_freq_people",
+   "word_freq_report", "word_freq_addresses", "word_freq_free",
+   "word_freq_business", "word_freq_email", "word_freq_you",
+   "word_freq_credit", "word_freq_your", "word_freq_font",
+   "word_freq_000", "word_freq_money", "word_freq_hp", "word_freq_hpl",
+   "word_freq_george", "word_freq_650", "word_freq_lab", "word_freq_labs",
+   "word_freq_telnet", "word_freq_857", "word_freq_data", "word_freq_415",
+   "word_freq_85", "word_freq_technology", "word_freq_1999",
+   "word_freq_parts", "word_freq_pm", "word_freq_direct", "word_freq_cs",
+   "word_freq_meeting", "word_freq_original", "word_freq_project",
+   "word_freq_re", "word_freq_edu", "word_freq_table",
+   "word_freq_conference", "char_freq_semicolon", "char_freq_left_paren",
+   "char_freq_left_bracket", "char_freq_exclamation", "char_freq_dollar",
+   "char_freq_pound", "capital_run_length_average",
+   "capital_run_length_longest", "capital_run_length_total", "is_spam")
> spambase <- transform(spambase, is_spam=as.factor(is_spam))

I’ve included a copy with the nutshell package, so you can load this data set with
the commands:

> library(nutshell)
> data(spambase)

To use this data set for our examples, we’ll split it into training and validation data
sets. We’ll split the data set into 70% and 30% samples, stratified by the is_spam
factor. To do this, we’ll use the function strata in the sampling library to do the
sampling:

> library(sampling)
> table(spambase$is_spam)

   0    1 
2788 1813 
> spambase.strata <- strata(spambase, 
+   stratanames=c("is_spam"), size=c(1269, 1951), method="srswor")

This function returns a data frame that describes the set of values in the sample:

> names(spambase.strata)
[1] "is_spam" "ID_unit" "Prob"    "Stratum"

The variable ID_unit tells us the row numbers in the sample. To create training (and
validation) data sets, we’ll extract observations that match (or don’t match)
ID_unit values in the stratified sample:

> spambase.training <- spambase[
+   rownames(spambase) %in% spambase.strata$ID_unit,]
> spambase.validation <- spambase[
+   !(rownames(spambase) %in% spambase.strata$ID_unit),]
> nrow(spambase.training)
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[1] 3220
> nrow(spambase.validation)
[1] 1381

Let’s try quadratic discriminant analysis with the Spambase data set:

> spam.qda <- qda(formula=is_spam~., data=spambase.training)
> summary(spam.qda)
        Length Class  Mode     
prior      2   -none- numeric  
counts     2   -none- numeric  
means    114   -none- numeric  
scaling 6498   -none- numeric  
ldet       2   -none- numeric  
lev        2   -none- character
N          1   -none- numeric  
call       3   -none- call     
terms      3   terms  call     
xlevels    0   -none- list     
> # check with training
> table(actual=spambase.training$is_spam,
+   predicted=predict(spam.qda,newdata=spambase.training)$class)
      predicted
actual    0    1
     0 1481  470
     1   56 1213
> # check with validation
> table(actual=spambase.validation$is_spam, 
+   predicted=predict(spam.qda,newdata=spambase.validation)$class)
      predicted
actual   0   1
     0 625 212
     1  28 516

Flexible discriminant analysis (FDA) is another technique related to LDA. This al-
gorithm is based on the observation that LDA essentially fits a model by linear re-
gression, so FDA substitutes a nonparametric regression for the linear regression.
To compute flexible discriminant analysis:

libary(mda)
fda(formula, data, weights, theta, dimension, eps, method,
    keep.fitted, ...)

Repeating the example from above:

> spam.fda <- fda(formula=is_spam~., data=spambase.training)
> table(actual=spambase.validation$is_spam, 
+   predicted=predict(spam.fda ,newdata=spambase.validation, type="class"))
      predicted
actual   0   1
     0 800  37
     1 120 424

Another related technique is mixture discriminant analysis (MDA). MDA represents
each class with a Gaussian mixture. This is available in R from the mda function in
the mda library:
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library(mda)
mda(formula, data, subclasses, sub.df, tot.df, dimension, eps,
    iter, weights, method, keep.fitted, trace, ...)

Here is an example using the Spambase data set:

> spam.mda <- mda(formula=is_spam~., data=spambase.training)
> table(actual=spambase.validation$is_spam,
+   predicted=predict(spam.mda, newdata=spambase.validation))
      predicted
actual   0   1
     0 800  37
     1 109 435

Log-Linear Models
There are several ways to fit log-linear models in R. One of the simplest is to use the
function loglin:

loglin(table, margin, start = rep(1, length(table)), fit = FALSE,
       eps = 0.1, iter = 20, param = FALSE, print = TRUE)

The loglin function fits models using iterative proportional fitting (IPF). Here is a
description of the arguments to the loglin function.

Argument Description Default

table A contingency table to be fit  

margin A list of vectors with the marginal totals to be fit  

start A starting estimate for the fitted table rep(1, length(table))

fit A logical value specifying whether to return the fitted values FALSE

eps A numeric value specifying the maximum deviation allowed between
observed and fitted margins

0.1

iter A numeric value specifying the maximum number of iterations 20

param A logical value specifying whether to return the parameter values FALSE

print A logical value specifying whether to print the number of iterations
and the final deviation

TRUE

A more user friendly version is loglm:

library(MASS)
loglm(formula, data, subset, na.action, ...)

By using loglm, you can specify a data frame, a model formula, a subset of observa-
tions, and an action for NA variables, just like the lm function. (Other arguments are
passed to loglin.)

An alternative method for fitting log-linear models is to use generalized linear mod-
els. See “Generalized Linear Models” on page 421 for more details.

476 | Chapter 21: Classification Models



Machine Learning Algorithms for Classification
Much like regression, there are problems where linear methods don’t work well for
classification. This section describes some machine learning algorithms for classifi-
cation problems.

k Nearest Neighbors
One of the simplest techniques for classification problems is k nearest neighbors.
Here’s how the algorithm works:

1. The analyst specifies a “training” data set.

2. To predict the class of a new value, the algorithm looks for the k observations
in the training set that are closest to the new value.

3. The prediction for the new value is the class of the “majority” of the k nearest
neighbors.

To use k nearest neighbors in R, use the function knn in the class package:

libary(class)
knn(train, test, cl, k = 1, l = 0, prob = FALSE, use.all = TRUE)

Here is the description of the arguments to the knn function.

Argument Description Default

train A matrix or data frame containing the training data.

test A matrix or data frame containing the test data.

cl A factor specifying the classification of observations in the training set.

k A numeric value specifying the number of neighbors to consider. 1

l When k > 0, specifies the minimum vote for a decision. (If there aren’t enough votes, the value
doubt is returned.)

0

prob If prob=TRUE, then the proportion of votes for the winning class is returned as attribute prob. FALSE

use.all Controls the handling of ties when selecting nearest neighbors. If use.all=TRUE, then all
distances equal to the kth largest are included. If use.all=FALSE, then a random selection
of observations is used to select k neighbors.

TRUE

Let’s use knn to classify email messages as spam (or not spam) within the Spambase
data set. Unlike some other model types in R, k nearest neighbors doesn’t create a
model object. Instead, you provide both the training and the test data as arguments
to knn:

> spambase.knn <- knn(train=spambase.training,
+   test=spambase.validation,
+   cl=spambase.training$is_spam)
> summary(spambase.knn)
  0   1 
861 520

Machine Learning Algorithms for Classification | 477

Classification M
od-

els



The knn function returns an index of classes for each row in the test data. Let’s
compare the results returned by knn to the correct classification results in the original
data:

> table(predicted=spambase.knn, actual=spambase.validation$is_spam)
actual

predicted   0   1
0 740 121
1  97 423

As you can see, using k nearest neighbors with the default parameters correctly clas-
sifies 423 out of 544 messages as spam, but incorrectly classifies 97 out of 837 le-
gitimate messages as spam.

As an alternative, suppose that we examined the five nearest neighbors, instead of
just the nearest neighbor. To do this, we would set the argument k=5:

> spambase.knn5 <- knn(train=spambase.training,
+   test=spambase.validation,
+   cl=spambase.training$is_spam, k=5)
> summary(spambase.knn5)
  0   1 
865 516 
> table(predicted=spambase.knn5, actual=spambase.validation$is_spam)

actual
predicted   0   1

0 724 141
1 113 403

Classification Tree Models
We introduced regression trees in “Regression Tree Models” on page 439. Classifi-
cation trees work almost the same way. There are two key differences. First, CART
uses a different error function to measure how well different splits divide the training
data (or to measure cost/complexity trade-offs). Typically, Gini is used to measure
cost/complexity. Second, CART uses a different method to choose predicted values.
The predicted value at each terminal node is chosen by taking the most common
value among the response values in the test data.

As an example of how to use recursive partitioning trees for classification, let’s build
a quick tree model on the Spambase data set (output modified slightly to fit on the
page):

> spam.tree <- rpart(is_spam~., data=spambase.training)
> spam.tree
n= 3220 

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 3220 1269 0 (0.60590062 0.39409938)
2) char_freq_dollar< 0.0395 2361  529 0 (0.77594240 0.22405760)
4) word_freq_remove< 0.065 2148  333 0 (0.84497207 0.15502793)
8) char_freq_exclamation< 0.3905 1874  178 0 (0.905016 0.094984) *
9) char_freq_exclamation>=0.3905 274  119 1 (0.43430657 0.56569343)
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18) capital_run_length_total< 65.5 141   42 0 (0.7021277 0.2978723)
36) word_freq_free< 0.77 126   28 0 (0.77777778 0.22222222) *
37) word_freq_free>=0.77 15    1 1 (0.06666667 0.93333333) *

19) capital_run_length_total>=65.5 133   20 1 (0.150376 0.849624) *
5) word_freq_remove>=0.065 213   17 1 (0.07981221 0.92018779) *

3) char_freq_dollar>=0.0395 859  119 1 (0.13853318 0.86146682)
6) word_freq_hp>=0.385 69    7 0 (0.89855072 0.10144928) *
7) word_freq_hp< 0.385 790   57 1 (0.07215190 0.92784810) *

You can get much more detail about the tree object (and the process used to build
it) by calling the summary method. I’ve omitted the results because they are quite
lengthy.

You can use the printcp function to show the cp table for the fitted object:

> printcp(spam.tree)

Classification tree:
rpart(formula = is_spam ~ ., data = spambase.training)

Variables actually used in tree construction:
[1] capital_run_length_total char_freq_dollar
[3] char_freq_exclamation    word_freq_free
[5] word_freq_hp             word_freq_remove

Root node error: 1269/3220 = 0.3941

n= 3220 

CP nsplit rel error  xerror     xstd
1 0.489362      0   1.00000 1.00000 0.021851
2 0.141056      1   0.51064 0.51931 0.018041
3 0.043341      2   0.36958 0.37431 0.015857
4 0.036643      3   0.32624 0.34358 0.015300
5 0.010244      5   0.25296 0.28526 0.014125
6 0.010000      6   0.24271 0.27344 0.013866

Let’s take a look at the generated tree:

> plot(spam.tree, uniform=TRUE)
> text(spam.tree, all=TRUE,cex=0.75, splits=TRUE, use.n=TRUE, xpd=TRUE)

The results are shown in Figure 21-3. The library maptree contains an alternative
function for plotting classification trees. In many contexts, this function is more
readable and easier to use. Here is an example for this tree (see Figure 21-4):

> library(maptree)
> draw.tree(spam.tree, cex=0.5, nodeinfo=TRUE, col=gray(0:8 / 8))
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Figure 21-3. rpart tree for Spambase data, from plot.tree

Figure 21-4. rpart tree for Spambase data, plotted by draw.tree

Let’s take a look at how well the rpart model works:

> table(actual=spambase.validation$is_spam, 
+   predicted=predict(spam.tree, newdata=spambase.validation, type="class"))
      predicted
actual   0   1
     0 795  42
     1  96 448

Bagging

To use bagging models in R for classification problems, you can use the function
bagging in the package adabag (this function works only for classification, not
regression):

library(adabag)
bagging(formula, data, mfinal = 100, minsplit = 5, cp = 0.01, 

maxdepth = nlevels(vardep))

Here are the results for the Spambase data set:

> spam.bag <- bagging(formula=is_spam~., data=spambase.training)
> summary(spam.bag)

Length Class   Mode     
formula 3 formula call     
trees 100 -none-  list     
votes 6440 -none-  numeric  
class 3220 -none-  character
samples    322000 -none-  numeric  
importance     57 -none-  numeric  
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> table(actual=spambase.training$is_spam,
+   predicted=predict(spam.bag, newdata=spambase.training)$class)
      predicted
actual    0    1
     0 1878   73
     1  344  925
> table(actual=spambase.validation$is_spam,
+   predicted=predict(spam.bag, newdata=spambase.validation)$class)
      predicted
actual   0   1
     0 804  33
     1 162 382

You can also try the function bagging in the ipred library, which we used in “Bagging
for regression” on page 446.

Boosting

You can build boosting models for classification with the function ada in the package
ada (this function does not work for regression problems):

## Default S3 method:
ada(x, y,test.x, test.y=NULL, loss=c("exponential","logistic"),
    type=c("discrete","real","gentle"), iter=50, nu=0.1, bag.frac=0.5,
    model.coef=TRUE, bag.shift=FALSE, max.iter=20, delta=10^(-10),
    verbose=FALSE, na.action=na.rpart,...)

## S3 method for class 'formula':
ada(formula, data, ..., subset, na.action=na.rpart)

Let’s use ada to build a boosting model for the Spambase data set:

> spam.ada <- ada(formula=is_spam~., data=spambase.training, loss="logistic")
> spam.ada
Call:
ada(is_spam ~ ., data = spambase.training, loss = "logistic")

Loss: logistic Method: discrete   Iteration: 50 

Final Confusion Matrix for Data:
          Final Prediction
True value    0    1
         0 1922   29
         1   48 1221

Train Error: 0.024 

Out-Of-Bag Error:  0.038  iteration= 50 

Additional Estimates of number of iterations:

train.err1 train.kap1 
        48         48
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Here is how ada performed on this problem:

> table(actual=spambase.training$is_spam,
+   predicted=predict(spam.ada, newdata=spambase.training))
      predicted
actual    0    1
     0 1922   29
     1   48 1221
> table(actual=spambase.validation$is_spam,
+   predicted=predict(spam.ada, newdata=spambase.validation))
      predicted
actual   0   1
     0 803  34
     1  36 508

As you can see, we achieved a very low error rate with boosting (4% false positive
and 6.6% false negative), comparable with the results in the original study.

Additional implementations of boosting are available in the library mboost, which
we introduced in “Boosting for regression” on page 447.

Neural Networks
We introduced neural network models in “Neural Networks” on page 455; see that
section for a description of the arguments to nnet. As an example of how neural
network models can be used for classification problems, we’ll build a neural network
model to classify messages as “spam” or “not spam” in the Spambase data set:

> spam.nnet <- nnet(is_spam~., data=spambase.training, size=10, decay=0.1)
# weights:  591
initial  value 2840.007029 
iter  10 value 1902.105150
iter  20 value 1086.933253
iter  30 value 724.134231
iter  40 value 682.122500
iter  50 value 607.033261
iter  60 value 550.845571
iter  70 value 520.489178
iter  80 value 483.315802
iter  90 value 449.411087
iter 100 value 438.685285
final  value 438.685285 
stopped after 100 iterations

Let’s take a look at how the neural network model performed:

> table(actual=spambase.training$is_spam, 
+   predicted=predict(spam.nnet, type="class"))
      predicted
actual    0    1
     0 1889   62
     1   82 1187
> table(actual=spambase.validation$is_spam,
+   predicted=predict(spam.nnet,
+     newdata=spambase.validation,
+     type="class"))
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      predicted
actual   0   1
     0 796  41
     1  39 505

Note that neural network algorithms are nondeterministic (they use some random
values), so you might get different results even if you use the same code.

SVMs
Like neural networks, support vector machine models can also be used for either
regression or classification. As an example of how to use SVMs for classification,
we’ll also use the Spambase data set:

> library(e1071)
> spam.svm <- svm(is_spam~., data=spambase.training)
> spam.svm

Call:
svm(formula = is_spam ~ ., data = spambase.training)

Parameters:
   SVM-Type:  C-classification 
 SVM-Kernel:  radial 
       cost:  1 
      gamma:  0.01754386 

Number of Support Vectors:  975

> table(actual=spambase.validation$is_spam,
+   predicted=predict(spam.svm,
+     newdata=spambase.validation,
+     type="class"))
      predicted
actual   0   1
     0 807  30
     1  65 479

Random Forests
Random forests are another algorithm that can be used for either regression or clas-
sification problems. Here is how random forests can be used with the Spambase data
set:

> library(randomForest)
randomForest 4.5-30
> spam.rf <- randomForest(is_spam~., data=spambase.training)
> spam.rf

Call:
 randomForest(formula = is_spam ~ ., data = spambase.training) 

Type of random forest: classification
Number of trees: 500

No. of variables tried at each split: 7
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OOB estimate of  error rate: 5.16%
Confusion matrix:
     0    1 class.error
0 1890   61  0.03126602
1  105 1164  0.08274232

Notice the confusion matrix, showing how well the random forest performed on the
training data. Let’s take a look at how it did on the validation data:

> table(actual=spambase.validation$is_spam,
+   predicted=predict(spam.rf,
+     newdata=spambase.validation,
+     type="class"))
      predicted
actual   0   1
     0 812  25
     1  40 504
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22
Machine Learning

This chapter covers machine learning algorithms that were not included in Chap-
ter 20. In 20 and 21, we showed techniques for predicting values when you were
interested in a specific value. This chapter shows methods for finding patterns in
data when you aren’t quite sure what you’re looking for.

The techniques in this chapter are often called data mining. Data mining means
something very simple: looking for patterns in data. Unfortunately, the term “data
mining” now has negative connotations, much like the term “hacking” has negative
connotations. When properly used, data mining algorithms can be a good technique
when you are looking for patterns in large, unstructured data sources. R provides
implementations of several popular data mining algorithms.

Market Basket Analysis
Association rules are a popular technique for data mining. The association rule al-
gorithm was developed initially by Rakesh Agrawal, Tomasz Imielinski, and Arun
Swami at the IBM Almaden Research Center.1 It was originally designed as an effi-
cient algorithm for finding interesting relationships in large databases of customer
transactions. The algorithm finds sets of associations, items that are frequently as-
sociated with each other. For example, when analyzing supermarket data, you might
find that consumers often purchase eggs and milk together. The algorithm was de-
signed to run efficiently on large databases, especially databases that don’t fit into
a computer’s memory.

R includes several algorithms implementing association rules. One of the most pop-
ular is the a priori algorithm. To try it in R, use the apriori function in the arules
package:

library(arules)
apriori(data, parameter = NULL, appearance = NULL, control = NULL)

1. You can read their paper here: http://rakesh.agrawal-family.com/papers/sigmod93assoc.pdf.
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Here is a description of the arguments to apriori.

Argument Description Default

data An object of class transactions (or a matrix or data frame that can be coerced into that
form) in which associations are to be found.

parameter An object of class ASParameter (or a list with named components) that is used to specify
mining parameters. Parameters include support level, minimum rule length, maximum rule
length, and types of rules (see the help file for ASParameter for more information).

NULL

appearance An object of class APappearance (or a list with named components) that is used to specify
restrictions on the associations found by the algorithm.

NULL

control An object of class APcontrol (or a list with named components) that is used to control the
performance of the algorithm.

NULL

The apriori implementation is well engineered and thought out: it makes ample use
of S4 classes to define data types (including a transactions class for data and classes
to control parameters), and prints useful information when it is run. However, it
currently requires data sets to be loaded completely into memory.

As an example, we will look at a set of transactions from Audioscrobbler. Audio-
scrobbler was an online service that tracked the listening habits of users. The com-
pany is now part of Last.fm and still provides application programming interfaces
(APIs) for looking at music preferences. However, in 2005, the company released a
database of information on music preferences under a Creative Commons license.
The database consists of a set of records showing how many times each user listened
to different artists. For our purposes, we’ll ignore the count and just look at users
and artists. For this example, I used a random sample of 20,000 user IDs from the
database. Specifically, we will try to look for patterns in the artists that users listen to.

I loaded the data into R using the read.transactions function (in the arules
package):

> library(arules)
> audioscrobbler <- read.transactions(
+   file="~/Documents/book/data/profiledata_06-May-2005/transactions.csv",
+   format="single",
+   sep=",",
+   cols=c(1,2))

You can find the data in the nutshell package:

> library(nutshell)
> data(audioscrobbler)

To find some results, I needed to change the default settings. I looked for associations
at a 6.45% support level, which I specified through the parameter argument. (Why
6.45%? Because that returned exactly 10 rules on the test data, and 10 rules seemed
like the right length for an example.)

> audioscrobbler.apriori <- apriori(
+   data=audioscrobbler,
+   parameter=new("APparameter",support=0.0645))
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parameter specification:
 confidence minval smax arem  aval originalSupport support minlen

0.8    0.1    1 none FALSE TRUE  0.0645      1
 maxlen target   ext
      5  rules FALSE

algorithmic control:
 filter tree heap memopt load sort verbose
    0.1 TRUE TRUE  FALSE TRUE    2    TRUE

apriori - find association rules with the apriori algorithm
version 4.21 (2004.05.09)        (c) 1996-2004   Christian Borgelt
set item appearances ...[0 item(s)] done [0.00s].
set transactions ...[429033 item(s), 20001 transaction(s)] done [2.36s].
sorting and recoding items ... [287 item(s)] done [0.16s].
creating transaction tree ... done [0.03s].
checking subsets of size 1 2 3 4 done [0.25s].
writing ... [10 rule(s)] done [0.00s].
creating S4 object  ... done [0.17s].

As you can see, the apriori function includes some information on what it is doing
while running. After it finishes, you can inspect the returned object to learn more.
The returned object consists of association rules (and is an object of class arules).
Like most modeling algorithms, the object has an informative summary function that
tells you about the rules:

> summary(audioscrobbler.apriori)
set of 10 rules

rule length distribution (lhs + rhs):sizes
 3
10

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
      3       3       3       3       3       3

summary of quality measures:
    support          confidence          lift
 Min.   :0.06475   Min.   :0.8008   Min.   :2.613
 1st Qu.:0.06536   1st Qu.:0.8027   1st Qu.:2.619
 Median :0.06642   Median :0.8076   Median :2.651
 Mean   :0.06640   Mean   :0.8128   Mean   :2.696
 3rd Qu.:0.06707   3rd Qu.:0.8178   3rd Qu.:2.761
 Max.   :0.06870   Max.   :0.8399   Max.   :2.888

mining info:
data ntransactions support confidence

 audioscrobbler 20001  0.0645 0.8

You can view the returned rules with the inspect function:

> inspect(audioscrobbler.apriori)
   lhs rhs            support confidence     lift
1  {Jimmy Eat World,
    blink-182} => {Green Day} 0.06524674  0.8085502 2.780095
2  {The Strokes,
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    Coldplay} => {Radiohead} 0.06619669  0.8019382 2.616996
3  {Interpol,
    Beck} => {Radiohead} 0.06474676  0.8180670 2.669629
4  {Interpol,
    Coldplay} => {Radiohead} 0.06774661  0.8008274 2.613371
5  {The Beatles,
    Interpol} => {Radiohead} 0.06719664  0.8047904 2.626303
6  {The Offspring,
    blink-182} => {Green Day} 0.06664667  0.8399496 2.888058
7  {Foo Fighters,
    blink-182} => {Green Day} 0.06669667  0.8169014 2.808810
8  {Pixies,
    Beck} => {Radiohead} 0.06569672  0.8066298 2.632306
9  {The Smashing Pumpkins,
    Beck} => {Radiohead} 0.06869657  0.8287093 2.704359
10 {The Smashing Pumpkins,
    Pink Floyd} => {Radiohead} 0.06514674  0.8018462 2.616695

The left-hand side of the rules (lhs) forms the predicate of the rule; the right-hand
side (rhs) forms the conclusion. For example, consider rule 1. This rule means, “If
the user has listened to Jimmy Eat World and Blink-182, then for 6.524675% of the
time, he or she also listened to Green Day.” You can draw your own conclusions
about whether these results mean anything, other than that Audioscrobbler’s users
were fans of alternative and classic rock.

The arules package also includes an implementation of the Eclat algorithm, which
finds frequent item sets. To find item sets using the Eclat algorithm, try the function
eclat:

eclat(data, parameter = NULL, control = NULL

The eclat function accepts similar arguments as apriori (some of the parameters
within the arguments are slightly different). I tightened up the support level for the
eclat function in order to keep the number of results low. If you keep the default
parameters, then the algorithm will return item sets with only one item, which is not
very interesting. So I set the minimum length to 2 and the support level to 12.9%.
Here is an example of running eclat on the Audioscrobbler data:

> audioscrobbler.eclat <- eclat(
+    data=audioscrobbler,
+    parameter=new("ECparameter", support=0.129, minlen=2))

parameter specification:
 tidLists support minlen maxlen target   ext
    FALSE   0.129      2      5 frequent itemsets FALSE

algorithmic control:
 sparse sort verbose
      7   -2    TRUE

eclat - find frequent item sets with the eclat algorithm
version 2.6 (2004.08.16)         (c) 2002-2004   Christian Borgelt
create itemset ...
set transactions ...[429033 item(s), 20001 transaction(s)] done [2.44s].
sorting and recoding items ... [74 item(s)] done [0.14s].
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creating bit matrix ... [74 row(s), 20001 column(s)] done [0.01s].
writing  ... [10 set(s)] done [0.01s].
Creating S4 object  ... done [0.02s].

You can view information about the results with the summary function:

> summary(audioscrobbler.eclat)
set of 10 itemsets

most frequent items:
Green Day Radiohead Red Hot Chili Peppers

5 5 3
Nirvana The Beatles (Other)

3 2 2

element (itemset/transaction) length distribution:sizes
 2
10

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
      2       2       2       2       2       2

summary of quality measures:
    support
 Min.   :0.1291
 1st Qu.:0.1303
 Median :0.1360
 Mean   :0.1382
 3rd Qu.:0.1394
 Max.   :0.1567

includes transaction ID lists: FALSE

mining info:
data ntransactions support

 audioscrobbler 20001   0.129

You can also view the item sets with the inspect function:

> inspect(audioscrobbler.eclat)
   items support
1  {Red Hot Chili Peppers,
    Radiohead} 0.1290935
2  {Red Hot Chili Peppers,
    Green Day} 0.1397430
3  {Red Hot Chili Peppers,
    Nirvana} 0.1336433
4  {Nirvana,
    Radiohead} 0.1384931
5  {Green Day,
    Nirvana} 0.1382931
6  {Coldplay,
    Radiohead} 0.1538423
7  {Coldplay,
    Green Day} 0.1292435
8  {Green Day,
    Radiohead} 0.1335433
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9  {The Beatles,
    Green Day} 0.1290935
10 {The Beatles,
    Radiohead} 0.1566922

As above, you can draw your own conclusions about whether the results are
interesting.

Clustering
Another important data mining technique is clustering. Clustering is a way to find
similar sets of observations in a data set; groups of similar observations are called
clusters. There are several functions available for clustering in R.

Distance Measures
To effectively use clustering algorithms, you need to begin by measuring the distance
between observations. A convenient way to do this in R is through the function
dist in the stats package:

dist(x, method = "euclidean", diag = FALSE, upper = FALSE, p = 2)

The dist function computes the distance between pairs of objects in another object,
such as a matrix or a data frame. It returns a distance matrix (an object of type
dist) containing the computed distances. Here is a description of the arguments to
dist.

Argument Description Default

x The object on which to compute distances. Must be a data frame, matrix, or dist
object.

method The method for computing distances. Specify method="euclidean" for Euclidean
distances (2-norm), method="maximum" for the maximum distance between ob-
servations (supremum norm), method="manhattan" for the absolute distance
between two vectors (1-norm), method="canberra" for Canberra distances (see
the help file), method="binary" to regard nonzero values as 1 and zeros as 0, or
method="minkowski" to use the p-norm (the pth root of the sum of the pth powers
of the differences of the components).

"euclidean"

diag A logical value specifying whether the diagonal of the distance matrix should be
printed by print.dist.

FALSE

upper A logical value specifying whether the upper triangle of the distance matrix should
be printed.

FALSE

p The power of the Minkowski distance (when method="minkowski"). 2

An alternative method for computing distances between points is the daisy function
in the cluster package:

daisy(x, metric = c("euclidean", "manhattan", "gower"),
      stand = FALSE, type = list()
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The daisy function computes the pairwise dissimilarities between observations in a
data set. Here is a description of the arguments to daisy.

Argument Description Default

x A numeric matrix or data frame on which to compute distances.

metric A character value specifying the distance metric to use. Specify
metric="euclidean" for Euclidean distances, metric="manhattan" for
Manhattan distances (like walking around blocks in Manhattan), or met
ric="gower" to use Gower’s distance.

"euclidean"

stand A logical flag indicating whether to standardize measurements before computing
distances.

FALSE

type A list of values specifying the types of variables in x. Use "ordratio" for ratio-scaled
variables to be treated as ordinal variables, "logratio" for ratio-scaled variables
that must be logarithmically transformed, "assym" for asymmetric binary, and
"symm" for symmetric binary.

Clustering Algorithms
k-means clustering is one of the simplest clustering algorithms. To use k-means
clustering, use the function kmeans from the stats package:

kmeans(x, centers, iter.max = 10, nstart = 1,
       algorithm = c("Hartigan-Wong", "Lloyd", "Forgy",

"MacQueen")

Here is a description of the arguments to kmeans.

Argument Description Default

x A numeric matrix (or an object that can be coerced to a matrix) on which to cluster.

centers If a numeric value, specifies the number of clusters. If a numeric vector, specifies the
initial cluster centers.

iter.max A numeric value specifying the maximum number of iterations. 10

nstart Specifies the number of random sets to choose (if centers is a number). 1

algorithm A character value specifying the clustering algorithm to use. Legal values include
algorithm="Hartigan-Wong", algorithm="Lloyd",
algorithm="Forgy", and algorithm="MacQueen".

"Hartigan-
Wong"

As an example, let’s try building clusters on the San Francisco home sales data set.
First, we need to create a distance matrix from the data frame. To do this, we’ll need
to include only a subset of variables:

> sf.dist <- daisy(
+   na.omit(sanfrancisco.home.sales[,
+     c("price", "bedrooms", "squarefeet", "lotsize",
+       "year", "latitude", "longitude")]),
+   metric="euclidean",
+   stand=TRUE)
> summary(sf.dist)
973710 dissimilarities, summarized :
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     Min.   1st Qu.    Median      Mean   3rd Qu.      Max.
 0.015086  3.167900  4.186900  4.617100  5.432400 25.519000
Metric :  euclidean
Number of objects : 1396

Next, we’ll try k-means clustering. After some experimentation with different num-
bers of clusters, I found that six clusters gave some interesting results:

> sf.price.model.kmeans <- kmeans(sf.dist, centers=6)
> sf.price.model.kmeans$size
[1] 502   4 324 130  42 394
> sf.price.model.kmeans$withinss
[1] 346742.69  26377.99 446048.17 254858.23 211858.99 280531.60

Let’s label the original data set with the clusters so that we can show summary
statistics for each cluster:

> sanfrancisco.home.sales$cluster <- NA
> for (i in names(sf.price.model.kmeans$cluster)) {
+   sanfrancisco.home.sales[i,"cluster"] <-
+     sf.price.model.kmeans$cluster[i]
+ }

Here are the mean values for each cluster:

> by(sanfrancisco.home.sales[ ,
+      c("price", "bedrooms", "squarefeet",
+        "lotsize", "year", "latitude", "longitude") ],
+    INDICES=sanfrancisco.home.sales$cluster,
+    FUN=mean)

sanfrancisco.home.sales$cluster: 1
price      bedrooms    squarefeet       lotsize year

620227.091633      1.123506   1219.633466   2375.193227   1933.109562
     latitude     longitude
    37.729114   -122.428059
-------------------------------------------------------
sanfrancisco.home.sales$cluster: 2

price      bedrooms    squarefeet       lotsize year
7258750.00000       7.25000    7634.75000    5410.25000    1926.75000
     latitude     longitude
     37.79023    -122.44317
-------------------------------------------------------
sanfrancisco.home.sales$cluster: 3

price      bedrooms    squarefeet       lotsize          year
 1.151657e+06  2.040123e+00  2.150068e+03  3.003188e+03  1.931238e+03
     latitude     longitude
 3.776289e+01 -1.224434e+02
-------------------------------------------------------
sanfrancisco.home.sales$cluster: 4

price      bedrooms    squarefeet       lotsize          year
 1.571292e+06  2.907692e+00  2.718185e+03  4.677015e+03  1.934446e+03
     latitude     longitude
 3.777158e+01 -1.224429e+02
-------------------------------------------------------
sanfrancisco.home.sales$cluster: 5

price      bedrooms    squarefeet       lotsize          year
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 2.297417e+06  2.928571e+00  4.213286e+03  6.734905e+03  1.924929e+03
     latitude     longitude
 3.777424e+01 -1.224362e+02
-------------------------------------------------------
sanfrancisco.home.sales$cluster: 6
        price      bedrooms    squarefeet       lotsize          year
886409.898477      1.284264   1518.230964   2857.159898   1931.637056
     latitude     longitude
    37.752869   -122.474225

As an alternative, you may want to try partitioning around medoids, which is a more
robust version of k-means clustering. To use this algorithm in R, try the pam function
in the cluster library:

libary(cluster)
pam(x, k, diss = inherits(x, "dist"), metric = "euclidean",
    medoids = NULL, stand = FALSE, cluster.only = FALSE,
    do.swap = TRUE,
    keep.diss = !diss && !cluster.only && n < 100,
    keep.data = !diss && !cluster.only, trace.lev = 0)

Let’s try pam on the San Francisco home sales data set:

> sf.price.model.pam <- pam(sf.dist, k=6)

There is a plot method for partition objects (like the object returned by pam), which
will display some useful information about the clusters:

> plot(sf.price.model.pam)

The results of this call are shown in Figure 22-1. The call produces two different
plots: a cluster plot and a silhouette plot.

Figure 22-1. Information about San Francisco house price pam model
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Many other clustering algorithms are available in R:

• Agglomerative clustering is available through the agnes function in the
cluster package.

• Divisive hierarchical clustering is available through the diana function in the
cluster package or through mona (if only binary variables are used).

• Fuzzy clustering is available through the fanny function in the cluster package.

• Self-organizing maps are available through the batchSOM and SOM functions in
the class package.
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23
Time Series Analysis

Time series are a little different from other types of data. Time series data often has
long-term trends or periodic patterns that traditional summary statistics don’t cap-
ture. To find these patterns, you need to use different types of analyses. As an ex-
ample of a time series, we will revisit the turkey price data that we first saw in “Time
Series” on page 94.

Autocorrelation Functions
One important property of a time series is the autocorrelation function. You can
estimate the autocorrelation function for time series using R’s acf function:

acf(x, lag.max = NULL,
    type = c("correlation", "covariance", "partial"),
    plot = TRUE, na.action = na.fail, demean = TRUE, ...)

The function pacf is an alias for acf, except with the default type of "partial":

pacf(x, lag.max, plot, na.action, ...)

By default, this function plots the results. (An example plot is shown in “Plotting
Time Series” on page 220.) As an example, let’s show the autocorrelation function
of the turkey price data:

> library(nutshell)
> data(turkey.price.ts)
> acf(turkey.price.ts, plot=FALSE)

Autocorrelations of series ‘turkey.price.ts’, by lag

0.0000 0.0833 0.1667 0.2500 0.3333 0.4167 0.5000 0.5833 0.6667 0.7500 
 1.000  0.465 -0.019 -0.165 -0.145 -0.219 -0.215 -0.122 -0.136 -0.200 
0.8333 0.9167 1.0000 1.0833 1.1667 1.2500 1.3333 1.4167 1.5000 1.5833 
-0.016  0.368  0.723  0.403 -0.013 -0.187 -0.141 -0.180 -0.226 -0.130 

> pacf(turkey.price.ts,plot=FALSE)
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Partial autocorrelations of series ‘turkey.price.ts’, by lag

0.0833 0.1667 0.2500 0.3333 0.4167 0.5000 0.5833 0.6667 0.7500 0.8333 
 0.465 -0.300 -0.020 -0.060 -0.218 -0.054 -0.061 -0.211 -0.180  0.098 
0.9167 1.0000 1.0833 1.1667 1.2500 1.3333 1.4167 1.5000 1.5833 
 0.299  0.571 -0.122 -0.077 -0.075  0.119  0.064 -0.149 -0.061

The function ccf plots the cross-correlation function for two time series:

ccf(x, y, lag.max = NULL, type = c("correlation", "covariance"),
    plot = TRUE, na.action = na.fail, ...)

By default, this function will plot the results. You can suppress the plot (to just view
the function) with the argument plot=FALSE.

As an example of cross-correlations, we can use average ham prices in the United
States. These are included in the nutshell package as ham.price.ts:

> library(nutshell)
> data(ham.price.ts)
> ccf(turkey.price.ts, ham.price.ts, plot=FALSE)

Autocorrelations of series 'X', by lag

-1.0833 -1.0000 -0.9167 -0.8333 -0.7500 -0.6667 -0.5833 -0.5000 -0.4167 
  0.147   0.168  -0.188  -0.259  -0.234  -0.098  -0.004   0.010   0.231 
-0.3333 -0.2500 -0.1667 -0.0833  0.0000  0.0833  0.1667  0.2500  0.3333 
  0.228   0.059  -0.038   0.379   0.124  -0.207  -0.315  -0.160  -0.084 
 0.4167  0.5000  0.5833  0.6667  0.7500  0.8333  0.9167  1.0000  1.0833 
 -0.047  -0.005   0.229   0.223  -0.056  -0.099   0.189   0.039  -0.108

You can apply filters to a time series with the filter function or convolutions (using
fast Fourier transforms [FFTs]) with the convolve function.

Time Series Models
Time series models are a little different from other models that we’ve seen in R. With
most other models, the goal is to predict a value (the response variable) from a set
of other variables (the predictor variables). Usually, we explicitly assume that there
is no autocorrelation—that the sequence of observations does not matter.

With time series, we assume the opposite: we assume that previous observations
help predict future observations (see Figure 23-1).

To fit an autoregressive model to a time series, use the function ar:

ar(x, aic = TRUE, order.max = NULL,
   method=c("yule-walker", "burg", "ols", "mle", "yw"),
   na.action, series, ...)
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Here is a description of the arguments to ar.

Argument Description  

x A time series.  

aic A logical value that specifies whether the Akaike information criterion is used to
choose the order of the model.

TRUE

order.max A numeric value specifying the maximum order of the model to fit. NULL

method A character value that specifies the method to use for fitting the model. Specify
method="yw" (or method="yule-walker") for the Yule-Walker method,
method="burg" for the Burg method, method="ols" for ordinary least
squares, or method="mle" for maximum likelihood estimation.

c("yule-
walker",
"burg",
"ols", "mle",
"yw")

na.action A function that specifies how to handle missing values.  

series A character vector of names for the series.  

demean A logical value specifying if a mean should be estimated during fitting.  

var.method Specifies the method used to estimate the innovations variance when
method="ar.burg".

 

... Additional arguments, depending on method.  

The ar function actually calls one of four other functions, depending on the fit
method chosen: ar.yw, ar.burg, ar.ols, or ar.mle. As an example, let’s fit an
autoregressive model to the turkey price data:

> library(nutshell)
> data(turkey.price.ts)
> turkey.price.ts.ar <- ar(turkey.price.ts)
> turkey.price.ts.ar

Call:
ar(x = turkey.price.ts)

Coefficients:

Figure 23-1. Extrapolating times series (http://xkcd.com/605/)
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      1 2 3 4 5 6 7  
 0.3353  -0.1868  -0.0024   0.0571  -0.1554  -0.0208   0.0914  
      8 9       10       11       12  
-0.0658  -0.0952   0.0649   0.0099   0.5714  

Order selected 12  sigma^2 estimated as  0.05182

You can use the model to predict future values. To do this, use the predict function.
Here is the method for ar objects:

predict(object, newdata, n.ahead = 1, se.fit = TRUE, ...)

The argument object specifies the model object to use for prediction. You can use
newdata to specify new data to use for prediction or n.ahead to specify a number of
periods ahead to predict. The argument se.fit specifies whether to return standard
errors of the prediction error.

Here is a forecast for the next 12 months for turkey prices:

> predict(turkey.price.ts.ar, n.ahead=12)
$pred

Jan       Feb       Mar       Apr       May       Jun
2008 1.8827277 1.7209182
2009 1.5439290 1.6971933 1.5849406 1.7800358

Jul       Aug       Sep       Oct       Nov       Dec
2008 1.7715016 1.9416776 1.7791961 1.4822070 0.9894343 1.1588863
2009

$se
Jan       Feb       Mar       Apr       May       Jun

2008 0.2276439 0.2400967
2009 0.2450732 0.2470678 0.2470864 0.2480176

Jul       Aug       Sep       Oct       Nov       Dec
2008 0.2406938 0.2415644 0.2417360 0.2429339 0.2444610 0.2449850
2009

To take a look at a forecast from an autoregressive model, you can use the function
ts.plot. This function plots multiple time series on a single chart, even if the times
are not overlapping. You can specify colors, line types, or other characteristics of
each series as vectors; the ith place in the vector determines the property for the ith
series.

Here is how to plot the turkey price time series as a solid line, and a projection 24
months into the future as a dashed line:

ts.plot(turkey.price.ts,
predict(turkey.price.ts.ar,n.ahead=24)$pred,
lty=c(1:2))

The plot is shown in Figure 23-2. You can also fit autoregressive integrated moving
average (ARIMA) models in R using the arima function:

arima(x, order = c(0, 0, 0),
      seasonal = list(order = c(0, 0, 0), period = NA),
      xreg = NULL, include.mean = TRUE,
      transform.pars = TRUE,
      fixed = NULL, init = NULL,
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      method = c("CSS-ML", "ML", "CSS"),
      n.cond, optim.method = "BFGS",
      optim.control = list(), kappa = 1e6)

Figure 23-2. Forecast of turkey prices using an autoregressive model

Here is a description of the arguments to arima.

Argument Description Default

x A time series.  

order A numeric vector (p, d, q), where p is the AR order, d is the degree of
differencing, and q is the MA order.

c(0, 0, 0)

seasonal A list specifying the seasonal part of the model. The list contains two parts: the
order and the period.

list(order =
c(0, 0, 0),
period = NA)

xreg An (optional) vector or matrix of external regressors (with the same number
of rows as x).

NULL

include.mean A logical value specifying whether the model should include a mean/intercept
term.

TRUE

tranform.pars A logical value specifying whether the AR parameters should be transformed
to ensure that they remain in the region of stationarity.

TRUE

fixed An optional numeric vector specifying fixed values for parameters. (Only NA
values are varied.)

NULL

init A numeric vector of initial parameter values. NULL

method A character value specifying the fitting method to use. The default setting,
method="CSS-ML", uses conditional sum of squares to find starting values,
then maximum likelihood. Specify method="ML" for maximum likelihood
only or method="CSS" for conditional sum of squares only.

c("CSS-ML",
"ML", "CSS")

n.cond A numeric value indicating the number of initial values to ignore (used only
for conditional sum of squares).

 

optim.method A character value that is passed to optim as method. "BFGS"
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Argument Description Default

optim.control A list of values that is passed to optim as control. list()

kappa The prior variance for the past observations in a differenced model. See the
help file for more information.

1e-6

The arima function uses the optim function to fit models. You can use the result of
an ARIMA model to smooth a time series with the tsSmooth function. For more
information, see the help file for tsSmooth.
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VI
Additional Topics

This part of the book contains chapters on advanced topics that don’t fit neatly into
other parts of the book.





24
Optimizing R Programs

In my experience, R runs well on modern computers and moderate-size data sets,
returning results in seconds or minutes. If you’re dealing with small data sets and
doing normal calculations, you probably don’t have to worry too much about per-
formance. However, if you are dealing with big data sets or doing very complex
calculations, then you could run into trouble.

This chapter includes some tips for making R run faster, especially when tackling
unusually large or complicated problems.

Measuring R Program Performance
To make your programs faster, you have to measure what they are doing. You have
to determine what parts of your program are taking the most time to determine
where to focus your optimization efforts. Additionally, you have to measure resource
consumption (particularly memory usage) and determine how this affects perfor-
mance.

Timing
The easiest way to measure your programs is to use the system.time function:

system.time(expr, gcFirst = TRUE)

This function will execute the expression expr, optionally running the garbage col-
lector first (if gcFirst=TRUE). It won’t give you a detailed report on where a program
is spending its time, but it won’t slow down the performance of the code you are
measuring either. Here’s an example:

> do.stuff <- function() {
+   a <- 1 : 10000
+   for (i in 1 : 10000)
+     a[i] <- a[i]^2
+   a
+ }
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> system.time(do.stuff())
   user  system elapsed
  0.081   0.001   0.106

This shows the user time, system time, and total elapsed time required to run your
program. The user time shows the time taken by R itself, the system time shows the
time used by your operating system (for example, to read files or to communicate
with network resources), and the elapsed time shows the total elapsed time. This
helps you distinguish between time that your computer is doing other things (like
getting email), and time that it is doing work in R.

Profiling
To measure where your R programs are spending their time (this is called profil-
ing), you can use the Rprof function to profile your code:

Rprof(filename = "Rprof.out", append = FALSE, interval = 0.02,
       memory.profiling=FALSE)

Rprof accepts the following options:

Argument Description Default

filename Specifies the path to which Rprof will write results. Use NULL to stop profiling. NULL

append Controls whether Rprof will append results to the file (if it exists), or overwrite the file FALSE

interval Specifies the time between samples 0.02

memory.profiling Specifies whether to write memory information to the file FALSE

After using Rprof to start and stop collecting profiling data, you use the summaryR
prof function to view the results:

summaryRprof(filename = "Rprof.out", chunksize = 5000,
memory=c("none","both","tseries","stats"),
index=2, diff=TRUE, exclude=NULL)

Here is a description of the arguments to summaryRprof:

Argument Description Default

filename Specifies the path from which to read results. "Rprof.out"

chunksize Number of lines to read at once 5000

memory Specifies how to show memory information. Specify memory="none" to exclude
memory information, memory="both" to include both timing and memory data,
memory="tseries" to present the data as a time series, or
memory="tstats" to show statistics on memory consumption.

"none"

index Specifies whether to write memory information to the file 2

diff Specifies whether to use changes in memory usage or total memory usage in memory
statistics

TRUE

exclude Specifies a set of functions to exclude from the results NULL
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Here’s a quick example:

> # define a function to create arrays with text labels for each element
> # We'll revisit this example below
> labeled.array <- function(n) {
+   a <- 1:n
+   from <- "0123456789"
+   to <- "ABCDEFGHIJ"
+   for (i in 1:n) {
+     names(a)[i] <- chartr(from,to,i)
+   }
+   a
+ }
> # turn on profiling
> Rprof(filename="~/labeled.array.profiling.out"), memory.profiling=TRUE
> # do some work
> arrays <- list()
> for (i in 10:15) {
+   arrays[[as.character(2 **i)]] <- labeled.array(2 ** i)
+ }
> # turn off profiling
> Rprof()
> # look at the output
> summaryRprof(filename="~/labeled.array.profiling.out")
$by.self

self.time self.pct total.time total.pct mem.total
"names<-" 28.92    63.87      28.92     63.87     229.0
"labeled.array"     15.84    34.98      45.28    100.00     380.5
"chartr" 0.52     1.15       0.52      1.15       5.6

$by.total
total.time total.pct mem.total self.time self.pct

"labeled.array"      45.28    100.00     380.5     15.84    34.98
"names<-" 28.92     63.87     229.0     28.92    63.87
"chartr" 0.52      1.15       5.6      0.52     1.15

$sample.interval
[1] 0.02

$sampling.time
[1] 45.28

As you can see, the names assignment in the labeled.array function consumed most
of the time taken by this expression (63.87%). In contrast, the function chartr used
1.15%. So if you wanted to optimize this program, your best choice would be to
optimize the assignment statement, not the character swap function.

Monitor How Much Memory You Are Using
The function gc serves two purposes. First, it causes garbage collection to occur
immediately, potentially freeing up storage space. Second, it displays statistics on
free memory:

> gc()
used  (Mb) gc trigger   (Mb)  max used   (Mb)
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Ncells   774900  20.7     919870   24.6   3032449   81.0
Vcells 53549840 408.6  176511395 1346.7 380946917 2906.4

To check on the (approximate) size of a specific object, use the function object.size:

> object.size(1)
32 bytes
> object.size("Hello world!")
72 bytes
> object.size(audioscrobbler)
39374504 bytes

The function memory.profile displays information on memory usage by object type:

> memory.profile()
       NULL      symbol    pairlist     closure environment
          1        9479      160358        3360        1342
    promise    language     special     builtin        char
       8162       44776         138        1294       48872
    logical     integer      double     complex   character
       4727        8373        2185           4       29761
        ...         any        list  expression    bytecode
          0           0        3488           2           0
externalptr     weakref         raw          S4
        993         272         273        1008

To monitor how much memory R is using on a Microsoft Windows system, you can
use the function memory.size. (On other platforms, this function returns the value
Inf with a warning.) On startup, here is how much memory R used:

> memory.size()
[1] 10.58104

This function reports memory usage in MB. You can check the maximum amount
of memory used so far through the memory.size(max=TRUE) option:

> memory.size(max=TRUE)
[1] 12.3125

Profiling Memory Usage
To get more detailed statistics on memory usage in R, you can use the function
Rprofmem:

Rprofmem(filename = "Rprofmem.out", append = FALSE, threshold = 0)

This function accepts the following arguments:

Argument Description Default

filename Pathname to which Rprofmem should write profiling data "Rprofmem.out"

append Specifies whether to append to an existing file or overwrite it FALSE

threshold Specifies a threshold value for writing results; this specifies that only objects
allocated on R’s large vector heap of this size and above will be recorded

0
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Another useful function in R is the tracemem function and the accompanying func-
tions untracem and retracemen:

tracemem(x)
untracemem(x)
retracemem(x, previous = NULL)

These functions will cause R to print a message whenever R code copes the specified
object x, disables that functionality, or reenables it.

Optimizing Your R Code
Once you figure out where your program is spending its time, you can focus on
improving those areas. This section describes some common causes for poor per-
formance and shows how to resolve them.

Using Vector Operations
R is a functional language with built-in support for vector operations. Whenever
possible, you should use vector operations in your code and not write iterative al-
gorithms. This section explains why.

Iterative algorithms and vector operations

Let’s consider a simple problem: calculating a vector with the square of every integer
between 1 and n. Consider the following naive implementation:

> naive.vector.of.squares <- function(n) {
+   v <- 1:n
+   for (i in 1:n)
+     v[i] <- v[i]^2
+   v
+ }
> naive.vector.of.squares(10)
 [1]   1   4   9  16  25  36  49  64  81 100

How does the performance of this function vary with n? Let’s do a quick experiment:

> # 10,000 values
> system.time(naive.vector.of.squares(10000))
   user  system elapsed
  0.037   0.000   0.037
> # 10,000,000 values
> system.time(naive.vector.of.squares(10000000))
   user  system elapsed
 30.211   0.233  30.178

As you can see, the time required to compute the vector varies linearly with the size
of the vector (n). This makes sense: R is looping through all n elements in the vector
and changing each element one at a time. (Note that R doesn’t actually copy the
vector v repeatedly inside the loop; see “Objects Are Copied in Assignment State-
ments” on page 54 for more about how this works.)
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It turns out that there is a much better way to implement this function: you can use
a single vector operation. Built-in vector functions like ̀ ^` are implemented natively
in C or Fortran code and not calculated by the R interpreter, and are calculated in
a single call to the underlying library. Many common math functions are included
as native functions in R. In most cases, these functions are implemented as calls to
external math libraries. For many reasons, these vector math operations can be much
faster. As an example, let’s re-implement the vector of squares function that we
implemented above:

> better.vector.of.squares <- function(n) {
+   (1:n)^2
+ }

How does the better algorithm compare with the original? Let’s try the two algo-
rithms with inputs of size 10,000 and 10,000,000:

> # 10,000 values
> system.time(better.vector.of.squares(10000))
   user  system elapsed
  0.001   0.000   0.000
> # 10,000,000 values
> system.time(better.vector.of.squares(10000000))
   user  system elapsed
  0.084   0.001   0.083

As you can see, better.vector.of.squares performs much better than naive.vec
tor.of.squares; it’s over 300 times as fast. Although many programmers find iter-
ative algorithms like the one in naive.vector.of.squares more intuitive than vector
operations like the one used in better.vector.of.squares, vector operations are
much, much faster. Whenever possible, use vector operations in R.

Transforming problems to use built-in functions

Clearly, R’s built-in math functions perform better than algorithms coded in R. (As
an obvious example, if you want to multiply two matrices together, you should
probably use the %∗% operator and not write your own matrix multiplication code
in R.)

Often, it is possible to use built-in functions by transforming a problem. As an ex-
ample, let’s consider an example from queueing theory. Queueing theory is the study
of systems where “customers” arrive, wait in a “queue” for service, are served, and
then leave. As an example, picture a cafeteria with a single cashier. After customers
select their food, they proceed to the cashier for payment. If there is no line, they
pay the cashier and then leave. If there is a line, they wait in the line until the cashier
is free. If we suppose that customers arrive according to a Poisson process and that
the time required for the cashier to finish each transaction is given by an exponential
distribution, then this is called an M/M/1 queue. (This means “memoryless” arrivals,
“memoryless” service time, and one server.)

A very useful formula for queueing theory is Erlang’s B formula. Picture a call center
with n operators but no queue: if a customer calls the center and there is a free
operator, then the operator will answer the customer’s call. However, if every
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operator is busy, the customer will get a busy signal. Further, let’s make the same
assumptions as above: customers arrive according to a Poisson process, and the time
required to service each call is given by an exponential distribution. This is called
an M/M/n/n queue. Erlang’s B formula tells us the probability that all operators are
busy at a given time; it is the probability that a customer who calls into the data
center will get a busy signal:

Unfortunately, you’ll find that it’s hard to calculate this value directly for more than
a handful of operators because R can’t handle numbers as big (or as small) as it needs
to handle. One trick to perform this calculation is to transform this formula into
formulas that are already implemented as R functions: Poisson distribution
calculations:1

So, to calculate Erlang’s B formula in R, you could use an R function like this:

erlangb <- function(c, r) {dpois(c,r)/ppois(c,r)}

By using the built-in function, we are using compiled code written in a low-level
language (usually C or Fortran, depending on the function). This code is typically
faster than interpreted R code.

Lookup Performance in R
You can use vector, lists, or environment objects to store objects in R and to look
them up by key. But environment objects have two special features that they don’t
share with vectors or lists. First, environment objects are mutable. Secondly, envi-
ronment objects are implemented in hash tables, so you can look up values in (es-
sentially) constant time.

Even better, R allows you to define new functions for working with objects and use
native R syntax to manipulate these objects. So it’s possible to substitute environ-
ment objects for lists and vectors without rewriting all your existing code.

Let me explain how this works.

1. Another alternative is to notice that Erlang’s B formula can be rewritten as a recurrence and
write a program to iteratively calculate the probability. For more details on this method, see
a book like Fundamentals of Queueing Theory by Donald Gross et al. (Wiley-InterScience).

Optimizing Your R Code | 509

Optim
izing R Pro-

gram
s



Lookups and R objects

It’s often useful to look up data in a table of values, and it is tempting to use names
to look up items in R vectors. For small data sets, this is OK. Unfortunately, you
might run into some performance problems with large tables. Let’s take a closer look
at the performance of table lookups in R.

To start with, let’s build a large, labeled vector in R. To make things simple, I wrote
a function to generate a labeled vector for a given input size. I filled each vector with
sequential numerical values. Then I assigned each value a label by translating each
value to a character string.

> labeled.array <- function(n) {
+   a <- 1:n
+   from <- "0123456789"
+   to <- "ABCDEFGHIJ"
+   for (i in 1:n) {
+     names(a)[i] <- chartr(from,to,i)
+   }
+   a
+ }

Here’s an example of the output of this function:

> a.20 <- labeled.array(20)
> a.20
 B  C  D  E  F  G  H  I  J BA BB BC BD BE BF BG BH BI BJ CA
 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20

Now let’s do the same thing for environments. We’ll create a new environment,
specifying that a hash table should be used. Then we’ll assign identical values to the
labeled.array function:

> labeled.environment <- function(n) {
+   e <- new.env(hash=TRUE, size=n)
+   from <- "0123456789"
+   to <- "ABCDEFGHIJ"
+   for (i in 1:n) {
+     assign(x=chartr(from, to, i), value=i, envir=e)
+   }
+   e
+ }

Here are a couple of examples showing how you fetch values from the environment
object:

> get("B", envir=e.20)
[1] 1
> get("CA", envir=e.20)
[1] 20

Alternately, you can use the `[[` operator:

> e.20[["B"]]
[1] 1
> e.20[["CA"]]
[1] 20
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We’d like to show how long it takes to look up values in an array using different
methods. Let’s start by creating a set of arrays and environments for testing:

> arrays <- list()
> for (i in 10:15) {
+   arrays[[as.character(2 ** i)]] <- labeled.array(2 ** i)}
> environments <- list()
> for (i in 10:15) {
+   environments[[as.character(2 ** i)]] <- labeled.environment(2 ** i)}

Notice that I created a set of different size arrays and environments for testing. I
created sets for different powers of 2, between 1,024 and 32,768.

Now the fun part. Let’s write a test function to compute the time required to perform
the lookups on different data objects. We’ll design the test function so that we can
vary the input data type, lookup operation, data size, and number of repetitions.

To do the calculations, I took advantage of a nifty R feature. R allows you to pass
around R functions, then execute these expressions later. This allowed me to write
a single lookup expression as a functions and then apply this function to different
data objects.

We will show how to do the lookup in a few different ways:

• by index

• by label, using the single-bracket lookup operator

• by label, using the double-bracket lookup operator with exact matches only
(the default)

• by label, using the double-bracket lookup operator with inexact matches
allowed

I performed 1,024 lookups for each lookup type and data size. Here is the script that
I used to calculate the results:

test_expressions <- function(description, fun, data, reps) {
  # data should be a list
  # fun should be a function that takes a data object, length,
  #   and number of repetitions
  # description should be a char
  cat(paste(description,"\n"))
  results <- vector()
  for (n in names(data)) {
     results[[n]] <- system.time(fun(data[[n]],
       as.integer(n), reps))[["user.self"]]
  }
  print(results)
}

test_expressions(
  "first element, by index:",
  function(d,l,r) {
     s <- 0
     for (v in 1:r) {s <- s + d[1]}
  },
  arrays, 1024)
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test_expressions(
  "last element, by index:",
  function(d,l,r) {
     s <- 0
     for (v in 1:r) {s <- s + d[l]}
  },
  arrays, 1024)

# useful definitons for translation
from <- "0123456789"
to <- "ABCDEFGHIJ"

test_expressions(
  "arrays, first element, by label, single bracket:",
  function(d,l,r) {
     s <- 0
     min <- chartr(from,to,1)
     for (v in 1:r) {s <- s + d[min]}
  },
  arrays, 1024)

test_expressions(
  "arrays, last element, by label, single bracket:",
  function(d,l,r) {
     s <- 0
     max <- chartr(from,to,l)
     for (v in 1:r) {s <- s + d[max]}
  },
  arrays, 1024)

test_expressions(
  "arrays, first element, by label, double bracket, exact (default):",
  function(d,l,r) {
     s <- 0
     min <- chartr(from,to,1)
     for (v in 1:r) {s <- s + d[[min]]}
  },
  arrays, 1024)

test_expressions(
  "arrays, last element, by label, double bracket, exact (default):",
  function(d,l,r) {
     s <- 0
     max <- chartr(from,to,l)
     for (v in 1:r) {s <- s + d[[max]]}
  },
  arrays, 1024)

test_expressions(
  "arrays, first element, by label, double bracket, not exact:",
  function(d,l,r) {
     s <- 0
     min <- chartr(from,to,1)
     for (v in 1:r) {s <- s + d[[min, exact=FALSE]]}
  },
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  arrays, 1024)

test_expressions(
  "arrays, last element, by label, double bracket, not exact:",
  function(d,l,r) {
     s <- 0
     max <- chartr(from,to,l)
     for (v in 1:r) {s <- s + d[[max, exact=FALSE]]}
  },
  arrays, 1024)

test_expressions(
  "environments, first element, by label:",
  function(d,l,r) {
     s <- 0;
     min <- chartr(from,to,1);
     for (v in 1:r) {s <- s + get(x=min,envir=d)}
  },
  environments, 1024)

test_expressions(
  "environments, last element, by label:",
  function(d,l,r) {
     s <- 0;
     max <- chartr(from,to,l);
     for (v in 1:r) {s <- s + get(x=max,envir=d)}
  },
  environments, 1024)

Here are the results of running these tests on my computer (an aluminum MacBook,
2 GHz, 4 GB RAM):

first element, by index:
 1024  2048  4096  8192 16384 32768
0.010 0.003 0.004 0.003 0.005 0.004

last element, by index:
 1024  2048  4096  8192 16384 32768
0.010 0.004 0.004 0.004 0.003 0.004

arrays, first element, by label, single bracket:
 1024  2048  4096  8192 16384 32768
0.268 0.282 0.588 1.439 2.728 5.397

arrays, last element, by label, single bracket:
 1024  2048  4096  8192 16384 32768
0.173 0.278 0.582 1.517 2.713 5.266

arrays, first element, by label, double bracket, exact (default):
 1024  2048  4096  8192 16384 32768
0.002 0.002 0.002 0.002 0.003 0.002

arrays, last element, by label, double bracket, exact (default):
 1024  2048  4096  8192 16384 32768
0.036 0.070 0.136 0.273 0.549 1.107
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arrays, first element, by label, double bracket, not exact:
 1024  2048  4096  8192 16384 32768
0.010 0.003 0.003 0.002 0.003 0.003

arrays, last element, by label, double bracket, not exact:
 1024  2048  4096  8192 16384 32768
0.042 0.069 0.137 0.275 0.551 1.112

environments, first element, by label:
 1024  2048  4096  8192 16384 32768
0.012 0.005 0.006 0.006 0.005 0.005

environments, last element, by label:
 1024  2048  4096  8192 16384 32768
0.012 0.005 0.006 0.005 0.006 0.005

Notice that lookups by array are fastest, followed by lookups of the first element
using the double-bracket notation. Lookups with the single-bracket notation take
substantially longer, but take approximately the same time as looking up the last
element by double-bracket notation.

If you test this yourself with other array sizes, you’ll find that the performance of
lookups by index is essentially constant, but that lookups by reference scale linearly
with the size of the array (in the worst case).

The reason is that vectors are implemented as an array of values and an array of
names. Looking up a value by location takes essentially constant time. Looking up
a value by label requires R to scan every label in the array of names. In the worst
case, R has to scan every name in the array. When you use single-bracket notation,
R tried to match all elements with a given label, including fuzzy matches. That means
that R scans all the element in the array when you use single-bracket notation. Using
double-bracket notation works slightly better; R will return the first matching ele-
ment that it finds, so it performs well when looking up the first element but badly
when looking up the last.

For those of you with an algorithm background, here’s a summary:

• Array value lookup by index: Θ(1) time

• Array value lookup by label, using the single-bracket lookup operator: : Θ(n)
time

• Array value lookup by label, using the double-bracket lookup operator with
exact matches only (the default): O(1) time

• Array value lookup by label, using the double-bracket lookup operator with
inexact matches allowed: O(1) time

Notice that lookups in the environment are much, much faster. (If you look at other
numbers of elements, you’ll find that performance is essentially constant.) The rea-
son for this is that environments are implemented using hash tables. Hash tables are
slower than index lookups by a constant factor: it takes a little time to calculate the
hash for an item. (By the way, I haven’t checked exactly which hash implementation
is used in R. Depending on the implementation, hash lookups could take up to O(n)
time in the worst case.)
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For those of you with an algorithm background, here’s a summary:

• Environment value lookup by label: O(1) time on average

So what are the lessons here? First, if the performance of your program is OK, don’t
worry about what type of lookup you are using. Using environment objects can be
less elegant and more confusing than vectors. It is usually more important to write
correct code that you and other people can understand and maintain than it is to
write fast code.

Using environment objects in place of vectors

Suppose that you have measured the performance of your program and it’s not good
enough for your application. If you’re looking up elements by index (and not by
value), you should stick with vectors: vectors are slightly faster than environments.
However, if your program contains a large number of lookups by label, you might
consider replacing vectors with environments.

If you have already written a program that uses lots of single-bracket notation and
want to switch to environments, you have two choices:

1. Change to the double-bracket operator. There are built in methods for both
lookup (`[[`) and assignment (`[[<-`) for environment objects.

2. Redefine the single-bracket operator so that it works with environments. (Doing
this isn’t suggested, but it’s possible.)

By default, single-bracket notation is implemented using a primitive function:

> `[`
.Primitive("[")

The primitive function will return an error message when applied to environments;
you can’t just define a new method `[.environment`. As an alternative, you can
create a wrapper around the primitive function that uses the get method for envi-
ronments to look up the value:

`[` <- function(x, y, ...) {
  if (class(x) == "environment")
    get(x=y,envir=x)
  else
  .Primitive("[")(x,y,...)
}

One final lesson: if you are looking up exactly one value in R, consider using the
double-bracket notation (such as x[[i]]) and not the single-bracket notation (such
as x[i]). As we showed above, the double-bracket operator will be at least as fast as
the single-bracket operator when looking up values in vectors. Additionally, the
double-bracket notation makes it easier to change your implementation to use en-
vironment objects for storage.
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Use a Database to Query Large Data Sets
If you need to query large tables of data, you should consider storing the values in
a database. You don’t need to use an external database; the RSQLite package pro-
vides an interface to the SQLite library that allows you to store data in files and query
the files using SQL. (This is the strategy used by Bioconductor to store annotation
databases.) See “DBI” on page 167 for more information on how to use this package.

Preallocate Memory
In R, you don’t have to explicitly allocate memory before you use it. For example,
you could fill an array with numbers using the following code:

v <- c()
for (i in 1:100000) {v[i] <- i;}

This code works correctly; however, it takes a long time to finish (about 30 seconds
on my computer). You can speed up this code substantially by preallocating memory
to the vector. You can do this by setting the length, nrow, ncol, or dim attributes for
an object. Here is an example:

v2 <- c(NA)
length(v2) <- 100000
for (i in 1:100000) {v2[i] <- i;}

This code works identically but performs much, much faster.

Cleaning Up Memory
As we noted above, you can use the gc function to force the garbage collector to run,
potentially freeing up memory:

> gc()
used  (Mb) gc trigger   (Mb)  max used   (Mb)

Ncells   774900  20.7     919870   24.6   3032449   81.0
Vcells 53549840 408.6  176511395 1346.7 380946917 2906.4
> # remove a big object
> rm(audioscrobbler)
> gc()

used  (Mb) gc trigger   (Mb)  max used   (Mb)
Ncells   328394   8.8     919870   24.6   3032449   81.0
Vcells 50049839 381.9  141209116 1077.4 380946917 2906.4

If you are running out of storage space on a Microsoft Windows platform, you can
get or set the memory limit on a system with the function memory.limit:

> memory.limit()
[1] 1023.484
> memory.limit(size=1280)
NULL
> memory.limit()
[1] 1280
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On other platforms, this function will return Inf and print a warning message. On
these platforms, you can use the function mem.limits to get or set memory limits:

mem.limits(nsize = NA, vsize = NA)

The argument nsize specifies the number of cons cells (basic units of storage).

If there are no explicit limits, this function may return NA:

> mem.limits()
nsize vsize
   NA    NA

In R, you usually don’t have to manually manage memory; the system automatically
allocates and unallocates memory as needed. However, you can get some informa-
tion on the process (and control it a little) through the function gc, as described
earlier.

If you’re running out of storage space, you might want to try removing objects from
the workspace. You can remove an object (or a set of objects) from an environment
with the rm function. By default, this function removes objects from the current
environment:

> # remove a big object
> rm(audioscrobbler)
> gc()

used  (Mb) gc trigger   (Mb)  max used   (Mb)
Ncells   328394   8.8     919870   24.6   3032449   81.0
Vcells 50049839 381.9  141209116 1077.4 380946917 2906.4

Functions for Big Data Sets
If you’re working with a very large data set, you may not have enough memory to
use the standard regression functions. Luckily, R includes an alternative set of re-
gression functions for working with big data sets. These functions are slower than
the standard regression functions but will work when there is not enough memory
to use the standard regression functions:

library(biglm)
# substitute for lm, works in dataframes
biglm(formula, data, weights=NULL, sandwich=FALSE)
# substitute for glm, works in data frames
bigglm(formula, data, family=gaussian(),
     weights=NULL, sandwich=FALSE, maxit=8, tolerance=1e-7,
     start=NULL,quiet=FALSE,...)

It’s even possible to use bigglm on data sets inside a database. To do this, you would
open a database connection using RODBC or RSQLite and then call bigglm with the
data argument specifying the database connection and tablename specifying the table
in which to evaluate the formula:

bigglm(formula, data, family=gaussian(),
       tablename, ..., chunksize=5000)
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Other Ways to Speed Up R
Sometimes you can cheat a little bit: you can make R run faster without tuning your
code. This section shows two ways to do that.

The R Byte Code Compiler
Normally, R is an interpreted language.

But beginning in R 2.13.0, R has included a byte code compiler to speed up com-
putations. As an example, let’s consider the vector of squares function that we used
above:

> naive.vector.of.squares
function(n) {
  v <- 1:n
  for (i in 1:n)
    v[i] <- v[i]^2
}
> system.time(naive.vector.of.squares(1000000))
   user  system elapsed
  3.025   0.016   3.036

Now we’ll use the cmpfun function to create a compiled version of this function and
then test its performance.

> library(compiler)
> compiled.naive.vector.of.squares <- cmpfun(naive.vector.of.squares)
> system.time(compiled.naive.vector.of.squares(1000000))
   user  system elapsed
  0.637   0.005   0.636

As you can see, the compiled version of this function runs much faster. Of course,
it still runs more slowly than the vector operation:

> system.time(better.vector.of.squares(1000000))
   user  system elapsed
  0.008   0.000   0.008

And compiling the vector operation does not make a huge difference:

> better.vector.of.squares.compiled <- cmpfun(better.vector.of.squares)
> system.time(better.vector.of.squares.compiled(1000000))
   user  system elapsed
  0.007   0.000   0.007

But that doesn’t mean you shouldn’t try the compiler for your problem. It’s one of
the simplest tricks for speeding up your code. (It’s even easier than ordering a new,
faster server. And it’s cheaper.)

Manual compilation

Here’s a description of the compiler functions. To compile an R expression, use the
compile function:

compile(e, env = .GlobalEnv, options = NULL)
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If you have assigned a function to variable, you can use the cmpfun function as a
shorthand:

cmpfun(f, options = NULL)

If you have a large amount of code to compile, you can store it in file and use
cmpfile to compile everything at once:

cmpfile(infile, outfile, ascii = FALSE, env = .GlobalEnv,
        verbose = FALSE, options = NULL)

Each of these functions allows you to specify a list of options:

optimize
The level of optimization; the default is 2.

suppressAll
Disables printing messages; default is false.

suppressUndefined
Suppressed messages about undefined variables if set to TRUE. If set to a vector
of character values, suppresses messages about the names of variables in the
list. Default is c(".Generic", ".Method", ".Random.seed", ".self").

You can also set these options globally with the setCompilerOptions function, or find
their current values with the getCompilerOption function. The argument level is an
integer between 0 and 3 that describes how much compilation you would like:

0
Disables compilation

1
Compiles closures before first use

2
Compiles closures before first use, and closures before they are duplicated

3
Compiles closures before first use, closures before they are duplicated, and
loops before they are executed

Inspecting byte code

Printing a compiled function will show the original R code and a reference to the
byte code:

> compiled.naive.vector.of.squares
function(n) {
  v <- 1:n
  for (i in 1:n)
    v[i] <- v[i]^2
}
<bytecode: 0x117f7db90>

To see the byte code, you can use the disassemble function:

> disassemble(compiled.naive.vector.of.squares)
list(.Code, list(7L, GETBUILTIN.OP, 1L, PUSHCONSTARG.OP, 2L,
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    GETVAR.OP, 3L, PUSHARG.OP, CALLBUILTIN.OP, 4L, SETVAR.OP,
    5L, POP.OP, GETBUILTIN.OP, 1L, PUSHCONSTARG.OP, 2L, GETVAR.OP,
    3L, PUSHARG.OP, CALLBUILTIN.OP, 4L, STARTFOR.OP, 7L, 6L,
    51L, GETVAR.OP, 5L, STARTSUBSET.OP, 8L, 35L, GETVAR_MISSOK.OP,
    6L, PUSHARG.OP, DFLTSUBSET.OP, LDCONST.OP, 9L, EXPT.OP, 10L,
    STARTASSIGN.OP, 5L, STARTSUBASSIGN.OP, 11L, 48L, GETVAR_MISSOK.OP,
    6L, PUSHARG.OP, DFLTSUBASSIGN.OP, ENDASSIGN.OP, 5L, POP.OP,
    STEPFOR.OP, 26L, ENDFOR.OP, INVISIBLE.OP, RETURN.OP), list(
    {

v <- 1:n
for (i in 1:n) v[i] <- v[i]^2

    }, `:`, 1, n, 1:n, v, i, for (i in 1:n) v[i] <- v[i]^2, v[i],
    2, v[i]^2, `[<-`(`*tmp*`, i, value = v[i]^2)))

Just-in-time compilation

If you want to compile all of your R code as you are using it, you can enable just-in-
time compilation with the compiler package. To do this, execute the function ena
bleJIT:

$ enableJIT(level)

The argument level is an integer between 0 and 3 that is described above. You can
also set the environment variable R_ENABLE_JIT to your desired compilation level (1,
2, or 3) to enable the JIT for everything you do in R.

However, before you set the default to level 3 for all computation, you should re-
member two things. First, it takes time to compile code. For very simple operations
on small data sets, it might take more time to compile your code than to execute it.
Secondly, the compiler is still experimental. It’s possible that some code might ex-
ecute differently after compilation, resulting in subtle and difficult-to-understand
bugs. So make sure to use this feature carefully.

High-Performance R Binaries
On some platforms (like Mac OS X), R is compiled with high-quality math libraries.
However, the default libraries on other platforms (like Windows) can be sluggish.
If you’re working with large data sets or complicated mathematical operations, you
might find it worthwhile to build an optimized version of R with better math
libraries.

Revolution R

Revolution Computing is a software company that makes a high-performance ver-
sion of R. It offers both free and commercial versions, including a 64-bit build of R
for Windows. For the latest version, check out its website: http://www.revolution
-computing.com/.

Revolution R looks a lot like the standard R binaries (although a little outdated; at
the time I was writing this book, Revolution was shipping Revolution R 1.3.0 in-
cluded R 2.7.2, while the current version from CRAN was 2.10.0). The key difference
is the addition of improved math libraries. These are multithreaded and can take
advantage of multiple cores when available. There are two helper functions included
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with Revolution R that can help you set and check the number of cores in use. To
check the number of cores, use:

getMKLthreads()

Revolution R guesses the number of threads to use, but you can change the number
yourself if it guesses wrong (or if you want to experiment). To set the number of
cores explicitly, use:

setMKLthreads(n)

The help file suggests not setting the number of threads higher than the number of
available cores.

Building your own

Building your own R can be useful if you want to compile it to run more efficiently.
For example, you can compile a 64-bit version of R if you want to work with data
sets that require much more than 4 GB of memory. This section explains how to
build R yourself.

The easiest way to build your own R binaries on
Microsoft Windows is to use the Rtools software. The R compilation process is very
sensitive to the tools that you use. So the Rtools software bundles together a set of
tools that are known to work correctly with R. Even if you plan to use your own
compiler, math libraries, or other components, you should probably start with the
standard toolkit and incrementally modify it. That will help you isolate problems in
the build process.

Here is how to successfully build your own R binaries (and installer!) on Microsoft
Windows:

1. Download the R source code from http://cran.r-project.org/src/base/.

2. Download the “Rtools” software from http://www.murdoch-sutherland.com/
Rtools/.

3. Run the Rtools installer application. Follow the directions to install Rtools. You
can select most default options, but I do not suggest installing all components
at this stage. (The “Extras to build R” needs to be installed in the source code
directory to be useful. However, we don’t install those until steps 4 and 5. Un-
fortunately, you need other tools from the RTools software in order to execute
steps 4 and 5, so we can’t change the order of the steps to avoid running the
installer twice.) As shown in Figure 24-1, you should select everything except
“Extras to build R.” We’ll install that stuff later, so don’t throw out the tools
installer yet. Also, if you use Cygwin, be sure to read the notes about conflicts
with Cygwin DLLs (dynamic-link libraries). Be sure to select the option allowing
Rtools to modify your PATH variable (or make sure to change it yourself).

4. Move the source code file to a build directory, open a command-line window
(possibly with cmd), and change to the build directory. (Be sure to open the
command shell after installing the Rtools and modifying your PATH. This will
guarantee that the commands in the next few steps are available.)

Building on Microsoft Windows.
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5. Run the following command to unpack the source code into the directory
R-2.9.2:

$ tar xvfz R-2.9.2.tar.gz

(Note that I used R-2.9.2.tar.gz. Change the command as needed for the R
version you are installing.)

6. Rerun the Rtools setup program. This time, select only the “Extras to build R”
component, and no other components. Install the components into the source
code directory that you just unpacked. (For example, if you have installed R
into C:\stuff\things, then select C:\stuff\things\R-2.9.2.)

Figure 24-1. Selecting components in Rtools

7. At this point, you may install several additional pieces of software:

a. (Optional) If you want to build Microsoft HTML help files, then download
and install the Microsoft HTML Help Workshop from http://www.micro
soft.com/downloads/details.aspx?FamilyID=00535334-c8a6-452f-9aa0
-d597d16580cc. Make sure the location where it is installed (for example,
C:\Program Files\HTML Help Workshop) is included in the PATH.

b. (Optional) If you want to build your own R installer, then download and
install Inno Setup from http://www.jrsoftware.org/isinfo.php. After you
have done this, edit the file src\gnuwin32\MkRules in the R-2.9.2 directory.
Change ISDIR to the location where Inno Setup was installed. (By default,
this location is C:\Program Files\Inno Setup 5.)

c. (Optional) Download and install LaTeX if you want to build PDF versions
of the help files. A suitable version is MiKTeX, from http://www.miktex
.org/.
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8. Return to the command window and change directories to the src\gnuwin32
directory in the R sources (for example, C:\stuff\things\R-2.9.2\src\gnuwin32).
Run the following command to build R:

$ make all recommended

9. To check that the build was successful, you can run the command:

$ make check

Or for more comprehensive checks:

$ make check-all

I found that the checks failed due to a silly error. (The checks included testing
examples in libraries, so the test application tried to open a network connection
to http://foo.bar, a hostname that could not be resolved.) Use your own discre-
tion about whether the tests were successful or not.

10. If everything worked correctly, you can now try your own build of R. The ex-
ecutables will be located in the R-2.9.2\bin directory. The full GUI version is
named Rgui.exe; the command-line version is R.exe.

11. If you would like to build your own installer, then execute the following com-
mand in the src\gnuwin32 directory:

$ make distribution

(I got some errors late in the install process. The standard makefiles try to delete
content when they’re done. If you don’t make it past building rinstaller, man-
ually run make cran.) To check if the process worked, look for the installer in
the gnuwin32\cran directory.

For more information about how to build R on Microsoft Windows platforms, see
the directions in the R Installation and Administration Manual. (You can read the
manual online at http://cran.r-project.org/doc/manuals/R-admin.html, or you can
download a PDF from http://cran.r-project.org/doc/manuals/R-admin.pdf.)

Unix-like systems are by far the easiest systems on
which to build R. Here is how to do it:

1. Install the standard development tools: gcc, make, perl, binutiles, and LaTeX.
(If you don’t know if you have all the tools and are using a standard Linux
version such as Fedora, you have probably already installed all the components
you need. Unfortunately, it’s outside the scope of this book to explain how to
find and install missing components. Try using the precompiled binaries, or
find a good book on Unix system administration.)

2. Download the R source code from http://cran.r-project.org/src/base/.

3. Run the following command to unpack the source code into the directory
R-2.10.0:

$ tar xvfz R-2.10.0.tar.gz

(Note that I used R-2.10.0.tar.gz. Change the command as needed for the R
version you are installing.)

Building R on Unix-like systems.

Other Ways to Speed Up R | 523

Optim
izing R Pro-

gram
s



4. Change to the R-2.10.0 directory. Run the following commands to build R:

$ ./configure
$ make

5. To check that the build was successful, you can run the command:

$ make check

Or for more comprehensive checks:

$ make check-all

6. Finally, if everything is OK, run the following command to install R:

$ make install

These directions will work on Mac OS X if you want to build a command-line version
of R or a version of R that works through the X Windows system. They will not build
the full Mac OS X GUI.

Building R on Mac OS X is a little trickier than building it on
Windows or Linux systems because you have to fetch more individual pieces. For
directions on how to compile R on Mac OS X, see http://cran.r-project.org/doc/man
uals/R-admin.html. You may also want to read the FAQ file at http://cran.cnr.Berke
ley.edu/bin/macosx/RMacOSX-FAQ.html, which gives some hints on how to build.

Building R on Mac OS X.
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25
Bioconductor

Most of this book is applicable across multiple areas of study, but this chapter fo-
cuses on a single field: bioinformatics. In particular, we’re going to focus on the
Bioconductor project. Bioconductor is an open-source software project for analyzing
genomic data in R. Initially, it focused on just gene expression data, but it now
includes tools for analyzing other types of data such as serial analysis of gene ex-
pression (SAGE), proteomic, single-nucleotide polymorphism (SNP), and gene se-
quence data.

Biological data isn’t much different from other types of data we’ve seen in the book:
data is stored in vectors, arrays, and data frames. You can process and analyze this
data using the same tools that R provides for other types of data, including data
access tools, statistical models, and graphics.

Bioconductor provides tools for each step of the analysis process: loading, cleaning,
and analyzing data. Depending on the type of data you are working with, you might
need to use other software in conjunction with Bioconductor. For example, if you
are working with Affymetrix GeneChip arrays, you will need to use the Affymetrix
GeneChip Command Console software to scan the arrays and produce probe cell
intensity data (CEL files) that can be loaded into R. You can then load the probe cell
intensity files into Bioconductor for further processing.

This chapter provides a very brief overview of Bioconductor. In this chapter, we’ll
first look at an example, using publicly available gene expression data. Next, I’ll
describe some popular packages in Bioconductor. After that, I will describe some of
the key data structures in Bioconductor. Finally, I’ll provide some pointers for ad-
ditional information.

An Example
In this chapter, we will load a data set from NCBI’s Gene Expression Omnibus
(GEO) website (http://www.ncbi.nlm.nih.gov/geo/). GEO is a public repository that
archives and freely distributes microarray, next-generation sequencing, and other
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forms of high-throughput functional genomic data submitted by the scientific com-
munity. It is one of many resources available through the National Center for Bio-
technology Information (NCBI), an organization that is part of the National Library
of Medicine, and, in turn, part of the U.S. National Institutes of Health (NIH). This
is a very useful resource when learning to use Bioconductor, because you can find
not only raw data but also references to papers that analyzed that data.

As an example, we’ll use the data files from GSE2034 (http://www.ncbi.nlm.nih.gov/
projects/geo/query/acc.cgi?acc=GSE2034), a study that looked for predictors of
relapse-free breast cancer survival. (I used data from the same study as an example
in “Survival Models” on page 428.) My goal was not to re-create the results shown
in the original papers (which I did not do), but instead to show how Bioconductor
tools could be used to load and inspect this data.

Loading Raw Expression Data
Let’s start with an example of loading raw data into R. We’ll show how to load
Affymetrix CEL files, which are output from Affymetrix’s scanner software. If you
would like to try this yourself, you can download the raw CEL files from ftp://ftp
.ncbi.nih.gov/pub/geo/DATA/supplementary/series/GSE2034/GSE2034_RAW.tar.

The CEL files are immense: almost 1 GB compressed. See
“Loading Data from GEO” on page 530 for instructions on
how to get pre-processed expression files for this experiment.

Affymetrix is a leading provider of tools for genetic analysis, including high-density
arrays, scanners, and analysis software. For this study, the authors used Affymetrix
GeneChip Human Genome U133 Arrays,1 which are used to measure the expression
level of over 22,000 probe sets that translate to 14,500 human genes. These arrays
work by measuring the amount of thousands of different RNA fragments using
thousands of different probes. Each probe is 25 bases long. The CEL files contain
scanner data for each probe for each sample. Data processing software (like Bio-
conductor) is used to translate combinations of probes to probe sets, which can, in
turn, be mapped to genes. A probe set is composed of a set of perfect-match (PM)
probes (for which all 25 bases match) and mismatch (MM) probes (for which the
13th base is reversed); the software measures the actual expression level of genes by
comparing the two types of probes. Typically, each probe set comprises 11 to 20
different probes. Data for each sample is stored in a separate CEL file.

You can load these files into R as a single batch using ReadAffy. The ReadAffy function
will load all files in the current working directory by default. If you are using a
machine with a lot of memory and have placed the files in the directory ~/GSE2034/
CEL, you could load the data with the following commands:

> library(affy)
> # assuming the files are in ~/GSE2034/CEL

1. See http://www.affymetrix.com/products_services/arrays/specific/hgu133av2.affx for more
information on this platform.
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> setwd("~/GSE2034/CEL")
> GSE2034 <- ReadAffy()

I have 4 GB on my computer, which wasn’t enough to read all the raw files into
memory. So I took a subset of the CEL files for a random sample of subjects.

To pick the stratified sample, I used several R functions from outside Bioconductor.
I used a stratified sample, selecting 50 subjects with no relapse and 50 with relapse.
To select the set of filenames to load, I used the strata function from the sampling
package to pick a set of GEO accession numbers to load. (These are the identifiers
for each subject.) Next, I pasted the prefix “.CEL” on the end of each number to
generate filenames. Finally, I passed this vector as an argument to ReadAffy.

Here is the code I used to read in the data:

> library(nutshell)
> data(GSE2034)
> library(sampling)
> setwd("~/Documents/book/data/GSE2034/CEL")
> GSE2034.fromcel.smpl <-
+  ReadAffy(filenames=paste(
+                           GSE2034[strata(GSE2034, 
+                                          stratanames="relapse",
+                                          size=c(50,50),
+                                          method="srswor"
+                                         )$ID_unit, 
+                                  ]$GEO.asscession.number,
+                           ".CEL",
+                           sep=""))

The ReadAffy function returns an AffyBatch object, containing unprocessed gene
expression data:

> GSE2034.fromcel.smpl
AffyBatch object
size of arrays=712x712 features (16 kb)
cdf=HG-U133A (22283 affyids)
number of samples=100
number of genes=22283
annotation=hgu133a
notes=

Before we can analyze this data, we need to attach phenotype (patient) data,
normalize the data, summarize by probe, and associate the expression data with
annotation (gene symbol) data.

First, the sample names in the AffyBatch object match the filenames, not the iden-
tifiers (GEO accession numbers) in the patient data table:

> sampleNames(GSE2034.fromcel.smpl)[1:10]
 [1] "GSM36796.CEL" "GSM36834.CEL" "GSM36873.CEL" "GSM36917.CEL"
 [5] "GSM36919.CEL" "GSM36938.CEL" "GSM36944.CEL" "GSM36965.CEL"
 [9] "GSM36991.CEL" "GSM36993.CEL"

Let’s clean up the sample names in the AffyBatch object so that we can match them
to names in the patient data table. (We’ll do that in “Matching Phenotype
Data” on page 532.)
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> sampleNames(GSE2034.fromcel.smpl) <-
+   sub("\\.CEL$","",sampleNames(GSE2034.fromcel.smpl))
> sampleNames(GSE2034.fromcel.smpl)[1:10]
 [1] "GSM36796" "GSM36834" "GSM36873" "GSM36917" "GSM36919" "GSM36938"
 [7] "GSM36944" "GSM36965" "GSM36991" "GSM36993"

An important step in data processing is quality control (QC). You want to make sure
that no errors occurred in handling the experimental data or scanning the arrays.
You can use the qc function in the simpleaffy package for quality control. This
function calculates a set of QC metrics (recommended by Affymetrix) to check that
arrays have hybridized correctly and that sample quality is acceptable. It returns an
object of class QCStats that you can plot to check for problematic samples. As an
example, we’ll calculate QC metrics on the first 20 samples that we loaded into R.
(I picked 20 so the plot would be readable in print.)

> myqc <- qc(GSE2034.fromcel.smpl[, 1:20])
> plot(myqc, cex=0.7)

The results are shown in Figure 25-1. Each line represents a separate sample. The
vertical solid line in the middle of the diagram corresponds to zero fold change, the
dotted line to the left and right to three fold downregulation and three fold upregu-
lation change, respectively. The lines plotted on each row show which scale factors
are acceptable. Good values are blue, suspicious are red, when viewed on screen. In
this example, all the bars are acceptable. For more information on how to read this
diagram, see the help file for plot.qc.stats.

Before analyzing the microarray data, it needs additional pre-processing. First, the
raw data needs to be background corrected and normalized between arrays. You
can do this with the Bioconductor vsn package, using the vsn2 function. The vsn2
function returns a vsn object containing background-corrected and normalized
probe intensity data.

Next, the data needs to be log transformed, summarized by probe set, and trans-
formed into an ExpressionSet that can be used in further analysis. As we noted above,
CEL files include information on all probes; these need to be grouped into probe
sets and adjusted for mismatches. Raw expression data values are exponentially
distributed; a log transformation makes the distribution normal. You can do this
through the rma function in the affy package.

If you don’t plan to tweak parameters, you can execute both steps at once through
the vsnrma function in the vsn package. (The vsn function requires a lot of memory
to process large AffyBatch objects. My computer couldn’t handle all 100 arrays at
once, so I took a subset of 50 observations.)

> library(affy)
> GSE2034.fromcel.smpl.vsnrma <- vsnrma(GSE2034.fromcel.smpl[,1:50])
vsn2: 506944 x 50 matrix (1 stratum).
Please use 'meanSdPlot' to verify the fit.
Calculating Expression
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Figure 25-1. QC plot

Following the recommendation above (in the output of vsn2), let’s use meanSdPlot
to plot the row standard deviation versus row means for the output:

> meanSdPlot(GSE2034.fromcel.smpl.vsnrma)
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The results are shown in Figure 25-2.

Figure 25-2. Row standard deviation versus row means, from meanSdPlot

Loading Data from GEO
In this specific case, we can cheat. This example uses a data set that was shared
through GEO, so we can use the getGEO function in the GEOquery package to down-
load preprocessed expression sets directly into R. (Clearly this won’t work with data
that isn’t available on GEO, but it does make this step simpler.)

> library(GEOquery)
Loading required package: Biobase

Welcome to Bioconductor

  Vignettes contain introductory material. To view, type
  'openVignette()'. To cite Bioconductor, see
  'citation("Biobase")' and for packages 'citation(pkgname)'.

Loading required package: RCurl
Loading required package: bitops
> GSE2034.geo <- getGEO("GSE2034")
Found 2 file(s)
GSE2034_series_matrix-1.txt.gz
trying URL 'ftp://ftp.ncbi.nih.gov/pub/geo/DATA/
  SeriesMatrix/GSE2034/GSE2034_series_matrix-1.txt.gz'
ftp data connection made, file length 12800217 bytes

530 | Chapter 25: Bioconductor



opened URL
==================================================
downloaded 12.2 Mb

trying URL 'http://www.ncbi.nlm.nih.gov/geo/query/
  acc.cgi?targ=self&acc=GPL96&form=text&view=full'
Content type 'geo/text' length unknown
opened URL
.......... .......... .......... .......... ..........

downloaded 27.9 Mb

File stored at:
/var/folders/gj/gj60srEiEVq4hTWB5lvMak+++TM/-Tmp-//RtmpnO9uT5/GPL96.soft
GSE2034_series_matrix-2.txt.gz
trying URL 'ftp://ftp.ncbi.nih.gov/pub/geo/DATA/
  SeriesMatrix/GSE2034/GSE2034_series_matrix-2.txt.gz'
ftp data connection made, file length 1662337 bytes
opened URL
==================================================
downloaded 1.6 Mb

trying URL 'http://www.ncbi.nlm.nih.gov/geo/query/
  acc.cgi?targ=self&acc=GPL96&form=text&view=full'
Content type 'geo/text' length unknown
opened URL
.......... .......... .......... .......... ..........

downloaded 27.9 Mb

File stored at:
/var/folders/gj/gj60srEiEVq4hTWB5lvMak+++TM/-Tmp-//RtmpnO9uT5/GPL96.soft

In this case, the object is a list of two ExpressionSet objects:

> class(GSE2034.geo)
[1] "list"
> class(GSE2034.geo[[1]])
[1] "ExpressionSet"
attr(,"package")
[1] "Biobase"
> GSE2034.geo
$`GSE2034_series_matrix-1.txt.gz`
ExpressionSet (storageMode: lockedEnvironment)
assayData: 22283 features, 255 samples
  element names: exprs
phenoData
  sampleNames: GSM36777, GSM36778, ..., GSM37031  (255 total)
  varLabels and varMetadata description:
    title: NA
    geo_accession: NA
    ...: ...
    data_row_count: NA
    (23 total)
featureData
  featureNames: 1007_s_at, 1053_at, ..., AFFX-TrpnX-M_at  (22283 total)
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  fvarLabels and fvarMetadata description:
    ID: NA
    GB_ACC: NA
    ...: ...
    Gene.Ontology.Molecular.Function: NA
    (16 total)
  additional fvarMetadata: Column, Description
experimentData: use 'experimentData(object)'
Annotation: GPL96

$`GSE2034_series_matrix-2.txt.gz`
ExpressionSet (storageMode: lockedEnvironment)
assayData: 22283 features, 31 samples
  element names: exprs
phenoData
  sampleNames: GSM37032, GSM37033, ..., GSM37062  (31 total)
  varLabels and varMetadata description:
    title: NA
    geo_accession: NA
    ...: ...
    data_row_count: NA
    (23 total)
featureData
  featureNames: 1007_s_at, 1053_at, ..., AFFX-TrpnX-M_at  (22283 total)
  fvarLabels and fvarMetadata description:
    ID: NA
    GB_ACC: NA
    ...: ...
    Gene.Ontology.Molecular.Function: NA
    (16 total)
  additional fvarMetadata: Column, Description
experimentData: use 'experimentData(object)'
Annotation: GPL96

In the rest of this chapter, I’ll focus on the first object in the list:

> GSE2034.geo1 <- GSE2034.geo[[1]]

Matching Phenotype Data
Neither the CEL files nor the series matrix files from GEO contain clinical informa-
tion. In “Survival Models” on page 428, we used a file from GEO containing the
experimental outcomes for this experiment, including an indicator of which patients
experienced a relapse and the time until relapse or last checkup. We’ll add this
information to the AffyBatch file by matching observations in the GSE2034 data set
to the expression data. We can add data to the files created from the CEL files using
the following code:

> matches <- match(
+   subset(GSE2034,
+     GSE2034$GEO.asscession.number %in% 
+     sampleNames(GSE2034.fromcel.smpl))$GEO.asscession.number,
+     sampleNames(GSE2034.fromcel.smpl))
> phenoData(GSE2034.fromcel.smpl) <- new(
+   "AnnotatedDataFrame",

532 | Chapter 25: Bioconductor



+   data=subset(GSE2034, 
+     GSE2034$GEO.asscession.number %in% 
+     sampleNames(GSE2034.fromcel.smpl))[matches,])

To add patient information to the matrix files from GEO, we’ll use a slightly different
strategy. Loading the matrix files created ExpressionSet objects that were already
tagged with phenotype information. Instead of replacing this information, we’ll just
add more patient information. (Again, notice that I’m using R code to create the
new data frame of phenotype data and the data frame with variable metadata.
There’s nothing fancy about Bioconductor; it’s just a set of R functions for dealing
with a certain type of data.)

> # matching in new version
> matches <- match(
+    subset(GSE2034, 
+           GSE2034$GEO.asscession.number %in%
+           sampleNames(GSE2034.geo1))$GEO.asscession.number,
+    sampleNames(GSE2034.geo1))
> names(GSE2034) <- c("PID", "geo_accession", "lymph.node.status",
+   "months.to.relapse.or.last.followup", "relapse", "ER.Status", 
+   "Brain.relapses")
> GSE2034.pdata <- merge(pData(GSE2034.geo1),GSE2034[,2:7])
> GSE2034.varMetadata <- rbind(varMetadata(GSE2034.geo1),
+   data.frame(row.names=names(GSE2034)[3:7],labelDescription=rep(NA,5)))
> pData(GSE2034.geo1) <- GSE2034.pdata
> varMetadata(GSE2034.geo1) <- GSE2034.varMetadata

Analyzing Expression Data
As an analysis example, I’ll use the file downloaded in “Loading Data from
GEO” on page 530. The expression set we are examining contains 22,283 features
on 255 subjects. Fitting a model to a data set this large could take a long time, so
we’ll start the analysis by filtering out some probes. Specifically, we’ll filter out
probes with low variance using the nsFilter function in the genefilter package:

> annotation(GSE2034.geo1)
[1] "GPL96"
> # there is no GPL96 annotation package that is easily available,
> # though this is the same as affy hgu133a, so use that instead
> annotation(GSE2034.geo1) <- "hgu133a"
> library(genefilter)
> GSE2034.geo1.f <- nsFilter(GSE2034.geo1, var.cutoff=0.5)

The filtered expression set contains only 6,534 features, which is much more man-
ageable. Let’s start by drawing a “volcano plot” using the expression data. To draw
the plot, we’ll start by calculating a t-test on each row, segmenting observations
based on relapse status:

> tt <- rowttests(GSE2034.geo1.f$eset, "relapse")

Next, we’ll plot the log of the p-value (from the t-test) for each probe versus the
difference in group means. (Both are included in the output of the rowttests
function.)
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> plot(tt$dm, -log10(tt$p.value), pch=".", xlab="log-ratio",
+   ylab=expression(-log[10]~p))

The plot is shown in Figure 25-3. As you can see, there are a few values far to the
right of the plot.

Figure 25-3. Volcano plot of filtered GSE2034 data

In the original paper on this study, the authors fit a Cox proportional hazard model
using the expression data. We can do the same thing, using the rbsurv package from
Bioconductor, which stands for “robust survival” analysis. The rbsurv function al-
lows you to fit a model to an expression object, choosing predictive variables using
n-fold cross-validation. I chose to restrict the model to 75 genes, and the fitting to
six iterations of threefold validation to keep the running time manageable (though
this function still required an hour to fit the model):

> library(rbsurv)
Loading required package: survival
Loading required package: splines
> GSE2034.rbsurv <- rbsurv(
+    time=pData(GSE2034.geo1.f$eset)$months.to.relapse.or.last.followup,
+    status=pData(GSE2034.geo1.f$eset)$relapse,
+    x=assayData(GSE2034.geo1.f$eset)$exprs,
+    gene.ID=row.names(assayData(GSE2034.geo1.f$eset)$exprs),
+    max.n.genes=75,
+ n.fold=3,
+ n.iter=6)
Please wait... Done.
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This function uses bootstrap resampling to generate the robust estimate, so you may
get different results, depending on the state of your random number generator. This
function returns a list containing a number of different objects:

> typeof(GSE2034.rbsurv)
[1] "list"
> names(GSE2034.rbsurv)
[1] "n.genes"    "n.samples"  "method"     "n.iter"     "n.fold"
[6] "covariates" "model"      "gene.list"

We can take a look at the coefficients in the fitted model to see which probes are
significant. Not surprisingly, with over 6,000 predictors, there are a lot of genes that
are highly correlated with relapse-free survival time. The fitted model contained 62
probes; here are the first 20:

> GSE2034.rbsurv$model[1:20]
    Seq Order Gene nloglik    AIC Selected
0     1     0 0  495.16 990.32
110   1     1 221286_s_at  487.39 976.79 *
2     1     2   209096_at  481.33 966.65 *
3     1     3   201817_at  475.60 957.20 *
4     1     4 214459_x_at  471.54 951.08 *
5     1     5   207165_at  468.15 946.30 *
6     1     6 211430_s_at  465.70 943.40 *
7     1     7   203218_at  458.58 931.16 *
8     1     8   209539_at  455.17 926.33 *
9     1     9 202666_s_at  452.74 923.48 *
10    1    10 222201_s_at  449.92 919.83 *
11    1    11   212898_at  445.67 913.34 *
12    1    12 216598_s_at  441.15 906.29 *
13    1    13 203530_s_at  440.51 907.01 *
14    1    14   201178_at  437.32 902.63 *
15    1    15   203764_at  435.25 900.49 *
16    1    16 202324_s_at  435.14 902.27 *
17    1    17 220757_s_at  434.71 903.41 *
18    1    18 201010_s_at  433.90 903.80 *
19    1    19   218919_at  432.35 902.70 *

The gene.list element contains the Affymetrix probe names from a Human Genome
U133A Array:

> annotation(GSE2034.geo1)
[1] "hgu133a"

To show a list of gene symbols corresponding to these probes, we can use the
getSYMBOL function from the annotate package:

> library(annotate)
> getSYMBOL(GSE2034.rbsurv$gene.list, "hgu133a")
   221286_s_at      209096_at      201817_at    214459_x_at
    "MGC29506"       "UBE2V2" "UBE3C" "HLA-C"
     207165_at    211430_s_at      203218_at      209539_at

"HMMR" "IGHG3" "MAPK9"      "ARHGEF6"
   202666_s_at    222201_s_at      212898_at    216598_s_at
      "ACTL6A"     "CASP8AP2"     "KIAA0406" "CCL2"
   203530_s_at      201178_at      203764_at    202324_s_at

"STX4" "FBXO7"       "DLGAP5" "ACBD3"
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   220757_s_at    201010_s_at      218919_at      200726_at
       "UBXN6"        "TXNIP"       "ZFAND1"       "PPP1CC"
   221432_s_at    215088_s_at    215379_x_at    219215_s_at
    "SLC25A28"  "hCG_1776980"        "CKAP2"      "SLC39A4"
     204252_at      212900_at    209380_s_at      209619_at
        "CDK2"       "SEC24A"        "ABCC5"         "CD74"
   208843_s_at    203524_s_at    209312_x_at    222077_s_at
     "GORASP2"         "MPST"     "HLA-DRB1"      "RACGAP1"
   202824_s_at      212687_at    221500_s_at    217258_x_at
       "TCEB1"        "LIMS1"        "STX16"          "IVD"
     205034_at      201849_at      201664_at    215946_x_at
       "CCNE2"        "BNIP3"         "SMC4"        "IGLL3"
     219494_at      208757_at    221671_x_at      212149_at
      "RAD54B"        "TMED9"         "IGKC"        "EFR3A"
     202969_at    209831_x_at      204641_at    217378_x_at
       "DYRK2"       "DNASE2"         "NEK2" "LOC100130100"
   204670_x_at    211761_s_at    205812_s_at    216401_x_at
    "HLA-DRB5"       "CACYBP"      "SULT1C4"    "LOC652493"
   217816_s_at      201368_at      209422_at      213391_at
        "PCNP"      "ZFP36L2"        "PHF20"      "DPY19L4"
   208306_x_at      201288_at      206102_at
    "HLA-DRB4"      "ARHGDIB"        "GINS1"

To get more information on these probes, we can use functions from the anaffy
package to annotate the results. This package can provide a lot of information on
each probe; the function aaf.handler shows the available fields:

> aaf.handler()
 [1] "Probe"               "Symbol"              "Description"
 [4] "Chromosome"          "Chromosome Location" "GenBank"
 [7] "Gene"                "Cytoband"            "UniGene"
[10] "PubMed"              "Gene Ontology"       "Pathway"

Let’s include the Probe, Symbol, Description, PubMed ID, Gene Ontology, and
Pathway for each probe. To do this, we first create an aafTable object with the
annotation information and then save it as an HTML file so we can view it:

> anntable <- aafTableAnn(probeid=GSE2034.rbsurv$gene.list,
+                         chip="hgu133a.db",
+                         colnames=c("Probe", "Symbol", "Description",
+                                    "PubMed", "Gene Ontology", "Pathway"))
> saveHTML(anntable, filename="~/results.html")

Figure 25-4 shows a screen shot of the results. As you can see, the annotation package
can provide a lot of supplemental information about each probe, hopefully allowing
you to learn something interesting from the experiment.
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Figure 25-4. Screen shot of Safari showing annotated results from the GSE2034.rbsurv model

Finally, you can use R to visualize the expression levels using a heat map. Heat maps
are like image plots or level plots, but automatically reorder observations using
clustering to show hot or cold spots. To make the diagram legible, we’ll pick 50
subjects: 25 with relapse, 25 without:

> relapse.df <- data.frame(row.names=GSE2034.geo1$geo_accession,
+                          relapse=GSE2034.geo1$relapse)
> library(sampling)
> smpl <- strata(relapse.df, c("relapse"), size=c(25,25), method="srswor")

Now let’s plot the heat map using R’s heatmap function. By default, R uses hierarch-
ical clustering to group similar observations together. Dendrograms are plotted in
the margins showing the clustering. Heat maps are plotted with colors ranging from
yellow to red on screen, though you can use the col parameter to control the color
palette. Here is the code that I used to generate the heat map shown in Figure 25-5:

> heatmap(assayData(GSE2034.geo1.f$eset)$exprs[
+ GSE2034.rbsurv$gene.list,smpl$ID_unit],
+ Colv=smpl$relapse, cexRow=0.45, cexCol=0.45)

Key Bioconductor Packages
The Bioconductor repository contains over 300 packages for working with genetic
data. Below is a list of some popular packages, with short descriptions of the classes
and functions that they contain.
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Category Package Description

Loading, pre-processing aCGH Classes and functions for array comparative genomic hybridization data.
Functions for reading aCGH data from image analysis output files and clone
information files and for creating aCGH S3 objects for storing these data.
Basic methods for accessing/replacing, subsetting, printing, and plotting
aCGH objects.

affy Methods for Affymetrix oligonucleotide arrays. Includes class definitions
for representing microarray data. Also includes methods for importing data,
quality control, and normalization.

affyQCReport A package to generate QC reports for Affymetrix array data.

arrayQuality Functions for performing print-run and array-level quality assessment.

gcrma Background adjustment using sequence information. The main function
gcrma converts background-adjusted probe intensities to expression
measures using the same normalization and summarization methods as
RMA (robust multiarray average).

Figure 25-5. Heat map showing expression level for 50 subjects
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Category Package Description

limma limma is an R package for the analysis of gene expression microarray data,
especially the use of linear models for analyzing designed experiments and
the assessment of differential expression.

lumi Functions to preprocess Illumina microarray (BeadArray) data. It includes
functions of Illumina data input, quality control, variance stabilization,
normalization, and gene annotation.

marray Diagnostic plots and normalization of cDNA microarray data.

oligo The oligo package includes tools for preprocessing data from oligonu-
cleotide arrays. It supports all microarray designs provided by Affymetrix
and NimbleGen: expression, tiling, SNP, and exon arrays.

prada Tools for analyzing and navigating data from high-throughput phenotyping
experiments based on cellular assays and fluorescent detection (flow cy-
tometry [FACS], high-content screening microscopy).

PROcess The PROcess package contains a collection of functions for processing
spectra (particularly, Ciphergen SELDI-TOF spectra for proteomic data) to
remove baseline drifts, if any, detect peaks, and align them to a set of
protobiomarkers.

Ringo Tools for working with two-color oligoarrays (particularly NimlbeGen ar-
rays). Stands for R Investigation of NimbleGen Oligoarrays.

simpleaffy Provides high-level functions for reading affy .CEL files and phenotypic data
and then computing simple things with it, such as t-tests, fold changes,
and the like. Also has some basic scatter plot functions and mechanisms for
generating high-resolution journal figures.

vsn Variance stabilization and calibration for microarray data. The package
implements a method for normalizing microarray intensities, both between
colors within an array and between arrays.

Annotation annotate The basic purpose of annotate is to supply interface routines that support
user actions that rely on the different metadata packages provided through
the Bioconductor Project.

annaffy This package is designed to help interface between Affymetrix analysis
results and web-based databases. It provides classes and functions for
accessing those resources both interactively and through statically gener-
ated HTML pages.

annBuilder annBuilder constructs annotation data packages for given sets of genes
with known mappings to GenBank accession numbers, UniGene identifiers,
Image identifiers, or Entrez Gene identifiers.

biomaRt Interface to BioMart databases (e.g., Ensembl, Wormbase, and Gramene).

GOstats A set of tools for interacting with Gene Ontology (GO) and microarray data.
A variety of basic manipulation tools for graphs, hypothesis testing, and
other simple calculations.

Analysis affypdnn Probe-dependent nearest neighbors for affy probes.

affyPLM Methods for fitting probe-level models.

bioDist A collection of software tools for calculating distance measures.
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Category Package Description

factDesign This package provides a set of tools for analyzing data from a factorial
designed microarray experiment or any microarray experiment for which
a linear model is appropriate. The functions can be used to evaluate tests
of contrast of biological interest and perform single outlier detection.

genefilter Methods for filtering genes from microarray experiments.

GSEABase This package provides classes and methods to support Gene Set Enrichment
Analysis (GSEA).

hopach Hierarchical Ordered Partitioning and Collapsing Hybrid.

MLInterfaces Uniform interfaces to machine learning code for data in Bioconductor con-
tainers. Includes clustering, classification, and regression algorithms.

limma limma is an R package for the analysis of gene expression microarray data,
especially the use of linear models for analyzing designed experiments and
the assessment of differential expression.

marray Diagnostic plots and normalization of cDNA microarray data.

multtest The multtest package contains a collection of functions for multiple
hypothesis testing. These functions can be used to identify differentially
expressed genes in microarray experiments (i.e., genes whose expression
levels are associated with a response or covariate of interest).

ROC Functions for calculating and plotting receiver operating characteristic
(ROC) curves with microarray data.

simpleaffy Provides high-level functions for reading Affy .CEL files and phenotypic data
and then computing simple things with it, such as t-tests, fold changes,
and the like. Also has some basic scatter plot functions and mechanisms for
generating high-resolution journal figures.

Visualization affycomp Graphical tools for assessing Affymetrix expression measures. These tools
rely on two studies: a dilution study and a spike-in study.

geneplotter Graphics-related functions for Bioconductor.

graph The graph package provides an implementation of graphs (the kind with
nodes and edges) in R.

RBGL Provides an interface to graph algorithms (such as shortest path, connec-
tivity, etc.).

Rgraphviz Provides graph-rendering functionality. Different layout algorithms are
provided, and parameters like node plotting, line type, and color can be
controlled by the user.

SNPchip This package defines classes and functions for plotting copy number and
genotype in high-throughput SNP platforms such as Affymetrix and Illu-
mina. In particular, SNPchip is a useful add-on to the oligo package for
visualizing SNP-level estimates after preprocessing.
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Category Package Description

Utilities Biobase Biobase contains standardized data structures to represent genomic data.

Biostrings Memory-efficient string containers, string-matching algorithms, and other
utilities, for fast manipulation of large biological sequences or set of
sequences.

BSgenome Infrastructure shared by all the Biostrings-based genome data pack-
ages.

convert Tools to convert between limma, marray, and Biobase data objects.

Data Structures
One of the best features of Bioconductor is the use of structured data to represent
biological concepts. This section presents a few important classes that are used
through Bioconductor.

Bioconductor classes are implemented using formal class methods; see Chapter 10
for more details. Most of these classes inherit from the basic classes in the Biobase
package, so you can use the same methods to work with different types of objects.
For example, you can use the same method to read phenotype data for expression
data from different vendors (such as Affymetrix arrays and Illumina arrays). You
could also use the same method to read phenotype data for expression data from
completely different types of data (such as gene expression data and proteomic data).

Objects in Bioconductor contain many different types of information about an ex-
periment: the experimental platform, information about the samples, information
about the phenotypes, the experimental results, and almost anything else that is
relevant for describing an experiment or the results of the experiment. Classes de-
fined in the Biobase package provide a general framework that fits many different
types of experimental data. Classes defined in other packages can be used to repre-
sent data from specific types of microarrays, often for specific products from specific
vendors. This section contains descriptions of a few key classes defined in Biobase.

eSet
eSet is a virtual class that is used by many Bioconductor functions. Objects based
on eSet package together all the relevant information about a high-throughput ex-
periment: expression data, metadata describing the experiment, annotation about
the chip or technology used, and a description of the experiment itself.

Many other classes inherit from eSet: In Biobase, the classes ExpressionSet (for high-
throughput expression-level assays), MultiSet (also for high-throughput expression-
level assays), SnpSet (for high-throughput SNP assays), and NChannelSet (for
multiple-channel arrays) are children of eSet. In the affy package, the class
AffyBatch (used to represent Affymetrix GeneChip probe-level data) inherits from
eSet. In the lumi package, LumiBatch (used to represent Illumina microarray
data) is based on eSet. In oligoClasses, the classes SnpLevelSet, SnpCallSet,
SnpCopyNumberSet, oligoSnpSet, and SnpCallSetPlus all inherit from eSet.
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An eSet object has the following slots:

assayData
An assayData object containing the expression data. (The expression data must
contain matrices with equal dimensions and with column numbers equal to
nrow(phenoData).)

phenoData
An AnnotatedDataFrame object describing the sample phenotypes.

featureData
An AnnotatedDataFrame object describing the features or probes (corresponding
to columns in assayData) for this experiment.

experimentData
A MIAME object containing detailed information on the experimental method(s).

annotation
A character value describing the annotation package used for the experiment.

There are included methods for getting or setting the object in each of these slots
directly. (For example, assayData(x) <- y will set the assayData slot in eSet x to y.)
Additionally, methods are defined for directly accessing commonly used slots within
each of these objects:

sampleNames, sampleNames<-
Get or set sample names in assayData and phenoData.

featureNames, featureNames<-
Get or set feature names in assayData.

dims
Gets the dimensions for the expression data in assayData.

pData
Gets or sets sample data (pData slot in phenoData).

fData
Gets or sets feature data information (pData slot in featureData).

varMetadata
Gets or sets metadata describing variables in pData.

varLabels
Gets or sets variable labels in phenoData.

fvarMetadata
Gets or sets metadata describing features in fData.

fVarLabels
Gets or sets variable labels in featureData.

description
Alias for experimentData.

pMedIds
Gets or sets PubMed Identifiers (PMIDs) from experimentData.
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abstract
Gets abstract from experimentData.

preproc, preproc<-
Get or set preprocessing information in experimentData.

storageMode, storageMode<-
Get or set storage mode for assayData.

assayDataElement
Gets or sets an element in an AssayData object.

notes
Used to add free-form notes to an AssayData object.

There are methods to coerce eSet objects to ExpressionSet and MultiSet objects. See
the help file for eSet for more details.

AssayData
AssayData objects hold expression data. You can access the contents of an Assay
Data object with the following methods:

featureNames, featureNames<-
Get or set the feature names (or probe names) for an object.

sampleNames, sampleNames<-
Get or set the sample names for an object.

storageMode, storageMode<-
Get or set the storage mode for an AssayData object.2

assayDataElement
Gets or sets a specific element in an AssayData object.

AssayData objects are used in eSet objects to hold expression data.

AnnotatedDataFrame
AnnotatedDataFrame objects are what they sound like: a data frame plus annotation.
Typically, they are used to include a data frame containing some experimental data,
plus information about each column/variable in the data frame. AnnotatedData
Frame objects contain two slots:

data
A data frame. Rows represent samples; columns represent variables.

varMetaData
A data frame with one row corresponding to each column in data. This data
frame must include a column called labelDescription but may contain addi-
tional information.

2. AssayData objects can hold the expression data in a list, environments, or “locked”
environments; see the help file for more information.
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The Biobase package defines a few useful methods for accessing information in
AnnotatedDataFrame objects:

pData, pData<-
Get or set the data stored in the object.

varMetaData, varMetaData<-
Get or set the metadata.

sampleNames, sampleNames<-
Get or set the sample names.

featureNames, featureNames<-
Alias for sampleNames, sampleNames<-.

varLabels, varLabels<-
Get or set the variable labels.

dimLabels, dimLabels<-
Get or set the dimension labels (rowNames, columnNames).

AnnotatedDataFrame objects are used to hold information about samples in eSet
objects.

MIAME
MIAME stands for Minimum Information About a Microarray Experiment.3

MIAME objects are used to contain information about an experiment. Slots in MIAME
objects include the following:

name
Experimenter name

lab
Lab where the experiment was conducted

contact
Contact information for the experimenter

title
Single-sentence description of the experiment

abstract
An abstract describing the experiment

url
A URL reference with information about the experiment

samples
Information about the samples

hybridization
Information about the hybridizations

3. MIAME is a standard developed by the MGED Society. See http://www.mged.org/Workgroups/
MIAME/miame.html for more information.

544 | Chapter 25: Bioconductor



normControls
Information about the controls

preprocessing
Information about preprocessing steps performed on raw data from the
experiment

pubMedIds
PubMed Identifiers of papers relevant for this data

other
Other information about the experiment that doesn’t fit elsewhere

MIAME objects are used in eSet objects to describe an experiment.

Other Classes Used by Bioconductor Packages
There are a variety of other classes used in different Bioconductor packages and
functions:

AssayData
A container class defined as a class union of list and environment. Designed to
contain one or more matrices of the same dimension.

ProbeSet
A simple class that contains the raw probe data (PM and MM data) for a probe
set from one or more samples.

RGList
A class used to store raw intensities as they are read in from an image analysis
output file.

MAList
A simple list-based class for storing M-values and A-values for a batch of spotted
microarrays.

Elist
A simple list-based class for storing expression values (E-values) for a set of one-
channel microarrays.

Elistraw
A simple list-based class for storing expression values (E-values) for a set of one-
channel microarrays (in raw form).

MArray-LM
A list-based class for storing the results of fitting gene-wise linear models to a
batch of microarrays.

TestResults
A matrix-based class for storing the results of simultaneous tests.

DBPDInfo
A class for Platform Design Information objects, stored using a database
approach.

QuantificationSet
A virtual class to store summarized measures.
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FeatureSet
A class to store data from expression/exon/SNP/tiling arrays at the feature level.

See the help files for more information on these classes.

Where to Go Next
This chapter just scratches the surface of the tools available through Bioconductor;
there are dozens of packages available on Bioconductor for doing different types of
analysis. The best place to start is the Bioconductor website: http://www.bioconduc
tor.org.

Here are some suggestions for learning more about this project and how to use the
Bioconductor tools.

Resources Outside Bioconductor
If you are working with genetic data, there are a variety of R packages outside Bio-
conductor that you might find useful. See http://cran.r-project.org/web/views/Genet
ics.html for more information.

Vignettes
In “Getting Help” on page 35, I introduced vignettes. There is at least one vignette
for every package in Bioconductor. For example, let’s attach the affy package and
look at the available vignettes:

> library(affy)
> vignette(all=FALSE)

This shows the following list of available vignettes (from affy and Biobase):

Vignettes in package 'affy':

affy 1. Primer (source, pdf)
builtinMethods 2. Built-in Processing Methods (source,

pdf)
customMethods 3. Custom Processing Methods (source, pdf)
vim 4. Import Methods (source, pdf)

Vignettes in package 'Biobase':

BiobaseDevelopment    Notes for eSet developers (source, pdf)
Bioconductor          Bioconductor Overview (source, pdf)
ExpressionSetIntroduction

An introduction to Biobase and
ExpressionSets (source, pdf)

HowTo Notes for writing introductory 'how to'
documents (source, pdf)

Qviews quick views of eSet instances (source, pdf)
esApply esApply Introduction (source, pdf)
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If you are not familiar with a package but think it could be useful for your work, try
reading the included vignettes. In many cases, the vignettes will guide you through
the whole analysis process: loading, cleaning, and analyzing data.

Courses
The Bioconductor project offers classes on Bioconductor. See http://www.biocon
ductor.org/workshops for a list of past course materials and upcoming events.

Books
The developers of Bioconductor have published several books; I found these very
helpful when learning Bioconductor. If you are not familiar with the methods of
modern biology or Bioconductor, then [Gentleman2005] is a very good choice. If
you are familiar with modern biology and just want to see more examples, try
[Hahne2008]. [Foulkes2009] provides a good introduction to statistical genetics
using a number of tools outside Bioconductor (such as the genetics package).
Finally, [Ewens2005] is a good book on statistical genetics, though it does not
specifically discuss R.
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26
R and Hadoop

One of the best techniques for speeding up large computing problems is to break
them into lots of little pieces, solve the pieces separately, and then put the pieces
back together. This is called parallel computing, because it enables you to solve
problems in parallel. For example, suppose that you had a lot of laundry: enough
to fill 10 washing machines. Suppose each wash took 45 minutes, and each drying
took 45 minutes. If you had only one washing machine and dryer, it would take 495
minutes to finish all the laundry. However, if you had 10 washing machines and 10
dryers, you could finish the laundry in 90 minutes.

In Chapters 20 and 21, we showed some cutting-edge techniques for statistical
modeling. Many of these problems are very computationally intensive and could
take a long time to finish. Luckily, many of them are very parallelizable. For example,
we will show several algorithms that build models by fitting a large number of tree
models to the underlying data (such as boosting, bagging, and random forests). Each
of these algorithms could be run in parallel if more processors were available.

There are many packages available for parallel and distributed computing with R.
In this chapter, I’ve focused on Hadoop-based solutions. Hadoop isn’t the best sol-
ution for all problems, but it’s popular, open source, and runs well in the cloud.

R and Hadoop
Over the past few years, Hadoop has become the de facto standard for processing
big data. For many people, Hadoop is Big Data. You may have heard of Hadoop.
But you may not know what it is, what it’s good for, and how you can you use it
with R. That’s what this section is all about.

Overview of Hadoop
Hadoop is a system for working with huge data sets. Facebook uses it to store photos,
LinkedIn uses it to generate recommendations, and Amazon uses it to generate
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search indexes. It’s a very useful system to use when you have a very large amount
of data.

Hadoop is a system that lets you store a lot of data and solve really big problems. It
works by connecting many different computers together, but it lets you work with
them as if they were one giant computer. Working with parallel and distributed
systems is tricky and complicated; Hadoop hides a lot of complexity from you so
that you can worry about solving your problem.

In terms of the laundry analogy above, Hadoop is like a commercial laundry service.
You give the service many loads of dirty laundry, and it sends you back bags of clean
laundry the next day.

Map/Reduce

To help make it easier to write efficient parallel programs, Hadoop uses a model
called Map/Reduce to process large amounts of data. Many common data processing
tasks (including filtering data, merging data, and aggregating data) fit easily into
Map/Reduce. Many (but not all) mathematical and machine learning algorithms can
also use the Map/Reduce framework. To help explain how Map/Reduce works, let’s
consider three problems:

Creating a web traffic report
Suppose that you want to calculate the number of requests and bytes served by
a set of web servers each hour. You are given a set of large log files from web
servers in common log format. Each line in the file contains seven fields: the
host name or IP address of the remote host, the remote logname of the user, the
username of an authenticated user, the date and time of the request, the request
itself, the HTTP status returned to the client, and the number of bytes served.

Reporting on web traffic by location
Suppose that you want to calculate the number of requests and bytes served by
a set of web servers by location. Just like above, suppose that you are given a
set of large log files from web servers in common log format. But in this case,
you’re also given a database for mapping IP addresses to locations. The database
will contain an entry for the first 3 bytes of every IP address, mapping that to a
location.

Predicting user behavior
Now, suppose that you want to predict how likely a user is to purchase an item
from a website. Suppose that you have already computed (maybe using Map/
Reduce), a set of variables describing each user: most common locations, the
number of pages viewed, the number of purchases made in the past. Based on
your experience, you’d like to calculate this forecast using random forests.

You can solve each of these problems efficiently with Map/Reduce. By implementing
your solution with Map/Reduce, you can process your data in parallel on many
servers, speeding up the computation immensely. Map/Reduce algorithms proceed
in two steps:
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Map step
In the map step, tasks read in input data as a set of records, process the records,
and send groups of similar records to reducers. In Hadoop terminology, the
mapper extracts a key from each input record. Hadoop will then route all records
with the same key to the same reducer.

Reduce step
In the reduce step, tasks read in a set of related records, process the records,
and outputs the results. In Hadoop terminology, the reducer will iterate through
all results for the same key, processing the data and writing out the results.

Map/Reduce sounds very limiting, but it is a very flexible system for processing data.
Programs can do many different things in the map step: they can drop fields or whole
records, they can write out more than one output record for each input record, they
can transform the input however the user would like. Similarly, programs can do
many different thing in the reduce step. They can count input records, add fields
from a set of records, combine records of different types, or do anything else the user
would like to do with sets of records.

The great strength of Map/Reduce is that both maps and reducers are easily paral-
lelizable. Each mapper processes a set of input records. Map tasks do not maintain
state, nor do they need to communicate with one another. So it is possible to divide
the mapping work across many map processes on many machines. Similarly, reduce
tasks do not maintain state between keys, nor do they need to communicate with
one another. Each reduce task will process sets of records (corresponding to sets of
keys). Records with different keys are consistently sent to the same reduce task. So
it is possible to efficiently process massive data sets with Map/Reduce.

To help show how this works, let’s explain how to use map/reduce to solve each of
the examples above.

Creating a web traffic report
Each mapper will read in a web server log (or a set of logs). The mapper will
process the logs one line at a time. For each record, the mapper will extract the
timestamp and round the time to the nearest hour; the mapper will use this as
the key. The mapper will then extract the number of bytes, which will be used
as the value. The mapper will write out these fields.

The reducer will iterate over a set of byte counts for each key. The reducer will
count the number of records and sum the number of bytes for each key, and
then write out the results.

Reporting on web traffic by location
To solve this problem, we’ll need our mappers to do two things. First, some
mappers will read web server logs. They will look at the IP address in each entry,
extracting the first 3 bytes to use as a key. They will then extract the number of
bytes and use that as the value and send these entries to the reducers.

Next, some mappers will process the IP geolocation data. They will extract the
first 3 bytes of an IP address as a key and the location as the value. They will
send these results to the reducers.
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The reducers will then collect two things. When they are processing input re-
cords, they will do two things. When they encounter a location record, they
will record the location. When they encounter a traffic record, they will add the
request to the total requests and add the number of bytes to the total bytes.
When the reducer finishes iterating through the entries, it will then write out
the location, the number of bytes, and the number of requests.

Predicting user behavior
As you may recall, random forests work by calculating a set of regression trees
and then averaging them together to create a single model. It can be time con-
suming to fit the random trees to the data, but each new tree can be calculated
independently.

There are many ways to accomplish this task. One way to tackle this problem
is to use a set of map tasks to generate random trees, and then send the models
to a single reducer task to average the results and produce the model.1

Map/Reduce is a very powerful model for doing distributed computation. With
some practice, you can learn to formulate data problems as Map/Reduce problems
and solve them efficiently.

To make programs scalable, there are some restrictions on what map tasks and
reduce tasks can do:

• Map tasks should be stateless. Map tasks should calculate the same results
strictly based on the input data, regardless of the order of the input data.

• Reduce tasks should be stateless but may maintain state while iterating through
inputs with the same key.

• Tasks cannot communicate with one another. Each task should be able to com-
mute its result based strictly on the input data.

There is one other type of task that is commonly used: combine tasks. Combine
tasks work like reduce tasks, but they run on subsets of the data. The results of the
combine tasks are then combined by the reducer. Reduce tasks are typically run on
map nodes. Combiners are not required but are often useful as an optimization. In
my examples, I’ve omitted combine tasks to keep things easy to understand.

A great place to learn about Map/Reduce is from the original Google Map/Reduce
paper.

Distributed data storage

A second major feature of Hadoop is the Hadoop Distributed File System (HDFS).
HDFS is a system for storing data on a Hadoop cluster, often on the same nodes that
run user code. HDFS allows you to store very large volumes of data, because the
data is distributed across many different machines. (You can even split single files
into parts and distribute them across multiple machines.) Usually, HDFS stores each
file on more than one machine. This helps prevent data loss if computers (or hard
drives) fail.

1. To load the input data, we’d use the Distributed Cache.
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Hadoop provides an additional feature for large computational jobs. Modern com-
puters are typically so fast at calculating results that computers don’t spend all their
time computing. Instead, they spend most of their time waiting: waiting for data to
be read from storage (memory or disk), sent across a network, or written to storage.
In many cases, simply copying data within memory can take a substantial amount
of time. Within a large job, Hadoop will try to run tasks close to one another (to
minimize network connections across racks or clusters). When starting a job, Ha-
doop will also try to assign tasks to the same machines where the data is stored. For
large jobs, this can substantially improve performance.

Managing a cluster of servers

Hadoop has many features to enable processing large data sets, and many options
for configuring these tasks. You can tune the number of tasks, the way records are
divided across tasks, the way that data is sorted, and many other aspects of your
computation.

Hadoop also has many features to make sure that tasks will finish and data will not
be lost even if machines fail. Here’s why this is important. Suppose that you had one
server, and the probability that this server fails on a given day is 1/1000 (approxi-
mately once every three years). You might not worry too much about system failures;
the probability that the server does not fail on a given day is .999. But now suppose
that you had 1000 servers. The probability that none of the servers fail is now
(1 - 1/1000)1000, or 0.368.

To protect against failures, Hadoop provides several different tools. First, files are
replicated on several servers. If any individual disk fails, a copy of each file can be
retrieved from other locations. Secondly, Hadoop constantly monitors tasks; if any
individual task fails to respond when contacted, or appears to be taking too long to
complete, Hadoop will attempt to end that task and start a duplicate task. (This is
called “speculative execution.”) Finally, Hadoop will track which nodes are having
problems and stop sending them new tasks.

As an end user of Hadoop, you do not normally have to worry about task failures,
replication factors, and node blacklisting. These are all included with the framework.

Java framework

One other important note: Hadoop was written in Java and (originally) designed to
help write Java programs. If you don’t want to write Java code, there are other tools
that you can use with Hadoop: Apache Hive (which lets you write SQL queries),
Apache Pig (an SQL-like scripting language), or Cascading (a system for writing
pipelines in Scala, Clojure, or other languages). You can even use other applications
(such as R) to do your data processing on Hadoop, and just use Hadoop to schedule
jobs and move around data. (This is called streaming.)

There are some good things about Hadoop’s Java roots. You can access Hadoop
from any language that runs on the JVM (Java Virtual Machine). Additionally, you
can install and run it on many different platforms including Linux, Mac OS X, and
Windows. (You could probably run Hadoop on your Android phone.) But there is

R and Hadoop | 553

R and Hadoop



one big negative. If you want to use Hadoop, you need to learn how to read and
write Java code and how to use Java tools; you will see Java error messages, you will
need to read Java documentation, and you will need to compile and run Java
programs.

If you can learn R, you can learn Java. (And if you’ve read this far into this book,
I’m confident that you can learn R.) But you should prepare yourself to invest some
time learning new things if you plan to use Hadoop.

When should you consider Hadoop?

Hadoop is a great tool for storing and processing huge amounts of data, but it’s not
the best tool for storing and processing any amount data. It’s hard to start a Hadoop
cluster and keep it working over time. Additionally, it can be expensive to move data
among different computers using Java: Hadoop isn’t always the fastest option. Be-
fore using Hadoop, I’d recommend shrinking the problem (by sampling data or
reducing the complexity of the problem), or growing your computer (by adding more
processors or memory).

In general, I’d consider using Hadoop if:

1. You cannot solve the problem with one machine, even after shrinking your data
or expanding the machine.

2. It’s possible to formulate the problem as a Map/Reduce problem. Many, but
not all, important problems fit into a Map/Reduce model.

3. You have the right expertise to run a Hadoop cluster. Companies that actively
use Hadoop often have teams of people to manage Hadoop.

I’d consider using R with Hadoop if I needed to take advantage of some unique
features of R, such as some of the modeling facilities. Using R and Hadoop is not
always the most efficient solution for solving a problem. For example, we count the
number of deaths by sex in the United States during 2009 in “An example RHadoop
application” on page 559. Using RHadoop and a four-node cluster, this job takes
15 minutes; using one server and R it takes 1 hour; and using one server and Perl it
takes about 15 seconds to solve this problem. That might sound like a huge differ-
ence in performance (and it is). Hadoop can definitely help you speed up R programs,
even if you can find faster solutions outside of R.

In the rest of this section, we’ll show three ways to use Hadoop: using the RHadoop
package in R, using Segue, and using Hadoop streaming.

RHadoop
The most mature (and best integrated) project for R and Hadoop is RHadoop.
Written by Antonio Piccolboni, with support from Revolution Analytics, it’s a well
tested and thought out project.
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There are three different parts of RHadoop:

rmr
This is the core package in RHadoop. It contains functions for moving data in
and out of a Hadoop cluster and executing Map/Reduce jobs on the cluster.2

rhdfs
The rhdfs package includes a set of tools for managing files on HDFS, the Ha-
doop file system. These functions cover most normal file system functions;
they’re principally useful for scripting common operations within R. There is a
set of functions that duplicate the hadoop fs command for changing permis-
sions, checking file properties, listing directories, creating and deleting direc-
tories, and removing files; see help(hdfs.ls) for a list. There are also functions
for copying local files to HDFS, moving them from HDFS, or moving them
around hdfs; see help(hdfs.copy) for a list.

rhbase
Rhbase contains a set of functions for manipulating Hbase from R. There are
functions for creating or modifying Hbase tables, or reading and writing Hbase
records. See help(hb.defaults) for more information about functions for cre-
ating or modifying Hbase tables, or help(hb.insert) for more information
about the functions for reading and writing records.

I’ll focus on rmr in this section, because that’s going to be the most useful package
for most R users.

Make sure Hadoop is installed locally

If you aren’t using Hadoop yet, you should begin by installing some tools locally.
RHadoop was built with the Cloudera Hadoop distribution and is tested against it.
I used CDH Version 3 Update 4 for this example; you can download and unpack it
with these commands on a system prompt (not from inside R):

$ wget http://archive.cloudera.com/cdh/3/hadoop-0.20.2-cdh3u4.tar.gz
$ tar xvfz hadoop-0.20.2-cdh3u4.tar.gz

You can check if Hadoop is installed correctly by using the command hadoop
version on your OS shell (not from inside R). You should see a message like this:

$ hadoop version
Hadoop 0.20.2-cdh3u4
Subversion git://ubuntu-slave01/var/lib/jenkins/workspace/CDH3u4-Full-RC/
build/cdh3/hadoop20/0.20.2-cdh3u4/source -r
  214dd731e3bdb687cb55988d3f47dd9e248c5690
Compiled by jenkins on Mon May  7 13:01:39 PDT 2012
From source with checksum a60c9795e41a3248b212344fb131c12c

I strongly recommend testing locally before running your code in the cloud. Local
Hadoop jobs are easier and faster to debug. Just make sure to shrink your data.

2. The name rmr is an unfortunate choice; hadoop fs -rmr is Hadoop’s recursive delete command.
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If you don’t have your own Hadoop cluster to play with, you can rent one from a
cloud service (such as Amazon Web Services or Rackspace). See the following side-
bar for a description of how I installed my own small cluster for this book.

Hadoop in the Cloud
Hadoop is a big, complicated piece of software. There are whole books on how
to configure and administer Hadoop clusters.

But there is a fast, relatively painless way to create a real Hadoop cluster in the
cloud: using Apache Whirr. I created my own cluster when I was writing this book
and used it for the included examples. (Specifically, I used AWS EC2, the Elastic
Compute Cloud. This lets you create virtual computers in the cloud and run soft-
ware on them.) Here’s a description of how I built my own cluster for this book
using AWS.

1. Get an account with a cloud provider.
You will need to register with the provider, providing contact and billing
information. The most popular choice is Amazon Web Services, but Rack-
space is also a good choice. (I’m recommending choosing one of these two
providers because these are the best supported by Apache Whirr; see below
for an explanation of why that matters.) Either provider will allows you to
allocate a set of virtual computers and provide management tools to let you
use them. You will be charged based upon usage: an hourly fee per server,
fees for each GB of data that you transfer in and out of the cloud, fees for each
GB of storage space that you use, and additional charges for other services.
In my experience, the charges are reasonable, but you should be careful to
use only what you need.

2. Configure security settings.
To use cloud services, you’ll need to get several security settings correct. For
AWS, you need to find your Access Key ID and Secret Access Key, and ad-
ditionally need to create an SSH keypair. (The Access Key ID and Secret Ac-
cess Key are used for communication with Amazon Web Services manage-
ment features; you use these keys to start and stop services. The SSH key pair
is used to connect to virtual machines in the cloud.)

You can find the Access Key ID and Secret Access Key from AWS’s security
credentials page. For convenience, I set the environment variable
AWS_ACCESS_KEY_ID to my Access Key ID, and AWS_SECRET_ACCESS_KEY to my
secret key:

$ # using Bash shell syntax
$ EXPORT AWS_ACCESS_KEY_ID=my_access_key_id
$ EXPORT AWS_SECRET_ACCESS_KEY=my_secret_key

I created a new SSH key pair to connect to my EC2 instances (saving them in
the default location):

$ # create a key pair with no password for the private key
$ ssh-keygen -t rsa -P ''
Generating public/private rsa key pair.
Enter file in which to save the key (/Users/jadler/.ssh/id_rsa):
Your identification has been saved in ./id_rsa.
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Your public key has been saved in ./id_rsa.pub.
...
$ # save a copy of the key in PEM format to make AWS happy:
$ ssh-keygen -e -f ~/.ssh/id_rsa -m pem > ~/.ssh/id_rsa.pub.pem

Next, I went to the EC2 management console and installed the key pair.
(Make sure you are using the console for the region, or regions, in which you
want to set up your cluster.)

3. Install Apache Whirr.
Apache Whirr (http://whirr.apache.org) is a set of libraries for running cloud
services. Whirr makes it easy to set up complicated services and manage them
from your desktop; with just a few lines of configuration, you can install a
Hadoop cluster.

4. Configure Whirr.
You will need to define a properties file to use Whirr; as an example, you
might start with recipes/hadoop-ec2-properties in the Whirr distribution,
or better yet, RHadoop/rmr/pkg/tools/whirr/hadoop-ec2-centos.properties in
the rmr source code. For my example, I used the following configuration:

# Change the cluster name here
whirr.cluster-name=hadoop-my-ec2-cluster

# Change the number of machines in the cluster here
# I used 1 machine for the name node and job tracker, and
# 4 machines for data nodes and tasktrackers:
whirr.instance-templates=1 hadoop-namenode+hadoop-jobtracker,\
4 hadoop-datanode+hadoop-tasktracker

# rmr requries Cloudera Hadoop, so use CDH
whirr.hadoop.install-function=install_cdh_hadoop
whirr.hadoop.configure-function=configure_cdh_hadoop

# make sure java is set up correctly, requires Whirr >= 0.7.1
whirr.java.install-function=install_oab_java

# read AWS keys from environment variables
whirr.provider=aws-ec2
whirr.identity=${env:AWS_ACCESS_KEY_ID}
whirr.credential=${env:AWS_SECRET_ACCESS_KEY}

# The size of the instance to use.
# See http://aws.amazon.com/ec2/instance-types/
whirr.hardware-id=m1.large

# select recent, 64-bit CentOS AMI from RightScale
# Note that this image may not be available in your region, or
# might be out of date when you try this.
whirr.image-id=us-west-1/ami-8f6a37ca

# If you choose a different location, make sure whirr.image-id
# is also updated
whirr.location-id=us-west-1

# By default use the user system SSH keys. Override them here.

R and Hadoop | 557

R and Hadoop



# whirr.private-key-file=${sys:user.home}/.ssh/id_rsa
# whirr.public-key-file=${whirr.private-key-file}.pub

hadoop-env.JAVA_HOME=/usr/lib/jvm/java-6-openjdk-amd64

I saved my configuration in a file called rian-hadoop-cluster.properties. Amaz-
ingly, that’s all you need in order to use Whirr to create, configure, and stop
a Hadoop cluster.

5. Start the cluster and install rmr.
I started my cluster using whirr (output truncated for brevity):

$ whirr launch-cluster --config rian-hadoop-cluster.properties
Bootstrapping cluster
Configuring template
Configuring template
Starting 1 node(s) with roles [hadoop-namenode, hadoop-jobtracker]
Starting 4 node(s) with roles [hadoop-datanode, hadoop-tasktracker]
...

6. Run a script on all nodes to install rmr.
Next, you’ll need to install R and rmr on all the nodes in your cluster. Whirr
lets you easily write a command line script and execute it on every node. You
can find the R install script in the rmr distribution under RHadoop/rmr/pkg/
tools/whirr/rmr-master-centos.sh. To run this, use the command

$ whirr run-script --script rmr-master-centos.sh \
  --config rian-hadoop-cluster.properties

7. Connect to the job tracker/namde node machine and check permissions.
I needed to fix group permissions before I could run jobs on the cluster:

$ sudo -u hdfs hadoop fs -chmod 777 /

8. Configure your local machine to run hadoop jobs in the cloud.
When you start a cluster with Whirr, Whirr will create a configuration di-
rectory for the new cluster and as script for connecting to that cluster. By
default, these are in a folder inside the ~/.whirr directory, with a name cor-
responding to your cluster name. For my example, here is how I used these
files to connect to my cluster:

$ export HADOOP_CONF_DIR=~/.whirr/hadoop-my-ec2-cluster
$ $HADOOP_CONF_DIR/hadoop-proxy.sh &

And that should be it; you now have your own Hadoop cluster for experimenta-
tion! When you’re done, you can destroy the cluster with the command:

$ whirr destroy-cluster --config hadoop-ec2-properties

Thanks to Jeffrey Breen for writing a short tutorial on how to start a cluster for
running rmr.
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Installing RHadoop locally

You’ll need to install RHadoop both locally (on the machine you use to run R) and
on all the nodes of your Hadoop cluster. The easiest way to download and install
RHadoop is to use the devtools package. (Output edited for brevity.)

> library(devtools)
> install_url("https://github.com/downloads/RevolutionAnalytics/RHadoop/
rmr_1.3.tar.gz")
Installing rmr_1.3.tar.gz from https://github.com/downloads/
RevolutionAnalytics/RHadoop/rmr_1.3.tar.gz
Installing rmr
Installing dependencies for rmr:
...
> # make sure to set HADOOP_HOME to the location of your HADOOP installation,
> # HADOOP_CONF to the location of your hadoop config files, and make sure
> # that the hadoop bin diretory is on your path
> Sys.setenv(HADOOP_HOME="/Users/jadler/src/hadoop-0.20.2-cdh3u4")
> Sys.setenv(HADOOP_CONF=paste(Sys.getenv("HADOOP_HOME"),
+   "/conf", sep=""))
> Sys.setenv(PATH=paste(Sys.getenv("PATH"), ":", Sys.getenv("HADOOP_HOME"),
+   "/bin", sep=""))
> install_url("https://github.com/downloads/RevolutionAnalytics/RHadoop/
rhdfs_1.0.4.tar.gz")
Installing rhdfs_1.0.4.tar.gz from https://github.com/downloads/
RevolutionAnalytics/RHadoop/rhdfs_1.0.4.tar.gz
Installing rhdfs
...
> install_url("https://github.com/downloads/RevolutionAnalytics/
RHadoop/rhbase_1.0.4.tar.gz")
Installing rhbase_1.0.4.tar.gz from https://github.com/downloads/
RevolutionAnalytics/RHadoop/rhbase_1.0.4.tar.gz
Installing rhbase

Make sure to double-check the current version at the RHadoop Download Page on
GitHub; you’ll get an error if the version numbers change.

An example RHadoop application

Most Map/Reduce examples start with a word count program. I like to be different,
so I decided to calculate statistics using the mortality data that we loaded in “Using
Other Languages to Preprocess Text Files” on page 151 and “Comparing means
across more than two groups” on page 378. This data set contains a record of every
death in the United States, including the cause of death and demographic informa-
tion about the deceased. It’s a pretty big file: in 2009, the mortality data file was
1.1 GB and contained 2,441,219 records. One of the best things about Hadoop is
that you can work with a set of raw, unstructured files. To make this example more
realistic, we’ll parse the data as we process it.

To get started, I got a copy of the raw mortality data from the CDC website and
uploaded it to my cluster.

$ # get the file from the CDC
$ wget ftp://ftp.cdc.gov/pub/Health_Statistics/NCHS/Datasets/DVS/
  mortality/mort2009us.zip
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$ # unzip the file
$ unzip mort2009us.zip
$ # create a directory on hdfs
$ hadoop fs -mkdir mort09
$ # copy to that directory on hdfs
$ hadoop fs -copyFromLocal VS09MORT.DUSMCPUB mort09
$ # look at the files
$ hadoop fs -ls mort09
Found 1 items
-rw-r--r--   3 jadler supergroup 1196197310 2012-08-02 16:31
  /user/jadler/mort09/VS09MORT.DUSMCPUB

I also created a small (100 observation) sample for testing on my local machine:

$ head -n 100 VS09MORT.DUSMCPUB > VS09MORT.DUSMCPUB.sample

I took a look at the Mortality Public Use File Documentation, and used this to figure
out how to read the file. This is a fixed format file. Normally, you’d read a file like
this with read.fwf, but I would not have access to read.fwf from RHadoop functions,
so I decided to write my own parsing function.

First, I created a vector labeled with field sizes, labeling each by position. For fields
that were blank, I gave them names that started with .X. (That’s an arbitrary choice.)

mort.schema <- c(
  .X0=19, ResidentStatus=1, .X1=40, Education1989=2, Education2003=1,
  EducationFlag=1,MonthOfDeath=2,.X2=2,Sex=1,AgeDetail=4, AgeSubstitution=1,
  AgeRecode52=2,AgeRecode27=2,AgeRecode12=2,AgeRecodeInfant22=2,
  PlaceOfDeath=1,MaritalStatus=1,DayOfWeekofDeath=1,.X3=16,
  CurrentDataYear=4, InjuryAtWork=1, MannerOfDeath=1, MethodOfDisposition=1,
  Autopsy=1,.X4=34,ActivityCode=1,PlaceOfInjury=1,ICDCode=4,
  CauseRecode358=3,.X5=1,CauseRecode113=3,CauseRecode130=3,
  CauseRecode39=2,.X6=1,Conditions=281,.X8=1,Race=2,BridgeRaceFlag=1,
  RaceImputationFlag=1,RaceRecode3=1,RaceRecode5=1,.X9=33,
  HispanicOrigin=3,.X10=1,HispanicOriginRecode=1)

I chose a vector so that I could easily lookup up field sizes and names by position,
and also so that I could check my work:

> # according to the documentation, each line is 488 characters long
> sum(mort.schema)
[1] 488

Next I wrote a function for reading records from a data file, using a vector like the
one above to determine the position and name of each field. This function returns
a list and skips over any field name that begins with .X.

unpack.line <- function(data, schema) {
  filter.func <- function(x) {substr(x,1,2) != ".X"}
  data.pointer <- 1
  output.data <- list()
  for (i in 1:length(schema)) {
    if (filter.func(names(schema)[i])) {
      output.data[[names(schema)[i]]] <-

type.convert(
substr(data, data.pointer, data.pointer+schema[i] - 1),
as.is=TRUE)
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    }
    data.pointer <- data.pointer + schema[i]
  }
  output.data
}

Here’s a small example that shows how this function works:

> test.data <- c("A11a 8", "B22b09", "C33c10")
> test.schema <- c(one=1, .X1=2, three=1, four=2)
> t(sapply(test.data, FUN=function(x) unpack.line(x,test.schema)))
       one three four
A11a 8 "A" "a"   8
B22b09 "B" "b"   9
C33c10 "C" "c"   10

Now let’s try a simple example: counting the number of deaths by sex. First we’ll
create a map function that reads in each input line, labels the sex as the key, and
emits a 1 as the value.

sex.map.fn <- function(k,v) {
    record <- unpack.line(v, mort.schema)
    # type.convert assumes the character F means FALSE
    key <- ifelse(record[["Sex"]]==FALSE,"female","male")
    keyval(key, 1)
  }

Next we’ll create a reduce function to count the set of values for each key:

count.records.reduce.fn <- function(k, v) {
  keyval(k, length(v))
}

Let’s now use mapreduce to run this code on the input data and tabulate the results.
We’ll start with our small sample file as input, and specify the map and reduce
functions. We’ll also tell mapreduce to treat the input file as plain text, but to output
the data in CSV format (to make it easier to read later):

sex.counts <- mapreduce(
  input="VS09MORT.DUSMCPUB.sample", # change this path as needed
  map=sex.map.fn,
  reduce=count.records.reduce.fn,
  combine=NULL,
  input.format="text",
  output.format="csv")

Running this function produces a lot of output (truncated and edited for readability):

...
12/08/01 14:50:54 INFO streaming.StreamJob: Running job: job_local_0001
12/08/01 14:50:54 INFO streaming.StreamJob: Job running in-process (local
  Hadoop)
12/08/01 14:50:54 INFO mapred.Task:  Using ResourceCalculatorPlugin : null
12/08/01 14:50:54 INFO mapred.MapTask: numReduceTasks: 1
...
12/08/01 14:50:57 INFO streaming.StreamJob:  map 100%  reduce 0%
...
12/08/01 14:50:57 INFO mapred.LocalJobRunner: Records R/W=100/1 > reduce
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12/08/01 14:50:57 INFO mapred.Task: Task 'attempt_local_0001_r_000000_0' done.
12/08/01 14:50:58 INFO streaming.StreamJob:  map 100%  reduce 100%
12/08/01 14:50:58 INFO streaming.StreamJob: Job complete: job_local_0001
12/08/01 14:50:58 INFO streaming.StreamJob: Output:
  /var/folders/j9/040rj_5x6ynbkr7xy5l86lf80000gp/T//RtmpwyGSF1/filef1b2e2d29ef

If everything is set up correctly, the job will end with a statement like the one above
(and no error messages). Notice that the message says that the job is 100% complete.
Finally, we can read the results back into R using the from.dfs function:

> from.dfs(sex.counts, format="csv", structured=TRUE)
      V1 V2
1   male 53
2 female 47
Warning message:
In keyval.list.to.data.frame(retval) : dropping keys

If everything looks correct when you run this locally, you can try to run the code at
scale on a cluster (output edited for clarity and brevity):

> sex.counts <- mapreduce(
+   input="mort09",
+   map=sex.map.fn,
+   reduce=count.records.reduce.fn,
+   combine=NULL,
+   input.format="text",
+   output.format="csv")
...
12/08/01 21:11:50 mapred.FileInputFormat: Total input paths to process : 4
...
12/08/01 21:11:53 streaming.StreamJob:  map 0%  reduce 0%
12/08/01 21:12:07 streaming.StreamJob:  map 1%  reduce 0%
12/08/01 21:12:12 streaming.StreamJob:  map 2%  reduce 0%
12/08/01 21:12:18 streaming.StreamJob:  map 3%  reduce 0%
...
12/08/01 21:24:44 streaming.StreamJob:  map 99%  reduce 31%
12/08/01 21:25:32 streaming.StreamJob:  map 100%  reduce 31%
12/08/01 21:26:08 streaming.StreamJob:  map 100%  reduce 67%
12/08/01 21:28:33 streaming.StreamJob:  map 100%  reduce 83%
12/08/01 21:31:00 streaming.StreamJob:  map 100%  reduce 100%
12/08/01 21:31:10 streaming.StreamJob: Job complete: job_201208012345_0001
12/08/01 21:31:10 streaming.StreamJob: Output:

> from.dfs(sex.counts, format="csv", structured=TRUE)
      V1      V2
1   male 1220120
2 female 1221099

Let’s try a slightly more complicated example that really shows off what you can do
in R: we’ll calculate a series of density plots for every cause of death. Here’s the plan:
we’ll use map functions to extract the cause of death and age from each record. We’ll
then use a reduce function to calculate a histogram for each key. Finally, we’ll plot
the output in R. First, we’ll write some helper functions to decode the data in the file

cause.decode <- function(x) {
  switch(x,
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`1`="Tuberculosis",
`2`="Syphilis",
`3`="Human immunodeficiency virus",
`4`="Malignant neoplasms",
`5`="Malignant neoplasm of stomach",
`6`="Malignant neoplasms of colon, rectum and anus",
`7`="Malignant neoplasm of pancreas",
`8`="Malignant neoplasms of trachea, bronchus and lung",
`9`="Malignant neoplasm of breast",
`10`="Malignant neoplasms of cervix uteri, corpus uteri and ovary",
`11`="Malignant neoplasm of prostate",
`12`="Malignant neoplasms of urinary tract",
`13`="Non-Hodgkin's lymphoma",
`14`="Leukemia",
`15`="Other malignant neoplasms",
`16`="Diabetes mellitus",
`17`="Alzheimer's disease",
`18`="Major cardiovascular diseases",
`19`="Diseases of heart",
`20`="Hypertensive heart disease with or without renal disease",
`21`="Ischemic heart diseases",
`22`="Other diseases of heart",
`23`="Essential",
`24`="Cerebrovascular diseases",
`25`="Atherosclerosis",
`26`="Other diseases of circulatory system",
`27`="Influenza and pneumonia",
`28`="Chronic lower respiratory diseases",
`29`="Peptic ulcer",
`30`="Chronic liver disease and cirrhosis",
`31`="Nephritis, nephrotic syndrome, and nephrosis",
`32`="Pregnancy, childbirth and the puerperium",
`33`="Certain conditions originating in the perinatal period",
`34`="Birth Defects",
`35`="Sudden infant death syndrome",
`36`="Other",
`37`="All other diseases",
`38`="Motor vehicle accidents",
`39`="All other and unspecified accidents and adverse effects",
`40`="Intentional self-harm",
`41`="Assault",
`42`="All other external causes"

  )
}

age.decode <- function(x) {
  if (x>9000)
    NA
  else if (x > 5000)
    0
  else if (x > 4000)
    floor((x - 4000) / 365)
  else if (x > 2000)
    floor((x - 2000) / 12)
  else if (x > 1000)
    (x - 1000)
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  else
    NA
  }

Next we’ll write a map function to extract the cause of death and age. We won’t
decode the cause of death yet, so we can move less data around the cluster:

cause.map.fn <- function(k,v) {
  record <- unpack.line(v, mort.schema)
  key <- record[["CauseRecode39"]]
  val <- age.decode(record[["AgeDetail"]])
  keyval(key, val)
}

We’ll write a reduce function that tabulates the number of deaths by age (we’ll cut
off ages at 110):

hist.reduce.fn <- function(key, values) {
  counts <- rep(0, 112)
  names(counts) <- c(0:110,NA)
  for (value in values) {
    if (!is.na(value)) {
      if (value < 110) {

counts[value + 1] <- counts[value + 1] + 1
      } else {

counts[111] <- counts[111] + 1
      }
    } else {
      counts[112] <- counts[112] + 1
    }
  }
  keyval(cause.decode(key), counts)
}

Next, we’ll run the map reduce job to tabulate the results:

deaths.by.age.and.cause.mr <- mapreduce(
  input="mort09", # change this path as needed
  map=cause.map.fn,
  reduce=hist.reduce.fn,
  input.format="text",
  # use native output format so we can read the output R objects
  output.format="native"
)

While running, you’ll see output like this (edited for brevity):

12/08/02 16:43:26 streaming.StreamJob: Running job: job_201208021921_0002
...
12/08/02 16:43:27 streaming.StreamJob:  map 0%  reduce 0%
12/08/02 16:43:39 streaming.StreamJob:  map 1%  reduce 0%
12/08/02 16:43:45 streaming.StreamJob:  map 2%  reduce 0%
12/08/02 16:43:51 streaming.StreamJob:  map 3%  reduce 0%

12/08/02 17:02:29 streaming.StreamJob:  map 100%  reduce 98%
12/08/02 17:02:50 streaming.StreamJob:  map 100%  reduce 99%
12/08/02 17:02:53 streaming.StreamJob:  map 100%  reduce 100%
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12/08/02 17:02:58 streaming.StreamJob: Job complete: job_201208021921_0002
12/08/02 17:02:58 streaming.StreamJob: Output:

We’ll copy the object from the cluster to our local session:

> deaths.by.age.and.cause.object <-
+  from.dfs(deaths.by.age.and.cause.mr, format="native", structured=TRUE)

The object contains two lists, keys and values:

> names(deaths.by.age.and.cause.object)
[1] "key" "val"

As a sanity check, we’ll make sure that there are the correct number of observations
in the data:

> # The Reduce function is part of R, not map/reduce...
> Reduce(sum, deaths.by.age.and.cause.object$val)
[1] 2441219

Now we’re ready to plot the results. Let’s calculate the densities:

> # make the results into a matrix, drop NA column
> deaths.by.age.and.cause <-
+   as.matrix(deaths.by.age.and.cause.object$val[ ,1:111])
> row.names(deaths.by.age.and.cause) <-
+   deaths.by.age.and.cause.object$key$V1
> total.by.condition <- apply(deaths.by.age.and.cause,1, sum)
> densities <- deaths.by.age.and.cause / total.by.condition

Let’s plot the density by age for the top six diseases:

> # list the top six diseases
> sort(apply(deaths.by.age.and.cause, 1, sum),decreasing=TRUE)[1:6]
                                     All other diseases
                                                 414663
                                Ischemic heart diseases
                                                 387038
                                Other diseases of heart
                                                 177240
      Malignant neoplasms of trachea, bronchus and lung
                                                 158263
                              Other malignant neoplasms
                                                 144284
                     Chronic lower respiratory diseases
                                                 137417

> # get the list of names
> top.six <- names(
+   sort(apply(deaths.by.age.and.cause, 1, sum), decreasing=TRUE)[1:6])
> library(reshape)
> densities.df <- melt(densities)
> # color version
> qplot(x=Age, y=Density,data=subset(densities.df,Condition %in% top.six), 
+   color=Condition, geom="line") +
+   guides(col=guide_legend(ncol=2)) +
+   opts(legend.position="bottom")
> # black and white version
> qplot(x=Age,y=Density,data=subset(densities.df,Condition %in% top.six),
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+  linetype=Condition, geom="line") +
+  guides(linetype=guide_legend(ncol=2)) +
+  opts(legend.position="bottom")

The plot is shown in Figure 26-1. Here’s what this plot means: people who die of
lung cancer (or other cancer) tend to die from that disease earlier than people who
die from heart disease or other diseases.

Figure 26-1. Density plot for top diseases

Details of rmr

The workhorse of rmr is the mapreduce function:

 mapreduce(input, output, map, reduce, combine,
  input.format, output.format, vectorized,
  structured, backend.parameters, verbose)

This function will run your map/reduce job using Hadoop. It returns an object that
you can pass along to other mapreduce calls, calls to from.dfs, or writes the output
to a specific file. In most cases, you’ll want to specify the map and reduce functions
(as we showed above.) Here’s a description of the arguments to mapreduce:
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Argument Description Default

input HDFS path for the input data, output of another mapre
duce call, or a call to to.dfs

output HDFS path for the output data. If NULL, the return value of
mapreduce can be passed along to another call to map
reduce or from.dfs.

NULL

map The map function applied to the data. An R function that
takes two arguments as input (a key and value) and returns
either NULL or a value created by keyval. The map func-
tion may accept two single values, or a pair of equal length
lists (see vectorized below).

to.map(identity)

reduce A reduce function that is (optionally) applied to the output
of the map stage (or the combine function if specified)

NULL

combine A function that is (optionally) applied to the output of the
map stage, then fed to the reduce stage.

NULL

input.for-
mat

Data input format, typically specified through
make.input.format

"native"

output.for-
mat

Data output format, typically specified through
make.output.format

"native"

vectorized Specifies whether the map and reduce functions can
process multiple records at the same time. (The reduce
functionality isn’t implemented yet, as of rmr 1.3.)

list(map=FALSE,reduce=FALSE)

structured Specifies whether the inputs to map and reduce are
structured data. If so, the input is coerced to a data frame.

list(map=FALSE,reduce=FALSE)

back-
end.parame-
ters

Additional parameters passed to hadoop; see the docu-
mentation for more details.

list()

verbose Specifies whether to run HADOOP in verbose mode TRUE

The rmr package includes a set of helper functions for creating or manipulating key
value pairs:

keys(kvl)
values(kvl)
keyval(k, v, vectorized = FALSE)

You can convert a pair of functions to the correct form of map, reduce, and combine
functions using the functions to.map and to.reduce:

to.map(fun1, fun2 = identity)
to.reduce(fun1, fun2 = identity)

If both fun1 and fun2 are specified, then fun1 is specified to the key and fun2 to the
value. Otherwise, fun1 is applied to each key/value pair.

You can pass an R object to the mapreduce function with the function to.dfs:

to.dfs(object, output = dfs.tempfile(), format = "native")
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You can also retrieve the results of a mapreduce function call with the function
from.dfs:

from.dfs(input, format = "native", to.data.frame = FALSE,
  vectorized = FALSE, structured = FALSE)

Learning more

You can learn more about the RHadoop project from the RHadoop Wiki, or by
reading the included help files.

You may also want to check out Rhipe, another integration of R and Hadoop.

Hadoop Streaming
An alternative way to use R code with Hadoop is using Hadoop streaming. With
streaming, you write R scripts that act as map tasks, reduce tasks, and optionally
combine tasks. Each task is responsible for reading input from standard input and
writing output to standard output. Typically, you would use streaming with tab-
separated text files, though you can use other input files. You would then execute
the stream from the command line.

Streaming is actually simpler than it sounds. Here’s an example to show how it
works. We’ll use the mortality data again, but this time we will calculate the average
age of death for each cause. We’ll need to write two R scripts: a map script and a
reduce script. We’ll then execute these on the cluster using streaming and examine
the results. Where I reuse data and function definitions from “RHa-
doop” on page 554, I’ve omitted the duplicate code and replaced it with an elipsis.

First, we’ll put the following R code into a file called map.R:

#! /usr/bin/env Rscript

mort.schema <- ...

unpack.line <- ...

age.decode <- ...

con <- file("stdin", open="r")
while(length(line <- readLines(con, n=1)) > 0) {
  parsed <- unpack.line(line,mort.schema)
 write(paste(parsed[["CauseRecode39"]],
     age.decode(parsed[["AgeDetail"]]),
     sep="\t"),
   stdout())
}
close(con)

This map script defines the data structures and functions that we need to unpack
and decipher the input data. It then opens the standard input connection and reads
the input one line at a time. As it reads each record, it writes the record to standard
output (separating the key and value with a tab).
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(By the way, notice the first line of the script. That tells your computer how to execute
the script. Don’t leave that part out. Also, note that this works on Unix-like systems;
you’ll need to change the scripts for Windows.)

Next we’ll put the following R code into a file called reduce.R:

#! /usr/bin/env Rscript

cause.decode <- ...

con <- file("stdin", open="r")

current.key <- NA
cumulative.age <- 0
count <- 0

print.results <- function(k, n, d) {
  write(paste(cause.decode(k),n/d,sep="\t"),stdout())
}

while(length(line <- readLines(con, n=1)) > 0) {

  parsed <- strsplit(line,"\t")
  key <- parsed[[1]][1]
  value <- type.convert(parsed[[1]][2], as.is=TRUE)

  if (is.na(current.key)) {
    current.key <- key
  } else if (current.key != key) {
    print.results(current.key, cumulative.age, count)
    current.key <- key
    cumulative.age <- 0
    count <- 0
  }

  if (!is.na(value)) {
    cumulative.age <- cumulative.age + value
    count <- count + 1
  }
}

close(con)
print.results(current.key, cumulative.age, count)

This script will read each line of input (the output from the map stage). It takes
advantage of the fact that all the records for each key are sent to exactly one reduce
task, and the data is provided in order. The function splits each input line into a key
and value, and then tabulates the cumulative number of records seen and total ages.
Whenever the key changes, the reduce function will output the results.

We’ll make both scripts executable:

$ chmod +x map.R
$ chmod +x reduce.R
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Finally, we will use Hadoop to chain together this job. We need to specify the input
data directory, the output data directory, the name of the mapper executable, the
name of the reducer executable, and the name of any files that need to be sent to all
the nodes. Here’s what it looks like when we put this all together (output edited for
brevity and clarity):

$ hadoop jar $HADOOP_HOME/contrib/streaming/hadoop-streaming-*.jar \
  -input mort09 \
  -output averagebycondition \
  -mapper map.R \
  -reducer reduce.R \
  -file map.R \
  -file reduce.R
...
12/08/02 23:49:11 mapred.FileInputFormat: Total input paths to process : 1
12/08/02 23:49:13 streaming.StreamJob: getLocalDirs(): [/tmp/
  hadoop-jadler/mapred/local]
12/08/02 23:49:13 streaming.StreamJob: Running job: job_201208030115_0005
...
12/08/03 00:03:15 streaming.StreamJob:  map 100%  reduce 97%
12/08/03 00:03:18 streaming.StreamJob:  map 100%  reduce 98%
12/08/03 00:03:25 streaming.StreamJob:  map 100%  reduce 100%
12/08/03 00:03:28 streaming.StreamJob: Job complete: job_201208030115_0005
12/08/03 00:03:28 streaming.StreamJob: Output: averagebycondition

We can now fetch the results from HDFS using the hadoop fs -cat command:

$ fs -cat averagebycondition/part-00000
Tuberculosis    68.7895716945996
Malignant neoplasms of cervix uteri, corpus uteri and ovary
Malignant neoplasm of prostate    78.8757602703183
Malignant neoplasms of urinary tract    73.6232744438881
Non-Hodgkin's lymphoma    72.7357622055727
Leukemia    70.3787303549355
Other malignant neoplasms    68.9533836045577
Diabetes mellitus    72.2713882749796
Alzheimer's disease    86.3567794679693
Syphilis    65.7647058823529
Hypertensive heart disease with or without renal disease    73.3070619826703
Ischemic heart diseases    77.3131372113333
Other diseases of heart    77.9667230873392
Essential    78.8974886465086
Cerebrovascular diseases    78.7811490083932
Atherosclerosis    83.5731707317073
Other diseases of circulatory system    76.0453367875648
Influenza and pneumonia    77.2984175390966
Chronic lower respiratory diseases    76.5816602021584
Peptic ulcer    74.906239460371
Human immunodeficiency virus    48.1772741713439
Chronic liver disease and cirrhosis    59.8160532932763
Nephritis, nephrotic syndrome, and nephrosis    77.1696725831818
Pregnancy, childbirth and the puerperium    31.6104166666667
Certain conditions originating in the perinatal period    0.104190432732527
Birth defects    20.0559306661292
Sudden infant death syndrome    0
Other    71.5369307614645
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All other diseases    75.821365783781
Motor vehicle accidents    42.4689925669931
All other and unspecified accidents and adverse effects    57.7371714053424
Intentional self-harm    46.7301651663828
Assault    33.3116436324812
All other external causes    43.0446477584629
Malignant neoplasm of stomach    70.268135986437
Malignant neoplasms of colon, rectum and anus    71.8581289805881
Malignant neoplasm of pancreas    71.4979390404621
Malignant neoplasms of trachea, bronchus and lung    70.8628864611438
Malignant neoplasm of breast    67.9600389152377

Learning More
Hadoop is a big, complicated system; this chapter has touched on only a few core
concepts and showed how to use it with R. The best place to start is the official
Apache Hadoop website. If you want to read a good overview of Hadoop, complete
with some case studies, Tom White’s book Hadoop: The Definitive Guide is an ex-
cellent choice. To learn how to administer a Hadoop cluster, see Eric Sammer’s book
Hadoop Operations.

Several companies provide commercial support for Hadoop including Cloudera and
Hortonworks.

Other Packages for Parallel Computation with R

Segue
The segue package by JD Long is a great choice for running simple parallel programs;
it’s intended to be a gentle introduction to parallel computation. Segue runs pro-
grams in the cloud using AWS’s Elastic MapReduce service. (This is a distinct prod-
uct from EC2, which I used to install my own private Hadoop cluster.) It borrows
some Hadoop infrastructure, but it isn’t a full map/reduce package. Segue is modeled
on the apply function in R; you use it to apply a function to a data set across a set
of computers in the cloud. Let’s show how it works.

The segue package is hosted on Google Code, not CRAN. To install it, you can use
the install_url command in the devtools package:

> library(devtools)
> # At the time I wrote this book, the current version was 0.05;
> # make sure to change the link to get the latest version:
> install_url("http://segue.googlecode.com/files/segue_0.05.tar.gz")

You’ll need an Amazon Web Services account to use it.

You will be billed by the hour for using AWS. Make sure that
you understand how you will be charged and how to use AWS
before you start.
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You’ll need to get your Access Key ID and Secret Access Key from AWS’s Security
Credentials page.

> library(segue)
Loading required package: rJava
Loading required package: caTools
Loading required package: bitops
Segue did not find your AWS credentials. Please run the setCredentials()
function.
> # set aws.access.id to your amazon access id, aws.secret.key to your key
> setCredentials(aws.access.id, aws.secret.key)

To use segue, you first need to create a cluster object with createCluster:

createCluster(numInstances=2, cranPackages, customPackages,
    filesOnNodes, rObjectsOnNodes, enableDebugging=FALSE,
    instancesPerNode, masterInstanceType="m1.large",
    slaveInstanceType="m1.large", location="us-east-1c", ec2KeyName,
    copy.image=FALSE, otherBootstrapActions, sourcePackagesToInstall,
    masterBidPrice, slaveBidPrice)

To calculate the results, use the function emrlapply (which stands for “Elastic Map
Reduce lapply”):

emrlapply(clusterObject, X, FUN, taskTimeout=10, ...)

When you’re done, make sure to call stopCluster to terminate the EMR cluster (and
stop Amazon from billing you):

stopCluster(clusterObject)

doMC
In “Looping Extensions” on page 74, we showed some extensions to R’s built-in
looping functions. (Specifically, we showed how to use the foreach package and
foreach function.) Revolution Computing developed these extensions to help facil-
itate parallel computation. Revolution Computing has also released a package called
doMC that facilitates running R code on multiple cores.

To write code that takes advantage of multiple cores, you need to initialize the
doMC package:

> library(doMC)
> registerDoMC()

This will allow the %dopar% operator (and related functions) in the foreach package
to run in parallel. Revolution Computing has additional tools available in its enter-
prise version. See its website for more information.

Where to Learn More
If you’d like to learn more about high-performance computing with R, a good place
to start is with the CRAN Task View page on High Performance Computing.

Q. Ethan McCallum has written a whole book on parallel computing with R, Parallel
R: Data Analysis in the Distributed World.
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A
R Reference

base
This package contains the basic functions that let R function as a language: arith-
metic, input/output, basic programming support, and so on. Its contents are avail-
able through inheritance from any environment.

Functions

Function Description

! Not operator.

!= Not equal operator.

$, $<- Select or set named element from a list.

%% Modulo operator.

%*% Binary operator to multiply two matrices, if they are conformable.

%/% Integer division operator.

%in% Binary operator that returns a logical vector indicating if there is a match or not for
its left operand.

%o% Operator to calculate the outer product of two arrays.

%x% Operator to calculate the Kronecker product of two arrays.

& Operator that performs elementwise logical AND.

&& Operator that performs logical AND, evaluating expressions from left to right until
the result is determined.

* Multiplication operator.

+ Addition operator.

- Unary negation or binary subtraction operator.

/ Binary division operator.

: Generates regular sequences.
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Function Description

:: Accesses an exported variable in a namespace.

::: Accesses an internal variable in a namespace.

< Less-than operator.

> Greater-than operator.

>= Greater-than-or-equal-to operator.

<= Less-than-or-equal-to operator.

== Equality operator.

@ Extracts the contents of an slot in an object with a formal (S4) class structure.

Arg Returns argument of a complex value.

Conj Returns conjugate of a complex value.

Cstack_info Reports information on the C stack size and usage (if available).

Encoding, Encoding<- Read or set the declared encodings for a character vector.

Filter Extracts the elements of a vector for which a predicate (logical) function gives true.

Find Returns the first or last element in a vector for which a condition is true.

I Changes the class of an object to indicate that it should be treated “as is.”

ISOdate, ISOdatetime Functions to convert between character representations and objects of classes
"POSIXlt" and "POSIXct" representing calendar dates and times.

Im Extracts the imaginary part of a complex value.

La.svd Computes the singular-value decomposition of a rectangular matrix.

Map Applies a function to the corresponding elements of given vectors.

Mod Returns the modulus of a complex number.

NCOL, NROW nrow and ncol return the number of rows or columns present in x. NCOL and
NROW do the same, treating a vector as one-column matrix.

Negate Creates the negation of a given function.

NextMethod For S3 generic functions, dispatches to the method for the next class in the object’s
class vector.

Position Gives the position of an element in a matrix for which a predicate (logical) function
is true.

R.Version Provides detailed information about the version of R running.

R.home Returns the R home directory.

RNGkind Allows you to query or set the kind of random number generator (RNG) in use.

RNGversion Can be used to set the random number generators as they were in an earlier R version
(for reproducibility).

R_system_version Simple S3 class for representing numeric versions, including package versions, and
associated methods.

Re Returns the real part of a complex number.

Recall Used as a placeholder for the name of the function in which it is called. It allows the
definition of recursive functions that still work after being renamed.
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Function Description

Reduce Uses a binary function to successively combine the elements of a given vector and
a possibly given initial value.

Sys.Date, Sys.time Return the system’s idea of the current date with and without time.

Sys.chmod Provides a low-level interface to the computer’s file system.

Sys.getenv Obtains the values of the environment variables.

Sys.getlocale Gets details of or sets aspects of the locale for the R process.

Sys.getpid Gets the process ID of the R session.

Sys.glob Performs wildcard expansion (also known as “globbing”) on file paths.

Sys.info Reports system and user information.

Sys.localeconv Gets details of the numerical and monetary representations in the current locale.

Sys.setenv Sets environment variables (for other processes called from within R or future calls
to Sys.getenv from this R process).

Sys.setlocale Gets details of or sets aspects of the locale for the R process.

Sys.sleep Suspends execution of R expressions for a given number of seconds.

Sys.timezone Returns the current time zone.

Sys.umask Provides a low-level interface to the computer’s file system.

Sys.unsetenv Removes environment variables.

Sys.which Interface to the system command which.

UseMethod Dispatches to the appropriate method for an S3 generic function.

Vectorize Returns a new function that acts as if mapply was called.

^ Exponentiation operator.

abbreviate Abbreviates strings to at least minlength characters, such that they remain
unique (if they were), unless strict=TRUE.

abs Absolute value.

acos Computes the arccosine.

acosh Computes the hyperbolic arccosine.

addNA Modifies a factor by turning NA into an extra level (so that NA values are counted
in tables, for instance).

addTaskCallback Registers an R function that is to be called each time a top-level task is completed.

agrep Searches for approximate matches to pattern (the first argument) within the
string x (the second argument) using the Levenshtein edit distance.

alist Function to construct, coerce, and check for both kinds of R lists.

all Given a set of logical vectors, are all of the values true?

all.equal all.equal(x, y) is a utility to compare R objects x and y testing “near equality.”
If they are different, comparison is still made to some extent, and a report of the
differences is returned.

all.names, all.vars Return a character vector containing all the names that occur in an expression or call.

any Given a set of logical vectors, is at least one of the values true?
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Function Description

anyDuplicated Determines which elements of a vector or data frame are duplicates of elements
with smaller subscripts and returns a logical vector indicating which elements
(rows) are duplicates.

aperm Transposes an array by permuting its dimensions and optionally resizing it.

append Adds elements to a vector.

apply Returns a vector or array or list of values obtained by applying a function to margins
of an array.

args Displays the argument names and corresponding default values of a function or
primitive.

array Creates arrays.

as.Date Function to convert between character representations and objects of class
"Date" representing calendar dates.

as.POSIXct, as.POSIXlt Functions to manipulate objects of classes "POSIXlt" and "POSIXct" repre-
senting calendar dates and times.

as.array Coerces to arrays.

as.call Coerces to "call" objects.

as.character Coerces to "character" objects.

as.complex Coerces to "complex" objects.

as.data.frame Coerces to "data.frame" objects.

as.difftime Coerces to "difftime" objects.

as.double Coerces to "double" objects.

as.environment Converts a number or a character string to the corresponding environment on the
search path.

as.expression Coerces to "expression" objects.

as.factor Coerces to "factor".

as.function Coerces to "function".

as.hexmode Coerces to "hexmode".

as.integer Creates or tests for objects of type "integer".

as.list Coerces to "list".

as.logical Coerces to "logical" objects.

as.matrix Coerces to "matrix" objects.

as.name Coerces to "name" objects.

as.null Ignores its argument and returns the value NULL.

as.numeric Coerces to "numeric".

as.numeric_version Coerces to "numeric_version".

as.octmode Coerces to "octmode".

as.ordered Coerces to ordered factors.

as.package_version Coerces to "package_version" object.

as.pairlist Coerces to "pairlist" object.
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Function Description

as.raw Coerces to type "raw".

as.real Coerces to type "real".

as.symbol Coerces to "symbol".

as.table Coerces to "table".

as.vector Coerces to "vector".

asS4 Tests whether the object is an instance of an S4 class.

asin Computes the arcsine.

asinh Computes the hyperbolic arcsine.

assign Assigns a value to a name in an environment.

atan Computes the arctangent.

atan2 Computes the two-argument arctangent.

atanh Computes the hyperbolic arctangent.

attach Attaches a database (usually a list, data frame, or environment) to the R search
path. This means that the database is searched by R when evaluating a variable, so
objects in the database can be accessed by simply giving their names.

attachNamespace Function to load and unload namespaces.

attr, attr<- Get or set specific attributes of an object.

attributes, attributes<- Access an object’s attributes.

autoload, autoloader autoload creates a promise-to-evaluate autoloader and stores it with name
name in the.AutoloadEnv environment.

backsolve Solves a system of linear equations where the coefficient matrix is upper or lower
triangular.

baseenv Gets, sets, tests for, and creates environments.

basename Removes all of the path up to the last path separator (if any).

besselI, besselJ, besselK, besselY Bessel functions of integer and fractional order, of first and second kind, J(υ) and
Y(υ), and modified Bessel functions (of first and third kind), I(υ) and K(υ).

beta Special mathematical function related to the beta and gamma functions.

bindingIsActive, bindingIsLocked These functions represent an experimental interface for adjustments to environ-
ments and bindings within environments. They allow for locking environments as
well as individual bindings and for linking a variable to a function.

bindtextdomain If native language support was enabled in this build of R, attempts to translate
character vectors or sets where the translations are to be found.

body, body<- Get or set the body of a function.

bquote Analog of the LISP backquote, macro. bquote quotes its argument except that
terms wrapped in .() are evaluated in the specified where environment.

break Basic control-flow constructs of the R language. They function in much the same
way as control statements in any Algol-like language. They are all reserved words.

browser Interrupts the execution of an expression and allows the inspection of the environ-
ment where browser was called from.
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builtins Returns the names of all the built-in objects. These are fetched directly from the
symbol table of the R interpreter.

by An object-oriented wrapper for tapply applied to data frames.

bzfile Function to create, open, and close connections.

c Combines its arguments.

call Creates or tests for objects of mode "call".

callCC Downward-only version of Scheme’s call with current continuation.

capabilities Reports on the optional features that have been compiled into this build of R.

casefold Translates characters in character vectors, in particular, from upper- to lowercase
or vice versa.

cat Outputs the objects, concatenating the representations. cat performs much less
conversion than print.

cbind Takes a sequence of vector, matrix, or data frame arguments and combines by
columns.

ceiling Takes a single numeric argument x and returns a numeric vector containing the
smallest integers not less than the corresponding elements of x.

char.expand Seeks a unique match of its first argument among the elements of its second. If
successful, it returns this element; otherwise, it performs an action specified by the
third argument.

charToRaw Conversion and manipulation of objects of type "raw".

character Creates or tests for objects of type "character".

charmatch Seeks matches for the elements of its first argument among those of its second.

chartr Translates characters in character vectors, in particular, from upper- to lowercase
or vice versa.

check_tzones Description of the classes "POSIXlt" and "POSIXct" representing calendar
dates and times (to the nearest second).

chol Computes the Choleski factorization of a real, symmetric, positive-definite square
matrix.

chol2inv Inverts a symmetric, positive-definite square matrix from its Choleski decomposi-
tion. Equivalently, computes (X’X)-1 from the (R part) of the QR-decomposition of X.

choose Special mathematical function related to the beta and gamma functions.

class, class<- The function class prints the vector of names of classes an object inherits from.
Correspondingly, class<- sets the classes an object inherits from.

close, close.connection Close connections.

closeAllConnections Displays aspects of connections.

col Returns a matrix of integers, indicating their column number in a matrix-like object
or a factor of column labels.

colMeans Forms row and column means for numeric arrays.

colSums Forms row and column sums for numeric arrays.

colnames, colnames<- Retrieve or set the row or column names of a matrix-like object.
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commandArgs Provides access to a copy of the command-line arguments supplied when this R
session was invoked.

comment, comment<- Set and query a comment attribute for any R objects.

computeRestarts Provides a mechanism for handling unusual conditions, including errors and
warnings.

conditionCall,
conditionCall.condition,
conditionMessage,
conditionMessage.condition

Provide a mechanism for handling unusual conditions, including errors and
warnings.

conflicts Reports on objects that exist with the same name in two or more places on the
search path, usually because an object in the user’s workspace or a package is
masking a system object of the same name. This helps discover unintentional
masking.

contributors The R Who’s Who, describing who made significant contributions to the develop-
ment of R.

crossprod Given matrices x and y as arguments, returns a matrix cross-product. This is formally
equivalent to (but usually slightly faster than) the call t(x) \%*\% y.

cummax, cummin, cumprod, cum-
sum

Returns a vector whose elements are the cumulative sums, products, minima, or
maxima of the elements of the argument.

cut Divides the range of x into intervals and codes the values in x according to which
interval they fall. The leftmost interval corresponds to level 1, the next leftmost to
level 2 and so on.

cut.Date, cut.POSIXt Method for cut applied to date-time objects.

dQuote Single- or double-quote text by combining with appropriate single or double left
and right quotation marks.

data.class Determines the class of an arbitrary R object.

data.frame Creates data frames.

data.matrix Returns the matrix obtained by converting all the variables in a data
frame to numeric mode and then binding them together as the columns of a matrix.
Factors and ordered factors are replaced by their internal codes.

date Returns a character string of the current system date and time.

debug Sets, unsets, or queries the debugging flag on a function.

default.stringsAsFactors Creates data frames, tightly coupled collections of variables that share many of the
properties of matrices and lists, used as the fundamental data structure by most of
R’s modeling software.

delayedAssign Creates a promise to evaluate a given expression if its value is requested. This provides
direct access to the lazy evaluation mechanism used by R for the evaluation of
(interpreted) functions.

deparse Turns unevaluated expressions into character strings.

det, determinant det calculates the determinant of a matrix. determinant is a generic function
that returns separately the modulus of the determinant, optionally on the logarithm
scale, and the sign of the determinant.
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detach Detaches a database, i.e., removes it from the search() path of available R objects.
Usually, this is either a data.frame that has been attached or a package that
was required previously.

dget Writes an ASCII (American Standard Code for Information Interchange) text repre-
sentation of an R object to a file or connection or uses one to re-create the object.

diag, diag<- Extract or replace the diagonal of a matrix or construct a diagonal matrix.

diff, diff.Date, diff.POSIXt,
diff.default

Return suitably lagged and iterated differences.

difftime Creates, prints, and rounds time intervals.

digamma Special mathematical function related to the beta and gamma functions.

dim, dim.data.frame, dim<-,
dimnames,
dimnames.data.frame,
dimnames<-,
dimnames<-.data.frame

Retrieve or set the dimension of an object.

dir, dir.create Produce a character vector of the names of files in the named directory.

dirname Returns the part of the path up to (but excluding) the last path separator, or
"." if there is no path separator.

do.call Constructs and executes a function call from a name or a function and a list of
arguments to be passed to it.

double Creates, coerces to, or tests for a double-precision vector.

dput Writes an ASCII text representation of an R object to a file or connection or uses one
to re-create the object.

drop Deletes the dimensions of an array that has only one level.

dump Takes a vector of names of R objects and produces text representations of the objects
on a file or connection. A dump file can usually be sourced into another R (or S)
session.

duplicated Determines which elements of a vector or data frame are duplicates of elements
with smaller subscripts and returns a logical vector indicating which elements (rows)
are duplicates.

dyn.load, dyn.unload Load or unload DLLs (also known as shared objects) and test whether a C function
or FORTRAN subroutine is available.

eapply Applies FUN to the named values from an environment and returns the results as
a list.

eigen Computes eigenvalues and eigenvectors of real or complex matrices.

emptyenv Gets, sets, tests for, and creates environments.

encodeString Escapes the strings in a character vector in the same way print.default does
and optionally fits the encoded strings within a field width.

env.profile This function is intended to assess the performance of hashed environments.

environment, environment<- Gets or sets the environment associated with a function or formula.

environmentIsLocked Returns a logical environment indicating if an environment is locked.

environmentName Returns the name of an environment.
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eval, eval.parent, evalq Evaluate an R expression in a specified environment.

exists Looks for an R object of a given name.

exp Computes the exponential function.

expand.grid Creates a data frame from all combinations of the supplied vectors or factors.

expm1 Computes ex − 1 accurately for x << 1.

expression Creates objects of mode "expression".

factor Used to encode a vector as a factor.

factorial Special mathematical function related to the beta and gamma functions.

fifo Creates a FIFO connection.

file Creates a file connection.

file.access Utility function to access information about files on the user’s file systems.

file.append Provides a low-level interface to the computer’s file system.

file.choose Chooses a file interactively.

file.copy, file.create, file.exists Provide a low-level interface to the computer’s file system.

file.info Utility function to extract information about files on the user’s file systems.

file.path Constructs the path to a file from components in a platform-independent way.

file.remove, file.rename Provides a low-level interface to the computer’s file system.

file.show Displays one or more files.

file.symlink Provides a low-level interface to the computer’s file system.

findInterval Finds the indices of x in vec, where vec must be sorted (nondecreasingly).

findRestart Provides a mechanism for handling unusual conditions, including errors and
warnings.

floor Takes a single numeric argument x and returns a numeric vector containing the
largest integers not greater than the corresponding elements of x.

flush, flush.connection Functions to create, open, and close connections.

force Forces the evaluation of a function argument.

formals, formals<- Get or set the formal arguments of a function.

format, format.AsIs Format an R object for pretty printing.

formatC Formats numbers individually and flexibly, using C-style format specifications.

formatDL Formats vectors of items and their descriptions as two-column tables or LaTeX-style
description lists.

forwardsolve Solves a system of linear equations where the coefficient matrix is upper or lower
triangular.

function Provides the base mechanisms for defining new functions in the R language.

gamma Special mathematical function related to the beta and gamma functions.

gc Causes garbage collection to take place.

gc.time Reports the time spent in garbage collection so far in the R session while GC timing
was enabled.
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gcinfo Sets a flag so that automatic collection is either silent (verbose=FALSE) or prints
memory usage statistics (verbose=TRUE).

gctorture Provokes garbage collection on (nearly) every memory allocation. Intended to ferret
out memory protection bugs. Also makes R run very slowly, unfortunately.

get Searches for an R object with a given name and returns it.

getAllConnections Displays aspects of connections.

getCConverterDescriptions,
getCConverterStatus

Provide facilities to manage the extensible list of converters used to translate R
objects into C pointers for use in .C calls. The number and a description of each
element in the list can be retrieved. One can also query and set the activity status
of individual elements, temporarily ignoring them. And one can remove individual
elements.

getConnection Displays aspects of connections.

getDLLRegisteredRoutines,
getDLLRegistered
Routines.DLLInfo,
getDLLRegistered
Routines.character

These functions allow us to query the set of routines in a DLL that are registered
with R to enhance dynamic lookup, error handling when calling native routines,
and potentially security in the future. These functions provide a description of each
of the registered routines in the DLL for the different
interfaces, i.e., .C, .Call, .Fortran, and .External.

getExportedValue Function to support reflection on namespace objects.

getHook Allows users to set actions to be taken before packages are attached/detached and
namespaces are (un)loaded.

getLoadedDLLs Provides a way to get a list of all the DLLs (see dyn.load) that are currently loaded
in the R session.

getNamespace,
getNamespaceExports,
getNamespaceImports,
getNamespaceName,
getNamespaceUsers,
getNamespaceVersion

Functions to support reflection on namespace objects.

getNativeSymbolInfo Finds and returns as comprehensive a description of one or more dynamically loaded
or “exported” built-in native symbols.

getNumCConverters Used to manage the extensible list of converters used to translate R objects into C
pointers for use in .C calls. Returns an integer giving the number of elements in a
specified list, both active and inactive.

getOption Allows the user to set and examine a variety of global options that affect the way
in which R computes and displays its results.

getRversion A simple S3 class for representing numeric versions, including package versions and
associated methods.

getSrcLines This function is for working with source files.

getTaskCallbackNames Provides a way to get the names (or identifiers) for the currently registered task
callbacks that are invoked at the conclusion of each top-level task. These identifiers
can be used to remove a callback.

geterrmessage Gives the last error message.

gettext If native language support was enabled in this build of R, attempts to translate
character vectors or set where the translations are to be found.
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gettextf A wrapper for the C function sprintf that returns a character vector containing
a formatted combination of text and variable values.

getwd Returns an absolute filename representing the current working directory of the R
process.

gl Generates factors by specifying the pattern of their levels.

globalenv Gets, sets, tests for, and creates environments.

gregexpr, grep, grepl, gsub grep searches for matches to pattern (its first argument) within the character
vector x (second argument). grepl is an alternative way to return the results.
regexpr and gregexpr return results, too, but they return more detail in a
different format.

gsub sub and gsub perform replacement of matches determined by regular expression
matching.

gzcon Provides a modified connection that wraps an existing connection and decompresses
reads or compresses writes through that connection. Standard gzip headers are
assumed.

gzfile Function to create, open, and close connections.

iconv, iconvlist These use system facilities to convert a character vector between encodings: the “i”
stands for “internationalization.”

icuSetCollate Controls the way collation is done by ICU (an optional part of the R build).

identical The safe and reliable way to test two objects for being exactly equal. It returns
TRUE in this case, FALSE in every other case.

identity A trivial identity function returning its argument.

ifelse Returns a value with the same shape as test that is filled with elements selected
from either yes or no, depending on whether the element of test is TRUE or
FALSE.

inherits Indicates whether its first argument inherits from any of the classes specified in the
what argument.

intToBits Conversion and manipulation of objects of type "raw".

intToUtf8 Conversion of UTF-8 encoded character vectors to and from integer vectors.

integer Creates or tests for objects of type "integer".

interaction Computes a factor that represents the interaction of the given factors. The result of
interaction is always unordered.

interactive Returns TRUE when R is being used interactively and FALSE otherwise.

intersect Performs set union, intersection, (asymmetric!) difference, equality, and member-
ship on two vectors.

inverse.rle Computes the lengths and values of runs of equal values in a vector—or the reverse
operation.

invisible Returns a (temporarily) invisible copy of an object.

invokeRestart,
invokeRestartInteractively

Provide a mechanism for handling unusual conditions, including errors and
warnings.

is.R Tests if running under R.
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is.array Creates or tests for arrays.

is.atomic Returns TRUE if x is an atomic vector (or NULL) and FALSE otherwise.

is.call Tests for objects of mode "call".

is.character Tests for objects of type "character".

is.complex Tests for objects of type "complex".

is.data.frame Tests if an object is a data frame.

is.double Tests for a double-precision vector.

is.element Tests if an element is a member of a set.

is.environment Tests if an object is an environment.

is.expression Tests if an object is an "expression".

is.factor Returns a logical value indicating if an object is a factor.

is.finite, is.infinite Return a vector of the same length as x, indicating which elements are finite (not
infinite and not missing).

is.function Checks whether its argument is a (primitive) function.

is.integer Creates or tests for objects of type "integer".

is.language Returns TRUE if x is a variable name, a call, or an expression.

is.list Tests if an object is a list.

is.loaded Tests whether a C function or FORTRAN subroutine is available.

is.logical Tests for objects of type "logical".

is.matrix Tests if its argument is a (strict) matrix.

is.na, is.na<- The generic function is.na indicates which elements in an object are missing. The
generic function is.na<- sets elements to NA.

is.name Returns TRUE or FALSE, depending on whether the argument is a name or not.

is.nan Tests if an object is a NaN (meaning “not a number”).

is.null Returns TRUE if its argument is NULL and FALSE otherwise.

is.numeric, is.numeric.Date,
is.numeric.POSIXt

A general test of an object being interpretable as numbers.

is.numeric_version A simple S3 class for representing numeric versions, including package versions,
and associated methods.

is.ordered Tests if an object is an ordered factor.

is.package_version Tests for a package_version object.

is.pairlist Tests for a pairlist object.

is.primitive Checks whether its argument is a (primitive) function.

is.qr Tests whether an object is the QR-decomposition of a matrix (created by the qr
function).

is.raw Tests for objects of type "raw".

is.recursive Returns TRUE if x has a recursive (listlike) structure and FALSE otherwise.
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is.symbol is.symbol (and the identical is.name) returns TRUE or FALSE, depending
on whether the argument is a name or not.

is.table table uses the cross-classifying factors to build a contingency table of the counts
at each combination of factor levels.

is.unsorted Tests if an object is not sorted, without the cost of sorting it.

is.vector Returns TRUE if x is a vector (of mode logical, integer, real, complex, character, raw
or a list if not specified) or expression and FALSE otherwise.

isIncomplete, isOpen Functions to create, open, and close connections.

isRestart Provides a mechanism for handling unusual conditions, including errors and
warnings.

isS4 Tests whether the object is an instance of an S4 class.

isSeekable Function to reposition connections.

isSymmetric, isSymmetric.matrix Generic functions to test if object is symmetric or not. Currently, only a matrix
method is implemented.

isTRUE This operator acts on logical vectors.

isdebugged Sets, unsets, or queries the debugging flag on a function.

jitter Adds a small amount of noise to a numeric vector.

julian, julian.Date, julian.POSIXt Extract the weekday, month, or quarter, or the Julian time (days since some origin).
These are generic functions: the methods for the internal date-time classes are
documented here.

kappa, kappa.defaultm,
kappa.lm, kappa.qr, kappa.tri

The condition number of a regular (square) matrix is the product of the norm of the
matrix and the norm of its inverse (or pseudoinverse) and hence depends on the
kind of matrix norm. kappa() computes an estimate of the 2-norm condition
number of a matrix or of the R matrix of a QR-decomposition, perhaps of a linear
fit. The 2-norm condition number can be shown to be the ratio of the largest to the
smallest nonzero singular value of the matrix.

kronecker Computes the generalized Kronecker product of two arrays, X and Y. \%x\% is an
alias for kronecker (where FUN is hardwired to "*").

l10n_info Reports on localization information.

labels Finds a suitable set of labels from an object for use in printing or plotting, for example.

lapply Returns a list of the same length as X, each element of which is the result of applying
FUN to the corresponding element of X.

lazyLoad Lazy loads a database of R objects.

lbeta, lchoose Special mathematical functions related to the beta and gamma functions.

length, length<-, length<-.factor Get or set the length of vectors (including lists) and factors and of any other R object
for which a method has been defined.

levels, levels.default, levels<-,
levels<-.factor

Provide access to the levels attribute of a variable.

lfactorial, lgamma Special mathematical functions related to the beta and gamma functions.

library library and require load add-on packages.
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library.dynam Loads a specified file of compiled code if it has not been loaded already, or unloads
it.

library.dynam.unload Loads a specified file of compiled code if it has not been loaded already, or unloads
it.

licence The license terms under which R is distributed.

list Function to construct, coerce, and check for both kinds of R lists.

list.files Produces a character vector of the names of files in the named directory.

load Reloads data sets written with the function save.

loadNamespace Loads the specified namespace and registers it in an internal database.

loadedNamespaces Returns a character vector of the names of the loaded namespaces.

loadingName spaceInfo Returns a list of the arguments that would be passed to .onLoad when a namespace
is being loaded.

local Evaluates an R expression in a specified environment.

lockBinding Locks individual bindings in a specified environment.

lockEnvironment Locks its environment argument, which must be a normal environment (not base).

log Computes logarithms, by default natural logarithms.

log10 Computes common (i.e., base 10) logarithms.

log1p Computes log(1 + x) accurately for |x|  << 1 (and less accurately when x ≈ −1).

log2 Computes binary (i.e., base 2) logarithms.

logical Creates or tests for objects of type "logical" and the basic logical constants.

lower.tri Returns a matrix of logicals the same size of a given matrix with entries TRUE in
the lower or upper triangle.

ls ls and objects return a vector of character strings giving the names of the objects
in a specified environment.

make.names Makes syntactically valid names out of character vectors.

make.unique Makes the elements of a character vector unique by appending sequence numbers
to duplicates.

makeActiveBinding Installs FUN so that getting the value of sym calls FUN with no arguments and
assigning to sym calls FUN with one argument, the value to be assigned.

mapply A multivariate version of sapply. mapply applies FUN to the first elements of
each ... argument, the second elements, the third elements, and so on.

margin.table For a contingency table in array form, computes the sum of table entries for a given
index.

mat.or.vec Creates an nr by nc zero matrix if nc is greater than 1, and a zero
vector of length nr if nc equals 1.

match Returns a vector of the positions of (first) matches of its first argument in its second.

match.arg Matches arg against a table of candidate values as specified by choices, where
NULL means to take the first one.

match.call Returns a call in which all the specified arguments are specified by their full names.
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match.fun When called inside functions that take a function as argument, extracts the desired
function object while avoiding undesired matching to objects of other types.

matrix Creates a matrix from a given set of values. as.matrix attempts to turn its
argument into a matrix. is.matrix tests if its argument is a (strict) matrix.

max Returns the (parallel) maxima and minima of the input values.

max.col Finds the maximum position for each row of a matrix, breaking ties at random.

mean Generic function for the (trimmed) arithmetic mean.

memory.profile Lists the usage of the cons cells by SEXPREC type.

merge, merge.data.frame,
merge.default

Merge two data frames by common columns or row names or perform other
versions of database join operations.

message Generates a diagnostic message from its arguments.

mget Searches for an R object with a given name and returns it.

min Returns the (parallel) maxima and minima of the input values.

missing Tests whether a value was specified as an argument to a function.

mode, mode<- Get or set the type of storage mode of an object.

months Extracts the months from an object.

mostattributes<- The mostattributes assignment takes special care of the dim, names, and
dimnames attributes and assigns them only when valid, whereas an
attributes assignment would give an error if any were not.

names, names<- Functions to get or set the names of an object.

nargs When used inside a function body, returns the number of arguments supplied to
that function, including positional arguments left blank.

nchar Takes a character vector as an argument and returns a vector whose elements
contain the sizes of the corresponding elements of x.

ncol, nrow Return the number of rows or columns present in x.

new.env Gets, sets, tests for, and creates environments.

ngettext If native language support was enabled in this build of R, attempts to translate
character vectors or set where the translations are to be found.

nlevels Returns the number of levels that its argument has.

noquote Prints character strings without quotes.

numeric Creates or coerces objects of type "numeric". is.numeric is a more general
test of an object being interpretable as numbers.

numeric_version A simple S3 class for representing numeric versions, including package versions,
and associated methods.

nzchar A fast way to find out if elements of a character vector are nonempty strings.

objects ls and objects return a vector of character strings giving the names of the objects
in a specified environment.

oldClass, oldClass<- Get and set the class attribute.

on.exit Records the expression given as its argument as needing to be executed when the
current function exits (either naturally or as the result of an error).
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open, open.connection Functions to create, open, and close connections.

open.srcfile, open.srcfilecopy These functions are for working with source files.

options Allows the user to set and examine a variety of global options that affect the way
in which R computes and displays its results.

order Returns a permutation that rearranges its first argument into ascending or de-
scending order, breaking ties by further arguments.

ordered Used to create ordered factors.

outer The outer product of the arrays X and Y is the array A with dimension c(dim(X),
dim(Y)), where element A[c(arrayindex.x, arrayindex.y)] =
FUN(X[arrayindex.x], Y[arrayindex.y], ...).

packBits Conversion and manipulation of objects of type "raw".

packageEvent setHook provides a general mechanism for users to register hooks, a list of functions
to be called from system (or user) functions. The initial set of hooks is associated
with events on packages/name spaces: these hooks are named via calls to
packageEvent.

packageStartup Message Generates a diagnostic message from its arguments.

package_version Creates a package_version object (a simple S3 class for representing numeric ver-
sions, including package versions, and associated methods).

pairlist Function to construct, coerce, and check for both kinds of R lists.

parent.env, parent.env<- Get, set, test for, and create environments.

parent.frame Provides access to environments (“frames” in S terminology) associated with
functions farther up the calling stack.

parse Returns the parsed but unevaluated expressions in a list.

parseNamespaceFile Internal namespace support function. Not intended to be called directly.

paste Concatenates vectors after converting to character.

path.expand Expands a path name, for example, by replacing a leading tilde with the user’s home
directory (if defined on that platform).

pipe Function to create, open, and close connections.

pmatch Seeks matches for the elements of its first argument among those of its second.

pmax, pmax.int, pmin, pmin.int Return the (parallel) maxima and minima of the input values.

polyroot Finds zeros of a real or complex polynomial.

pos.to.env Returns the environment at a specified position in the search path.

pretty Computes a sequence of about n+1 equally spaced “round” values that cover the
range of the values in x. The values are chosen so that they are 1, 2, or 5 times a
power of 10.

prettyNum Formats numbers individually and flexibly, using C-style format specifications.

print Prints its argument and returns it invisibly (via invisible(x)).

prmatrix An earlier method for printing matrices, provided for S compatibility.

proc.time Determines how much real and CPU time (in seconds) the currently running R process
has already taken.
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prod Returns the product of all the values present in its arguments.

prop.table This is really sweep(x, margin, margin.table(x, margin), "/")
for newbies, except that if margin has length 0, then one gets x/sum(x).

psigamma Special mathematical function related to the beta and gamma functions.

pushBack, pushBackLength Functions to push back text lines onto a connection and to inquire about how many
lines are currently pushed back.

q Alias for quit.

qr Computes the QR-decomposition of a matrix. It provides an interface to the tech-
niques used in the LINPACK routine DQRDC or the LAPACK routines DGEQP3 and (for
complex matrices) ZGEQP3.

qr.coef Returns the coefficients obtained when fitting y to the matrix with QR-decompo-
sition qr.

qr.qy Returns Q %*% y, where Q is the (complete) Q matrix.

qr.qty Returns t(Q) %*% y, where Q is the (complete) Q matrix.

qr.resid Returns the residuals obtained when fitting y to the matrix with QR-decomposition
qr.

qr.solve Solves systems of equations via the QR-decomposition: if a is a QR-decomposition,
it is the same as solve.qr, but if a is a rectangular matrix, the QR-decomposition is
computed first.

qr.fitted Returns the fitted values obtained when fitting y to the matrix with
QR-decomposition qr.

qr.Q, qr.R, qr.X Returns the original matrix from which the object was constructed or the compo-
nents of the decomposition.

quarters Extracts the quarter from an object.

quit The function quit or its alias q terminates the current R session.

quote Simply returns its argument. The argument is not evaluated and can be any R
expression.

range Returns a vector containing the minimum and maximum of all the given arguments.

rank Returns the sample ranks of the values in a vector. Ties (i.e., equal values) and
missing values can be handled in several ways.

rapply A recursive version of lapply.

raw Creates or tests for objects of type "raw".

rawConnection,
rawConnectionValue

Input and output raw connections.

rawShift, rawToBits, rawToChar Conversion and manipulation of objects of type "raw".

rbind Takes a sequence of vector, matrix, or data frame argument and combines by rows,
respectively.

rcond Computes the 1- and inf-norm condition numbers for a matrix, also for complex
matrices, using standard LAPACK routines.

read.dcf Reads or writes an R object from/to a file in Debian control file format.

readBin Reads binary data from a connection or writes binary data to a connection.
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readChar Transfers character strings to and from connections, without assuming they are null
terminated on the connection.

readLines Reads some or all text lines from a connection.

readline Reads a line from the terminal.

real This function is the same as its double equivalents and is provided for backward
compatibility only.

reg.finalizer Registers an R function to be called upon garbage collection of objects or (optionally)
at the end of an R session.

regexpr Searches for matches to pattern (its first argument) within the character vector
x (second argument), and returns detailed results.

remove, rm Used to remove objects.

removeCConverter Returns TRUE if an element in the converter list was identified and removed. (This
function provides facilities to manage the extensible list of converters used to
translate R objects into C pointers for use in .C calls.)

removeTaskCallback Un-registers a function that was registered earlier via addTaskCallback.

rep, rep.int rep replicates the values in x. It is a generic function, and the (internal) default
method is described here. rep.int is a faster simplified version for the most
common case.

replace Replaces the values in x with indices given in list by those given in values. If
necessary, the values in values are recycled.

replicate A wrapper for the common use of sapply for repeated evaluation of an expression
(which will usually involve random number generation).

require library and require load add-on packages.

retracemem Marks an object so that a message is printed whenever the internal function
duplicate is called. This happens when two objects share the same memory and
one of them is modified. It is a major cause of hard-to-predict memory use in R.

return Provides the base mechanisms for defining new functions in the R language.

rev Provides a reversed version of its argument. It is generic function with a default
method for vectors and one for dendrograms.

rle Computes the lengths and values of runs of equal values in a vector—or the reverse
operation.

round Rounds the values in its first argument to the specified number of decimal places
(default 0).

round.POSIXt Rounds or truncates date-time objects.

row Returns a matrix of integers indicating their row number in a matrix-like object or
a factor indicating the row labels.

row.names, row.names<- Get or set the row names attribute from an object (such as a data frame).

rowMeans, rowSums Form row and column sums and means for numeric arrays.

rownames, rownames<- Retrieve or set the row or column names of a matrix-like object.

rowsum Computes column sums across rows of a matrix-like object for each
level of a grouping variable.
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sQuote Single- or double-quote text by combining with appropriate single or double left
and right quotation marks.

sample Takes a sample of specified size from the elements of x using either with or without
replacement.

sapply A user-friendly version of lapply by default returning a vector or matrix if
appropriate.

save Writes an external representation of R objects to a specified file. The objects can be
read back from the file at a later date by using the function load (or data in some
cases).

save.image Just a shortcut for “save my current workspace,” i.e., save(list =
ls(all=TRUE), file = ".RData"). It is also what happens with
q("yes").

saveNamespaceImage Low-level namespace support function.

scale A generic function whose default method centers and/or scales the columns of a
numeric matrix.

scan Reads data into a vector or list from the console or file.

search Gives a list of attached packages (see library), and R objects, usually
data.frames.

searchpaths Gives a similar character vector to search, with the entries for packages being the
path to the package used to load the code.

seek, seek.connection Functions to reposition connections.

seq, seq.int, seq_along, seq_len Generate regular sequences. seq is a standard generic with a default method.
seq.int is an internal generic that can be much faster but has a few restrictions.
seq_along and seq_len are very fast primitives for two common cases.

sequence For each element of nvec, the sequence seq_len(nvec[i]) is created. These
are concatenated and the result returned.

serialize A simple low-level interface for serializing to connections.

set.seed The recommended way to specify seeds for random number generation.

setCConverterStatus Provides facilities to manage the extensible list of converters used to translate R
objects into C pointers for use in .C calls. The number and a description of each
element in the list can be retrieved. One can also query and set the activity status
of individual elements, temporarily ignoring them. And one can remove individual
elements.

setHook Allows users to set actions to be taken before packages are attached/detached and
namespaces are (un)loaded.

setSessionTimeLimit, setTimeLi-
mit

Functions to set CPU and/or elapsed time limits for top-level computations or the
current session.

setdiff, setequal Perform set union, intersection, (asymmetric!) difference, equality, and membership
on two vectors.

setwd Used to set the working directory to dir.

shQuote Quotes a string to be passed to an operating system shell.

showConnections Displays aspects of connections.
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sign Returns a vector with the signs of the corresponding elements of x (the sign of a
real number is 1, 0, or −1 if the number is positive, zero, or negative, respectively).

signalCondition Provides a mechanism for handling unusual conditions, including errors and
warnings.

signif Rounds the values in its first argument to the specified number of significant digits.

simpleCondition, simpleError,
simpleMessage, simpleWarning

Provide a mechanism for handling unusual conditions, including errors and
warnings.

sin Computes the sine.

sinh Computes the hyperbolic sine.

sink, sink.number sink diverts R output to a connection. sink.number() reports how many di-
versions are in use. sink.number(type = "message") reports the number
of the connection currently being used for error messages.

slice.index Returns a matrix of integers indicating the number of their slice in a given array.

socketConnection Function to create, open, and close connections.

socketSelect Waits for the first of several socket connections to become available.

solve This generic function solves the equation a \%*\% x = b for x, where b can be
either a vector or a matrix.

solve.qr The method of solve for qr objects.

sort Sorts (or orders) a vector or factor (partially) into ascending (or descending) order.

source Causes R to accept its input from the named file or URL (the name must be quoted)
or connection.

split, split<- split divides the data in the vector x into the groups defined by f. The replacement
forms replace values corresponding to such a division.

sprintf A wrapper for the C function sprintf that returns a character vector containing
a formatted combination of text and variable values.

sqrt Computes miscellaneous mathematical functions. The naming follows the standard
for computer languages such as C or FORTRAN.

srcfile This function is for working with source files.

srcfilecopy This function is for working with source files.

srcref This function is for working with source files.

standardGeneric Dispatches the method defined for a generic function f, using the actual arguments
in the frame from which it is called.

stderr Displays aspects of connections.

stdin Displays aspects of connections.

stdout Displays aspects of connections.

stop Stops execution of the current expression and executes an error action.

stopifnot If any of the expressions in ... are not all TRUE, then stop is called, producing
an error message indicating the first of the elements of ... which were not true.

storage.mode, storage.mode<- Get or set the type of storage mode of an object.

592 | Appendix: R Reference



Function Description

strftime, strptime Functions to convert between character representations and objects of classes
"POSIXlt" and "POSIXct" representing calendar dates and times.

strsplit Splits the elements of a character vector x into substrings according to the presence
of substring split within them.

strtrim Trims character strings to specified display widths.

structure Returns a given object with further attributes set.

strwrap Wraps character strings to format paragraphs.

sub Performs replacement of matches determined by regular expression matching.

subset Returns subsets of vectors, matrices, or data frames that meet conditions.

substitute Returns the parse tree for the (unevaluated) expression expr, substituting any
variables bound in env.

substr, substr<-, substring,
substring<-

Extract or replace substrings in a character vector.

sum Returns the sum of all the values present in its arguments.

summary A generic function used to produce summaries of the results of various model fitting.

suppressMessages,
suppressPackageStartupMessages

Generate a diagnostic message from their arguments.

suppressWarnings Generates a warning message that corresponds to its argument(s) and (optionally)
the expression or function from which it was called.

svd Computes the singular-value decomposition of a rectangular matrix.

sweep Returns an array obtained from an input array by sweeping out a summary statistic.

switch Evaluates EXPR and accordingly chooses one of the additional arguments (in ...).

sys.call, sys.calls, sys.frame,
sys.frames, sys.function,
sys.nframe, sys.on.exit,
sys.parent, sys.parents

Provide access to environments (“frames” in S terminology) associated with
functions farther up the calling stack.

sys.source Parses expressions in a given file and then successively evaluates them in the
specified environment.

sys.status Provides access to environments (“frames” in S terminology) associated with
functions farther up the calling stack.

system Invokes the OS command specified by command.

system.file Finds the full filenames of files in packages, etc.

system.time Returns CPU (and other) times that expr used.

t Given a matrix or data.frame x, t returns the transpose of x. Methods include
t.data.frame and t.default.

table Uses the cross-classifying factors to build a contingency table of the counts at each
combination of factor levels.

tabulate Takes the integer-valued vector bin and counts the number of times each integer
occurs in it.

tan Computes the tangent.
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tanh Computes the hyperbolic tangent.

tapply Applies a function to each cell of a ragged array, i.e., to each (nonempty) group of
values given by a unique combination of the levels of certain factors.

taskCallbackManager Provides an entirely S-language mechanism for managing callbacks or actions that
are invoked at the conclusion of each top-level task. Essentially, we register a single
R function from this manager with the underlying native task-callback mechanism,
and this function handles invoking the other R callbacks under the control of the
manager. The manager consists of a collection of functions that access shared
variables to manage the list of user-level callbacks.

tcrossprod Given matrices x and y as arguments, returns a matrix cross-product. This is formally
equivalent to (but usually slightly faster than) the call x \%*\% t(y)
(tcrossprod).

tempdir, tempfile tempfile returns a vector of character strings that can be used as names for
temporary files.

textConnection, textConnection-
Value

Input and output text connections.

toString This is a helper function for format to produce a single-character string describing
an R object.

tolower Translates characters in character vectors, in particular from uppercase to lowercase.

topenv Finds the top-level environment.

toupper Translates characters in character vectors, in particular from uppercase to lowercase.

trace A call to trace allows you to insert debugging code (e.g., a call to browser or
recover) at chosen places in any function. A call to untrace cancels the tracing.

traceback By default, traceback() prints the call stack of the last uncaught error, i.e., the
sequence of calls that led to the error.

tracemem Marks an object so that a message is printed whenever the internal function
duplicate is called.

tracingState Tracing can be temporarily turned on or off globally by calling tracingState.

transform Returns a new data frame by applying a set of transformations to an existing data
frame.

trigamma Special mathematical functions related to the beta and gamma functions.

trunc Takes a single numeric argument x and returns a numeric vector containing the
integers formed by truncating the values in x toward 0.

truncate, truncate.connection Functions to reposition connections.

try A wrapper to run an expression that might fail and allow the user’s code to handle
error recovery.

tryCatch Provides a mechanism for handling unusual conditions, including errors and
warnings.

typeof Determines the (R internal) type of storage mode of any object.

unclass Returns (a copy of) its argument with its class attribute removed.

undebug Sets, unsets, or queries the debugging flag on a function.
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union Performs set union, intersection, (asymmetric!) difference, equality, and member-
ship on two vectors.

unique Returns a vector, data frame, or array like x but with duplicate elements/rows
removed.

units, units<- Extracts units from a difftime object.

unix.time Returns CPU (and other) times that expr used.

unlink Deletes the file(s) or directories specified by x.

unlist Given a list structure x, simplifies it to produce a vector that contains all the atomic
components that occur in x.

unloadNamespace Function to load and unload namespaces.

unlockBinding Unlocks individual bindings in a specified environment.

unname Removes the names or dimnames attribute of an R object.

unserialize A simple low-level interface for unserializing to connections.

unsplit Reverses the effect of split.

untrace A call to trace allows you to insert debugging code (e.g., a call to browser or
recover) at chosen places in any function. A call to untrace cancels the tracing.

untracemem Undoes a call to tracemem.

unz Function to create, open, and close connections.

upper.tri Returns a matrix of logicals the same size of a given matrix with entries TRUE in
the lower or upper triangle.

url Function to create, open, and close connections.

utf8ToInt Conversion of UTF-8 encoded character vectors to and from integer vectors.

vector Produces a vector of a given length and mode.

warning Generates a warning message that corresponds to its argument(s) and (optionally)
the expression or function from which it was called.

warnings warnings and its print method print the variable last.warning in a pleasing
form.

weekdays Extracts the weekdays from an object.

which Gives the TRUE indices of a logical object, allowing for array indices.

which.max, which.min Determines the location, i.e., index of the (first) minimum or maximum of a numeric
vector.

with Evaluates an R expression in an environment constructed from data, possibly
modifying the original data.

withCallingHandlers Calling handlers are established by withCallingHandlers.

withRestarts Restarts are used for establishing recovery protocols. They can be established using
withRestarts.

withVisible Evaluates an expression, returning it in a two-element list containing its value and
a flag showing whether it would automatically print.

within Evaluates an R expression in an environment constructed from data, possibly mod-
ifying the original data.
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write The data (usually a matrix) x is written to file file. If the object is a two-dimensional
matrix, you need to transpose it to get the columns in file the same as those in
the internal representation.

write.dcf Reads or writes an R object from/to a file in Debian control file format.

writeBin Reads binary data from a connection or writes binary data to a connection.

writeChar Transfers character strings to and from connections, without assuming they are null
terminated on the connection.

writeLines Writes text lines to a connection.

xor This operator acts on logical vectors.

xpdrows.data.frame Auxiliary function for use with data frames.

xtfrm A generic auxiliary function that produces a numeric vector that will sort in the same
order as x.

zapsmall Determines a digits argument dr for calling round(x, digits = dr) such
that values close to 0 (compared with the maximal absolute value) are “zapped,”
i.e., treated as 0.

~ Tilde is used to separate the left- and right-hand sides in model formula.

Data Sets

Dataset Class Description

F logical Alias for FALSE.

LETTERS character Constants built into R.

R.version, version simple.list R.Version() provides detailed information about the version of R running.
R.version is a variable (a list) holding this information (and version is a
copy of it for S compatibility).

R.version.string character R.version.string is a copy of R.version$version.string.

T logical Alias for TRUE.

letters,
month.abb,
month.name

character Vectors of constants built into R.

pi numeric Alias for the constant pi.

boot
This package provides functions for bootstrap resampling.

Functions

Function Description

EEF.profile Calculates the log-likelihood for a mean using an empirical exponential family
likelihood.

596 | Appendix: R Reference



Function Description

EL.profile Calculates the log-likelihood for a mean using an empirical likelihood.

abc.ci Calculates equitailed two-sided nonparametric approximate bootstrap confidence
intervals for a parameter, given a set of data and an estimator of the parameter,
using numerical differentiation.

boot Generates R bootstrap replicates of a statistic applied to data.

boot.array Takes a bootstrap object calculated by one of the functions boot, censboot, or
tilt.boot and returns the frequency (or index) array for the bootstrap resamples.

boot.ci Generates five different types of equitailed two-sided nonparametric confidence
intervals. These are the first-order normal approximation, the basic bootstrap in-
terval, the Studentized bootstrap interval, the bootstrap percentile interval, and
the adjusted bootstrap percentile (BCa) interval. All or a subset of these intervals
can be generated.

censboot Applies types of bootstrap resampling that have been suggested to deal with right-
censored data. It can also perform model-based resampling using a Cox regression
model.

control Finds control variate estimates from a bootstrap output object.

corr Calculates the weighted correlation given a data set and a set of weights.

cum3 Calculates an estimate of the third cumulant, or skewness, of a vector. Also, if more
than one vector is specified, a product-moment of order 3 is estimated.

cv.glm Calculates the estimated K-fold cross-validation prediction error for generalized
linear models.

empinf Calculates the empirical influence values for a statistic applied to a data set.

envelope Calculates overall and pointwise confidence envelopes for a curve based on bootstrap
replicates of the curve evaluated at a number of fixed points.

exp.tilt Calculates exponentially tilted multinomial distributions such that the resampling
distributions of the linear approximation to a statistic have the required means.

freq.array Takes a matrix of indices for nonparametric bootstrap resamples and returns the
frequencies of the original observations in each resample.

glm.diag Calculates jackknife deviance residuals, standardized deviance residuals, standar-
dized Pearson residuals, approximate Cook statistic, leverage, and estimated
dispersion.

glm.diag.plots Makes plot of jackknife deviance residuals against linear predictor, normal scores
plots of standardized deviance residuals, plot of approximate Cook statistics against
leverage/(1 − leverage), and case plot of Cook statistic.

imp.moments, imp.prob,
imp.quantile

Central moment, tail probability, and quantile estimates for a statistic under im-
portance resampling.

imp.weights Calculates the importance sampling weight required to correct for simulation from
a distribution with probabilities p when estimates are required assuming that
simulation was from an alternative distribution with probabilities q.

inv.logit Given a numeric object, returns the inverse logit of the values.

jack.after.boot Calculates the jackknife influence values from a bootstrap output object and plots
the corresponding jackknife-after-bootstrap plot.

k3.linear Estimates the skewness of a statistic from its empirical influence values.
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lik.CI Function for use with the practicals in Davison and Hinkley (1997), Bootstrap Methods
and Their Applications, Cambridge Series in Statistical and Probabilistic Mathematics,
No. 1.

linear.approx Takes a bootstrap object and, for each bootstrap replicate, calculates the linear
approximation to the statistic of interest for that bootstrap sample.

logit Calculates the logit of proportions.

nested.corr Function for use with the practicals in Davison and Hinkley (1997), Bootstrap Methods
and Their Applications, Cambridge Series in Statistical and Probabilistic Mathematics,
No. 1.

norm.ci Using the normal approximation to a statistic, calculates equitailed two-sided con-
fidence intervals.

saddle Calculates a saddlepoint approximation to the distribution of a linear combination
of W at a particular point u, where W is a vector of random variables.

saddle.distn Approximates an entire distribution using saddlepoint methods.

simplex This function will optimize the linear function a\%*\%x subject to the constraints
A1\%*\%x <= b1, A2\%*\%x >= b2, A3\%*\%x = b3, and x >= 0. Either
maximization or minimization is possible, but the default is minimization.

smooth.f Uses the method of frequency smoothing to find a distribution on a data set that
has a required value, theta, of the statistic of interest.

tilt.boot This function will run an initial bootstrap with equal resampling probabilities (if
required) and will use the output of the initial run to find resampling probabilities
that put the value of the statistic at required values. It then runs an importance
resampling bootstrap using the calculated probabilities as the resampling
distribution.

tsboot Generates R bootstrap replicates of a statistic applied to a time series. The replicate
time series can be generated using fixed or random block lengths or can be model-
based replicates.

var.linear Estimates the variance of a statistic from its empirical influence values.

Data Sets

Data Set Class Description

acme data.frame The acme data frame has 60 rows and 3 columns. The excess returns for the Acme
Cleveland Corporation, along with those for all stocks listed on the New York and
American Stock Exchanges, were recorded over a five year period. These excess
returns are relative to the return on a riskless investment such as U.S. Treasury bills.
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aids data.frame The aids data frame has 570 rows and 6 columns. Although all cases of AIDS in
England and Wales must be reported to the Communicable Disease Surveillance
Centre, there is often a considerable delay between the time of diagnosis and the
time of reporting. In estimating the prevalence of AIDS, account must be taken of
the unknown number of cases that have been diagnosed but not reported. The data
set here records the reported cases of AIDS diagnosed from July 1983 until the end
of 1992. The data is cross-classified by the date of diagnosis and the time delay in
the reporting of the cases.

aircondit data.frame Proschan reported on the times between failures of the air-conditioning equipment
in 10 Boeing 720 aircraft. The aircondit data frame contains the intervals for
the ninth aircraft, while aircondit7 contains those for the seventh aircraft. Both
data frames have just one column. Note that the data has been sorted into increasing
order.

aircondit7 data.frame Proschan reported on the times between failures of the air-conditioning equipment
in 10 Boeing 720 aircraft. The aircondit data frame contains the intervals for
the ninth aircraft, while aircondit7 contains those for the seventh aircraft. Both
data frames have just one column. Note that the data has been sorted into increasing
order.

amis data.frame The amis data frame has 8,437 rows and 4 columns. In a study into the effect that
warning signs have on speeding patterns, Cambridgeshire County Council consid-
ered 14 pairs of locations. The locations were paired to account for factors such as
traffic volume and type of road. One site in each pair had a sign erected warning of
the dangers of speeding and asking drivers to slow down. No action was taken at
the second site. Three sets of measurements were taken at each site. Each set of
measurements was nominally of the speeds of 100 cars, but not all sites have exactly
100 measurements. These speed measurements were taken before the erection of
the sign, shortly after the erection of the sign, and again after the sign had been in
place for some time.

aml data.frame The aml data frame has 23 rows and 3 columns. A clinical trial to evaluate the
efficacy of maintenance chemotherapy for acute myelogenous leukemia was con-
ducted by Embury et al. at Stanford University. After reaching a stage of remission
through treatment by chemotherapy, patients were randomized into two groups.
The first group received maintenance chemotherapy, and the second group did not.
The aim of the study was to see if maintenance chemotherapy increased the length
of the remission. The data here formed a preliminary analysis that was conducted
in October 1974.

beaver ts The beaver data frame has 100 rows and 4 columns. It is a multivariate time series
of class "ts" and also inherits from class "data.frame". This data set is part of
a long study into body temperature regulation in beavers. Four adult female beavers
were live-trapped and had a temperature-sensitive radio transmitter surgically
implanted. Readings were taken every 10 minutes. The location of the beaver was
also recorded, and her activity level was dichotomized by whether she was in the
retreat or outside of it, since high-intensity activities occur only outside of the retreat.
The data in this data frame comes from those readings for one of the beavers on a
day in autumn.
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bigcity data.frame The bigcity data frame has 49 rows and 2 columns. The city data frame has
10 rows and 2 columns. The measurements are the populations (in thousands) of
49 U.S. cities in 1920 and 1930. The 49 cities are a random sample taken from the
196 largest cities in 1920. The city data frame consists of the first 10 observations
in bigcity.

brambles data.frame The brambles data frame has 823 rows and 3 columns. The location of living
bramble canes in a 9 m square plot was recorded. We take 9 m to be the unit of
distance so that the plot can be thought of as a unit square. The bramble canes were
also classified by their age.

breslow data.frame The breslow data frame has 10 rows and 5 columns. In 1961, Doll and Hill sent
out a questionnaire to all men on the British Medical Register inquiring about their
smoking habits. Almost 70% of the men replied. Death certificates were obtained
from medical practitioners, and causes of death were assigned on the basis of these
certificates. The breslow data set contains the person-years of observations and
deaths from coronary artery disease accumulated during the first 10 years of the
study.

calcium data.frame The calcium data frame has 27 rows and 2 columns. Howard Grimes of the Botany
Department, North Carolina State University, conducted an experiment for bio-
chemical analysis of intracellular storage and transport of calcium across a plasma
membrane. Cells were suspended in a solution of radioactive calcium for a certain
length of time, and then the amount of radioactive calcium that was absorbed by
the cells was measured. The experiment was repeated independently with nine
different kinds of suspension, each replicated three times.

cane data.frame The cane data frame has 180 rows and 5 columns. The data frame represents a
randomized block design with 45 varieties of sugarcane and 4 blocks. The aim of
the experiment was to classify the varieties into resistant, intermediate, and sus-
ceptible to a disease called “coal of sugarcane” (carvāo da cana-de-açúcar). This is
a disease that is common in sugar-cane plantations in certain areas of Brazil. For
each plot, 50 pieces of sugarcane stem were put in a solution containing the disease
agent, and then some were planted in the plot. After a fixed period of time, the
total number of shoots and the number of diseased shoots were recorded.

capability data.frame The capability data frame has 75 rows and 1 column. The data consists of
simulated successive observations from a process in equilibrium. The process is
assumed to have specification limits (5.49, 5.79).

catsM data.frame The catsM data frame has 97 rows and 3 columns. One hundred and forty-four
adult (over 2 kg in weight) cats used for experiments with the drug digitalis had
their heart and body weight recorded. Forty-seven of the cats were female, and 97
were male. The catsM data frame consists of the data for the male cats. The full
data can be found in data set \link[MASS]{cats} in package MASS.

cav data.frame The cav data frame has 138 rows and 2 columns. The data gives the positions of
the individual caveolae in a square region with sides of length 500 units. This grid
was originally on a 2.65 μm square of muscle fiber. The data consist of those points
falling in the lower-left quarter of the region used for the data set caveolae.dat.

cd4 data.frame The cd4 data frame has 20 rows and 2 columns. CD4 cells are carried in the blood
as part of the human immune system. One of the effects of the human immuno-
deficiency virus (HIV) is that these cells die. The count of CD4 cells is used in deter-
mining the onset of full-blown AIDS in a patient. In this study of the effectiveness
of a new antiviral drug on HIV, 20 HIV-positive patients had their CD4 counts recorded
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and then were put on a course of treatment with this drug. After using the drug for
1 year, their CD4 counts were again recorded. The aim of the experiment was to
show that patients taking the drug had increased CD4 counts, which is not generally
seen in HIV-positive patients.

cd4.nested boot This is an example of a nested bootstrap for the correlation coefficient of the cd4
data frame.

channing data.frame The channing data frame has 462 rows and 5 columns. Channing House is a
retirement center in Palo Alto, California. The data was collected between the
opening of the house in 1964 until July 1, 1975. During that time, 97 men and 365
women passed through the center. For each of these, their age on entry and also
on leaving or death was recorded. A large number of the observations were censored
mainly due to the resident being alive on July 1, 1975, when the data was collected.
Over the course of the study, 130 women and 46 men died at Channing House.
Differences between the survival of the sexes, taking age into account, was one of
the primary concerns of this study.

city data.frame The bigcity data frame has 49 rows and 2 columns. The city data frame has
10 rows and 2 columns. The measurements are the populations (in thousands) of
49 U.S. cities in 1920 and 1930. The 49 cities are a random sample taken from the
196 largest cities in 1920. The city data frame consists of the first 10 observations
in bigcity.

claridge data.frame The claridge data frame has 37 rows and 2 columns. The data comes from an
experiment that was designed to look for a relationship between a certain genetic
characteristic and handedness. The 37 subjects were women who had a son with
mental retardation due to inheriting a defective X-chromosome. For each such
mother, a genetic measurement of her DNA was made. Larger values of this meas-
urement are known to be linked to the defective gene, and it was hypothesized that
larger values might also be linked to a progressive shift away from right-handedness.
Each woman also filled in a questionnaire regarding which hand she used for various
tasks. From these questionnaires, a measure of hand preference was found for each
mother. The scale of this measure goes from 1, indicating women who always favor
their right hand, to 8, indicating women who always favor their left hand. Between
these two extremes are women who favor one hand for some tasks and the other
for other tasks.

cloth data.frame The cloth data frame has 32 rows and 2 columns.

co.transfer data.frame The co.transfer data frame has 7 rows and 2 columns. Seven smokers with
chickenpox had their levels of carbon monoxide transfer measured upon being
admitted to the hospital and then again after 1 week. The main question was
whether 1 week of hospitalization had changed the carbon monoxide transfer factor.

coal data.frame The coal data frame has 191 rows and 1 column. This data frame gives the dates
of 191 explosions in coal mines that resulted in 10 or more fatalities. The time span
of the data is from March 15, 1851, until March 22, 1962.

darwin data.frame The darwin data frame has 15 rows and 1 column. Charles Darwin conducted an
experiment to examine the superiority of cross-fertilized plants over self-fertilized
plants. Fifteen pairs of plants were used. Each pair consisted of one cross-fertilized
plant and one self-fertilized plant that germinated at the same time and grew in
the same pot. The plants were measured at a fixed time after planting, and the
differences in heights between the cross- and self-fertilized plants were recorded
in eighths of an inch.
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dogs data.frame The dogs data frame has 7 rows and 2 columns. Data on the cardiac oxygen
consumption and left ventricular pressure was gathered on seven domestic dogs.

downs.bc data.frame The downs.bc data frame has 30 rows and 3 columns. Down syndrome is a genetic
disorder caused by an extra chromosome 21 or a part of chromosome 21 being
translocated to another chromosome. The incidence of Down syndrome is highly
dependent on the mother’s age and rises sharply after age 30. In the 1960s, a large-
scale study of the effect of maternal age on the incidence of Down syndrome was
conducted at the British Columbia Health Surveillance Registry. This data frame
consists of the data that was collected in that study. Mothers were classified by age.
Most groups correspond to the age in years, but the first group comprises all mothers
aged 15–17, and the last is those aged 46–49. No data for mothers over 50 or below
15 was collected.

ducks data.frame The ducks data frame has 11 rows and 2 columns. Each row of the data frame
represents a male duck that is a second-generation cross between a mallard and a
pintail. For 11 such ducks, a behavioral index and plumage index were calculated.
These were measured on scales devised for this experiment, which was to examine
whether there was any link between which species the ducks resembled physically
and which they resembled in behavior. The scale for physical appearance ranged
from 0 (identical in appearance to a mallard) to 20 (identical to a pintail). The
behavioral traits of the ducks were on a scale of 0 to 15, with lower numbers indicating
more mallard-like behavior.

fir data.frame The fir data frame has 50 rows and 3 columns. The number of balsam-fir seedlings
in each quadrant of a grid of 50 5-foot-square quadrants were counted. The grid
consisted of 5 rows of 10 quadrants in each row.

frets data.frame The frets data frame has 25 rows and 4 columns. The data consists of measure-
ments of the length and breadth of the heads of pairs of adult brothers in 25 randomly
sampled families. All measurements are expressed in millimeters.

grav data.frame The gravity data frame has 81 rows and 2 columns. The grav data set has 26
rows and 2 columns. Between May 1934 and July 1935, the U.S. National Bureau
of Standards conducted a series of experiments to estimate the acceleration due to
gravity, g, at Washington, D.C. Each experiment produced a number of replicate
estimates of g using the same methodology. Although the basic method remained
the same for all experiments, that of the reversible pendulum, there were changes
in configuration. The gravity data frame contains the data from all eight experi-
ments. The grav data frame contains the data from experiments 7 and 8. The data
is expressed as deviations from 980.000 in centimeters per second squared.

gravity data.frame The gravity data frame has 81 rows and 2 columns. The grav data set has 26
rows and 2 columns. Between May 1934 and July 1935, the U.S. National Bureau
of Standards conducted a series of experiments to estimate the acceleration due to
gravity, g, at Washington, D.C. Each experiment produced a number of replicate
estimates of g using the same methodology. Although the basic method remained
the same for all experiments, that of the reversible pendulum, there were changes
in configuration. The gravity data frame contains the data from all eight experi-
ments. The grav data frame contains the data from experiments 7 and 8. The data
is expressed as deviations from 980.000 in centimeters per second squared.

hirose data.frame The hirose data frame has 44 rows and 3 columns. PET film is used in electrical
insulation. In this accelerated life test, the failure times for 44 samples in gas-
insulated transformers were estimated. Four different voltage levels were used.
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islay data.frame The islay data frame has 18 rows and 1 column. Measurements were taken of
paleocurrent azimuths from the Jura Quartzite on the Scottish island of Islay.

manaus ts The manaus time series is of class "ts" and has 1,080 observations on one variable.
The data values are monthly averages of the daily stages (heights) of the Rio Negro
at Manaus. Manaus is 18 km upstream from the confluence of the Rio Negro with
the Amazon, but because of the tiny slope of the water surface and the lower courses
of its flatland affluents, they may be regarded as a good approximation of the water
level in the Amazon at the confluence. The data here covers 90 years from January
1903 until December 1992. The Manaus gauge is tied in with an arbitrary benchmark
of 100 m set in the steps of the Municipal Prefecture; gauge readings are usually
referred to sea level, on the basis of a mark on the steps leading to the Parish Church
(Matriz), which is assumed to lie at an altitude of 35.874 m according to observations
made many years ago under the direction of Samuel Pereira, an engineer in charge
of the Manaus Sanitation Committee. Whereas such an altitude cannot, by any
means, be considered to be a precise datum point, observations have been provi-
sionally referred to it. The measurements are in meters.

melanoma data.frame The melanoma data frame has 205 rows and 7 columns. The data consists of
measurements made on patients with malignant melanoma. Each patient had his
or her tumor surgically removed at the Department of Plastic Surgery, University
Hospital of Odense, Denmark, during the period 1962–1977. The surgery consisted
of complete removal of the tumor together with about 2.5 cm of the surrounding
skin. Among the measurements taken were the thickness of the tumor and whether
it was ulcerated or not. These are thought to be important prognostic variables in
that patients with a thick and/or ulcerated tumor have an increased chance of death
from melanoma. Patients were followed until the end of 1977.

motor data.frame The motor data frame has 94 rows and 4 columns. The rows were obtained by
removing replicate values of time from the data set mcycle. Two extra columns
were added to allow for strata with a different residual variance in each stratum.

neuro matrix neuro is a matrix containing times of observed firing of a neuron in windows of
250 ms on either side of the application of a stimulus to a human subject. Each row
of the matrix is a replication of the experiment, and there are a total of 469 replicates.

nitrofen data.frame The nitrofen data frame has 50 rows and 5 columns. Nitrofen is a herbicide that
was used extensively for the control of broad-leaved and grass weeds in cereals and
rice. Although it is relatively nontoxic to adult mammals, nitrofen is a significant
teratogen and mutagen. It is also acutely toxic and reproductively toxic to cladoceran
zooplankton. Nitrofen is no longer in commercial use in the United States, having
been the first pesticide to be withdrawn due to teratogenic effects. The data here
comes from an experiment to measure the reproductive toxicity of nitrofen on a
species of zooplankton (Ceriodaphnia dubia). Fifty animals were randomized into
batches of 10, and each batch was put in a solution with a measured concentration
of nitrofen. Then the number of live offspring in each of the three broods of each
animal was recorded.

nodal data.frame The nodal data frame has 53 rows and 7 columns. The treatment strategy for a
patient diagnosed with prostate cancer depends highly on whether the cancer has
spread to the surrounding lymph nodes. It is common to operate on the patient to
get samples from the nodes, which can then be analyzed under a microscope, but
clearly it would be preferable if an accurate assessment of nodal involvement could
be made without surgery. For a sample of 53 prostate cancer patients, a number of
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possible predictor variables were measured before surgery. The patients then had
surgery to determine nodal involvement. The point of the study was to see if nodal
involvement could be accurately predicted from the predictor variables and which
ones were most important.

nuclear data.frame The nuclear data frame has 32 rows and 11 columns. The data relates to the
construction of 32 light-water reactor (LWR) plants constructed in the United States
in the late 1960s and early 1970s. The data was collected with the aim of predicting
the cost of construction of additional LWR plants. Six of the power plants had partial
turnkey guarantees, and it is possible that, for these plants, some manufacturers’
subsidies may be hidden in the quoted capital costs.

paulsen data.frame The paulsen data frame has 346 rows and 1 column. Sections were prepared from
the brains of adult guinea pigs. Spontaneous currents that flowed into individual
brain cells were then recorded and the peak amplitude of each current measured.
The aim of the experiment was to see if the current flow was quantal in nature (i.e.,
that it is not a single burst but instead is built up of many smaller bursts of current).
If the current was indeed quantal, then it would be expected that the distribution
of the current amplitude would be multimodal with modes at regular intervals. The
modes would be expected to decrease in magnitude for higher current amplitudes.

poisons data.frame The poisons data frame has 48 rows and 3 columns. The data form a 3 × 4 factorial
experiment, the factors being three poisons and four treatments. Each combination
of the two factors was used on four animals, the allocation to animals having been
completely randomized.

polar data.frame The polar data frame has 50 rows and 2 columns. The data consists of the pole
positions from a paleomagnetic study of New Caledonian laterites.

remission data.frame The remission data frame has 27 rows and 3 columns.

salinity data.frame The salinity data frame has 28 rows and 4 columns. Biweekly averages of the
water salinity and river discharge in Pamlico Sound, North Carolina, were recorded
between the years 1972 and 1977. The data in this set consists only of those meas-
urements in March, April, and May.

survival data.frame The survival data frame has 14 rows and 2 columns. The data measured the
survival percentages of batches of rats who were given varying doses of radiation.
At each of six doses there were two or three replications of the experiment.

tau data.frame The tau data frame has 60 rows and 2 columns. The tau particle is a heavy electron-
like particle discovered in the 1970s by Martin Perl at the Stanford Linear Accelerator
Center. Soon after its production, the tau particle decays into various collections of
more stable particles. About 86% of the time, the decay involves just one charged
particle. This rate has been measured independently 13 times. The one-charged-
particle event is made up of four major modes of decay as well as a collection of
other events. The four main types of decay are denoted rho, pi, e, and mu. These
rates have been measured independently 6, 7, 14, and 19 times, respectively. Due
to physical constraints, each experiment can estimate only the composite one-
charged-particle decay rate or the rate of one of the major modes of decay. Each
experiment consists of a major research project involving many years’ work. One of
the goals of the experiments was to estimate the rate of decay due to events other
than the four main modes of decay. These are uncertain events and so cannot
themselves be observed directly.
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tuna data.frame The tuna data frame has 64 rows and 1 column. The data comes from an aerial line
transect survey of southern bluefin tuna in the Great Australian Bight. An aircraft
with two spotters on board flew randomly allocated line transects. Each school of
tuna sighted was counted and its perpendicular distance from the transect meas-
ured. The survey was conducted in summer when tuna tend to stay on the surface.

urine data.frame The urine data frame has 79 rows and 7 columns. Seventy-nine urine specimens
were analyzed in an effort to determine if certain physical characteristics of the
urine might be related to the formation of calcium oxalate crystals.

wool ts wool is a time series of class "ts" and contains 309 observations. Each week that
the market was open, the Australian Wool Corporation set a floor price that deter-
mined its policy on intervention and was therefore a reflection of the overall price
of wool for the week in question. Actual prices paid varied considerably about the
floor price. The series here is the log of the ratio between the price for fine-grade
wool and the floor price, each market week between July 1976 and June 1984.

class
This package provides functions for classification.

Functions

Function Description

SOM, batchSOM Kohonen’s self-organizing maps (SOMs) are a crude form of multidimensional
scaling.

condense Condenses training set for k-nearest-neighbor (k-NN) classifier.

knn k-nearest-neighbor classification for test set from training set. For each row of the
test set, the k-nearest (in Euclidean distance) training set vectors are found, and
the classification is decided by majority vote, with ties broken at random. If there
are ties for the kth nearest vector, then all candidates are included in the vote.

knn.cv k-nearest-neighbor cross-validatory classification from training set.

knn1 Nearest-neighbor classification for test set from training set. For each row of the
test set, the nearest neighbor (by Euclidean distance) training set vector is found,
and its classification used. If there is more than one nearest neighbor, a majority
vote is used, with ties broken at random.

lvq1, lvq2, lvq3 Moves examples in a codebook to better represent the training set.

lvqinit Constructs an initial codebook for learning vector quantization (LVQ) methods.

lvqtest Classifies a test set by 1-NN from a specified LVQ codebook.

multiedit Multiedit for k-NN classifier.

olvq1 Moves examples in a codebook to better represent the training set.

reduce.nn Reduces training set for a k-NN classifier. Used after condense.

somgrid Plotting functions for SOM results.
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This package provides functions for cluster analysis.

Functions

Function Description

agnes Computes agglomerative hierarchical clustering of the data set.

bannerplot Draws a “banner,” i.e., basically a horizontal barplot visualizing the (agglomer-
ative or divisive) hierarchical clustering or another binary dendrogram structure.

clara Computes a "clara" object, a list representing a clustering of the data into k
clusters.

clusplot Draws a two-dimensional (2D) “clusplot” on the current graphics device.

coef.hclust Computes the “agglomerative coefficient,” measuring the clustering structure of
the data set.

daisy Computes all the pairwise dissimilarities (distances) between observations in the
data set.

diana Computes a divisive hierarchical clustering of the data set, returning an object of
class diana.

ellipsoidPoints Computes points on the ellipsoid boundary, mostly for drawing.

ellipsoidhull Computes the “ellipsoid hull” or “spanning ellipsoid,” i.e., the ellipsoid of minimal
volume (“area” in 2D) such that all given points lie just inside or on the boundary
of the ellipsoid.

fanny Computes a fuzzy clustering of the data into k clusters.

lower.to.upper.tri.inds Computes index vectors for extracting or reordering of lower or upper triangular
matrices that are stored as contiguous vectors.

mona Returns a list representing a divisive hierarchical clustering of a data set with binary
variables only.

pam Partitioning (clustering) of the data into k clusters “around medoids,” a more robust
version of k-means clustering.

pltree Generic function drawing a clustering tree (“dendrogram”) on the current
graphics device. There is a twins method; see pltree.twins for usage and
examples.

predict.ellipsoid Computes points on the ellipsoid boundary, mostly for drawing.

silhouette Computes silhouette information according to a given clustering in k clusters.

sizeDiss Returns the number of observations (sample size) corresponding to a dissimilarity-
like object or, equivalently, the number of rows or columns of a matrix when only
the lower or upper triangular part (without diagonal) is given. It is nothing else but
the inverse function of f(n) = n(n − 1)/2.

sortSilhouette Computes silhouette information according to a given clustering in k clusters.

upper.to.lower.tri.inds Computes index vectors for extracting or reordering of lower or upper triangular
matrices that are stored as contiguous vectors.
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volume Computes the volume of a planar object. This is a generic function and a method
for ellipsoid objects.

Data Sets

Data Set Class Description

agriculture data.frame Gross national product (GNP) per capita and percentage of the population working
in agriculture for each country belonging to the European Union in 1993.

animals data.frame This data set considers 6 binary attributes for 20 animals.

chorSub matrix This is a small rounded subset of the C-horizon data.

flower data.frame This data set consists of 8 characteristics for 18 popular flowers.

plant-
Traits

data.frame This data set constitutes a description of 136 plant species according to biological
attributes (morphological or reproductive).

pluton data.frame The pluton data frame has 45 rows and 4 columns, containing percentages of
isotopic composition of 45 plutonium batches.

ruspini data.frame The Ruspini data set, consisting of 75 points in 4 groups, is popular for illustrating
clustering techniques.

votes.repub data.frame A data frame with the percents of votes given to the Republican candidates in
presidential elections from 1856 to 1976. Rows represent the 50 states, and columns
the 31 elections.

xclara data.frame An artificial data set consisting of 3,000 points in 3 well-separated clusters of size
1,000 each.

codetools
This package provides tools for analyzing R code. It is mainly intended to support
the other tools in this package and byte code compilation. See the help file for more
information.

foreign
This package provides functions for reading data stored by Minitab, S, SAS, SPSS,
Stata, Systat, dBase, and so forth.

Functions

Function Description

data.restore Reads binary data files or data.dump files that were produced in S version 3.

lookup.xport Scans a file as a SAS XPORT format library and returns a list containing information
about the SAS library.

read.S Reads binary data files or data.dump files that were produced in S version 3.

read.arff Reads data from Weka Attribute-Relation File Format (ARFF) files.
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read.dbf Reads a DBF file into a data frame, converting character fields to factors and trying
to respect NULL fields.

read.dta Reads a file in Stata version 5–10 binary format into a data frame.

read.epiinfo Reads data files in the .REC format used by Epi Info versions 6 and earlier and by
EpiData. Epi Info is a public-domain database and statistics package produced by
the U.S. Centers for Disease Control and Prevention, and EpiData is a freely available
data entry and validation system.

read.mtp Returns a list with the data stored in a file as a Minitab portable worksheet.

read.octave Reads a file in Octave text data format into a list.

read.spss Reads a file stored by the SPSS save or export commands.

read.ssd Generates a SAS program to convert the ssd contents to SAS transport format and
then uses read.xport to obtain a data frame.

read.systat Reads a rectangular data file stored by the Systat SAVE command as (legacy)
*.sys or, more recently, *.syd files.

read.xport Reads a file as a SAS XPORT format library and returns a list of data.frames.

write.arff Writes data into Weka Attribute-Relation File Format (ARFF) files.

write.dbf Tries to write a data frame to a DBF file.

write.dta Writes the data frame to file in the Stata binary format. Does not write array variables
unless they can be drop-ed to a vector.

write.foreign Exports simple data frames to other statistical packages by writing the data as free-
format text and writing a separate file of instructions for the other package to read
the data.

grDevices
This package provides functions for graphics devices and support for base and grid
graphics.

Functions

Function Description

CIDFont Used to define the translation of an R graphics font family name to a Type 1 or CID
font description, used by both the postscript and the pdf graphics devices.

Type1Font Used to define the translation of an R graphics font family name to a Type 1 or CID
font description, used by both the postscript and the pdf graphics devices.

X11 Starts a graphics device driver for the X Window System (version 11). This can be
done only on machines/accounts that have access to an X server.

X11.options Sets options for an X11 device.

X11Font, X11Fonts Handle the translation of a device-independent R graphics font family name to an
X11 font description.

as.graphicsAnnot Coerces an R object into a form suitable for graphics annotation.
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bitmap Generates a graphics file. dev2bitmap copies the current graphics device to a file
in a graphics format.

bmp Graphics device for generating BMP(bitmap) files.

boxplot.stats This function is typically called by another function to gather the statistics necessary
for producing box plots, but may be invoked separately.

cairo_pdf A Cairo-based graphics device for generating PDF files.

cairo_ps A Cairo-based graphics device for generating PostScript files.

check.options Utility function for setting options with some consistency checks. The
attributes of the new settings in new are checked for consistency with the
model (often default) list in name.opt.

chull Computes the subset of points that lie on the convex hull of the set of points specified.

cm Translates from inches to centimeters (cm).

cm.colors Creates a vector of n contiguous colors.

col2rgb R color to RGB (red/green/blue) conversion.

colorConverter Specifies color spaces for use in convertColor.

colorRamp, colorRampPalette These functions return functions that interpolate a set of given colors to create new
color palettes (like topo.colors) and color ramps, functions that map the interval
[0, 1] to colors (like gray).

colors, colours Returns the built-in color names that R knows about.

contourLines Calculates contour lines for a given set of data.

convertColor Converts colors between standard color space representations. This function is ex-
perimental.

densCols Produces a vector containing colors that encode the local densities at each point in
a scatter plot.

dev.control Allows the user to control the recording of graphics operations in a device.

dev.copy Copies the graphics contents of the current device to the device specified by
which or to a new device that has been created by the function specified by
device (it is an error to specify both which and device).

dev.copy2eps Copies the graphics contents of the current device to an Encapsulated PostScript
Format (EPSF) output file in portrait orientation (horizontal = FALSE).

dev.copy2pdf Copies the graphics contents of the current device to a PDF output file in portrait
orientation (horizontal = FALSE).

dev.cur Returns a named integer vector of length 1, giving the number and name of the
active device, or 1, the null device, if none is active.

dev.interactive Tests if the current graphics device (or that which would be opened) is interactive.

dev.list Returns the numbers of all open devices, except device 1, the null device. This is a
numeric vector with a names attribute giving the device names, or NULL if there is
no open device.

dev.new Opens a new graphics device.

dev.next Returns the number and name of the next device in the list of devices.

dev.off Shuts down the specified (by default the current) graphics device.
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dev.prev Returns the number and name of the previous device in the list of devices.

dev.print Copies the graphics contents of the current device to a new device that has been
created by the function specified by device and then shuts the new device.

dev.set Makes the specified graphics device the active device.

dev.size Finds the dimensions of the device surface of the current device.

dev2bitmap bitmap generates a graphics file. dev2bitmap copies the current graphics device
to a file in a graphics format.

devAskNewPage Used to control (for the current device) whether the user is prompted before starting
a new page of output.

deviceIsInteractive Tests if the current graphics device (or that which would be opened) is interactive.

embedFonts Runs Ghostscript to process a PDF or PostScript file and embed all fonts in the file.

extendrange Extends a numeric range by a small percentage, i.e., fraction, on both sides.

getGraphicsEvent Waits for input from a graphics window in the form of a mouse or keyboard event.

graphics.off Provides control over multiple graphics devices.

gray Creates a vector of colors from a vector of gray levels.

gray.colors Creates a vector of n gamma-corrected gray colors.

grey Creates a vector of colors from a vector of gray levels.

grey.colors Creates a vector of n gamma-corrected gray colors.

hcl Creates a vector of colors from vectors specifying hue, chroma, and luminance.

heat.colors Creates a vector of n contiguous colors.

hsv Creates a vector of colors from vectors specifying hue, saturation, and value.

jpeg Creates a graphics device for generating JPEG format files.

make.rgb Specifies color spaces for use in convertColor.

n2mfrow Easy setup for plotting multiple figures (in a rectangular layout) on one page. This
computes a sensible default for par(mfrow).

nclass.FD Computes the number of classes for a histogram using the Freedman-Diaconis choice
based on the interquartile range (IQR), unless that’s 0, where it reverts to mad(x,
constant = 2), and when that is 0 as well, returns 1.

nclass.Sturges Computes the number of classes for a histogram using Sturges’ formula, implicitly
basing bin sizes on the range of the data.

nclass.scott Computes the number of classes for a histogram using Scott’s choice for a normal
distribution based on the estimate of the standard error, unless that is 0 where it
returns 1.

palette Views or manipulates the color palette that is used when a col= has a numeric index.

pdf Starts the graphics device driver for producing PDF graphics.

pdf.options The auxiliary function pdf.options can be used to set or view (if called without
arguments) the default values for some of the arguments to pdf.

pdfFonts Lists existing mapping for PDF fonts or creates new mappings.

pictex Produces graphics suitable for inclusion in TeX and LaTeX documents.
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png Creates a new graphics device for producing Portable Network Graphics (PNG) files.

postscript Starts the graphics device driver for producing PostScript graphics.

postscriptFonts Lists existing mapping for PostScript fonts or creates new mappings.

ps.options The auxiliary function ps.options can be used to set or view (if called without
arguments) the default values for some of the arguments to postscript.

quartz Starts a graphics device driver for the Mac OS X system.

quartz.options Sets options for a quartz device.

quartzFont Translates from a device-independent R graphics font family name to a quartz font
description.

quartzFonts Lists existing mappings of device-independent R graphics to a quartz font descrip-
tion, or defines new mappings.

rainbow Creates a vector of n contiguous colors.

recordGraphics Records arbitrary code on the graphics engine display list. Useful for encapsulating
calculations with graphical output that depends on the calculations. Intended
only for expert use.

recordPlot, replayPlot Functions to save the current plot in an R variable and to replay it.

rgb Creates colors corresponding to the given intensities (between 0 and max) of the
red, green, and blue primaries.

rgb2hsv Transforms colors from RGB space (red/green/blue) into HSV space (hue/saturation/
value).

savePlot Saves the current page of a Cairo X11() device to a file.

setEPS A wrapper to ps.options that sets defaults appropriate for figures for inclusion
in documents (the default size is 7 inches square unless width or height is supplied).

setPS A wrapper to ps.options to set defaults appropriate for figures for spooling to
a PostScript printer.

svg Creates a new graphics device for outputting graphics in Scalable Vector Graphics
(SVG) format.

terrain.colors Creates a vector of n contiguous colors.

tiff Creates a new graphics device for outputting graphics in Tagged Image File Format
(TIFF) format.

topo.colors Creates a vector of n contiguous colors.

trans3d Projection of three-dimensional to two-dimensional points using a 4 × 4 viewing
transformation matrix.

x11 A synonym for X11 (which opens a new X11 device for plotting graphics).

xfig Starts the graphics device driver for producing XFig (version 3.2) graphics.

xy.coords Used by many functions to obtain x and y coordinates for plotting. The use of this
common mechanism across all relevant R functions produces a measure of consis-
tency.

xyTable Given (x, y) points, determines their multiplicity—checking for equality only up to
some (crude kind of) noise. Note that this is a special kind of 2D binning.
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xyz.coords Utility for obtaining consistent x, y, and z coordinates and labels for
three-dimensional (3D) plots.

Data Sets

Data Set Class Description

Hershey list If the family graphical parameter (see par) has been set to one of the Hershey
fonts, Hershey vector fonts are used to render text. When using the text and
contour functions, Hershey fonts may be selected via the vfont argument, which
is a character vector of length 2. This allows Cyrillic to be selected, which is not
available via the font families.

blues9 character densCols produces a vector containing colors that encode the local densities at
each point in a scatter plot.

colorspaces list Converts colors between standard color space representations. This function is
experimental.

graphics
This package contains functions for base graphics. Base graphics are traditional S
graphics, as opposed to the newer grid graphics.

Functions

Function Description

Axis Generic function to add a suitable axis to the current plot.

abline Adds one or more straight lines through the current plot.

arrows Draws arrows between pairs of points.

assocplot Produces a Cohen-Friendly association plot indicating deviations from independ-
ence of rows and columns in a two-dimensional contingency table.

axTicks Computes pretty tick mark locations, the same way as R does internally. This is only
nontrivial when log coordinates are active. By default, gives the at values that
axis(side) would use.

axis Adds an axis to the current plot, allowing the specification of the side, position,
labels, and other options.

barplot Creates a bar plot with vertical or horizontal bars.

box Draws a box around the current plot in a given color and line type. The bty parameter
determines the type of box drawn. See par for details.

boxplot Produces box-and-whisker plot(s) of the given (grouped) values.

boxplot.matrix Interprets the columns (or rows) of a matrix as different groups and draws a box
plot for each.

bxp Draws box plots based on the given summaries in z. It is usually called from within
boxplot, but can be invoked directly.

612 | Appendix: R Reference



Function Description

cdplot Computes and plots conditional densities describing how the conditional distribu-
tion of a categorical variable y changes over a numeric variable x.

clip Sets clipping region in user coordinates.

close.screen Removes the specified screen definition(s) created by split.screen.

co.intervals Produces two variants of the conditioning plots.

contour Creates a contour plot or adds contour lines to an existing plot. Methods include
contour.default.

coplot Produces two variants of the conditioning plots.

curve Draws a curve corresponding to a given function or, for curve(), also an expression
(in x) over the interval [from,to].

dotchart Draws a Cleveland dot plot.

erase.screen Used to clear a single screen (when using split.screen), which it does by filling
with the background color.

filled.contour Produces a contour plot with the areas between the contours filled in solid color
(Cleveland calls this a level plot).

fourfoldplot Creates a fourfold display of a 2-by-2-by-k contingency table on the current graphics
device, allowing for the visual inspection of the association between two dichoto-
mous variables in one or several populations (strata).

frame This function (frame is an alias for plot.new) causes the completion of plotting
in the current plot (if there is one) and an advance to a new graphics frame.

grconvertX, grconvertY Convert between graphics coordinate systems.

grid Adds an nx-by-ny rectangular grid to an existing plot.

hist The generic function hist computes a histogram of the given data values. If
plot=TRUE, the resulting object of \link[base]{class “histogram”} is plot-
ted by plot.histogram, before it is returned. Methods include
hist.default.

identify Reads the position of the graphics pointer when the (first) mouse button is pressed.
It then searches the coordinates given in x and y for the point closest to the pointer.
If this point is close enough to the pointer, then its index will be returned as part of
the value of the call.

image Creates a grid of colored or grayscale rectangles with colors corresponding to the
values in z.

layout, layout.show layout divides the device up into as many rows and columns as there are in matrix
mat, with the column widths and the row heights specified in the respective
arguments.

lcm layout divides the device up into as many rows and columns as there are in matrix
mat, with the column widths and the row heights specified in the respective
arguments.

legend Used to add legends to plots. Note that a call to the function locator(1) can be
used in place of the x and y arguments.

lines A generic function taking coordinates given in various ways and joining the corre-
sponding points with line segments. Methods include lines.default and
lines.ts.
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locator Reads the position of the graphics cursor when the (first) mouse button is pressed.

matlines, matplot, matpoints Plot the columns of one matrix against the columns of another.

mosaicplot Plots a mosaic on the current graphics device.

mtext Text is written in one of the four margins of the current figure region or one of the
outer margins of the device region.

pairs A matrix of scatter plots is produced.

panel.smooth An example of a simple useful panel function to be used as an argument in, e.g.,
coplot or pairs.

par Used to set or query graphical parameters.

persp Draws perspective plots of surfaces over the x–y plane.

pie Draws a pie chart.

plot Generic function for plotting R objects.

plot.design Plots univariate effects of one or more factors, typically for a designed experiment
as analyzed by aov().

plot.new This function (plot.new is an alias for frame) causes the completion of plotting
in the current plot (if there is one) and an advance to a new graphics frame.

plot.window Sets up the world coordinate system for a graphics window. It is called by higher-
level functions such as plot.default (after plot.new).

plot.xy This is the internal function that does the basic plotting of points and lines. Usually,
one should use the higher-level functions instead and refer to their help pages for
explanation of the arguments.

points A generic function to draw a sequence of points at the specified coordinates. The
specified character(s) are plotted, centered at the coordinates. Methods include
points.default.

polygon Draws the polygons whose vertices are given in x and y.

rect Draws a rectangle (or sequence of rectangles) with the given coordinates, fill, and
border colors.

rug Adds a rug representation (1D plot) of the data to the plot.

screen Used to select which screen to draw in (when using split.screen).

segments Draws line segments between pairs of points.

smoothScatter Produces a smoothed color density representation of the scatter plot, obtained
through a kernel density estimate.

spineplot Spine plots are a special case of mosaic plots and can be seen as a generalization of
stacked (or highlighted) bar plots. Analogously, spinograms are an extension of
histograms.

split.screen Defines a number of regions within the current device that can, to some extent, be
treated as separate graphics devices. It is useful for generating multiple plots on a
single device.

stars Draws star plots or segment diagrams of a multivariate data set. With one single
location, also draws “spider” (or “radar”) plots.

stem Produces a stem-and-leaf plot of the values in x.
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strheight Computes the height of the given strings or mathematical expressions s[i] on the
current plotting device in user coordinates, inches, or as a fraction of the figure width
par("fin").

stripchart Produces one-dimensional scatter plots (or dot plots) of the given data. These plots
are a good alternative to box plots when sample sizes are small.

strwidth Computes the width of the given strings or mathematical expressions s[i] on the
current plotting device in user coordinates, inches, or as a fraction of the figure width
par("fin").

sunflowerplot Multiple points are plotted as “sunflowers” with multiple leaves (“petals”) such that
overplotting is visualized instead of accidental and invisible.

symbols Draws symbols on a plot. One of six symbols, circles, squares, rectangles, stars,
thermometers, and box plots, can be plotted at a specified set of x and y coordinates.

text Draws the strings given in the vector labels at the coordinates given by x and y.
y may be missing since xy.coords(x,y) is used for construction of the
coordinates.

title Used to add labels to a plot.

xinch, xyinch, yincch xinch and yinch convert the specified number of inches given as their arguments
into the correct units for plotting with graphics functions. Usually, this makes sense
only when normal coordinates are used, i.e., no log scale (see the log argument
to par). xyinch does the same for a pair of numbers xy, simultaneously.

xspline Draws an X-spline, a curve drawn relative to control points.

grid
This package is a low-level graphics system that provides a great deal of control and
flexibility in the appearance and arrangement of graphical output. It does not pro-
vide high-level functions that create complete plots. What it does provide is a basis
for developing such high-level functions (e.g., the lattice package), the facilities for
customizing and manipulating lattice output, the ability to produce high-level plots
or non-statistical images from scratch, and the ability to add sophisticated annota-
tions to the output from base graphics functions (see the gridBase package). For
more information, see the help files for grid.

KernSmooth
This package provides functions for kernel smoothing.

Functions

Function Description

bkde Returns x and y coordinates of the binned kernel density estimate of the probability
density of the data.
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bkde2D Returns the set of grid points in each coordinate direction, and the matrix of density
estimates over the mesh induced by the grid points. The kernel is the standard
bivariate normal density.

bkfe Returns an estimate of a binned approximation to the kernel estimate of the specified
density function. The kernel is the standard normal density.

dpih Uses direct plug-in methodology to select the bin width of a histogram.

dpik Uses direct plug-in methodology to select the bandwidth of a kernel density
estimate.

dpill Uses direct plug-in methodology to select the bandwidth of a local linear Gaussian
kernel regression estimate.

locpoly Estimates a probability density function, regression function, or their derivatives
using local polynomials. A fast binned implementation over an equally spaced grid
is used.

lattice
Trellis graphics is a framework for data visualization developed at Bell Labs by Ri-
chard Becker, William Cleveland, et al., extending ideas presented in Bill Cleveland’s
1993 book Visualizing Data.

lattice is best thought of as an implementation of Trellis graphics for R. It is built
upon the grid graphics engine and requires the grid add-on package. It is not (readily)
compatible with traditional R graphics tools. The public interface is based on the
implementation in S-PLUS but features several extensions, in addition to incompa-
tibilities introduced through the use of grid. To the extent possible, care has been
taken to ensure that existing Trellis code written for S-PLUS works unchanged (or
with minimal change) in lattice. If you are having problems porting S-PLUS code,
read the entry for panel in the documentation for xyplot. Most high-level Trellis
functions in S-PLUS are implemented, with the exception of piechart.

Functions

Function Description

Rows Convenience function to extract a subset of a list. Usually used in creating keys.

as.shingle, as.factorOrShingle Functions to handle shingles.

axis.default Default function for drawing axes in lattice plots.

banking Calculates banking slope.

barchart Draws bar charts.

bwplot Draws box plots.

canonical.theme Initialization of a display device with appropriate graphical parameters.

cloud Generic function to draw 3D scatter plots and surfaces. The "formula" methods
do most of the actual work.

col.whitebg Initialization of a display device with appropriate graphical parameters.
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contourplot Draws level plots and contour plots.

current.column Returns an integer index specifying which column in the layout is currently active.

current.panel.limits Used to retrieve a panel’s x and y limits.

current.row Returns an integer index specifying which row in the layout is currently active.

densityplot Draws histograms and kernel density plots, possibly conditioned on other variables.

diag.panel.splom This is the default superpanel function for splom.

do.breaks Draws histograms and kernel density plots, possibly conditioned on other variables.

dotplot Draws Cleveland dot plots.

draw.colorkey Produces (and possibly draws) a grid frame grob, which is a color key that can be
placed in other grid plots. Used in levelplot.

draw.key Produces (and possibly draws) a grid frame grob, which is a legend (aka key) that
can be placed in other grid plots.

equal.count Function to handle shingles.

histogram Draws histograms and kernel density plots, possibly conditioned on other variables.

is.shingle Function to handle shingles.

larrows, llines, lplot.xy, lpoints,
lpolygon, lrect, lsegments, ltext,
panel.points, panel.polygon,
panel.rect, panel.segments,
panel.text

These functions are intended to replace common low-level traditional graphics
functions, primarily for use in panel functions. The originals cannot be used (at least
not easily) because lattice panel functions need to use grid graphics. Low-level
drawing functions in grid can be used directly as well and are often more flexible.
These functions are provided for convenience and portability.

lattice.getOption, lattice.options Functions to handle settings used by lattice. Their main purpose is to make code
maintenance easier, and users normally should not need to use these functions.
However, fine control at this level may be useful in certain cases.

latticeParseFormula Used by high-level lattice functions like xyplot to parse the formula argument
and evaluate various components of the data.

level.colors Calculates false colors from a numeric variable (including factors, using their numeric
codes) given a color scheme and break points.

levelplot Draws level plots and contour plots.

ltransform3dMatrix,
ltransform3dto3d

These are (related to) the default panel functions for cloud and wireframe.

make.groups Combines two or more vectors, possibly of different lengths, producing a data frame
with a second column indicating which of these vectors that row came from. This
is mostly useful for getting data into a form suitable for use in high-level lattice
functions.

oneway Fits a one-way model to univariate data grouped by a factor, the result often being
displayed using rfs.

packet.number A function that identifies which packet each observation in the data is part of.

packet.panel.default Default function in lattice to determine, given the column, row, page, and other
relevant information, the packet (if any) that should be used in a panel.

panel.3dscatter, panel Default panel functions controlling cloud and wireframe displays.

panel.abline Adds a line of the form y = a + bx or vertical and/or horizontal lines.
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panel.average Treats one of x and y as a factor (according to the value of horizontal), calculates
FUN applied to the subsets of the other variable determined by each unique value
of the factor, and joins them by a line.

panel.arrows Draws arrows in a panel.

panel.axis The function used by lattice to draw axes. It is typically not used by users, except
those wishing to create advanced annotation. Keep in mind issues of clipping when
trying to use it as part of the panel function. current.panel.limits can be
used to retrieve a panel’s x and y limits.

panel.barchart Default panel function for barchart.

panel.brush.splom panel.link.splom is meant for use with splom and requires a panel to be
chosen using trellis.focus before it is called. Clicking on a point causes that
and the corresponding projections in other pairwise scatter plots to be highlighted.

panel.bwplot Default panel function for bwplot.

panel.cloud Default panel function controlling cloud and wireframe displays.

panel.contourplot Default panel function for levelplot.

panel.curve Adds a curve, similar to what curve does with add=TRUE. Graphical parameters
for the line are obtained from the add.line setting.

panel.densityplot Default panel function for densityplot.

panel.dotplot Default panel function for dotplot.

panel.error Default handler used when an error occurs while executing a panel function.

panel.fill Fills the panel with a specified color.

panel.grid Draws a reference grid.

panel.histogram Default panel function for histogram.

panel.identify Similar to identify. When called, it waits for the user to identify points (in the panel
being drawn) via mouse clicks.

panel.levelplot Default panel function for levelplot.

panel.linejoin panel.linejoin is an alias for panel.average that was retained for back-
compatibility and may go away in the future.

panel.lines Plots lines in a panel.

panel.link.splom The classic Trellis paradigm is to plot the whole object at once, without the possibility
of interacting with it afterward. However, by keeping track of the grid viewports
where the panels and strips are drawn, it is possible to go back to them afterward
and enhance them one panel at a time. This function provides convenient interfaces
to help in this. Note that this is still experimental and the exact details may change
in the future.

panel.lmline panel.lmline(x, y) is equivalent to panel.abline(lm(y~x)).

panel.loess Adds a smooth curve (fitted by loess).

panel.mathdensity Plots a (usually theoretical) probability density function.

panel.number Returns an integer counting which panel is being drawn (starting from 1 for the
first panel, aka the panel order).

panel.pairs Default superpanel function for splom.
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panel.parallel Default panel function for parallel.

panel.qq Default panel function for qq.

panel.qqmath Default panel function for qqmath.

panel.qqmathline Useful panel function with qqmath. Draws a line passing through the points (usu-
ally) determined by the 0.25 and 0.75 quantiles of the sample and the theoretical
distribution.

panel.refline Similar to panel.abline, but uses the “reference.line” settings for the defaults.

panel.rug Adds a rug representation of the (marginal) data to the panel.

panel.smoothScatter Allows the user to place smoothScatter plots in lattice graphics.

panel.splom Default panel function for splom.

panel.stripplot Default panel function for stripplot. Also see panel.superpose.

panel.superpose,
panel.superpose.2

These are panel functions for Trellis displays, which are useful when a grouping
variable is specified for use within panels. The x (and y where appropriate) variables
are plotted with different graphical parameters for each distinct value of the group-
ing variable.

panel.tmd.default,
panel.tmd.qqmath

Default panel functions for tmd.

panel.violin This is a panel function that can create a violin plot. It is typically used in a high-
level call to bwplot.

panel.wireframe Default panel functions controlling cloud and wireframe displays.

panel.xyplot Default panel function for xyplot.

parallel Draws conditional scatter plot matrices and parallel coordinate plots.

prepanel.default.bwplot,
prepanel.default.cloud,
prepanel.default.densityplot,
prepanel.default.histogram,
prepanel.default.levelplot,
prepanel.default.parallel,
prepanel.default.qq,
prepanel.default.qqmath,
prepanel.default.splom,
prepanel.default.xyplot

These prepanel functions are used as fallback defaults in various high-level plot
functions in lattice. These are rarely useful to normal users, but may be helpful
in developing new displays.

prepanel.lmline, prepanel.loess,
prepanel.qqmathline

These are predefined prepanel functions available in lattice.

prepanel.tmd.default,
prepanel.tmd.qqmath

tmd creates Tukey mean-difference plots from a trellis object returned by
xyplot, qq, or qqmath. The prepanel and panel functions are used as appropriate.
The formula method for tmd is provided for convenience and simply calls tmd
on the object created by calling xyplot on that formula.

qq Quantile-quantile plots for comparing two distributions.

qqmath Quantile-quantile plot of a sample and a theoretical distribution.

rfs Plots fitted values and residuals (via qqmath) on a common scale for any object
that has methods for fitted values and residuals.
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shingle Function to handle shingle.

show.settings Function used to query, display, and modify graphical parameters for fine control
of Trellis displays. Modifications are made to the settings for the currently active
device only.

simpleKey Simple interface to generate a list appropriate for draw.key.

simpleTheme Simple interface to generate a list appropriate as a theme, typically used as the
par.settings argument in a high-level call.

splom Draws conditional scatter plot matrices and parallel coordinate plots.

standard.theme Initialization of a display device with appropriate graphical parameters.

strip.custom Provides a convenient way to obtain new strip functions that differ from
strip.default only in the default values of certain arguments.

strip.default Function that draws the strips by default in Trellis plots. Users can write their own
strip functions, but most commonly this involves calling strip.default with
slightly different arguments.

stripplot Draws strip plots in lattice.

tmd tmd creates Tukey mean-difference plots from a trellis object returned by
xyplot, qq, or qqmath. The formula method for tmd is provided for conve-
nience and simply calls tmd on the object created by calling xyplot on that formula.

trellis.currentLayout Returns a matrix with as many rows and columns as in the layout of panels in the
current plot.

trellis.device Initialization of a display device with appropriate graphical parameters.

trellis.focus, trellis.grobname trellis.focus can be used to move to a particular panel or strip, identified by
its position in the array of panels.

trellis.last.object Updates method for objects of class "trellis" and is a way to retrieve the last
printed trellis object (that was saved).

trellis.panelArgs Once a panel or strip is in focus (e.g., by using trellis.switchFocus), trel
lis.panelArgs can be used to retrieve the arguments that were available to
the panel function at that position.

trellis.par.get, trellis.par.set Functions used to query, display, and modify graphical parameters for fine control
of Trellis displays. Modifications are made to the settings for the currently active
device only.

trellis.switchFocus A convenience function to switch from one viewport to another, while preserving
the current row and column.

trellis.unfocus Unsets the focus and makes the top-level viewport the current viewport.

trellis.vpname Returns the name of a viewport.

which.packet Returns the combination of levels of the conditioning variables in the form of a
numeric vector as long as the number of conditioning variables, with each element
an integer indexing the levels of the corresponding variable.

wireframe Generic function to draw 3D scatter plots and surfaces. The "formula" methods
do most of the actual work.
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xscale.components.default,
yscale.components.default

Return a list of the form suitable as the components argument of axis.default.

xyplot Produces conditional scatter plots.

Data Sets

Data Set Class Description

barley data.frame Total yield in bushels per acre for 10 varieties at 6 sites in each of 2 years.

environmental data.frame Daily measurements of ozone concentration, wind speed, temperature, and solar
radiation in New York City from May to September of 1973.

ethanol data.frame Ethanol fuel was burned in a single-cylinder engine. For various settings of the
engine compression and equivalence ratio, the emissions of nitrogen oxides were
recorded.

melanoma data.frame This data from the Connecticut Tumor Registry presents age-adjusted numbers of
melanoma skin cancer incidences per 100,000 people in Connecticut for the years
1936–1972.

singer data.frame Heights, in inches, of the singers in the New York Choral Society in 1979. The data
is grouped according to voice part. The vocal range for each voice part increases in
pitch according to the following order: Bass 2, Bass 1, Tenor 2, Tenor 1, Alto 2, Alto
1, Soprano 2, Soprano 1.

MASS
This is the main package of Venables and Ripley’s MASS.

Functions

Function Description

Null Given a matrix M, finds a matrix N giving a basis for the null space. That is, t(N) \
%*\% M is the 0, and N has the maximum number of linearly independent columns.

Shepard One form of nonmetric multidimensional scaling.

addterm Tries fitting all models that differ from the current model by adding a single term
from those supplied, maintaining marginality.

area Integrates a function of one variable over a finite range using a recursive adaptive
method. This function is mainly for demonstration purposes.

as.fractions Finds rational approximations to the components of a real numeric object using a
standard continued fraction method.

bandwidth.nrd A well-supported rule of thumb for choosing the bandwidth of a Gaussian kernel
density estimator.

bcv Uses biased cross-validation to select the bandwidth of a Gaussian kernel density
estimator.
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boxcox Computes and optionally plots profile log-likelihoods for the parameter of the Box-
Cox power transformation.

con2tr Converts lists to data frames for use by lattice.

contr.sdif A coding for unordered factors based on successive differences.

corresp Finds the principal canonical correlation and corresponding row and column scores
from a correspondence analysis of a two-way contingency table.

cov.mcd, cov.mve, cov.rob Compute a multivariate location and scale estimate with a high breakdown point.
This can be thought of as estimating the mean and covariance of the good part of
the data. cov.mve and cov.mcd are compatibility wrappers.

cov.trob Estimates a covariance or correlation matrix assuming the data came from a mul-
tivariate t-distribution: this provides some degree of robustness to outliers without
giving a high breakdown point.

denumerate loglm allows dimension numbers to be used in place of names in the formula.
denumerate modifies such a formula into one that terms can process.

dose.p Calibrates binomial assays, generalizing the calculation of LD50.

dropterm Tries fitting all models that differ from the current model by dropping a single term,
maintaining marginality.

eqscplot Version of a scatter plot with scales chosen to be equal on both axes, i.e.,1 cm
represents the same units on each.

fitdistr Maximum likelihood fitting of univariate distributions, allowing parameters to be
held fixed, if desired.

fractions Finds rational approximations to the components of a real numeric object using a
standard continued fraction method.

gamma.dispersion A front end to gamma.shape for convenience. Finds the reciprocal of the estimate
of the shape parameter only.

gamma.shape Finds the maximum likelihood estimate of the shape parameter of the gamma
distribution after fitting a Gamma generalized linear model.

ginv Calculates the Moore-Penrose generalized inverse of a matrix X.

glm.convert Modifies an output object from glm.nb() to one that looks like the output from
glm() with a negative binomial family. This allows it to be updated keeping the
theta parameter fixed.

glm.nb A modification of the system function glm() to include estimation of the additional
parameter, theta, for a negative binomial generalized linear model.

glmmPQL Fits a generalized linear mixed model (GLMM) with multivariate normal random
effects, using penalized quasi-likelihood.

hist.FD Plots a histogram with automatic bin width selection, using the Scott or Freedman-
Diaconis formula.

hist.scott Plots a histogram with automatic bin width selection, using the Scott or Freedman-
Diaconis formula.

huber Finds the Huber M-estimator of location with the median absolute deviation (MAD)
scale.
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hubers Finds the Huber M-estimator for location with scale specified, scale with location
specified, or both if neither is specified.

is.fractions Finds rational approximations to the components of a real numeric object using a
standard continued fraction method.

isoMDS One form of nonmetric multidimensional scaling.

kde2d Two-dimensional kernel density estimation with an axis-aligned bivariate normal
kernel, evaluated on a square grid.

lda Linear discriminant analysis.

ldahist Plots histograms or density plots of data on a single Fisher linear discriminant.

lm.gls Fits linear models by generalized least squares.

lm.ridge Fits a linear model by ridge regression.

lmsreg Fits a regression to the good points in the data set, thereby achieving a regression
estimator with a high breakdown point. (lmsreg is a compatibility wrapper for
lqs.)

lmwork The standardized residuals. These are normalized to unit variance, fitted including
the current data point.

loglm Provides a front end to the standard function, loglin, to allow log-linear models
to be specified and fitted in a manner similar to that of other fitting functions, such
as glm.

logtrans Finds and optionally plots the marginal (profile) likelihood for alpha for a transfor-
mation model of the form log(y + alpha) ~ x1 + x2 + ....

lqs, lqs.formula Fit a regression to the good points in the data set, thereby achieving a regression
estimator with a high breakdown point. lmsreg and ltsreg are compatibility
wrappers.

ltsreg A compatibility wrapper for lqs.

mca Computes a multiple-correspondence analysis of a set of factors.

mvrnorm Produces one or more samples from the specified multivariate normal distribution.

negative.binomial Specifies the information required to fit a negative binomial generalized linear
model, with known theta parameter, using glm().

parcoord Parallel coordinates plot.

polr Fits a logistic or probit regression model to an ordered factor response. The default
logistic case is proportional odds logistic regression, after which the
function is named.

psi.bisquare, psi.hampel,
psi.huber

Psi functions for rlm.

qda Fits quadratic discriminant analysis models.

rational Finds rational approximations to the components of a real numeric object using a
standard continued fraction method.

renumerate denumerate converts a formula written using the conventions of loglm into one
that terms is able to process. renumerate converts it back again to a form like
the original.

rlm Fits a linear model by robust regression using an M-estimator.
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rms.curv Calculates the root mean square parameter effects and intrinsic relative curvatures,
cθ and cι, for a fitted nonlinear regression.

rnegbin Generates random outcomes from a negative binomial distribution, with mean
mu and variance mu + mu^2/theta.

sammon One form of nonmetric multidimensional scaling.

select Fits a linear model by ridge regression.

stdres The standardized residuals. These are normalized to unit variance, fitted including
the current data point.

stepAIC Performs stepwise model selection by AIC.

studres Extracts the Studentized residuals from a linear model.

theta.md, theta.ml, theta.mm Given the estimated mean vector, estimate theta of the negative binomial
distribution.

truehist Creates a histogram on the current graphics device.

ucv Uses unbiased cross-validation to select the bandwidth of a Gaussian kernel density
estimator.

width.SJ Uses the method of Sheather and Jones to select the bandwidth of a Gaussian kernel
density estimator.

write.matrix Writes a matrix or data frame to a file or the console, using column labels and a
layout respecting columns.

Data Sets

Data Set Class Description

Aids2 data.frame Data on patients diagnosed with AIDS in Australia before July 1, 1991.

Animals data.frame Average brain and body weights for 28 species of land animals.

Boston data.frame The Boston data frame has 506 rows and 14 columns.

Cars93 data.frame The Cars93 data frame has 93 rows and 27 columns.

Cushings data.frame Cushing’s syndrome is a hypertensive disorder associated with oversecretion of
cortisol by the adrenal gland. The observations are urinary excretion rates of two
steroid metabolites.

DDT numeric A numeric vector of 15 measurements by different laboratories of the pesticide DDT
in kale, in ppm (parts per million), using the multiple pesticide residue measurement.

GAGurine data.frame Data was collected on the concentration of the chemical glycosaminoglycan (GAG)
in the urine of 314 children aged 0 to 17 years. The aim of the study was to produce
a chart to help a pediatrician to assess if a child’s GAG concentration is “normal.”

Insurance data.frame The data given in data frame Insurance consists of the numbers of policyholders
of an insurance company who were exposed to risk, and the numbers of car insurance
claims made by those policyholders in the third quarter of 1973.

Melanoma data.frame The Melanoma data frame has data on 205 patients in Denmark with malignant
melanoma.
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OME data.frame Experiments were performed on children on their ability to differentiate a signal in
broadband noise. The noise was played from a pair of speakers, and a signal was
added to just one channel; the subject had to turn his/her head to the channel with
the added signal. The signal was either coherent (the amplitude of the noise was
increased for a period) or incoherent (independent noise was added for the same
period to form the same increase in power). The threshold used in the original
analysis was the stimulus loudness needed to get 75% correct responses. Some of
the children had suffered from otitis media with effusion (OME).

Pima.te data.frame A population of women who were at least 21 years old, of Pima Indian heritage,
and living near Phoenix, Arizona, was tested for diabetes according to World Health
Organization criteria. The data was collected by the National Institute of Diabetes
and Digestive and Kidney Diseases. A total of 532 complete records were used, after
dropping the (mainly missing) data on serum insulin.

Pima.tr data.frame A population of women who were at least 21 years old, of Pima Indian heritage,
and living near Phoenix, Arizona, was tested for diabetes according to World Health
Organization criteria. The data was collected by the National Institute of Diabetes
and Digestive and Kidney Diseases. A total of 532 complete records were used, after
dropping the (mainly missing) data on serum insulin.

Pima.tr2 data.frame A population of women who were at least 21 years old, of Pima Indian heritage,
and living near Phoenix, Arizona, was tested for diabetes according to World Health
Organization criteria. The data was collected by the National Institute of Diabetes
and Digestive and Kidney Diseases. A total of 532 complete records were used, after
dropping the (mainly missing) data on serum insulin.

Rabbit data.frame Five rabbits were studied on two occasions after treatment with saline (control)
and after treatment with the 5-HT_3 antagonist MDL 72222. After each treatment,
ascending doses of phenylbiguanide were injected intravenously at 10-minute
intervals and the responses of mean blood pressure measured. The goal was to test
whether the cardiogenic chemoreflex elicited by phenylbiguanide depends on the
activation of 5-HT_3 receptors.

Rubber data.frame Data frame from accelerated testing of tire rubber.

SP500 numeric Returns of the Standard & Poor’s 500 Index in the 1990s.

Sitka data.frame The Sitka data frame has 395 rows and 4 columns. It gives repeated measurements
on the log size of 79 Sitka spruce trees, 54 of which were grown in ozone-enriched
chambers and 25 of which were controls. The size was measured five times in 1988,
at roughly monthly intervals.

Sitka89 data.frame The Sitka89 data frame has 632 rows and 4 columns. It gives repeated meas-
urements on the log size of 79 Sitka spruce trees, 54 of which were grown in ozone-
enriched chambers and 25 of which were controls. The size was measured eight
times in 1989, at roughly monthly intervals.

Skye data.frame The Skye data frame has 23 rows and 3 columns.

Traffic data.frame An experiment was performed in Sweden in 1961–1962 to assess the effect of a
speed limit on the highway accident rate. The experiment was conducted on 92
days in each year, matched so that day j in 1962 was comparable to day j in 1961.
On some days, the speed limit was in effect and enforced, while on other days there
was no speed limit and cars tended to be driven faster. The speed limit days tended
to be in contiguous blocks.
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UScereal data.frame The UScereal data frame has 65 rows and 11 columns. The data comes from the
1993 American Statistical Association (ASA) Statistical Graphics Exposition and is
taken from the mandatory Food and Drug Administration (FDA) food label. The data
has been normalized here to a portion of 1 American cup.

UScrime data.frame Criminologists are interested in the effect of punishment regimes on crime rates.
This has been studied using the aggregate data on 47 states of the United States
for 1960 given in this data frame. The variables seem to have been rescaled to
convenient numbers.

VA data.frame Veteran’s Administration lung cancer trial from Kalbfleisch and Prentice.

abbey numeric A numeric vector of 31 determinations of nickel content (ppm) in a Canadian syenite
rock.

accdeaths ts A regular time series giving the monthly totals of accidental deaths in the United
States.

anorexia data.frame The anorexia data frame has 72 rows and 3 columns. Weight change data for
young female anorexia patients.

bacteria data.frame Tests of the presence of the bacteria H. influenzae in children with otitis media in
the Northern Territory of Australia.

beav1 data.frame Reynolds describes a small part of a study of the long-term temperature dynamics
of the beaver (Castor canadensis) in north-central Wisconsin. Body temperature was
measured by telemetry every 10 minutes for four females, but data from a period
of less than a day for each of two animals is used here.

beav2 data.frame Reynolds describes a small part of a study of the long-term temperature dynamics
of the beaver (Castor canadensis) in north-central Wisconsin. Body temperature was
measured by telemetry every 10 minutes for four females, but data from a period
of less than a day for each of two animals is used here.

biopsy data.frame This breast cancer database was obtained from the University of Wisconsin Hospitals,
Madison, from Dr. William H. Wolberg. He assessed biopsies of breast tumors for
699 patients up to July 15, 1992; each of nine attributes has been scored on a scale
of 1 to 10, and the outcome is also known. There are 699 rows and 11 columns.

birthwt data.frame The birthwt data frame has 189 rows and 10 columns. The data was collected at
Baystate Medical Center, Springfield, Massachusetts, during 1986.

cabbages data.frame The cabbages data set has 60 observations and 4 variables.

caith data.frame Data on the cross-classification of people in Caithness, Scotland, by eye and hair
color. This region of the United Kingdom is particularly interesting, as there is a
mixture of people of Nordic, Celtic, and Anglo-Saxon origin.

cats data.frame The heart and body weights of samples of male and female cats used for digitalis
experiments. The cats were all adult, over 2 kg in body weight.

cement data.frame Experiment on the heat evolved in the setting of each of 13 cements.

chem numeric A numeric vector of 24 determinations of copper in wholemeal flour, in parts per
million.

coop data.frame Seven specimens were sent to six laboratories in three separate batches and each
analyzed for analyte. Each analysis was duplicated.

cpus data.frame A relative performance measure and characteristics of 209 CPUs.
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crabs data.frame The crabs data frame has 200 rows and 8 columns, describing 5 morphological
measurements on 50 crabs, each of 2 color forms and both sexes, of the species
Leptograpsus variegatus, collected at Fremantle, Western Australia.

deaths ts A time series giving the monthly deaths from bronchitis, emphysema, and asthma
in the United Kingdom, 1974–1979, for both sexes.

drivers ts A regular time series giving the monthly totals of car drivers in Great Britain killed
or seriously injured from January 1969 to December 1984. Compulsory wearing of
seat belts was introduced on January 31, 1983.

eagles data.frame Knight and Skagen collected data during a field study on the foraging behavior of
wintering bald eagles in Washington state. The data concerned 160 attempts by
one (pirating) bald eagle to steal a chum salmon from another (feeding) bald eagle.

epil data.frame Thall and Vail give a data set on 2-week seizure counts for 59 epileptics. The number
of seizures was recorded for a baseline period of eight weeks, and then patients
were randomly assigned to a treatment group or a control group. Counts were then
recorded for four successive two-week periods. The subjects’ age is the only cova-
riate.

farms data.frame The farms data frame has 20 rows and 4 columns. The rows are farms on the Dutch
island of Terschelling, and the columns are factors describing the management of
grassland.

fgl data.frame The fgl data frame has 214 rows and 10 columns. It was collected by B. German
on fragments of glass collected in forensic work.

forbes data.frame A data frame with 17 observations on the boiling point of water and barometric
pressure, in inches of mercury.

galaxies numeric A numeric vector of velocities, in kilometers/second, of 82 galaxies from 6 well-
separated conic sections of an unfilled survey of the Corona Borealis region.
Multimodality in such surveys is evidence for voids and superclusters in the far
universe.

gehan data.frame A data frame from a trial of 42 leukemia patients. Some were treated with the drug
6-mercaptopurine, and the rest were controls. The trial was designed as matched
pairs, both withdrawn from the trial when either came out of remission.

genotype data.frame Data from a foster feeding experiment with rat mothers and litters of four different
genotypes: A, B, I and J. Rat litters were separated from their natural mothers at
birth and given to foster mothers to rear.

geyser data.frame A version of the eruptions data from the Old Faithful geyser in Yellowstone National
Park, Wyoming. This version comes from Azzalini and Bowman and is of continuous
measurement from August 1 to August 15, 1985. Some nocturnal duration meas-
urements were coded as 2, 3, or 4 minutes, having originally been described as
“short,” “medium,” or “long.”

gilgais data.frame This data set was collected on a line transect survey in gilgai territory in New South
Wales, Australia. Gilgais are natural gentle depressions in otherwise flat land, and
sometimes they seem to be regularly distributed. The data collection was stimulated
by the question: are these patterns reflected in soil properties? At each of 365
sampling locations on a linear grid of 4 meters, spacing, samples were taken at
depths 0–10 cm, 30–40 cm, and 80–90 cm below the surface. pH, electrical con-
ductivity, and chloride content were measured on a 1:5 soil:water extract from each
sample.
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hills data.frame The record times in 1984 for 35 Scottish hill races.

housing data.frame The housing data frame has 72 rows and 5 variables.

immer data.frame The immer data frame has 30 rows and 4 columns. Five varieties of barley were
grown in six locations in 1931 and in 1932.

leuk data.frame A data frame of data from 33 leukemia patients.

mammals data.frame A data frame with average brain and body weights for 62 species of land mammals.

mcycle data.frame A data frame giving a series of measurements of head acceleration in a simulated
motorcycle accident; used to test crash helmets.

menarche data.frame Proportions of female children at various ages during adolescence who have reached
menarche.

michelson data.frame Measurements of the speed of light in air, made between June 5, and July 2, 1879.
The data consists of 5 experiments, each consisting of 20 consecutive runs. The
response is the speed of light, in kilometers/second, less 299,000. The currently
accepted value, on this scale of measurement, is 734.5.

minn38 data.frame Minnesota high school graduates of 1938 were classified according to four factors.
The minn38 data frame has 168 rows and 5 columns.

motors data.frame The motors data frame has 40 rows and 3 columns. It describes an accelerated life
test at each of four temperatures of 10 motorettes and has rather discrete times.

muscle data.frame The purpose of this experiment was to assess the influence of calcium in solution
on the contraction of heart muscle in rats. The left auricle of 21 rat hearts was
isolated, and on several occasions a constant-length strip of tissue was electrically
stimulated and dipped into various concentrations of calcium chloride solution,
after which the shortening of the strip was accurately measured as the response.

newcomb numeric A numeric vector giving the “Third Series” of measurements of the passage time of
light recorded by Newcomb in 1882. The given values divided by 1,000 plus 24 give
the time, in millionths of a second, for light to traverse a known distance. The “true”
value is now considered to be 33.02.

nlschools data.frame Snijders and Bosker use as a running example a study of 2,287 eighth-grade pupils
(aged about 11) in 132 classes in 131 schools in the Netherlands. Only the variables
used in their examples are supplied.

npk data.frame A classical N, P, K (nitrogen, phosphate, potassium) factorial experiment on the
growth of peas conducted on six blocks. Each half of a fractional factorial design
confounding the NPK interaction was used on three of the plots.

npr1 data.frame Data on the locations, porosity, and permeability (a measure of oil flow) on 104 oil
wells in the U.S. Naval Petroleum Reserve No. 1 in California.

oats data.frame The yield of oats from a split-plot field trial using three varieties and four levels of
manurial treatment. The experiment was laid out in six blocks of three main plots,
each split into four subplots. The varieties were applied to the main plots and the
manurial treatments to the subplots.

painters data.frame The subjective assessment, on an integer scale of 0 to 20, of 54 classical painters.
The painters were assessed on four characteristics: composition, drawing, color, and
expression. The data is due to the 18th-century art critic, de Piles.
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petrol data.frame The yield of a petroleum refining process with four covariates. The crude oil appears
to come from only 10 distinct samples. This data was originally used by Prater to
build an estimation equation for the yield of the refining process of crude oil to
gasoline.

phones list A list object with the annual number of telephone calls in Belgium.

quine data.frame The quine data frame has 146 rows and 5 columns. Children from Walgett, New
South Wales, Australia, were classified by culture, age, sex, and learner status, and
the number of days absent from school in a particular school year was recorded.

road data.frame A data frame with the annual deaths in road accidents for half the U.S. states.

rotifer data.frame The data give the numbers of rotifers falling out of suspension for different fluid
densities.

ships data.frame Data frame giving the number of damage incidents and aggregate months of service
by ship type, year of construction, and period of operation.

shoes list A list of two vectors, giving the wear of shoes of materials A and B for one foot each
of 10 boys.

shrimp numeric A numeric vector with 18 determinations by different laboratories of the amount
(percentage of the declared total weight) of shrimp in shrimp cocktail.

shuttle data.frame The shuttle data frame has 256 rows and 7 columns. The first six columns are
categorical variables giving example conditions; the seventh is the decision. The
first 253 rows are the training set, the last 3 the test conditions.

snails data.frame Groups of 20 snails were held for periods of 1, 2, 3, or 4 weeks under carefully
controlled conditions of temperature and relative humidity. There were two species
of snail, A and B, and the experiment was designed as a 4-by-3-by-4-by-2 completely
randomized design. At the end of the exposure time, the snails were tested to see
if they had survived; the process itself is fatal for the animals. The object of the
exercise was to model the probability of survival in terms of the stimulus variables
and, in particular, to test for differences among species. The data are unusual in
that, in most cases, fatalities during the experiment were fairly small.

steam data.frame Temperature and pressure in a saturated steam-driven experimental device.

stormer data.frame The stormer viscometer measures the viscosity of a fluid by measuring the time
taken for an inner cylinder in the mechanism to perform a fixed number of revolutions
in response to an actuating weight. The viscometer is calibrated by measuring the
time taken with varying weights while the mechanism is suspended in fluids of
accurately known viscosity. The data comes from such a calibration, and theoretical
considerations suggest a nonlinear relationship among time, weight, and viscosity
of the form Time = (B1 * Viscosity)/(Weight - B2) + E, where
B1 and B2 are unknown parameters to be estimated, and E is error.

survey data.frame This data frame contains the responses of 237 Statistics I students at the University
of Adelaide to a number of questions.

synth.te data.frame The synth.tr data frame has 250 rows and 3 columns. The synth.te data frame
has 100 rows and 3 columns. It is intended that synth.tr be used for training
and synth.te for testing.

synth.tr data.frame The synth.tr data frame has 250 rows and 3 columns. The synth.te data frame
has 100 rows and 3 columns. It is intended that synth.tr be used for training
and synth.te for testing.
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topo data.frame The topo data frame has 52 rows and 3 columns of topographic heights within a
310-foot square.

waders data.frame The waders data frame has 15 rows and 19 columns. The entries are counts of
waders in summer.

whiteside data.frame Derek Whiteside of the UK Building Research Station recorded the weekly gas
consumption and average external temperature at his own house in southeast
England for two heating seasons, one of 26 weeks before, and one of 30 weeks after
cavity-wall insulation was installed. The object of the exercise was to assess the
effect of the insulation on gas consumption.

wtloss data.frame This data frame gives the weight, in kilograms, of an obese patient at 52 time points
over an 8-month period of a weight rehabilitation program.

methods
This package contains formally defined methods and classes for R objects, plus other
programming tools.

Functions

Function Description

@<- Gets or sets information about the individual slots in an object.

MethodAddCoerce Possibly modifies one or more methods to explicitly coerce this argument to
methodClass, the class for which the method is explicitly defined.

Quote These are utilities, currently in the methods package, that either provide some
functionality needed by the package (e.g., element matching by name) or add
compatibility with S-PLUS, or both.

S3Class, S3Class<- S3Class extracts or replaces the S3-style class from an S4 class that was created
from an S3 class through setOldClass.

S3Part, S3Part<- The function S3Part extracts or replaces the S3 part of such an object.

addNextMethod Generic function that finds the next method for the signature of the method defi-
nition method and caches that method in the method definition.

allNames Returns the character vector of names (unlike names(), never returns NULL) for a
method.

as, as<- Manage the relations that allow coercing an object to a given class.

asMethodDefinition Turns a function definition into an object of class MethodDefinition, corre-
sponding to the given signature (by default, generates a default method with empty
signature).

assignClassDef Assigns the definition of the class to the specially named object.

assignMethodsMetaData Utility to assign the metadata object recording the methods defined in a particular
package.

balanceMethodsList Called from setMethod to ensure that all nodes in the list have the same depth
(i.e., the same number of levels of arguments).

body<- Sets the body of a method.
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cacheGenericsMetaData,
cacheMetaData

Utilities for ensuring that the internal information about class and method defini-
tions is up to date. Should normally be called automatically whenever needed (e.g.,
when a method or class definition changes or when a package is attached or
detached).

cacheMethod Stores the definition for this function and signature in the method metadata for the
function.

callGeneric The name and package of the current generic function is stored in the environment
of the method definition object.

callNextMethod A call to callNextMethod can appear only inside a method definition. It then
results in a call to the first inherited method after the current method, with the
arguments to the current method passed down to the next method. The value of
that method call is the value of callNextMethod.

canCoerce Tests if an object can be coerced to a given S4 class.

cbind2 Combines two matrix-like R objects by columns (cbind2) or rows (rbind2). These
are (S4) generic functions with default methods.

checkSlotAssignment Checks that the value provided is allowed for this slot, by consulting the definition
of the class. Called from the C code that assigns slots.

classMetaName A name for the object storing this class’s definition.

classesToAM Given a vector of class names or a list of class definitions, returns an adjacency matrix
of the superclasses of these classes; i.e., a matrix with class names as the row and
column names and with element [i, j] being 1 if the class in column j is a direct
superclass of the class in row i, and 0 otherwise.

coerce, coerce<- Manage the relations that allow coercing an object to a given class.

completeClassDefinition Completes the definition of Class, relative to the class definitions visible from en-
vironment where. If doExtends is TRUE, completes the super- and subclass
information.

completeExtends Completes the extends information in the class definition, by following transitive
chains.

completeSubclasses

conformMethod If the formal arguments, mnames, are not identical to the formal arguments to the
function, fnames, conformMethod determines whether the signature and the two
sets of arguments conform and returns the signature, possibly extended.

defaultDumpName Default name to be used for dumping a method.

defaultPrototype The prototype for a class that will have slots, is not a virtual class, and does not
extend one of the basic classes. Both its class and its (R internal) type,
typeof(), are “S4.”

doPrimitiveMethod Performs a primitive call to built-in function name the definition and call provided,
and carried out in the specified environment.

dumpMethod Dumps the method for this generic function and signature.

dumpMethods Dumps all the methods for this generic.

elNamed, elNamed<- Get or set the element of the vector corresponding to name.

existsFunction Is there a function of this name? If generic is FALSE, then generic functions are not
counted.
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existsMethod Tests for the existence of a method corresponding to a given generic function and
signature.

extends Function to test inheritance relationships between an object and a class (is) or
between two classes (extends) and to establish such relationships (setIs, an
explicit alternative to the contains= argument to setClass).

findClass Function to find and manipulate class definitions.

findFunction Returns a list of either the positions on the search list or the current top-level
environment on which a function object for name exists.

findMethod Returns the package(s) in the search list (or in the packages specified by the
where argument) that contain a method for this function and signature.

findMethodSignatures Returns a character matrix whose rows are the class names from the signature of
the corresponding methods; it operates either from a list returned by
findMethods or by computing such a list itself, given the same arguments as
findMethods.

findMethods Returns a list of the method definitions currently existing for generic function f,
limited to the methods defined in environment where if that argument is supplied
and possibly limited to those including one or more of the specified classes in
the method signature.

findUnique Returns the list of environments (or equivalent) having an object named what,
using environment where and its parent environments.

fixPre1.8 Beginning with R version 1.8.0, the class of an object contains the identification of
the package in which the class is defined. The function fixPre1.8 fixes and
reassigns objects missing that information (typically because they were loaded from
a file saved with a previous version of R).

formalArgs Returns the names of the formal arguments of this function.

functionBody, functionBody<- These are utilities, currently in the methods package, that either provide some
functionality needed by the package (e.g., element matching by name) or add
compatibility with S-PLUS, or both.

generic.skeleton Utility functions to support the definition and use of formal methods. Most of these
functions will not normally be called directly by the user.

getAllSuperClasses Gets the names of all the classes that this class definition extends.

getClass, getClassDef Get the definition of a class.

getClasses Function to find and manipulate class definitions.

getDataPart Utility called to implement object@.Data.

getFromClassDef Extracts one of the intrinsically defined class definition properties (".Proper
ties", etc.). Strictly a utility function.

getFunction These are utilities, currently in the methods package, that either provide some
functionality needed by the package (e.g., element matching by name) or add
compatibility with S-PLUS, or both.

getGeneric Returns the definition of the function named f as a generic.
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getGenerics Returns the names of the generic functions that have methods defined on where;
this argument can be an environment or an index into the search list.

getGroup Returns the groups to which this generic belongs, searching from environment
where (the global environment normally by default).

getGroupMembers Returns all the members of the group generic function named group.

getMethod Returns the method corresponding to a given generic function and signature.

getMethods An older alternative to findMethods, returning information in the form of an
object of class MethodsList, previously used for method dispatch.

getMethodsForDispatch Support routine for computations on formal methods.

getMethodsMetaData Utility to get the metadata object recording the methods defined in a particular
package.

getPackageName Returns the package associated with a particular environment or position on the
search list, or the package containing a particular function.

getSlots Returns a named character vector. The names are the names of the slots; the values
are the classes of the corresponding slots.

getValidity The validity of object related to its class definition is tested. If the object is valid,
TRUE is returned; otherwise, either a vector of strings describing validity failures is
returned or an error is generated (according to whether test is TRUE).

hasArg Returns TRUE if name corresponds to an argument in the call, either a formal
argument to the function or a component of ..., and FALSE otherwise.

hasMethod Tests for the existence of a method corresponding to a given generic function and
signature.

hasMethods Returns TRUE or FALSE according to whether there is a nonempty table of methods
for function f in the environment or search position where (or anywhere on the
search list if where is missing).

implicitGeneric Returns the implicit generic version.

initialize Given the name or the definition of a class, plus optionally data to be included in
the object, initialize returns an object from that class.

is Function to test inheritance relationships between an object and a class (is) or
between two classes (extends) and to establish such relationships (setIs, an
explicit alternative to the contains= argument to setClass).

isClass Function to find and manipulate class definitions.

isClassDef Is object a representation of a class?

isClassUnion Tests if a class is a "ClassUnion".

isGeneric Is there a function named f, and, if so, is it a generic?

isGroup Manages collections of methods associated with a generic function, as well as
providing information about the generic functions themselves.

isSealedClass, isSealedMethod Check for either a method or a class that has been sealed when it was defined and
therefore cannot be redefined.

isVirtualClass Is the named class a virtual class?
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isXS3Class Old-style (S3) classes may be registered as S4 classes (by calling setOldClass),
and many have been. These classes can then be contained in (i.e., superclasses of)
regular S4 classes, allowing formal methods and slots to be added to the S3 behavior.
The function S3Part extracts or replaces the S3 part of such an object.
S3Class extracts or replaces the S3-style class. S3Class also applies to objects
from an S4 class with S3methods=TRUE in the call to setClass.

listFromMethods Support routine for computations on formal methods.

makeClassRepresentation Constructs an object of class classRepresentation to describe a particular
class. Mostly a utility function, but you can call it to create a class definition without
assigning it, as setClass would do.

makeExtends Converts the argument to a list defining the extension mechanism.

makeGeneric Makes a generic function object corresponding to the given function name, optional
definition, and optional default method.

makePrototypeFromClassDef Makes the prototype implied by the class definition.

makeStandardGeneric A utility function that makes a valid function calling standardGeneric for name
f.

matchSignature Matches the signature object (a partially or completely named subset of the sig-
nature arguments of the generic function object FUN) and returns a vector of all
the classes in the order specified by fun@signature.

metaNameUndo As its name implies, this function undoes the name mangling used to produce
metadata object names and returns an object of class ObjectsWithPackage.

method.skeleton Writes a source file containing a call to setMethod to define a method for the
generic function and signature supplied. By default, the method definition is in line
in the call but can be made an external (previously assigned) function.

methodSignatureMatrix Returns a matrix with the contents of the specified slots as rows.

methodsPackageMetaName A name-mangling device to hide metadata defining method and class information.

missingArg Returns TRUE if the symbol supplied is missing from the call corresponding to the
environment supplied (by default, environment of the call to missingArg).

new Given the name or the definition of a class, plus optionally data to be included in
the object, new returns an object from that class.

newBasic The implementation of the function new for basic classes that don’t have a formal
definition.

newClassRepresentation Various functions to support the definition and use of formal classes. Most of them
are rarely suitable to be called directly. Others are somewhat experimental and/or
partially implemented only. Do refer to setClass for normal code development.

newEmptyObject Utility function to create an empty object into which slots can be set.

packageName Returns the character-string name of the package (without the extraneous "pack
age:" found in the search list).

packageSlot, packageSlot<- Return or set the package name slot (currently an attribute, not a formal slot, but
this may change someday).

possibleExtends Finds the information that says whether one class extends another, directly or
indirectly.

prohibitGeneric Prevents your function from being made generic.
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promptClass Creates a help file for a class definition containing all relevant slot and method
information for a class, with minimal markup for Rd processing; no QC facilities at
present.

promptMethods Generates a shell of documentation for the methods of a generic function.

prototype In calls to setClass, this function constructs the prototype argument.

rbind2 Combines two matrix-like R objects by columns (cbind2) or rows (rbind2). These
are (S4) generic functions with default methods.

reconcileProperties AndPrototype Makes a list or a structure look like a prototype for the given class.

registerImplicit Generics Saves a set of implicit generic definitions in the cached table of the current session.

rematchDefinition If the specified method in a call to setMethod specializes the argument list (by
replacing ...), then rematchDefinition constructs the actual method stored.

removeClass Function to find and manipulate class definitions.

removeGeneric Removes all the methods for the generic function of this name and the function itself.

removeMethod Creates and saves a formal method for a given function and list of classes.

removeMethods Removes all the methods for the generic function of this name.

representation In calls to setClass, this function constructs the representation argument.

requireMethods Requires a subclass to implement methods for the generic functions for this
signature.

resetClass Function to find and manipulate class definitions.

resetGeneric Support routine for computations on formal methods.

sealClass Function to find and manipulate class definitions.

selectMethod Returns a method corresponding to a given generic function and signature.

selectSuperClasses Returns superclasses of ClassDef, possibly only nonvirtual or direct or simple
ones. This function is designed to be fast and, consequently, works only with the
contains slot of the corresponding class definitions.

sessionData Returns the index of the session data in the search list, attaching it if it is not attached.

setAs Manages the relations that allow coercing an object to a given class.

setClass Creates a class definition, specifying the representation (the slots) and/or the classes
contained in this one (the superclasses), plus other optional details.

setClassUnion A class may be defined as the union of other classes, i.e., as a virtual class defined
as a superclass of several other classes.This function creates class unions.

setDataPart Utility called to implement object@.Data. Calls to setDataPart are also used
to merge the data part of a superclass prototype.

setGeneric Creates a new generic function of the given name, i.e., a function that dispatches
methods according to the classes of the arguments, from among the formal methods
defined for this function.

setGenericImplicit Turns a generic implicit.

setGroupGeneric Creates a new generic function of the given name, i.e., a function that dispatches
methods according to the classes of the arguments, from among the formal methods
defined for this function.
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setIs Function to test inheritance relationships between an object and a class (is) or
between two classes (extends) and to establish such relationships (setIs, an
explicit alternative to the contains= argument to setClass).

setMethod Creates and saves a formal method for a given function and list of classes.

setOldClass Registers an old-style (“S3”) class as a formally defined class. The Classes argu-
ment is the character vector used as the class attribute; in particular, if there is
more than one string, then old-style class inheritance is mimicked. Registering via
setOldClass allows S3 classes to appear in method signatures, as a slot in an S4
class or as a superclass of an S4 class.

setPackageName Used to establish a package name in an environment that would otherwise not have
one. This allows you to create classes and/or methods in an arbitrary environment,
but it is usually preferable to create packages by the standard R programming tools
(package.skeleton, etc.).

setPrimitiveMethods Utility functions to support the definition and use of formal methods. Most of these
functions will not normally be called directly by the user.

setReplaceMethod Manages collections of methods associated with a generic function, as well as
providing information about the generic functions themselves.

setValidity Sets the validity method of a class (but more normally, this method will be supplied
as the validity argument to setClass).

show Displays the object, by printing, plotting, or whatever suits its class. This function
exists to be specialized by methods. The default method calls showDefault.
Formal methods for show will usually be invoked for automatic printing (see the
details).

showClass Prints the information about a class definition.

showDefault Utility used to enable show methods to be called by the automatic printing (via
print.default).

showExtends Prints the elements of the list of extensions; for printTo = FALSE, returns a list
with components what and how; this is used, e.g., by promptClass().

showMethods Shows a summary of the methods for one or more generic functions, possibly
restricted to those involving specified classes.

sigToEnv Turns the signature (a named vector of classes) into an environment with the classes
assigned to the names.

signature Returns a named list of classes to be matched to arguments of a generic function.

slot, slot<- Return or set information about the individual slots in an object.

slotNames Returns or sets information about the individual slots in an object.

slotsFromS3 Old-style (S3) classes may be registered as S4 classes (by calling setOldClass),
and many have been. These classes can then be contained in (i.e., superclasses of)
regular S4 classes, allowing formal methods and slots to be added to the S3 behavior.
The function S3Part extracts or replaces the S3 part of such an object.
S3Class extracts or replaces the S3-style class. S3Class also applies to objects
from an S4 class with S3methods=TRUE in the call to setClass.

substituteDirect Substitutes for the variables named in the second argument the corresponding
objects; substituting into object.
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standardGeneric Dispatches a method from the current function call for the generic function.

substituteFunctionArgs Utility function to support the definition and use of formal methods. Most of these
functions will not normally be called directly by the user.

superClassDepth superClassDepth, which is called from getAllSuperClasses, returns the
same information, but as a list with components label and depth, the latter for the
number of generations back each class is in the inheritance tree.

testInheritedMethods A set of distinct inherited signatures is generated to test inheritance for all the
methods of a specified generic function. If method selection is ambiguous for some
of these, a summary of the ambiguities is attached to the returned object. This test
should be performed by package authors before releasing a package.

testVirtual Tests for a virtual class.

traceOff, traceOn The functions traceOn and traceOff have been replaced by extended versions
of the functions trace and untrace and should not be used.

tryNew, trySilent Tries to generate a new element from this class, but if the attempt fails (e.g., when
the class is undefined or virtual) just returns NULL.

unRematchDefinition Using knowledge of how rematchDefinition works, unRematchDefinition
reverses the procedure; if given a function or method definition that does not
correspond to this form, it just returns its argument.

validObject The validity of an object related to its class definition is tested. If the object is valid,
then TRUE is returned; otherwise, either a vector of strings describing the validity
failures is returned or an error is generated (according to whether test is TRUE).

validSlotNames Returns names unless one of the names is reserved, in which case there is an error.
(As of this writing, “class” is the only reserved slot name.)

mgcv
This package provides functions for generalized additive modeling and generalized
additive mixed modeling. The term GAM is taken to include any GLM estimated
by quadratically penalized (possibly quasi-) likelihood maximization. For more in-
formation on this package, see the help file.

nlme
This package provides functions for linear and nonlinear mixed-effects models. See
the help file for more information.

nnet
This package provides functions for feed-forward neural networks and multinomial
log-linear models.
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Function Description

class.ind Generates a class indicator function from a given factor.

multinom Fits multinomial log-linear models via neural networks.

nnet Fits single-hidden-layer neural network, possibly with skip-layer connections.

nnetHess Evaluates the Hessian (matrix of second derivatives) of the specified neural network.
Normally called via argument Hess=TRUE to nnet or via vcov.multinom.

which.is.max Finds the maximum position in a vector, breaking ties at random.

rpart
This package provides functions for recursive partitioning and regression trees.

Functions

Function Description

meanvar Creates a plot on the current graphics device of the deviance of the node divided by
the number of observations at the node. Also returns the node number.

na.rpart Handles missing values in an rpart object.

path.rpart Returns a names list, where each element contains the splits on the path from the
root to the selected nodes.

plotcp Gives a visual representation of the cross-validation results in an rpart object.

post Generates a PostScript presentation plot of an rpart object.

printcp Displays the cp table for a fitted rpart object.

prune Determines a nested sequence of subtrees of the supplied rpart object by recur-
sively snipping off the least important splits, based on the complexity parameter
(cp).

rpart Fits an rpart model.

rpart.control Various parameters that control aspects of the rpart fit.

rpconvert rpart objects changed (slightly) in their internal format in order to accommodate
the changes for user-written split functions. This routine updates an old object to
the new format.

rsq.rpart Produces two plots. The first plots the r-square (apparent and apparent − from
cross-validation) versus the number of splits. The second plots the relative error
(cross-validation) +/− 1 − SE from cross-validation versus the number of splits.

snip.rpart Creates a “snipped” rpart object, containing the nodes that remain after selected
subtrees have been snipped off. The user can snip nodes using the toss argument
or interactively by clicking the mouse button on specified nodes within the graphics
window.

xpred.rpart Gives the predicted values for an rpart fit, under cross-validation, for a set of
complexity parameter values.
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Data Set Class Description

car.test.frame data.frame The car.test.frame data frame has 60 rows and 8 columns, giving data on
makes of cars taken from the April 1990 issue of Consumer Reports. This is part of a
larger data set, some columns of which are given in cu.summary.

cu.summary data.frame The cu.summary data frame has 117 rows and 5 columns, giving data on makes
of cars taken from the April 1990 issue of Consumer Reports.

kyphosis data.frame The kyphosis data frame has 81 rows and 4 columns, representing data on
children who have had corrective spinal surgery.

solder data.frame The solder data frame has 720 rows and 6 columns, representing a balanced
subset of a designed experiment varying 5 factors on the soldering of components
on printed-circuit boards.

spatial
This package provides functions for Kriging and point pattern analysis.

Functions

Function Description

Kaver Forms the average of a series of (usually simulated) K functions.

Kenvl Computes envelope (upper and lower limits) and average of simulations of K
functions.

Kfn Actually computes L = sqrt(K/pi).

Psim Simulates binomial spatial point process.

SSI Simulates SSI (sequential spatial inhibition) point process.

Strauss Simulates Strauss spatial point process.

anova.trls Computes analysis of variance tables for one or more fitted trend surface model
objects; where anova.trls is called with multiple objects, it passes on the ar-
guments to anovalist.trls.

anovalist.trls Computes analysis of variance tables for one or more fitted trend surface model
objects; where anova.trls is called with multiple objects, it passes on the ar-
guments to anovalist.trls.

correlogram Computes spatial correlograms of spatial data or residuals.

expcov Spatial covariance function for use with surf.gls.

gaucov Spatial covariance function for use with surf.gls.

plot.trls Provides the basic quantities used in forming a variety of diagnostics for checking
the quality of regression fits for trend surfaces calculated by surf.ls.

ppgetregion Retrieves the rectangular domain (xl, xu) x (yl, yu) from the underlying C
code.

ppinit Reads a file in standard format and creates a point process object.
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pplik Pseudolikelihood estimation of a Strauss spatial point process.

ppregion Sets the rectangular domain (xl, xu) x (yl, yu).

predict.trls Predicted values based on trend surface model object.

prmat Evaluates Kriging surface over a grid.

semat Evaluates Kriging standard error of prediction over a grid.

sphercov Spatial covariance function for use with surf.gls.

surf.gls Fits a trend surface by generalized least squares.

surf.ls Fits a trend surface by least squares.

trls.influence Provides the basic quantities used in forming a variety of diagnostics for checking
the quality of regression fits for trend surfaces calculated by surf.ls.

trmat Evaluates trend surface over a grid.

variogram Computes spatial (semi-)variogram of spatial data or residuals.

splines
This package provides functions for working with regression splines using the
B-spline basis, bs, and the natural cubic spline basis, ns.

Functions

Function Description

as.polySpline Creates the piecewise polynomial representation of a spline object.

asVector This is a generic function. Methods for this function coerce objects of given classes
to vectors.

backSpline Creates a monotone inverse of a monotone natural spline.

bs Generates the B-spline basis matrix for a polynomial spline.

interpSpline Creates an interpolation spline, either from x and y vectors or from a formula/
data.frame combination.

ns Generates the B-spline basis matrix for a natural cubic spline.

periodicSpline Creates a periodic interpolation spline, either from x and y vectors or from a formula/
data.frame combination.

polySpline Creates the piecewise polynomial representation of a spline object.

spline.des Evaluates the design matrix for the B-splines defined by knots at the values in x.

splineDesign Evaluates the design matrix for the B-splines defined by knots at the values in x.

splineKnots Returns the knot vector corresponding to a spline object.

splineOrder Returns the order of a spline object.

xyVector Creates an object to represent a set of x-y pairs.
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stats
This package contains functions to perform a wide variety of statistical analyses.

Functions

Function Description

AIC Generic function for calculating the Akaike information criterion for one or several
fitted model objects for which a log-likelihood value can be obtained, according to
the formula −2 ∗ log-likelihood + k ∗ npar, where npar represents the number of
parameters in the fitted model, and k = 2 for the usual AIC, or k = log(n) (n is the
number of observations) for the so-called Bayesian information criterion (BIC) or
Schwarz’s Bayesian criterion (SBC).

ARMAacf Computes the theoretical autocorrelation function or partial autocorrelation func-
tion for an autoregressive moving average (ARMA) process.

ARMAtoMA Converts an ARMA process to an infinite moving average (MA) process.

Box.test Computes the Box-Pierce or Ljung-Box test statistic for examining the null hypoth-
esis of independence in a given time series. These are sometimes known as “port-
manteau” tests.

C Sets the "contrasts" attribute for the factor.

D Computes derivatives of simple expressions, symbolically.

Gamma Family object for Gamma distributions (used by functions such as glm).

HoltWinters Computes Holt-Winters filtering of a given time series. Unknown parameters are
determined by minimizing the squared prediction error.

IQR Computes the interquartile range of the x values.

KalmanForecast, KalmanLike,
KalmanRun, KalmanSmooth

Use Kalman filtering to find the (Gaussian) log-likelihood, or for forecasting or
smoothing.

NLSstAsymptotic Fits the asymptotic regression model, in the form
b0 + b1*(1-exp(-exp(lrc) * x), to the xy data. This can be used as a
building block in determining starting estimates for more complicated models.

NLSstClosestX Uses inverse linear interpolation to approximate the x value at which the function
represented by xy is equal to yval.

NLSstLfAsymptote Provides an initial guess at the horizontal asymptote on the left side (i.e., small
values of x) of the graph of y versus x from the xy object. Primarily used within
initial functions for self-starting nonlinear regression models.

NLSstRtAsymptote Provides an initial guess at the horizontal asymptote on the right side (i.e., large
values of x) of the graph of y versus x from the xy object. Primarily used within
initial functions for self-starting nonlinear regression models.

PP.test Computes the Phillips-Perron test for the null hypothesis that x has a unit root
against a stationary alternative.

SSD Function to compute the matrix of residual sums of squares and products, or the
estimated variance matrix for multivariate linear models.
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SSasymp This selfStart model evaluates the asymptotic regression function and its gra-
dient. It has an initial attribute that will evaluate initial estimates of the pa-
rameters Asym, R0, and lrc for a given set of data.

SSasympOff This selfStart model evaluates an alternative parametrization of the asymptotic
regression function and the gradient with respect to those parameters. It has an
initial attribute that creates initial estimates of the parameters Asym, lrc,
and c0.

SSasympOrig This selfStart model evaluates the asymptotic regression function through the
origin and its gradient. It has an initial attribute that will evaluate initial esti-
mates of the parameters Asym and lrc for a given set of data.

SSbiexp This selfStart model evaluates the biexponential model function and its gra-
dient. It has an initial attribute that creates initial estimates of the parameters
A1, lrc1, A2, and lrc2.

SSfol This selfStart model evaluates the first-order compartment function and its
gradient. It has an initial attribute that creates initial estimates of the param-
eters lKe, lKa, and lCl.

SSfpl This selfStart model evaluates the four-parameter logistic function and its
gradient. It has an initial attribute that will evaluate initial estimates of the
parameters A, B, xmid, and scal for a given set of data.

SSgompertz This selfStart model evaluates the Gompertz growth model and its gradient.
It has an initial attribute that creates initial estimates of the parameters Asym,
b2, and b3.

SSlogis This selfStart model evaluates the logistic function and its gradient. It has an
initial attribute that creates initial estimates of the parameters Asym, xmid,
and scal.

SSmicmen This selfStart model evaluates the Michaelis-Menten model and its gradient.
It has an initial attribute that will evaluate initial estimates of the parameters
Vm and K.

SSweibull This selfStart model evaluates the Weibull model for growth curve data and
its gradient. It has an initial attribute that will evaluate initial estimates of the
parameters Asym, Drop, lrc, and pwr for a given set of data.

StructTS Fits a structural model for a time series by maximum likelihood.

TukeyHSD Creates a set of confidence intervals on the differences between the means of the
levels of a factor with the specified family-wise probability of coverage. The intervals
are based on the Studentized range statistic, Tukey’s honest significant difference
method. There is a plot method.

TukeyHSD.aov Creates a set of confidence intervals on the differences between the means of the
levels of a factor with the specified family-wise probability of coverage. The intervals
are based on the Studentized range statistic, Tukey’s honest significant difference
method. There is a plot method.

acf The function acf computes (and by default plots) estimates of the autocovariance
or autocorrelation function. The function pacf is the function used for partial
autocorrelations. The function ccf computes the cross-correlation or
cross-covariance of two univariate series.

acf2AR Computes an AR process exactly fitting an autocorrelation function.
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add.scope add.scope and drop.scope compute those terms that can be individually
added to or dropped from a model while respecting the hierarchy of terms.

add1 Computes all the single terms in the scope argument that can be added to or
dropped from the model, fits those models, and computes a table of the changes
in fit.

addmargins For a given table, one can specify which of the classifying factors to expand by one
or more levels to hold margins to be calculated. One may, for example, form sums
and means over the first dimension and medians over the second. The resulting
table will then have two extra levels for the first dimension and one extra level for
the second. The default is to sum over all margins in the table. Other possibilities
may give results that depend on the order in which the margins are computed. This
is flagged in the printed output from the function.

aggregate Splits the data into subsets, computes summary statistics for each, and returns the
result in a convenient form.

alias Finds aliases (linearly dependent terms) in a linear model specified by a formula.

anova Computes analysis of variance (or deviance) tables for one or more fitted model
objects.

anova.lmlist Computes an analysis of variance table for one or more linear model fits.

ansari.test Performs the Ansari-Bradley two-sample test for a difference in scale parameters.

aov Fits an analysis of variance model by a call to lm for each stratum.

approx Returns a list of points that linearly interpolate given data points, or a function
performing the linear (or constant) interpolation.

approxfun Returns a list of points that linearly interpolate given data points, or a function
performing the linear (or constant) interpolation.

ar Fits an autoregressive time series model to the data, by default selecting the com-
plexity by AIC.

arima Fits an ARIMA model to a univariate time series.

arima.sim Simulates from an ARIMA model.

arima0 Fits an ARIMA model to a univariate time series and forecasts from the fitted model.

as.dendrogram Coerces an object to class "dendrogram" (which provides general functions for
handling treelike structures).

as.dist Coerces to a dist object (a matrix returned by the dist function).

as.formula The generic function formula and its specific methods provide a way of extracting
formulas that have been included in other objects. as.formula is almost identical,
additionally preserving attributes when object already inherits from
"formula".

as.hclust Converts objects from other hierarchical clustering functions to class "hclust".

as.stepfun Given the vectors (x[1],..., x[n]) and (y[0],y[1],..., y[n]) (one value more!), step
fun(x, y,...) returns an interpolating “step” function, say fn. That is, fn(t)
= c_i{[i]} (constant) for t in (x[i], x[i+1]) and at the abscissa values, if (by default)
right = FALSE, fn(x_i) = y_i{fn(x[i]) = y[i]} and for right = TRUE, fn(x[i])
= y[i-1], for i=1,...,n.

as.ts Coerces an object to a ts object.
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asOneSidedFormula Names, expressions, numeric values, and character strings are converted to one-
sided formulas. If object is a formula, it must be one sided, in which case it is
returned unaltered.

ave Subsets of x[] are averaged, where each subset consists of those observations with
the same factor levels.

bandwidth.kernel Returns the equivalent bandwidth for a tskernel object.

bartlett.test Performs Bartlett’s test of the null that the variances in each of the groups (samples)
are the same.

binom.test Performs an exact test of a simple null hypothesis about the probability of success
in a Bernoulli experiment.

binomial Family function for binomial distributions (used by functions such as glm).

biplot Plots a biplot on the current graphics device.

bw.SJ, bw.bcv, bw.nrd, bw.nrd0,
bw.ucv

Bandwidth selectors for Gaussian kernels in density.

cancor Computes the canonical correlations between two data matrices.

case.names Simple utility returning (nonmissing) case names and (noneliminated) variable
names.

ccf The function acf computes (and by default plots) estimates of the autocovariance
or autocorrelation function. The function pacf is the function used for partial
autocorrelations. The function ccf computes the cross-correlation or
cross-covariance of two univariate series.

chisq.test Performs chi-squared contingency table tests and goodness-of-fit tests.

clearNames Sets the names attribute of object to NULL and returns the object.

cmdscale Classical multidimensional scaling of a data matrix. Also known as principal coor-
dinates analysis.

coef, coefficients coef is a generic function that extracts model coefficients from objects returned
by modeling functions. coefficients is an alias for it.

complete.cases Returns a logical vector indicating which cases are complete, i.e., have no missing
values.

confint Computes confidence intervals for one or more parameters in a fitted model.

constrOptim Minimizes a function subject to linear inequality constraints using an
adaptive barrier algorithm.

contr.SAS, contr.helmert,
contr.poly, contr.sum, contr.treat-
ment

Return a matrix of contrasts.

contrasts, contrasts<- Set and view the contrasts associated with a factor.

convolve Uses the fast Fourier transform to compute the several kinds of convolutions of two
sequences.

cooks.distance Computes “Cook’s distance” on a model object.

cophenetic Computes the cophenetic distances for a hierarchical clustering.
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cor Computes the correlation of two vectors, or the columns of two matrices.

cor.test Tests for association between paired samples, using one of Pearson’s product-
moment correlation coefficient, Kendall’s tau, or Spearman’s rho.

cov Computes the covariance of two vectors, or the columns of two matrices.

cov.wt Returns a list containing estimates of the weighted covariance matrix and the mean
of the data and optionally of the (weighted) correlation matrix.

cov2cor var, cov, and cor compute the variance of x and the covariance or correlation of
x and y if these are vectors. If x and y are matrices, then the covariances (or
correlations) between the columns of x and the columns of y are computed.
cov2cor scales a covariance matrix into the corresponding correlation matrix
efficiently.

covratio Returns the covariance ratio (for regression diagnostics) on a model object.

cpgram Plots a cumulative periodogram.

cutree Cuts a tree, e.g., resulting from hclust, into several groups by specifying either
the desired number(s) of groups or the cut height(s).

cycle time creates the vector of times at which a time series was sampled. cycle gives
the positions in the cycle of each observation. frequency returns the number of
samples per unit time, and deltat gives the time interval between observations
(see ts).

dbeta Density function for the beta distribution.

dbinom Density function for the binomial distribution.

dcauchy Density function for the Cauchy distribution.

dchisq Density function for the chi-squared distribution.

decompose Decomposes a time series into seasonal, trend, and irregular components using
moving averages. Deals with additive or multiplicative seasonal components.

delete.response Returns a terms object for the same model but with no response variable.

deltat time creates the vector of times at which a time series was sampled. cycle gives
the positions in the cycle of each observation. frequency returns the number of
samples per unit time, and deltat gives the time interval between observations
(see ts).

dendrapply Applies function FUN to each node of a dendrogram recursively. When y <-
dendrapply(x, fn), then y is a dendrogram of the same graph structure as
x and for each node, y.node[j] <- FUN(x.node[j], ...) (where
y.node[j] is an (invalid!) notation for the jth node of y).

density The (S3) generic function density computes kernel density estimates. Its default
method does so with the given kernel and bandwidth for univariate observations.

density.default The (S3) generic function density computes kernel density estimates. Its default
method does so with the given kernel and bandwidth for univariate observations.

deriv, deriv3 Compute derivatives of simple expressions, symbolically.

deviance Returns the deviance of a fitted model object.

dexp Density function for the exponential distribution.
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df Density, distribution function, quantile function, and random generation for the F-
distribution with df1 and df2 degrees of freedom (and optional noncentrality
parameter ncp).

df.kernel The "tskernel" class is designed to represent discrete symmetric normalized
smoothing kernels. These kernels can be used to smooth vectors, matrices, or time
series objects. There are print, plot, and [ methods for these kernel objects.

df.residual Returns the residual degrees of freedom extracted from a fitted model object.

dfbeta Returns dfbeta for a model object (for regression diagnostics).

dfbetas Returns dfbetas for a model object (for regression diagnostics).

dffits Returns dffits for a model object (for regression diagnostics).

dgamma Density function for the gamma distribution.

dgeom Density, distribution function, quantile function, and random generation for the
geometric distribution with parameter prob.

dhyper Density function for the hypergeometric distribution.

diff.ts Methods for objects of class "ts", typically the result of ts.

diffinv Computes the inverse function of the lagged differences function diff.

dist Computes and returns the distance matrix computed by using the specified distance
measure to compute the distances between the rows of a data matrix.

dlnorm Density function for the log-normal distribution.

dlogis Density function for the logistic distribution.

dmultinom Generates multinomially distributed random number vectors and computes
multinomial probabilities.

dnbinom Density function for the negative binomial distribution.

dnorm Density function for the normal distribution.

dpois Density function for the Poisson distribution.

drop.scope add.scope and drop.scope compute those terms that can be individually
added to or dropped from a model while respecting the hierarchy of terms.

drop.terms delete.response returns a terms object for the same model, but with no
response variable. drop.terms removes variables from the right-hand side of
the model. There is also a "[.terms" method to perform the same function (with
keep.response=TRUE). reformulate creates a formula from a character
vector.

drop1 Computes all the single terms in the scope argument that can be added to or
dropped from the model, fits those models, and computes a table of the changes
in fit.

dsignrank Density, distribution function, quantile function, and random generation for the
distribution of the Wilcoxon signed rank statistic obtained from a sample with size
n.

dt Density, distribution function, quantile function, and random generation for the t-
distribution with df degrees of freedom (and optional noncentrality parameter
ncp).
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dummy.coef Extracts coefficients in terms of the original levels of the coefficients rather than the
coded variables.

dunif Density function for the uniform distribution.

dweibull Density function for the Weibull distribution.

dwilcox Density function for the distribution of the Wilcoxon rank-sum statistic.

ecdf Computes or plots an empirical cumulative distribution function.

eff.aovlist Computes the efficiencies of fixed-effects terms in an analysis of variance model
with multiple strata.

effects Returns (orthogonal) effects from a fitted model, usually a linear model. This is a
generic function, but currently has a method only for objects inheriting from classes
"lm" and "glm".

embed Embeds the time series x into a low-dimensional Euclidean space.

end Extracts and encodes the times the first and last observations were taken. Provided
only for compatibility with S version 2.

estVar Function to compute matrix of residual sums of squares and products, or the esti-
mated variance matrix for multivariate linear models.

expand .model .frame Evaluates new variables as if they had been part of the formula of the specified
model. This ensures that the same na.action and subset arguments are applied
and allows, for example, x to be recovered for a model using sin(x) as a predictor.

extractAIC Computes the (generalized) Akaike information criterion for a fitted parametric
model.

factanal Performs maximum likelihood factor analysis on a covariance matrix or data matrix.

family family objects provide a convenient way to specify the details of the models used
by functions such as glm. See the documentation for glm for the details on how
such model fitting takes place.

fft Performs the fast Fourier transform of an array.

filter Applies linear filtering to a univariate time series or to each series separately of a
multivariate time series.

fisher.test Performs Fisher’s exact test for testing the null of independence of rows and columns
in a contingency table with fixed marginals.

fitted, fitted.values fitted is a generic function that extracts fitted values from objects returned by
modeling functions. fitted.values is an alias for it.

fivenum Returns Tukey’s five-number summary (minimum, lower-hinge, median, upper-
hinge, maximum) for the input data.

fligner.test Performs a Fligner-Killeen (median) test of the null that the variances in each of the
groups (samples) are the same.

formula The generic function formula and its specific methods provide a way of extracting
formulas that have been included in other objects.

frequency Returns the number of samples per unit time from a ts object.

friedman.test Performs a Friedman rank-sum test with unreplicated blocked data.

ftable Creates “flat” contingency tables.
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gaussian Family object for Gaussian functions (used by functions such as glm).

getInitial Evaluates initial parameter estimates for a nonlinear regression model.

get_all_vars Returns a data.frame containing the variables used in formula plus those specified.
Unlike model.frame.default, it returns the input variables and not those
resulting from function calls in formula.

glm Used to fit generalized linear models, specified by giving a symbolic description of
the linear predictor and a description of the error distribution.

glm.control Auxiliary function as user interface for glm fitting. Typically used only when calling
glm or glm.fit.

glm.fit glm is used to fit generalized linear models, specified by giving a symbolic descrip-
tion of the linear predictor and a description of the error distribution.

hasTsp tsp returns the tsp attribute (or NULL). It is included for compatibility with S
version 2. tsp<- sets the tsp attribute. hasTsp ensures x has a tsp attribute,
by adding one if needed.

hat, hatvalues, hatvalues.lm Return the hat matrix for a model object (for regression diagnostics).

hclust Hierarchical cluster analysis on a set of dissimilarities and methods for analyzing it.

heatmap Plots a heat map object (an image with an accompanying dendrogram).

influence Provides the basic quantities that are used in forming a wide variety of diagnostics
for checking the quality of regression fits.

influence.measures Produces a class “infl” object tabular display showing the DFBETAS for each model
variable, DFFITS, covariance ratios, Cook’s distances, and the diagonal elements of
the hat matrix.

integrate Adaptive quadrature of functions of one variable over a finite or infinite interval.

interaction.plot Plots the mean (or other summary) of the response for two-way combinations of
factors, thereby illustrating possible interactions.

inverse.gaussian Family object for inverse Gaussian distributions (used by functions such as glm).

is.empty.model R model notation allows models with no intercept and no predictors. These require
special handling internally. is.empty.model() checks whether an object de-
scribes an empty model.

is.leaf Class "dendrogram" provides general functions for handling treelike structures.
It is intended as a replacement for similar functions in hierarchical clustering and
classification/regression trees, such that all of these can use the same engine for
plotting or cutting trees. The code is still in the testing stage, and the API may change
in the future.

is.mts Tells whether an object is of class mts.

is.stepfun Tells whether an object is a function of class stepfun.

is.ts Tells whether an object is of class ts.

is.tskernel Tells whether an object is of class tskernel.

isoreg Computes the isotonic (monotonically increasing nonparametric) least squares re-
gression that is piecewise constant.

kernapply Computes the convolution between an input sequence and a specific kernel.

kernel Constructs a general kernel or named specific kernels (returns a “tskernel” object).
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kmeans Performs k-means clustering on a data matrix.

knots Extracts the knots from a step function (returned by stepfun).

kruskal.test Performs a Kruskal-Wallis rank-sum test.

ks.test Performs one- or two-sample Kolmogorov-Smirnov tests.

ksmooth The Nadaraya-Watson kernel regression estimate.

lag Computes a lagged version of a time series, shifting the time base back by a given
number of observations.

lag.plot Plots time series against lagged versions of themselves. Helps visualizing “autode-
pendence” even when autocorrelations vanish.

line Fits a line robustly.

lines.ts Plotting method for objects inheriting from class "ts".

lm lm is used to fit linear models. It can be used to carry out regression, single-stratum
analysis of variance, and analysis of covariance (although aov may provide a more
convenient interface for these).

lm.fit Basic computing engines called by lm and used to fit linear models. These should
usually not be used directly unless by experienced users.

lm.influence Provides the basic quantities that are used in forming a wide variety of diagnostics
for checking the quality of regression fits.

lm.wfit Basic computing engines called by lm and used to fit linear models. These should
usually not be used directly unless by experienced users.

loadings Extracts or prints loadings in factor analysis (or principal components analysis).

loess Fits a polynomial surface determined by one or more numerical predictors, using
local fitting.

loess.control Sets control parameters for loess fits.

loess.smooth Plots and adds a smooth curve computed by loess to a scatter plot.

logLik Extracts the log-likelihood value from an object (usually a model).

loglin Used to fit log-linear models to multidimensional contingency tables by iterative
proportional fitting.

lowess Performs the computations for locally weighted scatter plot smoothing (LOWESS),
smoother which uses locally weighted polynomial regression.

ls.diag Computes basic statistics, including standard errors, t-, and p-values, for the re-
gression coefficients.

ls.print Computes basic statistics, including standard errors, t-, and p-values, for the re-
gression coefficients and prints them if print.it is TRUE.

lsfit Finds the least squares estimate of β in the model Y = Xβ + ε.

mad Computes the median absolute deviation, i.e., the (lo-/hi-) median of the absolute
deviations from the median and (by default) adjusts by a factor for asymptotically
normal consistency.

mahalanobis Returns the squared Mahalanobis distance of all rows in x and the vector μ =
center with respect to Σ = cov. This is (for vector x) defined as D2 = (x - μ)' Σ-1

(x - μ).
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make.link This function is used with the family functions in glm(). Given the name of a
link, it returns a link function, an inverse link function, the derivative dμ / dη and a
function for domain checking.

makeARIMA Uses Kalman filtering to find the (Gaussian) log-likelihood, or for forecasting or
smoothing.

makepredictcall Utility to help model.frame.default create the right
matrices when predicting from models with terms like poly or ns.

manova A class for the multivariate analysis of variance.

mantelhaen.test Performs a Cochran-Mantel-Haenszel chi-squared test of the null that two nominal
variables are conditionally independent in each stratum, assuming that there is no
three-way interaction.

mauchly.test Tests whether a Wishart-distributed covariance matrix (or transformation thereof)
is proportional to a given matrix.

mcnemar.test Performs McNemar’s chi-squared test for symmetry of rows and columns in a two-
dimensional contingency table.

median Computes the sample median.

median.default Computes the sample median.

medpolish Fits an additive model using Tukey’s median polish procedure.

model.extract Returns the response, offset, subset, weights, or other special components of a
model frame passed as optional arguments to model.frame.

model.frame model.frame (a generic function) and its methods return a data.frame with
the variables needed to use formula and any ... arguments.

model.matrix Creates a design matrix.

model.offset Returns the offset of a model frame.

model.response Returns the response of a model frame.

model.tables Computes summary tables for model fits, especially complex aov fits.

model.weights Returns the weights of a model frame.

monthplot Plots seasonal (or other) subseries from a time series.

mood.test Performs Mood’s two-sample test for a difference in scale parameters.

mvfft Performs the fast Fourier transform of an array.

na.action Extracts information on the NA action used to create an object.

na.contiguous Finds the longest consecutive stretch of nonmissing values in a time series object.
(In the event of a tie, the first such stretch.)

na.exclude na.exclude returns the object with incomplete cases removed and with the
na.action attribute set to "exclude". (Usually used as an na.action ar-
gument for a modeling function.)

na.fail Returns the object if it does not contain any missing values and signals an error
otherwise. (Usually used as an na.action argument for a modeling function.)

na.omit Returns the object with incomplete cases removed. (Usually used as an
na.action argument for a modeling function.)
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na.pass Returns an object unchanged. (Usually used as an na.action argument for a
modeling function.)

napredict Uses missing value information to adjust residuals and predictions.

naprint Uses missing value information to report the effects of an na.action.

naresid Uses missing value information to adjust residuals and predictions.

nextn Returns the smallest integer, greater than or equal to n, that can be obtained as a
product of powers of the values contained in factors.

nlm Carries out a minimization of the function f using a Newton-type algorithm.

nlminb Unconstrained and constrained optimization using PORT routines.

nls Determines the nonlinear (weighted) least squares estimates of the parameters of
a nonlinear model.

nls.control Allows the user to set some characteristics of the nonlinear least squares algorithm.

numericDeriv Numerically evaluates the gradient of an expression.

offset An offset is a term to be added to a linear predictor, such as in a generalized linear
model, with known coefficient 1 rather than an estimated coefficient.

oneway.test Tests whether two or more samples from normal distributions have the same means.
The variances are not necessarily assumed to be equal.

optim General-purpose optimization based on Nelder-Mead, quasi-Newton, and
conjugate-gradient algorithms. It includes an option for box-constrained optimi-
zation and simulated annealing.

optimise, optimize The function optimize searches the interval from lower to upper for a minimum
or maximum of the function f with respect to its first argument. optimise is an
alias for optimize.

order.dendrogram Returns the order (index) or the "label" attribute for the leaves in a dendrogram.
These indices can then be used to access the appropriate components of any addi-
tional data.

p.adjust Given a set of p-values, returns p-values adjusted using one of several methods.

pacf Computes partial autocorrelations.

pairwise .prop.test Calculates pairwise comparisons between pairs of proportions with correction for
multiple testing.

pairwise.t.test Calculates pairwise comparisons between group levels with corrections for multiple
testing.

pairwise.table Creates a table of p-values for pairwise comparisons with corrections for multiple
testing.

pairwise.wilcox.test Calculates pairwise comparisons between group levels with corrections for multiple
testing.

pbeta Distribution function for the beta distribution.

pbinom Distribution function for the binomial distribution.

pbirthday Computes the probability of a coincidence for a generalized birthday paradox
problem.

pcauchy Distribution function for the Cauchy distribution.
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pchisq Distribution function for the chi-squared distribution.

pexp Distribution function for the exponential distribution.

pf Distribution function for the F-distribution.

pgamma Distribution function for the gamma distribution.

pgeom Distribution function for the geometric distribution.

phyper Distribution function for the hypergeometric distribution.

plclust Hierarchical cluster analysis on a set of dissimilarities and methods for analyzing it.

plnorm Distribution function for the log-normal distribution.

plogis Distribution function for the logistic distribution.

plot.TukeyHSD Creates a set of confidence intervals on the differences between the means of the
levels of a factor with the specified family-wise probability of coverage. The intervals
are based on the Studentized range statistic, Tukey’s honest significant difference
method. There is a plot method.

plot.density The plot method for density objects.

plot.ecdf Computes or plots an empirical cumulative distribution function.

plot.lm Plots diagnostics for an lm object.

plot.mlm Plots diagnostics for an mlm object.

plot.spec, plot.spec.coherency,
plot.spec.phase

Plotting methods for objects of class "spec". For multivariate time series, they
plot the marginal spectra of the series or pairs plots of the coherency and phase of
the cross-spectra.

plot.stepfun Method of the generic plot for stepfun objects
and utility for plotting piecewise-constant functions.

plot.ts Plotting method for objects inheriting from class "ts".

pnbinom Distribution function for the negative binomial distribution.

pnorm Distribution function for the normal distribution.

poisson Family objects for Poisson distributions (used by functions such as glm).

poisson.test Performs an exact test of a simple null hypothesis about the rate parameter in a
Poisson distribution or for the ratio between two rate parameters.

poly, polym Return or evaluate orthogonal polynomials of degree 1 to degree
over the specified set of points x. These are all orthogonal to the constant polynomial
of degree 0. Alternatively, evaluate raw polynomials.

power Creates a link object based on the link function η = μλ.

power .anova.test Computes power of test or determines parameters to obtain target power.

power.prop.test Computes power of test or determines parameters to obtain target power.

power.t.test Computes power of test or determines parameters to obtain target power.

ppoints Generates the sequence of probability points (1:m - a)/(m + (1-a)-a),
where m is either n, if length(n)==1, or length(n).

ppois Distribution function for the Poisson distribution.

ppr Fits a projection pursuit regression model.
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prcomp Performs a principal components analysis on the given data matrix and returns the
results as an object of class prcomp.

predict Generic function for predictions from the results of various model-fitting functions.

preplot Computes an object to be used for plots relating to the given model object.

princomp Performs a principal components analysis on the given numeric data matrix and
returns the results as an object of class princomp.

printCoefmat Utility function to be used in higher-level print methods, such as
print.summary.lm, print.summary.glm, and print.anova. The goal
is to provide a flexible interface with smart defaults such that often only x needs to
be specified.

profile Investigates the behavior of an objective function near the solution.

proj Returns a matrix or list of matrices giving the projections of the data onto the terms
of a linear model. It is most frequently used for aov models.

promax These functions “rotate” loading matrices in factor analysis.

prop.test Used for testing the null that the proportions (probabilities of success) in several
groups are the same or that they equal certain given values.

prop.trend.test Performs a chi-squared test for trend in proportions, i.e., a test asymptotically
optimal for local alternatives where the log odds vary in proportion with score.
By default, score is chosen as the group numbers.

psignrank Distribution function for the distribution of the Wilcoxon signed rank statistic.

pt Distribution function for the t-distribution.

ptukey Distribution function for the Studentized range.

punif These functions provide information about the uniform distribution on the interval
from min to max. dunif gives the density, punif gives the distribution function,
qunif gives the quantile function, and runif generates random deviates.

pweibull Distribution function for the Weibull distribution.

pwilcox Distribution function for the distribution of the Wilcoxon rank-sum statistic.

qbeta Quantile function for the beta distribution.

qbinom Quantile function for the binomial distribution.

qbirthday Computes the number of observations needed to have a specified probability of
coincidence for a generalized birthday paradox problem.

qcauchy Quantile function for the Cauchy distribution.

qchisq Quantile function for the chi-squared distribution.

qexp Quantile function for the exponential distribution.

qf Quantile function for the F-distribution.

qgamma Quantile function for the gamma distribution.

qgeom Quantile function for the geometric distribution.

qhyper Quantile function for the hypergeometric distribution.

qlnorm Quantile function for the log-normal distribution.

qlogis Quantile function for the logistic distribution.
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qnbinom Quantile function for the negative binomial distribution.

qnorm Quantile function for the normal distribution.

qpois Quantile function for the Poisson distribution.

qqline Adds a line to a normal Q-Q plot (usually generated by qqnorm or qqplot) that passes
through the first and third quartiles.

qqnorm Generic function the default method of which produces a normal Q-Q plot of the
values in y.

qqplot Produces a Q-Q plot of two data sets.

qsignrank Density, distribution function, quantile function, and random generation for the
distribution of the Wilcoxon signed rank statistic obtained from a sample with size
n.

qt Quantile function for the t-distribution.

qtukey Function of the distribution of the Studentized range, R/s, where R is the range of
a standard normal sample and df∗s2 is independently distributed as chi-squared
with df degrees of freedom; see pchisq.

quade.test Performs a Quade test with unreplicated blocked data.

quantile The generic function quantile produces sample quantiles corresponding to the
given probabilities. The smallest observation corresponds to a probability of 0 and
the largest to a probability of 1.

quantile.default The generic function quantile produces sample quantiles corresponding to the
given probabilities. The smallest observation corresponds to a probability of 0 and
the largest to a probability of 1.

quasi Family object for the quasi distribution (used by functions such as glm).

quasibinomial Family object for the quasibinomial distribution (used by functions such as glm).

quasipoisson Family object for the quasi-Poisson distribution (used by functions such as glm).

qunif Quantile function for the uniform distribution.

qweibull Quantile function for the Weibull distribution.

qwilcox Quantile function for the Wilcoxon rank-sum statistic.

r2dtable Generates random two-way tables with given marginals using Patefield’s algorithm.

rbeta Random number generation for the beta distribution.

rbinom Random number generation for the binomial distribution.

rcauchy Random number generation for the Cauchy distribution.

rchisq Random number generation for the chi-squared distribution.

read.ftable Reads, writes, and coerces “flat” contingency tables.

rect.hclust Draws rectangles around the branches of a dendrogram, highlighting the corre-
sponding clusters. First, the dendrogram is cut at a certain level, and then a rectangle
is drawn around selected branches.

reformulate Creates a formula from a character vector.
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relevel The levels of a factor are reordered so that the level specified by ref is first, and
the others are moved down. This is useful for contr.treatment contrasts, which
take the first level as the reference.

reorder reorder is a generic function. Its "factor" method reorders the levels of a factor
depending on values of a second variable, usually numeric. The "character"
method is a convenient alias.

replications Returns a vector or a list of the number of replicates for each term in the formula.

reshape Reshapes a data frame between “wide” format with repeated measurements in
separate columns of the same record and “long” format with the repeated meas-
urements in separate records.

resid Generic function that extracts model residuals from objects returned by modeling
functions. The abbreviated form resid is an alias for residuals.

residuals Generic function that extracts model residuals from objects returned by modeling
functions.

rexp Random generation for the exponential distribution.

rf Random generation for the F-distribution.

rgamma Random generation for the gamma distribution.

rgeom Random generation for the geometric distribution.

rhyper Random generation for the hypergeometric distribution.

rlnorm Random generation for the log-normal distribution.

rlogis Random generation for the logistic distribution.

rmultinom Generates multinomially distributed random number vectors and computes
multinomial probabilities.

rnbinom Random generation for the negative binomial distribution.

rnorm Random generation for the normal distribution.

rpois Random generation for the Poisson distribution.

rsignrank Random generation for the distribution of the Wilcoxon signed rank statistic.

rstandard Returns the standardized residuals from a model object.

rstudent Returns the Studentized residuals from a model object.

rt Random generation for the t-distribution.

runif Generates random numbers from the uniform distribution.

runmed Computes running medians of odd span. This is the “most robust” scatter plot
smoothing possible. For efficiency (and historical reasons), you can use one of two
different algorithms giving identical results.

rweibull Random generation for the Weibull distribution.

rwilcox Random generation for the distribution of the Wilcoxon rank-sum statistic.

scatter.smooth Plots and adds a smooth curve computed by loess to a scatter plot.

screeplot Plots the variances against the number of the principal component. This is also the
plot method for classes "princomp" and "prcomp".

sd Computes the standard deviation of the values in x.

stats | 655

R Reference



Function Description

se.contrast Returns the standard errors for one or more contrasts in an aov object.

selfStart Constructs self-starting nonlinear models.

setNames This is a convenience function that sets the names on an object and returns the
object. It is most useful at the end of a function definition where one is creating
the object to be returned and would prefer not to store it under a name just so the
names can be assigned.

shapiro.test Performs the Shapiro-Wilk test of normality.

simulate Simulates one or more responses from the distribution corresponding to a fitted
model object.

smooth Tukey’s smoothers, 3RS3R, 3RSS, 3R, etc.

smooth.spline Fits a cubic smoothing spline to the supplied data.

smoothEnds Smooths end points of a vector y using subsequently smaller medians and Tukey’s
end point rule at the very end.

sortedXyData This is a constructor function for the class of sortedXyData objects. These objects
are mostly used in the initial function for a self-starting nonlinear regression
model, which will be of the selfStart class.

spec.ar Fits an AR model to x (or uses the existing fit) and computes (and by default plots)
the spectral density of the fitted model.

spec.pgram Calculates the periodogram using a fast Fourier transform and optionally smooths
the result with a series of modified Daniell smoothers (moving averages giving half
weight to the end values).

spec.taper Applies a cosine-bell taper to a time series.

spectrum Estimates the spectral density of a time series.

spline Performs cubic spline interpolation of given data points, returning either a list of
points obtained by the interpolation or a function performing the interpolation.
Returns a list containing components x and y, which give the ordinates where
interpolation took place and the interpolated values.

splinefun Performs cubic spline interpolation of given data points, returning either a list of
points obtained by the interpolation or a function performing the interpolation.
Returns a function with formal arguments x and deriv, the latter defaulting to 0.

splinefunH Performs Hermite spline interpolation of given data points, returning either a list
of points obtained by the interpolation or a function performing the interpolation.

start Extracts and encodes the times the first and last observations were taken. Provided
only for compatibility with S version 2.

stat.anova Utility function, used in lm and glm methods for anova(..., test !=
NULL) and should not be used by the average user.

step Selects a formula-based model by AIC.

stepfun Returns an interpolating step function from two sets of vectors.

stl Decomposes a time series into seasonal, trend, and irregular components using
loess.

supsmu Smooths the (x, y) values by Friedman’s supersmoother.
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symnum Symbolically encodes a given numeric or logical vector or array. Particularly useful
for visualization of structured matrices, e.g., correlation, sparse, or logical ones.

t.test Performs one- and two-sample t-tests on vectors of data.

termplot Plots regression terms against their predictors, optionally with standard errors and
partial residuals added.

terms Generic function that can be used to extract terms objects from various kinds of R
data objects.

time Creates the vector of times at which a time series was sampled.

toeplitz Forms a symmetric Toeplitz matrix given its first row.

ts Used to create time series objects.

ts.intersect Binds time series that have a common frequency. ts.intersect is restricted to
the time covered by all the series.

ts.plot Plots several time series on a common plot. Unlike plot.ts, the series can have
different time bases, but they should have the same frequency.

ts.union Binds time series that have a common frequency. ts.union pads with NAs to the
total time coverage.

tsSmooth Performs fixed-interval smoothing on a univariate time series via a state-space
model.

tsdiag Generic function to plot time series diagnostics.

tsp, tsp<- tsp returns the tsp attribute (or NULL). It is included for compatibility with S
version 2. tsp<- sets the tsp attribute.

uniroot Searches the interval from lower to upper for a root (i.e., 0) of the function f
with respect to its first argument.

update Updates and (by default) refits a model. It does this by extracting the call stored in
the object, updating the call and (by default) evaluating that call.

var Computes the variance of a vector.

var.test Performs an F-test to compare the variances of two samples from normal
populations.

variable.names Simple utility returning (nonmissing) case names and (non-eliminated) variable
names.

varimax These functions “rotate” loading matrices in factor analysis.

vcov Returns the variance-covariance matrix of the main parameters of a fitted model
object.

weighted.mean Computes a weighted mean of a numeric vector.

weighted.residuals Computes weighted residuals from a linear model fit.

weights All these functions are methods for class "lm" objects.

wilcox.test Performs one- and two-sample Wilcoxon tests on vectors of data; the latter is also
known as the Mann-Whitney test.

window, window<- window is a generic function that extracts the subset of the object x observed
between the times start and end. If a frequency is specified, the series is then
resampled at the new frequency.

stats | 657

R Reference



Function Description

write.ftable Reads, writes, and coerces “flat” contingency tables.

xtabs Creates a contingency table from cross-classifying factors, usually contained in a
data frame, using a formula interface.

Data Set

Data Set Class Description

p.adjust.methods character Allowed methods for p.adjust.

stats4
This package contains statistical functions using S4 methods and classes.

Functions

Function Description

AIC Calculates the Akaike information criterion for one or several fitted model objects
for which a log-likelihood value can be obtained.

BIC Calculates the Bayesian information criterion (BIC), also known as Schwarz’s Baye-
sian criterion (SBC), for one or several fitted model objects for which a log-likelihood
value can be obtained, according to the formula −2 ∗ log-likelihood + npar ∗
log(nobs), where npar represents the number of parameters and nobs the number of
observations in the fitted model.

coef Extracts model coefficients from objects returned by modeling functions.

confint Computes confidence intervals for one or more parameters in a fitted model.

logLik Extracts the log-likelihood from a model object.

mle Estimates parameters by the method of maximum likelihood.

plot Generic function for plotting an R object.

profile Investigates behavior of objective function near the solution represented by fitted.

summary Generic function used to produce result summaries of the results of various model-
fitting functions.

update Updates and (by default) refits a model.

vcov Returns the variance-covariance matrix of the main parameters of a fitted model
object.

survival
This package contains functions for survival analysis.
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Surv Creates a survival object, usually used as a response variable in a model formula.

aareg Returns an object of class "aareg" that represents an Aalen model.

attrassign The "assign" attribute on model matrices describes which columns come from
which terms in the model formula.

basehaz Computes the baseline survival curve for a Cox model.

cch Returns estimates and standard errors from relative risk regression fit to data from
case-cohort studies, cohort data, and Borgan II, a generalization of the Lin-Ying
estimator.

clogit Estimates a logistic regression model by maximizing the conditional likelihood.

cluster A special function used in the context of survival models. It identifies correlated
groups of observations and is used on the right-hand side of a formula.

cox.zph Tests the proportional hazards assumption for a Cox regression model fit (coxph).

coxph Fits a Cox proportional hazards regression model.

coxph.control Used to set various numeric parameters controlling a Cox model fit. Typically, it
would be used only in a call to coxph.

coxph.detail Returns the individual contributions to the first and second derivative matrix at each
unique event time.

coxph.fit Internal survival function.

dsurvreg Density, cumulative probability, and quantiles for the set of distributions supported
by the survreg function.

format.Surv Creates a survival object, usually used as a response variable in a model formula.

frailty Adds a simple random-effects term to a Cox or survreg model.

is.Surv Tests for a survival object.

is.na.Surv Tests for NA values in a survival object.

is.na.ratetable Matches variable names in data to those in a rate table for survexp.

is.ratetable Verifies not only the class attribute but also the structure of the object.

labels.survreg Finds a suitable set of labels from a survival object for use in printing or plotting,
for example.

pspline Specifies a penalized spline basis for the predictor.

psurvreg Density, cumulative probability, and quantiles for the set of distributions supported
by the survreg function.

pyears Computes the person-years of follow-up time contributed by a cohort of subjects,
stratified into subgroups.

qsurvreg Density, cumulative probability, and quantiles for the set of distributions supported
by the survreg function.

ratetable Matches variable names in data to those in a rate table for survexp.

ridge Specifies a ridge regression term when used in a coxph or survreg model formula.
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strata This is a special function used in the context of the Cox survival model. It identifies
stratification variables when they appear on the right-hand side of a formula.

survConcordance Computes the concordance between a right-censored survival time and a single
continuous covariate.

survSplit Given a survival data set and a set of specified cut times, splits each record into
multiple subrecords at each cut time. The new data set will be in “counting process”
format, with a start time, stop time, and event status for each record.

survdiff Tests if there is a difference between two or more survival curves using the Gρ family
of tests, or for a single curve against a known alternative.

survexp Returns either the expected survival of a cohort of subjects or the individual expected
survival for each subject.

survfit Computes an estimate of a survival curve for censored data using either the Kaplan-
Meier or the Fleming-Harrington method or computes the predicted survivor
function.

survobrien O’Brien’s test for association of a single variable with survival.

survreg Fits a parametric survival regression model. These are location-scale models for an
arbitrary transform of the time variable; the most common cases use a log trans-
formation, leading to accelerated failure time models.

survreg.control Checks and packages the fitting options for survreg.

survreg.fit Internal survival function.

survregDtest This routine is called by survreg to verify that a distribution object is valid.

tcut Attaches categories for person-year calculations to a variable without losing the
underlying continuous representation.

untangle.specials Given a terms structure and a desired special name, this returns an index appro-
priate for subscripting the terms structure and another appropriate for the data
frame.

Data Sets

Data Set Class Description

aml data.frame Survival in patients with acute myelogenous leukemia. The question at the time
was whether the standard course of chemotherapy should be extended (“mainte-
nance”) for additional cycles.

bladder data.frame Data on recurrences of bladder cancer, used by many people to demonstrate meth-
odology for recurrent event modeling. Bladder1 is the full data set from the study.
This data set contains only the 85 subjects with nonzero follow-up who were as-
signed to either thiotepa or placebo.

bladder1 data.frame Data on recurrences of bladder cancer, used by many people to demonstrate meth-
odology for recurrent event modeling. Bladder1 is the full data set from the study.
It contains all three treatment arms and all recurrences for 118 subjects; the max-
imum observed number of recurrences is 9.
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bladder2 data.frame Data on recurrences of bladder cancer, used by many people to demonstrate meth-
odology for recurrent event modeling. Bladder2 uses the same subset of subjects
as bladder, but formatted in the (start, stop] or Anderson-Gill style.

cancer data.frame Survival in patients with advanced lung cancer from the North Central Cancer Treat-
ment Group. Performance scores rate how well the patient can perform normal
daily activities.

cgd data.frame Data is from a placebo-controlled trial of gamma interferon in chronic granuloto-
mous disease (CGD).

colon data.frame Data from one of the first successful trials of adjuvant chemotherapy for colon cancer.

heart, jasa, jasa1 data.frame Survival of patients on the waiting list for the Stanford heart transplant program.

kidney data.frame Data on the recurrence times to infection, at the point of insertion of the catheter,
for kidney patients using portable dialysis equipment.

leukemia data.frame Survival in patients with acute myelogenous leukemia. The question at the time
was whether the standard course of chemotherapy should be extended (“mainte-
nance”) for additional cycles.

lung data.frame Survival in patients with advanced lung cancer from the North Central Cancer Treat-
ment Group. Performance scores rate how well the patient can perform normal
daily activities.

mgus, mgus1,
mgus2

data.frame Natural history of 241 subjects with monoclonal gammapathy of undetermined
significance (MGUS).

nwtco data.frame Missing data/measurement error example. Tumor histology predicts survival, but
prediction is stronger with central lab histology than with the local institution
determination.

ovarian data.frame Survival in a randomized trial comparing two treatments for ovarian cancer.

pbc data.frame This data is from the Mayo Clinic trial in primary biliary cirrhosis (PBC) of the liver
conducted between 1974 and 1984.

pbcseq data.frame This data is a continuation of the PBC data set and contains the follow-up laboratory
data for each study patient.

rats data.frame Forty-eight rats were injected with a carcinogen and then randomized to either
drug or placebo. The number of tumors ranged from 0 to 13; all rats were
censored at 6 months after randomization.

stanford2 data.frame This contains the Stanford heart transplant data in a different format. The main
data set is in heart.

survexp.mn ratetable Census data sets for the expected-survival and person-year functions.

survexp.mnwhite ratetable Census data sets for the expected-survival and person-year functions.

survexp.us ratetable Census data sets for the expected-survival and person-year functions.

survexp.usr ratetable Census data sets for the expected-survival and person-year functions.

survreg.distributions list List of distributions for accelerated failure models. These are location-scale families
for some transformation of time.

tobin data.frame Economists fit a parametric censored data model called the tobit. The data come
from Tobin’s original paper.
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veteran data.frame Randomized trial of two treatment regimens for lung cancer. This is a standard
survival analysis data set.

tcltk
The package contains interface and language bindings to Tcl/Tk GUI elements.
Please see the online help for more details.

tools
This package provides tools for developing packages.

Functions

Function Description

Rd2HTML This (experimental) function converts from an R help page to an HTML document.

Rd2ex This (experimental) function converts from an R help page to the format used
by example.

Rd2latex This (experimental) function converts from an R help page to a LaTeX document.

Rd2txt This (experimental) function converts from an R help page to a text document.

Rd_db Builds a simple database of all R documentation (Rd) sources in a package, as a
list of character vectors with the lines of the Rd files in the package.

Rdiff Given two R output files, computes differences, ignoring headers, footers, and
some encoding differences.

Rdindex Prints a two-column index table with names and titles from given R documen-
tation files to a given output file or connection. The titles are nicely formatted
between two column positions (typically 25 and 72).

buildVignettes Runs Sweave and texi2dvi on all vignettes of a package.

checkDocFiles Checks, for all Rd files in a package, whether all arguments shown in the usage
sections of the Rd file are documented in its arguments section.

checkDocStyle Investigates how (S3) methods are shown in the usages of the Rd files in a
package.

checkFF Performs checks on calls to compiled code from R code.

checkMD5sums Checks the files against a file “MD5.”

checkNEWS Reads R’s NEWS file or a similarly formatted one. This is an experimental feature,
new in R 2.4.0, and may change in several ways.

checkRd These experimental functions take the output of the parse_Rd function and
check it or produce a help page from it. Their interfaces (and existence!) are
subject to change.

checkReplaceFuns Checks whether replacement functions or S3/S4 replacement methods in the
package R code have their final argument named value.
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checkS3methods Checks whether all S3 methods defined in the package R code have all arguments
of the corresponding generic, with positional arguments of the generics in the
same positions for the method.

checkTnF Checks the specified R package or code file for occurrences of T or F and gathers
the expressions containing these.

checkVignettes Checks all Sweave files of a package by running Sweave and/or Stangle on
them.

codoc Compares names and optionally also corresponding positions and default values
of the arguments of functions.

codocClasses Finds inconsistencies between actual and documented “structure” of R objects
in a package. codoc compares names and optionally also corresponding posi-
tions and default values of the arguments of functions. codocClasses and
codocData compare slot names of S4 classes and variable names of data sets,
respectively.

codocData Compares slot names of S4 classes.

delimMatch Matches delimited substrings in a character vector, with proper nesting.

dependsOnPkgs Finds “reverse” dependencies of packages, i.e., those packages that depend on
this one and (optionally) so on recursively.

encoded_text_to_latex Translates non-ASCII characters in text to LaTeX escape sequences.

file_path_as_absolute Turns a possibly relative file path absolute, performing tilde expansion, if
necessary.

file_path_sans_ext Returns the file paths without extension.

findHTMLlinks Finds HTML links in an R help file.

getDepList Given a dependency matrix, creates a DependsList object for that package,
which will include the dependencies for that matrix, which ones are installed,
which unresolved dependencies were found online, which unresolved depen-
dencies were not found online, and any R dependencies.

installFoundDepends Takes the Found element of a pkgDependsList object and attempts to
install all the listed packages from the specified repositories.

list_files_with_exts Returns the paths or names of the files in directory dir with extensions matching
one of the elements of exts.

list_files_with_type Returns the paths of the files in dir of the given “type,” as determined by the
extensions recognized by R.

md5sum Computes the 32-byte MD5 checksums of one or more files.

package.dependencies Parses and checks the dependencies of a package against the currently installed
version of R (and other packages).

parse_Rd Reads an Rd file and parses it, for processing by other functions. It is experimental.

pkgDepends Convenience function that wraps getDepList and takes as input a package name.

pkgVignettes Runs Sweave and texi2dvi on all vignettes of a package.

read.00Index Reads item/description information from 00Index-style files.

readNEWS Read R’s NEWS file or a similarly formatted one. This is an experimental feature,
new in R 2.4.0, and may change in several ways.
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showNonASCII Prints elements of a character vector that contain non-ASCII bytes, printing such
bytes as an escape like <fc>.

testInstalledBasic Allows an installed package to be tested by running the basic tests.

testInstalledPackage Allows an installed package to be tested.

testInstalledPackages Allows all base and recommended packages to be tested.

texi2dvi Runs latex and bibtex until all cross-references are resolved and creates
either a device independent (DVI) or a PDF file.

undoc Finds the objects in a package that are undocumented, in the sense that they
are visible to the user (or data objects or S4 classes provided by the package),
but no documentation entry exists.

vignetteDepends Given a vignette name, creates a DependsList object that reports information
about the packages the vignette depends on.

write_PACKAGES Generates PACKAGES and PACKAGES.gz files for a repository of source or Mac/
Windows binary packages.

xgettext, xgettext2pot, xngettext For each file in the R directory (including system-specific subdirectories) of a
package, extract the unique arguments passed to stop, warning, mes
sage, gettext, and gettextf, or to ngettext.

Data Sets

Data Set Class Description

Adobe_glyphs data.frame A data frame that gives Adobe glyph names for Unicode points.

charset_to_Unicode hexmode A matrix of Unicode points with columns for the common 8-bit encodings.

utils
This package contains a variety of utility functions for R, including package man-
agement, file reading and writing, and editing.

Functions

Function Description

? Documentation on a topic.

RShowDoc Utility function to find and display R documentation.

RSiteSearch Searches for keywords or phrases in the R-help mailing list archives, help pages,
vignettes, or task views, using the search engine at http://search.r-project.org,
and displays the results in a web browser.

Rprof Enables or disables profiling of the execution of R expressions.

Rprofmem Enables or disables reporting of memory allocation in R.

Rtangle A driver for Stangle that extracts R code chunks.

RtangleSetup A driver for Stangle that extracts R code chunks.
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RtangleWritedoc These functions are handy for writing Sweave drivers and currently not docu-
mented. Look at the source code of the Sweave Latex driver (in this package) or
the HTML driver (in the R2HTML package from CRAN) to see how they can be used.

RweaveChunkPrefix These functions are handy for writing Sweave drivers and currently not docu-
mented. Look at the source code of the Sweave Latex driver (in this package) or
the HTML driver (in the R2HTML package from CRAN) to see how they can be used.

RweaveEvalWithOpt These functions are handy for writing Sweave drivers and currently not docu-
mented. Look at the source code of the Sweave Latex driver (in this package) or
the HTML driver (in the R2HTML package from CRAN) to see how they can be used.

RweaveLatex A driver for Sweave that translates R code chunks in LaTeX files.

RweaveLatexFinish These functions are handy for writing Sweave drivers and currently not docu-
mented. Look at the source code of the Sweave Latex driver (in this package) or
the HTML driver (in the R2HTML package from CRAN) to see how they can be used.

RweaveLatexOptions These functions are handy for writing Sweave drivers and currently not docu-
mented. Look at the source code of the Sweave Latex driver (in this package) or
the HTML driver (in the R2HTML package from CRAN) to see how they can be used.

RweaveLatexSetup A driver for Sweave that translates R code chunks in LaTeX files.

RweaveLatexWritedoc These functions are handy for writing Sweave drivers and currently not docu-
mented. Look at the source code of the Sweave Latex driver (in this package) or
the HTML driver (in the R2HTML package from CRAN) to see how they can be used.

RweaveTryStop These functions are handy for writing Sweave drivers and currently not docu-
mented. Look at the source code of the Sweave Latex driver (in this package) or
the HTML driver (in the R2HTML package from CRAN) to see how they can be used.

Stangle A front end to Sweave using a simple driver by default, which discards the
documentation and concatenates all code chunks the current S engine under-
stands.

Sweave Sweave provides a flexible framework for mixing text and S code for automatic
report generation. The basic idea is to replace the S code with its output, such that
the final document only contains the text and the output of the statistical analysis.

SweaveSyntConv This function converts the syntax of files in Sweave format to another Sweave
syntax definition.

URLdecode Function to decode characters in URLs.

URLencode Function to encode characters in URLs.

View Invokes a spreadsheet-style data viewer on a matrix-like R object.

alarm Gives an audible or visual signal to the user.

apropos apropos() returns a character vector giving the names of all objects in the
search list matching a specified value.

argsAnywhere Returns the arguments for all functions with a name matching its argument,
whether visible on the search path, registered as an S3 method, or in a namespace
but not exported.

as.person A class and utility method for holding information about persons such as name
and email address.
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as.personList A class and utility method for holding information about persons such as name
and email address.

as.relistable relist() is an S3 generic function with a few methods in order to allow easy
inversion of unlist(obj) when that is used with an object of (S3) class
"relistable".

as.roman Manipulates integers as Roman numerals.

assignInNamespace Utility function to access and replace the nonexported functions in a namespace,
for use in developing packages with namespaces.

available.packages Used to automatically compare the version numbers of installed packages with
the newest available version on the repositories and update outdated packages
on the fly.

browseEnv Opens a browser with list of objects currently in the sys.frame() environment.

browseURL Loads a given URL into a web browser.

browseVignettes Lists available vignettes in an HTML browser with links to PDF, LaTeX/noweb
source, and (tangled) R code (if available).

bug.report Invokes an editor to write a bug report and optionally mail it to the automated r-
bugs repository at r-bugs@r-project.org. Some standard information on the cur-
rent version and configuration of R are included automatically.

capture.output Evaluates its arguments with the output being returned as a character string or
sent to a file. Related to sink in the same way that with is related to attach.

checkCRAN Functions helping to maintain CRAN, some of which may also be useful to ad-
ministrators of other repository networks.

chooseCRANmirror Interacts with the user to choose a CRAN mirror.

citEntry Creates “citation” objects, which are modeled after BibTeX entries.

citFooter Creates a footer in a CITATION file.

citHeader Creates a header in a CITATION file.

citation Shows how to cite R and R packages in publications.

close.socket Closes the socket and frees the space in the file descriptor table. The port may not
be freed immediately.

combn Generates all combinations of the elements of x taken m at a time. If x is a positive
integer, returns all combinations of the elements of seq(x) taken m at a time.
If argument FUN is not NULL, applies a function given by the argument to each
point. If simplify is FALSE, returns a list; otherwise, returns an array, typically a
matrix. ... are passed unchanged to the FUN function, if specified.

compareVersion Compares two package version numbers to see which is later.

contrib.url Used to automatically compare the version numbers of installed packages with
the newest available version on the repositories and update outdated packages
on the fly.

count.fields Counts the number of fields, as separated by sep, in each of the lines of file read.

data Loads specified data sets or lists the available data sets.

data.entry, dataentry, de, de.ncols,
de.restore, de.setup

Spreadsheet-like editors for entering or editing data.
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debugger Function to dump the evaluation environments (frames) and to examine
dumped frames.

demo User-friendly interface for running some demonstration R scripts. demo() gives
the list of available topics.

download.file Used to download a file from the Internet.

download.packages Used to automatically compare the version numbers of installed packages with
the newest available version on the repositories and update outdated packages
on the fly.

dump.frames Function to dump the evaluation environments (frames) and to examine
dumped frames.

edit Invokes an editor on an R object.

emacs Invokes the text editor emacs on an R object.

example Runs all the R code from the Examples part of R’s online help.

file.edit Edits one or more files in a text editor.

file_test Utility for shell-style file tests.

find Returns a character vector giving the names of all objects in the search list matching
a given value.

fix Invokes edit on x and assigns the new (edited) version of x in the user’s
workspace.

fixInNamespace Utility function to access and replace the nonexported functions in a namespace,
for use in developing packages with namespaces.

flush.console On the Mac OS X and Windows GUIs, ensures that the display of output in the
console is current, even if output buffering is on. (This does nothing except on
console-based versions of R.)

formatOL, formatUL Format unordered (itemize) and ordered (enumerate) lists.

getAnywhere Locates and returns all objects with a name matching its argument, whether
visible on the search path, registered as an S3 method, or in a namespace but not
exported.

getCRANmirrors Interacts with the user to choose a CRAN mirror.

getFromNamespace Utility function to access and replace the nonexported functions in a namespace,
for use in developing packages with namespaces.

getS3method Gets a method for an S3 generic, possibly from a namespace.

getTxtProgressBar Text progress bar in the R console.

glob2rx Changes wildcard (aka globbing) patterns into the corresponding regular expres-
sions (regexp).

head Returns the first or last parts of a vector, matrix, table, data frame, or function.
Since head() and tail() are generic functions, they may also have been
extended to other classes.

help The primary interface to R’s help system.

help.request Prompts users to check that they have done all that is expected of them before
sending a post to the R-help mailing list, provides a template for the post with
session information included, and optionally sends the email (on Unix systems).

utils | 667

R Reference



Function Description

help.search Allows for searching the help system for documentation matching a given char-
acter string in the (file) name, alias, title, concept, or keyword entries (or any
combination thereof), using either fuzzy matching or regular expression matching.
Names and titles of the matched help entries are displayed nicely formatted.

help.start Starts the hypertext (currently HTML) version of R’s online documentation.

history Loads or saves or displays the commands history.

index.search Used to search the indexes for help files, possibly under aliases.

install.packages Used to automatically compare version numbers of installed packages with the
newest available version on the repositories and update outdated packages on
the fly.

installed.packages Finds (or retrieves) details of all packages installed in the specified libraries.

is.relistable relist() is an S3 generic function with a few methods in order to allow easy
inversion of unlist(obj) when that is used with an object of (S3) class
"relistable".

limitedLabels Allows the user to browse directly on any of the currently active function calls and
is suitable as an error option. The expression options(error=recover) will
make this the error option.

loadhistory Loads or saves or displays the commands history.

localeToCharset Aims to find a suitable coding for the locale named, by default the current locale,
and if it is a UTF-8 locale, a suitable single-byte encoding.

ls.str, lsf.str ls.str and lsf.str are variations of ls applying str() to each matched
name.

make.packages.html Updates HTML documentation files.

make.socket With server = FALSE, attempts to open a client socket to the specified port
and host. With server = TRUE, listens on the specified port for a connection
and then returns a server socket. It is a good idea to use on.exit to ensure that
a socket is closed, as you get only 64 of them.

makeRweaveLatex CodeRunner These functions are handy for writing Sweave drivers and currently not docu-
mented. Look at the source code of the Sweave Latex driver (in this package) or
the HTML driver (in the R2HTML package from CRAN) to see how they can be used.

memory.limit Gets or sets the memory limit on Microsoft Windows platforms.

memory.size Checks the current memory usage on Microsoft Windows platforms.

menu Presents the user with a menu of choices labeled from 1 to the number of choices.
To exit without choosing an item, select 0.

methods Lists all available methods for an S3 generic function or all methods for a class.

mirror2html Functions helping to maintain CRAN, some of which may also be useful to ad-
ministrators of other repository networks.

modifyList Modifies a possibly nested list recursively by changing a subset of elements at
each level to match a second list.

new.packages Used to automatically compare the version numbers of installed packages with
the newest available version on the repositories and update outdated packages
on the fly.
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normalizePath Converts file paths to canonical form for the platform, to display them in a user-
understandable form.

nsl Interface to gethostbyname.

object.size Provides an estimate of the memory that is being used to store an R object.

old.packages Used to automatically compare the version numbers of installed packages with
the newest available version on the repositories and update outdated packages
on the fly.

package.skeleton Automates some of the setup for a new source package. It creates directories;
saves functions, data, and R code files to appropriate places; and creates skeleton
help files and a Read-and-delete-me file describing further steps in packaging.

packageDescription Parses and returns the DESCRIPTION file of a package.

packageStatus Summarizes information about installed packages and packages available at var-
ious repositories, and automatically upgrades outdated packages.

page Displays a representation of the object named by x in a pager via file.show.

person Creates a “person” object.

personList Creates a “personList” object.

pico Invokes a text editor on an R object.

prompt Facilitates the construction of files documenting R objects.

promptData Generates a shell of documentation for a data set.

promptPackage Generates a shell of documentation for an installed or source package.

read.DIF Reads a file in Data Interchange Format (DIF) and creates a data frame from it.
DIF is a format for data matrices such as single spreadsheets.

read.csv, read.csv2, read.delim,
read.delim2

Read a file in table format and create a data frame from it, with cases corresponding
to lines and variables to fields in the file.

read.fortran Reads fixed-format data files using FORTRAN-style format specifications.

read.fwf Reads a table of fixed-width-formatted data into a data.frame.

read.socket read.socket reads a string from the specified socket; write.socket writes
to the specified socket. There is very little error checking done by either.

read.table Reads a file in table format and creates a data frame from it, with cases corre-
sponding to lines and variables to fields in the file.

readCitationFile The CITATION file of R packages contains an annotated list of references that should
be used for citing the packages.

recover Allows the user to browse directly on any of the currently active function calls and
is suitable as an error option. The expression options(error=recover) will
make this the error option.

relist relist() is an S3 generic function with a few methods in order to allow easy
inversion of unlist(obj) when that is used with an object of (S3) class
"relistable".

remove.packages Removes installed packages/bundles and updates index information as necessary.

rtags Provides etags-like indexing capabilities for R code, using R’s own parser.

savehistory Loads or saves or displays the commands history.
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select.list Selects item(s) from a character vector.

sessionInfo Prints version information about R and attached or loaded packages.

setRepositories Interacts with the user to choose the package repositories to be used.

setTxtProgressBar Text progress bar in the R console.

stack Stacking vectors concatenates multiple vectors into a single vector along with a
factor indicating where each observation originated; unstacking reverses this.

str Compactly displays the internal structure of an R object; the idea is to give rea-
sonable output for any R object.

strOptions strOptions() is a convenience function for setting options(str = .).

summaryRprof Summarizes the output of the Rprof function to show the amount of time used
by different R functions.

tail Returns the first or last parts of a vector, matrix, table, data frame, or function.
Since head() and tail() are generic functions, they may also have been
extended to other classes.

timestamp Writes a timestamp (or other message) into the history and echoes it to the console.

toBibtex Converts R objects to character vectors with BibTeX markup.

toLatex Converts R objects to character vectors with LaTeX markup.

txtProgressBar Text progress bar in the R console.

type.convert Converts a character vector to logical, integer, numeric, complex, or factor, as
appropriate.

unstack Stacking vectors concatenates multiple vectors into a single vector along with a
factor indicating where each observation originated; unstacking reverses this.

unzip Extracts files from or lists a zip archive.

update.packageStatus Summarizes information about installed packages and packages available at var-
ious repositories and automatically upgrades outdated packages.

update.packages Used to automatically compare the version numbers of installed packages with
the newest available version on the repositories and update outdated packages
on the fly.

upgrade Summarizes information about installed packages and packages available at var-
ious repositories and automatically upgrades outdated packages.

url.show Extension of file.show to display text files from a remote server.

vi Invokes a text editor on an R object.

vignette Views a specified vignette or lists the available ones.

write.csv, write.csv2 Convenience wrappers to write.table for producing CSV files from an R object.

write.socket read.socket reads a string from the specified socket; write.socket writes
to the specified socket. There is very little error checking done by either.

write.table Prints its required argument x (after converting it to a data frame if it is not one,
nor a matrix) to a file or connection.

wsbrowser The browseEnv function opens a browser with list of objects currently in the
sys.frame() environment.
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xedit Invokes the xedit editor on an R object.

xemacs Invokes the xemacs editor on an R object.

zip.file.extract Extracts the file named file from the zip archive, if possible, and writes it in a
temporary location.
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Symbols
# (pound sign), comments, 21
$ (dollar sign) operator, 27
%do% operator, 75
%dopar% operator, 75
() parentheses, expressions, 70
(OLS) ordinary least squares regression,

412
* (asterisk), formulas, 93
+ (plus sign)

formulas, 93
incomplete line, 12
operator, 28

-Inf value, 56
...

lattice function argument, 313
object type, 85

.GlobalEnv function, 103
: operator, 87
<<- operator, 118
= (equals sign), assignment operator, 23
> (greater-than sign), prompt, 12
[] square brackets, bracket notation for

subsets, 188
^ (caret), formulas, 93
`` (backquotes)

help, 35

symbols, 65
{} curly braces, expressions, 70
| (vertical bar), formulas, 93
~ (tilde), formulas, 93
”” (double quotes), character objects, 64

A
abbreviate, lattice axes argument, 315
abline function, 260, 415
acf function, 221, 495
Actual Technologies, ODBC drivers, 158
ada function, 481
add.line trellis parameter group, 317
add.text trellis parameter group, 317
adding objects to environments, 107
aesthetic properties, 330
Affymetrix, 526
aggregate function, 192
aggregating tables, 193
alignment and spacing in graphics, 252
alist function, 116
allow.multiple, lattice function argument,

312
AnnotatedDataFrame, 543
annotation, 248
anonymous functions, 114
ANOVA

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.
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about, 378–381
function, 407
test design, 400

Ansari-Bradley two-sample test, 388
any, object type, 85
apriori function, 485
ar function, 496
ARFF file format, 155
arguments

about, 21
chart functions, 247
common distribution-type arguments,

366
functions, 52, 111
functions as, 113–117

anonymous functions, 114
properties, 115

named order and name arguments,
117

arima function, 498
arrays

about, 24, 89
functions, 180

as.table, trellis.skeleton argument, 313
aspect, lattice function argument, 312
AssayData, 543
assign function, 102
assignment operators

<-, 22
= (equals sign), 23

assignments
about, 69
objects, 54

assocplot function, 232
assumptions, least squares regression,

412
asterisk (*), formulas, 93
at, lattice axes argument, 314
attach function, 103, 107
attributes, 96–100
auto.key, lattice function argument, 312
autocorrelation

acf function, 221
afc function, 495
durbin.watson function, 413

available.packages command, 44
axes in graphics, 252
axis function, 263

axis, trellis.skeleton argument, 314
axis.components trellis parameter group,

318
axis.line trellis parameter group, 317
axis.text trellis parameter group, 317
axs, lattice axes argument, 315

B
background trellis parameter group, 317
backquotes (``)

help, 35
symbols, 65

bagging
classification tree models, 480
regression, 446

bar charts, 222–226, 271, 276–279
barplot function, 222, 271
bartlett.test function, 377
base package, 573–596

about, 39
data sets, 596
functions, 573–596

baseenv function, 103
basic classes, list of, 134
basis functions, 450, 462
batch mode, 13
Bernoulli trial, 389
beta probability distribution function,

367
between, trellis.skeleton argument, 313
bias units, 456
bigglm function, 423, 517
biglm function, 412
binaries (see byte code compiler; high-

performance R binaries)
binary operators, 66
binning data, 185
binom.test function, 390
binomial

probability distribution function, 367
tests, 389

Bioconductor, 525–547
about, 41
data structures, 541–546

AnnotatedDataFrame, 543
AssayData, 543
eSet, 541
MIAME, 544
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other classes, 545
example, 525–537

analyzing expression data, 533–
537

loading from GEO, 530
loading raw expression data, 526–

529
matching phenotype data, 532

packages, 537
vignettes, 546

birthday probability distribution function,
367

bivariate trellis plots, 297–305
box plots, 300
quantile-quantile plots, 305
scatter plot matrices, 304
scatter plots, 297

blackboost function, 447
body function, 116
boosting

classification tree models, 481
regression, 447

boot
function, 361
package, 596–605

data sets, 598–605
functions, 596–598

bootstrap aggregation, 446
bootstrapping, 361
box function, 264
box plots, 242, 300
box.3d trellis parameter group, 318
box.dot trellis parameter group, 317
box.ratio, lattice function argument, 312
box.rectangle trellis parameter group,

317
box.umbrella trellis parameter group,

317
brackets

bracket notation, 188
single and double bracket operators,

515
break keyword, 72
built-in functions, 508
builtin object type, 85
byte code compiler, 518–520

inspecting byte code, 519
just-in-time compilation, 520

manual compilation, 518
bytecode objects, 84

C
c function, 86, 141
c(...) function, 20
call stack, 104
caret (^), formulas, 93
CART (classification and regression trees),

439
cast

about, 202
using, 204

categorical data, 227–232
Cauchy probability distribution function,

367
cbind function, 174
ccf function, 496
cdplot function, 228
cex function, 315
cex, lattice axes argument, 314
channels, RODBC, 162, 167
character

object type, 84
vectors, 20, 64

charts (see graphics)
chi-squared probability distribution

function, 367
chisq.test function, 392
Christian Werner Software, ODBC

drivers, 159
class attribute, 97
class package, 39, 605
classes, 129–135

(see also objects)
about, 27, 99
basic classes, 134
coercion, 131
defined, 83
defining, 129
methods, 131–134
objects, 130, 131
old-school OOP (S3), 135
slots, 130
using S3 classes in S4 classes, 137

classification and regression trees (CART),
439

classification models, 467–484

Index | 677



linear classification models, 467–476
LDA, 472–476
log-linear models, 476
logistic regression, 467–472

machine learning algorithms for
classification, 477–484

k nearest neighbors, 477
neural networks, 482
random forests, 483
SVMs, 483
tree models, 478–482

cleaning data, 205
cleaning up memory, 516
clip trellis parameter group, 317
closure object type, 85
cloud

function, 271, 272, 308
Hadoop, 556

cluster of servers, Hadoop, 553
cluster package, 39

data sets, 607
functions, 606

clustering, 490–494
algorithms, 491
distance measures, 490

cmpfun function, 518
code style standards, 80
codetools package, 39, 607
coef function, 405
coef.glmnet function, 426
coercion

about, 56
classes, 131

col, lattice axes argument, 314
colors in graphics, 252
command line

about, 11
batch mode, 13
editing with, 13
entering data with, 141
finding and installing packages, 44

comment attribute, 97
comments, 21
comparing

means, 372–376
means across more than two groups

(ANOVA), 378–381
more than two means, 387

paired data, 376
two means, 385
two populations, 377
variances, 387

compiler
package, 39
R byte code compiler, 518–520

complex numbers
about, 64
object type, 84

composition, 122
compound

built-in types, 134
objects, 83

Comprehensive R Archive Network
(CRAN), 41

conditional
density, 228
statements, 71

confint function, 407
connections, 96
console (see R console)
constants, 63–66

character vectors, 64
numeric vectors, 63
symbols, 65

contingency tables, 229, 390
continuous data, 371–388

non-parametric tests, 385–388
comparing more than two means,

387
comparing two means, 385
comparing variances, 387
difference in scale parameters, 388

normal distribution-based tests, 372–
385

comparing means, 372–376
comparing means across more than

two groups (ANOVA),
378–381

comparing paired data, 376
comparing two populations, 377
correlation tests, 384
pairwise t-tests between multiple

groups, 381
testing for normality, 382
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testing if a data vector came from an
arbitrary distribution,
382

testing if two data vectors came
from the same
distribution, 383

contour function, 238, 271
contourplot function, 271, 272, 307
control structures, 71–75

conditional statements, 71
loops, 72–75

coordinates, 331
cor function, 355
cor.test function, 384
correlation

about, 354
tests, 384

correlogram, 221
counting values, 194–196
covariance

about, 354
function, 356

cox.zph function, 433
coxph function, 432
CRAN (Comprehensive R Archive

Network), 41
cross-correlation, 496
CSV files, 149
curly braces {}, expressions, 70
curve function, 259
cut function, 186, 302

D
daisy function, 491
data, 141–172, 173–208

(see also exporting data; importing)
binning, 185
categorical data, 227–232
cleaning, 205
combining data sets, 173–179

merging data by common fields,
177

pasting together data structures,
174

continuous data, 371–388
discrete data, 388–396
duplicates, 205
entering, 141–145

with commands, 141
edit GUI, 142

exporting, 155
expression data, 533–537
Hadoop, 172
importing, 146–155

databases, 156–172
other software, 154
text files, 146–154

lattice function argument, 312
reshaping, 196–205
saving, 145
sorting, 206–208
subsets, 187–190

bracket notation, 188
random sampling, 189
subset function, 188

summarizing functions, 190–205
aggregating tables with rowsum,

193
counting values, 194–196
reshaping functions, 196–205
tapply function, 190–192

tabular data, 390–396
three-dimensional data, 232
time series, 495–500

about, 94
autocorrelation functions, 495
models, 496–500
OOP, 122
plotting, 220

transformations, 179–184
applying a function to each element

of an object, 180–184
reassigning variables, 179
transform function, 179

Data Direct, ODBC drivers, 158
data frames

about, 26, 91
reshaping, 197–202
transposing, 197

data mining, 485
data sets

base package, 596
boot package, 598–605
cluster package, 607
datasets package, 39
grDevices package, 612
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lattice package, 621
MASS package, 624–630
rpart package, 639
stats package, 658
survival package, 660
tools package, 664

data structures, 75–79
about, 24–27
Bioconductor, 541–546

AnnotatedDataFrame, 543
AssayData, 543
eSet, 541
MIAME, 544
other classes, 545

indexing by integer vector, 76
indexing by logical vector, 78
indexing by name, 79
operators, 75
pasting together, 174

data types, trellis functions, 271
data.dump file format, 155
data.frame function, 142
databases

importing, 156–172
DBI, 167–171
export then import, 156
packages, 156
RODBC, 157–167
TSBDI, 172

querying large data sets, 516
dates, 95
dbClearResult function, 171
dbConnect function, 168
dbDisconnect function, 171
dbExistsTable function, 171
DBF file format, 155
dbGetException function, 171
dbGetInfo function, 169
dbGetQuery function, 170
DBI, 167–171

about, 156
cleaning up, 171
getting information, 168
opening a connection, 168
querying, 170

dbListConnections function, 169
dbListFields function, 170
dbListTables function, 169

dbReadTable function, 171
dbRemoveTable function, 171
dbSendQuery function, 170
dbUnloadDriver function, 171
dbWriteTable function, 171
default.scales, lattice function argument,

313
delayedAssign function, 102
delimited files, importing, 146–150
delimiters, 146
dendrogram, 237
density

function, 271
plots, 285

densityplot function, 271
deparse function, 61
Depends, 47
descriptive models, 28
detach function, 103
dev.off function, 247
deviance function, 409
devtools library, 45
dim attribute, 97
dimnames attribute, 97
discrete data, 388–396

binomial tests, 389
non-parametric tabular data tests, 396
proportion tests, 388
tabular data tests, 390–395

dist function, 490
distance measures, clustering, 490
distributions

common distribution-type arguments,
366

distribution function families, 366
normal distribution, 363
plotting, 239

dollar sign ($) operator, 27
doMC package, 572
dot plots, 280
dot.line trellis parameter group, 317
dot.symbol trellis parameter group, 317
dotchart function, 271
dotplot function, 34, 271, 280
double object type, 84
double quotes (””), character objects, 64
download.packages command, 44
draw, lattice axes argument, 314
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drivers, ODBC, 158
drop.unused.levels, lattice function

argument, 313
dumpMethod function, 133
dumpMethods function, 133
duplicates, data, 205
durbin.watson function, 413

E
earth function, 450
Easysoft, ODBC drivers, 158
eclat function, 488
edit function, 142
editing, command-line, 13
effects function, 408
elasticnet, 419
elements

applying a function to each element of
an object, 180–184

vector, 22
Emacs, 17
empty environment, 104
emptyenv function, 103
enableJIT function, 520
encapsulation, 122
enet function, 420
environments, 101–110

about, 102
exceptions, 108–110

catching errors, 109
signaling errors, 108

functions, 104–108
adding objects to, 107
call stack, 104
environment function, 103
evaluating, 105

global environment, 103
object type, 85
environment objects in place of vectors,

515
side effects, 118
symbols, 52, 101

Epi Info file format, 155
equals sign (=), assignment operator, 23
Erlang’s B formula, 508
errors

catching errors, 109
signaling errors, 108

eSet, 541
ESS (Emacs Speaks Statistics), 17
estimators, bootstrapping, 361
eval.parent function, 106
evalq function, 106
evaluating functions in different

environments, 105
Excel

about, 14
charts, 30
text files, 149

exceptions, 108–110
catching errors, 109
signaling errors, 108

exists function, 102
existsMethod function, 133
experimental design example, 397
exponential probability distribution

function, 367
exporting data

about, 155
export then import, 156

expressions, 69
(see also functions; operators;
operations)
about, 51, 69
analyzing data from, 533–537
character vectors, 20
object type, 85
R interpreter, 58

externalptr object type, 86

F
F-distribution probability distribution

function, 367
faceting options, 347
facets, 331
factanal function, 360
factors

about, 89
analysis, 360

Fibonacci sequence, 20
fields, merging data by common fields,

177
findFunction function, 133
findMethod function, 134
fisher.test function, 391
fitted function, 406
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fix function, 142
fixed-width files, importing, 150
Fligner-Killeen (median) test, 387
font

lattice axes argument, 314
specifying, 252

fontface, lattice axes argument, 314
fontfamily, lattice axes argument, 314
fontsize trellis parameter group, 317
foreach loops, 74
foreign package, 39, 607
forests

random forests for classification, 483
random forests for regression, 448

formals function, 116
format, lattice axes argument, 315
formula function, 405
formulas, 28, 92
frames, defined, 101
Friedman rank sum test, 396
Friedman’s supersmoother function, 459
from.dfs function, 562
functions, 111–119

about, 21, 52, 84, 111
applying to

arrays, 180
lists and vectors, 182

arguments
about, 111
functions as, 113–117
named order and name arguments,

117
base package, 573–596
big data sets, 517
boot package, 596–598
built-in functions, 508
built-in types, 134
class package, 605
cluster package, 606
coercion, 56
environments, 104–108

adding objects to, 107
call stack, 104
evaluating, 105

graphics functions, 257–265
graphics packages, 612–615
grDevices package, 608–612

helper functions for specifying linear
regression models, 404

KernSmooth package, 615
lattice, 270, 272–311, 312, 322
lattice package, 616–621
lm function, 410–415
MASS package, 621–624
methods package, 630–637
nnet package, 638
R interpreter, 58
return values, 113
rpart package, 638
side effects, 118

changes to other environments,
118

graphics, 119
I/O, 119

spatial package, 639
splines package, 640
stats package, 641–658
stats4 package, 658
summarizing functions, 190–205
survival package, 659
tools package, 662
utils package, 664–671

G
gam function, 462
gamma probability distribution function,

367
gc function, 505, 516
generalized

additive models, 462
linear models (GLMs), 421–424

generic functions
about, 27, 125
coercion, 56
S3 classes, 136

GEO, loading data from, 530
geometric

functions, 344
objects, 330
probability distribution function, 367

get function, 102
getCompilerOption function, 519
getMethod function, 133
ggplot2, 325–347

about, 325–328
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example: Medicare data, 333–342
grammar, 328
qplot function, 342
using, 343–347

glm function, 422, 469
glmnet package, 424
global environment, 103
globalenv function, 103
graphics, 213–265, 325–347

(see also lattice graphics)
about, 30
bar charts, 222–226
basic functions, 257–265

abline function, 260
axis function, 263
box function, 264
curve function, 259
legend function, 261
lines function, 258
mtext function, 264
points function, 258
polygon function, 261
segments function, 261
text function, 259
title function, 263
trans3d function, 265

box plots, 242
categorical data, 227–232
common arguments to chart functions,

247
distributions, 239
ggplot2, 325–347

about, 325–328
example: Medicare data, 333–342
grammar, 328
qplot function, 342
using, 343–347

graphical parameters, 247–257
annotation, 248
axes, 252
colors, 252
line properties in graphics, 252
list of, 253–257
margins, 248
multiple plots, 249
points, 252
text properties, 251

graphics devices, 246

package, 39, 612–615
pie charts, 226
scatter plots, 214–220
side effects, 119
three-dimensional data, 232
time series, 220

grDevices package, 608–612
about, 39
data sets, 612
functions, 608–612

greater-than sign (>), prompt, 12
grid package, 39, 615
grid.pars trellis parameter group, 317
groups

lattice function argument, 312
Trellis, 278

GUIs (see R GUIs)

H
Hadoop, 549–571

about, 172
cluster of servers, 553
distributed data storage, 552
Java framework, 553
Map/Reduce, 550
RHadoop, 554–568

example application, 559–566
installing locally, 555–559
rmr function, 566

streaming, 568–570
HAMD (Hamilton Rating Scale for

Depression), 397
hasMethod function, 133
heatmap function, 237
help system, 35
heteroscedasticity, 413
high-performance R binaries, 520–524

Linux and Unix, 523
Mac OS X, 524
Revolution R, 520
Windows, 521

histograms
about, 282
function, 271
plotting, 239

horizontal, lattice function argument,
312
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hypergeometric probability distribution
function, 368

I
I/O, side effects, 119
IDE (Integrated Development

Environment), RStudio, 15
identify function, 216
image function, 236, 271
immutable objects, 54
importing, 146–155

databases, 156–172
DBI, 167–171
export then import, 156
packages, 156
RODBC, 157–167
TSBDI, 172

from GEO, 530
other software, 154
raw expression data, 526–529
text files, 146–154

delimited files, 146–150
fixed-width files, 150
other functions to parse data, 152

index.cond, trellis.skeleton argument,
314

indexing
by element name, 79
by integer vector, 76
by logical vector, 78

indices, vectors, 22
Inf value, 56
influence function, 407
inheritance, 122
inspect function, 489
install.packages, 44
installation, 3–6

Linux and Unix, 5
Mac OS X, 5
packages, 42–45
RExcel, 14
RHadoop, 555–559
RODBC, 157
Windows, 4

installed.packages command, 44
integers

factors, 90
object type, 84

R expressions, 64
vectors, indexing by, 76

Integrated Development Environment
(IDE), RStudio, 15

internal objects, about, 84
interpreter, 11, 57
interquartile range, 242
IQR function, 352
isGeneric function, 133
isGroup function, 133
iterative algorithms, 507
iterators, 74

J
Java framework, Hadoop, 553
just-in-time compilation, 520

K
k nearest neighbors, 477
Kendall’s tau, 354
kernel smoothing, 436
KernSmooth package, 39, 615
key, trellis.skeleton argument, 313
kmeans function, 491
knn function, 477
Kolmogorov-Smirnov test, 382
Kruskal-Wallis rank sum test, 387
ks.test function, 383
ksvm, 465

L
labeled.array function, 510
labels, lattice axes argument, 314
language, object type, 85
lars function, 419
lasso, 418
lattice graphics, 267–323

about, 267–272
customizing, 312–322

axes, 314
function arguments, 312
parameters, 315–319
plot.trellis, 319
simpleKey, 321
strip.default, 320
trellis.skeleton, 313

functions, 272–311, 322
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about, 270
bivariate trellis plots, 297–305
low-level graphics functions, 322
panel functions, 323
rfs function, 310
trivariate trellis plots, 305–310
univariate trellis plots, 273–296

lattice package, 616–621
about, 39
data sets, 621
functions, 616–621

lattice.options, lattice function argument,
313

layout, trellis.skeleton argument, 313
layout.heights trellis parameter group,

318
layout.widths trellis parameter group,

318
LazyData, 46
LazyLoad, 46
LDA (Linear discriminant analysis), 472–

476
least angle regression, 418
least squares regression

assumptions, 412
nonlinear least squares, 427

legend
function, 261
trellis.skeleton argument, 313

levelplot function, 271, 272, 305
levels, factors, 89, 97
libraries

devtools library, 45
maptree library, 479
plyr library, 183
reshape library, 202
RODBC library, 166
survival library, 428

library() command, 40
limits, lattice axes argument, 314
line properties in graphics, 252
linear classification models, 467–476

LDA, 472–476
log-linear models, 476
logistic regression, 467–472

Linear discriminant analysis (LDA), 472–
476

linear models, 401–410

analyzing the fit, 407
fitting a model, 403
GLMs, 421–424
helper functions for specifying the

model, 404
predicting values, 406
refining the model, 410
viewing, 404

linear predictors, 421
lines function, 258
Linux

data editor, 144
high-performance R binaries, 523
installing R, 5
loading packages, 40
R GUI, 9

listings of packages, 38
lists

about, 25
applying functions to, 182
object type, 84
objects, 87

lm function, 29, 380, 403, 410–415, 411,
469

assumptions of least squares
regression, 412

lm, lqs and rim, 415
resistant regression, 414
robust regression, 414

lm.ridge function, 418
lmRob function, 415
loading, 146

(see also importing)
function, 145
objects, 145
packages, 40

local function, 106
locator function, 216
locfit function, 437
locpoly function, 436
loess function, 435
log, lattice axes argument, 315
log-linear models, 476
log-normal probability distribution

function, 368
logical

object type, 84
vectors, 23
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logistic
probability distribution function, 368
regression, 467–472

loglm function, 476
lookup performance, 509–515

environment objects in place of vectors,
515

R objects, 510–515
loops, 72–75
lqs, 415

M
Mac OS X

data editor, 142
finding and installing packages, 43
high-performance R binaries, 524
installing R, 5
loading packages, 40
R GUI, 8
SQLite ODBC example, 159

machine learning algorithms
clustering, 490–494

algorithms, 491
distance measures, 490

market basket analysis, 485–490
machine learning algorithms for

classification, 477–484
k nearest neighbors, 477
neural networks, 482
random forests, 483
SVMs, 483
tree models, 478–482

bagging, 480
boosting, 481

machine learning algorithms for
regression, 437–465

generalized additive models, 462
MARS, 450–455
neural networks, 455–459
projection pursuit regression, 459–

461
regression tree models, 439–450

bagging, 446
boosting, 447
patient rule induction method, 446
random forests, 448
recursive partitioning trees, 439–

446

SVMs, 464
main, trellis.skeleton argument, 313
make.groups function, 187, 402
manual compilation, 518
Map/Reduce, Hadoop, 550
mappings, 330
mapply function, 183
mapreduce function, 561, 566
maptree library, 479
margins, 248
market basket analysis, 485–490
MARS, 450–455
MASS package, 621–630

about, 39
data sets, 624–630
functions, 621–624

matplot function, 218
matrices

about, 88
reshaping, 197–202
scatter plot matrices, 304
transposing, 197

max function, 351
MDA (mixture discriminant analysis),

475
mean function, 351
means

comparing, 372–376
comparing means across more than

two groups (ANOVA), 378–
381

comparing two means, 385
Medicare data example, 333–342
medoids, 493
melt

about, 202
using, 203

melt.data.frame function, 203
mem.limits function, 517
memory usage

cleaning up, 516
measuring R performance, 505–507
preallocating, 516

memory.profile function, 506
merging data by common data fields, 177
message function, 109
metadata, 533
methods, 131–134
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about, 27
classes, 132
coercion, 131
managing, 133
old-school OOP (S3), 136, 137
package, 39, 630–637

mgcv package, 39, 637
MIAME (Minimum Information About a

Microarray Experiment), 544
Microsoft Excel

about, 14
charts, 30
text files, 149

Microsoft Windows
data editor, 142
devices, 246
finding and installing packages, 42
high-performance R binaries, 521
installing R, 4
loading packages, 40
R GUI, 8
SQLite ODBC example, 161

Microsoft, ODBC drivers, 158
min function, 351
Minimum Information About a

Microarray Experiment
(MIAME), 544

Minitab file format, 155
minlength, lattice axes argument, 315
mixture discriminant analysis (MDA),

475
models, 28–30

(see also classification models; linear
classification models; linear models;
non-linear models; regression model;
regression tree models)
log-linear models, 476
survival models, 428–433
time series models, 496–500

mosaicplot function, 229
mtext function, 264
multicollinearity, 417
multinom function, 470
multinomial distribution probability

distribution function, 368
multiple inheritance, 123
MySQL

ODBC drivers, 158

text files, 150

N
NA value, 55
named arguments, 117
names

attribute, 97
indexing by element name, 79
lists, 87

namespaces, trellis, 315
NaN value, 56
ncvTest function, 413
negative binomial probability distribution

function, 368
neural networks, 455–459, 482
new.env function, 103
new.packages command, 44
next command, 72
NHTSA (National Highway Traffic Safety

Administration), 280
nlme package, 39, 637
nls function, 427
nnet

function, 457
package, 39, 637

non-parametric tests, 385–388
comparing

more than two means, 387
two means, 385
variances, 387

difference in scale parameters, 388
tabular data, 396

nonlinear models, 420–428
glmnet package, 424
GLMs, 421–424
nonlinear least squares, 427

normal distribution, 363
normal distribution-based tests, 372–385

comparing
means, 372–376
means across more than two groups

(ANOVA), 378–381
paired data, 376
two populations, 377

correlation tests, 384
pairwise t-tests between multiple

groups, 381
testing
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for normality, 382
if a data vector came from an

arbitrary distribution,
382

if two data vectors came from the
same distribution, 383

normal probability distribution function,
368

normality, testing for, 382
NULL

object type, 85
value, 56

numeric vectors, 63

O
object.size function, 506
objects, 83–100

(see also classes)
about, 27, 52, 55
adding to environments, 107
AnnotatedDataFrame, 543
applying a function to each element,

180–184
arrays, 89
AssayData, 543
assignment statements, 54
attributes, 96–100
combining with grouping variable,

187
connections, 96
data frames, 91
dates and times, 95
environment objects in place of vectors,

515
factors, 89
formulas, 92
function, 102
geometric objects, 330
lists, 87
lookup performance, 510–515
matrices, 88
primitive object types, 83–86
saving and loading, 145
shingles, 95
time series, 94
vectors, 86

Octave file format, 155
ODBC (see RODBC)

odbcClose function, 167
odbcCloseAll function, 167
odbcColumns function, 167
odbcConnect function, 162
odbcFetchResults function, 167
odbcGetErrMsg function, 167
odbcGetInfo function, 163
odbcPrimaryKeys function, 167
odbcQuery function, 167
odbcTables function, 167
old.packages command, 44
OOP (object-oriented programming),

121–137
about, 122
classes, 129–135

basic classes, 134
coercion, 131
defining, 129
methods, 131–134
objects, 130, 131
slots, 130

example, 123–128
old-school OOP (S3), 135–137

classes, 135, 137
methods, 136, 137

OpenLink Software, ODBC drivers, 159
operations, 19

(see also functions)
operators, 66–69

assignments, 69
data structures, 75
examples of, 21
order of operations, 67

optimization, 503–524
high-performance R binaries, 520–524

Linux and Unix, 523
Mac OS X, 524
Revolution R, 520
Windows, 521

measuring R performance, 503–507
memory usage, 505–507
profiling, 504, 506
timing, 503

R byte code compiler, 518–520
inspecting byte code, 519
just-in-time compilation, 520
manual compilation, 518

R code, 507–517
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cleaning up memory, 516
databases to query large data sets,

516
functions for big data sets, 517
lookup performance, 509–515
preallocating memory, 516
vector operations, 507

Oracle, ODBC drivers, 158
order

arguments, 117
function, 207
of operations, 67

ordinary least squares (OLS) regression,
412

OS X (see Mac OS X)
outer, lattice function argument, 312

P
pacf function, 495
package management systems, installing

R, 5
package.skeleton function, 45
packages, 37–47

about, 37
base package, 573–596

data sets, 596
functions, 573–596

Bioconductor, 537
boot package, 596–605

data sets, 598–605
functions, 596–598

class package, 605
cluster package, 606

data sets, 607
functions, 606

codetools package, 607
custom packages, 45–47

building, 47
creating, 45

DBI, 167–171
foreign package, 607
graphics package, 612–615
grDevices package, 608–612

data sets, 612
functions, 608–612

grid package, 615
importing databases, 156
KernSmooth package, 615

lattice package, 616–621
data sets, 621
functions, 616–621

listings of, 38
loading, 40
MASS package, 621–630

data sets, 624–630
functions, 621–624

methods package, 630–637
mgcv package, 637
nlme package, 637
nnet package, 637
repositories, 41–45

finding and installing packages, 42–
45

Web, 42
rpart package, 638

data sets, 639
functions, 638

spatial package, 639
splines package, 640
stats package, 641–658

data set, 658
functions, 641–658

stats4 package, 658
survival package, 658–662

data sets, 660
functions, 659

tcltk package, 662
tools package, 662

data sets, 664
functions, 662

utils package, 664–671
page, trellis.skeleton argument, 313
pairlists object type, 84
pairs function, 271
pairwise t-tests between multiple groups,

381
pam function, 493
panel functions

about, 268
custom, 272

panel, lattice function argument, 312
par function, 248, 253, 315
par.main.text trellis parameter group,

318
par.settings, trellis.skeleton argument,

314
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par.strip.text, trellis.skeleton argument,
313

par.sub.text trellis parameter group, 318
par.xlab.text trellis parameter group, 318
par.ylab.text trellis parameter group, 318
par.zlab.text trellis parameter group, 318
parallel

computing, 549
package, 39

parameters
difference in scale parameters, 388
graphical, 253–257
lattice graphics, 315–319

parent.env function, 103
parent.frame function, 105
parentheses (), expressions, 70
partial least square regression, 420
paste function, 174
patient rule induction method (PRIM),

446
pcr function, 420
Pearson correlation statistic, 354
performance (see optimization)
Perl

reprocessing data files, 151
translating files, 274

persp function, 234, 271
pie charts, 226
piecewise linear functions, 450
plot function, 214, 220, 409
plot.args, trellis.skeleton argument, 314
plot.density function, 271
plot.earth function, 454
plot.glmnet function, 427
plot.polygon trellis parameter group, 317
plot.symbol trellis parameter group, 317
plot.trellis, 319
plotcp function, 444
plotmo function, 454
plotting functions, 272–311

bivariate trellis plots, 297–305
box plots, 300
quantile-quantile plots, 305
scatter plot matrices, 304
scatter plots, 297

rfs function, 310
trivariate trellis plots, 305–310

cloud plots, 308

contour plots, 307
level plots, 305
wire-frame plots, 310

univariate trellis plots, 273–296
bar charts, 276–279
density plots, 285
dot plots, 280
histograms, 282
quantile-quantile plots, 288–296
strip plots, 286

plsr function, 420
plus sign (+)

formulas, 93
incomplete line, 12
operator, 28

plyr library, 183
png function, 247
pnorm function, 363
points

function, 258
in graphics, 252

Poisson probability distribution function,
368

polr function, 472
poly function, 404
polygon function, 261
polymorphism, 122
polynomial surfaces, fitting, 435
position functions, 347
positional adjustments, 331
POSIXct, 95
POSIXlt, 95
PostgreSQL, ODBC drivers, 158
pound sign (#), comments, 21
power tests, 397–400

ANOVA test design, 400
experimental design example, 397
proportion test design, 398
t-test design, 398

power.anova.test function, 400
power.prop.test function, 398
power.t.test function, 398
ppr function, 459
prcomp function, 357
preallocating memory, 516
predict function, 406, 498
predictive models, 28
prepanel, lattice function argument, 312
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PRIM (patient rule induction method),
446

primitive
functions, 59
object types, 83–86

principal components
analysis, 357–360
regression, 420

princomp function, 358
printcp function, 479
probability distributions, 363–369

common distribution-type arguments,
366

distribution function families, 366
normal distribution, 363

profiling
measuring R performance, 504
memory usage, 506

projection pursuit regression, 459–461
promise object type, 85
prompt, 12
prop.test function, 388
properties

functions as arguments, 115
text, 251

proportion tests
about, 388
design, 398

Q
QDA (quadratic discriminant analysis),

473
qnorm function, 364
qplot function, 342
qq function, 271
qqmath function, 271, 290
qqnorm function, 241, 271
qqplot function, 242, 271
quantile function, 352
quantile-quantile plots

about, 241
bivariate, 305
univariate, 288–296

quasi function, 423
querying, DBI, 170

R
R console

about, 11
finding and installing packages, 43

R data editor versus spreadsheets, 144
R GUIs, 7–11

Linux and Unix, 9
Mac OS X, 8
Windows, 8

R language, 51–61
built-in types, 134
coercion, 56
example, 59
expressions, 51
functions, 52
interpreter, 57
objects

about, 52, 55, 83
assignment statements, 54

special values, 55
symbols, 52

R Productivity Environment, 11
R Studio, 11
R-Forge, 42
random

forests
classification, 483
function, 449
regression, 448

sampling, 189
range function, 352
rApache, 17
raw object type, 84
rbind function, 174
rbsurv function, 534
Rcmdr, 10
read.csv function, 148
read.delim function, 148
read.fwf function, 150
read.table function, 146
ReadAffy function, 526
readLines function, 152
reassigning variables, 179
recursive partitioning trees, 439–446
regions trellis parameter group, 317
regression model, 401–465

linear model example, 401–410
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analyzing the fit, 407
fitting a model, 403
helper functions for specifying the

model, 404
predicting values, 406
refining the model, 410
viewing, 404

lm function, 410–415
assumptions of least squares

regression, 412
lm, lqs and rim, 415
resistant regression, 414
robust regression, 414

logistic regression, 467–472
machine learning algorithms for

regression, 437–465
generalized additive models, 462
MARS, 450–455
neural networks, 455–459
projection pursuit regression, 459–

461
regression tree models, 439–450
SVMs, 464

nonlinear models, 420–428
glmnet package, 424
GLMs, 421–424
nonlinear least squares, 427

smoothing, 433–437
fitting polynomial surfaces, 435
kernel smoothing, 436
splines, 433

subset selection and shrinkage
methods, 416–420

elasticnet, 419
lasso and least angle regression,

418
principal components regression

and partial least square
regression, 420

ridge regression, 417
stepwise variable selection, 416

survival models, 428–433
regression tree models, 439–450

bagging, 446
boosting, 447
patient rule induction method, 446
random forests, 448
recursive partitioning trees, 439–446

relation, lattice axes argument, 314
relationships, variables, 28
remove function, 102
remove.packages command, 44
removeGeneric function, 133
removeMethods function, 133
repositories, 41–45

finding and installing packages, 42–45
Web, 42

reshaping data, 196–205
residuals

about, 410
function, 406

resistant regression, 414
retracemen function, 507
return values, functions, 113
Revolution R, 520
RExcel, 14
rfs function, 310
RGB (red/green/blue) components, 252
RHadoop, 554–568

example application, 559–566
installing locally, 555–559
rmr function, 566

ridge functions, 459
ridge regression, 417
rim, 415
Rkward, 10
rlm function, 414
rm function, 103, 517
rmr function, 566
rnorm function, 365
robust regression, 414
RODBC, 157–167

about, 156
installation, 157–161
library, 166
using, 162–167

rot, lattice axes argument, 315
rotation, in graphics, 252
row.names attribute, 97
rowsum function, 193
rpart

function, 440
model, 480
package

about, 39, 638
data sets, 639
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functions, 638
Rprof function, 504
Rprofmem function, 506
RScript command, 14
Rserve, 17
Rtools, 521

S
S3 binary file format, 155
S4 object type, 84
sampling

function, 438
random sampling, 189

San Francisco real estate prices data set,
294

sapply function, 113, 182
SAS Permanent Dataset file format, 155
SAS XPORT File file format, 155
save function, 107, 145
save.image function, 145
saving objects, 145
scale

functions, 346
parameters, difference in, 388

scales
about, 331
lattice function argument, 312

scan function, 153
scatter plots

bivariate trellis plots, 297
lattice, 269
matrices, 304
using, 214–220

scripts, executing, 14
search function, 102
searchpaths function, 102
segments function, 261
segue package, 571
selectMethod function, 133
seq function, 87
servers

Hadoop, 553
Rserve, 17

setAs function, 131
setClass function, 129
setClassUnion function, 130
setCompilerOptions function, 519
setGeneric function, 125, 132, 133

setIs function, 130
setMethod function, 133
setOldClass function, 137
setRepositories command, 44
setValidity function, 124, 130
shade.colors trellis parameter group, 317
Shapiro-Wilk test, 382
shingles, 95, 185
show.settings function, 316
showMethods function, 134
shrinkage methods (see subset selection

and shrinkage methods)
side effects, 118
sigmoid function, 457
signaling errors, 108
simpleKey function, 321
skip, trellis.skeleton argument, 313
slots, classes, 130
smooth.spline function, 433
smoothing, 433–437

fitting polynomial surfaces, 435
kernel smoothing, 436
splines, 433

smoothScatter function, 219, 355
sorting data, 206–208
source code, building R from, 4
spatial package, 39, 639
Spearman correlation statistic, 354
special

built-in types, 134
object type, 85
objects, 83
values, 55

splinefun function, 434
splines

about, 433
function, 433
package, 39, 640

splom function, 271, 304
spreadsheets versus the R data editor,

144
SPSS file format, 155
sqlColumns function, 163
sqlFetch function, 164
sqlGetResults function, 166
SQLite

ODBC on Mac OS X example, 159
ODBC on Windows example, 161

Index | 693



sqlPrimaryKeys function, 164
sqlQuery function, 166
sqlTables function, 163
sqrt function, 64
square brackets [], bracket notation for

subsets, 188
standards, code style, 80
Stata file format, 155
statistical tests, 371–396

continuous data, 371–388
non-parametric tests, 385–388
normal distribution-based tests,

372–385
discrete data, 388–396

binomial tests, 389
non-parametric tabular data tests,

396
proportion tests, 388
tabular data tests, 390–395

statistical transformations, 331
stats package, 641–658

about, 39
data set, 658
functions, 641–658

stats4 package, 39, 658
stem function, 353
step function, 417
stepAIC function, 417
stepwise variable selection, 416
stop function, 108
str function, 353
strata function, 474
streaming, Hadoop, 568–570
strings, 21
strip, lattice function argument, 312
strip.background trellis parameter group,

317
strip.border trellis parameter group, 317
strip.default, 320
strip.left, trellis.skeleton argument, 313
strip.shingle trellis parameter group, 317
stripchart function, 271
stripplot function, 271, 286
studentized range distribution probability

distribution function, 369
student’s t-distribution probability

distribution function, 368
sub, trellis.skeleton argument, 313

subscripts, lattice function argument, 313
subset selection and shrinkage methods,

416–420
elasticnet, 419
lasso and least angle regression, 418
principal components regression and

partial least square
regression, 420

ridge regression, 417
stepwise variable selection, 416

subset, lattice function argument, 313
subsets, 187–190

bracket notation, 188
function, 353
random sampling, 189
subset function, 188

summary
function, 29, 352, 405, 489
statistics, 351–353

summaryRprof function, 504
superpose.line trellis parameter group,

317
superpose.polygon trellis parameter

group, 317
superpose.symbol trellis parameter group,

317
surrogate variables, 440
survexp function, 431
survfit function, 428
survival

models, 428–433
package, 658–662

about, 40
data sets, 660
functions, 659

survreg function, 430
SVMs (support vector machines)

machine learning algorithms for
classification, 483

machine learning algorithms for
regression, 464

symbols
about, 52, 65, 101
object type, 85

syntactic sugar, 60
syntax, 63–81

code style standards, 80
constants, 63–66
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character vectors, 64
numeric vectors, 63
symbols, 65

control structures, 71–75
conditional statements, 71
loops, 72–75

data structures, 75–79
indexing by integer vector, 76
indexing by logical vector, 78
indexing by name, 79
operators, 75

expressions, 69
operators, 66–69

assignments, 69
order of operations, 67

sys.call function, 105
sys.calls function, 105
sys.frame function, 105
sys.frames function, 105
sys.function function, 105
sys.nframe function, 105
sys.on.exit function, 105
sys.parent function, 105
sys.parents function, 105
sys.status function, 105
Systat file format, 155

T
t function, 197
t-tests

function, 372
pairwise t-tests between multiple

groups, 381
power tests design, 398

tables
aggregating, 193
data tests, 390–396
function, 194

tabulate function, 194
tapply function, 190–192, 306
tck, lattice axes argument, 314
tcltk package, 40, 662
tests, 371–396

(see also power tests; statistical tests)
binomial tests, 389
non-parametric tests, 385–388

comparing more than two means,
387

comparing two means, 385
comparing variances, 387
difference in scale parameters, 388
tabular data, 396

normal distribution-based tests, 372–
385

comparing means, 372–376
comparing means across more than

two groups (ANOVA),
378–381

comparing paired data, 376
comparing two populations, 377
correlation tests, 384
pairwise t-tests between multiple

groups, 381
testing for normality, 382
testing if a data vector came from an

arbitrary distribution,
382

testing if two data vectors came
from the same
distribution, 383

power tests, 397–400
ANOVA test design, 400
experimental design example, 397
proportion test design, 398
t-test design, 398

proportion tests, 388
tabular data tests, 390–395

text
function, 217, 259
importing, 146–154

delimited files, 146–150
fixed-width files, 150
other functions to parse data, 152

properties, 251
three-dimensional data, 232
tick.number, lattice axes argument, 314
tilde (~), formulas, 93
time series, 495–500

about, 94
autocorrelation functions, 495
models, 496–500
OOP, 122
plotting, 220

times and dates, 95
timing, measuring R performance, 503
title function, 263
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tools package
about, 40, 662
data sets, 664
functions, 662

tracemem function, 507
trans3d function, 265
transformations, 179–184

applying a function to each element of
an object, 180–184

reassigning variables, 179
transform function, 179

transposing matrices and data frames,
197

tree models, 439
(see also regression tree models)
classification, 478–482

bagging, 480
boosting, 481

regression, 439–450
bagging, 446
boosting, 447
patient rule induction method, 446
random forests, 448
recursive partitioning trees, 439–

446
Trellis graphics, 267
trellis.par.get function, 315, 316
trellis.par.set function, 315
trellis.skeleton, 313
trivariate trellis plots, 305–310

cloud plots, 308
contour plots, 307
level plots, 305
wire-frame plots, 310

try function, 109
tryCatch function, 110
ts function, 94
ts.plot function, 498
TSBDI, 172
tsp attribute, 97
type, defined, 83
typeface, 252
typeof function, 60, 99

U
unary operators, 67
uniform distribution probability

distribution function, 369

unique function, 206
univariate trellis plots, 273–296

bar charts, 276–279
density plots, 285
dot plots, 280
histograms, 282
quantile-quantile plots, 288–296
strip plots, 286

Unix
high-performance R binaries, 523
installing R, 5
R GUI, 9

unstack function, 198
untracem function, 507
update.packages command, 44
UseMethod function, 136
user interfaces, 7–17

batch mode, 13
edit GUI, 142
Microsoft Excel, 14
other ways to run R, 17
R console, 11
R GUIs, 7–11

Linux and Unix, 9
Mac OS X, 8
Windows, 8

RSTudio, 15
utils package, 40, 664–671

V
validObject function, 124
values

counting, 194–196
predicting with linear regression

models, 406
return values, 113
special values, 55

var.test function, 377
variables

about, 22
combining objects with grouping

variable, 187
reassigning, 179
relationships, 28
stepwise variable selection, 416

variance-covariance matrix, 408
vcov function, 408
vectors
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about, 19, 83
applying functions to, 182
built-in types, 134
character vectors, 64
correlation, 384
elements, 22
environment objects in place of, 515
indexing

by integer vector, 76
by logical vector, 78

indices, 22
length attribute, 87
logical vectors, 23
modifying, 55
numeric vectors, 63
objects, 86
operations for optimizing R code, 507
testing

if a data vector came from an
arbitrary distribution,
382

if two data vectors came from the
same distribution, 383

vector operations versus conditional
statements, 71

versions, 3
vertical bar (|), formulas, 93
vignettes

about, 36
Bioconductor, 546

visualization (see graphics; lattice
graphics)

W
warning function, 109
weakref object type, 86
Web

applications, 17
repositories, 42

Weibull probability distribution function,
369

while loops, 73
Wilcoxon

rank sum probability distribution
function, 369

signed rank probability distribution
function, 369

test, 385

Windows
data editor, 142
devices, 246
finding and installing packages, 42
high-performance R binaries, 521
installing R, 4
loading packages, 40
R GUI, 8
SQLite ODBC example, 161

wireframe function, 271, 272, 310
with function, 107
within function, 107
write.table function, 155

X
X Windows data editor, 144
x, lattice function argument, 312
xlab, lattice function argument, 312
xlab.default, trellis.skeleton argument,

313
xlim, lattice function argument, 313
xplot function, 271
xscale.components, trellis.skeleton

argument, 314
xtabs function, 196
xyplot function, 271, 297, 402

Y
ylab, lattice function argument, 312
ylab.default, trellis.skeleton argument,

313
ylim, lattice function argument, 313
yscale.components, trellis.skeleton

argument, 314

Index | 697





About the Author
Joseph Adler has many years of experience in data mining and data analysis at com-
panies including DoubleClick, American Express, and VeriSign. He graduated from
MIT with an Sc.B and M.Eng in Computer Science and Electrical Engineering. He
is the inventor of several patents for computer security and cryptography, and the
author of Baseball Hacks. Currently, he is a senior data scientist at LinkedIn.

Colophon
The animal on the cover of R in a Nutshell is a harpy eagle (Harpia harpyja). Black
feathers line the top half of the bird, while white feathers mostly make up the balance,
although the underside of its wings may be striped black and white. Unlike other
species of birds, male and female harpy eagles appear virtually identical.

These eagles—the most powerful, carnivorous raptors in the Americas—typically
inhabit tropical rain forests. They prey upon animals that live in trees: sloths, mon-
keys, opossums, and even other birds, such as macaws.

The eagle is named after the harpies of ancient Greek mythology, female wind spirits
who were said to be human from the chest to their ankles and eagle from the neck
up. Mythological harpies tormented people as they carried them to the underworld
with their clawed feet; perhaps similarly, harpy eagles’ talons violently pierce and
subdue their prey before the eagles carry them back to their nests.

Harpy eagles also inspire modern-day life: the eagle is the national bird of Panama
and is pictured on the country’s coat of arms. The bird also inspired the design of
Fawkes the Phoenix in the Harry Potter film series.

The cover image is from Cassell’s Natural History. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad Con-
densed; and the code font is LucasFont’s TheSansMonoCondensed.




	Table of Contents
	Preface
	Why I Wrote This Book
	When Should You Use R?
	What’s New in the Second Edition?
	R License Terms
	Examples
	How This Book Is Organized
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Part I. R Basics
	Chapter 1. Getting and Installing
  R
	R Versions
	Getting and Installing Interactive R Binaries
	Windows
	Mac OS X
	Linux and Unix Systems
	Installation using package management systems
	Installing R from downloaded files



	Chapter 2. The R User
  Interface
	The R Graphical User Interface
	Windows
	Mac OS X
	Linux and Unix

	The R Console
	Command-Line Editing

	Batch Mode
	Using R Inside Microsoft Excel
	RStudio
	Other Ways to Run R

	Chapter 3. A Short R Tutorial
	Basic Operations in R
	Functions
	Variables
	Introduction to Data Structures
	Objects and Classes
	Models and Formulas
	Charts and Graphics
	Getting Help

	Chapter 4. R Packages
	An Overview of Packages
	Listing Packages in Local Libraries
	Loading Packages
	Loading Packages on Windows and Linux
	Loading Packages on Mac OS X

	Exploring Package Repositories
	Exploring R Package Repositories on the Web
	Finding and Installing Packages Inside R
	Windows and Linux GUIs
	Mac OS X GUI
	R console
	Installing from the command line


	Installing Packages From Other Repositories
	Custom Packages
	Creating a Package Directory
	Building the Package



	Part II. The R Language
	Chapter 5. An Overview
  of the R Language
	Expressions
	Objects
	Symbols
	Functions
	Objects Are Copied in Assignment Statements
	Everything in R Is an Object
	Special Values
	NA
	Inf and -Inf
	NaN
	NULL

	Coercion
	The R Interpreter
	Seeing How R Works

	Chapter 6. R Syntax
	Constants
	Numeric Vectors
	Character Vectors
	Symbols

	Operators
	Order of Operations
	Assignments

	Expressions
	Separating Expressions
	Parentheses
	Curly Braces

	Control Structures
	Conditional Statements
	Loops

	Accessing Data Structures
	Data Structure Operators
	Indexing by Integer Vector
	Indexing by Logical Vector
	Indexing by Name

	R Code Style Standards

	Chapter 7. R Objects
	Primitive Object Types
	Vectors
	Lists
	Other Objects
	Matrices
	Arrays
	Factors
	Data Frames
	Formulas
	Time Series
	Shingles
	Dates and Times
	Connections

	Attributes
	Class


	Chapter 8. Symbols and
  Environments
	Symbols
	Working with Environments
	The Global Environment
	Environments and Functions
	Working with the Call Stack
	Evaluating Functions in Different Environments
	Adding Objects to an Environment

	Exceptions
	Signaling Errors
	Catching Errors


	Chapter 9. Functions
	The Function Keyword
	Arguments
	Return Values
	Functions as Arguments
	Anonymous Functions
	Properties of Functions

	Argument Order and Named Arguments
	Side Effects
	Changes to Other Environments
	Input/Output
	Graphics


	Chapter 10. Object-Oriented Programming
	Overview of Object-Oriented Programming in R
	Key Ideas
	Implementation Example

	Object-Oriented Programming in R: S4 Classes
	Defining Classes
	New Objects
	Accessing Slots
	Working with Objects
	Creating Coercion Methods
	Methods
	Managing Methods
	Basic Classes
	More Help

	Old-School OOP in R: S3
	S3 Classes
	S3 Methods
	Using S3 Classes in S4 Classes
	Finding Hidden S3 Methods



	Part III. Working with Data
	Chapter 11. Saving, Loading, and Editing Data
	Entering Data Within R
	Entering Data Using R Commands
	Using the Edit GUI
	Windows Data Editor
	Mac OS X Data Editor
	X Windows (Linux) Data Editor


	Saving and Loading R Objects
	Saving Objects with save

	Importing Data from External Files
	Text Files
	Delimited files
	Fixed-width files
	Other functions to parse data

	Other Software

	Exporting Data
	Importing Data From Databases
	Export Then Import
	Database Connection Packages
	RODBC
	Getting RODBC working
	Installing the RODBC package
	Installing ODBC drivers
	Example: SQLite ODBC on Mac OS X
	Example: SQLite ODBC on Windows

	Using RODBC
	Opening a channel
	Getting information about the database
	Getting data


	DBI
	Opening a connection
	Getting DB information
	Querying the database
	Cleaning up

	TSDBI

	Getting Data from Hadoop

	Chapter 12. Preparing Data
	Combining Data Sets
	Pasting Together Data Structures
	Paste
	rbind and cbind
	An extended example

	Merging Data by Common Fields

	Transformations
	Reassigning Variables
	The Transform Function
	Applying a Function to Each Element of an Object
	Applying a function to an array
	Applying a function to a list or vector
	the plyr library


	Binning Data
	Shingles
	Cut
	Combining Objects with a Grouping Variable

	Subsets
	Bracket Notation
	subset Function
	Random Sampling

	Summarizing Functions
	tapply, aggregate
	Aggregating Tables with rowsum
	Counting Values
	Reshaping Data
	Transposing matrices and data frames
	Reshaping data frames and matrices
	Using the Reshape Library
	Melting and Casting
	Examples of reshape
	melt
	Cast



	Data Cleaning
	Finding and Removing Duplicates
	Sorting


	Part IV. Data Visualization
	Chapter 13. Graphics
	An Overview of R Graphics
	Scatter Plots
	Plotting Time Series
	Bar Charts
	Pie Charts
	Plotting Categorical Data
	Three-Dimensional Data
	Plotting Distributions
	Box Plots

	Graphics Devices
	Customizing Charts
	Common Arguments to Chart Functions
	Graphical Parameters
	Annotation
	Margins
	Multiple plots
	Text properties
	Text size

	Line properties
	Colors
	Axes
	Points
	Typeface
	Alignment and spacing
	Rotation

	Graphical parameters by name

	Basic Graphics Functions
	points
	lines
	curve
	text
	abline
	polygon
	segments
	legend
	title
	axis
	box
	mtext
	trans3d



	Chapter 14. Lattice Graphics
	History
	An Overview of the Lattice Package
	How Lattice Works
	A Simple Example
	Using Lattice Functions
	Custom Panel Functions

	High-Level Lattice Plotting Functions
	Univariate Trellis Plots
	Bar charts
	Dot plots
	Histograms
	Density plots
	Strip plots
	Univariate quantile-quantile plots

	Bivariate Trellis Plots
	Scatter plots
	Box plots in lattice
	Scatter plots matrices
	Bivariate quantile-quantile plots

	Trivariate Plots
	Level plots
	Contour plots
	Cloud plots
	Wire-frame plots

	Other Plots

	Customizing Lattice Graphics
	Common Arguments to Lattice Functions
	trellis.skeleton
	Controlling How Axes Are Drawn
	Parameters
	plot.trellis
	strip.default
	simpleKey

	Low-Level Functions
	Low-Level Graphics Functions
	Panel Functions


	Chapter 15. ggplot2
	A Short Introduction
	The Grammar of Graphics
	A More Complex Example: Medicare Data
	Quick Plot
	Creating Graphics with ggplot2
	Learning More


	Part V. Statistics with R
	Chapter 16. Analyzing Data
	Summary Statistics
	Correlation and Covariance
	Principal Components Analysis
	Factor Analysis
	Bootstrap Resampling

	Chapter 17. Probability
  Distributions
	Normal Distribution
	Common Distribution-Type Arguments
	Distribution Function Families

	Chapter 18. Statistical
  Tests
	Continuous Data
	Normal Distribution-Based Tests
	Comparing means
	Comparing paired data
	Comparing variances of two populations
	Comparing means across more than two groups
	Pairwise t-tests between multiple groups
	Testing for normality
	Testing if a data vector came from an arbitrary distribution
	Testing if two data vectors came from the same distribution
	Correlation tests

	Non-Parametric Tests
	Comparing two means
	Comparing more than two means
	Comparing variances
	Difference in scale parameters


	Discrete Data
	Proportion Tests
	Binomial Tests
	Tabular Data Tests
	Non-Parametric Tabular Data Tests


	Chapter 19. Power Tests
	Experimental Design Example
	t-Test Design
	Proportion Test Design
	ANOVA Test Design

	Chapter 20. Regression
  Models
	Example: A Simple Linear Model
	Fitting a Model
	Helper Functions for Specifying the Model
	Getting Information About a Model
	Viewing the model
	Predicting values using a model
	Analyzing the fit

	Refining the Model

	Details About the lm Function
	Assumptions of Least Squares Regression
	Robust and Resistant Regression
	Resistant regression
	Robust regression
	Comparing lm, lqs, and rlm


	Subset Selection and Shrinkage Methods
	Stepwise Variable Selection
	Ridge Regression
	Lasso and Least Angle Regression
	elasticnet
	Principal Components Regression and Partial Least Squares Regression

	Nonlinear Models
	Generalized Linear Models
	glmnet
	Nonlinear Least Squares

	Survival Models
	Smoothing
	Splines
	Fitting Polynomial Surfaces
	Kernel Smoothing

	Machine Learning Algorithms for Regression
	Regression Tree Models
	Recursive partitioning trees
	Patient rule induction method
	Bagging for regression
	Boosting for regression
	Random forests for regression

	MARS
	Neural Networks
	Project Pursuit Regression
	Generalized Additive Models
	Support Vector Machines


	Chapter 21. Classification
  Models
	Linear Classification Models
	Logistic Regression
	Linear Discriminant Analysis
	Log-Linear Models

	Machine Learning Algorithms for Classification
	k Nearest Neighbors
	Classification Tree Models
	Bagging
	Boosting

	Neural Networks
	SVMs
	Random Forests


	Chapter 22. Machine Learning
	Market Basket Analysis
	Clustering
	Distance Measures
	Clustering Algorithms


	Chapter 23. Time Series Analysis
	Autocorrelation Functions
	Time Series Models


	Part VI. Additional Topics
	Chapter 24. Optimizing R
  Programs
	Measuring R Program Performance
	Timing
	Profiling
	Monitor How Much Memory You Are Using
	Profiling Memory Usage

	Optimizing Your R Code
	Using Vector Operations
	Iterative algorithms and vector operations
	Transforming problems to use built-in functions

	Lookup Performance in R
	Lookups and R objects
	Using environment objects in place of vectors

	Use a Database to Query Large Data Sets
	Preallocate Memory
	Cleaning Up Memory
	Functions for Big Data Sets

	Other Ways to Speed Up R
	The R Byte Code Compiler
	Manual compilation
	Inspecting byte code
	Just-in-time compilation

	High-Performance R Binaries
	Revolution R
	Building your own
	Building on Microsoft Windows
	Building R on Unix-like systems
	Building R on Mac OS X




	Chapter 25. Bioconductor
	An Example
	Loading Raw Expression Data
	Loading Data from GEO
	Matching Phenotype Data
	Analyzing Expression Data

	Key Bioconductor Packages
	Data Structures
	eSet
	AssayData
	AnnotatedDataFrame
	MIAME
	Other Classes Used by Bioconductor Packages

	Where to Go Next
	Resources Outside Bioconductor
	Vignettes
	Courses
	Books


	Chapter 26. R and Hadoop
	R and Hadoop
	Overview of Hadoop
	Map/Reduce
	Distributed data storage
	Managing a cluster of servers
	Java framework
	When should you consider Hadoop?

	RHadoop
	Make sure Hadoop is installed locally
	Installing RHadoop locally
	An example RHadoop application
	Details of rmr
	Learning more

	Hadoop Streaming
	Learning More

	Other Packages for Parallel Computation with R
	Segue
	doMC

	Where to Learn More


	Appendix. R Reference
	base
	Functions
	Data Sets

	boot
	Functions
	Data Sets

	class
	Functions

	cluster
	Functions
	Data Sets

	codetools
	foreign
	Functions

	grDevices
	Functions
	Data Sets

	graphics
	Functions

	grid
	KernSmooth
	Functions

	lattice
	Functions
	Data Sets

	MASS
	Functions
	Data Sets

	methods
	Functions

	mgcv
	nlme
	nnet
	Functions

	rpart
	Functions
	Data Sets

	spatial
	Functions

	splines
	Functions

	stats
	Functions
	Data Set

	stats4
	Functions

	survival
	Functions
	Data Sets

	tcltk
	tools
	Functions
	Data Sets

	utils
	Functions


	Bibliography
	Index



