

[image:]

© Copyright 2020 - All rights reserved.

The content contained within this book may not be reproduced, duplicated or transmitted without direct written permission from the author or the publisher.

Under no circumstances will any blame or legal responsibility be held against the publisher, or author, for any damages, reparation, or monetary loss due to the information contained within this book, either directly or indirectly.

Legal Notice:

This book is copyright protected. It is only for personal use. You cannot amend, distribute, sell, use, quote or paraphrase any part, or the content within this book, without the consent of the author or publisher.

Disclaimer Notice:

Please note the information contained within this document is for educational and entertainment purposes only. All effort has been executed to present accurate, up to date, reliable, complete information. No warranties of any kind are declared or implied. Readers acknowledge that the author is not engaging in the rendering of legal, financial, medical or professional advice. The content within this book has been derived from various sources. Please consult a licensed professional before attempting any techniques outlined in this book.

By reading this document, the reader agrees that under no circumstances is the author responsible for any losses, direct or indirect, that are incurred as a result of the use of information contained within this document, including, but not limited to, errors, omissions, or inaccuracies.

Table of Contents

[image:]

RASPBERRY PI

A Comprehensive Beginner’s Guide to Setup,

Programming (Concepts and Techniques)

and Developing Cool Raspberry Pi Projects

Introduction

Chapter 1
:
 Setup

Explore the Raspberry Pi

Understanding the Components

Putting Everything Together

Configuration

Chapter 2
:
 Understanding Linux Basics

Getting Started

Text Editors and IDE’s

Chapter 3
:
 Networking

Connecting

Chapter 4
:
 Programming Basics Using Python

What’s Python?

Running Python

Python Data Types

Python Programming

Chapter 5
:
 Advanced Programming with Python

Object-Oriented Programming

Chapter 6
:
 Electronics Basics

Electricity Fundamentals

Tools

Safety Rules

Chapter 7
:
 Projects

Creating a Bot

Building a Weather Station

Creating a Security System

The Radio-Controlled Airplane

Conclusion

RASPBERRY PI

Complete Tips and Tricks to Raspberry Pi

Setup and Project Development

Introduction

Chapter 1
:
 What to Know About Raspberry Pi

Raspberry Pi 3

Raspberry Pi Zero

The Raspberry Pi 4 Model B

The Raspberry Pi 4 Model B Components

Ports of the Raspberry Pi

Peripherals

Chapter 2
:
 Getting Ready for Raspberry Pi

Setting up Your Raspberry Pi Hardware

Get Ready to Assemble the Case

Connecting a Display

Composite Video

HDMI Video

DSI Video

Connecting Audio

Connecting a Keyboard and a Mouse

Setting up Your Software

Installing Your Operating System

Manual Installation

Flashing from Linux

Flashing from OS X

Flashing from Windows

Chapter 3
:

How to Use Raspberry Pi

Welcome Wizard

Using the Desktop

File Manager

LibreOffice Productivity Suite

Recommended Software Tool

Raspberry Pi Configuration Tool

Shutting Down

Chapter 4
:
 How to Program with Scratch

History

Scratch Interface

Hello World

Animation and Sound

A Simple Game

Boolean Logic

Using Hardware to Interface with Scratch

Chapter 5
:
 How to Program with Python

Introducing Python

Example #1: Hello World

Making a Python Program Executable

Example #2: Inputs, Variables, Comments, and Loops

What Does == Mean?

Example #3: Pygame

Chapter 6
:
 Physical Computing with Scratch and Python

The GPIO Header

Lighting and LED

The Importance of Resistance

Controlling an LED with Scratch

Controlling an LED with Python

Breadboard

Project: Reading a Button

Project: How to Read a Button in Scratch

Project: How to Read a Button in Python

Controlling a Buzzer

Using Scratch to Control a Buzzer

Using Python to Control a Buzzer

Passive Infrared Motion Sensor (PIR)

How to Wire up PIR Sensor

How to Use Python to Tune a PIR

How to Use Scratch to Code up PIR Sensor

Conclusion

RASPBERRY PI

An Advanced Guide to Setup, Expert Programming (Concepts, Theories, and Techniques) and Build Raspberry Pi Projects

Introduction

Chapter One
:
 Know How to Setup your Raspberry Pi

Choosing the Accessories for the Raspberry Pi

Setting Up the Operating System for the Raspberry Pi

The Raspi-Config Setup

Troubleshooting

Linux Commands

Chapter Two
:
 Knowing Your Tools and Their Purpose

Picking the Right Multimeter

Picking the Right Soldering Iron and Accessories

Working with Electronics

Chapter Three
:
 Programming with Python on the Raspberry Pi

The Different Text Editors

Experimenting with Texts and Strings in Python

Text Scrambling using Caesar Cypher Technique in Python Scripts

Passing on the Encryption Key

Manipulating Files and Dealing with Errors

Making a Bootup Menu

Chapter Four
:
 Python and External Hardware

Controlling an RGB LED through Python

Controlling the GPIO Current

Accepting Input from a Button

Pull-Up and Pull-Down Resistor Circuits

Making a Dedicated Shut-Down Button

The GPIO Keypad Input

Creating the Python Script

Understanding the Script

Generating Additional Key Combinations

Simulating Mouse Movements

Multiplexed Color LEDs

Chapter Five
:
 Sensing Real-World Data

Using the I2C Bus

Using the ADC Bus to Read Analog Data

Gathering Analog Data without an Analog to Digital Converter

Data Logging and Plotting

Using an I/O Expander to Extend the Raspberry Pi GPIO

Chapter Six
:
 Creating Graphical User Interfaces and Automating Tasks with Python

Using the Tkinter Module to Create Graphical User Interfaces

Making the GUI Script in Python

Programming a Graphical Application

Displaying Images within a GUI Application

Testing this Newly Created Photo Class

Organizing Photos Automatically

Chapter Seven
:
 Raspberry Pi Projects with the Raspberry Pi Camera Module

Setting Up the Raspberry Pi Camera Module

Controlling the Camera Module with Python

Creating a Time-Lapse Video

Creating a QR Code Reader using the Camera Module

Conclusion

References

Raspberry Pi

A Comprehensive Beginner’s Guide

to Setup, Programming (Concepts and Techniques) and Developing Cool

Raspberry Pi Projects

[image:]

JOE GRANT

Introduction

[image:]

Congratulations on purchasing your very own copy of Raspberry Pi: A Comprehensive Beginner’s Guide to Setup, Programming (Concepts and Techniques) and Developing Cool Raspberry Pi Projects
. The purpose of this book is to reveal a fun, easy way to learn programming while creating entertaining projects.

Learning how to program and working with tech can be tedious at times, and that is why many students give up in the middle of the process. This book explores this issue and offers a credit card-sized computer as the answer. The Raspberry Pi is a small, easy to use computer that can be utilized to create anything from a simple security camera to a professional home security system. Having a cool project as your focus will push you to learn how to program, because programming on its own feels sterile. Having something to look forward to will drive your thirst for knowledge.

The main objective of Raspberry Pi: A Comprehensive Beginner’s Guide
 is to teach you everything about Raspberry Pi, the basics of working with the Linux operating system, and to guide you through learning how to program with Python. Do not allow yourself to be overwhelmed by so much information, as you will take it in step by step. The book is meant for a beginner. There will be some exercises and examples included to help you solidify your basic knowledge of programming and at the end of the book, we’ll take a look at some of the cool projects we can make with the Pi.

Get the most out of the information you are about to absorb by putting it into practice as soon as possible. Knowledge requires implemntation in order to be truly useful, and that is even more valid when it comes to programming. It might not be easy at first, but each chapter will carefully guide you and teach you everything you need to know in order to get started with your very own
Raspberry Pi.

Chapter
1

Setup

[image:]

[image:]

You’ve got your hands on a Raspberry Pi computer - but do you know where to start? Do you know anything about the device? Are you familiar with its operating system? Do you have programming skills in any language, or specifically in Python? Are you perhaps an occasional tech user who became curious about computers and programming? No matter the case, this chapter’s purpose is to get you started on the right path. Even if you are familiar with the Raspberry Pi and already know how to set it up, you might want to refresh your knowledge.

The Raspberry Pi has existed for several years already, but many
people aren’t aware of it because they grew so accustomed to relying on Windows or MAC based personal computers. Even some programmers and software developers are shocked to find out that they could’ve started out on a computer that is cheaper than a night out. However, this doesn’t mean that it’s not popular. With every year, more and younger would-be programmers start out practicing on such a device. It is affordable and easy to work with. So if you’re still thinking about purchasing a Raspberry Pi, start browsing for one. It is the ideal computer for learning programming, and there are so many cool projects you can create with it. Plus, you already got your hands on this book, so how else will you complete the projects in the last chapter if you don’t have your own Pi?

Let’s start exploring the Raspberry Pi and learn how to perform a proper setup. In this chapter, you will learn more about this type of computer and its components, and you will learn how to put it together. Don’t be alarmed - you don’t need expert tech skills to set it up.

Explore the Raspberry Pi

[image:]

You must be very excited to get started, but you shouldn’t rush into things. It’s important to first understand the device and its components. First you need to know that there are three main board types and several computer models. If you already bought yours, you should check out the model and then continue reading.

The Pi comes in three flavors: Model A, Model B, and Model Zero. They share a few components and each of them can suit a different purpose, depending on your project. Let’s take a look at some of the specs to be able to tell them apart and decide on which project to use them for.

Raspberry Pi Model A+

As we mentioned, the first computer model is model A, or model A+ to be more specific. Model A has been discontinued and A+ took on its role. This revision of the original is smaller, uses 32 bit architecture, and comes with a single core processor, a Broadcom BCM2835 System on a Chip and 512 MB of RAM. The graphics from this model are present on every other model as well. Other notable features are the single USB port, a camera serial interface connector, an HDMI port, video-audio input ports for LCD screens, and a micro SD card slot. The A+ also comes with a 40 pin array which can be used to connect a variety of electronics, depending on your project.

If you already have this model, you might consider using it for a security camera design with a motion sensor. It can also work on a weather balloon project or as a robot brain.

Raspberry Pi Model B+

The B+ board is bigger than model A and can suit a larger number of purposes due to the added connectivity options. It uses a 32 bit architecture just like model A, but it comes with 4 USB slots and an Ethernet port. Every other feature is the same as on the A+ version, however, it comes with a micro SDHC slot instead of a regular micro SD, so you’ll have the option of using high speed cards.

This model is recommended for a basic server setup. For example,
you can use it to run a wireless print server or as a tool for network monitoring.

Raspberry Pi 2 Model B

This version is identical to model B+ when it comes with design, but you get a much faster processor and more RAM. It comes with a quad core, 900 MHz CPU instead of a single core, a Broadcom BCM2837 System on a Chip and 1GB of RAM. This is a massive upgrade and can be used for many projects. For instance, if you’re feeling nostalgic or retro, you can run and play the original Doom without using an emulator.

Raspberry Pi 3 Model B

This model is a further improvement of the B model board. It has the same dimensions, but the quad core processor comes with a 1.2 GHz chip. This Raspberry Pi version is also the first one to feature a wireless connection and onboard Bluetooth without requiring any external devices to be connected.

You can use this model for any project as long as you have the room for it. It is powerful, and many hobbyists love using it for recreating retro game stations.

Raspberry Pi Zero Models

These models live up to the name from every point of view. Firstly, they cost almost zero by having a price tag of around $5. Secondly, they weigh almost zero - these computers come in at only 9 grams. Both of these advantages are great for any project where space is very limited. However, this doesn’t mean that the computer isn’t powerful enough.

The basic Pi zero comes with a 1GHz single core processor, a 32 bit architecture and 512 MB of RAM. All Zero models use the same System on a Chip as model A+ and B+. You also find a micro USB for data and one for power, as well as a micro HDMI connection and a micro SD card slot.

There are two other variations of this model with a few extra features that may come in handy.

The Raspberry Pi Zero W is basically the same as the base model, but it also features wireless connectivity and Bluetooth. If you need to establish a remote connection for your project, then this model is suited for the task.

The Raspberry Pi Zero WH is nearly the same as the W version. The only difference is that the WH comes with GPIO pins.

All of these Zero models have been designed to be used in projects where you don’t have much space, or the weight you can introduce is very limited. So take your pick!

Understanding the Components

As previously mentioned at the beginning of this chapter, this part of the book is intended to be helpful even to the least tech savvy person out there. To accomplish this, we will discuss all the components in a little more detail. Building a solid foundation is important in order to fully understand how the Raspberry Pi works and what you can do with it.

The SD Card

Raspberry Pi’s don’t come with onboard hard drives like you are used to seeing in other computers and in laptops. There is no room to attach such a device. The main feature of the Pi at the end of the day is its size. This is why an SD Card is used instead. You can store a vast amount of information in such a tiny space that weighs nearly nothing.

How much space do you really need? Well, that depends on your project, however it’s recommended to use at least 2 to 4 GB SD Cards. They are inexpensive and you need to make sure you have plenty of room for the software you are going to use. If you want more, you can easily go up to 32 GBs and even beyond, though you probably don’t have the need for so much memory space.

The Micro Power Port

All computers need power, and the Pi is no exception. However, you don’t need a heavy power supply attached to it like with many PCs. A smartphone charger is all you really need to get it powered and ready to use.

If you’re inventive, you can even use regular batteries to power the Pi, though it’s not really recommended because the power will either fluctuate or run out fairly quickly. There are, however, situations when this powering method can come in handy. We’ll discuss this in a later chapter.

The System on a Chip

Or SoC for short. This component is what integrates all the other components in the Raspberry Pi. You can find this system in today’s mobile devices as well because of how small and energy efficient it is. If you are familiar with laptops and computers, you know about the motherboard, which houses all the components and parts. In the case of the motherboard, all devices are detachable. The SoC, however, integrates all of the parts into a single integrated circuit.

The HDMI, Ethernet and USB Ports

The Raspberry Pi comes with an HDMI port which allows you to connect to a high definition display. Together with the onboard graphics processing unit, the Pi can handle Blu-ray quality 1080p graphics.

With Ethernet and USB support, the Pi can function pretty much the same way as any other computer you are used to. You can connect a webcam, a router, or even an external hard drive or solid state drive. This makes the machine highly versatile and usable in many projects.

GPIO Pins

We mentioned these pins earlier, but what are they for exactly? They are General Purpose Input Output pins, hence GPIO, and they allow
you to connect a wide variety of electronic devices. This part of the Pi is absolutely vital, because it allows you to implement the computer into so many projects. You can connect LED lights, servo motors, extension boards and pretty much anything else you can imagine.

A day to day computer like your desktop PC doesn’t allow you such easy access to connecting any device you want. You would have to really dig in to make anything work, and it can take a lot of time and experimentation. With the Raspberry Pi, you already have access to the pins with a bit of Python or C programming knowledge. For instance, as soon as you get your hands on a Pi, you can connect several motors and create a robot pet. You can’t really do that with a laptop or desktop.

Putting Everything Together

The first thing you need is power. The Raspberry Pi needs 5V of steady energy. You can improvise with a phone charger because most of them have an output of 5V, or you can simply buy a power supply designed to be used with the Pi. You can ask at any electronic store, or buy the power supply from the same place you ordered your Pi. Follow the guidelines on your model, because if you don’t get an adequate power supply you might encounter random issues. For instance, when you connect a keyboard, your mouse might lose power and stop working. You don’t want to have to deal with that in the middle of a project.

Next up, you should connect a monitor, because from here onwards you need to see what you’re doing. You can use the HDMI port to connect any monitor, and if yours comes only with DVI capabilities, just use a converter. In the tech world, compatibility shouldn’t be a big issue because there’s a converter for everything.

Depending on your chosen model, you might have a limited number of USB ports. You need them for a mouse, a keyboard, a wireless connection, and more. So even if your Pi came with just one USB
port, don’t worry, just connect a USB hub with as many ports as you want. Power can become a problem here because the hub demands it, as well as all the other devices you attach to the hub. You might want to consider getting a USB port hub that you can power outside of using the Pi. This way you won’t risk any power fluctuations.

That’s it for now, but as a final step, you might want to consider enclosing your Pi. You know how your PC comes in a big case? Well, most Raspberry Pi’s come bare bones with no case and no protection whatsoever. This can leave the device vulnerable because of all the exposed connections. You can even cause a short because the circuit board is not protected and if it comes in contact with metal, it fries.

The type of case you get is a matter of taste, but before you settle you should consider the need for quick access to the GPIO pins and ventilation. If you plan to connect various electronics to the Pi, you need a type of case that lets you attach devices without disassembling everything. Ventilation is also crucial because every computer generates heat, especially if you plan to use it for video game projects.

The Operating System

The Raspberry Pi is designed to work with Linux as its operating system. If you have no experience with Linux, that’s perfectly alright. We will talk about in detail in the second chapter. In this section, we’ll just go through the basics to get the computer running.

First, you need to know that there are a variety of Linux versions, or distributions as they’re actually called. The one you are looking for is aptly named Raspbian.

But the Raspberry Pi doesn’t come with a hard drive, so how do you install the operating system? You need to use an SD card. Download and copy a disk image of Raspbian to your card and the Pi will use it to boot up the system. It’s advisable to use a high quality, high speed SD card with plenty of memory, at least 4GBs. Not all SD cards are
the same, so choose a respectable brand and aim for speed in order to boot your system as fast as possible.

The next step is to format your SD card. Your Pi can’t read it yet without performing this step, so you need to use a Windows or a Mac computer for formatting. All you need to do is download an SD formatting tool and follow the given steps. If you don’t want to go through the hassle of formatting and writing SD cards, you always have the option to buy an already formatted card with the operating system preinstalled.

Configuration

Once you’re done setting up the SD card and have installed Raspbian, you can boot up your Raspberry Pi for the first time. When you start up the computer, you will be welcomed by a configuration tool called raspi-config. Here you will have various configuration options over which you have full control. The basic options include an expansion of the file system, creation of a user password, and processor overclocking. Choose to modify anything you like, however, be careful with the overclocking. We’ll discuss this option in further detail later, but for now you should keep in mind that you can shorten the lifespan of the Pi by overclocking too much.

The configuration tool also comes with advanced options such as creating a host name and memory splitting. Here you should enable SSH access because you will need it later. At this stage, you should explore all the options and play with them to get more accustomed to the Pi. Nothing bad can happen to your Pi at this point. In the worst case scenario, your SD card could stop working properly, but it’s not as bad as it sounds. If you do something that makes it unusable, you will simply have to reformat the card, nothing else.

When you’re done fiddling with the configuration tool, hit the “Finish” button to finish the actual installation and configuration of the operating system. If you are greeted by a command line interface, don’t worry, that’s not how you need to use the computer.
It just means you forgot to enable the desktop environment in the configuration tool. You should type in your username and password in the command line if you already customized them. If you didn’t set them up, do the following:

	
Type $ pl
 as your username.

	
Type $ raspberry
 as your password.

	
Type $ startx
 to enter the desktop environment.

Now you should see a familiar user interface similar to when you start up your Windows or Mac computer. You will see programs and file icons such as Midori, a web browser, or IDLE, for working in Python.

Bravo! You successfully assembled and booted your very own Raspberry Pi. Next up, you should check whether everything is up to date. Raspbian updates the same way Windows does. In order to update the OS, use the command line prompt and type $ sudo apt-get update
. The computer will refresh its software list at this point and when it’s done, you need to type $ sudo apt-get upgrade
. If there’s any update available to you, the Pi will ask you to confirm that you wish to update the software. Hit the “Enter” button to confirm the update and restart the computer.

How to Shut Down

Now that you know how to start up your Pi and how to perform some basic navigation, you need to learn how to shut it down. You don’t have an on and off switch, after all. Firstly, the Raspberry Pi consumes such a tiny amount of power that shutting it off isn’t really necessary, but doing so might increase its lifespan.

Once you’re done using the computer, simply unplug it. Won’t this harm the Pi? No, it’s designed this way. There’s no danger of causing any damage, but if you still worry about pulling out the cord, there’s another way that might ease the tension.

Open the console and type $ sudo shutdown -r now

. The computer will run through all the shutdown procedures, closing processes one by one, just like a Mac or Windows PC. Depending on the Raspberry Pi model, the device might take you back to a black screen with a text only user interface. If you reach this page, you can unplug the computer.

Performance and Overclocking

What is overclocking? This process refers to boosting an electronic device, usually a computer processor, to run faster than it’s intended by the manufacturer. It involves increasing the clock frequency, which is measured in megahertz. Overclocking is usually performed when a processor isn’t running as fast as it can. The manufacturer locks it at a limit which is considered safe, however it can be pushed further. Take note that overclocking is the best way to boost a processor’s performance, however, it usually lowers its lifespan. Don’t overclock your device unless you really need the extra juice for a project.

The Raspberry Pi can be overclocked like any other computer, and doing so can increase its processing power considerably. Keep in mind that the device will also generate more heat, so make sure the casing is ventilated before overclocking.

So how do you do it? The only safe way is to dynamically overclock the Pi. This means that when the processor starts running too hot, beyond the safety limit, the clock speed will be automatically reduced to lower the heat generation. To start overclocking, you need to run your Pi’s configuration tool, raspi_config, by typing $ sudo raspi-config
 in the command console. When you open the tool, choose the option to overclock and then choose one of the presets offered by the computer. Play with these options to find the most suitable choice. If your Pi starts lagging or stalling, then you need to kick it down a notch and go with a lower preset.

Chapter 2

Understanding Linux Basics

[image:]

[image:]

As previously mentioned, the Raspberry Pi runs by using Linux as its operating system. If you’ve only used Windows or Mac until now, don’t worry. This chapter will be dedicated to helping you understand how to operate this system.

Linux has been vastly improved over the years, because it didn’t use to be the most user friendly operating system. This is probably one of the reasons why Windows and Mac became so popular, because they were much easier to work with. However, nowadays Linux has become just as friendly with its new users.

In this chapter you will learn the basics of using Linux and using the command line terminal to get around.

Getting Started

When you work with the Raspberry Pi, you need to use the command line terminal. You already performed some very basic tasks, but there is so much more you can do through it.

When you open the terminal window, by default, you are in the
home directory. With the right commands, you can navigate the entire file system and access or modify anything you want. Through the terminal you will have full administrative control over the computer, and knowing how to issue commands is important to form a solid foundation for using the Pi.

Understanding the File System

The file and folder system is fairly similar to that of any computer. A file comes in the form of video, text, or any other type of information, and you recognize it based on the name and location. Keep in mind that names are case sensitive, which means that the file Book.txt is different from BOOK.txt or bOOk.txt.

Linux stores all the files into a single root folder which you recognize by the symbol /. Within the root folder, you find subfolders which can contain more subfolders of their own and so on. An example of a root subfolder is dev/, which identifies the folder with the name “dev” in the root directory which is marked by the / symbol. You are free to make any modifications to these files and folders as long as you have the right user permission. There is only one user who can delete or modify system files, and that’s marked as the “root user.” You can designate as many other users as you want, but they won’t have the power to change crucial system files. To avoid any unfortunate accidents, you should never stay logged in as a root user, unless you need to perform an operation that requires that level of administrative rights. Create a regular user account or several if more people need to access your computer.

You can, however, issue commands as a root user without relogging in. That is what the “sudo” command is for. It means “super user do” and when you enter it, the terminal will ask you for the root user password before it can accept your command. This shortcut can come in handy, however, you need to be sure of the command you are giving. Why? Because when you issue a “sudo” instruction, the computer won’t ask you if you are really sure about it.

Basic Commands

To navigate by using the command terminal, you should know some basic commands. Many of these you will use on a daily basis, so let’s see what they are and what they do.

	

ls
: Use this command to list any files found in the directory you are currently in. You can also add a -l and type in the command like ls -l
 in order to see the file permission for each file in the list.

	

cd
: This is used to change directory. If you issue only this command, you will be taken to the system’s root directory. If you type a directory name after the command, you will be taken to that directory.

	

sudo
: Issue a command as a root user.

	

./filename
: Run an executable program with the specified filename. Keep in mind you need to have the right user permission to run certain programs.

	

rm filename
: This is used to remove “filename”. However, this is a permanent action. You won’t be able to recover the file once you delete it.

	

date
: If you want to know the date and time on the system, type this command.

	

cat filename
: Read the content of a file without actually accessing it. This command is used as a sort of preview. If you aren’t sure about a file and you don’t want to open it inside an editor, then issue this instruction. Keep in mind that this is best used for files with text-based information in them. If you use it on an image of some kind, you will just read nonsense.

	

pwd
: So you went on exploring through a maze of folders, and now you aren’t sure where you are. Type this in and the
console will display your current location.

	

mkdir
 and rmdir
: These commands are used to create and delete a directory. For “rmdir” to work, however, you need to have an empty directory, otherwise it won’t be deleted. To delete a directory with files inside it, you need to type rmdir -p
 followed by directory name.

	

mv oldfilename newfilename
: The “mv” command is used to rename a file and destroy the old version. For example, mv thisoldfile.txt thisnewfile.txt
 renames the file “thisoldfile.txt” to “thisnewfile.txt”. With this command, you can also move the new, renamed file to a new location. For example, the instruction mv thisoldfile.txt ../MyFiles/thisnewfile.txt
 will copy “thisoldfile” to the folder “MiFiles” under the new name “thisnewfile” and destroy the old version in the process.

	

cp filename
: The “cp” command is used to make a copy of a file either in the same location, or in a new specified location. For example, if you want to copy a file from your desktop to a new location, the instruction will look like this cp thisfile.txt ../MyFiles/thisfile.txt
.

	

man
: This command is extremely useful when you want to know what a specific command does and what parameters it can use. Type man command
 and a manual page will open with information about that command line. You will find a description of the command, all its options, and what each option does. When viewing a manual page you can use Enter to scroll through the text, and you return to the command terminal with Q.

	

grep
: This command enables a search program that allows you to search through all files and folders. For instance, by typing grep butter shoppinglist.txt
 the program will look through the “shoppinglist” file for any line that contains the
word “butter”. The “grep” command is extremely powerful, as well as complex, but for now you only need to know its basic utility.

	

exit
: This command is fairly self-explanatory. It is used to halt any operation that is working in the terminal, and it also closes the console.

Learning without practice is difficult, especially when it comes to memorizing commands and their uses. So open the terminal, and with a bit of creativity start using the commands listed above. Create a new directory, rename it and move it, copy it in a different location and so on.

Linux Shells

In Linux, the shell is a command line user interface. That text line terminal you have been playing with so far is also known as a shell, and Linux actually has several types. A shell is what allows you, the user, to come in contact with the system and give it direct commands. The shell you’ve been using so far is the “Bourne-again shell,” also known as “bash,” but there are others as well, such as the Korn shell, or the C shell. They all have their advantages and disadvantages, but it doesn’t really matter which one you use. In this book we’ll focus on the “bash” shell because that’s the standard one that comes with the Raspberry Pi’s Raspbian system.

So why are we talking about shells? Because each one of them comes with a different set of keyboard shortcuts that are extremely handy when you work with the terminal. Here are some of the most useful “bash” keyboard shortcuts:

	
Ctrl + A: Move the cursor to the start of the line. You can also press the “Home” button instead.

	
Ctrl + C: Kill a process that is currently running.

	
Ctrl + D: This shortcut is the same as typing “exit” in the terminal. It will close the shell.

	
Ctrl + E: Move the cursor to the end of the line. You can also press the “End” button instead.

	
Ctrl + H: Delete a character that is in front of the cursor.

	
Ctrl + L: Clear the terminal.

	
Ctrl + R: Search through the command history.

	
Ctrl + Z: Kill a program.

	
Alt + D: Delete everything after the cursor in the current line.

	
Tab: Automatic completion. When you type a command line or a file name, you can hit the “tab” button to autocomplete. When you are in the middle of a name or command and hit “tab” you may receive a list of possible commands because of similar words.

Practice these shortcuts while doing more command line exercises. Knowing them will significantly decrease the amount of time you spend typing or searching through files.

Package Management

Linux uses a package manager to manage the download, installation, configuration, and removal of software. If you’ve only used Windows or Mac until now, you know that installation is usually a straightforward double click on an .exe or .dmg file. Linux, however, with a package manager, will keep a record of all the installed programs and their dependencies through an internal database. This might sound a bit scary at first, but in fact it’s very simple. Are you perhaps familiar with Steam, the game distribution platform? Their interface is similar to a Linux package manager.

Package managers usually have both a graphical user interface as well as a command line interface. The Raspberry Pi uses the “Aptitude” package manager, and with this computer you will probably use the command line interface most of the time.

So how do you install a program? Simple! Open the terminal and type:

sudo apt-get install PackageName

The package manager will analyze and determine what dependencies are needed for the software, download and install those dependencies, and then install the program you requested.

Text Editors and IDE’s

In the same way Windows and Mac come with basic, lightweight text editors such as Notepad or Textedit, your Raspberry Pi comes with Leafpad or Nano. These editors may suffice in the beginning, but they are too lightweight when it comes to any serious programming that you will eventually have to do. The Leafpad and Nano are intuitive and easy to use, but you should switch to “Vim” or “Emacs,” because they are so much more than just simple text editors. They are used as Integrated Development Environments, or IDEs, which means they provide all the tools needed by computer programmers.

Both come with in-built commands, keyword highlighting, and automatic word completion. Learning how to program is much easier when working in a proper IDE that can highlight errors, offer suggestions, and auto complete commands you are typing. Both IDE’s come with pros and cons, but you can’t really say one is better than the other. However, entire communities built themselves around these two programs, and they constantly argue about which one is the best. Just like with Windows vs. Mac, it’s all about preference. So give both of these a try and find out what you prefer while learning. In the end, they are both tools that accomplish the same thing.

Vim

Vim is a modal editor, which means you have an “insert” mode and a “normal” mode. A basic text editor like Notepad, for instance, is considered modeless because it only has one mode where you input text. In Vim’s insert mode, you input text in the editor and you commit it to the document, while normal mode is used for performing functions such as copying and pasting text or moving the cursor. This type of modal editor comes from the days when a mouse wasn’t used or even needed to work on a computer. It was all about being fast and efficient with a keyboard only. Vim is a survivor of that age, and many Linux programmers prefer it to this day. But enough about tech history.

Most Raspberry Pi’s already come with a version of Vim preinstalled, so let’s open a text file by typing:

vim newfile.txt

Once you input the command, Vim will start in the terminal instead of a new window as you are probably used to. By default it opens in Normal mode, and you can’t start editing the new file right away. You need to switch to Insert mode by typing “i”. On the bottom left of the window, you will now notice the word “INSERT” showing you which mode you are in. While in this mode, you can start typing anything you want. Then you can switch back to Normal mode by hitting the “Esc” key. In both modes, you can navigate with your keyboard’s arrow keys.

So you typed something in Insert mode and now you’re back to Normal mode. It’s time to save your file, but how? Again, make sure you are in Normal mode and type “:w”, then hit the Enter key. If you want to save and exit the file at the same time, type “:x”. If nothing happens, and you’re just printing these symbols in the file, it means
you are still in Insert mode. Always double check. Using a modal editor may take some getting used to.

Emacs

This editor has a more intuitive design than Vim and it is not modal. Keep in mind that your Raspberry Pi might not have Emacs already installed, so you have to set it up yourself. Make sure you have enough memory, because the download is somewhat large and the installation can take time due to software dependencies.

Once you have installed it, open up your terminal and type:

emacs newfile.txt

Emacs will create and open the file in a new panel, and you can start working immediately. Like previously mentioned, this is not a modal editor, so you can type whatever you want and then issue commands with keyboard shortcuts.

Here are some basic Emacs commands to get you started:

	
Ctrl + X + Ctrl + S: Save file

	
Ctrl + W: Cut

	
Alt + W: Copy

	
Ctrl + Y: Paste

	
Ctrl + X + Ctrl + C: Close file

	
Ctrl + A: Go to the beginning of line

	
Ctrl + E: Go to the end of line

	
Ctrl + Space: Set the beginning point where you will copy or cut text. You can then move the cursor to extend that
selection to include the text you want.

If you aren’t too comfortable with keyboard shortcut commands, Emacs has a menu where you can select what you want.

Nano

If you find Emacs and Vim a bit too challenging, you might like Nano instead. Open your terminal and type:

nano newfile.txt

Nano will create this file, or if it already exists, it will open it instead. Nano’s panel is slightly different from the other two editors. The basic commands are listed at the bottom of the terminal. Type something in the file, and then save and close it. To achieve this, type “Ctrl + X” to close the program. Don’t worry, it will first ask you if you want to save it. Type “y” and your test file will be saved. Explore the basic commands on your own, and try them out.

Leafpad

This is a graphical user interface-based editor that you get with your Pi. To start the program, click on the lower left icon on the desktop, go to “Accessories,” and there you will find Leafpad. You will notice that this text editor is similar to Notepad. Keep in mind that this editor can only be used if you are running your computer with the graphical desktop and not the command terminal. Leafpad can’t be accessed through the command line interface.

Solidify Your Linux Foundation

In this chapter you gained a basic understanding of the operating system. You learned how to use the command line interface, or the terminal, and navigate through it with basic commands. You also learned about the text editors you will need when you start programming. Explore all of them, practice with the commands, get a feel for the interface of each program, and decide which one is best
suited for you.

Do you like the modal editor? Great! Look deeper into it, find some tutorials online, and learn more. Do you find it confusing and awkward? No problem, go with Emacs or one of the simpler editors instead. There is no best editor - they all are just tools at your disposal.

Chapter 3

Networking

[image:]

[image:]

Networking is vital for many Raspberry Pi projects, such as home automation, and being directly connected to the Internet can also make your learning process a bit easier. The Pi can be connected to the Internet through the Ethernet port, or by connecting a USB WiFi module. The biggest benefit of a network connection, however, is probably the ability to have remote access to your Pi from another computer. If you aren’t entirely comfortable with the Pi, or you don’t want to connect a monitor and keyboard to it, you can simply work with it remotely from your main computer or laptop.

In this chapter we’ll discuss connecting your Pi to the Internet and how to control it through the power of networking. You will learn how to set up a wireless connection, how to control your Pi remotely, how to share files through a network, how to share the
screen, and more. Make sure to practice all these steps to solidify your knowledge of basic networking. You will need this information later when you work on various Pi projects.

Connecting

If you want to connect your Pi directly, you can use any Ethernet cable and connect to your router. Normally you should connect immediately, however, depending on your model and setup, you may encounter some possible issues. Most Raspbian versions are already preconfigured to establish a connection though the Dynamic Host Configuration Protocol, or DHCP. However, if your Pi’s network LED doesn’t blink, you might have to check your DHCP. Open up your network management panel and make sure your DHCP server is enabled.

You can also connect wirelessly with an adapter by going through your Pi’s WiFi configuration tool. Simply open the program and hit the scan button to look for an access point. Click your home access point, enter the requested password and connect to the network.

These are the basic, common ways of connecting your Pi to a network. But what if there’s no connection available, but you still want to remotely control your computer? Let’s see what other options you have.

Using a Console Cable

If you don’t want to connect a monitor and all other peripherals to your Raspberry Pi, then you can use a console cable to connect to another computer. Here’s how you should establish the connection through a console cable:

	
Take the red lead and connect it to the Pi’s bottom right pin.

	
Leave one open space and connect the black lead to the GND pin.

	
Take the white lead and connect it on the left side of the black lead.

	
Take the green lead and connect it to the left of the white lead.

Now you are almost ready to establish a connection with your main computer. Switch to your Windows or Mac-based PC and install the drivers needed to recognize the cable.

If you have a Mac, you can connect by opening the console and typing the following line:

$ screen /dev/cu.PL2303-00001004 115200

Your device will connect and after you hit the Enter key, you will be asked to log in to your Raspberry Pi. Use your Pi’s username and password that you set up, or the default which are “pi” as username and “raspberry” as password.

If you have a Windows PC, after installing the drivers, you will need to download and install “Putty”, which is a terminal program. Once you have installed it, run it and change the connection type to “serial” and set the speed to 115200. You are also required to set the serial line to be the same one as the COM port that is used by console cable. For example, it could be COM7, but if you aren’t sure, or if that doesn’t work, then open up your Windows Device Manager and check. When you’re successful, the terminal will open and ask you for the Raspberry Pi login information.

Remote Connection with SSH

Connecting to a remote device by using Secure Shell (SSH) is extremely common because of your ability to gain encrypted access. The only drawback of using this remote connection method is the lack of a graphical user interface. So keep in mind that with SSH, you will communicate with your Raspberry Pi only through the command line interface. With that in mind, let’s learn how to set it
up.

Launch your Pi’s configuration tool, raspi_config and enable the SSH option. It might already be enabled because some of the newest versions of Raspbian come with this function already turned on. Now switch to your main computer, and if it’s a Mac, open the console and type:

$ ssh root@Ipaddress

The IP address is the IP of your Raspberry Pi. Then enter the password, and you’re connected.

To connect from a Windows PC, you need to perform the same steps, but through Putty which we already discussed in the “Using a Console Cable” section.

Remote Connection with VNC

If you want to access your Pi’s graphical desktop instead of the command line terminal, you need a Virtual Network Connection server. Open your console and type these commands:

$ sudo apt-get update

$ sudo apt-get install tightvncserver

This will install the VNC server to your device. Once it’s installed, you need to run the server by typing:

$ vncserver :1

When you run the VNC server for the first time, you need to set up a password, which you will later use when connecting remotely from your main computer or laptop. Once you set the password, you need to switch to your Mac or PC and install the VNC client. There are several options, but the one that is probably the most commonly used is RealVNC.

Next up, start the client and enter the IP address of your Raspberry Pi, followed by “:1”. The “:1” command translates to “connect to display number 1”. Now you will have to input the password you set up earlier for your VNC server.

File Sharing

The option of moving files from your Raspberry Pi to your Mac or PC and vice versa can significantly ease your work, especially if you don’t have a spare keyboard and monitor. With file sharing capability, you can even access your Mac’s TextMate editor from your Pi. The steps you need to take to enable file sharing are extremely similar for both Mac and PC, so we’ll stick to one general explanation.

You need your computer to be able to find the Pi in the file manager application. If you’re on a Mac, your Pi should show up in the Finder, and if you’re using a PC, the Pi should appear in File Explorer. When you first make the connection, the device might not be visible because it requires some configuration.

First, install netatalk on your Raspberry Pi by opening the terminal and typing the following command:

$ sudo apt-get install netatalk

Now switch to your Mac and in the Finder menu click on “Connect to Server” and type afp://IPaddress as server address. Instead of
IPaddress, you need to input your Pi’s own IP address. Connect and log in using the Pi’s default user and password. You should now be able to see the root directory of your Pi on your computer.

Network Attached Storage

In this section, you’ll learn how to turn your Raspberry Pi into a file based storage platform that allows other computers to have access to shared storage. To achieve this, you first need to install Samba, a program that will help your non-Linux computer coexist with the Raspberry Pi in the same network. To start installing this software, open your terminal and type:

$ sudo apt-get install samba

$ sudo apt-get install samba-common-bin

Then connect a flash drive to your Pi. It will be automatically recognized and mounted. All you need to do now is configure Samba so that you can share the flash drive with every other computer on the network. Start by adding the default Pi user to Samba and the password. Type:

$ sudo smbpasswd -1 pi

New SMB password:

Retype new SMB password:

Added user pi.

Next you need to make some file changes. Type:

$ sudo nano /etc/samba/smb.conf

If you are going to connect a Windows PC, you need to make a change workgroup = WORKGROUP. What you need here is the workgroup name of your Windows network. For instance, on most versions of Windows nowadays, the default name is HOME. Just to be sure, check your computer first.

Next you need to find the line “# security = user” and remove the “#” symbol. By doing this, you will turn the security on.

Now go to the end of the file and type:

[USB]

path = /media/NAS

comment = NAS Drive

valid users = pi

writeable = yes

browseable = yes

create mask = 0777

public = yes

Save this file and restart the program by typing:

$ sudo /etc/init.d/samba restart

Your flash drive should now be shared with your network.

If you are connecting from a Mac, go to the Finder menu, connect to server, and type smb://rasperrypi/USB. You will then see a login window where you enter your username and password.

This operation is similar on Windows, though it can vary depending on the version you have. The only real difference from the Mac connection is that you will need to enter the network address like so: \\raspberrypi\USB and then log in with your user and password.

Chapter 4

Programming Basics Using Python

[image:]

[image:]

As we discussed in the first chapter, the main purpose of the Raspberry Pi is to make the programming learning process more accessible and affordable to the new generations of programmers. Starting out your journey in the tech industry doesn’t need to break your budget, especially if you’re just exploring the world of programming and not yet committing yourself to it.

The creators who are behind the Raspberry Pi decided that programming would also be easier to understand and more entertaining if they launched their computer with the Python programming language. This language was chosen because it is considered to be extremely beginner friendly, but also powerful at the same time. Many people of all ages are picking up programming because Python makes it so easy to understand all the concepts
behind this skill.

So far you have learned what makes the Raspberry Pi tick. You know how to issue commands and instructions by using the terminal, and you have a basic understanding of networking and establishing connections between devices. Now is the time to take the next step, which is a major one. You will learn the basics of programming and how to write a few basics scripts in Python. You don’t need any tech knowledge to dive into this chapter. Just make sure to bring enthusiasm and an eagerness to learn, and it will all be a breeze. Also keep in mind that you should practice along with reading. You cannot learn how to program in any language without actual practice. Read, learn, understand, and put it to use.

What’s Python?

Python is a general purpose programming language. Some argue that it’s a scripting language and not a “real” programming language. There’s no point in arguing semantics. However, you should understand the differences between the two types, what they are and what they aren’t.

Programming languages, such as C, C++ or Java, are compiled languages. This means that a compiler turns the program into machine language before running it. Machine code can only be read by the computer, and most of the time programs run faster because of this process. Compilation happens only once, and the process optimizes the code for the computer to read it faster. Another key aspect is that compiled languages run directly on the machine’s processor. So the code you write in C++ is run on the hardware.

Scripting languages, however, are also known as interpreted languages. They do not compile. The computer reads the code exactly as you write it, and because of this you might end up with slower programs. Keep in mind that this is influenced by how good you are at writing optimized code. If the code is sloppy and all over the place, the program will be no different. Another key difference is
that a scripting language usually runs inside other programs, which will run a compilation process.

Nowadays this line between a programming language and a scripting language is so fine that you can barely tell them apart. In the past, you would have to write a program in a compiled language if that program had to benefit from the extra speed. You couldn’t always use a scripting language instead. Today, computer processors are so fast that the difference in speed between the two makes no difference. You can struggle writing a program in C, or you can write simple code in Python and achieve the exact same results. The technical difference between the two types doesn’t matter anymore. That is why most refer to Python as a general purpose programming language instead of a scripting language. The only difference that matters is that a scripting language is easier to learn due to simpler syntax rules. Plus, the code is very English-like. Let’s see the difference up close.

Normally, the first program of a beginner is a “Hello world!” program. This is how it would look written in C, a compiled language.

#include <stdio.h>

int main()

{

Printf(“Hello world!/n”;

Return 0;

}

Now let’s see how the same program looks in Python:

print (“Hello world!”)

As you can see, the Python version is a lot simpler because the code is so easy to read and understand. It’s just English. While in the C version of it, you need to understand what “stdio.h” means and you need to use appropriate symbols or the program won’t compile. This simplicity is why beginner programmers are directed towards Python. You will learn the same rules and concepts of programming, but with a lot less frustration that may otherwise make you give up. The creators of the Raspberry Pi knew this, and this why this computer comes with Python pre-installed. So let’s get started!

Running Python

There are three methods to run Python on your Raspberry Pi. You can use IDLE, which is an integrated development environment that you should already have with your version of Linux. The other two options you have are running Python through the terminal that you are familiar with, or as a script. We’ll discuss all three methods and show you how to run Python.

IDLE

This is the most user friendly way of working with Python code. Double click on the IDLE icon on your desktop. This will open a panel where you can start writing some code. As mentioned earlier, writing a “Hello, world” program is a long standing tradition in the world of programming. So let’s start with that and discuss things in more detail.

Type:

print (“Hello, world!”)

And hit the Enter key. You should already see the result on your screen, which is a “Hello, world!” message.

“Print” is a statement which outputs something to your screen. Let’s explore this a bit further.

Type:

y = 7

Hit the enter key. There will be no output, but the program now knows that “y” is 7. Now type:

print (y)

You will be greeted with 7 as a result. What if you don’t type the print statement though? Try it, type: y

You will still get 7 as a result. But why? This is called dynamic typing and it’s one of the things that makes Python so easy to work with.

In a compiled language, you would have to type “int y = 7;” because you need to define the type of the variable before you declare it. The “int” tells the program that y is an integer. However, Python knows it’s an integer without defining the variable, because telling it “y = 7” automatically shows that y is an integer. Before digging deeper into data types and object oriented programming, let’s do a few more basic operations.

Type:

print (y + 3)

This statement will take the previous value of y, which was declared to be 7, and output 10, which is the result of 7 + 3.

Now try typing:

y + “home”

This will result in an error, however, type:

“welcome” + “home”

And you get “welcomehome” as a result. This is called string concatenation, which means that you are combining character strings together.

Now let’s explore using the terminal instead of IDLE.

Using the Terminal

Start up your Pi’s terminal and type “Python”. You will notice that the console will display the exact same text as IDLE. The terminal will in fact work in the same way as IDLE, though it’s not so pretty to look at. Try using similar commands to those discussed in the previous section. You should get the same results with the same code.

Using Scripts

You may have noticed that you cannot save the code you write in IDLE or in the terminal. You cannot write a script because when you close the panels, your code is wiped. This is why you need a text editor. With Leafpad, for instance, you write a full program, save it, and run it from the terminal. We’re going to create a script using Leafpad because it’s the default editor that comes with the Pi. Run the editor and let’s type:

x = 10

y = x - 3

print (y)

Now save this script on your Desktop as mytest.py. Open the terminal and navigate to your desktop by typing “cd ~/desktop”. You can run your new program by typing “python mytest.py”. You should now see the result of your code, which in our case would be “7”. Congratulation on writing your very first script, saving it, and running it successfully!

Keep in mind you can use any text editor you want to write scripts. As we already discussed, there’s no better or worse editor, it’s all about personal preference. If you want to stick to Leafpad, go ahead!

Now let’s switch back to talking more about Python and its data types.

Python Data Types

Python comes with a few in-built data types that you should know. Learning about data types is essential for building a solid
programming foundation. Make sure to also keep practicing what you learn as you read along. Play with the data types you learn and with the various operations you performed until now. Don’t be afraid to experiment.

Some of the most important data types are numbers, strings, dictionaries, lists, tuples and more. In this section of the chapter, we’ll discuss each data type separately. Let’s dive in!

Numbers

This is self-explanatory, however, there are several types of numbers. There are integers, floats, longs, complex numbers, and more. The ones you should focus on for now are integers and floats. These are the most commonly used, especially by a beginner programmer.

An integer (int in programming language) is a positive or negative whole number, so no decimal points. A float is a real number with a decimal point.

With Python, you have operators that allows you to make calculations with these numbers. Some operators such as + and - you already used, but you also have *, /, and %. There are also operators for comparison, and some of these are >, <, >=, != and more. These are basic and they’re built into Python, however there are many more that can only be used by importing a module.

What’s a Python module? A module is an extra library that you import to your script so that you can add to the functionality of the programming language. In the case of numbers, you might want to perform some fancier mathematical functions, so you’ll need to import the “math” module. Let’s see how this works in action. Open a new IDLE panel and type:

a = -6.02

print abs(a)

You will get the result without a problem because the absolute value function is already included in native Python. We’ll talk more about functions a bit later. Now type:

ceil (15.4)

You will see an error because the native library does not contain the ceiling function. You need to import it first, so let’s import the math module. Type:

import math

math.ceil(15.4)

Now you will get the result, which in this case is 16. Even if you don’t need the ceiling function, or you don’t know what it is yet, having this module imported is useful for performing trigonometric functions and so much more. If you want to play more with numbers and calculations, go ahead. Discover things on your own and have fun while exploring!

Strings

A string is a sequence of characters, or in other words, it’s text. Strings can be anything that simply gives you text-based information. This includes letters, names, punctuation marks, and even numbers. Didn’t we just say numbers are a separate data type?
Yes we did, it’s all about the way you type the code. Here’s an example:

y = 20 and y = “20”

The difference may be subtle, but with the first version of the code you can make mathematical calculations. With the second version, you will get an error. Because the number 20 is enclosed in quotes, the program sees it as a string. Without the quotes, it’s an integer.

So what can you do with strings? A lot, but let’s see some of the basic operations, such as determining the length of a string, concatenation, and iteration.

Let’s open a new IDLE panel and type:

len(“welcome”)

Len is used to determine the length of a string, therefore the result will be 7, because the word “welcome” is made of 7 characters. Now try:

‘cats’ + ‘and’ + ‘dogs’

This is an example of string concatenation that we discussed a bit earlier. The result will be catsanddogs, but that’s not readable. Why aren’t there any spaces between words? Because we didn’t add the space. Try this instead:

‘cats ‘ + ‘and ‘ + ‘dogs’

Now the result will be “cats and dogs”. Did you notice anything else with the last two lines of code? We switched from double quotes to single quotes and everything worked just fine. That’s because Python doesn’t tell the difference between the two, so you can use whichever symbol you prefer.

Let’s see how to iterate every character in a string. Type:

booktitle = “Lord of the Rings”

for c in booktitle: print c,

…

This will print every character within booktitle “Lord of the Rings”.

There are many more string operations that you can perform. You can convert words to ASCII code, uppercase to lowercase, and much more. For now, it’s enough if you understand what strings are and how to use them. You are free to explore more on your own. Python’s string library is extensive, and there are modules you can import as well.

Lists

A list is a very important and useful data type frequently used in programming. They can always be changed, they can contain different types of objects, you can increase or reduce their size, and much more. If you are familiar with a C derived programming language, you will notice that Python lists are actually arrays.
Everything you can do with strings, you can also do with lists. Let’s see how to create one. Type:

x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

As you can see, lists are declared by using square brackets []. Now type:

book = [“title”, 1, 2, 3, “42”]

Now feel free to play with the exact operation you learned in the string sections. Here’s how a concatenation would look like:

x + book

The result will be a concatenation of the two lists, so you will see:

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, “title”, 1, 2, 3, “42”]

Experiment with other operations and see what happens!

If you are confused by a certain data type, you can ask Python for advice. For example type:

import string

help (string)

Python will tell you everything you want to know about strings.

Dictionaries

These are flexible collections of objects just like lists, except they aren’t ordered. To have access to an item in a dictionary, you will need to access it by a key. When you request the key, you will receive the object associated with it. Let’s see an example. Type:

dict = {‘fruit’ : ‘apple’, ‘vegetable’ : potato’}

dict [‘vegetable’]

The printed result will be “potato”. Keep in mind that the key doesn’t have to be a string like “vegetable”, it can also be an integer or other objects.

Tuples

Tuples are sequences of objects that cannot be changed. They are similar to lists because you can order them, but you can’t change them once they are in place. Let’s see how a tuple looks like by typing:

t = (0, 2, ‘something’, 42, [1, 2, 3])

As you might’ve noticed, the tuple is written with parentheses. In our line of code we have a tuple that contains three integers, a string, and a list. You can perform any operation you tried on lists in previous section. They are nearly identical to lists. The only difference is that once you’ve declared a sequence of integers, strings, lists or any other objects as a tuple, you cannot later change anything further in your program. If you try to make a change to the tuple, you will receive an error. It’s similar to declaring a constant in C, or C++ if you are familiar with programs in the C family.

Now that you know the basics of the most important data types, you can put your knowledge to the test.

Python Programming

Let’s make an actual program now that you know about data types and basic operators. If you were using an interpreter so far, now you need to switch to a text editor like Leafpad or Emacs. Open the editor, and save it immediately as a file with the .py extension. You will then be able to run the program by typing $ python thisprogram.py, as we mentioned earlier in the chapter.

First, let’s discuss the block structure of the code. Python is somewhat special in the world of programming languages because it splits out code by using whitespace blocks. Most languages split the code into blocks by starting and ending with curly braces. Here’s an example of a code block written in C:

if (y == 10)

{

​
printf (“y is equal to ten”);

​

printf (“Nothing else to do here”);

}

printf (“This is the end of the if statement”);

Now let’s write the same if statement in Python:

if y == 10 :

​
print (“y is equal to ten”)

​
print (“Nothing else to do here”)

print (“This is the end of the if statement”)

It’s worth mentioning that in Python the parentheses are optional, however, using them is considered a standard in programming. The code is considered to be more readable this way, therefore it’s a standard to use parentheses even in Python. The above if statement written in C has the obligatory parentheses. The same if statement in Python is written without the parentheses, however, you should use them anyway. Getting used to best practices will also help you if you ever wish to learn a C programming language.

Did you also notice any other important difference between the two blocks of code? In C, C++ or C#, you need to end lines of code with a semicolon “;”. If you don’t, the code will not compile and the program won’t work. In Python, there is no need for the semicolon.
A line of code ends simply at the end of the line.

Naming Conventions

Before we move on to learn more about statements, you should familiarize yourself with variable naming conventions to keep your code clean, readable, and consistent. When you start learning programming, you need to know how to organize your project. You may write the code only once, but chances are it will be read several times and not always by you. If you don’t use an easy to understand naming convention, other programmers will have a hard time reading your code. Even you will struggle after a few days or weeks of not working on your project. A program is supposed to explain itself to the coder, so naming things properly is extremely important. Let’s discuss the several naming conventions that are well known.

	

Pascal Case
: Capitalize the first letter of every word and don’t leave any empty spaces or symbols between the words. Pascal case looks like this: ThisIsPascalCase, UserAccount, FileName.

	

Camel Case
: This is very similar to Pascal case. The only difference is that the first word starts with a lowercase letter. For example: thisIsCamelCase, userInterface, combatSystem.

	

Snake Case
: This is the method of naming variables with compound words where each word is separated by an underscore. Snake case can be written either with every first letter of every word in lowercase, or with the first letter of the first word in upper case. Don’t leave any space and don’t use any symbols. This is how snake case looks: this_is_snake_case, Also_snake_case, user_interface. With this naming convention, you might find it easier to read descriptive compound words because the underscore looks like a space. Snake case is also an extremely popular naming
convention for project files.

	

Apps Hungarian Notation
: The name of the variable begins with a lowercase prefix that indicates its type or intention. This naming convention was adopted by Microsoft, and it is somewhat widely used. Here are some examples: rwPosition (rw refers to a row), usName (us refers to unsafe string). This naming system may sound confusing and difficult, especially when you are a beginner programmer.

These are the most commonly used naming conventions no matter which programming language you use. There is no “best.” The most important thing is consistency. Don’t use several naming conventions in the same program, as you may cause confusion and make the code harder to read. Choose the one that seem to be the easiest to read for you and stick to it.

Conditional Statements

It’s time to teach your program how to make decisions on its own. A conditional statement will check the condition of a variable and change the result of the program based on the value.

You might have notice that you already encountered conditionals in previous sections. The “if statement” is probably the most well-known statement, not just because of its use in programming, but because of how much we use it in real life. For instance: If it rains tomorrow, I will stay home. You can also be more specific and state what happens if it doesn’t rain tomorrow. For example: If it rains tomorrow, I will skip work, else I will go for a walk. If statements and if-else statements are extremely common in programming, so let’s see how they look in code. Type:

x = 10

if x > 10:

​
print(“x is a large number”)

As you can see, we begin by declaring X’s value. Then we use an “if statement” to determine whether what we declared is true. In our example we’re checking if x is greater than 10. If it’s true, the program will print the message “x is a large number”. In programming, most of the time we also want to specify what happens if the statement is false. Type:

x = 10

if x > 10:

​
print(“x is a large number”)

else:

​
print(“x is a small number”)

print (“This message will print no matter what”)

In this block of code, we state just like before that x is 10 and if it’s larger than 10, the program should print “x is a large number”. If x isn’t greater than 10, the first part of the statement will be ignored and the “else” part of the statement will be printed. At the end of the statement we also added a “control” message that will be printed in
both cases, no matter the result.

There is a third statement that can be added here: the “elif” statement, which is used to check multiple expressions for true and execute the code when the condition is met. Here’s how the structure would look like with “elif” included.

if condition1:

​
statements

elif condition2:

​
statements

elif condition3:

​
statements

else:

​
statements

Here’s an example with code. Type:

x = 100

if x > 200:

​

print (“x is a large number”)

elif x < 50:

​
print (“x is a small number”)

else:

​
print (“x is not as huge as I thought”)

When the code is executed, you will be greeted with the result “x is not as huge as I thought”.

Conditionals are important in all programming languages, so practice them. Be creative, use integers and floats, make some simple calculations, and then use a conditional statement to test the result and output a result.

Assignment Operators

These operators are used to assign a value to a variable. Let’s see some examples and explain with words what the most common assignment operators do.

x = 10

This is the most basic assignment operator, and in this example we simply assign the value of 10 to our x variable.

x += 10

The plus equal operator is the same as saying “x = x + 10”. Here’s a simple example of how it works:

x = 2

x += 5

print(x)

The result is 7.

The following assignment operators work in the same way as the plus equal operator. They are self-explanatory, so try them out yourself like in the example above.

x -= 5

x *= 5

x /= 5

There are other assignment operators, but for the purpose of learning basic programming in Python, we will stick to these for now. You can explore the rest if you wish by searching online for “assignment operators” or by using the Python help command as explained earlier.

Comparison Operators

Also known as relational operators, they are used to compare the
value on each side of the operator and determine the relation between them. You already used a couple of basic comparison operators, but let’s take a look at all of them and what they mean.

The “less than” operator: <

The “greater than” operator: >

The “less than or equal to” operator: <=

The “greater than or equal to” operator: >=

The “equal to” operator: ==

The “not equal to” operator: != or <>

Let’s test all of these comparison operators. You can use the terminal for this part. Type:

10 != 100

10 is not equal to 100, therefore the statement is true.

2 != 2

2 is not equal to 2, this is false.

1 >= 1

True

Continue using the rest of the operators and check the results. Keep in mind, however, that you need to use a double equal (==) when you are comparing values. In programming, a single equal is used to set a value.

Logical Operators

This type of operator is used usually together with conditional statements because they allow you to make several comparisons in one statement. There are three logical operators: and, or, and not.

The “and” operator will return true if both statements are true.

The “or” operator will return true if one of the statements is true.

The “not” operator will reverse the result, which means it will return false if the result is true.

Let’s see a logical operator in action within an “if” statement. Type:

x = 50

if x <= 100 and x >= 10:

​
print(“x is somewhere in the middle”)

With this code, we are checking whether x’s value is somewhere between 100 and 10.

Try practicing with the conditional statements you learned in the section above. You can use as many logical operators as you want, as well as conditional statements. Remember, the key to learning is practice.

Loops

Code is executed line by line, vertically from top to bottom. Normally, a line of code is executed only once, followed by the next line, and the next, and so on. There are, however, cases when we want a block of code to repeat until a certain condition is met. In Python, you will use two kinds of loops, namely “for” loops and “while” loops. Let’s see some examples to get a better understanding. We’ll start with the for loops. Type:

for x in range(1, 10):

print(x)

What happens here? The program will repeat the command to iterate over a range. In this case, the for loop is used to repeat a block of code a certain number of times defined by the range function. Let’s see another example by typing the following:

vegetables = [“potatoes”, “cucumbers”, “cabbages”, “carrots”]

for x in vegetables:

​
print(x)

In this block of code we create a list of vegetables, and with the use of a for loop we can print each item in the list. Now let’s see how to loop through a string. Type:

for x in “Python”;

​
print(x);

In this case, the for loop is printing each character contained in the string. Strings are iterable objects, because they are a sequence of characters.

What if you want to repeat a block of code only while a certain
condition is met? The key word in that question is “while”. A “while” loop is used to run a part of the program until a variable changes. Let’s see a simple demonstration:

x = 1

while x <= 5:

​
print(x)

​
x += 1

Let’s break down this block of code. We assign the value of 1 to x. Then we state that while the value of x is smaller than or equal to 5, the program should print x. At this stage, if we end the block of code, we will create an endless loop that will print 1 as the value of x, because that’s what we told the program to do so far. What we want is to use an assignment operator to tell the program to repeat the code only until the condition is no longer met. Therefore, when x reaches 5, the loop ends, because we told the program to execute only as long as x is smaller than or equal to 5.

Congratulations! You now know how to write loops in Python. But what happens if the condition of the loop is always true, and it never changes? You can end up with an infinite loop, and that’s bad. In this case, you can use a “break” statement to break out of the loop. Here’s an example of a loop break:

while True:

​

response = input(“Enter command:”)

​
if response == “Y”:

​
​
break

This block of code will continue asking you to enter to correct response. The loop will only break when you give the program what it asks for. Try it out. If you enter any command other than uppercase Y, the program will keep telling you to “enter command”. Typing “Y” is the only way to exit the loop.

Take note that this block of code might not work in your version of Python. The “input” command is used in Python 3. If you are working in Python 2 by any chance, replace the command with “raw_input”.

Practice Python’s primary loops by using everything else you learned in the previous chapters. Loops are part of basic programming, and understanding them is crucial. “For” and “While” loops are concepts used in all programming languages, and they are needed in many projects. Use the information you acquired so far to make simple programs. However, if you are feeling a little overwhelmed, look up Python loop exercises online instead.

Functions

When you’re programming, you don’t want to repeat the same code several times in your program. This is what functions are for. They allow you to be more efficient and avoid reusing the same code. Generally, it is considered that if you need to write the same code more than twice, you should use a function. This is not a rule by any means, but many programmers within the industry consider this to be best practice.

Here’s a simple example of how to create a function:

def friendly_function():

​
print(“Function says hello!”)

We define a faction by using the keyword “def”. Don’t forget to pay attention to your chosen naming convention. We use the same conventions as for variables. In this example we used Snake Case.

Now that we have the function defined, we need to call it. Type the name of your function, followed by parentheses:

friendly_function()

When you call it, the program will print the message “Function says hello!”.

What are the parentheses for, you ask? Functions can be used to pass information as a parameter. A parameter is a variable that is given in the definition of the function. Here’s an example of a function with parameters:

def my_name(firstname):

​
print(firstname + “ Smith”)

my_name(“John”)

my_name(“James”)

my_name(“Andrew”)

In the “my_name” function we determine one parameter, which is “firstname”. Then we call the function to print out the parameter within it, which is any first name, in order to display the full name. Keep in mind that this is just a basic example. Functions aren’t limited to one parameter. You can have no parameters, one parameter, or as many as you want. If you use multiple parameters, however, make sure to separate them with a comma.

Now that you understand how functions work and what parameters are, let’s see how to use a default parameter. What does that even mean? If you establish a function with a default parameter value, you can call the function without a parameter because it will use the default value you gave it. Let’s see this concept in action. Type:

def your_function(country = “Germany”):

​
print (“I am from “ + country)

your_function(“China”)

your_function(“France”)

your_function()

your_function(“Italy”)

The result should look something like this:

I am from China

I am from France

I am from Germany

I am from Italy

As you can see, if you define a default parameter and you don’t mention the parameter during a function call, you will print with the default value, in our case “I am from Germany”.

All the functions we listed so far are simply doing something. They do not return any value. If you want your function to return a value, you have to use the return command. When the function returns a value, you can assign it to a variable. Here’s an example:

def your_function(x):

​
return 10 * x

print(your_function(2))

print(your_function(5))

In this case, you return a new value and you print it.

Continue practicing functions by creating your own exercises. You can establish any kind of parameter, so use your knowledge of lists and other variable types to understand the power of functions.

Commenting Your Code

Increasing the readability of your code is one of your priorities when programming. So far we discussed the importance of variables,
function naming conventions, and organizing your code, but there’s one extra step you can take. A programmer needs to make the code understandable, not only to himself, but to others as well. The way to achieve this is by using comments. Even if you work alone on your project, you might take a break at some point and return to it later. What happens? The code you wrote isn’t so fresh and familiar anymore. You struggle to understand what you really tried to do. Code commenting is a way to offer explanations that can shed light on a complex block of code.

Keep in mind that comments are meant for the programmers who read the code. They don’t affect the program itself in any way. Here’s how to write a comment in Python:

This is a comment

The comment itself is marked with a # symbol. The program will ignore everything that is written after a hash mark. You can place a comment wherever you want, even inside a line of code, and it won’t interfere with the program.

print(“This code will be executed”) # This part will be ignored

While comments can be inserted anywhere, you should also pay attention to how you write them. You don’t want an endless comment line that requires scrolling in order to read. Comments should be short, however, sometimes you need to offer a more detailed explanation. Whenever you need to write more than around 70 characters, you should consider writing a new line. Here’s how you can write a multiline comment in Python:

This is an example

on how to break down

comments into multiple lines

This method is involves creating a new line and adding the hash mark at the beginning of it. This is the only right way of commenting your code in Python. There is another method, but it is not considered best practice. It involves creating a block comment, wrapped in-between quotation marks, like this:

”””

If you don’t want to add

a hash mark every single

line, you can just write the

comment like this

”””

Take note that the triple quote method is in fact a string that isn’t assigned to a variable, and not a comment. You can use this as a comment, however, because a string like this will be completely ignored at runtime. The use of this method is risky, because if you place the triple quote block comment in the wrong place in your code, you can associate it with an object.

Learning how to comment within your code is a much needed skill, especially once your program starts to grow. It will save you a lot of time in the long run, and if you work with other programmers, you will give them fewer reasons to hate you.

Chapter 5

Advanced Programming with Python

[image:]

[image:]

So far, you learned the most basic concepts of programming, and you had a practical introduction to working with Python. You learned about data types, operator types, naming conventions, functions, conditional statements, and you (hopefully) did a few exercises as well to solidify some of the information.

If you feel like you are struggling to understand some of the concepts, don’t beat yourself up. There’s a lot of knowledge to absorb, and it can be overwhelming at first. Take each chapter and each section separately. Do some exercises. Look for additional
guidance online. The Python community is quite vast, and many programmers are willing to help you start on the right path. This book should be enough to get you started with programming, however, the main purpose is to teach you how to work with the Raspberry Pi and to enable you to create various projects.

In this chapter we will discuss the more advanced concepts behind Python and focus more on object-oriented programming. You will learn about classes, methods, how to handle exceptions, and more.

Some of these advanced concepts may not be needed in the project section of the book. We will only briefly discuss a few of Pythons advanced concepts to broaden your horizons. However, when we explore the use of the Raspberry Pi in real projects, you will be guided and instructed step by step. You don’t have to be an expert programmer by the time you reach that part of the book, however, you should grasp the basic concepts of programming and understand what is needed from you to work on a project. Like we mentioned before, practice makes perfect, so go slowly through these sections. Read and reread, but most importantly do your best to use this information to create small blocks of code on your own. It might take some time, but your future self will be grateful when you’re successfully creating cool projects. So let’s get started!

Object-Oriented Programming

Python is one of the popular programming languages that supports OOP, or object-oriented programming, but what does it actually mean? OOP is a paradigm which is based on containing data in the shape of objects with attributes and methods. In this case, an object is actually a collection of data types that you already know from the previous chapter, such as integers, floats, and strings. Objects are usually generalized in classes of objects and they have associated methods that act on all members belonging to such a class.

This may sound extremely confusing and maybe even difficult to read to the uninitiated, so let’s try and explain OOP through an
analogy.

Let’s say our class is a vehicle. A class defines attributes and behavior, so in our case, the attributes of the vehicle are model, type of fuel, color and so on. The behavior or method of the class can be start, break, accelerate, and so on. With the vehicle class, we can then create various objects that share some of these attributes and behaviors. For instance, object 1 is a Renault Clio car model that uses diesel as fuel and was made in 2014. Object 1 can start, stop, accelerate and so on. This Renault Clio object belongs to the vehicle class. Then we can create a second object with same common behavior. This way, with OOP, you can create a blueprint of the vehicle and create various objects from it. Hopefully this vehicle analogy can shed some light on this concept.

There are 4 principles of object-oriented programming that you should know, namely encapsulation, abstractions, inheritance, and polymorphism. You may not need to know these principles in details in order to make full use of this book, however, you should be aware of them at the very least.

	

Encapsulation
: This is achieved when we place certain objects inside a private class. Other objects will not be able to access the objects within it. This principle is used to add security to the program by not giving authority to other objects to change anything about the encapsulated objects.

	

Abstraction
: Many programs are large, making code maintenance a difficult task. This is why we apply the abstraction concept. Internal details about an object will be hidden because they are unnecessary when performing other operations. We want to reveal only the operations that are relevant for other related objects. For instance, you have a coffee machine. On the inside, the machine performs a lot of tasks you aren’t aware of. However, all you need to know is that you have to press a button to get coffee.

	

Inheritance

: This concept is used when you have many objects that are very similar, yet not identical. You can extract what they have in common and apply that logic to a new class. In programming terms, through inheritance you create a child class from the parent class. Essentially, you will form a hierarchy. The child class will reuse all the common logic found in the parent class. However, you will afterwards add the unique part that will be used only by the child class.

	

Polymorphism
: As previously mentioned, you want to avoid duplicating code. If objects can take more than a single form, you can cut down on unnecessary code. A program can determine through context which form of an object is needed in order to execute the code. Polymorphism is a great way of maintaining your program and keeping it short and as a clean as possible.

Learning and understanding the concepts of object-oriented programing will help you in your future, more complex programs. But enough with theory for now. Let’s get back to programming with Python and start coding!

String Formatting

String formatting is used for substituting variables and formatting values by concatenating elements inside the string through positional formatting. This works by leaving a placeholder in a string and then calling the formatting method. This placeholder is marked with curly brackets “{ }”.

Important! There are two ways of performing string formatting, and it depends on your version of Python. If you are using Python 3, you will call the method with the “str.format()” command. This will also work in Python 2.7 because of backwards compatibility that was implemented a while ago. If you use an older version, you will have to use the % operator. We’ll discuss both methods, because it’s still
common to use the % operator, therefore it’s important for you to recognize it. Let’s start with the old method:

name = “World”

‘Hello, %s’ % name

The result will be “Hello World”. The “%s” is used as a format specifier that tells the program to substitute the value of “name” represented as a string. Here’s how this code would look with the new method:

name = “World”

“Hello, {}” .format(name)

Now let’s use string formatting to perform a slightly more complicated operation. Let’s convert a date to a string and then format it. Type:

from datetime import datetime

d = datetime.now()

“{:%Y-%m-%d %H:%M:%S}”.format(d)

This code block looks a bit like gibberish, doesn’t it? That’s because when it comes to formatting, there’s a whole language involved. Each symbol means something. For example, %Y refers to the year, while %M refers to minutes. The result you get with this code should be the “year-month-day hour: minutes: seconds”.

How to Define a Class

We discussed earlier object-oriented programming, classes, and objects. Let’s see how you can define a class and declare all the variables you need. Type:

class Person:

​
This is a comment. Use it to explain the purpose of the class

​
def _init_(self, name, tel):

​
​
self.name = name

​
​
self.tel = tel

As was mentioned earlier, a class is a blueprint, or a template. What we did so far with the code above is just define the class. There are no objects yet. Within the class we have a constructor method declared with “_init_”. This constructor will be called when you create a new instance of the “person” class.

Next up we have the keyword “self” which is absolutely necessary in Python when you define a method inside a class. In other programming languages like Java, we have the same concept, but the keyword “this” is used instead. With the line “self.name = name”
we create the “name” variable that is accessible to all the other members of the same class, and we initialize it with the value passed to the call in order to create an instance. Let’s test this by typing:

p = Person(“Smith”, “123321”)

p.name

The result will be “Smith” because with this code we checked that the object “p” has the name “Smith”.

How to Define a Method

In Python, a method is actually a function that belongs to an object or class. It is only used for the object for which it’s called, and it’s accessible only to the data that is contained in the class. Here’s an example:

class Pet (object):

​
def my_method(self):

​
​
print (“This is a dog”)

dog = Pet()

dog.my_method()

In this block of code we define the “Pet” class, create a “dog” object
and call a method by using the object.

Inheritance

Define a class and use inheritance to create a subclass to which you can add new variables and methods. We already briefly discussed the concept behind inheritance, so let’s see how you can implement it:

class Employee(Person)

​
def _init_ (self, name, contact, salary):

​
​
super()._init_(name, contact)

​
​
self.salary = salary

​
def give_raise(self, amount):

​
​
self.salary = self.salary + amount

As you can see, we are creating a subclass called “Employee” from the “Person” class. Then we add “salary” as a new variable and a new method “give_raise” that are specific only to this subclass.

Writing to a File

In Python, you can write a file by default without importing any modules. You can use the functions open, write, and close to open a file, write to it, and close it. Here’s how it looks in code:

f = open (“testfile.txt”, “w”)

f.write (“This file contains more data”)

f.close()

When we create a file, we need to use a file mode to specify in which mode we want to open the file. In this case we use “w”, which stands for “write”, to specify that we want to create a new file. There are a few other file modes as well: read, append, binary, and text. You can also combine these modes together like this:

f = open (“testfile2.txt”, “r + b”)

Reading from a File

Similar to writing to a file, we need to use file methods in order to read from a file. Here’s an example:

f = open(“demotest.txt”)

x = f.read()

f.close()

This code will read the content of the file into the “x” variable.

Handling Exceptions

A program will stop as soon as it comes across an error, whether it’s a syntax error or an exception. However, if an exception is handled,
the termination will be prevented. You may have already encountered syntax errors because they happen when making an incorrect statement. Here’s an example:

print (“Hello world”))

SyntaxError: Invalid syntax

In our example we get a syntax error because of the second parenthesis we added. This is a common error, because it frequently happens due to basic mistakes such as this. They are always fatal, however, because the program won’t work with present syntax errors. Luckily, these are easy to solve because the parser will repeat the line with the error and point an arrow where it detected the problem.

Handling an exception, however, is a bit trickier because the program knows what to do with code but is still incapable of performing an action. For instance, if you tell Python to connect to the Internet, but there is no actual connection, it will fail and throw you an exception. You can write your code in such a way to handle exceptions, otherwise your program will be terminated when the error is encountered.

Let’s take a division by zero as an example. If you type:

x = 10/0

print (x)

You will get a ZeroDivisionError: division by zero exception. We can handle this exception by using a try and except block, which is probably the most common way of dealing with most errors of this type. How does it work? The program will execute the code after the “try” statement like a normal part of the code. Afterwards, the code following the “except” statement will be the way the program will respond to the resulting exception that occurs in the “try” section of the block. Let’s take our earlier example and see how to handle its exception:

try:

​
x = 10/0

print (x)

except ArithmeticError:

print (“Arithmetic exception is raised”)

else:

print (“It works”)

Result: Arithmetic exception is raised.

Python Modules

As we mentioned in an earlier chapter, Python has many modules or libraries available. Some of them are included, and others need to be downloaded and installed separately. You can even import multiple
modules, but be careful because there can be conflict between them. As a consequence of using too many modules at once, you can encounter a function with the same name more than once. This can lead to problems, but luckily you can choose how much of a module you can access. Here’s how you import a module:

import random

This is a module for random numbers, and you won’t encounter any conflicts because you will only access the functions within this module. However, if you plan to use multiple modules, but you don’t need everything contained in them, you can specify the component. Type:

from random import randint

print(randint(1,10))

The component “randint” is part of the random numbers module, and in this example is used to generate a random number from 1 to 10. There are many more modules for Python, and even more components for each module. You can find all of them in Python’s documentation.

Sending an Email

So why would you ever want to send an email from Python? You might work on a project which involves motion detection, like some kind of security system. For example, with Python’s Simple Mail Transfer Protocol module, you can program your Pi to send out an email whenever it detects motion. Here’s how you can send an email
from a Gmail account.

import smtplib

GMAIL_USER = “your_email_address@gmail.com”

GMAIL_PASS = “your_account_password”

SMTP_SERVER = “smtp.gmail.com”

SMTP_PORT = 587

def send_email (recipient, subject, text)

smotpserver = smtplib.SMTP(SMTP_SERVER, SMTP_PORT)

smtpserver.ehlo()

smtpserver.starttols()

smtpserver.ehlo

smtpserver.login(GMAIL_USER, GMAIL_PASS)

header = “To:” + recipient + “\n” + “From: “ + GMAIL_USER

header = header + “\n” + “Subject:” + subject + “\n”

msg = header + “\n” + text + “ \n\n”

smtpserver.sendmail(GMAIL_USER, recipient, msg)

smtpserver.close()

send_email(“your_destination_email_address”, “sub”, “this is the text”)

Use your own Gmail account information instead of GMAIL_USER and GMAIL_PASS, and don’t forget to also change the destination email address. If you are using another service instead of Gmail, you will have to change SMTP_SERVER and SMTP_PORT.

Chapter 6

Electronics Basics

[image:]

[image:]

Now that you have a fundamental understanding of Python programming, it’s time to take a look at electronics and basic electricity concepts. After all, we want to be able to build cool projects with the Raspberry Pi. Before you can do that, however, you need to understand the rules of electricity, the tools you’ll be working with, and safety regulations. You’ll be working with various electronics, and you can injure yourself if you don’t receive some safety instruction.

Electricity Fundamentals

Since you’ll be working with electronics and power supplies for your projects, the first thing you should learn is Ohm’s law. It states that the voltage in a circuit equals the product of the current times the resistance. Let’s break this down a bit. The voltage is measured in volts (V), the product of the current is referring to Inductance (I) which is measured in amps, and the resistance (R) is measured in Ohms. Therefore, if you have a 200 Ohm resistor with 0.045 amps passing through, you will have 9V (volts) across the resistor.

The second most important thing to understand when it comes to electricity is power (P). It is measured in Watts and it is equal to the voltage times current. Power will increase with current and resistance. In a way, you can look at it as the speed of electricity. You can compare it to water going through a hose. If you apply resistance to the end of the hose by using your finger, the speed of the flow will increase. In a similar fashion, you increase power by increasing the resistance. There are, however, consequences to this. When you increase the resistance, you will gain more heat as a result. Heat is the enemy of electronics, especially smaller, fragile electronic components. This is why we have heat sinks in laptops, smartphones, and tablet components.

In the simplest terms, electricity is just electrons moving back and forth along the path of least resistance. Being aware of this, you should always make sure that the easiest path doesn’t involve your own body. Wearing rubber gloves, or rubber boots when the gloves are impractical, can significantly reduce your odds of being electrocuted.

Tools

[image:]

You’ll be working on a lot of different projects and you will certainly need a variety of tools. When working with sensitive electronics and small components, you’ll want to use high quality tools that are up to the task. Whether you’re a pro or a hobbyist, you shouldn’t be using any old, bent, rusty screwdriver you have in some long forgotten drawer. Do not ignore the importance of a good set of tools. With that in mind, let’s take a look at what you’ll need for all the cool Raspberry Pi projects you’ll soon be working on.

Screwdrivers

Good quality screwdrivers are crucial to anyone’s robotics kit. You need a small selection of jeweler’s screwdrivers made of hardened steel in order to avoid causing damage to the tip of a screw. Damaged screws can make your life hard when you’re concentrating on your project, but you keep losing the grip on them.

You’ll need at the very least three different sizes of both regular and Phillips screwdrivers. Regular ones should range from 1.20 millimeters (3/64’’) to 3.1 millimeters (1/8’’). As for Phillips screwdrivers, you are looking for #0, #1, and #2. Also make sure you have multipurpose sized screwdrivers, because you will be
working with regular-sized screws when assembling parts, not just miniature ones.

Wire Cutters

Invest only in high quality cutters. Even if they’re more expensive, keep in mind you are working with small electronic components that can easily be damaged by dull, low quality steel cutters.

You will need two kinds of wire cutters: one for general purpose, and one for delicate work. You will eventually have to cut small solder joints or the frayed ends of wires.

Wire Strippers and Pliers

While you might manage with standard-sized pliers you may already have lying around the house, you should get your hands on some needle-nosed pliers instead. You will handle a lot of fine, sensitive components that require precision-work. With needle-nosed pliers, you can gently bend various parts, or use them as a pair of tweezers.

When it comes to wire stripping, you might be able to improvise with the wire cutting area of your pliers, but that can be tedious, especially when you have to do it often. Invest a bit of money into wire-strippers instead, because they are built especially for this task.

Files

Working with electronics will involve a lot of soldering of wire ends. A file will be handy for preparing a joint for soldering or for removing the excess solder material from a wire. Files are also great for enlarging holes and reshaping plastic as well as metal. You don’t need any fancy tools for this, just get any set of files with various degrees of roughness.

Light

As we already mentioned a few times, you will mostly be working with really tiny components that require fine, precision work. Dealing with tiny resistors and even tinier servo connections will tire your eyes and ruin your ability to focus in a matter of minutes. What
you need is more light, but not just any light. What you are looking for is magnifying light.

A desk lamp with a built-in magnifier will work wonders and significantly improve your ability to work on your project. You can find these magnifying lights in stores dedicated to selling tools for jewelers and watchmakers.

Glue Gun and Glues

Not all projects involve attaching components by using screws. You’re going to need a glue gun. Invest in a top notch hot glue gun! You might be tempted by the cheaper ones found in supermarkets, but those are mainly designed for light work for school children. You won’t be scrapbooking here. You’ll be connecting electronic components and metal to plastic.

You’ll also need a variety of glues that aren’t meant for glue guns. Typically, you need at least two kinds of glue, and those are superglue and modeling cement. Rubber cement and epoxy can also come in very handy.

Speaking of sticky things, you’ll also want to add tape to your shopping list. You will need electrical tape, transparent tape, double-sided tape and last but not least, duct tape.

Multimeter

This device is used for measuring the voltage, resistance, and current. You will need one of these to make sure you are using the correct voltage, learn how much resistance there is between two points in a circuit, and even trace an electrical short.

There are two types that you can get, either an analog multimeter or a digital one. The most important aspect, however, is not how many features it has, but how user-friendly it is. You can invest a lot of money into a complex multimeter, but if you aren’t trained in how to use a highly specialized one, you won’t use it at all.

Soldering Iron

This tool can be found just about anywhere. You can spend even $10 on one, but only get by with it in the beginning. As you progress with your projects, you will want a more versatile soldering iron.

With a cheap hobby tool you have no control over the heat and might damage the circuit board. What you need is an adjustable soldering iron. These tools come with temperature adjustment so that you can use the right amount of heat for the task. You might need to melt off a failed solder connection, and you don’t want to melt the board with it. They also come with replaceable soldering heads, so that you can use thinner or thicker ones depending on the soldering joints you need.

Power Supplies

Your project will require power, and you have several options for supplying it. In most cases you will get by with only using batteries. It simply depends on each project’s requirements. The most important item you’ll need is probably an adjustable AC/DC power convertor that you can find in any electronics store. The most common voltage source you’ll need will be 9V and 12V with various current ratings.

Breadboard

No, not the literal bread board you use to slice your bread. A breadboard is used for electronics prototyping to make sure your project will work as intended. You’ll use it to test out your circuit design by connecting various resistors, ICs, and other devices to it.

You will also need jump wires (or jumper wires) in order to make the connections. Make sure to get them in different colors. Getting used to color coding is an important skill when working with electronics in general.

Safety Rules

The programming component in your projects will be the only truly safe activity. Keep in mind that you will be required to bind parts to
each other with a hot soldering iron or hot glue, and you will also have to drill, cut, and work around electricity. No matter how small your project is, you shouldn’t take any risks. You can hurt yourself in many ways, and that’s why this section on safety rules is necessary. We’ll go through all the potentially harmful tasks that you will eventually perform and talk about how to prevent injury.

Working with High Temperatures

Keep in mind that that you will be using your soldering iron a lot, and it heats up to around 450°F (~230°C). Always be aware of it and where you place it. You can burn yourself or damage any other objects lying around. The bigger danger, however, is the solder itself. It’s a common mistake to immediately touch around the area you soldered and forget that even the circuit board will heat up around the joint. Wait a couple of minutes after soldering, or you can get some nasty burns.

Another hot material you will work with is the hot glue, and it can be even worse than solder. Always let the glue rest until it hardens. The problem with it is that when you touch it, you don’t just experience a burn and then remove your finger. The glue will stick to your skin and burn you until it cools off and solidifies. Always be aware of the placement of your hot tools and the state of your hot binding materials.

Using Sharp Objects

You might be thinking that you cut things on a daily basis, so what could be so different when working with electronics? The thing is that highly sharp precision tools can cause serious injuries, so don’t underestimate them. Even an X-ACTO knife can land you at the hospital for stitches.

Always make sure to aim the cutting tool away from yourself and to maintain their sharp edge. It might sound a bit strange, but a dull knife is actually more dangerous than a sharp one. A dull blade tends to slip a lot, and when it does there’s a high chance of injuring
yourself. A sharpened edge will only sink deeper into whatever you’re cutting.

Safety Glasses

Whenever you are working with tools, wear safety glasses. A flying metal fragment from a wire snip is all that’s needed to damage your eyesight. Get your hands on a comfortable pair of glasses, or goggles if you prefer them, because you will be wearing them for extended periods of time. They need to protect your precious eyes from injury, but they also need to feel like they aren’t there.

Get a Fire Extinguisher

Working with burning hot tools and electricity can be extremely dangerous. All it takes is a spark, or placing your soldering iron on a flammable surface. An even more dangerous item is the battery. You will be working a lot with batteries, especially with Lithium Polymer ones, and they can be dangerous. All it takes is one mistake that causes a short, and your battery will heat up uncontrollably until it expands. Without a way to cool it immediately, you risk having an explosion on your hands.

So do yourself a favor and get a fire extinguisher as soon as possible, learn how to use one, and check on it regularly to make sure it’s functional. Hopefully you will never need it, but it’s better to have one handy than to burn your house down or worse.

Ventilate the Area

You will be soldering a lot, and this activity produces a lot of fumes. Solder also contains a bit of lead, and you really don’t want to breathe that in on a regular basis. It can’t really harm you if you ventilate your workshop, but keep in mind that the fumes are indeed toxic and can cause headaches at the very least. You might also be doing some sanding, painting, drilling and sawing for some of your projects, and breathing in dust is unhealthy.

This doesn’t mean you need to buy an expensive, professional
ventilation system. Keeping the windows open should suffice. It’s important to have a way to let all the smoke and dust particles out instead of breathing them in for hours as you work.

Maintain Order

As you work on more and more Raspberry Pi projects, your workshop will start gathering more and more tools, electronics, tiny components and all sorts of other supplies. Creating a storage method for all of these items is important, not just for the sake of order, but for safety as well. Accidents can easily happen when you have wires and parts lying around everywhere.

Because of all the miniature parts, you should probably start by creating a storage system made out of many small boxes and drawers. You can then keep all your batteries, wires, resistors and so on in their own separate compartment. You should also invest in a label maker and label each container.

Cleanliness is another important aspect of maintaining your working area. You do not want to trip on a power cord when holding a knife or a soldering iron. Establish an area for storing your tools and larger electronics, and always clean up after the day is over.

Practice Soldering

If you’ve never done any soldering before, you should start practicing as soon as possible, because it takes a bit of time to get good at it. Your first soldering joints might be ugly lumps of solder, but if you dedicate yourself to this “art,” you’ll improve in no time.

The technique of soldering involves four major steps: surface preparation, surface tinning, connecting the components, and heating the components. Let’s discuss each part in more detail:

	

Surface preparation
: If you are working with wires, they should be stripped from the insulation for about half an inch, or a little over a centimeter. Once you expose the metal wire strands, you should twirl them until they group together
neatly. If you are working with any other metal parts, they should be cleaned first. To guarantee proper soldering and a good connection between parts, you should smooth the metal surface with some fine sandpaper. This will clear any of the roughness, and get rid of any oxidation and other contaminants.

	

Surface tinning
: This step is about melting a bit of solder onto a surface before you bind it to another surface. You should tin wires especially to ensure a better connection. In order to tin the wire, you should place your hot soldering iron to the bottom part of the wire and hold the solder at the top. The wire will heat up immediately and the solder will cover it.

	

Connecting the components
: Before soldering, it’s always a good idea to first connect parts, such as wires, together mechanically. For instance, you can twist two wires together.

	

Heating the components
: Always make sure your soldering iron is clean before use. With a clean tip, you can heat up a joint much more efficiently and then place solder on top of it. The heat of the component will melt the solder onto it.

As a bonus step, you should always keep the tip of the iron clean from solder remnants and other impurities that can build up. When the iron is clean, it will be far more efficient at transferring heat to the components.

You do not want to heat up the solder itself, because that can lead to cold joints that eventually fail. A cold joint is when you melt the solder directly and then use the tip of the iron to brush it all over the connection. This is a common beginner mistake, so you should always heat up the part that needs connecting.

Chapter 7

Projects

[image:]

Congratulations on learning so much about working with the Raspberry Pi and gaining some programming knowledge with Python! You were also introduced to basic electricity concepts, soldering, and tips on how to maintain a safe working environment so you’re ready to make the next step.

In this chapter we will go through several projects that require all the knowledge you gained so far. It’s important to put everything you know to the test as soon as you’ve gathered enough information, because let’s face it, humans learn better by doing and not just reading. So let’s dive in with your very first project!

Creating a Bot

[image:]

We discussed electronics and soldering, but your very first project will be something that doesn’t require tools - namely, a bot. So what exactly is a bot and what is it used for?

The Internet is an enormous library of information. Everything that has been digitized so far exists somewhere online, but it’s not always easy to find. There are billions of web pages, and humans are just not capable of going through all of them. That is why we use computers to do the work for us. Performing repetitive tasks such as crawling web pages, following links, and downloading information is what a bot is for. Do you want to know all the works of a certain author ever published, but don’t have the time to do the research? A bot can have a list ready for you while you sleep.

Knowing how to program a bot is a great skill to have, and Python is an amazing language for writing one. We will start by importing the modules you need and get your Raspberry Pi in shape for running a bot to do your bidding.

General Rules

There’s a certain etiquette that comes with creating web crawling bots. One of these is that the robots.txt file should be respected. This file is part of most websites and the purpose of it is to allow the owner to restrict bots from visiting certain pages. You want your bot to be accepted by as many websites as possible in order to acquire the information you need. Therefore, you should follow this rule. Otherwise you can be banned from certain websites.

Another rule involves controlling the speed at which your bot requests information. Computers operate really fast, and web servers are sometimes configured poorly without thinking about a fast flow of information. It’s considered good practice to limit your bot’s speed to requesting around 10 pages per second. This won’t be enough to bring down a website.

Lastly, avoid faking your user-agent identity. This is used to identify a website’s visitors. Each browser has its own user-agent identity, and bots have their own as well. A lot of websites hide themselves from bots, but by faking this identity you can go through the private pages. You might not suffer any consequences for doing this, but you should be a good citizen of the Internet and not invade anyone’s privacy.

The Concept

You should put the concept behind the bot on paper and structure whole logical process before you start programming. Knowing the steps you need to take is half the project and can help you work far more efficiently by knowing which task to focus on.

So how will your bot perform its task? We need to start with a certain webpage, and then determine what kind of file to look for. You can program the file choice, whether it’s a .pdf or .mp3, into the bot. The bot will then begin analyzing the page from the start and look for the file format you want. When the file is encountered, the bot is given an instruction to download it to a local directory. This is how the bot
will operate while you take a nap or spend time on another activity.

Parsing

This is the process a web bot goes through when reading web pages. A web page is a data stream that your bot needs to know how to read and understand. Writing a simple parsing program is needed in order to parse pages and retrieve relevant links with the information you want. The first thing you need to do to set up a parsing program with Python is to import a library called “Beautiful Soup”. Install it by typing the following into your Pi’s terminal:

sudo apt-get install python-bs4

Now you can open your Python editor and import it by typing:

import BeautifulSoup

If you get an error by any chance, it probably means that you installed a version of the library that is still in its beta release. If this happens type this instead:

from bs4 import BeautifulSoup

Next up, you need to load a file called doc, which will take the online stream of data and turn it into lines of readable information which can be parsed by the library. Type:

import re

doc = [‘<html><head><title> Page Title </title></head>’,

​
‘<body> <p id = “firstpara” align = “center”> This is paragraphone.’,

​
‘<p id = “secondpara” align = “blah”> This is paragraphtwo.’,

​
</html>’]

Soup = BeautifulSoup(‘‘.join(doc)) #This is not a double quote. Use two apostrophes.

print soup.prettify()

This last print command is what will redo the webpage to be easy to read, and this is why we need to use the “Beautiful Soup” module.

The “re” module we import at the beginning of this block of code is used for evaluating regular expressions in text. This is probably the best way to search through text-based information and find the relevant strings.

Before You Start Coding

Many web bots exist out there, and you can find examples of them easily. However, in order to learn, you should focus on creating your own from scratch. It might seem a bit challenging at first, because for your bot to work properly, it needs to be able to perform a set of different tasks.

Before you program your bot, you need to decide what files you want your little web crawler to download. You should probably start with free books that are in the public domain. Think of all the text formats you could find your favorite authors’ work in. Most files in this case will be .pdf, .txt, .doc, .mobi and .epub. These formats will cover most digital version of the books, whether they are plain text files or Kindle files.

Next up, you should decide where you’ll start performing your search for these files. You may be inclined to just say Google, but that is way too broad an area and can add many hours to your bot’s hard work. Try to find some kind of web repository or archive that contains all or most of that author’s work.

One final thing to consider is where you will store all the information your bot will download. How big is your Raspberry Pi’s SD card? If it’s only a 4GB card, your storage capabilities might be limited because most of that space will be used to run the operating system. This is why you should invest into a 32GB SD card instead so you don’t have any future storage problems. However, even if you have a limited card, you can still connect a flash drive to your Pi. In order to save your bot’s downloaded information to an external flash drive, you should just place the bot’s script inside any directory found on the drive.

Write Your Bot in Python

We’ll start by first importing all the necessary modules that we’ll need for the program. Then we will use Python’s input command to initiate a browser. Let’s see how this looks in code:

from bs4 import BeautifulSoup

import time

import mechanize

import urllib

import string

start = http:// + input (“Where should I search?\n”)

br = mechanize.Browser()

r = br.open(start)

html = r.read()

Now we have the browser object which we called “br” and we can use it to perform various tasks. For instance, we can open a requested page with the br.open instruction. Then we’ll read and extract all the data by using the BeautifulSoup module. To achieve this type:

soup = BeautifulSoup(html)

for link in soup.find_all(“a”):

​
print (link.get(“href))

You can save what you have so far and try it out to see if it works. Open the terminal and run your bot script. When the program starts,
you will be asked to type where to start the search. Type the address of a website like “test.com” and the bot should extract and return you the link.

The next step is to tell the bot to look for actual files and download them. Go back to the previously written code, and right under the “start” line type:

filetype = input (“What file type are you looking for?\n”)

This will ask the user what file type to look for. We already established that .pdf is one of the file formats we want to focus on. So let’s return to our code and replace the “for” block with:

for link in soup.find_all(“a”):

​
linkText = str(link)

​
if filetype in linkText:

​
​
#download file code

The str(link) part of the code is added because we need to convert each link which the Beautiful Soup modules brings to the bot as a link object. This link object needs to be converted to a string in order to be useful. Once we have the link as a string, we can use Python to look through it and find the file type we’re looking for.

Next, you’ll want to be able to create a list to add more links to it
when the bot finds them. Go to your code, and right after the module imports, type the following in order to create a list:

linkList = []

if filetype in filename:

​
image = rullib.URLopener()

​
linkGet = “insert your test link here” + filename

​
filesave = string.lstrip(filename, “/”)

​
image.retrieve (linkGet, filesave)

elif “htm” in filename:

​
linkList.append(link)

Let’s explain this code in more detail. After creating the list we need to add to it, and we do that through “elif” block. If the “filename” will have the type of link you want, the bot will retrieve it. If there isn’t one, but there’s an “htm” within it, the bot will add it to the “linkList” so that it opens each page and repeats the process. We also use “htm” in our code because it covers .htm as well as .html files. So what do we need next? A function that tells our bot to download files. We already established a download process, however, we are going to repeat it. And what’s one of the golden rules we mentioned earlier regarding programming? Never repeat yourself. This is when
a function comes in handy. After the linkList, type:

def downloadFiles (html, base, filetype, filelist):

​
soup = BeautifulSoup (html)

​
for link in soup.find_all(“a”):

​
​
linkText = str (link.get(“href”))

​
​
if filetype in linkText:

​
​
image = urllib.URLopener()

​
​
linkGet = base + linkText

​
​
filesave = string.lstrip (linkText, “/”)

​
​
image.retrieve (linkGet, filesave)

​
​
elif “htm” in linkText

​
​
linkList.append (link)

We’re almost done with creating this little web crawler. Next up, you need to parse the linkText in order to get the name of the directory you need. For this process, you can use the os module, which is a
library used for manipulating files. Add this to your code:

import os

os.makedirs(). #this is used to create a directory

You need to have a local directory that is a perfect match with the web directory where the files you are looking for are stored. The directory you need is usually at the beginning of a linkText. For instance, if we have the link /pictures/testing1.html, the directory name is “pictures”. So let’s instruct the bot to look for slashes:

slashList = [i for I, ind in enumerate(linkText) if ind == “/”]

directoryName = linkText [(slashList[0] + 1) : slashlist[1]]

This part of the code basically cuts our previous link example “/pictures/testing1.html” down to just pictures. Now all we need to do is check where we already have a directory that matches the directoryName as in the code. If we don’t have one, we tell the bot to create it for us. Type the following right after “directoryName”:

if not os.path.exists(directoryName):

​
os.makedirs(directoryName)

The bot is now ready to get to work! Direct it at a website and tell it what files you want. It will start looking for the information you need, create the right the directories for you, and download it all without your help.

Building a Weather Station

[image:]

Welcome to your first project that requires tools and various electronics. Creating a weather station with the Raspberry Pi is a popular project for beginners. It’s fairly easy to build and it puts all the knowledge you acquired to the test. You will have to perform more challenging tasks than simply programming.

Through this project, you will learn how to build a device that can inform you of the wind speed, temperature, barometric pressure and more. The Pi is a great computer for building a weather station because it doesn’t demand that much processing power, and it’s extremely user-friendly when it comes to connecting all the sensors you’ll need.

So what do you need to start making your very own weather station? Well, you have two options. This kind of project is so popular in the Raspberry Pi community that you can already find weather station kits ready for purchase. In this section, however, we’re going to take the second path and acquire each part independently. Learning how to work from scratch is a fundamental skill, and kits sometimes make the job a little too easy. It might be more convenient, but your goal is to learn, and you learn by doing. So let’s see what the weather station recipe looks like and see what parts you’ll need to cook one up.

List of Components

The blueprint for a weather station is fairly simple, and you don’t require as many components as other, more complex projects do. However, keep in mind that some of these parts can be a bit expensive. With that being said, let’s see what you need.

	
A Raspberry Pi computer with a power adaptor.

	
A magnetometer or a digital compass to be more precise. This is a magnetic sensor, which means it is used to measure magnetism. It can be used to measure the Earth’s magnetic field, detect metals with magnetic properties, or as a compass. For this project, you should look for a digital one.

	
A barometric pressure sensor. This device is used to measure the air pressure and it’s an important component of any decent weather station.

	
A digital thermometer so that we can measure the temperature, as well as humidity.

	
An optical shaft encoder. This component will be used to measure wind speed.

	
A small breadboard to test the prototype.

	
A square shaft from any hardware store.

	
A pinwheel or any device that can work as a fan.

	
A Lazy Susan bearing.

	
A thin wooden plate.

	
A roughly 12-inch (~30cm) long PVC pipe with a cap. It can be anywhere between 1 to 2 inches (~2.5 - 5 cm) in diameter.

	
Various wires, screws and glues.

Configuring the Pi’s I2C Protocol

The I2C is a serial protocol that will allow a multitude of devices to communicate with each other by using only one circuit with a data line, a clock line, and a ground wire. Every connected device is referred to as a node, and normally there’s a master node and several slaves. Every slave has its own address, and when the master communicates with one, it needs to first transmit a start line and an address over the data line. The slave responds to the transmission while the rest of the slaves ignore it and wait.

The components that will communicate through this protocol are the barometer and magnetometer. However, you can’t simply just plug them in yet. You need to configure your Raspberry Pi so that the protocol works. Type:

sudo nano /etc/modules

i2c-bcm2708

i2c-dev

Save the file and restart the Pi by using the “sudo shutdown -r now” command. Next, we need to make it possible for the computer to see
the devices we’re connecting. There’s a tool for that and in order to install it, you need open the terminal and type the following instructions:

sudo apt-get install python-smbus

sudo apt-get install i2c-tools

Now you should be able to start the I2C tool, which is called i2cdetect, and see which devices are connected. If you didn’t connect anything yet, you should see a blank list.

The Anemometer

This is a crucial component of your weather station project, because it is used to measure wind speeds. Knowing the speed of the wind can help you determine the real feel of the temperature, and it can also help you calculate how quickly the weather will change. You’re not going to build a sophisticated wind speed measuring device. You will only use a rotary shaft encoder, a rotating shaft, and any kind of fins you can find.

How does this rotary shaft encoder work? This part has slits all around a disk’s circumference, and when light shines through them, it lands on a receptor found on the opposite side. You can then calculate how fast the disc is spinning by how often the light punches through the slits. Once you connect the fins to the rotating shaft, you need to figure out some wind speeds, because you later need to include them in your program. The easiest way to do this is to have someone drive you around while you measure the speed. You will only need measurements of around 5 to 20 miles per hour.

Let’s assemble all of these parts first. You’ll need a square shaft that fits perfectly in the square hole of your encoder. Measure the whole
and buy the appropriate size from any local hardware store. Afterwards, you need a pinwheel or some kind of windmill that you can attach to the shaft. Check out local hobby or craft stores for this part. Next you’ll need a Lazy Susan bearing to make everything rotate. Use a PVC pipe and cut two slots at the end of it so that your encoder can fit tightly, and cap the other end of the pipe. As you can see, you need to have some basic workshop skills for this project, and many others. If you feel a bit confused or clumsy, don’t worry, you’ll get the hang of it with some practice.

The next step is to connect your anemometer to your Raspberry Pi in order to measure some speeds. You have three wires that need to be connected. The red one from the rotary encoder needs to be connected to the Pi’s power pin, the black one goes to the GND, and the white one goes to any GPIO pin you want. We already discussed that the encoder works by sending a signal whenever the light shines through a slit. An encoder of this type usually has 90 slits. Yours might be slightly different, though. In our example with 90 slits, that’s also the number of signals you get within one full rotation. Therefore, the number of signals is equal to the number of slits. You will need to take this into account when you write the code that reads the encoder. You need to establish the rotation speed over time, which is measured in seconds. Let’s see how that looks in Python code:

import time

import RPI.GPIO as GPIO

GPIO.setmote(GPIO.BOARD)

GPIO.setup(8, GPIO.IN, pull_up_down = GPIO.PUD_DOWN)

prev_input = 0

total = 0

current = time.time()

while True:

​
input = GPIO.input(8)

​
if ((not prev_input) and input):

​
​
print (“turning”)

​
​
total = total + 1

​
prev_input = input

​
if total == 90:

​
​
print (1/(time.time() - current)), “revolutions per sec”

​
​
total = 0

​
​
current = time.time()

The most important part in this code is the while loop, so let’s discuss it in more detail. We first set the prev_input to 0, which means that the disc isn’t moving. When it’s set to 1, it means that it is rotating. When that happens, we have to increment the total, set the prev_input to input, and continue the while loop after checking whether we reached 90 signals yet. If an entire round of 90 signals occurred, then we have one single revolution, which allows us to do the math and print the revolutions per second. Afterwards, we reset the total and current. You can test this code by running the script after you connect the device to your Raspberry Pi. Give the rotary encoder a spin while the script is being executed, and you should see results.

If everything is working as intended so far, it’s time to correlate the revolutions per second with wind speed. The simplest way to achieve that, as mentioned before, is to get a friend to drive you around. Run the script and hold the device outside the car window while driving at 5 MPH for a few minutes. Do this again at 10, 15 and 20 MPH. For instance, at 5 MPH, you should get around 5.8 revolutions per second.

Now how do you get the wind speed out of all this? Let’s just say it involves using an inverse logarithmic function. The purpose of this project isn’t to bore you with math, so here’s the formula you’ll be using within the final code: wind speed = e((y+0.95)/4.3)
. We’ll get back to this later.

The Digital Compass

In this project, we’re going to use a compass to determine the direction of the wind. You should look over the I2C protocol section for this, because we’re going to use it again for the compass.

Now let’s start with a bit of soldering. Solder the male headers of the compass to the HMC breakout board. Afterwards, you can make the connection between the pins and the Pi by using jumper wires. Connect the VCC (voltage at the common collector) line to the Pi’s
#2 pin, and the GND (ground) line to the #6 pin. Then connect the SDA (data) line to the #3 pin, and the SCL (clock) line to the #5 pin. Now that all the necessary connections have been established, you can use the smbus module in Python to read the compass with the help of some math.

The next step is to make a separate directory where you will keep all the data coming from your weather station. We discussed earlier in the book how to make a directory, but here’s an example in case you need a refresher:

cd ~

mkdir weather

cd weather

Now go to this new directory and create a Python script inside it, and let’s write the code for the weather station.

import smbus

import math

bus = smbus.SMBus(0)

address = 0x1e

def read_byte(adr):

​

return bus.read_byte_data (address, adr)

def read_word(adr):

​
high = bus.read_byte_data (address, adr)

​
low = bus.read_byte_data (address, adr + 1)

​
val = (high << 8) + low

​
return val

def read_word_2c(adr):

​
val = read_word(adr)

if (val >= 0x8000):

return -((65535 - val) + 1)

else: return val

def write_byte(adr, value):

bus.write_byte_data(address, adr, value)

write_byte (0, 0b01110000)

write_byte (1, 0b00100000)

write_byte (2, 0b00000000)

scale = 0.92

x_offset = -39

y_offset = -100

x_out = (read_word_2c(3) - x_offset) * scale

y_out = (read_word_2c(7) - y_offset) * scale

bearing = math.atan2(y_out, x_out)

if bearing < 0:

bearing += 2 * math.pi

print “Bearing: ”, math.degrees(bearing)

This block of code may seem a bit confusing, so let’s try to break it down a little and understand the concept behind it. First, we import the “smbus” and “math” modules, because we need them to read from and write to the sensor’s address. All the read functions we created are used to read and write byte (8-bit) values to the sensor’s address. The write functions are then used to write the very specific
values of 112, 32 and 0 with the purpose to configure the sensor for reading. The values we used aren’t random, they come listed with the I2C sensor. Next up we get the compass readings (on the x and y axis) and calculate the sensor’s bearing with an inverse tangent (atan2).

Run the program with a compass near you so you can see whether the readings are accurate. You can point the board with the side that has the soldered headers. Depending on the readings, you might have to adjust the x_offset and y_offset in order to adjust the bearing correctly. Now your weather station can figure out the wind’s direction! Mount the compass on top of the anemometer’s rotating shaft, and you will be able to get the proper readings.

The Temperature and Humidity Sensor

For this part of the project, we will no longer use the I2C protocol, but you will have to solder the headers in the same manner as you did with the digital compass. Once you’re done, you have to connect the sensor’s VCC pin to the Raspberry Pi’s #2 pin, the GND pin to the Pi’s #6 pin, CLK pin to the Pi’s #7 pin, and DATA pin to the Pi’s #11 pin.

The next step is to install the rpiSht1x Python module inside your weather station directory. Now let’s discuss the code for measuring the temperature and humidity with a digital thermometer:

from sht1x.Sht1x import Sht1x as SHT1x

dataPin = 11

clkPin = 7

sht1x = SHT1x(dataPin, clkPin, SHT1x.GPIO_BOARD)

temperature = sht1x.read_temperature_C()

humidity = sht1x.read_humidity()

dewPoint = sht1x.calculate_dew_point(temperature, humidity)

temperature = temperature * 9 / 5 + 32 #use this if you want your temp in degrees F

print ("Temperature: {} Humidity: {} Dew Point: {}".format(temperature, humidity, dewPoint)

Save this block of code as sht.py and run it with the “sudo python sht.py” instruction. Here we use the functions read_temperature_C(), read_humidity(), and calculate_dew_point() to gain values from the sensor. Afterwards, the program converts the values and displays the results.

Setting Up the Barometer

Probably the best way to observer changes in weather is by measuring and analyzing the air pressure. For instance, if it drops, a storm might be coming, and if it increases, good weather is heading towards you. The barometer chip uses the I2C protocol, so you’ll have to wire it in the following manner. Once you soldered the headers, connect the VCC pin to the Pi’s #1 pin, the GND pin to the Pi’s #6 pin, the SDA to pin #3, and the SCL to pin #5.

Next up, you have to download and install some Python libraries. In our example we’ll use a common barometer chip BMP180, which works with the BMP085 module. Once you’ve installed it, create a new Python script in your weather station directory and type the
following code:

from Adafruit_BMP085 import BMP085

bmp = BMP085(0x77)

temp = bmp.readTemperature()

temp = temp*9/5 + 32​
#if you’re not in one of the 99% of countries using Celsius pressure = bmp.readPressure()

altitude = bmp.readAltitude()

print "Temperature:​
​
%.2f F" % temp

print "Pressure:​
 %.2f hPa" %(pressure / 100.0)

print "Altitude:​
 %.2f" %altitude

This code works pretty much in the same manner as the script for the thermometer. We use an imported library and its functions to read the values we need from the barometer.

Put Everything Together

Connecting everything together on a rotating platform is important, especially when you want to adequately measure the speed of the wind. The best way to assemble all the pieces together is to use a
breadboard. Connect all your chips to it and then connect the board to your Pi. This way you can easily mount the entire ensemble of electronics on a platform. All you have left to do now is run and take out your weather station for a spin, and make it your goal to put meteorologists to shame.

Creating a Security System

[image:]

In today’s modern age, it’s almost necessary to turn your house into a smart home with top security features. Installing video cameras that are streaming to a laptop or a phone is commonplace, and we rely on all kinds of sensors for our safety.

Motion detectors, trip alarms, and information gathering sensors such as those that measure air quality and warn you about carbon monoxide leaks are only a few other examples of home security systems. Having a safe living space improved by technology can lift some of the stress off your shoulders.

The Raspberry Pi just happens to be an ideal tool for creating a security system. Test your knowledge of what you learned so far and practice your skills without digging too deep into your wallet. Home security can be extremely expensive, but with this project you will see that it really doesn’t take all that much to create a good system.

This kind of project, just like the weather station in the previous section, relies on the concept of a sensor network. As you’ve already seen, the Pi is a great computer for interfacing many sensors that
fulfill specific tasks. Your home desktop and/or laptop has been left without the modules needed to make the required connections. However, with the Pi, all you need is a motion sensor that connects to its GPIO pins, and with a few lines of clever Python code, you improve the security of your home.

Because processing power isn’t so important for this project, we will include in our security system an infrared motion sensor, a magnetic sensor, a limit switch and a pressure switch. The motion detecting sensor will be placed anywhere on the ground. The pressure sensor can be used in the doorway where an unwelcome “guest” will step when entering your home. The magnetic sensor is great at detecting when a window or a door opens. And finally, the limit switch can determine if a trip wire is touched. On top of using a bunch of sensors, we will set up a text messaging system through which the Pi will notify you when something happens to the security system.

List of Components

Here’s what you’ll need for this home security system, other than your Raspberry Pi:

	
A Raspberry Pi camera module.

	
A magnetic sensor.

	
A motion sensor.

	
A pressure switch.

	
A limit switch.

	
An Ethernet cable, possibly a long one.

	
Jumper wires and various connectors.

Some of these are optional. You can ignore some sensors and switches if you don’t want to include them, or you can even expand your security system to add more of them. It’s your call, because this is a highly customizable project.

Wireless Network Connection

Any good home security system needs to be connected to a wireless network. Your Pi will control the system and will send you notifications when any sensor is triggered. You can establish either a direct cable network connection, or a wireless one. In this day and age you might want to go with the wireless network. Let’s just say that you don’t want an intruder to be able to just cut your Ethernet cable and make your entire security system pointless.

First, you will need a USB wireless dongle. It’s an inexpensive device and you won’t have any trouble configuring it. The next thing you want for this network, is to set your Pi to a static IP address. Why? Because this way you’ll be able to log in to your computer remotely no matter what. If you stick to a dynamic IP, it might change if your Pi is rebooted and then you won’t know the new address when you want to log in. So let’s start by configuring your static IP address. Type:

sudo nano /etc/network/interfaces

iface wlan0 inet dhcp #change this to following line

iface wlan0 inet static

address 190.162.2.60 (use any address you want, this is just an example)

netmask 255.255.255.0 (your netmask if it’s different)

network 190.162.2.60 (this is your network location)

broadcast 190.162.2.255 (you can find out your broadcast value by typing ifconfig)

gateway 190.162.2.1 (use the IP address of your router)

Save these files and restart your Pi. Check with the ifconfig command to see if all the changes have been made. Don’t forget to write down your static IP!

The next step is to have an SSH server running in order to use the static IP. Open the terminal and type:

sudo raspi-config

This will start up the configuration tool. Head to advanced options, then to #4 SSH and make sure this is enabled. Finish the configuration and restart your Pi with a “sudo reboot” command. Your SSH server should now be operational. You can connect to your Pi remotely using a Windows or Mac machine. We already discussed this in an earlier chapter in this book.

Connect the Motion Sensor

Motion detection is probably one of the most important features of a good security system. However, keep in mind that you can’t rely on a motion sensor alone. You don’t want a little bird or a cat to make you panic because you don’t have any other system to verify what happened.

So how does a motion sensor actually work? Basically, it detects changes in the infrared levels emitted by the objects within the area. A signal is sent whenever a change is detected. Most of these sensors
have three pins, namely a VCC (+), GND (-) and Output (OUT). You first want to connect the GND to the Pi’s #6 pin, which you might already know is the ground pin. Then connect the VCC pin to the Pi’s #2 pin and the OUT pin to any GPIO pin. Let’s create a basic test to see how the motion sensor will work. All you need is an LED connected to a breadboard and a bit of code to tell the LED to light up when motion is detected. Create a new python script and type the following code:

import RPi.GPIO as GPIO

import time

GPIO.setwarnings (False) #eliminates some complaints from the library

GPIO.setmode (GPIO.BOARD)

GPIO.setup (11, GPIO.IN, pull_up_down=GPIO.PUD_UP)

GPIO.setup (13, GPIO.OUT)

while True:

if GPIO.input (11):

GPIO.output (13, 1)

else:

GPIO.output (13, 0)

For the test, you will want to connect the + pin of the sensor to the Pi’s #2 pin, then the OUT pin to the #11 pin. The - pin has to be connected to any ground line on the breadboard. Then connect the Pi’s #13 pin to the positive arm of the LED, through a resistor, and the negative arm to a ground line. Now open the terminal and run your script with the “sudo” command. To jog your memory, we need the “sudo” command because you need to access the GPIO pins. If all is working as it should, the LED should now light up when you pass your hand in front of the motion sensor and then turn off after a while when there’s no more movement.

We can now leave this part of the project as it is and move on to the limit switch.

The Limit Switch

What is this device for, exactly? Well, you might be using one a lot because a lot of cool Pi projects that involve robots will require a limit switch. It is normally used to detect the limit of movement. So if we take a robot as an example, it needs to know when it’s close to a certain object or when it’s about to crash into the wall. It works in a fairly simple way. The switch’s default state is open, letting no power through, and it has a lever that protrudes from the body of the device. When this lever is pressed, it is closed and voltage is sent through the circuit. In our project, this voltage will be sent to the Pi’s input pin. In other words, the lever will allow objects that are a set distance away to close the contact of the switch.

In this project, however, we’re not going to use the switch to see when something gets too close to it. We’re going to check whether a trip wire has been pulled because, after all, we’re trying to build a home security system. This part of the project might take you back to some memories of watching the “Home Alone” movies, so enjoy
it.

Mount the switch to the wall, somewhere where you can extend a wire of fishing line to the opposite part of the wall. The best places for a trip wire are entrances or windows. You need to attach the line to the lever of the switch. Then you need to position the switch in such a way that the lever is pulled down to activate the switch when the wire is tripped.

Keep in mind that this device is not a sensor, but a physical switch. They are made out of really basic components, such as metal springs that bounce a few times before they make a steady contact. What does this mean for us? That there are some interruptions when the contact is being made, meaning the switch goes back and forth from on to off several times before settling. We need to take this into account when writing the code. This process is called “debouncing” and we need to write a script that knows to read the signal only when the switch is no longer bouncing. Here’s how the code would look:

import time

prev_input = 0 while True:

#take a reading

input = GPIO.input(11)

#if the last reading was low and this one is high, print

if ((not prev_input) and input):

print("Button pressed")

#update the previous input

prev_input = input

#allow time to debounce

time.sleep(0.05)

This small block of code is all about ignoring the button press if it happens in less than 0.05 seconds before the previous one. Let’s now get the switch working by connecting it to the right GPIO pins and writing some more code. Connect the Pi’s #2 pin to the left pin of the switch, and then connect the switch’s middle pin to the Pi’s #11 pin. We can ignore the right pin of the switch, as it’s not needed for this project. Now let’s type the final version of the code to make it all work!

import time

import RPi.GPIO as GPIO

GPIO.setwarnings (False)

GPIO.setmode (GPIO.BOARD)

GPIO.setup (11, GPIO.IN, pull_up_down = GPIO.PUD_DOWN)

prev_input = 0

while True:

input = GPIO.input (11)

if ((not prev_input) and input):

print "Button pressed"

​
prev_input = input

time.sleep (0.05)

When you press the switch’s lever, your program should now print “Button pressed”. Now we can set up the pressure switch.

The Pressure Switch

This switch works almost like the limit switch, however, they look quite different. The pressure switch we’ll be using looks like a square pad, and it registers pressure changes as changes in voltage. To connect it, just link one of the switch’s leads to the Pi’s #2 pin and the other lead to the #11 pin.

Now how will our code look for the pressure switch? Exactly the same! That’s right, you don’t have to write separate code for this device. Just plug it in, run the script you wrote for the limit switch, and press on the pad. You should now detect a change in pressure. You can then place the pad wherever you want. Most people set it under the entrance mat.

The Magnetic Sensor

This device alerts you when it detects a change in the magnetic field within an area. In our case, it can be used to detect when two metal pieces move away from each other. So let’s say we set it up for the window. When it opens, the sensor will detect the change and alert you. Keep in mind that these sensors usually come with two small magnets that will be used to prevent false readings.

Start by connecting the sensor’s wires to the Pi. The red wire goes to the #2 pin, black to #6 and white to pin #11. Again, we can reuse code. This is the beauty of programming. You don’t always have to write everything from scratch. Code can be reusable, even if you have to just make some slight modifications. In this case, we’re going to take the script for the switch and make the following changes:

import time

import RPi.GPIO as GPIO

GPIO.setwarnings (False)

GPIO.setmode (GPIO.BOARD)

GPIO.setup (11, GPIO.IN, pull_up_down = GPIO.PUD_DOWN)

prev_input = 0

while True:

input = GPIO.input (11)

if ((not prev_input) and input):

print "Field changed"

​
prev_input = input

time.sleep (0.05)

Run the script and experiment by running a magnet in front of the sensors. It might take a while to figure out which distance is just right to fit your purpose. Once you know the correct distance, you will be know where to mount the magnet.

Camera Setup

You can use the Pi to work with a small camera and take pictures or video footage. You’ll need to find a good place to position the Pi, but luckily it’s such a small computer that you shouldn’t really have any trouble figuring out a location. For this setup to work, you will need the wireless function that you learned how to set up earlier as well as the camera.

You can use the “raspi-config” tool to configure the camera. After you enable it, you’ll have two commands to work with. One is for capturing pictures, and the other is used to capture video footage. For the sake of this project, we will take only pictures, because streaming video would require additional software and more complex configurations. Here’s how simple the script is for taking still frames:

from subprocess import call

call ([“raspistill -0 image.jpg”], shell = True)

“Raspistill” is a command you can try even from the terminal, but we need a script so that we can tell the Pi to take pictures automatically. The image that is taken will be called “image.jpg” and will be stored in the same directory as the script. You can then call this script whenever any of the sensors is tripped, and the camera will take a picture.

Receiving Messages

This part of the project is probably the most interesting, because we’re going to tell the Pi to send out a text message when something happens to the security network. Receiving a notification will warn you that something happened, and then you can determine whether it was just a bird, or you need to call the police because someone is breaking in.

The concept behind our messaging system is simple. We tell the Pi to use the local network to send out an email, which will then be translated into a text message by your mobile service. You need two things to set this up: an email account (Gmail for instance), and the knowledge of how to send an SMS through email with your mobile carrier. In most cases, you need to send an email to a carrier’s specific address in order to have it delivered as a text message. Now let’s see how this notification system will look in code. Type:

def send_text(str):

HOST = "smtp.gmail.com"

SUBJECT = "Break-in!"

TO = "xxxxxxxxxx@txt.att.net"

FROM = "email@example.com"

text = str

BODY = string.join(("From: %s" % FROM, "To: %s" % TO, "Subject: %s" % SUBJECT, "", text), "\r\n")

s = smtplib.SMTP("smtp.gmail.com",587)

s.set_debuglevel(1)

s.ehlo()

s.starttls()

s.login("username@gmail.com", "mypassword")

s.sendmail(FROM, [TO], BODY)

s.quit()

This code needs to be modified based on the services you are using. In this example, we use a Gmail account with an AT&T mobile carrier. Keep in mind that Gmail’s smtp access is through port 587, so if you use a different service, you will also have to make the correct modification.

Piece Everything Together

So far we worked on each individual component. Now we need to combine all the pieces together to have one, complete home security system. For this part of the project, you’ll need some Ethernet cable to make all the connections.

Start by stripping the cable of its outer layer. You’ll then need to use a breadboard, because we want everything to share the ground. Look for a great spot where you can set up your Pi, especially considering you will want to plug it in because batteries can’t last long enough for a security system to be efficient. Also keep in mind that the spot needs to offer the perfect angle for the Pi’s camera.

Next, find all the right spots for all the sensors you are going to use. The distance between them and the Pi doesn’t matter. You will have to run the Ethernet cable from the Pi to each sensor no matter what. Make sure to connect all the negative wires to the common ground row on your breadboard, and then connect the positive wires to GPIO pins. Writing down a little schematic on how everything is going to be set up will be of great help, because you will need the references when you put all the separate blocks of code together. Once you’re done with the connections, here’s how your code should look for the entire security assembly:

import time

import RPi.GPIO as GPIO

from subprocess import call

import string

import smtplib

GPIO.setwarnings (False)

GPIO.setmode (GPIO.BOARD)

time_stamp = time.time() #used for debouncing

#set pins

#pin 11 = motion sensor

GPIO.setup (11, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)

#pin 13 = magnetic sensor

GPIO.setup (13, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)

#pin 15 = limit switch

GPIO.setup (15, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)

#pin 19 = pressure switch

GPIO.setup (19, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)

def take_pic(sensor):

call(["raspistill -o image" + sensor + ".jpg"], shell=True)

time.sleep(0.5) #wait 1/2 second for pic to be taken before continuing

def send_text(details):

HOST = "smtp.gmail.com"

SUBJECT = "Break-in!"

TO = "xxxxxxxxxx@txt.att.net"

FROM = "email@mydomain.com"

text = details

BODY = string.join(("From: %s" % FROM, "To: %s" % TO, "Subject: %s" % SUBJECT, "", text), "\r\n")

s = smtplib.SMTP("smtp.gmail.com",587)

s.set_debuglevel(1)

s.ehlo()

s.starttls()

s.login("username@gmail.com", "mypassword")

s.sendmail(FROM, [TO], BODY)

s.quit()

def motion_callback(channel):

global time_stamp

time_now = time.time()

if (time_now - time_stamp) >= 0.3: #check for debouncing

print "Motion detector detected."

send_text("Motion detector")

take_pic("motion")

time_stamp = time_now

def limit_callback(channel):

global time_stamp

time_now = time.time()

if (time_now - time_stamp) >= 0.3: #check for debouncing

print "Limit switch pressed."

send_text("Limit switch")

take_pic("limit")

time_stamp = time_now

def magnet_callback(channel):

global time_stamp

time_now = time.time()

if (time_now - time_stamp) >= 0.3: #check for debouncing

print "Magnetic sensor tripped."

send_text("Magnetic sensor")

take_pic("magnet")

time_stamp = time_now

#this is the main body

raw_input("Press enter to start program\n")

GPIO.add_event_detect(11, GPIO.RISING, callback=motion_callback) GPIO.add_event_detect(13, GPIO.RISING, callback=magnet_callback) GPIO.add_event_detect(15, GPIO.RISING, callback=limit_callback)

the pressure switch ends the program

you could easily add a unique callback for the pressure switch

and add another switch just to turn off the network

try:

print "Waiting for sensors..."

GPIO.wait_for_edge(19, GPIO.RISING)

except KeyboardInterrupt:

GPIO.cleanup()

GPIO.cleanup()

The Radio-Controlled Airplane

[image:]

This is probably the coolest of all the projects, because who hasn’t ever dreamt of flying? Sadly, flight schools can be very expensive, and not everyone can become a pilot even with the cash on hand. Flying a built to scale radio controlled airplane model will have to be enough instead. However, just flying a model might get boring after a while, and that is why this project will be more than that.

Because of the Pi’s camera, we’re going to program our plane to do more than just flying. We will tell the plane to take pictures during flight. On top of that, we will also install a GPS receiver onboard in order to track the flight trajectory and later load it into Google Earth.

Keep in mind that for this project, we are going to use the more advanced concepts of object-oriented programming. However, just in case the earlier chapter that explained these concepts wasn’t enough, you will still be guided through the code in order to understand it better. Now let’s see what we need to build a radio-
controlled airplane and get it up in the sky as soon as possible!

Your Shopping List

This project will be a bit more expensive than the others. There won’t be so many parts, but you will need an actual radio-controlled plane, which can drain your budget. Nonetheless, you can always build this project over time or learn to improvise with smaller plane or drones. Here’s what you’ll need:

	
A raspberry Pi with a camera.

	
A GPS receiver with an antenna. The antenna is optional however.

	
A medium size RC plane.

	
An RC battery and a 5V regulator that will be used to power the Pi.

As you can see, the shopping list is a lot shorter than it was for the other projects, however the RC plane can be pricey, unless you already have one of course. If you are going to invest into one, try to find one that is sturdy and can handle a few small crashes. A beginner might have issues handling the plane properly. However, what really matters for this project is having the power needed to carry the extra weight of a Raspberry Pi, GPS receiver, and the battery that is used to power everything.

Another thing to consider is the positioning of the plane’s wings. If you have one with a top configuration, you’ll have an easier time positioning the Pi and all its attachments on top of the plane.

Now let’s start by making a new directory for this project. We’ll call it:

mkdir plane

The GPS Receiver

The receiver needs to be connection to the Pi, but how do we achieve this? We need to use a Python module called “gpsd” and the Pi’s universal asynchronous receiver/ transmitter (UART) interface, namely pins 7 and 8. This gpsd module will allow us to access the data that is transmitted by the GPS receiver. As for the interface, it consists of a + and - power connection and pins for transmitting and receiving. Before we configure the interface, we need to download the right software that is needed to read all the components and the programs associated with them. Type in the terminal:

sudo apt-get install gpsd gpsd-clients python-gps

Now we can configure the UART interface. It already starts getting a bit tricky here, because the interface is set to connect to a terminal window, but we want access to the transmit and receive pins. So to start setting everything up for our purpose, we first need to make a copy of /boot/cmdline.txt. You can do that by typing:

sudo cp /boot/cmdline.txt /boot/cmdlinecopy.txt

Afterwards, edit it by typing:

sudo nano /boot/cmdline.txt

And delete this segment:

Console=ttyAMAO, 115200 kgdboc = ttyAMAO, 115200

The file should read like this:

dwc_otg.lpm_enable=0 console=tty1 root=/dev/mmcblk0p2 rootfstype=ext4 elevator=deadline rootwait

Save the file. Next up, edit the inittab file by typing:

sudo nano /etc/inittab

You will have to comment out the last line of code. This line instructs the computer to start the terminal connection. Just type a # symbol in front of the line and it won’t be executed. It should look like this:

#T0:23:respawn:/sbin/getty -L ttyAMA0 115200 vt100

Now restart the Pi with the usual “sudo shutdown -r now” command line.

The next step is to connect the receiver to the computer. Here are the steps you need to take:

	
The GPS receiver’s VIN goes to the Pi’s #2 pin.

	
The GND goes to the Pi’s #6 pin.

	
The Tx (transmit) goes to the Pi’s RX (receive) which is pin #10.

	
The Rx of the receiver then goes to the Pi’s Tx, which is pin #8.

You should now have power for the receiver and its LED should start to blink. Next up, you need to run the GPS client. Type:

cgps -s

This is a simple program that will take the data and display it to you. If you don’t get any information and see only zeros, it means that you can’t get a satellite fix. Give it a few minutes, or go outside under the clear sky. If you still have signal issues, an antenna will fix the problem.

The next step is to create a way for the GPS to communicate with the Pi and make the information readable to the user. The cgps client we used is only good for testing purposes because it’s difficult to get any usable data from it. What we need is a program that can store the data to be later used in Google Earth. So let’s set up a log file for this purpose by typing:

import logging

logging.basicConfig(filename='locations.log',level=logging.DEBUG,format='%(message)s')

So what do these lines of code actually do? They import the module, declare the file name and the data that will get logged, and then give the format of every line. Every GPS signal will be save in three different strings, which are longitude, latitude, and altitude. These are the 3 coordinates we will need to use with Google Earth later. If you need more information on logging, you can check out Python’s library on it through the help system.

Google Earth and KML Files

As we discussed earlier, we want to use Google Earth to analyze our plane’s flight record. However, Google Earth can’t read our log file yet. We need to format it in a KML file, which is used by Google to delineate landmarks and paths. KML files are similar to XML, and you can recognize them due to their similarity to HTML because they both use <> as tags for information types. Lucky for us, we actually already formatted the file to have only longitude, latitude, and altitude separated by spaces. So let’s write each line to a new file that we’ll name “kml”:

kml.write (“<Document> whatever you want </Document>\n”)

Next, we want to write the code that will instruct the program to take a picture and log the GPS position every 30 seconds. Because we’re recording information at certain intervals of time, we’ll use KML’s path function to create a visual representation of the route the plane took. We’re going to use 30 seconds intervals in order to create a neat trajectory representation, because this way the path connections will be made out of straight lines. For instance, we will clearly see how the plane goes from point A to point B to point C and so on. You should fly your plane over a neat grassy field for the best results, and to reduce the chances of crashing your plane into solid concrete.

Threading and Objects

For this project we will have to use a programming feature called threading. Threads are valuable because they allow your computer processor to perform a multitude of tasks at the same time. Without threads, all the processing power would be tied to one task at a time. All you really need to do is make a call to “import threading” to have access to them.

In this program, we need to take advantage of threads in order to poll the GPS receiver. By using a thread, the main buffer will be able to continuously gather data, and log it into a separate file for later use. Our aim is to create an object that will request data from the receiver every 30 seconds. Let’s see how all of this looks in Python:

class myObject(threading.Thread):

def __init__(self):

#function used to initiate the class and threadthreading.Thread.__init__(self) #needed to start the thread

def run(self): #function performed while thread is running

This is our thread object that we will start from the main part of the program by declaring a new thread.

newObject = myObject()

newObject.start()

This thread will now run with an instance of “myObject” called “newObject”. The thread will be initiated with “threading.Thread._init(self). The program will continue to collect GPS data and take pictures until we quit it.

Automatic Startup

For this project, we will need a way to automatically start the GPS logging script, because we won’t have a monitor or a keyboard connected to the Pi. To set this up, you will need to make an entry to the /etc/rc.local file. For this example, the GPS logging code is named getGPS.py and is stored in the Documents/plane directory, so we will add the following line:

/home/pi/Documents/plane/getGPS.py

Next up, open the rc.local file like this:

sudo nano /etc/rc.local

And add the following line before the last exit line:

python /home/pi/Documents/plane/getGPS.py

We also need the line which we used earlier to test the generic GPS client at the beginning of this project. Type the following line into /etc/rc.local:

sudo gpsd /dev/ttyAMA0 -F /var/run/gpsd.sock

Now wait for the GPS to get a signal from a satellite. This can take around half a minute, maybe more. We need to take this into account for this step of the project to work as intended. Therefore, your final version of /etc/rc.local file should look like this:

sudo gpsd /dev/ttyAMA0 - F /var/run/gpsd/sock

sleep 45

python /home/pi/Documents/plane/getGPS.py

“Sleep 45” will tell the script to wait for 45 seconds before running. Save the file and exit. Now whenever you start up, the script will work automatically.

Piece Everything Together

If you have your radio-controlled plane, piecing everything together is a fairly simple process. You need a battery connected to the Pi and a regulator to make sure you don’t overcharge. Li-Po batteries with 1.3A per hour are perfect for this job. A voltage regulator is something you can get from any electronics store, or improvise with a USB car charger. The central terminal needs to be connected to the battery’s positive (+) lead, and one of the outer terminals goes to GND. Then you use a USB cable to make the connection with the Pi, and you will have the juice.

Now you’ll have to strap everything to the plane. This will depend entirely on your model and type of plane. Just keep in mind that
balance matters, so whatever you do, try not to disrupt the airflow over the wings and distribute the weight over the plane as evenly as you can. For instance, you can place the GPS on the nose of the plane, the Pi on the middle section, and the camera somewhere on the belly of the plane, pointing downwards towards the ground. It might not look pretty, but it does the job.

When you’re all set, power up the Pi and wait for 45 seconds for the script to start and for the GPS to connect to a satellite. Then enjoy flying and taking some pictures! When you land and return home, you will be able to run the kml conversion and open the plane’s log file, parse the text, and write all the locations down into a .kml file. Then you can use this file on any computer with Google Earth.

Here’s the final code for the plane program:

import os

from gps import *

from time import *

import time

import threading

import logging from subprocess

import call

#set up logfile

logging.basicConfig(filename='locations.log', level=logging.DEBUG,

format='%(message)s')

picnum = 0

gpsd = None

class GpsPoller(threading.Thread):

def __init__(self): #initializes thread

threading.Thread.__init__(self)

global gpsd

gpsd = gps(mode=WATCH_ENABLE)

self.current_value = None

self.running = True

def run(self): #actions taken by thread

global gpsd

while gpsp.running:

gpsd.next()

if __name__ == '__main__': #if in the main program section,

gpsp = GpsPoller() #start a thread and start logging

try: #and taking pictures

gpsp.start()

while True:

#log location from GPS

logging.info(str(gpsd.fix.longitude) + " " + str(gpsd.fix.latitude) + " " + str(gpsd.fix.altitude))

#save numbered image in correct directory

call(["raspistill -o /home/pi/Documents/plane/image" + str(picnum) + ".jpg"], shell=True)

picnum = picnum + 1 #increment picture number

time.sleep(3)

except (KeyboardInterrupt, SystemExit):

gpsp.running = False

gpsp.join()

Here’s the final code for the KML conversion program:

import string

#open files for reading and writing

gps = open('locations.log', 'r')

kml = open('plane.kml', 'w')

kml.write('<?xml version="1.0" encoding="UTF-8" ?>\n')

kml.write('<kml xmlns="http://www.opengis.net/kml/2.2">\n')

kml.write('<Document>\n')

kml.write('<name>Plane Path</name>\n')

kml.write('<description>Path taken by plane</description>\n')

kml.write('<Style id=“yellowLineGreenPoly”>\n')

kml.write('<LineStyle<color>7f00ffff</color><width>4</width></LineStyle>\n')

kml.write('<PolyStyle><color>7f00ff00</color></PolyStyle>\n')

kml.write('</Style>\n')

kml.write('Placemark><name>Plane Path</name>\n')

kml.write('<styleUrl>#yellowLineGreenPoly</styleUrl>\n')

kml.write('<LineString>\n')

kml.write('<extrude>1</extrude><tesselate>1</tesselate>\n')

kml.write('<altitudeMode>relative</altitudeMode>\n')

kml.write('<coordinates>\n')

for line in gps:

#separate string by spaces

coordinate = string.split(line)

longitude = coordinate[0]

latitude = coordinate[1]

altitude = coordinate[2]

kml.write(longitude + "," + latitude + "," + altitude + "\n")

kml.write('<\coordinates>\n')

kml.write('</LineString>\n')

kml.write('</Placemark>\n')

kml.write('</Document>\n')

kml.write('</kml>\n')

Conclusion

[image:]

Congratulations for making it all the way to the end of this book! It couldn’t have been easy with so much technical information on various topics, but you deserve to reward yourself for the effort. Hopefully the content was illuminating enough to get you started working with the Raspberry Pi. Don’t forget, however, that skipping through the information or just reading it isn’t enough. The value of practice cannot be overstated, so continue to work on new programming exercises and build new projects. It can be extremely challenging, but if you take it one step at a time, you can overcome any hurdle.

Transmitting technical information through text can be difficult, especially on the reader’s side, so don’t rely on this book alone. It should be enough to guide you through the entire process of working with the Raspberry Pi and basic as well as some advanced programming concepts, however the written word sometimes isn’t perfect for sharing advanced data. So expand your knowledge by taking advantage of the online wealth of resources on programming with Python. Find groups where you can discuss and collaborate. Watch videos that can clarify the process of soldering and other techniques much clearer than text.

With all that being said, let’s summarize what you already learned with the help of this book:

In the first section of the book, you learned all about the Raspberry Pi, the various models available to you, and how to set one up. This kind of computer may be different from what you’re used to, but the first chapters guided you on how to start working with the Pi. You learned important networking concepts and techniques that will help you when you work on projects that require a remote connection. You learned about the Linux operating system, which
might be new to you, and you now know how to issue basic commands. It’s not quite as popular as Windows or Apple’s operating system, therefore it is important for you to feel as comfortable with it as you are with your main computer.

In the second part of the book, we focused on the topic of programming. We started out with the basics of working with Python and explained all the important concepts which you need to understand in order to build a solid foundation. Keep in mind that everything you learned in this section can be applied to any programming language. It is much easier to learn how to program with C++, C# or Java if you already know the basics from Python, for instance. Hopefully you also did some exercises to solidify this newly acquired knowledge. Programming requires practice, and it is not enough to just read the theory and copy the code as you go along. Take extra time to progress at a slower pace, because practice takes time. This becomes even more important when we talk about the advanced concepts behind object oriented programming. In this book, we didn’t go into too much detail, because for the purpose of learning how to work with the Raspberry Pi, it’s mostly enough to know the basics. Keep in mind however, that if you plan to develop your programming skills and continue making more advanced robots, you will need to master the power of object oriented programming.

The third major section of this book dealt with the basics of electricity and taught you everything you need to know before you can start building cool projects. We discussed the basic concepts behind electricity and how to protect yourself and the Pi from accidents. Safety instruction is crucial when working with electricity, hot solder, and glues. You can easily hurt yourself, damage your health, or at the very least damage your project. So take adequate precautions and stay safe. In this section you also received some guidance about the tools you will need for many projects. Creating cool Raspberry Pi gadgets involves much more
than just programming. You get to solder connectors, sensors, and servo motors, and for that you need high quality tools.

Last but not least, we went through several projects that are meant to put your knowledge to the test. We started out with an easy to create, but handy web crawling bot and ended with a radio control plane than can survey and record the land. These projects prove the power behind Python as a programming language and the versatility of the Raspberry Pi.

All of this might seem a bit overwhelming, because there’s a lot of information to digest. However, you should look at it as a personal challenge, and you will be able to build anything with the Pi. This little computer will help you build pretty much anything you can dream of. So put your programmer hat on, grab a soldering iron, and build cool robots that will take over the world for you!

Raspberry Pi

Complete Tips and Tricks to Raspberry Pi Setup and Project Development

[image:]

JOE GRANT

Introduction

[image:]

When we think about computers, we usually find a monitor, a keyboard, a mouse, and a CPU. But the Raspberry Pi is a fully functional computer system that is embedded into a small single credit-card-sized board and costs less than most of the video games you’ll find. With it, people will be able to do a variety of things such as building robots, learning how to code, and an assortment of other fascinating and strange projects.

The Raspberry Pi has all the capabilities that you would expect from a modern computer such as surfing the Internet, watching online videos, TV shows, movies, listening to music, and playing games. However, this tiny credit-card-sized computer is capable of so much more.

The Raspberry Pi will help you get to learn about what makes a computer tick. You’ll be learning how to set your operating system up, as well as being able to connect its circuits and wires to the board’s pins. This palm-sized computer was built to teach young children how to program in languages such as Python and Scratch, as well as every other big programming language that comes with the official operating system.

Society needs programmers now more than ever before, and the release of the Raspberry Pi has echoed a brand-new love for computer technology and science.

The Raspberry Pi might not be a great choice for primary PC with its 512 MB to 1 GB of RAM and for storage purposes, an SD card, but it can even be used for several other reasons from giving power to robots made from home and developing retro video games to becoming home theater PCs and to online-connected weather stations.

So, if powering or building robots, controlling hardware with Python, making games in Scratch, or setting up camera projects are your passion, then this book is the ultimate key for such ambitions. In spite of not being as powerful as a regular computer, the Raspberry Pi has several other capabilities than what a modern PC can bring for you. Furthermore, the Raspberry Pi has exceptional 3D graphics and multimedia functionalities, giving people a great amount of freedom to be able to write their gains if they wanted.

You’ll also be able to use something called physical computing, which is being able to build systems using motors, sensors, microcontrollers, and lights. The idea of introducing this feature with the Raspberry Pi is to make physical computing tons of fun, especially for children. This served as the basis for the manufacturers to go mainstream with the Raspberry Pi.

Chapter 1

What to Know About Raspberry Pi

[image:]

It’s time to open the door and get your feet wet about the Raspberry Pi and learn what it’s capable of.

The Raspberry Pi is a small board that functions like a modern commercial desktop computer, laptop, or smartphone but without the accessories of a mouse, a keyboard, or a central processing unit. But that doesn’t mean you can’t connect those accessories and turn it into a mini personal computer. It will only cost you around $35 and can be used for an assortment of activities, such as playing games or browsing the Internet, learning how to code or write programs, or even develop your own physical devices or circuits.

The Raspberry Pi is commonly used for real-time image/video processing, robotics applications, and IoT based applications. The Raspberry Pi Foundation are the ones that offered the Debian based Raspbian OS. They also provide NOOBS OS for the Raspberry Pi. The Raspbian OS is the official operating system for the Raspberry Pi. It comes with GUI that features tools for Python programming, browsing, office games, and more.

The Raspberry Pi, like many other single board computers, is small - about the same size as that of a credit card - but that’s not to say that it can do anything that a bigger and more powerful computer can do. The only downside is that it might not be as powerful as its larger counterparts. Despite that, the Raspberry Pi is still capable of giving you all the expected abilities or features, only with more energy efficiency.

The idea behind the Raspberry Pi’s introduction to the world was to help young minds have more hands-on experience about how
computers work. Believe it or not, the creators of Raspberry Pi conceived of this board as part of their nonprofit Raspberry Pi Foundation but had no idea they would become so popular. A couple of thousand test units that were built in 2012 were sold out in a flash, and ever since then, millions of units have been sold around the world. And just like that, homeowners, teachers, office workers, as well as factories, data centers, spacefaring balloons, and self-piloting boats, have been utilizing this board for their convenience or projects.

Every Raspberry Pi model comes with one common thing: they’re compatible, indicating software that’s built for one model will run on other models as well. This means that it can run the latest version of the Raspberry Pi’s operating system on an original prelaunch version, such as the Model B prototype. Though it would run slowly, it will run, nonetheless.

Will be helping you learn about the latest and most popular version of the Raspberry Pi: The Raspberry Pi 4 Model B+. And whatever you learn about this version can also be applied to other versions of the Raspberry Pi family tree. So, it’s all right if you have a different version with you.

Tour of the Raspberry Pi

Since the release of the original model ‘Model B,’ several more versions of the Raspberry Pi have been released. The present range has over six big models: The Raspberry Pi Model A+, Raspberry Pi Model B+, Raspberry Pi 2, Raspberry Pi 3, Raspberry Pi 4 and Raspberry Pi Zero. Each of these models comes with improved features or specifications to a particular use-case. For example, the Raspberry Pi Zero family is a miniature version of the main, larger model that lacks features like a wired network port and several USB ports to reduce power needs and achieve a more convenient layout. The Raspberry Pi range also includes a seventh, but lesser-known member; the Raspberry Pi Compute Module that was built for
industry purposes customized carrier boards. Like the other mainstream models, the Compute Module runs identical software but is far more complicated than what we can cover in this book.

If you’re someone who owns the original Raspberry Pi model, which could be either the Model B or the less featured Model A, then consider that a collector’s item. Much of the content attain in this book can be applied to your boards, though there are some differences that you need to keep in mind, including the lack of using add-ons that adhere to the Hardware Attached on Top (HAT) standard. We feel it’s best to retire your earlier board to pick up a newer model, which is from either Model A+, Model B+, or the Faster Raspberry Pi 2, 3, or 4. And if you’re on a tighter budget, then you can opt for the cheaper Raspberry Pi Zero model.

All Raspberry Pi boards have a square semiconductor in their rough center, which is more widely known as an integrated chip or circuit. This is known as the system-on-chip (SoC) module which gives the Raspberry Pi it’s graphics rendering, general-purpose processing, as well as input/output capabilities. It could be the original Broadcom BCM2835, BCM2836 Which is a faster quad-core, or even the more powerful 64-bit BCM 2837. In regards to the Model A+, B+, and Zero, there’s another semiconductor stacked on top of that ship that provides the Pi its memory for temporary data storage while also running programs on the side. On the Raspberry Pi 2 and 3 versions however, the chip is located on the underside of the board. This memory is commonly known as the random-access memory (RAM) as the computer can read from or write to any part of the memory at any time. Though you must be aware that RAM is volatile, which means that anything you store in the memory of this board will be lost when the operating system either loses power or is switched off.

The Raspberry Pi’s video outputs are right under the SoC. You also come across a wide silver connector, which is otherwise known as High Definition Multimedia Interface (HDMI) port, which is what is usually found in many satellite and cable set-top boxes as well as
media players. When you connect the HDMI port to a modern TV or monitor, you will receive high-resolution videos and high-quality audio. Located to the right of the HDMI socket is a composite video port that was designed to be connected to older television sets that didn’t have an HDMI socket and comes with the black and silver 3.5 mm AV jack. The video quality is notably lower through an HDMI port, and you can use only lower-quality analog audio. To use the composite video output, you’ll need a 3.5 mm AV adapter cable, though you can use the analog audio output with any standard 3.5 mm stereo audio cable.

The Raspberry Pi Zero comes with a separate layout. Instead of a full-size HDMI socket, this board comes with a mini-HDMI socket that requires either a mini HDMI or an HDMI cable or adapter that you can hook up to a TV or monitor. Unlike the larger Raspberry Pi models, the Raspberry Pi Zero model doesn’t have the 3.5 mm AV jack, nor does it include an analog audio output. The only get composite material when you solder a cable or an RCA jack to the two empty holes that you will find on the upper left side of the board that is marked TV
.

The Raspberry Pi’s top left pins compose the general-purpose input/output (GPIO) header
 that can be used to connect the board to other hardware. This port is commonly used to connect an add-on board
. And although the GPIO port is quite powerful, it’s also quite fragile. Be sure to avoid touching any of the pins when you handle the Raspberry Pi board, and also be sure not to connect anything to those pins while the board is powered on.

The display serial interface (DSI) port is the plastic and metal connector right below the GPIO port that you can use to connect digitally-driven flat-panel display systems. Although these are hardly used since the HDMI port is more flexible, one of the few displays to make use of this port is the official Raspberry Pi touchscreen accessory. The camera serial interface (CSI) port is another plastic and metal connector that is located on the right side
of the HDMI port and offers a high-speed connection to the Raspberry Pi Camera Module.

The Raspberry Pi Zero model also differs in layout in that there is no DSI port available. Instead, a compact CSI port is used instead of the full-sized one that comes with the larger models. You'll need to use an adapter cable or board to connect this compact CSI port to the Pi’s Camera Module. Previous versions of the Pi Zero lack a CSI port and therefore are unable to use the Camera Module.

The Raspberry Pi’s power socket can be found at the very bottom left side of the board. This is a micro USB socket, which, as you may already know, comes with modern smartphones and tablets. This cable needs to be connected to a suitable power adapter to switch the Raspberry Pi on. The Raspberry Pi, unlike a modern desktop or laptop computer, doesn’t feature a power switch and will start as soon as it’s connected and powered on. When it comes to the Raspberry Pi Zero, the power socket is located to the board’s far-right side instead of the far left.

The MicroSD slot can be found on the left-hand underside of the Raspberry Pi board. A secure digital (SD) memory card offer storage for programs, data, operating system, as well as other programs, and isn’t volatile. Unlike the RAM, it will be able to retain data even when the power is gone. The MicroSD slot of the Pi Zero model is on the top side of the board instead of the underside.

There are different connectors on the right-hand edge of the Raspberry Pi, depending on the model you have. The board also comes with at least one light-emitting diodes that offer visual feedback about the status of the board, like letting users know when it’s powered, has a network connection, is actively accessing the microSD card, and more.

Model A/B

The very first line of Raspberry Pi models was known as the Model A and the Model B (as shown in the image above). Both models had the
Broadcom BCM 2835 SoC within them, but had different specifications: Model A, for instance, had 256 MB of RAM, one USB port, and zero networking qualities; Model B had either a 256 MB or 512 MB of RAM depending on the date of the purchase, a 10/100 wired network port, and two USB ports.

These models were distinguishable because of their smaller than usual GPIO port, which has only 26 pins where is the larger, more advanced one has 40 pins. Both models also possess a full-size SD card storage instead of the compact microSD cards that the newer models come with. Although there are no longer manufactured, both the Model A and B are still compatible with most of the software that’s designed for the newer models, except they don’t use add-on hardware based on the HAT standard.

Model A+/B+

The original models proved to be very popular, but more than swiftly replaced with a new board design called the Plus. These later model iterations came with the 40-pin GPIO header while improving some of the other features. However, they didn’t deviate from the BCM 2835 SoC, which means that there was not much of a difference in performance between the Plus models and the older models.

The hardware difference between the Model A+ and Model B+ is similar to the previous Model A and Model B: the A+ model, which has a smaller footprint than the A Model, either has a 256 or 512 MB of memory depending on the launch of the product, zero network capabilities, and a single USB port; the Model B+ has a 512 MB of memory, a 10/100 wired network port, and four USB ports.

A+ and B+ are quite compatible with each software and device mentioned in this guide and have identical GPIO layouts as the newer models these days. If you have either of these models, the only reason you should upgrade is to gain additional memory, enjoyed built-in wireless capabilities or improve performance.

Raspberry Pi 2

Whereas the Plus end previous other boards use the same BCM 2835 SoC processor, the newer Raspberry Pi 2 uses the new BCM 2836 SoC processor. Instead of one core like the original, the new processor features over four cores as well as 4 to 8 times the performance of the original – which makes everything from word processing to compiling code a much faster process. This new version also contains over 1GB (1024 MB) of RAM, doubling what was available for the previous one, which made memory-intensive applications and multitasking go much smoother and a lot more responsive.

When it comes to layout, not much has changed from the Model B+. For instance, the Raspberry Pi 2 has the same four USB ports, 40-pin GPIO header, 10/100 wired network ports as well as other ports. If you indeed have an add-on device or a case that works with the Model B+, it will work well with the Raspberry Pi 2 – only faster.

The new board comes with bigger software compatibility than the previous versions: even the proprietary operating system, Raspbian, can run operating systems such as Windows 10 IoT Core and Ubuntu that wasn’t made available for the Raspberry Pi's predecessors.

Raspberry Pi 3

The last model before the fourth iteration, the Raspberry Pi 3, came with a newer processor at the time: the Broadcom BCM 2837. Being the 64-bit processor, not 32-bit, the new processor was considerably faster than the BCM 2836 found in the Raspberry Pi 2 version, which at the time was a massive upgrade from the BCM 2835 of the original and the Plus series. The Raspberry Pi 3 was also the first model to get built-in wireless support, which included a radio that connected to 2.4 GHz Wi-Fi networks and Bluetooth devices.

Like Pi 2, nothing much was changed with the layout: you would get the same four USB ports, 40-pin GPIO header, 10/100 wired network port, and several other ports that came with the last
models. The only minor change comes with how the board interacts with specific add-on hardware, so if you’re sure about whether a device is compatible with the Pi 3 model, then you should contact the vendor or manufacturer before buying to ensure that the software factored in that change.

One great advantage of the new Pi 3, other than the built-in wireless features and of course, the improved performance, is its 64-bit processor. Switching over to this model given its new processor means that you will have better software compatibility performance and security over the 32-bit version of the previous models.

Raspberry Pi Zero

The Raspberry Pi Zero is by far not only the smallest board in the entire Raspberry Pi family, but it’s also the cheapest of them all. In spite of being the size of a couple sticks of chewing gum that are stacked on top of each other, the Raspberry Pi Zero hardly lacks what the other models to: it has the same BCM 2835 SoC as well as 512 MB of RAM like the Raspberry Pi Model B+, and runs in a slightly faster speed for better performance.

However, Pi Zero needs the aid of certain caveats when it comes to using. For example, the mini-HDMI port and single micro-USB port require adapters before they can be connected to standard peripherals; there’s no DSI port; the 3.5 mm AV jack is gone, the CSI port needs an adapter; and while it’s present, the GPIO header needs pins that have to be purchased and soldered into place before it can be used.

We don’t recommend the Pi Zero if you’re a beginner. But if you are a more experienced user and want to bring more intelligence to embedded projects – especially when you experience troubles with cost, power draw, and size – the Pi Zero is the board you need to get your hands on.

The Raspberry Pi 4 Model B

Now, were going to look into the latest Raspberry Pi 4 Model B, see what it’s made of and how you can make it work. Although it seems like a lot is going into this tiny board, we assure you that the Raspberry Pi board is quite easy to understand - especially its components.

The Raspberry Pi 4 Model B Components

One of the most critical components is the system-on-chip
 (SoC), which is the centerpiece covered in a metal cap, as shown in the image above.

It is called system-on-chip as there is a silicon chip underneath the metal cover if you pry it open. This chip is also known as an integrated circuit that contains most of the Raspberry Pi’s operating system. Some of the most critical aspects contained within the chip are the graphics processing unit (GPU), handles the visual side of things, and the central processing unit (CPU), also known as the brain of a computer.

But without memory, the CPU would be of no use. But if you were to look to the side of the SoC, you’ll find another small, black, plastic square chip (as the image shows), which is the board’s random-access memory (RAM). This RAM, when in use, holds whatever you’re doing and will write it to the microSD card when you save your work. To reiterate from what we said earlier, the RAM is volatile, which means when the Pi board is powered off, you lose your data. On the other hand, the microSD card is non-volatile, and if you save your data in it, you won’t be able to lose it even when the power is out.

Then at the top left a corner of the board. You’ll come across another silver lid which covers the radio, which is what gives the Raspberry Pi its ability to connect with other devices wirelessly. The radio behaves as two separate components: a Wi-Fi radio that wirelessly connects to other computer networks; and the Bluetooth radio that connects to peripherals like keyboards and mice or for
sending or receiving data from nearby smart devices such as sensors or smartphones.

Then there’s the USB controller represented by a black, plastic-covered chip that’s at the bottom edge of the board just behind the middle set of USB ports. This component is responsible for running all four of the USB ports. There’s the even smaller network controller chip that handles the board’s Ethernet network ports. And then finally the smallest black chip that’s a little over the USB Type-C power connector that’s located to the board’s upper left side, known as the power management integrated circuit (PMIC). This chip is responsible for turning the micro USB port power into the power that the Raspberry Pi requires to run.

If this is too much for you to take in, then don’t worry. You don’t need to know what each of these components does or where you need to find them on the board to use the Raspberry Pi.

Ports of the Raspberry Pi

The Raspberry Pi is known for its wide range of ports, starting with the four Universal Serial Bus (USB) ports (as depicted in the image) that are on the right-hand side and middle of the bottom edge. You can use this port to connect to any USB-supported accessories such as mice, keyboards, flash drives, and digital cameras to the Raspberry Pi board. Although technically speaking, there are two types of USB ports: the ones colored and black are the USB 2.0 ports that are based on the second version of the Universal Serial Bus standard, whereas the blue ones are the much faster USB 3.0 ports and are based on the newer version.

If you look on the right side of the USB ports, you will see an ethernet port that’s also called a network port. This port is used to help you connect the Raspberry Pi to all wired computer network with a cable called an RJ-45 connector on its end. And if you look closer, you will see that there are two LED lights being emitted at the bottom of the ethernet port; these inform you about whether the
connection is working or not.

The 3.5 mm audiovisual (AV) Jack can be found just above the ethernet port and on the left-hand edge of the board. It’s also known as the headphone jack, which can be used for, of course, for the very reason it’s named. Although you can get better sound by connecting it to amplified speakers instead of headphones. Interestingly, it has a hidden feature: the 3.5 mm (AV) jack has a video signal that can be connected to TVs, projectors, or any other kind of display that supports a composite video signal with the help of a special cable called a tip-ring-ring-sleeve (TRRS) adapter.

Just above the 3.5 mm AV jack, you’ll see an odd-looking connector with a plastic flap that you can pull up. This is known as the camera connector and is also known as the Camera Serial Interface (CSI). It will enable you to use the Raspberry Pi camera module.

Then just above that, you’ll find two micro High Definition Multimedia Interface (micro-HDMI) ports, which are smaller than the ones that you will find on set-top boxes, TV sets, or game consoles. Like its larger counterpart, it is capable of projecting both audio and video signals with high-quality visuals. You can use these to connect your Raspberry Pi board to either one or two display devices, which could be either a TV, projector, or computer monitor.

Over the HDMI ports is USB Type-C power port that will enable you to connect the board to a power source. This port is usually seen in today’s smartphone devices, tablets, as well as other portable devices. Although you can’t use a basic mobile charger to power the board, the Raspberry Pi USB Type-C Power Supply provides the best results.

The display connector or Digital Serial Interface (DSI) sits at the top edge of the board that looks to be another odd-looking connector which may at first glance, come off as a camera connector, but is, in fact, the complete opposite. This connector was designed to be used
with the Raspberry Pi’s Touch Display.

If you look over to the right-hand edge of the Raspberry Pi board, you’ll see over 40 metal pins that are splitting the two rows of 20 pins. This is known as the general-purpose input/output (GPIO) header, which you can use to talk to additional hardware such as temperature sensors, buttons, LEDs, joysticks, and pulse rate monitors. If you go down below and head towards the left of this header, you will see another smaller four-pinned header: this connects to the Power over Ethernet (PoE) HAT, an extra add-on that enables the Raspberry Pi board to get power from a network connection instead of the USB Type-C port.

The last port is something that you won’t find on top of the board, but the other way around when you flip it over, which is the microSD card connector. It is on the opposite side to the display connector. This is where you can save all your files, install any software, and run your operating system.

Peripherals

You may have the board, but it is of no use to you on its own, just like how a desktop computer is of no use on its own without the essential accessories, or in other words, peripherals. Some of these peripherals include: a TV or a monitor for you to see what you’re doing; a microSD for storing all the files that you work on; a 5 V USB Type-C Power Supply rated at 3 A or better; and most importantly, a keyboard and mouse to find and perform the necessary actions on the screen. With all those items in place, you finally have yourself a fully functional modern computer. We’ll show you in the next chapter or so how you will connect these peripherals to your Raspberry Pi board.

Of course, those aren’t the only peripherals you be working with. The official Raspberry Pi Foundation accessories include: the Camera Module; The Raspberry Pi Case that protects the board as you’re using it without blocking off access to several of its other ports; the
Sense HAT, a versatile add on that will explain in the later chapters; and the Raspberry Pi Touch Display, that you can use to connect to the display port and offers both a video display as well as tablet-like touchscreen interface.

There is also a wide collection of third-party accessories that you will find at stores, including kits that will transform a Raspberry Pi board into a tablet or a laptop and add-ons that will give the Raspberry Pi the ability to understand what you’re saying and respond to whatever you’re saying. But before you can even think about additional attachments, you’ll need to become familiar with your Raspberry Pi first.

Chapter 2

Getting Ready for Raspberry Pi

[image:]

And now that you know how the Raspberry Pi differs from other types of computers, it’s time you got a better understanding of your device. If you have recently bought your Raspberry Pi board, you’ll need to take it out of its protective antistatic bag and then place it on a nonconductive, flat surface before you carry on with the rest of this chapter.

You’ll find that the Raspberry Pi was built to be quick and easy to set up and use as possible. But just like every computer that you find, you’ll need to hook up several external components to it that are also known as peripherals. Despite how it may seem from the outside, the Raspberry Pi board is not as complicated or difficult to use as appears to be. If the proper steps in this guide are followed, the Raspberry Pi board can be up and running in about 10 minutes.

If this guy came to you along with your Raspberry Pi Starter Kit, then you pretty much got all you need to start your journey: now all you need is a TV or computer monitor with an HDMI connection, which is the same one that you will find for various Blu-ray players, gaming consoles, and set-top boxes – just so you can see the actions that you perform with the Raspberry Pi.

In case you don’t have your Pi Starter Kit, then besides your Pi 4 Model B, you’ll be needing:

	

MicroSD with NOOBS –
 the microSD card your Pi board’s permanent storage device that stores every software you install and the files that you create as well as the operating system itself. You can get in an 8 GB card to get started, although you could get 16 GB one for more space. A card
with a preinstalled NOOBS (New Out-Of-Box Software), will save you time, but there are also instructions on how you can install NOOBS on a black card.

	

USB power supply
 – this is a 5 V power supply rated at 3 A and with the USB Type-C connector. Though the official Raspberry Pi Power Supply is recommended as a can cope with the continually switching power demands of the board.

	

Micro-HDMI cable
 – this cable transfers the images and sounds from your Pi board to your computer or TV monitor. There is a micro-HDMI connector on one end of the cable for your board, while the other side has a full-size HDMI connector for your display. You can also use a standard, full-size HDMI cable and a micro-HDMI to HDMI adapter. If there is no HDMI socket with your monitor, you can buy DisplayPort, VGA, or HDMI to DVI-D adapters. If you have an older TV set that has a SCART socket or uses a composite video, you can use a 3.5 mm tip-ring-ring-sleeve (TRRS) audio/video cable.

	

USB keyboard and mouse
 – these two are perhaps the most essential devices that you need in your possession to control the functions within the Raspberry Pi board. The Raspberry Pi board will work with any wired or wireless keyboard and mouse with a USB connector. Be careful about gaming keyboards as their colorful lights may draw out too much power from the board.

It’s alright to use the Raspberry Pi board without a case as long as it’s not placed on a metal surface where it can conduct electricity and likely cause a short circuit. For this reason, it would be better to get a case for the board for extra protection; you’ll find that the Official Raspberry Pi Case comes with the Starter Kit, although you can also purchase third-party cases from reliable stockists.

If you prefer using the Raspberry Pi board on a wired network
instead of a wireless network, then the network cable is advisable. The cable needs to be connected on one end of your network’s router or switch. But if you’re using the board's built-in wireless radio, you will need a cable; the only thing you will need to know is the name, passphrase or key for your wireless network.

Setting up Your Raspberry Pi Hardware

The first thing you need to do before you can use your Raspberry Pi board is to get it out of the box. While the board needs to be sturdy, it’s not exactly indestructible: make sure to hold the board by the edges instead of the flat sides, and be careful about the raised metal pins. If those pins get bent, it would undoubtedly make it difficult for the user to use add-on boards and other additional hardware and, at worst, could cause a short circuit that could damage the Pi board.

Get Ready to Assemble the Case

If you’re planning to install your Raspberry Pi board in a case, then this is going to be your first step. If you have the Official Raspberry Pi Case, then you need to split it into two separate pieces: the white lid and the red base.

Here’s how you start assembling the case:

	
First, take the base and then hold it so that the lower end is to your right, and the raised end is to your left.

	
As you hold the Raspberry Pi board (without a microSD card inserted into it) by its ethernet and USB ports, at a slight angle, slot the connectors (3.5 mm, 2 x micro-HDMI, and USB Type-C) into their respective holes in the base’s side, and then gently place the other end down so it is sitting flat.

	
Then take the white lid and place two clips at the left side of the matching holes located on the base’s left side just above the microSD card slot. Once the clips are in place, push the right-hand side (over the USB ports) down until you hear a click sound.

Connecting a Display

There are three different video outputs that the Raspberry Pi supports: HDMI video, DSI video, and composite video. HDMI video and composite video are already made available to the end-user, as this section will explain, however, the DSI video requires specific hardware that is found in the Raspberry Pi Touchscreen Display.

Composite Video

Composite video, which was also known as an RCA phono connector
, and was previously made available via a yellow-and-silver port located at the top of previous Pi models, is available at the 3.5 mm AV Jack that can be found at the bottom of most cards. The composite video was made to connect the Raspberry Pi board to older display devices. As the name indicates, the connector produces a composite of the colors that are within an image – green, blue, and red – which is then sent down from a single wire to the display device, usually an old cathode-rate tube (CRT) TV.

If there is another display device available with you, you can get started with the Pi board using a composite video connection. Unfortunately, the quality will be not be great here as composite video connections are more prone to lack clarity, interference, and runs at the limited resolution, meaning that only a few lines of text and icons will fit the screen simultaneously.

You will need an AV adapter cable to use the composite video output. These cables that you can get at very cheap rates from any electronics store split the output from the jack into three separate RCA jacks: the yellow jack will provide you with the composite video connection, whereas the white and red jacks offer two channels of stereo audio output. Just plug the adapter cable into the AV jack, and then have the RCA cables connected between the adapter cable’s jacks and the ones from your TV or any other display device that you’re using.

Since the Raspberry Pi Zero board doesn’t have a 3.5 mm AV jack,
you will need to solder a composite video cable to the tool holes that you will find at the top of the board that has “TV” written on it. However, it’s important to note that Pi Zero’s signal, unlike the AV jack of the larger Pi models, doesn’t have any analog audio.

HDMI Video

Starting with the Raspberry Pi 4 model, you will find two micro-HDMI connectors at the bottom of the Pi board. But don’t let their size fool you; this version supports HDMI 2.0 wherein the two micro-HDMI ports are capable of outputting video to dual displays, which is equivalent to a single 4K@60 Hz monitor or twin 4K@30Hz screens. And with the Video Core 6 GPU, it’s also capable of playing a 4K@60FPS H.265-encoded video, which helps provide elegant and seamless video playback up to 1080p resolution and has an HDMI 1.3 output.

If you’re thinking about using the Pi board with an existing computer monitor, you might find that the display doesn’t feature an HDMI input. The digital signals within an HDMI cable map to a common computer monitor standard known as the Digital Video Interconnect (DVI)
. If your monitor has DVI-D connectivity, then you need to purchase an HDMI-to-DVI cable.

If your monitor features of VGA input – a 15-pin D-shaped connector, usually colored blue and silver – your Raspberry Pi port will be able to connect to it directly. But if you want to use this kind of monitor, you have to purchase an adapter dongle
. Be sure to look for monitor models that are capable of converting HDMI to VGA and also specifically mention the Raspberry Pi compatibility whatever you’re making a purchase; then all that’s left is to connect the HDMI and to your Raspberry Pi board as well as your VGA monitor cable on the other end of the dongle.

The Raspberry Pi Zero also includes a mini-HDMI connector instead of the full-size connector more commonly found on other devices. We recommend purchasing a mini-HDMI to HDMI adapter to use the
HDMI output on a Pi Zero board or a mini-HDMI to HDMI cable. Be sure that whatever cable or adapter you buy is specifically for a mini-HDMI port, although smaller micro-HDMI adapters will be able to fit.

DSI Video

The DSI video output is located right above the micro-secure digital (micro-SD) card slot on top of the printed circuit board – this is a small ribbon connector that’s protected by a plastic layer. This is specifically for video standard known as Display Serial Interface
 (DSI)
, which is what smartphones and tablets used for their flat-panel displays. The DSI port’s most common use on the Pi board is to help it connect to the Raspberry Pi touchscreen display.

There is no DSI connector with the Raspberry Pi Zero model, and it also can be used with DSI-only displays like the Raspberry Pi touchscreen display.

Connecting Audio

The Raspberry Pi usually has two audio outputs: HDMI and the headphone jack
. You can switch between these modes any time you like.

If your HDMI TV or monitor comes with built-in speakers, the audio could be played over the HDMI cable, but you can also switch it to a pair of headphones or any other speakers that are plugged into the headphone jack. This may not be the appropriate output setup, or perhaps the auto-detection isn’t accurate, so you’ll have to switch the output manually.

If you’re connecting the Pi board to a standard HDMI display, there isn’t much to do except connect the cable. But if you’re attempting to connect the Pi board with the DVI-D monitor via a cable or an adapter, then audio won’t be included here. This is where the main difference between HDMI and DVI is highlighted: the HDMI cable will be able to carry audio signals, but the DVI won’t and is used only
for video signals.

For those that use DVI-D monitors or composite video output, the versatile 3.5 mm AV jack is what you need, which can be found at the bottom of the Raspberry Pi board. It’s the same connector that is used for microphones and headphones on consumer audio equipment, and it’s even wired the same way except for an extra connection for composite video output. You can connect a pair of headphones to this port if you like for quick audio access. But if you desire something a little more permanent, then standard PC speakers with a 3.5 mm connector will suffice, or you can buy some adapter cables for yourself.

If you’re connecting the Raspberry Pi board to a stereo or amplifier system, then you will need 3.5 mm to 3.5 mm cable or a 3.5 mm to RCA phono cable, depending on the spare connections that you may have on your system. Both of these cables are made available for cheap at consumer electronics shops and can come at an even cheaper rate from online retail stores like Amazon.

Connecting a Keyboard and a Mouse

Now that you have all of the output devices for your Raspberry Pi board sorted out let’s focus on the input. At the very least, you’ll need to have a keyboard, but a mouse or trackball is imperative for many users as well.

Let’s get the bad news out of the way first: if both your mouse and keyboard come with a PS/2 connect door – which is around the plug that has the horseshoe-shaped set of pins – you have to buy a replacement for it. The PS/2 connection is now obsolete and is now succeeded by the Universal Serial Bus (USB)
 that many Raspberry Pi boards come with these days. If not that, you can buy a USB to PS/2 adapter
, though we should warn you that some of the older keyboards might not function well with such an adapter.

You either have one, two, or even for USB ports available on the
right side of the Raspberry Pi board, depending on the model that you buy. If you’re using either Model B, B+, Pi 2, Pi 3, or Pi 4, you can directly connect the keyboard and mouse to these ports. But if you’re using Model A or A+, then you need to buy an external USB hub so that you can simultaneously connect two USB devices, use a wireless keyboard and mouse with a unifying USB receiver, or a keyboard with a built-in trackpad or pointer.

The Raspberry Pi Zero lacks full-size USB ports. It instead, use a micro-USB port, which is what helps you connect the power cable. Both of those ports are located at the bottom right of the board: To the right is the power input, which is labeled as PWR IN, and to the left, you’ll see the USB port that labeled USB. If you want to connect full-size USB devices to this port, then you’ll need a micro-USB to USB adapter, which is also called a USB On-The-Go
 (OTG) adapter
. It will convert the micro-USB port to a full-sized one, which will come across as the single USB port on a model A or A+.

The USB hub can be a great benefit to any Raspberry Pi user. Even if you have a Model B, B+, Pi 2, Pi 3, or Pi 4, your USB ports will be quickly filled when you add extra devices such as an external optical drive, a joystick, or a storage device. Be sure to purchase a powered USB hub. Passive models are smaller and cheaper, but they can't run current-heavy devices such as external hard drives and CD drives. A powered USB hub can also supply more current to devices than the Raspberry Pi’s USB ports – a device that normally doesn’t work when connected to the Pi board, but will once be connected through a high-quality powered hub.

It’s very easy to connect a keyboard and a mouse to the USB ports, either directly, or using a USB hub, or when it comes to the Raspberry Pi Zero model, a USB OTG adapter. No matter the USB port you use to connect your device, every port can be connected to the Raspberry Pi’s processor in the same manner.

When it comes to the Raspberry Pi 4 model, you can connect your
keyboards USB cable to any of the four USB ports (2.0 or 3.0) on this model’s board. If, for instance, you’re using the Official Raspberry Pi Keyboard, you’ll also find a USB port right on the back for the mouse; and even if you don’t, you can connect your mouse’s USB cable to a separate USB port on the Raspberry Pi board.

The keyboard and mouse’s USB connectors can slide smoothly without any hindrance or pressure, but if you find that you’re applying too much pressure, then you have to check the USB connector to see what’s wrong.

Setting up Your Software

Before you can start the earnestly using your Raspberry Pi board, you’ll have to set up the software first, including its operating system, that enables you to control whatever you do. NOOBS, or the New Out-Of-Box Software, has been designed by the Raspberry Pi Foundation to make this process easier, allowing you to choose from a variety of operating systems and then installed them automatically. NOOBS is already preinstalled on micro-SD cards that come along with your Raspberry Pi board; it’s also available as a free download. It already has a selection of different operating systems that you can choose to install on the Raspberry Pi board, as well as tools for changing hardware and software configurations. Better yet, you can have all of this done in only a few clicks from your mouse.

When you first boot or switch on your Raspberry Pi, after having just recently installed NOOBS on its microSD card, you will see a Raspberry Pi logo on the screen along with a small progress window to the upper left. After about a minute’s pause, you’ll be able to use the NOOBS microSD card. If you already have this card, then you don’t need to do anything else at this point. If you don’t have this card, they’ll need to download the latest version of the NOOBS software from www.raspberrypi.org/downloads
. Please be advised that this is a large file and will take quite some time to download; if your Internet caps off at 1 GB per month or even less, then you can’t download this file. For this reason, we recommend investing in a
microSD card that already has NOOBS installed into it from any retail store that carries Raspberry Pi.

If you want to install NOOBS on a blank micro-SD card, then you have to have an 8 GB micro-SD card of storage space to install extra software as you use the Raspberry Pi. You’ll also need to use a computer that comes with a micro-SD card reader, which is either built-in like some laptop models, as a full-sized SD card reader, or as an add-on device and a micro-SD adapter shell. You’ll have to insert the micro-SD card into the card reader first. If you use that micro-SD card on another device like a games console or a digital camera, then you’ll have to follow the NOOBS setup guide to the SD Card Association’s formatting tool and then use it to format the SD card and get it ready for installation. But if you have a new card, then you can skip this step.

You will find the NOOBS software available as a zip archive, which is when data is compressed, allowing it to take up less data space and be able to download more quickly. Like in most of the operating systems, you can open the file by double-clicking; and if you’re unable to do that, then we advise you to download and archive utility such as 7-Zip (www.7-zip.org) and then repeat the process.

Once the file is open, you need to transfer the file from the archive to your microSD by using the archive software’s extract or copy function. Because of the number and size of the files, it will take some time for it to be complete. Wait until the process has been completed and when the activity light is turned off. Then you can use the eject option on your operating system before you’re able to remove the micro-SD card and then inserted into the Raspberry Pi’s micro-SD card slot.

When you’re on the NOOBS menu, you’ll be able to choose the operating system you want to run your Raspberry Pi on. You already have two operating systems with NOOBS as a standard: LibreELEC, which is a version of the Kodi Entertainment Center
software, and Raspbian, which is a version of the Debian Linux operating system specifically built for the Raspberry Pi. If the board is connected to the network – either through a ‘Wi-Fi network’ option or a wired connection – you’ll also be able to download and install other operating systems as well.

Installing Your Operating System

To start installing your operating system, put across in the box to the left of Raspbian Full using your mouse: do this by pointing the cursor at the white box and then clicking once with the left mouse button. After that, you’ll notice that the ‘install (I)’ menu icon is not greyed anymore; this means that your operating system is all set for installation.

Click once with the left mouse button on the ‘install (I)’ icon, and then you’ll see a warning message informing you that installing the operating system will overwrite any existing data on the microSD drive – excluding NOOBS, which stays as it is. Click ‘Yes’ and it will start installing.

Depending on the speed of the microSD card, the installation process could take around 10 to 30 minutes for it to be complete. You’ll know how far the installation process is gone by the progress bar at the bottom of the window. As the process goes, you’ll also be seeing a slideshow where you get to know some of the product’s features; you learn more about those features as well as the operating system as you go on with the guide.

Important Note:
 you should know that as the installation is being carried out, nothing must interrupt the process as it could very likely damage the software, which is more commonly known as data corruption. Make sure not to unplug the power cable or remove the microSD card as the operating system is being installed; and if anything interrupts the installation, unplug the Raspberry Pi from its power supply, then hold down the SHIFT
 key on your keyboard as you’re reconnecting the board back to its power supply and help
bring the NOOBS menu backup. This is the recovery mode, and it’s a great way to help users restore their Raspberry Pi board in proper working condition after their software has been corrupted. It will also help you enter the NOOBS menu after the installation has been successful, so you can reinstall the operating system, or install any of the other operating systems.

Upon completion, you’ll see a dialog box with an ‘OK’ button; after clicking that, the Raspberry Pi will restart, and you’ll begin using the operating system you chose from the start. As you scroll up, you’ll see plenty of text on the screen; these are boot messages, and when you’re booting up Raspbian for the first time, it will take around a minute or so to adjust itself after it optimizes the best use of your microSD card’s free space. The second boot will occur much more quickly.

Finally, before the Raspbian desktop and set up wizard appears, you’ll see a window with the Raspberry Pi logo on it briefly. Now your operating system is fully installed, and you’re all set to start configuring, which you’ll learn later on.

Manual Installation

Although it’s more complex, you can also install an operating system without the use of the NOOBS tool, but sometimes it’s preferable this way. The reason why this is the case is that manually installing the software – through a process called flashing
 – you can install those operating systems that are not made available through NOOBS or even newer versions that the tool doesn’t have yet.

The first thing you need to do is to decide whether you would like Linux distribution or any other operating system to use with your Raspberry Pi. Every one of them has its pros and cons. And if you feel like changing to a different version, don’t worry: you can flash and SD card anytime you want with the new operating system. And if you want to, you can have several cards that come with their operating system installed.

You will find the latest Linux releases that are compatible with the Raspberry Pi at www.raspberrypi.org/downloads
.

The Raspberry Pi Foundation offers a BitTorrent link for each distribution. Each of these files is small that you can use to download using the BitTorrent software. The links are an inefficient and quick way to send large files, as well as prevent the download servers of the Foundation from overloading.

You’ll need a compatible BitTorrent client installed to use a link. If you don’t have a client installed, then download it from the official BitTorrent website before you can download the Raspberry Pi Linux distribution. There is also a μTorrent client available for OS X, Linux, and Windows at www.utorrent.com/downloads
.

It’s on you for which distribution you’d like to install. Installation instructions are based on the Raspberry Pi Raspbian distribution, which is ideal for first-time users. Instructions for alternate distributions are provided where needed.

Raspberry Pi Linux distributions are offered as one image file that is compressed so it can download faster. Once you have the zip archive for the preferred distribution downloaded, you can decompress it anywhere on your system. Most operating systems allow you to open the file to open it and then select Unzip or Extract to get the contents.

Once the archive has been decompressed, you will find two separate files. First, the file that ends in .sha1 is a hash that can be used to help you verify that the download and get corrupted in transit. Then there is a file that ends in .img that contains an SD card’s exact copy developed by the creators of the distribution in a manner that only the Raspberry Pi can understand. You’ll have to flash the file to the SD card.

Flashing from Linux

If you already have a version of Linux running on your PC, you can
write the contents of the image file using the dd command out to the SD card. It’s a text-interface program that you can operate from the command prompt, which in Linux lingo is known as the terminal
. To flash the SD card, follow the given instructions:

	
Open a terminal from the application menu of your distribution

	
Insert an empty SD card into your PCs card reader.

	
Type sudo fdisk -l
 to open up a disk list. You can locate your SD card from its size as well as consider the address of the device – /dev/sdX, where X
 indicates the storage device. Some systems come with an integrated SD card that uses a separate format /dev/mmcblkX – and if so, remember to change the target according to the instructions.

	
Using the cd command can change the directory with the .img file that you extracted from the zip archive.

	
Type sudo dd if=imagefilename.img of=/dev/sdX bs=2M
 to write the file known as imagefilename.img to the SD card that’s been connected to the address of the device from the third step. Replace that file with the true name that the zip archive had and was extracted from. We advise you to be patient as the step takes a while. You will see nothing on the screen during the flashing process, not until it is fully completed.

Flashing from OS X

If you have a Mac that runs the Apple OS X, then you will be happy to know that the process is similar to what it is with the Linux. Because of their common ancestry, both Linux and OS X contain the dd utility, which can help you flash the system image to your blank SD card using the instructions provided below:

	
From the Application menu, choose Utilities and then click
the Terminal application.

	
Insert your blank SD card into your Mac’s card reader.

	
Then type diskutil list
 to see a list of disks. Find your SD card by its size and note down the device address (/dev/diskX, where X is a letter identifying the storage device).

	
If your SD card has been mounted automatically and also appears on your desktop, then type diskutil unmountdisk /dev/diskX
 to unmount it before you continue.

	
Change the directory using the cd command with the .img file that you extracted from the zip archive.

	
Type dd if=imagefilename.img of=/dev/diskX bs=2m
 to write the imagefilename.img file to the SD card that the device mentioned in the third step is connected to. Replace that file with the actual name extracted from the zip archive. You have to be patient as the step could take a while.

Flashing from Windows

If you have a PC that runs the Windows operating system, the flashing process is going to be a bit trickier than OS X or Linux. Because Windows doesn’t have a dd-like utility, you’ll need third-party software to flash the image file onto the SD card. Although you can get a Windows-based dd version, there is a simpler method you can use: The Image Writer for Windows. This software is specially designed for creating SD cards or USB images of Linux distributions and includes a simple graphical user interface that directly creates a Raspberry Pi SD card.

The latest version of the Image Writer for Windows can be found at https://sourceforge.net/projects/win32diskimager. You can use the following instructions to download, install, and use the Image Writer
for Windows software so you can prepare your SD card for the Raspberry Pi board:

	
to download the Image Writer for Windows zip file, click the green download button and have an extracted to any folder on your computer.

	
Then plug your empty SD card in your PC’s card reader.

	
To open the program, double-click the Win32DiskImager.exe file and then click the blue folder icon to open your target file.

	
Search for the imagefilename.img file that you extracted from the distribution archive, replacing it with the actual name of the file you got from the archive, and then click the Open button.

	
From the Device drop-down dialog box, choose the drive letter that corresponds to the SD card. If you are uncertain about the drive letter, then open either Windows Explorer or My Computer to find it.

	
Finally, click the write button to flash the image file to your SD card. You’ll need to be patient as the step could take a while.

Chapter 3

How to Use Raspberry Pi

[image:]

You can run several types of software on the Raspberry Pi, especially in very operating systems – with which you can run your computer. Of all the available operating systems, the most popular one out of these is Raspbian, which is the Raspberry Pi Foundation’s official operating system. Raspbian is based on Debian Linux and is made specifically for the Raspberry Pi that features an array of pre-installed add-ons that will help you get started.

Even if you’re an Apple Mac OS or Microsoft Windows user, worry not because Raspbian is based on the same icons, windows, pointer (WIMP) principles, and menus, ensuring there is little to zero adjusting to this operating system. This chapter is here to help you get started with the Raspberry Pi, as well as help you get acquainted with some of the bundled software.

Welcome Wizard

When you run Raspbian for the first time, you’ll be introduced to the Welcome Wizard. This tool will enable you to configure the settings in Raspbian so that Raspberry Pi will behave just like or close to how you wanted to.

Note:
 if you want to close the Welcome Wizard, you only need to click the Cancel button at the bottom of the wizard. However. We would advise against this as there are certain features, including the wireless network that won’t be able to work until the first set of questions that you get are answered.

After clicking the Next button, there will be a dropdown box for language, country, and time zone, which you need to click per your
geographical location. There will also be a checkbox that will allow you to choose the appropriate keyboard layout; if, for instance, you’re using a keyboard with a US-layout, then be sure to check the box that says US-layout. If English isn’t your first language, but you prefer anyway over your country’s native tongue, then click the ‘Use English language’ checkbox. Then click Next when you’re done.

The next screen is about changing the password from the default one which is ‘raspberry’– this is strictly for security reasons, and it’s a good idea to create a new password just so hackers and bots aren’t able to easily guess and have access to your personal account and so on. Enter your new password in the spaces provided. If you’re using a complex password and wish to know what it looks like, then click the take right next to ‘Hide characters’ to show the password and write it down on a piece of stationary or additional notepad that only you have access to. Remember, you have to reenter the password to be on the safe side. You’ve done all that, you can click Next.

The next screen will have you set up your Wi-Fi network. You can choose from a range of networks that are already listed with your keyboard or mouse. Choose your desired network’s name by clicking on it, before clicking Next. To ensure that your wireless network is secured, you’ll need to insert its pre-shared key, which is also its password; this is usually written at the bottom of the router itself or written on a card along with the router. When you click Next, you’ll be able to connect to the network. If you prefer not to choose a wireless network, you can click Skip.

Note:
 Only the Raspberry Pi 3, Pi 4, and Pi Zero W series have built-in wireless networking. If you are using any other model besides the ones mentioned above and one wireless networking capabilities, you’ll need to invest in a USB Wi-Fi adapter.

In the next screen, you will have to install some updates for the Raspbian operating system as well as any other software on your Raspberry Pi board. Be advised that the Raspbian should be
regularly updated to add new features, improve performance, but, more importantly, fix technical issues. You can click Next to install the updates or click Skip if you want to move on and install them later. Be advised that downloading and installing the updates could take several minutes, so please be patient. After the updates have been installed, a dialog box that says ‘System is up-to-date’ will appear, after which you only need to click the OK button.

Finally, the last screen of the Welcome Wizard is a simple process known commonly as rebooting, which is when you have to restart your Raspberry Pi so that certain changes can take effect. All you have to do is click on the Reboot button, and your Raspberry Pi system will restart, and this time, the Welcome Wizard will not appear. With that being said, time for action.

Using the Desktop

The Raspbian operating system that is installed in many Raspberry Pi models these days is commonly known as ‘Raspbian with the Raspberry Pi Desktop,’ which is the system’s main graphical user interface. The desktop will be accompanied by a wallpaper in the background with some of the base programs – that you will be using – appearing on top of that wallpaper. You will find a taskbar at the top of your desktop that enables you to load any program you wish to open; tasks in the taskbar represent those programs.

The right side of the menu bar is where you will find the system tray
. If there are any removable storage devices connected to the Raspberry Pi, like USB memory sticks, then you need to click on the eject symbol to safely eject and remove them. To the far right, you’ll find the timer where you can bring up a digital calendar when you click on it.

Next to the timer is the speaker icon; click on the icon using the left mouse button to adjust the audio volume of your system, or you can click the right mouse button so that you can choose the output you want your system to use. Right next to that is the network icon;
you’ll know that you’re connected to a wireless network when you see your network signal strength is displayed in a series of bars, but if you’re connected to a wired network, only two arrows will be displayed. You can bring up a list of nearby networks by clicking on the network icon, whereas the Bluetooth icon right next to it will enable you to connect to any Bluetooth device nearby.

To the left of the menu bar, you will find the launcher
, where all the programs installed on the Raspbian operating system can be run. Some of the programs will appear as shortcut icons, whereas others that are hidden away somewhere in the menu can be brought up by clicking the raspberry icon located to the far-right side.

Every program in the menu is split into categories and are named specifically based on their purpose: for example, the Programming category has software that allows us to write programs – we will elaborate in the later chapters – or as the Games category enables you to play whatever games are listed. Please note that we haven’t covered every program in this guide, so you’re more than welcome to inspect them at your own volition.

Chromium

The first thing to do when you start using your Raspberry Pi board is to open the Chromium web browser: on the top left side of the menu, you need to click the raspberry icon. Move your mouse’s cursor to the Internet category and then click the Chromium Web Browser to open it up.

Chromium is not hard to get used to, and those who have used Google’s Chrome browser on other computers will find that it is quite similar in operation. Like any other web browser, chromium allows you to open and view websites, communicate with several people around the world using social media platforms, chat sites, and forms, as well as play games and watch videos.

For a better experience, we suggest maximizing the window of your
chromium web browser: on the top right side of the chromium window title bar, you’ll find three icons. You will need to click the middle, up-arrow icon, which will maximize the window to fill the entire screen. The button to the left of the maximize
 is minimize
 on the taskbar, which will hide the window when you click on it. And to the right of maximizing is the close
 function which of course, closes the window.

Note:
 You must save your work before closing the window. Although most programs will give you the warning to save your work when you hit the close button, other programs don’t have this facility.

The big white bar with a magnifying glass that sits at the top left-hand side of the Chromium window is the address bar. Click in the address bar, type www.raspberrypi.org
, and then hit ENTER
 on your keyboard. The official Raspberry Pi website will open up. You can also perform other searches in the address bar by simply typing ‘Raspbian,’ ‘Educational Computing,’ or ‘Raspberry Pi.’

When you load Chromium for the first time, several tabs
 will be shown at the top of the window. You wish to view another tab, click on it; and if you want to close a tab without necessarily closing the browser itself, then click the cross that you will find at a tab’s right-hand edge. To open up a new tab, you can click the tab button that is to the extreme right side of one tab, or you can also hold the CTRL
 key down on your keyboard and then press the T
 key before you let go of CTRL
.

If you want to close the browser, all you have to do is hit the close button at the top-right corner of the window.

File Manager

Any file that you save, be it the programs that you write, videos you create, or the images that you download from online – will go right to your home directory
. To view your home directory, click the
raspberry icon once more to pull up the menu, point the mouse over to Accessories, and then click File Manager to load it.

With the file manager, you can browse a variety of folders (also called directories
) and files that are already there in the Raspberry Pi’s microSD card or on any removable storage device such as a USB flash drive that you can connect to the board’s USB ports. When you open it for the first time, your home directly opens up automatically. Here, you’ll find lines of folders, also called subdirectories
, which – similar to the menu – are organized in categories. The main subdirectories that you will find include:

	

Documents:
 this is where most of the files that you create will be saved up, from poems to short stories and recipes, and more.

	

Desktop:
 When you first load Raspbian, this will be the folder that you will see; if you create and save the file in this folder, it will appear on your desktop, which makes it easy to find as well as load.

	

MagPi:
 this folder contains the electronic copy of the Raspberry Pi Foundation’s official magazine, The MagPi
.

	

Downloads:
 downloading any file online using the Chromium web browser will be saved in the Downloads folder automatically.

	

Pictures:
 This folder is specifically maintained for pictures, which are technically known as image files
.

	

Music:
 any piece of music you put or create on the Raspberry Pi board will be stored in this folder.

	

Videos:
 This folder is reserved for any video that you upload from an external storage device or download from the Chromium web browser.

	

Public:
 any file or folder that you store in this folder will be
available to other Raspberry Pi users, in spite of having their own account.

You will notice that the File Manager window is divided into two panes: the left pane displays your Raspberry Pi’s directories, whereas the right pane displays the files and subdirectories of the directory chosen in the left pane. If you insert a removable storage device into the USB port of the board, a dialog box will open up, asking you if you’d like to open it in the File Manager; by clicking the OK button, you’ll be able to view the files and subdirectories in that device.

You can easily copy your files on a removable device on your Raspberry Pi’s microSD card, or even transfer them from the microSD card to your removable device: when you’ve opened both the removable device and your home directory in separate File Manager windows, choose the file that you want to move from one window by clicking and holding the left mouse button and then sliding it to the other window before letting go of the mouse button. This process is called dragging and dropping
.

Another method would be to click once on the file, select the Edit menu, select Copy, click the other window, choose the Edit menu, and then click Paste.

The Move option, which you can find from the Edit menu, is similar in execution, only that it deletes the file from its original home after being copied. A faster way would be to use keyboard shortcuts CTRL+C
 for copying or CTRL+X
 for cutting and pasting via CTRL+V
.

Note:
 to copy text, a file, or folder using keyboard shortcuts such as CTRL+C
, you need first to hold down the key CTRL
, and present along with the second key C
 before letting both of them go.

After you’re done with that click the close button on the top left corner of the window to close the File Manager. If there are other
windows open, you need to close all of them. If there’s a removable device connected to your Raspberry Pi board, you’ll have to eject it by clicking the eject button at the top right corner of the screen before you unplug it.

Note:
 be sure to click the eject button before you unplug your external storage device. If you don’t do this, the files in your storage device may become either corrupt or unusable.

LibreOffice Productivity Suite

If you want to write a document, an article, a poem, or anything else written, then the LibreOffice Writer is what you need. If you’ve used Microsoft Office or Google Docs, then you have a good idea of how to use LibreOffice’s word processor.

One thing to note is that LibreOffice might not be installed on every Raspbian OS image by default. And if that’s the case, then you can use the Recommended Software tool to install them.

Besides being able to write documents, this word processor also allows you to format them in a variety of creative ways: you can change the font color, size, insert images, tables, charts, add effects, and any other type of content you choose. Like other word processor programs, the LibreOffice Writer will inspect whatever you’ve written for mistakes, as well as highlight spelling and grammatical errors in red and green, respectively, as you type.

If you don’t know what to write, then we suggest writing a passage on everything that you’ve learned about the Raspberry Pi board and the software installed in it so far. There are several icons at the top of the window that you can experiment with to see what they do: see if you can increase the font size, as well as change the color. If you’re uncertain how to get this done, move your mouse cursor over each icon one at a time to see a ‘tooltip’ that lets you know what the icon is about and what it does. If you’re satisfied with what you’ve written, click the File menu and then choose the Save option to save all of
your work. Give your file and name, and then finally click the Save button.

Note:
 you should always have the decency of saving your work as you’ll never know when you might encounter a power outage, short circuit, or any other mishap that would disrupt your work with the Raspberry Pi board.

The LibreOffice Writer is one of many programs that you will find in the LibreOffice productivity suite. Other Office programs included in this suite are:

	

LibreOffice
 Calc:
 a spreadsheet used for creating charts and graphs and handling numbers.

	

LibreOffice Base:
 a database used for storing, looking up quickly, and analyzing information.

	

LibreOffice Impress:
 a tool used for creating presentation slides as well as running slideshows.

	

LibreOffice Draw
: an illustration program where you can create diagrams and pictures.

	

LibreOffice Math
: a tool for creating appropriately formatted mathematical formulae that can also be used in other documents.

LibreOffice is also made available for other computers as well as operating systems. You prefer using it on your Pi system; then you can visit libreoffice.org
 download the file and then install it on any operating system, be it Linux, Apple Mac OS, or Microsoft Windows.

If you wish to know more about how you can use LibreOffice, click the Help menu. And if you have no more use for it, then you can close LibreOffice Writer by pointing and clicking the close button that is on the top right corner of the window.

Note
: many programs have a help menu with which you can learn
about a certain program and how you can use it. This can be handy if you are having trouble operating a program.

Recommended Software Tool

Although you already have access to a wide collection of preinstalled software with your Raspbian operating system, you can get more if you like. This is where the Recommended Software tool comes into play as it has some of the best lines of software that you can find.

Be advised that the Recommended Software tool requires an Internet connection for you to operate. Once you’re connected, click the raspberry menu icon, move the cursor to Preferences, and then click on Recommended Software. This will open up the tool and start downloading information about any software that’s available.

Then a list of some of the compatible software packages will appear after a couple of seconds. Like the raspberry menu software, the ones here are also organized in several categories. Click on any category in the left pane to view software under that category, or you can click All Programs to view everything.

If you see any software with a tick right next to it, it means it’s already installed on your operating system. And if there’s no tick in the box, then use the left mouse button to click the checkbox so you can prepare it for installation. Mark, as many numbers of software you want to prepare for installation. But make sure that there’s enough space in your microSD card for these programs; otherwise, you’ll have to limit the installation.

Similarly, you can also uninstall software this way: you look for any software with a tick in its checkbox and then left mouse click on the box to remove the tick. But if you have changed your mind or have made a mistake, then you can go back in the previous section and put the tick back in the box again.

When you’re all set, click the OK button to start installing or
uninstalling the software that you have selected/unselected. After you’ve downloaded and installed or uninstalled any software in your selection, a message box appears; click the OK button to exit the Recommended Software tool.

The Add/Remove Software tool is another tool that can help you install or uninstall software. It is located in the same Preferences category in the Raspbian menu. There is a wide range of software that is available with this. However, none of them have been approved by the Raspberry Pi Foundation.

Raspberry Pi Configuration Tool

The last thing to learn about in this chapter is the Raspberry Pi Configuration tool. You’ll find that it functions similar to the Welcome Wizard that you used in the beginning: you’ll be able to change plenty of settings in the Raspbian operating system. First, click the raspberry icon and then move your mouse cursor to the Preferences category, and then select Raspberry Pi Configuration to be loaded.

This tool is divided into four tabs, with each controlling a certain part of Raspbian. The first thing you will see when the tool is loaded for the first time is System: you can set up a hostname – this is the name that the Raspberry Pi board uses on your wired or wireless network – change your account password, as well as a bunch of other settings though most of these settings don’t require any changing.

Note
: this overview is to help you get acquainted with the tool and how to use it.

Move your mouse cursor to the Interfaces tab and click it with your left mouse button to pull up the next category. You’ll see a big list of settings that have been disabled. You can only change the settings if you include new software into your Raspberry Pi, including the Raspberry Pi Camera Module, and only if the manufacturer of the
hardware instructs you to. The only exceptions here include: VNC, which enables a ‘Virtual Network Computer’ and allows you to see as well as control the Raspbian desktop from another computer on your network thanks to a VNC client; Remote GPIO, where you can use the Raspberry Pi’s GPIO pins (you’ll learn more about it in the chapter Physical Computing
) from another computer on your network; and SSH, where you enable a ‘Secure Shell’ and enables you to log into the Raspberry Pi using another computer on your network with an SSH client.

When you click on the Performance tab, the third category can be viewed. From here, you can configure the amount of memory that the Raspberry Pi’s graphics processing unit (GPU) uses and, depending on some models, increase the performance of your board thanks to a process called overclocking
. Though, it would be better to leave these settings as they are unless you need to change them.

Lastly, you get to view the final category by clicking the Localization tab. From here, you can set up your locale, in which you can control how the numbers are displayed, the language used in Raspbian, change the layout of your keyboard, change the time zone, and also set up your country for Wi-Fi capabilities. As of now, however, you need to exit the tool by clicking the Cancel button without making any further changes.

Warning
: there are different rules for different countries about the kind of frequencies that are Wi-Fi radio can use. For instance, if you set the Wi-Fi country in the Raspberry Pi Configuration Tool to a country other than the one that you’re in right now, it will confuse your device and have a struggle when connecting to your networks. What’s worse, is that it can also be illegal under radio licensing laws. So, in other words, don’t do it.

Shutting Down

After exploring the Raspbian desktop and having your way with it, it’s time to learn how to shut your Raspberry Pi down safely. Like
any other computer that people use, the Raspberry Pi stores your files in volatile memory
 – which is a memory that gets emptied as soon as the system is powered off. For every document you make, it’s important to save as you type – this is where your files will be transferred to a non-volatile memory,
 which is the microSD card – so that you can retrieve the files that you saved and resume working on them.

But the documents that you’re working on aren’t the only ones opened. The operating system Raspbian several files opened while running, and if for any reason, the power cable is pulled from the Raspberry Pi board as the files are still opened, it could lead to the entire operating system becoming corrupt, and you’ll have to install it all over again.

So, to prevent this from occurring, you need to instruct Raspbian to save all of your files and documents and prepare itself for when it’s time to be powered off – a process known as shutting down
.

Warning
: remember not to pull the power cable out of the Raspberry Pi board until you shut it down first. If you don’t do this, it will corrupt Raspbian, and you could end up losing any file that you created or downloaded.

To shut down, click the raspberry icon at the top left corner of the desktop and then select Shutdown. A dialog box with three options will show up: Shut down, Logout, and Reboot. Shut down is the option that you mostly use: clicking this will instruct the operating system to shut all open files and software, shutting the entire system down. When you see the display turn black, with a couple of seconds until the green flashing light on the Pi disappears, that’s when it’s safe to turn the power supply off.

And if you want to turn the Raspberry Pi back on, all you have to do is disconnect and then reconnect the power cable, or you can toggle the power switch at the wall socket.

The remote process is similar to Shutdown, it will close every one of your files, but instead of shutting down, it will restart your Raspberry Pi – similar to if you had chosen the shutdown option, and then had to disconnect and reconnect the power cable. Certain changes you make with your Raspberry Pi require a restart to implement them – like installing certain core software updates – or if the software has crashed and has left your operating system in an unusable state.

And lastly, the Logout feature, which is quite useful if there is more than one account on your Raspberry Pi: it will close any program that you currently have running and will immediately bring up the login screen for which you can access another account using their designated username and password. And if by mistake you hit Logout, then you can get back in by simply typing ‘pi’ as your username and the password you chose in the Welcome Wizard, at the beginning of this chapter.

Chapter 4

How to Program with Scratch

[image:]

The idea behind the usage of the Raspberry Pi is not because you can use software developed by other people, but that you use it to create your software based on your imagination. And the Raspberry Pi is the platform that is suitable for you to create and experiment with programs that you create on your own via a process known as coding.

History

Scratch was developed by the Lifelong Kindergarten Group at the Massachusetts Institute of Technology (MIT), with over 40 million registered users and about 42 million shared projects.

The development of the software started in 2003 and was later released to the public in 2007. At the time of its release, Scratch only had the off-line editor to it; at that time, the official website was a small blog where several projects could be uploaded and then played with. But as time went by, both Scratch, as well as the website, grew larger. When versions 1.1, 1.2, 1.3, and 1.4 released, Scratch had accumulated millions of users and projects. As a result of this explosive growth in the community, the Scratch Foundation leads the design, development, and support as of March 12, 2019 though MIT will still work closely with the Scratch Foundation.

The developers made Scratch in a way that it takes every core concept of programming and makes them accessible to people of all ages. Instead of long-winded typing, younger programmers develop programs with a jigsaw-like drag-and-drop environment that not only promotes programming teaching but also carries the core concept of every programming language out there.

Scratch Interface

Here are a couple of things that you need to keep in mind when using the Scratch interface:

	

Sprite:
 sprites are the objects or characters that you control in a Scratch program, that sit on the stage

	

Stage area:
 much like actors in a real-life play, the sprites that you create will be able to move around as you control them via your program.

	

Sprites list:
 every sprite that you create or load into your Scratch program will appear in this part of the window.

	

Stage controls:
 using stage controls, you can change your stage to however you like, even if you want to include your own pictures is backgrounds.

	

Blocks:
 blocks are pre-written bits of program code that enable you to construct your program one step at a time.

	

Blocks palette:
 every block in your program will show up in the blocks palette, and also include color-coded categories.

	

Scripts area:
 this is the area where you drag-and-drop blocks from the blocks palette to build your program.

Although it’s a program designed for programmers aged eight and above, it’s also accessible to younger programmers with a bit of guidance and help, of course. It boasts of the colorful and inciting interface and also features an impressive multimedia capability. That explains why most of the 5 ½ million Scratch projects shared on the official website by users of the software, are games.

When kids are motivated to developing their own games, it’s a great way to help them learn about coding and have fun at the same time. Also, thanks to the software’s user-friendly interface and brilliant handling of core concepts, children are less likely to get bored,
confused or frustrated as they learn. Furthermore, the concepts the children learn in Scratch provided a good base for progression when it comes to learning a more flexible language such as Python.

But scratch offers a lot more than just being a framework for games. It can even be used to create interactive cartoons and presentations, and also interface with external motors and sensors using add-on hardware like the LEGO WeDo and PicoBoard robotics kit or even straight through the Raspberry Pi’s GPIO port.

It is recommended that you get the Raspbian distribution of the Raspberry Pi as it includes the latest preloaded version of the Scratch development environment. And if you’re already following our suggestions with this book, then you’re all set to go.

Hello World

Whenever someone starts to learn about programming, starting with a very basic program is rudimentary, especially when the program shows only one line of text. This program is commonly known as a Hello World program and is the first thing learners are acquainted with when creating their own programs.

Scratch, unlike a conventional programming language, doesn’t require users to go through and memorize the names of instructions like inkey$ or print. Rather, pretty much most of the things they’ll be doing is dragging and dropping blocks of code and then have them organized in a logical pattern.

You can start Scratch by double-clicking its icon that’s located on the desktop or by clicking on it in the Programming menu. The same principle is applied in a Scratch 2 interface. After that, the main Scratch interface will be displayed on your screen. If the screen appears small or off-centered, click the Maximize button to expand it.

There are multiple panes within the Scratch interface. To the left side is the block palette
, which houses a variety of code blocks that
enable users to develop their programs. A line of objects, known as sprites
, can be viewed at the bottom right pane as well as a control for the stage
 where the sprites show up. The stage appears at the window’s top right side, which is where users can see the program running. And the middle area of the window is what users can use to construct their program.

There’s already a new Scratch project that comes with a blank page and a single sprite to help users get started. What it doesn’t have at the moment is a program, so it won’t do users any good by clicking the icon of a green flag that’s at the top right corner of the window because the software doesn’t know what you want to do yet.

So first, you have to change the block palette, which is at the left side of the screen to Looks by clicking the Looks button. When you go a bit down the list of Looks blocks, you’ll come across one that says Hello! – All you have to do is click this with your left mouse button and drag it to the middle of the window that is known as Scripts. You can also click the block that is labeled Hello! If you want to go down the decades-old way of programming and customize it so that it says Hello World!. If you want to delete blocks, click on a block using the right mouse button and then select Delete from the drop-down menu using the left mouse button.

The program still won’t do anything if you click the green flag now. The reason why that’s the case is that despite Scratch knowing that it has to make the cat sprites say something, it doesn’t know when to. Fortunately, you can do this with a trigger block
, which you can find in the block palette’s Control section.

By clicking control, you can include this section and then drag the top entry that is labeled ‘when [flag icon] clicked’ and place it just over the purple ‘say’ work. Even if you drop the piece close enough, it will automatically enter the existing brick, as you would see with a jigsaw piece.

The basis behind Scratch’s concept is that several bricks are
connected. When you take a look at the Control brick that you have recently placed, you’ll find that there isn’t a hole connecting at the top. If this is the case, then users are unable to stack another brick on top. And this is because the Control brick has been made to trigger several other bricks directly and has to happen at the start of a stack. But if you look at the bottom of the ‘say’ brick, you’ll see that as a connector that can fit into the top of any other brick, which means that you can place more bricks from underneath.

Animation and Sound

Although Hello World is quite basic, it’s not exactly appealing. This is because it doesn’t exactly show off Scratch’s true power, which is what it’s sprite-handling system and multimedia functionalities are capable of. This system is equipped for simple animations, which can serve as the basis for an interactive game.

It started, load a fresh new program in Scratch, or you can click New from the File menu. You can start your new Scratch project with the default sprite, which is what you will be controlling.

You can use the block palette’s Motion section to control simple Scratch animation. You’ll always be having a default palette when starting a new project. Click the box that says ‘move ten steps’ and then drag it to the Scripts area. This block, as the name indicates, instructs the sprite that you selected to move ten steps in the direction it faces. This default Scratch sprite will always face to the right directly – therefore, the ‘move ten steps’ block will tell the sprite to move ten steps to the right.

You can change the value of the sprite’s steps to anything other than 10. For example, if you change the value of the steps to 30, the block will be labeled ‘30 steps.’ Though seeing an animated cat moving to the right isn’t exciting, so we suggest using the Sound block palette and drag the block that says ‘play sound me out’ to the Scripts area and then link it below the present ‘move’ block. If you want to keep the cat-like this for a while, go to the Control block palette and
choose a ‘wait 1 sec’, or else the sprite will quickly flick between its starting and target position.

You want to make your animated cat run several times without vanishing off the edge of the stage, include another block labeled ‘move ten steps’ below the block labeled ‘wait 1 secs’ and then change it to ‘move -30 steps’. You can use negative figures like this, and Scratch won’t mind. If your sprite can move a certain distance by adding the value of 30, -30 will have the character moving in the opposite direction and at the same distance.

Lastly, attach the block labeled ‘when [flag icon] clicked’ from the Control block palette to the stack of blocks at the top of the Script area to finish the program. You can activate the program by clicking the green flag on the top right corner of the screen. If you want to hear sounds like, connect your speakers or headphones to the Raspberry Pi.

You can also take this simple piece of animation to several other directions. You can add more sprites using the New Sprite option underneath the stage on the right side of the Scratch window, which can play sounds and move independently. You can even add a thought bubble by adding the ‘say’ block from the first example or a ‘think’ block to make an animated comic strip.

What’s even more fascinating is that the simple basic example teaches children essential programming concepts. In spite of being only five blocks long, this example covers sound playback, sprite movement in positive and negative distances, as well as the concept of delays
. To try another concept – which might drive you up the wall due to its constant noises – try to add a ‘forever’ block from the Control block palette. This brings a loop to your program, where it runs through the list forever – or at least until you hit the red stop button till your patience of tolerating the noise has reached its limit. The block can be dragged between ‘move 30 steps’ and ‘when flag clicked’ to include your existing blocks to the loop automatically
without deleting them and starting over.

A Simple Game

You can take simple animation even further with Scratch by enabling the software to read inputs from your keyboard, thereby introducing interactivity. When you combine simple animation controls with the program above, you can get a simple game out of it – while also introducing the concepts of if statements
, sprite collision
, and input
.

To do this, you’ll need to start a new Scratch project –remember to say the previous example – and start by dragging the block labeled ‘move ten steps’ to the Scripts area. But instead of telling the code blocks to execute when you click the flag icon, drag a block labeled ‘when space key pressed’ above the blocks that say ‘move’ by going to the Control block palette.

The block labeled ‘when space key pressed’ is looking for the user’s input, which, as the name suggests, is when the suppressed and use that as the trigger for activating a list of blocks. You can execute the block at any time; by immediately pressing the spacebar, the sprite will do as instructed, which is moving ten steps to the right.

But let’s be honest, again that has a character moving in only one direction doesn’t sound like fun at all, so you should click and drag a new ‘when space key pressed’ block into the Scripts area. You won’t be able to link this block to the existing list – you only have a single trigger block to work with – so it’s best to start a new list anywhere down below. Like last time, you can customize the block using the down-arrow button that’s located right next to the word ‘space’ so that the block reads ‘when left arrow key pressed.’ And then, change the block palette back to motion palette and connect a ‘move ten steps’ under the new block that says ‘when left arrow key pressed’ before switching it to ‘move -10 steps.’

You can move your cat in the left or right direction by pressing the
left and right arrow key. If you press the left arrow key, the cat will move ten steps left (but to Scratch, it is moving -10 steps to the right), and if you press the right arrow key, the cat will move ten steps right.

With this, players will be able to move the sprite. But now it’s time to instruct the sprite to do something. Seeing as how this is a very simple game, you should instruct your sprite to let’s say, pick up some food. To get started, go to the File button and click on the Choose New Sprite option, which you can find in the middle of the three buttons that are above the Sprite palette at the Scratch window’s bottom right side. If you want to know which button is what, hover your mouse pointer over a button until they give you a pop-up tip.

After doing that, a message box will show, asking you to choose a sprite: double-click on the Things folder and double-click the Cheesy-Puffs sprite. A new Sprite will be placed in the Sprite palette, which gives you a new object in the game to control.

Tip:
 the Scratch program is designed to be multithreaded
 and a bit object-oriented
, meaning that every object in the program, like sprites, have their own code attached and that every code’s section will run independently and simultaneously of other blocks. If you use the features right, you might also be able to create complex programs.

Any new Sprite that is added to the scratch project appears right at the center on the stage by default, which leads to the existing cat sprite becoming obscured. To fix this dilemma, all you have to do is drag the new Sprite with your left mouse button to the right.

You will find that the new Cheesy-Puffs sprite is too large for your animated cat to eat. No problem! Just go to the top right side of the stage area and click the Shrink Sprite button, and you’ll find four arrow keys that are pointing inwards. You can hover your mouse cursor over each pointer to find out which one is what.

When you click the Shrink Sprite button (or the Gross Sprite button that does the complete opposite), you will witness the mouse cursor becoming a replica of that buttons icon. Then all you have to do is click the Cheesy-Puffs sprite with the new cursor to shrink it. Keep clicking the bowl of Cheesy-Puffs sprite until it is decently sized. After you’re done, you can change the mouse cursor back to normal by clicking anywhere outside of the Stage area. Then drag the bowl closer to the stage’s right edge, if you like.

Now try moving your cat sprite towards the Cheesy-Puffs sprite using the arrow keys on your keyboard. But, when you bring both sprites closer, nothing will happen. This is because the program hasn’t been given instructions to take any specific action when to sprites meet up with one another – also known as a sprite collision
. This is where you introduce a new block known as a Sensing
 block.

Make sure that the Cheesy-Puffs sprite is active (this is indicated when the image appears at the top of the Scripts pane, and if it doesn’t, then just double-click the sprite on the stage) and then click the Sensing button to switch the Blocks palette to Sensing mode. Click and drag a ‘touching?’ block from the Sensing palette to the Scripts pane.

The ‘touching?’ block can be customized in the same manner as the ‘when space key pressed’ block in order to control the cat sprite’s movement. Choose the Sprite1 (cat sprite) from the list by clicking the down-arrow button located next to the question mark. When the two sprites meet up with each other, the block will activate.

Tip:
 You can also give your sprite a name by clicking on the box next to the sprite’s image in the Scripts pane and typing whatever name you want. If you want, you can name the sprites specifically as ‘Cat’ and ‘Cheesy Puffs,’ making it easier for you to keep track of the changes you make in the program.

If you look at the shape of the ‘touching Sprite1?’ block, you will see that it doesn’t have any jigsaw-like connectors at the top for the
bottom, and has a diamond shape – which is in a similar fashion to a flowchart’s decision point. That is no coincidence, by the way. Most of the Sensing blogs have to be embedded in a separate Control block for them to operate.

Change the Blocks palette to Control mode and find the ‘if’ block, which looks like a squished and bumpy ‘C’ letter. You will notice that the ‘if’ block has a similar diamond-shaped indentation as that of the ‘touching Sprite1?’ block. Click and drag the ‘if’ block into the Scripts pane and then click and drag the block labeled ‘touching Sprite1?’ into the diamond-shaped indentation. You’ll get a block of two colors that says ‘if touching Sprite1?’ (or any other name that you decide to give it).

This will be the program’s if conditional
. With this, every code within the domain will be executed only when the condition
 has been met. Over here, the condition is when the Cheesy-Puffs sprite is being touched by the cat sprite. Using the ‘and,’ ‘or,’ and ‘not’ logic blocks from the Operators block palette, you can fit in some complex scenarios.

Drag a ‘say Hello! For 2 secs’ from the Looks block palette into the center of the ‘if touching Sprite1?’ conditional. You can rewrite the text to make it say ‘Don’t eat me!’, And then include a ‘wait 1 secs’ Control block and that you change the value to 2. Then attach a ‘when space key pressed’ block on the top, and change the value so that it says ‘when right arrow key pressed.’ Lastly, click and drag a block labeled ‘hide’ from the Looks palette to the bottom of the loop.

Return to editing the scripts by double-clicking the cat sprite on stage. The script that you made for the Cheesy-Puffs sprite will go away. But don’t worry; the script is still there in the background, and will only appear when you’re editing that sprite.

Boolean Logic

The Boolean logic or Boolean algebra – named after George Boole –
is an essential concept to help users understand how computers work. The Boolean logic can be implemented in three of Scratch’s Operators bricks: ‘and,’ ‘or,’ and ‘not.’

The ‘and’ operator requires two inputs (like Sensing blocks) to be true before its output can be true. The output will turn out to be false if any or both of its inputs are false; the output will only be true if both inputs are true. This operator can be used as an example to see if a sprite touches two other sprites.

For the ‘or’ operator, either one or another of his two inputs have to be true. If anyone of the input is true, then the output of the operator will be true, as well — the convenient way to reuse code. For instance, if numerous sprites are harming the player sprite, only one block of code with the ‘or’ operator can be used to trigger whenever any of the enemy sprites are being touched.

Lastly, the ‘not’ operator is also referred to as an inverter
, which means that its single output is the opposite of what its output is. This means that if the input is false, then the output is true. Similarly, if the input is true, then the output is false.

Click and drag another ‘if’ block from the Control palette with a Sensing block that reads ‘touching ?’, and change the Sensing block so that both of the blocks say ‘if touching Sprite2?’. Insert a ‘wait 1 secs’ Control block into this block, change the value to 2 and change a Looks block that reads ‘say Hello! for 2 secs’ to ‘Yum-Yum-Yum!’. Lastly, drag the entire stack to block up so that it connects to the bottom of the block that reads ‘when right arrow key pressed,’ under the ‘move ten steps’ block.

You can start your game by moving the animated cat sprite towards the Cheesy Puffs sprite using your keyboard’s right arrow key. By the time the cat reaches the bowl of Cheesy-Puffs, there will be a dialogue exchange, after which the bowl will disappear.

Even though this is a fine way to showcase important programming
concepts, it’s not exactly the best example of coding a game. Scratch features a message broadcast
 system that enables users to attach code to one object so that it communicates with the code attached to another object, creating neater collision results that don’t necessarily rely on carefully timed causes.

You can try using the Control palette blocks labeled ‘broadcast’ and ‘when I receive’ to experiment with broadcasting. A message created for any object’s broadcast block will trigger code with the ‘when I receive’ flag, allowing you to link several objects as well as their code together.

Using Hardware to Interface with Scratch

Although it’s designed to be user-friendly, Scratch is a fully functional programming language, which also possesses the ability to control external hardware, usually via the Raspberry Pi’s GPIO port. The port is located at the top edge of every Raspberry Pi board, which enables users to interface with external hardware – from individual switches and LEDs to complex add-on boards.

You need to do a whole lot more than move things on the screen if you have any hope of interfacing with the GPIO port through Scratch. You can do this in two ways after enabling the GPIO server software: click the Edit menu and select Start GPIO Server, or you can also add a broadcast message that says ‘gpioserveron’ to enable it within the program and then use ‘gpioserveroff’ when you no longer need it.

After enabling the GPIO server, every pin of the GPIO header can be controlled separately. You can use the GPIO pin numbering scheme to do this, instead of the physical PIN: for example, physical Pin 11, is labeled as GPIO Pin 17 in Scratch.

Warning:
 If you’re not careful, you could cause damage to your Raspberry Pi board by connecting the wrong GPIO header pins or if you’re using external hardware that runs on voltages higher than
that of your Raspberry Pi. That’s why it’s always good to make sure that you accurately take into account the voltages and PINs before you connect anything to the GPIO header.

To experiment with the GPIO header using Scratch, you have to build a circuit. But instead of using the Python program, you have to build a brand-new scratch sketch using the following blocks:

when flag clicked

broadcast gpioserveron

broadcast config17out

forever

broadcast gpio17on

wait 2 secs

broadcast gpio17off

wait 2 secs

Click the flag to start running the program where you will see the LED connected to physical Pin 11 – GPIO Pin 17 – flash on and off after every two seconds. If it doesn’t work, then you have to inspect your wiring again (look real carefully at the pin numbering to ensure the LED is connected to physical Pin 11 on the GPIO header) as well as the LED’s orientation.

To experiment with inputs, you’ll need to make another circuit, this time, using the following blocks for your Scratch program:

when flag clicked

broadcast gpioserveron

broadcast config18in

forever

if gpio18 sensor value = 0

say Button pressed! for 2 secs

Click the flag to run the program, and whenever you press the physical button, a message will appear on the screen. To take your skills to the next level, you can try using both programs together: be
sure that the LED only flashes when the button gets pressed.

More Information

If you think this was an exhaustive read on Scratch, you’ll be surprised to know that this is merely just the bite-sized version for younger readers, I’ll be at a little to articulate for their age.

You can visit the official Scratch website and look for the Support section hosted by MIT at http://scratch.mit.edu/help/
, which also features a link to a Getting Started Guide
 in PDF. Here, young programmers with Scratch in a more child-friendly, and colorful manner, serving as a great tool for education. The experience can be made even better with the use of Scratch Cards, downloadable flashcards that contain information about each of Scratch’s block types. However, it’s important to note that these documents are based on the latest version of Scratch instead of what Raspbian provides at the moment; the techniques might be the same, but the user interface is different.

Scratch user form is also run by MIT, which allows several Scratch enthusiasts to learn about the software together as well as share solutions for recurring issues. Registration is free, and the site is compatible with the web browser that comes with the Raspbian distribution for the Raspberry Pi. The forms can be accessed at http://scratch.mit.edu/discuss
.

You want to learn more about how you can use the GPIO port by using Scratch, go to https://raspberrypi.org
, and then look into the official documentation under Help. It will give you GPIO interfacing examples, how to chain Scratch to other Raspberry Pi software, and how to use add-on hardware like the Sense HAT.

But believe or not, the best way to hone your Scratch skills is to play. Scratch’s name is rooted in turntablism – which is the scratching sound a DJ makes from the needle of a record. Similarly, how DJs remix old or existing songs into their version, scratch users submit their creations to the official Raspberry Pi website so that others can
download, feel it out, and then modify or remix it. There are over 5.5 million Scratch programs that are hosted on the official website, which makes it the best place to learn how Scratch is used to develop projects and then share those ideas with other users. Check out the latest projects that are shared at http://scratch.mit.edu/exploreprojects/all
.

Chapter 5

How to Program with Python

[image:]

Introducing Python

Python is a flexible and powerful programming language that was developed at the National Research Institute for Mathematics and Computer Science in the late 1980s by Guido van Rossum. It was created to be the ABC language’s successor. It went from being Rossum’s hobby project that was brought to the public from 1991 to one of the most common programming languages that can power a large variety of projects. It has grown a lot in popularity since its introduction because of its expressive and clear syntax that was made with the intent of ensuring that code is always readable.

Python is known as a high-level language as the code is written in highly recognizable English, so it can provide the Raspberry Pi with commands that are not only quick to learn but also easy to follow. This is in direct contrast to low-level languages such as assembler, which are quite close to how a computer “thinks” but is practically impossible for a human with no experience to follow. Python’s clear syntax and high-level nature allow it to be an essential tool for anyone who wishes to know how to program. The Raspberry Pi Foundation even recommends it as the language for those who want to progress from simple Scratch to a more “hands-on” programming.

Python is open source and is also freely available for Linux, Mac OS X, and Windows operating systems. This means that any software that uses the Python on the Raspberry Pi can be used on computers that run on any of those operating systems.

Example #1: Hello World

As we learned in the previous chapter with Scratch, making a project
that reads “Hello World!” is the simplest way to learn a new programming language. But while Scratch allowed you to drag and drop blocks prewritten code, Python lets users write their program completely by hand.

At its core, a Python project is largely a text file filled with written instructions that the computer must follow. The file can be created with any text editor you use. For instance, if you want to use a graphical user interface (GUI), we suggest using Leafpad; or if working in a terminal window or at a console is more your thing, then nano is the way to go. You can even try an integrated development environment (IDE) like IDLE, that offers users that Python-focused functionality that a standard text editor doesn’t have, including debugging facilities, syntax checking, as well as being able to run the program without leaving the editor. In this chapter, we have written instructions on how you can create Python files with IDLE, but whichever editor you choose is on you. This chapter also features instructions on how you can run created files straight from the terminal, which, therefore, can be used along with any text editor or IDE.

To start your Hello World project, go to the Programming menu from the Raspbian distribution’s desktop environment and open Python to (IDLE). But if you are using IDLE, then go with your favorite text editor, open up a blank document, and skip this entire passage. IDLE will open up in Python shell mode by default, which means if you type anything in the initial window, it will be executed right there and then. You want to open up a new Python project that needs to be executed later, left-click the File menu and then open up a blank file by clicking on New File.

Tip:
 if you choose Python 3 instead of Python 2 from the Programming menu, then it will open up the Python 3 version. It is a slightly different form of the language, or syntax, which would likely cause problems for Python 2 programs. Every example in this chapter has been written using Python 2, so make sure to load
Python 2 instead of Python 3.

All Python programs starting with a line called shebang
 – which gets his name from the # and ! characters at the start of the line – is great practice. It instructs the operating system where it needs to find the Python interpreter. Even though this is not required for programs that run from IDLE or ones that call Python straight from the terminal, it is necessary for programs running directly by calling the program’s filename.

To make sure the program runs no matter where the Python executable has been installed, your program’s first line should read as:

#!/usr/bin/env python

It instructs the operating system to look at the $PATH environment variable – where Linux keeps file locations that can then be executed as programs – for where Python is located, which you can get to work on any Linux distribution used on the Raspberry Pi. There is a list of directories in the $PATH variable, which is where executable files have been stored and are also used to help you find programs after typing in their names in a terminal window or at the console.

If you want to print the message, you should use Python’s ‘print’ statement. This statement allows you to print text to an output device, pacifically to the terminal window, or console from where the program is being executed. It is simple to use. Text that comes after the word ‘print’ and is placed between quotation marks will be printed to the standard output device. Type the line below in your new project:

print "Hello, World!"

The final version of the program should look like this:

#!/usr/bin/env python

print "Hello, World!"

If you’re using IDLE instead of a simple text editor to create the example program, you’ll find that the text is multicolored. This is technically known as syntax highlighting, which is a feature that belongs to IDEs and some of the more complex text editing tools. Syntax highlighting will change the color of text sections per their function to help make the program simpler to understand from afar. It even makes spotting syntax errors
 – which is caused by users forgetting to put an end-quote in a ‘print’ command or forget to comment a remark – easier to find. Syntax highlighting isn’t required in the following short example, though it is for larger programs, especially when it comes to finding errors.

Save your program as helloworld.py before you start running it by using the File menu. If you use IDLE, your file will automatically be given the extension .py. But if you’re using a text editor, you need to save it by typing .py at the end of the file name and not .txt. This means that the file contains Python code – even though Python isn’t clever enough to run the program even if users save it with a different file extension.

Whether you use IDLE or a text editor, you’re the one who has to decide how you want to run your file. In idle, go to the Run menu and choose Run Module, or you can also press the F5 key on your keyboard. What it does is switch IDLE back to the Python shell window to run the program. A message, “Hello, World!” would appear on your screen in blue. And if you don’t see it, specter syntax, and check if there are any quotation marks at the start and end of the print line message.

If you’re used a text editor to create the helloworld.py program, you need to go to the Accessories menu on the desktop and open a terminal window. If the file has been saved anywhere else, but your home directory and you want to change it, you can do so using the cd command. After that, run the program by typing:

python helloworld.py

It will instruct Raspbian to run Python and then set up the helloworld.py file for execution. Python, unlike the Python shell in IDLE, will quit and return you to the terminal. However, the result will be the same as the message “Hello, World!” will be printed to the standard output.

Making a Python Program Executable

Usually, a Python program would only run when users open a file from the programming language’s software. But with the shebang line at the top of the file, the file can be executed without calling Python first. You can even use this to have your tools executed from the terminal as well: after copying it somewhere in the system’s $PATH environment variable, the program can be executed just by typing its name.

But first, Linux needs to be instructed to mark the Python file to be executable – when the operating system has been told that the file needs to be a program. This attribute isn’t set from the start because it protects the system from malware being downloaded online. As such, only those files that are marked as executable will run. This is where the chmod command should be used to make the helloworld.py file executable by typing:

chmod +x helloworld.py

With this, you can directly run the program by typing:

./helloworld.py

In spite of not calling the Python program, you can run the ./helloworld.py file in the same manner as when you normally type python helloworld.py. You can run the file by calling with its full location, which is /home/pi/helloworld.py, or using ./ as the location from the ongoing directory. To ensure the file becomes accessible like any other terminal command, copy it to /usr/local/bin with the command as follows:

sudo cp helloworld.py /usr/local/bin/

The prefix ‘sudo’ is necessary so that non-authorized users can’t write to the /usr/local/bin directory. And since the helloworld.py file is in /usr/local/

bin, which is in the $PATH variable, you can execute it from just about any directory just by typing its name. You can also change the program’s directory location to something else and then get it to run by typing:

helloworld.py

You can even rename your program to have the .py file extension removed to make them look more like native utilities. To do that, type the line below into the terminal:

sudo mv /usr/local/bin/helloworld.py ↩

/usr/local/bin/helloworld

After renaming the program, you can run it by simply typing helloworld at the console or terminal.

Example #2: Inputs, Variables, Comments, and Loops

Although the Hello World program serves as a nice introduction to a programming language, it doesn’t go out of its way to show the use of the concepts that are essential for creating interesting or useful programs. But with this next example, you’ll know about the basic tools that will help you develop interactive programs and Python.

Like the first example, open up a new blank document in either idle or a text editor and then use the following shebang line to start your program:

#!/usr/bin/env python

To reiterate, you don’t necessarily need to be using this line unless the program is made executable. Still, it doesn’t do any harm and it
is good to keep in mind.

The next thing to do is to add a comment to your program to give it context if you want to open it at a later date. Just bear in mind that you have to enter this is a single line by ending it with a ↩
 symbol, like with all other code lines:

Example 2: A Python program from the ↩

Raspberry Pi User Guide

Anything in Python that is followed by a hash symbol – except the shebang line (which needs to appear at the top first line of the program) – should be regarded as a comment. When Python finds a comment, it ignores it and moves on to the next line. It’s good to comment on your code because even though you’re certain about what that specific code section does now, you might not be able to recall what it does if you open the file six months later. You’ll also find that comments make codes more organized, and if you’re planning on sharing the coat with anyone else, the comments will help them understand what every section is and what they’re meant for. Similar programs don’t necessarily need any comments; though like adding the shebang line, it’s a pretty good habit to get used to. Comments, like the one that precedes it, can be at their own line, or at the end of it, which enables Python to run the code line up until it gets to the hash symbol.

The next thing to do is to ask the user for their name with the line as follows:

userName = raw_input("What is your name? ")

You can get a lot out of this one small line. With userName =, Python will be instructed to create a new variable
 – a place that stores information – known as userName. The equal sign lets Python know that the variable has to be set to whatever comes after it. But over here, what comes after it isn’t just some arbitrary piece of information, but rather another function: raw_input. This tool is made to accept the keyboard’s string

 (text) and will have the message printed to the default output, thereby letting the user know what they should type. The program is kept simple this way: if the program can't print a prompt that lets the user know what they have to type, a line that comes before it with the ‘print’ command, it is required. It’s important to leave some space at the prompt’s end, or else user input will start right after the question mark.

Warning:
 you must always use ‘raw_input’ to inform users to type text. This offers security, which the ‘input’ command doesn’t upon itself. If you were to use only the ‘input’ command, it will give other users the freedom to inject their own code in your program, which could cause it to crash or work in any other way than what you intended for.

When the user's name has been stored safely in the userName variable, the program will get smarter. Use the following line to welcome the user:

print "Welcome to the program, " userName

The line comes with another function of the print command that was mentioned in the first example: which is having the ability to print variable contents. This print command has two sections to it: the first one will print anything between the two quotation marks, and the second one tells the ‘print’ command to print more to the same line. Just typing userName is enough to inform Python that that variable’s contents should be printed, thereby resulting in a customized message that has the user’s own name on it.

Consider this example program as a user-friendly calculator. Unlike the first example, this program will run indefinitely until and unless the user tells it otherwise. This can be done with the loop, as was seen in Scratch. You can start the loop by typing the given two lines:

goAgain = 1

while goAgain == 1:

The first one brings a new variable known as ‘goAgain’ and sets its value at 1. The second line will start the loop and will let Python know that though the ‘goAgain’ variable equals 1, it should carry on the loop with the code that follows. Be sure that when the next couple of lines are written, make sure they are indented, which you can do by adding four spaces of the start of every line. The spaces will let Python know which of the lines are part of the loop and which ones are outside of it. If you use IDLE, the spaces will be inserted automatically; but if you use a text editor, you’ll have to insert the spaces manually.

What Does == Mean?

Usually, users use only one equals symbol to set a variable’s value. But the ‘while’ loop uses two instead. Having two equals symbols next to one another enables the program to perform an evaluation, which is when the value of a variable is compared to whatever comes after it. One equals symbol, however, since the value of the variable to whatever follows.

There are other evaluations besides the double equals symbols, which is only when the variable accurately matches the value: < means less then, > means greater than, <= means less than or equal to, >= means greater than or equal to, and != means not equal to.

With these evaluation symbols, the flow of a program can be controlled according to the rules of Boolean logic.

A calculator will perform a mathematical operation on two numbers after taking them as input. To do this, you have to take the two numbers from users with the lines as follows:

firstNumber = int(raw_input("Type the first number: "))

secondNumber = int(raw_input("Type the second number: "))

Not only do the lines use the ‘raw_input’ command to ask for two numbers, but they use ‘int’ as well. Int, which is short for integer,
instructs Python to treat input is a number instead of a string. This is an important function for a calculator program as it doesn’t calculate words.

After the two numbers are stored as variables, the program will be able to carry out its calculations. Type the lines that instruct the program to add, subtract, and multiply the two numbers, so that the output is sent to the user:

print firstNumber, "added to", secondNumber, "equals", ↩

firstNumber + secondNumber

print firstNumber, "minus", secondNumber, "equals", ↩

firstNumber - secondNumber

print firstNumber, "multiplied by", secondNumber, "equals", ↩

firstNumber * secondNumber

You will see that even though the addition and subtraction functions use the usual plus and minus symbols, the multiplication function uses the * symbol instead. You’ll even notice that the quotation marks have no formatting spaces between them. The reason why this is so is that Python will add spaces automatically when strings and integers are printed together. Lastly, you’ll also notice that there isn’t any division function (which is usually indicated by the / symbol). That’s because only integers – which are only whole numbers, without fractions or decimal places – can be used in the example calculator program.

Now, although the program’s calculation part is done, it will continue to run because Python has not been instructed to come out of the loop. To help the user exit the program, just at the line below:

goAgain = int(raw_input("Type 1 to enter more numbers, ↩

or any other number to quit: "))

With this, the user can change the goAgain variable, which allows them to control the while loop. If, for instance, the user enters the number 1, the variable of the goAgain will equal 1, and the loop will start over. But if the user enters any other number, the goAgain variable will no longer be equal to 1, and the loop ends.

The final program will look something like this:

#!/usr/bin/env python

Example 2: A Python program from the Raspberry Pi User Guide

userName = raw_input("What is your name? ")

print "Welcome to the program,", userName

goAgain = 1

while goAgain == 1:

firstNumber = int(raw_input("Type the first number: "))

secondNumber = int(raw_input("Type the second number: "))

print firstNumber, "added to", secondNumber, "equals", ↩

firstNumber + secondNumber

print firstNumber, "minus", secondNumber, "equals", ↩

firstNumber - secondNumber

print firstNumber, "multiplied by", secondNumber, "equals", ↩

firstNumber * secondNumber

goAgain = int(raw_input("Type 1 to enter more numbers, or ↩

any other number to quit: "))

Now be sure to have the program saved as calculator.py. And if you want to run it, Run Module from the Run menu in IDLE or just type ‘python calculator.py’ at the terminal. You’ll be prompted to enter
your username; input the numbers that need to be calculated until you want to type any other number besides 1 to end the program.

Visit the official Python Symbol Programs wiki page at https://wiki.python.org/moin/SimplePrograms
 if you want to learn about other short programs that include essential Python concepts.

Example #3: Pygame

If you want to harness the power of Python, then this example will show you how. Here you will create a fully operational arcade game based on the classic game of Nibbles or Snake. For this, you will need an external Python library known as pygame.

Pygame is a bunch of Python modules written originally by Pete Shinners that was made to include new functionality to the language, which, in other words, was so that writing again in Python would be easy. Every pygame module offers functionality that a modern game should have, such as graphics, sound, as well as networking support. Although you can still write a game in Python without pygame, it would be a lot easier if you use pygame as it takes advantage of code that’s already been written into its library.

The pygame library will already be installed while you’re running Raspbian. Other operating systems require you to download the pygame source files by visiting the official website at www.pygame.org/download.shtml. Installation instructions will be provided on that very page.

A pygame program can start in the same manner as any other Python project. You can use IDLE or a text editor to open a new blank document and then start by adding the following shebang line to the top:

#!/usr/bin/env python

Next, you have to let Python know that this is a program that uses pygame modules. You’ll need to use an ‘import’ function for this,
which instructs Python to load an external module so it can be accessible from the current program. To import the modules in your new project, type the following two lines:

import pygame, sys, time, random

from pygame.locals import *

The main pygame module will be imported due to the first line, followed by the Python modules ‘time’, ‘random,’ and ‘sys’ that will be used in this program as well. Usually, users can call a module simply by typing its name along with the name of the instruction from that module, but the second line in the above code instructs Python to load every instruction from the pygame.locals module like their native instructions. With this, these instructions will spare you from plenty of writing. However, other module names like pygame.clock, which is different from pygame.locals need to be fully typed.

To set pygame for use in the example program, enter the following two lines:

pygame.init()

fpsClock = pygame.time.Clock()

With the first line, pygame will initialize itself, and the second line will have a new variable set up by the name of fpsClock, which enables the users to control the game’s speed. Then you must set up a pygame display surface, from which in-game objects can be drawn, using the two lines given below:

playSurface = pygame.display.set_mode((640, 480))

pygame.display.set_caption('Raspberry Snake')

Next, you’ll need some colors that you can use for the program. Even though the step isn’t exactly necessary, it does help save up on typing. For instance, if you want a certain object to be colored red,
then you can use the redColour variable instead of calling the pygame. Be sure to have the instruction colored and remember the three values for red, blue, and green. To set up the colors in this program, type the lines as follows:

redColour = pygame.Color(255, 0, 0)

blackColour = pygame.Color(0, 0, 0)

whiteColour = pygame.Color(255, 255, 255)

greyColour = pygame.Color(150, 150, 150)

The next set of lines will load up some of the game’s variables so they’ll be ready to use. Since pygame is developed in the US, be sure not to type “colour” since it won’t be recognized. It’s very important to load these variables because if they're left blank when the game starts, Python won’t be able to know what to do next. Fortunately, you won’t have to worry with each of those variables does for the time being; all you have to do is type the lines below (ensure that all the square brackets and commas are in the right place):

snakePosition = [100,100]

snakeSegments = [[100,100],[80,100],[60,100]]

raspberryPosition = [300,300]

raspberrySpawned = 1

direction = 'right'

changeDirection = direction

If you look carefully, you’ll see that three of the given variables, including raspberryPosition, snakeSegments, and snakePosition, have been set up in a list of values separated by a comma. With this, Python will create the variables as lists
, which is several various values stored in one variable name. You’ll also know how you can access each value stored in a list.

Then you need to know how to define a new function, which is part of the Python code that can be called up later in your program. Functions help make it easier for users to understand the program and avoid code repetition. If you have various other instructions that will be needed that many other points in the same program, you can use ‘def’ to develop a function to type them only once, and then change them later from one place in case you want to change the program later on. For the gameOver function, type the lines below:

def gameOver():

gameOverFont = pygame.font.Font ↩

('freesansbold.ttf', 72)

gameOverSurf = gameOverFont.render ↩

('Game Over', True, greyColour)

gameOverRect = gameOverSurf.get_rect()

gameOverRect.midtop = (320, 10)

playSurface.blit(gameOverSurf, gameOverRect)

pygame.display.flip()

time.sleep(5)

pygame.quit()

sys.exit()

Similarly, with loops, a function’s code has to be indented. If you’re using a text editor, then you need to have to manually insert four spaces at the beginning of every line after the ‘def’ instruction. But if you use idle, the spaces will automatically be inserted. You can stop indenting after the final line of the function, which is sys.exit ().

Some pygame commands can be performed with the gameOver function: which is when the words “Game Over” appear for about five
seconds in a large font and then exit both pygame and Python. It might seem a bit strange to set up instructions to quit the game before the game starts, but functions must always be defined before they’re called. And unless it is told to do so using the gameOver instruction, Python won’t execute these instructions.

And now that the start of the program is complete, it would be time to run the main function. This happens in an infinite ‘while’ loop that never quits. This is so the game continues to run until the player dies by eating their own tail or hitting a wall. Start the main loop with the line as follows:

while True:

Without having anything else to evaluate, Python will check to see if ‘True’ is indeed true. And since that’s the case, the loop will go on indefinitely until the user calls the gameOver function, thereby instructing Python to quit.

Use the following lines as you continue to run the program while also paying attention to the indentation levels:

for event in pygame.event.get():

if event.type == QUIT:

pygame.quit()

sys.exit()

elif event.type == KEYDOWN:

The first line should be indented for spaces as it comes right after the start of the ‘while’ loop – but it’s a loop completely independent, and can check for pygame events like keypresses using a ‘for’ instruction. Because of that, the line beneath ‘for’ has to be indented by four extra spaces, bringing the total to eight – but that line uses an ‘if’ instruction to see if the user has pressed a key or not. That’s why the next line, which is pygame.quit (), has to be indented by four extra
spaces, bringing the total to 12 spaces. This manner of indentation will let the Python know where each loop block starts and finishes as the program won’t run correctly if the wrong number of spaces is used. That’s why it would be better if you used idle as it automatically indents the code wherever required, then when one uses a regular text editor to create any program on Python.

To enable Python to see if a certain evaluation is true, an ‘if’ statement needs to be used. If pygame reports a QUIT message (when a user presses the Escape key or click the X button on the top right side to close the window), the first check, ‘if event.type == QUIT’, will instruct Python to execute the intended code below. The two lines below should tell both pygame and Python to shut down and exit.

The blind that starts with an ‘elif’ – short for else if
 – extends the ‘if’ checks. When a previous ‘if’ instruction turns out to be false, an ‘elif’ instruction is evaluated. Over here, the elif instruction checks if the pygame is reporting a KEYDOWN event, which returns after the user presses a keyboard key. Like the ‘if’ instruction, the code that is to be executed when an ‘elif’ is true, has to be indented with four extra spaces including whatever indentation comes with the ‘elif’ instruction. You need to type the lines below to give the ‘elif’ instruction something to do after a key is pressed by the user:

if event.key == K_RIGHT or event.key == ord('d'):

changeDirection = 'right'

if event.key == K_LEFT or event.key == ord('a'):

changeDirection = 'left'

if event.key == K_UP or event.key == ord('w'):

changeDirection = 'up'

if event.key == K_DOWN or event.key == ord('s'):

changeDirection = 'down'

if event.key == K_ESCAPE:

pygame.event.post(pygame.event.Event(QUIT))

These instructions will change the changeDirection variable’s value, which controls where the snake in the game is traveling. You can create more than one evaluation using ‘or’ with an ‘if’ statement. Here, players can control the snake in two ways: the players can make the snake go up, left, right, down, or up, by using either the W, A, S, and D keys or the cursor keys. And until any other key is pressed, the snake will only go right according to the value that’s been set for direction at the beginning of the program.

Along with changeDirection, the ‘direction’ variable is used to see whether the instructional user gave is true. This prevents the snake from turning back on itself immediately; if it does turn back on itself, the snake will die, and the game will be over. That’s why to stop this from happening, the direction that the player requests – which is stored in changeDirection – is compared to the direction that the snake is currently traveling in – which is stored in ‘direction.’ If the directions are opposite, the instruction will be ignored, and the snake will continue going in the same direction as it was originally intended to. To set up the comparisons, switch between indentations of four and eight spaces, type the following lines:

if changeDirection == 'right' and not direction == 'left':

direction = changeDirection

if changeDirection == 'left' and not direction == 'right':

direction = changeDirection

if changeDirection == 'up' and not direction == 'down':

direction = changeDirection

if changeDirection == 'down' and not direction == 'up':

direction = changeDirection

The snake on the screen can be moved provided the user’s input makes sense. With each turn it takes, the snake will move a distance that is equal to the size of any of its blocky segments. Users can instruct pygame to move the snake a single segment – which measures about 20 pixels – in any direction they desire. This is where you’ll need to type the code given below:

if direction == 'right':

snakePosition[0] += 20

if direction == 'left':

snakePosition[0] -= 20

if direction == 'up':

snakePosition[1] -= 20

if direction == 'down':

snakePosition[1] += 20

Operators like -= and += change’s a variable's value by a specific amount: -= sets the variable to its last value minus the new value, and += has the variable set to its last value plus the new value. So for example, snakePosition[0] += 20 is a simple way of writing snakePosition[0] = snakePosition[0] + 20. The number in the brackets that come after the snakePosition list stores the position of the snake along the X-axis, and the second value stores the position on the y-axis, with 0,0 that represents the upper-left corner. Python will start the count of zero, so the x-axis will be controlled with snakePosition [0] and the y-axis with snakePosition [1]. Further entries could be affected if the list were longer when the numbers increase by [2], [3], and further on.

Even though snakePosition is usually two values, long snakeSegments is not. The list stores the snake’s body location
behind its head. As the snake grows larger by eating raspberries, the list will increase insights and become more difficult as a result: as players progress, it becomes a lot harder for them to prevent the snake’s head colliding with any part of its body. Once the head hits the body, the snake will die, and it’s game over. To make the snake’s body grow, type the following:

snakeSegments.insert(0,list(snakePosition))

It will insert a new value into the snakeSegments list by using the ‘insert’ instruction: the snake’s current position. Whenever Python comes to this line, the length of the snake’s body will increase by one segment and finds that segment at the current position of the snake’s head. The players, it seems like the snake continues to grow. Though you must ensure that the snake only grows when it eats a raspberry, or else it will continue to grow indefinitely. For this, you need to type the lines below:

if snakePosition[0] == raspberryPosition[0] ↩

and snakePosition[1] == raspberryPosition[1]:

raspberrySpawned = 0

else:

snakeSegments.pop()

The first line will check to see if the snake head’s X and Y coordinates match those of the raspberry, the target the players are chasing. When these values match, it would appear to players as though the snake ate the raspberry – and that the variable of raspberrySpawned is set to 0. The ‘else’ instruction informs Python what it should do if the raspberry doesn’t get the: ‘pop’ in the “oldest” value from the list of snakeSegments.

The simple ‘pop’ instruction is quite clever as it not only returns the previous value from the list but also removes it, which makes the list an item shorter. When it comes to the snakeSegment list, Python will
be instructed to delete that part of the snake’s body that is the farthest from its head. To players, it seems as though the whole snake moved without even growing, but in actuality, one end of it grew whereas the other shrank. Due to the ‘else’ statement, the ‘pop’ instruction will only run when a raspberry hasn’t been eaten. When the raspberry gets eaten, the final entry in the list will be deleted – making it look like the snake grew in size by one segment.

Though at this point, it may seem like the player already ate a raspberry. But a game in which only a single raspberry is available and eaten is boring. So to add another raspberry after the player has eaten the first one, type in the following lines:

if raspberrySpawned == 0:

x = random.randrange(1,32)

y = random.randrange(1,24)

raspberryPosition = [x*20,y*20]

raspberrySpawned = 1

This code section will check to see if the raspberry has indeed been eaten by testing to make sure the variable of raspberrySpawned has been set to zero, and if it is, the code chooses any random location on the playing surface with the random module that was imported by the user at the start of the program. Then the location would be multiplied by the snake’s segment size, which is 20 pixels wide and 20 pixels tall, giving Python a place to position the new raspberry on the playing field. With the raspberry appearing in a different/random location, the players have no idea where it will appear next, which makes the game more interesting this way. Lastly, the variable of raspberrySpawned is set to 1 again, to ensure that there is only one raspberry on the playing field at any time.

Now you have the code which makes your snake move and grow, as well as cause the raspberries to the eaten and on a different location.
However, there is nothing that is drawn to the screen. Therefore, the following lines must be typed:

playSurface.fill(blackColour)

for position in snakeSegments:

pygame.draw.rect(playSurface,whiteColour,Rect ↩

(position[0], position[1], 20, 20))

pygame.draw.rect(playSurface,redColour,Rect ↩

(raspberryPosition[0], raspberryPosition[1], 20, 20))

pygame.display.flip()

These instructions will enable pygame to color the snake's body segments in white, fill the playing surface’s background in black and have the raspberry appear in red. pygame.display.flip(), which is the last line, will have pygame update the screen, without which the items would appear invisible to players. So whenever you draw objects on the screen, remember to use pygame.display.flip () just so the user can see the changes being made.

Also, the snake can’t die at the moment. So, you should type the following lines to set up scenarios for the death of the snake:

if snakePosition[0] > 620 or snakePosition[0] < 0:

gameOver()

if snakePosition[1] > 460 or snakePosition[1] < 0:

gameOver()

The first ‘if’ statement checks if the snake has gone off the playing surface horizontally, while the second one checks if the snake has gone off the playing surface vertically. Either way, the snake will die, and it’s gameOver at that point. Be sure to add the following lines to make sure the snake dies after its head hits any part of its body:

for snakeBody in snakeSegments[1:]:

if snakePosition[0] == snakeBody[0] and ↩

snakePosition[1] == snakeBody[1]:

gameOver()

The ‘for’ statement runs through every location of the snake segment, from the second entry of the list to the end, and then compares it to the snake head’s current position. Be sure to use snakeSegments [1:] to start the comparison at the second entry and not the first one as it is always used to set the position of the snake’s head. And if you start the comparison there, then the snake is dead as the game starts.

In the final thing required to complete the game is to control the update speed with the fpsClock variable. Without this variable that you created at the beginning of the program, the game will be too quick for you to play. So, type the following line to complete the program:

fpsClock.tick(20)

If the game appears to slow or easy for you, you can increase the number, or they find the game too fast or hard, then you can decrease the number. Now save the program as raspberrysnake.py and run it either from the terminal by typing pythonraspberry.py
 or using IDLE’s Run Module option from the Run menu.

Chapter 6

Physical Computing with

Scratch and Python

[image:]

Most people assume coding or programming only has to do with software when, in fact, it is more than that. They can also involve hardware, better known as physical computing
, which is what this chapter is about.

Physical computing has to do with controlling your programs through hardware instead of software. Physical computing exists in our everyday lives when you think about it, which includes changing the temperature on your thermostat, setting up the timer on your microwave, or even pressing a button to change traffic lights so that people can cross. And one of the best ways to learn about and experience physical computing is through one key feature of the Raspberry Pi: the general-input/output (GPIO)
 header.

The GPIO Header

The GPIO header, which is at the top edge of the Raspberry Pi board with over two big rows of metal pins, is where you can connect hardware such as switches and light-emitting diodes (LEDs) to control the programs that you develop on Raspbian physically. The pins of the header are used both for input as well as output, they don’t have one specific purpose, and when the pins are exposed on the board in this manner, the whole thing is called a header, which is why it is collectively known as the general-purpose input/output header.

The GPIO header has over 40 male pins of which some are available for use in physical computing projects; some offer power, whereas
others are used for communication with add-on software such as sense HAT.

Each pin type has its separate category, with its particular function.

	

3V3 (3.3 volts power):
 anything connected to these pins will get 3.3 V of power. This is the same voltage that Raspberry Pi runs internally.

	

5 V (5 volts power):
 anything that connects to these pins will get 5 V of power. The Raspberry Pi takes in the same voltage at the micro USB power connector.

	

GND (0 volts ground):
 this is a ground connection that completes the circuit connected to the power source.

	

ID EEPROM (reserved special-purpose pins):
 pins that are used for Hardware Attached on Top (HAT) as well as other accessories.

	

GPIO XX (general-purpose input/output pin number ‘XX’
: these are the GPIO pins, identified by numbers from 2 to 27, and are available for your programs.

WARNING:
 fiddling around with the GPIO pins can be a fun and safe endeavor, provided you follow the precise instructions. Be careful not to randomly plug in wires and power sources into the Raspberry Pi, or else you may end up destroying it, especially the 5 V pins. It’s also not a good idea to connect things that use a lot of power to your Raspberry Pi; for instance, LEDs are safe to use but not motors. If this worries you, then you should use an add-on board like the Explorer HAT until you get the confidence to use the GPIO directly.

Lighting and LED

Similar to how having ‘Hello, World’ printed to the screen was a great first step to learning about the programming language, lighting up and LED is the most basic way to learn physical computing. There are a couple of things that you will need for this project, including a
330-ohm (330 Ω) resistor, and LED, and the female-to-female (F2F) jumper wires.

The Importance of Resistance

The resistor is a very crucial component of the circuit as it protects the pie board as well as the LED by restricting the amount of electric current drawn up by the LED. Without the resistor, the LED will attract too much current and, in the process, burn itself or probably even the Raspberry Pi board. When the resistor is used in this manner, it is regarded as a current-limiting resistor
. The resistor’s precise value depends on the type of LED that you use, although 330 Ω works for most LEDs. If the value of the resistor is less, the LED will be brighter; and if the value is high, the LED will be dimmer.

First, check to make sure your LED works. Turn the Raspberry Pi board to the right-hand side so that the GPIO header is into vertical strips. Have one end of the 330-ohm resistor to the first 3.3 volts pin with a female-to-female jumper wire, and then using another F2F jumper wire to the longer leg of your LED – positive, or anode.

The LED should be able to light up just so long as your Raspberry Pi board is on. And if it doesn’t get turned on, then inspector circuit: make sure the resistor value is too high, that you chose the correct GPIO pins, and that the wires have been properly connected. Also, inspect the legs of your LED in which the shorter leg is connected to the negative side of the circuit, and the longer one is connected to the positive side.

When your LED is fully up and running, you can now program it. First, have the jumper wire disconnected from the 3.3 V pin to the GPIO 25 pin. You’ll see that the LED has turned off, and that is completely normal.

Now you’re ready to turn your LED on and off after creating a Python or Scratch program.

Controlling an LED with Scratch

First, open Scratch from the Raspbian menu, click on More Blocks from the blocks palette, and then click on the button that says ‘Add an Extension.’ Then click on ‘Pi GPIO’ before clicking OK. The blocks are required for you to control the Raspberry Pi’s GPIO header from Scratch will load up. The new blocks are visible in the blocks palette, and if you need more, you can find them in the More Blocks category.

Drag an events block labeled ‘when green flag clicked’ into the scripts area, and then place a block that says ‘set gpio to output high’ just below it. Now you have to select the number of the pin that you’re using: click the arrow in the drop-down menu and then click on ‘25’ to instruct Scratch that you will be controlling the GPIO 25 pin.

You can run the program by clicking the green flag. Upon doing so, the LED light will light up. Congratulations! You just programmed your first-ever physical computing project. If you want to stop the program, all you have to do is click the red octagon. You’ll notice that the LED light stays on, and that’s because the program was only told to turn the LED light on, which is what the ‘output high’ part in the block means. If you want the LED turned off, click the arrow at the end of the block and select ‘output low’ from the list.

This time, when you click the green flag, the program will turn the LED off. To make it a bit more interesting, consider adding a ‘forever’ control block and some ‘wait for 1 sec’ blocks to develop a program to get the LED to flash on and off after every second.

Now when you click the green flag, the LED will turn on one second and then off the other. This will go on consistently unless you stop it by clicking the red octagon. Be sure to see what happens when you click the octagon as the LED is on or off.

Controlling an LED with Python

In this section, you will learn how to control and LED using Python. First, go to the raspberry menu and load Thonny from the
Programming section, start a new project by clicking the New button and then click Save to save it as Hello LED
. To control the GPIO pins using Python, you should have a library called GPIO zero. You’ll need only that section of the library that works with LEDs for this project. To import this part of the library, you need to type the following in the Python shell area:

from gpiozero import LED

Then you have to instruct the GPIO Zero to find the GPIO pin that the LED is connected to by typing the following:

led = LED(25)

Using both of these lines, the Python will be able to control LEDs that are connected to the Pi board’s pins and let us know which pin (or pins, in case you have more than one LED connected to the circuit) it has to control. You need to type the following to control the LED:

led.on()

To switch the LED off, just type:

led.off()

Congrats! Now you have control over the GPIO pins of your Pi board in Python. Now type the above two instructions again. You’ll see the when the LED is off, typing led.off()
 won’t do anything; it’s the same thing as when you type led.on()
 despite the LED already being on.

So to make this program true, you have to type the following in the script area:

from gpiozero import LED

from time import sleep

led = LED(25)

while True:

led.on()

sleep(1)

led.off()

sleep(1)

This program will import the gpiozero (GPIO Zero) library’s LED function and the time library’s sleep function. After that, an infinite loop will be constructed in which the LED turns on for a second, off for a second, and then the process repeats. To see the LED flash, click the Run button. Like in Scratch, you need to be aware of the behavior when you click the Stop button while the LED is turned on and off.

Breadboard

A breadboard is what holds the components and makes electrical connections, and if you have one, then the project for this section will be easier to complete.

A breadboard has holes that are about 2.54 mm apart to match components. There are metal strips underneath these holes that behave like jumper wires that you’ve been using at this point. The holes are lined in rows over the board and like many other boards, have a gap in between that divides them into two halves. Most breadboards also have numbers down the sides and letters across the top. You can use these to find a specific hole: A1, for instance, is located to the top left corner, whereas B1 is to the right, and B2 is right beneath it. Through hidden metal straps, the A1 hole is connected to the B1 hole. But you’ll never find one particular hole connected to two holes unless you use a jumper wire manually.

The larger breadboards have several hole strips down from the sides that are usually marked in red and blue or red and black stripes. These holes are known as power rails that were designed to make wiring simpler: you can connect the ground pin of the board to one
of the power rails – is usually marked with a black or blue striped and a minus symbol – with a single wire so that plenty of the breadboard’s components have a common ground, and the same can be done if the circuit requires a 3.3 volt or 5 V power.

It’s not hard to add electrical components to a breadboard: all you have to do is line up their leads (the metal parts that are sticking out) with the holes and push it gently until the component fits right in. As for connections, you need to go beyond what the breadboard provides for you, using male-to-male (M2M) jumper wires; but for connections from the breadboard to the Pi board, you need to make use of male-to-female (M2F) jumper wires.

Don’t ever jam more than one jumper wire or component lead into one hole on the breadboard. Remember that, apart from the split in the middle, every hole is connected in rows, which means that a component lead connected in the A1 hole is connected electrically to anything that’s added to B1, C1, D1, and E1.

Project: Reading a Button

With LEDs, you’re only concerned with output, but with the GPIO’s ‘input/output’ facility, the pins can be used for output as well as input. In this project, you’ll learn how to read a button. But for that, you’ll be needing not just a breadboard, but also male-to-female (M2F) and male-to-male (M2M) jumper wires, as well as a push-button switch. If you don’t have a breadboard with you, then you can make do with female-to-female (F2F) jumper wires. However, going about this route will be tricky because if you press the button harder than you’re supposed to, you might end up breaking the circuit board by mistake.

First, add the push-button to the breadboard. If you find that there are only two legs with your pushbutton, ensure that they are in separate numbered rows of your breadboard; if the pushbutton has four legs, then turn it just so the areas from which the legs come out from, are right on the breadboard’s rows and the flat sides are at the
top and the bottom. Connect your breadboard’s ground rail to the Raspberry Pi board’s ground pin using a male-to-female jumper wire. Then use a male-to-mail jumper wire to connect one of the pushbutton’s legs to the ground rail. Lastly, use a male-to-female jumper wire to connect the pushbutton’s other leg – the same side that has the leg recently connected, if you have a four-leg switch – to the Raspberry Pi board’s GPIO 2 pin.

Project: How to Read a Button in Scratch

Open up a brand-new Scratch program and drag a block that says ‘when green flag clicked’ onto the scripts area. Connect the block labeled set ‘gpio to output high’, and from the dropdown menu, choose the second one so that it matches the pushbutton’s GPIO pin. Click the arrow from the block, and then select ‘input’ from the list so that the pin is configured as an input.

Nothing will happen if you click the green flag now. That’s because Scratch has been instructed to use the pin as an input and nothing else. To change this, drag a ‘forever’ block at the end of the sequence, and then drag a block labeled ‘if-then-else’ inside of it. Locate a block that says ‘gpio is high?’ then drag it into the white diamond-shaped space in the block section labeled ‘if-then’ and then use the drop-down menu by choosing the second number on the list that tells it which GPIO pin it should check. And then lastly, drag a block labeled ‘say hello! for 2 secs’ into the block’s ‘else’ and be sure to have it edited to say ‘Button pushed!’. Don’t touch the block’s ‘if-then’ part for now.

It seems as though there’s a lot to process, but for now, start testing on your own: first, click on the green flag and then push the breadboard button. Upon doing so, a sprite will inform you that the button has been pushed, which means that the GPIO pin input has been successfully read.

You’ll notice that the block’s ‘if gpio 2 is high? then’ is empty. Meanwhile, the code that is responsible for running as the button has
been pushed, is in the block’s ‘else’ part. It may seem strange as though pushing the button makes it go high, when in fact, the opposite: the GPIO pins of the Raspberry Pi board are usually high, or on whether this set as an input and pressing the button pushes them to low.

When you look at the circuit board again, you’ll see that there is a button connect to the GPIO to pin that provides the circuit’s positive part and the ground pin. When the button is pressed, the GPIO pin voltage is pulled low to the ground pin, and scratch will no longer run the code in your ‘if gpio 2 is high? then block’ but rather run the code in the block’s ‘else’ part.

If that all sounds a bit confusing for you, then keep this in mind: the button on the Pi board’s GPIO pin will only be pressed when the pin goes low and not high.

If you wish to extend your program further, add the resistor and the LED to the circuit’s back: ensure that the resistor has been connected to the GPIO 25 pin and the LED’s long leg and that the shorter leg has been connected to the breadboard’s ground rail.

To delete the block labeled ‘say Button pushed! for 2 secs’, drag it from the scripts area to the block palette, and then have it replaced with the block that says ‘set gpio 25 to output high’ –remember that you have to change the number of the GPIO with the drop-down arrow. Add a block labeled ‘set gpio 25 to output low’, while remembering to have the values change, to the empty block area that says ‘if gpio 2 is high? then’.

Push the button after clicking the green flag, and you see that the LED lights up so long as the button is held down; it will go dark again once the button is no longer pressed. You’ve done it! You’re controlling one GPIO pin from another pin’s input.

Project: How to Read a Button in Python

To start a new project, click the New button in Thonny and save it as Button Input

 using the Save button. You’ll find that using a GPIO pin as a button input is identical as using a pin for an LED output, but first, a different part of the GPIO Zero library needs to be imported. In the script area, type the following:

from gpiozero import Button

button = Button(2)

To ensure the code runs as soon as the button has been pushed, GPIO Zero offers the wait_for_press
 function. Type the lines given below:

button.wait_for_press()

print("You pushed me!")

First, click the Run button and then push the pushbutton switch. You’ll find that the message will be printed to the Python shell below the Thonny window: this means that the GPIO pin has been read successfully. If you want to run the program again, you need to click the Run button one more time, as the program doesn’t have any loop. Once the message has been printed to the shell, the program will quit.

To make your program longer, you have to add the resistor and the LED to the back of the board, if that’s not been done already: be sure to have the resistor or connected to the GPIO 25 pin and that the LED’s long and shorter legs are connected to your breadboard’s ground rail.

To read a button as well as control and LED, you have to import both the LED
 and Button
 functions from the GPIO Zero library. The sleep
 function is also required, which you can get from the time library. Now go back at the beginning of your program and type the first two lines as follows:

from gpiozero import LED

from time import sleep

Then just underneath the button = Button(2)
, type:

led = LED(25)

Then delete the line that says print("You pushed me!")
 and have it replaced with:

led.on()

sleep(3)

led.off()

The final version of the program should be this:

from gpiozero import LED

from time import sleep

from gpiozero import Button

button = Button(2)

led = LED(25)

button.wait_for_press()

led.on()

sleep(3)

led.off()

Now click on the Run button and then press the pushbutton switch: the LED will turn on for three seconds and then will turn off along with the program exiting. Congratulations! You can now control an LED with a button input via Python.

Controlling a Buzzer

LEDs are commendable output solutions, but not if you can’t hear it when you’re looking elsewhere. This is where buzzers come into
play. These devices can sound off anywhere you are in the room. To get this project rolling, you’ll be needing male-to-female (M2F) jumper wires, and active buzzer, and a breadboard. And if you lack a breadboard, you can make do by connecting female-to-female (F2F) jumper wires with your buzzer.

In terms of programming and circuitry, you can treat an active buzzer like an LED. Make a circuit like the one you made for the LED, only have the active buzzer in place of the LED without including the resistor, since the buzzer will require more current to function properly. Have one of the buzzer’s legs connected to the GPIO 15 pin and connect the other one to the ground pin using your male-to-female jumper wires and breadboard.

If the buzzer has three legs to it, make sure that the leg labeled 'S’ or ‘SIGNAL’ is connected to the GPIO 15 pin, the leg marked with the minus symbol is connected to the ground pin and the last leg – or middle leg – is connected to the 3.3 volts pin (it will be labeled as 3V3)

Using Scratch to Control a Buzzer

Before you create this button project, make a program that is similar to the one you made for the LED flash – or load it if you’ve already saved it. In the ‘set gpio to output high blocks,’ choose number 15 from the drop-down menu so that Scratch can control the right GPIO pin.

Click the green flag icon, and the buzzer will start buzzing: it will buzz one second, and then the next second, it won’t. If the buzzer clicks only once a second, it would mean that you’re using a passive buzzer instead of an active one. An active buzzer generates an oscillation, which is when the metal plates vibrate, rapidly changing the signal. A passive buzzer, on the other hand, requires an oscillating signal. When you turn a passive buzzer on with Scratch, the place will move only once and then stop – this is when a ‘click’ sound is heard until the program switches the pin on or off next time.

To stop your buzzer, click the red octagon, but be sure to do this when the buzzer isn’t making a sound; otherwise, it will continue to buzz until the program runs again.

Using Python to Control a Buzzer

You can control an active buzzer using the GPIO Zero library in almost the same manner as you controlled and LED, as long as it has on and off states. But for this, you need a separate function labeled buzzer
. To do this, you have to start a new Thonny project and then have it saved as Buzzer
, and then type the following lines:

from gpiozero import Buzzer

from time import sleep

Similar to LEDs, if you want to control the buzzer, you need to let the GPIO Zero library know which pin it’s connected to. For this, you have to type the line below:

buzzer = Buzzer(15)

The program over here is almost similar to the one you made to control the LED; the only difference here is that you will be using buzzer
 instead of led
. Type the following:

while True:

buzzer.on()

sleep(1)

buzzer.off()

sleep(1)

To get your buzzer to buzz, click the Run button: it will turn on one second, and then off the next. If you use a passive buzzer instead of an act of one, you will hear a slight click after every second instead of a constant buzz: that’s because unlike the active buzzer, the passive buzzer doesn’t have an oscillator with which you can create
rapidly changing signals that make the buzzer vibrate from within.

To exit the program, click the Stop button. Just make sure the buzzer isn’t sounding off at the very moment you do, or else it will continue to buzz until you run the program again.

Passive Infrared Motion Sensor (PIR)

Humans, as well as other animals, are known for emitting radiation 24/7, though infrared radiation isn’t the type that is illegal or dangerous. Every object at temperatures over zero (-273.15 Celsius) emits infrared radiation.

The point we’re trying to get at here is to show you how you can use up PIR sensor using either Scratch or Python. When the sensor picks up a significant change in the amount of infrared radiation around, it will trigger a pulse. This only means that the PIR sensor will be able to detect if or when a human or perhaps any animal comes right in front of it.

How to Wire up PIR Sensor

The pulse that the PIR sensor emits when it detects motion has to be amplified, so you will need to power it up first. You’ll notice that there are three pins on the PIR sensor, which are labeled as Gnd
, Vcc
, and Out
. In some boards, the labels will be hidden under the Fresnel lens (or whitecap), which can be removed so that you can see them better. Here’s what you need to do to set the sensor up correctly:

	
The Vcc
 pin has to be attached to the Raspberry Pi’s 5V
 pin.

	
The PIR sensor’s Gnd
 pin can be attached to any of the Pi board’s ground pin.

	
Finally, the Out
 pin has to be connected to any
 GPIO pin.

How to Use Python to Tune a PIR

Many PR sensors come with two potentiometers, which control a
sensor’s sensitivity, as well as the amount of time that they will record when motion has been detected.

One potentiometer controls a sensor’s sensitivity, and the other controls the timeout. If there both turned completely anticlockwise, both timeout and sensitivity will be at their lowest.

If the timeout has been turned completely anticlockwise, the sensor will output a signal for at least 2.5 seconds whenever any motion has been detected. If the potentiometer is turned completely clockwise, it will output a signal that will last about 250 seconds. Whenever you’re tuning the sensor’s sensitivity, you should have the timeout set as low as possible.

Use the code below to have the PIR detect motion:

from gpiozero import MotionSensor

pir = MotionSensor(4)

while True:

​
pir.wait_for_motion()

​
print("You moved")

​
pir.wait_for_no_motion()

How to Use Scratch to Code up PIR Sensor

To use Scratch to sense motion with the PIR sensor, first, click on Menu
, then Programming
 and then Scratch
.

Then follow the steps provided below.

	
At the display on the top right, click on Control
. Then drag ‘when green flag clicked’ block into the scripts area.

	
Next, drag a block labeled ‘broadcast’ to the scripts area and have it attached to the block labeled ‘when green flag clicked.’ From the broadcast block, and choose New
 after
clicking the drop-down menu. Type ‘config4in’ in the box for message names. The GPIO pin four will be set up by the Pi board to be an input.

	
Click the green flag icon on the Scratch window’s upper right side. This instructs the GPIO pin 4 to be an input.

	
The program will use blocks labeled ‘Sensing’ to see if the GPIO pins have any input. And if input is there, the pin value will become 1 from 0. After the PIR sensor is connected to the Pi board’s GPIO pin 4, you have to monitor it. Click the drop-down menu from the ‘sensor value’ block and then select 'gpio4’.

	
Take the checkbox that’s on the block’s left side to show the value of the pin on the screen.

	
Now your hand in front of the PIR sensor to test it. If it detects any motion, the sensor’s value will turn to 1 from 0 on the screen.

	
If the values don’t change, then recheck the pins and make sure they are connected in the right place.

Conclusion

[image:]

If you’ve reached this point, then we’d like to say, thank you so much for sticking with us and being interested in learning how to use the Raspberry Pi board, the operating system Raspbian, and so much more. If your head’s a little fuzzy after going all through that and are finding it a bit difficult to recall what you learned, then allow us to recap and summarize your reading adventures in the best way possible.

You understood what the Raspberry Pi board is, learning about its various ports, pins, and functionalities. Then you learned about HDMI video, composite video, as well as being able to hook up a monitor, keyboard, and mouse properly. Then you were taught how to install the operating system for Raspberry Pi board, set up your software, as well as how to install it manually. And finally, you learned how to program using both Scratch and Python.

Therefore, it brings us great pleasure to officially recognize you as a graduate of the Raspberry Pi educational school. Go forth and pursue whatever fascinating games, apps, or other fascinating programs you have in store for the world to see.

Raspberry Pi

An Advanced Guide to Setup, Expert Programming (Concepts, Theories, and Techniques) and Build Raspberry Pi Projects

[image:]

JOE GRANT

Introduction

[image:]

The Raspberry Pi was designed as a low-cost alternative computer, no bigger than a credit card, that connects to your TV or a computer monitor. Using nothing more than a keyboard and mouse, you can explore computing and teach yourself how to program in Python, Scratch, and other languages. This little bundle of electronics is incredibly versatile and can do just about anything you can do with a standard desktop computer – play games, browse the net, play HD videos, and much more.

Even better, Raspberry Pi can interact with the outside world and has long been used to create small digital projects, such as weather detectors, music machines, robots, and more.

A Brief Guide to Models

In 2009, the Raspberry Pi Foundation was created to promote basic computer science studies in school. By March 2017, more than 12.5 million Pi units had been sold, putting it in third place in the best-selling general-purpose computer lists; today, more than 19 million units have been sold.

Given that the Foundation is a charity, these huge sales numbers were not initially planned for but, realizing that interest in computer sciences was waning, a small team from the Computer Laboratory at the University of Cambridge decided that producing a small, affordable computer could be the solution.

April 2012 – Raspberry Pi 1 Model B

This was the first model launched, using a Broadcom BCM2835 SoC, with a 700 MHz ARM1176jXF-S processor, 512 MB memory, and a VideoCore IV GPU. The Model A was then released, with lower memory capacity and fewer USB ports.

Priced at less than $35, this cheap computer could run Linux and other basic OS. It had HDMI and USB ports, and several GP10 pins so users could add peripherals such as sensors.

February 2015 - Raspberry Pi 2 Model B

This was an improvement on the early model, offering more computing power with a Broadcom BCM2836 SoC with a quad-core Cortex A7 900 MHz processor. It also had double the memory, 1 GB, which was shared with the GPU, and the CPU was said to be up to six times faster than the previous one.

November 2015 – Raspberry Pi Zero

The Zero set new benchmarks in cheaper computing, selling for just $5. It was much smaller than the previous models, making it ideal for embedding in applications, such as robotics. Despite its incredibly low price, the CPU was around 40% faster than the original Pi.

February 2016 – Raspberry Pi 3 Model B

The RPi3 contained a 64-bit compatible SoC, with even more processing power. This time, Bluetooth 4.1 and 802.11n wireless were added, boosting popularity, not just for individuals but for businesses too.

March 2018 – Raspberry Pi 1 Model B+

Finally, the Model B was upgraded, providing much faster ethernet speed, Bluetooth 4.2 LS BLE, and 802.11ac dual-band wireless, along with a slight increase in CPU speed.

In this book, we will explore through a series of intimidating and hard-to-grasp concepts divided into a span of seven distinct chapters. Each chapter is linked to the previous chapters in one way or the other. In this way, you'll explore the variety of Raspberry Pi projects and coding techniques with a lifeguard making the journey all the easier and fun.

You will find that after the second chapter, we switch up the gears and go full pace into discussing coding with Python on the Raspberry Pi to quickly switching to practical and useful Raspberry Pi projects and exercises. Setting up the Raspberry Pi and intimately knowing your tools is a crucial step that should always be reiterated.

Once the reader goes past this stage, he will quickly find himself surrounded with chapters that talk about advanced techniques and projects for the Raspberry Pi. You will also find that some of the projects which will be discussed and explained here are common topics. The reason is that in advance and complicated projects, these particular modules and coding will be used continuously. But we have also added some different projects and different advanced techniques which you will find interesting.

Here's what you will learn:

•
Chapter One – how to set up your Raspberry Pi, including choosing the right accessories

•
Chapter Two – learn what tools you need and what they are all for

•
Chapter Three – a look at using Python to program your Raspberry Pi

•
Chapter Four – how to use Python to control external hardware

•
Chapter Five – using Raspberry Pi with real-world data

•
Chapter Six – how to use Python to create GUIs and automate tasks

•
Chapter Seven – how to build Raspberry Pi projects using a camera module

Be aware that you do need to have a basic understanding of how to program in Python for this book.

Are you ready to dive into this advanced guide? Then what are you waiting for?

Chapter One

Know How to

Setup your Raspberry Pi

[image:]

In this chapter, we will be going over a few basics so that the reader becomes familiar with the hardware and software aspects of the Raspberry Pi. Like any computer, the Raspberry Pi has its own OS ecosystem and special hardware built into its motherboard. By understanding these elements, the reader will essentially become more capable of taking advantage of the extended functions of the Raspberry Pi to make their corresponding projects even more technically and functionally sound.

In this chapter, we will be discussing some of the key elements of the Raspberry Pi Operating System, along with the important accessories and hardware to be used. After that, the reader will see how to set up the Raspberry Pi and initialize the Pi's configuration in order to access the customizing and tweaking features. Lastly, we will discuss some common troubleshooting points, which will most likely address the issues faced by the majority of Raspberry Pi users, allowing readers to set up their Raspberry Pi without any hiccups.

Choosing the Accessories for the Raspberry Pi

One of the good points of the Raspberry Pi is that it is compatible with a wide range of accessories generally used with computers. This means that the user does not have to go out and purchase exclusive basic proprietary accessories for the Raspberry Pi. Instead, the user can attach most of the accessories already lying around, such as ethernet cables, mouse, keyboards, speakers, and even SD cards. This not only economical for the user, but it also allows for an easier and faster setup. Here's a picture of a typical Raspberry Pi setup
featuring only the essential accessories needed to get it up and working.

Here's a detailed description of the accessories:

•
 The Display
: The Raspberry Pi's motherboard features an HDMI output. This allows the user to connect the Pi system to any external display that supports HDMI ports. Moreover, this port is the modern display port used in recent computer systems allowing for high-definition display feeds. The chances of the user having an already HDMI-supportive display lying around are very probable, making the Raspberry Pi more economically friendly. Besides, if you do not have a spare display to use with the Raspberry Pi, then you can also connect the Pi system to a TV that has an HDMI port. In the scenario where you have an old TV set that does not feature HDMI, the Raspberry Pi also features an RCA connection that supports legacy composite video and audio connections. However, an LCD or LED with an HDMI port is more preferred than a TV.

•
 The Ethernet Cable
: The Raspberry Pi supports both Wi-Fi and Ethernet connections. If you want to connect to a cabled network, then you can do so by taking an Ethernet cable and connecting it to the Pi's Ethernet port. In case of Wi-Fi, then you'll have to set it up through the operating system after setting it up.

•
 The Case
: The Raspberry Pi can be used with or without a case as soon as you take it out of the box. However, since it is a piece of circuitry, it is prone to dust and water damage. So it's recommended that you install a case on the Raspberry Pi to keep it protected. Besides, there are Raspberry Pi cases that also offer cooling functionalities that will help with the Pi's thermal throttling making it last longer and perform better.

•
 The Mouse
: You can use either a USB mouse or a wireless
mouse as Raspberry Pi features Bluetooth for connecting wireless accessories to the system.

•
 The Keyboard
: The same approach applies to the keyboard as well. If you don't want to mingle with annoying wires protruding out of the Raspberry Pi or have reachability issues, then you can simply connect a wireless keyboard to the Raspberry Pi as well. In the case where you are using a USB keyboard, be careful of the wire's reach as you don't want the Raspberry Pi to be grabbed and pushed by the USB wire.

•
 The SD Card
: The Raspberry Pi does not feature any storage memory on board, nor can you mount a hard drive on its motherboard. Instead, the Raspberry Pi needs to be connected to an external storage device. For this purpose, the Raspberry Pi features an onboard SD card slot for the user's storage needs. This SD card functions just like a traditional hard drive for the Raspberry Pi, and the prices for SD cards are quite economical as well. Chances are, you might have a spare SD card lying around somewhere to put to good use. However, when using SD cards, it is important to pay attention to the Class-type you're using as this defines the read/write speed. For optimal performance, a Class 6 or better SD card is recommended.

•
 The USB Hub
: This accessory is optional. Depending on the model of the Raspberry Pi you are using, you might or might not need a USB hub. For instance, if you know that you'll need several USB ports for your Raspberry Pi, you should consider keeping a USB hub as well.

•
 A USB Stick
: USB's are a good medium for quickly and reliably transferring data to and from your computer and Raspberry Pi. In this way, you can import or export data from your Raspberry Pi when doing projects.

•
 An SD Card Reader
: The Raspberry Pi uses a specific Linux distribution as its Operating System. There are SD cards
available for purchase that come pre-loaded with this Operating System. However, if you're using an SD card that is not flashed with a Linux OS, then you'll probably need an SD card reader to access it through your computer system for flashing the OS.

•
 USB Power Supply
: The Raspberry Pi connects to a power supply using a USB port. The USB-type required depends on the Raspberry Pi model you are using. Earlier models use Micro-USB power supplies, but newer models support USB Type-C connections to the power supply. When purchasing a Raspberry Pi, it will ship with a compatible power supply; however, if you don't have one or lose it, then a 5v 700mA power supply will work just fine.

Setting Up the Operating System for the Raspberry Pi

If you're familiar with computers, then you know that an Operating System is essential to interact with the hardware. The Operating System of a computer is primarily stored on its permanent storage, which can be a hard disk or a solid-state drive. Since we already know that the Raspberry Pi uses an SD card as a replacement for hard disks, we will need to flash the Raspbian OS on the card through a computer or a laptop before plugging it in the Raspberry Pi. There are several distributions of Linux for the user to choose from, such as OSMC, Lakka, Pidora, etc. but Raspbian OS is the most popular and the official Operating System for this small computer. In this book, we will be using the Raspbian OS.

So to install the Operating System, you will first need an SD card and SD card reader if your computer or laptop doesn't have one built-in already. Now that you've got the external media storage ready, you will need to download the Raspbian Operating System and software to flash that OS image to the SD card and make it bootable. Let's discuss this step in more detail in the following section.

Flashing the Operating System to the SD Card using
Windows

Since we are attempting to flash a Linux Operating System, we can use either of the two software tools compatible with Windows to do so;

•
balenaEtcher

•
Raspberry Pi Imager

All of the software flash tools are quite adept at doing the job. BalenaEtcher is designed specifically for flashing Linux Operating Systems image files while Raspberry Pi imager is developed specifically for flashing Raspbian OS. Whichever tool you use, you'll most likely be able to flash Raspbian OS without any problems.

If you're going with balenaEtcher, then follow these steps;

•
 Mount the SD card into the computer or laptop by either using the dedicated SD card slot or an SD card reader. Note the drive letter assigned to the SD card by the computer.

•
Download the balenaEtcher tool from the following website

https://www.balena.io/etcher/

•
 Go to the Raspberry Pi's official website and download the Raspberry Pi Operating System. Choose the Raspberry Pi OS (32-bit) with desktop and recommended software from the three image files.

https://www.raspberrypi.org/downloads/raspberry-pi-os/

•
 After the OS image file has been downloaded, open balenaEtcher, and follow the on-screen instructions. Once you have selected the OS image file, click flash, and the rest of the process will be handled by the tool.

•
 Wait for the tool to finish flashing the OS image file. Once it has completed, close the tool and plug the SD card into the Raspberry Pi, and you're ready to use it.

If you're using the Raspberry Pi imager, the process is relatively
simple and easy. Follow these steps;

•
Download the Raspberry Pi imager (according to the OS you're currently using) from the official Raspberry Pi website.

https://www.raspberrypi.org/downloads/

•
After the software has been downloaded, open it.

•
 You'll see three main options. Select OS, Choose SD Card, and Write. Go to the 'Select OS' option and choose the Operating System you want to flash on to the SD card. In this case, we will be selecting the 'Raspberry Pi OS (32-bit)'.

•
 After choosing the OS, specify the SD card for the tool to install it on by clicking the 'Choose SD Card' option.

•
 Finally, select the 'Write' option, and the tool will download and install the specified Operating System on to the SD Card. All you have to do now is wait. After the writing process completes, take the SD card out and plug it in the Raspberry Pi, and you're ready to use it.

If you're using a Mac Operating System, then you can download the Raspberry Pi imager for Mac from the official website mentioned above. The procedure is essentially the same. Similarly, you can also use balenaEtcher and Raspberry Pi with Linux as well. There are minor differences in the way you download the software tools in Linux as compared to Windows or Mac, but the rest of the process is still the same. If you are using Linux on your computer, follow the instructions shown in the official Raspberry Pi website for downloading and installing the Raspberry Pi imager. You'll have it up and running in no time.

Now that we have an OS-ready SD card and all the necessary accessories, all that's left to do is connect the hardware components to the Raspberry Pi and start it up. Connecting the accessories is no hard task. It's just like connecting Lego blocks with each other. Just plug in your mouse and keyboard, use the HDMI cable to connect the Pi system to the display output, and mount the SD card into the
SD card slot on the Raspberry Pi. Finally, plug in the USB power supply, and you're good to go. There's no physical button to start up the Raspberry Pi, so as soon as you plug in the USB power supply, the Raspberry Pi will automatically startup, so be careful that the Raspberry Pi is fully connected and everything has been checked before plugging in the power supply. If you're using the internet through a wired connection, then use the Ethernet cable; otherwise, wait for the Raspberry Pi to boot up before connecting to the Wi-Fi.

The Raspi-Config Setup

As soon as the Raspberry Pi system boots up the Raspbian OS for the first time after installation, it will greet the user with an initial setup wizard. This is basically the Raspi-Config setup. This small program is designed to guide the user through a series of system operations to customize just like you buy a new phone, and it has you go through the initial setup before letting you use it. Once the user has gone through the Raspi-config, it won't pop up unless manually started. To manually launch the Raspi-config application, you will need to open the terminal window and enter the following command.

sudo raspi-config

Depending on the version of the Raspi-config software, the configuration options displayed might differ. Raspi-config's list of options can be classified into seven major categories based on their nature. These seven categories are;

•
Menu Options

•
Network Options

•
Boot Options

•
Localization Options

•
Interfacing Options

•
Overclock

•
Advanced Options

Let's discuss each of these option categories in detail and see what
kind of functionality and customizability do they have to offer.

Menu Options

Over here, you'll find the ability to configure the username and password displayed on the Raspberry Pi OS main menu. When you first install the OS, the username and password are set to pi
 and raspberry,
 respectively, by default. This section of the Raspi-config tool will help you change that.

Network Options

In this section, the user is given access to customizing network configurations. In other words, the user can set a custom hostname, connect to a wireless network and customize some other advanced network options such as wireless pre-shared keys and even enabling or disabling the predictable network interface names.

Boot Options

This section provides users with the ability to customize the way Raspberry Pi boots up into the Raspbian OS. For instance, the user can select a boot preference from the command line or the desktop. Similarly, the user can also choose an option that forces the Raspberry Pi's bootup sequence to wait for a pre-configured network to become available. You can also change bootup preferences, such as disabling or enabling the Plymouth splash screen.

Localization Options

The localization options in this section of the raspi-config submenu give you the ability to customize the following features;

•
Changing the Locale
: you can specify and set your preferred locale through this setting.

•
 Changing the Time Zone:
 you can specify and set your preferred time zone through this setting. First, you'll have to select the region, for instance, North America. Then you'll have to specify the city of your time zone, for instance, New York.

•
 Changing the Keyboard Layout

: through this option, you can customize the layout of the keyboard according to your preferences. Once you change the keyboard layout, it will be applied immediately; however, the system might ask for a reboot.

•
Changing the Wireless Country:
 allows the user to set the country code for the connected wireless network.

Interface Options

In the interface section of the raspi-config submenu, you will have access to the following configurations for customization;

•
The Camera:
 this option allows the user to enable or disable the CSI camera interface.

•
 SSH:
 'SSH' is a secure shell service that allows the user to securely and remotely access the command line of a computer over the network, in this, accessing the command line of the Raspberry Pi remotely in a secure manner over a network. This setting allows the user to either enable or disable the ability to access the command line of the Raspberry Pi remotely through SSH.

•
VNC:
 This setting allows the user to enable or disable the RealVNC (virtual network computing) server.

•
 SPI:
 Controls the automated loading of the SPI kernel module, allowing the users to enable or disable the SPI interface. The SPI kernel module is essential for the proper functioning of some applications and hardware, such as PiFace.

•
 I2C:
 This setting allows the user to enable or disable the I2C interface as well as the automatic loading of the I2C kernel module. This is similar to what we discussed in the SPI configuration setting.

•
 Serial:
 This setting gives users the ability to control the enabling or disabling of the shell as well as the kernel
messages on the serial connection.

•
 1-Wire:
 Through this setting, users are allowed to either enable or disable the Dallas 1-wire interface. This configuration basically related to the DS18B20 temperature sensors.

Overclocking

Overclock basically means clocking the speed of the CPU higher than its default speed setting. The Raspberry Pi CPU's default clock speed is 700 MHz, and without any extra cooling fans or heat sinks, it can be safely overclocked to 1000 MHz or 1 GHz. Overclocking primarily depends on the silicon lottery (the CPU you get when purchasing the processor) and the countermeasures for dissipating heat from the CPU. The first one depends on luck, while the other depends on the efficiency, quality, and the setup you choose to dissipate the heat (you either use a heat sink setup, a fan setup, or a liquid cooling setup).

Choosing the overclocking option will display the following warning message;

"Be aware that overclocking may reduce the lifetime of your Raspberry Pi. If overclocking at a certain level causes system instability, try a more modest overclock. Hold down the Shift key during boot to temporarily disable overclocking."

Advanced Options

In this section of the raspi-config submenu, we will discuss details of some of the more advanced settings that are not usually supposed to be tinkered with by new users or simply users that don't know what they do.

•
 Expand Filesystem:
 There are cases where the installation of the Pi Operating System is not automatically expanded over the filesystem. In such cases, this option from
the raspi-config allows users to expand their installation over the entire SD card giving them more storage space for their files. However, the user should be careful when using this option as clicking the expand filesystem button will immediately being the partitioning process. In other words, there will be no confirmation pop-up. The changes made to the filesystem will be complete after a reboot.

•
 Overscan:
 As we know that the Raspberry Pi supports analog video and audio I/O, this option is made to fix an issue that may arise when using older TV sets or Monitors with the Raspberry Pi. Legacy display systems have something called a 'black border,' which ensures that the picture stays within the borders of the display, also known as 'overscan.' If for some reason, the legacy display device you are using does not display the whole screen within the resolution properly, i.e., the text gets outside of the display's resolution, then this option will fix it. However, for some old monitors, disabling the overscan will fix the resolution issue, and for some old TV's enabling the overscan will fix the resolution issue.

•
 Memory split:
 This option allows users to change the amount of memory that is available for use to the GPU.

•
 Audio:
 This option gives users the choice of forcing the audio through either the HDMI port or the 3.5mm audio jack.

•
 Resolution:
 Through this option, the user can change the resolution settings as well as the default resolution setting to be used by the system when it boots up.

•
Pixel Doubling:
 This option allows users to either enable or disable 2x2 pixel mapping.

•
GL Driver:
 This option gives users access to the configuration of the experimental GL desktop graphic drivers.

•
 GL (Full KMS):
 Through this setting, the user can enable or disable the experimental OpenGL Full KMS (also known as
kernel mode setting) desktop graphics driver.

•
 GL (Fake KMS):
 Through this setting, the user can enable or disable the experimental OpenGL Fake KMS desktop graphics driver.

•
 Legacy:
 The Raspberry Pi has an older graphics driver used for its desktop, which is known as non-GL VideoCore. This option allows the user to enable or disable this desktop graphics driver.

•
Update:
 This option updates the tool to the latest version available.

Troubleshooting

It's common for humans to make errors or forget a minor detail when doing something. This is more prominent when handling electronics such as computers. Here's a list showing some of the most common problems that people come across when using a Raspberry Pi. The appropriate solutions for these issues are mentioned as well;

•
 The mini LEDs on the Raspberry Pi's board do not light up:
 The most prevalent and common reason for this issue is that the Raspberry Pi is not receiving any power. It could be because the power supply you are using does not supply the Raspberry Pi with sufficient power or if you have simply forgotten to connect the USB power connector to the Raspberry Pi properly. When using some other power supply for the Raspberry Pi, it is recommended to use one that has a rating of 5V and 700mA (3.5 watts).

•
 Only the red light lights up on the Raspberry Pi's board:
 This means that the Raspberry Pi does power on, but it cannot read and boot the Operating System that is flashed on the SD card. To fix this, first of all, check that the SD card is properly and firmly inserted into the SD card slot. If there's no problem there, then you need to check that the Operating
System has been properly written on the SD card (try flashing it again using another tool or another disk image). If that also doesn't work, try using another SD card or check if the SD card isn't corrupted by running storage diagnostics on a computer or a laptop.

•
 The Raspberry Pi does not give any display output:
 Check that the display you're using is properly set up and is not turned off. If that's not the issue, check the HDMI cable and the display device you're using by connecting it to a computer or a laptop. If it works fine over there, try switching the source input that the display is set to when connected to the Raspberry Pi.

•
 Occasional lag and hiccups:
 Check if the socket where the power supply is plugged in is not overloaded or saturated. This lag is usually caused due to low power intake by the Raspberry Pi.

If these workarounds don't offer a solve the problem you're facing, or if the concerning issue is not listed here, then the best place to go looking is the official forums of Raspberry Pi. There are experienced and helpful users on the forum, and chances are, you will either find an already discussed solution to the problem you're facing or get an active response from the community.

Linux Commands

As we have already established that the Raspberry Pi Operating System is basically a distribution of Linux, it is a given that the common commands used to navigate through Linux are the same for Raspberry Pi OS as well.

Here's a list of the common Linux commands;

	
Command

	
Description

	
ls

	
list files in the current directory

	
cd

	
change directory

	
pwd

	
print working directory

	
rm filename

	
remove filename

	
mkdir directoryname

	
make directory with directoryname

	
rmdir directoryname

	
remove empty directory

	
cat textfile

	
display contents of textfile in the terminal

	
mv oldfile newfile

	
move (rename) oldfile to newfile

	
cp oldfile newfile

	
copy oldfile to newfile

	
man command

	
display manual of command

	
date

	
read system date/time

	
echo

	
echo what is typed back in the terminal

	
grep

	
search program that uses regular expressions

	
sudo

	
perform as root user

	
./program

	
run program

	
exit

	
quit terminal session

(Source: Raspberry Pi Programming with Python by Wolfram Donat)

Chapter Two

Knowing Your Tools

and Their Purpose

[image:]

When you start to put your Raspberry Pi together, perhaps to create a project of some description, you will need a certain selection of tools. Knowing what those tools are and what their purpose is will help you to stay safe while you work.

Picking the Right Multimeter

We must understand the key features and purpose of a multimeter in order to pick the right model for the job. As we discussed in the previous section, a multimeter is a tool that allows the user to test, measure, and diagnose any problems in an electronic circuit. The attributes of a circuit measured by the multimeter are listed below;

•
 Continuity:
 measuring continuity between two points in a circuit. In other words, checking to see whether the connection between the two points has gone bad or is functional.

•
Voltage:
 measures the voltage of the circuit.

•
 Current:
 measures whether there is any current flowing through the circuit or not. This can be used to diagnose a bad connection or a short circuit.

•
Resistance:
 measured by the multimeter to primarily determine any short circuit in the connections.

A multimeter can be used to measure the voltage of circuits, batteries, and power supplies. Besides, it can also check to see whether electrical components like resistors, capacitors, diodes, or even transistors are functioning properly.

There are several models of multimeters available in retail stores and online shopping websites. While the expensive models have more advanced features, it's improbable that an average user will actually need those features. The two most important features that you must consider when choosing a multimeter are the following;

	

Continuity with Audio Signal:
 The task for which a multimeter will be mostly used for is checking the continuity between two connections. This is to make sure that the two points in a connection are actually connected as you take them to be. So if you're building a Raspberry Pi project and connected an electrical component to the Pi, you generally assume that they are now connected. To make sure, you'll bring in the multimeter and probe the two connections upon which the tool will tell you if there is any continuity between the two points or not. This is the main purpose of the multimeter. There are some models of multimeters that offer an audio cue when the tool detects continuity between two points, while some cheap multimeters need to be held over the points while you look at the screen to confirm the continuity. So choosing a multimeter that gives an audio output upon detecting continuity can offer better work experience and little distraction.

	

Auto-ranging:
 Cheap models of multimeters require the user to estimate the range of the measurement on their own and then set the dial by themselves accordingly. Multimeter models that feature auto-ranging to this task for the user, meaning that you won't have to set the dial nor select the range you're measuring. A multimeter that has this feature is worth the extra bucks as it will make your work easier.

Old multimeter models feature needle and scale display, which is practically outdated now as there are models with digital displays that provide more precise and accurate readings. If you're looking to pitch in some money to get a multimeter, it's recommended that you
get a digital multimeter. Here's a figure showing a multimeter with a digital display.

[image:]

Picking the Right Soldering Iron and Accessories

The majority of the Raspberry Pi projects are beginner-friendly projects, which means that there's no need for soldering anything to build the projects. However, there are some complicated Raspberry Pi projects which do require a fair amount of soldering techniques even to attempt to build them. As such, it is important to learn how to solder and have a soldering iron in your toolkit.

Soldering is a process where you take a solder (which is a metal alloy that has a melting point of 371 Celsius) and melt it over the point which you want to connect the wires with. After the solder has cooled down, it forms a strong joint that is conductive. Hence, wires are primarily joined together in electrical circuits through soldering. So, if a person is working on a long-term or a big Raspberry Pi project, chances are he will need to make several strong and long-lasting connections on the electrical circuit, which can only be done by soldering.

The soldering iron is what provides the heat to melt the solder. When soldering wire of an electrical component, you basically heat the
wire as well as the solder. This allows the solder to flow into the component that you want to join, and this is the point where you remove the soldering iron, letting the solder now cool. A solder cools pretty fast after melting, so you need to be careful when melting it onto the joint.

Here is a list of tools that you should always have in a soldering toolkit;

•
 Soldering Iron:
 This is a tool that will melt the solder. There are soldering irons that are inexpensive, but the majority of them are of low quality. Professional soldering irons can go over a hundred dollar margin but try to look for one that's the cheapest in the top-range options or the best at the low-range options. Keep in mind that a soldering iron needs to supply a minimum of 30 watts. While some soldering irons come with adjustable temperature features for melting large solder joints, they are usually not necessary for projects.

•
 Solder:
 This is the material that is melted to make solder joints. Solder comes in different varieties with the main ones being leaded or lead-free solders. Some prefer a solder that has a 60/40 mixture of tin and lead, i.e., 60 percent tin and 40 percent lead. However, lead is a toxic metal, so it's better to go for a lead-free solder variety that features a rosin core. This option is comparatively better because as soon as the rosin core in the solder melts, it cleans the surface where the conductive joint is being created. Solders also vary in diameters. The diameter of the solder is measured in SWG, also known as standard wire gauge. A solder of 18 to 20 SWG is recommended.

•
 Extra soldering tips:
 The tips of the soldering iron is what directs the heat to accurately onto the solder. However, it is an expendable part of the soldering toolkit, meaning that it will wear down through continued use. It's a good idea to
keep spare soldering tips in your toolkit so you can swap them out if one manages to break down during a project, leaving your work uninterrupted. There are several shapes and sizes of soldering tips to choose from, depending on the way you intend to use them. For instance, a cone-shaped tip is used for the majority of the tasks involving electronics instead of chisel-shaped tips.

•
 Soldering Stand:
 Generally, soldering stands are included when you purchase a soldering toolkit. This component is what allows the user to hold the soldering iron while it is hot. If the soldering toolkit does not come with a soldering stand, then you should purchase one separately.

•
 Sponge:
 A sponge is needed for cleaning the tip of the soldering iron while it is still hot; otherwise, the solder stuck on the tip would solidify, making it hard to clean it off. An ordinary sponge will not suffice for this job. You will need either cellulose or a brass wire sponge (it all comes down to your preference). A cellulose sponge can be easily purchased from a supermarket since it is basically a kitchen sponge. Using a cellulose sponge often requires care. If the sponge is moist, it will lower the temperature of the soldering tip, making it harder for the device to maintain a constant temperature. Besides, the soldering tip has an increased chance of accumulating contaminants as well. A brass wire sponge is only a little bit more expensive, but it won't cool the soldering tip, and you will avoid the complications mentioned above as well. In this way, a brass wire sponge will lengthen the lifespan of the soldering iron as well.

•
 Desoldering tools:
 These tools allow you to desolder the components if you want to disconnect soldered wires or desolder a joint that you made by accident. You can easily find desoldering wicks and soldering suckers from the place where you bought the soldering kit. A desoldering wick is basically a flat braided ribbon that is made out of copper.
Using a desoldering wick is pretty simple; you just need to hold it down the area you want to desolder and heat it. A desoldering wick is cheaper and more effective compared to a soldering sucker that works by sucking in the solder (which has been liquefied from the heat).

•
 Tip cleaning paste:
 Even if you use a sponge, regardless if it's a cellulose sponge or a brass wire sponge, it's likely that the tip of the soldering iron will develop an oxidation coating at some point. This will hinder the soldering iron from doing its job properly. A tip cleaning paste is an effective solution of properly removing any oxidation coating on the soldering iron's tip along with any debris as well.

Building and Fabrication Tools

When working with Raspberry Pi projects, there are times when you might need tools for fabrication. These tools are not necessarily required for every project, but often, you might find yourself in need of one such tool. So it's a good idea to stock up on these tools for future use. The tools mentioned in this section are listed according to their importance, with the first being the most important and the last one the least important.

•
Precision Screwdrivers:
 A range of flathead and Philips-head screwdriver kits should be available for use in the workspace.

•
 Helping hands:
 A helping hand is basically a small clamping device that is used to hold the object you are working on. The device uses two alligator clips to grip the object firmly, and some models also come with magnifying glasses, making it easier to work on circuitry and small objects.

•
 Wire strippers:
 This tool helps the user to cut and strip away the insulation of a wire and exposing it. It's important to note that cheap wire strippers can be frustrating to use, so it's
better to pick up a good one even if it means splurging some cash.

•
Angled side cutters:
 This tool is primarily used for cutting wires or even clipping some component lead.

•
 Needle-nose pliers:
 This tool is used to hold small and thin objects firmly. It's better to get both small and large needle-nose pliers.

•
 Task Light with Magnifier:
 This will help properly light up the desk you are working on, and the magnifier will help you see the finer details even better.

•
Box cutter:
 A box cutter will help you cut down objects made of sturdy materials.

•
Cutting mat:
 This will help keep the workspace clean and tidy.

Working with Electronics

In most Raspberry Pi projects, you will find yourself needing to connect a circuit or any other electronic component to the Raspberry Pi. The most efficient and easy way to approach such a project is to use breadboards. A breadboard can be used in almost any kind of project that involves electrical components and circuits. Besides breadboards, there are also stripboards and perfboards available for use with electronic projects. Stripboards and perfboards are primarily used to attach a circuit permanently by soldering. On the other hand, breadboards are more of a temporary solution, and breadboards can be put inside an enclosure alongside the Raspberry Pi as well.

Let's discuss breadboards, stripboards, and perfboards in more detail to understand their intended use.

Breadboards

On the surface, a breadboard is just a piece of plastic that has a lot of holes punched into it, forming rows. It's through these holes that a
jumper wire can be inserted to connect an electrical component to the Raspberry Pi. You might want to ask as to how exactly do these electrical components connect to the Pi through a breadboard. Well, as we discussed that on the surface, the breadboard is just an ordinary block of plastic with rows of holes, but the main thing is underneath these holes. There are small metal strips underneath these holes that function as a kind of spring. These metal strips forming springs hold onto the wires and the 'legs' of any inserted electrical component. By joining wires and the electrical components to the same metal spring (and since the spring is made of metal), they become electrically connected.

An important thing to remember when working with breadboards is that since a spring holds the wires, some complications are surrounding this mechanism. If you are using a stranded wire (that is used more commonly), you will notice that it is made up of many tiny wires, and once they are grasped by the metal spring, the wire will get scrunched. This becomes very annoying and difficult to deal with later on. Instead, it is recommended to use a solid core wire with breadboards.

On the surface area of the breadboard, the holes are not randomly arranged. In fact, the holes are organized into specific rows and columns in a way that there are a total of five rows grouped into two columns.

If you look at the figure carefully, you'll find that the two columns have a trough in between them. The purpose of this trough is to allow space for the insertion of an integrated circuit into the breadboard. In this way, the four legs of the IC comes into contact with four adjacent holes.

The majority of the breadboard designs follow a trend of having holes running the full length of the board in a column. These holes are not electrically connected to the main area of the breadboard and are labeled as either positive or negative (sometimes even
color-coded as shown above). These holes are often referred to as 'rails' and are majorly used for power or ground connections.

There are varying sizes available in breadboards as well. A small-sized breadboard usually has around 400 contact points while a large or full-sized breadboard 830 or even more contact points. For standard testing during a Raspberry Pi project, you should at least have a small-sized breadboard. Once you are familiar with using a breadboard, you can use a breadboard of any size depending on your needs, or you could even connect two small breadboards if you were unsure of the size and end up needing more contact space.

Stripboards and Perfboards

Stripboards and perfboards are similar to breadboards in the sense that they also have many hole contacts, and they are used for connecting electrical components and circuits through wires. However, unlike breadboards, a stripboard and a perfboard are primarily used for making permanent connections by soldering the contacts.

The holes present on a stripboard have a coating of conductive copper running underneath them. The conductive copper strips are held in place by adhesives. Connections are made on a perfboard by soldering the electrical component onto the copper strip, establishing a strong and permanent electrical connection.

Perfboards are essentially similar to stripboards. The only difference is in the material on which you solder. While stripboards use copper strips underneath the holes for soldering, the surface beneath the holes on a perfboard has metallic pads. This metallic pad essentially surrounds each individual hole on the board. To connect something to the perfboard, you simply solder its part onto each hole and then solder it together to make a connection.

Like breadboards, stripboards and perfboards also come in different shapes and sizes. These boards are recommended if you're looking for a permanent solution for connecting electrical circuits in a
project.

Prototyping Boards

Prototyping boards are basically printed circuit boards that are used for experimentation purposes. Such kits allow a person to try out new ideas or approach towards building a project without having to commit to a permanent solution or simply a solution that is hard to replace.

A prototyping board is simply a printed circuit board which has two main features;

•
A designated area for soldering electrical components. This area is also known as the 'prototyping area.’

•
 A multi-pin jack which is used for connecting the board to the GPIO of the Raspberry Pi (the jack connects to the GPIO socket).

One of the popular prototyping board choices is the 'Humble Pi Prototyping Board.’ This prototyping board is available in the form of a kit and needs to be assembled (which actually turns out to be fun). After assembling the prototyping board, it is then placed on top of the Raspberry Pi. Once the board is in place, all that's left to do is soldering the GPIO socket to the board. However, if you're not particularly confident in your soldering prowess, then this board also makes for a pretty good practicing area. The Humble Pi prototyping board is sturdy and hard to damage from soldering mistakes. So be sure to practice your soldering skills without worrying about damaging the board.

[image:]

(Photo credits: Humble Pi)

Chapter Three

Programming with Python

on the Raspberry Pi

[image:]

The Raspberry Pi is a pretty powerful and useful machine for its small form factor. In this chapter, we will be familiarizing ourselves with some techniques that will help us in doing programming on the Raspberry Pi.

The Raspberry Pi supports a range of programming software natively. While Scratch is included in the Raspbian OS natively, we will discuss the Python programming environment as it offers many more functionalities and a wider array of libraries to import.

The focus of this chapter will be solely on discussing Python programming techniques involving strings, files, and menus.

The Different Text Editors

Programming in Raspberry Pi is usually done with Integrated Development Environments (also commonly referred to as IDEs). We mostly use text editors such as 'Vi' or 'Emacs' that also work as IDEs for programming tasks.

Comparing the two editors, both Vi and Emacs offer user-friendly features such as syntax highlighting and word completion. However, Emac is a more redundant editor and IDE that boasts over two thousand commands built into it while Vi is aimed to be more customizable. In fact, there are several distributions of the Vi editor, and one of the most popular 'Vim' is designed to be more of an IDE for programming rather than a text editor.

To install the Vim editor, you will need to enter the following
command into the command terminal window

sudo apt install vim

If you want to use Vim that has a graphical user interface, you can install it using the following command

sudo apt install vim-gnome

Similarly, the Emac editor can also be installed by using the following command

sudo apt install emacs

On the other hand, nano is a more user-friendly and comfortable text editor and IDE that many people prefer over Vim and Emac. In short, nano is more intuitive and easy to work with. Nano is already installed by default on the Raspberry Pi OS, so you don't have to worry about fetching it on your system and start right working right away.

To get a feel of things with nano, let's quickly go over the traditional starting exercise in programming, i.e., printing 'Hello World!". After that, we will discuss a bunch of other text editors as well, so you can use the one you're most comfortable with.

First off, we will need to make a Python file by using the nano text editor. The file we will be creating will be named 'firstexercise.’ Open
the terminal window on the Raspberry Pi and enter the following command;

nano -c firstexercise.py

Open the file once it's been generated and add the following lines of code;

#!/usr/bin/Python

#firstexercise.py

print ("Hello World!")

After you're done with this task, save and close the file. The file is now ready to execute the instructions. To run this file, use the following command in the command-line interface.

Python3 firstexercise.py

The command-line interface will execute the instructions in the file. You have now created a program using the nano text editor.

Here's a list of the other different text editors that you can use as well;

	

IDLE3:
 IDLE3 is a Python editor that comes with features
such as syntax highlight, context help, and by pressing the F5 function key, it will execute scripts directly from the editor. However, there is a requirement to run the IDLE3 program, i.e., it depends on X-Windows, which is a Debian desktop to work. If you want to run it remotely, then you'll need X11-forwarding. Keep in mind that IDLE3 supports Python3 while IDLE does not.

	

Geany:
 Geany is a text editor that offers an IDE for a variety of programming languages. Like other editors, Geany also supports features such as syntax highlighting, autocompletion, and offering an easy to navigate user interface. Although Geany is an editor that is packed with features, it might need some practice before the user can get the hang of it. Like IDLE3, Geany also depends on X-Windows and X11-forwarding. Geany can be installed by using the following command in the terminal window.

sudo apt-get install geany

There's still one more thing left to do, and that is to make sure that Geany is running Python3. To do this, we will need to make some changes to the 'build' commands. First off, load any Python file on Geany and navigate to the 'Build menu'; after that, choose the 'Set Build Commands' option. A separate window should pop-up as shown below.

[image:]

In the 'Compile' and 'Execute' sections, put in 'Python3' instead of the default 'Python,' and you're basically done.

In this book, we will be using Python3 throughout, so make sure that whichever editor you are using, it is compatible with Python3.

Experimenting with Texts and Strings in Python

Now that we know about the different Python editors, we can begin exploring and experimenting with different techniques involving string and text manipulation. Before we do that, let's create a designated folder to house the Python scripts for our own ease. We will use the 'mkdir
' Linux command to create a folder named
'Python_testscripts' to the home directory of Raspberry Pi. Open the terminal window and enter the following command.

mkdir ~/Python_scripts

Once the folder has been created, we can access it at any point and list all of the files in this folder by using the following command

cd ~/Python_scripts

ls

Let's begin experimenting with text encryption using Python.

Text Scrambling using Caesar Cypher Technique in Python Scripts

In this section, we will discuss a Python script that implements the concept of a simple character substitution technique known as ‘Caesar Cypher’ to scramble text. Let’s see the Python script first and afterward, discuss how it works. We will be creating a Python script file by the name of ‘caesarcypher.py’.
 To understand the code better, comments have also been included.

#!/usr/bin/Python3

#caesarcypher.py

#Takes the input_text and encrypts it, returning the result

def encryptText(input_text,key):

input_text=input_text.upper()

result = ""

for letter in input_text:

​
#Ascii Uppercase 65-90 Lowercase 97-122 (Full range 32-126)

​
ascii_value=ord(letter)

​
#Exclude non-characters from encryption

​
if (ord("A") > ascii_value) or (ascii_value > ord("Z")):

​
 result+=letter

else:

​
 #Apply encryption key

​
 key_val = ascii_value+key

​
 #Ensure we just use A-Z regardless of key

​
 if not((ord("A")) < key_val < ord("Z")):

​

 key_val=ord("A")+(key_val-ord("A"))%(ord("Z")-ord("A")+1)

​
 #Add the encoded letter to the result string

​
 result+=str(chr(key_val))

return result

#Test function

def main():

print ("Please enter text to scramble:")

​
#Get user input

​
try:

​
 user_input = input()

​
 scrambled_result = encryptText(user_input,10)

​
 print ("Result: " + scrambled_result)

​
 print ("To un-scramble, press enter again")

​
 input()

​

 unscrambled_result = encryptText(scrambled_result,-10)

​
 print ("Result: " + unscrambled_result)

​
except UnicodeDecodeError:

​
 print ("Sorry: Only ASCII Characters are supported")

main()

#End

In this script, two main functions are being used. The encryptText()
 function and the input()
 command function.

In this Python script, the main()
 function fetches the input of the user by utilizing the input()
 command. The input obtained is then stored by the program as a string in a variable, which has been defined as user_input,
 as shown below

user_input = input()

On the other hand, the encryptText()
 function is called upon by using two arguments, i.e., the text which is supposed to be encrypted or scrambled and the key through which this text is supposed to be deciphered. In the Python script, these arguments have been defined as;

scrambled_result = encryptText(user_input,10)

print ("Result: " + scrambled_result)

The encryption works as follows;

•
It substitutes the original letter with another letter from the same alphabetical set.

•
This program is instructed to do this substitution by following the encryption key.

•
 The encryption key defines the number of alphabets to count, starting from the original alphabet's position within the set and substitute it with the alphabet calculated by the key. For instance, if the encryption key is 2, then the letter 'A' will be substituted by the letter 'C.’

•
 The script simplifies this substitution process by changing all of the letters to the upper-case, allowing for the use of the ASCII character set, which translates each letter to its corresponding number. For example, the letter 'A' is represented by the number 65, and the letter 'Z' is represented by 90. The text is converted to uppercase by the following line

Input_text=input_text.upper()

ord(*the letter*)

Then, the letters are translated into numbers according to the ASCII standard.

	
After this, we make sure that the script has an empty string
in which the result can be stored by the program. This is the result = "”
 argument. Also, the encryption key is set to the value of the key as well.

The rest of the code is pretty much self-explanatory. Let’s move on to the next section.

Passing on the Encryption Key

Let’s say that we have encrypted a message using this simple technique, and we want to securely transmit this message to our acquaintance without sending them the encryption key or the method. The solution to this is actually very simple and easy and is shown in the following figure.

[image:]

To elaborate, first of all, you send the message encrypted with your key to your friend. Once the message reaches your friend, they encrypt it with their own key and send it back to you. Now you decrypt the message and send it to your friend again. This time, it won’t be ciphered from your side, and your friend can use their key to decrypt the message and read it safely and securely. This technique is known as the ‘three-pass protocol.’

Let’s analyze a demonstration of the three-pass protocol in a Python script. We can leverage the script shown previously by using it as a module. To do this, we will have to use the import()
 function as shown below.

import caesarcypher as ENC

By using ENC as a reference, we can access any of the functions present in the caesarcypher.py file.

However, before we begin, we must first take care of a complication. When the contents of the file are executed directly, Python will automatically change the global attribute from _name_
 to “_main_”.
 To reuse the functions present in this Python script without needing to run any lines of code, we can just do this.

if _name_==“_main_”:

​
main()

Now that’s done, we are now ready to create the new Python script. Let’s name this file as threepass
.py
 and create it in the same directory as the caesarcypher.py

 file.

#!/usr/bin/Python3

#threepass.py

import caesarcypher as ENC

KEY1 = 20

KEY2 = 50

print ("Please enter text to scramble:")

#Get user input

user_input = input()

#Send message out

encodedKEY1 = ENC.encryptText(user_input,KEY1)

print ("USER1: Send message encrypted with KEY1 (KEY1): " +

encodedKEY1)

#Receiver encrypts the message again

encodedKEY1KEY2 = ENC.encryptText(encodedKEY1,KEY2)

print ("USER2: Encrypt with KEY2 & returns it (KEY1+KEY2): " +

encodedKEY1KEY2)

#Remove the original encoding

encodedKEY2 = ENC.encryptText(encodedKEY1KEY2,-KEY1)

print ("USER1: Removes KEY1 & returns with just KEY2 (KEY2): " +

encodedKEY2)

#Receiver removes their encryption

message_result = ENC.encryptText(encodedKEY2,-KEY2)

print ("USER2: Removes KEY2 & Message received: " + message_result)

#End

The output of the script is the following.

Please enter text to scramble:

"A message to a friend."

USER1: Send message encrypted with KEY1 (KEY1): U GYMMUAY NI U ZLCYHX.

USER2: Encrypt with KEY2 & returns it (KEY1+KEY2): S EWKKSYW LG S XJAWFV.

USER1: Removes KEY1 & returns with just KEY2 (KEY2): Y KCQQYEC RM Y

DPGCLB.

USER2: Removes KEY2 & Message received: A MESSAGE TO A FRIEND.

Manipulating Files and Dealing with Errors

By now, we have demonstrated that Python can handle strings pretty effectively. In addition, Python also features file functionality allowing the user to manipulate files such as reading, editing, or even creating new files. This opens new avenues in exploring the functionality of Python. By leveraging its ability to handle files, we can make use of the scripts demonstrated previously to build upon new scripts involving files. For instance, we could use the encryptText()
 function used from the other scripts and encode the entire files.

However, it is important to understand that performing file operations is largely dependent on factors that cannot be controlled
by the script itself. For example, if we are trying to open a file in the Python script and that file does not even exist in the filesystem, then we will be given an error. Similarly, if the filesystem does not have enough storage, then a new file cannot be created, giving us an error again. In this section, we will also emphasize ways to prevent these errors and to handle exceptions.

File Encoding

The Python script, which we are about to see, will ask the user to specify a file through the command-line interface, and then it will proceed to encode the specified file and, finally, give a file that has been encoded as an output.

To test this script, we will first have to create an experimental file and save it. For this purpose, we will be creating a text file and name it ‘infile.txt
,’ add a message into the file, and then save it. The message can be anything. For this demonstration, let’s consider that the infile.txt file has the following message

This is a short message to test our file encryption program.

We are now ready to open the Python IDE and create a Python script file. Let’s name this filecypher.py
. We will now open the script file and use the following lines of code.

#!/usr/bin/Python3

#filecypher.py

import sys #Imported to obtain command-line arguments

import caesarcypher as ENC

#Define expected inputs

ARG_INFILE=1

ARG_OUTFILE=2

ARG_KEY=3

ARG_LENGTH=4

def covertFile(infile,outfile,key):

#Convert the key text to an integer

​
try:

enc_key=int(key)

except ValueError:

print ("Error: The key %s should be an integer value!"

​
 ​
 % (key))

#Code put on to two lines

els
e

try:

​
#Open the files

​
with open(infile) as f_in:

​
 infile_content=f_in.readlines()

except IOError:

​
print ("Unable to open %s" % (infile))

try:

​
with open(outfile,'w') as f_out:

​
 for line in infile_content:

​
​
 out_line = ENC.encryptText(line,enc_key)

​
 ​
 f_out.writelines(out_line)

except IOError:

​
print ("Unable to open %s" % (outfile))

print ("Conversion complete: %s" % (outfile))

finally:

print ("Finish")

#Check the arguments

if len(sys.argv) == ARG_LENGTH:

print ("Command: %s" %(sys.argv))

covertFile(sys.argv[ARG_INFILE], sys.argv[ARG_OUTFILE],

sys.argv[ARG_KEY])

else:

print ("Usage: filecypher.py infile outfile key")

#End

Remember that the original text file can be any text file and does need necessarily need to be named infile.txt
. However, the infile
 variable will define the text file, outfile
 will always be the encrypted version of the original file, and the key
 will be the encryption key value that we are using. The script can be run by opening the command line interface and entering the following command.

Python3 filecypher.py infile outfile key

For instance, if we wanted to encrypt the infile.txt
 and get an encrypted version of this file as the cyphered.txt
 by using an encryption key value of 30, then the command will look like this.

Python3 filecypher.py infile.txt cyphered.txt 30

To check the encrypted file, simply use the command less cyphered.txt
 and exit the command-line interface by pressing the Q key button.

Similarly, if we want to decipher or decrypt the file, then we will use the negative value of the encryption key and specify the original file along with the name we want the output file to have, as shown in the command below.

Python3 filecypher.py cyphered.txt decyphered.txt -30

If we look back to the lines of code in the Python script shown above, then you will see that the file has been opened by using a with-as
 argument. This method ensures that the file will close if there’s an error if the script has simply completed its job. This portion of the code in the script is shown below

try
:

#Open the files

with open(infile) as f_in:

infile_content=f_in.readlines()

except IOError:

print ("Unable to open %s" % (infile))

These specific lines of code do the same job as the following lines of code in the same script.

try:

f_in = open(infile)

try:

infile_content=f_in.readlines()

finally:

​
f_in.close()

except IOError:

print ("Unable to open %s" % (infile))

By using this block of code, we ensure that if there is an exception when opening the specified file, for instance, it does not exist, then an IOError
 will be thrown. This will notify the user that there’s an issue with the filename or the pathname they provided to the system.

Making a Bootup Menu

In this section, we will make use of the methods that have been demonstrated in the scripts shown previously in order to construct a customizable menu. The main purpose of this menu would be to provide us with instant commands and programs to run.

To start off, we will create a script file and name it bootmenu.py
. Afterward, we will have to add the following lines of code to the Python script file.

#!/usr/bin/Python3

#bootmenu.py

from subprocess import call

filename="bootmenu.ini"

DESC=0

KEY=1

CMD=2

print ("Start Menu:")

try:

with open(filename) as f:

menufile = f.readlines()

except IOError:

print ("Unable to open %s" % (filename))

for item in menufile:

line = item.split(',')

print ("(%s):%s" % (line[KEY],line[DESC]))

#Get user input

running = True

while(running):

user_input = input()

#Check input, and execute command

for item in menufile:

line = item.split(',')

​
if (user_input == line[KEY]):

print ("Command: " + line[CMD])

#call the script

#e.g. call(["ls", "-l"])

commands = line[CMD].rstrip().split()

print (commands)

running = False

#Only run command if one is available

if len(commands):

call(commands)

if (running==True):

print ("Key not in menu.")

print ("All Done.")

#End

Now, we will simply create a .ini
 file by the name of bootmenu.ini
 (same as the one specified in the Python script). We will make sure that the bootmenu.ini file consists of the following menu elements and commands.

Start Desktop,d,startx

Show IP Address,i,hostname -I

Show CPU speed,s,cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_cur_

freq

Show Core Temperature,t,sudo /opt/vc/bin/vcgencmd measure_temp

Exit,x,

To customize the menu, all you have to do is add your own commands to the .ini file itself.

Now let’s analyze how this Python script works.

•
 Notice that a call
 command has been used at the beginning of the script. The script uses this command to execute programs. Since the requirement of this small exercise is to make a menu, we only need to call a part of the
subprocess
 module. This is done by using the line

from subprocess import call

By doing this, the script is only importing what it actually needs.

•
 As the file is opened by the script, it lists all of the lines within it into the menufile
. Each line in the file is then processed into lists separated by the “,”
 symbol consisting of different menu items by using the item.split(‘,’) function
. It’s proper implementation, as shown in the script, is as follows.

line = ['Start Desktop', 'd', 'startx\n']

•
 Now that each section of the menu is separated, we used the print
 statement to display the corresponding key that needs to be pressed in order to invoke a certain command.

•
 The interface of the menu is now ready. What we need to do after this is to instruct the script to wait for the user’s input by using the looping statement while
. This loop will continue to be active unless its condition is set to False. By doing this, even if the user inputs an incorrect key, the menu will remain open until either a designated command key is pressed or if the exit menu key is pressed. The script checks the key that has been inputted by the user against the key that has been designated to a menu item using the following line of code.

user_input == line[KEY]

•

If the key that has been inputted matches the key of a menu item, then the corresponding command is called upon by the script. However, the call command
 requires the corresponding commands, as well as their arguments, to be in the form of a list as well. For this purpose, we use the .split()
 command to separate the command part into a list as well. There’s also a ‘/n’ character, which is simply an end-of-the-line character of the menu.ini
 file. This is referred to as whitespace. To remove this, we use the .rstrip()
 function.

•
In the end, the Python script outputs a menu featuring a handful set of options as shown below

Start Menu:

(d):Start Desktop

(i):Show IP Address

(s):Show CPU speed

(t):Show Core Temperature

(x):Exit

g

Key not in menu.

i

Command: hostname -I

['hostname', '-I']

All Done.

Chapter Four

Python and External Hardware

[image:]

One of the defining characteristics of a Raspberry Pi is its ability to interface with external hardware directly. Most of the basic electronics such as LEDs, switches, and sensors, etc. can be connected and controlled with the Raspberry Pi system through the GPIO (General Purpose Input/Output) pins.

The Raspberry Pi motherboard features a GPIO interface known as P1 that has a total of 26 pins. If you’re using the Raspberry Pi Model B or Model A versions, then you’ll notice that in addition to these 26 pins, there’s a set of 8 holes right next to P1. Another connector can be soldered onto these holes providing four additional GPIO pins to the user.

Here we will discuss the ways through which we can connect LEDs and buttons to the Raspberry Pi and how we can control these electrical components through the Pi system by using Python. In essence, the major topics of discussion in this chapter include;

•
Controlling RGB LEDs through Python

•
Taking input from externally connected buttons

•
The GPIO keypad input

•
Multiplexed Color LEDs

Controlling an RGB LED through Python

While many hardware exercises discuss LED implementation and control in Raspberry Pi by using standard mono-colored LEDs. In this book, we will make this exercise a bit challenging and interesting by using an RGB LED.

This exercise will require the following hardware components.

	
Four DuPont F to M (female to male) wires.

	
A breadboard (can be a mini breadboard or a full-sized breadboard. However, if you’re using a mini breadboard, it should have at least 170 points).

	
Common cathode RGB LED.

	
Solid core wire

	
Three 470-ohm resistors

A breadboard is an essential component that is used in a wide variety of Raspberry Pi projects, so chances are, you probably have it with you. The rest of the components only cost a few bucks and can be purchased very easily from local and online retailers. Before we begin with the exercise, the reader needs to understand the structural difference of an RGB LED from a normal LED.

The figure shown below is a diagram of an RGB LED alongside a standard LED. You can also see the circuit implementation of an RGB LED.

[image:]

To get an idea of how the LED will be connected to the breadboard and to the P1 GPIO header, the following diagram will be helpful.

[image:]

Now let’s whip up a Python script to test out the functionality of the Raspberry Pi in controlling the connected RB LED.

We will be naming this Python script as rgbled.py
 and the contents of this script are as follows.

#!/usr/bin/Python3

#rgbled.py

import time

import RPi.GPIO as GPIO

RGB LED module

#HARDWARE SETUP

P1

2[======XRG=B==]26

1[=============]25

X=GND R=Red G=Green B=Blue

#Setup Active States

#Common Cathode RGB-LED (Cathode=Active Low)

RGB_ENABLE = 1; RGB_DISABLE = 0

#LED CONFIG - Set GPIO Ports

RGB_RED = 16; RGB_GREEN = 18; RGB_BLUE = 22

RGB = [RGB_RED,RGB_GREEN,RGB_BLUE]

def led_setup():

#Setup the wiring

GPIO.setmode(GPIO.BOARD)

#Setup Ports

for val in RGB:

GPIO.setup(val,GPIO.OUT)

def main():

led_setup()

for val in RGB:

GPIO.output(val,RGB_ENABLE)

print("LED ON")

time.sleep(5)

GPIO.output(val,RGB_DISABLE)

print("LED OFF")

try:

main()

finally:

GPIO.cleanup()

print("Closed Everything. END")

#End

It is important to note that the RPi.GPIO library that is being imported by the Python script requires root permission to communicate with the Raspberry Pi’s GPIO pins. This means that we will have to run this Python script by using the sudo command as shown below.

sudo Python3 rgbled.py

Once the script is executed by the system, the different colors (red, green, and blue) of the LED should light up in order. If this doesn’t happen, then you need to check if the LEDs are properly wired. You can also momentarily connect either the red, green, or blue wire of the LED to the 3v3 pin (pin 1 of the GPIO pin header) to confirm whether the LED is indeed functional.

Let’s dive in a bit and see how does all of this actually work. For Python to access and control the GPIO pins, it needs to import module functions from the RPi.GPIO library. Once the necessary library has been imported, the time
 function defines the pause time for each color of the LED to stay on.

However, things are still far off from a working state. Before the
script can actually control the GPIO pins, it needs to specify a numbering method and the GPIO direction state. The numbering method is defined by the GPIO.BOARD
 and the configuration state of the GPIO can be either set as an input or an output (GPIO.IN and GPIO.OUT). The pin state also makes a difference. If the GPIO pins are configured as outputs, then the user is able to configure the pin state. On the other hand, if the GPIO pins are configured as inputs, then the user will only be able to read the states of the pins. In this demonstration, the GPIO pins were set as outputs.

The GPIO pins are controlled by the GPIO.output()
 function. In this function, we specify the GPIO pin number and configure its state, i.e., for ON state, we set the value to 1, and for the OFF state, we set the value to 0. By using the time function to set the pause period for each LED color to stay lit up, we set it to 5 seconds. This means that once an LED lights up, it will stay lit for 5 seconds before turning off.

To wrap things up, the GPIO.cleanup()
 function is used to revert the GPIO pins back to their default states.

Controlling the GPIO Current

Each individual pin on the GPIO header has a limit as to how much current it can handle. If too much current is supplied to the GPIO pin, then it will burn out and, in turn, damaging the Raspberry Pi processor as well. The maximum current capacity that can be handled by GPIO pins is 16mA by a single pin and 30mA in total. In this way, the RGB LED being used in this exercise should not be over 100mA. Controlling the current is mainly done by using resistors. So adding a resistor to the LED setup will limit the current being drawn by the LED and also affect its brightness (the more current being drawn, the brighter the LED).

Let’s say that we want to set up more than one LED on the Raspberry Pi’s GPIO header. Keeping in mind the current capacity limit, ideally, we would want to set the current as low as possible where the LED
would still light up. To figure this out, we can use Ohm’s law that tells us what is the required resistance to obtain a specific amount of current. Ohm’s law mathematical representation is as follows;

V = I x R

We can then manipulate this equation to get the following forms of Ohm’s law.

I = V/R and R = V/I

Now let’s use Ohm’s law to check the current being drawn even with the resistor. The aim is to get a minimum of 3mA current and a maximum of 16mA current. In this range, the brightness of the LED will still be reasonably better. We will need to do a little testing with several resistors until we get a balanced output for the RGB LEDs. In our case, a 470-ohm resistor for each LED (Red, Green, and Blue) did the job, but it might not be the same for your case, so you’ll need to do a little testing yourself as well.

[image:]

Now let’s calculate the current that is being drawn while the resistor is in place. We can calculate the total voltage across the resistor by subtracting the GPIO voltage (which is 3.3V) with the voltage drop on a specific LED (denoted as Vfwd). The resistance can then be used to calculate the amount of current being used by each LED, as shown below.

VR_Limit = (Vgpio-Vfwd)

I = VR_Limit/R = (3.3-2)/470 = 1.3/470 = 2.8mA for the Red LED

I = VR_Limit/R = (3.3-3)/470 = 0.3/470 = 0.64mA each for the Green and Blue LEDs

Accepting Input from a Button

Buttons can offer a fair amount of productivity when it comes to running applications that need an input source from somewhere other than a keyboard or a mouse. For this purpose, the GPIO pins
allow users to control the Raspberry Pi with buttons and switches.

In this exercise, we will demonstrate the use of an application that gives an audio output by receiving an input from the button that has been externally connected to the Raspberry Pi. For this exercise, we will need the following components;

•
Two DuPont F-to-M wires

•
A breadboard (can be a mini-breadboard or a full-sized breadboard)

•
A push-button and a momentary switch

•
Solid core wire

•
1000-ohm resistor

There are different types of switches available which have been elaborated in the diagram shown below:

[image:]

Here’s the layout of the button circuit, according to which you will need to install the button on the breadboard and connect it to pins on the GPIO header.

[image:]

Since we are going to work with audio output in this exercise, we will need a sound device connected to the Raspberry Pi. This can be a speaker or a headphone; it doesn’t matter as long as you’re able to hear the sound. The application that will be used to accept this input and give an audio output is “flite
.” To install the program on to the Raspberry Pi, open the command terminal, and use the following command.

sudo apt-get install flite

To check whether the application has been properly installed and it works fine, enter the following command which will test its functionality;

sudo flite -t "hello I can talk"

You can also adjust the volume of the system according to your preference by using the following command:

amixer set PCM 100%

Now it’s time to write a script for the external button. We will name this file btnex.py
. The script will include the following lines of code;

#!/usr/bin/Python3

#btnex.py

import time

import os

import RPi.GPIO as GPIO

#HARDWARE SETUP

P1

2[==X==1=======]26

1[=============]25

#Button Config

BTN = 12

def gpio_setup():

#Setup the wiring

GPIO.setmode(GPIO.BOARD)

#Setup Ports

GPIO.setup(BTN,GPIO.IN,pull_up_down=GPIO.PUD_UP)

def main():

gpio_setup()

count=0

btn_closed = True

while True:

btn_val = GPIO.input(BTN)

if btn_val and btn_closed:

print("OPEN")

btn_closed=False

elif btn_val==False and btn_closed==False:

count+=1

print("CLOSE %s" % count)

os.system("flite -t '%s'" % count)

btn_closed=True

time.sleep(0.1)

try:

main()

finally:

GPIO.cleanup()

print("Closed Everything. END")

#End

Notice that, unlike the last exercise where the GPIO pins were configured as an output, this time, the GPIO pins have been set as input. This means that we can read the GPIO pins. In addition, this exercise also enables the ‘internal pull-up resistor’ by using the following line of code in the Python script.

GPIO.setup(BTN,GPIO.IN,pull_up_down=GPIO.PUD_UP)

Once the state of the GPIO pin has been set to input, we put a loop after it in the script. The purpose of this loop is to constantly monitor the state of the ‘BTN’
 using the GPIO.input()
 function. If the value that has been returned turns to be false, then the switch connects the pin to the ground (0V). For each button press, the flite
 program will play a sound indicating the button has been pressed.

It is important to remember that you should never connect any electrical component to the GPIO pins that are 5V until and unless you are completely confident that it is safe. It is recommended that you only connect inputs with voltage range from 0V to 3.3V.

Pull-Up and Pull-Down Resistor Circuits

Pull-up and Pull-down resistor circuits do the same job but have the opposite switch logic states. Let’s first understand how these circuits work and then discuss this difference.

The purpose of pull-up and pull-down resistor circuits is to ensure that the voltage is not allowed to float between 0 and 3.3V or anywhere in between these measurements. In this way, the logic state does not fluctuate and remains static until pressed or released. If you do not use the pull-up or pull-down resistor circuits on the
GPIO pins, then the voltage would freely float in between the states of 0V and 3.3V, leaving the logic state undetermined as well.

Both of the internal resistor circuits have the same resistance rating, i.e., 50k ohm to 65k ohm.

Let’s discuss how pull-up resistors work. The main job of the pull-up resistor is to allow only a scarce amount of current to be able to flow through the GPIO pin. In this way, a high voltage is obtained when we do not press the switch. However, as soon as the switch is pressed, the large current that was flowing to the ground (0V) replaces the small current, and the GPIO pin develops a low voltage. This means that the switch becomes active at low voltage, and the logic state of the GPIO pin is ‘0’. The working is further explained in the circuit diagram shown below.

[image:]

The working of pull-down resistors is practically the same as pull-up resistors, but instead of the switch being active at low voltage, it is active at a high voltage, meaning that when the button is pressed, the logic state of the GPIO pin is ‘1’. This concept is shown in the following circuit diagram.

[image:]

Making a Dedicated Shut-Down Button

In this section, we will apply what we learned from the two previous exercises and build a dedicated shut-down button for the Raspberry Pi. This is a good way to learn that every project you make has some of its aspects passed on to other related projects.

It is commonly accepted that abruptly shutting down a computer increases the chances of storage corruption. The same is the case for the Raspberry Pi. Not properly shutting down the system involves a risk of SD card corruption, which is usually caused when the system shuts down when something is being written to the SD card. This becomes a point of concern when you are using the Raspberry Pi in an automated project without any display or keyboard/mouse. In such cases, you will not be able to shut the system down manually, and to solve this issue; we would need an external component to do the job for us. For this reason, we will be creating a dedicated shut-down button and also install an LED that will indicate the system’s current state (power on or power off).

For this exercise, you will need the following hardware components:

•
Three DuPont female to male patch wires

•
A mini or large-sized breadboard (with a minimum of 170 holes)

•

A Push-button

•
A standard LED (it can be of any color)

•
Two resistors each with a rating of 470-ohm

•
Solid core wire

Here’s a layout according to which you will build the circuit.

[image:]

Once the circuit connecting the push button and the LED to the GPIO header of the Raspberry Pi has been built, we are now ready to program a Python script that will control the behavior of the button and the LED.

Let’s name this script as pwroffbtn.py
. We will use the following lines of code in this Python script;

#!/usr/bin/Python3

#pwroffbtn.py

import time

import RPi.GPIO as GPIO

import os

Shutdown Script

DEBUG=True #Simulate Only

SNDON=True

#HARDWARE SETUP

P1

2[==X==L=======]26

1[===1=========]25

#BTN CONFIG - Set GPIO Ports

GPIO_MODE=GPIO.BOARD

SHTDWN_BTN = 7 #1

LED = 12 #L

def gpio_setup():

#Setup the wiring

GPIO.setmode(GPIO_MODE)

#Setup Ports

GPIO.setup(SHTDWN_BTN,GPIO.IN,pull_up_down=GPIO.PUD_UP)

GPIO.setup(LED,GPIO.OUT)

def doShutdown():

if(DEBUG):print("Press detected")

time.sleep(3)

if GPIO.input(SHTDWN_BTN):

if(DEBUG):print("Ignore the shutdown (<3sec)")

else:

if(DEBUG):print ("Would shut down the RPi Now")

GPIO.output(LED,0)

time.sleep(0.5)

GPIO.output(LED,1)

if(SNDON):os.system("flite -t 'Warning commencing power down'")

if(DEBUG==False):os.system("sudo shutdown -h now")

if(DEBUG):GPIO.cleanup()

if(DEBUG):exit()

def main():

gpio_setup()

GPIO.output(LED,1)

while True:

if(DEBUG):print("Waiting for >3sec button press")

if GPIO.input(SHTDWN_BTN)==False
:

doShutdown()

time.sleep(1)

try:

main()

finally:

GPIO.cleanup()

print("Closed Everything. END")

#End

After testing that the script actually works, we need to make it run automatically when the system boots up. To do this, we need to copy or move the script to the “~/bin”
 directory and then add it to crontab
 by using the following lines of code.

mkdir ~/bin

mv pwroffbtn.py ~/bin/pwroffbtn.py

crontab –e

Once that’s been done, we need to add the following line of code at the ending section of the file.

@reboot sudo Python3 ~/bin/shtdwn.py

Notice that in this exercise, we set the GPIO pin connected to the button as input while the pin that is connecting the LED to the Raspberry Pi is set as output. In this way, the system can read the logic state of the pin when the button is pressed while it can set the logic state for the pin that is connected to the LED, lighting it up (when the system is running) and turn it off (when the system is turned off).

To check if the setup works, we use the DEBUG
 flag and set it to a TRUE state. This will tell the system to virtually simulate a shutdown (without actually doing it) to check the working of the button and the LED. The user can read the terminal messages to check the entire process. However, once the setup has been tested, it is important to set the DEBUG
 flag back to a FALSE state so that the script can be used to simulate an actual shutdown.

In the following portions of the code, we use the while
 loop function to make the system check for the logic state of the GPIO pin. If the state is low (meaning ‘0’), this indicates that the button has been pressed, and the system then proceeds to execute the doShutdown()
 function.

However, the shutdown is not instantaneous. The script is programmed to wait for a period of 3 seconds and then check whether the state of the GPIO is low or not. If the state is still low after 3 seconds, this will trigger an LED flash, and the system will proceed with the shutdown sequence. Moreover, by using the flite
 program, the system will also give an audio output when the system
has entered the shutdown sequence.

The GPIO Keypad Input

Monitoring application launch and Raspberry Pi control through GPIO is required to be clearly understood for moving towards the concept of third-party programs.

Control can be acquired over any program by one’s own custom hardware, utilizing the uInput
 library and imitating key-strokes and mouse movement.

Further information regarding uInput
 and its uses can be accessed through

http://tjjr.fi/sw/Python-uinput/
.

Making Preparations

To install uInput
,
 follow the steps given under:

	
Downloading uInput: uInput Python library is required to be downloaded from Github. The given command can be used for this purpose.

wget https://github.com/tuomasjjrasanen/Python-uinput/archive/master.zip

unzip master.zip

A directory with the name Python-uinput-master contains the unzipped library. The ZIP file can be removed by the given command after it has been downloaded.

rm master.zip

	
Use the given commands to install the packages required.

sudo apt-get install Python3-setuptools Python3-dev

sudo apt-get install libudev-dev

The apt-get ignores the command if the packages are already installed.

	
Use the following commands to register and install uInput
.

cd Python-uinput-master

sudo Python3 setup.py install

Use the following command to load the new kernel module.

sudo modprobe uinput

	
The following command can be used to add uinput to the modules to check if the uinput module is loaded on start-up.

sudo nano /etc/modules

To make sure that the uinput
 is loaded on startup, we add it to modules
 using the following command

sudo nano /etc/modules

In the file, put uinput on a new line and save.

	
Using the following equipment, create the following circuit.

•
Medium-sized or a full-sized breadboard

•
Solid core wire to use with the breadboard

•
Six push buttons

•
Seven Dupont female to male patch wires

•
Six 470-ohm resistors

[image:]

(GPIO Keypad Circuit Layout)

The components can be soldered into a Vero-prototype board or stripboard, to build a permanent type of the given keyboard circuit.

	
Make the circuit connections to the Raspberry Pi P1 GPIO pins by following the given connections:

	
	
Button

	
P1 GPIO Pin

	
GND

	
	
6

	
v

	
B_DOWN

	
22

	
<

	
B_LEFT

	
18

	
^

	
B_UP

	
15

	
>

	
B_RIGHT

	
13

	
1

	
B_1

	
11

	
2

	
B_2

	
7

Creating the Python Script

We will now proceed to create the gpiokeys.py
 script for this exercise.

#!/usr/bin/Python3

#gpiokeys.py

import time

import RPi.GPIO as GPIO

import uinput

#HARDWARE SETUP

P1

2[==G=====<=V==]26

1[===2=1>^=====]25

B_DOWN = 22 #V

B_LEFT = 18 #<

B_UP = 15 #^

B_RIGHT = 13 #>

B_1 = 11 #1

B_2 = 7 #2

DEBUG=True

BTN = [B_UP,B_DOWN,B_LEFT,B_RIGHT,B_1,B_2]

MSG = ["UP","DOWN","LEFT","RIGHT","1","2"]

#Setup the DPad module pins and pull-ups

def dpad_setup():

#Set up the wiring

GPIO.setmode(GPIO.BOARD)

Setup BTN Ports as INPUTS

for val in BTN:

​
set up GPIO input with pull-up control

​
#(pull_up_down can be:

​
PUD_OFF, PUD_UP or PUD_DOWN, default PUD_OFF)

​
GPIO.setup(val, GPIO.IN, pull_up_down=GPIO.PUD_UP)

def main():

#Setup uinput

events = (uinput.KEY_UP,uinput.KEY_DOWN,uinput.KEY_LEFT,

​
 uinput.KEY_RIGHT,uinput.KEY_ENTER,uinput.KEY_ENTER)

device = uinput.Device(events)

​

time.sleep(2) # seconds

dpad_setup()

print("DPad Ready!")

btn_state=[False,False,False,False,False,False]

key_state=[False,False,False,False,False,False]

while True:

​
#Catch all the buttons pressed before pressing the related keys

​
for idx, val in enumerate(BTN):

​
 if GPIO.input(val) == False:

​
 ​
 ​
btn_state[idx]=True

​
 ​
 else:

​
 ​
 ​
btn_state[idx]=False

​
#Perform the button presses/releases (but only change state once)

​
for idx, val in enumerate(btn_state):

​
 ​

 if val == True and key_state[idx] == False:

​
 ​
 ​
if DEBUG:print (str(val) + ":" + MSG[idx])

​
 ​
 ​
device.emit(events[idx], 1) # Press.

​
 ​
 ​
key_state[idx]=True

​
 ​
 elif val == False and key_state[idx] == True:

​
 ​
 ​
if DEBUG:print (str(val) + ":!" + MSG[idx])

​
 ​
 ​
device.emit(events[idx], 0) # Release.

​
 ​
key_state[idx]=False

​
​
time.sleep(.1)

try:

main()

finally
:

GPIO.cleanup()

#End

Understanding the Script

First of all, uinput
 is to be imported, and the buttons on the keypad need to be defined according to their wiring scheme. Enable each button BTN as input and initialize the pull-up resistors of the internal circuit.

Then uinput
 is set up. This is done by defining keys required to be imitated and adding these to “uinput.Device ()
” function. Allow the uinput
 function to start working, then set the corresponding logical states of the keys, buttons, and the start the main_loop
.

Now let’s talk a bit about the main_loop
. This loop consists of two important features:

	
checks buttons, records states in btn_state

	

Cross-checks the logical state of the variable
 btn_state against the array variable,
 key_state

In this way, whenever the state of the btn_state
 variable is subjected to change, it is automatically detected, and device.emit ()
 is asked to change the value of the key_state
 variable accordingly.

As seen in the given command, it can be run with & to permit running this script in the background.

sudo Python3 gpiokeys.py &

“&” character makes it so that the command that is using this
character is run by the system in the background, which can be reversed, i.e., for the command to be brought to foreground “fg
” can be used.

If the Raspberry Pi is connected remotely, the key-strokes will be visible only on the screen, which is connected locally.

The uinput
 can be utilized for providing a way for other such programs to control the hardware of the system. Basically, this also includes programs that require input through a mouse.

Generating Additional Key Combinations

To support different programs, a variety of key mappings can be created. E.g.

For a spectrum emulator like fuze,
 the events_z80
 key mapping is useful.

For controlling videos played through the OMX player, the events_omx
 key mapping is appropriate. It can be done by the given command:

omxplayer filename.mp4

Using the -k
 parameter, a list of keys supported by omxplayer
 can be acquired.

Using the given code, add new key mapping in place of the line defining the events
 list, choose desired key mappings by assigning them to events.

events_dpad = (uinput.KEY_UP,uinput.KEY_DOWN,uinput.KEY_LEFT,
uinput.KEY_RIGHT,uinput.KEY_ENTER,uinput.KEY_ENTER)

events_z80 = (uinput.KEY_Q,uinput.KEY_A,uinput.KEY_O, uinput.KEY_P,uinput.KEY_M,uinput.KEY_ENTER)

events_omx = (uinput.KEY_EQUAL,uinput.KEY_MINUS,uinput.KEY_LEFT, uinput.KEY_RIGHT,uinput.KEY_P,uinput.KEY_Q)

All of the KEY
 definitions can be found in the input.h
 file and these can be seen by the less
 command given as under:

less /usr/include/linux/input.h

Simulating Mouse Movements

As mentioned earlier uinput
 library can be used to imitate key-strokes, joystick, and mouse movements. The script can be adjusted for mouse events such that the buttons simulate a mouse by the given code:

MSG = ["M_UP","M_DOWN","M_LEFT","M_RIGHT","1","Enter"]

events_mouse=(uinput.REL_Y,uinput.REL_Y, uinput.REL_X,

​

uinput.REL_X,uinput.BTN_LEFT,uinput.BTN_RIGHT)

mousemove=1

Use the given code to provide continuous movement button handling requires modification so that keeping track of the state of the keys for a mouse is not required.

#Perform the button presses/releases

#(but only change state once)

for idx, val in enumerate(btn_state):

if MSG[idx] == "M_UP" or MSG[idx] == "M_LEFT":

state = -mousemove

else:

state = mousemove

if val == True:

device.emit(events[idx], state) # Press.

elif val == False:

device.emit(events[idx], 0) # Release.

time.sleep(0.01)

Multiplexed Color LEDs

Certain software can help generate remarkable results from apparently simple hardware. A method called hardware multiplexing is used to connect 5 RGB LEDs in a way so that only eight GPIO pins control red, blue, and green elements.

Making the Preparations

The RGB LED module is required for this purpose.

As evident from the picture, the RGB LED module has GPIO pins and Dupont female-female connecting wire. Even though five pins labeled 1 to 5 are on each side of the board, one side is required to be connected.

The following circuit contains a Vero prototype board or large breadboard, three resistors of 470 ohms, and five common cathodes RGB LEDs. This circuit Cn be used to create other alternate types as well.

[image:]

(RGB LED Module Circuit Diagram)

Note: If the circuit on which the LEDs are connected use a single resistor by sharing it among themselves, then this would cause interference from the LEDs. This can be tackled by using separate resistors for each RGB LED that would eliminate any interference previously present while also increasing their lifespan as well.

The Raspberry Pi GPIO P1 header has to be connected with the circuit, and connections are given as follows:

	
RGB LED

	
	
	
	
	
	
1

	
	
2

	
3

	
	
4

	
	

	
Rpi GPIO Pin

	
2

	
4

	
6

	
8

	
10

	
12

	
14

	
16

	
18

	
20

	
22

	
24

	
26

	
Rpi GPIO Pin

	
1

	
3

	
5

	
7

	
9

	
11

	
13

	
15

	
17

	
19

	
21

	
23

	
25

	
RGB LED

	
	
	
	
5

	
R

	
G

	
B

	
	
	
	
	
	

Creating the Python Script

We will now proceed to create the Python script rgbled.py
 by the following code procedure.

	
First and foremost, we need to import the modules that are necessary for this exercise. Moreover, we will also need to define the appropriate values to be used as shown below.

#!/usr/bin/Python3

#rgbled.py

import time

import RPi.GPIO as GPIO

#Setup Active states

#Common Cathode RGB-LEDs (Cathode=Active Low)

LED_ENABLE = 0; LED_DISABLE = 1

RGB_ENABLE = 1; RGB_DISABLE = 0

#HARDWARE SETUP

P1

2[=====1=23=4==]26

1[===5=RGB=====]25

#LED CONFIG - Set GPIO Ports

LED1 = 12; LED2 = 16; LED3 = 18; LED4 = 22; LED5 = 7

LED = [LED1,LED2,LED3,LED4,LED5]

RGB_RED = 11; RGB_GREEN = 13; RGB_BLUE = 15

RGB = [RGB_RED,RGB_GREEN,RGB_BLUE]

#Mixed Colors

RGB_CYAN = [RGB_GREEN,RGB_BLUE]

RGB_MAGENTA = [RGB_RED,RGB_BLUE]

RGB_YELLOW = [RGB_RED,RGB_GREEN]

RGB_WHITE = [RGB_RED,RGB_GREEN,RGB_BLUE]

RGB_LIST = [RGB_RED,RGB_GREEN,RGB_BLUE,RGB_CYAN,

​
 RGB_MAGENTA,RGB_YELLOW,RGB_WHITE]

2.We will now proceed to define the functions that will essentially set up the GPIO pins properly by using the following lines of code.

def led_setup():

​
'''Setup the RGB-LED module pins and state.'''

​
#Set up the wiring

​
GPIO.setmode(GPIO.BOARD)

​
Setup Ports

​

for val in LED:

​
 GPIO.setup(val, GPIO.OUT)

​
for val in RGB:

​
 GPIO.setup(val, GPIO.OUT)

​
led_clear()

3.We will now define the utility functions that will control the LEDs

def led_gpiocontrol(pins,state):

​
'''This function will control the state of

​
 a single or multiple pins in a list.'''

​
#determine if "pins" is a single integer or not

​
if isinstance(pins,int):

​
 #Single integer - reference directly

​
 GPIO.output(pins,state)

​
else:

​

#if not, then cycle through the "pins" list

​
for i in pins:

​
 GPIO.output(i,state)

def led_activate(led,color):

​
'''Enable the selected led(s) and set the required color(s)

​
 Will accept single or multiple values'''

​
#Enable led

​
led_gpiocontrol(led,LED_ENABLE)

​
#Enable color

​
led_gpiocontrol(color,RGB_ENABLE)

def led_deactivate(led,color):

​
'''Deactivate the selected led(s) and set the required

​
 color(s) will accept single or multiple values'''

​
#Disable led

​

led_gpiocontrol(led,LED_DISABLE)

​
#Disable color

​
led_gpiocontrol(color,RGB_DISABLE)

def led_time(led, color, timeon):

​
'''Switch on the led and color for the timeon period'''

​
led_activate(led,color)

​
time.sleep(timeon)

​
led_deactivate(led,color)

def led_clear():

​
'''Set the pins to default state.'''

​
for val in LED:

​
 GPIO.output(val, LED_DISABLE)

​
for val in RGB:

​
 GPIO.output(val, RGB_DISABLE)

def led_cleanup():

​

'''Reset pins to default state and release GPIO'''

​
led_clear()

​
GPIO.cleanup()

4.We will now define a test function to test the module

def main():

​
'''Directly run test function.

​
 This function will run if the file is executed directly'''

​
led_setup()

​
led_time(LED1,RGB_RED,5)

​
led_time(LED2,RGB_GREEN,5)

​
led_time(LED3,RGB_BLUE,5)

​
led_time(LED,RGB_MAGENTA,2)

​
led_time(LED,RGB_YELLOW,2)

​
led_time(LED,RGB_CYAN,2)

if __name__=='__main__':

​
try:

​
 main()

​
finally:

​
 led_cleanup()

#End

Understanding the Script

First of all, the states for enabling and disabling LEDs are required to be defined according to the RGB LED type that is being used (common cathode). If the RGB LED is an ‘Anode’, the states for enabling / disabling have to be reversed.

Then the mapping of GPIO with the pins according to the wiring done is to be defined.

By combining the basic colors red, blue, and green color combinations are also defined.

[image:]

In this Python script, there are several noteworthy functions. Let us start with the led_setup().
 This function forwards the numbering of the GPIO pins that are to be used as outputs to the GPIO.BOARD.
 Lastly, we also use the led_clear() function that reset the state of the
pins, i.e., reverting the pins to their default setting with them being disabled.

On the Gpio header, the led_gpiocontrol()
 function assigns pre-defined states to either a single GPIO pin or, if required, all of the GPIO pins. The isinstance()
 function is used to determine whether a value matches a specific type, i.e., am integer. After this, the state of a single pin can be defined, or the user can go through the entire list of pins and define the state for each pin individually.

Subsequently, in order to control the lighting up of the LEDs, the appropriate functions are needed to be defined in the script. These functions are the led_activate()
 and led_deactivate()
 respectively. Moreover, to control the time span in which an LED stays switched on is defined by the led_time()
. Note that this function is also used for keeping a specific color of the LED lit up in a cycle. When the time allotted by this function expires, the LED turns off and lights up with a new color on the next cycle.

Lastly, the led_cleanup()
 function is used to revert the state and value of the pins to default. Moreover, this function calls upon the GPIO.cleanup()
 function to release the GPIO pins from use.

Mixing RGB Colors to get Different Colors

Everybody knows that by mixing a certain combination of the primary colors (Red, Blue, and Green), we can get all of the other colors in the spectrum. But the question is, how can we recreate this mixing procedure on an RGB LED? Well, that’s actually pretty simple. We have already learned how to display one color at a time on an RGB LED. To get another color displayed by the same RGB LED, we simply just need to program the LED to change the color from one cycle to the next in a backward or forward direction very quickly. In other words, by displaying a single color and then changing it back and forth very quickly, we can get another color. This can be done by computers very easily, and that stands true for the Raspberry Pi as well. More so, we can blend the Red, Green, and Blue color elements of the LED and program it accordingly to display
new color shades on all of the RGB LEDs connected to the Raspberry Pi. In order to blend the RGB colors and get different shades, just follow the steps outlined below. Take note that we will be reusing the rgbled.py
 script that has been demonstrated in the ‘Multiplexed color LEDs’ section of this chapter.

	
Go to the top of the rgbled.py
 script and define some color combinations, as shown below.

#Combo Colors

RGB_AQUA = [RGB_CYAN,RGB_GREEN]

RGB_LBLUE = [RGB_CYAN,RGB_BLUE]

RGB_PINK = [RGB_MAGENTA,RGB_RED]

RGB_PURPLE = [RGB_MAGENTA,RGB_BLUE]

RGB_ORANGE = [RGB_YELLOW,RGB_RED]

RGB_LIME = [RGB_YELLOW,RGB_GREEN]

RGB_COLORS = [RGB_LIME,RGB_YELLOW,RGB_ORANGE,RGB_RED,

RGB_PINK,RGB_MAGENTA,RGB_PURPLE,RGB_BLUE,

​

RGB_LBLUE,RGB_CYAN,RGB_AQUA,RGB_GREEN]

The following lines of code will provide the computer with the required color combinations to create a particular shade. While the first six variables define the color combinations, the RGB_COLORS
 variable will enable the LED to transition through the specified color shades smoothly.

	
Now that we have the necessary color combinations, we now need to use the ledcombo()
 function which will essentially handle the different colors. The following lines of code tell us how to use the ledcombo()
 function.

def led_combo(pins,colors,period):

#determine if "colors" is a single integer or not

if isinstance(colors,int):

​
#Single integer - reference directly

​
led_time(pins,colors,period)

else:

#if not, then cycle through the "colors" list

for i in colors:

​

 led_time(pins,i,period)

	
All that’s left to do is create a new Python script that will import the rgbled.py
 script as a module in order to make use of the new functions defined in it. We will name this script as rgbrainbow.py
 and enter the following lines of code in it.

#!/usr/bin/Python3

#rgbledrainbow.py

import time

import rgbled as RGBLED

def next_value(number,max):

number = number % max

return number

def main():

print ("Setup the RGB module")

RGBLED.led_setup(
)

Multiple LEDs with different Colors

print ("Switch on Rainbow")

led_num = 0

col_num = 0

for l in range(5):

​
print ("Cycle LEDs")

​
for k in range(100):

​
 #Set the starting point for the next set of colors

​
 col_num = next_value(col_num+1,len(RGBLED.RGB_COLORS))

​
 for i in range(20): #cycle time

​
 for j in range(5): #led cycle

​
 ​
 led_num = next_value(j,len(RGBLED.LED))

​
 ​
 led_color = next_value(col_num+led_num,

​
 ​
 ​
 ​
 ​
 ​

len(RGBLED.RGB_COLORS))

​
 ​
 RGBLED.led_combo(RGBLED.LED[led_num],

RGBLED.RGB_COLORS[led_color],0.001)

print ("Cycle Colors")

for k in range(100):

​
#Set the next color

​
col_num = next_value(col_num+1,len(RGBLED.RGB_COLORS))

​
for i in range(20): #cycle time

​
 for j in range(5): #led cycle

​
 ​
led_num = next_value(j,len(RGBLED.LED))

​
 ​
RGBLED.led_combo(RGBLED.LED[led_num],

​
 ​
 ​
 ​
 ​
 RGBLED.RGB_COLORS[col_num],0.001)

print ("Finished")

if __name__=='__main__':

try:

​
main()

finally:

​
RGBLED.led_cleanup()

#End

In this script, the main()
 function is responsible for choosing a color from the RGB_COLOR array and designating this color to all of the LEDs. Then, the function cycles through these colors creating a rainbow spectrum effect.

Chapter Five

Sensing Real-World Data

[image:]

By now, you should have an idea of how much potential the Raspberry Pi holds in this world where technology is evolving ever so fast. The Raspberry Pi is not a one-trick pony. The only limit to its functionality is the user’s inherent ingenuity and imagination. This chapter will focus on discussing ways through which we can leverage the vast information present in the real world and put it to good use in the programs on our Raspberry Pi. In other words, the Raspberry Pi will collect analog data from its surroundings and process that information, enabling it to;

•
Display

•
Log

•
Graph

Or even export this data directly to applications and programs. To do this, we will be using ADCs (also known as Analog to Digital Converters) and other stuff to interface with the Raspberry Pi directly.

In this chapter, we will be learning how to;

•
Use devices with the I2C Bus

•
Use the ADC and read analog data from it

•
Log and plot the received data

•
Using an I/O expander with the GPIO

Using the I2C Bus

In this section, we will focus on the I2C bus and how can we use it with other devices. The Raspberry Pi is compatible with a bunch of
high-level protocols. This increases the scope of connectivity of the Raspberry Pi with a wider range of devices. The I2C bus is a communication channel operating at moderate speeds, which enables the Raspberry Pi to communicate with devices. This communication is done over two wires. To start things off, we will be using the I2C bus with an 8-bit Analog to Digital Converter.

The ADC basically translates an analog signal into a corresponding value between 0 to 255. The ADC then represents this value in 8-bits and sends it as a digital signal to the Raspberry Pi through the I2C bus.

By default, the I2C bus is not enabled in the Raspberry Pi OS. Hence, we will first need to enable this module and install some tools to support it. To enable the I2C bus, we first need to comment on it out of a blacklist config file in the system. The name of this file is “raspi-blacklist.conf.”
 We will be using nano
 to do this job. Open up the command line interface and enter the following command.

sudo nano /etc/modprobe.d/raspi-blacklist.conf

To add a comment to a file, we need to add the hashtag symbol “#” before it, as shown below.

#blacklist i2c-bcm2708

We have now successfully enabled the I2C bus on the Raspberry Pi. But that’s not enough; we also need to set the I2C module to load automatically on boot-up. To do this, we will use the following command.

sudo nano /etc/modules

Then add the following lines separately and then save and exit the terminal.

i2c-dev

i2c-bcm2708

Now we will need to install a bunch of tools that will give us access to the I2C bus directly from the command line interface. Use the following commands.

sudo apt-get update

sudo apt-get install i2c-tools

To apply the changes made to the system, we need to reboot the Raspberry Pi system before we can use any device with the I2C bus. If you have installed a shutdown button on the Raspberry Pi, use that or just shut the system down through the terminal.

sudo shutdown –h now

We will now proceed to use a PCF8591 module
 that includes an
ADC and sensors. You can buy it easily from online retailers, Amazon, or eBay.

We now need to connect this I2C device to the Raspberry Pi. Follow the connection diagram shown below and connect the GND, VCC, SDA
 and SCL
 pins to the P1 header of the Raspberry Pi.

[image:]

Now boot up the Raspberry Pi and open the command-line interface. Use the command i2cdetect
 to identify the I2C device. Here’s the complete command list that is used to scan both of the buses.

sudo i2cdetect -y 0

sudo i2cdetect -y 1

Based on the particular Raspberry Pi board revision being used, the connected module’s channel address will be displayed either on bus 0 or bus 1. The output of the i2cdetect
 command looks something like this.

[image:]

If you’re using a Raspberry Pi Model B revision 1 board, then the module’s address should be listed on bus 0. Contrary to this, if you’re using a Raspberry Pi Model A or Model B revision 2, then the address of the module will be displayed on bus 1. The default PCF8591 address is “0x48.”

If the address is not being listed, then you need to confirm that the module has been connected properly to the Raspberry Pi. If you’re using a module that has a power indicator, then check if it lights up when connected to a powered-on Raspberry Pi.

Once the bus number of the device has been detected, we will use this, along with its address (0x48), to read data from the device by using the following commands.

sudo i2cget -y 1 0x48

sudo i2cget -y 1 0x48

On the module, channel 1 is actually the temperature sensor. If we want to read data from this sensor (channel 1), we just need to simply enter 0x01 into the control register of the PCF8591 module. Remember always to use two reads to ensure that we receive a new sample.

sudo i2cset -y 1 0x48 0x01

sudo i2cget -y 1 0x48

sudo i2cget -y 1 0x48

We can also cycle through the other input channels individually. To do this, we need to use the i2cset
 command and set the control register of the module to 0x04, as shown below.

sudo i2cset -y 1 0x48 0x04

There’s a reason as to why we take multiple reads from the I2C device. If we take a read from the device just after it powers on, it will return 0x80 and invoke a new sample from channel 0. So, if we take a read from the device after the first time, then it will send the previous reading back and create a new sample. In essence, by using
the I2C bus, we can connect multiple devices to the Raspberry Pi system while using a smaller number of wires.

Any command issued by the I2C bus is addressed to a specific I2C device connected to the bus. This is why each I2C device needs to possess a unique address so that when the I2C bus issues a command, only the intended device responds to it at a given time. For connecting multiple addresses, we assign different addresses to the I2C devices. For example, the PCF8591 module’s default address is 0x48. This address can be changed with the additional address available (such as the 0x4F) through the three address pins. This means we can connect up to eight PCF8591 modules on the same I2C bus.

Using the ADC Bus to Read Analog Data

Although the I2C tool described in the preceding topics is quite useful for debugging I2C devices by using the command terminal, it not as practical when used with Python. I2CTools are slow and need a significant margin of overhead to be useful. Luckily, there is numerous library in Python which support I2C bus and devices while maintaining a standard of efficient I2C use for communicating with connected devices. Moreover, they are also easier to operate this way.

In this section, we will be using Python libraries made for the I2C bus to create a Python module that will extract and read data from the ADC device, allowing us to use it in other programs.

To work with the I2C bus by using Python 3, we will need to install wiringPi2
. Details about this tool and its developer can be read from their official website.

http://wiringpi.com/

To install wiringPi2, we will need to use Python’s package manager, which is known as PIP (for Python 3). PIP works similarly to the apt-get command. So open the command line terminal and install PIP first by using the following command.

sudo apt-get install Python3-dev Python3-pip

Once PIP has been downloaded and installed, we are ready to install wiringPi2. Use the following command to perform this task.

sudo pip-3.2 install wiringpi2

Once wiringPi2 has been successfully installed on the system, we will see the following prompt.

[image:]

We will also need the PCF8591 module wired to the I2C connections in the same way, as shown in the previous section.

[image:]

Now that we have got the hardware ready and connected, it’s time to write a Python script that will enable us to gather and read data from the Analog to Digital Converter so that it can be used in the later sections of this chapter.

The creation of the script involves the following steps.

	
Let’s name the script as ‘adc_data.py
’. First things first, we will need to import the required modules for the task and define some variables in the script as shown below.

#!/usr/bin/env Python3

#adc_data.py

import wiringpi2

import time

DEBUG=False

LIGHT=0;TEMP=1;EXT=2;POT=3

ADC_CH=[LIGHT,TEMP,EXT,POT]

ADC_ADR=0x48

ADC_CYCLE=0x04

BUS_GAP=0.25

DATANAME=["0:Light","1:Temperature",

​
 ​
 "2:External","3:Potentiometer"]

	
Now, we will be creating a class by the name of “device”
 that consists of a constructor and then start it up as shown in the following lines of code.

class device:

Constructor:

def __init__(self,addr=ADC_ADR):

​
self.NAME=DATANAME

​
self.i2c = wiringpi2.I2C()

​
self.devADC=self.i2c.setup(addr)

​
pwrup = self.i2c.read(self.devADC) #flush powerup value

​
if DEBUG==True and pwrup!=-1:

​
 print("ADC Ready")

​
self.i2c.read(self.devADC) #flush first value

​

time.sleep(BUS_GAP)

​
self.i2c.write(self.devADC,ADC_CYCLE)

​
time.sleep(BUS_GAP)

​
self.i2c.read(self.devADC) #flush first value

	
Now in this class, we have just created, we need to use a function and define it so that we can get a list of the channel names as shown below.

def getName(self):

return self.NAME

	
We will also define another function that is still part of the same class. The purpose of this function will be to output new sets of samples from the ADC channel.

def getNew(self):

data=[]

for ch in ADC_CH:

​

 time.sleep(BUS_GAP)

​
 data.append(self.i2c.read(self.devADC))

return data

	
Now that we’re done defining the necessary functions, all that’s left to do is to write a test function for the exercise of this newly created device
 class. Remember, we need to make sure that this test function can only be run when the script is executed directly.

def main():

ADC = device(ADC_ADR)

print (str(ADC.getName()))

for i in range(10):

dataValues = ADC.getNew()

​
print (str(dataValues))

​
time.sleep(1)

if __name__=='__main__':

main()

#End

By using the following command in the command terminal, we can execute the test function of the script.

sudo Python3 data_adc.py

Now let’s briefly discuss how this script actually works. We first needed a library that will allow us to communicate with the I2C device through the I2C bus, and for this reason, we imported wiringpi2.
 Next, a class has been created which is necessary as it will house the functionality that is needed to control the Analog to Digital Converter. Note that when we created the class, the wiringPi2 module was also initialized so that it stayed ready to interact with the I2C bus.

Similar to what we did before, with the i2cget
 and i2cset
 commands to read and configure the ADC channels, we use the read and write functions of the wiringPi2 with the I2C object. In this way, we issue a command for the reading and configuration of the ADC device to essentially cycle through the available channels. This will make the device ready to read the analog data from the channels it has cycled through. In this way, once we initialize the device, it will be ready to read analog data.

Let’s talk a bit about the class demonstrated in this script as well. The device
 class features several important functions with regards to
gathering and reading data from the ADC.

•
 The getName()
 function’s main job is to retrieve a list of the channel names. The channel names can then be used to correlate the data gathered to its proper source.

•
The getNew()
 function’s main job is to retrieve a new set of data from every channel.

•
 The data that is gathered by the first two functions are then read by the i2c.read()
 function, and since the function is defined in a cycle mode, every time we ask it to read a data, it will read from the next channel instead of reading data from the previous channel.

Gathering Analog Data without an Analog to Digital Converter

There’s no need to worry if you don’t have an ADC module available for use. There’s plenty of data present within the Raspberry Pi that you can use instead. In this section, we will create an alternate version of the adc_data.py
 script to make it so analog data can be read without using any external hardware.

Let’s begin creating the script. We will name this as local_data.py
 and the lines of code to be put into this script are shown below.

#!/usr/bin/env Python3

#local_data.py

import subprocess

from random import randint

import time

MEM_TOTAL=0

MEM_USED=1

MEM_FREE=2

MEM_OFFSET=7

DRIVE_USED=0

DRIVE_FREE=1

DRIVE_OFFSET=9

DEBUG=False

DATANAME=["CPU_Load","System_Temp","CPU_Frequency",

​
 ​
 "Random","RAM_Total","RAM_Used","RAM_Free",

​
 ​
 "Drive_Used","Drive_Free"]

def read_loadavg():

function to read 1-minute load average from system
uptime

value = subprocess.check_output(

​
 ​
["awk '{print $1}' /proc/loadavg"], shell=True)

return float(value)

def read_systemp():

function to read current system temperature

value = subprocess.check_output(

​
 ​
["cat /sys/class/thermal/thermal_zone0/temp"],

​
 ​
shell=True)

return int(value)

def read_cpu():

function to read current clock frequency

value = subprocess.check_output(

​
 ​
["cat
/sys/devices/system/cpu/cpu0/cpufreq/"+

​
 ​
 "scaling_cur_freq"], shell=True)

return int(value)

def read_rnd():

return randint(0,255)

def read_mem():

function to read RAM info

value = subprocess.check_output(["free"], shell=True)

memory=[]

for val in value.split()[MEM_TOTAL+

​
 ​
 ​
 MEM_OFFSET:MEM_FREE+

​
 ​
 ​
 MEM_OFFSET+1]:

memory.append(int(val))

return(memory)

def read_drive():

function to read drive info

value = subprocess.check_output(["df"], shell=True)

memory=[]

for val in value.split()[DRIVE_USED+

​
 ​
 ​
 DRIVE_OFFSET:DRIVE_FREE+

​
 ​
 ​
 DRIVE_OFFSET+1]:

memory.append(int(val))

return(memory)

class device:

Constructor:

def __init__(self,addr=0):

​
self.NAME=DATANAME

def getName(self):

return self.NAME

def getNew(self):

​
data=[]

​
data.append(read_loadavg())

​
data.append(read_systemp())

​
data.append(read_cpu())

​
data.append(read_rnd())

​
memory_ram = read_mem()

​
data.append(memory_ram[MEM_TOTAL])

​
data.append(memory_ram[MEM_USED])

​
data.append(memory_ram[MEM_FREE])

​
memory_drive = read_drive()

​
data.append(memory_drive[DRIVE_USED])

​
data.append(memory_drive[DRIVE_FREE])

​

return data

def main():

LOCAL = device()

print (str(LOCAL.getName()))

for i in range(10):

​
dataValues = LOCAL.getNew()

​
print (str(dataValues))

​
time.sleep(1)

if __name__=='__main__':

main()

#End

This script enables the user to retrieve system data from the Raspberry Pi. To extract the data, we need to enter the following commands in the command terminal.

For CPU Processor clock speeds

​

cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_cur_freq

For Current CPU Load

​
awk ‘{print $1}’ /proc/loadavg

For the System Core Temperature (Scaled by 1000)

​
cat /sys/class/thermal/thermal_zone0/temp

For Drive Information

​
df

For RAM Information

​
free

Data Logging and Plotting

Now that we know how to sample and retrieve the data, we need to make it useful. This involves capturing and analyzing the collected data (in other words, logging and plotting the data). For this task, we will use a Python library known as ‘matplotlib
.’ This library includes a collection of tools that help the user to;

•
Manipulate

•
Graph

•

Analyze

The collected data. In this section, we will be making use of pyplot,
 which is basically a part of the matplotlib
 library. Pyplot
 will essentially create graphs of the data that has been captured. If you are new to pyplot
, then you can find an extensive tutorial on how to use it in Python by visiting the official matplotlib website.

http://matplotlib.org/users/pyplot_tutorial.html

Since pyplot
 is a part of the matplotlib
 library, we will need to install the library first before we can use it.

Here’s a step-by-step manual installation procedure for the matplotlib
 library.

	
Before we can install the library itself, we will also need to install the supporting packages the library depends on. Use the following commands to install the supporting packages.

sudo apt-get install tk-dev Python3-tk Python3-dev libpng-dev

sudo pip-3.2 install numpy

sudo pip-3.2 install matplotlib

	
Now, we need to install the source files of the matplotlib
 library from its GitHub repository.

wget https://github.com/matplotlib/matplotlib/archive/master.zip

	
Once the source files have been downloaded, we need to unzip and open the matplotlib-master
 folder.

unzip master.zip

rm master.zip

cd matplotlib-master

	
All that’s left to do is to open the setup to build and install the package.

sudo Python3 setup.py build

sudo Python3 setup.py install

And that’s it; we have successfully installed the matplotlib
 library on to the Raspberry Pi system. However, it is important to remember that for this to work, we will need the PCF8591 Analog to Digital Converter module connected to the system. If you don’t have the module, then you can simply use the local_data.py
 script. To use the aforementioned script, all you need to do is replace the adc_data.py
 module with the local_data.py
 module in the import
section of the script shown below. Moreover, whichever script you are using (adc_data.py
 or local_data.py
), you need to make sure that this script is in the same directory as the new script we are about to demonstrate.

We will now create new scripts for logging and plotting the data. Let’s create the script for logging the analog data first. The name of this script will be adc_log.py,
 and the contents of this script are shown below.

#!/usr/bin/Python3

#adc_log.py

import time

import datetime

import adc_data as dataDevice

DEBUG=True

FILE=True

VAL0=0;VAL1=1;VAL2=2;VAL3=3 #Set data order

FORMATHEADER="\t%s\t%s\t%s\t%s\t%s"

FORMATBODY="%d\t%s\t%f\t%f\t%f\t%f"

if(FILE):f = open("data.log",'w')

def timestamp():

ts=time.time()

return datetime.datetime.fromtimestamp(ts).strftime(

​
 ​
 ​
 ​
 ​
 ​
'%Y-%m-%d %H:%M:%S')

def main():

counter=0

myData = dataDevice.device()

myDataNames=myData.getName()

header=(FORMATHEADER%("Time",

​
 ​
 ​
 ​
 ​
myDataNames[VAL0],myDataNames[VAL1],

​
 ​
 ​
 ​
 ​
myDataNames[VAL2],myDataNames[VAL3])
)

if(DEBUG):print (header)

if(FILE):f.write(header+"\n")

while(1):

​
data=myData.getNew()

​
counter+=1

​
body=(FORMATBODY%(counter,timestamp(),

​
 ​
 ​
 ​
 data[0],data[1],data[2],data[3]))

​
if(DEBUG):print (body)

if(FILE):f.write(body+"\n")

​
time.sleep(0.1)

try:

main()

finally:

f.close()

#End

Now on to creating a script for graphing the data that has been logged (captured). Let’s name this script as graph_log.py
. The contents of this script are shown below.

#!/usr/bin/Python3

#graph_log.py

import numpy as np

import matplotlib.pyplot as plt

filename = "data.log"

OFFSET=2

with open(filename) as f:

header = f.readline().split('\t')

data = np.genfromtxt(filename, delimiter='\t', skip_header=1,

​
 ​
 ​
names=['sample', 'date', 'DATA0',

​
 ​

'DATA1', 'DATA2', 'DATA3'])

fig = plt.figure(1)

ax1 = fig.add_subplot(211)#numrows, numcols, fignum

ax2 = fig.add_subplot(212)

ax1.plot(data['sample'],data['DATA0'],'r',

​
 label=header[OFFSET+0])

ax2.plot(data['sample'],data['DATA1'],'b',

​
 label=header[OFFSET+1])

ax1.set_title("ADC Samples")

ax1.set_xlabel('Samples')

ax1.set_ylabel('Reading')

ax2.set_xlabel('Samples')

ax2.set_ylabel('Reading')

leg1 = ax1.legend()

leg2 = ax2.legend()

plt.show()

#End

Now let’s briefly discuss and understand how these two Python scripts work.

To put it simply, the adc_log.py
 script gathers the analog data and then logs it into a log file. In order to collect analog data, we would either need to use an ADC device connected to the system or use local system data of the Raspberry Pi. The ADC device is used with the script by importing the adc_data.py
 module (demonstrated at the beginning of this chapter) as dataDevice
. If you’re using the local system information as analog data, then all you need to do is simply import the local_data.py
 module as dataDevice
. We can change the order of the channels according to our preference by using the numbers that have been provided to VAL0
 through VAL3
.

Moreover, we also defined the ‘format string’ to be used in the log file (for headers and each line) by using “%s, %d, %f.”
 This gives us the ability to swap out the corresponding string, integer, and float values in the log file, as shown in the table below. By doing this, we essentially created a properly formatted log file, i.e., the data is separated by tabs.

	
	
Time Stamp

	

0:

Light

	

1:

Temperature

	

2:

External

	

3:

Potentiometer

	
1

	
2020-09-13
18:44:23

	
202.00000

	
219.00000

	
144.00000

	
260.00000

	
2

	
2020-09-13 18:44:24

	
202.00000

	
219.00000

	
156.00000

	
260.00000

	
3

	
2020-09-13 18:44:25

	
202.00000

	
219.00000

	
112.00000

	
260.00000

	
4

	
2020-09-13 18:44:26

	
202.00000

	
219.00000

	
120.00000

	
260.00000

	
5

	
2020-09-13 18:44:27

	
202.00000

	
219.00000

	
126.00000

	
260.00000

(Table of data captured from the ADC sensor module)

Now let’s discuss the second script, which reads the table of data generated in the log file and generates a graph reflecting the values of the captured data. According to the table shown above, the graph_log.py
 script will produce the following graph

[image:]

This graph created by the graph_log.py
 script reflects the analog
data collected from the ADC module’s light and temperature sensors.

Using an I/O Expander to Extend the Raspberry Pi GPIO

By now, we have demonstrated the connection of multiple devices to the I2C bus on the Raspberry Pi. In this section, we will discuss the way through which we can extend the GPIO of the Raspberry Pi by using the I2C bus. By doing this, we will have more I/O space to work with as well as obtaining additional circuit protection.

If you look around the market, you’ll find that several devices allow I/O expansion over the I2C bus. Currently, the most popular device for this task is the ‘MCP23017
’ chip, which is basically a 28-pin device. When connected, this device offers up to 16 additional I/O pins for use. Since this module is an I2C device, it only needs two signals, i.e., SCL, and SDA along with ground and power connections to work. This device is also compatible with the other devices connected to the I2C bus as well (meaning that it won’t cause any complications with the working of the other I2C devices).

For demonstration purposes, we will be using an “Adafruit I2C 16x2 RGB LCD Pi Plate” that uses the MCP23017 chip. Making use of this chip, the Adafruit device can control the Alphanumeric LCD as well as the keypad through the I2C bus. For comparison, if we do not use an I/O expander, this device would use up 15 GPIO pins.

Now let’s begin with the exercise. First and foremost, we will need the Adafruit I2C 16x2 RGB LCD Pi Plate.

Adafruit directly connects to the GPIO header of the Raspberry Pi. We can also use the ADC module with this device or even the local_data.py
 script. But keep in mind that if you’re using the PCF8591 module or the local_data.py
 with Adafruit, you need to put their corresponding scripts into the same directory in which we’ll put the script for Adafruit.

Let’s name the script we are going to create as lcd_i2c.py
. The contents of this script are shown below.

#!/usr/bin/Python3

#lcd_i2c.py

import wiringpi2

import time

import datetime

import local_data as dataDevice

AF_BASE=100

AF_E=AF_BASE+13; ​
AF_RW=AF_BASE+14; ​
AF_RS=AF_BASE+15

AF_DB4=AF_BASE+12; ​
AF_DB5=AF_BASE+11; ​
AF_DB6=AF_BASE+10

AF_DB7=AF_BASE+9

AF_SELECT=AF_BASE+0; AF_RIGHT=AF_BASE+1; ​
AF_DOWN=AF_BASE+2

AF_UP=AF_BASE+3; AF_LEFT=AF_BASE+4; AF_BACK=AF_BASE+5

AF_GREEN=AF_BASE+6; AF_BLUE=AF_BASE+7;
AF_RED=AF_BASE+8

BNK=" "*16 #16 spaces

def gpiosetup():

​
global lcd

​
wiringpi2.wiringPiSetup()

​
wiringpi2.mcp23017Setup(AF_BASE,0x20)

​
wiringpi2.pinMode(AF_RIGHT,0)

​
wiringpi2.pinMode(AF_LEFT,0)

wiringpi2.pinMode(AF_SELECT,0)

​
wiringpi2.pinMode(AF_RW,1)

​
wiringpi2.digitalWrite(AF_RW,0)

​
lcd=wiringpi2.lcdInit(2,16,4,AF_RS,AF_E,

​
 ​
 ​
 AF_DB4,AF_DB5,AF_DB6,AF_DB7,0,0,0,0)

def printLCD(line0="",line1=""):

​

wiringpi2.lcdPosition(lcd,0,0)

​
wiringpi2.lcdPrintf(lcd,line0+BNK)

​
wiringpi2.lcdPosition(lcd,0,1)

​
wiringpi2.lcdPrintf(lcd,line1+BNK)

def checkBtn(idx,size):

​
global run

​
if wiringpi2.digitalRead(AF_LEFT):

​
 idx-=1

​
 printLCD()

​
elif wiringpi2.digitalRead(AF_RIGHT):

​
 idx+=1

​
 printLCD()

​
if wiringpi2.digitalRead(AF_SELECT):

​
 printLCD("Exit Display")

​

 run=False

​
return idx%size

def main():

​
global run

gpiosetup()

​
myData = dataDevice.device()

​
myDataNames=myData.getName()

​
run=True

​
Index=0

​
while(run):

​
 data=myData.getNew()

​
 printLCD(myDataNames[index],str(data[index]))

​
 time.sleep(0.2)

​
 index = checkBtn(index,len(myDataNames))

main()

#End

Connect the module and run the script by entering the following command in the command line terminal.

sudo Python3 lcd_i2c.py

Once the command has been executed, use the left and right buttons on the module’s keypad to switch between the data channels you want the module to display, and for exiting, just use the ‘select’ button on the module’s keypad.

Let’s briefly discuss how this script actually interacts with the MCP23017 module. We should appreciate the wiringPi2
 library because it offers some much-needed support for chips that expand the I/O, which is exactly what the chip in the Adafruit module is doing. Before we could use the module itself, we first needed to define the pin mapping for the MCP23017’s portA and portB pins, according to the table shown below.

	
Name

	
Select

	
Right

	
Down

	
Up

	
Left

	
Green

	
Blue

	
Red

	
MCP23017
portA

	
A0

	
A1

	
A2

	
A3

	
A4

	
A6

	
A7

	
A8

	
WiringPiPin

	
100

	
101

	
102

	
103

	
104

	
106

	
107

	
108

Similarly, the pin mapping for MCP23017’s portB pins is according to the following table.

	
Name

	
DB7

	
DB6

	
DB5

	
DB4

	
E

	
RW

	
RS

	
MCP23017 portB

	
B1

	
B2

	
B3

	
B4

	
B5

	
B6

	
B7

	
WiringPiPin

	
109

	
110

	
111

	
112

	
113

	
114

	
115

We use the wiringPiSetup() and mcp23017Setup() functions to set up the LCD and the I/O expander, respectively.

Chapter Six

Creating Graphical User Interfaces

and Automating Tasks with Python

[image:]

In this chapter, we will be learning how to create basic graphical user interfaces for different purposes. This can help a lot when building Raspberry Pi projects, and you’ll even see its extensive use in the upcoming chapter as well. Simply working with command-line interfaces for the project is not intuitive at all. If anything, the whole project seems bland and nerdy. Graphical User Interfaces make handling a project easier, intuitive, and fun. Moreover, providing input and obtaining feedback from a script we programmed just feels more natural with a GUI. Hence, there’s no reason as to why we should only limit ourselves to using the command-line interface when we could extend the functionality and interactive capability of our Raspberry Pi projects manifold.

Python offers extensive support for building graphical user interfaces by offering pre-built objects that provide a standard set of controls. One of the notable Python modules for such tasks is Tkinter
. This module offers a good variety of controls and tools that will suffice for the majority of the Raspberry Pi project’s graphical needs.

In this chapter, we will be discussing the following topics.

•
Using the Tkinter module to create Graphical User Interfaces

•
Programming a graphical application

•
Displaying images within an application

•
Automatically organizing photos

Using the Tkinter Module to Create Graphical User Interfaces

The reason why you see many of the codes reused in this book is that this is a good coding practice. Usually, good code is defined by its versatility, with which it can be reused in many other code modules.

Moving on, we will be reusing the caesarcypher.py
 script we created in the second chapter of this book. The goal of this exercise is to create a graphical user interface that will allow the user to enter a text message. By using the interface, the user can then choose to encrypt or decrypt this inputted message.

Before we can proceed with creating the script for the GUI in Python, we must first make sure that the script we want to reuse as a module is present in the same directory as the script we are about to create. In other words, whenever you are reusing code, make sure both the reusable code and the new code scripts are kept in the same folder directory.

Tkinter is installed by default on the Raspberry Pi OS; however, if it is not installed, then you must first install it through the command terminal.

sudo apt-get install Python3-tk

Remember that the command line does not have the capability of displaying the graphical elements we are about to create. So make sure that the Raspberry desktop is up and running (by using the command startx
).

Making the GUI Script in Python

We will be creating a GUI for the caesarcypher.py
 script and also use the encryption and decryption functions defined in it. Let’s name this GUI script as caesarcypherGUI.py
 and proceed with the
coding as shown below.

#!/usr/bin/Python3

#caesarcypherGUI.py

import caesarcypher as ENC

import tkinter as TK

def encryptButton():

encryptvalue.set(ENC.encryptText(encryptvalue.get(),

​
 ​
 ​
 ​
 ​
 keyvalue.get()))

def decryptButton():

encryptvalue.set(ENC.encryptText(encryptvalue.get(),

​
 ​
 ​
 ​
 ​
 -keyvalue.get()))

#Define Tkinter application

root=TK.Tk()

root.title("Encrypt/Decrypt GUI")

#Set control & test value

encryptvalue = TK.StringVar()

encryptvalue.set("My Message")

keyvalue = TK.IntVar()

keyvalue.set(20)

prompt="Enter message to encrypt:"

key="Key:"

label1=TK.Label(root,text=prompt,width=len(prompt),bg='green')

textEnter=TK.Entry(root,textvariable=encryptvalue,

​
 ​
​
 width=len(prompt))

encryptButton=TK.Button(root,text="Encrypt",command=encryptButton)

decryptButton=TK.Button(root,text="Decrypt",command=decryptButton)

label2=TK.Label(root,text=key,width=len(key))

keyEnter=TK.Entry(root,textvariable=keyvalue,width=8)

#Set layout

label1.grid(row=0,columnspan=2,sticky=TK.E+TK.W)

textEnter.grid(row=1,columnspan=2,sticky=TK.E+TK.W)

encryptButton.grid(row=2,column=0,sticky=TK.E)

decryptButton.grid(row=2,column=1,sticky=TK.W)

label2.grid(row=3,column=0,sticky=TK.E)

keyEnter.grid(row=3,column=1,sticky=TK.W)

TK.mainloop()

#End

Understanding the Script

We began by important two modules. The first one is the caesarcypher
 module, while the second one is the Tkinter
 module. In this script, we used tags to highlight the source of the items, i.e., ENC for the caesarcypher
 module, and TK for the Tkinter
 module.

Here’s the graphical user interface displayed when we execute the caesarcypherGUI
.py
 Python script.

[image:]

When we click on the ‘Encrypt’ button, the encryptButton()
 function is called upon by the application. Similarly, when we click on the ‘
Decrypt’ button, the decryptButton()
 function is called upon by the application.

The GUI window you see is made by using the Tk()
 command. In this GUI, we defined a total of 6 controls in the script which are as follows;

•
Label:
 This displays the highlighted message as shown in the GUI window above, i.e., “Enter message to encrypt:”

•
 Entry:
 This provides a space for user input. In simpler terms, this defines the textbox in which the user enters his message.

•
 Button:
 We define two buttons in the GUI. The first is the ‘Encrypt’ button, which instructs the GUI to encrypt the input message.

•
Button:
 This is the second button, which is the ‘Decrypt’ button. This button triggers the decryption process.

•
 Label:
 This is displays the subheading of the last textbox, i.e., “Key:
.” The purpose of this label is to inform the user that he needs to specify the value of the encryption key in this textbox.

•
 Entry:

This creates another textbox which we used for taking in the input encryption key value and using it.

All of these controls combined define the elements of the GUI shown above. These elements are also known as widgets of the Tkinter window.

After defining the appropriate widgets for the Tkinter window, we need to position them as well. In other words, we need to define a layout for the widgets as well. In Tkinter, layouts can be defined in mainly three ways, i.e.;

	

Place Layout:
 This layout allows the user to define the exact pixel point location to place the widget in. In short, we can precisely define the position and size of the widgets.

	

Pack Layout:
 This layout considers the order in which you have added the items (or widgets) in the Tkinter
 command and then places those items in the GUI window in the same order.

	

Grid Layout:
 This layout provides the user with the ability to position the items or widgets in the GUI window according to a particular layout.

When it comes to asking which layout is the best one to use, then it all depends on the size and complexity of the GUI you are creating. Although, many people recommend that the place layout
 should always be avoided as adjusting an item on the GUI will also directly affect the placement of the other items as well. In other words, even when you make a small change, it will disrupt the position of all the other items as well. The reason as to why the other layouts do not exhibit this behavior is because they determine the position of each item relative to the other items on the layout.

The GUI window shown above uses the grid layout method for arranging the items. Here’s a depiction of how it was done.

[image:]

The positional placement of the first two widgets on the GUI window has been set by using the following lines of code.

label1.grid(row=0,columnspan=2,sticky= TK.E+TK.W)

textEnter.grid(row=1,columnspan=2,sticky= TK.E+TK.W)

By looking at this way the first line of code specifies the position of the first ‘Entry’ and ‘Label’ elements, we come to know that by using the columnspan=2
 argument, both the label and entry boxes will take up space from both the columns. Moreover, the sticky
 values (sticky= TK.E+TK.W
) basically make sure that the boxes take up all the space right up to the edges. Note that since we are setting the label and entry boxes in a horizontal position, the direction specified in the sticky argument is TK.E
 and TK.W
, i.e., east and west. However, if we were to position something vertically on the GUI, then we would use the TK.N
 (North) and TK.S
 (South) directions. Moreover, if we do not define the column value, then it is defaulted to ‘0’. The same is the case with other values as well.

Lastly, we defined the TK.mainloop()
 function, which, when called, enables the Tkinter to run. By doing this, Tkinter stays active and monitors the buttons confirming whether they are clicked or not, and if they are indeed clicked, then Tkinter calls the functions
that are linked to the clicked buttons.

Programming a Graphical Application

In this section, we will tinker around with Tkinter objects in order to create custom controls and program a graphical application with these controls. In this exercise, we will be programming a basic start menu with a GUI made up of Tkinter objects and custom controls. So let’s get right into this exercise.

Programming the Script

Remember that we need the Raspberry Pi connected to an external display and running the Raspberry Dekstop in order to see the Graphical User Interface and interact with it.

We will name the script for the graphical start menu application as GUImenu.py.
 The script is going to be programmed as shown below.

#!/usr/bin/Python3

GUImenu.py

import tkinter as tk

from subprocess import call

import threading

#Define applications ["Display name","command"]

leafpad = ["Leafpad","leafpad"]

scratch = ["Scratch","scratch"]

pistore = ["Pi Store","pistore"]

app_list = [leafpad,scratch,pistore]

APP_NAME = 0

APP_CMD = 1

class runApplictionThread(threading.Thread):

def __init__(self,app_cmd):

threading.Thread.__init__(self)

self.cmd = app_cmd

def run(self):

​
 #Run the command, if valid

​
 try:

​

 call(self.cmd)

​
 except:

​
 ​
print ("Unable to run: %s" % self.cmd)

class appButtons:

​
def __init__(self,gui,app_index):

​
 #Add the buttons to window

btn = tk.Button(gui, text=app_list[app_index][APP_NAME],

​
 ​
 ​
 width=30, command=self.startApp)

​
 btn.pack()

​
 self.app_cmd=app_list[app_index][APP_CMD]

​
def startApp(self):

​
 print ("APP_CMD: %s" % self.app_cmd)

​
 runApplictionThread(self.app_cmd).start()

root = tk.Tk()

root.title("App Menu")

prompt = ' Select an application '

label1 = tk.Label(root, text=prompt, width=len(prompt), bg='green')

label1.pack()

#Create menu buttons from app_list

for index, app in enumerate(app_list):

appButtons(root,index)

#Run the tk window

root.mainloop()

#End

By executing the code within this Python script, the following GUI window is generated.

[image:]

Understanding the Script

If you look at this GUI application, you’ll see that there are no text boxes or fields to enter any messages. As such, the main focus of this script is to create a Tkinter window (the same one as before in the previous section) and define an entire class of items in one swoop. There’s no need to define every single widget or item here.

By creating a class, we essentially create a blueprint that includes all of the items we want the appButtons
 variable to include. Each appButtons
 item displayed in the GUI start menu application has three major components;

•
String value for app_cmd

•
 A startApp()
 function (so that when a button is pressed, it triggers the execution of the application linked to the button)

•
An _init_()
 function (also known as a constructor)

By using the _init_()
 function when making the appButtons
 item, we are not limited to a specific setup that we have to follow. Instead, we can create any setup we like. For example, in this GUI window, the _init_()
 function allows us to make a Tkinter button that has its text correspond to an item in the app_list
. This means that we can set the name of an application (present in the app_list) as the text for the button. When the button is clicked, the startApp()
 function is triggered, and the corresponding application is run.

Note that if we start an application through this GUI start menu
application, then the Tkinter window will freeze up. Unless we close the application opened through the start menu, the menu window will stay frozen. In order to rectify this, we need to use the threading module in Python, which will enable us to work with multiple applications open at the same time. For this purpose, we create a separate class based on the threading.Thread
 (using it as a template) in Python. The result is that we get the runApplicationThread()
 class. In other words, the runApplicationThread()
 class incorporates all of the features of the template and turns it into a new class. Another point to take note of is that this new class has the _init_() function, the same as any other class does.

First, we call upon the _init_()
 function of the template class to make sure that it is properly set up. After that, we proceed to store the value of app_cmd
 inside self.cmd
. Once the runApplicationThread()
 function has been generated and initialized, then we call upon the start()
 function. Again, this function is a feature and part of the class we used as a template (threading.Thread)
.

Once the start()
 function has been called by the script, another application thread is created separately for the application we want to run from the GUI menu. In this way, the Tkinter window will be able to continue its job of monitoring the state of the buttons, detecting if they are clicked, and then appropriately responding, while also executing the run()
 function within the class as well.

In this way, we can put the code that will run the corresponding application inside the run()
 function by using the call(self.cmd)
.

Displaying Images within a GUI Application

In this section, we will discuss the way through which we can display images within an application. To do this, we will need to create a utility class. This class will be responsible for handling photos. Applications will use this utility class as a module in order to access
the metadata of the Image. Thus, the specified application using this class will be able to show a preview of the image.

Preparing for the Exercise

Before we can proceed to create and code a Python script for displaying images within an application, we need to make sure that we have the necessary tools and other software components in place. Follow these steps to get ready for the exercise.

	
The script that we are going to use in this section for displaying images within an application requires modules and functions available in the Python Image Library. However, this library is not compatible with Python 3. Instead, we will be using Pillow as a substitute for this library in Python 3. By default, the Raspberry Pi OS does not include Pillow. So we need to make sure that it is installed on the system before we can proceed to create the script. Install Pillow using the Python Package Manager (PIP).

	
In order to install packages for Python 3, we need to install the version of PIP that is compatible with Python 3 as well. Open the command-line interface and use the following commands to install Python 3 PIP.

sudo apt-get update

sudo apt-get install Python3-pip

	
However, PIP is still not ready to use for our task. We need to install libjpeg-dev
 as well so that Pillow will be able to handle image files that are in the JPEG format. Use the following command to install libjpeg-dev

sudo apt-get install libjpeg-dev

	
Now, we will proceed to install Pillow. To do this, we will use a PIP command that is shown below.

sudo pip-3.2 install pillow

	
We will now confirm whether Pillow has been properly installed or not. To do this, we will run Python 3 and use the following commands.

>>>import PIL

>>>help(PIL)

If no error message prompts and the terminal shows the ‘help’ information of Pillow, then this means that we have successfully installed Pillow. We are now ready to create and code the script in Python.

Coding the Script

We will now create a script named ‘imagehandler.py
’ that will give the application the ability to display images. The lines of code used in this script are shown below.

##!/usr/bin/Python3

#imagehandler.py

from PIL import Image

from PIL import ExifTags

import datetime

import os

#set module values

previewsize=240,240

defaultimagepreview="./preview.ppm"

filedate_to_use="Exif DateTime"

#Define expected inputs

ARG_IMAGEFILE=1

ARG_LENGTH=2

class Photo:

​
def __init__(self,filename):

​
 """Class constructor"""

​
 self.filename=filename

​
 self.filevalid=False

​
 self.exifvalid=False

​
 img=self.initImage()

​
 if self.filevalid==True:

​
 ​
 self.initExif(img)

​
 ​
 self.initDates()

​
def initImage(self):

​
 """opens the image and confirms if valid, returns Image"""

​
 try:

​
 ​

 img=Image.open(self.filename)

​
 self.filevalid=True

except IOError:

​
 ​
 print ("Target image not found/valid %s" %

​
 ​
 ​
 ​
(self.filename))

​
 ​
 img=None

​
 ​
 self.filevalid=False

​
 return img

​
def initExif(self,image):

​
 """gets any Exif data from the photo"""

​
 try:

​
 ​
 self.exif_info={

​
 ​
 ​
ExifTags.TAGS[x]:y

​
 ​
 ​
for x,y in
image._getexif().items()

​
 ​
 ​
if x in ExifTags.TAGS

​
 ​
 }

​
 self.exifvalid=True

​
 except AttributeError:

​
 ​
 print ("Image has no Exif Tags")

​
 ​
 self.exifvalid=False

def initDates(self):

​
 """determines the date the photo was taken"""

​
 #Gather all the times available into YYYY-MM-DD format

​
 self.filedates={}

​
 if self.exifvalid:

​
 ​
 #Get the date info from Exif info

​
 ​

 exif_ids=["DateTime","DateTimeOriginal",

​
 ​
 ​
 ​
 "DateTimeDigitized"]

​
 ​
 for id in exif_ids:

​
 ​
 ​
dateraw=self.exif_info[id]

​
 ​
 ​
self.filedates["Exif "+id]=

​
 ​
 ​
 ​
 ​
 dateraw[:10].replace(":","-")

​
 modtimeraw = os.path.getmtime(self.filename)

​
 self.filedates["File ModTime"]="%s" %

​
 ​
 datetime.datetime.fromtimestamp(modtimeraw).date()

​
 createtimeraw = os.path.getctime(self.filename)

​
 self.filedates["File CreateTime"]="%s" %

​
 ​

datetime.datetime.fromtimestamp(createtimeraw).date()

def getDate(self):

​
 """returns the date the image was taken"""

​
 try:

​
 date = self.filedates[filedate_to_use]

​
 except KeyError:

​
 ​
 print ("Exif Date not found")

​
 ​
 date = self.filedates["File ModTime"]

​
 return date

def previewPhoto(self):

​
 """creates a thumbnail image suitable for tk to display"""

​
 imageview=self.initImage()

​
 imageview=imageview.convert('RGB'
)

imageview.thumbnail(previewsize,Image.ANTIALIAS)

​
 imageview.save(defaultimagepreview,format='ppm')

​
 return defaultimagepreview

Understanding the Script

In this script, you will see the use of the class Photo.
 This is a general class that has been defined to generate previews of images. The Photo
 class not only includes information about itself but it also features functions through which it can access EXIF (also known as Exchangeable Image File Format) information. The preview of an image is generated by the class using this information.

This class also includes the _init_()
 function. In this function, we define appropriate values for the corresponding class variables. In addition, the application can access and display the image by using the Image()
 function from the PIL. This is only possible because after defining the class variables, we call upon the selfinitImage()
 function. To validate the image file, we call upon the self.initExif()
 and the self.initDates()
 functions that will check the validity of the specified image file and set a flag accordingly. If the image file turns out to be invalid, then an IOerror
 exception is raised by the Image()
 function telling the user about the image’s validity.

From the code snippet shown below, we can see the interaction of the initExif()
 function with the img
 object. The function reads the EXIF data of the object with the help of PIL.

self.exif_info={

​
 ​

 ExifTags.TAGS[id]:y

​
 ​
 for id,y in image._getexif().items()

​
 ​
 if id in ExifTags.TAGS

​
 }

In the lines of code shown above, the ExifTag.TAGS
 is basically a dictionary. It consists of a list made up of possible tag names. These tag names are also linked with their respective IDs as well. For example, consult the code snippet shown below.

ExifTag.TAGS={

4096: 'RelatedImageFileFormat',

513: 'JpegIFOffset',

514: 'JpegIFByteCount',

40963: 'ExifImageHeight',

…etc…}

The image._getexif() function returns a dictionary that contains all the values set by the camera of the image, each linked to their
relevant IDs. This can be easily observed by analyzing the code snippet shown below, taken from the script.

Image._getexif()={

256: 3264,

257: 2448,

37378: (281, 100),

36867: '2013:02:04 09:12:16',

…etc…}

We then cross-check the items by iterating through the dictionary of EXIF values of the image with its occurrence in the dictionary of ExifTags.TAGS
. The result obtained from this cross-checking is then stored into the self.exif_info
 variable. This entire process is outlined in the code snippet shown below.

self.exif_info={

'YResolution': (72, 1),

'ResolutionUnit': 2
,

'ExposureMode': 0,

'Flash': 24,

…etc…}

The result will make it clear if the EXIF data is valid or invalid. If there are no exceptions to be found, then a flag is set to point to the fact that the EXIF data is indeed valid. Similarly, if there is no EXIF data to be found, then it is flagged as invalid, and an AttributeError
 exception is returned.

Here is a table that shows functions found within the Photo
 class we created in this script, along with the description of each function.

	
Function

	
Description

	
__init__(self,filename)

	
This the function which initializes the object

	
initImage(self)

	
This function returns the img
 object which is actually a PIL-type image object

	
initExif(self,image)

	
This function basically searches the EXIF dictionary for corresponding EXIF information, and if it finds one, it extracts it from the dictionary

	
initDates(self)

	
This function generates a dictionary that contains information of the photo,
along with all of the dates that are available in the file

	
getDate(self)

	
This function fetches the date on which the photo was generated and then creates a string value corresponding to this date

	
previewPhoto(self)

	
This function fetches the name of the photo file that is being previewed as a thumbnail and creates a string value for corresponding to the filename.

Here’s a table showcasing the properties of the Photo
 class along with their respective descriptions.

	
Properties

	
Description

	
self.filename

	
This is the filename of the image

	
self.filevalid

	
If the image file is successfully opened, then this is set to a ‘TRUE’ state

	
self.exifvalid

	
If the image file contains EXIF information, then this is set to a ‘TRUE’ state

	
self.exif_info

	
The EXIF information of the image file is contained here

	
self.filedates

	
This contains a dictionary of the available dates from the file and image information

Testing this Newly Created Photo Class

We will now use the Photo
 class with a test code to see if everything is working as it is supposed to. To confirm whether the module is being used executed or not, we can simply use the _name_=“_main_”
 attribute.

To proceed with the testing, we will simply add the test code shown below into the ending section of the imagehandler.py
 script that we created a short while ago. After that’s said and done, we will be greeted with a test application that looks something like this.

[image:]

Here’s the code that we are supposed to add at the end of the imagehandler.py
 script.

#Module test code

def dispPreview(aPhoto):

​
"""Create a test GUI"""

​

import tkinter as TK

​
#Define the app window

​
app = TK.Tk()

​
app.title("Photo View Demo")

​
#Define TK objects

​
create an empty canvas object the same size as the image

​
canvas = TK.Canvas(app, width=previewsize[0],

​
 ​
 ​
 ​
 height=previewsize[1])

​
canvas.grid(row=0,rowspan=2)

​
Add list box to display the photo data

#(including xyscroll bars)

​
photoInfo=TK.Variable()

​
lbPhotoInfo=TK.Listbox(app,listvariable=photoInfo,

​
 ​
 ​
 ​

height=18,width=45,

​
 ​
 ​
 ​
 font=("monospace",10))

​
yscroll=TK.Scrollbar(command=lbPhotoInfo.yview,

​
 ​
 ​
​
 orient=TK.VERTICAL)

​
xscroll=TK.Scrollbar(command=lbPhotoInfo.xview,

​
 ​
 ​
 ​
 orient=TK.HORIZONTAL)

​
lbPhotoInfo.configure(xscrollcommand=xscroll.set,

​
 ​
 ​
 ​
 yscrollcommand=yscroll.set)

​
lbPhotoInfo.grid(row=0,column=1,sticky=TK.N+TK.S)

yscroll.grid(row=0,column=2,sticky=TK.N+TK.S)

​
xscroll.grid(row=1,column=1,sticky=TK.N+TK.E+TK.W)

​
Generate the preview image

​

preview_filename = aPhoto.previewPhoto()

​
photoImg = TK.PhotoImage(file=preview_filename)

​
anchor image to NW corner

​
canvas.create_image(0,0, anchor=TK.NW, image=photoImg)

​
Populate infoList with dates and exif data

​
infoList=[]

​
for key,value in aPhoto.filedates.items():

​
 ​
infoList.append(key.ljust(25) + value)

​
if aPhoto.exifvalid:

​
 ​
for key,value in aPhoto.exif_info.items():

​
 ​
 ​
infoList.append(key.ljust(25) + str(value))

​
Set listvariable with the infoList

​
photoInfo.set(tuple(infoList))

app.mainloop()

def main():

​
"""called only when run directly, allowing module testing"""

​
import sys

​
#Check the arguments

​
if len(sys.argv) == ARG_LENGTH:

​
 ​
print ("Command: %s" %(sys.argv))

​
 ​
#Create an instance of the Photo class

​
 ​
viewPhoto = Photo(sys.argv[ARG_IMAGEFILE])

​
 ​
#Test the module by running a GUI

​
 ​
if viewPhoto.filevalid==True:

​
 ​
 ​
dispPreview(viewPhoto)

​
else:

​
 ​
 ​

print ("Usage: photohandler.py imagefile")

if __name__=='__main__':

main()

#End

The test code shown above is used with the Photo
 class we defined in the imagehandler.py
 script. The test code executes the main()
 function in order to create another Photo
 object named as viewPhoto
 from the filename of the image. If the code successfully opens the viewPhoto
 object, then it calls upon the dispPreview()
 that will display the image along with its corresponding details.

Organizing Photos Automatically

The information gathered about photos can be brought to use in performing valuable tasks. The same information can be purposefully used in organizing a complete folder of photos automatically. The folders will contain subfolders organized based on the date the photos were captured. The output script is shown in the following screenshot:

[image:]

Making the Preparations

A folder containing the selected photos that need to be organized requires placement in a Raspberry Pi folder. If the photos are not placed in the Raspberry Pi folder, then another way is to use an external memory device containing photos, i.e., either a card reader or a USB device. The external memory device can be located under the name /mnt/. It is necessary to make the scripts be tested first with a copy of the photos so that any error or problems can be identified beforehand.

Making the Script

We will create the filehandler.py
 script to perform the task of organizing photos.

#!/usr/bin/Python3

#filehandler.py

import os

import shutil

import photohandler as PH

from operator import itemgetter

FOLDERSONLY=True

DEBUG=True

defaultpath=""

NAME=0

DATE=1

class FileList:

def __init__(self,folder):

​
"""Class constructor"""

​
self.folder=folder

​
self.listFileDates()

def getPhotoNamedates(self):

​

"""returns the list of filenames and dates"""

​
return self.photo_namedates

def listFileDates(self):

​
"""Generate list of filenames and dates"""

​
self.photo_namedates = list()

​
if os.path.isdir(self.folder):

​
 for filename in os.listdir(self.folder):

​
​
 if filename.lower().endswith(".jpg"):

​
 ​
 aPhoto = PH.Photo(os.path.join(self.folder,filename))

​
 if aPhoto.filevalid:

​
 ​
 ​
 if (DEBUG):print("NameDate: %s %s"%

​
 ​
 ​
 ​
 ​
 ​
 (filename,aPhoto.getDate()))

​
 ​
 ​

self.photo_namedates.append((filename,

​
 ​
 ​
 ​
 ​
 ​
 ​
 aPhoto.getDate()))

​
 ​
 ​
 self.photo_namedates = sorted(self.photo_namedates,

​
 ​
 ​
 ​
 ​
 ​
 ​
key=lambda date: date[DATE])

def genFolders(self):

"""function to generate folders"""

​
for i,namedate in enumerate(self.getPhotoNamedates()):

​
 #Remove the - from the date format

​
 new_folder=namedate[DATE].replace("-","")

​
 newpath = os.path.join(self.folder,new_folder)

​
 #If path does not exist create folde
r

if not os.path.exists(newpath):

​
 ​
if (DEBUG):print ("New Path: %s" % newpath)

​
 ​
os.makedirs(newpath)

​
 if (DEBUG):print ("Found file: %s move to %s" %

​
 ​
 ​
​
 (namedate[NAME],newpath))

​
 src_file = os.path.join(self.folder,namedate[NAME])

​
 dst_file = os.path.join(newpath,namedate[NAME])

​
 try:

​
 if (DEBUG):print ("File moved %s to %s" %

​
 ​
 ​
 ​
 ​
(src_file, dst_file))

​
 ​
if (FOLDERSONLY==False):shutil.move(src_file, dst_file)

​

 except IOError:

​
 print ("Skipped: File not found")

def main():

"""called only when run directly, allowing module testing"""

import tkinter as TK

​
from tkinter import filedialog

​
app = TK.Tk()

​
app.withdraw()

​
dirname = TK.filedialog.askdirectory(parent=app,

​
 ​
initialdir=defaultpath,

​
 ​
title='Select your pictures folder')

​
if dirname != "":

​
 ​
ourFileList=FileList(dirname)

​
 ​

ourFileList.genFolders()

if __name__=="__main__":

main()

#End

Understanding the Script

A class called FileList is required to be made, this brings the Photo class into use, and with the help of it manages pictures inside a specific folder.

This procedure consists of two steps:

The first step is locating all the photos in the folder, making a list having the filename and date of the photo. Based on this info, the user can create new subfolders for the placement of pictures within them.

Upon creation of the FileList object, the list is developed employing the listFileDates()
 function. The user then is required to confirm the validity of the provided folder and also that it employs os.listdir for acquiring the complete list of files from the directory. Using the function given in the Photo class, the user then will check each file for its format being .jpg and also get their respective dates.

Moving forward, the user will add date and filename of the photos as a tuple to the self.photo_namedates
 list.

Ultimately, the built-in sorted function is used to keep files according to their dates. This function allows the user to easily identify and eliminate duplicate dates for using the module in another place. Even though this task is not required to be performed
here, it is an added benefit.

After initiation of the FileList object, it is used through genFolders() functions.

Firstly, the date text is required to be converted into a suitable format for the folders, e.g. (YYYYMMDD). This formatting will enable easy categorization of the folders according to their date. Moving further, if there aren’t any folders within the current directory, they will be created, and lastly, each of the files is moved within the particular subfolders.

Now the FileList class is ready for testing:

	
Operation

	
Description

	
__init__(self,folder)

	
This function is object initialization

	
getPhotoNamedates(self)

	
A list of the filenames of the dates of the photos is returned by it

	
listFileDates(self)

	
A list of the filenames and dates of the photos in the folder are created by it

	
genFolders(self)

	
New folders are created by it, based on a photo's recorded date, and files
are moved into them

Some of the properties and their description are given under:

	
Properties

	
Description

	
self.folder

	
The folder being worked with

	
self.photo_namedates

	
A list of the filenames and dates are contained in it

[image:]

For selecting photo directory use Tkinter filediaglog.askdirectory() function

Tkinter filedialog.askdirectory()
 widget enables a user to choose a particular directory containing pictures to test this. As the Tkinter window is not required for the time, it is hidden using the app.withdrawn()function
. To move all photos into another location, genFolders()
 is called via a new FileList
 object created for this purpose.

Once the user has run the script, the correct generation or validity of the folders can be checked. At the end of changing
FOLDERSONLY
 to True, the program will function automatically, and it will move and organize photos according to date the next time it is required. After completion of these steps, the user is advised to do a pilot with a copy of photos to identify any errors or problems.

Chapter Seven

Raspberry Pi Projects with

the Raspberry Pi Camera Module

[image:]

In this chapter, we will be focusing entirely on building Raspberry Pi projects involving the Raspberry Pi Camera Module. This module is basically an add-on that uses the CSI connector, which also known as the Camera Serial Interface connector. By using the CSI connector with the camera module, the GPU core of the Raspberry Pi becomes directly involved. In this way, the images are directly captured on to the system itself. Moreover, we will also be creating a somewhat simple and basic GUI to use with the camera module. This can be done by using the Tkinter
 library in Python.

The Raspberry Pi Camera Module is easily available on online shopping websites or from the retailer where you purchased the Raspberry Pi from.

In this chapter, we will cover the following aspects.

•
Setting up the Raspberry Pi Camera Module

•
Controlling the camera module with Python

•
Creating a time-lapse video

•
Creating a QR code reader

Setting Up the Raspberry Pi Camera Module

The first step is to install the Raspberry Pi Camera Module and setting it up. A camera Graphical User Interface (GUI) is then created; this allows the user to take photos and have a preview. A basic camera GUI for the Raspberry Pi camera module is shown below:

[image:]

Making the Preparations

Raspberry Pi Camera Module has a camera fitted to a Printed Circuit Board
 (PCB), which has a ribbon cable attached to it. The ribbon cable provides direct attachment to the CSI port on the Raspberry Pi Board. The CSI port marked as S5 is positioned in between the HDMI port and the USB port on the Raspberry Pi Board.

Detailed instruction and guidance through a video have been provided by the Raspberry Pi Foundation on installing the camera. This can be accessed through the given link:

http://www.raspberrypi.org/archives/3890

The steps to install the camera are given below:

	
Disconnect the Raspberry Pi from the power source first and then move towards the first step, i.e., fitting the camera.

Carefully lift the tab of the ribbon socket and loosen it to fit the ribbon cable into the CSI socket. Now insert the ribbon cable in the slot, the metal contacts should face towards the
HDMI port side. The ribbon cable needs to be handled with care so as not to fold or bend it. Before pushing the tab back in its place, make sure the ribbon is firmly in place in the socket.

	
Connect the power source back with the Raspberry Pi. To enable the software, update the system with the commands given below:

sudo apt-get update

sudo apt-get upgrade

	
The third and last step is enabling the camera via raspi-config
; this will have been updated during the upgrade process in step 2. Run the camera through raspi-config
; the Enable Camera
 menu entry allows the user to enable the camera. One enabled the system is triggered to reboot.

Testing the Camera

As a part of the upgrade, two programs are installed to test the camera; these are raspivid
 and raspistill.

“Raspistill”
 allows the user to test the camera by taking pictures. This can be done by the following command:

raspistill -o image.jpg -t 0 (
immediate pictures are taken by -t 0)

Whereas “raspivid
” allows the user to test the camera by taking a
short video of 10 seconds. The video format is H.264. The test can be performed by the following command:

raspivid -o video.h264 -t 10000 (
the value of time -t is in milliseconds hence the figure 10000)

Controlling the Camera Module with Python

In comparison to a standard web camera, the Raspberry Pi camera module is more advanced. Different applications can be used to leverage the functionality of the camera, e.g., it can be used as a QR code reader as well. The full access to controls and settings of the camera allows a user to create personalized applications.

Dve Hughes created picamera,
 which is a Python module to control the Raspberry Pi camera module. All the functions performed by the picamera
 are supported by raspistill
 and raspivid.

Making Preparations

This requires the preinstallation of the Raspberry Pi camera module. Additionally, the Python 3 Pillow Library is also required to be installed.

For installing picamera
 for Python 3 follow the given command:

sudo apt-get install Python3-picamera

Creating the Script

We will first need to create a script that will house the main class for the GUI. Let’s name this script as cameraGUI.py

#!/usr/bin/Python3

#cameraGUI.py

import tkinter as TK

from PIL import Image

import subprocess

import time

import datetime

import picamera as picam

class SET():

PV_SIZE=(320,240)

NORM_SIZE=(2592,1944)

NO_RESIZE=(0,0)

PREVIEW_FILE="PREVIEW.gif"

TEMP_FILE="PREVIEW.ppm"

class cameraGUI(TK.Frame):

def run(cmd):

​
print("Run:"+cmd)

​
subprocess.call([cmd], shell=True)

def camCapture(filename,size=SET.NORM_SIZE):

​
with picam.PiCamera() as camera:

​
 ​
camera.resolution = size

​
 ​
print("Image: %s"%filename)

​
 ​
camera.capture(filename)

def getTKImage(filename,previewsize=SET.NO_RESIZE):

​
 encoding=str.split(filename,".")[1].lower()

​
print("Image Encoding: %s"%encoding)

​
try:

​
 if encoding=="gif" and previewsize==SET.NO_RESIZE:

​
 ​

theTKImage=TK.PhotoImage(file=filename)

​
else:

​
 ​
 imageview=Image.open(filename)

​
 ​
 if previewsize!=SET.NO_RESIZE:

​
 ​
 imageview.thumbnail(previewsize,Image.ANTIALIAS)

​
 ​
imageview.save(SET.TEMP_FILE,format="ppm")

​
 ​
theTKImage=TK.PhotoImage(file=SET.TEMP_FILE)

except IOError:

​
print("Unable to get: %s"%filename)

return theTKImage

def timestamp():

ts=time.time(
)

tstring=datetime.datetime.fromtimestamp(ts)

return tstring.strftime("%Y%m%d_%H%M%S")

def __init__(self,parent):

self.parent=parent

TK.Frame.__init__(self,self.parent)

self.parent.title("Camera GUI")

self.previewUpdate = TK.IntVar()

self.filename=TK.StringVar()

self.canvas = TK.Canvas(self.parent,

​
 ​
 ​
 width=SET.PV_SIZE[0],

​
 ​
 ​
 ​
 height=SET.PV_SIZE[1])

self.canvas.grid(row=0,columnspan=4)

self.shutterBtn=TK.Button(self.parent,text="Shutter",

​
 ​
 ​
 ​

command=self.shutter)

self.shutterBtn.grid(row=1,column=0)

exitBtn=TK.Button(self.parent,text="Exit",

​
 ​
 ​
 command=self.exit)

exitBtn.grid(row=1,column=3)

previewChk=TK.Checkbutton(self.parent,text="Preview",

​
 ​
 ​
 ​
 ​
variable=self.previewUpdate)

previewChk.grid(row=1,column=1)

labelFilename=TK.Label(self.parent,

​
 ​
 ​
 textvariable=self.filename)

labelFilename.grid(row=2,column=0,columnspan=3)

self.preview()

def msg(self,text)
:

self.filename.set(text)

self.update()

def btnState(self,state):

self.shutterBtn["state"] = state

def shutter(self):

self.btnState("disabled")

self.msg("Taking photo...")

self.update()

if self.previewUpdate.get() == 1:

​
self.preview()

else:

​
self.normal()

self.btnState("active")

def normal(self)
:

name=cameraGUI.timestamp()+".jpg"

cameraGUI.camCapture(name,SET.NORM_SIZE)

self.updateDisp(name,previewsize=SET.PV_SIZE)

self.msg(name)

def preview(self):

cameraGUI.camCapture(SET.PREVIEW_FILE,SET.PV_SIZE)

self.updateDisp(SET.PREVIEW_FILE)

self.msg(SET.PREVIEW_FILE)

def updateDisp(self,filename,previewsize=SET.NO_RESIZE):

self.msg("Loading Preview...")

self.myImage=cameraGUI.getTKImage(filename,previewsize)

self.theImage=self.canvas.create_image(0,0,

​
 ​
 ​
​
 anchor=TK.NW,

​
 ​
 ​
 ​

image=self.myImage)

self.update()

def exit(self):

exit()

#End

Now that we defined the main class for the script, we can proceed to create the script cameraGUInormal.py
 to use the GUI.

#!/usr/bin/Python3

#cameraGUI1normal.py

import tkinter as TK

import cameraGUI as GUI

root=TK.Tk()

root.title("Camera GUI")

cam=GUI.cameraGUI(root)

TK.mainloop()

#End

To run and check the final script, use the following command.

Python3 cameraGUI1normal.py

Understanding the Script

A class in the cameraGUI.py file called SET is used to contain all the application settings. This is particularly convenient for users to manage all the setting references by keeping them in one place.

The working and functionality can be better understood by the given example:

To attach Tkinter
 objects, the user has to define a base class, which is cameraGUI;
 this class inherits a TK.Frame
 class. All the processes like defining controls and all other functions required to develop the Tkinter
 application are included in the cameraGUI
 class.

Three of the efficiency functions for the class are defined below to be operated:

•
 Run()
: Through the function subprocess.call
, the run()
 functions enable the user to run commands by sending them to the command line. The function subprocess.call
 is used for various purposes, including encoding videos.

•
 getTKImage():
 The user can form and display a Tkinter canvas compatible TK.PhotoImage
 object. JPG images
cannot be directly displayed on the Tkinter canvas because the PIL or Pillow library is used. PIL can resize the image and transform the format into a Portable PixMap format file (PPM). PPM can maintain and support a wider variety of colors than a Graphics Interchange Format (GIF). But for images of a quick camera preview, use a GIF as the process of resizing and converting a JPG image completes in a few seconds.

•
 Timestamp():
 To automatically name the captured images with the time at which they were taken, this function enables the user to create a timestamp thread.

A user can perform the following functions with the class initializer (__init__()):

•
Identifying all the control variables

•
Controls required for use

•
Generation of GUI objects

•
Position objects using the grid()
 functions

An image is given below to show the GUI layout:

[image:]

(Layout of the camera GUI)

Some of the control variables are identified below:

•
self.filename:
 the labelFilename
 widget displays text in the camera GUI, which is linked to this variable.

•
self.previewUpdate:
 this variable is linked to the Preview
 checkbox (previewChk)
 status in the camera GUI.

The self.shutter()
 and the self.exit ()
 functions are linked to the Shutter
 button (shutterBtn)
 and the Exit
 button (exitBtn
), respectively. The shutter function upon pressing the shutter button will be activated. To deactivate this event, the function this.btnState
 (“disabled”) has to be called, and it will disable the Shutter
 button when the user is capturing new images. When this the shutter button is disabled, the camera will not take any pictures as it being in the process of capturing images by the user. The
inactive state of the shutter button can be reverted to the active state upon completion of the remaining procedures, by this.btnState
 (“active”), this will enable the shutter button to restore its previous activities.

The function self.shutter()
 operates in two ways reliant upon the Preview checkbox status. It will either activate the self.preview()
 function or self.normal()
 function. The status of the Preview Checkbox is gained through the self.previewUpdate
.

Through the function __init__(),
 self.preview() function is called. This allows the user to ensure that the images are captured and displayed for preview by the Camera GUI, soon after the start of the application.

Making use of the pycamera
 the cameraGUI.camCapture()
 function forms a camera object, sets the camera resolution, and using the required file name to take a picture.

An image called the PREVIEW_FILE is taken by the self.preview() function. The image has a resolution of PV_SIZE, which is already defined in the SET class.

Furthermore, the cameraGUI. getTKImage()
 function is used by the self.updateDisp(PREVIEW_FILE)
. This opens the PREVIEW.gif file developed, like a TK.PhotoImage
 object and in the camera GUI, it is applied as a Canvas object.

From the TK.Frame class has a function called the self.update(), which, when activated, enables the update of Tkinter display, i.e., update of new images.

Once again, the self.update()
 functions are used for updating the display, but this time the self.preview()
 function uses it. The self.msg()
 function via the self.preview() function updates the self.filename value. The new filename is the one being displayed with the image (PREVIEW.gif)

The self.shutter()
 functions chooses self.normal()

 functions when the Preview checkbox is unchecked. Yet the images taken in this state are of 5 megapixels (2592 x 1944) JPG images, are much larger, and are given the latest <timestamp> value by the self.timestamp()
 function for setting the filename to the image. The image obtained in these settings is resized and converted to a PPM image for loading and displaying in the camera GUI as a TK.PhotoImage object.

Creating a Time-Lapse Video

A computer given access to a camera can do much more as compared to other devices. This is true for the Raspberry Pi as the user can directly control the behavior and actions of the camera by using Python or any other suitable programming language. This opens up new avenues for experimenting with pictures, i.e., creating stop-animation movies, and even time-lapse videos. Moreover, we can process these pictures and videos captured by the camera directly through suitable applications and other software on the Raspberry Pi as well.

In this section, we will use the camera to automatically capture images in a defined time-interval through the Python script and then process these images into a time-lapse video.

Luckily for us, the Python module pycamera
 has various features, and among these, the capture_continous()
 function can help us with this project. This function essentially uses the Raspberry Pi camera module to capture a continuous sequence of images. To turn these images into a time-lapse video, we will need to define the time interval, indicating how each image is captured in a sequence. It also defines a limit as to how many images are supposed to be captured, ensuring the system does not keep on capturing pictures indefinitely. For some quality of life additions, we will also instruct the system to pre-emptively calculate the total duration of the video so that the user knows how long it will be.

Proceeding with the Project

For this project and for the upcoming projects as well, we will be making use of the Graphical User Interface we made at the beginning of this chapter. We will make some small changes to this GUI so that we can control the time-lapse features and also handle creating a suitable video clip from the results. The GUI of the time-lapse application we are going to create will look something like this.

[image:]

By now, you should be familiar with the process of setting things up for using a previously made script as a module for a new script. Regardless, we will be putting the script we made for the graphical user interface previously (cameraGUI.py
) and put it into the same directory as to where we installed the pycamera.
 In this project, we will also be making use of a tool known as mencoder

. Through this tool, we can take the pictures that have been captured in a time-lapse sequence and then create them into a video clip.

Let’s first start by installing the mencoder
 tool by executing the following command in the command terminal.

sudo apt-get install mencoder

Now, we will get the fun part, and that is programming the Python script for this project. We will name the Python script as timelapseGUI.py
. Remember to put this file into the same directory as the cameraGUI.py
 script as we will be importing the functions defined in it as a module for this time-lapse script. Here’s a step-by-step explanation of how to create the script and using the appropriate functions and modules.

	
The first thing to do is to import all of the supporting modules necessary for the project and this includes the cameraGUI
 as well as shown in the lines of code below.

#!/usr/bin/Python3

#timelapseGUI.py

import tkinter as TK

from tkinter import messagebox

import cameraGUI as camGUI

import time

	
We need to extend the cameraGUI.SET
 class from the cameraGUI
 module in order to accommodate for the settings for the time-lapse and encoding functions. This process is demonstrated in the following lines of code.

class SET(camGUI.SET):

TL_SIZE=(1920,1080)

ENC_PROG="mencoder -nosound -ovc lavc -lavcopts"

ENC_PROG+=" vcodec=mpeg4:aspect=16/9:vbitrate=8000000"

ENC_PROG+=" -vf scale=%d:%d"%(TL_SIZE[0],TL_SIZE[1])

ENC_PROG+=" -o %s -mf type=jpeg:fps=24 mf://@%s"

LIST_FILE="image_list.txt"

	
We will now take the primary cameraGUI
 class from the module and extend it with more functions. This will give the script the necessary functionality to perform the required task, i.e., time-lapse. This is demonstrated in the following lines of code.

class cameraGUI(camGUI.cameraGUI):

def camTimelapse(filename,size=SET.TL_SIZE,

​
 ​
 timedelay=10,numImages=10):

with camGUI.picam.PiCamera() as camera:

camera.resolution = size

for count, name in \

​
enumerate(camera.capture_continuous(filename)):

​
 print("Timelapse: %s"%name)

if count == numImages:

break

time.sleep(timedelay)

	
To control the time-lapse functions, we will add in some more controls in the time-lapse GUI. This is demonstrated in the following lines of code.

def __init__(self,parent)
:

super(cameraGUI,self).__init__(parent)

self.parent=parent

TK.Frame.__init__(self,self.parent,background="white")

self.numImageTL=TK.StringVar()

self.peroidTL=TK.StringVar()

self.totalTimeTL=TK.StringVar()

self.genVideoTL=TK.IntVar()

labelnumImgTK=TK.Label(self.parent,text="TL:#Images")

labelperoidTK=TK.Label(self.parent,text="TL:Delay")

labeltotalTimeTK=TK.Label(self.parent,

​
 ​
 text="TL:TotalTime")

self.numImgSpn=TK.Spinbox(self.parent,

​
 ​
 ​
 ​
textvariable=self.numImageTL,

​
 ​
 ​
 ​

from_=1,to=99999,

​
 ​
 ​
 ​
width=5,state="readonly",

​
 ​
 ​
 ​
command=self.calcTLTotalTime)

self.peroidSpn=TK.Spinbox(self.parent,

​
 ​
 ​
 ​
textvariable=self.peroidTL,

​
 ​
 ​
 ​
from_=1,to=99999,width=5,

​
 ​
 ​
 ​
command=self.calcTLTotalTime)

self.totalTime=TK.Label(self.parent,

​
 ​
 ​
 ​
textvariable=self.totalTimeTL)

self.TLBtn=TK.Button(self.parent,text="TL GO!",

​
 ​
 ​
 ​
command=self.timelapse)

genChk=TK.Checkbutton(self.parent,text="GenVideo",

​
 ​
 ​
 ​

command=self.genVideoChk,

​
 ​
 ​
 ​
variable=self.genVideoTL)

labelnumImgTK.grid(row=3,column=0)

self.numImgSpn.grid(row=4,column=0)

labelperoidTK.grid(row=3,column=1)

self.peroidSpn.grid(row=4,column=1)

labeltotalTimeTK.grid(row=3,column=2)

self.totalTime.grid(row=4,column=2)

self.TLBtn.grid(row=3,column=3)

genChk.grid(row=4,column=3)

self.numImageTL.set(10)

self.peroidTL.set(5)

self.genVideoTL.set(1)

self.calcTLTotalTime()

	
We now need to include some supporting functions in the script that will be responsible for calculating the settings as well as handling the time-lapse. This is demonstrated in the following lines of code.

def btnState(self,state):

self.TLBtn["state"] = state

super(cameraGUI,self).btnState(state)

def calcTLTotalTime(self):

numImg=float(self.numImageTL.get())-1

peroid=float(self.peroidTL.get())

if numImg<0:

​
numImg=1

self.totalTimeTL.set(numImg*peroid)

def timelapse(self):

self.msg("Running Timelapse")

self.btnState("disabled"
)

self.update()

self.tstamp="TL"+cameraGUI.timestamp()

cameraGUI.camTimelapse(self.tstamp+'{counter:03d}.jpg',

​
 ​
 ​
 ​
 SET.TL_SIZE,

​
 ​
 ​
 ​
 float(self.peroidTL.get()),

​
 ​
 ​
 ​
 int(self.numImageTL.get()))

if self.genVideoTL.get() == 1:

​
self.genTLVideo()

self.btnState("active")

TK.messagebox.showinfo("Timelapse Complete",

​
 ​
 ​
 ​
 "Processing complete")

self.update()

	
Finally, we will add some supporting functions to the script. These functions will essentially handle and create the required time-lapse video. This has been demonstrated in the following lines of code.

def genTLVideo(self):

self.msg("Generate video...")

cameraGUI.run("ls "+self.tstamp+"*.jpg > "

​
 ​
​
 ​
 ​
+SET.LIST_FILE)

cameraGUI.run(SET.ENC_PROG%(self.tstamp+".avi",

​
 ​
 ​
 ​
 ​
 ​
 SET.LIST_FILE))

self.msg(self.tstamp+".avi")

#End

	
Finally, we proceed towards making the appropriate graphical user interface for the time-lapse script. We will name this script as cameraGUI2timelapse.py
. Use the following lines of code to create the GUI.

#!/usr/bin/Python3

#cameraGUI2timelapse.py

import tkinter as TK

import timelapseGUI as GUI

root=TK.Tk()

root.title("Camera GUI")

cam=GUI.cameraGUI(root)

TK.mainloop()

#End

You might wonder why are we importing the timelapseGUI
 instead of the cameraGUI
 as a module. Well by important the timelapseGUI
 module, we are basically adding it to the cameraGUI
 script. It might sound confusing but it’s an effective way to work when importing different scripts as modules.

To run this project, you will need to execute this script, and this can be done by opening the command line terminal and running the following command.

Python3 cameraGUI2timelapse.py

Understanding How the Project Works

Let’s begin the discussion with the timelapseGUI.py
 script. This script imports the cameraGUI.py
 as a module and leverages the functionality of the classes already defined in this module for its own use by extending them. Note that before extending the classes within the cameraGUI
 module, these classes were originally incorporating the contents of the TK.Frame
 class. Hence, we used the same principle in this project to incorporate the SET
 and cameraGUI
 class into the timelapseGUI.py
 script.

Since we are using an additional tool (mencoder
) to handle the encoding of the time-lapse videos, we need to add more settings to the SET class appropriately. In this way, we are defining the necessary settings for the mencoder
 tool, making it easier to work with.

To accommodate for the project’s interfacing needs, we extend the original cameraGUI
. This is done by extending the simple version of the cameraGUI
 class by incorporating the features and functions of the camGUI.cameraGUI
. Moreover, we also needed to define a more appropriate version of the _init_()
 function for the extended class. This is done by using the super()
 function. By using this function, the functionality of the original _init_()
 class remained the same. At the same time, we simply defined the additional set of controls that needed to be included in the Graphical User Interface. This extended version of the basic camera GUI is shown below.

[image:]

Here’s a list of the control variables that have been defined for the GUI’s control boxes.

•
 self.numImageTL:
 This variable is associated with the numImgSpn
 spinbox control’s value. By using this control variable, we can specify the image limit value in which the camera module is supposed to capture pictures for the time-lapse.

•
 self.periodTL:
 This variable is associated with the periodSpn
 spinbox control’s value. By using this control variable, we can specify the time interval that needs to be considered when taking each time-lapse image. In other words, this allows us to control the number of seconds after which each time-lapse image is captured.

•
 self.totalTimeTL:

 This control variable is associated with the totalTime
 label object. This control variable is responsible for telling the user how long the duration of the time-lapse video will be. The variable calculates this duration by measuring two elements, the number of images captured and the time interval between each captured image (given by timedelay
).

•
 self.genVideoTL:
 This control variable gives us confirmation that a corresponding video clip has been generated from the captured time-lapse images. This control variable performs this task by basically controlling the state of the genChk
 checkbox control. By monitoring its state, it can tell the user whether the time-lapse video clip has been created or not.

As you might have gotten an idea of what’s happening in the timelapse GUI, the control variables are basically linked to the defined control checkboxes, in turn, providing accurate calculations and better functionality. In this way, once the values linked to the control variables change, the calculation and result of the specified control variable also change automatically.

We position the control boxes and settings by using the grid()
 function. By using this function, we can easily specify any position we want for a particular control.

Moving on, we have the self.genVideoChk()
 function, which is called by the genChk
 checkbox when the user interacts with it by checking or clearing it on the GUI. Through this setup, this option generates a pop-up window informing the user whether the video clip will be created at the end of the time-lapse or if only time-lapse images will be generated.

Creating a QR Code Reader using the Camera Module

QR codes are quite popular and are often used for advertisements, availing discount offers, or even used as a secure login method for
some apps (such as WhatsApp web). In this section, we will work on a project in which we will use the Raspberry Pi camera module to build a QR reader.

Using the Raspberry Pi as a QR reader redefines the extent to which you can personalize this little machine. You can use it in any way you might want, like a jukebox or even a book reader. That’s solely up to you on how you want to use it.

Gearing Up

The requirements of this project are somewhat similar to the ones discussed in the previous sections of this book. To this point, you would already know how to set up the Camera Module with the Raspberry Pi, so the only thing that’s left is to get the necessary software on to the system itself for this project.

To create a Raspberry Pi QR reader that can also give an audio output, we will need the following applications;

•
 ZBar:
 This application is basically a QR and barcode reader with cross-platform support. We will be taking advantage of the camera module’s functionality and use it with this tool to create a QR reader.

•
Flite:
 this is a text-to-speech utility application which has already been demonstrated in Chapter 4 of this book.

Open the command terminal on the Raspberry Pi OS and enter the following command to install both of these applications on to the system.

sudo apt-get install zbar-tools flite

Now that we have installed the required software, we still need some QR codes and some MP3 audio files to work with. If you have downloaded some sample QR codes, that will also work, but we’ll cover the topic of generating QR codes yourself in the following sections.

Building the Script for the Project

We will now proceed to create a suitable script for the QR code reader project. Note that we will also be creating a basic GUI in this project as well. For this purpose, we will import the cameraGUI.py
 as a module in this script. Let’s name the script we are about to create ‘qrcode.py’.
 The contents of this script are shown below.

#!/usr/bin/Python3

#qrcode.py

import tkinter as TK

from tkinter import messagebox

import subprocess

import cameraGUI as camGUI

class SET(camGUI.SET):

QR_SIZE=(640,480)

READ_QR="zbarimg "

class cameraGUI(camGUI.cameraGUI):

def run_p(cmd):

​

print("RunP:"+cmd)

​
proc=subprocess.Popen(cmd,shell=True,stdout=subprocess.PIPE)

​
result=""

​
for line in proc.stdout:

​
 result=str(line,"utf-8")

​
return result

def __init__(self,parent):

​
super(cameraGUI,self).__init__(parent)

​
self.parent=parent

​
TK.Frame.__init__(self,self.parent,background="white")

​
self.qrScan=TK.IntVar()

​
self.qrRead=TK.IntVar()

​
self.qrStream=TK.IntVar()

​
self.resultQR=TK.StringVar()

​

self.btnQrTxt=TK.StringVar()

​
self.btnQrTxt.set("QR GO!")

​
self.QRBtn=TK.Button(self.parent,textvariable=self.btnQrTxt,

​
 ​
 ​
 ​
​
 ​
 ​
 command=self.qrGet)

readChk=TK.Checkbutton(self.parent,text="Read",

​
 ​
 ​
 ​
 ​
 variable=self.qrRead)

​
streamChk=TK.Checkbutton(self.parent,text="Stream",

​
 ​
 ​
 ​
 ​
 variable=self.qrStream)

​
labelQR=TK.Label(self.parent,textvariable=self.resultQR)

readChk.grid(row=3,column=0)

​

streamChk.grid(row=3,column=1)

​
self.QRBtn.grid(row=3,column=3)

​
labelQR.grid(row=4,columnspan=4)

self.scan=False

def qrGet(self):

​
if (self.scan==True):

​
 self.btnQrTxt.set("QR GO!")

​
 self.btnState("active")

​
 self.scan=False

​
else:

​
 self.msg("Get QR Code")

​
 self.btnQrTxt.set("STOP")

​
 self.btnState("disabled")

​

 self.scan=True

self.qrScanner()

def qrScanner(self):

​
found=False

​
while self.scan==True:

​
 self.resultQR.set("Taking image...")

​
 self.update()

​
 cameraGUI.camCapture(SET.PREVIEW_FILE,SET.QR_SIZE)

​
 self.resultQR.set("Scanning for QRCode...")

self.update()

​
 #check for QR code in image

​
 qrcode=cameraGUI.run_p(SET.READ_QR+SET.PREVIEW_FILE)

​
 if len(qrcode)>0:

​
 ​

self.msg("Got barcode: %s"%qrcode)

​
 ​
qrcode=qrcode.strip("QR-Code:").strip('\n')

​
 ​
self.resultQR.set(qrcode)

​
 ​
self.scan=False

​
 ​
found=True

​
 else:

​
 ​
self.resultQR.set("No QRCode Found")

​
if found:

​
 self.qrAction(qrcode)

​
 self.btnState("active")

​
 self.btnQrTxt.set("QR GO!")

​
self.update()

def qrAction(self,qrcode):

​
if self.qrRead.get() == 1:

​

 self.msg("Read:"+qrcode)

​
 cameraGUI.run("sudo flite -t '"+qrcode+"'")

​
if self.qrStream.get() == 1:

​
 self.msg("Stream:"+qrcode)

​
 cameraGUI.run("omxplayer '"+qrcode+"'")

​
if self.qrRead.get() == 0 and self.qrStream.get() == 0:

​
 TK.messagebox.showinfo("QR Code",self.resultQR.get())

#End

Now, we need to duplicate the cameraGUItimelapse.py
 script and create a copy. Rename this copy to cameraGUIqrcode.py
. Remember to import this file as the GUI by using the following line of code.

import qrcodeGUI as GUI

Now, this GUI, along with the QR code, will look like this.

[image:]

Understanding the Script

Now let’s see how the script actually works. The qrcode.py
 script basically creates a graphical user interface that includes elements such as the ‘read’ and ‘play’ checkboxes along with a dedicated QR scanning button labeled ‘QR GO!’. When we click the ‘QR GO!’ button, it triggers the self.qrGet()
 function in the script, initiating a scanning cycle where the camera module takes pictures, and these pictures are then checked by zbarimg
. Once the zbarimg
 identifies a QR code from the pictures being taken by the camera, the script will exit out of the scanning cycle and display the result. If not properly set up, the script will continue with the scanning cycle, continuously taking images until we press the exit or stop button. Moreover, once the scanning cycle starts, the text defined for the variable QRBtn
 is temporarily substituted with ‘STOP’
 until the scanning cycle ends.

To accommodate the use of zbarimg
 in order to capture its output, we need to make some adjustments to how we execute the command. For this purpose, the script defines the run_p()

 function to use the aforementioned line of code:

proc=subprocess.Popen(cmd,shell=True,stdout=subprocess.PIPE)

After we obtain the output from zbarimg
, we can use the read or play checkboxes if the QR code contains a media file or link. If the file is in an audio format, we use the read
 option to prompt the flite
 tool to read out the contents of the QR code. If the file is in a video format, then we use the play
 option in order to prompt the omxplayer
 to play the contents of the QR code.

Generating Your Own QR Codes

In this section, we will be demonstrating the way through which we can generate our own personal QR codes with the help of Python.

Generating QR codes by yourself is not as difficult as you might think it to be. To do this, we will be using a Python library ‘PyQRCode,’ but before we can use it, we will need first to download it. You can also visit the website given below to read more about PyQRCode.

https://pypi.Python.org/pypi/PyQRCode

Let’s now proceed to install the PyQRCode library on our system using the PIP Python manager. Open the command terminal and execute the following command.

sudo pip-3.2 install pyqrcode

PyQRCode also needs an add-on in order for it to encode images into
a PNG format. This is the PyPNG tool, and we can download and install it directly from its GitHub repository ((https://github.com/ drj11/pypng) by executing the following command in the command terminal.

sudo pip-3.2 install pypng

Now that we have the necessary tools to generate a QR code, let’s proceed to create a script with Python, which will handle the generating of QR codes as well as linking files to it. The files that can be linked to the QR code can be anything; it can be a link to a website, it can be an audio file or a media file as well. For this project, we will make use of the page001.mp3
 and page002.mp3
 files recorded in the projects demonstrated in the previous sections.

Let’s name the Python script as generateQRCodes.py
. The script includes the following lines of code.

#!/usr/bin/Python3

#generateQRCodes.py

import pyqrcode

valid=False

print("QR-Code generator")

while(valid==False):

​
inputpages=input("How many pages?")

​
try:

​
 PAGES=int(inputpages)

​
 valid=True

​
except ValueError:

​
 print("Enter valid number.")

​
 pass

print("Creating QR-Codes for "+str(PAGES)+" pages:")

for i in range(PAGES):

file="page%03d"%(i+1)

qr_code = pyqrcode.create(file+".mp3")

qr_code.png(file+".png")

print("Generated QR-Code for "+file)

print("Completed")

#End

To execute within this Python script, we will need to use the following command in the command line terminal.

Python3 generateQRCodes.py

This script will generate a bunch of QR codes that can be used to activate the audio file linked to it.

Conclusion

[image:]

In this book, we have explored a variety of topics. From learning encryption and decryption coding techniques with Python and deriving useful exercises from it, we have covered all of the important topics that are famous for their difficult learning curve. The book has tried to put more emphasis on practical knowledge rather than discussing the theoretical possibilities that the Raspberry Pi has. This is in hopes to guide the readers to develop a skill-set that will become an invaluable asset for them in their practical life. With comprehensively explained projects, the book tries to engrave a feeling of confidence within the readers, making them want to test out their skills and have fun at the same time. In short, the book has adequately covered all of the important topics and portions in the best way possible while making the content easy to read and digestible for the reader as well.

Python programming on Raspberry Pi gives a more open-end and accessible environment on which programming can be done easily. The reason is that Python has more advanced features and functionalities, which allows it to design even complex projects easily. The use of Python gives more control to the user. That is why we have discussed the projects of Raspberry Pi with the use of Python programming. Thus, we have ensured that not only will you be able to learn the theoretical concepts, but you will also be able to enhance your skills and enjoy making all these unique projects.

The only thing left to do now is practice; that’s the only way to learn. There are plenty of online tutorials on other Raspberry Pi projects, some simple, some more complex. Explore and enjoy the almost unlimited uses and the endless hours of fun your Raspberry Pi will bring you.

References

[image:]

1).
 Raspberry Pi Projects for Dummies by Authors Mike Cook, Jonathan Evans, and Brock Craft.

2).
 Learn Raspberry Pi Programming with Python by Author Wolfram Donat

3).
 Raspberry Pi Cookbook for Python Programmers by Author Tim Cox

OEBPS/image_rsrc65M.jpg
™ Encrypt/DecryptGUI - o x
Enter message to encrypt
My Message

Encrypt | Decrypt |
Key: [20

OEBPS/image_rsrc65N.jpg
o x

MyMessage I |

En:rypl Decrypt

Key 20

OEBPS/image_rsrc65K.jpg
- A0C samples.
220 oight

£ 180
Fun

b E] Wm0 ™ m %0

200 s
238 — iTemperature

30
bt
220
s
210}

EJ W B0 6 B W0
Samples

OEBPS/image_rsrc65H.jpg

OEBPS/image_rsrc65J.jpg
TC | Raspberry |
Device | PiPL

vee| 12
SDA
SCL| 5|

OEBPS/image_rsrc65F.jpg
FC
Device
vee

SDA

SCL

OEBPS/image_rsrc65G.jpg
[pi8raspberrypi:~§ sudo i2cdetect -y 0
01234567839

Ipi@raspberrypi:~$ sudo i2cdetect -y 1
0123456789

Zsdg =2

pieraspberrypi:~s

OEBPS/image_rsrc65D.jpg

OEBPS/image_rsrc65E.jpg

OEBPS/image_rsrc65B.jpg
(4 Cathode” *
Shortest LED Leg

OEBPS/image_rsrc65C.jpg

OEBPS/image_rsrc659.jpg
s Pulk-Up Resistor Circut -+

Switch Open =
Pull-Up (3V3)

Switch Closed =
Pull-Down (Gnd)

OEBPS/image_rsrc65A.jpg
Suitch Closed =
. Pullup (3V3)
Switch Open =
- pull-Down (God)
— —_—

OEBPS/image_rsrc656.jpg
| LEDRed LEDGreen

S & SA

Viwd’ viwa ™ Vvt

o o) B OB
I o =

LEDBIe.

OEBPS/image_rsrc657.jpg
SPST

DPST

SPDT

—
DPDT

OEBPS/image_rsrc654.jpg
RGB-LED
Common

P Normal Le R

¢ | ."‘ 3

L.

() Cathode

() Anode J J

OEBPS/image_rsrc64G.jpg
RASPBERRY PI

THIS BOOK INCLUDES

.

(A Comprehensive Beginner's Guide to Setup, Programming (Concepts

and Techniques) and Developing Cool Raspberry Pi Projects

Complete Tips and Tricks to Raspberry Pi
Setup and Project Development

An Advanced Guide to Setup, Expert Programming (Concepts,
Theories, and Techniques) and Build Raspberry Pi Projects

—\

J

-

JOE GRANT

OEBPS/image_rsrc655.jpg

OEBPS/image_rsrc652.jpg
Independent commands
& bake ey

2 Mok Cumomwget ke

3 Maagbea | [maene

Errc rapar o

Hote tam 2 opans disogue nd appands the responsetothe command.
Exeae commands

L et | pheesnt

2 i

Werkig deectery

ala | [aalalala alalales (§

. e 51, 94p e rbsttsted s command s dracory ks e marlfor dtals

O | O

OEBPS/image_rsrc653.jpg
[

1

T g

§

o —
!

MESSAGE

MESSAGE

MESSAGE

OEBPS/image_rsrc650.jpg

OEBPS/image_rsrc651.jpg

OEBPS/image_rsrc658.jpg
GPIO Input R_Protect

OEBPS/image_rsrc64Z.jpg

OEBPS/image_rsrc64V.jpg

OEBPS/image_rsrc64W.jpg

OEBPS/image_rsrc64T.jpg

OEBPS/image_rsrc64U.jpg

OEBPS/image_rsrc64R.jpg

OEBPS/image_rsrc64S.jpg

OEBPS/image_rsrc64N.jpg

OEBPS/image_rsrc64P.jpg
Linux

OEBPS/image_rsrc64X.jpg

OEBPS/image_rsrc64Y.jpg

OEBPS/image_rsrc65X.jpg
X comera 6t

labelnumimgTK labeltotalTimeTK
labelperoidTK TiBtn

roview
01911, 21262259 nl

TrtDeiay [M-Totaimme I 101 | |0

OEBPS/image_rsrc65Y.jpg
|
|
Shutter © Preview it
PREVIEW.g

Read Play QRG0!

OEBPS/image_rsrc65W.jpg
X Camera GUL

shutter | I~ Preview. Exit
20131110_212822pg

Tu#images TLDelay TLTotalTime TLGO!

10 5 [5 3 450 W Genvideo

OEBPS/image_rsrc64H.jpg
Ao e vl e e e e e

RASPBERRY PI

LR AR AR L AR TR AR JE IR AR I AL 2L 2% 2

JOE GRANT

OEBPS/image_rsrc65U.jpg
X Camera GUI | &)

0

Shutter Previen Bt
20131108 21520809

OEBPS/image_rsrc65V.jpg

OEBPS/image_rsrc65S.jpg
Tl e s Gobun Goters s e

OEBPS/image_rsrc65T.jpg
Directory: /home/pi/chapter3/Photos —

[]
Selection: [fhome/pi/chapter3/Photos oK

OEBPS/image_rsrc65P.jpg
Select an application
Leafpad \

Scratch |
Pi Store |

OEBPS/image_rsrc65R.jpg
Photo View Demo-

File redtine
Fasctut ianinit
Eiposiranade
Al
ratirinade B

Insananio ool

[ty Pssoouonoo
orionee 3

Eaftempmidtn e

= >

OEBPS/image_rsrc64M.jpg

OEBPS/image_rsrc64J.jpg

OEBPS/image_rsrc64K.jpg

