

	
Raspberry	Pi

	

	
Step-by-Step	Guide	To	Raspberry	Pi	For	Beginners

(Raspberry	Pi	Hardware	&	Software)
	
	
	
	
	
	
	
	
	

Gabriel	Grey

©	Copyright	2018	by	Gabriel	Grey	-	All	rights	reserved.

The	following	eBook	is	reproduced	below	with	the	goal	of	providing
information	that	is	as	accurate	and	reliable	as	possible.	There	are	no
scenarios	in	which	the	publisher	or	the	original	author	of	this	work
can	be	in	any	fashion	deemed	liable	for	any	hardship	or	damages	that
may	befall	them	after	undertaking	information	described	herein.

The	transmission,	duplication	or	reproduction	of	any	of	the	following
work	including	specific	information	will	be	considered	an	illegal	act
irrespective	of	if	it	is	done	electronically	or	in	print.	This	extends	to
creating	a	secondary	or	tertiary	copy	of	the	work	or	a	recorded	copy

and	is	only	allowed	with	the	express	written	consent	from	the
Publisher.	All	additional	right	reserved.

	

Table	of	Contents

INTRODUCTION
CHAPTER	1:	WHAT	IS	RASPBERRY	PI?
DEFINING	THE	RASPBERRY	PI
THE	USES	OF	THE	RASPBERRY	PI
Gaming	Platforms
Magic	Mirror
Other	Uses

THE	INTERNET	OF	THINGS
REVIEW	QUESTIONS

	

CHAPTER	2:	SETTING	UP	YOUR	RASPBERRY	PI
CHOOSING	AN	OPERATING	SYSTEM
INSTALLING	NOOBS
INSTALLING	RASPBIAN

GETTING	STARTED
EMBEDDED	LINUX
REVIEW	QUESTIONS

	

CHAPTER	3:	USING	YOUR	RASPBERRY	PI
INTERFACING	ELECTRONICS
Digital	Multimeter
Breadboard
Discrete	Components

COMMUNICATION	PROTOCOLS
I2C
UART
SPI

REAL-TIME	INTERFACING	USING	ARDUINO

INPUT	AND	OUTPUT

CAPTURING	IMAGES,	VIDEOS,	AND	AUDIO

Images	and	Video
Recording	and	Playing	Audio

REVIEW	QUESTIONS
	

CHAPTER	4:	PYTHON	PROGRAMMING	FOR	THE	PI

WHAT	IS	PYTHON?
WHY	PYTHON?
SETTING	UP	PYTHON
DATA	AND	VARIABLES

Integer
Float
Double
Boolean
Character
String

PYTHON	MATH

COMMENTS

FORMATTING

USER	INPUT	AND	CASTING

INTRODUCTION	TO	PROGRAM	LOGIC
Arguments
Conditionals
Lists
Loops
Methods

OBJECT-ORIENTED	PROGRAMMING

REVIEW	QUESTIONS
	

CHAPTER	5:	WHERE	TO	GO	FROM	HERE
FINAL	PROJECT:	PYTHON	GAME

	

CONCLUSION

Introduction

	
Congratulations	on	downloading	Raspberry	Pi	and	thank	you	for	doing	so.
	
The	 following	 chapters	 will	 discuss	 the	 Raspberry	 Pi.	 The	 Raspberry	 Pi	 is
increasingly	popular.	Why,	though?	What’s	all	 the	fuss	about?	So	many	people
are	 interested	 in	 this	 little	 amazing	microcomputer	 and	 all	 of	 the	 things	 that	 it
can	do.	This	book	is	going	to	be	focused	around	illuminating	all	of	the	reasons
that	people	are	falling	in	love	with	the	Raspberry	Pi	and	its	various	capabilities.
We’ll	 also	be	 learning	how	 to	program	 in	Python	and	 the	plethora	of	different
things	that	you	can	use	the	Raspberry	Pi	for.

	
There	are	plenty	of	books	on	this	subject	on	the	market,	so	thanks	again	for
choosing	this	one!	Every	effort	was	made	to	ensure	it	is	full	of	as	much	useful
information	as	possible.	Please	enjoy!

Chapter	1:	What	is	Raspberry	Pi?

Defining	the	Raspberry	Pi

So,	you	know	 that	you’re	 interested	 in	Raspberry	Pi.	You	probably	have	some
initial	questions	 though:	 for	example,	what	 is	a	Raspberry	Pi,	and	why	 is	 it	 so
popular	with	so	many	people?	Well,	let’s	start	with	the	basics.

The	 Raspberry	 Pi	 is	 a	 microcomputer	 in	 its	 purest	 concept.	 It	 was	 originally
developed	 for	 sale	 to	developing	countries	as	an	extremely	cheap	and	easy-to-
use	 computer	 that	 could	 be	 used	 in	 order	 to	 teach	 the	 basics	 of	 computing
architecture	 and	 computer	 programming.	 However,	 it	 ended	 up	 growing	 well
beyond	the	target	market,	and	before	the	world	knew	it,	the	Raspberry	Pi	was	a
staple	item	among	tinkerers	everywhere.

Many	 things	make	 the	Raspberry	Pi	 incredibly	cool.	 It	has	myriad	of	different
uses,	 some	 of	which	we’ll	 be	 discussing	 in	 the	 following	 chapters.	Moreover,
there	are	many	different	variations	 that	make	 it	 accessible	 to	anybody	and	any
project	regardless	of	what	exactly	somebody	is	doing.

The	Pi	itself	is	easy	to	use,	overall.	It	doesn’t	come	with	a	keyboard,	mouse,	or

anything	of	the	like.	In	fact,	all	that	ships	to	the	customer	is	a	single	motherboard
with	 various	 little	 computer	 parts	 attached	 to	 it.	 However,	 this	 is	 part	 of	 the
appeal.	This	means	 that	 the	Raspberry	Pi	 is	 a	 blank	 canvas	on	which	you	 can
unleash	your	creativity.

Many	hobbyists	will	actually	pick	up	the	Raspberry	Pi	explicitly	because	of	how
cool	and	easy	to	use	it	is.	It	provides	the	perfect	engine	by	which	the	tinkerer	can
try	to	make	their	wildest—or	mildest—dreams	come	true.

Although	 its	 hardware	 is	 relatively	 unimpressive,	 this	 is	 probably	 what	 you
should	expect	given	that	it’s	so	cheap,	so	small,	and	so	portable.	Therefore,	in	a
relative	sense,	the	hardware	is	actually	very	impressive	if	you	know	exactly	what
you’re	getting	into.

There	are	multiple	different	iterations	of	the	Pi.	I	would	personally	advise	you	to
get	 the	 newest	 version	 since	 it’s	 only	 $35.	 Using	 older	 versions	means	 using
inferior	hardware	since	the	hardware	is	upgraded	almost	every	version.	There	are
some	benefits	to	other	versions,	like	some	being	a	bit	smaller,	which	is	perhaps
preferable	for	smaller-scale	projects.	However,	for	your	average	projects,	just	opt
for	the	$35	version.

The	Raspberry	Pi	offers	a	lot	of	functionality	for	what	it	is.	You	can	run	it	as	a
normal	 computer,	 albeit	 a	 very	 underpowered	 one.	 You	 can	 plug	 in	 your
keyboard	and	mouse	and	have	it	all	display	to	a	monitor	or	TV	and	then	set	up	a
desktop	environment.	In	fact,	that’s	what	we’ll	be	doing	later	in	this	book!	That’s
a	pretty	big	deal	for	a	small	little	microcomputer.

In	 the	next	chapter,	we’ll	discuss	all	 the	 incredible	 things	 that	one	can	do	with
the	Raspberry	Pi.	We’ll	also	look	at	what	other	people	have	made	with	it.	This	is
going	to	give	you	a	firm	idea	of	just	what	this	little	powerhouse	can	do.

But	if,	as	 this	chapter	comes	to	a	close,	you	have	a	single	question	about	what
Raspberry	Pi	 is,	 the	 best	 answer	 is	 a	 tinkerer’s	 paradise.	You	 can	 do	 so	many
things	using	a	Raspberry	Pi	that	it’s	actually	insane.

This	 is	 aided	 by	 the	 fact	 that	 there	 is	 a	 ton	 of	 support	 for	 different	 hardware
solutions	on	the	Pi	that	can	enable	it	to	do	a	plethora	of	different	things	that	you
might	not	normally	expect	it	to	be	able	to	do.	We’ll	be	going	into	more	detail	on
this	in	the	next	chapter	when	we	discuss	how	it’s	been	used	and	can	be	used.

The	Uses	of	the	Raspberry	Pi

Raspberry	Pis	have	a	multitude	of	uses,	 some	of	which	are	more	obvious	 than
others	 are.	 Because	 they	 offer	 so	 much	 in	 terms	 of	 hardware	 compatibility
relative	 to	 their	 small	 size,	 they	 have	 become	 the	 favorite	 of	 tinkerers.	 This
makes	 them	 an	 obvious	 candidate	 for	 projects	 involving	 complex	 robotics.
However,	they’ve	also	found	their	home	in	a	great	many	other	projects.

	
	

Gaming	Platforms

Perhaps	the	first	thing	that	really	tipped	hobbyists	off	to	how	neat	the	Raspberry
Pi	was	video	games.	Go	figure,	I	suppose.	Many	people	really	like	video	games,
and	 the	 Raspberry	 Pi	 is	 powerful	 and	 cheap	 enough	 that	 you	 can	 very	 easily
build	 a	 dedicated	 emulator	 absolutely	 packed	with	 games.	The	more	 powerful
versions	 of	 the	 Raspberry	 Pi	 can	 even	 play	 Nintendo	 64	 games,	 which	 is
incredible	for	how	small	of	a	computer	it	really	is	and	how	cheap	it	is.
	
While	more	 resource-intensive	 games	 do	 stretch	 its	 capabilities,	 it	 does	 find	 a
safe	home	being	able	 to	play	a	multitude	of	 classic	NES	and	SNES	games,	 as

well	as	games	for	other	consoles	 like	 the	Sega	Genesis,	 the	Amiga,	and	so	on.
The	first	hobbyist	implementations	of	the	Raspberry	Pi	were	often	in	dedicated
gaming	stations	as	such.
	
One	 popular	 implementation	 for	 the	 Pi	was	 handheld	 gaming	 consoles.	 These
would	be	things	like	a	portable	Super	Nintendo	and	NES	that	only	really	had	to
be	about	the	size	of	the	Raspberry	Pi	itself.	If	you	affix	an	LCD	or	LED	screen
to	the	Raspberry	Pi	and	solder	some	buttons	onto	it,	you	would	have	a	super	cool
portable	 gaming	 console	 with	 a	 rechargeable	 battery.	 These	 aren’t	 terribly
popular	 anymore,	 largely	 because	 the	 battery	 life	 wasn’t	 that	 great	 and	 the
novelty	wore	off,	but	they	still	are	an	exciting	first	project	to	undertake.
	
Speaking	of	video	games,	many	people	will	actually	use	 the	Raspberry	Pi	as	a
MAME	emulator.	MAME	emulators	are	emulators	built	to	run	arcade	games	like
those	you	would	find	at	a	classic	arcade.	Many	people	will	actually	build	arcade
machines	from	scratch	using	the	Raspberry	Pi	as	their	core	technology.	They’ll
set	 up	 things	 like	 arcade	 buttons	 and	 the	 like	 and	 use	 these	 as	 a	 means	 of
controlling	 the	 emulator	 through	 some	 clever	 scripting	 or	 placement.	 Some
seriously	cool	machines	have	been	made	following	this	paradigm.

Magic	Mirror

I	 think	my	personal	 favorite	 implementation	of	 the	Raspberry	Pi	would	be	 the
Magic	 Mirror.	 The	 Magic	 Mirror	 is	 what	 it	 sounds	 like:	 it’s	 a	 mirror	 with	 a
digital	 display	 like	 the	 ones	 you	 would	 see	 in	 old	 sci-fi	 shows.	 All	 of	 the
information	 you	 need	 is	 right	 at	 your	 fingertips,	 and	 some	 people	 have	 even
programmed	 in	voice	 recognition	 to	 these	 things	so	 that	 they	can	control	 them
with	 their	 voice.	Using	motion	 detectors	 or	 light	 sensors,	 the	mirror	would	 be
able	 to	 detect	 when	 you’re	 around	 and	 power	 on	 automatically,	 or	 it	 may	 be
always	on.	It’s	not	a	huge	power	draw,	after	all—the	same	as	constantly	having
an	alarm	clock	plugged	in.

	
I’m	going	to	spend	a	second	talking	about	this	because	I	think	it’s	super	cool	and
ingenious.	The	magic	mirror	is	one	of	my	favorite	implementations	of	Raspberry
Pi	bar	none	because	of	the	amount	of	creativity	and	ingenuity	that	goes	into	it.
It’s	 cheap	 to	 make	 (comparatively),	 and	 you	 can	 actually	 make	 an	 amazing
machine	out	of	 it—not	 to	mention	 that	 there’s	nothing	else	 like	 it.	There	 is	no
mass-marketed	magic	mirror.	You	will	be	one	of	 the	only	people	with	 this	and
you	made	it	yourself,	too!
	
So	let’s	think	about	the	magic	mirror	for	a	second.	What	happens	is	that	there	is
a	 frame.	 Behind	 that	 frame	 sits	 a	 computer	 monitor,	 and	 behind	 that	 sits	 the
Raspberry	Pi.	 In	front	of	 the	computer	monitor	(or	TV,	but	usually	a	computer
monitor)	sits	a	one-sided	mirror.	Do	you	know	about	those	mirrors	that	they	use
in	the	police	interrogation	rooms	in	all	of	the	crime	shows?	It’s	a	lot	like	those!
	
Because	of	 the	way	 the	mirror	 reflects	 light,	any	black	 from	behind	 the	mirror
won’t	 be	 shown.	 However,	 any	 bright	 things	 that	 are	 directly	 up	 against	 the
mirror	will	shine	through.	As	I	said,	it’s	an	ingenious	implementation	that	really
doesn’t	get	enough	credit.	The	Raspberry	Pi	will	be	set	up	to	automatically	run	a
full-screen	 Chromium	 browser	 with	 a	 custom	 web	 page.	 Other	 times,	 the
webpage	is	just	opened	in	a	modified	Webkit	browser	that	automatically	takes	up
the	 whole	 screen,	 like	 Chrome	 OS	 somewhat.	 Either	 way,	 the	 Raspberry	 Pi
natively	 launches	 into	 this	mode,	 and	 from	 here,	 we	 actually	 start	 to	 develop
somewhat	of	an	idea	of	how	the	thing	should	work	overall.
	
The	customized	home	page	 is	a	black	background	with	white	 text	and	 images,
and	this	usually	has	some	sort	of	complex	JavaScript	code	powering	it	to	make	it
truly	customized.	One	way	or	another,	though,	the	person	ends	up	with	a	really
cool	mirror.	The	mirror	displays	stuff	like	a	“Good	morning”	or	“Good	evening”
message,	some	have	even	been	programmed	to	give	a	different	compliment	each

day.	Some	will	display	stuff	for	the	day	like	the	weather	or	the	latest	news,	and
so	on	and	so	forth.	 It’s	a	seriously	neat	 idea,	and	 in	a	way,	 the	fact	 that	 it	was
finally	 implemented	 indicates	 in	 one	way	 or	 another	 that	 the	 future,	 at	 last,	 is
here.
	
Raspberry	Pi,	because	of	the	fact	that	it	is	cost-efficient	and	relatively	powerful,
has	 also	 been	 used	 in	 various	 robotics	 projects.	While	 it’s	 not	 as	 clear-cut	 for
robotics	as	something	like	Arduino	with	its	native	support	for	things	like	motors
and	 stuff	 of	 the	 like,	 the	Raspberry	Pi	 takes	on	 the	brainier	 projects	with	 ease
that	other	architectures	may	not	be	such	a	huge	fan	of.	Raspberry	Pi,	as	a	result,
has	 taken	up	some	of	 the	more	complex	artificial	 intelligence	 robotics	projects
that	tinkerers	want	to	take	up,	and	other	things	similar.

Other	Uses

Some	people	get	seriously	creative	with	the	Raspberry	Pi	and	will	use	it	as	the
core	of	their	media	center.	The	Pi	is	great	for	this	because	it’s	low	profile	and	has
the	capacity	to	store	a	huge	amount	of	information	in	its	small	form-factor	via	its
MicroSD	slot.	More	 than	 that,	 its	 internet	connectivity	also	means	 it	 integrates
seamlessly	with	services	such	as	Spotify	and	Netflix.
	

Because	 of	 this,	many	 people	 such	 as	 cinephiles	 and	 audiophiles	will	 use	 the
Raspberry	 Pi	 as	 a	 means	 from	 which	 to	 store	 and	 direct	 their	 home	 theater.
Several	infrastructures	like	Kodi	catered	specifically	towards	this	and	have	been
introduced	over	time	and	come	to	play	a	major	part	in	the	overall	Raspberry	Pi
community.
	
The	Bluetooth	capabilities	of	 the	Raspberry	Pi	also	mean	that	 it’s	been	opened
up	 to	 use	 as	 a	media	 center,	 speaker,	 and	much	more.	Many	 people	 also	 take
advantage	 of	 its	WiFi	 compatibility	 and	 choose	 instead	 of	 using	 it	 as	 a	whole
media	center	to	simplify	and	use	it	just	as	a	place	to	stream	stuff	throughout	the
house.	There	are	projects	that	actually	link	Raspberry	Pis	up	to	a	central	hub	on
the	WiFi	connection	and	then	use	this	as	a	means	to	play	music	throughout	the
entire	house,	which	is	a	seriously	cool	usage.
	
The	Raspberry	Pi	also	comes	with	built-in	support	for	a	ton	of	different	sensors,
thermostats,	and	 things	of	 the	 like.	This	means	many	people	are	using	 them	to
build	 things	 like	 robots	 that	 can	 automatically	 water	 their	 plants	 for	 them	 by
detecting	when	they	start	to	release	excess	amount	of	carbon,	or	even	stuff	like
automatically	detecting	what	nutrients	the	plant	is	short	on	and	could	use	more
of.
	
Some	people	opt	to	buy	multiple	Raspberry	Pis	and	use	them	in	order	to	build	a
server	farm.	These	server	farms	consist	of	interlinked	Raspberry	Pis	on	a	central
hub	that	accept	and	distribute	incoming	traffic.	Network	junkies	love	Raspberry
Pis	for	this	reason.	A	simpler	use	would	be	to	set	up	your	own	dedicated	game
server	using	a	singular	Raspberry	Pi.
	
In	the	same	vein,	some	people	will	buy	multiple	Raspberry	Pis	in	an	attempt	to
build	a	massive	Bitcoin	or	cryptocurrency	mining	rig.	While	this	has	lost	a	lot	of
its	 efficiency	 for	Bitcoin	 specifically	 because	Bitcoin	 now	needs	 an	 extremely

strong	 processor	 and	 essentially	 a	 GPU	 farm	 in	 order	 to	 mine	 anything
meaningful,	newer	cryptocurrencies—especially	memory-hard	cryptocurrencies
—can	be	easily	mined	using	Pi-based	mining	operations.	While	there	are	better
investments	 if	 you’re	 serious	 about	 starting	 a	 mining	 farm	 (such	 as	 a	 lot	 of
GPUs),	 if	 you	 just	 have	 extra	 Raspberry	 Pis	 lying	 around	 from	 past	 projects,
then	it	could	be	a	really	cool	way	to	make	use	of	them	and	try	it	out	for	yourself.
You’ll	also	maybe	make	a	little	bit	of	money	on	the	side.

The	Internet	of	Things

The	 concept	 of	 the	 Internet	 of	 Things,	 too,	 is	 becoming	 increasingly	 popular.
This	can	be	a	bit	of	a	dense	topic	to	grasp,	so	I’m	actually	going	to	start	from	the
very	 bottom	 of	 it	 and	 work	 my	 way	 up	 to	 the	 point	 where	 Raspberry	 Pi	 is
relevant.	 The	 Internet	 of	 Things	 is	 the	 idea	 of	 household	 gadgets	 being
connected	to	one	another	via	services	such	as	the	Internet	or	an	intranet.	Some
people	 use	 a	 more	 liberal	 definition,	 which	 is	 simply	 everyday	 devices
connecting	to	the	Internet.	It	isn’t	explicitly	wrong,	but	it	fails	to	carry	the	same
implications	as	the	Internet	of	Things	does.
	
The	Internet	of	Things	is	more	the	idea	that	your	alarm	goes	off	at	7,	you	press
the	snooze	button	3	 times,	and	when	you	 finally	get	up	and	 turn	off	 the	alarm
properly,	 a	 signal	 is	 sent	 to	 your	 coffee	 maker	 and	 your	 TV.	 It	 starts
automatically	 brewing	 coffee	 and	 turns	 on	 the	 TV	 so	 that	 you	 can	 watch	 the
news	 that	morning.	 This	 sort	 of	 thing	 is	 the	 basic	 idea	 behind	 the	 internet	 of
things.
	
So	 how	 does	Raspberry	 Pi	 fall	 into	 this	 equation?	 I’d	 say	 that	 in	 one	way	 or
another,	 it’s	 actually	 self-explanatory.	 The	 Raspberry	 Pi	 is	 a	 beautiful	 way	 of
providing	 a	 relatively	 powerful	 computer	 interface	 to	 everyday	 things.	 If	 you
have	a	decent	knowledge	of	electrical	engineering,	you	could	solder	things,	alter
relays,	and	actually	program	your	everyday	appliances	to	work	in	this	manner.
	
If	 you	 lack	 that	 sort	 of	 background	 knowledge,	 then	 you	 still	 have	more	 than
enough	opportunities	 to	build	 everything	 from	 the	ground	up,	or	 even	 just	use
your	Raspberry	Pi	as	a	hub	that	your	entire	Internet-based	items	can	connect	to,
as	more	Internet-based	items	come	out.	Many	people	have	already	programmed
things	like	automatic	settings	to	their	coffee	makers	or	the	aforementioned	robots

that	 would	 do	 things	 like	 automatically	 water	 plants	 or	 detect	 nutrient
deficiencies.	These	sorts	of	 things	give	you	a	clear	 idea	of	 the	possible	uses	of
the	Raspberry	Pi	in	the	context	of	the	Internet	of	Things.
	
I	mentioned	earlier	that	the	Raspberry	Pi	has	been	used	increasingly	more	for	the
implementation	of	some	kinds	of	robotics	such	as	those	which	are	“brainier”	and
more	focused	around	artificial	 intelligence.	A	great	example	of	that	rests	 in	the
fact	 that	 some	 people	 have	 taken	 up	 the	 task	 of	 using	 open-source	 voice
recognition	 software	 in	 order	 to	 try	 to	 build	 their	 own	 version	 of	 things	 like
Amazon	Alexa.	These	projects	show	how	capable	 the	Raspberry	Pi	 is	of	being
used	for	various	different	artificial	intelligence	applications.
	
Speaking	of	Amazon	Alexa,	many	Raspberry	Pi	projects	will	actually	interface
with	 things	 such	 as	Amazon	Alexa	 or	 other	 home	 assistants	 in	 order	 to	make
voice-activated	Pi	commands	a	 reality,	among	many	other	 things.	There	are	so
many	of	these	projects	that	it’s	kind	of	hard	to	tell	you	where	to	start	with	them.
	
There	is,	in	the	end,	a	plethora	of	different	uses	for	the	Raspberry	Pi.	There	are
even	more	 than	 I’ve	mentioned	here.	Really,	 in	 the	 end,	 the	Raspberry	Pi	 is	 a
small	and	cost-effective	computer.	Therefore,	anything	that	you	can	dream	about
doing	with	a	computer	is	something	that	you	can	do	with	a	Raspberry	Pi.	It’s	a
powerful	computer	in	its	own	right	as	well,	so	don’t	be	afraid	to	try	to	push	the
boundaries	of	what’s	possible	with	the	Raspberry	Pi.	I	guarantee	that	you	won’t
be	disappointed.

Review	Questions

1.	 What	is	a	Raspberry	Pi?

2.	 What	do	you	get	when	you	purchase	a	Raspberry	Pi?

3.	 In	general,	which	version	of	the	Raspberry	Pi	is	best	to	use?	Why?

4.	 In	what	ways	can	the	Raspberry	Pi	be	used?

5.	 What	is	the	Internet	of	Things?

6.	 Despite	being	a	tiny,	underpowered	computer,	the	Raspberry	Pi	is	a	very
powerful	device.	Why?

	

Chapter	2:	Setting	Up	Your	Raspberry	Pi

In	this	chapter,	we’re	going	to	outline	everything	that	you	have	to	do	to	set	up
your	Raspberry	Pi.	This	will	 include	everything	 that	you	need	 to	get	 it	up	and
running,	so	pay	close	attention.	It	is	difficult	at	first,	but	it	only	gets	easier	from
here!	This	guide	assumes	that	you’re	working	with	a	Raspberry	Pi	Model	3	B,
the	most	recent	model.	However,	if	you’re	working	with	an	older	model,	things
will	remain	largely	the	same	throughout	the	process.
	
First	off,	here’s	what	you’re	going	 to	need	 in	order	 to	set	up	your	Pi	so	 that	 it
runs	as	a	desktop	computer:
	

Monitor	(obviously)
Keyboard	and	mouse
MicroSD	card
Operating	system

Choosing	an	Operating	System

What	operating	system	should	you	use	on	your	Raspberry	Pi?	There	are	many
different	answers	to	this	question.	Many	different	companies	have	made	versions
of	 the	 operating	 systems	 that	 can	 run	 on	 the	 Raspberry	 Pi’s	 software.	 Even
Microsoft	has	released	a	version	of	Windows	that	is	able	to	run	on	the	hardware
of	 the	Raspberry	Pi.	So,	bearing	all	of	 this	 in	mind,	what	software	specifically
should	you	use	on	your	Raspberry	Pi?
	
Personally,	 I	 would	 recommend	 that	 you	 use	 the	 operating	 system	 Raspbian
using	NOOBS.	NOOBS	is	easy	to	set	up,	it	runs	on	Linux	(explained	later),	and
it	 is	 completely	 free!	Moreover,	Raspbian	was	actually	developed	by	 the	 team
that	created	 the	Raspberry	Pi,	 so	 it’s	designed	 for	 the	hardware,	whereas	other
operating	systems	may	simply	be	compatible	with	the	hardware.	This	means	that
things	will	work	better	out	of	the	box	down	the	line.
	
Regardless	of	what	operating	system	you	want	to	use,	NOOBS	will	offer	support
for	 it	and	 is	an	excellent	operating	system	installer.	While	I	would	recommend
that	 you	 install	 Raspbian,	 ultimately	 you	 have	 autonomy	 over	 whatever	 you
decide	 to	 install	 on	 your	 Pi.	 Now	 that	 that’s	 settled,	 let’s	 talk	more	 about	 the
setup	process.

	

Installing	NOOBS

These	instructions	will	tell	you	how	to	set	up	Raspbian	only.	If	you	decide	to
install	a	different	operating	system,	then	this	book	will	not	be	able	to	help	you
with	that.	However,	as	long	as	the	installation	is	through	NOOBS,	the	process
should	be	the	same	for	all	operating	systems.	Therefore,	you	shouldn’t	have	any
problems	installing	them.	With	that	said,	let’s	install	NOOBS	first.

1.	 In	order	 to	set	up	your	Raspberry	Pi	with	an	operating	system,	you	will
need	to	grab	your	SD	card	and	insert	it	into	your	computer.

2.	 Do	 a	 search	 for	 SD	 Formatter	 4.0.	 Download	 and	 install	 it.	 (Kindle
formatting	 doesn’t	 play	 nice	 with	 links	 so	 I	 cannot	 link	 you,
unfortunately.)	It’s	released	by	an	organization	called	the	SD	Association,
so	as	long	as	you’re	getting	it	off	their	website,	you	should	be	in	the	clear.

3.	 Install	 the	 software	 and	 start	 up	 the	SD	Formatter	program.	Select	your
SD	 card’s	 disk	 drive	 and	 then	 format	 it	 exactly	 as	 the	 default	 settings
indicate.

4.	 Go	to	your	download	of	the	NOOBS	installer.	You	can	get	it	by	searching
for	 NOOBS	 and	 then	 heading	 to	 the	 link	 hosted	 by	 the	 Raspberry	 Pi
organization.

5.	 Extract	 the	 files	 somewhere,	 such	 as	 your	 desktop.	 Copy	 the	 files	 that
were	extracted	over	to	your	SD	card,	and	then	you’re	set.

6.	 Take	out	the	SD	card	and	put	it	in	your	Raspberry	Pi’s	SD	card	slot.

7.	 Plug	in	everything:	your	monitor	via	the	HDMI	port,	your	keyboard,	and
your	mouse.	Ensure	that	your	monitor	is	on	the	right	setting.

If	all	goes	well,	you	should	be	clear	 to	 finally	plug	your	Raspberry	Pi	 into	 the
wall	and	get	 to	some	heavy	development.	 If	you’re	using	a	newer	Pi	model,	 it
should	have	built-in	WiFi.	Older	models,	however,	will	require	you	to	connect	to

the	internet	via	Ethernet	or	to	plug	in	a	WiFi	adapter	that	is	compatible	with	the
Raspberry	Pi.
	
You’ll	know	your	Raspberry	Pi	is	on	when	the	indicator	link	on	the	Raspberry	Pi
is	blinking.	At	this	point,	you’ll	know	if	everything	is	going	well	because	the
indicator	light	will	be	on	and	you	should	have	video	displaying	on	your	monitor.

Installing	Raspbian

Now	that	we’ve	installed	NOOBS,	we	can	proceed	with	installing	Raspbian	or
your	operating	system	of	choice.	Again,	this	book	will	only	discuss	Raspbian,
but	the	process	of	installing	the	operating	system	is	the	same	for	all	other
operating	systems	that	you	can	use	for	the	Raspberry	Pi.

1.	 On	the	main	screen	upon	the	operating	system	powering	up,	ensure	 that
Raspbian	 is	 selected.	 This	 is	 the	 recommended	 operating	 system	 across
most	communities,	especially	for	people	who	are	new	to	Raspberry	Pi.

2.	 Click	Install	next	and	then	click	Yes	to	confirm	that	it’s	going	to	overwrite
your	SD	card.

3.	 Wait,	 and	 after	 a	 bit,	 your	 operating	 system	 will	 be	 installed.	 It’s	 an
extremely	easy	process	like	I	said.

4.	 When	all	 is	said	and	done,	your	Pi	will	reboot,	and	you’ll	be	brought	to
the	main	screen	for	the	Raspbian	operating	system.

Getting	Started

Now	that	you’re	on	Raspbian’s	main	screen,	it’s	time	to	make	the	magic	happen.
This	is	where	your	adventures	with	the	Raspberry	Pi	begin.	Feel	free	to	poke
around	a	little	bit	and	see	what	it	has	to	offer.	You	can	see	right	out	the	gate	that
there	are	quite	a	few	programs	built	in	that	aim	to	help	you	learn	to	do	various
things,	which	really	betray	the	origin	of	Raspberry	Pi	as	something	intended	to
help	underprivileged	people	learn	about	computer	science	and	programming	in
general.

So	now,	you’re	confronted	with	your	operating	system.	If	you’ve	never	used	a
Linux	operating	system	before,	you	more	than	likely	have	a	few	questions.
Moreover,	even	if	you	have	used	a	Linux	operating	system	before,	there’s	the
chance	that	this	is	not	anything	like	what	you’ve	used	before	if	you’ve	primarily
stuck	to	KDE	distributions.	So	let’s	answer	some	questions	first.

	
1.	 What	am	I	looking	at?

The	 answer	 to	 that	 question	 is	 simple:	 Raspbian.	 Raspbian	 is	 a
distribution	 of	 the	 Linux	 operating	 system,	 which	 you’ve	 most	 likely

heard	 of	 before.	 It’s	 an	 offshoot	 of	 a	 popular	 Linux	 distribution	 called
Debian.	 There	 are	 many	 other	 Linux	 distributions,	 one	 of	 which	 is
Ubuntu.	 Raspbian	 has	 been	 designed	 to	 be	 a	 perfect	 match	 for	 the
Raspberry	Pi’s	hardware	demands	and	its	specific	CPU	architecture.

	
2.	 What	is	Linux?

Linux	 itself	 is	 an	 offshoot	 of	 another	 operating	 system	 from	 long,	 long
ago	 called	Unix.	Unix	was	 extraordinarily	 popular	 for	 various	 different
reasons	that	a	book	could	be	written	about	all	on	its	own	(and	numerous
have,	and	they	are	quite	good).

Unix	 itself	would	 inspire	many	operating	 systems	 that	people	use	every
day,	 including	 Linux	 (which	 in	 itself	 inspired	 the	 extremely	 popular
Android	 mobile	 operating	 system)	 and	 MacOS	 (from	 which	 the	 iOS
mobile	 operating	 system	 was	 derived).	 In	 other	 words,	 if	 you	 have	 a
phone	 or	 a	 non-Windows	 computer,	 you’ve	 already	 been	 using	 a
computer	inspired	by	Unix.

Because	 of	 its	 ubiquity	 in	 the	 ‘80s	 and	 the	 fact	 that	 operating	 systems
such	 as	 Linux,	Minix,	 and	 FreeBSD	 would	 fit	 extremely	 well	 into	 the
hacker	 subculture’s	 belief	 in	 freedom	 of	 information	 and	 free	 software
(free	as	in	speech	and	free	as	in	beer,	both),	Unix	would	remain	the	king
of	 the	 software	 development	 world	 for	 quite	 a	 long	 time.	 Quite	 a	 long
time	 leads	 up	 to	 the	 current	 day,	 where	 you’re	 sitting	 in	 front	 of	 an
unfamiliar	operating	system	wondering	what	to	do.	How	quaint.

	

Let’s	look	for	a	second	at	our	operating	system.	First,	the	most	important	part	of
a	Linux	system	is	the	Terminal.	If	you	use	an	Apple	computer,	you’ve	probably
poked	around	in	the	Terminal	a	few	times	as	well.	The	Terminal	was	one	of	the
most	heavily	used	features	of	Unix	because	it	offered	an	extremely	easy	way	to
get	packages,	manage	your	system,	and	do	much,	much	more.	This	remains	true
today.	Understanding	Linux	systems	means,	to	an	extent,	understanding	how	the
Terminal	works	and	all	of	the	many	different	things	that	you	can	do	with	it.	So,
if	you	want	to	have	an	idea	of	how	Linux	works,	poke	your	head	around	a	guide
aimed	at	teaching	you	how	the	Terminal	works.
	
One	of	the	prime	pulls	of	Linux,	too,	is	the	fact	that	it’s	completely	free,	and	this
applies	here	no	less.	You	can	poke	around	your	system’s	information	and	have
complete	control	over	 the	computer	and	 its	motherboard.	This	 is	why	so	many
geeks	like	me	love	Raspbian:	it’s	easy	to	use,	but	it	offers	all	of	the	control	and
autonomy	that	Linux	distributions	do.
	
You’ll	notice	that	Raspbian	comes	with	quite	a	few	different	things	packed	in.	Of
note	are	a	program	geared	at	helping	you	with	algebra	 related	problems	called
Mathematica.	You’ll	 also	notice	 that	 there	 is	 a	version	of	Chromium	 included.
This	 browser	 is	 much	 like	 Google	 Chrome.	 In	 fact,	 it	 is	 just	 the	 open-source

version	 of	Google	Chrome.	 There’s	 a	 difference	 between	 standard	 versions	 of
Chromium	 and	 this	 version,	 though;	 this	 version	 is	 much	 lighter-weight	 than
other	versions,	and	as	a	result,	it	runs	much	better	on	the	Raspberry	Pi’s	delicate
architecture.	You	can	open	as	many	 tabs	as	you	want!	 (Don’t	 actually	open	as
many	tabs	as	you	want,	it	won’t	go	well.)
	
The	last	thing	of	note	is	the	fact	that	the	operating	system	actually	comes	with	a
version	of	Minecraft,	which	is	referred	to	as	Minecraft	Pi.	This	is	actually	a	lot
like	Minecraft,	 except	 it’s	 geared	 towards	 helping	 kids	 learn	 how	 to	 program.
However,	you	yourself	might	find	 it	kind	of	fun	 if	you	poke	around	and	 try	 it.
Besides,	this	is	a	long	book,	so	it	won’t	hurt	to	give	yourself	a	bit	of	a	break	in
order	to	play	a	game.
	
Linux	is	the	best	choice	for	tinkerers.	There	are	many	reasons.	The	first	is	that	it
keeps	the	overall	cost	of	tinkering	down	since	Linux’s	culture	actually	endorses
the	use	of	open-source	and	free	software.	This	means	 that	you	can	spend	a	 lot
less	money	obtaining	software	and	a	lot	more	time	actually	using	your	software.
The	fact	that	it’s	completely	open	is	great	as	well	because	if	you	get	to	be	good
enough	at	programming,	you	can	crack	open	 the	 source	code	and	modify	 it	 as
you	wish.	There	are	no	secrets,	and	you	know	exactly	what	you’re	getting	into.
In	 addition,	 perhaps	 the	 biggest	 pull	 is	 the	 fact	 that	 there	 are	 so	 many	 open-
source	tools	available	to	you	as	a	Linux	programmer.	People	have	been	working
with	Unix-based	systems	for	almost	50	years	now,	not	 to	mention	that	 the	free
and	open	source	software	movement	has	been	around	for	more	than	40.	Believe
me,	if	there	is	anything	you	want	to	do,	there	is	almost	certainly	a	program	out
there	already	that’s	been	written	to	do	exactly	that.	If	there	isn’t,	Linux	makes	it
extremely	easy	for	you	to	make	it	yourself.

Embedded	Linux

Technically	speaking,	there	is	no	such	thing	as	Embedded	Linux.	When	we	talk
of	embedded	Linux,	we	use	it	as	an	umbrella	term	to	refer	to	an	embedded
system	that	runs	Linux.	An	embedded	system	refers	to	a	piece	of	computing
hardware	designed	for	a	singular,	specific	application.	In	contrast,	a	Personal
Computer	has	a	multitude	of	purposes—browsing	the	Internet,	playing	video
games,	or	writing	eBooks	about	the	Raspberry	Pi.	Lately,	though,	the	line	that
separates	general-purpose	computing	devices	and	embedded	systems	is	blurring.
In	fact,	the	Raspberry	Pi,	this	book’s	main	topic,	can	be	classified	as	both.	It	just
depends	on	the	purpose	you	bestow	upon	it.

To	be	clear,	embedded	systems	are	still	different	from	general-purpose
computers.	They	have	distinct	qualities	that	are	theirs	alone.	These	include	the
following:

Their	purpose	is	very	specific,	and	they	are	often	dedicated	to	this
purpose.

They	are	usually	underpowered.	They	tend	to	lack	the	beefy	power	that
personal	computers	usually	have.

They	operate	in	a	larger	system,	acting	as	a	hub	for	other	sensors	and
devices.	This	is	in	contrast	with	PC’s,	which	usually	act	alone.

Their	roles	are	often	quite	significant,	thus	why	they	are	assigned	that
specific	task.

They	process	things	in	real	time.

You	can	have	an	embedded	Linux	setup	by	going	nuts	on	the	Terminal	in
Raspbian.	The	setup	is	a	complicated	process	and	it	assumes	you	already	know	a
thing	or	two	about	technical	stuff,	so	I	will	not	discuss	it	in	this	book.	Feel	free
to	do	research	on	it	yourself.	We	still	have	more	things	to	learn	about	the	Pi.

	

Review	Questions

1.	 Why	is	Raspbian	a	great	choice	for	new	Raspberry	Pi	users?

2.	 How	do	you	install	Raspbian	or	any	other	operating	system	for	the
Raspberry	Pi?

3.	 What	is	Linux?	Why	is	it	relevant	to	Raspberry	Pi?

4.	 What	is	an	embedded	system?	How	do	they	differ	from	personal
computers?

Chapter	3:	Using	Your	Raspberry	Pi

Now	that	you	have	learned	about	basic	Python	programming,	it’s	time	to	move
on	and	actually	use	your	Raspberry	Pi.	Setting	up	your	Pi	to	work	with	sensors,
diodes,	and	other	cool	tech	stuff	can	be	quite	a	challenge.	However,	we’ll	go
through	each	of	the	ways	you	can	use	your	Pi	so	you	can	rest	assured	that	you’ll
be	knowledgeable	about	it	before	diving	in.

Interfacing	Electronics

Your	Raspberry	Pi	would	be	useless	if	you	weren’t	able	to	use	it	to	interact	and
use	other	electronic	devices,	wouldn’t	it?	Here,	we’ll	discuss	how	to	set	up	your
Pi	to	work	with	other	electronics.	First,	you’ll	need	to	have	the	proper	equipment
in	order	to	make	sure	you	won’t	destroy	your	circuit	or	even	your	Pi.

Digital	Multimeter

It	is	essential	that	you	have	one	of	these	before	starting	to	tinker	with	circuitry.
This	device	measures	many	things	such	as	voltage,	current,	resistance,	etc.	This
ensures	that	you	don’t	accidentally	pump	your	circuit	with	more	than	it	can
handle.

Breadboard

A	breadboard	is	a	base	for	you	to	use	when	making	prototypes	for	electronics.
Before	trying	things	out	on	your	Raspberry	Pi,	try	it	on	a	breadboard	first.	Make
sure	to	get	the	good	ones!

Discrete	Components

Diodes

A	diode	is	a	semiconductor	component	that	simply	allows	one	current	to
flow	in	one	direction	but	not	the	other.

Light	Emitting	Diodes	(LEDs)

An	LED	acts	similarly	to	a	diode,	just	that	it	emits	light	if	the	current
flows	in	the	correct	direction.	These	come	in	many	shapes,	sizes,	and
colors.	The	length	of	the	leg	determines	which	leg	is	positive	(cathode)

and	which	is	negative	(anode).	

Capacitors

A	capacitor	is	a	component	that	can	be	used	to	store	electrical	energy.	It
stores	energy	when	there	is	a	difference	in	voltage	between	its	two	plates.
Once	the	voltage	difference	dissipates,	it	releases	the	stored	energy.

Transistors

A	transistor	is	a	semiconductor	component	that	can	be	used	to	amplify	or
switch	electricity	or	electric	signals.

Optocouplers

These	are	digital	switching	devices	that	allow	you	to	isolate	two	electrical
circuits	from	one	another.

Buttons	and	Switches

These	are	quite	self-explanatory.	These	are	the	input	devices	that	you
interact	with	to	make	your	circuit	do	something.	Their	basic	function	is	to
open	or	close	a	circuit.	They	come	in	different	shapes	and	forms,
depending	on	what	you	need.

Communication	Protocols

In	order	for	embedded	systems	to	work	harmoniously,	there	needs	to	be
communication	between	them.	This	is	the	way	in	which	data	is	transferred
between	embedded	systems.	There	are	certain	standards	that	are	set	in	place	to
make	sure	there	is	consistency	and	coherence	in	their	communication.	These	are
the	communication	protocols.

A	number	of	communication	protocols	exist,	and	the	difference	between	them
would	be	better	understood	if	you	learn	these	few	concepts	first:

Bit	rate

The	bit	rate	describes	the	number	of	bits	that	are	sent	per	unit	of	time.
This	is	usually	described	in	bits/sec.

Baud	rate

Whereas	the	bit	rate	describes	the	number	of	bits	sent	per	unit	of	time,	the
baud	rate	describes	the	number	of	symbols	sent	per	unit	of	time.	These
symbols	can	each	be	of	any	number	of	bits.	This	depends	on	the	design.	If
ever	the	symbols	are	only	1	bit,	the	baud	rate	would	be	equal	to	the	bit
rate.

Parallel	Communication

In	parallel	communication,	multiple	bits	are	sent	at	the	same	time.

Serial	Communication

In	serial	communication,	bits	are	sent	one	bit	at	a	time.

Synchronous	Serial	Communication

This	describes	a	serial	communication	protocol	wherein	data	is	sent	at	a
steady,	continuous	stream	at	a	constant	rate.	This	requires	that	the	internal
clocks	of	the	two	embedded	systems	be	synchronized	at	the	same	rate	so

that	the	receiver	receives	the	signal	at	the	same	intervals	that	the
transmitter	used.

Asynchronous	Serial	Communication

This	form	of	serial	communication	does	not	require	synchronized	internal
clocks.	In	place	of	the	synchronization	signal,	the	data	stream	instead
contains	start	and	stop	signals	before	and	after	the	transmission,
respectively.	When	the	receiver	receives	the	start	signal,	it	prepares	for	a
stream	of	data.	Conversely,	when	it	receives	the	stop	signal,	it	resets	to	its
previous	state	to	receive	a	new	stream.

Now	that	you’ve	learned	about	the	basic	concepts	of	communication	between
embedded	systems,	we	can	now	learn	about	the	different	communication
protocols.

I2C

I2C	is	short	for	Inter-Integrated	Circuit.	It	is	a	synchronous	serial	communication
protocol	that	uses	two	wires:	one	for	data	(SDA),	and	one	for	the	clock	(SCL).	It
is	a	multi-master,	multi-slave		serial	computer	bus.	Most	of	its	uses	are	confined
to	attaching	lower-speed	peripheral	integrated	circuits	to	processors	and

microcontrollers.	Because	of	how	it	works,	I2C	must	validate	the	data	passing
through	it	by	evaluating	whether	or	not	the	data	on	the	SDA	line	changes	when
the	SCL	is	high.	The	data	on	the	SDA	line	should	only	ever	change	when	the
SCL	is	low.	Otherwise,	the	data	is	rendered	invalid.

The	bus	structure	is	a	wired	AND	gate.	This	means	you	can	test	if	the	bus
is	idle	or	occupied.

Once	a	master	changes	a	line’s	state	to	HIGH,	it	always	has	to	check	if
that	line	has	actually	gone	to	high.	Otherwise,	it’s	an	indication	that	the
bus	is	occupied.

I2C	supports	a	wide	range	of	voltages.

I2C	is	half-duplex.

I2C	can	support	serial	8-bit	data	transfers	up	to	a	speed	of	100kbps.	This	is

the	standard	clock	speed	of	SCL.	I2C	is	also	capable	of	a	higher	bitrate:
400	kbps	(fast	mode)	and	3.4	Mbps	(high-speed	mode).

I2C	is	mainly	used	for	short-distance	communication.

	

UART

UART	is	short	for	Universal	Asynchronous	Receiver	Transmitter.	In	this
protocol,	one	wire	is	used	for	transmitting,	and	another	wire	is	used	for
receiving.	UART	uses	a	serial	type	of	communication,	therefore	bits	travel	in
one	wire.

UART	supports	communication	through	RS232.

Standard	baud	rates	for	UART	include	110,	300,	600,	1200,	4800,	and
9600.

UART	can	only	support	communication	between	two	devices	at	any	one
time.	This	is	because	it	is	a	point-to-point	communication	protocol.

SPI

SPI	is	short	for	Serial	Peripheral	Interface.	It	is	a	synchronous	serial
communication	interface	protocol	used	for	short-distance	communication.	It	can
operate	with	one	master	and	several	slave	devices.

SPI	is	a	full	duplex	type	of	communication	protocol.

SPI	protocol	has	no	limit	for	message	size,	making	it	very	flexible.

Real-Time	Interfacing	Using	Arduino

In	case	you	aren’t	familiar,	an	Arduino	is	a	powerful	microcontroller.	You	can
use	it	in	tandem	with	a	Raspberry	Pi,	creating	some	impressive	projects.
Obviously	you’ll	need	an	Arduino	for	this	to	work.	You’ll	need	a	lot	of
programming	expertise	and	mastery	of	interfaces	to	make	use	of	this,	and
explaining	that	will	make	this	book	longer	than	it	needs	to	be,	so	feel	free	to	do
some	further	research	on	this	topic.	However,	I’ll	discuss	a	few	key	things.

You	can	interface	with	the	Arduino	using	any	of	the	communication

protocols	discussed	above	(I2C,	UART,	and	SPI).

You	can	configure	the	Arduino	as	an	I2C	slave.	This	means	you	can
connect	several	Arduinos	to	one	Raspberry	Pi.

A	straightforward	UART	connection	can	only	support	one	slave	at	a	time.

If	you	require	a	fast,	high-level	interaction	between	your	Arduino	and	Pi,
configuring	the	Arduino	as	an	SPI	slave	will	be	the	way	to	go.	This	is
because	an	SPI	connection	will	only	be	limited	by	the	Arduino’s	clock
speed.

Input	and	Output

You	probably	have	noticed	that	row	of	pins	along	the	top	edge	of	the	Raspberry
Pi	board.	These	are	the	GPIO	pins.	GPIO	is	short	for	General	Purpose
Input/Output.	Using	the	software,	you	can	designate	whether	each	of	these	pins
are	for	input	or	output.	You	can	do	many	things	with	this.	Two	of	these	pins	are
5V,	and	two	more	are	3.3V.	There	are	also	several	ground	pins,	which	you
cannot	configure.	The	rest	are	general-purpose	3V3	pins.

If	you	designate	a	pin	to	be	an	output	pin,	you	can	set	it	to	high,	at	3V3,	or	low,
at	0V.	Conversely,	input	pins	can	be	read	as	high	(3V3)	or	low	(0V).

Capturing	Images,	Videos,	and	Audio

You	can	use	your	Raspberry	Pi	 to	capture	photos	and	record	videos	and	audio.
Obviously,	 you	 would	 need	 the	 required	 peripherals	 if	 you	 want	 to	 try	 this.
You’ll	need	a	Raspberry	Pi	Camera	($30)	or	a	USB	Webcam	and	a	USB	audio
and	audio	HAT.

Images	and	Video

There	are	many	reasons	why	you	would	want	to	capture	images	and	video	using
your	Pi.	There’s	home	security,	robotics,	automation,	image/video	streaming,	etc.
If	you	have	the	right	combination	of	peripherals,	you	can	stream	high	quality
video.	This	stream	can	be	viewed	asynchronously.	The	only	limit	there	is	to	their
durations	is	the	capacity	of	the	available	storage	on	your	Pi	and	any	additional
attached	USB	storage	devices.

To	get	started,	you	need	to	have	a	camera.	You	can	use	either	a	USB	Webcam
which	you	can	purchase	in	any	computer	store,	or	you	can	buy	a	camera	built
specifically	for	use	with	the	Pi,	the	Raspberry	Pi	Camera,	which	you	can
purchase	for	$30.	We’ll	only	discuss	the	Raspberry	Pi	Camera	here	to	avoid
making	this	too	long.

The	Raspberry	Pi	Camera	is	tiny,	only	a	1”	x	1”square.	It	attaches	to	the	Pi’s
camera	serial	interface	or	CSI	via	a	15cm-long	ribbon	cable.	It	captures	up	to	5
megapixels,	supports	up	to	1080p	full	HD	video	at	various	framerates,	and	even
up	to	90	frames	per	second	on	VGA	resolution.	You	may	also	get	an	infrared
filter	for	it	if	you	wish.

To	attach	it	to	the	Pi,	follow	these	steps:

Turn	off	the	Raspberry	Pi	unit.	Do	not	touch	the	metal	contacts	of	the
ribbon	cable.	You	might	ruin	it!

Take	off	the	lens	protector.

Get	the	CSI	connector	and	gently	pull	up	the	housing	clip	(this	is	usually
black	or	white).

Insert	the	CSI	cable	into	its	slot.

Push	down	the	housing	clip	to	lock	it	in	place.

Turn	on	the	Pi	and	configure	the	camera:
Enable	the	camera	with	this	command:

pi@erpi	~	$	sudo	raspi-config
	

Reboot.

	

To	capture	images,	input	the	following	command:

	
pi@erpi	~	$	raspistill	-o	image.jpg
pi@erpi	~	$	ls	-l	image.jpg

	

To	capture	a	10-second	video,	input	the	following	command:

pi@erpi	~	$	raspivid	-t	10000	-o	video.h264
pi@erpi	~	$	ls	-l	video.h264

	
You	can	do	many	more	things	like	stream	videos	and	set	up	a	home	security
system	with	this	feature.	However,	we’ll	not	discuss	those,	so	feel	free	to	do
your	own	research	about	it.

Recording	and	Playing	Audio

Most	of	the	time,	you	will	need	your	video	to	be	accompanied	by	audio,	and
sometimes	you	will	need	just	the	audio.	You	may	also	want	to	connect	a	speaker
to	the	Pi	so	you	can	play	music,	play	pranks	on	friends,	or	something	entirely
different.	To	set	up	the	audio,	you	will	need	an	audio	input	or	output	device.
However,	the	Pi	actually	comes	with	a	built-in	audio	output	system,	which
connects	via	an	HDMI	port.	For	input,	however,	you	will	need	another	device.

USB	Audio

You	 can	 attach	 a	 USB	 audio	 input	 device	 as	 long	 as	 it	 supports	 Linux
drivers.	You	may	also	use	USB	webcams	that	have	microphones.

Bluetooth	Audio

You	can	use	a	Bluetooth	audio	input	or	output	system	and	connect	it	to	the
Pi	using	a	Linux-compatible	Bluetooth	adapter.

Raspberry	Pi	HATs

HAT	is	short	for	“Hardware	Attached	on	Top.”	Pretty	clever	name,	 isn’t
it?	Anyway,	you	can	attach	a	HAT	that	has	audio	capabilities	to	the	Pi.

To	record/play	audio,	you	will	need	the	ALSA	utilities	software.	It	contains	the
aplay 	and	the	 arecord 	utilities	that	you	will	need	to	record	audio.	To	install	this,
simply	input	this	command:

pi@erpi	~	$	sudo	apt	update

pi@erpi	~	$	sudo	apt	install	alsa-utils
	

Now,	let’s	move	on	to	using	these	to	record	and	play	audio.	To	record	audio,
input	the	following	command:

pi@erpi	~/tmp	$	arecord	-f	cd	-D	plughw:1,0	-d	10	test.wav
	

To	play	the	audio	you	have	just	recorded,	type	this	command:

pi@erpi	~/tmp	$	aplay	-D	plughw:1,0	test.wav

Review	Questions

1.	 What	is	the	most	important	tool	you	need	to	have	before	starting	to
experiment	with	interfacing	between	your	Pi	and	other	electronics?

2.	 What	are	the	different	communication	protocols	that	can	be	used	with	the
Raspberry	Pi?	How	do	they	differ	from	one	another?	What	are	their
advantages	and	disadvantages?

3.	 How	do	you	interface	your	Raspberry	Pi	with	an	Arduino?

4.	 How	do	you	capture	still	images,	record	videos,	record	audio,	and	play
audio	on	the	Raspberry	Pi?	What	devices	would	you	need	to	do	so?	What
software	is	needed?

Chapter	4:	Python	Programming	for	the	Pi

Most	 scripting	 on	 the	 Pi	 happens	 through	 Python.	 However,	 some	 other
languages	occasionally	find	their	way	into	use	in	Pi	systems.	For	example,	you
will	occasionally	see	the	language	Bash	being	used	in	order	to	write	scripts	that
can	be	run	from	the	Linux	terminal	and	that	can	do	commands	from	within	the
Linux	terminal.
	
However,	 when	 it	 comes	 to	 writing	 full-on	 scripts,	 the	 language	 of	 choice	 is
Python.	Python	has	native	 support	on	Raspberry	Pi,	 and	 it’s	 extremely	easy	 to
get	 up	 and	 running	 in	 no	 time.	 However,	 the	 challenge	 comes	 in	 actually
learning	how	to	program	on	the	Raspberry	Pi.	This	is	easier	said	than	done.	After
all,	 some	people	are	paid	a	 lot	of	money	 to	program!	There’s	a	very	high	skill
cap	to	being	a	good	programmer.
	
This	 chapter	 aims	 to	 traverse	 that	 skill	 gap	 and	 give	 you	 all	 of	 the	 useful
information	 that	 it	 can	 regarding	programming	 in	Python	 so	 that	 you	 can	 start
your	Raspberry	Pi	scripting	adventures	on	a	strong	note.	So,	with	all	of	that	said,
let’s	tackle	some	essential	questions.

	

What	is	Python?

Here’s	 a	 short	 and	 simple	 answer:	 Python	 is	 a	 programming	 language.	 To
elaborate,	 computers	 don’t	 really	 understand	 any	 languages	 that	 we	 speak.
Natively,	they	speak	solely	in	computations.	Normally,	they’re	just	permutations
of	1’s	and	0’s	and	performing	operations	upon	those.	This	is	popularly	known	as
binary	 code,	 and	 it’s	 an	 important	 foundation	 of	 programming	 and	 computer
science	in	general.
	
In	order	to	speak	to	computers,	give	them	instructions,	and	tell	them	what	to	do,
we	 need	 a	 means	 by	 which	 we	 can	 start	 translating	 what	we	 want	 into	 their
language.	This	means	 is	ultimately	called	a	programming	 language.	You	use	a
programming	 language	 in	order	 to	 convert	 the	characters	 and	 terminology	 that
we	use	into	code	that	the	computer	can	understand	and	then	execute.

	

Why	Python?

So	at	this	point,	you	might	be	wondering—what	sets	Python	apart?	Why	should
we	 use	 Python	 over	 any	 other	 given	 language?	What	makes	 it	 different?	 The
simple	 answer	 is	 this:	 Python	 has	 a	 lot	 of	 support,	 is	 natively	 supported,	 and
actually	works	well	with	the	Raspberry	Pi	platform.
	
While	there	are	many	different	scripting	languages	that	are	available	for	you	to
use	on	 the	Raspberry	Pi,	 few	are	 going	 to	 be	 as	 efficient,	well	 supported,	 and
natively	acceptable	as	the	Raspberry	Pi.	There’s	a	reason	that	so	many	different
utilities	 built	 specifically	 for	 the	 Raspberry	 Pi	 are	 built	 in	 the	 Python
programming	language.	That	should	be	all	the	reason	you	need.	No	language	is
so	good	at	doing	what	Python	does	as	Python	is.
	
Additionally,	as	somebody	who	is	new	to	programming	and	is	taking	in	a	lot	of
information,	Python	is	great	for	you	to	use	because	it	is	simple.	Python	is	easy
for	 a	 newer	 programmer	 to	 pick	 up	 while	 being	 powerful	 enough	 that	 a
programmer	who	has	been	around	a	 time	or	 two	will	have	no	problem	getting
into	the	Pythonic	workflow	and	learning	how	to	make	the	most	of	this	powerful
language.

Setting	up	Python

Python	comes	built	into	Raspbian,	so	there	isn’t	much	that	you	have	to	do	in	the
way	of	 setting	up.	You	 can	verify	 that	Python	 is	 installed	by	opening	up	your
Terminal	 and	 executing	 the	Python	 command.	 If	 for	 some	 reason	Python	 isn’t
installed,	you	can	go	ahead	and	navigate	to	the	Python	website	and	download	a
version	 for	your	operating	 system.	 If	you	have	Python	2	 for	 some	 reason,	you
need	 to	 uninstall	 it	 and	 install	 Python	 3	 instead.	 Raspbian	 should	 come	 with
Python	3	automatically,	which	clears	up	this	worry	from	the	get-go.

Data	and	Variables

The	 first	 thing	 that	we’re	going	 to	 look	at	 is	mathematical	program	operations
and	how	you	can	perform	them.	In	order	to	understand	this,	though,	you	need	to
understand	a	thing	or	two	about	data.
Python	understands	data	in	a	relatively	unique	way,	but	there’s	a	reason	that	it’s
relative;	 all	 programming	 languages	 understand	 data	 in	 this	 same	 kind	 of
detached	 manner.	 Data	 is,	 for	 lack	 of	 a	 better	 term,	 any	 singular	 piece	 of
information	 that	 is	 used	 in	 order	 to	 represent	 some	 given	 concept.	 Any
individual	 piece	 of	 data	 is	 referred	 to	 as	 a	 value.	 Values	 can	 take	 on	 several
different	forms.
	
However,	 under	 it	 all,	 computers	 aren’t	 actually	 understanding	 any	 of	 these
different	forms;	instead,	computers	understand	the	raw	idea	of	ones	and	zeroes,
binary	calculations	 that	are	happening	 far,	 far	under	 the	hood	of	 the	computer.
On	top	of	the	binary	code	is	one	layer	of	abstraction,	known	as	Assembly	code,
which	operates	upon	the	bits,	or	 the	different	sets	of	binary	code	that	represent
individual	 values.	On	 top	of	 that	 is	 another	 layer	 of	 abstraction,	 known	 as	 the
operating	system.	Then	there’s	yet	another	layer	of	abstraction,	the	programming
language	in	use.	This	works	with	the	operating	system	to	convert	something	that
we	can	understand	into	assembly	language,	which	the	computer’s	processor	then
converts	into	a	set	of	different	calculations.	All	of	this	happens	in	the	matter	of
micro	or	even	nanoseconds.
	
The	key	point	of	all	of	this	is	that	computers	understand	things	in	terms	of	ones
and	zeroes,	and	the	way	that	we	see	a	value	means	next	to	nothing	to	a	computer.
In	 order	 to	 solve	 this,	 programmers	 long	 ago	 decided	 that	 computers	 would
actually	categorize	different	values	into	different	 types.	These	types	of	data	 tell
the	computer	how	and	in	what	manner	to	perform	operations	to	the	given	values

as	they	correspond	to	the	ones	and	zeroes.	This	is	a	super	complex	architecture,
so	don’t	feel	too	bad	if	it	doesn’t	immediately	make	a	whole	lot	of	sense.
	
Anyhow,	in	pursuit	of	properly	understanding	all	of	 this,	 it’s	necessary	that	we
start	 to	 break	 down	 these	 data	 types	 a	 little	 bit	 and	 look	 at	 them	with	 a	more
abstract	 eye	 than	we	 currently	 are.	 So	 let’s	 do	 that.	 The	 next	 thing	 that	we’re
going	to	do	is	take	a	sincere	look	at	the	different	kinds	of	data	that	you	can	use	in
Python.
	

Integer

The	 integer	 data	 type	 refers	 to	 any	 piece	 of	 data	 that	 corresponds	 to	 a	whole
number	in	our	abstract	understanding.	Therefore,	these	would	be	numbers	such
as	7,	39,	or	-3.
	

Float

The	 float	 data	 type	 refers	 to	 any	 piece	 of	 data	 that	 corresponds	 to	 a	 decimal
number	in	our	abstract	understanding,	so	things	such	as	3.141569	or	94.3332.

Double

Double	stands	for	“double	precision”	number	and	refers	to	a	very	specific	kind
of	decimal	number.	You	don’t	need	to	understand	this	too	in-depth	at	this	point
because	of	float	and	double	act	rather	synonymously	in	Python.	The	reason	for
this	 distinction	 goes	 back	 to	 a	 time	 when	 computers	 had	 less	 RAM	 and	 less
processing	power	than	they	do	now,	but	for	our	purposes,	you	can	largely	ignore
this.

Boolean

Boolean	means	 true	 or	 false	 values.	 This	will	make	 a	 lot	more	 sense	 later	 on

when	we	start	 to	talk	about	programmatic	logic	and	the	way	that	logic	actually
plays	a	part	in	computer	science.

Character

Character	stands	for	any	singular	alphanumeric	or	symbolic	character	that	can	be
printed	out	in	a	computer	console.	These	could	be	things	like	A,	3,	or	$.	This	is	a
fickle	understanding,	 though,	because	characters	actually	correlate	to	an	ASCII
value,	which	means	 that	 any	given	character	 also	has	 a	numeric	 integer	value.
For	this	reason,	if	you	had	the	character	“3”	and	the	integer	3	and	tried	to	see	if
they	were	the	same,	they	wouldn’t	be.	Bear	this	in	mind	as	you	program.

String

We’ll	 talk	 about	 strings	 more	 in-depth	 later,	 but	 strings	 are	 essentially	 long
chains	of	characters	that	are	put	together.	Any	set	of	character	values	is	a	string,
whether	it	is	2	characters	or	2000	characters	long.
	
These	are	not	all	of	the	values	available	for	you	to	use	in	Python.	However,	they
are	 the	 ones	 that	 you	 are	 most	 likely	 to	 use	 almost	 immediately,	 so	 we’ve
covered	them	here	for	that	reason	specifically.	These	values	may	be	expressed	in
any	given	expression	in	Python.	For	example:
	

print(3	+	3)
#	would	print	6
	
print(“Hey	there!\n”)
#	printing	a	string	to	the	console
print(‘C’)
#	printing	a	character	to	the	console

	
In	other	words,	these	form	the	very	nucleus	of	everything	that	you’re	going	to	be

doing	in	programming.	Every	piece	of	code	you	ever	write	will	be	working	with
values	 like	 these	 and	manipulating	 them	 in	 one	way	 or	 another.	As	 you	work
with	more	and	more	code,	you’ll	come	to	appreciate	how	truly	often	you	actually
make	 use	 of	 all	 of	 this	 and	 how	 every	 statement	 in	 a	 program	 is	 just	 the
manipulation	of	data	in	one	way	or	another.	This	is	the	nature	of	programming,
for	better	or	worse.
	
Sometimes,	you’re	going	to	want	to	keep	up	with	these	data	pieces	so	that	you
can	 recall	 them	 or	 change	 them	 at	 a	 later	 point.	 What	 can	 you	 do	 for	 this
purpose?	The	answer	is	simple.	You	can	use	variables.	Variables	offer	a	method
by	which	you	can	keep	track	of	values	over	a	long	period	as	you	work	through	a
program.
	
Recall	earlier	how	we	talked	about	data	types.	Data	types	were	especially	useful
and	a	bit	more	diverse	than	they	are	in	Python	because	Python	tries	to	go	out	of
its	way	to	make	things	easy	for	you;	however,	all	of	these	values	are	stored	in	the
computer’s	memory,	and	they’re	stored	in	boxes	of	pre-allocated	size	depending
on	how	much	space	any	given	data	type	uses.
	
These	 individual	 boxes	 in	 the	 computer’s	 memory	 can	 be	 referred	 to	 as
variables.	 Picture	 it	 like	 the	 overhead	 view	 of	 a	 given	 city.	 You	 may	 have	 a
bunch	of	lots	that	you	can	place	houses	in.	You	then	will	refer	to	any	given	lot	by
its	address.	The	lot	is	like	the	variable	itself,	and	the	address	is	the	name	of	the
variable.
	
Therefore,	 you	 can	 actually	 store	 all	 of	 these	 values	 in	 variables	 where	 you
decide	 the	 name	 to	 refer	 to	 it	 by.	 So,	 let’s	 say	 that	 you	 had	 a	 variable	 called
something	like	dogAge.	If	your	dog	was	4	years	old,	then	you	may	set	this	like
so:
	

dogAge	=	4
	
If	your	dog’s	name	was	Lucky,	then	you	may	set	a	string	variable	like	so:
	

dogName	=	“Lucky”
	
Python	 makes	 it	 extremely	 easy	 to	 name	 and	 declare	 variables.	 Some	 other
languages	have	a	bunch	more	hurdles	to	the	process,	but	Python	most	definitely
does	not.	This	can	be	both	a	blessing	and	a	curse.	In	other	languages,	you	may
have	 to	say	 the	 type	of	 the	variable	when	you	declare	 it,	but	Python	 takes	 this
burden	off	you.
	
Why	would	this	be	a	bad	thing?	Well,	simply	put,	it	can	be	confusing	for	a	newer
programmer	 who	 doesn’t	 have	 much	 experience	 working	 with	 different	 data
types.	You	may	end	up	forgetting	and	trying	to	make	a	comparison	between	two
pieces	of	data	that	aren’t	of	the	same	time,	actually	messing	up	your	data	in	the
meantime	because	the	computer	doesn’t	compare	different	pieces	of	data	in	the
same	exact	way.
	
This	is	the	reason	that	you	actually	want	to	learn	what	the	individual	data	types
are.	It	will	help	you	realize,	for	example,	that	the	string	“34”	and	the	integer	34
are	not	the	same	and	should	not	be	compared,	and	may	explain	to	you	why	your
comparisons	may	be	off	at	one	point	or	another	if	you’re	not	careful	about	this.

Python	Math

Of	course,	working	with	variables	is	much	more	useful	if	you’re	actually	doing
operations	on	 the	data	 in	question—for	example,	 if	you’re	actively	performing
math	operations	or	performing	useful	equations.	In	this	section,	we’re	going	to
be	exploring	the	different	ways	in	which	you	can	work	with	data.
	
Bear	in	mind	primarily	that	you	can	refer	back	to	variables.	For	example,	if	you
wanted	to	print	a	string	that	you	saved	in	a	variable,	you	could	do	it	like	so:
	

print(dogName)
	
Or,	if	you	were	ambitious	and	wanted	to	print	out	your	dog’s	name	and	dog’s	age
both,	you	could	do	it	like	so:
	

print(“My	dog’s	name	is	“	+	dogName	+	“	and	they	are	“	+	dogAge	+	“
years	old.”)

	
But	what	if	something	changed?	What	if,	for	example,	your	dog	aged	by	a	year?
What	could	you	do?
	
Well,	you’d	want	to	take	your	dog’s	age	and	then	add	one	to	it.	But	how	can	you
do	 this?	Well,	 you	 can	 do	 this	 by	 actually	 assigning	 it	 a	 new	 value.	 You	 can
reassign	 values	 to	 variables	 and	manipulate	 the	 variables	 that	 they	 have	much
like	you	set	them	and	initialized	them	in	the	first	place.	The	process	is	similar	for
the	most	 part.	Let’s	 say,	 for	 example,	 that	we	wanted	 to	 add	 1	 to	 the	 variable
dogAge.	We	could	do	that	like	so:
	

dogAge	=	dogAge	+	1

	
The	variable	dogAge	would	take	the	old	value	of	dogAge,	4,	,and	add	1	to	it,	and
this	 would	 be	 set	 as	 the	 new	 value	 for	 the	 variable	 dogAge.	 Make	 sense?
Therefore,	if	you	printed	the	variable	dogAge	now,	it	would	print	out	the	number
5:
	

print(dogAge)
	
Python	 has	 numerous	 different	 operators	 that	 you	 can	 use	 to	 do	 math.	 The
Python	mathematical	operators	are	like	so:
	

c	+	d
This	 is	 the	 addition	 operator.	 It	 is	 used	 in	 order	 to	 add	 one	 number	 to
another.
	
	
c	-	d
This	is	the	subtraction	operator.	It	is	used	in	order	to	subtract	one	number
from	another.
	
c	*	d
This	 is	 the	 multiplication	 operator.	 It	 is	 used	 in	 order	 to	 multiply	 one
number	by	another.
	
c	/	d
This	is	the	division	operator.	It	is	used	in	order	to	divide	one	number	by
another.
	
c	%	d
This	is	the	modulo	operator.	It	is	used	in	order	to	find	the	remainder	when

you	divide	c	by	d.	For	example,	7	%	3	would	yield	1	since	7	divided	by	3
has	a	remainder	of	1.

	
These	are	the	primary	different	mathematical	operators	in	Python	that	you	need
to	 know.	 Using	 this	 knowledge,	 you	 can	 carry	 out	 complex	 mathematical
operations	in	Python	and	make	some	really	cool	things	happen.	But	this	is	only
the	beginning!
	
Let’s	 note	 for	 a	 second	 that	 the	way	 that	we	 reassigned	 a	 value	 earlier	wasn’t
necessarily	 the	 best	way	 to	 do	 it.	That	 is	 to	 say	 that	 the	 statement	 “dogAge	=
dogAge	 +	 1”	 can	 easily	 be	 shortened	 and	 made	 easier	 to	 both	 read	 and
understand.	 There	 are	 a	 few	 different	 shorthand	 operators	 in	 Python	 for
assignment.	These	are	as	such:
	

c	+=	d
#	This	just	means	c	=	c	+	d.
	
c	-=	d
#	This	just	means	c	=	c	-	d.
	
c	*=	d
#	This	means	c	=	c	*	d.
	
c	/=	d
#	This	means	c	=	c	/	d.
	
	
c	%=	d
#	This	means	c	=	c	%	d.

	

As	you	can	see,	 these	operators	aren’t	 terribly	difficult	 to	understand,	but	 they
can	go	a	 long	way	for	simplifying	your	code	and	making	 it	easier	 to	 read	as	a
whole.

Comments

Comments	are	essential	for	programming	unless	you	want	to	get	lost	in	your
own	code.	It	is	especially	important	when	working	with	a	team.	Comments	are
parts	of	code	that,	from	the	computer’s	perspective,	do	absolutely	nothing.	Why
is	it	important,	then?	Comments	are	important	so	that	you	can	insert	text	in	your
code	and	not	have	it	affect	the	program	itself.	You	can	use	these	to	tell	your
fellow	programmer	to	not	touch	a	certain	part	of	the	code	because	it’s	currently	a
band-aid	solution	as	you	try	to	fix	another	part	of	the	code.	For	our	purposes,
you	can	use	this	as	a	guide	for	yourself	so	you	know	what	part	of	the	code	does
what	and	how.

Formatting

If	 you’ve	 ever	 programmed	 in	 another	 language,	 then	 you’ll	 have	 noticed	 by
now	that	Python	is	quite	different	in	many	ways.	Not	the	least	of	these	ways	is
the	manner	 in	 which	 Python	 handles	 formatting.	Many	 popular	 languages	 are
ambivalent	 in	 regards	 to	whitespace;	 statements	 are	 separated	 by	 a	 semicolon,
and	you	could	put	your	whole	program	on	the	same	line	if	you	really	wanted	to.
There	are	even	competitions	in	languages	like	C	and	Java	to	obfuscate	code	and
make	it	as	pretty	as	possible	at	the	expense	of	readability.
	
Python,	on	the	other	hand,	cares	a	lot	about	whitespace.	Whitespace	in	Python—
that	 is,	 line	 breaks,	 spaces,	 and	 tabs—indicate	 to	 Python	 the	 hierarchy	 of	 the
code.	This	is	the	main	engine	by	which	Python	actually	starts	to	understand	your
code,	 so	 you	 need	 to	 pay	 close	 attention	 to	 your	 whitespace.	Make	 sure	 that
you’re	indenting	things	just	as	I	do	and	paying	attention	to	how	the	indentations
actually	affect	the	flow	of	your	code	as	well	as	how	your	code	works	altogether.

User	Input	and	Casting

Here,	we’re	 going	 to	 spend	 a	 brief	minute	 talking	 about	 taking	 in	 user	 input.
There	 are	 going	 to	 be	 many	 times	 where	 you’re	 going	 to	 need	 to	 retrieve
information	from	the	user.	For	example,	you	may	be	asking	for	the	name	of	the
file	or	for	some	kind	of	data	necessary	to	the	program	from	the	user.	It	may	even
be	 something	 as	 innocuous	 as	 a	 book	 title	 if	 you’re	 writing	 something	 like	 a
library	 or	 bookkeeping	 program.	One	way	 or	 another,	 programs	 thrive	 not	 off
just	 existing	 but	 off	 interaction	 and	 their	 ability	 to	 interact	 with	 the	 user	 and
make	things	happen.

Because	 of	 this,	 it’s	 important	 that	 you	 understand	 how	 user	 input	 in	 Python
works.	It’s	actually	relatively	simple.
	
All	user	input	in	Python—at	least	by	means	of	the	console—is	handled	through
the	input	method.	The	input	method	allows	you	to	take	in	information	from	the
console.	It	will	read	everything	up	until	the	Enter	button	is	pressed	and	return	all
of	that	information	as	a	string.
	
The	input	method	works	like	so:
	

input(“Prompt	text”)
	
You	can	 set	 the	prompt	 text	 to	whatever	you	want	 or	 leave	 it	 out	 entirely.	All
prompt	 text	 indicates	 is	 that	 the	 text	 that	 is	 fed	 to	 the	 input	 method,	 as	 an
argument	will	be	displayed	to	the	user	in	question.
	
You	 can	 set	 the	 input	 method	 as	 the	 value	 of	 a	 variable,	 and	 this	 will	 set
whatever	 the	user	 enters	 as	 the	value	of	 that	variable.	For	example,	 if	my	 text

were	like	so:
	

food	=	input(“What	is	the	last	thing	you	ate?”)
	

and	the	user	entered	nachos,	then	the	value	of	food	would	be	nachos.	Therefore,
if	we	printed	the	variable	food,	it	would	print	as	nachos:
	

print(food)
#	would	print	as	nachos

	
Sometimes,	though,	this	isn’t	the	end	of	the	line.	Let’s	say	that	you	were	writing
a	calculator	program	and	you	needed	to	accept	numbers	that	the	user	entered.	Of
course,	the	input	method	returns	a	string.	You	know	from	our	discussions	earlier
about	how	data	types	work	that	strings	are	not	the	data	type	that	we	really	need
at	 the	moment;	no,	we	actually	need	a	 float	value	or	an	 integer	value.	So	how
can	we	convert	whatever	the	user	entered	into	one	of	those	values?
	
You	can	do	this	by	casting.	Casting	is	simply	the	conversion	of	one	data	type	to
another	 data	 type.	 In	 Python,	 variables	 can	 hold	 any	 data	 type,	 so	 you	 can
actually	 just	 set	 the	casted	data	 type	as	 the	new	value	 for	 the	old	variable,	but
you	don’t	really	want	to	do	this	just	for	the	sake	of	maintaining	clean	code	and
being,	well,	 a	 good	programmer.	 In	 fact,	 it’s	 probably	best	 that	 you	 avoid	 this
particular	 plan	 at	 all	 costs	 and	 just	 make	 new	 variables	 because	 it’s	 more
readable	and	secure	anyway.	Use	a	single	variable	for	your	user	input	and	then
just	set	your	other	variables	as	the	casted	form	of	that.	For	example:
	

in	=	input(“What	is	the	number?”)
number	=	#casted	in

	
Casting	values	is	easy.	All	that	you	do	is	put	the	type	you’re	trying	to	cast	them

to	in	between	parentheses	right	next	to	the	value,	like	so:
	

number	=	(float)in
	
This	would	set	the	value	of	number	to	be	the	value	of	in	casted	to	a	float.	Python
automatically	handles	these	tricky	type	conversions	for	you,	for	the	most	part,	so
you	don’t	have	a	whole	lot	to	worry	about	there.
	

Introduction	to	Program	Logic

	
So	now,	 it’s	 time	 that	we	start	 talking	about	 something	a	 little	bit	deeper.	This
sort	of	logic	goes	by	many	names;	some	call	it	symbolic	logic	in	the	liberal	arts
fields,	while	 people	 in	 science	 and	 engineering	 fields	 prefer	 to	 call	 it	 discrete
mathematics.	It	also	goes	by	the	name	of	statement	calculus.	Regardless	of	what
you’re	 programming	 or	 what	 language	 you’re	 programming	 in,	 it’s	 important
that	you	have	a	strong	foundation	in	this	sort	of	logic	because	it’s	foundational	to
the	world	around	you.
	
Some	people	say	that	learning	to	program	changes	the	way	you	think,	and	this	is
true	in	one	way	or	another	because	programming	forces	you	to	learn	to	think	like
a	computer.	So,	how	do	computers	think?	To	put	it	simply,	computers	think	in	a
very,	very	black	and	white	manner.	They	don’t	think	like	you	or	I	do.	They	think
in	much	 simpler	 terms.	This	 is	 this	 and	 that	 is	 that,	 there	 is	 no	 room	 for	 grey
areas.
	
This	can	be	a	great	thing	because	this	is	pure	logic.	Pure	logic	is	the	state	where
things	either	are	or	are	not.	Logic	has	a	long	history	of	being	the	pursuit	of	truth
through	the	understanding	of	things	which	are	or	are	not.	One	of	the	oldest	and
boldest	 examples	 of	 this	 sort	 of	 logic	 lies	 in	 the	Socratic	 applications	 of	 logic
early	 in	 the	 history	 of	 Western	 philosophy;	 consider,	 for	 example,	 that	 old
Socratic	syllogism:
	

All	men	are	mortal.
Socrates	is	a	man.

Therefore,	Socrates	is	mortal.
	

	
This	 is	 one	 of	 the	 most	 basic	 and	 easy	 to	 understand	 applications	 of	 logic
because	 it	 makes	 perfect	 sense.	 Logic	 is	 ultimately	 based	 around	 two	 things:
arguments	and	truth.	Logic	itself	is	based	entirely	around	arguments,	but	logic	is
used	in	the	deduction	of	truth.

	
This	section	is	going	to	focus	on	both	of	these	because	this	question	is	central	to
computer	science	and	having	a	firm	understanding	of	 it	 really	can	only	benefit
you	as	a	hopeful	programmer.
	

Arguments

What	 is	 an	argument?	An	argument	 is	not	 just	 a	 fight;	 rather,	 arguments	 are	 a
means	by	which	a	point	is	argued.	An	assertion	is	made,	an	assertion	is	checked,
and	 a	 conclusion	 is	 reached.	 Arguments	 are	 composed	 of	 two	 key	 parts:	 a
premise	 and	 a	 conclusion.	 For	 example,	 in	 the	 argument	 above,	 we	 have	 two
premises—all	 men	 are	 mortal,	 and	 Socrates	 is	 a	 man.	 These	 can	 be	 distilled
even	further:
	

For	all	p,	p	=	q.
There	exists	p(S).

	
Of	course,	 this	 in	and	of	 itself	 is	not	a	 revolutionary	development.	This	 is	 just
giving	 an	 abstract	 form	 to	 the	 argument,	 and	 this	 is	 critical	 in	 understanding
logic.	 These	 premises	 actually	 give	 way	 to	 a	 certain	 conclusion.	 The	 first
premise	 is	 a	blanket	 statement,	 and	 the	 second	 is	our	 actual	 assertion,	 the	part
which	 leads	 us	 to	 manifesting	 our	 conclusion.	 Since	 all	 p	 is	 q,	 if	 there	 is	 an
instance	of	p,	then	that	singular	instance	of	p	is	q.
	
Therefore:

	
For	all	p,	p	=	q.
There	exists	p(S).
Therefore,	p(S)	=	q.

	
This	is	the	basic	dissection	of	a	logical	argument.	All	logical	arguments	can	be
understood	 in	 terms	 very	much	 similar	 to	 these.	Computer	 programs	 are,	 in	 a
way,	 logical	 arguments;	 they	 are	 a	 way	 of	 proceeding	 throughout	 logical
operations	using	established	rules	of	conduct,	transitivity,	and	so	forth.	They	are
the	brain	of	the	computer	making	arguments	constantly,	and	they	are	a	massive
part	in	the	next	part	of	this	chapter,	which	is	control	flow.
	
However,	 you’ll	 notice	 something	 about	 this	 argument;	 the	 entire	 argument	 is
hinging	 around	 the	 premises	 being	 true.	 While	 the	 argument’s	 form	 is
completely	 correct,	 if	 this	 argument	 were	 used	 for	 the	 wrong	 thing,	 then	 the
argument	 itself	 would	 be	 pointless	 regardless	 of	 how	 solid	 the	 form	 is.	 For
example:
	

All	cats	named	Mike	are	tabbies.
My	cat	is	named	Mike.

Therefore,	my	cat	is	a	tabby.
	
Logically,	 this	 argument	 is	 completely	 sound.	However,	what	 if	my	cat	named
Mike	were	a	Siamese?	This	couldn’t	obviously	be	true.	This	premise	is	far	 too
ambitious,	it	assumes	too	much,	and	it	has	to	at	one	point	or	another	is	untrue—
right?
	
Therefore,	this	is	the	important	part	that	truth	plays	in	logic.	Logic	is	great	at	the
distillation	of	forms	into	abstract	and	easily	applicable	concepts.	However,	it	still
hinges	on	the	discovery	of	truths	at	its	core,	and	without	the	discovery	of	truths,

the	institution	of	logic	as	a	whole	is	relatively	useless.
	
Moreover,	 how	 do	 we	 discover	 truths?	 The	 simple	 answer	 is	 through
comparison.	 For	 example,	 in	 the	 former	 argument,	 without	 some	 means	 to
discover	 truth,	 then	 I	 have	 no	way	 of	 proving	 that	 the	 argument	 is	 fallacious
since	 the	 argument’s	 form	 is	 consistent	 and	 there	 is	 no	 truth	 to	 compare	 it	 to.
Nevertheless,	I	can	compare	my	cat	named	Mike	and	see	if	it’s	a	tabby.	If	it	isn’t
a	tabby,	then	clearly	the	argument	is	untrue,	right?
	
And	 this	 is	 the	 foundation	of	 finding	 truths	 through	comparisons.	 In	 computer
science,	 especially	 beginning	 computer	 science,	 these	 truths	 can	 be	 simple	 to
understand	and	easy	to	work	with.	However,	they	do	get	more	complex	as	time
goes	on,	so	just	be	wary	of	that	as	you	move	forward.	Anyway,	let’s	think	about
comparisons	now.
	
How	 are	 comparisons	 performed	 in	 computer	 science?	 Comparisons	 are
performed	primarily	 through	 the	usage	of	 expressions.	 If	 you	 think	back	 for	 a
second	 then	you	can	probably	 remember	 a	 time	 in	your	 life,	maybe	middle	or
high	 school,	 when	 you	were	 working	 with	 early	 algebra	 and	 you	 first	 started
working	with	expressions.	These	are	basic	concepts	like	less	than,	greater	than,
and	so	forth.	You	learned	that	 the	equals	sign	itself	was	just	an	expression	that
stated	 that	one	 thing	was	equal	 to	another,	 and	 following	 this	 form,	you	could
actually	perform	algebra	on	any	expression.
	
These	expressions	stick	around	as	you	go	through	math;	don’t	worry.	Here	is	one
of	the	numerous	arenas	where	they	actually	rear	their	ugly	head	again,	so	that’s	a
lot	of	fun.	Expressions	are	distilled	comparisons	between	one	value	and	another
following	a	standard	form.	The	different	kinds	of	expressions	in	Python	are	like
so:
	

b	==	c
#	This	means	b	is	equal	to	c.
	
b	<	c
#	This	means	b	is	less	than	c.
	
b	<=	c
#	This	means	b	is	less	than	or	equal	to	c.
	
b	>	c
#	This	means	b	is	greater	than	c.
	
b	>=	c
#	This	means	b	is	greater	than	or	equal	to	c.
	
b	!=	c
#	This	means	b	is	not	equal	to	c.

	
And	of	course,	the	point	of	expressions—as	I	said—is	to	find	some	meaningful
expression	 of	 truth.	 Expressions	 are	 representative	 of	 relationships	 between
values.	Let’s	 say,	 for	 example,	 that	 I	 had	 two	values	7	 and	3,	 and	 I	wanted	 to
express	them	like	so:
	

7	<	3
	
This	would	read	as	7	is	less	than	3.	Is	this	true?	Clearly	not;	7	is	actually	greater
than	3.	Therefore,	this	expression	is	false.
	

7	>	3
	

This	 expression	 on	 the	 other	 hand	 would	 be	 true,	 since	 7	 is	 greater	 than	 3.
Herein	lies	the	primary	purpose	of	expressions—they	aim	primarily	to	serve	as	a
means	 to	evaluate	 truth	 through	comparisons	between	values,	 and	 they	do	 this
job	excellently.
	
Note,	 of	 course,	 that	 since	 variables	 represent	 values,	 you	 can	 also	 easily
compare	two	variables,	like	so:
	

myVariable	=	7
myOtherVariable	=	3
	
myVariable	>	myOtherVariable
#	This	would	be	true,	of	course,	since	7	is	greater	than	3.

	
Note,	too,	what	I	said	about	these	expressions	having	innate	truth	or	false	values
depending	 on	 how	 they	 evaluate.	 Remember	 earlier	 when	 we	 talked	 about
Boolean	 values	 and	 I	 mentioned	 how	 they	 were	 a	 little	 tricky?	 Yeah,	 this	 is
pretty	 much	 what	 they’re	 for.	 Boolean	 values	 hold	 true	 or	 false	 information,
which	can	be	much	more	useful	 than	 it	 seems,	primarily	 for	 reasons	 that	we’ll
discuss	 a	 little	 bit	 later	 on	 in	 the	book.	For	 right	 now,	 though,	 just	 understand
that	 Booleans	 hold	 true	 or	 false	 values.	 Expressions	 also	 return	 true	 or	 false
values.	Can	you	see	where	I’m	going	with	this?

	
You	can	actually	use	variables	to	store	the	value	of	expressions	as	true	or	false,
like	so:
	

myVariable	=	7
myOtherVariable	=	3
myTruthVariable	=	myVariable	>	myOtherVariable
	

print(myTruthVariable)
#	would	print	out	True,	because	it’s	True.

	
While	 this	 isn’t	 particularly	 useful	 in	 and	 of	 itself	much	 of	 the	 time,	 the	 real
utility	 in	me	 showing	 you	 this	 is	 you	 realizing	 the	 exact	way	 that	 expressions
work,	because	it	will	make	a	lot	of	things	click	for	you	mentally	down	the	line	if
you	realize	the	manner	in	which	they	work	right	now.
	
Note	 too	 that	 you	 can	 actually	 chain	 these	 statements	 together	 into	 an	 even
bigger	statement.	You	do	so	using	conditional	operators.	Conditional	operators
are	 fantastic	 because	 they	 give	 you	 a	 means	 by	 which	 to	 take	 these	 simple
logical	 statements	 and	 string	 them	 together	 into	 far	 more	 complex	 logical
statements.
	
In	Python,	there	are	three	conditional	operators:
	

1.																				expression1	and	expression2
	
This	will	evaluate	if	both	expression1	and	expression2	are	true.	If	so,	then
the	 entire	 statement	will	 come	out	 to	 be	 true.	 If	 even	one	 of	 them	 isn’t
true,	then	the	whole	thing	is	false.

	
2.																				expression1	or	expression2
	
Understanding	 the	 logical	 or	 can	 be	 a	 little	 tricky,	 because	 it	 doesn’t
always	mean	the	way	that	we	understand	it.	The	logical	or	just	means	that
one	of	 the	statements	 is	 true.	 If	either	expression	 is	 true,	 then	 the	entire
statement	is	true.	If	both	statements	are	false,	then	the	whole	statement	is
false.	However,	note	that	this	doesn’t	mean	that	both	statements	can’t	be
true;	 if	 both	 statements	 are	 true,	 then	 technically	 the	 or	 condition—

wherein	only	one	has	to	be	true—is	satisfied,	it’s	just	that	the	condition	is
technically	satisfied	twice.	See	what	I’m	saying?

	
3.																				not	expression
	
This	 just	checks	to	see	whether	 the	given	expression	is	false.	If	so,	 then
the	 whole	 statement	 is	 true.	 If	 the	 expression	 is	 true,	 then	 the	 whole
statement	is	false.	This	can	be	a	little	tricky,	but	when	you	see	how	people
use	it	in	their	code	it	will	start	to	make	a	bit	more	sense	to	you,	I	promise.

	
With	that,	we’ve	laid	an	important	logical	foundation	for	the	rest	of	this	chapter.
Understanding	how	computers	see	logic	is	truly	essential	to	having	an	ample	and
able	understanding	of	computer	logic	yourself.	Stay	with	me	because	things	are
going	 to	 get	 a	 little	 bit	more	 confusing	 from	 here,	 but	 I’ve	 given	 you	 a	 great
groundwork	for	the	rest	of	it.

Conditionals

Here,	 we’re	 actually	 going	 to	 start	 discussing	 the	 very	 first	 aspect	 of	 control
flow:	 the	 conditional	 statement.	 Before	 we	 go	 further,	 let’s	 talk	 about	 what
control	flow	really	is	for	a	second.
	
Control	flow	is	the	process	by	which	you	give	your	computer	the	ability	to	think.
While	that	might	sound	a	little	dramatic,	that’s	really	what	it	is.	All	control	flow
solutions	are	very	rudimentary	forms	of	artificial	intelligence,	and	if	you	look	at
the	structure	of	actual	large	artificial	 intelligence	programs,	they’re	all	built	off
of	these	control	flow	structures.
	
	
And	the	simple	fact	 is	 that	people	want	 intelligent	programs.	Not	only	do	 they
want	programs	to	be	intelligent,	but	also	the	vast	majority	of	programs	have	to

be	intelligent	in	one	way	or	another.	An	unintelligent	program	is	hereby	defined
as	 a	 program	 that	 doesn’t	 have	 to	make	 a	 decision	 at	 any	point	 throughout	 its
running	duration.	Can	you	imagine	how	boring	these	programs	would	be?	Their
only	purpose	would	be	to	open	up,	run	some	data,	and	then	exit.	These	programs
have	no	practical	utility	outside	of	unloading	files—and	in	fact,	even	a	good	file
unloading	 protocol	 requires,	 to	 one	 extent	 or	 another,	 the	 development	 of
architectures	for	intelligent	programs	through	control	flow,	unless	they’re	in	the
exact	directory	they	need	to	be	working	with	files	that	they	came	with.
	
So,	keeping	all	that	in	mind,	let’s	start	to	think	a	little	bit	more	extensively	about
what	 aspect	 of	 control	 flow	we’re	 specifically	 dealing	with	 right	 now.	At	 this
given	moment,	we’re	working	with	the	idea	of	conditionals.	So,	then,	what	is	a
conditional?	A	conditional	statement	 is	a	statement	 that	makes	decisions	 in	 the
program	 based	 off	 expressions	 that	 you	 provide,	 and	 they	 deal	 with	 those
expressions	in	a	predetermined	way	that	you	write.
	
There	 are	 two	 different	 kinds	 of	 conditional	 statements	 that	 you’re	 primarily
going	 to	 be	 using:	 passive	 conditionals	 and	 active	 conditionals.	 These	 are
primarily	delineations	 that	 I	 created	myself,	 but	you’ll	 find	 that	 they	hold	 true
and	 are	 also	 a	 useful	 way	 for	 describing	 the	 flow	 of	 a	 given	 program.	 The
passive	conditional	 is	 far	simpler,	so	we’re	actually	going	 to	 focus	on	 that	one
first.
	
What	 is	a	passive	conditional?	A	passive	conditional	 is	a	conditional	statement
that	 exists	 on	 its	 own	 within	 the	 code.	 When	 you	 get	 to	 the	 position	 of	 the
passive	conditional	within	the	code,	the	expression	of	the	conditional	statement
will	be	evaluated.	If	the	expression	is	true,	then	the	code	within	the	conditional
statement	will	be	run.	If	it	isn’t	true,	then	the	whole	block	of	code	can	be	skipped
over.	 This	 is	 the	 nature	 of	 the	 passive	 conditional.	 Passive	 conditionals	 are
expressed	as	if	statements	on	their	own.

	
An	if	statement	can	be	written	in	Python	like	so:
	

if	expression:
#	code	goes	here,	indented	once	inward

	
So,	for	example:

	
if	myNumber	>	userNumber:

print(“My	number	is	bigger!”)
	
In	 the	 code	 above,	we	 are	 evaluating	 to	 see	 if	 one	 number	 is	 bigger	 than	 the
other	is,	presumably	the	programmer’s	number	and	the	number	of	the	end	user.
If	we	get	 to	 this	point	 in	 the	code	and	 the	programmer’s	number	 is	not	bigger,
then	the	entire	code	block	is	skipped	through	and	the	program	doesn’t	actually
say	anything	to	the	end	user.
	
Of	 course,	 sometimes	 this	 isn’t	 exactly	what	 you’re	wanting.	 Sometimes,	 you
want	something	to	happen	no	matter	what.	In	these	cases,	you	can	actually	use
an	 active	 conditional.	 An	 active	 conditional	 stands	 counter	 to	 a	 passive
conditional	because	 it	 ensures	 that	no	matter	what,	 if	 the	 tested	condition	 isn’t
true,	then	some	code	runs.
	
Note	that	you’re	not	always	going	to	want	to	use	an	active	conditional.	There	are
many	cases	in	which	you	may	need	to	use	a	passive	conditional	instead,	such	as
checking	 to	 see	whether	 some	piece	of	data	 exists	or	not	or	 something	of	 that
nature.	However,	 having	 an	 understanding	 of	 the	 distinctions	 between	 the	 two
conditionals	is	important	whilst	also	understanding	the	nature	of	them	and	their
usage.
	

Active	 conditionals	 add	 what’s	 called	 an	 else	 statement	 to	 your	 passive
conditional.	 Essentially,	 it	 gives	 your	 statement	 an	 out	 by	 giving	 your	 code
something	to	do	if	the	condition	turns	out	to	not	be	true.	This	is	a	pretty	big	deal
for	obvious	reasons.	It	gives	you	the	ability	to	have	backup	code	to	run	if	your
stated	conditional	turns	out	not	to	be	true.
	
Else	statements	can	be	added	like	so:
	

if	statement:
#	code	goes	here,	indented	once	inward

else:
#	backup	clause

	
Note	that	you	can’t	have	an	else	statement	without	an	if	statement,	that	wouldn’t
make	sense	obviously.	Let’s	look	at	the	code	we	worked	with	before	in	order	to
build	a	firmer	understanding	of	 these	clauses	and	how	they	work,	and	how	we
can	actually	use	them	in	our	own	code:
	

if	myNumber	>	userNumber:
print(“My	number	is	bigger!”)

else:
print(“My	number	is	smaller.”)

	
In	 this	 variation	 on	 the	 former	 code,	 when	 we	 arrived	 at	 this	 conditional
statement	 within	 the	 code,	 we	 would	 first	 evaluate	 the	 expression	 in	 the	 if
statement.	We	would	see	whether	it	was	true.	If	it	were	true,	then	we	would	print
out	“my	number	is	bigger”.	Now,	we	have	an	additional	clause	that	we	can	act
on	 if	 it	 turns	out	not	 to	be	 true—“my	number	 is	smaller”.	 If	 the	programmer’s
number	isn’t	bigger,	the	code	won’t	just	skip	past	the	statement—it’s	going	to	do
its	 backup,	which	 is	 to	 say	 that	 the	number	 is	 smaller	 than	 the	user’s	 number.

Nifty!
	
Nevertheless,	you	may	be	thinking—sometimes	I’m	going	to	need	to	test	more
conditions!	For	example,	what	if	the	numbers	were	equal?	There’s	no	clause	for
that!	 Well,	 in	 short,	 you’re	 wrong!	 There	 is	 most	 certainly	 a	 clause	 for	 that.
These	programmers	have	thought	of	everything.
	
You	can	actually	test	as	many	conditions	as	you	want	in	a	conditional	statement.
You	 can	 add	 additional	 expressions	 to	 test	 by	 way	 of	 the	 else	 if	 statement,
shortened	 to	 the	 elif	 statement.	 Else	 if	 statements	 are	 written	 just	 like	 if
statements,	but	are	sandwiched	between	the	if	and	else	statement	and	use	the	elif
keyword	instead.
	
Note	again	that	you	can’t	have	an	else	if	statement	without	an	if	statement	and	an
else	statement.
	
The	way	 that	else	 if	statements	work	 is	by	evaluating	every	expression	one	by
one	 and	 acting	 accordingly.	 If,	 for	 example,	 the	 if	statement’s	 expression	 isn’t
true,	 then	 the	elif	 statement’s	expression	will	be	evaluated.	This	can	happen	as
many	times	as	necessary.	If	none	of	the	conditions	tested	turn	out	to	be	true,	then
the	program	will	default	over	to	the	else	statement.
	
We	can	actually	add	a	clause	to	our	former	conditionals	in	order	to	check	for	the
numbers	being	equal	using	an	elif	statement:
	

if	myNumber	>	userNumber:
print(“My	number	is	bigger!”)

elif	myNumber	==	userNumber:
print(“Our	numbers	are	equal!”)

else:

print(“My	number	is	smaller.”)
	
See	 now?	 I	 hope	 that	 it’s	 beginning	 to	 become	 clear	 why	 this	 is	 such	 a
fundamental	 and	 awesome	 part	 of	 programming.	You	 can	 actually	make	 your
computers	start	to	think	and	implement	their	own	logic	based	upon	comparisons
of	data	that	you	influence	within	the	program.	That’s	incredible!	There’s	another
aspect	 to	control	flow,	but	 in	order	 to	discuss	 that,	we’re	first	going	to	have	to
talk	about	lists.
	
	

Lists

Earlier	in	this	book,	we	were	talking	about	data	types	and	variables.	Perhaps	it
wasn’t	exactly	clear	then,	but	sometimes—even	with	such	a	robust	type	system
—that’s	simply	not	going	to	be	good	enough	for	whatever	applications	you	may
need.	In	these	cases,	you	can	actually	use	lists	in	order	to	expand	the	overall
functionality	of	your	program.	Take,	for	example,	the	fact	that	sometimes	you’re
going	to	want	to	group	your	data	together.

It	may	not	 seem	 immediately	obvious	why	you’d	want	 to	do	 this	 (or	maybe	 it
does),	but	just	in	case	it	doesn’t,	allow	me	to	demonstrate.	Let’s	say	that	you’re
trying	 to	 keep	 a	 running	 list	 of	 all	 of	 the	 names	 of	 the	 students	 in	 your
programming	class.	How	would	you	go	about	doing	this?	With	what	we	have	so
far,	we	can	only	create	individual	variables	for	every	kid:
	

Student1Name	=	“Bill”
Student2Name	=	“Rita”
Student3Name	=	“Jim”

	
This	would	continue	ad	nauseum,	presumably	until	you	had	listed	out	the	name

of	every	single	kid	in	the	class.	This	is	obviously	unwieldy	for	reasons	that	are
painfully	 clear.	 First	 off,	 how	 do	 you	 easily	 list	 off	 the	 names	 of	 all	 of	 the
students	at	once?	You’d	have	to	print	out	each	variable	one	by	one.	More	than
that,	 it	 would	 complicate	 the	 process	 of	 actually	 accessing	 and	 changing	 the
variables	in	question	because	it	would	make	it	unclear	which	one	is	which.	That,
or	 there	 would	 be	 overfitting	 of	 variable	 names	 such	 that	 there	 wouldn’t	 be
enough	abstraction	to	make	a	meaningful	change	in	your	code.
	
How	 could	 we	 avoid	 this	 situation	 altogether?	 The	 obvious	 answer	 is	 by
grouping	like	data	together.	It	just	speaks	for	itself,	really.	If	two	pieces	of	data
are	similar	and	are	going	 to	be	accessed	normally	 in	 tandem	with	one	another,
then	they	should	be	side-by-side.
	
This	 idea,	as	well	as	 its	 implementation,	has	 its	origins	 in	 the	establishment	of
arrays	 in	 early	 programming	 paradigms	 (that’s	 right,	 early	 programmers	 were
thinking	a	lot	about	problems	like	these!).	Arrays	functioned	similarly	to	the	way
that	lists	do.
	
Remember	 earlier	 how	 I	 mentioned	 that	 when	 you	 set	 up	 a	 variable,	 you’re
actually	setting	up	a	box	that	holds	a	value	in	the	computer’s	memory,	generally
one	that’s	actually	the	size	to	fit	the	data	that	you’re	trying	to	enter	into	it?	This
actually	really	handily	explains	the	whole	concept	behind	the	idea	of	arrays.
	
The	 problem	 is	 that	 computers	 don’t	 really	 put	 these	 boxes	 together	 in	 an
organized	way.	You	ever	seen	 the	back	of	somebody’s	moving	fan,	and	how	it
seems	like	they’re	just	fitting	things	in	there?	It’s	not	exactly	a	great	analogy,	but
it	 is	a	 little	bit	 similar,	 if	only	because	 in	memory,	 the	box	 tends	 to	be	created
automatically	 in	 the	most	 immediate	and	available	 location.	Arrays	ensure	 that
data	which	is	alike	will	be	placed	next	to	each	other.	The	original	definition	of	an
array	 is	 the	 allocation	of	 contiguous	memory	 (that	 is,	 the	 creation	of	 boxes	 to

hold	data	which	are	right	next	to	each	other)	of	the	size	elements	e	*	size	of	data
type	 d.	 They	 would	 then	 be	 partitioned	 like	 hostel	 beds	 and	 closed	 off.	 The
arrays	were	perfectly	sized	so	as	not	to	waste	memory,	and	they	also	allowed	for
contiguous	data.	Win-win.	See	how	elegant	of	a	solution	that	really	is?
	
Arrays	essentially	gave	you	the	ability	to	name	this	area	of	contiguous	data	and
then	access	 the	data	within	 it.	The	name	would	be	whatever	you	 set	 it	 as,	 and
you	could	then	get	to	the	data	within	it	with	ease.	You	could	set	the	data	in	any
of	 the	partitions	of	your	array,	or	even	set	up	 the	partition	and	 fill	 it	with	data
later.	Arrays	were	an	extremely	useful	feature	in	their	time	and	day.

You	 can	 actually	 still	 use	 arrays	 in	 Python	 if	 you	 really	 want,	 but	 there’s	 no
reason,	 and	 it’s	 heavily	 discouraged	 in	 the	 Python	 community.	 The	 thought	 is
generally	 that	 if	 you	 need	 such	 tight	 allocation	 of	 memory,	 you	 shouldn’t	 be
using	Python	in	the	first	place,	and	I	have	to	say	that	I	generally	agree	with	this
notion.	Arrays	in	Python	have	been	displaced	by	lists.
	
What’s	the	difference	between	the	two?	Well,	arrays	had	one	big	problem.	Since
they	 were	 pre-partitioned,	 they	 could	 only	 hold	 data	 types	 that	 you	 declared
them	as	holding	(because	different	data	types	need	different	sizes	of	partitions)
and	you	could	only	fit	as	much	data	within	it	as	you	initially	declared	yourself	as
needing.
	
Lists	outgrew	 this.	While	 they	were	 also	 implemented	 in	other	 languages,	 like
C++	through	the	standard	template	library	or	Java	through	the	importing	of	the
utilities	package,	Python	was	one	of	 the	first	major	 languages	to	actually	place
an	emphasis	on	lists.	Lists	differ	from	arrays	in	two	major	ways.	First,	they	are
dynamically	 sized.	 They	 can	 be	 as	 big	 or	 small	 as	 you	 need	 them	 to	 be,	 and
they’ll	actually	grow	up	or	down	as	you	write	more	code.	This	is	one	of	the	great
advantages	of	using	lists	in	general.

	
Lists	also,	since	they	don’t	have	a	set	memory	size,	may	hold	numerous	types.
This	may	not	seem	immediately	useful,	but	as	you	get	more	experience,	you’ll
see	why	this	can	be	a	bit	of	a	godsend,	especially	when	importing	data	since	it
simplifies	the	process	many	times	over.
	
Lists	 are	 in	 many	 ways	 the	 natural	 progression	 of	 arrays,	 and	 they	 offer	 an
incredibly	 easy	 and	 intuitive	 way	 to	 store	 data.	 Declaring	 a	 list	 in	 Python	 is
simple.	Firstly,	since	you	can	always	add	data	later,	you	can	declare	an	empty	list
and	just	add	data	after	the	fact:
	

myList	=	[]
	
However,	you	can	also	start	the	list	out	with	data.
	

names	=	[“Bill”,	“Rita”,	“Jim”]
	

See	how	simple	 that	 is?	But	 there’s	more	 to	 it,	we’re	only	 just	getting	started!
You	can	easily	append	data	to	lists	by	the	use	of	the	append	function.	This	will
add	whatever	new	information	to	the	list	that	you	designate.	So,	let’s	say	that	a
student	named	Cory	joined	our	class.	We	called	add	him	to	our	list	of	names	like
so:
	

names.append(“Cory”)
	

Now,	if	we	tried	to	print	our	list,	it	would	print	like	so:
	

names[“Bill”,	“Rita”,	“Jim”,	“Cory”]
	
But	what	 if	we	wanted	to	work	with	an	individual	piece	of	data	from	this	 list?

How	do	we	do	that?	Well,	first	things	first,	we	need	a	definition.	A	single	piece
of	 data	 from	 a	 list	 or	 array	 is	 referred	 to	 as	 an	 element.	 As	 you’ll	 notice,	 the
elements	in	a	list	have	their	own	positions.	These	are	referred	to	as	their	indices.
You	 can	 refer	 to	 an	 element	 of	 a	 list	 by	 referring	 to	 its	 index.	 There	 are	 also
functions	for	doing	a	backwards	search,	e.g.	supplying	the	piece	of	data	in	a	list
and	then	finding	the	index	of	the	element	matching	that	data.	However,	that’s	a
little	beyond	the	scope	of	what	we’re	working	with	right	now.
	
Computers	 are	 weird,	 though,	 and	 for	 typically	 weird	 computer	 science-y
reasons,	computers	start	counting	their	indices	at	0.	So,	if	you	wanted	to	refer	to
the	 first	 element	 in	 a	 list,	 you	would	 actually	 refer	 to	 the	 element	 at	 the	 first
index,	which	is	0.
	
You	can	refer	to	elements	of	a	list	like	so:
	

listName[index]
	
So,	if	we	wanted	to	print	the	second	name	in	the	list	names,	we	could	do	it	like
so:
	

print(names[1])
	

This	 would	 print	 out	 Rita.	 And	 with	 that,	 we’ve	 built	 a	 very	 rudimentary
understanding	of	lists	and	how	they	work.	However,	there’s	a	little	more	to	it.
	
Sometimes,	 you	 need	 to	 remove	 a	 piece	 of	 data	 from	 a	 list.	How	 can	 you	 go
about	 doing	 this?	 Well,	 Python	 has	 your	 back.	 Python	 has	 a	 really	 handy
keyword	called	the	del	keyword	which	is	specifically	intended	for	the	deletion	of
data.	In	order	to	delete	an	element	from	a	list,	you	just	have	to	refer	to	it	like	you
usually	would	using	the	del	keyword.

	
Let’s	say	that	Jim	quit	our	class.	We	now	need	to	remove	him	from	the	roster	of
names.	How	do	we	go	about	doing	this?	Simply	put,	we	just	have	to	use	the	del
keyword	and	refer	to	his	index.	Since	he’s	the	third	student	in	the	list,	his	index
would	be	2.
	

del	name[2]
	

This	would	remove	Jim	from	the	list.	Also,	it	would	move	any	students	that	were
ahead	of	Jim	in	the	list	back	one	position.	This	means	that	Cory	would	now	be	in
the	 third	 position.	 Bear	 this	 in	 mind	 if	 you	 ever	 use	 the	 element	 keyword,
because	any	code	which	depends	intimately	upon	the	positions	of	elements	and
isn’t	written	so	that	it	scales	up	and	down	may	become	buggy	after	the	deletion
of	 an	 element	 in	 a	 set.	Usually	 this	 is	 only	 an	 issue	with	bigger	 and	 less	well
managed	code	bases,	so	if	you	start	out	with	this	in	mind,	you	aren’t	going	to	run
into	too	many	problems.
	
With	 that,	we’ve	 defined	 a	 basic	methodology	 for	 thinking	 about	 lists	 and	 the
various	different	uses	that	they’ll	have	for	your	as	a	Python	programmer.	In	the
next	section	of	this	chapter,	we’re	actually	going	to	start	thinking	about	the	next
aspect	 of	 control	 flow—as	 well	 as	 seeing	 how	 lists	 can	 apply	 to	 them	 in	 an
extremely	important	and	central	way.

Loops

Finally,	after	a	long	déluge	into	a	heavy	computer	science	concept,	we’ve	finally
come	out	 the	other	end	and	are	now	able	 to	 start	 talking	about	 loops	more	 in-
depth.	 So,	 that	 raises	 the	 question—what	 is	 a	 loop?	What	 relevance	 does	 this
have	to	us	as	a	programmer?
	
If	 you	 have	 to	 ask	 that	 question,	 then	 you	 aren’t	 quite	 thinking	 like	 a

programmer	yet,	and	that’s	okay,	it	will	happen.	Remember	that	programming	is
the	 absolute	 abstraction	 of	 everything	 that	 a	 computer	 does,	 as	 well	 as	 the
abstraction	 by	 extension	 of	 everything	 that	 the	 users	 of	 a	 computer	 do.
Understanding	 loops	 in	 this	way	will	massively	help	you	 in	becoming	a	better
and	more	able	programmer	capable	of	writing,	well,	better	programs.
	
So,	bearing	all	of	that	in	mind,	what	is	a	loop?	A	loop	is	a	method	of	repeating
something	over	and	over	under	some	predefined	conditions.	This	may	seem	a	bit
silly	or	unnecessary	at	first,	but	stay	with	me,	because	you’ll	quickly	understand
why	it’s	necessary.
Let’s	 think	about	 something	where	we	use	 loop	 logic	but	we	 tend	not	 to	 think
about	the	fact	that	we’re	using	loop	logic.	Let’s	take,	for	instance,	writing	a	word
on	a	piece	of	paper,	the	old-fashioned	way.
So,	you	start	out,	you	think	of	your	word.	Thus	starts	your	loop.	The	first	thing
that	you	do	is	to	think	about	what	the	first	character	of	the	word	in	question	must
be.	After	that,	you	put	your	pencil	to	the	paper	and	you	draw	the	character.	After
that,	you	pick	your	pencil	up.	So	repeats	the	process	until	the	word	is	over.	On
every	iteration	of	the	loop,	you’ll	be	checking	to	see	if	the	word	is	indeed	over,
and	if	not,	then	you’ll	repeat	the	process	of	finding	the	next	character,	writing	it,
and	picking	up	your	pencil	all	over	again.
	
See,	while	putting	it	in	proper	terms	as	a	loop	may	come	across	as	a	bit	daft,	the
simple	truth	is	that	loop	logic	is	pretty	much	everywhere	and	we	tend	to	vastly
underestimate	just	how	much	of	an	impact	it	really	has	on	our	day-to-day	lives.
As	a	result,	we	also	tend	to	underestimate	how	much	of	a	prevalence	it	will	carry
in	 our	 programming,	 despite	 the	 fact	 that	 loop	 logic	 is	 a	 massive	 part	 of
programming.
	
Loops	in	programming	manifest	in	two	primary	ways,	each	with	extraordinarily
different	purposes:	while	loops	and	for	loops.	In	Python,	the	different	purposes

of	these	two	loops	are	more	clearly	delineated.	However,	if	you	look	at	C++	and
Java	or	languages	similar	to	those,	it’s	much	harder	to	immediately	tell	as	a	new
programmer	which	functions	both	of	these	loops	cater	to.	Even	though	it’s	a	little
bit	clearer,	I’m	still	going	to	give	a	fair	amount	of	explanation	on	the	difference
between	these	two	different	forms	of	loop	logic	and	how	they	work	so	that	you
as	the	programmer	can	have	a	bit	of	a	better	understanding	of	that.
	

First,	 let’s	 focus	 on	 the	while	 loop.	 The	while	 loop	 is	 relatively	 simple
conceptually.	All	that	the	while	loop	does	is	verify	whether	or	not	something	is
true	on	every	iteration	of	the	loop.	If	it	does	happen	to	be	true,	then	the	loop	will
continue.	 If	 it	 doesn’t	 happen	 to	 be	 true,	 then	 the	 loop	will	 terminate	 and	 the
code	will	move	on	to	the	next	part.
	
Conceptually,	the	while	loop	is	simple.	However,	the	actual	use	of	the	while	loop
can	be	a	bit	 trickier.	We’ll	 talk	about	 that	momentarily,	 though.	For	 right	now,
let’s	just	think	about	the	syntax	of	the	while	loop.	The	while	loop	can	be	written
like	so:

	
while	expression:

#	loop	logic	inside,	indented	once	inward
	
So,	let’s	say	for	example	that	we	wanted	to	count	from	1	to	5.
	
First,	we	create	our	variable:
	

i	=	0
	
Next,	we	create	our	loop	terms:
	

while	i	<	5:

	
Next,	we	put	our	logic	within	our	loop:
	

while	i	<	5:
i	+=	1	#	increment	i	by	1
print(i)	#	print	i	out,	whatever	its	value	is

	
On	the	fifth	run	of	the	loop,	the	number	will	increment	to	5.	After	the	fifth	run	is
finished,	the	loop	will	evaluate	its	condition.	It	will	see	that	i	is	now	equal	to	5
and	therefore	i	is	no	longer	less	than	5,	and	as	a	result,	it	will	exit	the	loop.	It’s	a
fairly	simple	implementation,	but	it’s	pretty	fantastically	useful.
	
The	truth	is	that	the	while	loop	really	isn’t	the	best	for	working	with	data	in	this
way.	The	 for	 loop	 is	better	 suited	 to	 a	purpose	 like	 this.	The	while	 loop	has	 a
very	 peculiar	 but	 very	much	 needed	 purpose	 to	 serve:	 you	 use	 the	while	 loop
when	you	aren’t	sure	how	long	your	loop	is	going	to	need	to	run,	plainly.
	
Some	 things	 aren’t	 verifiable.	 User	 behavior	 is	 one	 of	 those.	 There	 are	 other
factors	 too.	 Sometimes	 random	aspects	will	 be	 an	 influence	 on	 your	 program.
When	you’re	not	sure	how	many	times	your	loop	will	need	to	run	or	how	long
something	is	going	to	take,	your	best	bet	is	really	to	use	a	while	loop	in	order	to
effectively	“wait	it	out”.
	
It’s	for	this	reason	that	while	loops	are	commonly	used	in	what’s	called	the	game
loop.	 The	 game	 loop	 is	 one	 specific	 implementation	 of	 the	while	 loop	 that	 is
rather	unique,	and	its	name	is	quite	fitting.
	
The	game	loop	isn’t	only	for	games,	but	it’s	quite	often	used	in	games	because	of
the	structure	thereof.	Games	are	simple.	The	same	process	will	be	repeated	over
and	over	until	 somebody	either	wins	or	 loses.	When	 that	person	wins	or	 loses,

the	game	is	over.	However,	 this	 lack	of	predictability	of	when	the	“when”	will
finally	 come	 lends	 the	 while	 loop	 to	 being	 the	 perfect	 candidate	 for	 the
implementation	of	this	sort	of	thing.
	
The	game	loop	is	essentially	a	while	loop	which	is	checking	a	boolean	variable
on	every	run.	This	boolean	variable	may	be	something	like	hasWon,	and	the	loop
may	be	set	to	run	for	as	long	as	hasWon	==	False.	When	hasWon	==	false,	then
the	loop	will	be	terminated,	of	course,	and	the	next	thing	in	the	code	will	happen
—the	next	 thing	normally	being	 some	kind	of	 end	game	screen,	 like	a	 “Game
Over”.
	
The	variable	will	be	set	to	false	before	the	while	loop	starts,	and	that	falsehood
will	 be	 checked	 every	 time	 the	 loop	 completes.	Within	 the	 logic	 of	 the	while
loop,	there	will	be	one	(or	multiple)	win	conditions	that	will	actually	change	this
variable	so	that	it’s	set	to	True.	When	the	variable	is	set	to	true,	the	loop	will	go
to	evaluate	its	expression	and	say	“Oh,	well	that	variable	isn’t	true	anymore,	so
clearly	 this	 loop	 is	 finished.”	Then	 the	game	will	move	on	 to	whatever	 comes
next.
	
Of	course,	as	I	said,	a	game	isn’t	 the	only	example.	This	also	could	be	a	great
model	 for	 something	 like	 a	main	menu	 in	 a	 program	where	 the	 exit	 condition
would	be	the	user	entering	the	word	“Exit”	or	the	number	0	or	something	along
those	lines.	The	conditions	can	vary,	but	the	implementation	of	the	game	loop	is
almost	always	the	same.
	
Now,	let’s	shift	our	focus	for	a	second	to	the	for	loop.	The	for	loop	runs	parallel
to	the	while	loop	because	it	serves	the	opposite	purpose.	The	for	loop	is	intended
for	iteration,	and	in	particular,	iteration	across	a	set	of	data	to	which	you	already
know	 the	 size	 and	 extent.	 This	 is	 the	main	 purpose	 of	 the	 for	 loop	 and	 is	 the
niche	which	it	fills.

	
This	 also,	 it	may	 be	 clear	 now,	why	we	 need	 to	 spend	 just	 a	 little	 bit	 talking
about	things	like	lists.	Lists	and	for	loops	go	hand	in	hand	because	for	loops	give
you	the	functionality	to	actually	work	through	the	data	contained	within	lists.
	
For	loops	are	composed	of	two	essential	parts,	at	least	in	Python:	an	iterator,	and
something	 to	 be	 iterated	 over.	The	 iterator	 is	 a	 value	 that	 is	 established	 in	 the
declaration	of	 the	 for	 loop	which	 takes	on	 the	 identity	of	whatever	 the	current
value	in	the	range	being	iterated	over	is.	If	it’s	a	string,	then	the	iterator	becomes
a	 string	 value	 just	 like	 the	 one	 in	 the	 set.	 If	 it’s	 an	 integer,	 then	 the	 iterator
becomes	an	integer.	The	iterator	value	can	have	any	name	that	you	want.
	
The	thing	to	be	iterated	over	can	vary.	Much	of	the	time,	the	thing	to	be	iterated
over	will	be	something	along	the	lines	of	a	list	or	set	or	dictionary.	Other	times,
it	will	be	something	else—a	string,	for	example,	can	have	every	word	within	it
iterated	 over	 and	 separated	 by	 spaces.	 With	 that	 said,	 one	 can	 also	 define	 a
numeric	 range	using	Python’s	built-in	 range	 function.	This	 function	 serves	 for
the	 definition,	 as	 I	 said,	 of	 numeric	 ranges.	Two	numbers	 are	 given—the	 start
value	of	the	range	and	the	end	value	of	the	range.	If	only	one	is	given,	then	the
range	will	start	at	0	and	will	consist	of	everything	from	0	to	that	number.
	
A	for	loop	is	therefore	defined	like	so:
	

for	iterator	in	iteration:
#	code	goes	here,	indented	once	inward

	
It’s	not	terribly	difficult.	So,	let’s	say	for	example	that	we	wanted	to	print	every
name	in	our	list	that	we	just	established.	How	could	we	do	that?
	

for	name	in	names:

print(name	+	“\n”)
	
Again,	there’s	not	a	whole	lot	to	it,	but	it	is	extremely	useful	knowledge	to	have,
and	as	time	presses	on,	you’ll	find	that	you	use	it	more	and	more	especially	in
things	like	file	input	and	output.

Methods

This	is	one	of	the	last	things	that	we	really	need	to	cover	in	this	book,	and	it’s	a
pretty	 essential	 part	 of	 programming	 in	 general.	 This	 concept	 is	 methods.
Methods	 go	 by	 many	 different	 names.	 The	 other	 most	 common	 name	 is
functions.	 Admittedly,	 I	 started	 programming	 on	 languages	 that	 preferred	 the
term	function,	so	it’s	the	term	that’s	nearest	and	dearest	to	my	heart.	Forgive	me
if	I	slip	up	and	use	it	instead	of	method.
	
However,	they	are	functionally	(haha)	the	same	thing	in	the	end.	They	both	offer
the	same	support	structure	to	your	code	and	allow	you	to	create	a	much	cleaner
set	of	code	in	general.	So,	with	all	of	that	said,	what	exactly	is	a	method?
	
It’s	probably	easier	to	understand	methods	if	we	first	refer	to	them	by	their	old
name,	 functions.	Functions	 is	 the	 term	preferred	 in	older	 languages	 like	C	and
C++	 that	 have	 functional	 or	 procedural	 programming	 paradigms,	with	method
being	the	term	preferred	in	object-oriented	languages	and	scripting	languages.
	
The	 term	 function	 betrays	 the	 origins	 of	 the	 concept;	 think	 back	 to	 your	 high
school	and	college	math	courses	where	you	probably	worked	with	the	functional
form	f(x)	=	y.	What	was	happening	when	you	worked	with	those?	What	was	the
central	idea	behind	them?
	
The	central	idea,	of	course,	was	the	connection	between	the	concept	of	f(x)	and
y,	wherein	y	was	the	result	of	the	function	f(x).	In	essence,	y	was	the	value	that

the	function	f(x)	gave	back	after	everything	was	computed.	x	was	the	argument
that	 was	 given	 to	 the	 function	 f(x),	 and	 was	 thereby	 the	 thing	 that	 was
manipulated	within	the	actual	context	of	the	function.	If,	for	example,	we	were
to	write	out	the	function	f(x)	=	2x	+	4	=	y,	then	x	would	be	the	variable	that	was
manipulated	in	the	function	obviously.	f(2)	would	indicate	that	the	function	was
2(2)	+	4,	meaning	that	y,	the	final	value	of	the	function,	would	be	8.	This	was	the
overall	value	of	the	function,	or	generally	described	as	such	at	least.
	
You’ll	 notice	 that	 functions	 offer	 a	 means	 of	 abstracting	 an	 equation.	 This	 is
pretty	much	their	function	in	programming	as	well.	But	we’ll	go	more	into	that
in	 a	 second.	 There	 are	many	 similarities	 between	mathematical	 functions	 and
functions	in	computer	science.	For	instance,	the	function	that	we	just	dealt	with
takes	a	single	argument.	Functions	in	computer	science	take	arguments	as	well.
They	also	don’t	have	to	take	any	at	all!	Functions	in	computer	science	can	take
0,	1,	or	multiple	arguments	and	they	will	work	perfectly	fine.
	
These	arguments,	much	like	x	was	manipulated	in	the	function	f(x),	can	then	be
manipulated	 in	 the	body	of	 the	 function	 in	order	 to	yield	a	certain	 result.	This
certain	result	can	be	seen	as	the	end	value	of	the	function,	much	like	y	was	 the
end	value	of	f(x).	Programmers,	however,	don’t	really	prefer	this	term;	they	tend
to	prefer	the	term	return	value,	which	is	the	value	that	the	function	returns.	Just
like	 a	 function	 in	math	 can	only	give	back	 a	 singular	 end	value,	 a	 function	 in
programming	can	only	give	back	a	singular	 return	value.	Moreover,	 just	 like	a
function	in	math	can	be	undefined,	a	function	in	programing	doesn’t	have	to	give
back	a	return	value	at	all!	One	could	easily	make	it	to	the	end	of	the	function	and
have	nothing	returned	and	everything	would	be	peachy	keen.	This	is	the	nature
of	functions	in	programming.
	
So,	what	good	are	 functions	 in	programming	 then	 if	 they	have	such	a	peculiar
use	standard?	They	can	take	many	arguments,	or	they	can	take	none	at	all.	They

can	give	back	data,	or	they	can	give	back	none	at	all.	What	gives,	exactly?
	
Well,	the	simple	answer	is	that	functions	in	programming	aren’t	just	confined	to
the	 purpose	 of	 giving	 back	 information.	Rather,	 functions	 in	 programming	 fill
the	particular	role	of	breaking	up	the	code.	If	something	is	reused	repeatedly,	you
should	put	 it	 in	 its	own	method	and	 then	 just	use	 the	method	 throughout	your
code	as	needed.
	
Let’s	 say	 for	 example	 that	 we	 wanted	 to	 standardize	 finding	 the	 area	 of	 a
rectangle.	Throughout	our	code,	we	actually	do	this	a	lot,	and	it’s	unwieldy.	We
want	to	replace	all	of	this	code	with	one	simple	way	to	just	give	the	dimensions
of	the	rectangle	and	be	done	with	it.	So,	how	can	we	go	about	doing	this?
	
Well,	 the	 easiest	 way	 is	 to	 define	 a	 method!	 Defining	 methods	 is	 extremely
simple	in	Python.	You	define	them	like	so:
	

def	function_name(arguments,	if	you	have	any):
#	code	within
return	value	#	if	there	is	a	return	value

	
So,	in	order	to	write	a	function	that	would	compute	the	area	of	a	rectangle,	we
just	do	the	following:
	

def	areaRec(l,	w):
return	l	*	w

	
This	will	feed	back	the	value	of	the	given	length	multiplied	by	the	given	width.
You	 can	 then	 do	 whatever	 you	 would	 with	 this	 value	 that	 you	 would	 with
another	value.	For	example,	you	can	store	 it	 to	a	variable	or	print	 it	out	 to	 the
console.

	
myArea1	=	areaRec(3,	7)
myArea2	=	areaRec(5,	4)
	
print(myArea1)
print(myArea2)

	
See	 how	 simple	 and	 intuitive	 this	 all	 is?	 Functions	 offer	 a	 great	way	 to	 break
your	code	into	reusable	chunks	if	you	know	that	something	is	going	to	happen
repeatedly.	 It’s	 one	 of	 the	 best	 ways	 that	 you	 can	 make	 your	 code	 forward
thinking.	The	idea	of	multiplying	length	and	width	to	find	the	area	of	a	rectangle
is	so	small	that	you’re	probably	thinking,	“well,	you	could	just	do	that	with	the
multiplication	and	save	time”,	and	yes,	that’s	true;	however,	this	is	purposefully
simple	in	order	to	illustrate	the	idea	behind	methods	and	how	they	can	be	used.
It’s	not	 supposed	 to	be	 incredibly	difficult.	The	purpose	of	methods	will	make
itself	clear	in	the	future	when	you’re	working	with	more	advanced	programming
paradigms.

Object-Oriented	Programming

Object-oriented	programming	is	the	last	major	thing	that	we	need	to	cover	in	this
section	of	the	book	before	we	start	looking	a	little	bit	forward.	It’s	a	massive	part
of	 any	programming	paradigm	and	any	 large	body	of	 code	 is	going	 to	 include
object-oriented	programming	to	one	extent	or	another.	The	extent	to	which	they
do	varies	with	the	program,	but	most	programs	will	benefit	to	some	degree	from
the	implementation	of	object-oriented	programming	paradigms.
	
That	 raises	 the	 question,	 then—what	 is	 object-oriented	 programming?	 Well,
that’s	 actually	 a	 rather	 complicated	 question	 to	 answer.	 Object-oriented
programming	 itself	 is	 a	 way	 of	 programming.	 It’s	 more	 of	 a	 programming
paradigm	 than	 anything	 else.	 And	 yes,	 there	 are	 ways	 of	 programming.	 A
language	can	be	more	object-oriented,	more	functional,	more	imperative,	and	so
forth.	These	little	terms	actually	define	a	whole	lot	about	the	programs	and	the
way	that	they	work	and	are	written.
	
However,	enough	of	 that—let’s	focus	on	what	object-oriented	programming	 is,
and	what	 it	means.	Object-oriented	programming	has	 a	 long	history	 behind	 it.
It’s	been	in	vogue	since	the	80s,	and	has	come	to	be	increasingly	more	popular
as	time	has	borne	on.	One	of	the	reasons	it’s	gotten	more	popular	is	one	of	the
same	 reasons	 that	 Python	 has	 gotten	 more	 popular—computers	 are	 getting
stronger	 and	becoming	more	 capable.	Your	 code	doesn’t	have	 to	 be	 extremely
simple	and	efficient	anymore.	Some	performance	can	be	spared	for	the	sake	of
writing	code	that	is	easy	to	maintain	over	the	long	term	and	easy	to	build	onto.
For	many	companies,	 the	ability	 to	do	 these	 things	may	even	be	 seen	as	more
important	as	the	ability	to	write	efficient	code	in	the	first	place,	since	it	will	save
them	money	over	the	long	run	to	have	easy	to	read,	extend,	and	maintain	code.
	

This	may	make	 it	 sound	 like	 object-oriented	 programming	 is	 inefficient.	 That
isn’t	 necessarily	 the	 case.	What	object-oriented	programming	 is	 about	 is	 using
several	 different	 philosophical	 ideas	 in	 order	 to	 actually	 build	 up	 abstract
concepts	 about	 programming	 in	 general,	 and	 then	 implementing	 these
philosophical	ideas	in	your	programming	in	order	to	make	it	easy	to	work	with
over	the	long	term.
	
The	 first	 major	 language	 to	 be	 released	 with	 object-oriented	 programming	 in
mind	 and	 as	 its	 raison	 d’être	 was	 Java	 in	 the	 early	 1990s.	 When	 the	 Java
programming	 language	 was	 developed	 and	 released,	 so	 was	 done	 with	 these
philosophies	 in	 mind:	 abstraction,	 encapsulation,	 polymorphism,	 inheritance,
modularity,	and	extensibility.
	
These	are	easier	to	understand	if	you	understand	object-oriented	programming	in
a	really	basic	way	first,	though.	So	let’s	examine	object-oriented	programming	in
the	abstract.	Object-oriented	programming	is	about	exploring	and	standardizing
the	relationships	between	things	of	common	properties.	That’s	the	easiest	way	to
put	it.	It’s	also	about	expressing	the	relationship	between	classes	and	objects.
	
Let’s	 start	 with	 classes.	 Classes	 are	 the	 fundamental	 cornerstone	 of	 object-
oriented	 programming.	 While	 there	 are	 many	 object-oriented	 languages	 that
don’t	necessarily	have	classes	as	their	cornerstone,	the	class	model	nonetheless	is
used.
	
Many	 things	 are	 similar	 to	 one	 another.	 When	 things	 have	 something	 in
common,	 you	 can	 group	 them	 according	 to	 their	 similar	 properties.	Let’s	 start
with	mammals.	What	do	all	mammals	have	in	common?
	
Well,	 all	mammals	 give	 live	 birth.	They	 all	 produce	milk	 to	 feed	 their	 young.
They	all	have	backbones.	They	all	have	a	name,	too,	which	is	pretty	important.

They	all	have	a	certain	number	of	legs,	generally	4.
	
Using	that,	we	can	start	building	off	of	our	basic	idea	of	what	a	mammal	is	and
use	 this	 in	order	 to	define	a	standard	set	of	properties	 that	every	mammal	has.
Let’s	make	a	list:
	
Mammals	have:

Backbone
Name
Species	name
4	legs
They	can	produce	milk

	
Perfect,	 that’s	a	fantastic	start.	So	knowing	that	we	have	all	of	these,	and	these
are	the	standards	by	which	we	classify	mammals,	we	can	safely	create	a	class	of
mammals	that	have	all	of	these	properties.	Easy	enough,	right?
	
A	class	in	programming	is	an	abstract	definition	of	a	structure	which	uses	many
smaller	data	pieces	in	order	to	define	something	bigger.
	
You	can	define	classes	in	Python	like	so:
	

class	ClassName(inheritor):
def	__init__(self,	args):

#	initialization	data
#	defines	properties	when	the	object	is	created

	
	
So,	in	order	to	define	a	Mammal	class,	we	could	do	this:
	

class	Mammal:
def	__init__(self,	name,	speciesName):
self.name	=	name
self.speciesName	=	speciesName
self.legs	=	4
self.hasBackbone	=	True

	
You	can	also	define	methods	in	your	class	that	all	objects	will	be	able	to	do.
	

class	Mammal:
def	__init__(self,	name,	speciesName):
self.name	=	name
self.speciesName	=	speciesName
self.legs	=	4
self.hasBackbone	=	True

	
def	produceMilk():
#	logic	goes	here

	
This	is	an	important	starting	point,	but	nowhere	near	everything	that	we	need	to
discuss	 about	 this.	 The	 next	 thing	 that	 we	 need	 to	 talk	 about	 is	 the	 idea	 of
objects.	Objects	are	manifestations	of	classes.	Essentially,	imagine	your	class	as
the	definition;	objects	are	the	actual	things.	Objects	are	created	and	defined	like
variables.	Let’s	say	we	wanted	to	define	a	new	Mammal,	the	lion:
	

lion	=	Mammal(“lion”,	“Panthera	Leo”)
	

With	that,	you’ve	created	an	object.	See	how	simple	it	 is?	Objects	can	actually
perform	any	functions	of	their	class.
	

lion.produceMilk()
#	lion	starts	producing	milk

	
As	 you	 can	 see,	 the	 relation	 between	 classes	 and	 objects	 is	 relatively	 easy	 to
understand,	 but	 still	 well	 worth	 taking	 the	 time	 to	 fully	 understand	 it	 all	 in
context.
	
So,	with	all	of	that	out	of	the	way,	it’s	time	that	we	start	focusing	on	stuff	that	is
a	 little	 bit	more	pressing.	What	 is	 object-oriented	 programming?	What	 are	 the
ideas?	Well,	 we	 can	 give	 a	 fair	 definition	 of	 object-oriented	 programming	 by
analyzing	the	first	core	philosophy	of	object-oriented	programming:	abstraction.
	
Abstraction	 is	 the	 idea	 that	 things	should	be	simpler,	more	abstracted	 from	the
raw	 hardware	 of	 the	 computer,	 more	 difficult	 to	 mess	 up,	 and	 easier	 to
understand	for	humans.	Computers,	as	we	discussed	earlier,	haven’t	always	been
easy	for	programmers—or	anybody,	 for	 that	matter—to	understand.	 It’s	been	a
very	gradual	process	of	making	computers	easier	for	the	common	man	to	really
start	to	get,	and	it’s	been	slow	at	times.
	
Therefore,	abstraction	is	at	the	core	of	object-oriented	programming.	This	is	the
ability	 to	 make	 simple	 interfaces	 and	 things	 that	 are	 easy	 to	 work	 with	 and
understand	 in	 simple	 English	 over	 long	 periods,	 as	 well	 as	 create	 abstract
infrastructure	 for	 your	 programs,	 is	 essential	 to	 the	 long-term	 development	 of
programs.	You	can	see	it	as	a	bit	of	a	programmatic	Keynesian	tradeoff.	Sure,	on
one	hand,	 the	 system	expenditure	may	be	 a	 little	 bit	more	 and	 code	may	be	 a
little	bit	more	verbose	at	first.	However,	it	pays	off	in	the	end	because	of	the	ease
of	maintenance.	Also,	the	more	code	that	is	added	to	an	object-oriented	system,
the	less	that	you	need	in	the	future.	This	is	because	you’re	constantly	abstracting
concepts,	 and	 the	 more	 you	 abstract	 things,	 the	 easier	 it	 is	 to	 build	 cohesive
systems	out	of	those	abstractions.

	
Consider	how	we	worked	with	functions	earlier.	Functions	may,	 in	one	way	or
another,	be	seen	as	a	kind	of	abstraction	because	you’re	taking	code	and	making
it	 extremely	 reusable.	 In	 this,	 you	 can	 instantly	 see	 how	 abstraction	 can	 be	 a
good	 thing.	 Instead	 of	 constantly	 having	 to	 redefine	 the	 same	 thing,	 you	 can
define	it	once	as	an	abstract	concept	and	you’re	done.
	
You	can	also	see	in	plain	sight	the	idea	of	encapsulation.	This	is	one	of	the	other
primary	considerations	behind	the	development	of	object-oriented	programming
paradigms.	The	idea	of	encapsulation	says	that	like	things	should	be	put	together.
Things	that	go	together	should	be	kept	neat	and	tidy	to	keep	everything	cleaner
and	 better	 put-together.	 This	 is	 a	 chief	 consideration	 of	 object-oriented
programming,	 and	 you	 can	 see	 this	 in	 the	 steady	 and	 simple	 way	 in	 which
properties	of	classes	are	put	together.
	
The	next	thing	that	we	need	to	talk	about	is	the	idea	of	inheritance.	Inheritance	is
yet	 another	 core	 concept	 behind	 object-oriented	 programming,	 and	 the	 reason
why	will	become	extremely	plain	as	we	work	with	it	all.	Inheritance	is	the	idea
that	some	things	are	innately	connected	and	derive	from	other	things.	As	a	result,
you	 should	 be	 able	 to	 build	 hierarchical	 systems	 where	 one	 thing	 can	 derive
from	another	thing	and	can	derive,	in	turn	from	another	thing	and	so	forth	until
we	reach	 the	very	bottom	rung	of	 the	 ladder.	The	 truth	 is	 that	 the	world	exists
with	a	surplus	of	these	sorts	of	hierarchical	paradigms,	so	it	makes	sense	that	we
should	be	able	to	express	them	in	our	programs.
	
When	you	implement	inheritance	in	your	object-oriented	code,	you’re	basically
recognizing	 that	one	class	may	 take	on	 the	 traits	of	another.	This	 is	 true.	Let’s
look	at	our	Mammal	class.	Sure,	this	is	great	and	all,	but	can’t	we	subdivide	this
even	further?
	

For	 example,	 dogs	 are	 a	mammal,	 and	when	you’re	 defining	dogs,	 surely	 you
want	to	take	in	all	of	the	properties	of	the	mammal	class.	But	that	also	won’t	cut
it.	 Dogs	 have	 a	 few	 more	 properties	 than	 mammals	 that	 you	 might	 want	 to
define.	Let’s	say,	for	example,	that	all	dogs	bark,	which	means	we	need	to	define
an	 additional	 method.	 Let’s	 say	 also	 that	 all	 dogs	 have	 a	 breed,	 which	 is	 an
additional	specification	that	mammals	don’t	have.	Additionally,	when	you	define
a	dog,	you	already	know	it’s	a	dog,	so	you	don’t	need	to	give	the	name	and	the
species	name.	See	what	I’m	saying?
	
So,	dogs	clearly	inherit	from	the	Mammal	class	in	a	pretty	innate	way.	Now	we
just	need	a	way	 to	express	 that	 in	our	code.	You	can	express	 these	 inheritance
relations	by	citing	one	class	as	a	base	class	when	you	define	your	function,	like
so:
	

class	Dog(Mammal):
#	code	within

	
So,	let’s	actually	define	our	dog	class	so	you	can	see	up	close	and	personal	how
this	would	work.
	

class	Dog(Mammal):
def	__init__(self,	breed):
self.name	=	“dog”
self.speciesName	=	“canis	lupus”
self.breed	=	breed

	
def	bark():
print(“Bark!”)

	
Now,	 you	 can	 define	 new	dogs	with	many	properties	 already	defined	 for	 you,

and	you	only	need	to	state	its	breed:
	

sammy	=	Dog(“Sammy”)
	
See?	It’s	super	simple.	Moreover,	because	it’s	an	inherited	class,	it	can	actually
do	everything	its	parent	classes	can	do:
	

sammy.produceMilk()
#	valid	command

sammy.bark()
#	Bark!

	
I	 hope	 that	 it’s	 beginning	 to	 become	 clearer	 what	 role	 inheritance	 has	 in	 any
given	object-oriented	programming	paradigm.
The	next	 thing	that	we	need	to	 talk	about	 is	polymorphism.	Once	we’ve	talked
about	this,	we’ve	actually	hit	4	out	of	6—hooray!	Polymorphism	is	the	idea	that
things	 can	 take	 on	 multiple	 different	 versions	 depending	 upon	 how	 they’re
called.	This	might	seem	like	common	sense	but	believe	it	or	not,	polymorphism
wasn’t	considered	too	often	before	the	advent	of	object-oriented	programming.
	
The	 most	 common	 form	 of	 polymorphism	 is	 method	 overloading.	 Function
overloading	is	when	you	have	two	methods	of	the	same	name	that	have	different
arguments.	Since	they	have	different	arguments,	they	actually	can	be	called	and
run	in	different	ways.	Consider,	for	example,	a	method	which	finds	the	area	of	a
square	if	given	one	parameter	and	a	rectangle	if	given	two:
	

def	findArea(length):
return	length	*	length

	
def	findArea(length,	width):

return	length	*	width
	
It’s	a	simple	idea,	but	it	really	makes	your	code	easier	to	read	and	understand	on
the	human	end.	It’s	intuitive	and	makes	a	lot	of	sense.
	
The	next	thing	that	we	need	to	discuss	is	the	idea	of	modularity.	Modularity	is	a
huge	 part	 of	 object-oriented	 programming	 and	 is	 one	 of	 the	 primary	 reasons
behind	 any	 and	 all	 of	 this.	Modularity	 is	 the	 idea	 that	 things	 can	 actually	 be
broken	 down	 and	 detached.	When	 you	make	 your	 code	modular,	what	 you’re
trying	to	do	is	take	it	and	make	it	so	that	it	can	be	broken	down	into	chunks	and
those	 chunks	 can	 be	 reused,	 or	 used	 in	 different	 contexts.	 Additionally,	 when
your	 code	 is	 modular,	 it	 means	 that	 making	 a	 change	 to	 one	 module	 doesn’t
mean	 refactoring	 all	 of	 your	 code.	 While	 this	 is	 inevitable	 in	 some	 cases,
generally,	 code	 that’s	 really	 well-written	 won’t	 carry	 this	 burden.	 The	 best
modular	 code	 is	 modular	 in	 such	 a	 way	 that	 its	 individual	 modules	 may	 be
changed	 and	 all	 of	 the	 other	 modules	 will	 keep	 functioning.	 In	 other	 words,
every	module	is	a	gear	in	a	bigger	machine.
	
The	last	thing	that	we	really	need	to	discuss	about	object-oriented	programming
is	the	idea	of	extensibility.	Object-oriented	programming	is	heavily	based	around
the	 idea	 that	 your	 ideas	 should	 be	 able	 to	 be	 easily	 exported	 and	 used	 as	 a
module	 in	 somebody	 else’s	 code,	 should	 they	have	 the	 right	 framework	 for	 it.
This	is,	in	an	essence,	the	resultant	inverse	of	modularity.	Code	should	not	only
be	modularity,	it	should	be	able	to	be	added	to	with	ease.
	
All	 of	 the	 different	 object-oriented	 aspects	 are	 about	 writing	 code	 which
ultimately	is	easy	to	come	back	to	and	maintain	over	a	very	long	period	of	time.
While	it’s	not	always	as	simple	as	this,	for	the	most	part	this	goal	is	graciously
reached	 by	 conscientious	 programmers.	 So	 what	 place	 does	 object-oriented
programming	have	in	Python?

	
Well,	the	truth	is	that	Python	isn’t	really	built	for	huge	projects.	However,	when
these	projects	do	come	around,	they’re	nearly	always	written	in	a	manner	that	is
at	 least	 somewhat	 object-oriented.	 While	 Python	 in	 a	 way	 is	 more	 innately
supportive	of	procedural	programming	paradigms,	it	offers	an	extensive	amount
of	support	 for	object-oriented	paradigms	as	well.	When	you’re	writing	a	script
with	a	complicated	structure	that	you	expect	yourself	to	be	coming	back	to	a	lot,
then	object-oriented	programming	offers	an	obvious	solution	 to	a	problem	 that
presents	itself	as	a	little	complicated	in	nature.
	
Closing
	
With	 that,	we’ve	 conquered	 the	 longest	 chapter	 in	 this	 book.	 So,	why	 did	we
spend	so	long	discussing	all	of	 that	 in	a	book	about	Raspberry	Pi?	Simply	put,
Raspberry	Pi	is	a	tinkerer’s	tool.	Your	ability	to	work	with	and	fully	understand
Python	 code	 is	 paramount	 because	 it’s	 the	 language	 most	 often	 used	 on	 the
Raspberry	Pi,	as	we	discussed	earlier	in	the	chapter.	While	it’s	beneficial	to	learn
and	work	with	other	languages	in	addition	to	Python,	Python	is	by	far	the	most
common.
	
The	simple	fact	 is	 that	knowing	how	to	program	in	Python	opens	up	what	you
can	do	with	your	Raspberry	Pi	a	pretty	huge	margin.	You	no	longer	are	confined
to	 just	 working	 with	 other	 people’s	 code.	 Instead,	 you	 can	 write	 your	 own
projects,	make	 your	 own	gadgets,	 and	 do	 your	 own	 thing.	You	 can	 also	make
meaningful	 changes	 to	 other	 people’s	 code	 in	 order	 to	 have	 it	 suit	 your	 own
needs	(though	don’t	pass	their	code	off	as	your	own,	this	is	terribly	bad	form.)
	
In	the	chapter	to	follow,	we’re	going	to	be	discussing	where	to	go	from	here	after
discussing	everything	that	we’ve	covered	so	far.

Review	Questions

1.	 What	is	Python?	Why	is	it	ideal	for	use	with	the	Raspberry	Pi?

2.	 How	do	you	set	up	Python?

3.	 What	are	the	different	types	of	data	you	can	use	in	Python?

4.	 What	are	arrays?	Why	is	their	use	discouraged	in	Python?

5.	 Why	are	comments	important?

6.	 What	is	casting?

7.	 What	is	object-oriented	programming?	How	can	you	use	it	effectively	and
efficiently?

	

Chapter	5:	Where	to	Go	From	Here

So	at	 this	point,	you	probably	have	a	couple	of	good	questions.	We’ve	worked
our	way	through	all	of	the	complicated	stuff	and	even	learned	how	you	can	start
programming	in	Python,	which	 is	really	 instrumental.	From	here,	 though,	what
can	you	start	doing?	Where	can	you	really	go	from	here?	This	chapter	is	going	to
focus	on	finding	a	satisfactory	answer	to	that	question,	because	that	question	is
admittedly	really,	really	hard	to	answer	in	its	current	form.
	
The	simple	reason	that	it’s	so	hard	to	answer	is	that	there	is	no	straight	answer.	It
all	depends	on	what	you	want	to	do.	However,	there	are	a	number	of	things	that	I
could	recommend	you	do,	so	perhaps	I’ll	start	with	that.
	
First	off,	I	would	heavily	recommend	that	you	find	some	communities	dedicated
to	Raspberry	Pi	 in	general.	This	will	 be	 a	massive	 asset	 to	you	going	 forward
because	 you’ll	 be	 around	people	who	 like	 the	 same	 things	 you	 like.	Doing	 so
will	give	you	a	 lot	of	ambition	 to	keep	pushing	 forward	with	programming	on
the	Raspberry	Pi	in	general	and	trying	to	make	things	happen.
	
I	personally	would	recommend	that	you	find	a	project	that	genuinely	excites	you
and	 then	 spend	 a	 long	 while	 working	 on	 that.	 You’re	 going	 to	 probably
inevitably	run	into	hiccups	along	the	way,	and	when	that	does	happen,	you	can
take	advantage	of	the	fact	that	you	have	your	community	there	to	ask	questions
to.	This	is	where	the	community	starts	to	come	really	in	handy;	when	things	go
awry,	 they	can	steer	you	in	the	right	direction.	It’s	 impossible	to	overstate	how
important	 this	 is	 to	 you	 as	 a	 beginner	 learning	 to	 program,	 especially	 on
architecture	so	unique	as	the	Raspberry	Pi’s.
	
This	has	yet	another	benefit	 to	it,	 though	it’s	a	bit	hidden:	you’re	also	going	to

witness	the	mistakes	that	others	make.	The	simple	fact	is	that	when	we	mess	up,
it	 tends	 to	 stick	 with	 us.	 We	 see	 things	 done	 right	 all	 the	 time,	 and	 when
something	is	done	wrong,	it	sticks	out	more	than	when	everything	is	done	right.
It’s	 just	basic	psychology,	really.	However,	when	you	do	something	wrong	and
are	 corrected,	 or	 when	 you	 see	 somebody	 corrected	 about	 something	 they’re
doing	wrong	and	it’s	relevant	to	you	in	some	way	or	another,	you’re	going	to	be
more	likely	to	internalize	what	went	wrong	and	how	to	fix	it.	This	is	extremely
important	when	you’re	learning	to	program.
	
The	 thing	 is,	 though,	 that	 you’re	 not	 just	 learning	 to	 program.	 You’re	 here
because	you	heard	about	the	Raspberry	Pi,	and	you	wanted	to	learn	about	all	of
the	 things	 that	you	could	do	with	 it.	The	 fact	 is	 that	 if	you	spend	 long	enough
looking	at	all	of	these	cool	projects,	you’re	going	to	eventually	come	to	a	point
where	you	have	some	inspiration	and	want	to	make	something	of	your	own	that
you	can	be	proud	of	and	say	that	you	did	completely	of	yourself.	When	this	hits,
having	the	feedback	net	of	a	community	is	going	to	be	extremely	important.
	
Along	 with	 all	 of	 that,	 I	 would	 recommend	 that	 you	 try	 to	 take	 your
programming	further	in	general.	No	programmer	is	single	purpose	and	no	project
s	 only	 good	 for	 itself.	During	 programming	 a	 given	 project,	 you	 always	 learn
things	 that	not	only	apply	 to	 the	project	at	hand	but	 to	projects	 in	general,	and
being	 able	 to	 get	 that	 varied	 knowledge	 and	 diversify	 the	 code	 that	 you’re
working	with,	you’ll	be	exposing	yourself	to	many	more	concepts.	For	example,
even	 though	 I	 have	 a	 particular	 interest	 in	 the	 Raspberry	 Pi	 projects	 that	 are
specifically	 related	 to	 natural	 language	 processing	 and	 open-source	 voice
parsing,	I	wouldn’t	have	gotten	into	these	particular	interests	or	gotten	to	know	a
lot	of	what	I	know	about	them	without	the	additional	context	of	me	working	on
other	projects.	And	that’s	 just	 the	long	and	short	of	 it:	a	good	programmer	is	a
good	programmer,	and	a	good	programmer	is	never	a	one-trick	pony.	While	they
may	specialize	in	one	thing	or	another,	programming	is	built	on	a	whole	host	of

skills	that	they	inevitably	work	with	and	build	otherwise,	like	knowing	where	to
look	in	order	to	find	information,	how	to	read	APIs,	how	to	implement	code,	and
how	to	know	what’s	worthwhile	and	 isn’t.	Along	 the	way,	you	also	 learn	a	 lot
about	 other	 different	 concepts,	 like	 biology	 in	 the	 case	 of	 working	 with
automatic	 plant	 watering,	 linguistics	 in	 the	 case	 of	 working	 with	 natural
language	 processing,	 and	 general	 computer	 science	 regardless	 of	 what	 you’re
really	working	with.
	
As	a	 result,	 spreading	yourself	out	across	multiple	different	 ideas	and	multiple
different	 disciplines	 is	 a	 generally	 great	 idea	 because	 it	 allows	 you	 to	 build	 a
solid	sense	of	what	you’re	working	with	in	all	respects	as	well	as	build	discipline
over	time	as	a	programmer.	You	also	need	to	be	taking	pains	to	work	with	other
people’s	 code	 as	 a	 new	 programmer.	 This	 is	 the	 best	 way	 to	 learn	 the	 best
conventions	for	programming	in	general.	Every	language	and	community	has	its
own	 programming	 conventions.	 For	 example,	 the	 Python	 community	 focuses
heavily	on	making	its	code	Pythonic,	while	the	Java	community	has	more	of	an
emphasis	on	pragmatic	and	pretty	code.	There	are	even	more	subdivisions	within
all	of	this.	But	in	the	end,	getting	exposure	to	all	of	these	different	influences	and
learning	 more	 about	 the	 different	 ways	 of	 programming	 in	 general	 will	 be	 a
massive	boon	to	you	as	a	programmer,	which	will	in	turn	be	a	massive	boon	to
you	as	a	Raspberry	Pi	tinkerer.
	
This	book	places	a	huge	emphasis	on	programming,	but	the	fact	of	the	matter	is
that	programming	is	absolutely	central	to	working	with	the	Raspberry	Pi	if	you
ever	want	to	make	your	own	projects	or	even	update	somebody’s	project	 that’s
gone	out	of	date.	Without	that	essential	knowledge,	you’re	worthless	in	terms	of
what	you’re	able	 to	do	on	 the	Raspberry	Pi.	 I	hope	 that	 that	makes	a	bit	more
sense	in	terms	of	why	this	book	cares	so	much	about	you	learning	to	program!
	
	

Final	Project:	Python	Game

To	end	this	book,	here’s	a	simple	Python	project	you	can	undertake	to	enhance
your	Python	skills	and	consequently	get	better	at	programming	your	Raspberry
Pi.

The	game	you	will	be	programming	is	an	RTD	program—roll	the	dice.	Here	are
the	mechanics	for	the	game:

The	 number	 generated	 must	 be	 random.	 Hint:	 You	 will	 use	 a	 certain
module	for	this.	Make	sure	to	do	some	research!

The	minimum	number	should	be	1.	The	maximum	should	be	6.

There	must	 be	user	 input	which	 asks	whether	 or	 not	 the	dice	 should	be
rolled	again.

Whenever	 the	 dice	 is	 rolled,	 it	 outputs	 a	 different	 number	 between	 the
minimum	and	the	maximum.

Have	fun	programming	this!	It’s	actually	pretty	simple,	so	good	luck!

Conclusion

Thank	you	for	making	 it	 through	 to	 the	end	of	Raspberry	Pi,	 let’s	hope	 it	was
informative	 and	 able	 to	 provide	 you	with	 all	 of	 the	 tools	 you	 need	 to	 achieve
your	goals	whatever	it	may	be.
	
We’ve	already	discussed	where	 to	go	 from	here.	Now,	 I	 just	want	 to	give	you
some	 last	 words	 of	 encouragement.	 You’ve	 specifically	 taken	 up	 a	 path	 of
frustration,	 and	 you’ve	 done	 so	 with	 intention.	 Keep	 that	 in	 mind	 as	 you	 go
forward	and	inevitably	get	frustrated	with	code	not	working	or	your	electronics
just	not	working	the	way	that	you	want	them	to.
	
Sometimes,	you’re	going	 to	want	 to	pull	your	hair	out.	This	 is	completely	and
totally	normal,	and	it’s	all	a	part	of	the	process	of	learning.	You’re	not	going	to
be	an	amazing	programmer	from	day	one,	and	you	certainly	aren’t	going	to	be
setting	 up	 perfect	 hardware	 configurations	 if	 you	 have	 no	 background	 in	 it.
Remember	that	you	just	have	to	keep	pushing	through	and	learning.
	
Be	humble	 in	 the	way	 that	 you	 approach	 everything.	Don’t	 be	 afraid	 to	 admit
that	you’re	wrong	or	that	you	aren’t	as	capable	as	what	you	want	to	think,	and
ask	 for	 help	 on	 one	 of	 the	 communities	 that	we	 talked	 about	 seeking	 out	 and
joining	 in	 the	 chapter	 prior.	 If	 you	 can	keep	doing	 this,	 then	you’ll	 eventually
come	out	the	other	side	smarter	and	hopefully	with	a	working	gadget.
	
The	Raspberry	Pi	is	altogether	one	of	the	coolest	pieces	of	technology	out	there
right	 now,	 and	 it	 can	 do	 so	 much,	 but	 it	 can	 also	 be	 really	 frustrating	 to	 the
programmer	 because	 it	 can	 do	 exactly	 as	 much	 as	 the	 programmer	 is	 able	 to
make	it	do.	Don’t	let	this	discourage	you;	let	it	encourage	you.	Understand	that
if	 you	 try	 to	 start	 programming	 on	 the	 Raspberry	 Pi	 and	 doing	 super	 cool

projects,	 it’s	 going	 to	 get	 difficult	 sometimes.	 You	 just	 have	 to	 keep	 pushing
through	and	trying	to	become	a	better	programmer.
	
In	the	end,	hopefully	you’ll	create	something	seriously	cool	of	your	own.	When
you	 do,	 you	 should	 post	 it	 on	 one	 of	 the	 communities	 you	 joined	 and	 get
feedback.	People	will	probably	be	supportive	and	tell	you	how	neat	it	is,	and	if
you	happen	to	be	really,	really	lucky,	you	just	might	end	up	inspiring	somebody
to	 pick	 up	 a	 Raspberry	 Pi	 and	 try	 to	 do	 exactly	what	 you’ve	 done.	And	 then
down	the	line	they’ll	repeat	the	cycle.
	
Well,	that’s	that.	A	ton	of	work	has	gone	into	making	this	book	as	applicable	and
useful	as	possible	to	people	who	want	to	learn	about	the	Raspberry	Pi	and	all	of
the	ridiculously	cool	things	it	can	do.	If	this	book	was	able	to	help	you	in
understanding	the	capabilities	of	the	Raspberry	Pi	as	well	as	to	better	understand
computer	science	in	general,	then	please,	leave	me	a	review	on	Amazon!

	Introduction
	Chapter 1: What is Raspberry Pi?
	Defining the Raspberry Pi
	The Uses of the Raspberry Pi
	Gaming Platforms
	Magic Mirror
	Other Uses

	The Internet of Things
	Review Questions

	Chapter 2: Setting Up Your Raspberry Pi
	Choosing an Operating System
	Installing NOOBS
	Installing Raspbian
	Getting Started
	Embedded Linux
	Review Questions

	Chapter 3: Using Your Raspberry Pi
	Interfacing Electronics
	Digital Multimeter
	Breadboard
	Discrete Components

	Communication Protocols
	I2C
	UART
	SPI

	Real-Time Interfacing Using Arduino
	Input and Output
	Capturing Images, Videos, and Audio
	Images and Video
	Recording and Playing Audio

	Review Questions

	Chapter 4: Python Programming for the Pi
	What is Python?
	Why Python?
	Setting up Python
	Data and Variables
	Integer
	Float
	Double
	Boolean
	Character
	String

	Python Math
	Comments
	Formatting
	User Input and Casting
	Introduction to Program Logic
	Arguments
	Conditionals
	Lists
	Loops
	Methods

	Object-Oriented Programming
	Review Questions

	Chapter 5: Where to Go From Here
	Final Project: Python Game

	Conclusion

