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Preface 

Overview  

The subject of real analysis, or “advanced calculus,” has a central position in 
undergraduate mathematics education. Yet, because of changes in the 
preparedness of students, and because of their early exposure to calculus 
(and therefore lack of exposure to certain other topics) in high school, this 
position has eroded. Students unfamiliar with the value of rigorous, axiomatic 
mathematics are ill-prepared for a traditional course in mathematical analysis. 

Thus, there is a need for a book that simultaneously introduces students to 
rigor, to the need for rigor, and to the subject of mathematical analysis. The 
correct approach, in my view, is not to omit important classical topics like the 
Weierstrass Approximation theorem and the Ascoli-Arzela theorem, but 
rather to find the simplest and most direct path to each. While mathematics 
should be written “for the record” in a deductive fashion, proceeding from 
axioms to special cases, this is not how it is learned. Therefore, (for example) I 
do treat metric spaces (a topic that has lately been abandoned by many of the 
current crop of analysis texts). I do so not at first but rather at the end of the 
book as a method for unifying what has gone before. And, I do treat 
Riemann–Stieltjes integrals, but only after first doing Riemann integrals. I 
develop real analysis gradually, beginning with treating sentential logic, set 
theory, and constructing the integers. 

The approach taken here results, in a technical sense, in some repetition of 
ideas. But, again, this is how one learns. Every generation of students comes to 
the university, and to mathematics, with its own viewpoint and background. 
Thus, I have found that the classic texts from which we learned mathematical 
analysis are often no longer suitable, or appear to be inaccessible, to the present 
crop of students. It is my hope that my text will be a suitable source for modern 
students to learn mathematical analysis. Unlike other authors, I do not believe 
that the subject has changed; therefore I have not altered the fundamental 
content of the course. But, the point of view of the audience has changed, and I 
have written my book accordingly. 

The current crop of real analysis texts might lead one to believe that real 
analysis is simply a rehash of calculus. Nothing could be further from the 
truth. But, many of the texts written 30 years ago are simply too dry and 
austere for today’s audience. My purpose here is to teach today’s students 
the mathematics that I grew to love in a language that speaks to them. 

Prerequisites  

A student with a standard preparation in lower division mathematics— 
calculus and differential equations—has adequate preparation for a course 
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based on this text. Many colleges and universities now have a “transitions” 
course that helps students develop the necessary mathematical maturity for an 
upper divi- sion course such as real analysis. I have taken the extra precaution 
of providing a mini-transitions course in my Chapter 0. Here, I treat logic, basic 
set theory, methods of proof, and constructions of the number systems. Along 
the way, students learn about mathematical induction, equivalence classes, 
completeness, and many other basic constructs. In the process of reading these 
chapters, written in a rigorous but inviting fashion, the student should gain 
both a taste for and an appreciation for the use of rigor. While many instructors 
will want to spend some class time with this chapter, others will make it 
assigned reading and begin the course proper with Chapter 1. 

How to Build a Course from This Text  

Chapters 2 through 8 present a first course in real analysis. I begin with the 
simplest ideas—sequences of numbers—and proceed to series, topology (on 
the real line only), limits and continuity of functions, and differentiation of 
functions. These are followed of course by the integral and sequences and 
series of functions. 

The order of topics is similar to that in traditional books like Principles of 
Mathematical Analysis by Walter Rudin, but the treatment is more gentle. 
There are many more examples, and much more explanation. I do not short- 
change the really interesting topics like compactness and connectedness. 
The exercise sets provide plenty of drill, in addition to the more traditional 
“Prove this, Prove that.” If it is possible to obtain a simpler presentation by 
giving up some generality, I always opt for simplicity. 

Today, many engineers and physicists are required to take a term of real 
analysis. Chapters 2 through 8 are designed for that purpose. For the more 
mathematically inclined, this first course serves as an introduction to the 
more advanced topics treated in the second part of the book. 

In Chapter 7, I give a rather traditional treatment of the integral. First, the 
Riemann integral is covered, then the Riemann–Stieltjes integral. I am 
careful to establish the latter integral as the natural setting for the 
integration by parts theorem. I establish explicitly that series are a special 
case of the Riemann– Stieltjes integral. Functions of bounded variation are 
treated briefly and their utility in integration theory is explained. 

The usual material on sequences and series of functions in Chapter 8 
(including uniform convergence) is followed by a somewhat novel chapter 
on “Special Functions.” Here, I give a rigorous treatment of the elementary 
transcendental functions as well as an introduction to the gamma function 
and its application to Stirling’s formula. 

I feel strongly, based in part on my own experience as a student, that 
analysis of several variables is a tough nut the first time around. In 
particular, college juniors and seniors are not (except perhaps at the very 
best schools) ready for differential forms. Therefore, my treatment of 
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functions of several variables in Chapter 10 is brief, it is only in ℝ3, and it 
excludes any reference to differential forms. The main interests of this 
chapter, from the student’s point of view, are (i) that derivatives are best 
understood using linear algebra and matrices and (ii) that the inverse 
function theorem and implicit function theorem are exciting new ideas. 
There are many fine texts that cover differential forms and related material 
and the instructor who wishes to treat that material in depth should 
supplement my text with one of those. 

Chapter 11 is dessert. For I have waited until now to introduce the 
language of metric spaces. But now comes the power, for I prove and apply 
both the Baire category theorem and the Ascoli-Arzela theorem. This is a 
suitable finish to a year-long course on the elegance and depth of rigorous 
reasoning. 

Chapters 12 and 13 cover differential equations and harmonic analysis. 
These are obviously topics that the instructor will want to dip into as 
interest dictates. They serve to show the student what real analysis is for, 
and why it is important. It is here for color and for texture. 

I would teach my second course in real analysis by covering all of Chapters 
9 through 13. Material in Chapters 12 and 13 is easily omitted if time is short. 

Audience  

This book is intended for college juniors and seniors and some beginning 
graduate students. It addresses the same niche as the classic books of Apostol, 
Royden, and Rudin. However, the book is written for today’s audience in 
today’s style. All the topics which excited my sense of wonder as a 
student—the Cantor set, the Weierstrass nowhere differentiable function, 
the Weierstrass approximation theorem, the Baire category theorem, the 
Ascoli-Arzela theorem—are covered. They can be skipped by those teaching a 
course for which these topics are deemed inappropriate. But they give the 
subject real texture. 

What Is New in This Edition  

A fifth edition of a longstanding textbook should offer the user something 
new. We have many new exercises in every section. These include both drill 
exercises and thought exercises. 

We have historical passages to introduce the student to some of the main 
characters in this drama. Many of these are colorful personages, and it is 
well to become acquainted with them. 

As noted, we have a new chapter on metric spaces and other advanced 
topics. This is a nice payoff for the student who has worked hard through 
the first ten chapters. 

We have brief passages that introduce the student to modern topics and 
open questions in real analysis. 
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And, we have a Chapter 0 that reviews “transition” material about logic, 
set theory, number systems, and axiomatics. This will be background for 
many but preparation for some. It should be a useful reference for all 
concerned. 

Our goal here is to make this text as useful and accessible as possible, both 
for the student and for the instructor. 

Steven G. Krantz  
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Background Material  

0.1 Number Systems 

In this section, we treat the elementary number systems that you first 
learned about in grade school. These include the natural or counting 
numbers, the integers, and the rational numbers. You should think of this as 
a high-level review. 

Our treatment of the more-sophisticated real and complex numbers 
comes in Chapter 1. 

0.1.1 The Natural Numbers 

Mathematics deals with a variety of number systems. The simplest number 
system is N, the natural numbers. This is just the set of positive integers {1, 2, 
3, …}. In a rigorous course of logic, the set N is constructed from the axioms 
of set theory. However, in this book, we shall assume that you are familiar 
with the positive integers and their elementary properties. 

The principal properties of N are as follows:  

1. The number 1 is a natural number.  
2. If n is a natural number, then there is another natural number n̂, 

which is called the successor of n. (We think of the successor of n as 
the number that comes after n.)  

3. 1 ≠ n̂ for every natural number n.  
4. If m̂ = n̂, then m = n.  
5. (Principle of Induction) If Q(n) is a property of the natural number n 

and if  
a. The property Q(1) holds;  
b. Whenever Q(j) holds, then it follows that Q( ĵ ) holds; 

then all natural numbers have the property Q. 

These rules, or axioms, are known as the Peano Axioms for the natural 
numbers (named after Giuseppe Peano (1858–1932) who developed them). 
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We take it for granted that the usual set of natural numbers satisfies these 
rules. We see that 1 is in the set N of natural numbers. Each positive integer 
has a “successor”—after 1 comes 2, after 2 comes 3, and so forth. The 
number 1 is not the successor of any other positive integer. Two positive 
integers with the same successor must be the same. The last axiom is more 
subtle but makes good sense: if some property Q(n) holds for n = 1 and if 
whenever it holds for n then it also holds for n + 1, then we may conclude 
that Q holds for all positive integers. 

We will spend the remainder of this section exploring Axiom (5), the 
Principle of Induction. 

Example 0.1: Let us prove that, for each positive integer n, it holds that 

n
n n

1 + 2 + + =
( + 1)

2
.

We denote this equation by Q(n), and follow the scheme of the Principle of 
Induction. 

First, Q(1) is true, because both the left and the right side of the equation 
equal 1. Now, assume that Q(n) is true for some natural number n. Our job 
is to show that it follows that Q(n + 1) is true. 

Since Q(n) is true, we know that 

n
n n

1 + 2 + + =
( + 1)

2
.

Let us add the quantity n + 1 to both sides. Thus, 

n n
n n

n1 + 2 + + + ( + 1) =
( + 1)

2
+ ( + 1).

The right side of this new equality simplifies and we obtain 

n
n n

1 + 2 + + ( + 1) =
( + 1) (( + 1) + 1)

2
.

However, this is just Q(n + 1) or Q(n̂)! We have assumed Q(n) and have proved 
Q(n̂), just as the Principle of Induction requires. 

Thus, we may conclude that property Q holds for all positive integers, as 
desired.                                                                                        □ 

The formula that we derived in Example 0.1 was probably known to the 
ancient Greeks. However, a celebrated anecdote credits Carl Friedrich 
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Gauss (1777–1855) with discovering the formula when he was nine years 
old. Gauss went on to become (along with Isaac Newton and Archimedes) 
one of the three greatest mathematicians of all time. 

The formula from Example 0.1 gives a neat way to add up the integers 
from 1 to n, for any n, without doing any work. Any time that we discover a 
new mathematical fact, there are generally several others hidden within it. 
The next example illustrates this point. 

Example 0.2: The sum of the first m positive even integers is m · (m + 1). To 
see this, note that the sum in question is 

m m2 + 4 + 6 + + 2 = 2(1 + 2 + 3 + + ).

However, by the first example, the sum in parentheses on the right is equal 
to m · (m + 1)/2. It follows that 

m
m m

m m2 + 4 + 6 + + 2 = 2
( + 1)

2
= ( + 1). □ 

The second example could also be performed by mathematical induction 
(without using the result of the first example). 

Example 0.3: Now, we will use mathematical induction incorrectly to prove 
a statement that is completely preposterous: 

All horses are the same color.  

There are finitely many horses in existence, so it is convenient for us to 
prove the slightly more technical statement 

Any collection of k horses consists of horses that are all the same color.  

Our statement Q(k) is this last displayed statement. 
Now, Q(1) is true: one horse is the same color. (Note: this is not a joke, and 

the error has not occurred yet.) 
Suppose next that Q(k) is true: we assume that any collection of k horses 

has the same color. Now, consider a collection of k̂ = k + 1 horses. Remove 
one horse from that collection. By our hypothesis, the remaining k horses 
have the same color. 

Now, replace the horse that we removed and remove a different horse. 
Again, the remaining k horses have the same color. 

We keep repeating this process: remove each of the k + 1 horses one by 
one and conclude that the remaining k horses have the same color. 
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Therefore, every horse in the collection is the same color as every other. So, 
all k + 1 horses have the same color. The statement Q(k + 1) is thus proved 
(assuming the truth of Q(k)) and the mathematical induction is complete. 

Where is our error? It is nothing deep—just an oversight. The argument 
we have given is wrong when k̂ = k + 1 = 2 for removing one horse from a 
set of two and the remaining (one) horse is the same color. Now, replace the 
removed horse and remove the other horse. The remaining (one) horse is 
the same color. So what? We cannot conclude that the two horses are colored 
the same. Thus, the mathematical induction breaks down at the outset; the 
reasoning is incorrect.                                                                     □ 

Proposition 0.4: Let a and b be real numbers and n a natural number. Then 

a b a a b a b

a b

ab b

( + ) = + +

+

+ + + .

n n n n n n n

n n n n

n n
n n

n n

1
1 ( 1)

2 1
2 2

( ( 1)( 2)
3 2 1

3 3

( 1) 2
( 1)( 2) 2 1

1

Proof: The case n = 1 being obvious, proceed by mathematical induction.     □ 

Example 0.5: The expression 

n n n k
k k

( 1) ( + 1)
( 1) 1

is often called the kth binomial coefficient and is denoted by the symbol 

n
k .

Using the notation m! = m · (m − 1) · (m − 2) … 2 · 1, for m, a natural number, 
we may write the kth binomial coefficient as 

n
k

n
n k k

=
!

( ) ! !
. □ 

0.1.2 The Integers 

Now, we will apply the notion of an equivalence class to construct the 
integers (both positive and negative). There is an important point of 
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knowledge to be noted here. For the sake of having a reasonable place to 
begin our work, we considered the natural numbers N = {1, 2, 3, …} as 
given. Since the natural numbers have been used for thousands of years to 
keep track of objects for barter, this is a plausible thing to do. Even people 
who has no knowledge of mathematics accept the positive integers. 
However, the number zero and the negative numbers are a different matter. 
It was not until the fifteenth century that the concepts of zero and negative 
numbers started to take hold—for they do not correspond to explicit col-
lections of objects (five fingers or ten shoes) but rather to concepts (zero 
books is the lack of books; minus four pens means that we owe someone 
four pens). After some practice, we get used to negative numbers, but ex-
plaining in words what they mean is always a bit clumsy. 

It is much more satisfying, from the point of view of logic, to construct 
the integers (including the negative whole numbers and zero) from what 
we already have, that is, from the natural numbers. We proceed as follows. 
Let A = N × N, the set of ordered pairs of natural numbers. We define a 
relation (see Section 0.2.6) on A and A as follows: 

a b a b a b a b( , ) is related to ( , ) if + = +

See also Section 0.2.6 for the concept of equivalence relation. 

Theorem 0.6: The relation is an equivalence relation. 

Proof: That (a, b) is related to (a, b) follows from the trivial identity a + b = a + b. 
Hence, is reflexive. Second, if (a, b) is related to (a′, b′), then a + b′ = a′ + b; 
hence, a′ + b = a + b′ (just reverse the equality), hence (a′, b′), is related to (a, b). 
So, is symmetric. 

Finally, if (a, b) is related to (a′, b′) and (a′, b′) is related to (a″, b″), then we 
have 

a b a b a b a b+ = + and + = + .

Adding these equations gives 

a b a b a b a b( + ) + ( + ) = ( + ) + ( + ).

Cancelling a′ and b′ from each side finally yields 

a b a b+ = + .

Thus, (a, b) is related to (a″, b″). Therefore, is transitive. We conclude that 
is an equivalence relation.                                                            □ 
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Now, our job is to understand the equivalence classes, which are induced 
by . (We will ultimately call this number system the integers Z.) Let (a, b) ∈ 
A and let [(a, b)] be the corresponding equivalence class. If b > a, then we 
will denote this equivalence class by the integer b − a. For instance, the 
equivalence class [(2, 7)] will be denoted by 5. Notice that if (a′, b′) ∈ [(a, b)], 
then a + b′ = a′ + b; hence, b′ − a′ = b − a. Therefore, the integer symbol that 
we choose to represent our equivalence class is independent of that element of 
the equivalence class that is used to compute it. 

If (a, b) ∈ A and b = a, then we let the symbol 0 denote the equivalence 
class [(a, b)]. Notice that if (a′, b′) is any other element of [(a, b)], then it must 
be that a + b′ = a′ + b; hence, b′ = a′; therefore, this definition is unambiguous. 

If (a, b) ∈ A and a > b, then we will denote the equivalence class [(a, b)] 
by the symbol −(a − b). For instance, we will denote the equivalence class 
[(7, 5)] by the symbol −2. Once again, if (a′, b′) is related to (a, b), then 
the equation a + b′ = a′ + b guarantees that our choice of symbol to represent 
[(a, b)] is unambiguous. 

Thus, we have given our equivalence classes names, and these names look 
just like the names that we usually give to integers: there are positive and 
negative integers, and zero. However, we want to see that these objects 
behave like integers. (As you read on, use the intuitive, nonrigorous mne-
monic that the equivalence class [(a, b)] stands for the integer b − a.) 

First, do these new objects that we have constructed add correctly? Well, 
let X = [(a, b)] and Y = [(c, d)] be two equivalence classes. Define their sum to 
be X + Y = [(a + c, b + d)]. We must check that this is unambiguous. If (ã, b̃) is 
related to (a, b) and (c̃, d̃) is related to (c, d), then, of course, we know that 

a b a b+ ˜ = ˜ +

and 

c d c d+ ˜ = ˜ + .

Adding these two equations gives 

a c b d a c b d( + ) + (˜ + ˜) = (˜ + ˜) + ( + )

hence, (a + c, b + d) is related to a c b d(˜ + ˜, ˜ + ˜). Thus, adding two of our 
equivalence classes gives another equivalence class, as it should. 

Example 0.7: To add 5 and 3, we first note that 5 is the equivalence 
class [(2, 7)] and 3 is the equivalence class [(2, 5)]. We add them 
componentwise and find that the sum is [(2 + 2, 7 + 5)] = [(4, 12)]. Which 
equivalence class is this answer? Looking back at our prescription for giving 
names to the equivalence classes, we see that this is the equivalence class 
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that we called 12 − 4 or 8. So, we have rediscovered the fact that 5 + 3 = 8. 
Check for yourself that if we were to choose a different representative for 
5—say (6, 11)—and a different representative for 3—say (24, 27)—then the 
same answer would result. 

Now, let us add 4 and −9. The first of these is the equivalence class [(3, 7)] and 
the second is the equivalence class [(13, 4]). The sum is, therefore, [(16, 11)], and 
this is the equivalence class that we call −(16 − 11) or −5. That is the answer that 
we would expect when we add 4 to −9. 

Next, we add −12 and −5. Previous experience causes us to expect the 
answer to be −17. Now, −12 is the equivalence class [(19, 7)] and −5 is the 
equivalence class [(7, 2)]. The sum is [(26, 9)], which is the equivalence class 
that we call −17. 

Finally, we can see in practice that our method of addition is unambiguous. 
Let us redo the second example using [(6, 10)] as the equivalence class 
represented by 4 and [(15, 6)] as the equivalence class represented by −9. 
Then, the sum is [(21, 16)], and this is still the equivalence class −5 as it 
should be.                                                                                                             □ 

The assertion that the result of calculating a sum—no matter which re-
presentatives we choose for the equivalence classes—will give only one 
answer is called the “fact that addition is well defined.” For our definitions to 
make sense, it is essential that we check this property of well-definedness. 

Remark 0.8: What is the point of this section? Everyone knows about 
negative numbers, so why go through this abstract construction? The reason 
is that, until one sees this construction, negative numbers are just imaginary 
objects—placeholders if you will—which are a useful notation but which do 
not exist. Now, they do exist. They are a collection of equivalence classes of 
pairs of natural numbers. This collection is equipped with certain arithmetic 
operations, such as addition, subtraction, and multiplication. We now 
discuss these last two.                                                                    □ 

If x = [(a, b)] and y = [(c, d)] are integers, we define their difference to be the 
equivalence class [(a + d, b + c)]; we denote this difference by x − y. 

Example 0.9: We calculate 8 − 14. Now, 8 = [(1, 9)] and 14 = [(3, 17)]. 
Therefore, 

8 14 = [(1 + 17, 9 + 3)] = [(18, 12)] = 6,

as expected. 
As a second example, we compute (−4) − (−8). Now, 

4 ( 8) = [(6, 2)] [(13, 5)] = [(6 + 5, 2 + 13)] = [(11, 15)] = 4.
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Of course, that is the answer that we expect when we subtract −8 from −4. 

Remark 0.10: When we first learn that (−4) − (−8) = (−4) + 8 = 4, the 
explanation is a bit mysterious: why is “minus a minus equal to a plus”? 
Now, there is no longer any mystery: this property follows from our 
construction of the number system Z.                                                 □ 

Finally, we turn to multiplication. If x = [(a, b)] and y = [(c, d)] are integers, 
then we define their product by the formula 

x y a d b c a c b d= [( + , + )].

This definition may be a surprise. Why did we not define x · y to be [(a · c, b · d)]? 
There are several reasons: first of all, the latter definition would give the wrong 
answer; moreover, it is not unambiguous (different representatives of x and y 
would give a different answer). If you recall that we think of [(a, b)] as re-
presenting b − a and [(c, d)] as representing d − c, then the product should be the 
equivalence class that represents (b − a) · (d − c). That is the motivation behind 
our definition. 

We proceed now to an example. 

Example 0.11: We compute the product of −3 and −6. Now, 

( 3) ( 6) = [(5, 2)] [(9, 3)] = [(5 3 + 2 9, 5 9 + 2 3)] = [(33, 51)]

= 18,

which is the expected answer. 
As a second example, we multiply −5 and 12. We have 

5 12 = [(7, 2)] [(1, 13)] = [(7 13 + 2 1, 7 1 + 2 13)] = [(93, 33)]

= 60.

Finally, we show that 0 times any integer A equals zero. Let A = [(a, b)]. 
Then, 

A a b b a a b
a b a b

0 = [(1, 1)] [( , )] = [(1 + 1 , 1 + 1 )]
= [( + , + )]
= 0.

□ 

Remark 0.12: Notice that one of the pleasant by-products of our construc-
tion of the integers is that we no longer have to give artificial explanations 
for why the product of two negative numbers is a positive number or why 
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the product of a negative number and a positive number is negative. These 
properties instead follow automatically from our construction.              □ 

Of course, we will not discuss division for integers; in general, division of 
one integer by another makes no sense in the universe of the integers. 

In the rest of this book, we will follow the standard mathematical custom of 
denoting the set of all integers by the symbol Z. We will write the integers not 
as equivalence classes, but in the usual way as 3, 2, 1, 0, 1, 2, 3, …. 
The equivalence classes are a device that we used to construct the integers in 
hand; we may as well write them in the simple, familiar fashion. 

In an exhaustive treatment of the construction of Z, we would prove that 
addition and multiplication are commutative and associative, prove the 
distributive law, and so forth. However, the purpose of this section is to 
demonstrate modes of logical thought rather than to be thorough. 

0.1.3 The Rational Numbers 

In this section, we use the integers, together with a construction using 
equivalence classes, to build the rational number system. Let A be the set 
Z × (Z \ {0}). Here, the symbol “\” stands for “subtraction of sets”: Z \ {0} 
denotes the set of all elements of Z except 0. In other words, A is the set of 
ordered pairs (a, b) of integers subject to the condition that b ≠ 0. (Think, 
intuitively and nonrigorously, of this ordered pair as “representing” the fraction 
a/b.) We definitely want it to be the case that certain ordered pairs re-
present the same number. For instance, 

The number 1
2

should be the same number as 3
6
.  

This example motivates our equivalence relation. Declare (a, b) to be related 
to (a′, b′) if a · b′ = a′ · b. (Here, we are thinking, intuitively and nonrigorously, that 
the fraction a/b should equal the fraction a′/b′ precisely when a · b′ = a′ · b.) 

Is this an equivalence relation? Obviously, the pair (a, b) is related to itself, 
since a · b = a · b. In addition, the relation is symmetric: if (a, b) and (a′, b′) are 
pairs and a · b′ = a′ · b, then a′ · b = a · b′. Finally, if (a, b) is related to (a′, b′) and 
(a′, b′) is related to (a″, b″), then we have both 

a b a b a b a b= and = .

Multiplying the left sides of these two equations together and the right sides 
together gives 

a b a b a b a b( ) ( ) = ( ) ( ).

If a′ = 0, then it follows immediately that both a and a″ must be zero. So, the 
three pairs (a, b), (a′, b′), and (a″, b″) are equivalent and there is nothing to 
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prove. Thus, we may assume that a′ ≠ 0. We know a priori that b′ ≠ 0; 
therefore, we may cancel common terms in the last equation to obtain 

a b b a= .

Thus, (a, b) is related to (a″, b″), and our relation is transitive. 
The resulting collection of equivalence classes will be called the set of 

rational numbers, and we shall denote this set with the symbol Q. 

Example 0.13: The equivalence class [(4, 12)] in the rational numbers 
contains all of the pairs (4, 12), (1, 3), and (−2, −6). (Of course, it contains 
infinitely many other pairs as well.) This equivalence class represents the 
fraction 4/12, which we sometimes also write as 1/3 or −2/(−6).           □ 

If [(a, b)] and [(c, d)] are rational numbers, then we define their product to be 
the rational number 

a c b d[( , )].

This is well defined, because if (a, b) is related to (ã, b̃) and (c, d) is related to 
(c̃, d̃), then we have the equations 

a b a b c d c d˜ = ˜ and ˜ = ˜ .

Multiplying together the left sides and the right sides, we obtain 

a b c d a b c d( ˜) ( ˜) = (˜ ) (˜ ).

Rearranging, we have 

a c b d a c b d( ) ( ˜ ˜) = (˜ ˜) ( ).

However, this says that the product of [(a, b)] and [(c, d)] is related to the product 
of [(ã, b̃)] and [(c̃, d̃)]. So, multiplication is unambiguous (i.e., well defined). 

Example 0.14: The product of the two rational numbers [(3, 8)] and [(−2, 5)] is 

[(3 ( 2), 8 5)] = [( 6, 40)] = [( 3, 20)].

This is what we expect: the product of 3/8 and −2/5 is −3/20.           □ 

If q = [(a, b)] and r = [(c, d)] are rational numbers and if r is not zero (that is, 
[(c, d)] is not the equivalence class zero—in other words, c ≠ 0), then we 
define the quotient q/r to be the equivalence class 
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ad bc[( , )].

We leave it to you to check that this operation is well defined. 

Example 0.15: The quotient of the rational number [(4, 7)] by the rational 
number [(3, −2)] is, by definition, the rational number 

[(4 ( 2), 7 3)] = [( 8, 21)].

This is what we expect: the quotient of 4/7 by −3/2 is −8/(21).          □ 

How should we add two rational numbers? We could try declaring [(a, b)] + 
[(c, d)] to be [(a + c, b + d)], but this will not work (think about the way that we 
usually add fractions). Instead, we define 

a b c d a d c b b d[( , )] + [( , )] = [( + , )].

We turn now to an example. 

Example 0.16: The sum of the rational numbers [(3, −14)] and [(9, 4)] is 
given by 

[(3 4 + 9 ( 14), ( 14) 4)] = [( 114, 56)] = [(57, 28)].

This is consistent with the usual way that we add fractions: 

3
14

+
9
4

=
57
28

. □ 

Notice that the equivalence class [(0, 1)] is the rational number that we 
usually denote by 0. It is the additive identity, for if [(a, b)] is another ra-
tional number then 

a b b a b a b[(0, 1)] + [( , )] = [(0 + 1, 1 )] = [( , )].

A similar argument shows that [(0, 1)] times any rational number gives [(0, 1)] 
or 0. 

Of course, the concept of subtraction is really just a special case of addi-
tion (that is x − y is the same thing as x + (−y)). So, we shall say nothing 
further about subtraction. 

In practice, we will write rational numbers in the traditional fashion: 
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2
5

,
19
3

,
22
2

,
24
4

, ….

In mathematics, it is generally not wise to write rational numbers in mixed 
form, such as 2 3

5
, because the juxtaposition of two numbers could easily be 

mistaken for multiplication. Instead, we would write this quantity as the 
improper fraction 13/5. 

Definition 0.17: A set S is called a field if it is equipped with a binary 
operation (usually called addition and denoted “+”) and a second binary 
operation (called multiplication and denoted “·”) such that the following 
axioms are satisfied:  

A1. S is closed under addition: if x, y ∈ S, then x + y ∈ S.  
A2. Addition is commutative: if x, y ∈ S, then x + y = y + x.  
A3. Addition is associative: if x, y, z ∈ S, then x + (y + z) = (x + y) + z.  
A4. There exists an element, called 0, in S, which is an additive 

identity: if x ∈ S, then 0 + x = x.  
A5. Each element of S has an additive inverse: if x ∈ S, then there is an 

element −x ∈ S such that x + (−x) = 0.  
M1. S is closed under multiplication: if x, y ∈ S, then x · y ∈ S.  
M2. Multiplication is commutative: if x, y ∈ S, then x · y = y · x.  
M3. Multiplication is associative: if x, y, z ∈ S, then x · (y · z) = (x · y) · z. 
M4. There exists an element, called 1, which is a multiplicative iden-

tity: if x ∈ S, then 1 · x = x.  
M5. Each nonzero element of S has a multiplicative inverse: if 0 ≠ x ∈ 

S, then there is an element x−1 ∈ S such that (x−1) · x = 1. The 
element x−1 is sometimes denoted 1/x.  

D1. Multiplication distributes over addition: if x, y, z ∈ S, then 

x y z x y x z( + ) = + .

Eleven axioms is a lot to digest all at once, but in fact these are all 
familiar properties of addition and multiplication of rational numbers that 
we use every day: the set Q, with the usual notions of addition and 
multiplication, forms a field. The integers, by contrast, do not: nonzero 
elements of Z (except 1 and −1) do not have multiplicative inverses in the 
integers. 

Let us now consider some consequence of the field axioms. 
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Theorem 0.18: Any field has the following properties:  

1. If z + x = z + y, then x = y.  
2. If x + z = 0, then z = −x (the additive inverse is unique).  
3. −(−y) = y.  

4. If y ≠ 0 and y · x = y · z, then x = z.  
5. If y ≠ 0 and y · z = 1, then z = y−1(the multiplicative inverse is unique).  
6. (x−1)−1 = x.  
7. 0 · x = 0.  
8. If x · y = 0, then either x = 0 or y = 0.  
9. (−x) · y = −(x · y) = x · (−y).  

10. (−x) · (−y) = x · y. 

Proof: These are all familiar properties of the rationals, but now we are 
considering them for an arbitrary field. We prove just a few to illustrate the 
logic. 

To prove (1) we write 

z x z y z z x z z y+ = + ( ) + ( + ) = ( ) + ( + )

and now Axiom A3 yields that this implies 

z z x z z y(( ) + ) + = (( ) + ) + .

Next, Axiom A5 yields that 

x y0 + = 0 +

and hence, by Axiom A4, 

x y= .

To prove (7), we observe that 

x x0 = (0 + 0) ,

which by Axiom M2 equals 

x (0 + 0).

By Axiom D1 the last expression equals 
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x x0 + 0,

which by Axiom M2 equals 0 · x + 0 · x. Thus, we have derived the equation 

x x x0 = 0 + 0 .

For Axioms A4 and A2, let us rewrite the left side as 

x x x0 + 0 = 0 + 0 .

Finally, part (1) of the present theorem (which we have already proved) 
yields that 

x0 = 0 ,

which is the desired result. 
To prove (8), we suppose that x ≠ 0. In this case, x has a multiplicative 

inverse x−1 and we multiply both sides of our equation by this element: 

x x y x( ) = 0.1 1

By Axiom M3, the left side can be rewritten and we have 

x x y x( ) = 0.1 1

Next, we rewrite the right side using Axiom M2: 

x x y x( ) = 0 .1 1

Now, Axiom M5 allows us to simplify the left side: 

y x1 = 0 .1

We further simplify the left side using Axiom M4 and the right side using 
Part (7) of the present theorem (which we just proved) to obtain: 

y = 0.

Thus, we see that if x ≠ 0 then y = 0. But this is logically equivalent with 
x = 0 or y = 0, as we wished to prove. (If you have forgotten why these 
statements are logically equivalent, write a truth table. Or refer to the next 
section.)                                                                                       □ 
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Definition 0.19: Let A be a set. We shall say that A is ordered if there is a 
relation on A and A satisfying the following properties:  

1. If a ∈ A and b ∈ A then one and only one of the following holds: 
(a, b) ∈ or (b, a) ∈ or a = b.  

2. If a, b, c are elements of A and (a, b) ∈ and (b, c) ∈ then (a, c) ∈ . 

We call the relation an order on A. 
Rather than write an ordering relation as (a, b) ∈ , it is usually more 

convenient to write it as a < b. The notation b > a means the same thing as a < b. 

Example 0.20: The integers Z form an ordered set with the usual ordering <. 
We can make this ordering precise by saying that x < y if y − x is a positive 
integer. For instance, 

6 < 8 because 8 6 = 2 > 0.

Likewise, 

5 < 1 because 1 ( 5) = 4 > 0.

Observe that the same ordering works on the rational numbers.         □ 

If A is an ordered set and a, b are elements, then we often write a ≤ b to mean 
that either a = b or a < b. 

When a field has an ordering that is compatible with the field operations, 
then a richer structure results. 

Definition 0.21: A field F is called an ordered field if F has an ordering < that 
satisfies the following addition properties:  

1. If x, y, z ∈ F and y < z, then x + y < x + z.  
2. If x, y ∈ F, x > 0, and y > 0, then x · y > 0. 

Again, these are familiar properties of the rational numbers: Q forms an 
ordered field. However, there are many other ordered fields as well (for 
instance, the real numbers R form an ordered field). 

Theorem 0.22: Any ordered field has the following properties:  

1. If x > 0 and z < y, then x · z < x · y.  
2. If x < 0 and z < y, then x · z > x · y.  
3. If x > 0, then −x < 0. If x < 0, then −x > 0. 
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4. If 0 < y < x, then 0 < 1/x < 1/y.  
5. If x ≠ 0, then x2 > 0.  
6. If 0 < x < y, then x2 < y2. 

Proof: Again, we prove just a few of these statements. 
To prove (1), observe that the property (1) of ordered fields together with 

our hypothesis implies that 

z z z y( ) + < ( ) + .

Thus, using (A2), we see that y − z > 0. Since x > 0, property (2) of ordered 
fields gives 

x y z( ) > 0.

Finally, 

x y x y z z x y z x z x z= [( ) + ] = ( ) + > 0 +

(by property (1) again). In conclusion, 

x y x z> .

To prove (3), begin with the equation 

x x0 = + .

Since x > 0, the right side is greater than −x. Thus, 0 > −x as claimed. The 
proof of the other statement of (3) is similar. 

To prove (5), we consider two cases. If x > 0, then x2 ≡ x · x is positive by 
property (2) of ordered fields. If x < 0, then −x > 0 (by part (3) of the 
present theorem, which we just proved); hence, (−x) · (−x) > 0. However, 
part (10) of the last theorem guarantees that (−x) · (−x) = x · x; hence, we 
see that x · x > 0.                                                                        □ 

We conclude this discussion by recording an inadequacy of the field of 
rational numbers; this will serve in part as motivation for learning about the 
real numbers in Chapter 1. 

Theorem 0.23: There is no positive rational number q such that q2 = q · q = 2. 

Proof: Seeking a contradiction, suppose that there is such a q. Write q in 
lowest terms as 
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q
a
b

= ,

with a and b greater than zero. This means that the numbers a and b have no 
common divisors except 1. The equation q2 = 2 can then be written as 

a b= 2 .2 2

Since 2 divides the right side of this last equation, it follows that 2 divides 
the left side. However, 2 can divide a2 only if 2 divides a (because 2 is 
prime). We write a = 2 · α for some positive integer α. But, then, the last 
equation becomes 

b4 = 2 .2 2

Simplifying yields that 

b2 = .2 2

Since 2 divides the left side, we conclude that 2 must divide the right side. 
But 2 can divide b2 only if 2 divides b. 

This is our contradiction: we have argued that 2 divides a and that 2 
divides b. But a and b were assumed to have no common divisors. We conclude 
that the rational number q cannot exist.                                             □ 

In fact, it turns out that a positive integer can be the square of a rational 
number if and only if it is the square of a positive integer. This assertion is a 
special case of a more general phenomenon in number theory known as 
Gauss’s lemma. 

Exercises  

1. Construct truth tables for each of the following sentences:  
a. (S ∧ T)∨ ~(S ∨ T)  
b. (S ∨ T) ⇒ (S ∧ T)  
c. (~S ∨ T) ⇒~(S∧ ~T)  
d. S ⇒ (S ⇒ (S ⇒ (S ⇒ T)))  

2. Let   

S = All fish have eyelids. 
T = There is no justice in the world. 
U = I believe everything that I read. 
V = The moon’s a balloon. 
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Express each of the following sentences using the letters S, T, U, 
and V and the connectives ∨, ∧, ~, ⇒, and ⇔. Do not use quantifiers.  
a. If fish have eyelids, then there is at least some justice in the 

world.  
b. If I believe everything that I read, then either the moon’s a 

balloon or at least some fish have no eyelids.  
c. If either the moon is not a balloon or if there is some justice in 

the world, then I doubt some of the things that I read.  
d. For fish to have eyelids, it is necessary for the moon to be a 

balloon.  
e. If fish have eyelids, then there is at least some justice in the 

world.  

3. Let   

S = All politicians are honest. 
T = Some men are fools. 
U = I don’t have two brain cells to rub together. 
W = The pie is in the sky.   

Translate each of the following into English sentences:  
a. (S∧ ~T) ⇒~U  

b. W ∨ (T∧ ~U)  
c. W ⇒ (S ⇒ T)  
d. S ⇒ (S ∨ U)  

4. State the converse and the contrapositive of each of the following 
sentences. Be sure to label each.  
a. In order for it to rain, it is necessary that there be clouds.  
b. In order for it to rain, it is sufficient that there be clouds.  
c. If life is a bowl of cherries, then I am not in the pits.  
d. If I am not a fool, then mares eat oats. 

5. Assume that the universe is the ordinary system R of real num-
bers. Which of the following sentences is true? Which is false? Give 
reasons for your answers.  
a. If π is rational, then the area of a circle is E = mc2.  
b. If 2 + 2 = 4, then 3/5 is a rational number.  
c. If 2 + 2 = 5, then 2 + 3 = 6.  
d. If both 2 + 3 = 5 and 2 · 3 = 5, then the world is flat. 
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6. For each of the following statements, formulate a logically 
equivalent one using only S, T, ~, and ∨. (Of course, you may use 
as many parentheses as you need.) Use a truth table or other means to 
explain why the statements are logically equivalent.  
a. S ⇒~T  

b. ~S∧ ~T  

c. S ⇒~T  

d. S ∧ (T∨ ~S)  

7. Translate each of the following statements into symbols, connectives, 
and quantifiers. Your answers should contain no words. State care-
fully what each of your symbols stands for. (Note: Each statement is 
true, but you are not required to verify the truth of the statements.)  
a. The number 5 has a positive square root.  
b. There is a quadratic polynomial equation with real coefficients 

that has no real root.  
c. The sum of two perfect cubes is never itself a perfect cube.  
d. If x · y ≠ 0, then x2 + y2 > 0.  

8. In each of the following statements, you should treat the real 
number system R as your universe. Translate each statement into an 
English sentence. Your answers should contain no symbols—only 
words. (Note: Each statement is true, but you are not required to 
verify the truth of the statements.)  
a. ∃x, (x ∈ R ∧ x > 0∧ ~∃y, y > 0 ∧ y2 = x)  
b. ∃x∀y, (y > x) ⇒ (y > 5)  
c. ∃x ∈ R∃y ∈ R, x2 + y2 < 2xy  

d. ∃x, x > 0 ∧ x3 < x2 

9. For each of the following statements, formulate an English sen-
tence that is its negation:  
a. The set S contains at least two integers.  
b. Mares eat oats and does eat oats.  
c. I’m rough and I’m tough and I breathe fire.  
d. This town is not big enough for both of us.  

10. Which of these pairs of statements is logically equivalent? Why?  
a. A B A B~ ~
b. A B A B~ ~ ~
c. A A B A A B(~ ) ~[~ ( ~ )]
d. B A A A B~ ( )
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11. Explain why ∀ is logically equivalent to ~∃ ~.  
12. Explain why ∃ is logically equivalent to ~∀ ~.  
13. It is not known whether π + e or π − e is rational or irrational. But 

one of them must be irrational, even though we cannot say which 
one. Explain. 

0.2 Logic and Set Theory 

Everyday language is imprecise. Because we are imprecise by convention, we 
can make statements like 

All automobiles are not alike.  

and feel confident that the listener knows that we actually mean 

Not all automobiles are alike.  

We can also use spurious reasoning like 

If it’s raining, then it’s cloudy. 
It is not raining. 
Therefore, there are no clouds.  

and not expect to be challenged, because virtually everyone is careless when 
communicating informally. (Examples of this type will be considered in 
more detail later.) 

Mathematics cannot tolerate this lack of rigor and precision. To achieve 
any depth beyond the most elementary level, we must adhere to strict rules 
of logic. The purpose of this section is to discuss the foundations of formal 
reasoning. 

In this chapter, we will often use numbers to illustrate logical concepts. 
The number systems we will encounter are  

• The natural numbers N = {1, 2, 3, …}  
• The integers Z = {…, −3, −2, −1, 0, 1, 2, 3, …}  
• The rational numbers Q = {p/q : p is an integer, q is an integer, q ≠ 0} 
• The real numbers R, consisting of all terminating and non-

terminating decimal expansions. 

20                                                          Real Analysis and Foundations 

ISTUDY



Chapter 1 will review the real and complex numbers. If you need to review 
the other number systems, then refer to Section 0.1 or look at Ref. [KRA1]. 
For now, we assume that you have seen these number systems before. They 
are convenient for illustrating the logical principles we are discussing. 

0.2.1 “And” and “Or” 

The statement 

“A and B”  

means that both A is true and B is true. For instance, 

George is tall and George is intelligent.  

means both that George is tall and George is intelligent. If we meet George 
and he turns out to be short and intelligent, then the statement is false. If he 
is tall and stupid, then the statement is false. Finally, if George is both short 
and stupid, then the statement is false. The statement is true precisely when 
both properties—intelligence and tallness—hold. We may summarize these 
assertions with a truth table. We let 

A = George is tall.  

and 

B = George is intelligent.  

The expression 

A ∧ B  

will denote the phrase “A and B.” In particular, the symbol ∧ is used to 
denote “and.” The letters “T” and “F” denote “True” and “False,” respec-
tively. Then, we have 

A B A ∧ B  

T T T 
T F F 
F T F 
F F F   
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Notice that we have listed all possible truth values of A and B and the 
corresponding values of the conjunction A ∧ B. 

It is a good idea to always list the truth values of A and B in a truth table 
in the same way. This will facilitate the comparison and contrast of truth 
tables. 

In a restaurant, the menu often contains phrases like 

soup or salad  

This means that we may select soup or select salad, but we may not select 
both. This use of “or” is called the exclusive “or”; it is not the meaning of 
“or” that we use in mathematics and logic. In mathematics, we instead say 
that “A or B” is true provided that A is true or B is true or both are true. This 
is the inclusive meaning of the word “or.” If we let A ∨ B denote “A or B” 
(the symbol ∨ denotes “or”), then the truth table is                                                                                                    

□ 

The only way that “A or B” can be false is if both A is false and B is false. For 
instance, the statement 

Gary is handsome or Gary is rich.  

means that Gary is either handsome or rich or both. In particular, he will not 
be both ugly and poor. Another way of saying this is that if he is poor, he 
will compensate by being handsome; if he is ugly, he will compensate by 
being rich. But he could be both handsome and rich. 

We use the inclusive meaning of the word “or” because it gives rise to 
useful logical equivalences. We treat these later. 

Example 0.24: The statement 

x x> and <5 7

is true for the number x = 11/2 because this value of x is both greater 
than 5 and less than 7. It is false for x = 8 because this x is greater than 5 
but not less than 7. It is false for x = 3 because this x is less than 7 but not 
greater than 5.                                                                   □ 

A B A ∨ B  

T T T 
T F T 
F T T 
F F F 
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Example 0.25: The statement 

x is even and x is a perfect square  

is true for x = 4 because both assertions hold. It is false for x = 2 because this 
x, while even, is not a square. It is false for x = 9 because this x, while a 
square, is not even. It is false for x = 5 because this x is neither a square 
nor an even number.                                                                      □ 

Example 0.26: The statement 

x x> 5 or 2

is true for x = 1 since this x is ≤ 2 (even though it is not > 5). It holds for x = 6 
because this x is > 5 (even though it is not ≤ 2). The statement fails for x = 3, since 
this x is neither > 5 nor ≤ 2. There is no x, which is both > 5 and ≤ 2.              □ 

Example 0.27: The statement 

x x <> 5 or 7

is true for every real x. For x = 6, both statements are true. For x = 2, just the 
second statement is true. For x = 8, just the first statement is true. But, you 
can in fact verify the assertion for every real x.                                    □ 

Example 0.28: The statement (A ∨ B) ∧ B has the following truth table:                                                                                                    

□ 

The words “and” and “or” are called connectives: their role in sentential logic 
is to enable us to build up (or connect together) pairs of statements. In the 
next subsection, we will become acquainted with the other two basic con-
nectives “not” and “if–then.” 

0.2.2 “Not” and “If Then” 

The statement “not A,” written ~A, is true whenever A is false. For example, 
the statement 

A B A ∨ B (A ∨ B) ∧ B  

T T T T 
T F T F 
F T T T 
F F F F 
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Gene is not tall.  

is true provided the statement “Gene is tall” is false. The truth table for ~A 
is as follows: 

Although “not” is a simple idea, it can be a powerful tool when used in 
proofs by contradiction. To prove that a statement A is true using proof by 
contradiction, we instead assume ~A. We, then, show that this hypothesis 
leads to a contradiction. Thus, ~A must be false; according to the truth table, 
we see that the only remaining possibility is that A is true. 

Greater understanding is obtained by combining connectives: 

Example 0.29: Here is the truth table for ~ (A ∨ B): 

Example 0.30: Now, we look at the truth table for (~A) ∧ (~B): 

Notice that the statements ~ (A ∨ B) and (~A) ∧ (~B) have the same truth 
table (look at the last column in each table). We call such pairs of statements 
logically equivalent. 

The logical equivalence of ~ (A ∨ B) with (~A) ∧ (~B) makes good in-
tuitive sense: the statement A ∨ B fails if and only if A is false and B is false. 
Since in mathematics we cannot rely on our intuition to establish facts, it is 
important to have the truth table technique for establishing logical 
equivalence. 

A ~ A  

T F 
F T 

A B A ∨ B ~ (A ∨ B)  

T T T F 
T F T F 
F T T F 
F F F T 

A B ~ A ~ B (~ A) ∧ (~ B)  

T T F F F 
T F F T F 
F T T F F 
F F T T T 
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A statement of the form “If A then B” asserts that whenever A is true then 
B is also true. This assertion (or “promise”) is tested when A is true, because 
it is then claimed that something else (namely, B) is true as well. However, 
when A is false, then the statement “If A then B” claims nothing. Using the 
symbols A ⇒ B to denote “If A then B,” we obtain the following truth table: 

Notice that we use here an important principle of Aristotelian logic: every 
sensible statement is either true or false. There is no “in between” status. 
Thus, when A is false, then the statement A ⇒ B is not tested. It, therefore, 
cannot be false. So, it must be true. In fact, the only way that A ⇒ B can be 
false is if A is true and B is false. 

Example 0.31: The statement A ⇒ B is logically equivalent with ~ (A ∧ ∼ B). 
The truth table for the latter is 

which is the same as the truth table for A ⇒ B.                                □ 

There are in fact infinitely many pairs of logically equivalent statements. But 
just a few of these equivalences are really important in practice—most 
others are built up from these few basic ones. 

Example 0.32: The statement 

If x is negative, then −5 · x is positive.  

is true. For if x < 0, then −5 · x is indeed > 0; if x ≥ 0, then the statement is 
unchallenged.                                                                                □ 

A B A ⇒ B  

T T T 
T F F 
F T T 
F F T 

A B ~ B A ∧ ~ B ~ (A ∧ ~ B)  

T T F F T 
T F T T F 
F T F F T 
F F T F T 
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Example 0.33: The statement 

If {x > 0 and x2 < 0}, then x ≥ 10.  

is true since the hypothesis “x > 0 and x2 < 0” is never true.                 □ 

Example 0.34: The statement 

If x > 0, then {x2 < 0 or 2x < 0}.  

is false since the conclusion “x2 < 0 or 2x < 0” is false whenever the 
hypothesis x > 0 is true.                                                                  □ 

0.2.3 Contrapositive, Converse, and “If” 

The statement 

If A, then B. or A ⇒ B.  

is the same as saying 

A suffices for B.  

or as saying 

A only if B.  

All these forms are encountered in practice, and you should think about 
them long enough to realize that they all say the same thing. 

On the other hand, 

If B, then A. or B ⇒ A.  

is the same as saying 

A is necessary for B.  

or as saying 

A if B.  

We call the statement B ⇒ A the converse of A ⇒ B. 
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Example 0.35: The converse of the statement 

If x is a healthy horse, then x has four legs.  

is the statement 

If x has four legs, then x is a healthy horse.  

Notice that these statements have very different meanings: the first 
statement is true while the second (its converse) is false. For example, my 
desk has four legs but it is not a healthy horse.                                   □ 

The statement 

A if and only if B.  

is a brief way of saying 

If A, then B and if B, then A.  

We abbreviate A if and only if B as A ⇔ B or as A if B. Here is a truth table 
for A ⇔ B. 

Notice that we can say that A ⇔ B is true only when both A ⇒ B and B ⇒ 
A are true. An examination of the truth table reveals that A ⇔ B is true 
precisely when A and B are either both true or both false. Thus, A ⇔ B 
means precisely that A and B are logically equivalent. One is true when and 
only when the other is true.                                                              □ 

Example 0.36: The statement 

x x >> 0 2 0

is true. For if x > 0, then 2x > 0; and if 2x > 0, then x > 0.                     □ 

A B A ⇒ B B ⇒ A A ⇔ B  

T T T T T 
T F F T F 
F T T F F 
F F T T T 
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Example 0.37: The statement 

x x >> 0 02

is false. For x > 0 ⇒ x2 > 0 is certainly true while x2 > 0 ⇒ x > 0 is false ((−3)2 

> 0 but −3 0).                                                                             □ 

Example 0.38: The statement 

~ A B ~A ~B{ ( )} {( ) ( )} (0.38.1)  

is true because the truth table for ~(A ∨ B) and that for (~A) ∧ (~B) are the 
same (we noted this fact in the last section). Thus, they are logically 
equivalent: one statement is true precisely when the other is. Another way 
to see the truth of (0.38.1) is to examine the following full truth table: 

Given an implication 

A B,

the contrapositive statement is defined to be the implication 

~B ~A.

The contrapositive is logically equivalent to the original implication, as we 
see by examining their truth tables: 

A B ~(A ∨ B) (~A) ∧ (~B) ~(A ∨ B) ⇔ {(~A) ∧ (~B)}  

T T F F T 
T F F F T 
F T F F T 
F F T T T 

A B A ⇒ B  

T T T 
T F F 
F T T 
F F T   

28                                                          Real Analysis and Foundations 

ISTUDY



and 

Example 0.39: The statement 

If it is raining, then it is cloudy.  

has, as its contrapositive, the statement 

If there are no clouds, then it is not raining.  

A moment’s thought convinces us that these two statements say the same 
thing: if there are no clouds, then it could not be raining; for the presence of 
rain implies the presence of clouds.                                                  □ 

Example 0.40: The statement 

If X is a healthy horse, then X has four legs.  

has, as its contrapositive, the statement 

If X does not have four legs, then X is not a healthy horse.  

A moment’s thought reveals that these two statements say precisely the 
same thing. They are logically equivalent.                                          □ 

The main point to keep in mind is that, given an implication A ⇒ B, its 
converse B ⇒ A and its contrapositive (~B) ⇒ (~A) are two different state-
ments. The converse is distinct from, and logically independent from, the 
original statement. The contrapositive is distinct from, but logically equiva-
lent to, the original statement. 

0.2.4 Quantifiers 

The mathematical statements that we will encounter in practice will use the 
connectives “and,” “or,” “not,” “if–then,” and “if.” They will also use 
quantifiers. The two basic quantifiers are “for all” and “there exists.” 

A B ~A ~B (~B) ⇒ (~A)  

T T F F T 
T F F T F 
F T T F T 
F F T T T 
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Example 0.41: Consider the statement 

All automobiles have wheels.  

This statement makes an assertion about all automobiles. It is true, just 
because every automobile does have wheels. 

Compare this statement with the next one: 

There exists a woman who is blonde.  

This statement is of a different nature. It does not claim that all women have 
blonde hair—merely that there exists at least one woman who does. Since 
that is true, the statement is true.                                                      □ 

Example 0.42: Consider the statement 

All positive real numbers are integers.  

This sentence asserts that something is true for all positive real numbers. It 
is indeed true for some positive real numbers, such as 1 and 2 and 193. 
However, it is false for at least one positive number (such as π), so the entire 
statement is false. 

Here, is a more interesting example: 

The square of any real number is positive.  

This assertion is almost true—the only exception is the real number 0: we see 
that 02 = 0 is not positive. But, it only takes one exception to falsify a “for 
all” statement. So, the assertion is false.                                             □ 

Example 0.43: Look at the statement   

There exists a real number which is greater than 4.  

In fact, there are lots of real numbers, which are greater than 4; some ex-
amples are 7, 8π, and 97/3. Since there is at least one number satisfying the 
assertion, the assertion is true. 

A somewhat different example is the sentence 

There exists a real number that satisfies the equation 
x3 + x2 + x + 1 = 0.  

There is in fact only one real number that satisfies the equation, and that is 
x = −1. Yet that information is sufficient to make the statement true.      □ 
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We often use the symbol ∀ to denote “for all” and the symbol ∃ to denote 
“there exists.” The assertion 

x x x1, + <

claims that, for every x, the number x + 1 is less than x. If we take our 
universe to be the standard real number system, this statement is false (for 
example, 5 + 1 is not less than 5). The assertion 

x x x, =2

claims that there is a number whose square equals itself. If we take our 
universe to be the real numbers, then the assertion is satisfied by x = 0 and 
by x = 1. Therefore, the assertion is true. 

Quite often we will encounter ∀ and ∃ used together. The following ex-
amples are typical: 

Example 0.44: The statement 

x y y x, >

claims that for any number x there is a number y, which is greater than it. In the 
realm of the real numbers, this is true. In fact, y = x + 1 will always do the trick. 

The statement 

y x y x, >

has quite a different meaning from the first one. It claims that there is an y, which 
is greater than every x. This is absurd. For instance, y is not greater than x = y + 1. 

One sees that these two examples show that ∀ and ∃ do not commute. □ 

Example 0.45: The statement 

x y x y 0, +2 2

is true in the realm of the real numbers: it claims that the sum of two 
squares is always greater than or equal to zero. 

The statement 

x y x y2 7, + =

is true in the realm of the real numbers: it claims that there exist x and y 
such that x + 2y = 7. The numbers x = 3, y = 2 will do the job (although there 
are many other choices that work as well).                                         □ 
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We conclude by noting that ∀ and ∃ are closely related. The statements 

x B x x B x~ ~, ( ) and , ( )

are logically equivalent. The first asserts that the statement B(x) is true for all 
values of x. The second asserts that there exists no value of x for which B(x) 
fails, which is the same thing. 

Likewise, the statements 

x A x x A x~ ~, ( ) and , ( )

are logically equivalent. The first asserts that there is some x for which A(x) 
is true. The second claims that it is not the case that A(x) fails for every x, 
which is the same thing. 

Remark 0.46: Most of the statements that we encounter in mathematics are 
formulated using “for all” and “there exists.” For example, 

Through every point P not on a line there is a line parallel to . 
Each continuous function on a closed, bounded interval has an absolute 

maximum. 
Each of these statements uses (implicitly) both a “for all” and a “there 

exists.”                                                                                         □ 

A “for all” statement is like an infinite conjunction. The statement ∀x, P(x) 
(when x is a natural number, let us say) says P(1) ∧ P(2) ∧ P(3) ∧ …. A “there 
exists” statement is like an infinite disjunction. The statement ∃x, Q(x) (when 
x is a natural number, let us say) says Q(1) ∨ Q(2) ∨ Q(3) ∨ …. Thus, it is 
neither practical nor sensible to endeavor to verify statements such as these 
using truth tables. This is one of the chief reasons that we learn to produce 
mathematical proofs. One of the main themes of this text is to gain new 
insights and to establish facts about the real number system using mathe-
matical proofs. 

0.2.5 Set Theory and Venn Diagrams 

The two most basic objects in all of mathematics are sets and functions. In 
this section, we discuss the first of these two concepts. 

A set is a collection of objects. For example, “the set of all blue shirts” and 
“the set of all lonely whales” are two examples of sets. In mathematics, we 
often write sets with the following “set-builder” notation: 

x x{ : + 5 > 0}.
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This is read “the set of all x such that x + 5 is greater than 0.” The universe from 
which x is chosen (for us, this will usually be the real numbers) is understood 
from context, though sometimes we may be more explicit and write 

Rx x{ : + 5 > 0}.

Here, ∈ is a symbol that means “is an element of.” 
Notice that the role of x in the set-builder notation is as a dummy variable; 

the set we have just described could also be written as 

s s{ : + 5 > 0}

or 

R{ : + 5 > 0}.

To repeat, the symbol ∈ is used to express membership in a set; for example, 
the statement 

x x4 { : > 0}

says that 4 is a member of (or an element of ) the set of all numbers x which 
are greater than 0. In other words, 4 is a positive number. 

If A and B are sets, then the statement 

A B

is read “A is a subset of B.” It means that each element of A is also an 
element of B (but not vice versa!). In other words x ∈ A ⇒ x ∈ B. 

Example 0.47: Let 

RA x y x ysuch that= { : = }2

and 

RB t t 3 5= { : + > }.

Then A ⊂ B. Why? The set A consists of those numbers that are squares— 
that is, A is just the nonnegative real numbers. The set B contains all 
numbers which are greater than −8. Since every nonnegative number 
(element of A) is also greater than −8 (element of B), it is correct to say 
that A ⊂ B. 
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However, it is not correct to say that B ⊂ A, because −2 is an element of B 
but is not an element of A.                                                              □ 

We write A = B to indicate that both A ⊂ B and B ⊂ A. In these circum-
stances, we say that the two sets are equal: every element of A is an element 
of B and every element of B is an element of A. 

We use a slash through the symbols ∈ or ⊂ to indicate negation: 

x x4 { : 2}

and 

x x x y y{ : = } { : > 1/2}.2

It is often useful to combine sets. The set A ∪ B, called the union of A 
and B, is the set consisting of all objects which are either elements of 
A or elements of B (or both). The set A ∩ B, called the intersection of A 
and B, is the set consisting of all objects, which are elements of both A 
and B. 

Example 0.48: Let 

A x x B x x
C x x
= { : 4 < 3}, = { : 1 < 7},

= { : 9 12}.

Then, 

A B x x A B x x
B C x x B C x x

= { : 4 < < 7} = { : 1 3},
= { : 9 12}, = { : 1 < 7}.

Notice that B ∪ C = C and B ∩ C = B because B ⊂ C.                        □ 

Example 0.49: Let 

Z
R
R

A
B
C

= { : 9}
= { : 4 < 24},
= { : 13 < 30}.

Then, 

Z ZA B C x x C t t( ) = { : 9 24} = { : 13 < 24}.
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Also, 

R ZA B C A x x y x( ) = { : 4 < 30} = { : 9 30}.

Try your hand at calculating A ∪ (B ∪ C).                                       □ 

The symbol is used to denote the set with no elements. We call this set the 
empty set. For instance, 

RA x x= { : < 0}2

is a perfectly good set. However, there are no real numbers which satisfy the 
given condition. Thus A is empty, and we write A = . 

Example 0.50: Let 

A x x B x x= { : > 8} and = { : < 4}.2

Then, A ∪ B = {x : x > 8 or −2 < x < 2} while A ∩ B = .                   □ 

We sometimes use a Venn diagram to aid our understanding of set-theoretic 
relationships. In a Venn diagram, a set is represented as a domain in the 
plane. The intersection A ∩ B of two sets A and B is the region common to 
the two domains—see Figure 0.1. 

Now, let A, B, and C be three sets. The Venn diagram in Figure 0.2 makes 
it easy to see that A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C). 

A
B FIGURE 0.1 

The intersection of two sets.     

A

B

C FIGURE 0.2 
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).     
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If A and B are sets then A \ B denotes those elements that are in A but not 
in B. This operation is sometimes called subtraction of sets or set-theoretic 
difference. 

Example 0.51: Let 

A x x{ : 4 < }

and 

B x x= { : 6 8}.

Then, 

A B x x x x\ = { : 4 < < 6} { : 8 < }

while 

B A\ = .

Notice that A \ A = ; this fact is true for any set.                              □ 

Example 0.52: Let 

S x x= { : 5 }

and 

T x x= { : 4 < < 6}.

Then, 

S T x x and T S x x\ = { : 6 } \ = { : 4 < < 5}.

The Venn diagram in Figure 0.3 illustrates the fact that 

A

B

C
FIGURE 0.3 
A\(B ∪ C) = (A\B) ∩ (A\C).     
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A B C A B A C\( ) = ( \ ) ( \ ).

A Venn diagram is not a proper substitute for a rigorous mathematical 
proof. However, it can go a long way toward guiding our intuition. 

We conclude this section by mentioning a useful set-theoretic operation 
and an application. Suppose that we are studying subsets of a fixed set X. 
We sometimes call X the “universal set.” If S ⊂ X, then we use the notation  
cS to denote the set X \ S or {x ∈ X :  x S}. The set cS is called the complement 
of S (in the set X). 

Example 0.53: When we study real analysis, most sets that we consider are 
subsets of the real line R. If S = {x ∈ R : 0 ≤ x ≤ 5}, then cS = {x ∈ R : x < 0} ∪ {x 
∈ R : x > 5}. If T is the set of rational numbers, then cT is the set of irrational 
numbers.                                                                                      □ 

If A, B are sets, then it is straightforward to verify that c(A ∪ B) = cA ∩ cB and  
c(A ∩ Β) = cA ∪ cB. These are known as de Morgan’s laws. Let us prove the 
first of these. 

If x ∈ c(A ∪ Β), then x is not an element of A ∪ B. Hence, x is not an element of 
A and x is not an element of B. So, x ∈ cA and x ∈ cB. Therefore, x ∈ cA ∩ cB. 
That shows that c(A ∪ B) ⊂ cA ∩ cB. For the reverse direction, assume that 
x ∈ cA ∩ cB. Then, x ∈ cA and x ∈ cB. As a result, x A and x B. So, x A ∪ B. 
So, x ∈ c(A ∪ B). This shows that cA ∩ cB ⊂ c(A ∪ B). 

The two inclusions that we have proved establish that c(A ∪ B) = cA ∩ cB. 

0.2.6 Relations and Functions 

In more elementary mathematics courses, we learn that a “relation” is a 
rule for associating elements of two sets; and a “function” is a rule that 
associates to each element of one set a unique element of another set. The 
trouble with these definitions is that they are imprecise. For example, 
suppose we define the function f(x) to be identically equal to 1 if there is 
life as we know it on Mars and to be identically equal to 0 if there is no life 
as we know it on Mars. Is this a good definition? It certainly is not a very 
practical one! 

More important is the fact that using the word “rule” suggests that 
functions are given by formulas. Indeed, some functions are; but most are 
not. Look at any graph in the newspaper—of unemployment, or the value 
of the Japanese Yen (Figure 0.4), or the gross national product. The graphs 
represent values of these parameters as a function of time. And, it is clear 
that the functions are not given by elementary formulas. 

To summarize, we need a notion of function, and of relation, which is 
precise and flexible and which does not tie us to formulas. We begin with 
relations, and then specialize down to functions. 

Background Material                                                                       37 

ISTUDY



Definition 0.54: Let A and B be sets. A relation on A and B is a collection of 
ordered pairs (a, b) such that a ∈ A and b ∈ B. (Notice that we did not say 
“the collection of all ordered pairs”—that is, a relation consists of some of 
the ordered pairs, but not necessarily all of them.) If a is related to b then we 
sometimes write a b or (a, b) ∈ . 

Example 0.55: Let A be the real numbers and B the integers. The set 

= {( , 2), (3.4, 2), ( 2 , 94), ( , 50), (2 + 17 , 2)}

is a relation on A and B. It associates certain elements of A to certain 
elements of B. Observe that repetitions are allowed: π ∈ A is associated to 
both 2 and 50 in B; also −2 ∈ B is associated to both 3.4 and 2 + 17 in A. 
This relation is not given by any formula or rule. 

Now, let 

A B= {3, 17, 28, 42} and = {10, 20, 30, 40}.

Then, 

= {(3, 10), (3, 20), (3, 30), (3, 40), (17, 20), (17, 30),
(17, 40), (28, 30), (28, 40)}

is a relation on A and B. In fact a ∈ A is related to b ∈ B precisely when a < b. 
This second relation is given by a rule.                                              □ 

Year

Value of Yen Against Dollar

FIGURE 0.4 
Value of the Yen against the Dollar.    

38                                                          Real Analysis and Foundations 

ISTUDY



Example 0.56: Let 

A B= = {meter, pound, foot, ton, yard, ounce}.

Then, 

= {(foot, meter), (foot, yard), (meter, yard), (pound, ton),
(pound, ounce), (ton, ounce), (meter, foot), (yard, foot),
(yard, meter), (ton, pound), (ounce, pound), (ounce, ton)}

is a relation on A and B. In fact, two words are related by if and only if 
they measure the same thing: foot, meter, and yard measure length while 
pound, ton, and ounce measure weight. 

Notice that the pairs in , and in any relation, are ordered pairs: the pair 
(foot, yard) is different from the pair (yard, foot).                                □ 

Example 0.57: Let 

A B= {25, 37, 428, 695} and = {14, 7, 234, 999}

Then, 

= {(25, 234), (37, 7), (37, 234), (428, 14), (428, 234), (695, 999)}

is a relation on A and B. In fact, two elements are related by if and only if 
they have at least one digit in common.                                             □ 

Definition 0.58: A relation on a set A is said to be an equivalence relation if 
it has these three properties: 

Reflexive: For any a ∈ A, it holds that a a. 
Symmetric: If a b, then b a. 
Transitive: If a b and b c, then a c. 

It can be proved that, if is an equivalence relation, then it partitions A into 
pairwise disjoint equivalence classes. That is to say, if a ∈ A, then let 

E x A a x= { : }.a

We call Ea the equivalence class of a. Then it is the case that if Ea ∩ Eb ≠ , then 
Ea = Eb. So the union of the Ea is all of A, and the Ea are pairwise disjoint. For 
all the details of the theory of equivalence classes, consult Ref. [KRA1]. 
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A function is a special type of relation, as we shall now learn. 

Definition 0.59: Let A and B be sets. A function from A to B is a relation on 
A and B such that for each a ∈ A there is one and only one pair (a, b) ∈ . We 
call A the domain of the function and we call B the range.1 

Example 0.60: Let 

A B= {1, 2, 3, 4} and = { , , , }.

Then, 

= {(1, ), (2, ), (3, ), (4, )}

is a function from A to B. Notice that there is precisely one pair in for each 
element of A. However, notice that repetition of elements of B is allowed. 
Notice also that there is no apparent “pattern” or “rule” that determines . 
Finally, observe that not all the elements of B are used. 

With the same sets A and B, consider the relations 

= {(1, ), (2, ), (3, )}

and 

= {(1, ), (2, ), (3, ), (4, ), (2, )}.

Then, is not a function because it violates the rule that there be a pair for 
each element of A. Also, is not a function because it violates the rule that 
there be just one pair for each element of A.                                       □ 

The relations and function described in the last example were so simple that 
you may be wondering what happened to the kinds of functions that we 
usually look at in mathematics. Now, we consider some of those. 

Example 0.61: Let A = R and B = R, where R denotes the real numbers. The 
relation 

x x x A= {( , sin ) : }

is a function from A to B. For each a ∈ A = R, there is one and only one 
ordered pair with first element a. 

Now, let S = R and T = {x ∈ R : −2 ≤ x ≤ 2}. Then, 

x x x A= {( , sin ) : }
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is also a function from S to T. Technically speaking, it is a different function 
from because it has a different range. However, this distinction often has 
no practical importance and we shall not mention the difference. It is 
frequently convenient to write functions like or as 

x x( ) = sin

and 

x x( ) = sin .

□ 

The last example suggests that we distinguish between the set B where a 
function takes its values and the set of values that the function actually assumes. 

Definition 0.62: Let A and B be sets and let f be a function from A to B. 
Define the image of f to be 

f b B a A f a bImage = { : such that ( ) = }.

The set Image f is a subset of the range B. In general, the image will not equal 
the range. 

Example 0.63: Both the functions and from the last example have the 
set {x ∈ R: −1 ≤ x ≤ 1} as image. In neither instance does the image equal the 
range.                                                                                          □ 

If a function f has domain A and range B and if S is a subset of A, then we 
define 

f S b B b f s s S( ) = { : = ( ) for some }.

The set f(A) equals the image of f. 

Example 0.64: Let A = R and B = {0, 1}. Consider the function 

f x y y x
y x
= {( , ) : = 0 if is rational and

= 1 if is irrational}.

The function f is called the Dirichlet function (P. G. Lejeune-Dirichlet, 
1805–1859). It is given by a rule, but not by a formula. 

Notice that f(Q) = {0} and f(R) = {0, 1}.                                            □ 
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Definition 0.65: Let A and B be sets and f a function from A to B. 
We say that f is one-to-one if whenever (a1, b) ∈ f and (a2, b) ∈ f then a1 = a2. 
We say that f is onto if whenever b ∈ B, then there exists an a ∈ A such that 

(a, b) ∈ f. 

Example 0.66: Let A = R and B = R. Consider the functions 

f x x g x x

h x x j x x x x

( ) = 2 + 5, ( ) = arctan

( ) = sin , ( ) = 2 + 9 + 12 + 4.3 2

Then, f is both one-to-one and onto, g is one-to-one but not onto, j is onto but 
not one-to-one, and h is neither. 

Refer to Figure 0.5 to convince yourself of these assertions.                □ 

When a function f is both one-to-one and onto then it is called a bijection of 
its domain to its range. Sometimes we call such a function a set-theoretic 
isomorphism. In the last example, the function f is a bijection of R to R. 

x

yxy

x

yy

y = f(x) y = g(x)

y = sin x y = 2x3+9x2+12x+4

FIGURE 0.5 
One-to-one and onto functions.    
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If f and g are functions, and if the image of g is contained in the domain of 
f, then we define the composition f g to be 

a c b g a b f b c{( , ): such that ( ) = and ( ) = }.

This may be written more simply as 

f g a f g a f b c( ) = ( ( )) = ( ) = .

Let f have domain A and range B. Assume for simplicity that the image of f 
is all of B. If there exists a function g with domain B and range A such that 

f g b b b B( ) =

and 

g f a a a A( ) = ,

then g is called the inverse of f. 
Clearly, if the function f is to have an inverse, then f must be one-to-one. 

For if f(a) = f(a′) = b, then it cannot be that both g(b) = a and g(b) = a′. Also, f 
must be onto. For if some b ∈ B is not in the image of f, then it cannot hold 
that f g(b) = b. It turns out that these two conditions are also sufficient for 
the function f to have an inverse: If f has domain A and range B and if f is 
both one-to-one and onto, then f has an inverse. 

Example 0.67: Define a function f, with domain R and range {x ∈ R : x ≥ 0}, by 
the formula f(x) = x2. Then f is onto but is not one-to-one (because f(−1) = f(1)), 
hence it cannot have an inverse. This is another way of saying that a positive 
real number has two square roots—not one. 

However, the function g, with domain {x ∈ R : x ≥ 0} and range {x ∈ R : x ≥ 0}, 
given by the formula g(x) = x2, does have an inverse. In fact, the inverse 
function is h(x) = + x . 

The function k(x) = x3, with domain R and range R, is both one-to-one and 
onto. It, therefore, has an inverse: the function m(x) = x1/3 satisfies k m(x) = x, 
and m k(x) = x for all x.                                                                         □ 

0.2.7 Countable and Uncountable Sets 

One of the most profound ideas of modern mathematics is Georg Cantor’s 
theory of the infinite (George Cantor, 1845–1918). Cantor’s insight was that 
infinite sets can be compared by size, just as finite sets can. For instance, we 
think of the number 2 as less than the number 3; so a set with two elements 
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is “smaller” than a set with three elements. We would like to have a similar 
notion of comparison for infinite sets. In this section, we will present 
Cantor’s ideas; we will also give precise definitions of the terms “finite” and 
“infinite.” 

Definition 0.68: Let A and B be sets. We say that A and B have the same 
cardinality if there is a function f from A to B, which is both one-to-one and 
onto (that is, f is a bijection from A to B). We write card(A) = card(B). Some 
books write |A| = |B|. 

Example 0.69: Let A = {1, 2, 3, 4, 5}, B = {α, β, γ, δ, ϵ}, C = {a, b, c, d, e, f }. Then, 
A and B have the same cardinality because the function 

f = {(1, ), (2, ), (3, ), (4, ), (5, )}

is a bijection of A to B. This function is not the only bijection of A to B (can 
you find another?), but we are only required to produce one. 

On the other hand, A and C do not have the same cardinality; neither do B 
and C.                                                                                          □ 

Notice that if card(A) = card(B) via a function f1 and card(B) = card(C) via a 
function f2 then card(A) = card(C) via the function f2 f1. 

Example 0.70: Let A and B be sets. If there is a one-to-one function from A to 
B but no bijection between A and B, then we will write 

A Bcard( ) < card( ).

This notation is read “A has smaller cardinality than B.” 
We use the notation 

A Bcard( ) card( )

to mean that either card(A) < card(B) or card(A) = card(B). 

Example 0.71: An extremely simple example of this last concept is given by 
A = {1, 2, 3} and B = {a, b, c, d, e}. Then, the function 

f A B
a
b
c

:
1
2
3
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is a one-to-one function from A to B. But there is no one-to-one function 
from B to A. We write 

A Bcard( ) < card( ).

We shall see more profound applications, involving infinite sets, in our later 
discussions.                                                                                   □ 

Notice that card(A) ≤ card(B) and card(B) ≤ card(C) imply that card(A) ≤ card 
(C). Moreover, if A ⊂ B, then the inclusion map i(a) = a is a one-to-one 
function of A into B; therefore card(A) ≤ card(B). 

The next theorem gives a useful method for comparing the cardinality of 
two sets. 

Theorem 0.72: (Schroeder-Bernstein) Let A, B, be sets. If there is a one-to-one 
function f : A → B and a one-to-one function g : B → A, then A and B have the 
same cardinality. 

Proof: It is convenient to assume that A and B are disjoint; we may do so by 
replacing A by {(a, 0) : a ∈ A} and B by {(b, 1) : b ∈ B}. Let D be the image of f 
and C be the image of g. Let us define a chain to be a sequence of elements of 
either A or B—that is, a function ϕ : N → (A ∪ B)—such that  

• ϕ(1) ∈ B \ D;  
• If for some j we have ϕ(j) ∈ B, then ϕ(j + 1) = g(ϕ(j));  
• If for some j we have ϕ(j) ∈ A, then ϕ(j + 1) = f(ϕ(j)). 

We see that a chain is a sequence of elements of A ∪ B such that the first 
element is in B\D, the second in A, the third in B, and so on. Obviously, 
each element of B\D occurs as the first element of at least one chain. 

Define = {a ∈ A : a is some term of some chain}. It is helpful to note that 

x x
g f g g y y B D
= { : can be written in the form

( ( ( ( )…))) for some \ }.
(0.72.1)  

We set 

k x
f x x A

g x x
( ) =

( ) if \

( ) if1

Note that the second half of this definition makes sense because S ⊆ C. Then, 
k : A → B. We shall show that in fact k is a bijection. 
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First, notice that f and g−1 are one-to-one. This is not quite enough to show 
that k is one-to-one, but we now reason as follows: If f(x1) = g−1(x2) for some x1 

∈ A \ S and some x2 ∈ S, then x2 = g( f(x1)). But, by (0.72.1), the fact that x2 ∈ S 
now implies that x1 ∈ S. That is a contradiction. Hence, k is one-to-one. 

It remains to show that k is onto. Fix b ∈ B. We seek an x ∈ A such that k(x) = b. 

Case A: If g(b) ∈ , then k(g(b)) ≡ g−1(g(b)) = b; hence, the x that we seek 
is g(b). 
Case B: If g(b) , then we claim that there is an x ∈ A such that f(x) = b. 
Assume this claim for the moment. 

Now the x that we found in the last paragraph must lie in A\ . For if not 
then x would be in some chain. Then, f(x) and g(f(x)) = g(b) would also lie in 
that chain. Hence, g(b) ∈ , and that is a contradiction. But, x ∈ A\ tells us 
that k(x) = f(x) = b. That completes the proof that k is onto. Hence, k is a 
bijection. 

To prove the claim in Case B, notice that if there is no x with f(x) = b, then 
b ∈ B \ D. Thus, some chain would begin at b. So, g(b) would be a term of 
that chain. Hence, g(b) ∈ and that is a contradiction. 

The proof of the Schroeder–Bernstein theorem is complete.                □ 

Remark 0.73: Let us reiterate some of the earlier ideas in light of the 
Schroeder–Bernstein theorem. If A and B are sets and if there is a one-to- 
one function f : A → B, then we know that card(A) ≤ card(B). If there is no one- 
to-one function g : B → A, then we may write card(A) < card(B). But if instead 
there is a one-to-one function g : B → A, then card(B) ≤ card(A) and the 
Schroeder–Bernstein theorem guarantees therefore that card(A) = card(B). □ 

Now, it is time to look at some specific examples. 

Remark 0.74: Let E be the set of all even integers and O the set of all odd 
integers. Then, 

E Ocard( ) = card( ).

Indeed, the function 

f j j( ) = + 1

is a bijection from E to O.                                                                □ 

Example 0.75: Let E be the set of even integers. Then, 

ZEcard( ) = card( ).
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The function 

g j j( ) = /2

is a bijection from E to Z.                                                               □ 

This last example is a bit surprising, for it shows that the set Z can be put in 
one-to-one correspondence with a proper subset E of itself. In other words, 
we are saying that the integers Z “have the same number of elements” as a 
proper subset of Z. Such a phenomenon cannot occur with finite sets. 

Example 0.76: We have 

Z Ncard( ) = card( ).

We define the function f from Z to N as follows:  

• f(j) = −(2j + 1) if j is negative  
• f(j) = 2j + 2 if j is positive or zero 

The values that f takes on the negative numbers are 1, 3, 5, …, on the positive 
numbers are 4, 6, 8, …, and f(0) = 2. Thus, f is one-to-one and onto.           □ 

Definition 0.77: If a set A has the same cardinality as N then we say that A is 
countable. 

By putting together the preceding examples, we see that the set of even 
integers, the set of odd integers, and the set of all integers are examples of 
countable sets. 

Example 0.78: The set of all ordered pairs of positive integers 

NS j k j k= {( , ) : , }

is countable. 
To see this, we will use the Schroeder–Bernstein theorem. The function 

f j j( ) = ( , 1)

is a one-to-one function from N to S. Also, the function g(j, k) = 2j · 3k is a 
one-to-one function from S to N. By the Schroeder–Bernstein theorem, S and 
N have the same cardinality; hence, S is countable.                              □ 

Remark 0.79: You may check for yourself that the function F(j, k) = 2j−1 · 
(2k − 1) is an explicit bijection from S to N. 
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Since there is a bijection of the set of all integers with the set N, it follows 
from the last example that the set of all pairs of integers (positive and 
negative) is countable. 

Notice that the word “countable” is a good descriptive word: if S is a 
countable set then we can think of S as having a first element (the one 
corresponding to 1 ∈ N), a second element (the one corresponding to 2 ∈ N), 
and so forth. Thus, we write S = {s(1), s(2), …} = {s1, s2, …}. 

Definition 0.80: A nonempty set S is called finite if there is a bijection of S 
with a set of the form {1, 2, …, n} for some positive integer n. If no such 
bijection exists, then the set is called infinite. 

An important property of the natural numbers N is that any subset S ⊂ N
has a least element. This is known as the Well Ordering Principle, and is 
studied in a course on logic. In this text, we take the properties of the natural 
numbers as given. We use some of these properties in the next proposition. 

Proposition 0.81: If S is a countable set and R is a subset of S then either R is 
empty or R is finite or R is countable. 

Proof: Assume that R is not empty. Write S = {s1, s2, …}. Let j1 be the least 
positive integer such that s Rj1 . Let j2 be the least integer following j1 such 
that s Rj2 . Continue in this fashion. If the process terminates at the nth 
step, then R is finite and has n elements. 

If the process does not terminate, then we obtain an enumeration of the 
elements of R: 

s

s

1

2

etc.

j

j

1

2

All elements of R are enumerated in this fashion since j . Therefore, R is 
countable.                                                                                     □ 

A set is called denumerable if it is either empty, finite, or countable. Notice 
that the word “denumerable” is not the same as “countable.” In fact, 
“countable” is just one instance of denumerable. 

The set Q of all rational numbers consists of all expressions 

a
b

,

where a and b are integers and b ≠ 0. Thus, Q can be identified with the set of 
all ordered pairs (a, b) of integers with b ≠ 0. After discarding duplicates, 
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such as =2
4

1
2
, and using the examples mentioned earlier, we find that the 

set Q is countable. 

Theorem 0.82: Let S1, S2 be countable set s. Set = S1 ∪ S2. Then is countable. 

Proof: Let us write 

S s s

S s s

= { , , …}

= { , , …}.
1 1

1
2
1

2 1
2

2
2

If S1 ∩ S2 = , then the function 

s j k( , )j
k

is a bijection of with a subset of {(j, k) : j, k ∈ N}. We proved earlier 
(Example A2.55) that the set of ordered pairs of elements of N is countable. 
By Proposition A2.58, is countable as well. 

If there exist elements that are common to S1, S2 then discard any 
duplicates. The same argument (use the preceding proposition) shows that 

is countable.                                                                              □ 

Theorem 0.83: If S and T are each countable sets, then so is 

S T s t s S t T× {( , ) : , }.

Proof: Since S is countable there is a bijection f from S to N. Likewise, there 
is a bijection g from T to N. Therefore, the function 

f g s t f s g t( × )( , ) = ( ( ), ( ))

is a bijection of S × T with N × N, the set of order pairs of positive integers. 
But we saw in Example A2.55 that the latter is a countable set. Hence, so is 
S × T.                                                                                          □ 

Remark 0.84: We used the theorem as a vehicle for defining the concept of 
set-theoretic product: If A and B are sets, then 

A B a b a A b B× {( , ) : , }.
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More generally, if A1, A2, …, Ak are sets then 

A A A a a a a A j k× × × = {( , , …, ) : for all = 1, …, }.k k j j1 2 1 2

□ 

Corollary 0.85: If S1, S2, …, Sk are each countable sets, then so is the set 

S S S s s s S s S× × × = {( , …, ) : , …, }k k k k1 2 1 1 1

consisting of all ordered k–tuples (s1, s2, …, sk) with sj ∈ Sj. 

Proof: We may think of S1 × S2 × S3 as (S1 × S2) × S3. Since S1 × S2 is countable 
(by the theorem) and S3 is countable, then so is (S1 × S2) × S3 = S1 × S2 × S3 

countable. Continuing in this fashion, we can see that any finite product of 
countable sets is also a countable set.                                                       □ 

We are accustomed to the union A ∪ B of two sets or, more generally, the 
union A1 ∪ A2 ∪ … ∪ Ak of finitely many sets. But sometimes we wish to 
consider the union of infinitely many sets. Let S1, S2, … be countably many 
sets. We say that x is an element of 

S
j

j
=1

if x is an element of at least one of the Sj. 

Corollary 0.86: The countable union of countable sets is countable. 

Proof: Let A1, A2, … each be countable sets. If the elements of Aj are 
enumerated as a{ }k

j and if the sets Aj are pairwise disjoint then the 
correspondence 

a j k( , )k
j

is one-to-one between the union of the sets Aj and the countable set N × N. 
This proves the result when the sets Aj have no common element. If some of 
the Aj have elements in common, then we discard duplicates in the union 
and use Proposition A2.58.                                                              □ 

Proposition 0.87: The collection of all polynomials with integer coefficients is 
countable. 

Proof: Let k be the set of polynomials of degree k with integer coefficients. 
A polynomial p of degree k has the form 
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p x p p x p x p x( ) = + + + + .k
k

0 1 2
2

The identification 

p x p p p( ) ( , , …, )k0 1

identifies the elements of k with the (k + 1)-tuples of integers. By 
Corollary 0.85, it follows that k is countable. But then Corollary 0.86 
implies that 

=
j

j
=0

is countable.                                                                                  □ 

Georg Cantor’s remarkable discovery is that not all infinite sets are countable. 
We next give an example of this phenomenon. 

In what follows, a sequence on a set S is a function from N to S. We usually 
write such a sequence as s(1), s(2), s(3), … or as s1, s2, s3, …. 

Example 0.88: There exists an infinite set which is not countable (we call 
such a set uncountable). Our example will be the set S of all sequences on 
the set {0, 1}. In other words, S is the set of all infinite sequences of 0s and 1s. 
To see that S is uncountable, assume the contrary. Then, there is a first 
sequence 

s= { } ,j j
1 1

=1

a second sequence 

s= { } ,j j
2 2

=1

and so forth. This will be a complete enumeration of all the members of S. 
But, now consider the sequence t= { }j j=1, which we construct as follows:  

• If s1
1 = 0 then set t1 = 1; if s1

1 = 1 then set t1 = 0;  
• If s2

2 = 0 then set t2 = 1; if s2
2 = 1 then set t2 = 0;  

• If s3
3 = 0 then set t3 = 1; if s3

3 = 1 then set t3 = 0; 

• If sj
j = 0 then set tj = 1; if sj

j = 1 then set tj = 0; 

etc. 
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Now, the sequence differs from the first sequence 1 in the first 
element: t1 ≠ s1

1. 
The sequence differs from the second sequence 2 in the second 

element: t2 ≠ s2
2. 

And so on: the sequence differs from the jth sequence j in the jth 
element: tj ≠ sj

j. So the sequence is not in the set S. But is supposed to be 
in the set S because it is a sequence of 0s and 1s and all of these have been 
hypothesized to be enumerated. 

This contradicts our assumption, so S must be uncountable.               □ 

Example 0.89: Consider the set of all decimal representations of numbers— 
both terminating and nonterminating. Here, a terminating decimal is one of 
the form 

27.43926

while a nonterminating decimal is one of the form 

3.14159265 ….

In the case of the nonterminating decimal, no repetition is implied; the 
decimal simply continues without cease.                                            □ 

Now, the set of all those decimals containing only the digits 0 and 1 can be 
identified in a natural way with the set of sequences containing only 0 and 1 
(just put commas between the digits). And, we just saw that the set of such 
sequences is uncountable. 

Since the set of all decimal numbers is an even bigger set, it must be 
uncountable also. 

As you may know, the set of all decimals identifies with the set of all real 
numbers. We find then that the set R of all real numbers is uncountable. 
(Contrast this with the situation for the rationals.) In Section 1.1, we shall 
learn about how the real number system is constructed using just elemen-
tary set theory.                                                                              □ 

It is an important result of set theory (due to Cantor) that, given any set S, 
the set of all subsets of S (called the power set of S) has strictly greater car-
dinality than the set S itself. As a simple example, let S = {a, b, c}. Then, the 
set of all subsets of S is 

a b c a b a c b c a b c{ , { }, { }, { }, { , }, { , }, { , }, { , , }}.

The set of all subsets has eight elements, while the original set has just three. 
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Even more significant is the fact that if S is an infinite set, then the set of 
all its subsets has greater cardinality than S itself. This is a famous theorem 
of Cantor. Thus, there are infinite sets of arbitrarily large cardinality. 

In some of the examples in this section, we constructed a bijection be-
tween a given set (such as Z) and a proper subset of that set (such as E, the 
even integers). It follows from the definitions that this is possible only when 
the sets involved are infinite. 

Exercises  

1. Let q be a rational number. Construct a sequence {xj} of irrational 
numbers such that xj → q. This means that, for each ε > 0, there is a 
positive integer K such that if j > K, then |xj − q| < ε.  

2. Let S be a set of real numbers with the property that, whenever x, y 
∈ S and x < t < y, then t ∈ S. Can you give a simple description of 
the set S?  

3. Let a1 < a2 < … be real numbers. Prove that either there is a real 
number α such that aj → α (refer to Exercise 6.4 for this notation) or 
else the sequence {aj} increases without bound.  

4. Prove that subtraction is well defined in the integers.  
5. Give a careful discussion of the failure of the operation of division 

in the integers.  
6. Prove that addition and subtraction are well defined in the rational 

number system Q.  
7. Determine whether 2 + 3 is rational or irrational.  
8. Prove that every nonzero complex number z ∈ C has two distinct 

square roots in C.  
9. The complex number 1 = 1 + 0i has three cube roots. Use any 

means to find them, and sketch them on an Argand diagram (refer 
to Exercise 6.21 for terminology).  

10. If z = x + iy ∈ C is any nonzero complex number, then let 

r z x y= = + .2 2 2 2

The number r is the distance of z to the origin in the Argand plane 
(Exercise 6.21). It is also the modulus of z. Set ξ = z/r. Show that |ξ| = 
1. Now apply Exercise 6.25 to conclude that 

z r e= ,i

some 0 ≤ θ < 2π. This is called the polar form of the complex number z. 
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11. Prove that the complex numbers cannot be made into an ordered 
field (as discussed in Section 6.7).  

12. Prove that addition and multiplication are commutative in the 
complex number system.  

13. Let p be a polynomial and assume that α ∈ C is a root of p. Prove 
that (z − α) evenly divides p(z) with no remainder. 

Note  
1 Some textbooks use the word “codomain” instead of “range.” We shall use only 

the word “range.”  
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1 
Real and Complex Numbers  

1.1 The Real Numbers 

This is a book about analysis in the real number system. Such a study must 
be founded on a careful consideration of what the real numbers are and how 
they are constructed. In this section, we give a careful treatment of the real 
number system. In the next, we consider the complex numbers. 

We know from real numbers calculus that, for many purposes, the ra-
tional numbers are inadequate. It is important to work in a number system 
that is closed with respect to the operations we shall perform. This includes 
the limiting operations. While the rationals are closed under the usual ar-
ithmetic operations (addition, subtraction, multiplication, and division), 
they are not closed under the limits mathematical operation of taking limits. 
For instance, the sequence of rational numbers 3, 3.1, 3.14, 3.141, … consists 
of terms that seem to be getting closer and closer together, seem to tend to 
some limit, and yet there is no rational number that will serve as a limit (of 
course, it turns out that the limit is π—an “irrational” number). 

We will now deal with the real number system, a system that contains all 
limits of sequences of rational numbers (as well as all limits of sequences of 
real numbers!). In fact, our plan will be as follows: in this section, we shall 
discuss all the requisite properties of the reals. The actual construction of the 
reals is rather subtle, and we shall put that in an Appendix to Section 1.1. 

Definition 1.1: Let A be an ordered set and X a subset of A. The set X is 
called bounded above if there is an element b A such that x b for all x X. 
We call the element b an upper bound for the set X. 

Example 1.2: Let QA = (the rational numbers) with the usual ordering. The 
set QX x x= { : 2 < < 4} is bounded above. For example, 15 is an upper 
bound for X. So are the numbers 12 and 4. It is interesting to observe that no 
element of this particular X can actually be an upper bound for X. The 
number 4 is a good candidate, but 4 is not an element of X. In fact, if b X, 
then b X( + 4)/2 and b b< ( + 4)/2, so b could not be an upper bound 
for X.                                                                                           □ 
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It turns out that the most convenient way to formulate the notion that the 
real numbers have “no holes” (that is, that all sequences which seem to be 
converging actually have something to converge to) is in terms of upper 
bounds. 

Definition 1.3: Let A be an ordered set and X a subset of A. An element 
b A is called a least upper bound (or supremum) for X if b is an upper bound 
for X and b b for every upper bound b′ for X. We denote the supremum of 
X by sup X. The supremum is also sometimes called the least upper bound 
and denoted by lub X. 

By its very definition, if a least upper bound exists, then it is unique. Notice 
that we could have phrased the definition as “The point b is the least upper 
bound for X if, whenever c < b, then c cannot be an upper bound for X.” 

Example 1.4: In the last example, we considered the set X of rational numbers 
strictly between 2 and 4. We observed there that 4 is the least upper bound for 
X. Note that this least upper bound is not an element of the set X. 

The set ZY y y= { : 9 7} has least upper bound 7. In this case, the 
least upper bound is an element of the set Y.                                      □ 

Notice that we may define a lower bound for a subset of an ordered set in a 
fashion similar to that for an upper bound: 

Definition 1.5: A point A is a lower bound for X A if x for all 
x X. A greatest lower bound (or infimum) for X is then defined to be a lower 
bound c such that c c for every lower bound c′ for X. We denote the 
infimum of X by infimum X. The infimum is also sometimes called the 
greatest lower bound and denoted by glb X. 

As with the least upper bound, we may note that the definition of greatest 
lower bound could be phrased in this way: “the point c is the greatest lower 
bound for X if, whenever e c> , then e cannot be a lower bound for X.” 

Example 1.6: The set QX x x= { : 2 < < 4} in the last two examples has 
lower bounds −20, 0, 1, 2, for instance. The greatest lower bound is 2, which 
is not an element of the set. 

The set ZY y y= { : 9 7} in the last example has lower bounds— 
among others—given by −53, −22, −10, and −9. The number −9 is the 
greatest lower bound. It is an element of Y.                                        □ 

The purpose that the real numbers will serve for us is as follows: they will 
contain the rationals, they will still be an ordered field (a field is a set with 
arithmetic operations + and · —see the Appendix at the end of Section 1.1), 
and every subset which has an upper bound will have a least upper bound. (See 
(KRA1) for a thorough treatment of the concept of ordered field.) We for-
mulate this result as a theorem. 
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Theorem 1.7: There exists an ordered field R, which (i) contains Q and (ii) has the 
property that any nonempty subset of R—which has an upper bound—has a least 
upper bound (in the number system R). 

The last property described in this theorem is called the least upper bound 
property of the real numbers. As mentioned previously, this theorem will 
be proved in the Appendix to Section 1.1. Of course, the least upper bound 
property, in and of itself, is something of a technicality. However, we shall 
see that a great many interesting and powerful properties of the real 
numbers can be derived from it. 

Now, we begin to realize why it is so important to construct the number 
systems that we will use. We are endowing R with a great many properties. 
Why do we have any right to suppose that there exists a set with all these 
properties? We must produce one! We do so in the Appendix to Section 1.1. 

Let us begin to explore the richness of the real numbers. The next theorem 
states a property, which is not shared by the rationals. It is fundamental in 
its importance. 

Theorem 1.8: Let x be a positive real number. Then, there is a positive real number 
y such that y2 = y · y = x. 

Proof: We will use throughout this proof the fact that if a b0 < < , then 
a b<2 2. 

Let 

RS s s s x= { : > 0 and < }.2

Then, S is not empty since x S/2 if x < 2 and S1 otherwise. Also, S is 
bounded above since x + 1 is an upper bound for S. By Theorem 1.6, the set 
S has a least upper bound. Call it y. Obviously, x y0 < min { /2, 1} ; hence, 
y is positive. We claim that y x=2 . To see this, we eliminate the other two 
possibilities. 

If y x<2 , then set x y x= ( )/[4( + 1)]2 . Then, > 0 and 

y y y

y y

y y

y

y x y
x

( + ) = + 2 +

= + 2 +

< + 2 +

< + +

< + ( )
= .

x y

x

x y

x

x y

x

x y

y

x y

x

x y

x

x y x y x
x

2 2 2

2
4( + 1) 4( + 1) 4( + 1)

2
4 4( + 1) 4( + 1)

2
2 4 4

2 2

2 2 2

2 2 2

2 2

Thus, y S+ , and y cannot be an upper bound for S. This contradiction 
tells us that y x2 . 
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Similarly, if it were the case that y x>2 , then we set y x= ( )/2

x[4( + 1)]. A calculation like the one we just did (see Exercise 5) then shows 
that y x( )2 . Hence, y is also an upper bound for S, and y is 
therefore not the least upper bound. This contradiction shows that y x2 . 

The only remaining possibility is that y x=2 .                                   □ 

Remark 1.9: The theorem tells us in particular that 2 , 5 , 8 , 11 , etc. all 
exist in the real number system. And, each of these numbers is irrational 
(see Theorem A1.23 where it is shown that 2 is irrational). In fact, the only 
square roots of integers that are not irrational are the square roots of the 
perfect squares 1, 4, 9, 16, 25, and so on.                                            □ 

A similar proof shows that if n is a positive integer and x a positive real 
number, then there is a positive real number y such that y x=n . Exercise 14 
asks you to provide the details. 

We next use the least upper bound property of the real numbers to es-
tablish two important qualitative properties of the real numbers. 

Theorem 1.10: The set R of real numbers satisfies the Archimedean Property: 

Let a and b be positive real numbers. Then, there is a natural number n 
such that na > b.  

The set Q of rational numbers satisfies the following Density Property: 

Let c < d be real numbers. Then, there is a rational number q with c < q < d.  

Proof: Suppose the Archimedean Property to be false. Then, NS na n= { : }
has b as an upper bound. Therefore, S has a finite supremum β. Since a > 0, 
it follows that a < . So, a is not an upper bound for S, and there 
must be a natural number n′ such that n a a> . But then, n a( + 1) > , 
and β cannot be the supremum for S. This contradiction proves the first 
assertion. 

For the second property, let d c= > 0. By the Archimedean Property, 
choose a positive integer N such that N > 1. Again, the Archimedean 
Property gives a natural number P such that P N c> and another Q such 
that Q N c> . Thus, we see that Nc falls between the integers −Q and P; 
therefore, there must be an integer M between −Q and P such that 

M Nc M1 < .

Thus, c M N< / . Also, 
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M Nc
M
N

c
N

c d+ 1 hence +
1

< + = .

So M N/ is a rational number lying between c and d.                        □ 

Remark 1.11: The density property stated earlier says that between any two 
real numbers is a rational number. Even more can be said. In fact, (i) 
between every two irrational numbers is a rational number and (ii) between 
every two rational numbers is an irrational number.                            □ 

In Appendix II at the end of the book, we establish that the set of all decimal 
representations of numbers is uncountable. It follows that the set of all real 
numbers is uncountable. In fact, the same proof shows that the set of all 
real numbers in the interval (0, 1), or in any nonempty open interval (c, d), is 
uncountable. 

The set R of real numbers is uncountable (see Section A2.7 in Appendix II), 
yet the set Q of rational numbers is countable. It follows that the set R Q\ of 
irrational numbers is uncountable. In particular, it is nonempty. Thus, we may 
see with very little effort that there exist a great many real numbers that 
cannot be expressed as a quotient of integers. However, it can be quite dif-
ficult to see whether any particular real number (such as π or e or 25 ) is 
irrational. 

We conclude by recalling the “absolute value” notation: absolute value 

Definition 1.12: Let x be a real number. We define 

x
x x

x
x x

| | =
if > 0

0 if = 0
if < 0

It is left as an exercise for you to verify the important triangle inequality: 

x y x y| + | | | + | |.

(Hint: It is convenient to verify that the square of the left-hand side is less 
than or equal to the square of the right-hand side. See Exercise 7.) 

Appendix: Construction of the Real Numbers 

There are several techniques for constructing the real number system R
from the rational numbers system Q (see Appendix I for a discussion of 
the origin of the rational numbers). We use the method of Dedekind 
(Julius W. R. Dedekind, 1831–1916) cuts because it uses a minimum of 
new ideas and is fairly brief. 
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The number system that we shall be constructing is an instance of a field 
(the complex numbers, in the next section, also form a field). The definition 
is as follows: 

Definition 1.13: A set S is called a field if it is equipped with a binary field 
operation (usually called addition and denoted “+”) and a second binary 
operation (called multiplication and denoted “·”) such that the following 
axioms are satisfied: (Here, A stands for “addition,” M stands for “multi-
plication,” and D stands for “distributive law.”)  

A1. S is closed under addition: if x, y ∈ S, then x + y ∈ S.  
A2. Addition is commutative: if x, y ∈ S, then x + y = y + x.  
A3. Addition is associative: if x, y, z ∈ S, then x + (y + z) = (x + y) + z. 
A4. There exists an element, called 0, in S which is an additive iden-

tity: if x ∈ S, then 0 + x = x.  
A5. Each element of S has an additive inverse: if x ∈ S, then there is an 

element −x ∈ S such that x + (−x) = 0.  

M1. S is closed under multiplication: if x, y ∈ S, then x · y ∈ S.  
M2. Multiplication is commutative: if x, y ∈ S, then x · y = y · x.  
M3. Multiplication is associative: if x, y, z ∈ S, then x · (y · z) = (x · y) · z. 
M4. There exists an element, called 1, which is a multiplicative iden-

tity: if x ∈ S, then x · 1 = x.  
M5. Each nonzero element of S has a multiplicative inverse: if 0 ≠ x ∈ 

S, then there is an element x−1 ∈ S such that x · (x−1) = 1. The 
element x−1 is sometimes denoted 1/x.  

D1. Multiplication distributes over addition: if x, y, z ∈ S, then 

x y z x y x z( + ) = + .

Definition 1.14: A cut is a subset of Q with the following properties:  

• 
• If s and t s< , then t
• If s , then there is a u such that u s>

• There is a rational number x such that c x< for all c . 

You should think of a cut as the set of all rational numbers to the left of 
some point in the real line. Since we have not constructed the real line yet, 
we cannot define a cut in that simple way; we have to make the construction 
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more indirect. But, if you consider the four properties of a cut, they describe 
a set that looks like a “rational halfline.” 

Notice that if is a cut and s , then any rational t s> is also not in . 
Also, if r and s , then it must be that s r> . 

Definition 1.15: If and are cuts, then we say that < provided that 
is a subset of but . 

Check for yourself that “<” is an ordering on the set of all cuts. 
Now, we introduce operations of addition and multiplication, which will 

turn the set of all cuts into a field. 

Definition 1.16: If and are cuts, then we define 

c d c d+ = { + : , }.

We define the cut 0̂ to be the set of all negative rationals. 
The cut 0̂ will play the role of the additive identity. We are now required 

to check that field axioms A1–A5 hold. 
For A1, we need to see that + is a cut. Obviously, + is not empty. If 

s is an element of + and t is a rational number less than s, write s c d= + , 
where c and d . Then, t c s c d< = ; so, t c ; and 
c . Hence, t c t c= + ( ) + . A similar argument shows that there is 
an r s> such that r + . Finally, if x is a rational upper bound for and y 
is a rational upper bound for , then x + y is a rational upper bound for 

+ . We conclude that + is a cut. 
Since addition of rational numbers is commutative, it follows immediately 

that addition of cuts is commutative. Associativity follows in a similar 
fashion. 

Now, we show that if is a cut, then + 0̂ = . For, if c and z 0̂, then 
c z c c+ < + 0 = ; hence, + 0̂ . Also, if c , then choose a d such 
that c d< . Then, c d < 0; so, c d 0̂. And, c d c d= + ( ). Hence, 

+ 0̂. We conclude that + 0̂ = . 
Finally, for Axiom A5, we let be a cut and set to be equal to 

Qd c d{ : + < 0 for all c }. If x is a rational upper bound for and c , 
then x ; so, is not empty. By its very definition, + ( ) 0̂. 
Further, if z 0̂ and c , we set c z c= . Then, c and z c c= + . 
Hence, 0̂ + ( ). We conclude that + ( ) = 0̂. 

Having verified the axioms for addition, we turn now to multiplication. 

Definition 1.17: If and are cuts, then we define the product as 
follows:  

• If , > 0̂, then Qq q c d= { : < for some c d,
with c d> 0, > 0}
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• If > 0̂, < 0̂, then = ( ( ))
• If < 0̂, > 0̂, then = (( ) )

• If , < 0̂, then = ( ) ( )

• If either = 0̂ or = 0̂, then = 0̂.

Notice that, for convenience, we have defined multiplication of negative 
numbers just as we did in high school. The reason is that the definition that 
we use for the product of two positive numbers cannot work when one of 
the two factors is negative (exercise). 

It is now a routine exercise to verify that the set of all cuts, with this 
definition of multiplication, satisfies field axioms M1–M5. The proofs follow 
those for A1–A5 rather closely. 

For the distributive property, one first checks the case when all the cuts 
are positive, reducing it to the distributive property for the rationals. Then, 
one handles negative cuts on a case-by-case basis. 

We now know that the collection of all cuts forms an ordered field. 
Denote this field by the symbol R. We next verify the crucial property of R
that sets it apart from Q. 

Theorem 1.18: The ordered field R satisfies the least upper bound property. 

Proof: Let S be a subset of R, which is bounded above. Define 

= .
S

Then, is clearly nonempty, and it is therefore a cut since it is a union of 
cuts. It is also clearly an upper bound for S since it contains each element of 
S. It remains to check that is the least upper bound for S. 

In fact, if < , then and there is a rational number q in \ . 
But, by the definition of , it must be that q for some S. So, > , 
and cannot be an upper bound for S. Therefore, is the least upper 
bound for S, as desired.                                                                  □ 

We have shown that R is an ordered field that satisfies the least upper 
bound property. It remains to show that R contains (a copy of) Q in a 
natural way. In fact, if Qq , we associate to it the element 

Qq x x q( ) = { : < }q . Then, q is obviously a cut. It is also routine to 
check that 

q q q q q q q q( + ) = ( ) + ( ) and ( ) = ( ) ( ).

Therefore, we see that represents Q as a subfield of R. 
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Exercises  
1. Give an example of a set of real numbers that contains its least 

upper bound but not its greatest lower bound. Give an example of 
a set that contains its greatest lower bound but not its least upper 
bound.  

2. Give an example of a set of real numbers that does not have a least 
upper bound. Give an example of a set of real numbers that does 
not have a greatest lower bound.  

3. A set A in the reals with least upper bound equal to its greatest 
lower bound. What does that tell you about the set?  

4. What is the least upper bound of the set ( , 0)? What is the 
greatest lower bound of the set (0, )?  

5. Let A be a set of real numbers that is bounded above and set 
A= sup . Let B a a A= { : }. Prove that Binf = . Prove the 

same result with the roles of infimum and supremum reversed.  
6. What is the least upper bound of the set 

S x x= { : < 2}?2

Explain why this question has a sensible answer in the real number 
system but not in the rational number system.  

7. Prove that the least upper bound and greatest lower bound for a 
set of real numbers is each unique.  

8. Consider the unit circle C (the circle with center the origin in the 
plane and radius 1). Let 

S C= { : 2 < (the circumference of )}.

Show that S is bounded above. Let p be the least upper bound of S. 
Say explicitly what the number p is. This exercise works in the real 
number system, but not in the rational number system. Why?  

9. Prove the triangle inequality.  
10. Let be the empty set—the set with no elements. Prove that 

sup = and inf = + .  
11. Prove that addition of the real numbers (as constructed in the 

Appendix) is commutative. Now, prove that it is associative.  
12. Complete the calculation in the proof of Theorem 1.7.  
13. Describe a countable set of nonrational real numbers between 0 

and 1.  
*14. Let f be a function with domain the reals and range the reals. 

Assume that f has a local minimum at each point x in its domain. 
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(This means that, for each Rx , there is an = > 0x such that, 
whenever x t| | < then f x f t( ) ( ).) Do not assume that f is 
differentiable, or continuous, or anything nice like that. Prove that the 
image of f is countable. (Hint: When I solved this problem as a 
student my solution was ten pages long; however, there is a one- 
line solution due to Michael Spivak.)  

*15. Let λ be a positive irrational real number. If n is a positive integer, 
chose by the Archimedean Property an integer k such that 
k n k< ( + 1) . Let n n k( ) = . Prove that the set of all varphi 
(n), n > 0, is dense in the interval [0, λ]. (Hint: Examine the proof 
of the density of the rationals in the reals.)  

*16. Let n be a natural number and x a positive real number. Prove 
that there is a positive real number y such that y x=n . Is y unique?  

17. Suppose that A and B are sets of real numbers with the same 
upper bound and same lower bound. What does that tell you 
about the sets? 

1.2 The Complex Numbers 

When we first learn about the complex number system, the most trouble-
some point is the very beginning: “let’s pretend that the number −1 has a 
square root. Call it i.” What gives us the right to “pretend” in this fashion? 
The answer is that we have no such right.1 If −1 has a square root, then we 
should be able to construct a number system in which that is the case. That 
is what we shall do in this section. 

Definition 1.19: The system of complex numbers, denoted by the symbol C, 
consists of all ordered pairs a b( , ) of real numbers. We add two complex 
numbers a b( , ) and a b(˜, ˜) by the formula 

a b a b a a b b( , ) + (˜, ˜) = ( + ˜, + ˜).

We multiply two complex numbers by the formula 

a b a b a a b b a b a b( , ) (˜, ˜) = ( ˜ ˜, ˜ + ˜ ).

Remark 1.20: If you are puzzled by this definition of multiplication, do not 
worry. In a few moments, you will see that it gives rise to the notion of 
multiplication of complex numbers that you are accustomed to. Perhaps 
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more importantly, a naive rule for multiplication like a b a b aa bb( , ) (˜, ˜) = ( ˜, ˜)
gives rise to nonsense like (1, 0) (0, 1) = (0, 0). It is really necessary for us 
to use the initially counterintuitive definition of multiplication that is 
presented here.                                                                              □ 

Example 1.21: Let z = (3, 2) and w = (4, 7) be two complex numbers. Then, 

z w+ = (3, 2) + (4, 7) = (3 + 4, 2 + 7) = (7, 5).

Also, 

z w = (3, 2) (4, 7) = (3 4 ( 2) 7, 3 7 + 4 ( 2)) = (26, 13). □ 

As usual, we ought to check that addition and multiplication are commu-
tative, associative, that multiplication distributes over addition, and so 
forth. We shall leave these tasks to the exercises. Instead, we develop some 
of the crucial, and more interesting, properties of our new number system. 

Theorem 1.22: The following properties hold for the number system C.  

a. The number 1 (1, 0) is the multiplicative identity: z z z1 = 1 = for 
any Cz .  

b. The number 0 (0, 0) is the additive identity: z z z0 + = + 0 = for any 
Cz .  

c. Each complex number z x y= ( , ) has an additive inverse z x y= ( , ): 
it holds thatz z z z+ ( ) = ( ) + = 0.  

d. The number i (0, 1) satisfies i i = 1; in other words, i is a square root 
of −1. 

Proof: These are direct calculations, but it is important for us to work out 
these facts. 

First, let z x y= ( , ) be any complex number. Then, 

z x y x y y x x y z1 = (1, 0) ( , ) = (1 0 , 1 + 0) = ( , ) = .

This proves the first assertion. 
For the second, we have 

z x y x y x y z0 + = (0, 0) + ( , ) = (0 + , 0 + ) = ( , ) = .

With z as given, set z x y= ( , ). Then, 
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z z x y x y x x y y+ ( ) = ( , ) + ( , ) = ( + ( ), + ( )) = (0, 0) = 0.

Finally, we calculate 

i i = (0, 1) (0, 1) = (0 0 1 1, 0 1 + 0 1) = ( 1, 0) = 1.

Thus, as asserted, i is a square root of −1.                                          □ 

Proposition 1.23: If Cz z, 0, then there is a complex number w such 
that z w = 1. 

Proof: You might be thinking, “Well, of course, w z= 1/ . But this is nonsense. 
The expression 1/z is not written in the form of a complex number!” 

Write z x y= ( , ) and set 

w
x

x y
y

x y
=

+
,

+
.

2 2 2 2

Since z 0, x y+ 02 2 , so this definition makes sense. Then, it is straight-
forward to verify that z w = 1: 

( )
( )
( )

z w x y

x y x y

= ( , ) ,

= , +

= ,

= (1, 0)
= 1.

x
x y

y

x y

x
x y

y
x y

y
x y

x
x y

x y

x y

yx xy

x y

+ +

+ + + +

+
+

+
+

2 2 2 2

2 2 2 2 2 2 2 2

2 2

2 2 2 2

□ 

Example 1.24: Consider the complex number z i= 2 + 3 . According to the 
proposition, 

w =
2

2 + 3
,

3
2 + 3

=
2

13
,

3
132 2 2 2

will be the multiplicative inverse of z. And, indeed, 

z w = (2, 3)
2

13
,

3
13

=
4

13
+

9
13

,
6

13
+

6
13

=
13
13

, 0 = (1, 0) = 1. □ 
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Of course, we interpret the quotient z/w of complex numbers to mean 
z w(1/ ). This will be a new complex number. 

Thus, every nonzero complex number has a multiplicative inverse. The 
other field axioms for C are easy to check. We conclude that the number 
system C forms a field. You will prove in the exercises that it is not possible 
to order this field. If α is a real number, then we associate α with the 
complex number (α, 0). Thus, we have the natural “embedding” 

R C( , 0) .

In this way, we can think of the real numbers as a subset of the complex 
numbers. In fact, the real fIeld R is a subfield of the complex field C. This 
means that if R, and ( , 0), ( , 0) are the corresponding elements in C, 
then + corresponds to ( + , 0) and corresponds to ( , 0). These 
assertions are explored more thoroughly in the exercises. 

With the remarks in the preceding paragraph, we can sometimes ignore 
the distinction between the real numbers and the complex numbers. For 
example, we can write 

i5

and understand that it means (5, 0) (0, 1) = (0, 5). Likewise, the expression 

5 1

can be interpreted as 5 1 = 5 or as (5, 0) (1, 0) = (5, 0) without any danger 
of ambiguity. 

Theorem 1.25: Every complex number can be written in the form a b i+ , where 
aand bare real numbers. In fact, if Cz x y= ( , ) , then 

z x y i= + .

Proof: With the identification of real numbers as a subfield of the complex 
numbers, we have that 

x y i x y x y x y z+ = ( , 0) + ( , 0) (0, 1) = ( , 0) + (0, ) = ( , ) =

as claimed.                                                                                   □ 

Now that we have constructed the complex number field, we will adhere to 
the usual custom of writing complex numbers as z a b i= + or, more 
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simply, a bi+ . We call a the real part of z, denoted by Re z, and b the ima-
ginary part of z, denoted Im z. We have 

a bi a bi a a b b i( + ) + (˜ + ˜ ) = ( + ˜) + ( + ˜)

and 

a bi a bi a a b b a b a b i( + ) (˜ + ˜ ) = ( ˜ ˜) + ( ˜ + ˜ ) .

Example 1.26: Let z i= 3 7 and w i= 4 + 6 . Then, 

z w i i i
z w i i

i
i

+ = (3 7 ) + (4 + 6 ) = 7 ,
= (3 7 ) (4 + 6 )
= (3 4 ( 7) 6) + (3 6 + ( 7) 4)
= 54 10 . □ 

If z a bi= + is a complex number, then we define its complex conjugate to be 
the number z a bi¯ = . We record some elementary facts about the complex 
conjugate. 

Proposition 1.27: If z, ware complex numbers, then  

1. z w z w+ = ¯ + ¯ ;  
2. z w z w= ¯ ¯ ;  
3. z z z+ ¯ = 2 Re ;  
4. z z i z¯ = 2 Im ;  
5. z z̄ 0, with equality holding if and only if z = 0. 

Proof: Write z a bi w c di= + , = + . Then, 

z w a c b d i
a c b d i
a bi c di

z w

+ = ( + ) + ( + )
= ( + ) ( + )
= ( ) + ( )
= ¯ + ¯ .

This proves (1). Assertions (2), (3), and (4) are proved similarly. 
For (5), notice that 

z z a bi a bi a b¯ = ( + ) ( ) = + 0.2 2

Clearly, equality holds if and only if a b= = 0.                                    □ 
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Example 1.28: Let z i= 2 + 4 and w i= 5 3 . Then, 

z i¯ = 2 4 .

Also, 

z w i i i i= ( 2 + 4 )(5 3 ) = 2 + 26 = 2 26

while 

z w i i i i¯ ¯ = ( 2 4 ) (5 + 3 ) = ( 10 + 12) + ( 6 20) = 2 26 . □ 

The expression z| | is defined to be the nonnegative square root of z z̄: 

z z z x y| | = + ¯ = +2 2

when z x iy= + . It is called the modulus of z and plays the same role for the 
complex field that absolute value plays for the real field. It is the distance of 
z to the origin. The modulus has the following properties: 

Proposition 1.29: If Cz w, then  

1. z z| | = |¯|;
2. z w z w| | = | | | |;
3. z z z z|Re | | |, |Im | | |;
4. z w z w| + | | | + | |;

Proof: Write z a bi w c di= + , = + . Then, (1), (2), (3) are immediate. For (4), 
we calculate that 

z w z w z w
z z z w w z w w
z z w w

z z w w

z z w w

z w

| + | = ( + ) ( + )
= ¯ + ¯ + ¯ + ¯
= | | + 2Re ( ¯ ) + | |

| | + 2| ¯ | + | |

= | | + 2| | | | + | |

= (| | + | |) .

2

2 2

2 2

2 2

2

Taking square roots proves (4).                                                        □ 
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Example 1.30: Let z i= 3 + 4 and w i= 5 + 2 . Then, 

z w| | = 3 + 4 = 25 = 5 and | | = ( 5) + 2 = 29 .2 2 2 2

Also, 

z w i i i| | = |(3 + 4 )( 5 + 2 )| = | 23 14 | = 23 + 14 = 725 = 5 292 2

while 

z w| | | | = 5 29 . □ 

Observe that, if z is real, then z a i= + 0 and the modulus of z equals the 
absolute value of a. Likewise, if z bi= 0 + is pure imaginary, then the 
modulus of z equals the absolute value of b. In particular, the fourth part of 
the proposition reduces, in the real case, to the triangle inequality 

a b a b| + | | | + | |.

If z is any nonzero complex number, then let r z= | |. Now define z r= / . 
We see that is a complex number of modulus 1. Thus, lies on the unit 
circle, so it subtends an angle θ with the positive x-axis. Then, 

i= cos + sin . It is shown in Section 9.3 that 

e i= = cos + sin .i

(Hint: You may verify this formula for yourself by writing out the power 
series for the exponential and writing out the power series for cosine and 
sine.) We often call 

z re= i

the polar form of z. 

Example 1.31: Let us find all cube roots of the complex number z i= 1 + . 
Using the notation of the preceding paragraph, we see that r = ( 1) + 1 =2 2

2 . Thus, z r i= / = 1/ 2 + (1/ 2 ) . Examining Figure 1.1, we see that 
= 3 /4. We have learned then that 
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z i e= 1 + = 2 .i3 /4

For the first cube root w1 of z, we write w se= i
1 , and we solve for s and . 

We know that 

w z( ) =1
3

so 

se e( ) = 2i i3 3 /4

or 

s e e= 2 .i i3 3 3 /4

It is natural then to conclude that 

s = 23

and 

3 = 3 /4.

We conclude that s = 21/6 and = /4. We have found that 

w e= 2 i
1

1/6 /4

is a cube root of z. But, this is not the only cube root! There are three cube 
roots in total. 

We next notice that z can also be written 

z e= 2 .i ((3 /4)+2 )

(Observe that there is some ambiguity built into the polar form of a 
complex number, just as there is ambiguity in the polar coordinates that 

43

FIGURE 1.1 
The polar form of −1 + i.     
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you learned about in calculus. The reason is that the cosine and sine 
functions are 2π-periodic.) 

Now, we repeat the calculation given earlier with this new form for the 
complex number z. We know that 

w z( ) =2
3

so, 

se e( ) = 2i i3 ((3 /4)+2 )

or 

s e e= 2 .i i3 3 11 /4

It is natural then to conclude that 

s = 23

and 

3 = 11 /4.

We conclude that s = 21/6 and = 11 /12. We have found that 

w e= 2 i
2

1/6 11 /12

is a cube root of z. 
Let us do the calculation one more time with z now written as 

z e= 2 i ((3 /4)+4 )

(again we exploit the periodicity of sine and cosine). We know that 

w z( ) =3
3

so, 

se e( ) = 2i i3 ((3 /4)+4 )

or, 
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s e e= 2 .i i3 3 19 /4

It is natural then to conclude that 

s = 23

and 

3 = 19 /4.

We conclude that s = 21/6 and = 19 /12. We have found that 

w e= 2 i
3

1/6 19 /12

is a cube root of z. 
There is no sense to repeat these calculations any further. It is true that 

z e= 2 i (3 /4+6 ). But, performing our calculations for this form of z would 
simply cause us to rediscover w1. We have found three cube roots of z, and 
that is the end of the calculation.                                                      □ 

We conclude this discussion by recording the most important basic fact 
about the complex numbers. Carl Friedrich Gauss gave five proofs of this 
theorem (the Fundamental Theorem of Algebra) in his doctoral dissertation. 

Theorem 1.32: Let p(z) be any polynomial of degree at least 1. Then p has a root 
C such thatp ( ) = 0. 

Using a little algebra, one can in fact show that a polynomial of degree k 
has k roots (counting multiplicity). 

Exercises 
1. Show that, if z is a nonzero complex number, then its multi-

plicative inverse is given by 

w
z
z

=
¯

| |
.

2

2. Refer to Exercise 1. If Cz w, , then prove that z w z w/ = ¯/ ¯ .  
3. Find all cube roots of the complex number 1 + i.  
4. Taking the commutative, associative, and distributive laws of 

addition and multiplication for the real number system for 
granted, establish these laws for the complex numbers. 
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5. Find a complex number z so that e i=z .  
6. Say something about the uniqueness of the complex number z in 

Exercise 5.  
7. Consider the function R C: given by x x i( ) = + 0. Prove 

that respects addition and multiplication in the sense that 
x x x x( + ) = ( ) + ( ) and x x x x( ) = ( ) ( ).  

8. Prove that the field of complex numbers cannot be made into an 
ordered field. (Hint: Since i 0, then either i > 0 or i < 0. Both lead 
to a contradiction.) 

9. Prove that the complex roots of a polynomial with real coeffi-
cients occur in complex conjugate pairs.  

10. Calculate the square roots of i.  
11. Prove that the set of all complex numbers is uncountable.  
12. Prove that any nonzero complex number z has kth roots r1, r2, …, rk. 

That is, prove that there are k of them.  
13. In the complex plane, draw a picture of 

CS z z z= { : | 1| + | + 1| = 2}.

14. Refer to Exercise 9. Show that the kth roots of z all lie on a circle 
centered at the origin, and that they are equally spaced.  

15. Find all the cube roots of 1 + i.  
16. Find all the square roots of −1 − i.  
17. Prove that the set of all complex numbers with rational real part is 

uncountable.  
18. Prove that the set of all complex numbers with both real and 

imaginary parts rational is countable.  
19. Prove that the set Cz z{ : | | = 1} is uncountable.  

*20. In the complex plane, draw a picture of 

CT z z z z z= { : | + ¯| | ¯| = 2}.

*21. Use the Fundamental Theorem of Algebra to prove that any 
polynomial of degree k has k (not necessarily distinct) roots. 
([Hint: Use the Euclidean algorithm.)  

22. Let 0 be a complex number. Prove that α has exactly three cube 
roots—not more and not less. 

74                                                          Real Analysis and Foundations 

ISTUDY



Note  
1 The complex numbers were initially developed so that we would have a number 

system in which all polynomial equations are solvable. One of the reasons, his-
torically, that mathematicians had trouble accepting the complex numbers is that 
they did not believe that they really existed—they were just made up. This is, in 
part, how they came to be called “imaginary” and “complex.” Mathematicians 
had similar trouble accepting negative numbers; for a time, negative numbers 
were called “forbidden.”  
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2 
Sequences  

2.1 Convergence of Sequences 

A sequence of real numbers is a function N R: . We often write the se-
quence as φ(1), φ(2), … or, more simply, as φ1, φ2, …. A sequence of complex 
numbers is defined similarly, with R replaced by C. 

Example 2.1: The function φ( j) = 1/j is a sequence of real numbers. We will 
often write such a sequence as φj = 1/j or as {1, 1/2, 1/3, …} or as j{1/ } j=1. 
The function ψ( j) = cos j + i sin j is a sequence of complex numbers. 

Do not be misled into thinking that a sequence must form a pattern, or be 
given by a formula. Obviously the ones which are given by formulas are 
easy to write down, but they are not typical. For example, the coefficients in 
the decimal expansion of π, {3, 1, 4, 1, 5, 9, 2, 6, 5, …}, fit our definition of 
sequence—but they are not given by any obvious pattern.                    □ 

The most important question about a sequence is whether it converges. We 
define this notion as follows. 

Definition 2.2: A sequence {aj} of real (resp. complex) numbers is said to 
converge to a real (resp. complex) number α if, for each > 0, there is an 
integer N > 0 such that, if j > N, then a| | <j . We call α the limit of the 
sequence {aj}. We write limj→∞ aj = α. We also sometimes write aj → α. 

If a sequence {aj} does not converge then we frequently say that it diverges. 

Example 2.3: Let aj = 1/j, j = 1, 2, …. Then the sequence converges to 0. For 
let > 0. Choose N to be the next integer after 1/ (we use here the 
Archimedean principle). If j > N then 

a a
j N

| 0| = | | =
1

<
1

< ,j j

proving the claim. 
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Let bj = (−1)j, j = 1, 2, …. Then the sequence does not converge. To prove this 
assertion, suppose to the contrary that it does. Suppose that the sequence 
converges to a number α. Let = 1/2. By definition of convergence, there is 
an integer N > 0 such that, if j > N, then b| | < = 1/2j . For such j we 
have 

b b b b b b| | = |( ) + ( )| | | + | |j j j j j j+1 +1 +1

(by the triangle inequality—see the end of Section 1.1). But this last is 

< + = 1.

On the other hand, 

b b| | = |( 1) ( 1) | = 2.j j
j j

+1
+1

The last two lines yield that 2 < 1, a clear contradiction. So the sequence {bj} 
has no limit.                                                                                  □ 

We begin with a few intuitively appealing properties of convergent se-
quences which will be needed later. First, a definition. 

Definition 2.4: A sequence aj is said to be bounded if there is a number M > 0 
such that |aj| ≤ M for every j. 

Now we have 

Proposition 2.5: Let {aj} be a convergent sequence. Then we have:  

• The limit of the sequence is unique.  
• The sequence is bounded. 

Proof: Suppose that the sequence has two limits α and ˜ . Let > 0. Then 
there is an integer N > 0 such that for j > N we have the inequalitye 
a| | < /2j . Likewise, there is an integer Ñ > 0 such that for j N> ˜ we 

have a| ˜| < /2j . 
Let N N N= max{ , ˜ }0 . Then, for j > N0, we have 

a a a a| ˜| = |( ) + ( ˜)| | | + | ˜| < /2 + /2 = .j j j j

Since this inequality holds for any > 0 we have that = ˜ . 
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Next, with α the limit of the sequence and = 1, we choose an integere 
N > 0 such that j > N implies that a| | < = 1j . For such j we have that 

a a a P| | = |( ) + | | | + | | < 1 + | | .j j j

Let Q = max{|a1|, |a2|, …, |aN|}. If j is any natural number then either 
1 ≤ j ≤ N (in which case |aj| ≤ Q) or else j > N (in which case |aj| ≤ P). 

Set M = max{P, Q}. Then |aj| ≤ M for all j, as desired. So the sequence is 
bounded.                                                                                      □ 

The next proposition records some elementary properties of limits of 
sequences. 

Proposition 2.6: Let {aj} be a sequence of real or complex numbers with limit α and 
{bj} be a sequence of real or complex numbers with limit β. Then we have:  

1. If c is a constant then the sequence {c·aj} converges to c·α;  
2. The sequence {aj + bj} converges to α + β;  
3. The sequence aj· bj converges to α·β;  
4. If b 0j for all j and 0 then the sequence aj/bj converges to α/β. 

Proof: For part (1), we may assume that c 0 (for when c = 0 there is 
nothing to prove). Let > 0. Choose an integer N > 0 such that for j > N it 
holds that 

aj
c

| | <
| |

.

For such j we have that 

c a c c a c
c

| | = | | | | < | |
| |

= .j j

This proves the first assertion. 
The proof of part (2) is similar, and we leave it as an exercise. 
For part (3), notice that the sequence {aj} is bounded (by the second part of 

Proposition 2.5): say that a M| |j every j. Let > 0. Choose an integer N > 0 
so that a M| | < /(2 + 2| |)j when j > N. Also choose an integer Ñ > 0
such that b M| | < /(2 + 2| |)j when j N> ˜ . Then for j N N> max { , ˜ }, 
we have that 
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a b a b a

a b a

M

| | = | ( ) + ( )|

| ( )| + | ( )|

< + | |

+
= .

j j j j j

j j j

M M2 + 2 | | 2 + 2 | |

2 2

So the sequence {aj · bj} converges to αβ. 
Part (4) is proved in a similar fashion and we leave the details as an 

exercise.                                                                                       □ 

Remark 2.7: You were probably puzzled by the choice of N and Ñ in the 
proof of part (3) of Proposition 2.6—where did the number M/(2 + 2| |)
come from? The answer of course becomes obvious when we read on 
further in the proof. So the lesson here is that a proof is constructed 
backward: you look to the end of the proof to see what you need to specify 
earlier on. Skill in these matters can come only with practice.                □ 

Example 2.8: Let aj = sin(1/j)/(1/j) and bj = j2/(2j2+j). Then aj → 1 and bj → 
1/2 as j → ∞. Let us say a few words about why this is true. You learned in 
your calculus class that 

x
x

lim
sin

= 1.
x 0

Letting x = 1/j and j → ∞ then yields that 

j
j

lim
sin(1/ )

1/
= 1.

j

For the second limit, write 

b
j

j j
j j

j j j
=

2 +
=

/
(2 + 1)/

=
1

2 + 1/
.j

2

2

2 2

2 2 2

Now it is evident that 

blim =
1
2

.
j

j

From the above we may conclude, using Proposition 2.6, that 
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alim 5 = 5,
j

j

a blim( + ) = 1 +
1
2

=
3
2

,
j

j j

a blim = 1
1
2

=
1
2j

j j

and 

a

b
lim =

1
1/2

= 2.
j

j

j

□ 

When discussing the convergence of a sequence, we often find it incon-
venient to deal with the definition of convergence as given. For this defi-
nition makes reference to the number to which the sequence is supposed to 
converge, and we often do not know this number in advance. Would it not 
be useful to be able to decide whether a series converges without knowing to 
what limit it converges? 

Definition 2.9: Let {aj} be a sequence of real (resp. complex) numbers. We 
say that the sequence satisfies the Cauchy criterion (A. L. Cauchy, 
1789–1857)—more briefly, that the sequence is Cauchy—if, for each > 0, 
there is an integer N > 0 such that if j, k > N then a a| | <j k . 

As you study this definition, you will see that it mandates that the 
elements of the sequence get close together and stay close together. 

Example 2.10: Let aj = 1/j. Of course we know intuitively that this sequence 
converges to 0. But let us, just for practice, verify that the sequence is 
Cauchy. 

Let > 0. By the Archimedean principle, choose a positive integer 
N > 1/ . Then, for j > k > N, we have 

a a j k
j k

jk
j
jk k N

| | = |1/ 1/ | =
| |

< =
1

<
1

< .j k

This shows that the sequence {aj} satisfies the Cauchy criterion.             □ 

Notice that the concept of a sequence being Cauchy simply makes precise 
the notion of the elements of the sequence (i) getting closer together and (ii) 
staying close together. 
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Lemma 2.11: Every Cauchy sequence is bounded. 

Proof: Let = 1 > 0. There is an integer N > 0 such that a a| | < = 1j k

whenever j, k > N. Thus, if j ≥ N + 1, we have 

a a a a

a a a

a K

| | | + ( )|

| | + | |

| | + 1 .

j N j N

N j N

N

+1 +1

+1 +1

+1

Let L = max{|a1|, |a2|, …, |aN|}. If j is any natural number, then either 
1 ≤ j ≤ N, in which case |aj| ≤ L, or else j > N, in which case |aj| ≤ K. 

Set M = max{K, L}. Then, for any j, |aj| ≤ M as required.                  □ 

In what follows we shall use an interesting and not entirely obvious version 
of the triangle inequality. You know the triangle inequality as 

a b a b| + | | | + | |.

But let us instead write 

a a b b a b b a b b a b b| | = |( + ) | = |( + ) + ( )| | + | + | | = | + | + | |.

From this we conclude that 

a b a b| + | | | | |.

A similar argument allows us to analyze |a− b| < c. This means that 

c a b c< <

or 

b c a<

and 

a b c< + .

Hence 

b c a b c< < + .
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Theorem 2.12: Let {aj} be a sequence of real numbers. The sequence is 
Cauchy if and only if it converges to some limit α. 

Proof: First assume that the sequence converges to a limit α. Let > 0. 
Choose, by definition of convergence, an integer N > 0 such that if j > N then 
a j k| | < /2. If , >j N then 

a a a a| | | | + | | <
2

+
2

= .j k j k

So the sequence is Cauchy. 
Conversely, suppose that the sequence is Cauchy. Define  

RS x

x a j

= { :

< for all but finitely many }.j

[Hint: You might find it helpful to think of this set as 

RS x k x a j k= { : there is a positive integer such that < for all }. ]j

By the lemma, the sequence {aj} is bounded by some positive number M. If x 
is a real number less than −M, then x ∈ S, so S is nonempty. Also S is 
bounded above by M. Let α = sup S. Then α is a well-defined real number, 
and we claim that α is the limit of the sequence {aj}. 

To see this, let > 0. Choose an integer N > 0 such that a a| | < /2j k

whenever j, k > N. Notice that this last inequality implies that 

a a j N| | < /2 when + 1j N+1 (2.12.1)  

hence (by the discussion preceding the statement of the theorem) 

a a j N> /2 when + 1.j N+1

Thus a S/2N+1 and it follows that 

a /2.N+1 (2.12.2)  

Line (2.12.1) also shows that 

a a j N< + /2 when + 1.j N+1

Thus a S+ /2N+1 and 
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a + /2.N+1 (2.12.3)  

Combining lines (2.12.2) and (2.12.3) gives 

a| | /2.N+1 (2.12.4)  

But then line (2.12.4) yields, for j > N, that 

a a a a| | | | + | | < /2 + /2 = .j N N j+1 +1

This proves that the sequence {aj} converges to α, as claimed.                □ 

Corollary 2.13: Let {αj} be a sequence of complex numbers. The sequence is Cauchy 
if and only if it is convergent. 

Proof: Write αj = aj + ibj, with aj, bj real. Then {αj} is Cauchy if and only if {aj} 
and {bj} are Cauchy. Also {αj} is convergent to a complex limit α if and only if 
{aj} converges to Re α and {bj} converges to Im α. These observations, 
together with the theorem, prove the corollary.                                   □ 

Definition 2.14: Let {aj} be a sequence of real numbers. The sequence is said 
to be increasing if a1 ≤ a2 ≤ …. It is decreasing if a1 ≥ a2 ≥ …. 

A sequence is said to be monotone if it is either increasing or decreasing. 

Example 2.15: Let aj = j/( j + 1). We see that 

a a< + 1j j

just because this is the same as 

j
j

j
j+ 1

<
+ 1
+ 2

or 

j j j( + 2) < ( + 1)2

or 

j j j j+ 2 < + 2 + 12 2

and that is definitely true. Hence the sequence {aj} is increasing. In fact it 
increases to 1. 

On the other hand, let bj = ( j + 1)/j. We see that 
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b b>j j+1

just because this is the same as 

j
j

j
j

+ 1
>

+ 2
+ 1

or 

j j j( + 1) > ( + 2)2

or 

j j j j+ 2 + 1 > + 22 2

and that is definitely true. Hence the sequence {bj} is decreasing. Indeed it 
decreases to 1.                                                                               □ 

Proposition 2.16: If {aj} is an increasing sequence which is bounded above—aj ≤ M 
< ∞ for all j—then {aj} is convergent. If {bj} is a decreasing sequence which is 
bounded below—bj ≥ K > −∞ for all j—then {bj} is convergent. 

Proof: Let > 0. Let α = sup aj < ∞. By definition of supremum, there is an 
integer N so that a| | <N . Then, if N + 1, we have a aN hence 
a| | < . Thus the sequence converges to α. 

The proof for decreasing sequences is similar and we omit it.             □ 

Example 2.17: Let a = 21 and set a a j= 2 + for 1j j+1 . You can verify 
that {aj} is increasing and bounded above (by 4 for example). What is its 
limit (which is guaranteed to exist by the proposition)?                        □ 

A proof very similar to that of the proposition gives the following useful 
fact: 

Corollary 2.18: Let S be a nonempty set of real numbers which is bounded above 
and below. Let β be its supremum and α its infimum. If > 0 then there are s, t ∈ S 
such that s| | < and t| | < . 

Proof: This is a restatement of the proof of the proposition.                  □ 

Example 2.19: Let S be the set R(0, 2) . Then the supremum of S is 2. 
And, if > 0 is small, then the point = 2 /2 lies in the set. Note that 

| 2| < . 
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Likewise, the infimum of S is 0. And, if > 0 is small, then the point 
= 0 + /2 lies in the set. Note that | 0| < .                               □ 

We conclude the section by recording one of the most useful results for 
calculating the limit of a sequence: 

Proposition 2.20: (The Pinching Principle) Let {aj}, {bj}, and {cj} be sequences 
of real numbers satisfying 

a b cj j j

for every j sufficiently large. If 

a clim = lim =
j

j
j

j

for some real number α, then 

blim = .
j

j

Proof: This proof is requested of you in the exercises.                          □ 

Example 2.21: Define 

a
j j
j

=
sin cos 2

.j 2

Then 

a
j

0 | |
1

.j 2

It is clear that 

lim 0 = 0
j

and 

j
lim

1
= 0.

j 2

Therefore 

alim| | = 0
j

j
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so that 

alim = 0.
j

j
□ 

*********************************************************** 

Augustin-Louis Cauchy 

Baron Augustin-Louis Cauchy (1789–1857) was a French mathematician, 
engineer, and physicist who made pioneering contributions to several branches 
of mathematics, including mathematical analysis and continuum mechanics. He 
almost singlehandedly founded complex analysis and the study of permutation 
groups in abstract algebra. 

Hans Freudenthal stated: “More concepts and theorems have been named for 
Cauchy than for any other mathematician (in elasticity alone there are sixteen 
concepts and theorems named for Cauchy).” Cauchy was a prolific writer; he 
wrote approximately eight hundred research articles and five complete textbooks 
on a variety of topics in the fields of mathematics and mathematical physics. 

Cauchy had two brothers: Alexandre Laurent Cauchy, who became a 
president of a division of the court of appeal in 1847 and a judge of the court 
of cassation in 1849, and Eugene Franc¸ois Cauchy, a publicist who also wrote 
several mathematical works. 

Cauchy married Aloise de Bure in 1818. She was a close relative of the 
publisher who published most of Cauchy’s works. Cauchy’s father was a high 
official in the Parisian Police of the Ancien Regime, but lost this position due to 
the French Revolution, which broke out one month before Augustin-Louis was 
born. The Cauchy family survived the revolution and the following Reign of 
Terror by escaping to Arcueil. After the execution of Robespierre, it was safe for 
the family to return to Paris. When Napoleon Bonaparte came to power, Louis- 
Franc¸ois Cauchy was further promoted, and became Secretary-General of the 
Senate, working directly under Laplace (who is now better known for his work 
on mathematical physics). The famous mathematician Lagrange was also a 
friend of the Cauchy family. 

On Lagrange’s advice, Augustin-Louis was enrolled in the école Centrale du 
Panthéon, the best secondary school of Paris at that time, in the fall of 1802. 
Cauchy did very well in this new school. In spite of these successes, Augustin- 
Louis chose an engineering career, and prepared himself for the entrance 
examination to the école Polytechnique. 

In 1805, he placed second of 293 applicants on this exam and was admitted. 
The school functioned under military discipline, which caused the young and 
pious Cauchy some problems in adapting. Nevertheless, he finished the 

Sequences                                                                                     87 

ISTUDY



Polytechnique in 1807, at the age of 18, and went on to the École des Ponts et 
Chaussées (School for Bridges and Roads). 

After finishing school in 1810, Cauchy accepted a job as a junior engineer in 
Cherbourg, where Napoleon intended to build a naval base. Although he had an 
extremely busy managerial job, he still found time to prepare three mathema-
tical manuscripts, which he submitted to the Premi´ere Classe (First Class) of the 
Institut de France. 

In September 1812, now 23 years old, Cauchy returned to Paris after becoming 
ill from overwork. In Paris, he would have a much better chance to find a 
mathematics related position. The next three years Augustin-Louis was mainly 
on unpaid sick leave, and spent his time quite fruitfully, working on mathe-
matics (on the related topics of symmetric functions, the symmetric group and 
the theory of higher-order algebraic equations). 

In 1815 Napoleon was defeated at Waterloo, and the newly installed Bourbon 
king Louis XVIII took the restoration in hand. The Acadmie des Sciences was re- 
established in March 1816; Lazare Carnot and Gaspard Monge were removed 
from this Academy for political reasons, and the king appointed Cauchy to take 
the place of one of them. 

In November 1815, Louis Poinsot, who was an associate professor at the cole 
Polytechnique, asked to be exempted from his teaching duties for health reasons. 
Cauchy was by then a rising mathematical star, who certainly merited a professor-
ship. One of his great successes at that time was the proof of Fermat’s polygonal 
number theorem. However, the fact that Cauchy was known to be very loyal to the 
Bourbons doubtless also helped him in becoming the successor of Poinsot. In 1816, 
this Bonapartist, non-religious school was reorganized, and several liberal 
professors were fired; the reactionary Cauchy was promoted to full professor. 

When Cauchy was 28 years old, he was still living with his parents. His father 
found it high time for his son to marry; he found him a suitable bride, Aloise de 
Bure, five years his junior. In 1819 the couple’s first daughter, Marie Frano̧ise 
Alicia, was born, and in 1823 the second and last daughter, Marie Mathilde. 

The conservative political climate that lasted until 1830 suited Cauchy 
perfectly. He received cross-appointments at the Collége de France, and the 
Faculté des Sciences de Paris. 

In 1830 the July revolution marked a turning point in Cauchy’s life, and a 
break in his mathematical productivity. Cauchy, shaken by the fall of the 
government, and moved by a deep hatred of the liberals who were taking 
power, left Paris to go abroad, leaving his family behind. In 1831 Cauchy went to 
the Italian city of Turin, and after some time there, he accepted an offer from the 
King of Sardinia (who ruled Turin and the surrounding Piedmont region) for a 
chair of theoretical physics, which was created especially for him. 

In August 1833 Cauchy left Turin for Prague, to become the science tutor of 
the thirteen-year-old Duke of Bordeaux Henri d’Artois (1820–1883), the exiled 
Crown Prince and grandson of Charles X. As a professor of the Ecolé 
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Polytechnique, Cauchy had been a notoriously bad lecturer, assuming levels of 
understanding that only a few of his best students could reach, and cramming 
his allotted time with too much material. 

During his civil engineering days, Cauchy once had been briefly in charge of 
repairing a few of the Parisian sewers, and he made the mistake of mentioning this 
to his pupil; with great malice, the young Duke went about saying Mister Cauchy 
started his career in the sewers of Paris. The only good that came out of this 
episode was Cauchy’s promotion to baron, a title by which Cauchy set great store. 

Cauchy returned to Paris and his position at the Academy of Sciences late in 
1838.[8] He could not regain his teaching positions, because he still refused to 
swear an oath of allegiance. 

IIn November 1839 Cauchy was elected to the Bureau des Longitudes, and 
discovered immediately that the matter of the oath was not so easily dispensed 
with. He was not a formal member of the Bureau, did not receive payment, 
could not participate in meetings, and could not submit papers. Still Cauchy 
refused to take any oaths. 

After losing control of the public education system, the Catholic Church 
sought to establish its own branch of education and found in Cauchy a staunch 
and illustrious ally. When a chair of mathematics became vacant at the Collége 
de France in 1843, Cauchy applied for it, but received just three of 45 votes. 

Not unexpectedly, the idea came up in bureaucratic circles that it would be 
useful to again require a loyalty oath from all state functionaries, including 
university professors. This time a cabinet minister was able to convince the 
Emperor to exempt Cauchy from the oath. Cauchy remained a professor at the 
University until his death at the age of 67. He received the Last Rites and died of 
a bronchial condition at 4 a.m. on 23 May 1857. 

His name is one of the 72 names inscribed on the Eiffel Tower.   

*********************************************************** 

Exercises  
1. Suppose a sequence {aj} has the property that, for every natural 

number N, there is a jN such that ajN = ajN+1 = ⋯ = ajN+N. In other 
words, the sequence has arbitrarily long repetitive strings. Does it 
follow that the sequence converges?  

2. Let α be an irrational real number and let aj be a sequence of 
rational numbers converging to α. Suppose that each aj is a frac-
tion expressed in lowest terms: aj = αj/βj. Prove that the βj are 
unbounded. 

3. Let {aj} be a sequence of rational numbers all of which have de-
nominator a power of 2. What are the possible limits of such a 
sequence? 
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4. Redo Exercise 3 with the additional hypothesis that all of 
the denominators are less than or equal to 210.  

5. Use the integral of 1/(1 + t2), together with Riemann sums (ideas 
which you know from calculus, and which we shall treat rigorously 
later in the book), to develop a scheme for calculating the digits of π.  

6. Prove Corollary 2.18.  
7. Prove Proposition 2.20.  
8. Prove parts (2) and (4) of Proposition 2.6.  
9. Give an example of a decreasing sequence that converges to π.  

10. Prove the following result, which we have used without comment 
in the text: Let S be a set of real numbers which is bounded above 
and let t = supS. For any > 0 there is an element s ∈ S such 
that t s t< . Remark: Notice that this result makes good 
intuitive sense: the elements of S should become arbitrarily close 
to the supremum t, otherwise there would be enough room to 
decrease the value of t and make the supremum even smaller.) 
Formulate and prove a similar result for the infimum.  

11. Let {aj} be a sequence of real or complex numbers. Suppose that 
every subsequence has itself a subsequence which converges to a 
given number α. Prove that the full sequence converges to α.  

*12. Let {aj} be a sequence of complex numbers. Suppose that, for 
every pair of integers N > M > 0, it holds that a a| | +M M+1
a a a a| | + +| | 1M M N N+1 +2 1 . Prove that {aj} converges.  

13. Let a1, a2 > 0 and for j ≥ 3 define aj = aj−1 + aj−2. Show that this 
sequence cannot converge to a finite limit.  

14. Give an example of a sequence {aj} which diverges but so that a{ }j
2

and a{ }j
4 converge.  

15. Suppose that {aj} is a sequence of real numbers such that a{ }j
2

converges and a{ }j
3 converges. Does it follow that {aj} converges? 

2.2 Subsequences 

Let {aj} be a given sequence. If 

j j0 < < <1 2

are positive integers then the function 

k ajk
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is called a subsequence of the given sequence. We usually write the sub-
sequence as 

a a{ } or { }.jk k jk=1

Example 2.22: Consider the sequence 

{2 } = {2, 4, 8, …}.j

Then the sequence 

{2 } = {4, 16, 64, …}k2 (2.22.1)  

is a subsequence. Notice that the subsequence contains a subcollection of 
elements of the original sequence in the same order. In this example, jk = 2k. 
Another subsequence is 

{2 } = {4, 16, 256, …}.k(2 ) (2.22.2)  

In this instance, it holds that jk = 2k. Notice that this new subsequence is in 
fact a subsequence of the first subsequence (2.22.1). That is, it is a sub- 
subsequence of the original sequence {2j}.                                          □ 

Proposition 2.23: If {aj} is a convergent sequence with limit α, then every 
subsequence converges to the limit α. 

Conversely, if a sequence {bj} has the property that each of its subsequences is 
convergent, then {bj} itself is convergent. 

Proof: Assume {aj} is convergent to a limit α, and let {ajk} be a subsequence. Let 
> 0 and choose N > 0 such that a| | <j whenever j > N. Now if k > N, 

then jk > N hence a| | <jk . Therefore, by definition, the subsequence {ajk} 
also converges to α. 

The converse is trivial, simply because the sequence is a subsequence of 
itself.                                                                                           □ 

Now we present one of the most fundamental theorems of basic real ana-
lysis (due to B. Bolzano, 1781–1848, and K. Weierstrass, 1815–1897). 

Theorem 2.24: (Bolzano–Weierstrass) Let {aj} be a bounded sequence in R. Then 
there is a subsequence which converges. 

Proof: Suppose that |aj| ≤ M for every j. We may assume that M > 0. It is 
convenient to formulate our hypothesis as aj ∈ [−M, M] for every j. 
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One of the two intervals [−M, 0] and [0, M] must contain infinitely many 
elements of the sequence. Assume that [0, M] does. Choose aj1 to be one of 
the infinitely many sequence elements in [0, M]. 

Next, one of the intervals [0, M/2] and [M/2, M] must contain infinitely 
many elements of the sequence. Suppose that it is [0, M/2]. Choose an 
element aj2, with j2 > j1, from [0, M/2]. Continue in this fashion, halving the 
interval, choosing a half with infinitely many sequence elements, and 
selecting the next subsequential element from that half. 

Let us analyze the resulting subsequence. Notice that |aj1 −aj2| ≤ M since 
both elements belong to the interval [0, M]. Likewise, a a M| | /2j j2 3 since 
both elements belong to [0, M/2]. In general, |ajk −ajk+1| ≤ 2−k+1. M for each 

Nk . 
Now let > 0. Choose an integer N > 0 such that M2 < /(4 )N . Then, for 

any m > l > N we have 

a a a a a a a a

a a a a a a

M M M
M

M

M

M
M

| | = |( ) + ( ) + … + ( )|

| | + | | + … +| |

2 + 2 + + 2
= (2 + 2 + + 2 )

= ((2 2 ) + (2 2 ) + + (2 2 ))

= (2 2 )

< 2
< 4
= .

jl jm jl jl jl jl jm jm

jl jl jl jl jm jm

l l m

l l m

l l l l m m

l m

l

M

+1 +1 +2 1

+1 +1 +2 1

+1 +2

+1 +2

+2 +1 +1 +3 +2

+2 +2

+2

4

We see that the subsequence {ajk} is Cauchy, so it converges.                 □ 

Remark 2.25: The Bolzano–Weierstrass theorem is a generalization of our 
result from the last section about increasing sequences which are bounded 
above (resp. decreasing sequences which are bounded below). For such a 
sequence is surely bounded above and below (why?). So it has a convergent 
subsequence. And thus it follows easily that the entire sequence converges. 
Details are left as an exercise. 

It is a fact—which you can verify for yourself—that any real sequence has 
a monotone subsequence. This observation implies Bolzano–Weierstrass. □ 

Example 2.26: In this text we have not yet given a rigorous definition of 
the function sinx (see Section 9.3). However, just for the moment, use 
the definition you learned in calculus class and consider the sequence 

j{ sin }j=1. Notice that the sequence is bounded in absolute value by 1. The 
Bolzano–Weierstrass theorem guarantees that there is a convergent 
subsequence, even though it would be very difficult to say precisely 
what that convergent subsequence is.                                             □ 
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Corollary 2.27: Let {αj} be a bounded sequence of complex numbers. Then there is a 
convergent subsequence. 

Proof: Write αj = aj + ibj, with Ra b,j j . The fact that {αj} is bounded implies 
that {aj} is bounded. By the Bolzano–Weierstrass theorem, there is a 
convergent subsequence {ajk}. 

Now the sequence {bjk} is bounded. So it has a convergent subsequence 
b{ }jkl . Then the sequence { }jkl is convergent, and is a subsequence of the 

original sequence {αj}.                                                                     □ 

In earlier parts of this chapter we have discussed sequences that converge to 
a finite number. Such a sequence is, by Proposition 2.5, bounded. However, 
in some mathematical contexts, it is useful to speak of a sequence “diver-
ging1 to infinity.” We now will treat briefly the idea of “divergence to 
infinity.” 

Definition 2.28: We say that a sequence {aj} of real numbers diverges to +∞ if, 
for every M > 0, there is an integer N > 0 such that aj > M whenever j > N. 
We write aj → +∞. 

We say that {aj} diverges to −∞ if, for every K > 0, there is an integer N > 0 
such that aj < −K whenever j > N. We write aj → −∞. 

Remark 2.29: Notice that the statement aj → +∞ means that we can make aj 

become arbitrarily large and positive and stay large and positive just by 
making j large enough. 

Likewise, the statement aj → ‒∞ means that we can force aj to be arbitrarily 
large and negative, and stay large and negative, just by making j large 
enough.                                                                                                  □ 

Example 2.30: The sequence {j2} diverges to +∞. The sequence {−2j + 18} 
diverges to −∞. The sequence {j +(−1)j · j} has no infinite limit and no finite 
limit. However, the subsequence {0, 0, 0, …} converges to 0 and the 
subsequence {4, 8, 12 …} diverges to +∞.                                           □ 

With the new language provided by Definition 2.28, we may generalize 
Proposition 2.16: 

Proposition 2.31: Let {aj} be an increasing sequence of real numbers. Then the 
sequence has a limit—either a finite number or +∞. 

Let {bj} be a decreasing sequence of real numbers. Then the sequence has a limit— 
either a finite number or −∞.                                                               □ 

In the same spirit as the last definition, we also have the following: 
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Definition 2.32: If S is a set of real numbers which is not bounded above, we 
say that its supremum (or least upper bound) is +∞. 

If T is a set of real numbers which is not bounded below, then we say that 
its infimum (or greatest lower bound) is −∞.                                      □ 

Exercises 
1. Use the Bolzano–Weierstrass theorem to show that every de-

creasing sequence that is bounded below converges.  
2. Give an example of a sequence of rational numbers with the 

property that, for any real number α, or for α = +∞ or α = −∞, there 
is a subsequence approaching α.  

3. Prove that if {aj} has a subsequence diverging to ±∞ then {aj} 
cannot converge.  

4. Let x1 = 2. For j ≥ 1, set 

x x
x

x
=

2

2
.j j

j

j
+1

2

Show that the sequence {xj} is decreasing and bounded below. What 
is its limit?  

5. The sequence 

a j j= (1 + 1/2 + 1/3+ +1/ ) logj

is a famous example. It is known to converge, but nobody knows 
whether the limit is rational or irrational. Draw a picture which 
shows that the sequence converges.  

6. Provide the details of the proof of Proposition 2.31.  
*7. Provide the details of the assertion that the sequence {cos j} is 

dense in the interval [−1, 1].  
*8. Let n be a positive integer. Consider n, n + 1, … modulo π. This 

means that you subtract from each number the greatest multiple 
of π that does not exceed it. Prove that this collection of numbers 
is dense in [0, π]. That is, the numbers get arbitrarly close to any 
element of this interval.  

*9. Let S = {0, 1, 1/2, 1/3, 1/4, …}. Give an example of a sequence {aj} 
with the property that, for each s ∈ S, there is a subsequence con-
verging to s, but no subsequence converges to any limit not in S. 

*10. Give another proof of the Bolzano–Weierstrass theorem as fol-
lows. If {aj} is a bounded sequence let bj = inf{aj, aj

+1, …}. Then 
each bj is finite, b1 ≤ b2 ≤ …, and {bj} is bounded above. Now use 
Proposition 2.16. 
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*11. Prove that the sequence 

a
m

m
=

sin
N

m

N

=1

converges.  
*12. Prove that the sequence  

a
m

m
=

sin
N

m

N

=1

2

diverges.  
13. Let {aj} be a sequence of real numbers with the property that every 

subsequence has itself a subsequence that converges. Prove that 
the original sequence {aj} converges.  

14. Suppose that {aj} is a sequence of real numbers with the property 
{sin aj} converges. Does it follow that {aj} converges? 

2.3 Lim sup and Lim inf 

Convergent sequences are useful objects, but the unfortunate truth is that 
most sequences do not converge. Nevertheless, we would like to have a 
language for discussing the asymptotic behavior of any real sequence {aj} as 
j → ∞. That is the purpose of the concepts of “limit superior” (or “upper 
limit”) and “limit inferior” (or “lower limit”). 

Definition 2.33: Let {aj} be a sequence of real numbers. For each j let 

A a a a= inf{ , , , ...}.j j j j+1 +2

Then {Aj} is an increasing sequence (since, as j becomes large, we are taking 
the infimum of a smaller set of numbers), so it has a limit (either a finite 
limit or ±∞). We define the limit infimum of {aj} to be 

a Alim inf = lim .j
j

j

It is common to refer to this number as the lim inf of the sequence. 
Likewise, let 
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B a a a= sup{ , , , }.j j j j+1 +2

Then {Bj} is a decreasing sequence (since, as j becomes large, we are taking 
the supremum of a smaller set of numbers), so it has a limit (either a finite 
limit of ±∞). We define the limit supremum of {aj} to be 

a Blim sup = lim .j
j

j

It is common to refer to this number as the limsup of the sequence.       □ 

Notice that the lim sup or lim inf of a sequence can be ±∞. 

Remark 2.34: What is the intuitive content of this definition? For each j, Aj 

picks out the greatest lower bound of the sequence in the jth position or 
later. So the sequence {Aj} should tend to the smallest possible limit of any 
subsequence of {aj}. 

Likewise, for each j, Bj picks out the least upper bound of the sequence in 
the jth position or later. So the sequence {Bj} should tend to the greatest 
possible limit of any subsequence of {aj}. We shall make these remarks more 
precise in Proposition 2.36 below. 

Notice that it is implicit in the definition that every real sequence has a 
limit supremum and a limit infimum. 

Example 2.35: Consider the sequence {(−1) j}. Of course this sequence does 
not converge. Let us calculate its lim sup and lim inf. 

Referring to the definition, we have that Aj = −1 for every j. So 

lim inf( 1) = lim( 1) = 1.j

Similarly, Bj = +1 for every j. Therefore 

lim sup( 1) = lim(+1) = +1.j

As we predicted in the remark, the lim inf is the least subsequential limit, 
and the lim sup is the greatest subsequential limit.                              □ 

Now let us prove the characterizing property of lim sup and lim inf to 
which we have been alluding. 

Proposition 2.36: Let {aj} be a sequence of real numbers. Let β = lim supj→∞ aj 

and α = lim infj→∞ aj. If a{ }j is any subsequence of the given sequence then 
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a alim inf lim sup .j j

Moreover, there is a subsequence {ajk} such that 

alim =
k

jk

and another sequence {ajm} such that 

alim = .
k

jm

Proof: For simplicity in this proof we assume that the lim sup and lim inf 
are finite. The case of infinite lim sups and lim infs is treated in the exercises. 

We begin by considering the lim inf. There is a j1 ≥ 1 such that |A1−aj1| < 2−1. 
We choose j1 to be as small as possible. Next, we choose j2, necessarily greater 
than j1, such that j2 is as small as possible and |aj2 − A2| < 2−2. Continuing in this 
fashion, we select jk > jk−1 such that |ajk − Ak|<2−k, etc. 

Recall that Ak → α = lim infj→∞ aj. Now fix > 0. If N is an integer so large 
that k > N implies that A| | < /2k and also that 2 < /2N then, for such 
k, we have 

a a A A| | | | + | |

< 2 +

< +
= .

jk jk k k

k
2

2 2

Thus the subsequence {ajk} converges to α, the lim inf of the given sequence. 
A similar construction gives a (different) subsequence {ank} converging to β, 
the lim sup of the given sequence. 

Now let a{ }j be any subsequence of the sequence {aj}. Let β∗ be the lim sup 
of this subsequence. Then, by the first part of the proof, there is a 
subsequence a{ }j m such that 

alim = *
m

j m

But a Bj jm m by the very definition of the Bs. Thus 

a B* = lim lim =
m

j
m

jm m

or 

alim sup ,j
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as claimed. A similar argument shows that 

alim inf .
l

jl

This completes the proof of the proposition.                                       □ 

Corollary 2.37: If {aj} is a sequence and {ajk} is a convergent subsequence then 

a a alim inf lim lim inf .
l

j
k

jk
j

j

Example 2.38: Consider the sequence 

a
j

j j
=

( 1)
+

.j

j 2

2

It is helpful to rewrite this sequence as 

a
j

j j
= ( 1) (1

+
).j

j
2

Then, looking at the terms of even index, it is easy to see that the lim sup of 
this sequence is +1. And, looking at the terms of odd index, it is easy to see 
that the lim inf of this sequence is −1. 

Every convergent subsequence of {aj} will have limit lying between −1 
and +1.                                                                                        □ 

We close this section with a fact that is analogous to one for the su-
premum and infimum. Its proof is analogous to arguments we have seen 
before. 

Proposition 2.39: Let {aj} be a sequence and set lim sup aj = β and lim inf aj = α. 
Assume that α, β are finite real numbers. Let > 0. Then there are arbitrarily large 
j such that a >j . Also there are arbitrarily large k such that a < +k . 

Example 2.40: Consider the sequence {aj} in the last example. Let > 0. 
Choose j even so that j > (1 )/ . Then 

j
j j+

> 1 .
2

2
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Now again choose > 0. Choose j odd so that j > (1 )/ . Then 

j
j j+

< 1 + .
2

2
□ 

Exercises  
1. Consider {aj} both as a sequence and as a set. How are the lim sup 

and the sup related? How are the lim inf and the inf related? Give 
examples.  

2. Let {aj} be a sequence of positive numbers. How are the lim sup 
and lim inf of {aj} related to the lim sup and lim inf of {1/aj}?  

3. How are the lim sup and lim inf of {aj} related to the lim sup and 
lim inf of {−aj}?  

4. Let {aj} be a real sequence. Prove that if 

a alim inf = lim supj j

then the sequence {aj} converges. Prove the converse as well.  
*5. What is the lim sup of the sequence {sin j}?  
6. What is the lim inf of the sequence in Exercise 5?  
7. Let a < b be real numbers. Give an example of a real sequence 

whose lim sup is b and whose lim inf is a.  
8. Explain why we can make no sense of the concepts of lim sup and 

lim inf for complex sequences.  
9. Let {aj}, {bj} be sequences of real numbers. Prove the inequality lim 

sup(aj + bj) ≤ lim sub aj + lim sub bj. How are the lim infs related? 
How is the quantity (lim sub aj) · (lim sub bj) related to lim sup(aj · bj)? 
How are the lim infs related?  

10. Give an example of a sequence whose lim sup and lim inf differ 
by 1.  

11. Prove Corollary 2.37.  
12. Prove Proposition 2.39.  
13. Prove a version of Proposition 2.36 when the indicated lim sup 

and/or lim inf are ±∞.  
14. Prove a version of Proposition 2.39. when the indicated limsup 

and/or liminf are ±∞.  
*15. Find the lim sup and lim inf of the sequences 

j j{| sin | } and {| cos | }.j jsin cos
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16. If the liminf of a sequence is precisely 1 less than the limsup of 
that sequence, then what does this tell you about the sequence? 

2.4 Some Special Sequences 

We often obtain information about a new sequence by comparison with a 
sequence that we already know. Thus it is well to have a catalogue of 
fundamental sequences which provide a basis for comparison. 

Example 2.41: Fix a real number a. The sequence {aj} is called a power sequence 
If ‒1 < a < 1 then the sequence converges to 0. If a = 1 then the sequence is a 
constant sequence and converges to 1. If a > 1 then the sequence diverges to 
+∞. Finally, if a ≤ −1 then the sequence diverges.                                      □ 

Recall that, in Section 1.1, we discussed the existence of nth roots of positive 
real numbers. If α > 0, Zm , and Nn then we may define 

= ( ) .m n m n/ 1/

Thus we may talk about rational powers of a positive number. Next, if 
R then we may define 

Qq q= sup{ : , < }.q

Thus we can define any real power of a positive real number. The exercises 
ask you to verify several basic properties of these exponentials. 

Lemma 2.42: If α > 1 is a real number and β > 0 then αβ> 1. 

Proof: Let q be a positive rational number which is less than β. Suppose that 
q = m/n, with m, n integers. It is obvious that αm > 1 and hence that (αm)1/n > 1. 
Since αβ majorizes this last quantity, we are done.                                    □ 

Example 2.43: Fix a real number α and consider the sequence {jα}. If α > 0 
then it is easy to see that jα → +∞: to verify this assertion fix M > 0 and take 
the number N to be the first integer after M1/α. 

If α = 0 then jα is a constant sequence, identically equal to 1. 
If α < 0 then jα = 1/j−α. The denominator of this last expression tends to +∞ 

hence the sequence jα tends to 0.                                                      □ 
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Example 2.44: The sequence {j1/j} converges to 1. In fact, consider the 
expressions αj = j1/j − 1 > 0. We have that 

j
j j

= ( + 1)
( 1)

2
( ) ,j

j
j

2

(the latter being just one term from the binomial expansion). Thus 

j0 < 2/( 1)j

as long as j ≥ 2. It follows that αj → 0 or j1/j → 1.                                □ 

Example 2.45: Let α be a positive real number. Then the sequence α1/j 

converges to 1. To see this, first note that the case α = 1 is trivial, and the case 
α > 1 implies the case α < 1 (by taking reciprocals). So we concentrate on α > 1. 
But then we have 

j1 < <j j1/ 1/

when j > α. Since j1/j tends to 1, Proposition 2.20 applies and the proof is 
complete.                                                                                                                   □ 

Example 2.46: Let λ > 1 and let α be real. Then the sequence 

j
j

j=1

converges to 0. 
To see this, fix an integer k > α and consider j > 2k. [Notice that k is fixed 

once and for all but j will be allowed to tend to +∞ at the appropriate 
moment.] Writing λ = 1 + µ, µ > 0, we have that 

j j j j k
k k k

= (1 + ) >
( 1)( 2) ( + 1)

( 1)( 2) 2 1
1 . .j j j k k

Of course this comes from picking out the kth term of the binomial 
expansion for (1 + μ)j. Notice that, since j > 2k, then each of the expressions 
j, ( j − 1), … ( j − k + 1) in the numerator on the right exceeds j/2. Thus 

j
k

>
2 !

j
k

k
k
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and 

j0 < < = .j k
j

j k2 ! 2 !
j

k

k k

k k

k

Since α − k < 0, the right side tends to 0 as j → ∞.                               □ 

Example 2.47: The sequence 

j
1 +

1
j

converges. In fact it is increasing and bounded above. Use the Binomial 
Expansion to prove this assertion. The limit of the sequence is the number 
that we shall later call e (in honor of Leonhard Euler, 1707–1783, who first 
studied it in detail). We shall study this sequence later in the book.       □ 

Example 2.48: The sequence 

j
1

1
j

converges to 1/e, where the definition of e is given in the last example. More 
generally, the sequence 

x
j

1 +
j

converges to ex (here ex is defined as in the discussion following 
Example 2.41 above).                                                                      □ 

Exercises  
1. Let α be a positive real number and let p/q = m/n be two different 

representations of the same rational number r. Prove that 

( ) = ( ) .m n p q1/ 1/

Also prove that 

( ) = ( ) .n m m n1/ 1/

102                                                         Real Analysis and Foundations 

ISTUDY



If β is another positive real and γ is any real then prove that 

( · ) = · .

2. Discuss the convergence of the sequence j{(1/ ) }j j
1/

=1.  
3. Discuss convergence or divergence of the sequence {[log j]1/j}.  
4. Discuss convergence or divergence of the sequence {[2 ] }j 1/2j

.  
5. Discuss the convergence of the sequence j j{( )/(2 )!}j

j=2.  
6. Prove that the exponential, as defined in this section, satisfies 

a a a a a( ) = and = .b c bc b c b c+

*7. Refer to Exercise 5 in Section 2.2. Consider the sequence given by  

a
j

j= 1 +
1
2

+
1
3

+ +
1

log .j

Then {aj} converges to a limit γ. This number was first studied by Euler. 
It arises in many different contexts in analysis and number theory. 
As a challenge problem, show that 

a
C
j

| |j

for some universal constant C > 0. It is not known whether γ is ra-
tional or irrational.  

*8. Give a recursive definition of the Fibonacci sequence. Find a 
generating function for the Fibonacci sequence and use it to de-
rive an explicit formula for the nth term of the sequence.  

9. A sequence is defined by the rule a0 = 2, a1 = 1, and aj = 3aj−1 − aj−2. 
Find a formula for aj.  

10. A sequence is defined by the rule a0 = 4, a1 = −1, and aj = −aj−1 + 
2aj−2. Find a formula for aj.  

*11. Consider the sequence 

a
j

= 1 +
1
1

1 +
1
2

1 +
1
3

… .. 1 +
1

.j 2 2 2 2

Discuss convergence and divergence. 

Sequences                                                                                    103 

ISTUDY



*12. Prove that  

x
j

1 +
j

converges to ex for any real number x. 
*13. Give an example of a sequence of rational numbers that con-

verges to π. 

Note  
1 Some books say “converging to infinity,” but this terminology can be confusing.  
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3 
Series of Numbers  

3.1 Convergence of Series 

In this section we will use standard summation notation: 

a a a a+ + + .
j m

n

j m m n
=

+1

A series is an infinite sum. One of the most effective ways to handle an 
infinite process in mathematics is with a limit. This consideration leads to 
the following definition: 

Definition 3.1: The formal expression 

a ,
j

j
=1

where the ajs are real or complex numbers, is called a series. For N = 1, 2, 3, …, 
the expression 

S a a a a= = + + …N
j

N

j N
=1

1 2

is called the Nth partial sum of the series. In case 

Slim
N

N

exists and is finite we say that the series converges. The limit of the partial 
sums is called the sum of the series. If the series does not converge, then we 
say that the series diverges. 
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Notice that the question of convergence of a series, which should be 
thought of as an addition process, reduces to a question about the sequence of 
partial sums. 

Example 3.2: Consider the series 

2 .
j

j

=1

The Nth partial sum for this series is 

S = 2 + 2 + + 2 .N
N1 2

In order to determine whether the sequence {SN} has a limit, we rewrite 
SN as 

S = (2 2 ) + (2 2 ) + …

(2 2 ).
N

N N

0 1 1 2

+1

The expression on the right of the last equation telescopes (i.e., successive 
pairs of terms cancel) and we find that 

S = 2 2 .N
N0

Thus 

Slim = 2 = 1.
N

N
0

We conclude that the series converges.                                           □ 

Example 3.3: Let us examine the series 

j
1

j=1

for convergence or divergence. (This series is commonly called the harmonic 
series because it describes the harmonics in music.) Now 
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( )
( )
( ) ( )
( ) ( )

S

S

S

S

= 1 =

= 1 + =

= 1 + + +

1 + + + 1 + + =

= 1 + + + + + + +

1 + + + + + + +

= .

1
2
2

2
1
2

3
2

4
1
2

1
3

1
4

1
2

1
4

1
4

1
2

1
2

4
2

8
1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
2

1
4

1
4

1
8

1
8

1
8

1
8

5
2

In general this argument shows that 

S
k + 2

2
.2k

The sequence of SNs is increasing since the series contains only positive 
terms. The fact that the partial sums S1, S2, S4, S8,… increases without bound 
shows that the entire sequence of partial sums must increase without 
bound. We conclude that the series diverges.                                      □ 

Just as with sequences, we have a Cauchy criterion for series: 

Proposition 3.4: The series aj j=1 converges if and only if, for every > 0, there is 
an integer N ≥ 1 such that, if n ≥ m > N, then 

a < .
j m

n

j
=

(3.4.1)  

The condition (3.4.1) is called the Cauchy criterion for series. 

Proof: Suppose that the Cauchy criterion holds. Pick > 0 and choose N so 
large that (3.4.1) holds. If n ≥ m > N, then 

S S a= <n m
j m

n

j
= +1

by hypothesis. Thus the sequence {SN} is Cauchy in the sense discussed for 
sequences in Section 2.1. We conclude that the sequence {SN} converges; by 
definition, therefore, the series converges. 
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Conversely, if the series converges, then, by definition, the sequence 
{SN} of partial sums converges. In particular, the sequence {SN} must be 
Cauchy. 

Thus, for any > 0, there is a number N > 0 such that if n ≥ m > N, then 

S S < .n m

This just says that 

a < ,
j m

n

j
= +1

and this last inequality is the Cauchy criterion for series.                      □ 

Example 3.5: Let us use the Cauchy criterion to verify that the series 

j j
1

( + 1)j=1

converges. 
Notice that, if n ≥ m > 1, then 

j j m m m m n n
1

( + 1)
=

1 1
+ 1

+
1
+ 1

1
+ 2

+ …+
1 1

+ 1
.

j m

n

=

The sum on the right plainly telescopes and we have 

j j m n
1

( + 1)
=

1 1
+ 1

.
j m

n

=

Let > 0. Let us choose N to be the next integer after 1/ . Then, for n ≥ m > N, 
we may conclude that 

j j m n m N
1

( + 1)
=

1 1
+ 1

<
1

<
1

< .
j m

n

=

This is the desired conclusion.                                                          □ 
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The next result gives a necessary condition for a series to converge. It is a 
useful device for detecting divergent series, although it can never tell us that 
a series converges. 

Proposition 3.6: (The Zero Test) If the series 

a
j

j
=1

converges, then the terms aj tend to zero as j → ∞. 

Proof: Since we are assuming that the series converges, then it must satisfy 
the Cauchy criterion. Let > 0, then >0. Then there is an integer N ≥ 1 such 
that, if n ≥ m > N, then 

a < .
j m

n

j
=

(3.6.1)  

We take n = m and m > N. Then, (3.6.1) becomes 

a < .m

But this is precisely the conclusion that we desire.                               □ 

Example 3.7: The series ( 1)j
j

=1 must diverge, even though its terms appear 
to be cancelling each other out. The reason is that the summands do not tend to 
zero; hence the preceding proposition applies. 

Write out several partial sums of this series to see more explicitly that the 
partial sums are −1, +1, −1, +1,… and hence that the series diverges.      □ 

We conclude this section with a necessary and sufficient condition for 
convergence of a series of nonnegative terms. As with some of our other 
results on series, it amounts to little more than a restatement of a result on 
sequences. 

Proposition 3.8: A series 

a
j

j
=1

with all aj ≥ 0 is convergent if and only if the sequence of partial sums is bounded. 
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Proof: Notice that, because the summands are nonnegative, we have 

S a a a S= + = ,1 1 1 2 2

S a a a a a S= + + + = ,2 1 2 1 2 3 3

and in general 

S S a S+ = .N N N N+1 +1

Thus the sequence {SN} of partial sums forms a increasing sequence. We 
know that such a sequence is convergent to a finite limit if and only if it is 
bounded above (see Section 2.1). This completes the proof.                   □ 

Example 3.9: The series 1j=1 is divergent since the summands are 
nonnegative and the sequence of partial sums {SN} = {N} is unbounded. 

Referring back to Example 3.3, we see that the series j j=1
1 diverges 

because its partial sums are unbounded. 
We see from the first example that the series 2j

j
=1 converges because its 

partial sums are all bounded above by 1.                                           □ 

It is frequently convenient to begin a series with summation at j = 0 or some 
other term instead of j = 1. All of our convergence results still apply to such a 
series because of the Cauchy criterion. In other words, the convergence or 
divergence of a series will depend only on the behavior of its “tail.” 

Exercises  

1. Discuss convergence or divergence for each of the following 
series: 

j
j
j

j
j j j

j
j

j
j

j
j j j

j j j

(a)
(2 )

!
(b)

(2 )!
(3 )!

(c)
!

(d)
( 1)

3 5 + 6

(e)
2 1

3 2
(f)

2 1
3 2

(g)
log( + 1)

[1 + log ]
(h)

1
log

(i)
log(2)
log

(j)
1

log

j

j

j

j
j

j

j

j j

j
j

j

j j

=1

2

=1

=1 =1
2

=1
2

=1
3

=1 =12
3

=2 =2
1.1
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2. If bj > 0 for every j and if bj j=1 converges then prove that b( )j j=1
2

converges. Prove that the assertion is false if the positivity hy-
pothesis is omitted. How about third powers?  

3. If bj > 0 for every j and if bj j=1 converges then prove that 
j b=1

1
1 + j

diverges.  
4. If bj > 0 and bj j converges, then what can you say about bsinj j?  
5. If b > 0j and bj j converges, then what can you say about ej

bj?  
6. Let aj j=1 be a divergent series of positive terms. Prove that there 

exist numbers bj, b a0 < <j j, such that bj j=1 diverges. 
Similarly, let cj j=1 be a convergent series of positive terms. 

Prove that there exist numbers d c d, 0 < <j j j, such that dj j=1
converges. 

Thus we see that there is no “smallest” divergent series and no 
“largest” convergent series.  

7. TRUE or FALSE: If a c> > 0j and a1/ j converges, then aj
converges.  

8. If b > 0j and bj j converges then what can you say about 
b b/(1 + )j j j ?  

9. If a > 0j , b > 0j , aj j
2 converges, and bj j

2 converges, then what 
can you say about a bj j j?  

10. If b > 0j and bj j diverges, then what can you say about b2j
j

j?  
11. If b > 0j and bj j converges, then what can you say about b j/j j

2?  
12. If a > 0j and aj j

2 converges, then what can you say about aj j
4? 

How about aj j
3?  

13. Let and be positive real numbers. Discuss convergence and 
divergence for the series 

j j
1

log
.j=2

∗14. Let k be a positive integer. Discuss convergence or divergence for 
the series 

j
2

.j

k

j=1

15. If b > 0j and b(1/(1 + )j j converges, then what can you say about 
bj j? 
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3.2 Elementary Convergence Tests 

As previously noted, a series may converge because its terms are non-
negative and diminish in size fairly rapidly (thus causing its partial sums to 
grow slowly) or it may converge because of cancellation among the terms. 
The tests which measure the first type of convergence are the most obvious 
and these are the “elementary” ones that we discuss in the present section. 

Proposition 3.10: (The Comparison Test) Suppose that aj j=1 is a convergent 
series of nonnegative terms. If b{ }j are real or complex numbers and if b a| |j j for 
every j then the series bj j=1 converges. 

Proof: Because the first series converges, its satisfies the Cauchy criterion for 
series. Hence, given > 0, there is an N so large that if n m N> then 

a < .
j m

n

j
=

But then 

b b a| | < .
j m

n

j
j m

n

j
j m

n

j
= = =

It follows that the series bj satisfies the Cauchy criterion for series. 
Therefore it converges.                                                                    □ 

Corollary 3.11: If  aj j=1 is as in the proposition and if b a0 j j for every j then 
the series bj j=1 converges. 

Proof: Obvious. Simply notice that b b| | =j j.                                       □ 

Example 3.12: The series j2 sinj
j

=1 is seen to converge by comparing it 
with the series 2j

j
=1 .                                                                    □ 

Theorem 3.13: (The Cauchy Condensation Test) Assume that a a1 2
a 0j . The series 

a
j

j
=1

converges if and only if the series 
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a2
k

k

=1
2k

converges. 

Proof: First assume that the series aj j=1 converges. Notice that, for 
each k 1, 

a a a a

a a a

a

2 = + +…+

+ +…+ .

=

k

m
m

1
2 2 2 2

2 times

2 +1 2 +2 2

=2 +1

2

k k k k

k

k k k

k

k

1

1 1

1

Therefore 

a a a2 = .
k

N
k

k

N

m
m

m
m

=1

1
2

=1 =2 +1

2

=2

2
k

k

k N

1

Since the partial sums on the right are bounded (because the series of a sj

converges), so are the partial sums on the left. It follows that the series 

a2
k

k

=1
2k

converges. 
For the converse, assume that the series 

a2
k

k

=1
2k (3.13.1)  

converges. Observe that, for k 1, 

a a a a

a a a

a

= + + +

+ + +

= 2 .

m
j

k

=2 +1

2

2 +1 2 +2 2

2 2 2

2 times
1

2

k

k

k k k

k k k

k

k

1

1 1

1 1 1

1

1

It follows that 
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a a

a

=

2 .

m
j

k

N

m
m

k

N
k

=2

2

=1 =2 +1

2

=1

1
2

N

k

k

k

1

1

By the hypothesis that the series (3.13.1) converges, the partial sums on 
the right must be bounded. But then the partial sums on the left are 
bounded as well. Since the summands aj are nonnegative, the series on the 
left converges.                                                                               □ 

Example 3.14: We apply the Cauchy condensation test to the harmonic 
series 

j
1

.
j=1

It leads us to examine the series 

2
1
2

= 1.
k

k
k

k=1 =1

Since the latter series diverges, the harmonic series diverges as well.   □ 

Proposition 3.15: (Geometric Series) Let be a complex number. The series 

j

j

=0

is called a geometric series. It converges if and only if < 1. In this circumstance, 
the sum of the series (that is, the limit of the partial sums) is 1/(1 ). 

Proof: Let SN denote the Nth partial sum of the geometric series. Then 

S = (1 + + + … )

= + + … .
N

N

N

2

2 +1

It follows that SN and SN are nearly the same: in fact 

S S+ 1 = .N
N

N
+1

Solving this equation for the quantity SN yields 
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S =
1

1
N

N+1

when 1. 
If < 1 then 0N+1 , hence the sequence of partial sums tends to the 

limit 1/(1 ). If > 1 then N+1 diverges, hence the sequence of partial 
sums diverges. This completes the proof for 1. But the divergence in 
case = 1 follows because the summands will not tend to zero.         □ 

Example 3.16: The series 

3
j

j

=0

is a geometric series. Writing it as 

1
3

,
j

j

=0

we see that the sum is 

1
1 1/3

=
3
2

.

The series 

3
4j

j

=2

is not quite a geometric series because the summation process does not 
begin at j = 0. But this situation is easily repaired. We write the series as 

3
4

3
4j

j2

=0

and then we see that the sum is 

9
16

1
1 3/4

=
9

16
4 =

9
4

. □ 
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Corollary 3.17: Let r be a real number. The series 

j
1

j
r

=1

converges if r exceeds 1 and diverges otherwise. 

Proof: When r > 1 we can apply the Cauchy Condensation Test. This leads 
us to examine the series 

2 2 = (2 ) .
k

k kr

k

r k

=1 =1

1

This last is a geometric series, with the role of played by the quantity 
= 2 r1 . When r > 1 then < 1 so the series converges. Otherwise it 

diverges.                                                                                      □ 

Example 3.18: The series 

j
1

j=1
3/2

converges because 3/2 > 1. 
The series 

j
1

j=1
2/3

diverges because 2/3 < 1.                                                                □ 

Theorem 3.19: (The Root Test) Consider the series 

a .
j

j
=1

If 

alim sup | | < 1
j

j
j1/

then the series converges. 

Proof: Refer again to the discussion of the concept of limit superior in 
Chapter 2. By our hypothesis, there is a number 0 < < 1 and an integer 
N > 1 such that, for all j N> , it holds that 
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a| | < .j
j1/

In other words, 

a| | < .j
j

Since 0 < < 1 the sum of the terms on the right constitutes a convergent 
geometric series. By the Comparison Test, the sum of the terms on the left 
converges.                                                                                    □ 

Theorem 3.20: (The Ratio Test) Consider a series 

a .
j

j
=1

If 

a

a
lim sup < 1

j

j

j

+1

then the series converges. 

Proof: It is possible to supply a proof similar to that of the Root Test. We 
leave such a proof for the exercises, and instead supply an argument which 
relates the two tests in an interesting fashion. 

Let 

a

a
= lim sup < 1.

j

j

j

+1

Select a real number such that < < 1. By the definition of lim sup, 
there is an N so large that if j N> then 

a

a
< .

j

j

+1

This may be rewritten as 

a a j N| | < | |, .j j+1

Thus (much as in the proof of the Root Test) we have for k 0 that 
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a a a a .N k N k N k
k

N+ + 1 + 2

It is convenient to denote N k+ by n n N, . Thus the last inequality reads 

a a<n
n N

N

or 

a a< .n
n n N n

N
n1/ ( )/ 1/

Remembering that N has been fixed once and for all, we pass to the 
lim sup as n . The result is 

alim sup .
n

n
n1/

Since < 1, we find that our series satisfies the hypotheses of the Root Test. 
Hence it converges.                                                                        □ 

Remark 3.21: The proof of the Ratio Test shows that if a series passes the 
Ratio Test then it passes the Root Test (the converse is not true, as you will 
learn in Exercise 2). Put another way, the Root Test is a better test than the 
Ratio Test because it will give information whenever the Ratio Test does 
and also in some circumstances when the Ratio Test does not. 

Why do we therefore learn the Ratio Test? The answer is that there are 
circumstances when the Ratio Test is easier to apply than the Root Test. 

Example 3.22: The series 

j
2
!j

j

=1

is easily studied using the Ratio Test (recall that j j j! ( 1) … 2 1). Indeed 
a j= 2 / !j

j and 

a

a
j

j
=

2 /( + 1)!
2 / !

.
j

j

j

j

+1 +1

We can perform the division to see that 

a

a j
=

2
+ 1

.
j

j

+1
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The lim sup of the last expression is 0. By the Ratio Test, the series converges. 
Notice that in this example, while the Root Test applies in principle, it 

would be difficult to use in practice.                                                 □ 

Example 3.23: We apply the Root Test to the series 

j
2

.
j

j
=1

2

Observe that 

a
j

=
2j j

2

hence that 

a
j

| | =
( )

2
.j

j
j

1/
1/ 2

As j , we see that 

alim sup | | =
1
2

.
j

j
j1/

By the Root Test, the series converges.                                            □ 

It is natural to ask whether the Ratio and Root Tests can detect divergence. 
Neither test is necessary and sufficient: there are series which elude the 
analysis of both tests. However, the arguments that we used to establish 
Theorems 3.19 and 3.20 can also be used to establish the following (the 
proofs are left as exercises): 

Theorem 3.24: (The Root Test for Divergence) Consider the series 

a
j

j
=1

of nonzero terms. If 

alim inf | | > 1
j

j
j1/

then the series diverges. 
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Theorem 3.25: (The Ratio Test for Divergence) Consider the series 

a .
j

j
=1

If 

a

a
lim inf > 1,

j

j

j

+1

then the series diverges. 
In both the Root Test and the Ratio Test, if the lim sup or lim inf is equal to 

1, then no conclusion is possible. The exercises give examples of series, some 
of which converge and some of which do not, in which these tests give lim 
sup or lim inf equal to 1. 

Example 3.26: Consider the series 

j!
2

.
j

j
=1

We apply the Ratio Test: 

a

a
j

j
j

=
( + 1) !/2

!/2
=

+ 1
2

.
j

j

j

j

+1 +1

This expression is > 2 for j > 3. Therefore, by the Ratio Test for Divergence, 
the series diverges.                                                                         □ 

Example 3.27: Consider the series 

j
4

.
j

j

j
=1

We apply the Root Test: 

a j j= /4 = /4.j
j jj j

This expression is >2 for j > 8. Therefore the lim sup is >1 and the series 
diverges.                                                                                      □ 

We conclude this section by saying a word about the integral test. 
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Proposition 3.28: (The Integral Test) Let f be a continuous function on [0, )
that is monotonically decreasing. The series 

f j( )
j=1

converges if and only if the integral 

f x dx( )
1

converges. 
We have not treated the integral yet in this book, so we shall not prove the 

result here. 

Example 3.29: Consider the harmonic series 

j
1

.
j=1

The terms of this series satisfy the hypothesis of the integral test. Also 

x
dx x N

1
= lim log = lim [ log log 1] = +

N

N

N1 +
1

+

Therefore the series diverges.                                                        □ 

Exercises  

1. Let p be a polynomial with no constant term. If b > 0j for every j and 
if bj j=1 converges then prove that the series p b( )j j=1 converges.  

2. Examine the series  

1
3

+
1
5

+
1
3

+
1
5

+
1
3

+
1
5

+
1
3

+
1
5

+ …
2 2 3 3 4 4

Prove that the Root Test shows that the series converges while the 
Ratio Test gives no information. 

3. Check that both the Root Test and the Ratio Test give no in-
formation for the series ,j j j j=1

1
=1

1
2 . However, one of these 

series is divergent and the other is convergent.  
4. Let aj be a sequence of real numbers. Define  
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m
a a a

j
=

+ + …
.j

j1 2

Prove that if alim =j j then mlim =j j . Give an example to 
show that the converse is not true.  

5. Imitate the proof of the Root Test to give a direct proof of the Ratio 
Test.  

6. Let aj j and bj j be series of positive terms. Prove that, if there is a 
constant C > 0 such that  

C

a

b
C

1 j

j

for all j large, then either both series diverge or both series converge.  
7. Prove that if a series of positive terms passes the Ratio Test, then it 

also passes the Root Test.  
8. TRUE or FALSE: If the aj are positive and aj converges then a j/j

converges.  
9. TRUE or FALSE: If aj and bj are positive and aj j and bj both 

converge, then a bj j j converges.  
10. Prove Theorem 3.24.  
11. Prove Theorem 3.25.  
12. Derive the Raabe-Duhamel Test: Let a > 0j . Set 

b j
a

a
= 1 .j

j

j+1

Now let 

L b= lim .
j

j

If L > 1 then the series aj j converges. If L < 1 then the series aj j

diverges. If L = 1 then the test is inconclusive. 

b j j
a

a
= log 1 1 .j

j

j+1
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13. Derive Bertrand’s Test: Let a > 0j . Set 

Now let 

L b= lim .
j

j

If L > 1 then the series aj j converges. If L < 1 then the series aj j

diverges. If L = 1 then the test is inconclusive.  

14. Derive Gauss’s Test: Let a > 0j . Write 

a

a j
= 1 + + ,

j

j+1

where is an error of size j1/ and > 1. Then aj j converges if 
> 1 and diverges if 1. 

3.3 Advanced Convergence Tests 

In this section we consider convergence tests for series which depend on 
cancellation among the terms of the series. One of the most profound of 
these depends on a technique called summation by parts. You may wonder 
whether this process is at all related to the “integration by parts” procedure 
that you learned in calculus—it has a similar form. Indeed it will turn out 
(and we shall see the details of this assertion as the book develops) that 
summing a series and performing an integration are two aspects of the same 
limiting process. The summation by parts method is merely our first 
glimpse of this relationship. 

Proposition 3.30: (Summation by Parts) Let a{ }j j=0 and b{ }j j=0 be two sequences 
of real or complex numbers. For N = 0, 1, 2, … set 

A a=N
j

N

j
=0

(we adopt the convention that A = 01 ). Then, for any m n0 < , it holds that 

a b A b A b

A b b

= [ ]

+ ( ).

j m
n

j j n n m m

j m
n

j j j

= 1

=
1

+1
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Proof: We write 

a b A A b

A b A b

A b A b

A b b A b A b

= ( )

=

=

= ( ) + .

j m
n

j j j m
n

j j j

j m
n

j j j m
n

j j

j m
n

j j j m
n

j j

j m
n

j j j n n m m

= = 1

= = 1

= = 1
1

+1

=
1

+1 1

This is what we wished to prove.                                                  □ 

Now we apply summation by parts to prove a convergence test due to Niels 
Henrik Abel (1802–1829). 

Theorem 3.31: (Abel’s Convergence Test) Consider the series 

a b .
j

j j
=0

Suppose that  

1. The partial sums A a=N j
N

j=0 form a bounded sequence;  
2. b b b …;0 1 2

3. blim = 0j j . 

Then the original series 

a b
j

j j
=0

converges. 

Proof: Suppose that the partial sums AN are bounded in absolute value by a 
number K. Pick > 0 and choose an integer N so large that b K< /(2 )N . For 
N m n< < we use the partial summation formula to write 

a b A b A b A b b

K b K b K b b

| | = | + ( )|

+ | | + | |.

j m
n

j j n n m m j m
n

j j j

n m j m
n

j j

= 1 =
1

+1

=
1

+1

Now we take advantage of the facts that b 0j for all j and that b bj j+1 for 
all j to estimate the last expression by 
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K b b b b+ + ( ) .n m
j m

n

j j
=

1

+1

[Notice that the expressions b b b,j j m+1 , and bn are all nonnegative.] Now 
the sum collapses and the last line is estimated by 

K b b b b K b[ + + ] = 2 .n m n m m

By our choice of N the right side is smaller than . Thus our series satisfies 
the Cauchy criterion and therefore converges.                                     □ 

Example 3.32: (The Alternating Series Test) As a first application of Abel’s 
convergence test, we examine alternating series. Consider a series of the 
form 

b( 1) ,
j

j
j

=1
(3.32.1)  

with b b b 01 2 3 and b 0j as j . We set a = ( 1)j
j and apply 

Abel’s test. We see immediately that all partial sums AN are either 1 or 0. 
In particular, this sequence of partial sums is bounded. And the bjs are 
decreasing and tending to zero. By Abel’s convergence test, the alternating 
series (3.32.1) converges.                                                                 □ 

Proposition 3.33: Let b b …1 2 and assume that b 0j . Consider the 
alternating series b( 1)j

j
j=1 as in the last example. It is convergent: let S be its 

sum. Then the partial sums SN satisfy S S bN N+1. 

Proof: Observe that 

S S b b b= + +… .N N N N+1 +2 +3

But 

b b b b b
b b

b

+ … + ( + )
+ ( + ) +…

=

N N N N N

N N

N

+2 +3 +2 +3 +3

+5 +5

+2

and 

Series of Numbers                                                                          125 

ISTUDY



b b b b b b+ … ( ) + ( )+…
= 0 .

N N N N N N+2 +3 +2 +2 +4 +4

It follows that 

S S bN N+1

as claimed.                                                                                 □ 

Example 3.34: Consider the series 

j
( 1)

1
.

j

j

=1

Then the partial sum S = .688172100 is within 0.01 (in fact within 1/101) of 
the full sum S and the partial sum S = .693050110000 is within 0.0001 (in fact 
within 1/10001) of the sum S.                                                          □ 

Example 3.35: Next we examine a series which is important in the study of 
Fourier analysis. Consider the series 

j
j

sin
.

j=1
(3.35.1)  

We already know that the series 
j
1 diverges. However, the expression jsin

changes sign in a rather sporadic fashion. We might hope that the series 
(3.35.1) converges because of cancellation of the summands. We take 
a j= sinj and b j= 1/j . Abel’s test will apply if we can verify that the 
partial sums AN of the a sj are bounded. To see this we use a trick: 

Observe that 

j j jcos( + 1/2) = cos cos 1/2 sin sin 1/2

and 

j j jcos( 1/2) = cos cos 1/2 + sin sin 1/2 .

Subtracting these equations and solving for jsin yields that 

j
j j

sin =
cos( 1/2) cos( + 1/2)

2 sin 1/2
.

126                                                         Real Analysis and Foundations 

ISTUDY



We conclude that 

A a
j j

= =
cos( 1/2) cos( + 1/2)

2 sin 1/2
.N

j

N

j
j

N

=1 =1

Of course this sum collapses and we see that 

A
N

=
cos( + 1/2) + cos 1/2

2 sin 1/2
.N

Thus 

A
2

2 sin 1/2
=

1
sin 1/2

,N

independent of N . 
Thus the hypotheses of Abel’s test are verified and the series 

j
j

sin

j=1

converges.                                                                                  □ 

Remark 3.36: It is interesting to notice that both the series 

j
j

j
j

| sin |
and

sin

j j=1 =1

2

diverge. The proofs of these assertions are left as exercises for you.        □ 

We turn next to the topic of absolute and conditional convergence. 

Definition 3.37: A series of real or complex numbers 

a
j

j
=1

is said to be absolutely convergent if 

a| |
j

j
=1

converges. 
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We have: 

Proposition 3.38: If the series aj j=1 is absolutely convergent, then it is 
convergent. 

Proof: This is an immediate corollary of the Comparison Test.              □ 

Definition 3.39: A series aj j=1 is said to be conditionally convergent if aj j=1
converges, but it does not converge absolutely. 

We see that absolutely convergent series are convergent but the next 
example shows that the converse is not true. 

Example 3.40: The series 

j
( 1)

j

j

=1

converges by the Alternating Series Test. However, it is not absolutely 
convergent because the harmonic series 

j
1

j=1

diverges.                                                                                      □ 

There is a remarkable robustness result for absolutely convergent series 
that fails dramatically for conditionally convergent series. This result is 
enunciated in the next theorem. We first need a definition. 

Definition 3.41: Let aj j=1 be a given series. Let p{ }j j=1 be a sequence in 
which every positive integer occurs once and only once (but not necessarily 
in the usual order). We call p{ }j a permutation of the natural numbers. 

Then the series 

a
j

p
=1

j

is said to be a rearrangement of the given series. 

Theorem 3.42: (Riemann, Weierstrass) If the series aj j=1 of real numbers is 
absolutely convergent and if the sum of the series is , then every rearrangement of 
the series converges also to . 
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If the real series bj j=1 is conditionally convergent and if is any real number or 
± then there is a rearrangement of the series that converges to . 

Proof: We prove the first assertion here and explore the second in the 
exercises. 

Let us choose a rearrangement of the given series and denote it by aj p=1 j
, 

where pj is a permutation of the positive integers. Pick > 0. By the 
hypothesis that the original series converges absolutely we may choose 
an integer N > 0 such that N m n< < implies that 

a| | < .
j m

n

j
=

(3.42.1)  

[The presence of the absolute values in the left side of this inequality will prove 
crucial in a moment.] Choose a positive integer M such that M N and the 
integers N1, …, are all contained in the list p p p, , …, M1 2 . If K M> then the 
partial sum aj

K
j=1 will trivially contain the summands a a a, , … N1 2 . Also 

the partial sum aj
K

p=1 j
will contain the summands a a a, , … N1 2 . It follows that 

a a
j

K

j
j

K

p
=1 =1

j

will contain only summands after the Nth one in the original series. By 
inequality (3.42.1) we may conclude that 

a a a .
j

K

j
j

K

p
j N

j
=1 =1 = +1

j

We conclude that the rearranged series converges; and it converges to the 
same sum as the original series.                                                       □ 

Exercises  
1. If b1/2 > > 0j for every j and if bj j=1 converges then prove that 

j
b

b=1 1
j

j
converges.  

2. Follow these steps to give another proof of the Alternating Series 
Test: a) Prove that the odd partial sums form an increasing se-
quence; b) Prove that the even partial sums form a decreasing 
sequence; c) Prove that every even partial sum majorizes all 
subsequent odd partial sums; d) Use a pinching principle. 
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3. What can you say about the convergence or divergence of 

j j
j

(2 + 3) (2 )
?

j=1

1/2 1/2

3/4

4. For which exponents k and does the series 

j j
1

logj
k

=2

converge?  
5. Let p be a polynomial with integer coefficients and degree at least 

1. Let b b 01 2 and assume that b 0j . Prove that if ( 1)p j( ) is 
not always positive and not always negative then in fact it will 
alternate in sign so that b( 1)j

p j
j=1

( ) will converge. 
6. Explain in words how summation by parts is analogous to in-

tegration by parts.  
7. If > 0j and j j=1 converges then prove that 

j
( )

1

j
j

=1

1/2

converges for any > 1/2. Give an example to show that the as-
sertion is false if = 1/2. 

∗8. Assume that bj j=1 is a convergent series of positive real num-
bers. Let s b=j

j
=1 . Discuss convergence or divergence for the 

series s bj j j=1 . Discuss convergence or divergence for the series 
j

b

s=1 1 +
j

j
.  

∗9. If b > 0j for every j and if bj j=1 diverges then define s b=j
j
=1 . 

Discuss convergence or divergence for the series j
b

s=1
j

j
.  

∗10. Let bj j=1 be a rearrangement of conditionally convergent series 
conditionally convergent series of real numbers. Let be a real 
number. Prove that there is a rearrangement of the series that 
converges to . (Hint: First observe that the positive terms of the 
given series must form a divergent series. Also, the negative 
terms form a divergent series. Now build the rearrangement by 
choosing finitely many positive terms whose sum “just exceeds” 

. Then add on enough negative terms so that the sum is “just 
less than” . Repeat this oscillatory procedure.) 
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∗11. Do Exercise 10 in the case that is ± . 
∗12. Let aj j=1 be a conditionally convergent series of complex num-

bers conditionally convergent series of complex numbers. Let S
be the set of all possible complex numbers to which the various 
rearrangements could converge. What forms can S have? (Hint: 
Experiment!) 

3.4 Some Special Series 

We begin with a series that defines a special constant of mathematical 
analysis. 

Definition 3.43: The series 

j
1
!
,

j=0

where j j j j! ( 1) ( 2) 1 for j 1 and 0! 1, is convergent (by the Ratio 
Test, for instance). Its sum is denoted by the symbol e in honor of the Swiss 
mathematician Léonard Euler, who first studied it (see also Example 2.47, 
where the number e is studied by way of a sequence). We shall see in 
Proposition 3.44 that these two approaches to the number e are equivalent. 

Like the number , to be considered later in this book, the number e is one 
which arises repeatedly in a number of contexts in mathematics. It has 
many special properties. We first relate the series definition of e to the 
sequence definition: 

Proposition 3.44: The limit 

n
lim 1 +

1
n

n

exists and equals e.

Proof: We need to compare the quantities 

A
j

B
N

1
!

and 1 +
1

.N
j

N

N

N

=0

We use the binomial theorem to expand B :N
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B
N

N
N N

N
N N N

N
N

N N
N

N
N

N
N

N

N
N

N
N

N N

N
N

N
N

N N

N N N

N N N
N

N

N N N
N

N

= 1 +
1

1
+

( 1)
2 1

1
+

( 1) ( 2)
3 2 1

1

+ +
1

1
+ 1

1

= 1 + 1 +
1
2!

1
+

1
3!

1 2
+

+
1

( 1)!
1 2 2

+
1

!
1 2 1

= 1 + 1 +
1
2!

1
1

+
1
3!

1
1

1
2

+…

+
1

( 1)!
1

1
1

2
1

2

+
1

!
1

1
1

2
1

1
.

N

N N

2 3

1

Notice that every summand that appears in this last equation is positive. 
Thus, for M N0 , 

B
N N N

M N N
M

N

1 + 1 +
1
2!

1
1

+
1
3!

1
1

1
2

+ …+
1

!
1

1
1

2
1

1
.

N

In this last inequality we hold M fixed and Let N tend to infinity. The result 
is that 

B
M

Alim inf 1 + 1 +
1
2!

+
1
3!

+ +
1

!
= .

N
N M

Now, as M , the quantity AM converges to e (by the definition of e). So 
we obtain 

B elim inf .
N

N (3.44.1)  

On the other hand, our expansion for BN allows us to observe that 
B AN N. Thus 

B e‘ lim sup .
N

N (3.44.2)  
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Combining (3.44.1) and (3.44.2) we find that 

e B B elim inf lim sup
N

N
N

N

hence that BlimN N exists and equals e. This is the desired result.        □ 

Remark 3.45: The last proof illustrates the value of the concepts of lim inf
and lim sup. For we do not know in advance that the limit of the 
expressions BN exists, much less that the limit equals e. However, the 
lim inf and the lim sup always exist. So we estimate those instead, and find 
that they are equal and that they equal e.                                           □ 

The next result tells us how rapidly the partial sums AN of the series de-
fining e converge to e. This is of theoretical interest, but will also be applied 
to determine the irrationality of e. 

Proposition 3.46: With AN as above, we have that 

e A
N N

0 < <
1

!
.N

Proof: Observe that 

e A
N N N

N N N N

N N N

=
1

( + 1)!
+

1
( + 2)!

+
1

( + 3)!
+

=
1

( + 1)!
1 +

1
+ 2

+
1

( + 2)( + 3)
+

<
1

( + 1)!
1 +

1
+ 1

+
1

( + 1)
+ .

N

2

Now the expression in parantheses is a geometric series. It sums to 
N N( + 1)/ . Since A e<N we have 

e A e A=N N

hence 

e A
N N

<
1

!
,N

proving thg result.                                                                         □ 
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Next we prove that e is an irrational number. 

Theorem 3.47: Euler’s number e is irrational. 

Proof: Suppose to the contrary that e is rational. Then e p q= / for some 
positive integers p and q. By the preceding proposition, 

e A
q q

0 < <
1

!q

or 

q e A
q

0 < ( ! ( ) <
1

.q (3.47.1)  

Now 

e A
p
q q

= 1 + 1 +
1
2!

+
1
3!

+ +
1
!q

hence 

q e A! ( )q

is an integer. But then equation (3.47.1) says that this integer lies between 0 
and q1/ . In particular, this integer lies strictly between 0 and 1. That, of 
course, is impossible. So e must be irrational.                                     □ 

It is a general principle of number theory that a real number that can be 
approximated too rapidly by rational numbers (the degree of rapidity being 
measured in terms of powers of the denominators of the rational nqmbers) 
must be irrational. Under suitable conditions an even strongertranccendental 
numbers conclusion holds: namely, the number in question turns out to be 
transcendental. A transcendental number is one which is not the solution of 
any polynomial equation with integer coefficients. 

The subject of transcendental numbers is explored in the exercises. The 
exercises also contain a sketch of a proof that e is transcendental. 
Transcendental numbers are quite difficult to study. It is known that and e
are transcendental. But it is not known whether e or e is transcendental. 

In Exercise 7 of Section 2.4, we briefly discuss Euler’s number . Both this 
special number and also the more commonly encountered number arise in 
many contexts in mathematics. It is unknown whether gamma is rational or 
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irrational. The number is known to be transcendental, but it is unknown 
whether e+ (where e is Euler’s number) is transcendental. In recent years, 
questions about the irrationality and transcendence of various numbers 
have become a matter of practical inter?. For these properties prove to be 
useful io making and breaking secret codes, and in encrypting information 
so that it is accessible to some users but not to others. 

In Example 1.1 we prove that 

S j
N N

=
( + 1)
2

.N
j

N

=1

We conclude this section with a method for summing higher powers of j. 
Suppose that we wish to calculate 

S jk N
j

N
k

,
=1

for some positive integer k exceeding 1. We may proceed as follows: Write 

j j j k j
k k

j

k k
j k j

j

k j
k k

j

k k
j k j

( + 1) = + ( + 1) +
( + 1)

2

+ +
( + 1)

2
+ ( + 1) + 1

= ( + 1) +
( + 1)

2
+

+
( + 1)

2
+ ( + 1) + 1.

k k k k k

k

k k

+1 +1 +1 1

2

+1

1

2

Summing from j = 1 to j N= yields 

j j k S
k k

S

k k
S k S N

{( + 1) } = ( + 1) +
( + 1)

2
+

+
( + 1)

2
+ ( + 1) + ,

j

N
k k

k N k N

N N

=1

+1 +1
, 1,

2, 1,

The sum on the left collapses to N( + 1) 1k+1 . We may solve for Sk N, and 
obtain 
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S
k

N N
k k

S

k k
S k S

=
1
+ 1

[( + 1) 1
( + 1)

2
.

( + 1)
2

( + 1) ].

k N
k

k N

N N

,
+1

1,

2, 1,

We have succeeded in expressing Sk N, in terms of S S S, , …,N N k N1, 2, 1, . Thus 
we may inductively obtain formulas for Sk N, , any k. It turns out that 

S
N N

S
N N N

S
N N

S
N N N N N

=
( + 1)

2

=
( + 1)(2 + 1)

6

=
( + 1)

4

=
( + 1) (2 + 1)(3 + 3 1)

30
.

N

N

N

N

1,

2,

3,

2 2

4,

2

These formulas are treated in further detail in the exercises. 

Exercises  
1. Use mathematical induction to prove the formulas provided in 

the text for the sum of the first N perfect squares, the first N
perfect cubes, and the first N perfect fourth powers.  

2. A real number s is called algebraic if it satisfies a polynomial 
equation of the form  

a a x a x a x+ + + + = 0m
m

0 1 2
2

with the coefficients aj being integers and a 0m . Prove that if we 
replace the word “integers” in this definition with “rational num-
bers,” then the set of algebraic numbers remains the same. Prove 
that np q/ is algebraic for any positive integers n, p, q. 
A number which is not algebraic is called transcendental.  

3. Discuss convergence of j1/[ ln ]j
k for k a positive integer.  

4. Discuss convergence of p j1/ ( )j for p a polynomial.  
5. Discuss convergence of exp p j( ( ))j for p a polynomial. 

∗6. Refer to Exercise 2 for terminology. Prove that the sum (or dif-
ference) of two algebraic numbers is algebraic.  

7. Refer to Exercise 6. It is not known whether e+ or e is 
transcendental. But one of them must be. Explain. 
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∗8. Refer to Exercise 2 for terminology. transcendental numbers A 
number is called transcendental if it is not algebraic. Prove that the 
number of algebraic numbers is countable. Explain why this 
implies that the number mf transcendental numbers is un-
countable. Thus most real numbers are transcendental; however, 
it is extremely difficult to verify that any particular real number is 
transcendental.  

∗9. Refer to Exercise 2 for terminology. Provide the details ofthe 
following sketch of a proof that Euler’s number e is transcen-
dental. [Note: In this argument we use some simple ideas of 
calculus. These ideas will be treated in rigorous detail later in the 
book.] Seeking a contradiction, we suppose that the number e
satisfies a polynomial equation of the form  

a a x a x+ + + = 0m
m

0 1

with integer coefficients aj.  
a. We may assume that a 00 .  
b. Let p be an odd prime that will be specified later. Define 

g x
x x x m

p
( ) =

( 1) ( )
( 1)!

p p p1

and 

G x g x g x g x g x( ) = ( ) + ( ) + ( ) + ( ).mp p(1) (2) ( + 1)

(Here parenthetical exponents denote derivatives.) Verify that 

g x
m
p

( ) <
( 1)!

mp p+ 1

for a suitable range of x.  
c. Check that 

d
dx

e G x e g x{ ( )} = ( )x x

and thus that 
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a e g x dx a G a e G j( ) = (0) ( ) .j
j

x
j j

j
0

(∗)   

d. Multiply the last equation by ej, sum from j = 0 to j m= , and 
use the polynomial equation that e satisfies to obtain that 

a e e g x dx a g j( ) = ( ).
j

m

j
j

j
x

j

m

i

mp p

j
i

=0 0 =0 =0

+ 1
( ) (∗∗)   

e. Check that g j( )i( ) is an integer for all values of i and all j from 0
to m inclusive.  

f. Referring to the last step, show that in fact g j( )i( ) is an integer 
divisible by p except in the case that j = 0 and i p= 1.  

g. Check that 

g m(0) = ( 1) ( 2) ( ) .p p p p( 1)

Conclude that g (0)p( 1) is not divisible by p if p m> .  
h. Check that if p a> 0 then the right side of equation (∗∗) 

consists of a sum of terms each of which is a multiple of p
except for the term a g (0)p

0
( 1) . It follows that the sum on the 

right side of (∗∗) is a nonzero integer. 
i. Use equation (∗) to check that, provided p is chosen suffi-

ciently large, the left side of (∗∗) satisfies  

a e e g x dx a e
m
p

( ) | |
( )
( 1)!

< 1.
j

m

j
j

j
x

j

m

j
m

m p

=0 0 =0

+2 1

j. The last two steps contradict each other. 
This proof is from [NIV].  

∗10. What can you say about the convergence of j j[ sin ] /j
2 ?  

∗11. What can you say about the convergence of j j[ sin ] /j
k for k a 

positive integer?  
12. Verify directly that 2 + 3 is an algebraic number.  
13. Let m and n be positive integers which are not perfect squares. 

Prove that m n+ is an algebraic number.  
14. Prove that 2 + 53 is an algebraic number. 
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3.5 Operations on Series 

Some operations on series, such as addition, subtraction, and scalar multi-
plication, are straightforward. Others, such as multiplication, entail sub-
tleties. This section treats all these matters. 

Proposition 3.48: Let 

a band
j

j
j

j
=1 =1

be convergent series of real or complex numbers; assume that the series sum to 
limits and respectively. Then  

a. The series a b( + )j j j=1 converges to the limit + .  
b. If c is a constant then the series c aj j=1 converges to c . 

Proof: We shall prove assertion (a) and leave the easier assertion (b) as an 
exercise. 

Pick > 0. Choose an integer N1 so large that n N> 1 implies that the 
partial sum S an j

n
j=1 satisfies S < /2n . Choose N2 so large that 

n N> 2 implies that the partial sum T bn j
n

j=1 satisfies T < /2n . If Un

is the nth partial sum of the series a b( + )j j j=1 and if n N N N> max( , )0 1 2

then 

U S T( + ) + <
2

+
2

= .n n n

Thus the sequence U{ }n converges to + . This proves part (a). The proof of 
(b) is similar.                                                                                 □ 

In order to keep our discussion of multiplication of series as straightforward 
as possible, we deal at first with absolutely convergent series. It is con-
venient in this discussion to begin our sums at j = 0 instead of j = 1. If we 
wish to multiply 

a band ,
j

j
j

j
=0 =0

then we need to specify what the partial sums of the product series should 
be. An obvious necessary condition that we wish to impose is that, if the 
first series converges to and the second converges to , then the product 
series, whatever we define it to be, should converge to . 
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The naive method for defining the summands of the product series cj j is 
to let c a b=j j j. However, a glance at the product of two partial sums of the 
given series shows that such a definition would be ignoring the dis-
tributivity of multiplication over addition. 

Cauchy’s idea was that the summands for the product series should be 

c a b .m
j

m

j m j
=0

This particular form for the summands can be easily motivated using power 
series considerations (which we shall provide in Section 9.1). For now we 
concentrate on verifying that this “Cauchy product” of two series really 
works. 

Theorem 3.49: Let aj j=0 and bj j=0 be two absolutely convergent series which 
converge to limits and respectively. Define the series cm m=0 with summands 
c a b=m j

m
j m j=0 . Then the series cm m=0 converges absolutely to . 

Proof: Let A B C, , andn n n be the partial sums of the three series in question. We 
calculate that 

C a b a b a b a b a b a b
a b a b a b

a B a B a B a B

= ( ) + ( + ) + ( + + )
+ …+( + + + )

= + + + + .

n

n n n

n n n n

0 0 0 1 1 0 0 2 1 1 2 0

0 1 1 0

0 1 1 2 2 0

We set B=n n , each n, and rewrite the last line as 

C a a a
A a a a

= ( + ) + ( + ) + ( + )
= + [ + + + ] .

n n n n

n n n n

0 1 1 0

0 1 1 0

Denote the expression in square brackets by the symbol n. Suppose that 
we could show that lim = 0n n . Then we would have 

C A

A

lim = lim ( + )

= (lim ) + (lim )

= + 0
= .

n
n

n
n n

n
n

n
n

Thus it is enough to examine the limit of the expressions n. 
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Since aj j=1 is absolutely convergent, we know that A a= | |j j=1 is a finite 
number. Choose > 0. Since bj j=1 converges to it follows that 0n . 
Thus we may choose an integer N > 0 such that n N> implies that <n . 
Thus, for n N k k= + , > 0, we may estimate 

a a a

a a a
a a a

a a a

N a j N A

+ + +

+ + + +
+ + ‘ +

+ max {| |} ( + + + )

( + 1)max max 0 | | + .

N k N k N k N k

N k N k N k

N k N k N k

p N p k k

k
j

+ 0 + 1 + 1

+1 1 +2 2 + 0

0 + 1 + 1

1 + 1 2 0

In this last estimate, we have used the fact (for the first term in absolute 
values) that (a) there are N + 1 summands, (b) the a terms all have index at 
least k, and (c) the terms have index between 0 and N . The second term 
(the “max” term) is easy to estimate because of our bound on n. 

With N fixed, we let k in the last inequality. Since amax 0k , 
we find that 

Alim sup .
n

n

Since > 0 was arbitrary, we conclude that 

lim 0.
n

n

This completes the proof.                                                             □ 

Notice that, in the proof of the theorem, we really only used the fact that one 
of the given series was absolutely convergent, not that both were absolutely 
convergent. Some hypothesis of this nature is necessary, as the following 
example shows. 

Example 3.50: Consider the Cauchy product of the two conditionally 
convergent series 

j j

( 1)

+ 1
and

( 1)

+ 1
.

j

j

j

j

=0 =0

Observe that 

Series of Numbers                                                                          141 

ISTUDY



c
m m

m

j m j

=
( 1) ( 1)

1 + 1
+

( 1) ( 1)
2

+

+
( 1) ( 1)

+ 1 1

= ( 1)
1

( + 1) ( + 1 )
.

m

m m

m

j

m
m

0 1 1

0

=0

However, for j m0 , 

j m j m m m( + 1) ( + 1 ) ( + 1) ( + 1) = ( + 1) .2

Thus 

c
m

1
+ 1

= 1.m
j

m

=0

We thus see that the terms of the series cm m=0 do not tend to zero, so the 
series cannot converge. 

Exercises  
1. Calculate the Cauchy product of the series j1/j

3 and the series 
j1/j
4.  

2. Explain how you could discover the Cauchy product using 
multiplication of polynomials.  

3. Discuss the concept of composition of power series. 
4. Let aj j=1 and bj j=1 be convergent series of positive real num-

bers. Discuss division of these two series. Use the idea of the 
Cauchy product. 

5. Let aj j=1 and bj j=1 be convergent series of positive real num-
bers. Discuss convergence of a bj j j=1 .  

6. If aj j is a convergent series of positive terms and if bj j is a 
convergent series of positive terms, then what can you say about 

a b( / )j j j ?  
7. Prove Proposition 3.48(b).  

∗8. Explain division of power series in the language of the Cauchy 
product.  

∗9. Discuss the concept of the exponential of a power series.  
∗10. Is there a way to calculate the square root of a power series? 
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∗11. Is there a way to calculate the logarithm of a power series?  
12. Let a xj j

j be a power series that converges on the interval ( 1, 1). 
Let f x( ) be a bounded, continuous function on ( 1, 1). Discuss 
convergence of f x a x( )j j

j.  
13. Let a xj j

j be a power series that converges on the interval ( 1, 1). 
Let g x( ) be a bounded, continuous function on ( 1, 1) that is 
bounded from 0 by some constant c. Discuss convergence of 

a x g x/ ( )j j
j .  
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4 
Basic Topology  

4.1 Open and Closed Sets 

To specify a topology on a set is to describe certain subsets that will play the 
role of neighborhoods. These sets are called open sets. Our purpose here is to 
be able to study the “shape” of a set without worrying about its rigid 
properties. People like to joke that a mathematiciandoes not know a coffee 
cup from a donut because they both have the same shape—a loop with a 
hole in the middle. See Figure 4.1. The purpose of this chapter is to make 
these ideas precise. 

In what follows, we will use “interval notation”: If a ≤ b are real numbers 
then we define 

R
R
R
R

a b x a x b
a b x a x b
a b x a x b
a b x a x b

( , ) = { : < < },
[ , ] = { : },
[ , ) = { : < },
( , ] = { : < }.

Intervals of the form (a, b) are called open. Those of the form [a, b] are called 
closed. The other two are called half-open or half-closed. See Figure 4.2. 

Now we extend the terms “open” and “closed” more general sets. 

Definition 4.1: A set RU is called open if, for each x U , there is an > 0
such that the interval x x( , + ) is contained in U. See Figure 4.3. 

Remark 4.2: The interval x x( , + ) is frequently termed a neighborhood 
of x.                                                                                             □ 

Example 4.3: The set RU x x= { : 3 < 2} is open. To see this, choose a 
point x U . Let x= 2 3 > 0. [Notice that we are choosing to be 
the distance of x to the boundary of U. Then we claim that the interval 
I x x U= ( , + ) . 
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For, if t I, then 

t t x x
x

x x

3 + 3
< + 3
= (2 | 3|) + 3 = 2.

But this means that t U
We have shown that t I implies t U. Therefore I U . It follows from 

the definition that U is open.                                                           □ 

Remark 4.4: The way to think about the definition of open set is that a set is 
open when none of its elements is at the “edge” of the set—each element is 
surrounded by other elements of the set, indeed a whole interval of them. 

FIGURE 4.1 
A coffee cup and a donut.    

FIGURE 4.2 
Intervals.    

(a,b) x

x- x+

a b
FIGURE 4.3 
An open set.     
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See Figure 4.3 and contrast it with Figure 4.4. The remainder of this section 
will make these comments precise.                                                   □ 

Proposition 4.5: If Uαare open sets, for α in some (possibly uncountable) index set 
A, then 

U U=
A

is open. 

Proof: Let x U . By definition of union, the point x must lie in some Uα. But 
Uα is open. Therefore there is an interval I x x= ( , + ) such that I U . 
Therefore I U . This proves that U is open.                                      □ 

Proposition 4.6: If U1, U2, …, Uk are open sets then the set 

V U=
j

k
j

=1

is also open. 

Proof: Let x V . Then x Uj for each j. Since each Uj is open there is for 
each j a positive number j such that I x x= ( , + )j j j lies in Uj. Set 

= min{ ,…, }k1 . Then > 0 and x x U( , + ) j for every j. But that 
just means that x x V( , + ) . Therefore V is open.                       □ 

Notice the difference between these two propositions: arbitrary unions of 
open sets are open. But, in order to guarantee that an intersection of open 
sets is still open, we had to assume that we were only intersecting finitely 
many such sets. If there were infinitely many sets then the minimum of the 
j could be 0. 

To understand this matter better, bear in mind the example of the open 
sets 

U
j j

j=
1

,
1

, = 1, 2, ….j

FIGURE 4.4 
A set that is not open.    
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Each of the sets Uj is open, but the intersection of the sets Uj is the singleton 
{0}, which is not open. 

The same analysis as in the first example shows that, if a < b, then the 
interval (a, b) is an open set. On the other hand, intervals of the form (a, b] or 
[a, b) or [a, b] are not open. In the first instance, the point b is the center of no 
interval b b( , + ) contained in (a, b]. Think about the other two inter-
vals to understand why they are not open. We call intervals of the form (a, b) 
open intervals. 

We are now in a position to give a complete description of all open sets. 

Proposition 4.7: Let RU be a nonempty open set. Then there are either finitely 
many or countably many pairwise disjoint open intervals Ij such that 

U I= .
j

j
=1

See Figure 4.5. 

Proof: Assume that U is an open subset of the real line. We define an 
equivalence relation on the set U. The resulting equivalence classes will be 
the open intervals Ij. 

Let a and b be elements of U. We say that a is related to b if all real 
numbers between a and b are also elements of U. It is obvious that this 
relation is both reflexive and symmetric. For transitivity notice that if a is 
related to b and b is related to c then (assuming that a, b, c are distinct) one of 
the numbers a, b, c must lie between the other two. Assume for simplicity 
that a < b < c. Then all numbers between a and c lie in U, for all such 
numbers are either between a and b or between b and c or are b itself. Thus a 
is related to c. (The other possible orderings of a, b, c are left for you to 
consider.) 

Thus we have an equivalence relation on the set U. Call the equivalence 
classes U{ } A. We claim that each Uα is an open interval. In fact if a, b are 
elements of some Uα then all points between a and b are in U. But then a 
moment’s thought shows that each of those “in between” points is related to 
both a and b. Therefore all points between a and b are elements of Uα. We 
conclude that Uα is an interval. Is it an open interval? 

Let x U . Then x U so that there is an open interval I x x= ( , + )
contained in U. But x is related to all the elements of I; it follows that I U . 
Therefore Uα is open. 

FIGURE 4.5 
Structure of an open set.    
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We have exhibited the set U as a union of open intervals. These intervals 
are pairwise disjoint because they arise as the equivalence classes of an 
equivalence relation. Finally, each of these open intervals contains a 
(different) rational number (why?). Therefore there can be at most coun-
tably many of the intervals Uα.                                                         □ 

It is worth noting, and we shall learn more about this fact in Chapter 10, 
that there is no structure theorem for open sets (like the one that we just 
proved) in dimension 2 and higher. The geometry of Euclidean space gets 
much more complicated as the dimension increases. And real analysis 
in higher dimensions is a whole new subject that requires many new 
techniques. 

Definition 4.8: A subset RF is called closed if the complement R F\ is 
open. See Figure 4.6. 

Example 4.9: The set [0, 1] is closed. For its complement is 

( , 0) (1, ),

which is open. 

Example 4.10: An interval of the form a b x a x b[ , ] = { : } is closed. For 
its complement is a b( , ) ( , ), which is the union of two open 
intervals. The finite set A = { 4, 2, 5, 13} is closed because its comple-
ment is 

( , 4) ( 4, 2) ( 2, 5) (5, 13) (13, ),

which is open. 
The set B = {1, 1/2, 1/3, 1/4, …} {0} is closed, for its complement is 

the set 

j j( , 0) (1/( + 1), 1/ ) (1, ),
j=1

which is open. 

FIGURE 4.6 
A closed set.    
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Verify for yourself that if the point 0 is omitted from the set B, then the set 
is no longer closed.                                                                        □ 

Roughly speaking, a closed set is a set that contains all its limit points. An 
open set is just the opposite—open sets tend not to contain their limit 
points. The discussion below will make these ideas more precise. 

Remark 4.11: A common mistake that students make is to suppose that 
every set is either open or closed. This is not true. For instance, the set 

Rx x[0, 1) = { : 0 < 1} is neither open nor closed.                        □ 

Proposition 4.12: If Eα are closed sets, for α in some (possibly uncountable index 
set), then 

E E=
A

is closed. 

Proof: This is just the contrapositive of Proposition 4.5 above: if Uα is the 
complement of Eα, each α, then Uα is open. Then U U= is also open. But 
then 

E E U U U= = ( ) = ( ) =c c c

is closed. Here Sc denotes the complement of a set S.                           □ 

The fact that the set B in the last example is closed, but that B\{0} is not, is 
placed in perspective by the next proposition. 

Proposition 4.13: Let S be a set of real numbers. Then S is closed if and only if 
every Cauchy sequence {(sj} of elements of S has a limit point which is also an 
element of S. 

Proof: First suppose that S is closed and let {sj} be a Cauchy sequence in S. We 
know. since the reals are complete, that there is an element Rs such that 
s sj . The point of this ha—f of the proof is to see that s S. If this statement 
were false then Rs T S= \ . But T must be open since it is the complement of 
a closed set. Thus there is an > 0 such that the interval I s s T= ( , + ) . 
This means that no element of S lies in I. In particular, s s| |j for every j. 
This contradicts the statement that s sj . We conclude that s S. 

Conversely, assume that every Cauchy sequence in S has its limit in S. If S 
were not closed then its complement would not be open. Hence there would 
be a point Rt S\ with the property that no interval t t( , + ) lies in 
R S\ . In other words, t t S( , + ) for every > 0. Thus, for 
j = 1, 2, 3, … we may choose a point s t j t j S( 1/ , + 1/ )j . It follows 
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that s{ }j is a sequence of elements(of S that converges to Rt S\ . That 
contradicts our hypothesis. We conclude that S must be closed.             □ 

Definition 4.14: Let S be a subset of R. A point x is called an accumulation 
point of S if every neighborhood of x contains infinitely many distinct 
elements of S. See Figure 4.7. In particular, x is an accumulation point of S if 
it is the limit of a sequence of distinct elements in S. 

The last proposition tells us that closed sets are characterized by the 
property that they contain all of their accumulation points. 

Exercises  
1. Let S be any set and let > 0. Define RT t t s= { : < for 

some s S}. Prove that T is open.  
2. Let S be any set and define RV t t s S= { : 1 for somes }. 

Is V necessarily closed?  
3. Let S be a set of real numbers. If S is not open then must it be 

closed? If S is lot closed then must it be open?  
4. The closure of a set S is the intersection of all closed sets that 

contain S. Call a set S robust if it is the closure of its interior. 
Which sets of reals are robust?  

5. Give an example of nonempty closed sets X X1 2 such that 
X =j j .  

6. Give an example of nonempty closed sets X X1 2 such that Xj j

is open.  
7. Give an example of open sets U U1 2 such that Uj j is closed 

and nonempty.  
8. Exhibit a countable collection of open sets Uj such that each open 

set R can be written as a union of some of the sets Uj.  
9. Let RS be the rational numbers. Is S open? Is S closed? 

10. Let S be an uncountable subset of R. Prove that S must have in-
finitely many accumulation points. Must it have uncountably 
many?  

*11. Let S be any set and define, for Rx , 

FIGURE 4.7 
The idea of an accumulation point.    
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x S x s s Sdis( , ) = inf{ : }.

Prove that, if x S̄, then x Sdis( , ) > 0. If Rx y, then prove that 

x S y S x ydis( , ) dis( , ) .

*12. Every open subset of the real numbers is the countable pairwise 
disjoint union of open intervals. But there is no such structure 
theorem for closed sets. Explain why not.  

13. The intersection of an open set and a closed set will, in general, be 
neither open nor closed. Explain why this is so.  

14. The union of an open set and a closed set will, in general, be 
neither open nor closed. Explain why this is so. 

4.2 Further Properties of Open and Closed Sets 

Definition 4.15: Let RS be a set. We call Rb a boundary point of S if every 
nonempty neighborhood b b( , + ) contains both points of S and points 
of R S\ . See Figure 4.8. We denote the set of boundary points of S by ∂S. 

A boundary point b might lie in S and might lie in the complement of S. 
The next example serves to illustrate the concept: 

Example 4.16: Let S be the interval (0, 1). Then no point of (0, 1) is in the 
boundary of S since every point of (0, 1) has a neighborhood that lies 
entirely inside (0, 1). Also, no point of the complement of T = [0, 1] lies in 
the boundary of S for a similar reason. Indeed, the only candidades for 
elements of the boundary of S are 0 and 1. See Figure 4.9. The point 0 is an 
element of the boundary since every neighborhood (0 , 0 + ) contains 
the point S/2 and the point R S/2 \ . A similar calculation shows 
that 1 lies in the boundary of S. 

Now consider the set T = [0, 1]. Certainly there are no boundary points in 
the set (0, 1), for the same reason as in the first paragraph. And there are no 
boundary points in R\[0, 1], since the set is open. Thus the only candidates 

FIGURE 4.8 
The idea of a boundary point.    
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for elements of the boundary are 0 and 1. As in the first paragraph, these are 
both indeed boundary points for T. See Figure 4.10. 

Notice that neither of the boundary points of S lie in S while both of the 
boundary points of T lie in T.                                                          □ 

The collection of all boundary points of a set S is called the boundary of S and 
is denoted by ∂S. 

Example 4.17: The boundary of the set Q is the entire real line. For if x is any 
element of R then every interval x x( , + ) contains both rational 
numbers and irrational numbers.                                                      □ 

The union of a set S with its boundary is called the closure of S, denoted 
by S̄. The next example illustrates the concept. 

Example 4.18: Let S be the set of rational numbers in the interval [0, 1]. Then 
the closure S̄ of S is the entire interval [0, 1]. 

Let T be the open interval (0, 1). Then the closure T̄ of T is the closed 
interval [0, 1].                                                                                □ 

Definition 4.19: Let RS . A point s S is called an interior point of S if 
there is an > 0 such that the interval s s( , + ) lies in S. See Figure 4.11. 
We call the set of all interior points the interior of S, and we denote this set 
by S. 

Definition 4.20: A point t S is called an isolated point of S if there is an 
> 0 such that the intersection of the interval t t( , + ) with S is just the 

singleton {t}. See Figure 4.12. 

T

boundary points

0 1

FIGURE 4.10 
Boundary of the closed unit interval.    

S

boundary points

0 1

FIGURE 4.9 
Boundary of the open unit interval.    
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By the definitions given here, an isolated point t of a set RS is a 
boundary point. For any interval t t( , + ) contains a point of S (namely, 
t itself) and points of R S\ (since t is isolated). 

Proposition 4.21: Let RS . Then each point of S is either an interior point or a 
boundary point of S. 

Proof: Fix s S. If s is not an interior point then no open interval centered at 
s contains only elements of s. Thus any interval centered at s contains an 
element of S (namely, s itself) and also contains points of R S\ . Thus s is a 
boundary point of S.                                                                      □ 

Example 4.22: Let S = [0, 1]. Then the interior points of S are the elements of 
(0, 1). The boundary points of S are the points 0 and 1. The set S has no 
isolated points. 

Let T = {1, 1/2, 1/3, …} {0}. Then the points 1, 1/2, 1/3, … are 
isolated points of T. The point 0 is an accumulation point of T. Every 
element of T is a boundary point, and there are no others.                    □ 

Remark 4.23: Observe that the interior points of a set S are elements of S—by 
their very definition. Also isolated points of S are elements of S. However, a 
boundary point of S may or may not be an eLemenu of S. 

If x is an accumulation point of S then every open neighborhood of x 
contains infinitely many elements of S. Hence x is either a boundary point of 
S or an interior point of S; it cannot be an isolated point of S.                □ 

Proposition 4.24: Let S be a subset of the real numbers. Then the boundary of S 
equals the boundary of R S\ . 

an interior point of the interval

0

FIGURE 4.11 
The idea of an interior point.    

isolated points

FIGURE 4.12 
The idea of an isolated point.    
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Proof: If x is in the boundary of S, then any neighborhood of x contains 
points of S and points of Sc . Thus every neighborhood of x contains points of 
Sc and points of S. So x is in the boundary of Sc .                                 □ 

The next theorem allows us to use the concept of boundary to distinguish 
open sets from closed sets. 

Theorem 4.25: A closed set contains all of its boundary points. An open set 
contains none of its boundary points. 

Proof: Let S be closed and let x be an element of its boundary. If every 
neighborhood of x contains points of S other than x itself then x is an 
accumulation point of S hence x S. If not every neighborhood of x 
contains points of S other than x itself, then there is an > 0 such that 

x x x x S{( , ) ( , + )} = . The only way that x can be an element of 
∂S in this circumstance is if x S. That is what we wished to prove. 

For the other half of the theorem notice that if T is open then Tc is closed. 
But then Tc will contain all its boundary points, which are the same as the 
boundary points of T itself (why is this true?). Thus T can contain none of its 
boundary points.                                                                           □ 

Proposition 4.26: Every nonisolated boundary point of a set S is an accumulation 
point of the set S. 

Proof: This proof is treated in the exercises.                                       □ 

Definition 4.27: A subset S of the real numbers is called bounded if there is a 
positive number M such that s M for every element s of S. See 
Figure 4.13. 

The next result is one of the great theorems of nineteenth century analysis. 
It is essentially a restatement of the Bolzano–Weierstrass theorem of 
Section 2.2. 

Theorem 4.28: (Bolzano–Weierstrass) Every bounded, infinite subset of R has 
an accumulation point. 

Proof: Let S be a bounded, infinite set of real numbers. Let a{ }j be a sequence 
of distinct elements of S. By Theorem 2.24, there is a subsequence {ajk} that 
converges to a limit α. Then α is an accumulation point of S.                 □ 

M-M

FIGURE 4.13 
A bounded set.    
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Corollary 4.29: Let RS be a nonempty, closed, and bounded set. If {aj} is any 
sequence in S, then there is a Cauchy subsequence {ajk} that converges to an element 
of S. 

Proof: Merely combine the Bolzano–Weierstrass theorem with Proposition 4.13 
of the last section.                                                                                                     □ 

Example 4.30: Consider the set {sin j}. This set of real numbers is bounded 
by 1. By the Bolzano–Weierstrass theorem, it therefore has an accumulation 
point. So there is a sequence {sin jk} that converges to some limit point p, 
even though it would be difficult to say precisely what that sequence is. □ 

*********************************************************** 

KARL THEODOR WILHELM WEIERSTRASS 

Karl Theodor Wilhelm Weierstrass (1815–1897) was a German mathematician. 
He was born in Ostenfelde, part of Ennigerloh, Province of Westphalia. Despite 
leaving university without a degree, he studied mathematics and trained as a 
school teacher, eventually teaching mathematics, physics, botany and gymnas-
tics. He later received an honorary doctorate and became professor of mathe-
matics in Berlin. 

Among many other contributions, Weierstrass formalized the definition of the 
continuity of a function, proved the intermediate value theorem and the 
Bolzano–Weierstrass theorem, and used the latter to study the properties of 
continuous functions on closed bounded intervals. Of course he produced the 
Weierstrass nowhere differentiable function and proved the Weierstrass 
approximation theorem. 

Weierstrass was the son of Wilhelm Weierstrass, a government official, and 
Theodora Vonderforst. His interest in mathematics began while he was a 
gymnasium student at the Theodorianum in Paderborn. He was sent to the 
University of Bonn upon graduation to prepare for a government position. His 
studies were to be in the fields of law, economics, and finance, and this 
conflicted with his hopes to study mathematics. He resolved the conflict by 
paying little heed to his planned course of study but continuing private study in 
mathematics. The outcome was that he left the university without a degree. He 
then studied mathematics at the Münster Academy (which was even then 
famous for mathematics) and his father was able to obtain a place for him in a 
teacher training school in Münster. 

In 1843 he taught in Deutsch Krone in West Prussia and since 1848 he taught 
at the Lyceum Hosianum in Braunsberg. Besides mathematics he also taught 
physics, botany, and gymnastics. 
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After 1850 Weierstrass suffered from a long period of illness, but was able to 
publish mathematical articles that brought him fame and distinction. The 
University of Königsberg conferred an honorary doctor’s degree on him on 31 
March 1854. In 1864 he became professor at the Friedrich-Wilhelms-Universität 
Berlin, which later became the Humboldt Universität zu Berlin. 

In 1870, at the age of fifty-five, Weierstrass met Sofia Kovalevsky whom he 
tutored privately after failing to secure her admission to the University. They 
had a fruitful intellectual, but troubled personal, relationship. The misinterpre-
tation of this relationship and Kovalevsky’s early death in 1891 was said to have 
contributed to Weierstrass’ later ill health. He was immobile for the last three 
years of his life, and died in Berlin from pneumonia.   

*********************************************************** 

Exercises  
1. Let S be any set of real numbers. Prove that S S̄. Prove that S̄ is 

a closed set. Prove that S S¯\ ° is the boundary of S.  
2. What is the interior of the set S = {1, 1/2, 1/3, …} {0}? What is 

the boundary of the set?  
3. The union of infinitely many closed sets need not be closed. It 

need not be open either. Give examples to illustrate the 
possibilities.  

4. The intersection of infinitely many open sets need not be open. It 
need not be closed either. Give examples to illustrate the 
possibilities.  

5. Let S be any set of real numbers. Prove that S° is open. Prove that S 
is open if and only if S equals its interior.  

6. Prove Proposition 4.26.  
7. Let RS be the rational numbers. What is the interior of S? What 

is the boundary of S? What is the closure of S?  
*8. Give an example of a one-to-one, onto, continuous function f with a 

continuous inverse from the halfline (0, ∞) to the full line (−∞, ∞).  
*9. Give an example of a closed set in the plane (refer to Chapter 10) 

whose projection on the x-axis is not closed.  
*10. Show that the projection of an open set in the plane (refer to 

Chapter 10) into the x-axis must be open.  
11. What is the interior of the Cantor ternary set? What is the 

boundary of this set?  
12. What is the boundary of the set of irrational numbers? 
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13. For each positive rational number q consider the interval 
q q q q( /2, + /2). 

What is the union of all these intervals? 

4.3 Compact Sets 

Compact sets are sets (usually infinite) which share many of the most im-
portant properties of finite sets. They play an important role in real analysis. 

Definition 4.31: A set RS is called compact if every sequence in S has a 
subsequence that converges to an element of S. 

Theorem 4.32: (Heine–Borel) A set RS is compact if and only if it is closed 
and bounded. 

Proof: That a closed, bounded set has the property of compactness is the 
content of Corollary 4.29 and Proposition 4.13. 

Now let S be a set that is compact. If S is not bounded, then there is an 
element s1 of S that has absolute value larger than 1. Also there must be 
an element s2 of S that has absolute value larger than 2. Continuing, we find 
elements s Sj satisfying 

s j| | >j

for each j. But then no subsequence of the sequence {sj} can be Cauchy. This 
contradiction shows that S must be bounded. 

If S is compact but S is not closed, then there is a point x which is the limit 
of a sequence s S{ }j but which is not itself in S. But every sequence into S 
is, by definition of “compact,” supposed to have a subsequence converging 
an element of S. For the sequence {sj} that we are considering, x is the only 
candidate for the limit of a subsequence. Thus it must be that x S. That 
contradiction establishes that S is closed.                                           □ 

In the abstract theory of topology (where there is no notion of distance), 
sequences cannot be used to characterize topological properties. Therefore a 
different definition of compactness is used. For interest’s sake, and for fu-
ture use, we now show that the definition of compactness that we have been 
discussing is equivalent to the one used in abstract topology theory. First we 
need a new definition. 
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Definition 4.33: Let S be a subset of the real numbers. A collection of open 
of sets { } A (each is an open set of real numbers) is called an open 
covering of S if 

S.
A

See Figure 4.14. 

Example 4.34: The collection j= {(1/ , 1)} j=1 is an open covering of the 
interval I = (0, 1). No finite subcollection of the elements of covers I.  

The collection j= {(1/ , 1)} {( 1/5, 1/5), (4/5, 6/5)}j=1 is an open 
cov-ering of the interval J = [0, 1]. However, not all the elements are 
actually needed to cover J. In fact 

( 1/5, 1/5), (1/6, 1), (4/5, 6/5)

cover the interval J.                                                                        □ 

It is the distinction displayed in this example that distinguishes compact 
sets from the point of view of topology. To understand the point, we need 
another definition: 

Definition 4.35: If is an open covering of a set S and if is another open 
covering of S such that each element of is also an element of then we 
call a subcovering of . 

We call a finite subcovering if has just finitely many elements 

Example 4.36: The collection of intervals 

j j= {( 1, + 1)} j=1

is an open covering of the set S = [5, 9]. The collection 

j j= {( 1, + 1)} j=5

is a subcovering. 

FIGURE 4.14 
Open covers and compactness.    
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However, the collection 

= {(4, 6), (5, 7), (6, 8), (7, 9), (8, 10)}

is a finite subcovering.                                                                     □ 

Theorem 4.37: A set RS is compact if and only if every open covering 
= { } A of S has a finite subcovering. 

Proof: Assume that S is a compact set and let = { } A be an open 
covering of S. 

By Theorem 4.29, S is closed and bounded. Therefore it holds that 
a S= inf is a finite real number, and an element of S. Likewise, b S= sup
is a finite real number and an element of S. Write I a b= [ , ]. The case a = b is 
trivial so we assume that a < b. 

Set 

= {x ∈ I : contains a finite subcover that covers S ∩ [a, x]}.  

Then is nonempty since a . Let t = sup . Then some element 0 of 
contains t. Let s be an element of 0 to the left of t. Then, by the definition of 
t, s is an element of . So there is a finite subcovering of that covers 
S a s[ , ]. But then = { }0 covers S a t[ , ], showing that t = sup
lies in . But in fact even covers points to the right of t. Thus t cannot be 
the supremum of unless t = b. 

We have learned that t must be the point b itself and that therefore b . 
But that says that S a b S[ , ] = can be covered by finitely many of the 
elements of . That is what we wished to prove. 

For the converse, assume that every open covering of S has a finite 
subcovering. Let {aj} be a sequence in S. Assume, seeking a contradiction, 
that the sequence has no subsequence that converges to an element of S. 
This must mean that for every s S there is an > 0s such that no element of 
the sequence satisfies a s0 < | | <j s. Let I s s= ( , + )s s s . The collection 

I= { }s is then an open covering of the set S. By hypothesis, there exists a 
finite subcov-ering I I, …s sk1 of open intervals that cover S. But then 
S Ij

k
sj=1 contains no element of the sequence {aj}, and that is a 

contradiction.                                                                                □ 

Example 4.38: If A B and both sets are nonempty then A B A= . A 
similar assertion holds when intersecting finitely many nonempty sets 
A A Ak1 2 ; it holds in this circumstance that A A=j

k
j k=1 . 

However, it is possible to have infinitely many nonempty nested sets 
with null intersection. An example is the sets I j= (0, 1/ )j . We see that 
I I I1 2 3 yet 
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I = .
j

j
=1

By contrast, if we take Kj = [0, 1/j] then 

K = {0}.
j

j
=1

The next proposition shows that compact sets have the intuitively appealing 
property of the Kjs rather than the unsettling property of the Ijs.           □ 

Proposition 4.39: Let 

K K K …j1 2

be nonempty compact sets of real numbers. Set 

K= .
j

j
=1

Then is compact and . 

Proof: Each Kj is closed and bounded hence is closed and bounded. Thus 
is compact. Let x Kj j, each j. Then x K{ }j 1. By compactness, there is a 

convergent subsequence {xjk} with limit x K0 1. However, x K{ }jk k=2 2. 
Thus x K0 2. Similar reasoning shows that x Km0 for all m = 1, 2, … . In 
conclusion, x =j j0 .                                                               □ 

Exercises  
1. Prove that the intersection of a compact set and a closed set is 

compact.  
2. Let K be a compact set and let U be an open set that contains K. 

Prove that there is an > 0 such that, if k ∈ K, then the interval 
k k( , + ) is contained in U.  

3. Let K be compact and L closed, and assume that the two sets are 
disjoint. Show that there is a positive distance between the two 
sets. 

4. Let K be a compact set. Let δ > 0. Prove that there is a finite col-
lection of intervals of radius δ that covers K.  

5. Let K be a compact set. Let U= { }j j
k
=1 be a finite open covering of 

K. Show that there is a δ > 0 so that, if x is any point of K, then the 
disc or interval of center x and radius δ lies entirely in one of 
the Uj. 
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6. Assume that we have intervals a b a b[ , ] [ , ]1 1 2 2 , each of po-
sitive length, and that a blim | | = 0j j j . Prove that there is a 
point x such that x ∈ [aj, bj] for every j.  

7. Let RK be a compact set. Let > 0. Define 

RK t t k k Kˆ = { : for some }.

Is K̂ compact? Why or why not?  
8. If K in R is compact then show that Kc is not compact.  
9. Prove that the intersection of any number of compact sets is 

compact. The analogous statement for unions is false.  
10. Let RU be any open set. Show that there exist compact sets 

K K1 2 so that K U=j j .  
11. Produce an open set U in the real line so that U may not be written 

as the decreasing intersection of compact sets.  
12. Let K be a compact set and E a closed set. Assume that these sets 

are disjoint. Define 

d k e k K e E= inf{ : , }.

Prove that d is a positive number.  
13. Prove that the result of Exercise 12 is false for two closed sets.  
14. Prove that the result of Exercise 12 is false for two open sets. 

4.4 The Cantor Set 

In this section we describe the construction of a remarkable subset of R with 
many pathological properties. It only begins to suggest the richness of the 
structure of the real number system. 

We begin with the unit interval S = [0, 1]0 . We extract from S0 its open 
middle third; thus S1 = S0\(1/3, 2/3). Observe that S1 consists of two closed 
intervals of equal length 1/3. See Figure 4.15. 

Now we construct S2 from S1 by extracting from each of its two intervals the 
middle third: S = [0, 1/9] [2/9, 1/3] [6/9, 7/9] [8/9, 1]2 . Figure 4.16 
shows S2. 

Continuing in this fashion, we construct Sj+1 from Sj by extracting the 
middle third from each of its component subintervals. We define the Cantor 
set C to be 
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C S=
j

j
=1

Notice that each of the sets Sj is closed and bounded, hence compact. By 
Proposition 4.39 of the last section, C is therefore not empty (one can also 
note that the endpoints of the removed intervals are all in the Cantor set). 
The set C is closed and bounded, hence compact. 

Proposition 4.40: The Cantor set C has zero length, in the sense that the 
complementary set [0, 1]\C has length 1. 

Proof: In the construction of S1, we removed from the unit interval one 
interval of length 3−1. In constructing S2, we further removed two intervals 
of length 3−2. In constructing Sj, we removed 2j−1 intervals of length 3−j. 
Thus the total length of the intervals removed from the unit interval is 

2 3 .
j

j j

=1

1

This last equals 

1
3

2
3

.
j

j

=1

The geometric series sums easily and we find that the total length of the 
intervals removed is 

1
3

1
1 2/3

= 1.

Thus the Cantor set has length zero because its complement in the unit 
interval has length one.                                                                   □ 

0 1

FIGURE 4.15 
Construction of the Cantor set.    

0 1

FIGURE 4.16 
Second step in the construction of the Cantor set.    
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Proposition 4.41: The Cantor set is uncountable. 

Proof: We assign to each element of the Cantor set a “label” consisting of a 
sequence of 0s and 1s that identifies its location in the set. 

Fix an element x in the Cantor set. Then x is in S1. If x is in the left half of 
S1, then the first digit in the “label” of x is 0; otherwise it is 1. See Figure 4.17. 

Likewise x ∈ S2. By the first part of this argument, it is either in the left 
half S2

0 of S2 (when the first digit in the label is 0) or the right half S2
1 of S2 

(when the first digit of the label is 1). Whichever of these is correct, that half 
will consist of two intervals of length 3−2. If x is in the leftmost of these two 
intervals then the second digit of the “label” of x is 0. Otherwise the second 
digit is 1. Refer to Figure 4.18. 

Continuing in this fashion, we may assign to x an infinite sequence of 0s 
and 1s. 

Conversely, if a, b, c, … is a sequence of 0s and 1s, then we may locate a 
unique corresponding element y of the Cantor set. If the first digit is a zero 
then y is in the left half of S1; otherwise y is in the right half of S1. Likewise 
the second digit locates y within S2, and so forth. 

Thus we have a one-to-one correspondence between the Cantor set and 
the collection of all infinite sequences of zeroes and ones. [Notice that we are 
in effect thinking of the point assigned to a sequence c1c2c3 … of 0s and 1s as 
the limit of the points assigned to c1, c1c2, c1c2c3, … Thus we are using the 
fact that C is closed.] However, as we can learn in the Appendix at the end 
of the book, the set of all infinite sequences of zeroes and ones is un-
countable. Thus we see that the Cantor set is uncountable.                   □ 

0 1

first digit 0 first digit 1

FIGURE 4.17 
The first digit of the label of a point in the Cantor set.    

0 1

second
digit 0

second
digit 1

second
digit 1

second
digit 0

FIGURE 4.18 
The second digit of the label of a point in the Cantor set.    
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The Cantor set is quite thin (it has zero length) but it is large in the sense 
that it has uncountably many elements. Also it is compact. The next result 
reveals a surprising, and not generally well known, property of this 
“thin” set. 

Theorem 4.42: Let C be the Cantor set and define 

S x y x C y C= { + : , }.

Then S = [0, 2]. 

Proof: We sketch the proof here and treat the details in the exercises. 
Since C [0, 1] it is clear that S [0, 2]. For the reverse inclusion, fix an 

element t [0, 2]. Our job is to find two elements c and d in C such that 
c d t+ = . 

First observe that x y x S y S{ + : , } = [0, 2]1 1 . Therefore there exist x1 
∈ S1 and y1 ∈ S1 such that x y t+ =1 1 . 

Similarly, x y x S y S{ + : , } = [0, 2]2 2 . Therefore there exist x2 ∈ S2 and 
y2 ∈ S2 such that x2 + y2 = t. 

Continuing in this fashion we may find for each j numbers xj and yj such 
that xj, yj ∈ Sj and xj + yj = t. Of course {xj} ⊆ C and {yj} ⊆ C hence there are 
subsequences {xjk} and {yjk} which converge to real numbers c and d 
respectively. Since C is compact, we can be sure that c ∈ C and d ∈ C. But 
the operation of addition respects limits, thus we may pass to the limit as 
k → ∞ in the equation 

x y t+ =jk jk

to obtain 

c d t+ = .

Therefore [0, 2] ⊆ {x + y : x ∈ C}. This completes the proof.                  □ 

In the exercises at the end of the section we shall explore constructions of 
other Cantor sets, some of which have zero length and some of which have 
positive length. The Cantor set that we have discussed in detail in the 
present section is sometimes distinguished with the name “the Cantor 
ternary set.” We shall also consider in the exercises other ways to construct 
the Cantor ternary set. 

Observe that, whereas any open set is the countable or finite disjoint 
union of open intervals, the existence of the Cantor set shows us that there is 
no such structure theorem for closed sets. That is to say, we cannot hope to 
write an arbitrary closed set as the disjoint union of closed intervals. 
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[However, de Morgan’s Law shows that an arbitrary closed set can be 
written as the countable intersection of sets, each of which is the union of 
disjoint closed intervals.] In fact closed intervals are atypically simple when 
considered as examples of closed sets. 

Exercises  
1. Construct a Cantor-like set by removing the middle fifth from the 

unit interval, removing the middle fifth of each of the remaining 
intervals, and so on. What is the length of the set that you con-
struct in this fashion? 
Is it uncountable? Is it different from the Cantor set constructed 
in the text?  

2. Refer to Exercise 1. Construct a Cantor set by removing, at the jth 
step, a middle subinterval of length 3−2j+1 from each existing 
interval. The Cantor-like set that results should have positive 
length. What is that length? Does this Cantor set have the other 
properties of the Cantor set constructed in the text? 

3. Prove that it is not the case that there is a positive distance be-
tween two disjoint open sets. 

4. Let 0 < λ < 1. Imitate the construction of the Cantor set to pro-
duce a subset of the unit interval whose complement has 
length λ.  

5. How many endpoints of the intervals in the Sj are there in the 
Cantor set? How many non-endpoints?  

6. What is the interior of the Cantor set? What is the boundary?  
7. Fix the sequence aj = 3−j, j = 1, 2, …. Consider the set S of all sums 

a ,
j

j j
=1

where each µj is one of the numbers 0 or 2. Show that S is the Cantor 
set. If s is an element of S s a, = j j, and if µj = 0 for all j sufficiently 
large, then show that s is an endpoint of one of the intervals in one 
of the sets Sj that were used to construct the Cantor set in the text.  

8. Let us examine the proof that {x + y : x ∈ C, y ∈ C} equals [0, 2] 
more carefully.  
a. Prove for each j that {x + y : x ∈ Sj, y ∈ Sj} equals the interval 

[0, 2].  
b. For t ∈ [0, 1], explain how the subsequences {xjk} and {yjk} in 

Sj can be chosen to satisfy xjk + yjk = t and so that xjk → x0 ∈ C 
and yjk → y0 ∈ C. Observe that it is important for the proof 
that the index jk be the same for both subsequences. 
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c. Formulate a suitable statement concerning the assertion that 
the binary operation of addition “respects limits” as required 
in the argument in the text. Prove this statement and explain 
how it allows us to pass to the limit in the equation xjk + yjk = t.  

9. Use the characterization of the Cantor set from Exercise 8 to give 
a new proof of the fact that {x + y : x ∈ C, y ∈ C} equals the 
interval [0, 2]. 

10. How many points in the Cantor set have finite ternary expan-
sions? How many have infinite ternary expansions?  

*11. Discuss which sequences aj of positive numbers could be used as 
in Exercise 7 to construct sets which are like the Cantor set.  

*12. Describe how to produce a two-dimensional Cantor-like set in 
the plane.  

13. When we construct the Cantor set we remove open intervals 
from the interval [0, 1]. Suppose we instead attempted to con-
struct a Cantor-like set by removing closed intervals from the 
interval (0, 1)? Why is this program doomed to failure?  

**14. Let C be the Cantor ternary set and construct a new set 

E c d c C d C= { : , }.

Can you give an explicit description of E? [Hint: Begin by subtracting 
S1 from S1. Then subtract S2 from S2. This should give you some idea 
of what is going on. 

4.5 Connected and Disconnected Sets 

Definition 4.43: Let S be a set of real numbers. We say that S is disconnected 
if it is possible to find a pair of open sets U and V such that 

U S V S, ,

U S V S( ) ( ) = ,

and 

S U S V S= ( ) ( ).
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See Figure 4.19. If no such U and V exist then we call S connected. 

Example 4.44: The set RT x x x= { : < 1, 0} is disconnected. Take U = 
{x : x < 0} and V = {x : x > 0}. Then 

U T x x= { : 1 < < 0}

and 

V T x x= { : 0 < < 1}

Also (U ∩ T) ∩ (V ∩ T) = ∅. Clearly T = (U ∩ T) ∪ (V ∩ T), hence T is 
disconnected.                                                                                □ 

It is clear that a disconnected set has the property that there are disjoint 
open sets that, in effect, disconnect the set. The next example looks at the 
contrapositive. 

Example 4.45: The set X = [−1, 1] is connected. To see this, suppose to the 
contrary that there exist open sets U and V such that 
U X V X U X V X, , ( ) ( ) = , and 

X U X V X= ( ) ( ).

Choose a ∈ U ∩ X and b ∈ V ∩ X. Set 

U a b= sup( [ , ]}).

Now [a, b] ⊆ X hence U ∩ [a, b] is disjoint from V. Thus α ≤ b. But Vc is closed 
hence V . It follows that α < b. 

If α ∈ U then, because U is open, there exists an U˜ such that b< ˜ < . 
This would mean that we chose α incorrectly. Hence U. But U and 

V means X. On the other hand, α is the supremum of a subset of X 
(since a ∈ X, b ∈ X, and X is an interval). Since X is a closed interval, we 
conclude that α ∈ X. This contradiction shows that X must be connected.  □ 

With small modifications, the discussion in the last example demonstrates 
that any closed interval is connected (Exercise 1). See Figure 4.20. Also 

a disconnected set

FIGURE 4.19 
The idea of disconnected.    
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(see Exercise 2), we may similarly see that any open interval or half-open 
interval is connected. In fact the converse is true as well: 

Theorem 4.46: A subset S of R is connected if and only if S is an interval. 

Proof: If S is not an interval then there exist a ∈ S, b ∈ S and a point t between a 
and b such that t S. Define RU x x t= { : < } and RV x t x= { : < }. Then 
U and V are open and disjoint, U S V S, , and 

S U S V S= ( ) ( )

Thus S is disconnected. 
If S is an interval then we prove that it is connected using the methodology 

of Example 4.45.                                                                                     □ 

The Cantor set is not connected; indeed it is disconnected in a special 
sense. 

Call a set S totally disconnected if, for each distinct x ∈ S, y ∈ S, there exist 
disjoint open sets U and V such that x ∈ U, y ∈ V, and S U S V S= ( ) ( ). 

Proposition 4.47: The Cantor set is totally disconnected. 

Proof: Let x, y ∈ C be distinct and assume that x < y. Set δ = |x−y|. Choose j 
so large that 3−j < δ. Then x, y ∈ Sj, but x and y cannot both be in the same 
interval of Sj (since the intervals will have length equal to 3−j). It follows that 
there is a point t between x and y that is not an element of Sj, hence not an 
element of C. Set U = {s : s < t} and V = {s : s > t}. Then x ∈ U ∩ C hence U ∩ C 
≠ ∅; likewise V ∩ C ≠ ∅. Also (U ∩ C) ∩ (V ∩ C) = ∅. Finally C = (C ∩ U) ∪ (C 
∩ V). Thus C is totally disconnected.                                                 □ 

Exercises  
1. Imitate Example 4.45 in the text to prove that any closed interval 

is connected.  
2. Imitate Example 4.45 in the text to prove that any open interval or 

halfopen interval is connected.  
3. Give an example of a totally disconnected set S ⊆ [0, 1] such that 

S̄ = [0, 1]. 

FIGURE 4.20 
A closed interval is connected.    
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4. Write the real line as the union of two totally disconnected sets.  
5. Let RS be a set. Let s t S, . We say that s and t are in the same 

connected component of S if the entire interval [s, t] lies in S. What 
are the connected components of the Cantor set? Is it possible to 
have a set S with countably many connected components? With 
uncountably many connected components?  

6. If A is connected and B is connected then will A ∩ B be connected?  
7. If A is connected and B is connected then will A ∪ B be connected?  
8. What can you say about the sum of two disconnected sets? Give 

some examples.  
9. If A is connected and B is disconnected then what can you say 

about A ∩ B?  
10. If sets Uj form the basis of a topology on a space X (that is to say, 

each open set in X can be written as a union of some of the Uj) and 
if each Uj is connected, then what can you say about X?  

*11. If A is connected and B is connected then does it follow that A × B 
is connected?  

12. Give an example of two disconnected sets E and F so that E ∩ F is 
connected.  

13. Give an example of two disconnected sets E and F so that E ∪ F is 
connected.  

14. Give an example of two disconnected sets E and F so that E\F is 
connected. 

4.6 Perfect Sets 

Definition 4.48: A set RS is called perfect if it is closed and if every point 
of S is an accumulation point of S. 

The property of being perfect is a rather special one: it means that the set 
has no isolated points. 

Example 4.49: Consider the set S = [0, 2]. This set is perfect. Because (i) it is 
closed, (ii) any interior point is clearly an accumulation point, (iii) 0 is the 
limit of {1/j} so is an accumulation point, and (iv) 2 is the limit of {2 − 1/j} so 
is an accumulation point.                                                                □ 

Clearly a closed interval [a, b] is perfect. After all, a point x in the interior 
of the interval is surrounded by an entire open interval x x( , + ) of 
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elements of the interval; moreover a is the limit of elements from the right 
and b is the limit of elements from the left. 

Example 4.50: The Cantor set, a totally disconnected set, is perfect. It is 
definitely closed. Now fix x ∈ C. Then x ∈ S1. Thus x is in one of the two 
intervals composing S1. One (or perhaps both) of the endpoints of that 
interval does not equal x. Call that endpoint a1. Likewise x ∈ S2. Therefore x 
lies in one of the intervals of S2. Choose an endpoint a2 of that interval 
which does not equal x. Continuing in this fashion, we construct a sequence 
{aj}. Notice that each of the elements of this sequence lies in the Cantor set (why?). 
Finally, |x − aj| ≤ 3−j for each j. Therefore x is the limit of the sequence. We 
have thus proved that the Cantor set is perfect.                                  □ 

The fundamental theorem about perfect sets tells us that such a set must be 
rather large. We have 

Theorem 4.51: A nonempty perfect set must be uncountable. 

Proof: Let S be a nonempty perfect set. Since S has accumulation points, it 
cannot be finite. Therefore it is either countable or uncountable. 

Seeking a contradiction, we suppose that S is countable. Write S = {s1, s2, …}. 
Set U1 = (s1 − 1, s1 + 1). Then U1 is a neighborhood of s1. Now s1 is a limit point 
of S so there must be infinitely many elements of S lying in U1. 

We select a bounded open interval U2 such that U U U¯ , ¯2 1 2 does not 
contain s1, and U2 does contain some element of S. 

Continuing in this fashion, assume that s1, …, sj have been selected and 
choose a bounded interval Uj+1 such that (i) U U¯ j j+1 , (ii) s Ūj j+1, and (iii) 
Uj+1 contains some element of S. 

Observe that each set V U S= ¯j j is closed and bounded, hence compact. 
Also each Vj is nonempty by construction but Vj does not contain sj 1. It 
follows that V V= j j cannot contain s1 (since V2 does not), cannot contain s2

(since V3 does not), indeed cannot contain any element of S. Hence V , being 
a subset of S, is empty. But V is the decreasing intersection of nonempty 
compact sets, hence cannot be empty! 

This contradiction shows that S cannot be countable. So it must be 
uncountable.                                                                                 □ 

Corollary 4.52: If a b< then the closed interval a b[ , ] is uncountable. 

Proof: The interval a b[ , ] is perfect.                                                    □ 

We also have a new way of seeing that the Cantor set is uncountable, since it 
is perfect: 

Corollary 4.53: The Cantor set is uncountable. 
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Exercises  
1. Let U U1 2 be open sets and assume that each of these sets has 

bounded, nonempty complement. Is it true that RUj j ?  
2. Let X1, X2 … each be perfect sets and suppose that X X …1 2 . 

Set X X= j j. Is X perfect?  
3. Is the product of perfect sets perfect?  
4. If A B is perfect, then what may we conclude about A and B?  
5. If A B is perfect, then what may we conclude about A and B?  
6. Call a set imperfect if its complement is perfect. Which sets are 

imperfect? Can you specify a connected imperfect set?  
7. What can you say about the interior of a perfect set?  
8. What can you say about the boundary of a perfect set?  

*9. Let S S, , …1 2 be closed sets and assume that RS =j j . Prove that 
at least one of the sets Sj has nonempty interior. (Hint: Use an idea 
from the proof that perfect sets are uncountable.)  

*10. Let S be a nonempty set of real numbers. A point x is called a 
condensation point of S if every neighborhood of x contains un-
countably many points of S. Prove that the set of condensation 
points of S is closed. Is it necessarily nonempty? Is it nonempty 
when S is uncountable? 
If T is an uncountable set, then show that the set of its con-
densation points is perfect.  

*11. Prove that any closed set can be written as the union of a perfect 
set and a countable set. (Hint: Refer to Exercise 10 above.)  

12. Prove that every open set U contains a perfect set.  
13. Prove that every closed set E is contained in a perfect set.  
14. Prove that every open set W is contained in a perfect set.  
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5 
Limits and Continuity of Functions  

5.1 Definition and Basic Properties of the Limit of a Function 

In this chapter, we are going to treat some topics that you have seen before 
in your calculus class. However, we shall use the deep properties of the real 
numbers that we have developed in this text to obtain important new in-
sights. Therefore, you should not think of this chapter as review. Look at the 
concepts introduced here with the power of your new understanding of 
analysis. 

Definition 5.1: Let RE be a set and let f be a real-valued function with 
domain E. Fix a point RP that is an accumulation point of E. Let be a 
real number. We say that 

f xlim ( ) =
E x P

if, for each > 0, there is a > 0 such that, when x E and x P0 < | | < , 
then 

f x| ( ) | < .

In other words, we say that the limit as x tends to P of f is equal to . 

The definition makes precise the notion that we can force f(x) to be just as 
close as we please to by making x sufficiently close to P. Notice that the 
definition puts the condition x P0 < | | < on x, so that x is not allowed 
to take the value P. In other words, we do not look at x P= , but rather at x 
near to P. 

Also, observe that we only consider the limit of f at a point P that is not 
isolated. In the exercises you will be asked to discuss why it would be 
nonsensical to use the earlier definition to study the limit at an isolated 
point. 
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Example 5.2: Let RE = \{0} and 

f x x x x E( ) = sin(1/ ) if .

See Figure 5.1. Then, f xlim ( ) = 0x 0 . To see this, let > 0. Choose = . If 
x0 < | 0| < , then 

f x x x x| ( ) 0| = | sin(1/ )| | | < = ,

as desired. Thus, the limit exists and equals 0.                                    □ 

Example 5.3: Let RE = and 

g x x
x

( ) = 1 if is rational
0 if is irrational.

Then, g xlim ( )x P does not exist for any point P of E. 
To see this, fix RP . Seeking a contradiction, assume that there is a 

limiting value for g at P. If this is so, then we take = 1/2 and we can find 
a > 0 such that x P0 < | | < implies 

y

x

FIGURE 5.1 
The limit of an oscillatory function.    
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g x| ( ) | < =
1
2

. (5.3.1)  

If we take x to be rational, then (5.3.1) says that 

|1 | <
1
2

, (5.3.2)  

while if we take x irrational, then (5.3.1) says that 

|0 | <
1
2

. (5.3.3)  

But then, the triangle inequality gives that 

|1 0| = |(1 ) + ( 0)|
|1 | + | 0|,

which by (5.3.2) and (5.3.3) is 
< 1.

This contradiction, that 1 < 1, allows us to conclude that the limit does not 
exist at P.                                                                                     □ 

Proposition 5.4: Let f be a function with domain E, and let P be an accumulation 
point of E. If f xlim ( ) =x P and f x mlim ( ) =x P , then m= . 

Proof: Let > 0. Choose > 01 such that, if x E and x P0 < | | < 1, then 
f x| ( ) | < /2. Similarly choose > 02 such that, if x E and 

x P0 < | | < 2, then f x m| ( ) | < /2. Define to be the minimum of 1
and 2. If x E and x P0 < | | < , then the triangle inequality tells us that 

m f x f x m
f x f x m

| | = |( ( )) + ( ( ) )|
|( ( )| + | ( ) )|

< +
=

2 2

Since m| | < for every positive we conclude that m= . That is the 
desired result.                                                                               □ 

The point of the last proposition is that if a limit is calculated by two dif-
ferent methods, then the same answer will result. While of primarily phi-
losophical interest now, this will be important information later when we 
establish the existence of certain limits. 
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This is a good time to observe that the limits 

f xlim ( )
x P

and 

f P hlim ( + )
h 0

are equal in the sense that if one limit exists, then so does the other and they 
both have the same value. 

To facilitate checking that certain limits exist, we now record some ele-
mentary properties of the limit. This requires that we first recall how 
functions are combined. 

Suppose that f and g are each functions which have domain E. We define 
the sum or difference of f and g to be the function 

f g x f x g x( ± )( ) = ( ) ± ( ),

the product of f and g to be the function 

f g x f x g x( )( ) = ( ) ( ),

and the quotient of f and g to be 

f
g

x
f x
g x

( ) =
( )
( )

.

Notice that the quotient is only defined at points x for which g x( ) 0. Now, 
we have: 

Theorem 5.5: (Elementary Properties of Limits of Functions) Let f and g be 
functions with domain E and fix a point P that is an accumulation point of E. 
Assume that  

i. f xlim ( ) =
x P

ii. g x mlim ( ) = .
x P

Then,  

a. f g x mlim( ± )( ) = ±
x P

b. f g x mlim( )( ) =
x P

c. f g x m provided mlim( / )( ) = / 0.
x P
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Proof: We prove part (b). Parts (a) and (c) are treated in the exercises. 
Let > 0. We may also assume that < 1. Choose > 01 such that, if x E

and x P0 < < 1, then 

f x
m

| ( ) | <
2(| | + 1)

.

Choose > 02 such that if x E and x P0 < | | < 2, then 

g x m| ( ) | <
2(| | + 1)

.

(Notice that this last inequality implies that g x m| ( )| < | | + | |.) Let be 
the minimum of 1 and 2. If x E and x P0 < | | < , then 

( ) ( )
( )

f x g x m f x g x g x m

f x g x g x m

g x

m

| ( ) ( ) | = |( ( ) ) ( ) + ( ( ) ) |
|( ( ) ) ( )| + |( ( ) ) |

< | ( )| + | |

(| | + | |) +

< +
= .

m

m

2(| | +1) 2(| | +1)

2(| | +1) 2

2 2

□ 

Example 5.6: It is a simple matter to check that, if f x x( ) = , then 

f x Plim ( ) =
x P

for every real P. (Indeed, for > 0 we may take = .) Also, if g x( ) is 
the constant function taking value , then 

g xlim ( ) = .
x P

It then follows from parts (a) and (b) of the theorem that, if f(x) is any 
polynomial function, then 

f x f Plim ( ) = ( ).
x P
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Moreover, if r x( ) is any rational function (quotient of polynomials), then we 
may also use part (c) of the theorem to conclude that 

r x r Plim ( ) = ( )
x P

for all points P at which the rational function r(x) is defined.                □ 

Example 5.7: If x is a small, positive real number, then x x0 < sin < . This is 
true because xsin is the nearest distance from the point x x(cos , sin ) to the 
x-axis while x is the distance from that point to the x-axis along an arc. If 

> 0, then we set = . We conclude that if x0 < | 0| < , then 

x x| sin 0| < | | < = .

Since x xsin( ) = sin , the same result holds when x is a negative number 
with small absolute value. Therefore 

xlim sin = 0.
x 0

Since 

x x xcos = 1 sin for all [ /2, /2],2

we may conclude from the preceding theorem that 

xlim cos = 1.
x 0

Now, fix any real number P. We have 

x P h

P h P h

P P
P

lim sin = lim sin( + )

= lim(sin cos + cos sin )

= sin 1 + cos 0
= sin .

x P h

h

0

0

We of course have used parts (a) and (b) of the theorem to commute the limit 
process with addition and multiplication. A similar argument shows that 

x Plim cos = cos .
x P □ 
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Remark 5.8: In the last example, we have used the definition of the sine 
function and the cosine function that you learned in calculus. In Chapter 8, 
when we learn about series of functions, we will learn a more rigorous 
method for treating the trigonometric functions.                                  □ 

We conclude by giving a characterization of the limit of a function using 
sequences. 

Proposition 5.9: Let f be a function with domain E and P be an accumulation point 
of E. Then, 

f xlim ( ) =
x P

(5.9.1)  

if and only if, for any sequence a E P{ } \{ }j satisfying a Plim =j j , it holds that 

f alim ( ) = .
j

j (5.9.2)  

Proof: Assume that condition (5.9.1) fails. Then, there is an > 0 such that 
for no > 0 is it the case that when x P0 < | | < , then f x| ( ) | < . 
Thus, for each j= 1/ , we may choose a number a E P\{ }j with 

a P j0 < | | < 1/j and f a| ( ) |j . But then, condition (5.9.2) fails for 
this sequence a{ }j . 

If condition (5.9.2) fails, then there is some sequence a{ }j such that 
a Plim =j j but f alim ( )j j . This means that there is an > 0 such 

that for infinitely many aj it holds that f a| ( ) |j . But then, no matter 
how small > 0, there will be an aj satisfying a P0 < | | <j (since 
a Pj ) and f a| ( ) |j . Thus, (5.9.1) fails. 

Exercises  
1. Let f and g be functions on a set A a c c b= ( , ) ( , ) and assume that 

f x g x( ) ( ) for all x A. Assuming that both limits exist, show 
that 

f x g xlim ( ) lim ( ).
x c x c

Does the conclusion improve if we assume that f x g x( ) < ( ) for all 
x A?
2. Explain why it makes no sense to consider the limit of a function 

at an isolated point of the domain of the function. 
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3. Give a definition of limit using the concept of open set.  
4. If f xlim ( ) = > 0x c , then prove that there is a > 0 so small that 

x c| | < guarantees that f x( ) > /2.  
5. Give an example of a function with domain R such that 

f xlim ( )x c exists at every point c but f is discontinuous at a dense 
set of points. 

6. Prove that f x f P hlim ( ) = lim ( + )x P h 0 whenever both expres-
sions make sense.  

7. Prove parts (a) and (c) of Theorem 5.5.  
8. Give an example of a function R Rf : so that limx c does not 

exist for any Rc .  
9. Discuss the limiting properties at the origin of the functions  

f x
x x x

x
( ) =

sin(1/ ) if 0
0 if = 0.

and 

g x
x x

x
( ) =

sin(1/ ) if 0
0 if = 0.

10. Show that, if f is an increasing or decreasing function, then f has a 
limit at “most” points. What does the word “most” mean in this 
context?  

*11. Give an example of a function R Rf : so that f xlim ( )x c exists 
when c is irrational but does not exist when c is rational.  

*12. Give a definition of limit using the concept of distance.  
*13. Express the concept of limit of a function at a point using the idea 

of sequences from Chapter 2.  
14. Give examples of functions f and g so that f xlim ( )x c does not 

exist and g xlim ( )x c does not exist and but f x g xlim ( ) ( )x c does 
exist and  

15. Give examples of functions f and g so that f xlim ( )x c does not 
exist and g xlim ( )x c does not exist and but f x g xlim ( )/ ( )x c does 
exist. 
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5.2 Continuous Functions 

Definition 5.10: Let RE be a set and let f be a real-valued function with 
domain E. Fix a point P which is in E and is also an accumulation point of E. 
We say that f is continuous at P if 

f x f Plim ( ) = ( ).
x P

We learned from the penultimate example of Section 5.1 that polynomial 
functions are continuous at every real x. So are the transcendental functions 

xsin and xcos (see Example 5.7). A rational function is continuous at every 
point of its domain. 

Example 5.11: The function 

h x
x x

x
( ) =

sin(1/ ) if 0
1 if = 0

is discontinuous at 0. See Figure 5.2. The reason is that 

FIGURE 5.2 
A function discontinuous at 0.    

Limits and Continuity of Functions                                                     181 

ISTUDY



h xlim ( )
x 0

does not exist. (Details of this assertion are left for you: notice that 
h j(1/( )) = 0 while h j(2/[(4 + 1) ]) = 1 for j = 1, 2, ….) 

The function 

k x
x x x

x
( ) =

sin(1/ ) if 0
1 if = 0

is also discontinuous at x = 0. This time the limit k xlim ( )x 0 exists (see 
Example 5.2), but the limit does not agree with k (0). 

However, the function 

m x
x x x

x
( ) =

sin(1/ ) if 0
0 if = 0

is continuous at x = 0 because the limit at 0 exists and agrees with the value 
of the function there. See Figure 5.3.                                                 □ 

y

x

FIGURE 5.3 
A function continuous at 0.    
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The arithmetic operations +, −, ×, and ÷ preserve continuity (so long as we 
avoid division by zero). We now formulate this assertion as a theorem. 

Theorem 5.12: Let f and g be functions with domain E and let P be a point of E 
which is also an accumulation point of E. If f and g are continuous at P, then so 
are f g f g± , , and (providedg P( ) 0) f g/ . 

Proof: Apply Theorem 5.5 of Section 5.1.                                           □ 

Continuous functions may also be characterized using sequences: 

Proposition 5.13: Let f be a function with domain E and fix P E which is an 
accumulation point of E. The function f is continuous at P if and only if, for every 
sequence a E{ }j satisfying a Plim =j j , it holds that 

f a f Plim ( ) = ( ).
j

j

Proof: Apply Proposition 5.9 of Section 5.1.                                        □ 

Recall that, if g is a function with domain D and range E, and if f is a 
function with domain E and range F, then the composition of f and g is 

f g x f g x( ) = ( ( )).

See Figure 5.4. 

Proposition 5.14: Let g have domain D and range E and let f have domain E and 
range F. Let P D. Suppose that P is an accumulation point of D and g(P) is an 
accumulation point of E. Assume that g is continuous at P and that f is continuous 
at g(P). Then, f g is continuous at P. 

FIGURE 5.4 
Composition of functions.    
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Proof: Let a{ }j be any sequence in D such that a Plim =j j . Then, 

f g a f g a f g a

f g a f g P f g P

lim ( ) = lim ( ( )) = lim ( )

= lim = ( ( )) = ( ).

j
j

j
j

j
j

j
j

Now, apply Proposition 5.9.                                                             □ 

Example 5.15: It is not the case that if 

g xlim ( ) =
x P

and 

f t mlim ( ) =
t

then, 

f g x mlim ( ) = .
x P

A counterexample is given by the functions 

g x( ) = 0

f x x
x

( ) = 2 if 0
5 if = 0.

Notice that g x f tlim ( ) = 0, lim ( ) = 2x t0 0 , yet f g xlim ( ) = 5x 0 . 
The additional hypothesis that f be continuous at is necessary in order to 

guarantee that the limit of the composition will behave as expected.      □ 

Next we explore the topological approach to the concept of continuity. 
Whereas the analytic approach that we have been discussing so far con-
siders continuity one point at a time, the topological approach considers all 
points simultaneously. Let us call a function continuous if it is continuous at 
every point of its domain. 

Definition 5.16: Let f be a function with domain E and let W be any set of 
real numbers. We define 
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f W x E f x W( ) = { : ( ) }.1

We sometimes refer to f W( )1 as the inverse image of W under f. 

Theorem 5.17: Let f be a function with domain E. The function f is continuous if 
and only if the inverse image of any open set under f is the intersection of E with an 
open set. 

In particular, if E is open, then f is continuous if and only if the inverse image of 
every open set under f is open. 

Proof: Assume that f is continuous. Let be any open set in R and let 
P f ( )1 . Then, by definition, f P( ) . Since is open, there is an > 0
such that the interval f P f P( ( ) , ( ) + ) lies in . By the continuity of f we 
may select a > 0 such that if x E and x P| | < , then 
f x f P| ( ) ( )| < . In other words, if x E and x P| | < , then f x( )

or x f ( )1 . Thus, we have found an open interval I P P= ( , + )
about P whose intersection with E is contained in f ( )1 . So f ( )1 is the 
intersection of E with an open set. 

Conversely, suppose that for any open set R we have that f ( )1 is 
the intersection of E with an open set. Fix P E. Choose > 0. Then, the 
interval f P f P( ( ) , ( ) + ) is an open set. By hypothesis the set 
f f P f P(( ( ) , ( ) + ))1 is the intersection of E with an open set. This set 
contains the point P. Thus, there is a > 0 such that 

E P P f f P f P( , + ) (( ( ) , ( ) + )).1

But that just says that 

f E P P f P f P( ( , + )) ( ( ) , ( ) + ).

In other words, if x P| | < and x E, then f x f P| ( ) ( )| < . But that 
means that f is continuous at P.                                                        □ 

Example 5.18: Since any open subset of the real numbers is a countable or 
finite disjoint union of intervals, therefore—in order to check that the 
inverse image under a function f of every open set is open—it is enough to 
check that the inverse image of any open interval is open. This is frequently 
easy to do. 

For example, if f x x( ) = 2, then the inverse image of an open interval (a, b) 
is b a a b( , ) ( , ) if a > 0, is b b( , ) if a b0, 0, and is if 
a b< < 0. Thus, the function f is continuous. 

Note that, by contrast, it is somewhat tedious to give an proof of the 
continuity of f x x( ) = 2.                                                                   □ 
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Corollary 5.19: Let f be a function with domain E. The function f is continuous if 
and only if the inverse image of any closed set F under f is the intersection of E with 
some closed set. continuity and closed sets. 

In particular, if E is closed, then f is continuous if and only if the inverse image of 
any closed set F under f is closed. 

Proof: It is enough to prove that 

f F f F( ) = ( ( )).c c1 1

We leave this assertion as an exercise for you. 

Exercises  

1. Define the function 

g x x
x x

( ) = 0 if is irrational
if is rational

.

At which points x is g continuous? At which points is it discontinuous?  
2. Let f be a continuous function whose domain contains an open 

interval (a, b). What form can f a b(( , )) have? (Hint: There are just 
four possibilities.) 

3. Explain why it would be foolish to define the concept of con-
tinuity at an isolated point.  

*4. Let f be a continuous function on the open interval (a,b). Under 
what circumstances can f be extended to a continuous function on 
[a, b]?  

5. Define an onto, continuous function from R2 to R.  
6. Define continuity using the notion of closed set.  
7. Define the function f x( ) to equal 0 if x is irrational and to equal b 

if x a b= / is a rational number in lowest terms. At which points is 
f continuous? At which points discontinuous?  

8. The image of a compact set under a continuous function is 
compact (see the next section). But the image of a closed set need 
not be closed. Explain. The inverse image of a compact set under a 
continuous function need not be compact. Explain.  

9. Give a careful proof of Corollary 5.19.  
*10. See the next section for terminology. In particular, a function f on 

a set E is uniformly continuous if, given > 0, there is a > 0 such 
that f s f t| ( ) ( )| < whenever s t| | < . 
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Let 0 < 1. A function f with domain E is said to satisfy 
aLipschitz condition Lipschitz condition of order α if there is a 
constant C > 0 such that, for any s t E, , it holds that 
f s f t C s t| ( ) ( )| | | . Prove that such a function must be 

uniformly continuous.  
*11. See Exercise 10 for terminology. Is the composition of uniformly 

continuous functions uniformly continuous?  
12. Refer to Exercise 10 for terminology. Show that the sum of two 

uniformly continuous functions is uniformly continuous.  
13. Refer to Exercise 10 for terminology. Show that the product of 

two uniformly continuous functions is uniformly continuous.  
14. Refer to Exercise 10 for terminology. Under what circumstances is 

the quotient of two uniformly continuous functions uniformly 
continuous?  

15. Let f be a continuous function on the interval [0, 1]. Let > 0. 
Show that there is a piecewise linear function on [0,1] such that 
f x x| ( ) ( )| < for every x [0, 1]. (Hint: A piecewise linear 

function is a continuous function whose graph consists of finitely 
many line segments.)  

16. Give an example of a sequence of continuous functions on R such 
that f xlim ( )j j exists for every x but the limit function is 
discontinuous.  

*17. Refer to Exercise 16. How big can the set of discontinuities of the 
limit function be? 

5.3 Topological Properties and Continuity 

Recall that in Chapter 4 we learned a characterization of compact sets in 
terms of open covers. In Section 5.2 of the present chapter we learned a 
characterization of continuous functions in terms of inverse images of open 
sets. Thus, it is not surprising that compact sets and continuous functions 
interact in a natural way. We explore this interaction in the present section. 

Definition 5.20: Let f be aimage of a function function with domain E and let 
L be a subset of E. We define 

f L f x x L( ) = { ( ): }.

The set f(L) is called the image of L under f. See Figure 5.5. 
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Theorem 5.21: The image of a compact set under a continuous function is also 
compact. 

Proof: Let f be a continuous function with domain E and let K be a subset of 
E that is compact. Our job is to show that f(K) is compact. 

Let = { } be an open covering of f(K). Since f is continuous we know 
that, for each α, the set f ( )1 is the intersection of E with an open set . 
Let ˆ = { } A. Since covers f(K) it follows that ˆ covers K. But K is 
compact; therefore (Theorem 4.37) there is a finite subcovering 

{ , , … }m1 2

of K. But then, it follows that f E f E( ), …, ( )m1 covers f(K), hence 

, , …, m1 2

covers f(K). 
We have taken an arbitrary open cover for f(K) and extracted from it a 

finite subcovering. It follows that f(K) is compact.                                □ 

It is not the case that the continuous image of a closed set is closed. For 
instance, take f x x( ) = 1/(1 + )2 and RE = : the set E is closed and f is 
continuous but f E( ) = (0, 1] is not closed. 

It is also not the case that the continuous image of a bounded set is 
bounded. As an example, take f x x( ) = 1/ and E = (0, 1). Then, E is 
bounded and f continuous but f E( ) = (1, ) is unbounded. 

However, the combined properties of closedness and boundedness (that is, 
compactness) are preserved. That is the content of the preceding theorem. 

Corollary 5.22: Let f be a continuous, real-valued function with compact domain 
RK . Then, there is a number L such that 

E

f

L

f(L)

FIGURE 5.5 
The image of the set L under the function F.    
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f x L| ( )|

for all x K. 

Proof: We know from the theorem that f(K) is compact. By Theorem 4.29, we 
conclude that f(K) is bounded. Thus, there is a number L such that t L| |
for all t f K( ). But that is just the assertion that we wish to prove.       □ 

In fact we can prove an important strengthening of the corollary. Since f(K) 
is compact, it contains its supremum M and its infimum m. Therefore, there 
must be a number C K such that f C M( ) = and a number c K such that 
f c m( ) = . In other words, f c f x f C( ) ( ) ( ) for all x K. We summarize: 

Theorem 5.23: Let f be a continuous function on a compact set RK . Then, there 
exist numbers c and C in K such that f c f x f C( ) ( ) ( ) for all x K. We call c an 
absolute minimum for f on K and C an absolute maximum for f on K. We call f(c) 
the absolute minimum value for f on K and f(C) the absolute maximum value for f 
on K. 

Notice that, in the last theorem, the location of the absolute maximum and 
absolute minimum need not be unique. For instance, the function xsin on 
the compact interval [0, 4 ] has an absolute minimum at 3 /2 and 7 /2. It 
has an absolute maximum at /2 and at 5 /2. 

Now, we define a refined type of continuity called “uniform continuity.” 
We shall learn that this new notion of continuous function arises naturally 
for a continuous function on a compact set. It will also play an important 
role in our later studies, especially in the context of the integral. 

Definition 5.24: Let f be a function with domain RE . We say that f is 
uniformly continuous on E if, for each > 0, there is a > 0 such that, 
whenever s t E, and s t| | < , then f s f t| ( ) ( )| < .

Observe that “uniform continuity” differs from “continuity” in that it 
treats all points of the domain simultaneously: the > 0 that is chosen is 
independent of the points s t E, . This difference is highlighted by the next 
two examples. 

Example 5.25: Suppose that a function R Rf : satisfies the condition 

f s f t C s t| ( ) ( )| | |, (5.25.1)  

where C is some positive constant. This is called a Lipschitz condition, and it 
arises frequently in analysis. Let > 0 and set C= / . If x y| | < , then, 
by (5.25.1), 
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f x f y C x y C C
C

| ( ) ( )| | | < = = .

It follows that f is uniformly continuous.                                           □ 

Example 5.26: Consider the function f x x( ) = 2. Fix a point RP P, > 0,
and let > 0. To guarantee that f x f P| ( ) ( )| < we must have (for x > 0) 

x P| | <2 2

or 

x P
x P

| | <
+

.

Since x will range over a neighborhood of P, we see that the required in 
the definition of continuity cannot be larger than P/(2 ). In fact the choice 
x P P| | < = /(2 + 1) will do the job. 

Put in slightly different words, let = 1. Then, f j j f j| ( + 1/ ) ( )| > = 1
for any j. Thus, for this , we may not take to be j1/ for any j. So no 
uniform exists. 

Thus, the choice of depends not only on (which we have come to 
expect) but also on P. In particular, f is not uniformly continuous on R. This 
is a quantitative reflection of the fact that the graph of f becomes ever 
steeper as the variable x moves to the right. 

Notice that the same calculation shows that the function f with restricted 
domain a b a b[ , ], 0 < < < , is uniformly continuous. That is because, when 
the function is restricted to [a, b], its slope does not become arbitrarily large. 
See Figure 5.6.                                                                               □ 

Now, the main result about uniform continuity is the following: 

Theorem 5.27: Let f be a continuous function with compact domain K. Then, f is 
uniformly continuous on K. 

Proof: Pick > 0. By the definition of continuity there is for each point x K
a number > 0x such that if x t| | < x, then f t f x| ( ) ( )| < /2. The 
intervals I x x= ( /2, + /2)x x x form an open covering of K. Since K is 
compact, we may therefore (by Theorem 4.34) extract a finite subcovering 

I I, … .x xm1

Now, let = min { /2, …, /2} > 0x xm1 . If s t K, and s t| | < , then 
s Ixj for some j m1 . It follows that 
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s x| | < /2j xj

and 

t x t s s x| | | | + | | < + /2 /2 + /2 = .j j x x x xj j j j

We know that 

f s f t f s f x f x f t| ( ) ( )| | ( ) ( )| + | ( ) ( )|.j j

But since each of s and t is within xj of xj we may conclude that the last line 
is less than 

2
+

2
= .

Notice that our choice of does not depend on s and t (indeed, we chose 
before we chose s and t). We conclude that f is uniformly continuous.     □ 

FIGURE 5.6 
Uniform continuity on the interval a b[ , ].    
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Remark 5.28: Where in the proof did the compactness play a role? We 
defined to be the minimum of , …x xm1 . To guarantee that be positive it is 
crucial that we be taking the minimum of finitely many positive numbers. So 
we needed a finite subcovering.                                                        □ 

Example 5.29: The function f x x( ) = sin(1/ ) is continuous on the domain 
E = (0, ) since it is the composition of continuous functions (refer again to 
Figure 5.2). However, it is not uniformly continuous since 

f
j

f
1

2
1

= 1
j(4 + 1)

2

for j = 1, 2, …. Thus, even though the arguments are becoming arbitrarily 
close together, the images of these arguments remain bounded apart. We 
conclude that f cannot be uniformly continuous. See Figure 5.2. 

However, if f is considered as a function on any interval of the form 
a b a b[ , ], 0 < < < , then the preceding theorem tells us that the function f is 

uniformly continuous.                                                                    □ 

As an exercise, you should check that 

g x
x x x

x
( ) =

sin(1/ ) if 0
0 if = 0

is uniformly continuous on any interval of the form N N[ , ]. See Figure 5.3. 
Next we show that continuous functions preserve connectedness. 

Theorem 5.30: Let f be a continuous function with domain an open interval 
continuous images of connected sets I. Suppose that L is a connected subset of I. 
Then, f(L) is connected. 

Proof: Suppose to the contrary that there are open sets U and V such that 

U f L V f L( ) , ( ) ,

U f L V f L( ( )) ( ( )) = ,

and 

f L U f L V f L( ) = ( ( )) ( ( )).
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Since f is continuous, f U( )1 and f V( )1 are open. They each have 
nonempty intersection with L since U f L( ) and V f L( ) are nonempty. 
By the definition of f−1, they are disjoint. And since U V contains f(L) it 
follows, by definition, that f U f V( ) ( )1 1 contains L. But this shows that 
L is disconnected, and that is a contradiction.                                     □ 

Corollary 5.31: (The Intermediate Value Theorem) Let f be a continuous 
function whose domain contains the interval [a, b]. Let γ be a number that lies 
between f(a) and f(b). Then, there is a number c between a and b such that f c( ) = . 
Refer to Figure 5.7. 

Proof: The set [a, b] is connected. Therefore, f([a, b]) is connected. But f([a, b]) 
contains the points f(a) and f(b). By connectivity, f([a, b]) must contain the 
interval that has f(a) and f(b) as endpoints. In particular, f([a, b]) must contain 
any number γ that lies between f(a) and f(b). But this just says that there is a 
number c lying between a and b such that f c( ) = . That is the desired 
conclusion. 

Example 5.32: Let f be a continuous function with domain the interval [0, 1] 
and range the interval [0, 1]. We claim that f has a fixed point, that is, a point 
p such that f p p( ) = . 

FIGURE 5.7 
The Intermediate Value Theorem.    
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To see this, suppose not. Consider the function g x f x x( ) = ( ) . Since f 
has no fixed point, f (0) > 0 so g (0) > 0. Also, f (1) < 1 so that g (1) < 0. By 
the Intermediate Value Theorem, it follows that there is a point p at which 
g p( ) = 0. But that means that f p p( ) = .                                              □ 

Exercises  
1. If f is continuous on [0, 1] and if f (x) is positive for each rational x, 

then does it follow that f is positive at all x?  
2. Give an example of a continuous function f and a connected set E 

such that f −1(E) is not connected. Is there a condition you can add 
that will force f −1(E) to be connected?  

3. Give an example of a continuous function f and an open set U so 
that f (U) is not open.  

4. Let S be any subset of R. Define the function 

f x x s s S( ) = inf{| |: }.

(We think of f (x) as the distance of x to S.) Prove that f is uni-
formly continuous.  

5. Let f be any function whose domain and range is the entire real 
line. If A and B are disjoint sets does it follow that f (A) and f (B) 
are disjoint sets? If C and D are disjoint sets does it follow that 
f −1(C) and f −1(D) are disjoint?  

6. Let f be any function whose domain is the entire real line. If A and 
B are sets, then is f A B f A f B( ) = ( ) ( )? If C and D are sets, 
then is f C D f C f D( ) = ( ) ( )?1 1 1 What is the answer to 
these questions if we replace ∪ by ∩?  

7. We know that the continuous image of a connected set (i.e., an 
interval) is also a connected set (another interval). Suppose now 
that A is the union of k disjoint intervals and that f is a continuous 
function. What can you say about the set f (A)?  

8. A function f with domain A and range B is called a homeomorphism 
if it homeomorphism is one-to-one, onto, continuous, and has a 
continuous inverse. If such an f exists, then we say that A and B 
are homeomorphic. Which sets of reals are homeomorphic to the 
open unit interval (0, 1)? Which sets of reals are homeomorphic to 
the closed unit interval [0, 1]?  

9. Let f be a continuous function with domain [0, 1] and range [0, 1]. 
We know from Example 5.32 that there exists a point P [0, 1]
such that f P P( ) = . Prove that this result is false if the domain 
and range of the function are both (0, 1). 
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10. Let f be a continuous function and let a{ }j be a Cauchy sequence in 
the domain of f. Does it follow that f a{ ( )}j is a Cauchy sequence? 
What if we assume instead that f is uniformly continuous?  

11. Let E and F be disjoint closed sets of real numbers. Prove that 
there is a continuous function f with domain the real numbers 
such that x f x E{ : ( ) = 0} = and x f x F{ : ( ) = 1} = .  

12. If K and L are sets, then define  

K L k k K L+ = { + : and }.

If K and L are compact, then prove that K + L is compact. If K and 
L are merely closed, does it follow that K + L is closed?  

13. A function f from an interval (a, b) to an interval (c, d) is called 
proper if, for any compact set K c d( , ), it holds that f −1(K) is 
compact. Prove that if f is proper, then either  

f x c f x dlim ( ) = or lim ( ) = .
x a x a+ +

Likewise prove that either 

f x c f x dlim ( ) = or lim ( ) = .
x b x b

*14. Let E be any closed set of real numbers. Prove that there is a 
continuous function f with domain R such that x f x E{ : ( ) = 0} = . 

*15. Prove that the function f x x( ) = cos can be written, on the in-
terval (0, 2 ), as the difference of two increasing functions.  

16. A function is said to be proper if the inverse image of any compact 
set is compact. Give an equivalent definition of proper using the 
language of sequences. Give an example of a function R Rf :
that is proper. Give another example of a function R Rg: that 
is not proper. 

17. Let R Rf : be a function. If f 2 is continuous and f 3 is con-
tinuous, then does it follow that f is continuous? 

5.4 Classifying Discontinuities and Monotonicity 

We begin by refining our notion of limit: 
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Definition 5.33: Fix RP . Let f be a function with domain E. Suppose that P 
is a limit point of E P P[ 1, ). We say that f has left limit at P, and write 

f xlim ( ) =
x P

if, for every > 0, there is a > 0 such that, whenever x E and 
P x P< < , then it holds that 

f x| ( ) | < .

Now, suppose that P is a limit point of E P P( , + 1]. We say that f has 
right limit m at P, and write 

f x mlim ( ) =
x P+

if, for every > 0, there is a > 0 such that, whenever x E and 
P x P< < + , then it holds that 

f x m| ( ) | < .

This definition simply formalizes the notion of either letting x tend to P 
from the left only or from the right only.                                           □ 

Example 5.34: Let 

f x
x

x x
( ) =

0 if 0
sin(1/ ) if > 0.

Then, f xlim ( ) = 0x 0 and f xlim ( )x 0+ does not exist. 

Definition 5.35: Fix RP . Let f be a function with domain E. Suppose that 
P is a limit point of E P P[ 1, ) and that P is an element of E. We say that 
f is left continuous at P if 

f x f Plim ( ) = ( ).
x P

Likewise, in case P is a limit point of E P P( , + 1] and is also an element 
of E, we say that f is right continuous at P if 

f x f Plim ( ) = ( ).
x P+
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Example 5.36: Define 

f x
x
x

x x x
( ) =

1 if < 0
0 if = 0

sin(1/ ) if > 0.

Then, f is right continuous at 0 but f is not left continuous at 0.             □ 

Let f be a function with domain E. Let P in E and assume that f is dis-
continuous at P. There are two ways in which this discontinuity can occur:  

I. If f xlim ( )x P and f xlim ( )x P+ both exist but either do not equal 
each other or do not equal f(P), then we say that f has a discontinuity 
of the first kind (or sometimes a simple discontinuity) at P.  

II. If either limx P does not exist or limx P+ does not exist, then we 
say that f has a discontinuity of the second kind at P. 

Refer to Figure 5.8. 

Example 5.37: Define 

f x
x x

x
( ) =

sin(1/ ) if 0
0 if = 0

y

x

y

x

discontinuity of the second kinddiscontinuity of the first kind

FIGURE 5.8 
Discontinuities of the first and second kind.    
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g x
x
x
x

( ) =
1 if > 0
0 if = 0

1 if < 0

h x x
x

( ) = 1 if is irrational
0 if is rational

Then, f has a discontinuity of the second kind at 0 while g has a 
discontinuity of the first kind at 0. The function h has a discontinuity of 
the second kind at every point.                                                        □ 

Definition 5.38: Let f be a function whose domain contains an open interval 
(a, b). We say that f is increasing on (a, b) if, whenever a s t b< < < , it holds 
that f s f t( ) ( ). We say that f is decreasing on (a, b) if, whenever a s t b< < < , 
it holds that f s f t( ) ( ). See Figure 5.9. 

If a function is either increasing or decreasing, then we call it monotone or 
monotonic. Compare with the definition of monotonic sequences in Section 2.1. 

As with sequences, the word “monotonic” is superfluous in many con-
texts. But its use is traditional and occasionally convenient. 

Proposition 5.39: Let f be a monotonic function on an open interval (a,b). Then, all 
of the discontinuities of f are of the first kind. 

Proof: It is enough to show that, for each P a b( , ), the limits 

f xlim ( )
x P

y

x

y

x

monotone increasing function monotone decreasing function

FIGURE 5.9 
Increasing and decreasing functions.    
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and 

f xlim ( )
x P+

exist. 
Let us first assume that f is monotonically increasing. Fix P a b( , ). If 

a s P< < , then f s f P( ) ( ). Therefore, S f s a s P= { ( ): < < } is bounded 
above. Let M be the least upper bound of S. Pick > 0. By definition of 
least upper bound there must be an f s S( ) such that f s M| ( ) | < . Let 

P s= | |. If P t P< < , then s t P< < and f s f t M( ) ( ) or 
f t M| ( ) | < . Thus, f xlim ( )x P exists and equals M. 

If we set m equal to the infimum of the set T f t P t b= { ( ): < < }, then a 
similar argument shows that f xlim ( )x P+ exists and equals m. That 
completes the proof. 

The argument in case f is monotonically decreasing is just the same, and 
we omit the details.                                                                        □ 

Corollary 5.40: Let f be a monotonic function on an interval (a, b). Then, f has at 
most countably many discontinuities. 

Proof: Assume for simplicity that f is monotonically increasing. If P is a 
discontinuity, then the proposition tells us that 

f x f xlim ( ) < lim ( ).
x P x P+

Therefore there is a rational number qP between f xlim ( )x P and 
f xlim ( )x P+ . Notice that different discontinuities will have different rational 

numbers associated to them because if P̂ is another discontinuity and, say, 
P Pˆ < , then 

f x q f x f x q f xlim ( ) < < lim ( ) lim ( ) < < lim ( ).
x P P x P x P P x Pˆ ˆ ˆ+ +

Thus, we have exhibited a one-to-one function from the set of disconti-
nuities of f into the set of rational numbers. It follows that the set of 
discontinuities is countable. 

The argument in case f is monotonically decreasing is just the same, and 
we omit the details.                                                                        □ 

A continuous function f has the property that the inverse image under f of 
any open set is open. However, it is not in general true that the image under f 
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of any open set is open. A counterexample is the function f x x( ) = 2 and the 
open set = ( 1, 1) whose image under f is [0, 1). 

Example 5.41: Consider the greatest integer function f x x( ) = [ ]. This means 
that f(x) equals the greatest integer which is less than or equal to x. Then, f is 
monotone increasing, and its discontinuities are of the first kind and are at the 
integers. This example illustrates Proposition 5.39 and Corollary 5.40.       □ 

Definition 5.42: Suppose that f is a function on (a,b) such that a s t b< < <
implies f s f t( ) < ( ). Such a function isstrictly increasingstrictly decreasing 
called strictly increasing (strictly decreasing functions are defined similarly). 
We refer to such functions as strictly monotone. 

It is clear that a strictly increasing (resp. decreasing) function is one-to- 
one, hence has an inverse. Now, we prove: 

Theorem 5.43: Let f be a strictly monotone, continuous function with domain 
[a,b]. Then, f−1exists and is continuous. 

Proof: Assume without loss of generality that f is strictly monotone in-
creasing. Let us extend f to the entire real line by defining 

f x

x a f a x a
a x b

x b f b x b
( ) =

( ) + ( ) if <
as given if
( ) + ( ) if > .

See Figure 5.10. Then, it is easy to see that this extended version of f is still 
continuous and is strictly monotone increasing on all of R. 

That f −1 exists has already been discussed. The extended function f takes 
any open interval (c, d) to the open interval f c f d( ( ), ( )). Since any open set is 
a union of open intervals, we see that f takes any open set to an open set. In 
other words, f[ ]1 1 takes open sets to open sets. But this just says that f−1 is 
continuous. 

Since the inverse of the extended function f is continuous, then so is the 
inverse of the original function f. That completes the proof. 

Example 5.44: Consider the function 

f x e( ) = .x

It is strictly inreasing on the entire real line, so it has an inverse. Its inverse is 
in fact the natural logarithm function xln . 
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Now, take a look at the function 

g x
x x

x
x x

( ) =
if 1

1 if 1 < < 1
2 if 1 . □ 

This is a monotone increasing function, but it is not strictly increasing. And 
it has no inverse because it is not one-to-one. 

Exercises  
1. Let A be any left-to-right ordered, countable subset of the reals. 

Assume that A has no accumulation points. In particular, A a= { }j
and aj . Construct an increasing function whose set of points 
of discontinuity is precisely the set A. Explain why this is, in 
general, impossible for an uncountable set A.  

2. Give an example of two functions, discontinuous at x = 0, whose 
sum is continuous at x = 0. Give an example of two such func-
tions whose product is continuous at x = 0. How does the pro-
blem change if we replace “product” by “quotient”?  

3. Let f be a function with domain R. If f x f x f x( ) = ( ) ( )2 is 
continuous, then does it follow that f is continuous? If 

FIGURE 5.10 
A strictly monotonically increasing function.    
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f x f x f x f x( ) = ( ) ( ) ( )3 is continuous, then does it follow that f is 
continuous?  

4. Fix an interval (a, b). Is the collection of increasing functions on (a, 
b) closed under +, −, × or ÷ ?

5. Let f be a continuous function whose domain contains a closed, 
bounded interval [a, b]. What topological properties does f([a, b]) 
possess? Is this set necessarily an interval?  

6. Refer to Exercise 8 of Section 5.3 for terminology. Show that there 
is no homeomorphism from the real line to the interval [0, 1). 

7. Let f be a function with domain R. Prove that the set of dis-
continuities of the first kind for f is countable. (Hint: If the left and 
right limits at a point disagree, then you can slip a rational 
number between them.)  

8. Let a a< <1 2 with the aj increasing to infinity and the aj having 
no finite accumulation points. Give an example of a function with 
a discontinuity of the second kind at each aj and no other 
discontinuities.  

9. Let RI be an open interval and Rf I: a function. We say 
that f is convex if whenever I, and t0 1, then 

f t t t f tf((1 ) + ) (1 ) ( ) + ( ).

Prove that a convex function must be continuous. What does this 
definition of convex function have to do with the notion of 
“concave up” that you learned in calculus?  

*10. Refer to Exercise 9 for terminology. What can you say about 
differentiability of a convex function?  

*11. TRUE or FALSE: If f is a continuous function with domain and 
range the real numbers and which is both one-to-one and onto, 
then f must be either increasing or decreasing. Does your answer 
change if we assume that f is continuously differentiable (see the 
next chapter for this terminology)?  

12. Refer to Exercise 9. Is the sum of two convex functions convex? Is 
the product of two convex functions convex?  

13. What kind of discontinuity does the function f x x( ) = sin(1/ )
have at the origin?  

14. Discuss discontinuities for the trigonometric functions tangent, 
cotangent, secant, and cosecant. What kinds of discontinuities do 
they have?  
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6 
Differentiation of Functions  

6.1 The Concept of Derivative 

Let f be a function with domain an open interval I. If x ∈ I, then the quantity 

f t f x
t x

( ) ( )

measures the slope of the chord of the graph of f that connects the points (x, f (x)) 
and (t, f(t)). See Figure 6.1. If we let t → x, then the limit of the quantity re-
presented by this “Newton quotient” should represent the slope of the graph at 
the point x. These considerations motivate the definition of the following 
derivative: 

Definition 6.1: If f is a function with domain an open interval I and if x ∈ I, 
then the limit 

f t f x
t x

lim
( ) ( )

,
t x

when it exists, is called the derivative of f at x. See Figure 6.2. If the derivative 
of f at x exists, then we say that f is differentiable at x. If f is differentiable at 
every x ∈ I, then we say that f is differentiable on I. 

We write the derivative of f at x either as 

f x
d

dx
f

df
dx

f( ) or or or .

We begin our discussion of the derivative by establishing some basic 
properties and relating the notion of derivative to continuity. 
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Lemma 6.2: If f is differentiable at a point x, then f is continuous at x. In 
particular, limt→x f(t) = f(x). 

Proof: We use Theorem 5.5(b) about limits to see that 

( )f t f x t x

t x

f x

lim( ( ) ( )) = lim ( )

= lim( ) lim

= 0 ( )
= 0.

t x t x

f t f x
t x

t x t x

f t f x
t x

( ) ( )

( ) ( )

Therefore limt→x f(t) = f(x) and f is continuous at x.                             □ 

Example 6.3: All differentiable functions are continuous: differentiability is 
a stronger property than continuity. Observe that the function f(x) = |x| is 
continuous at every x but is not differentiable at 0. So continuity does not 
imply differentiability. Details appear in Example 6.5.                          □ 

y

x

(x,f(x))

(t,f(t))

FIGURE 6.1 
The Newton quotient.    

y

x

(x,f(x))

FIGURE 6.2 
The derivative.    
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Theorem 6.4: Assume that f and g are functions with domain an open interval I 
and that f and g are differentiable at x ∈ I. Then, f ± g, f · g, and f/g are differentiable 
at x (for f/g we assume that g(x) ≠ 0). Moreover  

a. f g x f x g x( ± ) ( ) = ( ) ± ( );
b. f g x f x g x f x g x( ) ( ) = ( ) ( ) + ( ) ( );

c. x( ) = .f

g

g x f x f x g x

g x

( ) ( ) ( ) ( )
( )2

Proof: Assertion (a) is easy and we leave it as an exercise for you. For (b), we 
write 

( )

( )
( )

( )
g t

f x

lim = lim
+

= lim

+ lim

= lim lim ( )

+ lim lim ( ) ,

t x

f g t f g x

t x t x

f t f x g t
t x

g t g x f x
t x

t x

f t f x g t

t x

t x

g t g x f x

t x

t x

f t f x

t x t x

t x

g t g x

t x t x

( )( ) ( )( )
( ( ) ( )) ( )

( ( ) ( )) ( )

( ( ) ( )) ( )

( ( ) ( )) ( )

( ( ) ( ))

( ( ) ( ))

where we have used Theorem 5.5 about limits. Now the first limit is the 
derivative of f at x, while the third limit is the derivative of g at x. Also 
notice that the limit of g(t) equals g(x) by the lemma. The result is that the 
last line equals 

f x g x g x f x( ) ( ) + ( ) ( ),

as desired. 
To prove (c), write 

f g t f g x
t x g t g x

g x

f x
lim

( / )( ) ( / )( )
= lim

1
( ) ( )

( )

( )
.

t x t x

f t f x

t x
g t g x

t x

( ) ( )

( ) ( )
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The proof is now completed by using Theorem 5.5 about limits to evaluate 
the individual limits in this expression.                                             □ 

Example 6.5: That f(x) = x is differentiable follows from 

t x
t x

lim = 1.
t x

Any constant function is differentiable (with derivative identically zero) by 
a similar argument. It follows from the theorem that any polynomial 
function is differentiable. 

On the other hand, the continuous function f(x) = |x| is not differentiable 
at the point x = 0. This is so because 

t
t x

t
t

lim
0

= lim
0

0
= 1

t t0 0

while 

t
t x

t
t

lim
0

= lim
0
0

= 1.
t t0 0+ +

So the required limit does not exist.                                                  □ 

Since the subject of differential calculus is concerned with learning uses of 
the derivative, it concentrates on functions which are differentiable. One 
comes away from the subject with the impression that most functions are 
differentiable except at a few isolated points—as is the case with the func-
tion f(x) = |x|. Indeed this was what the mathematicians of the nineteenth 
century thought. Therefore it came as a shock when Karl Weierstrass pro-
duced a continuous function that is not differentiable at any point. In a sense 
that can be made precise, most continuous functions are of this nature: their 
graphs “wiggle” so much that they cannot have a tangent line at any point. 
Now we turn to an elegant variant of the example of Weierstrass that is due 
to B. L. van der Waerden (1903–1996). 

Theorem 6.6: Define a function ψ with domain ℝ by the rule 

x x n n x n n
n x n x n n

( ) = if < + 1 and is even
+ 1 if < + 1 and is odd

for every integer n. The graph of this function is exhibited in Figure 6.3. Then, the 
function 

206                                                         Real Analysis and Foundations 

ISTUDY



f x x( ) =
3
4

(4 )
j

j
j

=1

is continuous at every real x and differentiable at no real x. 

Proof: Since we have not yet discussed series of functions, we take a 
moment to understand the definition of f. Fix a real x. Notice that 0 ≤ ψ(x) ≤ 1 
for every x. Then, the series becomes a series of numbers, and the jth 
summand does not exceed (3/4)j in absolute value. Thus, the series 
converges absolutely; therefore it converges. So it is clear that the displayed 
formula defines a function of x. 

Step I: f is continuous. To see that f is continuous, pick an ϵ > 0. Choose N so 
large that 

3
4

<
4j N

j

= +1

(we can of course do this because the series ( ) j3
4

converges). Now fix x. 

Observe that, since ψ is continuous and the graph of ψ is composed of 
segments of slope 1, we have 

s t s t( ) ( )

for all s and t. Moreover |ψ(s) − ψ(t)| ≤ 1 for all s, t. 
For j = 1, 2, …, N, pick δj >0 so that, when |t− x| < δj, then 

t x(4 ) (4 ) <
8

.j j

n even (n +1) odd

FIGURE 6.3 
The van der Waerden example.    
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Let δ be the minimum of δ1, … δN. 
Now, if |t− x| < δ, then 

f t f x t x

t x

t x

t x

( ) ( ) =
3
4

( (4 ) (4 ))

+
3
4

( (4 ) (4 ))

3
4

( (4 ) (4 ))

+
3
4

(4 ) (4 )

3
4 8

+
3
4

.

j

N j
j j

j N

j
j j

j

N j
j j

j N

j
j j

j

N j

j N

j

=1

= +1

=1

= +1

=1 = +1

Here, we have used the choice of δ to estimate the summands in the first 
sum. The first sum is thus less than ϵ/2 (just notice that (3/4) < 4j

j
=1 ). The 

second sum is less than ϵ/2 by the choice of N. Altogether then 

f t f x( ) ( ) <

whenever |t− x| < δ. Therefore f is continuous, indeed uniformly so. 

Step II: f is nowhere differentiable. Fix x. For ℓ = 1, 2, … define tℓ = x ± 4−ℓ/2. 
We will say whether the sign is plus or minus in a moment (this will depend 
on the position of x relative to the integers). Then, 

f t f x
t x t x

t x

t x

( ) ( )
=

1 3
4

( (4 ) (4 ))

+
3
4

( (4 ) (4 )) .

j

j
j j

j

j
j j

=1

= +1
(6.6.1)  

Notice that, when j ≥ ℓ+1, then 4jtℓ and 4jx differ by an even integer. Since ψ 
has period 2, we find that each of the summands in the second sum is 0. 
Next we turn to the first sum. 

We choose the sign—plus or minus—in the definition of tℓ so that there is 
no integer lying between 4ℓtℓ and 4ℓx. We can do this because the two 
numbers differ by 1/2. But then, the ℓth summand has magnitude 
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t x t x(3/4) 4 4 = 3 .

On the other hand, the first ℓ − 1 summands add up to not more than 

t x
3
4

4 4 = 3 4 /2
3 1
3 1

4 /2 3 4 .
j

j
j j

j

j

=1

1

=1

1
1

It follows that 

f t f x
t x t x

t x

t x
t x t x

t x
t x

t x
t x

( ) ( )
=

1 3
4

( (4 ) (4 ))

=
1 3

4
( (4 ) (4 )) +

3
4

( (4 ) (4 ))

1 3
4

(4 )
3
4

(4 )

1 3
4

( (4 ) (4 ))

3
1

(4 /2)
3 4

3 .

j

j
j j

j

j
j j

j

j
j j

=1

=1

1

=1

1

1

1

Thus, tℓ → x but the Newton quotients blow up as ℓ → ∞. Therefore the limit 

f t f x
t x

lim
( ) ( )

t x

cannot exist. The function f is not differentiable at x.                            □   

The proof of the last theorem was long, but the idea is simple: the function 
f is built by piling oscillations on top of oscillations. When the ℓth oscillation 
is added, it is made very small in size so that it does not cancel the previous 
oscillations. But it is made very steep so that it will cause the derivative to 
become large. 

The practical meaning of Weierstrass’s example is that we should realize 
that differentiability is a very strong and special property of functions. Most 
continuous functions are not differentiable at any point (see Section 11.3 for 
a rigorous statement and proof). When we are proving theorems about 
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continuous functions, we should not think of them in terms of properties of 
differentiable functions. 

Next we turn to the Chain Rule. 

Theorem 6.7: Let g be a differentiable function on an open interval I and let f be a 
differentiable function on an open interval that contains the range of g. Then, f ◦ g is 
differentiable on the interval I and 

f g x f g x g x( ) ( ) = ( ( )) ( )
for each x ∈ I. 

Proof: We use the notation ∆t to stand for an increment in the variable t. Let 
us use the symbol V(r) to stand for any expression which tends to 0 as ∆r → 0. 
Fix x ∈ I. Set r = g(x). By hypothesis, 

f r r f r
r

f rlim
( + ) ( )

= ( )
r 0

or 

f r r f r
r

f r V r
( + ) ( )

( ) = ( )

or 

f r r f r r f r r V r( + ) = ( ) + ( ) + ( ). (6.7.1)  

Notice that equation (6.7.1) is valid even when ∆r = 0. Since ∆r in equation 
(6.7.1) can be any small quantity, we set 

r x g x V x= [ ( ) + ( )].

Substituting this expression into (6.7.1) and using the fact that r = g(x) yields 

f g x x g x V x
f r x g x V x f r x g x V x V r

f g x x f g x g x x V x

( ( ) + [ ( ) + ( )]) =
( ) + ( [ ( ) + ( )]) ( ) + ( [ ( ) + ( )]) ( )

= ( ( )) + ( ( )) ( ) + ( ).
(6.7.2)  

Just as we derived (6.7.1), we may also obtain 

g x x g x x g x x V x
g x x g x V x

( + ) = ( ) + ( ) + ( )
= ( ) + [ ( ) + ( )].
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We may substitute this equality into the left side of (6.7.2) to obtain 

f g x x f g x x f g x g x x V x( ( + )) = ( ( )) + ( ( )) ( ) + ( ).

With some algebra this can be rewritten as 

f g x x f g x
x

f g x g x V x
( ( + )) ( ( ))

( ( )) ( ) = ( ).

But this just says that 

f g x x f g x
x

f g x g xlim
( )( + ) ( )( )

= ( ( )) ( ).
x 0

That is, ( f ◦ g)′(x) exists and equals f ′(g(x)) · g′(x), as desired.                 □ 

Example 6.8: The derivative of 

f x x x( ) = sin( )3 2

is 

f x x x x x( ) = [cos( )] (3 2 ).3 2 2
□ 

********************************************************* 

ISAAC NEWTON 

Sir Isaac Newton PRS (1642–1726) was an English mathematician, physicist, 
astronomer, theologian, and author. He is widely recognised as one of the 
greatest mathematicians and most influential scientists of all time. His book 
Philosophia Naturalis Principia Mathematica, first published in 1687, established 
classical mechanics. 

In Principia, Newton formulated the laws of motion and universal gravitation 
that formed the dominant scientific viewpoint until it was superseded by the 
theory of relativity. Newton used his mathematical description of gravity to 
derive Kepler’s laws of planetary motion, account for tides, the trajectories of 
comets, the precession of the equinoxes and other phenomena, eradicating 
doubt about the Solar System’s heliocentricity. Newton’s inference that the Earth 
is an oblate spheroid was later confirmed by the geodetic measurements of 
Maupertuis, La Condamine, and others, convincing most European scientists of 
the superiority of Newtonian mechanics over earlier systems. 
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Newton built the first practical reflecting telescope and developed a sophis-
ticated theory of colour based on the observation that a prism separates white 
light into the colours of the visible spectrum. His work on light was collected in 
his highly influential book Opticks, published in 1704. In addition to his work on 
calculus, as a mathematician Newton contributed to the study of power series, 
generalised the binomial theorem to non-integer exponents, developed a 
method for approximating the roots of a function, and classified most of the 
cubic plane curves. 

Newton was a fellow of Trinity College and the second Lucasian Professor of 
Mathematics at the University of Cambridge. Newton dedicated much of his 
time to the study of alchemy and biblical chronology, but most of his work in 
those areas remained unpublished until long after his death. 

Isaac Newton was born on Christmas Day, 25 December 1642. His father, also 
named Isaac Newton, had died three months before. When Newton was three, 
his mother remarried and went to live with her new husband, the Reverend 
Barnabas Smith, leaving her son in the care of his maternal grandmother, 
Margery Ayscough (née Blythe). 

In June 1661, Newton was admitted to Trinity College, Cambridge, on the 
recommendation of his uncle Rev William Ayscough, who had studied there. 

He started as a subsizar—paying his way by performing valet’s duties—until 
he was awarded a scholarship in 1664, guaranteeing him four more years until 
he could get his MA. In 1665, he discovered the generalised binomial theorem 
and began to develop a mathematical theory that later became calculus. Soon 
after Newton had obtained his BA degree in August 1665, the university 
temporarily closed as a precaution against the Great Plague. 

In April 1667, he returned to Cambridge and in October was elected as a 
fellow of Trinity. 

His studies had impressed the Lucasian professor Isaac Barrow, who was 
more anxious to develop his own religious and administrative potential (he 
became master of Trinity two years later); in 1669 Newton succeeded him, only 
one year after receiving his MA. He was elected a Fellow of the Royal Society 
(FRS) in 1672. 

Newton later became involved in a dispute with Leibniz over priority in the 
development of calculus (the Leibniz–Newton calculus controversy). Most 
modern historians believe that Newton and Leibniz developed calculus 
independently, although with very different mathematical notations. 
Occasionally it has been suggested that Newton published almost nothing 
about it until 1693, and did not give a full account until 1704, while Leibniz 
began publishing a full account of his methods in 1684. 

Because of this, the Principia has been called “a book dense with the theory 
and application of the infinitesimal calculus” in modern times and in Newton’s 
time “nearly all of it is of this calculus.” 

Newton is generally credited with the generalised binomial theorem, valid for 
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any exponent. He discovered Newton’s identities, Newton’s method, classified 
cubic plane curves (polynomials of degree three in two variables), made 
substantial contributions to the theory of finite differences, and was the first 
to use fractional indices and to employ coordinate geometry to derive solutions 
to Diophantine equations. 

He was appointed Lucasian Professor of Mathematics in 1669, on Barrow’s 
recommendation. During that time, any Fellow of a college at Cambridge or 
Oxford was required to take holy orders and become an ordained Anglican priest. 
However, the terms of the Lucasian professorship required that the holder not be 
active in the church—presumably so as to have more time for science. Newton 
argued that this should exempt him from the ordination requirement, and Charles 
II, whose permission was needed, accepted this argument. 

Facsimile of a 1682 letter from Isaac Newton to Dr William Briggs, 
commenting on Briggs’ A New Theory of Vision. Newton argued that light is 
composed of particles or corpuscles, which were refracted by accelerating into a 
denser medium. He verged on soundlike waves to explain the repeated pattern 
of reflection and transmission by thin films (Opticks Bk.II, Props. 12), but still 
retained his theory of ‘fits’ that disposed corpuscles to be reflected or 
transmitted. However, later physicists favoured a purely wavelike explanation 
of light to account for the interference patterns and the general phenomenon of 
diffraction. Today’s quantum mechanics, photons, and the idea of waveparticle 
duality bear only a minor resemblance to Newton’s understanding of light. 

In 1704, Newton published Opticks, in which he expounded his corpuscular 
theory of light. He considered light to be made up of extremely subtle 
corpuscles, that ordinary matter was made of grosser corpuscles and speculated 
that through a kind of alchemical transmutation. 

In 1679, Newton returned to his work on celestial mechanics by considering 
gravitation and its effect on the orbits of planets with reference to Kepler’s laws 
of planetary motion. Newton communicated his results to Edmond Halley and 
to the Royal Society in De motu corporum in gyrum, a tract written on about 
nine sheets which was copied into the Royal Society’s Register Book in 
December 1684. This tract contained the nucleus that Newton developed and 
expanded to form the Principia. 

The Principia was published on 5 July 1687 with encouragement and financial 
help from Edmond Halley. In this work, Newton stated the three universal laws 
of motion. Together, these laws describe the relationship between any object, the 
forces acting upon it and the resulting motion, laying the foundation for classical 
mechanics. They contributed to many advances during the Industrial 
Revolution which soon followed and were not improved upon for more than 
200 years. 

Newton’s postulate of an invisible force able to act over vast distances led to 
him being criticised for introducing “occult agencies” into science. Later, in the 
second edition of the Principia (1713), Newton firmly rejected such criticisms in a 
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concluding General Scholium, writing that it was enough that the phenomena 
implied a gravitational attraction, as they did; but they did not so far indicate its 
cause, and it was both unnecessary and improper to frame hypotheses of things 
that were not implied by the phenomena. 

Newton was also a member of the Parliament of England for Cambridge 
University in 1689 and 1701, but according to some accounts his only comments 
were to complain about a cold draught in the chamber and request that the 
window be closed. He was, however, noted by Cambridge diarist Abraham de 
la Pryme to have rebuked students who were frightening locals by claiming that 
a house was haunted. 

Newton moved to London to take up the post of warden of the Royal Mint in 
1696, a position that he had obtained through the patronage of Charles 
Montagu, 1st Earl of Halifax, then Chancellor of the Exchequer. He took charge 
of England’s great recoining, trod on the toes of Lord Lucas, Governor of the 
Tower, and secured the job of deputy comptroller of the temporary Chester 
branch for Edmond Halley. 

Although it was claimed that he was once engaged, Newton never married. 
The French writer and philosopher Voltaire, who was in London at the time of 
Newton’s funeral, said that he “was never sensible to any passion, was not 
subject to the common frailties of mankind, nor had any commerce with 
women—a circumstance which was assured me by the physician and surgeon 
who attended him in his last moments.” This now-widespread belief that he 
died a virgin has been commented on by writers as diverse as mathematician 
Charles Hutton, economist John Maynard Keynes, and physicist Carl Sagan. 

Newton had a close friendship with the Swiss mathematician Nicolas Fatio de 
Duillier, whom he met in London around 1689—some of their correspondence 
has survived. Their relationship came to an abrupt and unexplained end in 1693, 
and at the same time Newton suffered a nervous breakdown which included 
sending wild accusatory letters to his friends Samuel Pepys and John Locke— 
his note to the latter included the charge that Locke “endeavoured to embroil me 
with woemen.”   

********************************************************* 

Exercises 

1. For which positive integers k is it true that if f k = f · f ··· f is dif-
ferentiable at x, then f is differentiable at x?  

2. Let f be a function that has domain an interval I and takes values 
in the complex numbers. Then, we may write f(x) = u(x) + iv(x) 
with u and v each being real-valued functions. We say that f is 
differentiable at a point x ∈ I if both u and v are. Formulate an 
alternative definition of differentiability of f at a point x which 
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makes no reference to u and v (but instead defines the derivative 
directly in terms of f ) and prove that your new definition is 
equivalent to the definition in terms of u and v.  

3. Let f(x) equal 0 if x is irrational; let f(x) equal 1/q if x is a rational 
number that can be expressed in lowest terms as p/q. Is f differ-
entiable at any x?  

4. Assume that f is a continuous function on (−1, 1) and that f is 
differentiable on (−1, 0) ∪ (0, 1). If the limit limx→0 f ′(x) exists, then 
is f differentiable at x = 0? 

5. Formulate notions of “left differentiable” and “right differenti-
able” for functions defined on suitable half-open intervals. Also 
formulate definitions of “left continuous” and “right continuous.” 
If you have done things correctly, then you should be able to 
prove that a left differentiable (right differentiable) function is left 
continuous (right continuous).  

6. Define  

f x x x x
x

( ) = sin(1/ ) if 0
0 if = 0.

3/2

Prove that f is differentiable at every point, but that the derivative 
function f ′ is discontinuous at 0.  

7. Refer to Exercise 6. Is the discontinuity at the origin of the first 
kind or the second kind?  

8. Prove part (a) of Theorem 6.4. 
9. Refer to Exercise 2. Verify the properties of the derivative pre-

sented in Theorem 6.4 in the new context of complex-valued 
functions.  

*10. Let E ⊆ ℝ be a closed set. Fix a nonnegative integer k. Show that 
there is a function f in Ck(ℝ) (that is, a k-times continuously dif-
ferentiable function) such that E = {x : f(x) = 0}.  

*11. Prove that the nowhere differentiable function constructed in 
Theorem 6.6 is in Lipα for all α < 1.  

*12. Prove that the Weierstrass nowhere differentiable function f 
constructed in Theorem 6.6 satisfies 

f x h f x h f x
h

C h
( + ) + ( ) 2 ( )

for all nonzero h but f is not Lipschitz-1. 
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13. Fill in the details for this alternative proof of the product rule for 
the following derivatives:  
a. Prove that ( f2)′ = 2f · f ′.  
b. Apply the result of part (a) to the function f + g.  
c. Use the result of part (a) to cancel terms in the formula from 

part (b) to obtain the product rule.  

14. With suitable hypotheses, the quotient rule for differentiation can 
be derived from the product rule. Explain.  

15. Prove rigorously that the function f(x) = sin x is differentiable at 
every point.  

16. Prove rigorously that the function g(x) = log|x| is differentiable 
at all x ≠ 0. 

6.2 The Mean Value Theorem and Applications 

We begin this section with some remarks about local maxima and minima 
of functions. 

Definition 6.9: Let f be a function with domain (a, b). A point C ∈ (a, b) is 
called a local maximum for f (we also say that f has a local maximum at C) if 
there is a δ > 0 such that f(t) ≤ f(C) for all t ∈ (C − δ, C + δ). A point c ∈ (a, b) is 
called a local minimum for f (we also say that f has a local minimum at c) if 
there is a δ > 0 such that f(t) ≥ f(c) for all t ∈ (c − δ, c + δ). See Figure 6.4. 

Local minima (plural of minimum) and local maxima (plural of max-
imum) are referred to collectively as local extrema. 

y

xlocal maximum

local minimum

FIGURE 6.4 
Some extrema.    
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Proposition 6.10: (Fermat) If f is a function with domain (a, b), if f has a local 
extremum at x ∈ (a, b), and if f is differentiable at x, then f ′(x) = 0. 

Proof: Suppose that f has a local minimum at x. Then, there is a δ > 0 such 
that if x − δ < t < x, then f(t) ≥ f(x). Then, 

f t f x
t x

( ) ( )
0.

Letting t → x, it follows that f ′(x) ≤ 0. Similarly, if x < t < x + δ for suitable δ, 
then 

f t f x
t x

( ) ( )
0.

It follows that f ′(x) ≥ 0. We must conclude that f ′(x) = 0. 
A similar argument applies if f has a local maximum at x. The proof is 

therefore complete.                                                                         □ 

Example 6.11: Consider the function f(x) = sin x on the interval [π/3, 11π/3]. 
Surely f ′(x) = cos x, and we see that f ′ vanishes at the points π/2, 3π/2, 5π/2, 
7π/2 of the interval. By Fermat’s theorem, these are candidates to be local 
maxima or minima of f. And, indeed, π/2, 5π/2 are local maxima and 3π/2, 
7π/2 are local minima.                                                                    □ 

Before going on to mean value theorems, we provide a striking applica-
tion of the following proposition: 

Theorem 6.12: (Darboux’s Theorem) Let f be a differentiable function on an 
open interval I. Pick points s < t in I and suppose that f ′(s) < ρ < f ′(t). Then, there is 
a point u between s and t such that f ′(u) = ρ. 

Proof: Consider the function g(x) = f(x) − ρx. Then, g′(s) < 0 and g′(t) > 0. 
Assume for simplicity that s < t. The sign of the derivative at s shows that 
g(s) < g(s) for s greater than s and near s. The sign of the derivative at t implies 
that g t g t( ) < ( ) for t less than t and near t. Thus the minimum of the 
continuous function g on the compact interval [s, t] must occur at some point 
u in the interior (s, t). The preceding proposition guarantees that g′(u) = 0, or 
f ′(u) = ρ as claimed.                                                                                 □ 

Example 6.13: If f ′ were a continuous function, then the theorem would just 
be a special instance of the Intermediate Value Property of continuous 
functions (see Corollary 5.31). But derivatives need not be continuous, as the 
example 
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f x x x x
x

( ) = sin(1/ ) if 0
0 if = 0

3/2

illustrates. Check for yourself that f ′(0) exists and vanishes but limx→0 f ′(x) 
does not exist. This example illustrates the significance of the theorem.   □ 

Since the theorem says that f ′ will always satisfy the Intermediate Value 
Property (even when it is not continuous), its discontinuities cannot be of 
the first kind. In other words: 

Proposition 6.14: If f is a differentiable function on an open interval I, then the 
discontinuities of f ′ are all of the second kind. 

Next, we turn to the simplest form of the Mean Value Theorem. 

Theorem 6.15: (Rolle’s Theorem) Let f be a continuous function on the closed 
interval [a, b] which is differentiable on (a,b). If f(a) = f(b) = 0, then there is a point 
ξ ∈ (a, b) such that f ′(ξ) = 0. See Figure 6.5. 

Proof: If f is a constant function, then any point ξ in the interval will do. So 
assume that f is nonconstant. 

Theorem 5.23 guarantees that f will have both a maximum and a 
minimum in [a, b]. If one of these occurs in (a, b), then Proposition 6.10 
guarantees that f ′ will vanish at that point and we are done. If both occur at 
the endpoints, then all the values of f lie between 0 and 0. In other words f is 
constant, contradicting our assumption.                                             □ 

Example 6.16: Of course the point ξ in Rolle’s theorem need not be unique. If 
f(x) = x3 −x2 − 2x on the interval [−1, 2], then f (−1) = f (2) = 0 and f ′(x) = 3x2 − 

y

x(a,0) (b,0)

( ,f( ))

FIGURE 6.5 
Rolle’s theorem.    
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2x − 2 vanishes at two points (namely, (2 + 28 )/6 and (2 28 )/6) of the 
interval (−1, 2). Refer to Figure 6.6.                                                   □ 

If you rotate the graph of a function satisfying the hypotheses of Rolle’s 
theorem, the result suggests that, for any continuous function f on an in-
terval [a, b], differentiable on (a,b), we should be able to relate the slope of 
the chord connecting (a, f(a)) and (b, f(b)) with the value of f ′ at some interior 
point. That is the content of the following standard Mean Value Theorem: 

Theorem 6.17: (The Mean Value Theorem) Let f be a continuous function on 
the closed interval [a, b] that is differentiable on (a, b). There exists a point ξ ∈ (a, b) 
such that 

f b f a
b a

f
( ) ( )

= ( ).

See Figure 6.7. 

y

x

FIGURE 6.6 
An example of Rolle’s theorem.     

y

x

ab

(b,f(b))

(a,f(a))

(  ,f(  ))

FIGURE 6.7 
The Mean Value Theorem.    
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Proof: Our scheme is to implement the remarks preceding the theorem: we 
“rotate” the picture to reduce to the case of Rolle’s theorem. More precisely, 
define 

g x f x f a
f b f a

b a
x a x a b( ) = ( ) ( ) +

( ) ( )
( ) if [ , ].

By direct verification, g is continuous on [a, b] and differentiable on (a, b) 
(after all, g is obtained from f by elementary arithmetic operations). Also g(a) 
= g(b) = 0. Thus, we may apply Rolle’s theorem to g and we find that there is 
a ξ ∈ (a, b) such that g′(ξ) = 0. Remembering that x is the variable, we 
differentiate the formula for g to find that 

g f x

f

0 = ( ) = ( )

= ( ) .

f b f a
b a

x

f b f a

b a

( ) ( )

=

( ) ( )

As a result, 

f
f b f a

b a
( ) =

( ) ( )
.

□ 

Corollary 6.18: If f is a differentiable function on the open interval I and if f ′(x) = 0 
for all x ∈ I, then f is a constant function. 

Proof: If s and t are any two elements of I, then the theorem tells us that 

f s f t f s t( ) ( ) = ( ) ( )

for some ξ between s and t. But, by hypothesis, f ′(ξ) = 0. We conclude that f 
(s) = f(t). But, since s and t were chosen arbitrarily, we must conclude that f 
is constant.                                                                                   □ 

Corollary 6.19: If f is differentiable on an open interval I and f′(x) ≥ 0 for all x ∈ I, 
then f is increasing on I; that is, if s < t are elements of I, then f(s) ≤ f(t). 

If f is differentiable on an open interval I and f′(x) ≤ 0 for all x ∈ I, then f is 
decreasing on I; that is, if s < t are elements of I, then f(s) ≥ f(t). 

Proof: Similar to the preceding corollary.                                           □ 
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Example 6.20: Let us verify that, if f is a differentiable function on ℝ, and if 
|f ′ (x)| ≤ 1 for all x, then |f(s) − f(t)| ≤ |s − t| for all real s and t. 

In fact, for s ≠ t there is a ξ between s and t such that 

f s f t
s t

f
( ) ( )

= ( ).

But |f ′(ξ)| ≤ 1 by hypothesis; hence, 

f s f t
s t

f
( ) ( )

= ( ) 1

or 

f s f t s t( ) ( ) .
□ 

Example 6.21: Let us verify that 

x xlim ( + 5 ) = 0.
x +

Here, the limit operation means that, for any ϵ > 0, there is an N > 0 such 
that x > N implies that the expression in parentheses has absolute value less 
than ϵ. 

Define f x x( ) = for x > 0. Then, the expression in parentheses is just f(x 
+ 5) − f(x). By the Mean Value Theorem this equals 

f ( ) 5

for some x < ξ < x + 5. But this last expression is 

1
2

5.1/2

By the bounds on ξ, this is 

x
5
2

.1/2

Clearly, as x → +∞, this expression tends to zero.                             □ 
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A powerful tool in analysis is a generalization of the usual Mean Value 
Theorem that is due to A. L. Cauchy (1789–1857). 

Theorem 6.22: (Cauchy’s Mean Value Theorem) Let f and g be continuous 
functions on the interval [a,b] which are both differentiable on the interval (a, b), 
a < b. Assume that g′ ≠ 0 on the interval and that g(a) ≠ g(b). Then, there is a point 
ξ ∈ (a, b) such that 

f b f a
g b g a

f
g

( ) ( )
( ) ( )

=
( )
( )

.

Proof: Apply the usual Mean Value Theorem to the function 

h x g x f b f a f x g b g a( ) = ( ) { ( ) ( )} ( ) { ( ) ( )}.
□ 

Clearly the usual Mean Value Theorem (Theorem 6.17) is obtained from 
Cauchy’s by taking g(x) to be the function x. We conclude this section by 
illustrating a typical application of the result. 

Example 6.23: Let f be a differentiable function on an interval I such that f ′ is 
differentiable at a point x ∈ I. Then, 

f x h f x h f x
h

f x f xlim
( + ) + ( ) 2 ( )

= ( ) ( ) ( ).
h 0+ 2

To see this, fix x and define ℱ(h) = f(x + h) + f(x − h) − 2f(x) and (h) = h2. 
Then, 

f x h f x h f x
h

h
h

( + ) + ( ) 2 ( )
=

( ) (0)
( ) (0)

.
2

According to Cauchy’s Mean Value Theorem, there is a ξ between 0 and h 
such that the last line equals 

( )
( )

.

Writing this last expression out gives 

f x f x f x f x f x f x( + ) ( )
2

=
1
2

( + ) ( )
+

1
2

( ) ( )
,
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and the last line tends as h → 0, by the definition of the derivative, to the 
quantity ( f ′)′(x).                                                                             □ 

It is a fact that the standard proof of l’Hôpital’s Rule (Guillaume François 
Antoine de l’Hôpital, Marquis de St.-Mesme, 1661–1704) is obtained by way 
of Cauchy’s Mean Value Theorem. This line of reasoning is explored in the 
next section. 

Exercises  

1. Let f be a function that is continuous on [0, ∞) and differentiable on 
(0, ∞). If f(0) = 0 and |f ′(x)| ≤ |f(x)| for all x > 0, then prove that 
|f(x)| ≤ ex for all x. [This result is often called Gronwall’s inequality.]  

2. Let f be a continuous function on [a, b] that is differentiable on (a, b). 
Assume that f(a) = m and that |f ′(x)| ≤ K for all x ∈ (a, b). What 
bound can you then put on the magnitude of f(b)?  

3. Let f be a differentiable function on an open interval I and assume 
that f has no local minima nor local maxima on I. Prove that f is 
either increasing or decreasing on I.  

4. Let 0 < α ≤ 1. Prove that there is a constant Cα > 0 such that, for 
0 < x < 1, it holds that 

x C xIn .

Prove that the constant cannot be taken to be independent of α.  
5. Let f be a function that is twice continuously differentiable on 

[0, ∞) and assume that f″(x) ≥ c > 0 for all x. Prove that f is not 
bounded from above.  

6. Let f be differentiable on an interval I and f ′(x) > 0 for all x ∈ I. 
Does it follow that ( f 2)′ > 0 for all x ∈ I? What additional hy-
pothesis on f will make the conclusion true?  

7. Answer Exercise 6 with the exponent 2 replaced by any positive 
integer exponent.  

8. Use the Mean Value Theorem to say something about the behavior 
at +∞ of the function g x x x( ) = + 14 4/33 .  

9. Use the Mean Value Theorem to say something about the behavior 
at +∞ of the function f x x x( ) = + 1 .  

10. Refer to Exercise 9. What can you say about the asymptotics at +∞ 
of x x+ 1 / ?  

11. Supply the details of the proof of Theorem 6.22.  
12. Give an example of a function f for which the limit in Example 6.23 

exists at some x but for which f is not twice differentiable at x. 
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13. Use the Mean Value Theorem to prove that |sin x| ≤ |x| for all x.  
14. Apply the Mean Value Theorem to the Fundamental Theorem of 

Calculus. What conclusion can you draw?  
15. Use the Mean Value Theorem to prove that ln x ≤ x for x ≥ 1. 

6.3 More on the Theory of Differentiation 

l’Hôpital’s Rule (actually due to his teacher J. Bernoulli (1667–1748)) is a 
useful device for calculating limits, and a nice application of the Cauchy 
Mean Value Theorem. Here, we present a special case of the theorem. 

Theorem 6.24: Suppose that f and g are differentiable functions on an open 
interval I and that p ∈ I. If limx→p f(x) = limx→p g(x) = 0 and if 

f x
g x

lim
( )
( )x p

(6.24.1) 

exists and equals a real number ℓ, then 

f x
g x

lim
( )
( )

= .
x p

Proof: Fix a real number a > ℓ. By (6.24.1) there is a number q > p such that, if 
p < x < q, then 

f x
g x

a
( )
( )

< . (6.24.2)  

But now, if p < s < t < q, then 

f t f s
g t g s

f x
g x

( ) ( )
( ) ( )

=
( )
( )

for some s < x < t (by Cauchy’s Mean Value Theorem). It follows then from 
(6.24.2) that 

f t f s
g t g s

a
( ) ( )
( ) ( )

< .

Now let s → p and invoke the hypothesis about the zero limit of f and g at 
p to conclude that 
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f t
g t

a
( )
( )

when p < t < q. Since a is an arbitrary number to the right of ℓ we conclude 
that 

f t
g t

lim sup
( )
( )

.
t p+

Similar arguments show that 

lim inf ;

lim sup ;

lim inf .

t p

f t

g t

t p

f t
g t

t p

f t
g t

( )
( )

( )
( )

( )
( )

+

We conclude that the desired limit exists and equals ℓ.                         □ 

A closely related result, with a similar proof, is as follows: 

Theorem 6.25: Suppose that f and g are differentiable functions on an open 
interval I and that p ∈ I. If limx→p f(x) = limx→p g(x) = ±∞ and if 

f x
g x

lim
( )
( )x p

(6.25.1) 

exists and equals a real number ℓ, then 

f x
g x

lim
( )
( )

= .
x p

Example 6.26: Let 

f x x( ) = In .x( )2

We wish to determine limx→0 f(x). To do so, we define 

F x f x x x
x

x
( ) = In ( ) = In In =

In In
1/

.2
2
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Notice that both the numerator and the denominator tend to ±∞ as x → 0. So 
the hypotheses of l’Hôpital’s rule are satisfied and the limit is 

x
x

x
x

x x
x

x
x

lim
In In

1/
= lim

(In In )
(1/ )

= lim
1/[ In ]

2/
= lim

2 In
= 0.

x x x x0 2 0 2 0 3 0

2

Since limx→0 F(x) = 0 we may calculate that the original limit has value 
limx→0 f(x) = 1.                                                                              □ 

Proposition 6.27: Let f be an invertible function on an interval (a,b) with nonzero 
derivative at a point x ∈ (a, b). Let X = f(x). Then, ( f−1)′ (X) exists and equals 
1/f ′(x). 

Proof: Observe that, for T ≠ X, 

f T f X
T X

( ) ( )
= 1 ,

f t f x

t x

1 1

( ) ( )
(6.27.1)  

where T = f(t). Since f ′(x) ≠ 0, the difference quotients for f in the 
denominator are bounded from zero; hence, the limit of the formula in 
(6.27.1) exists. This proves that f−1 is differentiable at X and that the 
derivative at that point equals 1/f ′(x).                                               □ 

Example 6.28: We know that the function f(x) = xk, k a positive integer, is 
one-to-one and differentiable on the interval (0,1). Moreover the derivative 
k · xk−1 never vanishes on that interval. Therefore the proposition applies 
and we find for X ∈ (0,1) = f((0,1)) that 

f X

X

( ) ( ) = =

= = .

f x f X

k X k
k

1 1
( )

1
( )

1 1 1/ 1

k

k

1/

1 1/

In other words, 

X
k

X( ) =
1

.k k1/ 1/ 1

□ 

We conclude this section by saying a few words about higher derivatives. If 
f is a differentiable function on an open interval I, then we may ask whether 
the function f ′ is differentiable. If it is, then we denote its derivative by 
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f f
d

dx
f

d f
dx

or or or ,(2)
2

2

2

2

and call it the second derivative of f. Likewise the derivative of the (k − 1)th 
derivative, if it exists, is called the kth derivative and is denoted 

f f
d

dx
f

d f
dx

or or or .k
k

k

k

k
… ( )

Observe that we cannot even consider whether f(k) exists at a point unless 
f (k−1) exists in a neighborhood of that point. 

If f is k times differentiable on an open interval I and if each of the deri-
vatives f (1), f (2), …, f (k) is continuous on I, then we say that the function f is k 
times continuously differentiable on I. We write f ∈ C k (I). Obviously there is 
some redundancy in this definition since the continuity of f (j−1) follows from 
the existence of f (j). Thus, only the continuity of the last derivative f (k) need 
be checked. Continuously differentiable functions are useful tools in ana-
lysis. We denote the class of k times continuously differentiable functions on 
I by C k(I). 

Example 6.29: For k = 1,2,… the function 

f x x x
x x

( ) = if 0
if < 0k

k

k

+1

+1

will be k times continuously differentiable on ℝ but will fail to be k + 1 times 
differentiable at x = 0. More dramatically, an analysis similar to the one we used 
on the Weierstrass nowhere differentiable function shows that the function 

g x x( ) =
3

4
sin(4 )k

j

j

j jk
j

=1
+

is k times continuously differentiable on ℝ but will not be k + 1 times 
differentiable at any point (this function, with k = 0, was Weierstrass’s original 
example).                                                                                                                  □ 

A more refined notion of smoothness/continuity of functions is that of 
Hölder continuity or Lipschitz continuity (see Section 5.3). If f is a function 
on an open interval I and if 0 < α ≤ 1, then we say that f satisfies a Lipschitz 
condition of order α on I if there is a constant M such that for all s, t ∈ I we 
have 
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f s f t M s t( ) ( ) .

Such a function is said to be of class Lipα(I). Clearly a function of class Lipα 
is uniformly continuous on I. For, if ϵ > 0, then we may take δ = (ϵ/M)1/α: it 
follows that, for |s − t| < δ, we have 

f s f t M s t M M( ) ( ) < / = .

Interestingly, when α > 1 the class Lipα contains only constant functions. For 
in this instance the inequality 

f s f t M s t( ) ( )

leads to 

f s f t
s t

M s t
( ) ( )

.1

Because α − 1 > 0, letting s → t yields that f ′(t) exists for every t ∈ I and equals 
0. It follows from Corollary 6.18 of the last section that f is constant on I. 

Instead of trying to extend the definition of Lipα(I) to α > 1 it is customary 
to define classes of functions C k,α, for k = 0, 1, … and 0 < α ≤ 1, by the 
condition that f be of class C k on I and that f (k) be an element of Lipα(I). We 
leave it as an exercise for you to verify that C k,α ⊆ Cℓ,β if either k > ℓ or both 
k = ℓ and α ≥ β. 

In more advanced studies in analysis, it is appropriate to replace Lip1 (I), 
and more generally Ck,1, with another space (invented by Antoni Zygmund, 
1900–1992) defined in a more subtle fashion using second differences as in 
Example 6.23. These matters exceed the scope of this book, but we shall 
make a few remarks about them in the exercises. 

Exercises  
1. Suppose that f is a C2 function on ℝ and that |f″(x)| ≤ C for all x. 

Prove that 

f x h f x h f x
h

C
( + ) + ( ) 2 ( )

.
2

2. Fix a positive integer k. Give an example of two functions f and g 
neither of which is in Ck but such that f · g ∈ Ck. 
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3. Fix a positive integer ℓ and define f(x) = |x|ℓ. In which class Ck 

does f lie? In which class Ck,α does it lie?  
4. In the text we give sufficient conditions for the inclusion Ck,α ⊆ Cℓ,β. 

Show that the inclusion is strict if either k > ℓ or k = ℓ and α > β.  
5. Suppose that f is a continuously differentiable function on an 

interval I and that f ′(x) is never zero. Prove that f is invertible. 
Then, prove that f−1 is differentiable. Finally, use the Chain Rule 
on the identity f ( f−1) = x to derive a formula for ( f−1)′.  

6. Suppose that a function f on the interval (0, 1) has left derivative 
equal to zero at every point. What conclusion can you draw?  

7. We know that the first derivative can be characterized by the 
Newton quotient. Find an analogous characterization of second 
derivatives. What about third derivatives?  

8. Use l’Hôpital’s Rule to analyze the limit 

xlim .
x

x

+

1/

*9. We know (see Section 8.4) that a continuous function on the in-
terval [0, 1] can be uniformly approximated by polynomials. But, 
if the function f is continuously differentiable on [0, 1], then we 
can actually say something about the rate of approximation. That 
is, if ϵ > 0, then f can be approximated uniformly within ϵ by a 
polynomial of degree not greater than N = N(ϵ). Calculate N(ϵ).  

*10. In which class Ck,α is the function x · ln|x| on the interval [−1/ 
2,1/2]? How about the function x/ln|x|?  

*11. Give an example of a function on ℝ such that 

f x h f x h f x
h

C
( + ) + ( ) 2 ( )

for all x and all h ≠ 0 but f is not in Lip1(ℝ). (Hint: See Exercise 10.)  
12. Give an example of a function that is Lipschitz but not of class C1.  
13. Give an example of a function that is C1 but its first derivative 

does not satisfy any Lipschitz condition.  
*14. Suppose that f(x, y) is Lipschitz in x for each fixed y and Lipschitz 

in y for each fixed x. Does it follow that f is Lipschitz as a function 
of (x, y)?  

*15. A Lipschitz function can be written as the difference of two 
monotone increasing functions. Explain.  
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7 
The Integral  

7.1 Partitions and the Concept of Integral 

We learn in calculus that it is often useful to think of an integral as re-
presenting area. However, this is but one of many important applications of 
integration theory. The integral is a generalization of the summation pro-
cess. That is the point of view that we shall take in the present chapter. 

Definition 7.1: Let a b[ , ] be a closed interval in R. A finite, ordered set of 
points x x x x x= { , , ,…, , }k k0 1 2 1 such that 

a x x x x x b= =k k0 1 2 1

is called a partition of a b[ , ]. Refer to Figure 7.1. 
If is a partition of a b[ , ], then we let Ij denote the interval x x[ , ]j j1 , 

j k= 1, 2, …, . The symbol j denotes the length of Ij. The mesh of , denoted 
by m ( ), is defined to be maxj j. 

The points of a partition need not be equally spaced, nor must they be 
distinct from each other. 

Example 7.2: The set = {0, 1, 1, 9/8, 2, 5, 21/4, 23/4, 6} is a partition of 
the interval [0,6] with mesh 3 (because I = [2, 5]5 , with length 3, is the 
longest interval in the partition). See Figure 7.2.                                  □ 

Definition 7.3: Let a b[ , ] be an interval and let f be a function with domain 
a b[ , ]. If x x x x x= { , , , …, , }k k0 1 2 1 is a partition of a b[ , ] and if, for each j, sj

is an element of Ij, then the corresponding Riemann sum is defined to be 

f f s( , ) = ( ) .
j

k

j j
=1

Example 7.4: Let f x x x( ) = 2 and a b[ , ] = [1, 4]. Define the partition 
= {1, 3/2, 2, 7/3, 4} of this interval. Then, a Riemann sum for this f and is 
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f( , ) = (1 1) + ((7/4) (7/4))

+ ((7/3) (7/3)) + (3 3)

= .

2 1
2

2 1
2

2 1
3

2 5
3

10103
864

□ 

Notice that we have complete latitude in choosing each point sj from the 
corresponding interval Ij. While at first confusing, we will find this freedom 
to be a powerful tool when proving results about the integral. 

The first main step in the theory of the Riemann integral is to determine a 
method for “calculating the limit of the Riemann sums” of a function as the 
mesh of the partitions tends to zero. There are in fact several methods for 
doing so. We have chosen the simplest one. 

Definition 7.5: Let a b[ , ] be an interval and f a function with domain a b[ , ]. 
We say that the Riemann sums of f tend to a limit as m ( ) tends to 0 if, for any 

> 0, there is a > 0 such that, if is any partition of a b[ , ] with m ( ) < , 
then f( , ) < for every choice of s Ij j. 

It will turn out to be critical for the success of this definition that we require 
that every partition of mesh smaller than satisfy the conclusion of the definition. 
The theory does not work effectively if for every > 0 there is a > 0 and some 
partition of mesh less than which satisfies the conclusion of the definition. 

Definition 7.6: A function f on a closed interval a b[ , ] is said to be Riemann 
integrable on a b[ , ] if the Riemann sums of f( , ) tend to a finite limit as 
m ( ) tends to zero. 

The value of the limit, when it exists, is called the Riemann integral of f
over a b[ , ] and is denoted by 

f x dx( ) .
a

b

xkx4x3x2x1x0

a b

FIGURE 7.1 
A partition.    

9/8

0 1 2 5

21/4

23/4

6

FIGURE 7.2 
The partition in  Example 7.2.    
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Remark 7.7: We mention now a useful fact that will be formalized in later 
sections. Suppose that f is Riemann integrable on a b[ , ] with the value of the 
integral being . Let > 0. Then, as stated in the definition (with /2
replacing ), there is a > 0 such that, if is a partition of a b[ , ] of mesh 
smaller than , then f( , ) < /2. It follows that, if and are 
partitions of a b[ , ] of mesh smaller than , then 

f f f f( , ) ( , ) ( , ) + ( , ) <
2

+
2

= .

This is like a Cauchy condition. 
Note, however, that we may choose to equal the partition . Also we 

may for each j choose the point sj, where f is evaluated for the Riemann 
sum over , to be a point where f very nearly assumes its supremum on Ij. 
Likewise we may for each j choose the point s j, where f is evaluated for the 
Riemann sum over , to be a point where f very nearly assumes its 
infimum on Ij. It easily follows that, when the mesh of is less than , then 

f fsup inf .
j I I

j
j j

(7.7.1)  

This consequence of integrability will prove useful to us in some of the 
discussions in this and the next section. In the exercises we shall consider in 
detail the assertion that integrability implies (7.7.1) and the converse as 
well.                                                                                            □ 

Definition 7.8: If , are partitions of a b[ , ], then their common refinement is 
the union of all the points of and . See Figure 7.3. 

We record now a technical lemma that will be used in several of the 
proofs that follow: 

partition P

partition P’

ba

a

a

b

b

Common refinement of P and P’

FIGURE 7.3 
The common refinement.     
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Lemma 7.9: Let f be a function with domain the closed interval a b[ , ]. The Riemann 
integral 

f x dx( )
a

b

exists if and only if, for every > 0, there is a > 0 such that, if and are 
partitions of a b[ , ] with m ( ) < and m ( ) < , then their common refinement 
has the property that 

f f
and

f f

( , ) ( , ) <

( , ) ( , ) < .
(7.9.1)   

Proof: If f is Riemann integrable, then the assertion of the lemma follows 
immediately from the definition of the integral. 

For the converse note that (7.9.1) certainly implies that, if > 0, then there 
is a > 0 such that, if and are partitions of a b[ , ] with m ( ) < and 
m ( ) < , then 

f f( , ) ( , ) < (7.9.2)  

(just use the triangle inequality). 
Now, for each j= 2 , = 1, 2, …j

j , we can choose a > 0j as in (7.9.2). Let 
Sj be the closure of the set 

f m( , ): ( ) < .j

By the choice of j, the set Sj is contained in a closed interval of length not 
greater than 2 .j

On the one hand, 

S
j

j

must be nonempty since it is the decreasing intersection of compact sets. On 
the other hand, the length estimate implies that the intersection must be 
contained in a closed interval of length 0—that is, the intersection is a point. 
That point is then the limit of the Riemann sums, that is, it is the value of the 
Riemann integral.                                                                           □ 

The most important, and perhaps the simplest, fact about the Riemann in-
tegral is that a large class of familiar functions is Riemann integrable. 
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Theorem 7.10: Let f be a continuous function on a nontrivial closed, bounded 
interval I a b= [ , ]. Then, f is Riemann integrable on a b[ , ]. 

Proof: We use the lemma. Given > 0, choose (by the uniform continuity of 
f on I—Theorem 5.27) a > 0 such that, whenever s t < , then 

f s f t
b a

( ) ( ) < . (7.10.1)  

Let and be any two partitions of a b[ , ] of mesh smaller than . Let be 
the common refinement of and . 

Now we let Ij denote the intervals arising in the partition (and having 
length j) and Ĩ the intervals arising in the partition (and having length ˜ ). 
Since the partition contains every point of , plus some additional points as 
well, every Ĩ is contained in some Ij. Fix j and consider the expression 

f s f t( ) ( ) ˜ .j j
I I˜ j

(7.10.2)  

We write 

= ˜ .j
I I˜ j

This equality enables us to rearrange (7.10.2) as 

f s f t

f s f t

f s f t

( ) ˜ ( ) ˜

= ( ) ( ) ˜

( ) ( ) ˜ .

j
I I I I

I I
j

I I
j

˜ ˜

˜

˜

j j

j

j

But each of the points t is in the interval Ij, as is sj. So they differ by less than 
. Therefore, by (7.10.1), the last expression is less than 

b a b a

b a

˜ = ˜

= .

I I I I

j

˜ ˜j j
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Now we conclude the argument by writing 

f f f s f t

f s f t

b a

( , ) ( , ) = ( ) ( ) ˜

( ) ( ) ˜

<

=

= ( )
= .

j
j j

j
j j

I I

j
b a j

b a
j

j

b a

˜ j

The estimate for f f( , ) ( , ) is identical and we omit it. The 
result now follows from Lemma 7.9.                                                 □ 

In the exercises we will ask you to extend the theorem to the case of 
functions f on a b[ , ] that are bounded and have finitely many, or even 
countably many, discontinuities. 

We conclude this section by noting an important fact about Riemann 
integrable functions. A Riemann integrable function on an interval a b[ , ]
must be bounded. If it were not, then one could choose the points sj in the 
construction of f( , ) so that f s( )j is arbitrarily large, and the Riemann 
sums would become arbitrarily large, hence cannot converge. You will be 
asked in the exercises to work out the details of this assertion. 

*********************************************************** 

Georg Friedrich Bernhard Riemann 

Georg Friedrich Bernhard Riemann (1826–1866) was a German mathematician 
who made contributions to analysis, number theory, and differential geometry. 
In the field of real analysis, he is known for the first rigorous formulation of the 
integral, the Riemann integral, and his work on Fourier series. His contributions 
to complex analysis include most notably the introduction of Riemann surfaces, 
breaking new ground in a natural, geometric treatment of complex analysis. He 
is also the partial namesake of the Cauchy-Riemann equations. His famous 1859 
paper on the prime-counting function, containing the original statement of the 
Riemann hypothesis, is regarded as one of the most influential papers in all of 
mathematics. Through his pioneering contributions to differential geometry, 
Riemann created the now-active field of differential geometry. This in turn laid 
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the foundations of the mathematics of general relativity. He died young because 
of poverty and ill health. There is no telling what he might have accomplished if 
he had lived a normal life. 

Riemann was born on 17 September 1826 in Breselenz, a village near Dannenberg 
in the Kingdom of Hanover. His father, Friedrich Bernhard Riemann, was a poor 
Lutheran pastor in Breselenz who fought in the Napoleonic Wars. His mother, 
Charlotte Ebell, died before her children had reached adulthood. 

During 1840, Riemann went to Hanover to live with his grandmother and 
attend lyceum (middle school years). After the death of his grandmother in 1842, 
he attended high school at the Johanneum Lüneburg. In high school, Riemann 
studied the Bible intensively, but he was often distracted by mathematics. 

During the spring of 1846, his father, after gathering enough money, sent 
Riemann to the University of Göttingen, where he planned to study towards a 
degree in Theology. However, once there, he began studying mathematics 
under Carl Friedrich Gauss. Riemann transferred to the University of Berlin in 
1847. During his time of study, Carl Gustav Jacob Jacobi, Peter Gustav Lejeune 
Dirichlet, Jakob Steiner, and Gotthold Eisenstein were teaching. He stayed in 
Berlin for two years and returned to Göttingen in 1849. 

Riemann held his first lectures in 1854, which founded the field of Riemannian 
geometry. In 1857, there was an attempt to promote Riemann to extraordinary 
professor status at the University of Göttingen. Although this attempt failed, it 
did result in Riemann finally being granted a regular salary. Riemann was the 
first to suggest using dimensions higher than merely three or four in order to 
describe physical reality. 

In 1862 he married Elise Koch and they had a daughter Ida Schilling who was 
born on 22 December 1862. 

Riemann fled Göttingen when the armies of Hanover and Prussia clashed 
there in 1866. He died of tuberculosis during his third journey to Italy in Selasca 
where he was buried in the cemetery in Biganzolo (Verbania). 

Riemann was a dedicated Christian, the son of a Protestant minister, and saw 
his life as a mathematician as another way to serve God. At the time of his death, 
he was reciting the Lord’s Prayer with his wife and died before they finished 
saying the prayer. Meanwhile, in Göttingen his housekeeper discarded some of 
the papers in his office, including much unpublished work. Riemann refused to 
publish incomplete work, and some deep insights may have been lost forever.   

*********************************************************** 
Exercises  

1. If f is a Riemann integrable function on a b[ , ], then show that f
must be a bounded function.  

2. Define the Dirichlet function to be 
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f x x
x

( ) = 1 if is rational
0 if is irrational

Prove that the Dirichlet function is not Riemann integrable on the 
interval a b[ , ].  

3. Define 

g x
x x x

x
( ) = sin(1/ ) if 0

0 if = 0

Is g Riemann integrable on the interval [ 1, 1]?  
4. To what extent is the following statement true? If f is Riemann 

integrable on a b[ , ], then f1/ is Riemann integrable on a b[ , ].  
5. Show that any Riemann integrable function is the pointwise limit 

of continuous functions.  
6. Write the Riemann sum for the function f x x( ) = sin( )2 on the 

interval [1, 3] with a partition of five equally spaced points. 
7. Prove that, if f is continuous on the interval a b[ , ] except for fi-

nitely many discontinuities of the first kind, and if f is bounded, 
then f is Riemann integrable on a b[ , ].  

8. Do Exercise 7 with the phrase “finitely many” replaced by 
“countably many.”  

9. Provide the details of the assertion that, if f is Riemann integrable 
on the interval a b[ , ] then, for any > 0, there is a > 0 such that, 
if is a partition of mesh less than , then 

f fsup inf < .
j I I

j
j j

[Hint: Follow the scheme presented in Remark 7.7. Given > 0, 
choose > 0 as in the definition of the integral. Fix a partition with 
mesh smaller than . Let K + 1 be the number of points in . Choose 
points t Ij j so that f t f K| ( ) sup | < /(2( + 1));j Ij

also choose 
points t Ij j so that f t f K| ( ) inf | < /(2( + 1))j Ij . By applying the 
definition of the integral to this choice of tj and t j we find that 

f fsup inf < 2 .
j I I

j
j j

The result follows.] 
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*10. Give an example of a function f such that f 2 is Riemann in-
tegrable but f is not.  

11. The collection of Riemann integrable functions is closed under 
which arithmetic operations?  

12. If f is Riemann integrable, then f 2 is Riemann integrable. Why is 
this true?  

13. Refer to Exercise 12. If f and g are Riemann integrable, then f g is 
Riemann integrable. Why is this true? [Hint: Look at f g( + )2.] 

7.2 Properties of the Riemann Integral 

We begin this section with a few elementary properties of the integral that 
reflect its linear nature. 

Theorem 7.11: Let a b[ , ] be a nonempty, bounded interval, let f and g be Riemann 
integrable functions on the interval, and let be a real number. Then, f g± and 

f are integrable and we have  

a. f x g x dx f x dx g x dx( ) ± ( ) = ( ) ± ( ) ;
a

b

a

b

a

b

b. f x dx f x dx( ) = ( ) .
a

b

a

b

Proof: For (a), let 

A f x dx= ( )
a

b

and 

B g x dx= ( ) .
a

b

Let > 0. Choose a > 01 such that if is a partition of a b[ , ] with mesh less 
than 1, then 

f A( , ) <
2

.

Similarly choose a > 02 such that if is a partition of a b[ , ] with mesh less 
than 2 then 
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f B( , ) <
2

.

Let = min{ , }1 2 . If is any partition of a b[ , ] with m ( ) < then 

f g A B f g A B

f A g B

( ± , ) ( ± ) = ( , ) ± ( , ) ( ± )
( , ) + ( , )

< +
= .

2 2

This means that the integral of f g± exists and equals A B± , as we were 
required to prove. 

The proof of (b) follows similar lines but is much easier and we leave it as 
an exercise for you. 

Theorem 7.12: If c is a point of the interval a b[ , ] and if f is Riemann integrable on 
both a c[ , ] and c b[ , ] then f is integrable on a b[ , ] and 

f x dx f x dx f x dx( ) + ( ) = ( ) .
a

c

c

b

a

b

Proof: Let us write 

A f x dx= ( )
a

c

and 

B f x dx= ( ) .
c

b

Now pick > 0. There is a > 01 such that if is a partition of [a, c] with 
mesh less than 1 then 

f A( , ) <
3

.

Similarly, choose > 02 such that if is a partition of c b[ , ] with mesh less 
than 2 then 

f B( , ) <
3

.

Let M be an upper bound for f (recall, from the remark at the end of 
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Section 7.1, that a Riemann integrable function must be bounded). Set 
M= min{ , , /(6 )}1 2 . Now let v v= { , …, }k1 be any partition of a b[ , ]

with mesh less than . There is a last point vn which is in a c[ , ] and a first 
point vn+1 in c b[ , ]. Observe that v v c= { , …, , }n0 is a partition of a c[ , ] with 
mesh smaller than 1 and c v v= { , , …, }n k+1 is a partition of c b[ , ] with 
mesh smaller than 2. Let us rename the elements of as p p{ , …, }n0 +1 and 
the elements of as p p{ , }k n0 +1 . Notice that p p c= =n+1 0 . For each j let 
sj be a point chosen in the interval I v v= [ , ]j j j1 from the partition . 

Then we have 

f A B

f s A f s f s B

f s f c c v A

f c v c f s B

f s f c c v f s f c v c

f s f c c v A

f c v c f s B

f s f c v v

f A f B

f s f c v v

M

( , ) [ + ]

= ( ) + ( ) + ( )

= ( ) + ( ) ( )

+ ( ) ( ) +

+ ( ( ) ( )) ( ) + ( ( ) ( )) ( )

( ) + ( ) ( )

+ ( ) ( ) + ( )

+ ( ( ) ( )) ( )

= ( , ) + ( , )
+ ( ( ) ( )) ( )

< + + 2

j

n

j j n n
j n

k

j j

j

n

j j n

n
j n

k

j j

n n n n

j

n

j j n

n
j n

k

j j

n n n

n n n

=1
+1 +1

= +2

=1

+1
= +2

+1 +1 +1

=1

+1
= +2

+1 +1

+1 +1

3 3

by the choice of .
This shows that f is integrable on the entire interval a b[ , ] and the value of 

the integral is 

A B f x dx f x dx+ = ( ) + ( ) .
a

c

c

b
□ 

Remark 7.13: The last proof illustrates why it is useful to be able to choose 
the s Ij j arbitrarily.                                                                       □ 
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Example 7.14: If we adopt the convention that 

f x dx f x dx( ) = ( )
b

a

a

b

(which is consistent with the way that the integral was defined in the first 
place), then Theorem 7.12 is true even when c is not an element of a b[ , ]. For 
instance, suppose that c a b< < . Then, by Theorem 7.12, 

f x dx f x dx f x dx( ) + ( ) = ( ) .
c

a

a

b

c

b

But this may be rearranged to read 

f x dx f x dx f x dx f x dx f x dx( ) = ( ) + ( ) = ( ) + ( ) .
a

b

c

a

c

b

a

c

c

b
□ 

One of the basic tools of analysis is to perform estimates. Thus we require 
certain fundamental inequalities about integrals. These are recorded in the 
next theorem. 

Theorem 7.15: Let f and g be integrable functions on a nonempty interval a b[ , ] . 
Then  

i. f x dx f x dx( ) ( ) ;
a

b

a

b

ii. If f x g x( ) ( ) for all x a b[ , ] then f x dx g x dx( ) ( )
a

b

a

b
. 

Proof: If is any partition of a b[ , ] then 

f f( , ) ( , ).

The first assertion follows. 
Next, for part (ii), 

f g( , ) ( , ).

□ This inequality implies the second assertion. 

Example 7.16: We may estimate the integral 

x dxsin
0

1
3
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as follows. We apply Theorem 7.15(i) to see that 

x dx x dxsin sin .
0

1
3

0

1
3

Now we apply Theorem 7.15(ii) to determine that 

x dx dxsin 1 = 1.
0

1
3

0

1
□ 

Exercises 
1. Suppose that f is a continuous, nonnegative function on the in-

terval [0, 1]. Let M be the maximum of f on the interval. Prove 
that 

f t dt Mlim ( ) = .
n

n
n

0

1
1/

2. Let f be a bounded function on an unbounded interval of the 
form A[ , ). We say that f is integrable on A[ , ) if f is integrable 
on every compact subinterval of A[ , ) and 

f x dxlim ( )
B A

B

+

exists and is finite. 
Assume that f is nonnegative and Riemann integrable on N[1, ] for 

every N > 1 and that f is decreasing. Show that f is Riemann in-
tegrable on [1, ) if and only if f j( )j=1 is finite. 

Suppose that g is nonnegative and integrable on [1, ). If 
f x g x0 ( ) ( ) for x [1, ), and f is integrable on compact 

subintervals of [1, ), then prove that f is integrable on [1, ).  
3. Let f be a function on an interval of the form a b( , ] such that f is 

integrable on compact subintervals of a b( , ]. If 

f x dxlim ( )
a

b

0 ++

exists and is finite then we say that f is integrable on a b( , ]. 
Prove that, if we restrict attention to bounded f , then in fact this 
definition gives rise to no new integrable functions. However, there 
are unbounded functions that can now be integrated. Give an 
example. 
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4. If f x dx( ) = 2
3

6
and f x dx( ) = 5

3

8
, then calculate f x dx( )

8

6
.  

5. Fix a continuous function g on the interval [0, 1]. Define 

Tf f x g x dx= ( ) ( )
0

1

for f integrable on [0, 1]. Prove that 

Tf C f x dx( ) .
0

1

What does the constant C depend on?  
6. Let f and g be continuous functions on the interval a b[ , ]. Prove 

that 

f x g x dx f x dx g x dx( ) ( ) ( ) ( ) .
a

b

a

b

a

b
2 1/2 2 1/2

7. Prove part (b) of Theorem 7.11.  
*8. Let p1 < < and q p p= /( 1). Let f and g be continuous 

functions on the interval a b[ , ]. Prove that 

f x g x dx f x dx g x dx( ) ( ) ( ) ( ) .
a

b

a

b
p p

a

b
q q1/ 1/

*9. Prove that 

r r
r

drlim
cos(2 ) cos

0

1/

+

exists.  
*10. Suppose that f is a Riemann integrable function on the interval 

[0, 1]. Let > 0. Show that there is a polynomial p so that 

f x p x dx( ) ( ) < .
0

1

11. Refer to Exercise 3. Calculate 

x dx.
0

1
1/2
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12. Refer to Exercise 3. Calculate 

x dx( 1) .
1

2
1/3

13. Refer to Exercise 2. Calculate 

x dx.
1

3/2

14. Refer to Exercise 2. Calculate 

x x
dx

1
log

.
1 2

7.3 Change of Variable and Related Ideas 

Another fundamental operation in the theory of the integral is “change of 
variable” (sometimes called the “u-substitution” in calculus books). We next 
turn to a careful formulation and proof of this operation. First we need a 
lemma: 

Lemma 7.17: If f is a Riemann integrable function on a b[ , ] and if is a 
continuous function on a compact interval that contains the range of f then f
is Riemann integrable. 

Proof: Let > 0. Since is a continuous function on a compact set, it is 
uniformly continuous (Theorem 5.27). Let > 0 be selected such that (i) 

< and (ii) if x y| | < then x y( ) ( ) < . 
Now the hypothesis that f is Riemann integrable implies that there exists a 

˜ > 0 such that if and are partitions of a b[ , ] and m m( ), ( ) < ˜ then 
(by Lemma 7.9), for the common refinement of and , it holds that 

f f f f( , ) ( , ) < and ( , ˜ ) ( , ) < .2 2

Fix such a , and . Let J be the intervals of and Ij the intervals of . 
Each J is contained in some Ij ( ). We write 
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f f

f t f s

f t f s

f t f s

f t f s

f t f s

( , ) ( , )

= ( )

= ( )

= ( )

( )

+ ( ) ,

j
j j

j J I
j

j J I

j J I
j

j J I G
j

j J I B
j

,

,

j j

j

j

j

where we put in G if J Ij ( ) and f f0 sup inf <I Ij j( ) ( ) ; otherwise we 

put into B. Notice that 

f f

f f

f f

sup inf

= sup inf

= sup inf

<

B B I I

j
k

J I I I

j
k

I I
j

=1

=1

2

j j

j j j

j j

( ) ( )

by the choice of ˜ (and Remark 7.7). Therefore 

< .
B

Let M be an upper bound for (Corollary 5.22). Then 

f t f s M

M
M

( ) (2 )

2
< 2 .

j J I B
j

J I B, ,j
j

j
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Also 

f t f s( )
j J I G

j
j J I G, ,j j

since, for G, we know that f f( ) ( ) < for any I, j ( ). 
However, the last line does not exceed b a( ) . Putting together our 
estimates, we find that 

f f M b a( , ) ( , ) < (2 + ( )).

By symmetry, an analogous inequality holds for . By Lemma 7.9, this is 
what we needed to prove.                                                               □ 

An easier result is that, if f is Riemann integrable on an interval a b[ , ] and if 
a b: [ , ] [ , ] is continuously differentiable, then f is Riemann in-

tegrable (see the exercises). 

Corollary 7.18: If f and g are Riemann integrable on a b[ , ] , then so is the 
function f g. 

Proof: By Theorem 7.11, f g+ is integrable. By the lemma, f g( + )2

f f g g= + 2 +2 2 is integrable. But the lemma also implies that f 2 and g2

are integrable (here we use the function x x( ) = 2). It results, by subtraction, 
that f g2 is integrable. Hence f g is integrable.                                   □ 

Theorem 7.19: Let f be an integrable function on an interval a b[ , ] of positive 
length. Let be a continuously differentiable function from another interval [ , ]
of positive length into a b[ , ]. Assume that is increasing, one-to-one, and onto. 
Then 

f x dx f x x dx( ) = ( ( )) ( ) .
a

b

Proof: Since f is integrable, its absolute value is bounded by some number 
M. Fix > 0. Since is continuous on the compact interval [ , ], it is 
uniformly continuous (Theorem 5.27). Hence we may choose > 0 so small 
that if s t < then s t M( ) ( ) < /( ( )). If p p= { , …, }k0 is 
any partition of a b[ , ] then there is an associated partition 

p p˜ = ( ), …, ( )k
1

0
1 of [ , ]. For simplicity denote the points of ˜ by 

p̃j. Let us choose the partition so fine that the mesh of ˜ is less than . If tj
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are points of I p p= ,j j j1 then there are corresponding points s t=j j
1 of 

I p p˜ = [ ˜ , ˜ ]j j j1 . Then we have 

f t f t p p

f s p p

f s u p p

=

= ( ) ˜ ˜

= ( ) ( ) ˜ ˜ ,

j

k

j j
j

k

j j j

j

k

j j j

j

k

j j j j

=1 =1
1

=1
1

=1
1

where we have used the Mean Value Theorem in the last line to find each uj. 
Our problem at this point is that f and are evaluated at different 
points. So we must do some estimation to correct that problem. 

The last displayed line equals 

f s s p p f s u s p p( ) ( ) ˜ ˜ + ( ) ( ) ( ) ˜ ˜ .
j

k

j j j j
j

k

j j j j j
=1

1
=1

1

The first sum is a Riemann sum for f x x( ( )) ( ) and the second sum is an 
error term. Since the points uj and sj are elements of the same interval Ĩj of 

length less than , we conclude that u s M( ) ( ) < /( )j j . Thus 
the error term in absolute value does not exceed 

M
M

p p p p˜ ˜ = ˜ ˜ = .
j

k

j j
j

k

j j
=1

1
=0

1

This shows that every Riemann sum for f on a b[ , ] with sufficiently small 
mesh corresponds to a Riemann sum for f x x( ( )) ( ) on [ , ] plus an 
error term of size less than . A similar argument shows that every Riemann 
sum for f x x( ( )) ( ) on [ , ] with sufficiently small mesh corresponds to 
a Riemann sum for f on a b[ , ] plus an error term of magnitude less than . 
The conclusion is then that the integral of f on a b[ , ] (which exists by 
hypothesis) and the integral of f x x( ( )) ( ) on [ , ] (which exists by the 
corollary to the lemma) have the same value.                                     □ 

Example 7.20: Let us analyze the integral 

x x x dxsin( + ) (3 + 1) .
0

1
3 2
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We let f t t( ) = sin and x x x( ) = +3 . Then we see that the integral has the 
form 

f x x dx( ) ( ) .
0

1

Here : [0, 1] [0, 2]. 
By the theorem, this integral is equal to 

f t dt t dt( ) = sin = cos 2 + 1.
0

2

0

2
□ 

We conclude this section with the very important 

Theorem 7.21: (Fundamental Theorem of Calculus) Let f be an integrable 
function on the interval a b[ , ] . For x a b[ , ] we define 

F x f s ds( ) = ( ) .
a

x

If f is continuous at x a b( , ) then 

F x f x( ) = ( ).

Proof: Fix x a b( , ). Let > 0. Choose, by the continuity of f at x, a > 0
such that s x < implies f s f x( ) ( ) < . We may assume that 

x a b x< min{ , }. If t x < then 

f x f x( ) = ( )

=

= .

F t F x
t x

f s ds f s ds

t x

f s ds

t x

f x ds

t x

f s f x ds

t x

( ) ( ) ( ) ( )

( ) ( )

( ( ) ( ))

a
t

a
x

x

t

x

t

x
t

Notice that we rewrote f x( ) as the integral with respect to a dummy 
variable s over an interval of length t x| |divided by t x( ). Assume for 
the moment that t x> . Then the last line is dominated by 

= .

f s f x ds

t x

ds

t x

( ) ( )
x

t

x

t
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A similar estimate holds when t x< (simply reverse the limits of 
integration). 

This shows that 

F t F x
t x

lim
( ) ( )

t x

exists and equals f x( ). Thus F x( ) exists and equals f x( ).                     □ 

In the exercises we shall consider how to use the theory of one-sided limits 
to make the conclusion of the Fundamental Theorem true on the entire 
interval a b[ , ]. We conclude with 

Corollary 7.22: If f is a continuous function on a b[ , ] and if G is any continuously 
differentiable function on a b[ , ] whose derivative equals f on a b( , ) then 

f x dx G b G a( ) = ( ) ( ).
a

b

Proof: Define F as in the theorem. Since F and G have the same derivative 
on a b( , ), they differ by a constant (Corollary 6.18). Then 

f x dx F b F b F a G b G a( ) = ( ) = ( ) ( ) = ( ) ( )
a

b

as desired.                                                                                    

□ 

Example 7.23: Let 

f x e dt( ) = cos( ) .
x

t
0

2

What is the derivative of f ? 
It is not possible to actually evaluate the given integral, but we can still 

answer the question. Let g s e dt( ) = cos( )
s t
0

and let h x x( ) = 2. Then 
f g h= . Therefore 

f x g h x h x( ) = ( ( )) ( ).

Now the Fundamental Theorem of Calculus tells us that 

g s e( ) = cos( ).s

And obviously h x x( ) = 2 . 
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In conclusion, 

( )f x e x( ) = cos 2 .x2 □ 

Exercises  
1. Imitate the proof of the Fundamental Theorem of Calculus in 

this section to show that, if f is continuous on a b[ , ] and if we 
define 

F x f t dt( ) = ( ) ,
a

x

then the one-sided derivative F a( ) exists and equals f a( ) in the sense 
that 

F t F a
t a

f alim
( ) ( )

= ( ).
t a+

Formulate and prove an analogous statement for the one-sided de-
rivative of F at b.  

2. Let f be a continuously differentiable function on the interval 
[0, 2 ]. Further assume that f f(0) = (2 ) and f f(0) = (2 ). For 

Nn define 

f n f x nx dxˆ ( ) =
1

2
( )sin .

0

2

Prove that 

f nˆ ( )
n=1

2

converges. [Hint: Use integration by parts to obtain a favorable es-
timate on f nˆ ( ) .]  

3. Let f f, , …1 2 be Riemann integrable functions on [0,1]. Suppose 
that f x f x( ) ( )1 2 for every x and that f x f xlim ( ) ( )j j ex-
ists and is finite for every x. Is it the case that f is Riemann 
integrable?  

4. Give an example of a function f that is not Riemann integrable but 
such that f 2 is Riemann integrable. 
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5. Prove that if f is Riemann integrable on the interval [a, b], then f2 is 
Riemann integrable on [a, b].  

6. Define 

f x e dx( ) = .
x

x
0

cos
sin

2

Calculate f x( ).  
7. Give three intuitive reasons why differentiation and integration 

should be inverse operations.  
8. Give an example of an integrable function f and a point x0 so that 

F x f t dt( ) = ( )
x

0

is defined but F x f x( ) ( )0 0 .  
9. Calculate the integral 

x dx
0

1
2

with the original definition of the integral using Riemann sums. 
Now calculate the integral using the Fundamental Theorem of 
Calculus. Confirm that both of your answers are the same.  

*10. Integration by parts gives a way to think about the integral of a 
product of functions. But there is no formula for the integral of a 
quotient of functions. Explain why.  

11. There are many reasons why 

f x g x dx f x dx g x dx( ) ( ) ( ) ( ) .

Give at least two such reasons.  
*12. Let f be continuous on the interval [0,1]. Then it is the case that 

f x dx f x dx( ) ( ) .
0

1
2

0

1
2

Explain why.  
13. If f and g are continuous on the interval [0, 1], then it holds that 
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f x g x dx f x dx g x dx( ) ( ) ( ) ( ) .
0

1

0

1
2 1/2

0

1
2 1/2

Explain why. 

7.4 Another Look at the Integral 

For many purposes, such as integration by parts, it is natural to formulate 
the integral in a more general context than we have considered in the first 
two sections. Our new formulation is called the Riemann–Stieltjes integral 
and is described below. 

Fix an interval [a, b] and a monotonically increasing function on [a, b]. If 
p p p= { , ,…, }k0 1 is a partition of [a,b], then let p p= ( ) ( )j j j 1 . Let f be 

a bounded function on [a, b] and define the upper Riemann sum of f with 
respect to and the lower Riemann sum of f with respect to as follows: 

f M( , , ) =
j

k

j j
=1

and 

f m( , , ) = .
j

k

j j
=1

Here the notation Mj denotes the supremum of f on the interval I p p= ,j j j1

and mj denotes the infimum of f on Ij. 
In the special case x x( ) = the Riemann sums discussed here have a form 

similar to the Riemann sums considered in the first two sections. Moreover, 

f f f( , , ) ( , ) ( , , ).

We define 

I f f( ) = inf ( , , )

and 

I f f( ) = sup ( , , ).
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Here the supremum and infimum are taken with respect to all partitions of 
the interval a b[ , ]. These are, respectively, the upper and lower integrals of f
with respect to on a b[ , ]. 

By definition it is always true that, for any partition , 

f I f I f f( , , ) ( ) ( ) ( , , ).

It is natural to declare the integral to exist when the upper and lower in-
tegrals agree: 

Definition 7.24: Let be an increasing function on the interval a b[ , ] and let 
f be a bounded function on a b[ , ]. We say that the Riemann–Stieltjes integral 
of f with respect to exists if 

I f I f( ) = ( ).

When the integral exists we denote it by 

f d .
a

b

Notice that the definition of Riemann–Stieltjes integral is different from the 
definition of Riemann integral that we used in the preceding sections. It 
turns out that, when x x( ) = , the two definitions are equivalent (this 
assertion is explored in the exercises). In the present generality it is easier to 
deal with upper and lower integrals in order to determine the existence of 
integrals. 

Definition 7.25: Let and be partitions of the interval a b[ , ]. If each point 
of is also an element of then we call a refinement of . 

Notice that the refinement is obtained by adding points to . The mesh 
of will be less than or equal to that of . The following lemma enables us 
to deal effectively with our new language. 

Lemma 7.26: Let be a partition of the interval a b[ , ] and f a function on a b[ , ]. 
Fix an increasing function on a b[ , ] . If is a refinement of then 

f f( , , ) ( , , )

and 

f f( , , ) ( , , ).
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Proof: Since is a refinement of it holds that any interval I arising from 
is contained in some interval Jj ( ) arising from . Let MI be the supremum 

of f on I and MJj ( )
the supremum of f on the interval Jj ( ). Then M MI Jj ( )

. 
We conclude that 

f M M( , , ) = .I Jj ( )

We rewrite the right-hand side as 

M .
j

J
I J

j

j

However, because is monotone, the inner sum simply equals p( )j
p( ) =j j1 . Thus the last expression is equal to f( , , ), as desired. In 

conclusion, f Q f( , , ) ( , , ). 
A similar argument applies to the lower sums.                                 □ 

Example 7.27: Let a b[ , ] = [0, 10] and let x( ) be the greatest integer function.1 

That is, x( ) is the greatest integer that does not exceed x. So, for example, 
(0.5) = 0, (2) = 2, and ( 3/2) = 2. Then is an increasing function on 

[0, 10]. Let f be any continuous function on [0, 10]. We shall determine 
whether 

f d
0

10

exists and, if it does, calculate its value. 
Let be a partition of [0,10]. By the lemma, it is to our advantage to 

assume that the mesh of is smaller than 1. Observe that j equals the 
number of integers that lie in the interval Ij—that is, either 0 or 1. Let 
I I I, , …j j j0 2 10

be, in sequence, the intervals from the partition which do in fact 
contain each distinct integer (the first of these contains 0, the second 
contains 1, and so on up to 10). Then 

f M M( , , ) = =j j j
=0

10

=1

10

and 
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f m m( , , ) = =j j j
=0

10

=1

10

because any term in these sums corresponding to an interval not containing 
an integer must have = 0j . Notice that = 0j0 since p(0) = ( ) = 01 . 

Let > 0. Since f is uniformly continuous on [0, 10], we may choose a 
> 0 such that s t| | < implies that f s f t( ) ( ) < /20. If m ( ) <

then it follows that f M( ) < /20j and f m( ) < /20j for 
= 0, 1, … 10. Therefore 

f f( , , ) < ( ) +
20=1

10

and 

f f( , , ) > ( )
20

.
=1

10

Rearranging these inequalities leads to 

f f( , , ) < ( ) +
2=1

10

and 

f f( , , ) > ( )
2

.
=1

10

Thus, since I f( ) and I f( ) are trapped between and , we conclude that 

I f I f( ) ( ) < .

We have seen that, if the partition is fine enough, then the upper and lower 
integrals of f with respect to differ by at most . It follows that fd

0

10

exists. Moreover, 

I f f( ) ( ) <
=1

10
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and 

I f f( ) ( ) < .
=1

10

We conclude that 

f d f= ( ).
0

10

=1

10

□ 

The example demonstrates that the language of the Riemann–Stieltjes integral 
allows us to think of the integral as a generalization of the summation process. 
This is frequently useful, both philosophically and for practical reasons. 

The next result, sometimes called Riemann’s lemma, is crucial for proving 
the existence of Riemann–Stieltjes integrals. 

Proposition 7.28: (Riemann’s Lemma) Let be an increasing function on a b[ , ]
and f a bounded function on the interval. The Riemann–Stieltjes integral of f with 
respect to exists if and only if, for every > 0 , there is a partition such that 

f f( , , ) ( , , ) < . (7.28.1)  

Proof: First assume that (7.28.1) holds. Fix > 0. Since I I , 
inequality (7.28.1) implies that 

I f I f( ) ( ) < .

But this means that f d
a

b
exists. 

Conversely, assume that the integral exists. Fix > 0. Choose a partition 
1 such that 

f I f( , , ) ( ) < /2.1

Likewise choose a partition 2 such that 

f I f( , , ) ( ) < /2.2

Since I f I f( ) = ( ) it follows that 

f f( , , ) ( , , ) < .1 2 (7.28.2)  
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Let be the common refinement of 1 and 2. Then we have, again by 
Lemma 7.26, that 

f f f d f f( , , ) ( , , ) ( , , ) ( , , ).
a

b
2 1

But, by (7.28.2), the expressions on the far left and on the far right of these 
inequalities differ by less than . Thus satifies the condition (7.28.1).   □ 

We note in passing that the basic properties of the Riemann integral noted 
in Section 7.2 (Theorems 7.11 and 7.12) hold without change for the 
Riemann–Stieltjes integral. The proofs are left as exercises for you (use 
Riemann’s lemma!). 

Exercises  
1. Define x( ) by the condition that x x k( ) = + when k x k< + 1. 

Calculate 

t d t( ).
2

6
2

2. Let x( ) be the greatest integer function as discussed in the text. 
Define the “fractional part” function by the formula 

x x x( ) = ( ). Explain why this function has the name “frac-
tional part.” Note that is not monotone increasing, but it is at 
least piecewise monotone increasing. So the Riemann–Stieltjes in-
tegral with respect to still makes sense. Calculate 

x d x( ).
0

5

3. If p is a polynomial and p d = 0
a

b
for every choice of , then 

what can you conclude about p?  
4. Suppose that and are monotonic polynomials on the interval 

a b[ , ]. If f d f d= for every choice of f , then what can you 
conclude about and ?  

5. Let x( ) be the greatest integer function and f x x( ) = 2. Calculate 
f d x( )

0

3
.  

6. Let f x x( ) = ( ) be the greatest integer function. Calculate f d
0

4
.  

7. State and prove a version of Theorem 7.11 for Riemann–Stieltjes 
integrals.  

8. State and prove a version of Theorem 7.12 for Riemann–Stieltjes 
integrals. 
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9. Let f x x( ) = 2 and x x( ) = 3. Calculate 

f d .
0

10. State and prove a result to the effect that, when x x( ) = , then the 
Riemann–Stieltjes integral is equivalent with the classical 
Riemann integral.  

11. Any series can be represented as a Riemann–Stieltjes integral. But 
the converse is not true. Explain.  

*12. The Riemann-Stieltjes integral puts summation by parts into a 
very natural and general context. Explain.  

13. Calculate 

x dx .
0

1
2

14. Calculate 

x dxsin .
0

1
2

7.5 Advanced Results on Integration Theory 

We now turn to establishing the existence of certain Riemann–Stieltjes 
integrals. 

Theorem 7.29: Let f be continuous on [a, b] and assume that is monotonically 
increasing. Then 

f d
a

b

exists. 

Proof: We may assume that is nonconstant; otherwise there is nothing to 
prove. 

Pick > 0. By the uniform continuity of f we may choose a > 0 such that 
if s t| | < then f s f t b a( ) ( ) < /( ( ) ( )). Let be any partition of 
a b[ , ] that has mesh smaller than . Then 
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f f M m

M m

( , , ) ( , , ) =

=

<

=

= .

j
j j

j
j j

j
j j j

j
b a j

b a
j

j

( ) ( )

( ) ( )

Here, of course, we have used the monotonicity of to observe that the last 
sum collapses to b a( ) ( ). By Riemann’s lemma, we see that the proof is 
complete.                                                                                      □ 

Notice how simple Riemann’s lemma is to use. You may find it instructive 
to compare the proofs of this section with the rather difficult proofs in 
Section 7.2. What we are learning is that a good definition (and accom-
panying lemma(s)) can, in the end, make everything much clearer and 
simpler. Now we establish a companion result to the first one. 

Theorem 7.30: If is an increasing and continuous function on the interval a b[ , ]
and if f is monotonic on a b[ , ] then f d

a

b
exists. 

Proof: We may assume that b a( ) > ( ) and that f is monotone increasing. 
Let L b a= ( ) ( ) and M f b f a= ( ) ( ). Pick > 0. Choose a positive 
integer k so that 

L M
k

< .

Let p a=0 and choose p1 to be the first point to the right of p0 such that 
p p L k( ) ( ) = /1 0 (this is possible, by the Intermediate Value Theorem, 

since is continuous). Continuing, choose pj to be the first point to the 
right of pj 1 such that p p L k( ) ( ) = /j j 1 . This process will terminate 
after k steps and we will have p b=k . Then p p p= { , , …, }k0 1 is a partition 
of a b[ , ]. 

Next observe that, for each j, the value Mj of fsup on Ij is f p( )j since f is 
increasing. Similarly the value mj of finf on Ij is f p( )j 1 . We find therefore 
that 
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f f M m

M m

f x f x

( , , ) ( , , ) =

=

= ( ) ( )

=
< .

j

k

j j
j

k

j j

j

k

j j
L
k

L
k

j

k

j j

L M
k

=1 =1

=1

=1
1

Therefore inequality (7.28.1) of Riemann’s lemma is satisfied and the 
integral exists.                                                                               □ 

One of the useful features of Riemann–Stieltjes integration is that it puts 
integration by parts into a very natural setting. We begin with a lemma. 

Lemma 7.31: Let f be continuous on an interval a b[ , ] and let g be monotone 
increasing and continuous on that interval. If G is an antiderivative for g then 

f x g x dx f dG( ) ( ) = .
a

b

a

b

Proof: Apply the Mean Value Theorem to the Riemann sums for the integral 
on the right.                                                                                  □ 

Theorem 7.32: (Integration by Parts) Suppose that both f and g are continuous, 
increasing functions on the interval a b[ , ] . Let F be an antiderivative for f on a b[ , ]
and G an antiderivative for g on a b[ , ]. Then we have 

F dG F b G b F a G a G dF= [ ( ) ( ) ( ) ( )] .
a

b

a

b

Proof: Notice that, by the preceding lemma, both integrals exist. Set 
P x F x G x( ) = ( ) ( ). Then P has a continuous derivative on the interval 
a b[ , ]. Thus the Fundamental Theorem of Calculus applies and we may write 

P b P a P x dx F b G b F a G a( ) ( ) = ( ) = [ ( ) ( ) ( ) ( )].
a

b

Now, writing out P explicitly, using Leibnitz’s Rule for the derivative of a 
product, we obtain 

F x g x dx F b G b F a G a G x f x dx( ) ( ) = [ ( ) ( ) ( ) ( )] ( ) ( ) .
a

b

a

b
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But the lemma allows us to rewrite this equation as 

F dG F b G b F a G a G x dF= [ ( ) ( ) ( ) ( )] ( ) .
a

b

a

b □ 

Remark 7.33: The integration by parts formula can also be proved by 
applying summation by parts to the Riemann sums for the integral 

F dG.
a

b

This method is explored in the exercises.                                           □ 

We have already observed that the Riemann–Stieltjes integral 

f d
a

b

is linear in f ; that is, 

f g d f d g d( + ) = +
a

b

a

b

a

b

and 

c f d c f d=
a

b

a

b

when both f and g are Riemann–Stieltjes integrable with respect to and 
for any constant c. We also would expect, from the very way that the in-
tegral is constructed, that it would be linear in the entry. But we have not 
even defined the Riemann–Stieltjes integral for nonincreasing . And what 
of a function that is the difference of two increasing functions? Such a 
function need not be monotone. Is it possible to identify which functions 
can be decomposed as sums or differences of monotonic functions? It turns 
out that there is a satisfactory answer to these questions, and we should like 
to discuss these matters briefly. 

Definition 7.34: If is a monotonically decreasing function on a b[ , ] and f is a 
function on a b[ , ] then we define 

f d f d= ( )
a

b

a

b

when the right side exists. 

262                                                         Real Analysis and Foundations 

ISTUDY



The definition exploits the simple observation that if is decreasing then 
is increasing; hence the preceding theory applies to the function .

Next we have 

Definition 7.35: Let be a function on a b[ , ] that can be expressed as 

x x x( ) = ( ) ( ),1 2

where both 1 and 2 are increasing. Then, for any f on a b[ , ], we define 

f d f d f d= ,
a

b

a

b

a

b
1 2

provided that both integrals on the right exist. 

Now, by the very way that we have formulated our definitions, f d
a

b
is 

linear in both the f entry and the entry. But the definitions are not sa-
tisfactory unless we can identify those that can actually occur in the last 
definition. This leads us to a new class of functions. 

Definition 7.36: Let f be a function on the interval a b[ , ]. For x a b[ , ] we 
define 

Vf x f p f p( ) = sup ,
j

k

j j
=1

1

where the supremum is taken over all partitions of the interval a x[ , ]. 
If Vf Vf b( ) < , then the function f is said to be of bounded variation on 

the interval a b[ , ]. In this circumstance the quantity Vf b( ) is called the total 
variation of f on a b[ , ]. 

A function of bounded variation has the property that its graph does not 
have unbounded total oscillation. 

Example 7.37: Define f x x( ) = sin , with domain the interval [0, 2 ]. Let us 
calculate Vf . Let be a partition of [0, 2 ]. Since adding points to the 
partition only makes the sum 

f p f p
j

k

j j
=1

1
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larger (by the triangle inequality), we may as well suppose that 

p p p p= { , , ,…, }k0 1 2

contains the points /2, 3 /2. Assume that p = /2
1

and p = 3 /2
2

. Then 

f p f p f p f p

f p f p

f p f p

=

+

+ .

j

k

j j
j

j j

j
j j

j

k

j j

=1
1

=1
1

= +1
1

= +1
1

1

1

2

2

However, f is increasing on the interval p[0, /2] = [0, ]
1

. Therefore the first 
sum is just 

( )f p f p f p f p f f= ( ) = ( /2) (0) = 1.
j

j j
=1

1 0

1

1

Similarly, f is monotone on the intervals p p[ /2, 3 /2] = [ , ]
1 2

and [3 /2, 2 ]
p p= [ , ]k2

. Thus the second and third sums equal f p f p( ) ( ) = 2
1 2

and 
f p f p( ) ( ) = 1k 2

respectively. It follows that 

Vf Vf= (2 ) = 1 + 2 + 1 = 4 .

Of course Vf x( ) for any x [0, 2 ] can be computed by similar means (see 
the exercises).                                                                                □ 

Example 7.38: In general, if f is a continuously differentiable function on an 
interval a b[ , ] then 

Vf x f t dt( ) = ( ) .
a

x

This assertion will be explored in the exercises.                                   □ 

Example 7.39: The function f x x( ) = cos on the interval [0, 2 ] is of 
bounded variation. And in fact 

Vf = 4
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because the function goes from 1 down to 0 and then from 0 down to 1 and 
finally from 1 up to 0 and finally from 0 up to 1. 

Alternatively, one can obtain the same answer by calculating the integral 

Vf f x dx x dx= ( ) = sin .
0

2

0

2
□ 

Lemma 7.40: Let f be a function of bounded variation on the interval a b[ , ]. Then 
the function Vf is increasing on a b[ , ]. 

Proof: Let s t< be elements of a b[ , ]. Let p p p= { , , …, }k0 1 be a partition of 
a s[ , ]. Then p p p t˜ = { , , …, , }k0 1 is a partition of a t[ , ] and 

f p f p

f p f p f t f p

Vf t

| ( ) ( )|

| ( ) ( )| + | ( ) ( )|

( ).

j

k

j j

j

k

j j k

=1
1

=1
1

Taking the supremum on the left over all partitions of a s[ , ] yields that 

Vf s Vf t( ) ( ). □ 

Lemma 7.41: Let f be a function of bounded variation on the interval a b[ , ] . Then 
the function Vf f is increasing on the interval a b[ , ]. 

Proof: Let s t< be elements of a b[ , ]. Pick > 0. By the definition of Vf we 
may choose a partition p p p= { , , …, }k0 1 of the interval a s[ , ] such that 

Vf s f p f p( ) < .
j

k

j j
=1

1 (7.41.1)  

But then p p p t˜ = { , , …, , }k0 1 is a partition of a t[ , ] and we have that 

f p f p f t f s Vf t+ ( ) ( ) ( ).
j

k

j j
=1

1

Using (7.41.1), we may conclude that 
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Vf s f t f s f p f p f t f s Vf t( ) + ( ) ( ) < + ( ) ( ) ( ).
j

k

j j
=1

1

We conclude that 

Vf s f s Vf t f t( ) ( ) < ( ) ( ) + .

Since the inequality holds for every > 0, we see that the function Vf f is 
increasing.                                                                                    □ 

Now we may combine the last two lemmas to obtain our main result: 

Proposition 7.42: If a function f is of bounded variation on a b[ , ] , then f may be 
written as the difference of two increasing functions. Conversely, the difference of 
two increasing functions is a function of bounded variation. 

Proof: If f is of bounded variation write f Vf Vf f f f= ( ) 1 2. By the 
lemmas, both f1 and f2 are increasing. 

For the converse, assume that f f f= 1 2 with f f,1 2 increasing. Then it is 
easy to see that 

Vf b f b f a f b f a( ) ( ) ( ) + ( ) ( ) .1 1 2 2

Thus f is of bounded variation.                                                       □ 

Now the main point of this discussion is the following theorem: 

Theorem 7.43: If f is a continuous function on a b[ , ] and if is of bounded 
variation on a b[ , ] then the integral 

f d
a

b

exists and is finite. 
If g is of bounded variation on a b[ , ] and if is a continuous function of bounded 

variation on a b[ , ] then the integral 

g d
a

b

exists and is finite. 
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Proof: Write the function(s) of bounded variation as the difference of 
increasing functions. Then apply Theorems 7.29 and 7.30.                     □ 

Exercises  
1. Prove that the integral 

x
x

dx
sin

0

exists.  
2. Prove that, if f is a continuously differentiable function on the 

interval a b[ , ], then 

Vf f x dx= ( ) .
a

b

[Hint: You will prove two inequalities. For one, use the Fundamental 
Theorem of Calculus. For the other, use the Mean Value Theorem.]  

3. Give an example of a continuous function on the interval [0, 1] that 
is not of bounded variation.  

4. Let be a nonnegative, increasing function on the interval a b[ , ]. 
Set m a= ( ) and M b= ( ). For any number lying between m and 
M, set S x a b x= { [ , ]: ( ) > }. Prove that S must be an interval. 
Let ( ) be the length of S . Then prove that 

t dt s d s

s p s ds

( ) = ( )

= ( ) .

a

b p
m

M p

M p
0

1

5. If is a convex function on the real line, then prove that, for f
integrable on [0, 1], 

f x dx f x dx( ) ( ( )) .
0

1

0

1

6. Give an example of a continuously differentiable function on an 
open interval that is not of bounded variation.  

7. Prove that a continuously differentiable function on a compact 
interval is of bounded variation. 
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8. Let f x x( ) = sin on the interval [0, 2 ]. Calculate Vf x( ) for any 
x [0, 2 ].  

9. Let f x x( ) = 2 and x x( ) = sin . Calculate 

f d .
0

10. Calculate the total variation of the function 

f x jx( ) = sin( )

on the interval (0, ).  
11. Provide a detailed proof of Lemma 7.31.  
12. Show that the function f x x( ) = sin(1/ ) is of infinite total variation 

on the interval (0, 1).  
13. What is the total variation of the function f x x( ) = sin on the 

interval [0, 2 ]?  
14. If f , g are both of bounded variation on the interval [0, 1] then 

what can you say about the total variation of f g on [0, 1]? 

Note  
1 In many texts the greatest integer in x is denoted by [x]. We do not use that 

notation here because it could get confused with our notation for a closed interval.  
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8 
Sequences and Series of Functions  

8.1 Partial Sums and Pointwise Convergence 

A sequence of functions is usually written 

f f or f, , … .j j1 2 =1

We will generally assume that the functions fj all have the same domain S. 

Definition 8.1: A sequence of functions f{ }j j=1 with domain RS is said 
to converge pointwise to a limit function f on S if, for each x S, the sequence 
of numbers f x{ ( )}j converges to f x( ). 

Example 8.2: Define f x x( ) =j
j with domain S x x= { : 0 1}. If x0 < 1, 

then f x( ) 0j . However, f (1) 1j . Therefore the sequence fj converges 
pointwise to the function 

f x x
x

( ) = 0 if 0 < 1
1 if = 1

See Figure 8.1. We see that, even though the fj are each continuous, the limit 
function f is not.                                                                           □ 

Here are some of the basic questions that we must ask about a sequence of 
functions fj that converges to a function f on a domain S:  

1. If the functions fj are continuous, then is f continuous?  
2. If the functions fj are integrable on an interval I , then is f integrable 

on I?  
3. If f is integrable on I , then does the sequence f x dx( )

I j converge to 
f x dx( )

I
? 
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4. If the functions fj are differentiable, then is f differentiable?  
5. If f is differentiable, then does the sequence f j converge to f ? 

We see from Example 8.2 that the answer to the first question is “no”: Each 
of the fj is continuous but f is not. It turns out that, in order to obtain a 

favorable answer to our questions, we must consider a stricter notion of 
convergence of functions. This motivates the next definition. 

Definition 8.3: Let fj be a sequence of functions on a domain S. We say that 
the functions fj converge uniformly to f on S if, given > 0, there is an N > 0
such that, for any j N> and any x S, it holds that f x f x| ( ) ( )| <j . 

Notice that the special feature of uniform convergence is that the rate at 
which f x( )j converges is independent of x S. In Example 8.1, f x( )j is 

converging very rapidly to zero for x near zero but arbitrarily slowly to zero 
for x near 1—see Figure 8.1. In the next example we shall prove this as-
sertion rigorously: 

Example 8.4: The sequence f x x( ) =j
j does not converge uniformly to the 

limit function 

f x x
x

( ) = 0 if 0 < 1
1 if = 1

on the domain S = [0, 1]. In fact it does not even do so on the smaller 
domain [0, 1]. To see this notice that, no matter how large j is, we have by 
the Mean Value Theorem that 

y

x

FIGURE 8.1 
The sequence {xj}.    
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f f j
j

f(1) (1 1/(2 )) =
1
2

( )j j j

for some between j1 1/(2 ) and 1. But f x j x( ) =j
j 1 hence f j| ( )| <j

and we conclude that 

f f j(1) (1 1/(2 )) <
1
2j j

or 

f j f(1 1/(2 )) > (1)
1
2

=
1
2

.j j

In conclusion, no matter how large j, there will be values of x (namely, 
x j= 1 1/(2 )) at which f x( )j is at least distance 1/2 from the limit 0. We 
conclude that the convergence is not uniform.                                    □ 

Theorem 8.5: If fj are continuous functions on a set S that converge uniformly on 
S to a function f then f is also continuous. 

Proof: Let > 0. Choose an integer N so large that, if j N> , then 
f x f x| ( ) ( )| < /3j for all x S. Fix P S. Choose > 0 so small that if 
x P < then f x f P| ( ) ( )| < /3N N . For such x we have 

f x f P f x f x f x f P f P f P( ) ( ) ( ) ( ) + ( ) ( ) + ( ) ( )

< + +
N N N N

3 3 3

by the way that we chose N and . But the last line sums to , proving that f
is continuous at P. Since P S was chosen arbitrarily, we are done.       □ 

Example 8.6: Define functions 

f x
x

j x j
j x

( ) =
0 if = 0

if 0 < 1/
0 if 1/ < 1

j

for j = 2, 3, …. Then, f x f xlim ( ) = 0 ( )j j for all x in the interval 

I = [0, 1]. However 
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f x dx j dx( ) = = 1j

j

0

1

0

1/

for every j. Thus the fj converge to the integrable limit function f x( ) 0

(with integral 0), but their integrals do not converge to the integral of f . 
Of course. the fj do not converge uniformly.                                    □ 

Example 8.7: Let q q, , …1 2 be an enumeration of the rationals in the interval 
I = [0, 1]. Define functions 

f x
x q q q

x q q q
( ) =

1 if , , …,

0 if , , …,
j

j

j

1 2

1 2

Then, the functions fj converge pointwise to the Dirichlet function f which 
is equal to 1 on the rationals and 0 on the irrationals. Each of the functions fj

has integral 0 on I . But the function f is not Riemann integrable on I .    □ 

The last two examples show that something more than pointwise con-
vergence is needed in order for the integral to respect the limit process. 

Theorem 8.8: Let fj be integrable functions on a nontrivial bounded interval  a b[ , ]
and suppose that the functions fj converge uniformly to the limit function … Then, 
f is integrable on a b[ , ] and 

f x dx f x dxlim ( ) = ( ) .
j a

b

j a

b

Proof: Pick > 0. Choose N so large that, if j N> , then f x f x( ) ( )j

b a< /[2( )] for all x a b[ , ]. Notice that, if j k N, > , then 

f x dx f x dx f x f x dx( ) ( ) ( ) ( ) .
a

b

j a

b

k a

b

j k (8.8.1)  

But f x f x f x f x f x f x b a| ( ) ( )| | ( ) ( )| + | ( ) ( )| < /( )j k j k . Therefore, line 
(8.8.1) does not exceed 

b a
dx = .

a

b
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Thus the numbers f x dx( )
a

b
j form a Cauchy sequence. Let the limit of this 

sequence be called A. Notice that, if we let k in the inequality 

f x dx f x dx( ) ( ) ,
a

b

j a

b

k

then we obtain 

f x dx A( )
a

b

j

for all j N . This estimate will be used below. 
By hypothesis there is a > 0 such that, if p p= { , …, }k1 is a partition of 

a b[ , ] with m ( ) < , then 

f f x dx, ( ) < .N a

b

N

But then, for such a partition, we have 

f A f f f f x dx

f x dx A

( , ) ( , ) , + , ( )

+ ( ) .

N N a

b

N

a

b

N

We have already noted that, by the choice of N , the third term on the right is 
smaller than . The second term is smaller than by the way that we chose 
the partition . It remains to examine the first term. Now 

f f f s f s

f s f s

b a

b a

( , ) , = ( ) ( )

( ) ( )

<
2( )

=
2( )

=
2

.

N
j

k

j j
j

k

N j j

j

k

j N j j

j

k

j

j

k

j

=1 =1

=1

=1

=1

Therefore f A( , ) < 3 when m ( ) < . This shows that the function 
f is integrable on a b[ , ] and has integral with value A.                         □ 
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We have succeeded in answering questions (1) and (2) that were raised at 
the beginning of the section. In the next section we will answer questions 
(3), (4), and (5). 

Example 8.9: Define 

f x

x j
x j j x j
j x j x j

j x

( ) =

0 if
if < + 1

( + 2) if + 1 < + 2
0 if + 2 < .

j

Then, 

f x dx( ) = 1j

for each j. But 

f xlim ( ) = 0
j j

for every x. So we see that 

f x dx f x dx dx1 = lim ( ) lim ( ) = 0 = 0.
j j j j

□ 

Exercises  
1. If f fj uniformly on a domain S and if f f,j never vanish on S, then 

does it follow that the functions f1/ j converge uniformly to f1/ on S?  
2. Write out the first five partial sums for the series 

j
j

sin
.

j=1

3

2

3. Write a series of polynomials that converges to f x x( ) = sin 2. Can 
you prove that it converges?  

4. Write a series of trigonometric functions that converges to 
f x x( ) = . Can you prove that it converges?  

5. Write a series of piecewise linear functions that converges to 
f x x( ) = 2 on the interval [0, 1]. Can you prove that it converges?  

6. Write a series of functions that converges pointwise on [0, 1] but 
does not converge uniformly on any proper subinterval. [Hint: 
First consider a sequence.] 
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7. Give an example of a Taylor series that converges uniformly on 
compact sets to its limit function.  

8. Prove that the series 

jx
j

sin

j=1
2

converges uniformly to a continuous function on the interval [0, 1].  
9. A Taylor series will never converge only pointwise. Explain.  

10. Define 

f x
j x j

j x j
( ) =

1 + 1/ if <
1/ ifj

Show that fj converges to the identically 1 function pointwise but not 
uniformly.  

11. Define 

f x
x

x j x
( ) =

0 if 0
/ if > 0j 2

Prove that each fj is continuous, and the sequence f{ }j converges 
pointwise to the identically 0 function. But the sequence does not 
converge uniformly.  

12. Show that, if fj j converges uniformly on [0, 1] (where the prime 
stands for the derivative), and if f (0) = 0j for all j, then fj j con-
verges uniformly on compact sets.  

13. TRUE or FALSE: If fj j converges absolutely and uniformly and gj j
converges absolutely and uniformly on a compact interval a b[ , ], then 
so does f gj j j. 

14. Write the function f x x( ) = sin on the interval [0, 2 ] as the uni-
form limit of functions that are discontinuous.  

15. Suppose that fj are piecewise linear, continuous functions that 
converge uniformly on the interval [0, 1] to a limit function f . 
What can you say about f ? Is it piecewise linear? Is it continuous?  

16. Suppose that the functions fj are continuously differentiable on 
[0, 1] and that they converge uniformly to a limit function g. It 
does not follow that the f j converge uniformly. Explain. 
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8.2 More on Uniform Convergence 

In general, limits do not commute. Since the integral is defined with a limit, 
and since we saw in the last section that integrals do not always respect 
limits of functions, we know some concrete instances of non-commutation 
of limits. The fact that continuity is defined with a limit, and that the limit of 
continuous functions need not be continuous, gives even more examples of 
situations in which limits do not commute. Let us now turn to a situation in 
which limits do commute: 

Theorem 8.10: Fix a set S and a point s S. Assume that the functions fj converge 
uniformly on the domain S s\{ } to a limit function f . Suppose that each function f x( )j

has a limit j as x s. Then f itself has a limit 0 as x s and 

f x f x= lim ( ) = lim lim ( ) = lim .
x s j x s j j

j0

Because of the way that f is defined, we may rewrite this conclusion as 

f x f xlim lim ( ) = lim lim ( ).
x s j j j x s j

In other words, the limits limx s and limj commute. 

Proof: Let f x= lim ( )j x s j . Let > 0. There is a number N > 0 (independent 
of x S s\{ }) such that j N> implies that f x f x| ( ) ( )| < /4j . Fix j k N, > . 
Choose > 0 such that x s0 < | | < implies both that f x| ( ) | < /4j j

and f x| ( ) | < /4k k . Then 

f x f x f x f x f x f x( ) + ( ) ( ) + ( ) ( ) + ( ) .j k j j j k k k

The first and last expressions are less than /4 by the choice of x. The 
middle two expressions are less than /4 by the choice of N (and therefore 
of j and k). We conclude that the sequence j is Cauchy. Let be the limit of 
that sequence. 

Letting k in the inequality 

<j k

that we obtained above yields 
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j

for j N> . Now, with as above and x s0 < < , we have 

f x f x f x f x( ) ( ) ( ) + ( ) + .j j j j

By the choices we have made, the first term is less than /4, the second is 
less than /4, and the third is less than or equal to . Altogether, if 

x s0 < < then f x( ) < 2 . This is the desired conclusion.      □ 

Example 8.11: Consider the example 

f x x( ) =j
j

on the interval [0, 1]. We see that 

f x f xlim ( ) = 0 ( )
j j

for x0 < 1. Thus 

f xlim ( ) = 0 .
x 1

But 

f xlim lim ( ) = lim 1 = 1.
j x j j1

Thus the two dual limits in the theorem are unequal in this example. But of 
course the functions fj do not converge uniformly.                              □ 

Parallel with our notion of Cauchy sequence of numbers, we have a concept 
of Cauchy sequence of functions in the uniform sense: 

Definition 8.12: A sequence of functions fj on a domain S is called a 
uniformly Cauchy sequence if, for each > 0, there is an N > 0 such that, if 
j k N, > , then 

f x f x x S( ) ( ) < .j k
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The key point for “uniformly Cauchy” sequence of functions is that the 
choice of N does not depend on x. 

Proposition 8.13: A sequence of functions fj is uniformly Cauchy on a domain S if 
and only if the sequence converges uniformly to a limit function f on the domain S. 

Proof: The proof is straightforward and is assigned as an exercise.         □ 

We will use the last two results in our study of the limits of differentiable 
functions. First we consider an example. 

Example 8.14: Define the function 

f x
x

jx x j
x j j x

( ) =
0 if 0

if 0 < 1/(2 )
1/(4 ) if 1/(2 ) < <

j
2

We leave it as an exercise for you to check that the functions fj converge 
uniformly on the entire real line to the function 

f x x
x x

( ) = 0 if 0
if > 0

(draw a sketch to help you see this). Notice that each of the functions fj is 

continuously differentiable on the entire real line, but f is not differentiable 
at 0.                                                                                             □ 

It turns out that we must strengthen our convergence hypotheses if we want 
the limit process to respect differentiation. The basic result is this: 

Theorem 8.15: Suppose that a sequence fj of differentiable functions on an open 
intervalIconverges pointwise to a limit function f . Suppose further that the 
sequence f j converges uniformly on I to a limit functiong. Then the limit function 
f is differentiable on I and f x g x( ) = ( ) for all x I . 

Proof: Let > 0. The sequence f{ }j is uniformly Cauchy. Therefore we may 
choose N so large that j k N, > implies that 

f x f x x I( ) ( ) <
2

.j k (8.15.1)  

Fix a point P I. Define 
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x
f x f P

x P
( ) =

( ) ( )
j

j j

for x I x P, . It is our intention to apply Theorem 8.10 above to the 
functions j. 

First notice that, for each j, we have 

x f Plim ( ) = ( ).
x P

j j

Thus 

x f P g Plim lim ( ) = lim ( ) = ( ).
j x P

j
j

j

That calculates the limits in one order. 
On the other hand, 

x
f x f P

x P
xlim ( ) =

( ) ( )
( )

j
j

for x I P\{ }. If we can show that this convergence is uniform then 
Theorem 8.10 applies and we may conclude that 

x x f P g Plim ( ) = lim lim ( ) = lim ( ) = ( ).
x P j x P

j
j

j

But this just says that f is differentiable at P and the derivative equals g. 
That is the desired result. 

To verify the uniform convergence of the j, we apply the Mean Value 
Theorem to the function f fj k. For x P we have 

x x
x P

f x f x f P f P

x P
x P f f

f f

( ) ( ) =
1

( ) ( ) ( ) ( )

=
1

( )

= ( )

j k j k j k

j k

j k

for some between x and P. But line (8.15.1) guarantees that the last line 
does not exceed /2. That shows that the j converge uniformly and 
concludes the proof.                                                                       □ 
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Remark 8.16: A little additional effort shows that we need only assume in 
the theorem that the functions fj converge at a single point x0 in the domain. 
One of the exercises asks you to prove this assertion. 

Notice further that, if we make the additional assumption that each of the 
functions f j is continuous, then the proof of the theorem becomes much 
easier. For then 

f x f x f t dt( ) = ( ) + ( )j j x

x
j0

0

by the Fundamental Theorem of Calculus. The hypothesis that the f j

converge uniformly then implies, by Theorem 8.8, that the integrals 
converge to 

g t dt( ) .
x

x

0

The hypothesis that the functions fj converge at x0 then allows us to 
conclude that the sequence f x( )j converges for every x to f x( ) and 

f x f x g t dt( ) = ( ) + ( ) .
x

x
0

0

The Fundamental Theorem of Calculus then yields that f g= as desired.    □ 

Example 8.17: Consider the sequence of functions f x j jx( ) = sin( )j
1/2 . This 

sequence converges uniformly to the identically zero function f x( ) 0. But 
f j jx= cos( )j

1/2 does not converge at any point. 
We can sum up this result by saying that 

d
dx

f x
d
dx

f xlim ( ) lim ( ).
j j j j □ 

Exercises 
1. Prove that, if a series of continuous functions converges uni-

formly, then the sum function is also continuous.  
2. If a sequence of functions fj on a domain RS has the property 

that f fj uniformly on S, then does it follow that f f( )j
2 2

uniformly on S? What simple additional hypothesis will make your 
answer affirmative? 
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3. Let fj be a uniformly convergent sequence of functions on a 
common domain S. What would be suitable conditions on a 
function to guarantee that fj converges uniformly on S?  

4. Prove that a sequence f{ }j of functions converges pointwise if and 
only if the series 

f f f+
j

j j1
=2

1

converges pointwise. Prove the same result for uniform convergence.  
5. Assume that fj are continuous functions on the interval [0, 1]. 

Suppose that f xlim ( )j j exists for each x [0, 1] and defines a 
function f on [0, 1]. Further suppose that f f1 2 . Can you 
conclude that f is continuous?  

6. Let R Rf : be a function. We say that f is piecewise constant if 
the real line can be written as the infinite pairwise disjoint union 
of intervals and f is constant on each of those intervals. Now let 
be a continuous function on a b[ , ]. Show that can be uniformly 
approximated by piecewise constant functions.  

7. Refer to Exercise 6 for terminology. Let f be a piecewise constant 
function. Show that f is the pointwise limit of polynomials.  

8. Prove Proposition 8.13. Refer to the parallel result in Chapter 3 for 
some hints.  

9. Prove the assertion made in Remark 8.16 that Theorem 8.15 is still 
true if the functions fj are assumed to converge at just one point 
(and also that the derivatives f j converge uniformly).  

*10. A function is called “piecewise linear” if it is (i) continuous and 
(ii) its graph consists of finitely many linear segments. Prove that 
a continuous function on an interval a b[ , ] is the uniform limit of a 
sequence of piecewise linear functions.  

*11. Construct a sequence of continuous functions f x( )j that has the 
property that f q( )j increases monotonically to + for each ra-
tional q but such that, at uncountably many irrationals x, 
f x| ( )| 1j for infinitely many j.  

*12. Show that the collection of continuous functions on the interval 
[0, 1] is a normed linear space that is complete when equipped 
with the uniform norm. That is, f f xmax ( )[0,1] . Here 
“complete” means that any Cauchy sequence has a limit in the 
space.  

13. Let f be a continous function on [0, 1]. Prove that f is the uniform 
limit of functions fj that are discontinuous at every point. 
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14. Let f x x( ) = log on the set ( 1, 1)\{0}. Show that f is the 
pointwise limit of polynomials on this set. 

8.3 Series of Functions 

Definition 8.18: The formal expression 

f x( ),
j

j
=1

where the fj are functions on a common domain S, is called a series of 

functions. For N = 1, 2, 3, … the expression 

S x f x f x f x f x( ) = ( ) = ( ) + ( ) + … + ( )N
j

N

j N
=1

1 2

is called the Nth partial sum for the series. In case 

S xlim ( )
N

N

exists and is finite then we say that the series converges at x. Otherwise we 
say that the series diverges at x. 

Notice that the question of convergence of a series of functions, which 
should be thought of as an addition process, reduces to a question about the 
sequence of partial sums. Sometimes, as in the next example, it is convenient 
to begin the series at some index other than j = 1. 

Example 8.19: Consider the series 

x .
j

j

=0

This is the geometric series from Proposition 3.15. It converges absolutely 
for x < 1 and diverges otherwise. 

By the formula for the partial sums of a geometric series, 

S x
x

x
( ) =

1
1

.N

N+1
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For x < 1 we see that 

S x
x

( )
1

1
.N □ 

Definition 8.20: Let 

f x( )
j

j
=1

be a series of functions on a domain S. If the partial sums S x( )N converge 
uniformly on S to a limit function g x( ) then we say that the series converges 
uniformly on S. 

Of course all of our results about uniform convergence of sequences of 
functions translate, via the sequence of partial sums of a series, to results 
about uniformly convergent series of functions. For example,  

a. If fj are continuous functions on a domain S and if the series 

f x( )
j

j
=1

converges uniformly on S to a limit function f then f is also con-
tinuous on S.  

b. If fj are integrable functions on a b[ , ] and if 

f x( )
j

j
=1

converges uniformly on a b[ , ] to a limit function f then f is also in-
tegrable on a b[ , ] and 

f x dx f x dx( ) = ( ) .
a

b

j a

b

j
=1

You will be asked to provide details of these assertions, as well as a 
statement and proof of a result about derivatives of series, in the exercises. 
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Meanwhile we turn to an elegant test for uniform convergence that is due to 
Weierstrass. 

Theorem 8.21: (The Weierstrass M-Test) Let f{ }j j=1 be functions on a common 
domain S. Assume that each f| |j is bounded on S by a constant Mj and that 

M < .
j

j
=1

Then the series 

f
j

j
=1

(8.21.1)  

converges uniformly on the set S. 

Proof: By hypothesis, the sequence TN of partial sums of the series Mj j=1 is 
Cauchy. Given > 0 there is therefore a number K so large that q p K> >
implies that 

M T T= < .
j p

q

j q p
= +1

We may conclude that the partial sums SN of the original series fj satisfy, 
for q p K> > , 

S x S x f x

f x M

( ) ( ) = ( )

( ) <

q p
j p

q

j

j p

q

j
j p

q

j

= +1

= +1 = +1

Thus the partial sums S x( )N of the series (8.21.1) are uniformly Cauchy. The 
series (8.21.1) therefore converges uniformly.                                      □ 

Example 8.22: Let us consider the series 

f x x( ) = 2 sin(2 ).
j

j j

=1

The sine terms oscillate so erratically that it would be difficult to calculate 
partial sums for this series. However, noting that the jth summand 
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f x x( ) = 2 sin(2 )j
j j is dominated in absolute value by 2 j, we see that the 

Weierstrass M-Test applies to this series. We conclude that the series con-
verges uniformly on the entire real line. 

By property (a) of uniformly convergent series of continuous functions 
that was noted above, we may conclude that the function f defined by our 
series is continuous. It is also 2 -periodic: f x f x( + 2 ) = ( ) for every x since 
this assertion is true for each summand. Since the continuous function f
restricted to the compact interval [0, 2 ] is uniformly continuous 
(Theorem 5.27), we may conclude that f is uniformly continuous on the 
entire real line. 

However, it turns out that f is nowhere differentiable. The proof of this 
assertion follows lines similar to the treatment of nowhere differentiable 
functions in Theorem 6.6. The details will be covered in an exercise.      □ 

Exercises  
1. Prove Dini’s theorem: If fj are continuous functions on a compact 

set K f x f x, ( ) ( ) …1 2 for all x K, and the fj converge to a 
continuous function f on K then in fact the fj converge uniformly 
to f on K.  

2. Use the concept of boundedness of a function to show that the 
functions xsin and xcos cannot be polynomials.  

3. Prove that, if p is any polynomial, then there is an N large enough 
that e p x> ( )x for x N> . Conclude that the function ex is not a 
polynomial.  

4. Find a way to prove that xtan and xln are not polynomials.  
5. Prove that the series 

jx
j

sin

j=1

converges uniformly on compact intervals that do not contain odd 
multiples of /2. (Hint: Sum by parts and the result will follow.)  

6. Suppose that the sequence f x( )j on the interval [0, 1] satisfies 
f s f t s t| ( ) ( )|j j for all s t, [0, 1]. Further assume that the 
fj converge pointwise to a limit function f on the interval [0, 1]. Does 
the series converge uniformly?  

7. Prove a comparison test for uniform convergence of series: if fj, gj
are functions and f g0 j j and the series gj converges uni-
formly then so also does the series fj.  

8. Show by giving an example that the converse of the Weierstrass 
M-Test is false. 
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9. Show that if fj are continuous functions on a domain S and if the 
series 

f x( )
j

j
=1

converges uniformly on S to a limit function f then f is also con-
tinuous on S.  

10. Prove that if a series fj j=1 of integrable functions on an interval 
a b[ , ] is uniformly convergent on a b[ , ] then the sum function f is 

integrable and 

f x dx f x dx( ) = ( ) .
a

b

j a

b

j
=1

*11. Give an example of a series of functions on the interval [0, 1] that 
converges pointwise but does not converge uniformly on any 
subinterval.  

12. Formulate and prove a result about the derivative of the sum of a 
convergent series of differentiable functions.  

*13. Let 0 < 1. Prove that the series 

x2 sin(2 )
j

j j

=1

defines a function f that is nowhere differentiable. To achieve this 
end, follow the scheme that was used to prove Theorem 6.6: a) Fix 
x; b) for h small, choose M such that 2 M is approximately equal 
to h| |; c) break the series up into the sum from 1 to M 1, the 
single summand j M= , and the sum from j M= + 1 to . The 
middle term has very large Newton quotient and the first and last 
terms are relatively small. 

*14. Prove that the sequence of functions f x jx( ) = sin( )j has no sub-
sequence that converges at every x. 

15. The sequence jxlog does not converge, either pointwise or uni-
formly, on the interval [1, 2]. Prove this statement.  

16. Write the function xsin as the uniform limit of polynomials on 
the interval [0, ]. 

17. If f fj uniformly on [0, 1] then does it follow that e f x( )j con-
verges to e f x( ) uniformly? 
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8.4 The Weierstrass Approximation Theorem 

The name Weierstrass has occurred frequently in this chapter. In fact Karl 
Weierstrass (1815–1897) revolutionized analysis with his examples and 
theorems. This section is devoted to one of his most striking results. We 
introduce it with a motivating discussion. 

It is natural to wonder whether the usual functions of calculus— x xsin , cos , 
and ex, for instance—are actually polynomials of some very high degree. Since 
polynomials are so much easier to understand than these transcendental func-
tions, an affirmative answer to this question would certainly simplify mathe-
matics. Of course a moment’s thought shows that this wish is impossible: a 
polynomial of degree k has at most k real roots. Since sine and cosine have 
infinitely many real roots they cannot be polynomials. A polynomial of degree k
has the property that if it is differentiated enough times (namely, k + 1 times) 
then the derivative is zero. Since this is not the case for ex, we conclude that ex

cannot be a polynomial. The exercises of the last section discuss other means for 
distinguishing the familiar transcendental functions of calculus from polynomial 
functions. 

In calculus we learned of a formal procedure, called Taylor series, for 
associating polynomials with a given function f . In some instances these 
polynomials form a sequence that converges back to the original function. 
Of course the method of the Taylor expansion has no hope of working 
unless f is infinitely differentiable. Even then, it turns out that the Taylor 
series rarely converges back to the original function—see the discussion at 
the end of Section 9.2. Nevertheless, Taylor’s theorem with remainder might 
cause us to speculate that any reasonable function can be approximated in 
some fashion by polynomials. In fact the theorem of Weierstrass gives a 
spectacular affirmation of this speculation: 

Theorem 8.23: (Weierstrass Approximation Theorem) Let f be a continuous 
function on an interval a b[ , ]. Then there is a sequence of polynomials p x( )j with the 
property that the sequence pj converges uniformly on a b[ , ] to f . 

In a few moments we shall prove this theorem in detail. Let us first 
consider some of its consequences. A restatement of the theorem would be 
that, given a continuous function f on a b[ , ] and an > 0, there is a 
polynomial p such that 

f x p x( ) ( ) <

for every x a b[ , ]. If one were programming a computer to calculate values 
of a fairly wild function f , the theorem guarantees that, up to a given degree 
of accuracy, one could use a polynomial instead (which would in fact be 
much easier for the computer to handle). Advanced techniques can even tell 
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what degree of polynomial is needed to achieve a given degree of accuracy. 
The proof that we shall present also suggests how this might be done. 

Let f be the Weierstrass nowhere differentiable function. The theorem 
guarantees that, on any compact interval, f is the uniform limit of 
polynomials. Thus even the uniform limit of infinitely differentiable 
functions need not be differentiable—even at one point. This explains 
why the hypotheses of Theorem 8.15 needed to be so stringent. 

We shall break up the proof of the Weierstrass Approximation Theorem 
into a sequence of lemmas. 

Lemma 8.24: Let j be a sequence of continuous functions on the interval [ 1, 1]
with the following properties:  

i. x( ) 0j for all x;  

ii. x dx( ) = 1j1

1
for each j;  

iii. For any > 0 we have 

x dxlim ( ) = 0.
j x j| | 1

If f is a continuous function on the real line which is identically zero off the 
interval [0, 1] then the functions 

f x t f x t dt( ) = ( ) ( )j j1

1

converge uniformly on the interval [0, 1] to f x( ). 

Proof: By multiplying f by a constant we may assume that fsup| | = 1. Let 
> 0. Since f is uniformly continuous on the interval [0, 1] we may choose a 
> 0 such that if x t, [0, 1] and if x t| | < then f x f t( ) ( ) < /2. By 

property (iii) above, we may choose an N so large that j N> implies that 
t dt| ( ) | < /4

t j| | 1
. Then, for any x [0, 1], we have 

f x f x t f x t dt f x

t f x t dt t f x dt

( ) ( ) = ( ) ( ) ( )

= ( ) ( ) ( ) ( ) .

j j

j j

1

1

1

1

1

1

Notice that, in the last line, we have used fact (ii) about the functions j to 
multiply the term f x( ) by 1 in a clever way. Now we may combine the two 
integrals to find that the last line 
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f x t f x t dt

f x t f x t dt

f x t f x t dt

A B

= ( ( ) ( )) ( )

( ) ( ) ( )

+ ( ) ( ) ( )

= + .

j

j

t j

1

1

| | 1

To estimate term A, we recall that, for t| | < , we have f x t f x( ) ( )
< /2; hence 

A t dt t dt
2

( )
2

( ) =
2

.j j1

1

For B we write 

B f t dt

t dt

2 sup ( )

2 ( )

< 2 = ,

t j

t j

| | 1

| | 1

4 2

where in the penultimate line we have used the choice of j. Adding together 
our estimates for A and B, and noting that these estimates are independent 
of the choice of x, yields the result.                                                   □ 

Lemma 8.25: Define t k t( ) = (1 )j j
j2 , where the positive constants kj are chosen 

so that t dt( ) = 1j1

1
. Then the functions j satisfy the properties (i)–(iii) of the 

last lemma. 

Proof: Of course property (ii) is true by design. Property (i) is obvious. In 
order to verify property (iii), we need to estimate the size of kj. 

Notice that 

t dt t dt

t dt

jt dt

(1 ) = 2 (1 )

2 (1 )

2 (1 ) ,

j j

j
j

j

1

1
2

0

1
2

0

1/
2

0

1/
2
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where we have used the binomial theorem. But this last integral is easily 
evaluated and equals j4/(3 ). We conclude that 

t dt
j

(1 ) >
1

.j
1

1
2

As a result, k j<j . 
Now, to verify property (iii) of the lemma, we notice that, for > 0 fixed 

and t| | 1, it holds that 

t k j( ) (1 ) (1 )j j
j j2 2

and this expression tends to 0 as j . Thus 0j uniformly on 

t t{ : | | 1}. It follows that the j satisfy property (iii) of the lemma.  □ 

Proof of the Weierstrass Approximation Theorem: We may assume 
without loss of generality (just by changing coordinates) that f is a 
continuous function on the interval [0, 1]. After adding a linear function 
(which is a polynomial) to f , we may assume that f f(0) = (1) = 0. Thus f
may be continued/extended to be a continuous function which is identi-
cally zero on R\[0, 1]. 

Let j be as in Lemma 8.25 and form fj as in Lemma 8.24. Then we know 
that the fj converge uniformly on [0, 1] to f . Finally, 

f x t f x t dt

x t f t dt

k x t f t dt

( ) = ( ) ( )

= ( ) ( )

= (1 + ( ) ) ( ) .

j j

j

j
j

1

1

0

1

0

1 2

But multiplying out the expression x t(1 + ( ) ) j2 in the integrand then 
shows that fj is a polynomial of degree at most j2 in x. Thus we have 
constructed a sequence of polynomials fj that converges uniformly to the 
function f on the interval [0, 1].                                                       □ 

Example 8.26: The Weierstrass nowhere differentiable function is a con-
tinuous function on [0, 1] that is not differentiable at any point. 
Nevertheless, it is (by the Weierstrass Approximation Theorem) uniformly 
approximable by polynomials. 

Of course the uniform limit of polynomials will be continuous, so we can 
only consider continuous functions in this context. 
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Exercises  
1. If f is a continuous function on the interval a b[ , ] and if 

f x p x dx( ) ( ) = 0
a

b

for every polynomial p, then prove that f must be the zero 
function. (Hint: Use Weierstrass’s Approximation Theorem.)  

2. Let f{ }j be a sequence of continuous functions on the real line. 
Suppose that the fj converge uniformly to a function f . Prove that 

f x j f xlim ( + 1/ ) = ( )
j j

uniformly on any bounded interval. 
Can any of these hypotheses be weakened?  

3. Prove that the Weierstrass Approximation Theorem fails if we 
restrict attention to polynomials of degree less than or equal to 
1000.  

4. Is the Weierstrass Approximation Theorem true if we restrict 
ourselves to only using polynomials of even degree?  

5. Is the Weierstrass Approximation Theorem true if we restrict 
ourselves to only using polynomials with coefficients of size not 
exceeding 1?  

6. Use the polar form of complex numbers (that is, z re= i ) to show 
that, on the unit circle, trigonometric polynomials and ordinary 
polynomials are really the same thing. 

7. The Weierstrass approximation theorem says that, if f is a con-
tinuous function on [0, 1], then there is a sequence of polynomials 
pj that converges uniformly on [0, 1] to f . Now take f to be 
continuously differentiable. The Weierstrass theorem applies to 
give a sequence pj that converges to f . What can you say about p j

converging to f ?  
*8. Use the Weierstrass Approximation Theorem and Mathematical 

Induction to prove that, if f is k times continuously differentiable 
on an interval a b[ , ], then there is a sequence of polynomials pj
with the property that 

p fj

uniformly on a b[ , ], 
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p fj

uniformly on a b[ , ], 

p fj
k k( ) ( )

uniformly on a b[ , ].  
*9. Let a b< be real numbers. Call a function of the form 

f x a x b
x a or x b

( ) = 1 if
0 if < >

a characteristic function for the interval a b[ , ]. Then a function of the 
form 

g x a f x( ) = ( ),
j

k

j j
=1

with the fj characteristic functions of intervals a b[ , ]j j , is called 
simple. Prove that any continuous function on an interval c d[ , ] is 
the uniform limit of a sequence of simple functions. (Hint: The 
proof of this assertion is conceptually simple; do not imitate the 
proof of the Weierstrass Approximation Theorem.)  

*10. Define a trigonometric polynomial to be a function of the form 

a jx b jxcos + sin .
j

k

j
j

j
=1 =1

Prove a version of the Weierstrass Approximation Theorem on 
the interval [0, 2 ] for 2 -periodic continuous functions and with 
the phrase “trigonometric polynomial” replacing “polynomial.” 
(Hint: Prove that 

j
t

j

t

t
1

| |
+ 1

(cos ) =
1
+ 1

sin

sin
.

j

j
j

=

+ 1
2
1
2

2

Use these functions as the js in the proof of Weierstrass’s theorem.) 
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*11. There is a version of the Weierstrass Approximation Theorem on 
the unit square R[0, 1] × [0, 1] 2. What should it say?  

*12. Formulate a version of the Weierstrass approximation theorem 
for Ck functions. Indicate how the proof would work.  

13. Let f be a C1 function on the interval [0, 1]. If pj are polynomials 
converging uniformly to f on [0, 1], then what can you say about 
p j converging to f ?  

*14. Let f be a continuous function on [0, 2 ]. Can we realize f as a 
uniform limit of finite trigonometic sums? Can you reduce this 
question to the Weierstrass approximation theorem?  
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9 
Elementary Transcendental Functions  

9.1 Power Series 

A series of the formpower series 

a x c( )
j

j
j

=0

is called a power series expanded about the point c. Our first task is to de-
termine the nature of the set on which a power series converges. 

Proposition 9.1: Assume that the power series 

a x c( )
j

j
j

=0

converges at the value x d= with d c. Let r d c= . Then the series converges 
uniformly and absolutely on compact subsets of x x c r= { : < }. 

Proof: We may take the compact subset of to be K c s c s= [ , + ] for some 
number s r0 < < . For x K it then holds that 

a x c a d c
x c
d c

| ( ) | = | ( ) | .
j

j
j

j
j

j
j

=0 =0

In the sum on the right, the first expression in absolute values is bounded 
by some constant C (by the convergence hypothesis). The quotient in 
absolute values is majorized by L s r= / < 1. The series on the right is thus 
dominated by 

C L .
j

j

=0
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This geometric series converges. By the Weierstrass M-Test, the original 
series converges absolutely and uniformly on K.                                 □ 

An immediate consequence of the proposition is that the set on which the 
power series 

a x c( )
j

j
j

=0

converges is interval of convergence an interval centered about c. We call 
this set the interval of convergence. The series will converge absolutely and 
uniformly on compact subsets of the interval of convergence. The radius of 
the interval of convergence (called the radius of convergence) is defined to be 
half its length. Whether convergence holds at the endpoints of the interval 
will depend on the particular series being studied. Ad hoc methods must be 
used to check the endpoints. Let us use the notation to denote the open 
interval of convergence. 

It happens that, if a power series converges at either of the endpoints of its 
interval of convergence, then the convergence is uniform up to that end-
point. This is a consequence of Abel’s partial summation test; details will be 
explored in the exercises. 

Example 9.2: Consider the power series 

x2 .
j

j j

=1

We may apply the Root Test to this series to see that 

a x x| | = 2 = 2 .j
j j j j1/ 1/

This expression is less than 1 precisely when x < 1/2. Thus the open 
interval of convergence for this power series is ( 1/2, 1/2). We can easily 
check by hand that the series does not converge at the endpoints.          □ 

On the interval of convergence , the power series defines a function f . 
Such a function is said to be real analytic. More precisely, we have 

Definition 9.3: A function f , with domain an open set RU and range 
either the real or the complex numbers, is called real analytic if, for each 
c U, the function f may be represented by a convergent power series on 
an interval of positive radius centered at c: 
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f x a x c( ) = ( ) .
j

j
j

=0

Example 9.4: The function f x x( ) = 1/(1 + )2 is real analytic on the interval 
( 1, 1). This is true because 

x
x

1
1 +

= ( ) .
j

j
2

=0

2

In actuality, f is real analytic on the entire real line. But it requires power 
series centered at points other than the origin to see this. The entire matter is 
best explained in the context of complex variables, and this point of view is 
explained below.                                                                            □ 

We need to know both the algebraic and the calculus properties of a real 
analytic function: is it continuous? differentiable? How does one add/ 
subtract/multipy/divide two such functions? 

Proposition 9.5: Let 

a x c and b x c( ) ( )
j

j
j

j
j

j

=0 =0

be two power series with intervals of convergence 1 and 2 centered at c. Let f x( )1

be the function defined by the first series on 1 and f x( )2 the function defined by the 
second series on 2. Then, on their common domain = 1 1, it holds that  

1. f x g x a b x c( ) ± ( ) = ( ± )( ) ;j j j
j

=0

2. f x g x a b x c( ) ( ) = ( )( ) .m j k m j k
m

=0 + =

Proof: Let 

A a x c B b x c= ( ) and = ( )N
j

N

j
j

N
j

N

j
j

=0 =0

be, respectively, the Nth partial sums of the power series that define f and g. 
If CN is the Nth partial sum of the series 

a b x c( ± )( )
j

j j
j

=0
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then 

f x g x A B A B

C a b x c

( ) ± ( ) = lim ± lim = lim [ ± ]

= lim = ( ± )( ) .

N
N

N
N

N
N N

N
N

j
j j

j

=0

This proves (1). 
For (2), let 

D a b x c R b x c= ( )( ) and = ( ) .N
m

N

j k m
j k

m
N

j N
j

j

=0 + = = +1

We have 

D a B a x c B a x c B
a g x R a x c g x R

a x c g x R

g x a x c

a R a x c R a x c R

= + ( ) + + ( )
= ( ( ) ) + ( )( ( ) )

+ + ( ) ( ( ) )

= ( ) ( )

[ + ( ) + + ( ) ].

N N N N
N

N N

N
N

j

N

j
j

N N N
N

0 1 1 0

0 1 1

0

=0

0 1 1 0

Clearly, 

g x a x c( ) ( )
j

N

j
j

=0

converges to g x f x( ) ( ) as N approaches . In order to show that D g fN , 
it will thus suffice to show that 

a R a x c R a x c R+ ( ) + + ( )N N N
N

0 1 1 0

converges to 0 as N approaches . Fix x. Now we know that 

a x c( )
j

j
j

=0

is absolutely convergent so we may set 

A a x c= | | .
j

j
j

=0
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Also b x c( )j j
j

=0 is convergent. Therefore, given > 0, we can find N0 so 
that N N> 0 implies R <N . Thus we have 

a R a x c R a x c R

a R a x c R

a x c R a x c R

R a x c

a x c R a x c R

A a x c R a x c R

+ ( ) + + ( )

+ + ( )

+ ( ) + + ( )

sup | |

+ ( ) + ( )

+ ( ) + ( ) .

N N N
N

N N N
N N

N

N N
N N

N N
N

M N
M

j
j

j

N N
N N

N N
N

N N
N N

N N
N

0 1 1 0

0

+1
+1

1 0

=0

+1
+1

1 0

+1
+1

1 0

0
0

0

0
0

0

0

0
0

0

0
0

0

Thus 

a R a x c R a x c R

A M a x c

| + ( ) + + ( ) |

+ | | ,

N N N
N

j N N

N

j
j

0 1 1 0

= +10

where M is an upper bound for R x| ( )|j . Since the series defining A
converges, we find on letting N that 

a R a x c R a x c R Alim sup + ( ) + + ( ) .
N

N N N
N

0 1 1 0

Since > 0 was arbitrary, we may conclude that 

a R a x c R a x c Rlim + ( ) + + ( ) = 0.
N

N N N
N

0 1 1 0 □ 

Remark 9.6: Observe that the form of the product of two power series 
provides some motivation for the form that the product of numerical series 
took in Theorem 3.49.                                                                     □ 

Next we turn to division real analytic functions! elementary operations on 
of real analytic functions. If f and g are real analytic functions, both defined 
on an open interval I , and if g does not vanish on I , then we would like f g/
to be a well-defined real analytic function (it surely is a well-defined func-
tion) and we would like to be able to calculate its power series expansion by 
formal long division. This is what the next result tells us. 
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Proposition 9.7: Let f and g be real analytic functions, both of which are defined 
on an open interval I . Assume that g does not vanish on I . Then the function 

h x
f x
g x

( ) =
( )
( )

is real analytic on I . Moreover, if I is centered at the point c and if 

f x a x c g x b x c( ) = ( ) and ( ) = ( ) ,
j

j
j

j
j

j

=0 =0

then the power series expansion of h about c may be obtained by formal long 
division of the latter series into the former. That is, the zeroeth coefficient c0 of h is 

c a b= / ,0 0 0

the order one coefficient c1 is 

c
b

a
a b
b

=
1

,1
0

1
0 1

0

etc. 

Proof: If we can show that the power series 

c x c( )
j

j
j

=0

converges on I then the result on multiplication of series in Proposition 9.5 
yields this new result. There is no loss of generality in assuming that c = 0. 
Assume for the moment that b 01 . 

Notice that one may check inductively that, for j 1, 

c
b

a b c=
1

( ).j j j
0

1 1 (9.7.1)  

Without loss of generality, we may scale the a sj and the b sj and assume that 
the radius of I is 1 + , some > 0. Then we see from (9.7.1) that 

c C a c| | (| | + | |),j j j 1

where C b b b= max { 1/ , / }0 1 0 . It follows that 
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c C a a a| | (1 + | | + | |+ +| |),j j j 1 0

Since the radius of I exceeds a1, | | <j and we see that the c| |j are 
bounded. Hence the power series with coefficients cj has radius of 
convergence 1. 

In case b = 01 then the role of b1 is played by the first nonvanishing 
b m, > 1m . Then a new version of formula (9.7.1) is obtained and the 
argument proceeds as before.                                                           □ 

Example 9.8: In practice it is often useful to calculate f g/ by expanding g in 
a “geometric series.” To illustrate this idea, we assume for simplicity that 
f and g are real analytic in a neighborhood of 0. Then 

f x
g x

f x
g x

f x
b b x

f x
b b b x

( )
( )

= ( )
1
( )

= ( )
1

+ +

= ( )
1 1

1 + ( / ) +
.

0 1

0 1 0

Now we use the fact that, for small, 

1
1

= 1 + + + .2

Setting b b x b b x= ( / ) ( / )1 0 2 0
2 , we thus find that 

f x
g x

f x
b

b b x b b x

b b x b b x

( )
( )

=
( )

(1 + [ ( / ) ( / ) ]

+ [ ( / ) ( / ) ] + ).

0
1 0 2 0

2

1 0 2 0
2 2

We explore this technique further in the exercises.                               □ 

Exercises  
1. Prove that the composition of two real analytic functions, when 

the composition makes sense, is also real analytic.  
2. Prove that  

x xsin + cos = 12 2

directly from the power series expansions. 
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3. Verify the formula  

1
1

= 1 + + +2

for < 1.  
4. Use the technique described at the end of this section to calculate 

the first five terms of the power series expansion of x esin / x

about the origin.  
5. Show that the solution of the differential equation y y x+ = will 

be real analytic.  
6. Provide the details of the method for dividing real analytic 

functions that is described in Example 9.8.  
*7. Let f x a x( ) = j j

j
=0 be defined by a power series convergent on 

the interval r r( , ) and let Z denote those points in the interval 
where f vanishes. Prove that if Z has an accumulation point in 
the interval then f 0. (Hint: If a is the accumulation point, ex-
pand f in a power series about a. What is the first nonvanishing 
term in that expansion?)  

*8. Verify that the function  

f x
f x

e f x
( ) =

0 i = 0

i 0x1/ 2

is infinitely differentiable on all of R and that f (0) = 0k( ) for every  
k. However, f is not real analytic.  

*9. Prove the assertion from the text that, if a power series converges 
at an endpoint of the interval of convergence, then the con-
vergence is uniform up to that endpoint.  

*10. Prove Borel’s theorem: If a{ }j j=0 is any sequence of real numbers 
then there is an infinitely differentiable function f in a neighbor-
hood of the origin whose power series coefficients at 0 are the aj.  

*11. Let f be a C function on the interval (0, 1) whose derivatives of 
all orders at all points of the interval are positive. Prove that f is 
in fact real analytic.  

12. Let f be real analytic on the interval ( 1, 1). Then it is not the case 
that if RU is open then f U( ) is open. Give an example to ex-
plain why not. 
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9.2 More on Power Series: Convergence Issues 

We now introduce the Hadamard formula for the radius of convergence of a 
power series. 

Lemma 9.9: (Hadamard) For the power series 

a x c( ) ,
j

j
j

=0

define A and by 

A a= lim sup ,
n

n
n1/

if A
A if A

if A
=

0 = ,
1/ 0 < < ,

= 0,

then is the radius of convergence of the power series about c. 

Proof: Observing that 

a x c A x clim sup ( ) = ,
n

n
n n1/

we see that the lemma is an immediate consequence of the Root Test.    □ 

Example 9.10: Consider the power series 

nx .
n

n

=1

We calculate that 

A a n= lim sup = lim sup = 1.
n

n
n

n

n1/ 1/

It follows that the radius of convergence of the power series is 1/1 = 1. So 
the open interval of convergence is = ( 1, 1). The series does not converge 
at the endpoints.                                                                            □ 

Corollary 9.11: The power series 
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a x c( )
j

j
j

=0

has radius of convergence if and only if, when R0 < < , there exists a constant 
C C0 < = R such that 

a
C
R

| | .j j

Example 9.12: The series 

j
x

3
+ 1j

j
j

=0
2

satisfies 

a| | 3 .j
j

It follows from the corollary then that the radius of convergence of the series 
is 1/3.                                                                                          □ 

From the power series 

a x c( )
j

j
j

=0

it is natural to create the derived series 

ja x c( )
j

j
j

=1

1

using term-by-term differentiation. 

Proposition 9.13: The radius of convergence of the derived series is the same as the 
radius of convergence of the original power series. 

Proof: We observe that 

ja j ja

a

lim sup | | = lim lim sup | |

= limsup | | .

j
j

j

j

j

j
j

j

j
j

j

1/ 1/ 1/

1/
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So the result follows from the Hadamard formula.                              □ 

Proposition 9.14: Let f be a real analytic function defined on an open interval I . 
Then f is continuous and has continuous, real analytic derivatives of all orders. In 
fact the derivatives of f are obtained by differentiating its series representation term 
by term. 

Proof: Since, for each c I, the function f may be represented by a 
convergent power series about c with positive radius of convergence, we 
see that, in a sufficiently small open interval about each c I, the function f
is the uniform limit of a sequence of continuous functions: the partial sums 
of the power series representing f . It follows that f is continuous at c. Since 
the radius of convergence of the derived series is the same as that of the 
original series, it also follows that the derivatives of the partial sums 
converge uniformly on an open interval about c to a continuous function. It 
then follows from Theorem 8.15 that f is differentiable and its derivative is 
the function defined by the derived series. By mathematical induction, f has 
continuous derivatives of all orders at c.                                            □ 

Example 9.15: The series 

x
j

j

=0

has derived series 

jx .
j

j

=0

1

Of course the original series converges to x1/(1 ) and the derived series 
converges to x1/(1 )2.                                                                  □ 

We can now show that a real analytic function has a unique power series 
representation at any point. 

Corollary 9.16: If the function f is represented by a convergent power series on an 
interval of positive radius centered at c,  

f x a x c( ) = ( ) ,
j

j
j

=0

then the coefficients of the power series are related to the derivatives of the 
function by 
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a
f c

n
=

( )
!

.n

n( )

Proof: This follows readily by differentiating both sides of the above equation 
n times, as we may by the proposition, and evaluating at x c= .                □ 

Example 9.17: The function 

f x x x( ) = sin

has power series expansion about 0 with coefficients 

a
d

dx
f x=

1
0!

( ) = 0,
x

0

0

0
=0

a
d

dx
f x=

1
1!

( ) = 0,
x

1
=0

a
d

dx
f x=

1
2!

( ) = 1,
x

2

2

2
=0

a
d

dx
f x=

1
3!

( ) = 0,
x

3

3

3
=0

a
d

dx
f x=

1
4!

( ) =
1
3!

,
x

4

4

4
=0

etc …                                                                                           □ 

Finally, we note that integration of power series is as well-behaved as 
differentiation. 

Proposition 9.18: The power series 

a x c( )
j

j
j

=0

and the series 

a

j
x c

+ 1
( )

j

j j

=0

+1
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obtained from term-by-term integration have the same radius of convergence, and 
the function F defined by 

F x
a

j
x c( ) =

+ 1
( )

j

j j

=0

+1

on the common interval of convergence satisfies 

F x a x c f x( ) = ( ) = ( ).
j

j
j

=0

Proof: The proof is left to the exercises.                                             □ 

It is sometimes convenient to allow the variable in a power series to be a 
complex number. In this case we write 

a z c( ) ,
j

j
j

=0

where z is the complex argument. We now allow c and the a sj to be complex 
numbers as well. Noting that the elementary facts about series hold for 
complex series as well as real series (you should check this for yourself), we 
see that the arguments of this section show that the domain of convergence 
of a complex power series is a disc in the complex plane with radius given 
as follows: 

A a= lim sup |
n

n
n1/

A
A A

A
=

0 if =
1/ if 0 < <

if = 0 .

The proofs in this section apply to show that convergent complex power 
series may be added, subtracted, multiplied, and divided (provided that we 
do not divide by zero) on their common domains of convergence. They may 
also be differentiated and integrated term by term. 

These observations about complex power series will be useful in the next 
section. 

Example 9.19: The function f x x( ) = 1/(1 + )2 has power series expansion 
about the origin given by 
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x( ) .
j

j

=0

2

The radius of convergence of the power series is 1, and one might not have 
anticipated this fact by examining the formula for f . 

But if instead one replaces x by z and examines the complex version of the 
function then one has 

f z
z

˜ ( ) =
1

1 +
,

2

and one sees that this function has a singularity at z i= . That explains why 
the radius of convergence is 1. The power series about 0 cannot make sense 
at the singular point.                                                                      □ 

We conclude this section with a consideration of Taylor series: 

Theorem 9.20: (Taylor’s Expansion) For k a nonnegative integer, let f be a 
k + 1 times continuously differentiable function on an open interval 
I a a= ( , + ). Then, for x I ,  

f x f a
x a

j
R x( ) = ( )

( )
!

+ ( ),
j

k
j

j

k a
=0

( )
,

where 

R x f t
x t

k
dt( ) = ( )

( )
!

.k a
a

x
k

k

,
( +1)

Proof: We apply integration by parts to the Fundamental Theorem of 
Calculus to obtain 

f x f a f t dt

f a f t
t x

f t
t x

dt

f a f a
x a

f t
x t

dt

( ) = ( ) + ( )

= ( ) + ( )
( )

1!
( )

( )
1!

= ( ) + ( )
( )

1!
+ ( )

1!
.

a

x

a

x

a

x

a

x

Notice that, when we performed the integration by parts, we used t x as 
an antiderivative for dt. This is of course legitimate, as a glance at the 
integration by parts theorem reveals. We have proved the theorem for the 
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case k = 1. The result for higher values of k is obtained inductively by 
repeated applications of integration by parts.                                      □ 

Taylor’s theorem allows us to associate with any infinitely differentiable 
function a formal expansion of the form 

a x a( ) .
j

j
j

=0

However, there is no guarantee that this series will converge; even if it does 
converge, it may not converge back to f x( ). 

Example 9.21: An important example to keep in mind is the function 

h x
x

e x
( ) =

0 if = 0
if 0.x1/ 2

This function is infinitely differentiable at every point of the real line 
(including the point 0—use l’Hôpital’s Rule). However, all of its derivatives 
at x = 0 are equal to zero (this matter will be treated in the exercises). 
Therefore the formal Taylor series expansion of h about a = 0 is 

x0 ( 0) = 0.
j

j

=0

We see that the formal Taylor series expansion for h converges to the zero 
function at every x, but not to the original function h itself.                  □ 

In fact the theorem tells us that the Taylor expansion of a function f con-
verges to f at a point x if and only if R x( ) 0k a, . In the exercises we shall 
explore the following more quantitative assertion: 

An infinitely differentiable function f on an interval I has Taylor series 
expansion about a I that converges back to f on a neighborhood J of a
if and only if there are positive constants C R, such that, for every x J
and every k, it holds that 

f x C
k
R

( )
!

.k
k

( )

The function h in Example 9.21 should not be thought of as an isolated 
exception. For instance, we know from calculus that the function 
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f x x( ) = sin has Taylor expansion that converges to f at every x. But then, 
for small, the function g x f x h x( ) = ( ) + ( ) has Taylor series that does not 
converge back to g x( ) for x 0. Similar examples may be generated by 
using other real analytic functions in place of sine. 

Remark 9.22: Real analytic functions have only been well understood 
for the past 100 years. As you can see from the results in this section, there 
is a very large difference between C functions and real analytic functions. 
It would be useful to have a scale of function spaces spanning the 
difference between these two types of functions, but nobody knows how 
to do this. 

Exercises  
1. Let f be an infinitely differentiable function on an interval I . If 

a I and there are positive constants C R, such that, for every x in 
a neighborhood of a and every k, it holds that 

f x C
k
R

( )
!

,k
k

( )

then prove that the Taylor series of f about a converges to f x( ). 
(Hint: estimate the error term.) What is the radius of convergence?  

2. Let f be an infinitely differentiable function on an open interval I
centered at a. Assume that the Taylor expansion of f about a
converges to f at every point of I . Prove that there are constants 
C R, and a (possibly smaller) interval J centered at a such that, for 
each x J , it holds that 

f x C
k
R

( )
!

.k
k

( )

3. Give examples of power series, centered at 0, on the interval 
( 1, 1), which (a) converge only on ( 1, 1), (b) converge only 
on [ 1, 1), (c) converge only on ( 1, 1], (d) converge only on 
[ 1, 1].  

4. We know from the text that the real analytic function x1/(1 + )2 is 
well defined on the entire real line. Yet its power series about 0 
only converges on an interval of radius 1. 
How do matters differ for the function x1/(1 )2 ?  

5. Prove Proposition 9.18. 
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*6. The function defined by a power series may extend continuously 
to an endpoint of the interval of convergence without the series 
converging at that endpoint. Give an example.  

*7. Prove that, if a function on an interval I has derivatives of all orders 
which are positive at every point of I , then f is real analytic on I .  

*8. What can you say about the set of convergence of a power series 
of two real variables?  

*9. Show that the function 

h x
x

e x
( ) =

0 if = 0
if 0.x1/ 2

is infinitely differentiable on the entire real line, but it is not real 
analytic.  

*10. For which x y, does the two-variable power series  

x y2
j

j j j

converge?  
11. Verify that the function f x x( ) = sin 2 is real analytic on the entire 

real line.  
12. Any closed set can be the zero set of a C function. But there are 

very specific restrictions on which sets can be zero sets of real 
analytic functions. 
Explain.  

13. Construct a real analytic function on R that vanishes at each point 
which is an integer multiple of 1/3. 

9.3 The Exponential and Trigonometric Functions 

We begin by defining the exponential function: 

Definition 9.23: The power series 

z
j!j

j

=0
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converges, by the Ratio Test, for every complex value of z. The function 
defined thereby is called the exponential function and is written zexp( ). 

Proposition 9.24: The function zexp( ) satisfies 

a b a bexp( + ) = exp( ) exp( )
for any complex numbers a and b. 

Proof: We write the right-hand side as 

a
j

b
j! !

.
j

j

j

j

=0 =0

Now convergent power series may be multiplied term by term. We find that 
the last line equals 

a
j

b
( )! !

.
j

j j

=0 =0
(9.24.1)  

However, the inner sum on the right side of this equation may be written as 

j
j

j
a b

j
a b

1
!

!
! ( )!

=
1
!
( + ) .

j
j j

=0

It follows that line (9.24.1) equals a bexp( + ).                                      □ 

Example 9.25: We set e = exp(1). This is consistent with our earlier 
treatment of the number e in Section 3.4. The proposition tells us that, for 
any positive integer k, we have 

e e e e k= = exp(1) exp(1) exp(1) = exp( ).k

If m is another positive integer then 

k m k e(exp( / )) = exp( ) = ,m k

whence 

k m eexp( / ) = .k m/
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We may extend this formula to negative rational exponents by using the fact 
that a aexp( ) exp( ) = 1. Thus, for any rational number q, 

q eexp( ) = .q □ 

Now note that the function exp is increasing and continuous. It follows (this 
fact is treated in the exercises) that if we set, for any Rr , 

Qe e q q r= sup{ : , < }r q

(this is a definition of the expression er) then e x= exp( )x for every real x. 
[You may find it useful to review the discussion of exponentiation in 
Sections 2.4, 3.4; the presentation here parallels those treatments.] We will 
adhere to custom and write ex instead of xexp( ) when the argument of the 
function is real. 

Proposition 9.26: The exponential function ex, for Rx , satisfies   

a. e > 0x for all x;
b. e = 1;0

c. e e( ) = ;x x

d. ex is strictly increasing;  
e. the graph of ex is asymptotic to the negative x-axis;  
f. for each integer N > 0 there is a number cN such that e c x>x

N
N when 

x > 0. 

Proof: The first three statements are obvious from the power series 
expansion for the exponential function. 

If s t< then the Mean Value Theorem tells us that there is a number 
between s and t such that 

e e t s e= ( ) > 0;t s

hence the exponential function is strictly increasing. 
By inspecting the power series we see that e x> 1 +x hence ex increases 

to + . Since e e = 1x x we conclude that e x tends to 0 as x + . Thus the 
graph of the exponential function is asymptotic to the negative x-axis. 

Finally, by inspecting the power series for ex, we see that the last assertion 
is true with c N= 1/ !N .                                                                    □ 

Example 9.27: Let us think about 9.26(c). Which functions satisfy y y= ? We 
may rewrite this equation as 
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y
y

= 1.

Now integrate both sides to obtain 

y x Cln = + .

Exponentiation now yields 

y e e= .C x

If we assume that y is a positive function then we can erase the absolute 
value signs on the left-hand side. And we can rename the constant eC with 
the simpler name K. So our equation is 

y Ke= .x

We have discovered that, up to a constant factor, the exponential function is 
the only function that satisfies 9.26(c).                                               □ 

Now we turn to the trigonometric functions. The definition of the trigo-
nometric functions that is found in calculus texts is unsatisfactory because it 
relies too heavily on a picture and because the continual need to subtract off 
superfluous multiples of 2 is clumsy. We have nevertheless used the tri-
gonometric functions in earlier chapters to illustrate various concepts. It is 
time now to give a rigorous definition of the trigonometric functions that is 
independent of these earlier considerations. 

Definition 9.28: The power series 

x
j

( 1)
(2 + 1)!j

j
j

=0

2 +1

converges at every point of the real line (by the Ratio Test). The function 
that it defines is called the sine function and is usually written xsin . 

The power series 

x
j

( 1)
(2 )!j

j
j

=0

2

converges at every point of the real line (by the Ratio Test). The function 
that it defines is called the cosine function and is usually written xcos . 

314                                                         Real Analysis and Foundations 

ISTUDY



Example 9.29: One advantage of having sine and cosine defined with power 
series is that we can actually use the series to obtain approximate numerical 
values for these functions. For instance, if we want to know the value of 
sin 1, we may write 

sin 1 1
1
3!

+
1
5!

= 1
1
6

+
1

120
=

101
120

0.84167 .
3 5

The true value of sin 1, determined with a calculator, is 0.84147. So this is a 
fairly good result. More accuracy can of course be obtained by using more 
terms of the series.                                                                         □ 

You may recall that the power series that we use to define the sine and 
cosine functions are precisely the Taylor series expansions for the functions 
sine and cosine that were derived in your calculus text. But now we begin 
with the power series and must derive the properties of sine and cosine that 
we need from these series. 

In fact the most convenient way to achieve this goal is to proceed by 
way of the exponential function. [The point here is mainly one of con-
venience. It can be verified by direct manipulation of the power series that 

x xsin + cos = 12 2 and so forth but the algebra is extremely unpleasant.] 
The formula in the next proposition is usually credited to Euler. 

Proposition 9.30: The exponential function and the functions sine and cosine are 
related by the formula (for x and y real and  i = 12 )  

x iy e y i yexp( + ) = (cos + sin ).x

Proof: We shall verify the case x = 0 and leave the general case for the 
reader. 

Thus we are to prove that 

e y i y= cos + sin .iy (9.30.1)  

Writing out the power series for the exponential, we find that the left-hand 
side of (9.30.1) is 

iy
j

( )
!j

j

=0

and this equals 
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y y
i

y y y
1

2!
+

4!
+ +

1! 3!
+

5!
+ .

2 4 3 5

Of course the two series on the right are the familiar power series for cosine 
and sine as specified in Definition 9.28. Thus 

e y i y= cos + sin ,iy

as desired.                                                                                    □ 

Example 9.31: We may calculate that 

e i i= cos
3

+ sin
3

=
1
2

+
3

2
.i /3 □ 

In what follows, we think of the formula (9.30.1) as defining what we mean 
by eiy. As a result, 

e e e e y i y= = (cos + sin ).x iy x iy x+

Notice that e y i y y i y= cos( ) + sin( ) = cos siniy (we know that 
the sine function is odd and the cosine function even from their power 
series expansions). 

Then formula (9.30.1) tells us that 

y
e e

cos =
+
2

iy iy

and 

y
e e

i
sin =

2
.

iy iy

Now we may prove: 

Proposition 9.32: For every real x it holds that 

x xsin + cos = 1 .2 2
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Proof: We see that 

x x
e e

i
e e

e e e e

sin + cos =
2

+
+
2

=
2 +

4
+

+ 2 +
4

= 1.

ix ix ix ix

ix ix ix ix

2 2
2 2

2 2 2 2

That completes the proof.                                                                □ 

We list several other properties of the sine and cosine functions that may be 
proved by similar methods. The proofs are requested of you in the exercises. 

Proposition 9.33: The functions sine and cosine have the following properties:  

a. s t s t s tsin( + ) = sin cos + cos sin ;
b. s t s t s tcos( + ) = cos cos sin sin ;

c. s s scos(2 ) = cos sin ;2 2

d. s s ssin(2 ) = 2 sin cos ;

e. s ssin( ) = sin ;

f. s scos( ) = cos ;
g. s ssin ( ) = cos ;

h. s scos ( ) = sin . 

One important task to be performed in a course on the foundations of 
analysis is to define the number and establish its basic properties. In a 
course on Euclidean geometry, the constant is defined to be the ratio of the 
circumference of a circle to its diameter. Such a definition is not useful for 
our purposes (however, it is consistent with the definition about to be given 
here). 

Observe that cos 0 is the real part of ei0 which is 1. Thus if we set 

x x= inf{ > 0 : cos = 0}

then > 0 and, by the continuity of the cosine function, cos = 0. We 
define = 2 . 

Applying Proposition 9.32 to the number yields that sin = ±1. Since 
is the first zero of cosine on the right half line, the cosine function must be 
positive on (0, ). But cosine is the derivative of sine. Thus the sine function 
is increasing on (0, ). Since sin 0 is the imaginary part of ei0 which is 0, we 
conclude that sin > 0 hence that sin = +1. 
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Now we may apply parts (c) and (d) of Proposition 9.33 with s = to 
conclude that sin = 0 and cos = 1. A similar calculation with s =
shows that sin 2 = 0 and cos 2 = 1. Next we may use parts (a) and (b) of 
Proposition 9.33 to calculate that x xsin( + 2 ) = sin and x xcos( + 2 ) = cos
for all x. In other words, the sine and cosine functions are 2 periodic. 

Example 9.34: The business of calculating a decimal expansion for would 
take us far afield. One approach would be to utilize the already-noted fact 
that the sine function is strictly increasing on the interval [0, /2] hence its 
inverse function 

Sin : [0, 1] [0, /2]1

is well defined. Then one can determine (see Chapter 6) that 

x
x

(Sin ) ( ) =
1

1
.1

2

By the Fundamental Theorem of Calculus, 

x
dx

2
= Sin (1) =

1

1
.1

0

1

2

By approximating the integral by its Riemann sums, one obtains an 
approximation to /2 and hence to itself. This approach will be explored 
in more detail in the exercises. 

Let us for now observe that 

cos 2 = 1
2
2!

+
2
4!

2
6!

+

= 1 2 +
16
24

64
720

+ ….

2 4 6

Since the series defining cos 2 is an alternating series with terms that 
strictly decrease to zero in magnitude, we may conclude (following 
reasoning from Chapter 4) that the last line is less than the sum of the 
first three terms: 

cos 2 < 1 +
2
3

< 0.

It follows that = /2 < 2 hence < 4. A similar calculation of cos (3/2)
would allow us to conclude that > 3.                                              □ 
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Exercises  
1. Prove the equality x x(Sin ) ( ) = 1/ 11 2 .  
2. Prove that 

x x xcos 2 = cos sin2 2

directly from the power series expansions.  
3. Prove that 

x x xsin 2 = 2 sin cos

directly from the power series expansions. 
4. Use one of the methods described at the end of Section 3 to cal-

culate to two decimal places.  
*5. Prove that the trigonometric polynomials, that is to say, the 

functions of the form 

p x a e( ) = ,
j N

N

j
ijx

=

are dense in the continuous functions on [0, 2 ] in the uniform 
topology.  

6. Find a formula for xtan4 in terms of xsin 2 , xsin 4 , xcos 2 , and 
xcos 4 .  

7. Prove Proposition 9.26(a), 9.26(b), 9.26(c).  
8. Prove the general case of Proposition 9.30.  
9. Derive a formula for xcos 4 in terms of xcos and xsin .  

10. Provide the details of the assertion preceding Proposition 9.26 to 
the effect that if we define, for any real R, 

Qe e q q r= sup{ : , < },r q

then e x= exp( )x for every real x.  
11. Prove Proposition 9.33.  

*12. Complete the following outline of a proof of Ivan Niven (see 
[NIV]) that irrational:  
a. Define 

f x
x x

n
( ) =

(1 )
!

,
n n
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where n is a positive integer to be selected later. For each 
x0 < < 1 we have 

f x n0 < ( ) < 1/ !. (∗)   

b. For every positive integer j we have f (0)j( ) is an integer.  
c. f x f x(1 ) = ( ) hence f (1)j( ) is an integer for every positive 

integer j.  
d. Seeking a contradiction, assume that is rational. Then 2 is 

rational. Thus we may write a b= /2 , where a b, are positive 
integers and the fraction is in lowest terms.  

e. Define  

F x b f x

f x f x

f x

( ) = ( ( )

( ) + ( )

+ ( 1) ( )).

n n

n n

n n

2

2 2 (2) 2 4 (4)

(2 )

Then F (0) and F (1) are integers.  
f. We have 

d
dx

F x x

F x x

a f x x

[ ( )sin( )

( )cos( )]

= ( )sin( ).n2

g. We have 

a f x x dx

F x x
F x x

F F

( )sin( )

=
( )sin

( )cos

= (1) + (0).

n
0

1

0

1

h. From this and (∗) we conclude that 

a f x x dx

a
n

0 < ( )sin( )

<
!

< 1.

n

n
0

1
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When n is sufficiently large this contradicts the fact that 
F F(0) + (1) is an integer.  

13. Verify from the definitions that e e e=a b a b+ .  
14. Verify from the definitions that e e( ) =a b ab.  
15. Verify Euler’s formula: 

e t i t= cos + sinit

for Rt . 

9.4 Logarithms and Powers of Real Numbers 

Definition 9.35: Since the exponential function x eexp( ) = x is positive and 
strictly increasing it is a one-to-one function from R to (0, ). Thus it has a 
well-defined inverse function that we call the natural logarithm. We write 
this function as xln . 

Proposition 9.36: The natural logarithm function has the following properties:  

a. x x(ln ) = 1/ ;
b. xln is strictly increasing;  
c. ln(1) = 0;
d. eln = 1;
e. the graph of the natural logarithm function is asymptotic to the negative y

axis;  
f. s t s tln( ) = ln + ln ;

g. s t s tln( / ) = ln ln . 

Proof: These follow immediately from corresponding properties of the 
exponential function. For example, to verify part (f), set s e= and t e= . 
Then 

s t e e
e

s t

ln( ) = ln( )
= ln( )
= +
= ln + ln .

+

The other parts of the proposition are proved similarly.                       □ 
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Proposition 9.37: If a and b are positive real numbers then 

a e= .b b aln

Proof: When b is an integer then the formula may be verified directly using 
Proposition 9.36, part (f). For b m n= / a rational number the formula follows 
by our usual trick of passing to nth roots. For arbitrary b we use a limiting 
argument as in our discussions of exponentials in Sections 2.3 and 9.3.      □ 

Example 9.38: We have discussed several different approaches to the 
exponentiation process. We proved the existence of nth roots, Nn , as 
an illustration of the completeness of the real numbers (by taking the 
supremum of a certain set). We treated rational exponents by composing the 
usual arithmetic process of taking mth powers with the process of taking nth 
roots. Then, in Sections 2.3 and 9.3, we passed to arbitrary powers by way of 
a limiting process. 

Proposition 9.37 gives us a unified and direct way to treat all exponentials 
at once. This unified approach will prove (see the next proposition) to be 
particularly advantageous when we wish to perform calculus operations on 
exponential functions.                                                                     □ 

Proposition 9.39: Fix a > 0. The function f x a( ) = x has the following properties:  

a. a a a( ) = ln ;x x

b. f (0) = 1;
c. if a0 < < 1 then f is decreasing and the graph of f is asymptotic to the 

positive x-axis;  
d. if a1 < then f is increasing and the graph of f is asymptotic to the 

negative x-axis. 

Proof: These properties follow immediately from corresponding properties 
of the function exp. As an instance, to prove part (a), we calculate that 

a e e a a a( ) = ( ) = ln = ln .x x a x a xln ln

The other parts of the proposition are proved in a similar fashion. Details 
are left to the exercises.                                                                   □ 

The logarithm function arises, among other places, in the context of prob-
ability and in the study of entropy. The reason is that the logarithm function 
is uniquely determined by the way that it interacts with the operation of 
multiplication: 
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Theorem 9.40: Let x( ) be a continuously differentiable function with domain the 
positive reals and which satisfies the identity 

s t s t( ) = ( ) + ( ) (9.40.1)   

for all positive s and t. Then there is a constant C > 0 such that 

x C x( ) = ln
for all x. 

Proof: Differentiate the equation (9.40.1) with respect to s to obtain 

t s t s( ) = ( ).

Now fix s and set t s= 1/ to conclude that 

s
s(1)

1
= ( ).

We take the constant C to be (1) and apply Proposition 9.36(a) to conclude 
that s C s D( ) = ln + for some constant D. But cannot satisfy (9.40.1) 
unless D = 0, so the theorem is proved.                                             □ 

Observe that the natural logarithm function is then the unique continuously 
differentiable function that satisfies the condition (9.40.1) and whose deri-
vative at 1 equals 1. That is the reason that the natural logarithm function 
(rather than the common logarithm, or logarithm to the base ten) is singled 
out as the focus of our considerations in this section. 

Exercises  
1. Calculate  

j
j

lim
!

.
j

j/2

2. At infinity, any nontrivial polynomial function dominates the nat-
ural logarithm function. Explain what this means, and prove it.  

3. Give three distinct reasons why the natural logarithm function is 
not a polynomial.  

4. Prove Proposition 9.39, parts (b), (c), (d), by following the hint 
provided.  

5. Prove Proposition 9.36, except for part (f). 
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6. Prove that condition (9.40.1) implies that (1) = 0. Assume that 
is differentiable at x = 1 but make no other hypothesis about the 
smoothness of . Prove that condition (9.40.1) then implies that 
is differentiable at every x > 0.  

7. Show that the hypothesis of Theorem 9.40 may be replaced with 
f Lip ([0, 2 ]), some > 0.  

8. Which function grows more quickly at infinity: f x x( ) = k or 
g x x( ) = ln x?  

*9. The Lambert W function is defined implicitly by the equation 

z W z e= ( ) .W z( )

It is a fact that any elementary transcendental function may be ex-
pressed (with an elementary formula) in terms of the W function. 
Prove that this is so for the exponential function and the sine 
function.  

*10. Prove Euler’s formula relating the exponential to sine and cosine 
not by using power series, but rather by using differential 
equations.  

11. For which positive exponents does the series 

j j
1

|log |j=2

converge?  
12. Define a = log 1001 , a a= log2 1 and, in general, a a= logj j 1. 

What is alimj j?  
13. Let a and b be positive real numbers. Define 

b
b
a

log =
ln
ln

.a

Prove that 

a b= .bloga

14. Refer to Exercise 13. Verify the properties of logarithm stated in 
Proposition 9.36 for the function bloga .  

324                                                         Real Analysis and Foundations 

ISTUDY



10 
Functions of Several Variables  

10.1 A New Look at the Basic Concepts of Analysis 

A point of Rk is denoted x x x( , , …, )k1 2 . In the analysis of functions of one 
real variable, the domain of a function is typically an open interval. Since 
any open set in R1 is the disjoint union of open intervals, it is natural to work 
in the context of intervals. Such a simple situation is not obtained in the 
analysis of several variables. We will need some new notations and con-
cepts in order to study functions in Rk. 

If x x xx = ( , , …, )k1 2 is an element of Rk, then we set 

x x xx = ( ) + ( ) + +( ) .k1
2

2
2 2

The expression x is commonly called the norm of x. The norm of x mea-
sures the distance of x to the origin. 

In general, we measure distance between two points s s ss = ( , , … , )k1 2 and 
t t tt = ( , , …, )k1 2 in Rk by the formula 

s t s t s ts t = ( ) + ( ) + + ( ) .k k1 1
2

2 2
2 2

See Figure 10.1. Of course, this notion of distance can be justified by con-
siderations using the Pythagorean theorem (see the exercises), but we treat 
this as a definition. The distance between the two points is nonnegative, and 
equals zero if and only if the two points are identical. Moreover, there is a 
triangle inequality shown as follows: 

s t s u u t+ .

We sketch a proof of this inequality in the exercises (by reducing it to the 
one-dimensional triangle inequality). 
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Definition 10.1: If Rx k and r > 0, then the open ball with center x and 
radius r is the set 

Rx xB r rt t( , ) = { : < }.k

The closed ball with center x and radius r is the set 

Rx xB r t rt¯ ( , ) = { : }.k

Definition 10.2: A set RU k is said to be open if, for each x U, there is an 
r > 0 such that the ball xB r( , ) is contained in U. 

Example 10.3: Let 

RxS x x x x= { = ( , , ) : 1 < < 2}.1 2 3
3

This set is open. See Figure 10.2. For, if x S, let r x= min { x1, 2 }. 
Then, B x r( , ) is contained in S for the following reason: if t B x r( , ), then 

x t x t+

FIGURE 10.2 
An open set.     

FIGURE 10.1 
Distance in space.     
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hence, 

t x t x x r x x> ( 1) = 1.

Likewise, 

t x t x x r x x+ < + + (2 ) = 2.

It follows that t S; hence, B x r S( , ) . We conclude that S is open. 
However, a moment’s thought shows that S could not be written as a 

disjoint union of open balls, or open cubes, or any other regular type of 
open set.                                                                                      □ 

In this chapter, we consider functions with domain a set (usually open) in 
Rk. See Figure 10.3. This means that the function f may be written in the 
form f x x x( , , …, )k1 2 . An example of such a function is f x x x x( , , , ) =1 2 3 4

x x x x( ) /1 2
4

3 4 or g x x x x x x x( , , ) = ( ) sin( )1 2 3 3
2

1 2 3 . 

Definition 10.4: Let RE k be a set and let f be a real-valued function with 
domain E. Fix a point P, which is either in E or is an accumulation point of E 
(in the sense discussed in Chapter 4). We say that 

xflim ( ) = ,
x P

with a real number if, for each > 0 there is a > 0 such that, when x E
and x P0 < < , then 

xf| ( ) | < .

Refer to Figure 10.4. 

Compare this definition with the definition in Section 5.1: the only 
difference is that we now measure the distance between points of the 
domain of f using ∥∥ instead of ||. 

z = f(x, y)

FIGURE 10.3 
A function in space.     
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Example 10.5: The function 

f x x x
x x x

x x x

0

0
( , , ) =

if ( , , )

0 if ( , , ) =

x x
x x x

1 2 3
+ + 1 2 3

1 2 3

1 2

1
2

2
2

3
2

has no limit as x 0. For, if we take x t= ( , 0, 0), then we obtain the limit 

f tlim ( , 0, 0) = 0
t 0

while if we take x t t t= ( , , ), then we obtain the limit 

f t t tlim ( , , ) =
1
3

.
t 0

Thus, for < =1
6

1
2

1
3
, there will exist no δ satisfying the definition of limit. 

See Figure 10.5. 

However, the function 

z = f(x, y)

PFIGURE 10.4 
The limit of a function in space.     

x3

x2

x1
FIGURE 10.5 
Approaching the origin from two different 
directions.     
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g x x x x x x x x( , , , ) = + + +1 2 3 4 1
2

2
2

3
2

4
2

satisfies 

xglim ( ) = 0
x 0

because given > 0, we take = /4 . Then, x 0 < implies that 
x| 0| < /4j for j = 1, 2, 3, 4; hence, 

g x x x x| ( , , , ) 0| <
4

+
4

+
4

+
4

= .1 2 3 4

2 2 2 2

Remark 10.6: Notice that, just as in the theory of one variable, the limit 
properties of f at a point P are independent of the actual value of f at P.  □ 

Definition 10.7: Let f be a function with domain RE k and let EP . We 
say that f is continuous at P if 

xf f Plim ( ) = ( ).
x P

See Figure 10.6. 

The limiting process respects the elementary arithmetic operations, just as 
in the one-variable situation explored in Chapter 5. We will treat these 
matters in the exercises. Similarly, continuous functions are closed under 
the arithmetic operations (provided that we do not divide by zero). Next, 
we turn to the fundamental properties of the derivative. (We refer the 
reader to the Appendix for a review of linear algebra.) In what follows, we 
use the notation tM to denote the transpose of the matrix M. We need the 
transpose so that the indicated matrix multiplications make sense. 

z = f(x, y)

FIGURE 10.6 
A discontinuous function.     
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Definition 10.8: Let f(x) be a scalar-valued function whose domain contains 
a ball B(P, r). We say that f is differentiable at P if there is a k1 × matrix 
M M f= ( )P P such that, for all Rh k satisfying rh < , it holds that 

f f M fP h P h h( + ) = ( ) + + ( , ),t
P P (10.8.1)  

where 

f h

h
lim

( , )
= 0.

h

P

0

The matrix M M f= ( )P P is called the derivative of f at P. 

Example 10.9: Consider the scalar-valued function f x y x xy( , ) = 22 at the 
point P = (1, 2). Let h hh = ( , )1 2 . The correct 1 × 2 matrix MP is (−2, −2) as we 
are about to see. This is because 

f f P h P h
f h h

h h h

h h h h h

f P M f

P h

h h

( + ) = ( + , + )
= (1 + , 2 + )

= (1 + ) 2(1 + )(2 + )

= [ 3] + [ 2 2 ] + [ 2 ]

= ( ) + + ( , ).t
P P

1 1 2 2

1 2

1
2

1 2

1 2 1
2

1 2

So, we have verified that M = ( 2, 2)P is the derivative of f at P.         □ 

Example 10.10: Consider the function f x y x y( , ) = 4 +2 2 . The graph of 
this function is the lower nappe of a cone. See Figure 10.7. It is easy to 
calculate, using th = ( , 0, 0) for t < 0 and t > 0, that this f is not differentiable 
at the origin.                                                                                 □ 

(P, F(P))

z = f(x, y)

FIGURE 10.7 
A function that is not differentiable at P.     
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The best way to begin to understand any new idea is to reduce it to a 
situation that we have already digested. If f is a function of one variable that 
is differentiable at RP , then there is a number M such that 

f h f
h

M
P P

lim
( + ) ( )

= .
h 0

We may rearrange this equality as 

f h f
h

M
P P( + ) ( )

= ,P

where 0P as h 0. But, this may be rewritten as 

f h f M h f hP P( + ) = ( ) + + ( , ),P (10.11)  

where h=P P and 

f h
h

lim
( , )

= 0.
h

P

0

Equation (10.11) is parallel to (10.8.1) that defines the concept of derivative. 
The role of the k1 × matrix MP is played here by the numerical constant M. 
But, a numerical constant is a 1 × 1 matrix. Thus, our equation in one variable 
is a special case of the equation in k variables. In one variable, the matrix 
representing the derivative is just the singleton consisting of the numerical 
derivative. 

Note in passing that (just as in the one-variable case) the way that we now 
define the derivative of a function of several variables is closely related to 
the Taylor expansion. The number M in the one-variable case is the coef-
ficient of the first-order term in that expansion, which we know from 
Chapter 9 to be the first derivative. 

What is the significance of the matrix MP in our definition of derivative 
for a function of k real variables? Suppose that f is differentiable according 
to Definition 10.8. Let us attempt to calculate the “partial derivative” (as in 
calculus) with respect to x1 of f. Let hh = ( , 0, … , 0). Then, 

f P h P P f M

h

fP h( + , , …, ) = ( ) + 0

0

+ ( , ).k P P1 2
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Rearranging this equation, we have 

f P h P P f
h

M
P( + , ,… , ) ( )

= ( ) + ,k
P P

1 2
1

where 0P as h 0 and M( )P 1 is the first entry of the k1 × matrix MP. 
But, letting h 0 in this last equation, we see that the partial derivative 

with respect to x1 of the function f exists at P and equals M( )P 1. A similar 
calculation shows that the partial derivative with respect to x2 of the 
function f exists at P and equals (MP)2; likewise, the partial derivative with 
respect to xj of the function f exists at P and equals M( )jP for j k= 1, …, . 

We summarize with the following theorem: 

Theorem 10.11: Let f be a function defined on an open ball RB rP( , ) k and 
suppose that f is differentiable at P with derivative the k1 × matrix MP. Then, the first 
partial derivatives of f at P exist and they are, respectively, the entries of MP. That is, 

M
x

f M
x

f M
x

fP P P( ) = ( ), ( ) = ( ), …, ( ) = ( ).k
k

P P P1
1

2
2

Example 10.12: Let f x y x y( , ) = sin 3 and let P = (0, 0). Then 

f
x

P x( ) = cos = 1x y=0, =0

and 

f
y

P( ) = 3.

So, we see that M = (1, 3)P and we are guaranteed that 

f f M fP h P h h( + ) = ( ) + + ( , ).t
P P □ 

Unfortunately, the converse of this theorem is not true: it is possible for the 
first partial derivatives of f to exist at a single point P without f being dif-
ferentiable at P in the sense of Definition 10.8. Counterexamples will be 
explored in the exercises. In contrast, as the last example suggests, the two 
different notions of continuous differentiablity are the same. We formalize this 
statement with the following proposition: 
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Proposition 10.13: Let f be a function defined on an open ball B(P, r). Assume that 
f is differentiable at each point of B(P, r) in the sense of Definition 10.8 and that the 
function 

x Mx

is continuous in the sense that each of the functions 

x M( )x j

is continuous, j k= 1, 2, …, . Then, each of the partial derivatives 

x x x
x

f
x

f
x

f( ) ( ) … , ( )
k1 2

exists for x B rP( , ) and is continuous. 
Conversely, if each of the partial derivatives exists on B(P, r) and is continuous at 

each point, then Mx exists at each point x B rP( , ) and is continuous. The entries 
of Mx are given by the partial derivatives of f. 

Proof: This is essentially a routine check of definitions. The only place 
where the continuity is used is in proving the converse: that the existence 
and continuity of the partial derivatives implies the existence of Mx. In 
proving the converse, you should apply the one-variable Taylor expansion 
to the function t f x th( + ).                                                           □ 

Exercises  
1. Fix elements Rs t u, , k. First assume that these three points are 

colinear. By reduction to the one-dimensional case, prove the-
triangle inequality 

s t s u u t+ .

Now, establish the general case of the triangle inequality by com-
parison with the colinear case.  

2. Give another proof of the triangle inequality by squaring both 
sides and invoking the Schwarz inequality.  

3. Formulate and prove the elementary properties of limits for 
functions of k variables (refer to Chapter 5 for the one-variable 
analogues).  

4. Give an example of an infinitely differentiable function with domain 
R2 such that x x f x x x x x x{( , ): ( , ) = 0} = {( , ): | | + | | 1}1 2 1 2 1 2 1

2
2

2 . 
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5. Formulate a notion of uniform convergence for functions of k real 
variables. Prove that the uniform limit of a sequence of con-
tinuous functions is continuous.  

6. Formulate a notion of “compact set” for subsets of Rk. Prove that 
the continuous image, under a vector-valued function, of a 
compact set is compact.  

7. Refer to Exercise 6. Prove that if f is a continuous, scalar-valued 
function on a compact set, then f assumes both a maximum and a 
minimum value.  

8. Give an example of a connected set in R2 with disconnected 
boundary.  

9. Give an example of a disconnected set in R2 with infinitely many- 
connected components.  

10. Justify our notion of distance in Rk using Pythagorean Theorem 
considerations.  

11. If Rs t, k, then prove that 

s t s t+ .

12. Prove Proposition 10.13.  
*13. Give an example of a function f of two variables such that f has 

both first partial derivatives at a point P, yet f is not differentiable 
at P according to Definition 10.8.  

14. Give an example of a function f of two variables such that f has both 
first partial derivatives at a point P, yet f is not continuous at P.  

15. Give an example of a function f x y( , ) defined on R \{0}2 so that 
f hlim ( , 0)h 0 exists, f klim (0, )k 0 exists, but f rlim ( )r 0 does not 

exist. 
16. Let f x y x y( , ) = +2 2. What is the linear function of best approx-

imation to the graph of z f x y= ( , ) at the point (1, 1, 2)?  
17. Give an example of a function f(x, y) of two real variables that is 

infinitely differentiable but not real analytic. 

10.2 Properties of the Derivative 

The arithmetic properties of the derivative—that is the sum and difference, 
scalar multiplication, product, and quotient rules—are straightforward and 
are left to the exercises for you to consider. However, the Chain Rule takes 
on a different form and requires careful consideration. 
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To treat meaningful instances of the Chain Rule, we must first discuss vector- 
valued functions. That is, we consider functions with domain a subset of Rk and 
range either R1 or R2 or Rm for some integer m > 0. When we consider vector- 
valued functions, it simplifies notation if we consider all vectors to be column 
vectors. This convention will be in effect for the rest of the chapter. (Thus, we 
will no longer use the “transpose” notation.) Note in passing that the ex-
pression ∥x∥ means the same thing for a column vector as it does for a row 
vector—the square root of the sum of the squares of the components. Also, f(x) 
means the same thing whether x is written as a row vector or a column vector. 

Example 10.14: Define the function 

f x x x
x x x

x x
( , , ) =

( )

( )
.1 2 3

1
2

2 3

1 2
3

This is a function with domain consisting of all triples of real numbers, or 
R3, and range consisting of all pairs of real numbers, or R2. For example, 

f ( 1, 2, 4) = 7
8

.
□ 

We say that a vector-valued function of k variables 

x x x xf f f f( ) = ( ( ), ( ), …, ( ))m1 2

(where m is a positive integer) is differentiable at a point P if each of its 
component functions is differentiable in the sense of Section 1. For example, 
the function 

f x x x
x x
x

( , , ) = ( )1 2 3
1 2

3
2

is differentiable at all points (because f x x x x x( , , ) =1 1 2 3 1 2 and f x x x( , , ) =2 1 2 3

x3
2 are differentiable) while the function 

g x x x
x

x x( , , ) = | |1 2 3
2

3 1

is not differentiable at points of the form (x1, x2, 0). 
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It is a good exercise in matrix algebra (which you will be asked to do at 
the end of the section) to verify that a vector-valued function f is differ-
entiable at a point P if and only if there is an m × k matrix (where k is the 
dimension of the domain and m the dimension of the range) MP( f) such that 

f f M f fP h P h h( + ) = ( ) + ( ) + ( , );P P

here, h is a k-column vector and the remainder term P is a column vector 
of length m satisfying 

f h

h

( , )
0P

as h 0. One nice consequence of this formula is that, by what we learned in 
the last section about partial derivatives, the entry in the ith row and jth column 
of the matrix MP( f ) is f x/i j. Here fi is the ith component of the mapping f. 

Of course, the Chain Rule provides a method for differentiating compo-
sitions of functions. What we will discover in this section is that the device 
of thinking of the derivative as a matrix occurring in an expansion of f about 
a point P makes the Chain Rule a very natural and easy result to derive. It 
will also prove to be a useful way of keeping track of information. 

Theorem 10.15: Let g be a function of k real variables taking values in Rm and let f 
be a function of m real variables taking values in Rn. Suppose that the range of g is 
contained in the domain of f, so that f g makes sense. If g is differentiable at a 
point P in its domain and f is differentiable at g(P) then f g is differentiable at P 
and its derivative is M f M g( ) ( )g P P( ) . We use the symbol · here to denote matrix 
multiplication. 

Proof: By the hypothesis about the differentiability of g, 

f g f g
f g M g g
f g

P h P h
P h h
P k

( )( + ) = ( ( + ))
= ( ( ) + ( ) + ( , ))
= ( ( ) + ),

P P (10.15.1)  

where 

M g gk h h= ( ) + ( , ).P P

But then, the differentiability of f at g(P) implies that (10.15.1) equals 

f g M f fP k k( ( )) + ( ) + ( , ).g gP P( ) ( )
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Now let us substitute in the value of k. We find that 

f g f g M f M g g

f M g g

f g M f M g

M f g

f M g g

f g M f M g

f g

P h P h h

h h

P h

h

h h

P h

h

( )( + ) = ( ( )) + ( )[ ( ) + ( , )]

+ ( , ( ) + ( , ))

= ( ( )) + ( ) ( )

+ { ( ) ( , )

+ ( , ( ) + ( , ))}

( ( )) + ( ) ( )

+ ( , ),

g

g

g

g

g

g

P P P

P P P

P P

P P

P P P

P P

P

( )

( )

( )

( )

( )

( )

where the last equality defines . The term should be thought of as a 
remainder term. Since 

g h

h

( , )
0P

as h 0, it follows that 

M f g h

h

( ) ( , )
0.

g P P( )

(Details of this assertion are requested of you in the exercises.) Similarly, 

f M g gh h

h

( , ( ) + ( , ))
0

g P P P( )

as h 0. 
In conclusion, we see that f g is differentiable at P and that the 

derivative equals M f M g( ) ( )g P P( ) , the product of the derivatives of f and g.□ 

Remark 10.16: Notice that, by our hypotheses, M g( )P is an m k× size matrix 
and M f( )g P( ) is an n m× size matrix. Thus, their product makes sense. 

In general, if g is a function from a subset of Rk to Rm, then, if we want 
f g to make sense, f must be a function from a subset of Rm to some Rn. In 
other words, the dimension of the range of g had better match the 
dimension of the domain of f. Then, the derivative of g at some point P 
will be an m k× matrix and the derivative of f at g P( ) will be an n m×
matrix. Hence the matrix multiplication M f M g( ) ( )g P P( ) will make sense. 

Corollary 10.17: (The Chain Rule in Coordinates) Let R Rf : m n and 
R Rg: k m be vector-valued functions and assume that h f g= makes sense. If g 
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is differentiable at a point P of its domain and f is differentiable at g P( ), then for 
each i and j we have 

h
x

f

s
g

g

x
P P P( ) = ( ( )) ( ).i

j

m
i

j=1

Proof: The function h x/i j is the entry of M h( )P in the ith row and jth 
column. However, M h( )P is the product of M f( )g P( ) with M g( )P by 
Theorem 10.15. The entry in the ith row and jth column of that product is 

f

s
g

g

x
P P( ( )) ( ).

m
i

j=1 □ 

Example 10.18: Let f x y x y( , ) = 2 2 and let g s t st t( , ) = ( , )3 . Then, f g
makes sense and we may calculate the derivative of this composition at the 
point P = (1, 3). Let us first do so according to the matrix rule given in 
Theorem 10.15. And, then let us follow that with the analogous calculation 
in coordinates (as in the corollary). 

We write g s t st t g s t g s t( , ) = ( , ) = ( ( , ), ( , ))3
1 2 . Now, begin by calculating 

g

s
t

g

t
s= and =1 1

and 

g

s

g

t
t= 0 and = 3 .2 2 3

Thus, 

g

s

g

t
P P( ) = 3 and ( ) = 11 1

and 

g

s

g

t
P P( ) = 0 and ( ) = 27.2 2

Therefore, 
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M g( ) = 3 1
0 27

.P

Next, we note that g P( ) = (3, 27) and 

f
x

x
f
y

y= 2 and = 2

so that 

f
x

g
f
y

gP P( ( )) = 6 and ( ( )) = 54.

Thus, 

M f( ) = (6, 54).g P( )

In conclusion, 

M f g( ) = (6, 54) 3 1
0 27

= (18, 1452).P

Now, let us perform the same calculation in coordinates. We begin by writing 

f g s t st t s t t( , ) = ( ) ( ) = .2 3 2 2 2 6

Now, we calculate (using the fact that x = 3 and y = 27) that 

f g
s

f
x

g

s
f
y

g

s
x y

( )
= + = 2 3 + ( 2 ) 0 = 2 3 3 = 181 2

and 

f g
t

f
x

g

t
f
y

g

t
x y

( )
= + = 2 1 + ( 2 ) ( 27) = 6 1458 = 1452.1 2

In sum, the two methods of calculation give the same answer.              □ 

We conclude this section by deriving a Taylor expansion for the scalar- 
valued functions of k real variables: this expansion for functions of several 
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variables is derived in an interesting way from the expansion for functions 
of one variable. We say that a function f of several real variables is k times 
continuously differentiable if all partial derivatives of orders up to, and 
including k, exist and are continuous on the domain of f. 

Theorem 10.19: (Taylor’s Expansion) For q, a nonnegative integer, let f be a 
q + 1 times continuously differentiable scalar-valued function on a neighborhood of 
a closed ball RB rP¯ ( , ) k. Then, for x B rP( , ), 

x

x

f
f

x x x

x P x P x P
j j j

P( ) = ( )
( ) ( ) ( )

( ) ! ( ) ! ( )!

+ ( ),
j j j q

j j j

j j
k
j

j j
k k

j

k

q P

0 + + +

+ + +

1 2

1 1 2 2

1 2

,

k

k

k

k

1 2

1 2

1 2

1 2

where 

x
x C

q
P

| ( )|
( + 1)!

,q

q

P, 0

+1

and 

C
f

x x x
s= sup ( ) .

s B r
q

j j j

j j
k
j

P
0

¯ ( , )
+ + + = +1

+ + +

1 2
k

k

k

1 2

1 2

1 2

Proof: With P and x fixed, define 

x
x

s f s s
r

P P
P

( ) = ( + ( )), 0 < .

We apply the one-dimensional Taylor theorem to the function , expanded 
about the point 0: 

s
s

R s( ) = (0)
!

+ ( , ).
q

q
=0

( )
,0

Now, the Chain Rule shows that 

f

x x x

j j j
x P x P x P

P

(0) =

( )

!
( ) ! ( ) ! ( )!

( ) ( ) ( ) .

j j j

j j j

j j
k
j

k

j j
k k

j

( )

+ + + =

+ + +

1 2

1 2
1 1 2 2

k

k

k

k

1 2

1 2

1 2

1 2
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Substituting this last equation, for each , into the formula for s( ) and 
setting s = 1 (recall that xr P/ > 1 since x B rP( , )) yields the desired 
expression for f(x). It remains to estimate the remainder term. 

The one-variable Taylor theorem tells us that, for s > 0, 

x

R s d

C d

C

P

| ( , )| = ( )

= .x

q
s q s

q

s q s
q

q
P

,0 0
( +1) ( )

!

0 0
+1 ( )

!

0 ( + 1) !

q

q

q+1

Here, we have of course used the Chain Rule to pass from derivatives of 
to derivatives of f. This is the desired result.                                       □ 

Example 10.20: Let us determine the degree-three Taylor expansion for the 
function f x y x y( , ) = cos expanded about the point P = (0, 0). 

Following the theorem, we calculate as follows: 

f P
f
x

P y

f
y

P x y

f
x

P

f
y

P x y

f
x y

P y

f
x

P

f
x y

P

f
x y

y

f
y

x y

( ) = 0,

( ) = cos = 1,

( ) = sin = 0,

( ) = 0,

( ) = cos = 0,

( ) = sin = 0,

( ) = 0,

( ) = 0,

= cos = 1,

= sin = 0.

(0,0)

(0,0)

2

2

2

2 (0,0)

2

(0,0)

3

3

3

2

3

2 (0,0)

3

3 (0,0)

We find, then, that the Taylor expansion is 
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f x y x y

x x y y

x x y x y

y x

( , ) = 0 + 1( 0) + 0( 0)

+
1
2!

(0( 0) + 2 0( 0)( 0) + 0( 0) )

+
1
3!

(0( 0) + 3 0 ( 0) ( 0) + 3 ( 1)( 0)( 0)

+ 0( 0) ) + ( ).P

2 2

3 2 2

3
3,

This of course simplifies to 

f x y x xy x( , ) =
3
3!

+ ( ).P
2

3,
□ 

Exercises  
1. Formulate a sum, product, and quotient rule for derivatives of 

functions of two real variables taking values in R.  
2. Use the Chain Rule for a function R Rf : n n to find a formula for 

the derivative of the inverse of f in terms of the derivative of f 
itself. 

3. Formulate a definition of second derivative parallel to the defi-
nition of first derivative given in Section 10.1. Your definition 
should involve a matrix. What does this matrix tell us about the 
second partial derivatives of the function?  

*4. If f and g are vector-valued functions with domain Rk, both taking 
values in Rm and both having the same domain, then we can 
define the dot product function x x xh f g( ) = ( ) ( ). Formulate and 
prove a derivative Product Rule for this type of product.  

5. Prove that if a function with domain an open subset of Rk is 
differentiable at a point P then it is continuous at P.  

6. Let f be a function defined on a ball B rP( , ). Let u u uu = ( , , …, )k1 2
be a vector of unit length. If f is differentiable at P, then give a 
definition of the directional derivative D f P( )u of f in the direction 
u at P in terms of MP.  

7. If f is differentiable on a ball B rP( , ) and if Mx is the zero matrix 
for every x B rP( , ), then prove that f is constant on B rP( , ).  

8. Refer to Exercise 6 for notation. For which collections of vectors 
u u u, , …, k1 2 in Rk is it true that if D f x( ) = 0uj for all x B rP( , )
and all j k= 1, 2, …, , then f is identically constant?  

9. Prove that an Rm-valued function f is differentiable at a point 
RP k if and only if there is an m k× matrix (where k is the 
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dimension of the domain and m the dimension of the range) 
M f( )P such that 

Mf P h f P f h f h( + ) = ( ) + ( ) + ( , );P P

here, h is a k-column vector and the remainder term P is a 
column vector satisfying 

f h
h
( , )

0P

as h 0.  
10. Verify the last assertion in the proof of Theorem 10.15.  
11. Prove, in the context of two real variables, that the composition 

of two continuously differentiable mappings is continuously 
differentiable.  

12. Prove that the product of continuously differentiable functions is 
continuously differentiable.  

*13. There is no mean value theorem as such in the theory of functions 
of several real variables. For example, if R: [0, 1] k is a dif-
ferentiable function on (0, 1), continuous on [0, 1], then it is not 
necessarily the case that there is a point (0, 1) such that 

( ) = (1) (0). Provide a counterexample to substantiate this 
claim. 

However, there is a serviceable substitute for the mean value 
theorem: if we assume that Ra b: [ , ] N is continuously differ-
entiable on an open interval that contains a b[ , ] and if 
M t= max | ( )|t a b[ , ] , then 

b a M b a( ) ( ) .

Prove this statement. 
14. Refer to Exercise 13. Another alternative to the mean value the-

orem is this. Let RU N be a convex, open set. Let Rf U: be a 
continuously differentiable function. Assume that f M| | on U. 
Let P Q U, . Then, 

f P f Q M P Q| ( ) ( )| .

Prove this result. 
*15. Let f be a twice continuously differentiable function on a neigh-

borhood U of the origin in R2. Define 
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Hf x y
x y x y

x y x y
( , ) =

( , ) ( , )

( , ) ( , )
.

x x x y

y x y y

2 2

2 2

We call Hf the Hessian matrix of f. If P is a point at which f has a local 
minimum, then what characteristics does Hf P( ) have? If Q is a point 
at which f has a local maximum, then what characteristics does 
Hf Q( ) have? If R is a saddle point for f, then what characteristics 
does Hf R( ) have?  

16. Let U be an open set in RN. Let Rf U: . Define what it means 
for f to be Lipschitz on U. Show that a Lipschitz function must be 
uniformly continuous. 

10.3 The Inverse and Implicit Function Theorems 

It is easy to tell whether a continuous function of one real variable is in-
vertible. If the function is strictly monotone increasing or strictly monotone 
decreasing on an interval then the restriction of the function to that interval 
is invertible. The converse is true as well. It is more difficult to tell whether a 
function of several variables, when restricted to a neighborhood of a point, 
is invertible. The reason, of course, is that such a function will in general 
have different monotonicity behavior in different directions. Also, the do-
main of the function could have a strange shape. 

However, if we look at the one-variable situation in a new way, it can be 
used to give us an idea for analyzing functions of several variables. Suppose 
that f is continuously differentiable on an open interval I and that P I . If 
f P( ) > 0, then the continuity of f′ tells us that, for x near P f x, ( ) > 0. Thus, f 
is strictly increasing on some (possibly smaller) open interval J centered 
at P. Such a function, when restricted to J, is an invertible function. The 
same analysis applies when f P( ) < 0. 

Now, the hypothesis that f P( ) > 0 or f P( ) < 0 has an important geo-
metric interpretation—the positivity of f P( ) means that the tangent line to 
the graph of f at P has positive slope; hence, that the tangent line is the 
graph of an invertible function (Figure 10.8); likewise, the negativity of f P( )
means that the tangent line to the graph of f at P has negative slope; hence, 
that the tangent line is the graph of an invertible function (Figure 10.9). 
Since the tangent line is a very close approximation at P to the graph of f, 
our geometric intuition suggests that the local invertibility of f is closely 
linked to the invertibility of the function describing the tangent line. This 
guess is in fact borne out in the discussion in the last paragraph. 
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We would like to carry out an analysis of this kind for a function f from a 
subset of Rk into Rk. If P is in the domain of f and if a certain derivative of f at 
P (to be discussed later) does not vanish, then we would like to conclude 
that there is a neighborhood U of P such that the restriction of f to U is 
invertible. That is the content of the Inverse Function Theorem. 

Before we formulate and prove this important theorem, we first discuss 
the kind of derivative of f at P that we shall need to examine. 

Definition 10.21: Let f f f f= ( , , …, )k1 2 be a differentiable function from an 
open subset U of Rk into Rk. The Jacobian matrix of f at a point UP is the 
matrix 

y

x

positive slope
means invertble

FIGURE 10.8 
An invertible function.    

y

x

negative slope
means invertble

FIGURE 10.9 
Negative slope implies invertible.    
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1

2

2

2

1 2

We have seen the matrix in the definition before: it is just the derivative of 
f at P. 

Example 10.22: Let f x y x y y x( , ) = ( , )2 2 . Let P = (1, 1). Then, 

Jf
x

yP( ) =
2 1

1 2 = 2 1
1 2

.
P

This is the Jacobian matrix for f at P.                                                 □ 

Notice that if we were to expand the function f in a Taylor series about P 
(this would be in fact a k-tuple of expansions, since f f f f= ( , , …, )k1 2 ), then 
the expansion would be 

f f Jf PP h P h( + ) = ( ) + ( ) + ….

Thus, the Jacobian matrix is a natural object to study. Moreover, we see that 
the expression f fP h P( + ) ( ) is well approximated by the expression 
Jf P h( ) . Thus, in analogy with one-variable analysis, we might expect that 
the invertibility of the matrix Jf P( ) would imply the existence of a neigh-
borhood of P on which the function f is invertible. This is indeed the case, 
shown as follows: 

Theorem 10.23: (The Inverse Function Theorem) Let f be a continuously 
differentiable function from an open set RU k into Rk. Suppose that UP and 
that the matrix Jf P( ) is invertible. Then, there is a neighborhood V of P such that 
the restriction of f to V is invertible. 

Proof: The proof of the theorem as stated is rather difficult. Therefore, we 
shall content ourselves with the proof of a special case: we shall make the 
additional hypothesis that the function f is twice continuously differentiable 
in a neighborhood of P. 

Choose s > 0 such that B s UP¯ ( , ) and so that Jf xdet ( ) 0 for all 
x B P s¯ ( , ). Thus, the Jacobian matrix Jf x( ) is invertible for all x B P s¯ ( , ). 
With the extra hypothesis, Taylor’s theorem tells us that there is a constant 
C such that if sh < /2, then 
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f f Jf fQ h Q Q h h( + ) ( ) = ( ) + ( , ),Q1, (10.23.1)  

where 

Ch
h

( )
2!

,Q1,

2

and 

C
f

x x x
= sup .

B r
j j j

j j j

j j
k
j

t Q( , )
+ + + =2

+ + +

1 2
k

k

k

1 2

1 2

1 2

However, all the derivatives in the sum specifying C are, by hypothesis, 
continuous functions. Since all the balls B sQ( , /2) are contained in the 
compact subset B P s¯ ( , ) of U, it follows that we may choose C to be a finite 
number independent of Q. 

Now, the matrix Jf Q( ) 1 exists by hypothesis. The coefficients of this 
matrix will be continuous functions of Q because those of Jf are. Thus, these 
coefficients will be bounded above on B sP¯ ( , ). We conclude that there is a 
constant K > 0 independent of Q such that for every Rk k we have 

Jf KQ k k( ) .1

Taking Jfk Q h= ( ) yields 

K Jfh Q h( ) . (10.23.2)  

Now, set 

r s KC= min { /2, 1/( )}.

Line (10.23.1) tells us that, for B rQ P( , ) and rh < , 

f f Jf QQ h Q h h( + ) ( ) ( ) ( ) .Q1,

But estimate (10.23.2), together with our estimate from the aforementioned 
equation on the error term , yields that the right side of this equation is 

K
Ch

h
2

.2
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The choice of r tells us that KCh 1/( ); hence, the last line majorizes 
K h( /2) . 

But, this tells us that, for any B rQ P( , ) and any h satisfying rh < , it 
holds that f fQ h Q( + ) ( ). In particular, the function f is one-to-one when 
restricted to the ball B rP( , /2). Thus, f B P s( , /2) is invertible.                   □ 

In fact, the estimate 

f f
K

Q h Q h( + ) ( )
2

that we derived easily implies that the image of every B sQ( , ) contains an 
open ball B f sQ( ( ), ), some s > 0. This means that f is an open mapping. You 
will be asked in the exercises to provide the details of this assertion. 

Example 10.24: Let f x y xy y y x( , ) = ( , + )3 2 . Notice that the Jacobian 
matrix of this function is 

Jf y x y
x

= 3
2 1

.
2

At the point (1, 1), the Jacobian is 

Jf (1, 1) = 1 2
2 1

.

The determinant of Jf (1, 1) is 5 0. Thus, the Inverse Function Theorem 
guarantees that f is invertible in a neighborhood of the point (1, 1).        □ 

Example 10.25: Define 

f x y xy y y x( , ) = ( + , ).

It is easy to calculate that the Jacobian determinant at the point (1, 1) is 3 ≠ 0. 
So, the Inverse Function Theorem applies and we know that f is invertible in a 
neighborhood. 

In this example, it is actually possible to calculate f −1, and we ask you to 
perform this calculation as an exercise.                                              □ 

With some additional effort it can be shown that f −1 is continuously dif-
ferentiable in a neighborhood of f(P). However, the details of this matter are 
beyond the scope of this book. We refer the interested reader to Ref. 
[RUD1]. 
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Next, we turn to the implicit function theorem. This result addresses the 
question of when we can solve an equation 

f x x x( , , …, ) = 0k1 2

for one of the variables in terms of the other k( 1) variables. It is illus-
trative to first consider a simple example. Look at the equation 

f x x x x( , ) = ( ) + ( ) = 1.1 2 1
2

2
2

We may restrict attention to x x1 1, 1 11 2 . As a glance at the 
graph shows, we can solve this equation for x2, uniquely in terms of x1, in a 
neighborhood of any point except for the points (±1, 0). At these two ex-
ceptional points, it is impossible to avoid the ambiguity in the square root 
process, even by restricting to a very small neighborhood. At other points, 
we may write 

t t= + 1 ( )2 1
2

for points t t( , )1 2 near x x( , )1 2 when x > 02 and 

t t= 1 ( )2 1
2

for points t t( , )1 2 near x x( , )1 2 when x < 02 . 
What distinguishes the two exceptional points from the others is that the 

tangent line to the locus (a circle) is vertical at each of these points. Another 
way of saying this is that 

f
x

= 0
2

at these points (Figure 10.10). These preliminary considerations motivate 
the following theorem. 

Theorem 10.26: (The Implicit Function Theorem) Let f be a function of k real 
variables, taking scalar values, whose domain contains a neighborhood of a point P. 
Assume that f is continuously differentiable and that f P( ) = 0. If  f x P( / )( ) 0k , 
then there are numbers > 0, > 0 such that if x P| | <1 1 , x P| | <2 2 , …, 
x P| | <k k1 1 , then there is a unique xk with x P| | <k k and 

f x x x( , , …, ) = 0.k1 2 (10.26.1)  
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In other words, in a neighborhood of P, the equation (10.26.1) uniquely 
determines xk in terms of x1, x2, …, xk−1. 

Proof: We consider the function 

T x x x x x x f x x x: ( , , …, ) ( , , …, , ( , , …, )).k k k1 2 1 2 1 1 2

The Jacobian matrix of T at P is 

P P P

1 0 0
0 1 0

0 1 0

( ) ( ) ( )

.

f
x

f
x

f
xk1 2

Of course, the determinant of this matrix is f x P/ ( )k , which we hypothe-
sized to be nonzero. Thus, the Inverse Function Theorem applies to T. We 
conclude that T is invertible in a neighborhood of P. That is, there is a 
number > 0 and a neighborhood W of the point P P P( , , …, , 0)k1 2 1 such 
that 

T B WP: ( , )

is a one-to-one, onto, continuously differentiable function, which is 
invertible. Select > 0 such that if x P| | <1 1 , x P| | <2 2 , …, 
x P| | <k k1 1 , then the point x x x W( , , …, , 0)k1 2 1 . Such a point 
x x x( , , …, , 0)k1 2 1 then has a unique inverse image under T that lies in 

B P( , ). But this just says that there is a unique xk such that 

vertical slope so
cannot solve for
x2 in terms of x1 .

x

y

FIGURE 10.10 
Vertical tangents.    
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f x x x( , , …, ) = 0k1 2 . We have established the existence of δ and as 
required; hence, the proof is complete.                                              □ 

Example 10.27: Let f x y yx x y( , ) = +2 . Observe that f (0, 0) = 0. Also, 
note that 

f
y

(0, 0) = 1 0.

Thus, the implicit function theorem guarantees that we can solve for y in 
terms of x in a neighborhood of the origin. And in fact, in this simple 
instance, we can solve explicitly: 

y
x

x
=

+ 1
.

2 □ 

Exercises  
1. Prove that a function satisfying the hypotheses of the Inverse 

Function Theorem is an open mapping in a neighborhood of the 
point P.  

2. Prove that the Implicit Function Theorem is still true if the 
equation f x x x( , , …, ) = 0k1 2 is replaced by f x x x c( , , …, ) =k1 2 . 
(Hint: Do not repeat the proof of the Implicit Function Theorem.)  

3. Let y x= ( ) be a twice continuously differentiable function on 
[0, 1] with nonvanishing first derivative. Let U be the graph of . 
Show that there is an open neighborhood W of U so that, if 
P W , then there is a unique point X U which is nearest to P. 

4. Give an example of a curve that is not twice continuously dif-
ferentiable for which the result of Exercise 3 fails.  

5. Use the Implicit Function Theorem to show that the natural 
logarithm function can have only one zero.  

6. Use the Implicit Function Theorem to show that the exponential 
function can have no zeros.  

7. It is not true that if a function f from Rk to Rk is invertible in a 
neighborhood of a point P in the domain then the Jacobian de-
terminant at P is nonzero. Provide an example to illustrate this 
point.  

8. It is not true that if the equation f x y( , ) = 0 can be solved for y in 
terms of x near the point P then f y P/ ( ) 0. Provide an example 
to illustrate this point. 
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*9. Use the Implicit Function Theorem to give a proof of the 
Fundamental Theorem of Algebra. 

10. Let U, V be open subsets of RN. Let X be the collection of func-
tions f U V: , which are continuously differentiable and have 
continuously differentiable inverse. Show that X is closed under 
addition and multiplication and scalar multiplication. We call X
an algebra.  

*11. Show that the Inverse Function Theorem implies the Implicit 
Function Theorem.  

*12. Show that the Implicit Function Theorem implies the Inverse 
Function Theorem.  
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11 
Advanced Topics  

11.1 Metric Spaces 

As you studied Chapter 10, and did the exercises developing the basic 
properties of functions of several variables, you should have noticed that 
many of the proofs were identical to those in Chapters 5 and 6. The argu-
ments generally involved clever use of the triangle inequality. For functions 
of one variable, the inequality was for . For functions of several vari-
ables, the inequality was for . 

This section formalizes a general context in which we may do analysis any 
time we have a reasonable notion of calculating distance. Such a structure 
will be called a metric: 

Definition 11.1: Metric space A metric space is a pair X( , ), where X is a 
set and 

RX X t t: × { : 0}

is atriangle inequality function satisfying  

1. x y X x y y x, , ( , ) = ( , );
2. x y x y( , ) = 0 if and only if = ;

3. x y z X x y x z z y, , , ( , ) ( , ) + ( , ). 

The function is called a metric on X. 

Example 11.2: The pair R( , ), where x y x y( , ) = , is a metric space. 
Each of the properties required of a metric is in this case a restatement of 
familiar facts from the analysis of one dimension. 

The pair R( , )k , where x y x y( , ) = , is a metric space. Each of the 
properties required of a metric is in this case a restatement of familiar facts 
from the analysis of k dimensions.                                                    □ 
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The first example presented familiar metrics on two familiar spaces. Now 
we look at some new ones. 

Example 11.3: The pair R( , )2 , where x y x y x y( , ) = max{| |, | |}1 1 2 2 , 
is a metric space. Only the triangle inequality is not trivial to verify, but that 
reduces to the triangle inequality of one variable. 

The pair R( , ), where x y( , ) = 1 if x y and 0 otherwise, is a metric 
space. Checking the triangle inequality reduces to seeing that if x y then 
either x z or y z.                                                                        □ 

Example 11.4: Let X denote the space of continuous functions on the 
interval [0, 1]. If f g X, then let f g f t g t( , ) = sup ( ) ( )t [0,1] . Then the 
pair X( , ) is a metric space. The first two properties of a metric are obvious 
and the triangle inequality reduces to the triangle inequality for real 
numbers. 

This example is a dramatic new departure from the analysis we have done 
in the previous ten chapters. For X is a very large space—infinite dimensional 
in a certain sense. Using the ideas that we are about to develop, it is 
nonetheless possible to study convergence, continuity, compactness, and the 
other basic concepts of analysis in this more general context. We shall see 
applications of these new techniques in later sections.                            □ 

Now we begin to develop the tools of analysis in metric spaces. 

Definition 11.5: Let X( , ) be a metric space. A sequence x{ }j of elements of X
is said to converge to a point X if, for each > 0, there is an N > 0 such 
that if j N> then x( , ) <j . We call the limit of the sequence x{ }j . We 
sometimes write xj . 

Compare this definition of convergence with the corresponding definition 
for convergence in the real line in Section 2.1. Notice that it is identical, 
except that the sense in which distance is measured is now more general. 

Example 11.6: Let X( , ) be the metric space from Example 11.4, consisting of 
the continuous functions on the unit interval with the indicated metric 
function . Then f x= sin is an element of this space, and so are the functions 

f
x

= ( 1)
(2 + 1)!

.j

j

=0

2 +1

Observe that the functions fj are the partial sums for the Taylor series of 
xsin . We can check from simple estimates on the error term of Taylor’s 

theorem that the functions fj converge uniformly to f . Thus, in the language 
of metric spaces, f fj in the metric space notion of convergence.        □ 
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Definition 11.7: Let X( , ) be a metric space. A sequence x{ }j of elements of X
is said to be Cauchy if, for each > 0 there is an N > 0 such that if j k N, >
then x x( , ) <j k . 

Now the Cauchy criterion and convergence are connected in the expected 
fashion: 

Proposition 11.8: Let x{ }j be a convergent sequence, with limit , in the metric 
space X( , ). Then the sequence x{ }j is Cauchy. 

Proof: Let > 0. Choose an N so large that, if j N> , then x( , ) < /2j . If 
j k N, > then 

x x x x( , ) ( , ) + ( , ) <
2

+
2

= .j k j k

That completes the proof.                                                             □ 

The converse of the proposition is true in the real numbers (with the usual 
metric), as we proved in Section 1.1. However, it is not true in every metric 
space. For example, the rationals Q with the usual metric s t s t( , ) = is 
a metric space; but the sequence 

3, 2.1, 2.14, 2.141, 2.1415, 2.14159, …,

while certainly Cauchy, does not converge to a rational number. Thus we are 
led to a definition: 

Definition 11.9: We say that a metric space X( , ) is complete if every Cauchy 
sequence converges to an element of the metric space. 

Thus the real numbers, with the usual metric, form a complete metric 
space. The rational numbers do not. 

Example 11.10: Consider the metric space X( , ) from Example 11.4 above, 
consisting of the continuous functions on the closed unit interval with the 
indicated metric function . If g{ }j is a Cauchy sequence in this metric space 
then each gj is a continuous function on the unit interval and this sequence 
of continuous functions is Cauchy in the uniform sense (see Chapter 8). 
Therefore they converge uniformly to a limit function g that must be 
continuous. We conclude that the metric space X( , ) is complete.          □ 

Example 11.11: Consider the metric space X( , ) consisting of the poly-
nomials, taken to have domain the interval [0, 1], with the distance function 

f g f t g t( , ) = sup ( ) ( )t [0,1] . This metric space is not complete. For if h is 
any continuous function on [0, 1] that is not a polynomial, such as 
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h x x( ) = sin , then by the Weierstrass Approximation Theorem there is a 
sequence p{ }j of polynomials that converges uniformly on [0, 1] to h. Thus 
this sequence p{ }j will be Cauchy in the metric space, but it does not converge 
to an element of the metric space. We conclude that the metric space X( , ) is 
not complete.                                                                                □ 

If X( , ) is a metric space then an (open) ball with center P X and radius r is 
the set 

B P r x X x P r( , ) = { : ( , ) < }.

The closed ball with center P and radius r is the set 

B P r x X x P r¯ ( , ) = { : ( , ) }.

Definition 11.12: Let X( , ) be a metric space and E a subset of X. A point 
P E is called an isolated point of E if there is an r > 0 such that 
E B P r P( , ) = { }. If a point of E is not isolated then it is called nonisolated. 

We see that the notion of “isolated” has intuitive appeal: an isolated point is 
one that is spaced apart—at least distance r—from the other points of the 
space. A nonisolated point, by contrast, has neighbors that are arbitrarily close. 

Definition 11.13: Let X( , ) be a metric space and Rf X: . If P X is a 
nonisolated point and R we say that the limit of f at P is , and write 

f xlim ( ) = ,
x P

if for any > 0 there is a > 0 such that if x P0 < ( , ) < then 
f x| ( ) | < . 

Notice in this definition that we use to measure distance in X—that is the 
natural notion of distance with which X comes equipped—but we use ab-
solute values to measure distance in R. 

The following lemma will prove useful. 

Lemma 11.14: Let X( , ) be a metric space and P X a nonisolated point. Let f be a 
function from X to R. Then f xlim ( ) =x P if and only if, for every sequence 
x X{ }j satisfying x Pj , it holds that f x f P( ) ( )j . 

Proof: This is straightforward and is treated in the exercises.                □ 

Definition 11.15: Let X( , ) be a metric space and E a subset of X. Suppose 
that P E is a nonisolated point. We say that a function Rf E: is 
continuous at P if 
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f x f Plim ( ) = ( ).
x P

Example 11.16: Let X( , ) be the space of continuous functions on the 
interval [0, 1] equipped with the supremum metric as in Example 11.4 
above. Define the function RX: by the formula 

f f t dt( ) = ( ) .
0

1

Then takes an element of X, namely a continuous function, to a real 
number, namely its integral over [0, 1]. We claim that is continuous at 
every point of X. 

For fix a point f X . If f{ }j is a sequence of elements of X converging in 
the metric space sense to the limit f , then (in the language of classical 
analysis as in Chapters 5–8) the fj are continuous functions converging 
uniformly to the continuous function f on the interval [0, 1]. But, by 
Theorem 8.8, it follows that 

f t dt f t dt( ) ( ) .j0

1

0

1

But this just says that f f( ) ( )j . Using the lemma, we conclude that 

g flim ( ) = ( ).
g f

Therefore is continuous at f . 
Since f X was chosen arbitrarily, we conclude that the function is 

continuous at every point of X.                                                        □ 

In the next section we shall develop some topological properties of metric 
spaces. 

Exercises  
1. Let X( , ) be a metric space. Prove that the function 

s t
s t

s t
( , ) =

( , )
1 + ( , )

is also a metric on X and that the open sets defined by the metric 
are the same as the open sets defined by . Finally prove that 

s t( , ) < 1 for all s t X, . This is a method for constructing a 
bounded metric from an arbitrary metric. 
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2. Let X( , ) be a metric space and E a subset of X. Define the 
boundary boundary of a set of E to be those elements x X with 
the property that every ball B x r( , ) contains both points of E and 
points of Ec . Prove that the boundary of E must be closed. Prove 
that the interior of E (define!) is disjoint from the boundary of E.  

3. Let X( , ) and Y( , ) be metric spaces. Describe a method for 
equipping the set X Y× with a metric manufactured from and .  

4. Let X be the collection of all continuously differentiable functions 
on the interval [0, 1]. If f g X, then define  

f g f x g x( , ) = sup ( ) ( ) .
x [0,1]

Is a metric? Why or why not?  
5. Prove Lemma 11.14.  
6. Consider the set of all polynomials of one variable of degree not 

exceeding 4, and define 

p q p q p q p q

p q p q p q

( , ) = max{ (1) (1) , (2) (2) , (3) (3) ,

(4) (4) , (5) (5) , (6) (6) }.

Prove that is a metric on this space of polynomials. Why does this 
not work if we consider polynomials of degree not exceeding 10?  

7. How many different metrics are there on the space with three points?  
8. Define a metric on the real numbers R so that the space becomes 

discrete.  
9. Give an example of a metric space which is discrete.  

*10. Can there be a countable, complete metric space? 

11.2 Topology in a Metric Space 

Fix a metric space X( , ). A set U X is called open if for each u U there is 
an r > 0 such that B u r U( , ) . A set E X is called closed if its complement 
in X is open. Notice that these definitions are analogous to those that we 
gave in the topology chapter (Chapter 4) for subsets of R. 

Example 11.17: Consider the set of real numbers R equipped with the metric 
s t( , ) = 1 if s t and s t( , ) = 0 otherwise. Then each singleton U x= { } is an 

open set. For let P be a point of U. Then P x= and the ball B P( , 1/2) lies in U. 
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However, each singleton is also closed. For the complement of the 
singleton U x= { } is the set RS x= \{ }. If s S then B s S( , 1/2) as in the 
preceding paragraph.                                                                      □ 

Example 11.18: Let X( , ) be the metric space of continuous functions on the 
interval [0, 1] equipped with the metric f g f x g x( , ) = sup ( ) ( )x [0,1] . 
Define 

U f X f= { : (1/2) > 5}.

Then U is an open set in the metric space. To verify this assertion, fix an 
element f U . Let f= (1/2) 5 > 0. We claim that the metric ball B f( , )
lies in U. For let g B f( , ). Then 

g f f g

f f g

f

(1/2) = (1/2) (1/2) (1/2)

(1/2) ( , )

> (1/2)

= 5.

It follows that g U. Since g B f( , ) was chosen arbitrarily, we may 
conclude that B f U( , ) . But this says that U is open. 

We may also conclude from this calculation that 

U f X f= { : (1/2) 5}c

is closed.                                                                                      □ 

Definition 11.19: Let X( , ) be a metric space and S X. A point x X is 
called an accumulation point of S (also called a limit point or a cluster point) if 
every B x r( , ) contains infinitely many elements of S. 

Proposition 11.20: Let X( , ) be a metric space. A set S X is closed if and only if 
every accumulation point of S lies in S. 

Proof: The proof is similar to the corresponding result in Section 4.1 and we 
leave it to the exercises.                                                                  □ 

Definition 11.21: Let X( , ) be a metric space. A subset S X is said to be 
bounded if S lies in some ball B P r( , ). 

Definition 11.22: Let X( , ) be a metric space. A set S X is said to be 
compact if every sequence in S has a subsequence that converges to an 
element of S. 
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Example 11.23: In Chapter 4 we learned that, in the real number system, 
compact sets are closed and bounded, and conversely. Such is not the case 
in general metric spaces. 

As an example, consider the metric space X( , ) consisting of all 
continuous functions on the interval [0, 1] with the supremum metric as 
in previous examples. Let 

S f x x j= { ( ) = : = 1, 2, …}.j
j

This set is bounded since it lies in the ball B 0( , 2) (here 0 denotes the 
identically zero function). We claim that S contains no Cauchy sequences. 
This follows (see the discussion of uniform convergence in Chapter 8) 
because, no matter how large N is, if k j N> > then we may write 

f x f x x x| ( ) ( )| = ( 1) .j k
j k j

Fix j. If x is sufficiently near to 1 then x > 3/4j . But then we may pick k so 
large that x < 1/4k j . Thus 

f x f x| ( ) ( )| 9/16.k j

So there is no Cauchy subsequence. We may conclude (for vacuous reasons) 
that S is closed. 

But S is not compact. For, as just noted, the sequence f{ }j consists of 
infinitely many distinct elements of S which do not have a convergent 
subsequence (indeed not even a Cauchy subsequence).                        □ 

In spite of the last example, half of the Heine-Borel theorem is true: 

Proposition 11.24: Let X( , ) be a metric space and S a subset of X. If S is compact 
then S is closed and bounded. 

Proof: Let s{ }j be a Cauchy sequence in S. By compactness, this sequence 
must contain a subsequence converging to some limit P. But since the full 
sequence is Cauchy, the full sequence must converge to P (exercise). Thus S
is closed. 

If S is not bounded, we derive a contradiction as follows. Fix a point 
P S1 . Since S is not bounded we may find a point P2 that has distance at 
least 1 from P1. Since S is unbounded, we may find a point P3 of S that is 
distance at least 2 from both P1 and P2. Continuing in this fashion, we select 
P Sj which is distance at least j from P P P, , … j1 2 1. Such a sequence P{ }j
can have no Cauchy subsequence, contradicting compactness. Therefore S is 
bounded.                                                                                      □ 
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Definition 11.25: Let S be a subset of a metric space X( , ). A collection of 
open sets { } A (each is an open set in X) is called an open covering of 
S if 

S.A

Definition 11.26: If is an open covering of a set S and if is another open 
covering of S such that each element of is also an element of then we 
call a subcovering of . 

We call a finite subcovering if has just finitely many elements. 

Theorem 11.27: A subset S of a metric space X( , ) is compact if and only if every 
open covering = { } A of S has a finite subcovering. 

Proof: The forward direction is beyond the scope of this book and we shall 
not discuss it. 

The proof of the reverse direction is similar in spirit to the proof in 
Section 4.3 (Theorem 4.32). We leave the details for the exercises.          □ 

Proposition 11.28: Let S be a compact subset of a metric space X( , ). If E is a 
closed subset of S then E is compact. 

Proof: Let be an open covering of E. The set U X E= \ is open and the 
covering consisting of all the open sets in together with the open set U
covers S. Since S is compact we may find a finite subcovering 

O O O, , … k1 2

that covers S. If one of these sets is U then discard it. The remaining k 1
open sets cover E.                                                                          □ 

The exercises will ask you to find an alternative proof of this last fact. 

Definition 11.29: If X( , ) is a metric space and E X then the closure of E is 
defined to be the union of E with the set of its accumulation points. 

Exercises  
1. Let X( , ) be a metric space. Prove that the closure of any set in X

is closed. Prove that the closure of any E equals the union of the 
interior and the boundary.  

2. Let X( , ) be a metric space. Let K K …1 2 be a nested family of 
countably many nonempty compact sets. Prove that Kj j is a 
nonempty set. 
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3. Give an example of a metric space X( , ), a point P X, and a 
positive number r such that B P r¯ ( , ) is not the closure of the ball 
B P r( , ).  

4. Let X( , ) be a compact metric space. Prove that X has a countable 
dense subset. [We call such a space separable.]  

5. Let K be a compact subset of a metric space X( , ). Let P X not 
lie in K. Prove that there is an element k K0 such that 

k P x P( , ) = inf ( , ).
x K

0

6. Consider the metric space Q equipped with the Euclidean metric. 
Describe all the open sets in this metric space.  

7. In R, if I is an open interval then every element of I is a limit point 
of I . Is the analogous statement true in an arbitrary metric space, 
with “interval” replaced by “ball”?  

8. The Bolzano-Weierstrass Theorem tells us that, in R1, a bounded 
infinite set must have a limit point. Show by example that the 
analogous statement is false in an arbitrary metric space. But it is 
true in RN.  

9. Let E be a subset of a metric space. Is the interior of E equal to the 
interior of the closure of E? Is the closure of the interior of E equal 
to the closure of E itself?  

10. Let X( , ) be a metric space. Call a subset E of Xconnected if there do 
not exist open sets U and V in X such that U E and V E are 
nonempty, disjoint, and U E V E E( ) ( ) = . connected set Is 
the closure of a connected set connected? Is the product of two 
connected sets connected? Is the interior of a connected set 
connected?  

11. Refer to Exercise 10 for terminology. Give exact conditions that 
will guarantee that the union of two connected sets is connected.  

12. Let X( , ) be the metric space of continuously differentiable 
functions on the interval [0, 1] equipped with the metric 

f g f x g x( , ) = sup ( ) ( ) .
x [0,1]

Consider the function 

T f f( ) = (1/2).

Is T continuous? Is there some metric with which we can equip X
that will make T continuous? 
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13. Let X( , ) be a metric space and let x{ }j be a Cauchy sequence in X. 
If a subsequence x{ }jk converges to a point P X then prove that 
the full sequence x{ }j converges to P.  

14. Prove the converse direction of Theorem 11.27. 
15. Give a proof of Proposition 11.28 that uses the sequential defi-

nition of compactness.  
*16. Let X( , ) be any metric space. Consider the space X̂ of all Cauchy 

sequences of elements of X, subject to the equivalence relation 
that x{ }j and y{ }j are equivalent if x y( , ) 0j j completion of a 
metric space as j . Explain why, in a natural way, this space 
of equivalence class of Cauchy sequences may be thought of as the 
completion of X, that is, explain in what sense X Xˆ and X̂ is 
complete. Prove that X̂ is minimal in a certain sense. Prove that if 
X is already complete then this space of equivalence classes can 
be identified in a natural way with X.  

17. It is a theorem (fairly tricky to prove) that a metric space always 
has a countable dense subset. What is the countable dense subset 
of the space of continuous functions on the interval [0, 1]? What is 
the countable dense subset of the space of polynomials of degree 
not exceeding 10 on the interval [0, 1] (equipped with the su-
premum norm)?  

18. Prove Proposition 11.20. 

11.3 The Baire Category Theorem 

Let X( , ) be a metric space and S X a subset. A set E X is said to be 
dense density in S if every element of S is the limit of some sequence of 
elements of E. 

Example 11.30: The set of rational numbers Q is dense in any nontrivial 
interval of R.                                                                                 □ 

Example 11.31: Let X( , ) be the metric space of continuous functions on the 
interval [0, 1] equipped with the supremum metric as usual. Let E X be 
the polynomial functions. Then the Weierstrass Approximation Theorem 
tells us that E is dense in X.                                                            □ 

Example 11.32: Consider the real numbers R with the metric s t( , ) = 1 if 
s t and s t( , ) = 0 otherwise. Then no proper subset of R is dense in R. To 
see this, notice that if E were dense and were not all of R and if RP E\

Advanced Topics                                                                           363 

ISTUDY



then P e( , ) > 1/2 for all e E. So elements of E do not get close to P. Thus 
E is not dense in R.                                                                        □ 

Refer to Definition 11.29 for the concept of closure of a set. 

Example 11.33: Let X( , ) be the set of real numbers with the usual metric 
and set E = Q ( 2, 2). Then the closure of E is [ 2, 2]. 

Let Y( , ) be the continuous functions on [0, 1] equipped with the 
supremum metric as in Example 11.4. Take E Y to be the polynomials. 
Then the closure of E is Y.                                                               □ 

We note in passing that, if B P r( , ) is a ball in a metric space X( , ), then 
B P r¯ ( , ) will contain but need not be equal to the closure of B P r( , ) (for which 
see Exercise 3 of the last section). 

Definition 11.34: Let X( , ) be a metric space. We say that E X is nowhere 
dense in X if the closure of E contains no ball B x r( , ) for any x X r, > 0. 

Example 11.35: Let us consider the integers Z as a subset of the metric space 
R equipped with the standard metric. Then the closure of Z is Z itself. And 
of course Z contains no metric balls. Therefore Z is nowhere dense in R. □ 

Example 11.36: Consider the metric space X of all continuous functions on 
the unit interval [0, 1], equipped with the usual supremum metric. Fix k > 0
and consider 

E p x p k{ ( ): is a polynomial of degree not exceeding }.

Then the closure of E is E itself (that is, the limit of a sequence of 
polynomials of degree not exceeeding k is still a polynomial of degree not 
exceeding k—details are requested of you in the exercises). And E contains 
no metric balls. For if p E and r > 0 then p x r x B p r( ) + ( /2) ( , )k+1 but 
p x r x E( ) + ( /2) k+1 . 

We recall, as noted in Example 11.31 above, that the set of all polynomials 
is dense in X ; but if we restrict attention to polynomials of degree not 
exceeding a fixed number k then the resulting set is nowhere dense.      □ 

Theorem 11.37: (The Baire Category Theorem) Let X( , ) be Baire category 
theorem a complete metric space. Then X cannot be written as the union of 
countably many nowhere dense sets. 

Proof: This proof is quite similar to the proof that we presented in Chapter 4 
that a perfect set must be uncountable. You may wish to review that proof at 
this time. 
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Seeking a contradiction, suppose that X may be written as a countable 
union of nowhere dense sets Y Y, , … .1 2 Choose a point x Ȳc

1 1. Since Y1 is 
nowhere dense we may select an r > 01 such that B B x r¯ ¯ ( , )1 1 1 satisfies 
B Y¯ ¯ =1 1 . Assume without loss of generality that r < 11 . 

Next, since Y2 is nowhere dense, we may choose x B Y¯ ¯c
2 1 2 and an 

r > 02 such that B B x r B Y¯ = ¯ ( , ) ¯ ¯c
2 2 2 1 2. Shrinking B2 if necessary, we may 

assume that r r<2
1
2 1. Continuing in this fashion, we select at the jth step 

a point x B Y¯ ¯j j
c

j1 and a number r > 0j such that r r<j j
1
2 1 and B̄ =j

B x r B Y¯ ( , ) ¯ ¯j j j
c

j1 . 
Now the sequence x{ }j is Cauchy since all the terms xj for j N> are 

contained in a ball of radius r < 2N
N hence are not more than distance 2 N

apart. Since X( , ) is a complete metric space, we conclude that the sequence 
converges to a limit point P. Moreover, by construction, P B̄j for every j
hence is in the complement of every Ȳj. Thus Y Xj j . That is a contradiction, 
and the proof is complete.                                                               □ 

There is quite a lot of terminology associated with the Baire theorem, and 
we shall not detail it all here. We do note that a G is the countable inter-
section of open sets. 

Before we apply the Baire Category Theorem, let us formulate some re-
statements, or corollaries, of the theorem which follow immediately from 
the definitions. 

Corollary 11.38: Let X( , ) be a complete metric space. Let Y Y, , …1 2 be countably 
many closed subsets of X, each of which contains no nontrivial open ball. Then Yj j

also has the property that it contains no nontrivial open ball. 

Corollary 11.39: Let X( , ) be a complete metric space. Let O O, , …1 2 be 
countably many dense open subsets of X. Then Oj j is dense in X. 

Note that the result of the second corollary follows from the first corollary 
by complementation. The set Oj j, while dense, need not be open. 

Example 11.40: The metric space R, equipped with the standard Euclidean 
metric, cannot be written as a countable union of nowhere dense sets.    □ 

By contrast Q, can be written as the union of the singletons q{ }j where the qj

represent an enumeration of the rationals. Each singleton is of course no-
where dense since it is the limit of other rationals in the set. However, Q is 
not complete. 

Example 11.41: Baire’s theorem contains the fact that a perfect set of real 
numbers must be uncountable. For if P were perfect and countable we could 
write P p p= { , , …}1 2 . Therefore 
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P p= { }.
j

j
=1

But each of the singletons p{ }j is a nowhere dense set in the metric space P. 
And P is complete. (You should verify both these assertions for yourself.) 
This contradicts the Baire Category Theorem. So P cannot be countable. □ 

A set that can be written as a countable union of nowhere dense sets is said 
to be of first category. If a set is not of first category, then it is said to be of 
second category. The Baire Category Theorem says that a complete metric 
space must be of second category. We should think of a set of first category 
as being “thin” and a set of second category as being “fat” or “robust.” (This 
is one of many ways that we have in mathematics of distinguishing “fat” 
sets. Countability and uncountability is another. Lebesgue’s measure theory 
is a third.) 

One of the most striking applications of the Baire Category Theorem is the 
following result to the effect that “most” continuous functions are nowhere 
differentiable. This explodes the myth that most of us mistakenly derive 
from calculus class that a typical continuous function is differentiable at all 
points except perhaps at a discrete set of bad points. 

Theorem 11.42: Genericity of nowhere differentiable functions Let X( , ) be the 
metric space of continuous functions on the unit interval [0, 1] equipped with the 
metric 

f g f x g x( , ) = sup ( ) ( ) .
x [0,1]

Define a subset of  E of X as follows: f E if there exists one point at which f is 
differentiable. Then  E is of first category in the complete metric space X( , ). 

Proof: For each pair of positive integers m n, we let 

A f X x f x f t n x t

t x t m

= { : [0, 1] such that ( ) ( )

[0, 1] that satisfy 1/ }.
m n,

Fix m and n. We claim that Am n, is nowhere dense in X. In fact, if f Am n, set 

K
f x m f x

m
= max

( ± 1/ ) ( )
1/

.f
x [0,1]

Let h x( ) be a continuous piecewise linear function, bounded by 1, consisting 
of linear pieces having slope K3 f . Then for every > 0 it holds that f h+
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has metric distance less than from f and is not a member of Am n, . This 
proves that Am n, is nowhere dense. 

We conclude from Baire’s theorem that Am n m n, , is nowhere dense in X. 
Therefore S X A= \ m n m n, , is of second category. But if f S then for every 
x [0, 1] and every n > 0 there are points t arbitrarily close to x (that is, at 
distance m1/ from x) such that 

f x f t
t x

n
( ) ( )

> .

It follows that f is differentiable at no x [0, 1]. That proves the 
assertion.                                                                                  □ 

Exercises  
1. Let X( , ) be the collection of continuous functions on the interval 

[0, 1] equipped with the usual supremum metric. For j a positive 
integer, let 

E p x p j= { ( ): is a polynomial of degree not exceeding }.j

Then, as noted in the text, each Ej is nowhere dense in X. Yet Ej j is 
dense in X. Explain why these assertions do not contradict Baire’s 
theorem.  

*2. Assume fj is a sequence of continuous, real-valued functions on R
with the property that f x{ ( )}j is unbounded whenever Qx . Use 
the Category Theorem to prove that it cannot then be true that 
whenever t is irrational then the sequence f t{ ( )}j is bounded.  

3. Even if we did not know the transcendental functions xsin ,
x xcos , ln , ex, etc. explicitly, the Baire Category Theorem de-

monstrates that transcendental functions must exist. Explain why 
this assertion is true.  

4. Fix a positive integer k. Let p x{ ( )} be a sequence of polynomial 
functions on the real line, each of degree not exceeding k. Assume 
that this sequence converges pointwise to a limit function f . Prove 
that f is a polynomial of degree not exceeding k.  

5. Give an example of a perfect set with empty interior. Show that, in 
the reals, there is no perfect set with countable interior.  

6. Show that the set of polynomials is of first category in the space of 
continuous functions on the interval [0, 1].  

7. Show that the rational numbers Q are of first category in the reals R.  
8. Is the set Z of integers of first category in the rationals Q? 
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9. Show that any compact metric space is of second category.  
10. Give two examples of sets of first category that are dense in the 

reals R. 

11.4 The Ascoli-Arzela Theorem 

Let f= { } A be a family, not necessarily countable, of functions on a 
metric space X( , ). We say that the family is equicontinuous equicontin-
uous family on X if for every > 0 there is a > 0 such that when s t( , ) <
then f s f t| ( ) ( )| < . Notice that equicontinuity mandates not only uni-
form continuity of each f but also that the uniformity occur simulta-
neously, and at the same rate, for all the f . 

Example 11.43: Let X( , ) be the unit interval [0, 1] with the usual Euclidean 
metric. Let consist of all functions f on X that satisfy the Lipschitz 
condition 

f s f t s t( ) ( ) 2

for all s t, . Then is an equicontinuous family of functions. For if > 0 then 
we may take = /2. Then if s t < and f we have 

f s f t s t( ) ( ) 2 < 2 = .

Observe, for instance, that the Mean Value Theorem tells us that 
x xsin , cos , x x2 , 2 are elements of .                                               □ 

If is a family of functions on X, then we call equibounded if there is a 
number M > 0 such that equibounded family 

f x M| ( )|

for all x X and all f . Thus we are not only mandating that each f
be bounded, but also that the entire family be uniformly bounded. For 
example, the functions f x jx( ) = sinj on [0, 1] form an equibounded 
family. 

One of the cornerstones of classical analysis is the following result of 
Ascoli and Arzela: Ascoli-Arzela Theorem 
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Theorem 11.44: (The Ascoli-Arzela Theorem) Let Y( , ) be a metric space and 
assume that Y is compact. Let be an equibounded, equicontinuous family of 
functions on Y. Then there is a sequence f{ }j that converges uniformly to a 
continuous function on Y. 

Before we prove this theorem, let us comment on it. Let X( , ) be the 
metric space consisting of the continuous functions on the unit interval [0, 1]
equipped with the usual supremum norm. Let be an equicontinuous, 
equibounded family of functions on [0, 1]. Then the theorem says that is a 
compact set in this metric space. For any infinite subset of is guaranteed 
to have a convergent subsequence. As a result, we may interpret the Ascoli- 
Arzela theorem as identifying certain compact collections of continuous 
functions. 

Proof of the Ascoli-Arzela Theorem: We divide the proof into a sequence of 
lemmas. 

Lemma 11.45: Let > 0. There exist finitely many points y y y Y, , … k1 2 such 
that every ball B s Y( , ) contains one of the yj. We call y y, …, k1 an -net for Y. 

Proof: Consider the collection of balls B y y Y{ ( , /2): }. This is an open 
covering of Y hence, by compactness, has a finite subcovering B y( , /2), …1 , 
B y( , /2)k . The centers y y, …, k1 are the points we seek. For if B s( , ) is any 
ball in Y then its center s must be contained in some ball B y( , /2)j . But then 
B y B s( , /2) ( , )j hence, in particular, y B s( , )j .                             □ 

Lemma 11.46: Let > 0. There is an > 0, a corresponding -net y y, … k1 , and a 
sequence f{ }m such that  

• The sequence f y{ ( )}m m=1 converges for each y ;
• For any y Y the sequence f y{ ( )}m j=1 is contained in an interval in 

the real line of length at most . 

Proof: By equicontinuity there is an > 0 such that if s t( , ) < then 
f s f t( ) ( ) < /3 for every f . Let y y, …, k1 be an -net. Since the 

family is equibounded, the set of numbers f y f{ ( ): }1 is bounded. Thus 
there is a subsequence fj such that f y{ ( )}j 1 converges. But then, by similar 
reasoning, we may choose a subsequence fjk

such that f y{ ( )}j 2k
converges. 

Continuing in this fashion, we may find a sequence, which we call f{ }m , 
which converges at each point y . The first assertion is proved. Discarding 
finitely many of the fms, we may suppose that for every m n, and every j it 
holds that f y f y| ( ) ( )| < /3m j n j . 

Now if y is any point of Y then there is an element yt of the -net such that 
y y( , ) <t . But then, for any m n, , we have 
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f y f y f y f y

f y f y

f y f y

| ( ) ( )| | ( ) ( )|

+ | ( ) ( )|

+ | ( ) ( )|

< + +

= .

m n m m t

m t n t

n t n

3 3 3

That proves the second assertion.                                                     □ 

Proof of the Theorem: With = 2 1 apply Lemma 11.46 to obtain a sequence 
fm. Apply Lemma 11.46 again, with = 2 2 and the role of being played 
by the sequence f{ }m . This yields a new sequence f{ }mr

. Apply Lemma 11.46 
once again with = 2 3 and the role of being played by the second 
sequence f{ }mr

. Keep going to produce a countable list of sequences. 
Now produce the final sequence by selecting the first element of the first 

sequence, the second element of the second sequence, the third element of 
the third sequence, and so forth.1 This sequence, which we call f{ }w , will 
satisfy the conclusion of the theorem. 

For, if > 0, then there is a j such that 2 <j . After j terms, the sequence 
f{ }w is a subsequence of the jth sequence constructed above. Hence, at every 
y Y, all the terms f y w j( ), >w , lie in an interval of length . But that just 
verifies convergence at the point y. Note moreover that the choice of j in 
this last argument was independent of y Y. That shows that the 
convergence is uniform. The proof is complete.                                   □ 

Exercises  
*1. Consider a collection of differentiable functions on the interval 

a b[ , ] that satisfy the conditions f x K( ) and f x C( ) for all 
x a b[ , ]. Demonstrate that the Ascoli-Arzela theorem applies to 

and describe the resulting conclusion.  
2. A function on the interval [0, 1] is Lipschitz if it satisfies the 

condition 

f s f t C s t| ( ) ( )| | |

for some positive constant C. Use the Ascoli-Arzela theorem to show 
that the set of Lipschitz functions with constant C less than or equal 
to 1 and uniform bound less than or equal to 1 is a compact subset of 
the continuous functions on [0, 1].  

3. Explain in detail why the Ascoli-Arzela theorem is a compactness 
theorem. 
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4. Why is there no Ascoli-Arzela theorem (without any additional 
hypotheses) for the continuous functions on a compact interval?  

5. A version of the Rellich lemma says that if > then the Lipschitz 
space of order is compact in the Lipschitz space of order . 
Explain exactly what this means, and why it is true.  

6. Let X be a finite set and Y a finite set and let be the set of 
functions from X to Y. Then, no matter what topology we put on X
and Y, will be compact. Why is that so?  

*7. Give an example of a space that is compact inside the space of 
integrable functions on the unit interval.  

8. Is the space of twice continuously differentiable functions compact 
inside the space of once continuously differentiable functions? 
Why or why not?  

9. On the domain the unit interval [0, 1], consider the set S of all 
polynomials of degree not exceeding 10 with coefficients of abso-
lute value not larger than 1. Show that the Ascoli-Arzela theorem 
applies to S. 

10. On the domain the interval [0, 2 ], consider the set T of all trigo-
nometric polynomials of degree not exceeding 50 with coefficients 
of absolute value not larger than 5. Show that the Ascoli-Arzela 
theorem applies to T. 

Note  
1 This very standard type of construction is called a “diagonalization argument.”  
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12 
Applications of Analysis to 
Differential Equations  

Differential equations are the heart and soul of analysis. Virtuallydifferential 
equations any law of physics or engineering or biology or chemistry can be 
expressed as a differential equation—and frequently as a first-order equation 
(i.e., an equation involving only first derivatives). Much of mathematical 
analysis has been developed in order to find techniques for solving differ-
ential equations. 

Most introductory books on differential equations ([COL], [KRA7], and 
[BIR] are three examples) devote themselves to elementary techniques for 
finding solutions to a very limited selection of equations. In the present 
book we take a different point of view. We instead explore certain central 
and broadly applicable principles which apply to virtually any differential 
equation. These principles, in particular, illustrate some of the key ideas of 
the book. 

12.1 Picard’s Existence and Uniqueness Theorem  
Picard’s Theorem 

12.1.1 The Form of a Differential Equation 

A fairly general first-order differential equation will have the for-
mdifferential equations, first order 

dy
dx

F x y= ( , ). (12.1.1)  

We say that the equation is “first order” because the highest derivative that 
appears is the first derivative. 

In equation (12.1.1), F is a continuously differentiable function on some 
domain a b c d( , ) × ( , ). We think of y as the dependent variable (that is, the 
function that we seek) and x as the independent variable. That is to say, 
y y x= ( ). For technical reasons, we assume that the function F is bounded, 

F x y M( , ) , (12.1.2) 
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and in addition that F satisfies a Lipschitz condition: 

F x s F x t C s t( , ) ( , ) . (12.1.3)  

[In many treatments it is standard to assume that F is bounded and F y/ is 
bounded. It is easy to see, using the Mean Value Theorem, that these two 
conditions imply (12.1.2), (12.1.3).] 

Example 12.1: Consider the equation 

dy
dx

x y y x= sin ln .2

Then this equation fits the paradigm of equation (12.1.1) with F x y( , ) =
x y y xsin ln2 provided that x1 2 and y0 3 (for instance).        □ 

In fact the most standard, and physically appealing, setup for a first-order 
equation such as (12.1.1) is to adjoin to it an initial condition. For usinitial 
condition this condition will have the form 

y x y( ) = .0 0 (12.1.4)  

Thus the problem we wish to solve is (12.1.1) and (12.1.4) together. 
Picard’s idea is to set up an iterative scheme for doing so. The most re-

markable fact about Picard’s technique is that it always works: As long as F
is bounded and satisfies the Lipschitz condition, then the problem will 
possess one and only one solution. 

12.1.2 Picard’s Iteration Technique 

While we will not actually give a complete proof that Picard’s technique 
works, we will set it up and indicate the sequence of functions it produces 
that converges uniformly to the solution of our problem. 

Picard’s approach is inspired by the fact that the differential equation 
(12.1.1) and initial condition (12.1.4), taken together, are equivalent to the 
single integral equation 

y x y F t y t dt( ) = + ( , ( )) .
x

x

0
0

(12.1.5)  

We invite the reader to differentiate both sides of thisintegral equation 
equation, using the Fundamental Theorem of Calculus, to derive the ori-
ginal differential equation (12.1.1). Of course the initial condition (12.1.4) is 
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built into (12.1.5). This integral equation inspires the iteration scheme that 
we now describe. 

We assume that x a b( , )0 and that y c d( , )0 . We set 

y x y F t y dt( ) = + ( , ) .
x

x

1 0 0
0

For x near to x0, this definition makes sense. 
Next we define 

y x y F t y t dt( ) = + ( , ( ))
x

x

2 0 1
0

and, more generally, 

y x y F t y t dt( ) = + ( , ( ))j x

x

j+1 0
0

(12.1.6)  

for j = 2, 3, … . 
It turns out that the sequence of functions y y{ , , …}1 2 will converge uni-

formly on an interval of the form x h x h a b[ , + ] ( , )0 0 to a solution of 
(12.1.1) that satisfies (12.1.4). 

12.1.3 Some Illustrative Examples 

Picard’s iteration method is best apprehended by way of some examples 
that show how the iterates arise and how they converge to a solution. We 
now proceed to develop such illustrations. 

Example 12.2: Consider the initial value problem 

y y y= 2 , (0) = 1.

Of course this could easily be solved by the method of first order linear 
equations, or by separation of variables (see [KRA7] for a description of 
these methods). Our purpose here is to illustrate how the Picard method 
works. 

First notice that the stated initial value problem is equivalent to the 
integral equation 

y x y t dt( ) = 1 + 2 ( ) .
x

0
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Following the paradigm (12.1.6), we thus find that 

y x y x dx( ) = 1 + 2 ( ) .j

x

j+1 0

Using x = 00 , y = 10 , we then find that 

y x dt x

y x t dt x x

y x t t dt x x
x

( ) = 1 + 2 = 1 + 2 ,

( ) = 1 + 2(1 + 2 ) = 1 + 2 + 2 ,

( ) = 1 + 2(1 + 2 + 2 ) = 1 + 2 + 2 +
4
3

.

x

x

x

1 0

2 0
2

3 0
2 2

3

In general, we find that 

y x
x x x x

j
x

( ) = 1 +
2
1!

+
(2 )

2!
+

(2 )
3!

+ +
(2 )

!
=

(2 )
!

.j

j j2 3

=0

It is plain that these are the partial sums for the power series expansion of 
y e= x2 . We conclude that the solution of our initial value problem is 
y e= x2 . You are encouraged to check that y e= x2 does indeed solve the 
differential equation and initial condition stated at the beginning of the 
example.                                                                                   □ 

Example 12.3: Let us use Picard’s method to solve the initial value problem 

y x y y= 2 , (0) = 1.

The equivalent integral equation is 

y x t y t dt( ) = 1 + [2 ( )]
x

0

and (12.1.6) tells us that 

y x t y t dt( ) = 1 + [2 ( )] .j

x

j+1 0

Taking x = 00 , y = 10 , we then find that 
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y x t dt x x

y x t t t dt

x
x

x

y x t t t t dt

x
x

x x

y x t t t t t dt

x
x

x x x

( ) = 1 + (2 1) = 1 + ,

( ) = 1 + (2 [1 + ])

= 1 +
3
2 3

,

( ) = 1 + (2 [1 + 3 /2 /3])

= 1 +
3
2 2

+
4 3

,

( ) = 1 + (2 [1 + 3 /2 /2 + /4 3])

= 1 +
3
2 2

+
4 2 5 4 3

.

x

x

x

x

1 0
2

2 0
2

2 3

3 0
2 3

2 3 4

4 0
2 3 4

2 3 4 5

In general, we find that 

y x x
x x x

x
j

x
j

x
x
j

x
j

( ) = 1 +
3
2!

3
3!

+
3
4!

+

+ ( 1)
3

!
+ ( 1)

2
( + 1)!

= [2 2] + 3
( )

!
+ ( 1)

2
( + 1)!

.

j

j
j

j
j

j j
j

j

2 3 4

+1
+1

=0

+1
+1

Notice that the x2 2 terms cancel with the first two terms of the infinite 
sum to give x1 . 

Of course the last term tends to 0 as j + . Thus we see that the iterates 
y x( )j converge to the solution y x x e( ) = [2 2] + 3 x for the initial value 
problem. Check that this function does indeed satisfy the given differential 
equation and initial condition.                                                          □ 

12.1.4 Estimation of the Picard Iterates 

To get an idea of why the assertion at the end of Subsection 12.1.2—that the 
functions yj converge uniformly—is true, let us do some elementary esti-

mations. Choose h > 0 so small that h C < 1, where C is the constant from 
the Lipschitz condition (12.1.3). We will assume in the following calcula-
tions that x x h<0 . 

Now we proceed with the iteration. Let y0 be the initial value at x0 as 
usual. Then 
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y y t F t y dt

F t y dt

M x x

M h

| ( )| = | ( , ) |

| ( , )|

|

.

x

x

x

x

0 1 0

0

0

0

0

We have of course used the boundedness condition (12.1.2). 
Next we have 

y x y x F t y t dt F t y t dt

F t y t F t y t dt

C y t y t dt

C M h h

M C h

| ( ) ( )| = | ( , ( )) ( , ( )) |

| ( , ( )) ( , ( ))|

| ( ) ( )|

= .

x

x

x

x

x

x

x

x

1 2 0 1

0 1

0 1

2

0 0

0

0

One can continue this procedure to find that 

y x y x M C h M h Ch| ( ) ( )| = ( ) .2 3
2 3 2

and, more generally, 

y x y x M C h M h Ch| ( ) ( )| = ( ) .j j
j j j

+1
+1

Now, if K L0 < < are integers, then 

y x y x y x y x y x y x

y x y x

M h Ch Ch Ch

| ( ) ( )| | ( ) ( )| + | ( ) ( )|

+ +| ( ) ( )|

([ ] + [ ] + [ ] ).

K L K K K K

L L

K K L

+1 +1 +2

1

+1 1

Since Ch < 1 by design, the geometric series Ch[ ]j
j converges. As a result, 

the expression on the right of our last display is as small as we please, for K
and L large, just by the Cauchy criterion for convergent series. It follows 
that the sequence y{ }j of approximate solutions converges uniformly to a 

function y y x= ( ). In particular, y is continuous. 
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Furthermore, we know that 

y x y F t y t dt( ) = + ( , ( )) .j x

x

j+1 0
0

Letting j , and invoking the uniform convergence of the yj, we may pass 

to the limit and find that 

y x y F t y x dt( ) = + ( , ( )) .
x

x

0
0

This says that y satisfies the integral equation that is equivalent to our 
original initial value problem. This equation also shows that y is con-
tinuously differentiable. Thus y is the function that we seek. 

It can be shown that this y is in fact the unique solution to our initial value 
problem. We shall not provide the details of the proof of that assertion. 

In case F is not Lipschitz—say that F is only continuous—then it is still 
possible to show that a solution y exists. But it will no longer be unique. 

********************************************************************************** 

CHARLES ÉMILE PICARD 

Charles Émile Picard (1856–1941) was a French mathematician. He was elected 
the fifteenth member to occupy seat 1 of the Académie française in 1924. 

He was born in Paris on 24 July 1856 and educated there at the Lycée 
Henri IV. He then studied Mathematics at the École Normale Supérieure. 

Picard’s mathematical papers, textbooks, and many popular writings exhibit 
an extraordinary range of interests, as well as an impressive mastery of the 
mathematics of his time. Picard’s Little Theorem and Great Theorem are 
important cornestones in the study of singularities of a holomorphic function. 
Picard made important contributions in the theory of differential equations, 
including work on Picard–Vessiot theory, Painlevé transcendents and his 
introduction of a kind of symmetry group for a linear differential equation. 
He also introduced the Picard group in the theory of algebraic surfaces, which 
describes the classes of algebraic curves on the surface modulo linear equiva-
lence. In connection with his work on function theory, he was one of the first 
mathematicians to use the emerging ideas of algebraic topology. Picard studied 
elasticity and telegraphy and made numerous significant contributions to 
applied mathematics. His collected papers run to four volumes. 

Louis Couturat studied integral calculus with Picard in 1891 and 1892, taking 
detailed notes of the lectures. These notes were preserved and now are available 
in three volumes from the Internet Archive. 
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Like his contemporary, Henri Poincaré, Picard was much concerned with the 
training of mathematics, physics, and engineering students. He dedicated 
himself to teaching and wrote some significant textbooks. He wrote a classic 
textbook on analysis and one of the first textbooks on the theory of relativity. 
People were skeptical of relativity theory for many years, so Picard’s text was an 
important early step. Picard’s popular writings include biographies of many 
leading French mathematicians, including his father in law, Charles Hermite. 
Hermite made important contributions to analysis and differential equations. 

In 1881 he married Marie, the daughter of Charles Hermite.   

********************************************************************************** 

Exercises 
1. Use the method of Picard iteration to solve the initial value pro-

blem y y x= + , y (0) = 1. 
2. Verify that the function y x= 1/ 2( + 1) is a solution of the dif-

ferential equation  

y y+ = 0 .3 (∗)  

Can you use separation of variables to find the general solution? 
This means to write the equation as 

dy
dx

y= 3

and then do some algebra to have all x terms on one side of the 
equation and all y terms on the other side of the equation. Then 
integrate. [Hint: It is y x c= 1/ 2( + ) .] Now find the solution to the 
initial value problem (∗) with initial condition y (1) = 4.  

3. Check that the function  

y x C=
2
3

ln(1 + ) +2

solves the differential equation 

dy
dx

x
y yx

=
2

3 + 3
.

2

Find the particular solution that satisfies the initial condition y (0) = 2. 
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4. In the method of Picard, suppose that the function F is given by a 
power series. Formulate a version of the Picard iteration tech-
nique in the language of power series.  

5. Explain why the initial value problem  

y e
y

=
(0) = 1

y

has a solution in a neighborhood of the origin.  
6. For each differential equation, sketch the family of solutions on a 

set of axes. This means, since each equation is not equipped with 
an initial condition, that the solution to each equation will have an 
unspecified constant in it.  
a. y xy = 0
b. y y e+ = x

c. y x=
d. y y= 1

*7. Formulate a version of the Picard theorem for vector-valued 
functions. Indicate how its proof differs, if at all, from the proof 
for scalar-valued functions. Now explain how one can use this 
vector-valued version of Picard to obtain an existence and un-
iqueness theorem for k th-order ordinary differential equations.  

*8. Does the Picard theorem apply to the initial value problem  

e
dy
dx

x y+ = , (1) = 2?dy dx/ 2

Why or why not? [Hint: Think in terms of the Implicit Function 
Theorem.]  

*9. A vector field is a function  

F x y x y x y( , ) = ( , ), ( , )

that assigns to each point in the plane 2 a vector. We call a curve 
a b: ( , ) 2 (here t t t( ) = ( ( ), ( ))1 2 ) an integral curve of the vector 

field if 

t F t( ) = ( ( ))

for each t. Thus “flows along” the vector field, and the tangent to the 
curve at each point is given by the value of the vector field at that point. 
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Put suitable conditions on F that will guarantee that if P 2 then 
there will be an integral curve for F through the point P. [Hint: Of 
course use the Picard theorem to obtain your result. What is the correct 
initial value problem?]  

*10. Give an example which illustrates that the integral curve that you 
found in Exercise 9 will only, in general, be defined in a small 
neighborhood of P. [Hint: Think of a vector field that “dies out.”]  

*11. Refer to Exercises 9 and 10. Find integral curves for each of the 
following vector fields:  
a. F x y y x( , ) = ,
b. F x y x y( , ) = + 1, 2
c. F x y xy x( , ) = 2 , 2

d. F x y x y( , ) = , 2

*12. Solve the differential equation y xy y+ = 0 by using a change 
of variable to reduce it to a first-order equation and then applying 
Picard’s theorem. 

13. Apply the first three iterations of Picard’s technique to the dif-
ferential equation  

y y y y= + , (0) = 1 .2

14. Apply the first three iterations of Picard’s technique to the dif-
ferential equation 

y xy y= , (1) = 2.2

12.2 Power Series Methods 

One of the techniques of broadest applicability in the subject of differential 
equations is that of power series, or real analytic functions. The philosophy 
is to guess that a given problem has a solution that may be represented by a 
power series, and then to endeavor to solve for the coefficients of that series. 
Along the way, one uses (at least tacitly) fundamental properties of these 
series—that they may be differentiated and integrated term by term, for 
instance. And that their intervals of convergence are preserved under 
standard arithmetic operations.  

Example 12.4: Let p be an arbitrary real constant. Let us use a differential 
equation to derive the power series expansion for the function 
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y x= (1 + ) .p

Of course the given y is a solution of the initial value problem 

x y py y(1 + ) = , (0) = 1.

We assume that the equation has a power series solution 

y a x a a x a x= = + + +
j

j
j

=0
0 1 2

2

with positive radius of convergence R. Then 

y j a x a a x a x

xy j a x a x a x a x

py pa x pa pa x pa x

= = + 2 + 3 + ;

= = + 2 + 3 + ;

= = + + + .

j
j

j

j
j

j

j
j

j

=1

1
1 2 3

2

=1
1 2

2
3

3

=0
0 1 2

2

By the differential equation, we see that the sum of the first two of these 
series equals the third. Thus 

ja x ja x pa x+ = .
j

j
j

j
j

j

j
j

j

=1

1

=1 =0

We immediately see two interesting anomalies: the powers of x on the left- 
hand side do not match up, so the two series cannot be immediately added. 
Also the summations do not all begin in the same place. We address these 
two concerns as follows. 

First, we can change the index of summation in the first sum on the left to 
obtain 

j a x ja x pa x( + 1) + = .
j

j
j

j
j

j

j
j

j

=0
+1

=1 =0

Write out the first few terms of the new sum, and the original sum, to see 
that they are just the same. 

Now every one of our series has xj in it, but they begin at different places. 
So we break off the extra terms as follows: 
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j a x ja x pa x a x pa x( + 1) + = + .
j

j
j

j
j

j

j
j

j

=1
+1

=1 =1
1

0
0

0 (12.4.1)  

Notice that all we have done is to break off the zeroeth terms of the first and 
third series, and put them on the right. 

The three series on the left-hand side of (12.4.1) are begging to be put 
together: they have the same form, they all involve powers of x, and they all 
begin at the same index. Let us do so: 

j a ja pa x a pa[( + 1) + ] = + .
j

j j j
j

=1
+1 1 0

Now the powers of x that appear on the left are 1, 2, …, and there are none 
of these on the right. We conclude that each of the coefficients on the left is 
zero; by the same reasoning, the coefficient a pa( + )1 0 on the right (i.e., the 
constant term) equals zero. So we have the equations1 

a pa
j a j p a j

+ = 0
( + 1) + ( ) = 0 for 1.j j

1 0

+1

Our initial condition tells us that a = 10 . Then our first equation implies that 
a p=1 . The next equation, with j = 1, says that 

a p a2 + (1 ) = 0.2 1

Hence a p a p p= ( 1) /2 = ( 1) /22 1 . Continuing, we take j = 2 in the 
second equation to get 

a p a3 + (2 ) = 03 2

so a p a p p p= ( 2) /3 = ( 2)( 1) /(3 2)3 2 . 
We may continue in this manner to obtain that 

a
p p p p j

j
j=

( 1)( 2) ( + 1)
!

for 1.j

Thus the power series expansion for our solution y is 

y px
p p

x
p p p

x

p p p p j
j

x

= 1 + +
( 1)

2!
+

( 1)( 2)
3!

+

+
( 1)( 2) ( + 1)

!
+ .j

2 3
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Since we knew in advance that the solution of our initial value problem was 

y x= (1 + ) ,p

we find that we have derived Isaac Newton’s general binomial theorem (or 
binomial series): 

x px
p p

x
p p p

x

p p p p j
j

x

(1 + ) = 1 + +
( 1)

2!
+

( 1)( 2)
3!

+

+
( 1)( 2) ( + 1)

!
+ .

p

j

2 3

□ 

Example 12.5: Let us consider the differential equation 

y y= .

Of course we know from elementary considerations that the solution to this 
equation is y C e= x, but let us pretend that we do not know this. Our goal 
is to instead use power series to discover the solution. We proceed by 
guessing that the equation has a solution given by a power series, and we 
proceed to solve for the coefficients of that power series. 

So our guess is a solution of the form 

y a a x a x a x= + + + + .0 1 2
2

3
3

Then 

y a a x a x= + 2 + 3 + ,1 2 3
2

and we may substitute these two expressions into the differential equation. 
Thus 

a a x a x a a x a x+ 2 + 3 + = + + + .1 2 3
2

0 1 2
2

Now the powers of x must match up (i.e., the coefficients must be equal). 
We conclude that 

a a
a a
a a

=
2 =
3 =

1 0

2 1

3 2
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and so forth. Let us take a0 to be an unknown constant C. Then we see that 

a C

a
C

a
C

= ;

=
2

;

=
3 2

;

etc.

1

2

3

In general, 

a
C
j

=
!
.j

In summary, our power series solution of the original differential equation is 

y
C
j

x C
x
j

C e=
!

=
!

= .
j

j

j

j
x

=0 =0

Thus we have a new way, using power series, of discovering the general 
solution of the differential equation y y= .                                         □ 

Example 12.6: Let us use the method of power series to solve the differential 
equation 

x y xy p p y(1 ) 2 + ( + 1) = 0.2 (12.6.1)  

Here p is an arbitrary real constant. This is called Legendre’s equation. 
We therefore guess a solution of the form 

y a x a a x a x= = + + +
j

j
j

=0
0 1 2

2

and calculate 

y ja x a a x a x= = + 2 + 3 +
j

j
j

=1

1
1 2 3

2

and 

y j j a x a a x= ( 1) = 2 + 3 2 + .
j

j
j

=2

2
2 3
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It is most convenient to treat the differential equation in the form (12.6.1). 
We calculate 

x y j j a x= ( 1)
j

j
j2

=2

and 

xy ja x2 = 2 .
j

j
j

=1

Substituting into the differential equation now yields 

j j a x j j a x ja x p p a x( 1) ( 1) 2 + ( + 1) = 0.
j

j
j

j
j

j

j
j

j

j
j

j

=2

2

=2 =1 =0

We adjust the index of summation in the first sum so that it contains xj

rather than xj 2 and we break off spare terms and collect them on the right. 
We also break off terms from the third and fourth power series and move 
them to the right. The result is 

j j a x j j a x

ja x p p a x

a a x a x p p a p p a x

( + 2)( + 1) ( 1)

2 + ( + 1)

= 2 6 + 2 ( + 1) ( + 1) .

j
j

j

j
j

j

j
j

j

j
j

j

=2
+2

=2

=2 =2

2 3 1 0 1

In other words, 

j j a j j a ja p p a x

a a x a x p p a p p a x

[( + 2)( + 1) ( 1) 2 + ( + 1) ]

= 2 6 + 2 ( + 1) ( + 1) .
j

j j j j
j

=2
+2

2 3 1 0 1

As a result, 

j j a j j a ja p p a j[( + 2)( + 1) ( 1) 2 + ( + 1) ] = 0 for = 2, 3, …j j j j+2
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together with 

a p p a2 ( + 1) = 02 0

and 

a a p p a6 + 2 ( + 1) = 0.3 1 1

We have arrived at the recursion 

a
p p

a

a
p p

a

a
p j p j

j j
a j

=
( + 1)
1 2

,

=
( 1)( + 2)

2 3
,

=
( )( + + 1)

( + 2)( + 1)
for = 2, 3, … .j j

2 0

3 1

+2

(12.6.2)  

We recognize a familiar pattern: The coefficients a0 and a1 are unspecified, so 
we set a A=0 and a B=1 . Then we may proceed to solve for the rest of the 
coefficients. Now 

a
p p

A

a
p p

B

a
p p

a
p p p p

A

a
p p

a

p p p p
B

a
p p

a

p p p p p p
A

a
p p

a

p p p p p p
B

=
( + 1)

2
,

=
( 1)( + 2)

2 3
,

=
( 2)( + 3)

3 4
=

( 2)( + 1)( + 3)
4!

,

=
( 3)( + 4)

4 5

=
( 1)( 3)( + 2)( + 4)

5!
,

=
( 4)( + 5)

5 6

=
( 2)( 4)( + 1)( + 3)( + 5)

6!
,

=
( 5)( + 6)

6 7

=
( 1)( 3)( 5)( + 2)( + 4)( + 6)

7!
,

2

3

4 2

5 3

6 4

7 5
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and so forth. Putting these coefficient values into our supposed power series 
solution we find that the general solution of our differential equation is 

y A
p p

x
p p p p

x

p p p p p p
x

B x
p p

x
p p p p

x

p p p p p p
x

= 1
( + 1)

2!
+

( 2)( + 1)( + 3)
4!

( 2)( 4)( + 1)( + 3)( + 5)
6!

+

+
( 1)( + 2)

3!
+

( 1)( 3)( + 2)( + 4)
5!

( 1)( 3)( 5)( + 2)( + 4)( + 6)
7!

+ .

2 4

6

3 5

7

We assure the reader that, when p is not an integer, then these are not 
familiar elementary transcendental functions. They are what we call 
Legendre functions. In the special circumstance that p is a positive even 
integer, the first function (that which is multiplied by A) terminates as a 
polynomial. In the special circumstance that p is a positive odd integer, the 
second function (that which is multiplied by B) terminates as a polynomial. 
These are called Legendre polynomials, and they play an important role in 
mathematical physics, representation theory, and interpolation theory.   □ 

Some differential equations have singularities. In the present context, this 
means that the higher order terms have coefficients that vanish to high 
degree. As a result, one must make a slightly more general guess as to the 
solution of the equation. This more general guess allows for a corre-
sponding singularity to be built into the solution. Rather than develop the 
full theory of these Frobenius series, we merely give one example. 

Example 12.7: We use the method of Frobenius series to solve the 
differential equation 

x y x x y y2 + (2 + 1) = 02 (12.7.1)  

about the regular singular point 0. 
We guess a solution of the form 

y x a x a x= =m

j
j

j

j
j

m j

=0 =0

+

and therefore calculate that 
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y m j a x= ( + )
j

j
m j

=0

+ 1

and 

y m j m j a x= ( + )( + 1) .
j

j
m j

=0

+ 2

Substituting these calculations into the differential equation yields 

m j m j a x

m j a x

m j a x a x

2 ( + )( + 1)

+ 2 ( + )

+ ( + )

= 0.

j
j

m j

j
j

m j

j
j

m j

j
j

m j

=0

+

=0

+ +1

=0

+

=0

+

We make the usual adjustments in the indices so that all powers of x are 
xm j+ , and break off the odd terms to put on the right-hand side of the 
equation. We obtain 

m j m j a x

m j a x

m j a x a x

m m a x ma x a x

2 ( + )( + 1)

+ 2 ( + 1)

+ ( + )

= 2 ( 1) + .

j
j

m j

j
j

m j

j
j

m j

j
j

m j

m m m

=1

+

=1
1

+

=1

+

=1

+

0 0 0

The result is 

m j m j a m j a

m j a a

j

[2( + )( + 1) + 2( + 1)

+ ( + ) ] = 0

for = 1, 2, 3, …

j j

j j

1

(12.7.2)  

together with 

m m m a[ 2 ( 1) + 1] = 0.0
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It is clearly not to our advantage to let a = 00 . Thus 

m m m2 ( 1) + 1 = 0.

This is the indicial equation. 
The roots of this quadratic equation are m = 1/2, 1. We put each of these 

values into (12.7.2) and solve the resulting recursion. 
Now (12.7.2) says that 

m j mj j m a m j a(2 + 2 + 4 1) = ( 2 2 + 2) .j j
2 2

1

For m = 1/2 this is 

a
j

j j
a=

3 2
3 + 2j j2 1

so 

a a a a a= , =
1
2

=
1
2

, etc.1 0 2 1 0

For m = 1 we have 

a
j

j j
a=

2
3 + 2j j2 1

so 

a a a a a=
2
5

, =
4

14
=

4
35

, etc.1 0 2 1 0

Thus we have found the linearly independent solutions 

a x x x1 +
1
2

+0
1/2 2

and 

a x x x1
2
5

+
4
35

+ .0
2

The general solution of our differential equation is then 
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y Ax x x Bx x x= 1 +
1
2

+ + 1
2
5

+
4

35
+ .1/2 2 2

□ 

Exercises  
1. Explain why the method of power series would not work very 

well to solve the differential equation 

y x y x= sin .

Note here that the coefficient of y is x| |, and x| |is not a differentiable 
function.  

2. Solve the initial value problem 

y xy x y y= , (0) = 2, (0) = 12

by the method of power series.  
3. Solve the initial value problem 

y xy x y= , (0) = 2

by the method of power series.  
4. Solve the differential equation 

y xy x=

by the method of power series. Since there are no initial conditions, 
you should obtain a general solution with three free parameters.  

5. Solve the initial value problem 

y y x y= , (0) = 1

both by Picard’s method and by the method of power series. Verify 
that you get the same solution by both means.  

6. When you solve a differential equation by the method of power 
series, you cannot in general expect the power series to converge on 
the entire real line. As an example, solve the differential equation 

y
x

y
1

1
= 0
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by the method of power series. What is the radius of convergence of 
the power series? Can you suggest why that is so?  

7. Consider the differential equation 

y y x= .2

The function x2 is even. If the function y is even, then y will be even 
also. Thus it makes sense to suppose that there is a power series 
solution with only even powers of x. Find it.  

8. Consider the differential equation 

y y x+ = .3

The function x3 is odd. If the function y is odd, then y will also be 
odd. Thus it makes sense to suppose that there is a power series 
solution with only odd powers of x. Find it.  

9. Find all solutions of the differential equation 

y xy= .

10. Find all solutions of the differential equation 

y
y
x

= .

11. Use power series methods to solve the differential equation 

y y+ 4 = 0 .

12. Solve the differential equation 

y y= .2

*13. What are sufficient conditions on the function F so that the dif-
ferential equation 

y F x y= ( , )

has the property that its solution y is continuously differentiable?  
*14. Find a solution of the partial differential equation 
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x y
u x y x y+ ( , ) = +

2

2

2

2

using the method of power series in two variables.  
15. The Cauchy-Kowalewski theorem states that any differential 

equation (ordinary or partial) with real analytic coefficients has a 
(local) real analytic solution. This is one of the only really general 
theorems in the theory of differential equations. Discuss what the 
Cauchy-Kowalewski theorem says about the differential equation 

y
x

x
y

+ 1
= 0.

16. Let define a differential equation 

y = 0

which is a linear, constant coefficent ordinary differential equation. If 
y is a solution of this equation then each derivative y k( ) a solution. 
What does this tell you about what y must be? What sort of power 
series defines a solution?  

17. Give an example of a sequence of real analytic functions fj which 
converge uniformly on the interval [0, 1] to a non-real-analytic 
function. 

Note  
1 A set of equations like this is called a recursion. It expresses ajs with later indices 

in terms of ajs with earlier indices.  
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13 
Introduction to Harmonic Analysis  

13.1 The Idea of Harmonic Analysis 

Fourier analysis first arose historically in the context of the study of a certain 
partial differential equation (we shall describe this equation in detail in the 
discussion below) of mathematical physics. The equation could be solved 
explicitly when the input (i.e., the right-hand side of the equation) was a 
function of the form jxsin or jxcos for j an integer. The question arose 
whether an arbitrary input could be realized as the superposition of sine 
functions and cosine functions. 

In the late eighteenth century, debate raged over this question. It was 
fueled by the fact that there was no solid understanding of just what con-
stituted a function. The important treatise [FOU] of Joseph Fourier gave a 
somewhat dreamy but nevertheless precise method for expanding virtually 
any function as a series in sines and cosines. It took almost a century, and 
the concerted efforts of Dirichlet, Cauchy, Riemann, Weierstrass, and many 
other important analysts, to put the so-called theory of “Fourier series” on a 
rigorous footing. 

We now know, and can prove exactly, that if f is a continuously differ-
entiable function on the interval [0, 2 ] then the coefficients 

c f t e dt=
1

2
( )n

int
0

2

give rise to a series expansion 

f t c e( ) =
n

n
int

=0

that is valid (i.e., convergent) at every point, and converges back to f . 
[Notice that the convenient notation eijt given to us by Euler’s formula 
carries information both about the sine and the cosine.] This expansion 
validates the vague but aggressive ruminations in [FOU] and lays the 

DOI: 10.1201/9781003222682-14                                                      395 
ISTUDY

https://doi.org/10.1201/9781003222682-14


foundations for a powerful and deep method of analysis that today has 
wide applicability in physics, engineering, differential equations, and har-
monic analysis.1 

Certainly harmonic analysis is one of the most vigorous and active areas 
of modern mathematics. New ideas are continually in development. One of 
the most exciting new directions in the subject is the theory of wavelets due 
to Yves Myer. What is remarkable about wavelet theory is that it is a 
“custom” harmonic analysis that allows one to design building blocks 
(which replace the traditional sines and cosines) that are adapted to a 
particular problem. The result is a theory with better convergence results, 
and that allows localization in both the space variable and the phase vari-
able. See [WAL] for an accessible introduction to wavelet theory. 

In the present chapter we shall explore the foundations of Fourier series 
and also learn some of their applications. All of our discussions will of 
course be rigorous and precise. They will take advantage of all the tools of 
analysis that we have developed thus far in the present book. 

*********************************************************** 

JEAN-BAPTISTE JOSEPH FOURIER 

Jean-Baptiste Joseph Fourier (1768–1830) was a French mathematician and 
physicist born in Auxerre and best known for initiating the investigation of 
Fourier series, which eventually developed into Fourier analysis and harmonic 
analysis, and their applications to problems of heat transfer and vibrations. The 
Fourier transform and Fourier’s law of conduction are also named in his honor. 

Fourier was the son of a tailor. He was orphaned at the age of nine. Fourier 
was recommended to the Bishop of Auxerre and, through this introduction, he 
was educated by the Benedictine Order of the Convent of St. Mark. He took a 
prominent part in his own district in promoting the French Revolution, serving 
on the local Revolutionary Committee. He was imprisoned briefly during the 
Terror but, in 1795, was appointed to the École Normale and subsequently 
succeeded Joseph-Louis Lagrange at the École Polytechnique. 

Fourier accompanied Napoleon Bonaparte on his Egyptian expedition in 1798, 
as scientific adviser, and was appointed secretary of the Institut d’Égypte. After 
the British victories and the capitulation of the French under General Menou in 
1801, Fourier returned to France. 

In 1801, Napoleon appointed Fourier Prefect (Governor) of the Department of 
Isére in Grenoble, where he oversaw road construction and other projects. It was 
while at Grenoble that he began to experiment on the propagation of heat. He 
presented his paper On the Propagation of Heat in Solid Bodies to the Paris 
Institute on December 21, 1807. He also contributed to the monumental 
Description de l’Égypte. 
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In 1822, Fourier succeeded Jean Baptiste Joseph Delambre as Permanent 
Secretary of the French Academy of Sciences. In 1830, he was elected a foreign 
member of the Royal Swedish Academy of Sciences. 

In 1830, his diminished health began to take its toll: Fourier had already 
experienced, in Egypt and Grenoble, some attacks of aneurism of the heart. A 
fall, however, which he sustained on the 4th of May 1830, while descending a 
flight of stairs, aggravated the malady to an extent beyond what could have 
been ever feared. 

Shortly after this event, he died in his bed on 16 May 1830. 
Fourier was buried in the Pére Lachaise Cemetery in Paris, a tomb decorated 

with an Egyptian motif to reflect his position as secretary of the Cairo Institute, 
and his collation of Description de l’Égypte. Singer Edith Piaf, playwright Oscar 
Wilde, and rock star Jim Morrison are also buried there. Fourier’s name is one of 
the 72 names inscribed on the Eiffel Tower. 

A bronze statue was erected in Auxerre in 1849, but it was melted down for 
armaments during World War II. Joseph Fourier University in Grenoble is 
named after him.   

*********************************************************** 

Exercises  
1. The function f ( ) = cos4 is a nice smooth function, so will have a 

Fourier series expansion. That is, it will have an expansion as a 
sum of functions jcos and jsin with real coefficients. Determine 
what that expansion is.  

*2. Explain why the only continuous multiplicative homomorphisms 
from the circle group T, which is just the set of all ei in the plane, 
into C\{0} are given by 

e ei ik

for some integer k. Here a homomorphism in this context is a 
function that satisfies a b a b( ) = ( ) ( ).  

*3. Answer Exercise 2 with the circle group replaced by the real line.  
4. Classical harmonic analysis is done on a space with a group 

action—such as the circle group, or the line, or N-dimensional 
Euclidean space. Explain what this assertion means, and supply 
some detail.  

*5. It can be proved, using elementary Fourier series (see Section 13.2), 
that 
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j
1

=
6

.
j=1

2

2

This fact was established by Leonhard Euler in 1735. It is a matter 
of great interest to find similar formulas for 

j
1

j
k

=1

when k = 3, 4, …. Apery has shown that, when k = 3, then the sum 
is irrational. This set of ideas has to do with the Riemann zeta 
function and the distribution of primes. Do some experiments on 
your computer to determine what this might mean.  

6. Refer to Exercise 5. Use your symbol manipulation software to 
calculate the partial sums S100, S1000, and S10000 for the series 

j
1

.
j=1

2

Compare your answers with the value of /62 .  
7. It is counterintuitive that the function f x x( ) = on the interval 

[0, 2 ] can be uniformly approximated by trigonometric poly-
nomials. But it is true. Write down a trigonometric polynomial that 
approximates f within distance 1/10.  

8. If the function f ( ) has Fourier series expansion 

a e ,
j

j
ij

=

then what can you say about the Fourier series of f 2? Can you 
write the first six terms?  

*9. Every continuously differentiable function f ( ) has a convergent 
Fourier series expansion a ej j

ij
= . And each of the eij has a 

convergent power series expansion. Yet f itself may not have a 
convergent power series expansion. Explain.  

10. What is the Fourier series expansion of the function f ( ) = cos 2 ? 
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13.2 The Elements of Fourier Series 

In this section it will be convenient for us to work on the interval [0, 2 ]. We 
will perform arithmetic operations on this interval modulo 2 : for example, 
3 /2 + 3 /2 is understood to equal because we subtract from the answer 
the largest multiple of 2 that it exceeds. When we refer to a function f
being continuous on [0, 2 ], we require that it be right continuous at 0, left 
continuous at 2 , and that f f(0) = (2 ). Similarly for continuous differ-
entiability and so forth. 

If f is a (either real- or complex-valued) Riemann integrable function on 
this interval and if Zn , then we define 

f n f t e dtˆ ( ) =
1

2
( ) .int

0

2

We call f nˆ ( ) the nth Fourier coefficient of f . The formal expression 

Sf x f n e( )~ ˆ ( )
n

inx

=

is called the Fourier series of the function f . Notice that we are not claiming 
that Sf converges, nor that it converges to f . Right now it is just a formal 
expression. 

In circumstances where the Fourier series converges to the function f , 
some of which we shall discuss below, the series provides a decomposition 
of f into simple component functions. This type of analysis is of importance 
in the theory of differential equations, in signal and image processing, and 
in scattering theory. There is a rich theory of Fourier series which is of 
interest in its own right. 

It is important that we say right away how we sum Fourier series. Define 
the Nth partial sum of the Fourier series of f to be 

S f x f j e( ) = ˆ ( ) .N
j N

N
ijx

=

We say that the Fourier series Sf converges to f at x if S f x f x( ) ( )N . 
Observe that, in case f has the special form 

f x a e( ) = ,
j N

N

j
ijt

=
(13.2.1)  

then we may calculate that 
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f t e dt a e dt
1

2
( ) =

1
2

int

j N

N

j
i j n t

0

2

= 0

2
( )

Now the integral equals 0 if j n (this is so because e dt = 0ikt
0

2
when k is a 

nonzero integer). And the term with j n= gives rise to a 1n . Thus we find 
that 

a f t e dt=
1

2
( ) .n

int
0

2
(13.2.2)  

Since, in Exercise 5 of Section 9.3, we showed that functions of the form 
(13.2.1) are dense in the continuous functions, we might hope that a formula 
like (13.2.2) will give a method for calculating the coefficients of a trigo-
nometric expansion in considerable generality. In any event, this calculation 
helps to justify (after the fact) our formula for f nˆ ( ). 

Example 13.1: Let f x x( ) = . Then 

a te dt=
1

2
.n

int
0

2

This is easily calculated to equal 

a
in

=
1

.n

Therefore the Fourier expansion of f is 

in
e

1
.

n

int

=
□ 

The other theory that you know for decomposing a function into simple 
components is the theory of Taylor series. However, in order for a function 
to have a Taylor series it must be infinitely differentiable. Even then, as we 
have learned, the Taylor series of a function usually does not converge, and 
if it does converge its limit may not be the original function—see Section 9.2. 
The Fourier series of f converges to the original function f under fairly 
mild hypotheses on f , and thus provides a useful tool in analysis. 

The first result we shall prove about Fourier series gives a growth con-
dition on the coefficients f nˆ ( ): 
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Proposition 13.2: (Bessel’s Inequality) If f 2 is integrable then 

f f t dt|ˆ | ( ) .
n N

N

n
=

2
0

2
2

Proof: Recall that e e=ijt ijt and a a a= ¯2 for Ca . We calculate 

f t S f t dt

f t f n e f t f n e dt

f t dt f t e dt f n

f t e dt f n

f m f n e e dt

1
2

( ) ( )

=
1

2
( ) ˆ ( ) ( ) ˆ ( )

=
1

2
( )

1
2

( ) ˆ ( )

1
2

( ) ˆ ( )

+ ˆ ( ) ˆ ( )
1

2
.

N

n N

N
int

n N

N
int

n N

N
int

n N

N
int

m n

imt int

0

2
2

0

2

= =

0

2
2

= 0

2

= 0

2

, 0

2

Now each of the first two sums equals f nˆ ( )n N
N

=
2
. In the last sum, any 

summand with m n equals 0. The summands with m n= equal f nˆ ( )
2
. 

Thus our equation simplifies to 

f t S f t dt f t dt f n
1

2
( ) ( ) =

1
2

( ) ˆ ( ) .N
n N

N

0

2 2

0

2 2

=

2

Since the left side is nonnegative, it follows that 

f n f t dtˆ ( )
1

2
( ) ,

n N

N

=

2

0

2
2

as desired.                                                                                    □ 

Corollary 13.3: If f 2 is integrable then the Fourier coefficients f nˆ ( ) satisfy 

f n nˆ ( ) 0 as .

Proof: Since f nˆ ( ) <
2

we know that f nˆ ( ) 0
2

. This implies the 
result.                                                                                          □ 

Remark 13.4: In fact, with a little extra effort, one can show that the conclusion 
of the corollary holds if only f is integrable. This entire matter is addressed 
from a slightly different point of view in Proposition 13.16 below.             □ 
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Since the coefficients of the Fourier series, at least for a square integrable 
function, tend to zero, we might hope that the Fourier series will converge in 
some sense. Of course the best circumstance would be that S f fN (point-
wise, or in some other manner). We now turn our attention to this problem. 

Proposition 13.5: (The Dirichlet Kernel) If f is integrable then 

S f x D x t f t dt( ) =
1

2
( ) ( ) ,N N

0

2

where 

( )
D t

N t

t
( ) =

sin +

sin
.N

1
2

1
2

Proof: Observe that 

S f x f n e

f t e dt e

f t e dt

f t e dt

( ) = ˆ ( )

=
1

2
( )

=
1

2
( )

=
1

2
( ) .

N
n N

N
inx

n N

N
int inx

n N

N
in x t

n N

N
in x t

=

= 0

2

= 0

2
( )

0

2

=

( )

Thus we are finished if we can show that the sum in [ ] equals D x t( )N . 
Rewrite the sum as 

e e( ) + ( ) 1.
n

N
i x t n

n

N
i x t n

=0

( )

=0

( )

Then each of these last two sums is the partial sum of a geometric series. 
Thus we use the formula from Proposition 3.15 to write the last line as 

e
e

e
e

1
1

+
1

1
1.

i x t N

i x t

i x t N

i x t

( )( +1)

( )

( )( +1)

( )

We put everything over a common denominator to obtain 
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N x t N x t
x t

cos ( ) cos( + 1)( )
1 cos( )

.

We write 

( )
( )
( )
( )

N x t N x t x t

N x t N x t x t

x t x t x t

( ) = + ( ) ( ) ,

( + 1)( ) = + ( ) + ( ) ,

( ) = ( ) + ( )

1
2

1
2

1
2

1
2

1
2

1
2

and use the sum formula for the cosine function to find that the last line 
equals 

( )( ) ( )
( )

( )

N x t x t

x t

N x t

x t

D x t

2 sin + ( ) sin ( )

2 sin ( )

=
sin + ( )

sin ( )

= ( ).N

1
2

1
2

2 1
2

1
2

1
2

□ 
That is the desired conclusion. 

Remark 13.6: We have presented this particular proof of the formula for DN
because it is the most natural. It is by no means the shortest. Another proof 
is explored in the exercises. 

Note also that, by a change of variable, the formula for S fN presented in 
the proposition can also be written as 

S f x D t f x t dt( ) =
1

2
( ) ( )N N

0

2

provided we adhere to the convention of doing all arithmetic modulo 
multiples of 2 .                                                                             □ 

Lemma 13.7: For any N it holds that 

D t dt
1

2
( ) = 1.N

0

2

Proof: It would be quite difficult to prove this property of DN from the 
formula that we just derived. However, if we look at the proof of the 
proposition we notice that 
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D t e( ) = .N
n N

N
int

=

Hence 

D t dt e dt

e dt

1
2

( ) =
1

2

=
1

2
= 1

N
n N

N
int

n N

N
int

0

2

0

2

=

= 0

2

because any power of eit, except the zeroeth power, integrates to zero. This 
completes the proof.                                                                       □ 

Next we prove that, for a large class of functions, the Fourier series con-
verges back to the function at every point. 

Theorem 13.8: Let f be a functinn on [0, 2 ] that satisfies a Lipschitz condition: 
there is a constant C > 0 such that if s t, [0, 2 ] , then 

f s f t C s t( ) ( ) . (13.8.1)  

[Note that at 0 and 2 this condition is required to hold modulo 2 –see the remarks 
at the beginning of the section.] Then, for every x [0, 2 ], it holds that 

S f x f x N( ) ( ) as .N

Indeed, the convercence is uniform in x. 

Proof: Fix x [0, 2 ]. We calculate that 

S f x f x f x t D t dt f x

f x t D t dt

f x D t dt

( ) ( ) = ( ) ( ) ( )

= ( ) ( )

( ) ( ) ,

N N

N

N

1
2 0

2

1
2 0

2

1
2 0

2

where we have made use of the lemma. It is convenient here to exploit 
periodicity and write our integrals as instead of 

0

2
. Now we combine 

the integrals to write 
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( )( )

S f x f x

f x t f x D t dt

N t dt

Nt dt

Nt dt

h t Nt dt k t Nt dt

( ( ) ( )

= [ ( ) ( )] ( )

= sin +

cos sin

+ sin cos

( )sin + ( )cos ,

N

N

f x t f x

t

f x t f x
t

t

f x t f x

t
t

1
2

1
2

( ) ( )
sin / 2

1
2

1
2

( ) ( )
sin / 2 2

1
2

( ) ( )
sin / 2 2

1
2

1
2

where we have denoted the first expression in [ ] by h t h t( ) = ( )x and the 
second expression in [ ] by k t k t( ) = ( )x . We use our hypothesis (13.8.1) about 
f to see that 

h t
f x t f t

t
t
t

t
C( ) =

( ) ( )
sin( /2)

cos
2

3 .

[Here we have used the elementary fact that u u2/ | sin / | 1 for 
u/2 /2.] Thus h is a bounded function. It is obviously continuous, 

because f is, except perhaps at t = 0. So h is integrable—since it is bounded 
it is even square integrable. An even easier discussion shows that k is square 
integrable. Therefore Corollary 13.3 applies and we may conclude that the 
Fourier coefficients of h and of k tend to zero. However, the integral 
involving h is nothing other than h N h N i( ˆ ( ) ˆ ( ))/(2 ) and the integral 
involving k is precisely k N k N(ˆ ( ) + ˆ ( ))/2. We conclude that these integrals 
tend to zero as N ; in other words, 

S f x f x N( ) ( ) 0 as .N

Since the relevant estimates are independent of x, we see that the 
convergence is uniform.                                                                  □ 

Corollary 13.9: If f C ([0, 2 ])1 (that is, f is continuously differentiable) then 
S f fN uniformly. 

Proof: A C1 function, by the Mean Value Theorem, satisfies a Lipschitz 
condition.                                                                                     □ 
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In fact the proof of the theorem suffices to show that, if f is a Riemann 
square-integrable function on [0, 2 ] and if f is differentiable at x, then 
S f x f x( ) ( )N . 

In the exercises we shall explore other methods of summing Fourier series 
that allow us to realize even discontinuous functions as the limits of certain 
Fourier expressions. 

It is natural to ask whether the Fourier series of a function characterizes 
that function. We can now give a partial answer to this question: 

Corollary 13.10: If f is a function on [0, 2 ] that satisfies a Lipschitz condition 
and if the Fourier series of f is identically zero then f 0. 

Proof: By the preceding corollary, the Fourier series converges uniformly 
to f . But the Fourier series is 0.                                                        □ 

Corollary 13.11: If f and g are functions on [0, 2 ] that satisfy a Lipschitz 
condition and if the Fourier coefficients of f are the same as the Fourier coefficients 
of g then f g. 

Proof: Apply the preceding corollary to f g.                                    □ 

Example 13.12: Let f t t t t( ) = 2 , 0 22 . Then f f(0) = (2 ) = 0 and f
is Lipschitz modulo 2 . Calculating the Fourier series of f , setting t = 0, and 
using the theorem reveals that 

j
1

=
6

.
j=1

2

2

You are requested to provide the details.                                        □ 

Exercises  
1. Find the Fourier series for the function 

f x

x
x

x
( ) =

0 if < 0
1 if 0

0 if < .
2

2

2. Find the Fourier series of the function 

f x x
x x

( ) = 0 if < 0
sin if 0
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3. Find the Fourier series for each of these functions. Pay special 
attention to the reasoning used to establish your conclusions; 
consider alternative lines of thought.  
a. f x( ) = , x

b. f x x( ) = sin , x

c. f x x( ) = cos , x

d. f x x x( ) = + sin + cos , x

4. Find the Fourier series for the function given by   

f x a x
a x

( ) = if < 0
if 0

for a a positive real number.   

f x x
x

( ) = 1 if < 0
1 if 0

f x
x

x
( ) =

if < 0

if 0
4

4

f x x
x

( ) = 1 if < 0
2 if 0

f x x
x

( ) = 1 if < 0
2 if 0

5. The functions xsin2 and xcos2 are both even. Show, without 
using any calculations, that the identities 

x x xsin =
1
2

(1 cos 2 ) =
1
2

1
2

cos 22

and 

x x xcos =
1
2

(1 + cos 2 ) =
1
2

+
1
2

cos 22

are actually the Fourier series expansions of these functions.  
6. Prove the trigonometric identities 

x x x x x xsin =
3
4

sin
1
4

sin 3 and cos =
3
4

+
1
4

cos 33 3

and show briefly, without calculation, that these are the Fourier 
series expansions of the functions xsin3 and xcos3 .  

7. Give another proof for the formula for D t( )N by completing the 
following outline: 
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a. D t e( ) = ;N n N
N int

=

b. e D t e e( 1) ( ) = ;it
N

i N t iNt( +1)

c. Multiply both sides of the last equation by e it/2.  
d. Conclude that D t( ) =N

N t
t

sin( + 1 / 2)
sin( / 2)

.  

8. Complete the details of Example 13.12.  
*9. If f is integrable on the interval [0, 2 ] and if N is a nonnegative 

integer then define 

f x
N

S f x( ) =
1
+ 1

( ).N
n

N

N
=0

This is called the Nth Cesaro mean for the Fourier series of f . 
Prove that 

f x K x t f t dt( ) =
1

2
( ) ( ) ,N N

0

2

where 

K x t
N

x t

t
( ) =

1
+ 1

sin ( )

sin
.N

N + 1
2

1
2

2

10. Refer to Exercise 9 for notation. Prove that if > 0 then 
K tlim ( ) = 0N N with the limit being uniform for all t .  

*11. Refer to Exercise 9 for notation. Prove that K t dt( ) = 1N
1

2 0

2
.  

12. What is the Fourier series for the function f x x( ) = on the interval 
[ , ]? Why does it only involve sine terms? 

13. What is the Fourier series for the function f x x( ) = | | on the in-
terval [ , ]? Why does it only involve cosine terms?  

14. What is the Fourier series for the function f x x( ) = sin 3 on the 
interval [ , ]. Why does it only involve sine terms? 

13.3 An Introduction to the Fourier Transform 

It turns out that Fourier analysis on the interval [0, 2 ] and Fourier analysis on 
the entire real line R are analogous; but they differ in certain particulars that are 
well worth recording. In the present section we present an outline of the theory 
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of he Fourier transform on the line. A thorough treatment of Fourier analysis 
on Euclidean space may be found in [STG]. See also [KRA2]. 

We define the Fourier transform of an integrable function f on R by 

R
f f t e dtˆ ( ) = ( ) .it

Many references will insert a factor of 2 in the exponential or in the 
measure. Others will insert a minus sign in the exponent. There is no 
agreement on this matter. We have opted for this particular definition be-
cause of its simplicity. 

We note that the significance of the exponentials eit is that the only 
continuous multiplicative homomorphisms of R intocharactev group of R
the circle group are the functions t e( ) = it , R. These functions are 
called the characters of the additive group R. We refer the reader to [KRA2] 
for more on this matter. 

Proposition 13.13: If f is an integrable function, then 

R
f f t dtˆ ( ) ( ) .

Proof: Observe that, for any R, 

R R
f f t e dt f t e dt f t dtˆ ( ) = ( ) ( ) ( ) .it it

Proposition 13.14: If f is integrable, f is differentiable, and f is integrable, then 

f i f(ˆ )( ) = ˆ ( ).

Proof: Integrate by parts: if f is an infinitely differentiable function that 
vanishes outside a compact set, then 

f f t e dt dt

f t e dt

i f t e dt

i f

(ˆ )( ) = ( )

= ( )[ ]

= ( )

= ˆ ( ).

it

it

it
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[Of course the “boundary terms” in the integration by parts vanish since f
vanishes outside a compact set.] The general case follows from a limiting 
argument (see the Appendix at the end of this section).                        □ 

Proposition 13.15: If f is integrable and it f is integrable, then 

it f
d
d

f( ˆ ) = ˆ .

Proof: Differentiate under the integral sign: 

R

R

R

f f t e dt

f t e dt

f t ite dt

itf

ˆ ( ) = ( )

= ( ) ( )

= ( )

= ( ˆ ).

d
d

d
d

it

d
d

it

it

□ 

Proposition 13.16: (The Riemann–Lebesgue Lemma) If f is integrable, then 

flim ˆ ( ) = 0.

Proof: First assume that Rg C ( )2 and vanishes outside a compact set. We 
know that g|ˆ| is bounded. Also 

R
g g g x dx Cˆ ( ) = [ ˆ”] ˆ "( ) = .2

Then g(1 + ) ˆ2 is bounded. Thus 

g
Cˆ ( )

”
1 +

0.
2

This proves the result for g Cc
2. [Notice that the argument also shows that, 

if Rf C ( )2 and vanishes outside a compact set, then ĝ is integrable.] 
Now let f be an arbitrary integrable function. Then there is a function 

RC ( )2 , vanishing outside a compqct set, such that 

R
f x x dx( ) ( ) < /2.
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[See the appendix to this section for the details of this assertion.] Choose M
so large that, when M| | > , then | ˆ ( )| < /2. Then, for M| | > , we have 

R

f f psi

f

f x x dx

ˆ ( ) = ( ˆ) ( ) + ( )

( ˆ)( ) + ˆ ( )

( ) ( ) +

< + = .
2

2 2 □ 

This proves the result. 

Example 13.17: The Riemann–Lebesgue lemma is intuitively clear when 
viewed in the following way. Fix an integrable function f . An integrable 
function is of well-approximated by a continuous function, so we may as 
well suppose that f is continuous. But a continuous function is well- 
approximated by a smooth function (see the Appendix to this section), so 
we may as well suppose that f is smooth. On a small interval I—say of 
length M1/ —a smooth function is nearly constant. So, if we let 

M> >2 2, then the character ei x will oscillate at least M times on I , 
and will therefore integrate against a constant to a value that is very nearly 
zero. As M becomes larger, this statement becomes more and more 
accurate. That is the Riemann–Lebesgue lemma.                                 □ 

Proposition 13.18: Let f be integrable on R . Then f̂ is uniformly continuous. 

Proof: Let us first assume that f is continuous and vanishes outside a 
compact set. Then 

f f x e dx f x e dx flim ˆ ( ) = lim ( ) = lim ( ) = ˆ ( ).ix ix
0

0 0 0

[Exercise: Justify passing the limit under the integral sign.] Since f̂ also 
vanishes at , the result is immediate when f is continuous and vanishing 
outside a compact set. The general result follows from an approximation 
argument (see the Appendix to this section).                                      □ 

Let RC ( )0 denote the continuous functions on R that vanish at . Equip 
this space with the supremum norm. Then our results show that the Fourier 
transform maps the integrable functions to C0 continuously. 

It is natural to ask whether the Fourier transform is univalent; put in other 
words, can we recover a function from its Fourier transform? If so, can we 
do so with an explicit integral formula? The answer to all these questions is 
“yes,” but advanced techniques are required for the proofs. We cannot treat 
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them here, but see [KRA2] for the details. We content ourselves with the 
formulation of a sample result and its consequences. 

Theorem 13.19: Let f be a continuous, integrable function on R and suppose also 
f̂ is integrable. Then 

R
f x f e d( ) =

1
2

ˆ ( ) ix

for every x. 

Corollary 13.20: If f is continuous and integrable and f̂ 0 then f 0. 

Corollary 13.21: If f g, are continuous and integrable and f gˆ ( ) = ˆ ( ) for all , 
then f g. 

We refer to the circle of ideas in this theorem and the two corollaries as 
“Fourier inversion.” See [KRA2] for the details of all these assertions. 

Appendix: Approximation by Smooth Functions 

At several junctures in this section we have used the idea that an integrable 
function may be approximated by smooth functions. We take a moment 
now to discuss this notion. Not all of the details appear here, but the in-
terested reader may supply them as an exercise. 

Let f be any integrable function on the interval [0, 1]. Then f may be 
approximated by its Riemann sums in the following sense. Let 

x x x0 = < < < = 1k0 1

be a partition of the interval. For j k= 1, …, define 

h x

x x

x x x

x x
( ) =

0 if 0 <

1 if

0 if < 1.
j

j

j j

j

1

1

Then the function 

f x f x h x( ) = ( ) ( )
j

k

j j
=1

is a piecewise constant approximation for f and the expression 
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R
f x f x dx( ) ( ) (13.22)  

will be small if the mesh of the partition is sufficiently fine. In fact the ex-
pression (13.22) is a standard “distance between functions” that is used in 
mathematical analysis. We often denote this quantity by f f L1 and we 
call it “the L1 norm” or “L1 distance.” More generally, we call the expression 

R
g x dx g( ) L1

the L1 norm of the function g. 
Now our strategy is to approximate each of the functions hj by a “smooth” 

function. Let f x x x x( ) = 10 15 + 63 4 5. Notice that f (0) = 0, f (1) = 1, and 
both f and f vanish at 0 and at 1. 

The model for the sort of smooth function we are looking for is 

x

x
f x x

x
f x x

x

( ) =

0 if < 2
( + 2) if 2 1

1 if 1 < < 1
(2 ) if 1 2

0 if 2 < .

Refer to Figure 13.1. You may calculate that this function is twice con-
tinuously differentiable. It vanishes outside the interval [ 2, 2]. And it is 
identically equal to 1 on the interval [ 1, 1]. 

More generally, we will consider the functions 

( )

( )
x

x

f x

x

f x

x

( ) =

0 if < 1

if 1 1

1 if 1 < < 1

if 1 1 +

0 if 1 + < .

x

x

+ (1 + )

(1 + )

for > 0 and 

x
x b a

b a
( ) =

2a b[ , ]

for > 0 and a b< . Figure 13.2 shows that is similar to the function , but 
its sides are contracted so that it climbs from 0 to 1 over the interval 
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[ 1 , 1] of length and then descends from 1 to 0 over the interval 
[1, 1 + ] of length . The function a b[ , ] is simply the function adapted to 

the interval a b[ , ] (Figure 13.3). The function a b[ , ] climbs from 0 to 1 over the 
interval a b a a[ ( ( ))/2, ] of length b a( )/2 and descends from 1 to 0 
over the interval b b b a[ , + ( ( )/2)] of length b a( )/2. 

1-1

FIGURE 13.1 
A compactly supported, smooth function.    

1-1

FIGURE 13.2 
Another compactly supported, smooth function.    
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Finally, we approximate the function hj by k x( )j
x x[ , ]j j1 for j k= 1, …, . 

See Figure 13.4. Then the function f is approximated in L1 norm by 

f x f x k x( ) = ( ) ( ).
j

k

j j
=1

See Figure 13.5. If > 0 is sufficiently small, then we can make f f L1 as 
small as we please. 

a b

FIGURE 13.3 
The compactly supported, smooth function translated and dilated.    

FIGURE 13.4 
Unit for approximation.    
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The approximation by twice continuously differentiable (or C2) functions 
that we have constructed here is easily modified to achieve approximation 
by Ck functions for any k. One merely replaces the polynomial f by a 
polynomial that vanishes to higher order (order at least k) at 0 and at 1. 

Exercises  
1. Determine whether each of the following functions is even, odd, 

or neither: 

x x x x e x xsin , sin 2 , , (sin ) , sin ,x5 2 3 2

x x x x x
x
x

cos( + ), + + , ln
1 +
1

.3 2 3

2. Show that any function f defined on an interval symmetric about 
the origin can be written as the sum of an even function and an 
odd function.  

3. Calculate the Fourier transform of f x x( ) = [0,1], where x( )[0,1]
equals 1 if x [0, 1] and equals 0 otherwise.  

4. See Exercise 3 for notation. Calculate the Fourier transform of 
g x x( ) = cos [0,2].  

5. If f g, are integrable functions on R, then define their convolution 
to be 

y = f(x)

a b

FIGURE 13.5 
Approximation by a smooth function.    
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R
h x f g x f x t g t dt( ) = ( ) = ( ) ( ) .

Prove that 

h f gˆ ( ) = ˆ ( ) ˆ ( ) .

6. Refer to Exercise 5 for notation and terminology. Fix an integrable 
function g on R. Define a linear operator by 

T f f g: .

Prove that 

Tf C f ,L L1 1

where 

R
f f x dx= ( )L1

and C g dx g= = L1 .  
*7. Let f be a function on R that vanishes outside a compact set. 

Prove that f̂ does not vanish outside any compact set.  
*8. Calculate the Fourier transform of the function f x e( ) = x2

.  
*9. Use the calculation from Exercise 8 to discover an eigenfunction 

of the Fourier transform.  
*10. Refer to Exercises 8, 9. What are the eigenvalues of the Fourier 

transform?  
*11. A version of the Poisson summation formula says that, if f is a 

suitable function on the real line, then 

f n f k( ) = ˆ ( ).
n k= =

Find a proof of this assertion.  
*12. Plancherel’s theorem says that, if f is a continuous function with 

compact support, then 

f d f x dx(2 ) ˆ ( ) = ( ) .1 2 2
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Find a proof of this result. [Hint: Consider the Fourier transform 
of f f̄ , where g x g x˜ ( ) ( ).]  

*13. Extend the result of Exercise 12 to all square integrable functions 
f . 

*14. Refer to Exercises 12 and 13. The Fourier transform maps in-
tegrable functions to bounded functions and square integrable 
functions to square integrable functions. One can use interpola-
tion of operators to conclude how the Fourier transform acts on 
pth-power integrable functions, p1 < < 2. Discuss.  

15. Let 

x
N x N

( ) =
2 if 1/
0 otherwise .N

Calculate the Fourier transform of N. What is the limit of as 
N ? This will be the Fourier transform of the Dirac delta mass. 

13.4 Fourier Methods in the Theory of Differential Equations 

In fact an entire separate book could be written about the applications of 
Fourier analysis to differential equations and to other parts of mathematical 
analysis. The subject of Fourier series grew up hand in hand with the 
analytical areas to which it is applied. In the present brief section we merely 
indicate a couple of examples. 

13.4.1 Remarks on Different Fourier Notations 

In Section 13.2, we found it convenient to define the Fourier coefficients of 
an integrable function on the interval [0, 2 ] to be 

f n f x e dxˆ ( ) =
1

2
( ) .inx

0

2

From the point of view of pure mathematics, this complex notation has 
proved to be useful, and it has become standardized. 

But, in applications, there are other Fourier paradigms. They are easily 
seen to be equivalent to the one we have already introduced. The reader 
who wants to be conversant in this subject should be aware of these dif-
ferent ways of writing the basic ideas of Fourier series. We will introduce 
one of them now, and use it in the ensuing discussion. 
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If f is integrable on the interval [ , ] (note that, by 2 -periodicity, this is 
not essentially different from [0, 2 ]), then we define the Fourier coefficients 

a f x dx

a f x nx dx n

b f x nx dx n

= ( ) ,

= ( )cos for 1,

= ( )sin for 1.

n

n

0
1

2
1

1

This new notation is not essentially different from the old, for 

f n a ibˆ ( ) =
1
2

[ + ]n n

for n 1. The change in normalization (i.e., whether the constant before the 
integral is 1/ or 1/2 ) is dictated by the observation that we want to exploit 
the fact (so that our formulas come out in a neat and elegant fashion) that 

e dt
1

2
= 1,int

0

2 2

in the theory from Section 13.2 and that 

dx

nt dt n

nt dt n

1 = 1,

cos = 1 for 1,

sin = 1 for 1

1
2

2

1 2

1 2

in the theory that we are about to develop. 
It is clear that any statement (as in Section 13.2) that is formulated in the 

language of f nˆ ( ) is easily translated into the language of an and bn and vice 
versa. In the present discussion we shall use an and bn just because that is the 
custom, and because it is convenient for the points that we want to make. 

13.4.2 The Dirichlet Problem on the Disc 

We now study the two-dimensional Laplace equation, which is 

u
x

u
y

= + = 0 .
2

2

2

2
(13.4.1)  

This is probably the most important differential equation of mathematical 
physics. It describes a steady-state heat distribution, electrical fields, and 
many other important phenomena of nature. 
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It will be useful for us to write this equation in polar coordinates. To do 
so, recall that 

r x y x r y r= + , = cos , = sin .2 2 2

Thus 

r
x
r x

y
r y x y

x
x

y
y

r
x

r
y

= + = cos + sin

= + = sin + cos

We may solve these two equations for the unknowns x/ and y/ . The 
result is 

x r r y r r
= cos

sin
and = sin

cos
.

A tedious calculation now reveals that 

x y r r r r

r r r r

r r r r

= + = cos
sin

cos
sin

+ sin
cos

sin
cos

= +
1

+
1

.

2

2

2

2

2

2 2

2

2

Let us use the so-called separation of variables methodseparation of vari-
ables method to analyze our partial differential equation (13.4.1). We will 
seek a solution w w r u r v= ( , ) = ( ) ( ) of the Laplace equation. Using the 
polar form, we find that this leads to the equation 

u r v
r

u r v
r

u r v"( ) ( ) +
1

( ) ( ) +
1

( ) "( ) = 0.
2

Thus 

r u r ru r
u r

v
v

"( ) + ( )
( )

=
"( )
( )

.
2
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Since the left-hand side depends only on r, and the right-hand side only on 
, both sides must be constant. Denote the common constant value by . 
Then we have 

v v"( ) + ( ) = 0 (13.4.2)  

and 

r u r ru r u r"( ) + ( ) ( ) = 0.2 (13.4.3)  

If we demand that v be continuous and periodic, then we must insist that 
> 0 and in fact that n= 2 for some nonnegative integer n.2 For n = 0 the 

only suitable solution is v constant and for n > 0 the general solution 
(with n= 2) is 

v A n B n= cos + sin ,

as you can verify directly. 
We set n= 2 in equation (13.4.3), and obtain 

r u ru n u" + = 0,2 2 (13.4.4)  

which is Euler’s equidimensional equation. The change of variables r e= z

transforms this equation to a linear equation with constant coefficients, and 
that can in turn be solved with standard techniques. To wit, the equation 
that we now have is 

u n u" = 0.2

The variable is now z. We guess a solution of the form u z e( ) = z. Thus 

e n e = 0z z2 2 (13.4.5)  

so that 

n= ± .

Hence the solutions of (13.4.5) are 

u z e u z e( ) = and ( ) =nz nz

provided that n 0. It follows that the solutions of the original Euler 
equation (13.4.4) are 
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u r r u r r n( ) = and ( ) = for 0 .n n

In case n = 0 the solution is readily seen to be u = 1 or u r= ln . 
The result is 

u A B r n
u Ar Br n

= + ln if = 0;
= + if = 1, 2, 3, ….n n

We are most interested in solutions u that are continuous at the origin; so we 
take B = 0 in all cases. The resulting solutions are 

n w a a
n w r a b

n w r a b

n w r a b

= 0, = constant /2;
= 1, = ( cos + sin );
= 2, = ( cos 2 + sin 2 );

= 3, = ( cos 3 + sin 3 );
…

0

1 1
2

2 2
3

3 3

Of course any finite sum of solutions of Laplace’s equation is also a solution. 
The same is true for infinite sums. Thus we are led to consider 

w w r a r a j b j= ( , ) =
1
2

+ cos + sin .
j

j
j j0

=0

On a formal level, letting r 1 in this last expression gives 

w a a j b j=
1
2

+ cos + sin .
j

j j0
=1

We draw all these ideas together with the following physical rubric. 
Consider a thin aluminum disc of radius 1, and imagine applying a heat 
distribution to the boundary of that disc. In polar coordinates, this dis-
tribution is specified by a function f ( ). We seek to understand the steady- 
state heat distribution on the entire disc. See Figure 13.6. So we seek a 
function w r( , ), continuousheat distribution on the disc on the closure of 
the disc, which agrees with f on the boundary and which represents the 
steady-state distribution of heat inside. Some physical analysis shows that 
such a function w is the solution of the boundary value problem 

w
w f

= 0,
| = .D
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According to the calculations we performed prior to this last paragraph, a 
natural approach to this problem is to expand the given function f in its 
sine/cosine series: 

f a a j b j( ) =
1
2

+ cos + sin
j

j j0
=1

and then posit that the w we seek is 

w r a r a j b j( , ) =
1
2

+ cos + sin .
j

j
j j0

=1

This process is known as solving the Dirichlet problem on the disc with boundary 
data f . 

Example 13.22: Let us follow the paradigm just sketched to solve the 
Dirichlet problem on the disc with f ( ) = 1 on the top half of the boundary 
and f ( ) = 1 on the bottom half of the boundary. See Figure 13.7.   

It is straightforward to calculate that the Fourier series (sine series) ex-
pansion for this f is 

f ( ) =
4

sin +
sin 3

3
+ +

sin 5
5

+ .

There are no cosine terms because f is an odd function. 

FIGURE 13.6 
Steady-state heat.    
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The solution of the Dirichlet problem is therefore 

w r r
r r

( , ) =
4

sin +
sin 3
3

+ +
sin 5
5

+ .
3 5

□ 

13.4.3 Introduction to the Heat and Wave Equations 

In the middle of the eighteenth century much attention was given to the 
problem of determining the mathematical laws governing the motion of a 
vibrating string with fixed endpoints at 0 and (Figure 13.8). An elementary 
analysis of tension shows that, if y x t( , ) denotes the ordinate of the string at 
time t above the point x, then y x t( , ) satisfies the wave equation 

y
t

a
y

x
= .

2

2
2

2

2

Here a is a parameter that depends on the tension of the string. A change of 
scale will allow us to assume that a = 1. (A bit later we shall actually pro-
vide a formal derivation of the wave equation. See also [KRA2] for a more 
thorough consideration of these matters.) 

+1

-1
FIGURE 13.7 
Boundary data.     

x = 0 x =

FIGURE 13.8 
The wave equation.    
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In 1747 d’Alembert showed that solutions of this equation have the form 

y x t f t x g t x( , ) =
1
2

( ( + ) + ( )), (13.4.6)  

where f and g are “any” functions of one variable. (The following techni-
cality must be noted: the functions f and g are initially specified on the 
interval [0, ]. We extend f and g to [ , 0] and to [ , 2 ] by odd reflection. 
Continue f and g to the rest of the real line so that they are 2 -periodic.) 

In fact the wave equation, when placed in a “well-posed” setting, wave 
equation comes equipped with two initial conditions:  

i. y x x( , 0) = ( )
ii. y x x( , 0) = ( ).t

These conditions mean (i) that the wave has an initial configuration that is the 
graph of the function and (ii) that the string is released with initial velocity . 

If (13.4.6) is to be a solution of this initial value problem then f and g must 
satisfy 

f x g x x
1
2

( ( ) + ( )) = ( ) (13.4.7)  

and 

f x g x x
1
2

( ( ) + ( )) = ( ). (13.4.8)  

Integration of (13.4.8) gives a formula for f x g x( ) ( ). That and (13.4.7) 
give a system that may be solved for f and g with elementary algebra. 

The converse statement holds as well: for any functions f and g, a 
function y of the form (13.4.6) satisfies the wave equation (Exercise). The 
work of d’Alembert brought to the fore a controversy which had been 
implicit in the work of Daniel Bernoulli, Leonhard Euler, and others: what is 
a “function”? (We recommend the article [LUZ] for an authoritative dis-
cussion of the controversies that grew out of classical studies of the wave 
equation. See also [LAN].) 

It is clear, for instance, in Euler’s writings that he did not perceive a 
function to be an arbitrary “rule” that assigns points of the range to points 
of the domain; in particular, Euler did not thinkfunction, what is? that a 
function could be specified in a fairly arbitrary fashion at different points of 
the domain. Once a function was specified on some small interval, Euler 
thought that it could only be extended in one way to a larger interval. 
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Therefore, on physical grounds, Euler objected to d’Alembert’s work. He 
claimed that the initial position of the vibrating string could be specified by 
several different functions pieced together continuously, so that a single f
could not generate the motion of the string. 

Daniel Bernoulli solved the wave equation by a different method (se-
paration of variables, which we treat below) and was able to show that there 
are infinitely many solutions of the wave equation having the form 

x t jx cos jt j( , ) = sin , 1 an integer.j

Proceeding formally, he posited that all solutions of the wave equation 
satisfying y t y t(0, ) = ( , ) = 0 and y x( , 0) = 0t will have the form 

y a jx jt= sin cos .
j

j
=1

Setting t = 0 indicates that the initial form of the string is 
f x a jx( ) sinj j=1 . In d’Alembert’s language, the initial form of the string 

is f x f x( ( ) ( ))1
2

, for we know that 

y t f t g t0 (0, ) = ( ) + ( )

(because the endpoints of the string are held stationary), hence g t f t( ) = ( ). 
If we suppose that d’Alembert’s function is odd (as is jxsin , each j), then the 
initial position is given by f x( ). Thus the problem of reconciling Bernoulli’s 
solution to d’Alembert’s reduces to the question of whether an “arbitrary” 
function f on [0, ] may be written in the form a jxsinj j=1 . 

Since most mathematicians contemporary with Bernoulli believed that 
properties such as continuity, differentiability, and periodicity were pre-
served under (even infinite) addition, the consensus was that arbitrary f
could not be represented as a (even infinite) trigonometric sum. The con-
troversy extended over some years and was fueled by further discoveries 
(such as Lagrange’s technique for interpolation by trigonometric poly-
nomials) and more speculations. 

*********************************************************** 

JOHANN BERNOULLI 

Johann Bernoulli was born in Basel, the son of Nicolaus Bernoulli, an 
apothecary, and began studying medicine at Basel University. He convinced 
his father to allow him to study medicine. However, Johann Bernoulli did not 
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enjoy medicine and began studying mathematics on the side with his older 
brother Jacob. Throughout Johann Bernoulli’s education at Basel University, the 
Bernoulli brothers worked together studying infinitesimal calculus. 

After graduating from Basel University, Johann Bernoulli taught differential 
equations. Later, in 1694, he married Dorothea Falkner, the daughter of an 
alderman of Basel, and soon after accepted a position as the Professor of 
Mathematics at the University of Groningen. In 1705 Bernoulli planned to 
return to his home town of Basel. Just after setting out on the journey he 
learned of his brother’s death by tuberculosis. Bernoulli had planned on 
becoming the Professor of Greek at Basel University upon returning but 
instead was able to take over as Professor of Mathematics, his older brother’s 
former position. As a student of Leibniz’s calculus, Bernoulli sided with him 
in 1713 in the Leibniz–Newton debate over who deserved credit for the 
discovery of calculus. This ultimately delayed acceptance of Newton’s theory 
in continental Europe. 

In 1724, Johann Bernoulli entered a competition sponsored by the French 
Acad?e Royale des Sciences. It posed this question: 

What are the laws according to which a perfectly hard body, put into motion, 
moves another body of the same nature either at rest or in motion, and which it 
encounters either in a vacuum or in a plenum? Bernoulli was disqualified for the 
prize, which was won by Maclaurin. However, Bernoulli’s paper was subse-
quently accepted in 1726 when the Acad?e considered papers regarding elastic 
bodies, for which the prize was awarded to Pierre Mazière. Bernoulli received 
an honourable mention in both competitions. 

Johann and his brother developed a jealous and competitive relationship. 
Johann was jealous of Jacob’s position and the two often attempted to outdo 
each other. After Jacob’s death Johann’s jealousy shifted toward his own 
talented son, Daniel. In 1738 the father–son duo nearly simultaneously 
published separate works on hydrodynamics. Johann attempted to take 
precedence over his son by purposely and falsely predating his work two years 
prior to his son’s. 

The Bernoulli brothers often worked on the same problems, but not without 
friction. Their most bitter dispute concerned the brachistochrone curve 
problem, concerning which curve allows a particle to descend from an upper 
location to a lower one in the least time. Johann presented the problem in 
1696, offering a reward for its solution. Entering the challenge, Johann 
proposed the cycloid. Jacob proposed the same solution, but Johann’s 
derivation of the solution was incorrect, and he presented his brother 
Jacob’s derivation as his own. 

Bernoulli was hired by Guillaume de l’Hôpital for tutoring in mathematics. 
Bernoulli and l’Hopital signed a contract which gave l’Hôpital the right to use 
Bernoulli’s discoveries as he pleased. L’Hôpital authored the first textbook on 
infinitesimal calculus, Analyse des Infiniment Petits pour l’Intelligence des Lignes 
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Courbes in 1696, which mainly consisted of the work of Bernoulli, including what 
is now known as l’Hôpital’s rule. Subsequently, in letters to Leibniz, Varignon 
and others, Bernoulli complained that he had not received enough credit for his 
contributions, in spite of the preface of his book.   

*********************************************************** 

In the 1820s, the problem of representation of an “arbitrary” function by 
trigonometric series was given a satisfactory answer as a result of two 
events. First, there is the sequence of papers by Joseph Fourier culminating 
with the tract [FOU]. FourierFourier, J. B. J. gave a formal method of ex-
panding an “arbitrary” function f into a trigonometric series. He computed 
some partial sums for some sampleDirichlet, P. G. L. f s and verified that 
they gave very good approximations to f . Second, Dirichlet proved the first 
theorem giving sufficient (and very general) conditions for the Fourier 
series series of a function f to converge pointwise to f . Dirichlet was one of 
the first, in 1828, to formalize the notions of partial sum and convergence of a series; 
his ideas had antecedents in the work of Gauss and Cauchy. 

For all practical purposes, these events mark the beginning of the math-
ematical theory of Fourier series (see [LAN]). 

13.4.4 Boundary Value Problems 

We wish to motivate the physics of the vibrating string. We begin this 
discussion by seeking a nontrivial solution y of the differential equation 

y y" + = 0 (13.4.9)  

subject to the conditions 

y y(0) = 0 and ( ) = 0 . (13.4.10)  

Notice that this is a different situation from the one we have studied in 
earlier parts of the book. Ordinary differential equations generally have 
“initial conditions.” Now we have what are called boundary conditions: we 
specify one condition (in this instance the value) for the function at two 
different points. For instance, in the discussion of the vibrating string in the 
last section, we wanted our string to be pinned down at the two endpoints. 
These are typical boundary conditions coming from a physical problem. 

The situation with boundary conditions is quite different from that for 
initial conditions. The latter is a sophisticated variation of the fundamental 
theorem of calculus. The former is rather more subtle. So let us begin to 
analyze. 

428                                                         Real Analysis and Foundations 

ISTUDY



First, we can just solve the equation explicitly when < 0 and see that the 
independent solutions are a pair of exponentials, no linear combination of 
which can satisfy (13.4.10). 

If = 0 then the general solution of (13.4.9) is the linear function 
y Ax B= + . Such a function cannot vanish at two points unless it is iden-
tically zero. 

So the only interesting case is > 0. In this situation, the general solution 
of (13.4.9) is 

y A x B x= sin + cos .

Since y (0) = 0, this in fact reduces to 

y A x= sin .

In order for y ( ) = 0, we must have n= for some positive integer n, 
thus n= 2. These values of are termed the eigenvalues of the problem, and 
the corresponding solutions 

x x xsin , sin 2 , sin 3 …

are called the eigenfunctions of the problem (13.4.9), (13.4.10). 
We note these immediate properties of the eigenvalues and eigenfunc-

tions for our problem:  

i. If is an eigenfunction for eigenvalue , then so is c for any 
constant c. 

ii. The eigenvalues 1, 4, 9, … form an increasing sequence that ap-
proaches + .  

iii. The nth eigenfunction nxsin vanishes at the endpoints 0, (as we 
originally mandated) and has exactly n 1 zeros in the interval 
(0, ). 

13.4.5 Derivation of the Wave Equation 

Now let us re-examine the vibrating string from the last section and see how 
eigenfunctions and eigenvalues arise naturally in a physical problem. We 
consider a flexible string with negligible weight that is fixed at its ends at 
the points (0, 0) and ( , 0). The curve is deformed into an initial position 
y f x= ( ) in the x y plane and then released. 

Our analysis will ignore damping effects, such as air resistance. We as-
sume that, in its relaxed position, the string is as in Figure 13.9. The string is 
plucked in the vertical direction, and is thus set in motion in a vertical 
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plane. We will bedamping effects supposing that the oscillation has small 
amplitude. 

We focus attention on an “element” x of the string (Figure 13.10) that lies 
between x and x x+ . We adopt the usual physical conceit of assuming that 
the displacement (motion) of this string element is small, so that there is only 
a slight error in supposing that the motion of each point of the string ele-
ment is strictly vertical. We let the tension of the string, at the point x at time 
t, be denoted by T x t( , ). Note that T acts only in the tangential direction (i.e., 
along the string). We denote the mass density of the string by . 

Since there is no horizontal component of acceleration, we see that 

T x x t T x t( + , ) cos( + ) ( , ) cos( ) = 0. (13.4.11)  

(Refer to Figure 13.11: The expression T ( ) cos( ) denotes H ( ), the 
horizontal component of the tension.) Thus equation (13.4.11) says that H is 
independent of x. 

Now we look at the vertical component of force (acceleration): 

T x x t T x t x u x t( + , ) sin( + ) ( , ) sin( ) = ( ¯, ).tt (13.4.12)  

x = 0 x =

FIGURE 13.9 
The string in relaxed position.    

x x x + ∆x
T(x,t)

T(x +    x,t) 

+

FIGURE 13.10 
An element of the plucked string.    
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Here x̄ is the mass center of the string element and we are applying 
Newton’s second law—that the external force is the mass of the string 
element times the acceleration of its center of mass. We use subscripts to 
denote derivatives. We denote the vertical component of T ( ) by V ( ). 
Thus equation (13.4.12) can be written as 

V x x t V x t
x

u x t
( + , ) ( , )

= ( , ).tt

Letting x 0 yields 

V x t u x t( , ) = ( , ).x tt (13.4.13)  

We would like to express equation (13.4.13) entirely in terms of u, so we 
notice that 

V x t H t H t u x t( , ) = ( ) tan = ( ) ( , ).x

(We have used the fact that the derivative in x is the slope of the tangent 
line, which is tan .) Substituting this expression for V into (13.4.13) yields 

Hu u( ) = .x x tt

But H is independent of x, so this last line simplifies to 

H u u= .xx tt

For small displacements of the string, is nearly zero, so H T= cos is 
nearly T. We are most interested in the case where T is constant. And of 
course is constant. Thus we finally write our equation as 

T
u u= .xx tt

T

H = Tcos

V =  Tsin

FIGURE 13.11 
The horizontal component of the tension.    
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It is traditional to denote the constant T/ on the left by a2. We finally arrive 
at the wave equation 

a u u= .xx tt
2

13.4.6 Solution of the Wave Equation 

We consider the wave equation 

a y y=xx tt
2 (13.4.14)  

with the boundary conditions 

y t(0, ) = 0

and 

y t( , ) = 0 .

Physical considerations dictate that we also impose the initial conditions 

y
t

= 0
t=0

(13.4.15)  

(indicating that the initial velocity of the string is 0) and 

y x f x( , 0) = ( ) (13.4.16)  

(indicating that the initial configuration of the string is the graph of the 
function f ). 

We solve the wave equation using a classical technique known as “se-
paration of variables.” For convenience, we assume that the constant a = 1. 
We guess a solution of the form u x t u x t( , ) = ( ) ( ). Putting this guess into 
the differential equation 

u u=xx tt

gives 

u x t u x t"( ) ( ) = ( ) "( ).

We may obviously separate variables, in the sense that we may write 
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u x
u x

t
t

"( )
( )

=
"( )
( )

.

The left-hand side depends only on x while the right-hand side depends 
only on t. The only way this can be true is if 

u x
u x

t
t

"( )
( )

= =
"( )
( )

for some constant . But this gives rise to two second-order linear, ordinary 
differential equations that we can solve explicitly: 

u u" = (13.4.17) 

" = . (13.4.18)  

Observe that this is the same constant in both of these equations. Now, as 
we have already discussed, we want the initial configuration of the string to 
pass through the points (0, 0) and ( , 0). We can achieve these conditions by 
solving (13.4.17) with u (0) = 0 and u ( ) = 0. But of course this is the ei-
genvalue problem that we treated at the beginning of the section. The 
problem has a nontrivial solution if and only if n= 2 for some positive 
integer n, and the corresponding eigenfunction is 

u x nx( ) = sin .n

For this same , the general solution of (13.4.15) is 

t A nt B nt( ) = sin + cos .

If we impose the requirement that (0) = 0, so that (10) is satisfied, then 
A = 0 and we find the solution 

t B nt( ) = cos .

This means that the solution we have found of our differential equation 
with boundary and initial conditions is 

y x t nx nt( , ) = sin cos .n (13.4.19)  

And in fact any finite sum with coefficients (or linear combination) of these 
solutions will also be a solution: 
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y x t x t kx kt= sin cos + sin 2 cos 2 + sin cos .k1 2

Ignoring the rather delicate issue of convergence, we may claim that any 
infinite linear combination of the solutions (13.4.19) will also be a solution: 

y b jx jt= sin cos .
j

j
=1

(13.4.20)  

Now we must examine the initial condition (13.4.16). The mandate 
y x f x( , 0) = ( ) translates to 

b jx y x f xsin = ( , 0) = ( )
j

j
=1

(13.4.21)  

or 

b u x y x f x( ) = ( , 0) = ( ).
j

j j
=1

(13.4.22)  

Thus we demand that f have a valid Fourier series expansion. Such an 
expansion is correct for a rather broad class of functions f . Thus the wave 
equation is solvable in considerable generality. 

Now fix m n. We know that our eigenfunctions uj satisfy 

u m u u n u" = and " = .m m n n
2 2

Multiply the first equation by un and the second by um and subtract. The 
result is 

u u u u n m u u" " = ( )n m m n n m
2 2

or 

u u u u n m u u[ ] = ( ) .n m m n n m
2 2

We integrate both sides of this last equation from 0 to and use the fact that 
u u(0) = ( ) = 0j j for every j. The result is 

u u u u n m u x u x dx0 = [ ] = ( ) ( ) ( ) .n m m n m n

0

2 2
0
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Thus 

mx nx dx n msin sin = 0 for
0

(13.4.23)  

or 

u x u x dx n m( ) ( ) = 0 for .m n
0

(13.4.24)  

Of course this is a standard fact from calculus. But now we understand it as 
an orthogonality condition, and we see how the condition arises naturally 
from the differential equation. 

In view of the orthogonality condition (13.4.24), it is natural to integrate 
both sides of (13.4.22) against u x( )k . The result is 

f x u x dx b u x u x dx

b u x u x dx

b

( ) ( ) = ( ) ( )

= ( ) ( )

=
2

.

k
j

j j k

j
j j k

k

0 0 =0

=0

The bk are the Fourier coefficients that we studied earlier in this chapter. 
Using these coefficients, we have Bernoulli’s solution (13.4.20) of the wave 
equation. 

Exercises  
1. Find the eigenvalues n and the eigenfunctions yn for the equation 

y y+ = 0 in each of the following instances.  
a. y y(0) = 0, ( /2) = 0
b. y y(0) = 0, (2 ) = 0
c. y y(0) = 0, (1) = 0
d. y y L(0) = 0, ( ) = 0 for L > 0
e. y L y L( ) = 0, ( ) = 0 for L > 0
f. y a y b( ) = 0, ( ) = 0 for a b<
Solve the following two exercises without worrying about con-
vergence of series or differentiability of functions.  

2. If y F x= ( ) is an arbitrary function, then y F x at= ( + ) represents a 
wave of fixed shape that moves to the left along the x-axis with 
velocity a (Figure 13.12). 
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Similarly, if y G x= ( ) is another arbitrary function, then 
y G x at= ( ) is a wave moving to the right, and the most general 
one-dimensional wave with velocity a is 

y x t F x at G x at( , ) = ( + ) + ( ). (∗)   

a. Show that (∗) satisfies the wave equation.  
b. It is easy to see that the constant a in the wave equation has the 

dimension of velocity. Also, it is intuitively clear that if a 
stretched string is disturbed, then the waves will move in both 
directions away from the source of the disturbance. These 
considerations suggest introducing the new variables x at= + , 

x at= . Show that with these independent variables, the 
wave equation becomes 

y
= 0.

2

From this derive ( ) by integration. Formula ( ) is called d’Alembert’s 
solution of the wave equation. It was also obtained, slightly later and 
independently, by Euler.  

3. Solve the vibrating string problem in the text if the initial shape 
y x f x( , 0) = ( ) is specified by the given function. In each case, sketch 
the initial shape of the string on a set of axes.  

a. f x
cx x
c x x

( ) =
2 / if 0 /2
2 ( )/ if /2

y = F(x)
y = F(x + at) 

at

y

x

FIGURE 13.12 
Wave of fixed shape moving to the left.    
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b. f x x x( ) = ( )1

c. f x
x x

x
x x

( ) =
if 0 /4

/4 if /4 < < 3 /4
if 3 /4

4. Solve the vibrating string problem in the text if the initial shape 
y x f x( , 0) = ( ) is that of a single arch of the sine curve f x c x( ) = sin . 
Show that the moving string always has the same general shape, 
regardless of the value of c. Do the same for functions of the form 
f x c nx( ) = sin . Show in particular that there are n 1 points be-
tween x = 0 and x = at which the string remains motionless; these 
points are called nodes, and these solutions are called standing waves. 
Draw sketches to illustrate the movement of the standing waves.  

5. The problem of the struck string is that of solving the wave equation 
with the boundary conditions 

y t y t(0, ) = 0, ( , ) = 0

and the initial conditions 

y
t

g x y x= ( ) and ( , 0) = 0.
t=0

(These initial conditions mean that the string is initially in the 
equilibrium position, and has an initial velocity g x( ) at the point x
as a result of being struck.) By separating variables and proceeding 
formally, obtain the solution 

y x t c jx jat( , ) = sin sin ,
j

j
=1

where 

c
ja

g x jx dx=
2

( )sin .j
0

6. Consider an infinite string stretched taut on the x-axis from to + . 
Let the string be drawn aside into a curve y f x= ( ) and released, and 
assume that its subsequent motion is described by the wave equation.  
a. Use (∗) in Exercise 2 to show that the string’s displacement is 

given by d’Alembert’s formula 
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y x t f x at f x at( , ) =
1
2

[ ( + ) + ( )]. (∗∗)  

Hint: Remember the initial conditions.  
b. Assume further that the string remains motionless at the points 

x = 0 and x = (such points are called nodes), so that 
y t y t(0, ) = ( , ) = 0, and use ( ) to show that f is an odd 
function that is periodic with period 2 (that is, f x f x( ) = ( )
and f x f x( + 2 ) = ( )).  

c. Show that since f is odd and periodic with period 2 then f
necessarily vanishes at 0 and .  

d. Show that Bernoulli’s solution of the wave equation can be 
written in the form (∗∗).  
Hint: nx nat n x at n x at2 sin cos = sin[ ( + )] + sin[ ( )].  

7. If y F x= ( ) is an arbitrary function, then y F x at= ( + ) represents a 
wave of fixed shape that moves to the left along the x-axis with 
velocity a (Figure 13.12). 
Similarly, if y G x= ( ) is another arbitrary function, then 
y G x at= ( ) is a wave moving to the right, and the most general 
one-dimensional wave with velocity a is 

y x t F x at G x at( , ) = ( + ) + ( ) . (∗)   

a. Show that (∗) satisfies the wave equation (13.4.14).  
b. It is easy to see that the constant a in equation (13.4.14) has the 

dimensions of velocity. Also, it is intuitively clear that if a 
stretched string is disturbed, then the waves will move in both 
directions away from the source of the disturbance. These 
considerations suggest introducing the new variables x at= + , 

x at= . Show that with these independent variables, equa-
tion (13.4.14) becomes 

y
= 0 .

2

From this derive (∗) by integration. Formula (∗) is called 
d’Alembert’s solution of the wave equation. It was also obtained, 
slightly later and independently, by Euler. 

8. Consider an infinite string stretched taut on the x-axis from to 
+ . Let the string be drawn aside into a curve y f x= ( ) and released, 
and assume that its subsequent motion is described by the wave 
equation (13.4.14). 
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a. Use (∗) in Exercise 2 to show that the string’s displacement is 
given by d’Alembert’s formula 

y x t f x at f x at( , ) =
1
2

[ ( + ) + ( )] . (∗∗)  

Hint: Remember the initial conditions (13.4.15) and (13.4.16).  
b. Assume further that the string remains motionless at the points 

x = 0 and x = (such points are called nodes), so that 
y t y t(0, ) = ( , ) = 0, and use (∗∗) to show that f is an odd 
function that is periodic with period 2 (that is, f x f x( ) = ( )
and f x f x( + 2 ) = ( )).  

c. Show that since f is odd and periodic with period 2 then f
necessarily vanishes at 0 and .  

d. Show that Bernoulli’s solution (13.4.20) of the wave equation 
can be written in the form (∗∗).  
Hint: nx nat n x at n x at2 sin cos = sin [ ( + )] + sin [ ( )]. 

13.5 The Heat Equation 

Fourier’s Point of View 

In [FOU], Fourier considered variants of the following basic question. Let 
there be given an insulated, homogeneous rod of length with initial 
temperature at each x [0, ] given by a function f x( ) (Figure 13.13). 
Assume that the endpoints are held at temperatureheated rod 0, and that 
the temperature of each cross-section is constant. The problem is to describe 
the temperature u x t( , ) of the point x in the rod at time t. Fourier perceived 
the fundamental importance of this problem as follows: 

0

FIGURE 13.13 
The insulated rod.     
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Primary causes are unknown to us; but are subject to simple and con-
stant laws, which may be discovered by observation, the study of them 
being the object of natural philosophy. 

…  … 
Heat, like gravity, penetrates every substance of the universe, its rays 

occupying all parts of space. The object of our work is to set forth the 
mathematical laws which this element obeys. The theory of heat will 
hereafter form one of the most important branches of general physics. 

I have deduced these laws from prolonged study and attentive 
comparison of the facts known up to this time; all these facts I have 
observed afresh in the course of several years with the most exact in-
struments that have hitherto been used.  

Let us now describe the manner in which Fourier solved his problem. First, 
it is required to write a differential equation which u satisfies. We shall 
derive such an equation using three physical principles:  

1. The density of heat energy isdensity of heat energy proportional to 
the temperature u, hence the amount of heat energy in any interval 
a b[ , ] of the rod is proportional to u x t dx( , )

a

b
.  

2. (Newton’s law of cooling) The rate at which heat flows from a hot 
place to a cold one is proportional to the difference in temperature. 
The infinitesimal version of this statement is that the rate of heat 
flow across a point x (from left to right) is some negative constant 
times u x t( , )x .  

3. (Conservation of energy) Heat has no sources or sinks. 

Now (3) tells us that the only way that heat can enter or leave any interval 
portion a b[ , ] of the rod is through the endpoints. And (2) tells us exactly 
how this happens. Using (1), we may therefore write 

d
dt

u x t dx u b t u a t( , ) = [ ( , ) ( , )].
a

b
x x

2

We may rewrite this equation as 

u x t dx u x t dx( , ) = ( , ) .
a

b
t

a

b

x
2 2

Differentiating in b, we find that 

u u= ,t x
2 2 (13.5.1)  

and that is the heat equation. 
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Suppose for simplicity that the constant of proportionality 2 equals 1. 
Fourier guessed that equation (13.5.1) has a solution of the form 
u x t x t( , ) = ( ) ( ). Substituting this guess into the equation yields 

x t x t( ) ( ) = ( ) ( )

or 

t
t

x
x

( )
( )

=
( )

( )
.

Since the left side is independent of x and the right side is independent of t, 
it follows that there is a constant K such that 

t
t

K
x

x
( )
( )

= =
( )

( )

or 

t K t( ) = ( )

" x K x( ) = ( ).

We conclude that t Ce( ) = Kt. The nature of , and hence of , thus depends 
on the sign of K. But physical considerations tell us that the temperature 
will dissipate as time goes on, so we conclude that K 0. Therefore 

x K x( ) = cos and x K x( ) = sin are solutions of the differential 
equation for . The initial conditions u t u t(0, ) = ( , ) = 0 (since the ends of 
the rod are held at constant temperature 0) eliminate the first of these so-
lutions and force K j= 2, j an integer. Thus Fourier found the solutions 

Nu x t e jx j( , ) = sin ,j
j t2

of the heat equation. By linearity, any finite linear combination 

u x t b e jx( , ) = sin
j

j
j t2

(13.5.2)  

of these solutions is also a solution. It is plausible to extend this assertion to 
infinite linear combinations. Using the initial condition u x f x( , 0) = ( ) again 
raises the question of whether “any” function f x( ) on [0, ] can be written 
as a (infinite) linear combination of the functions jxsin . 
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Fourier’s solution to this last problem (of the sine functions spanning 
essentially everything) is roughly as follows. Suppose f is a function that is 
so representable: 

f x b jx( ) = sin .
j

j (13.5.3)  

Setting x = 0 gives 

f (0) = 0.

Differentiating both sides of (13.5.3) and setting x = 0 gives 

f jb(0) = .
j

j
=1

(13.5.4)  

Successive differentiation of (13.5.3), and evaluation at 0, gives 

f j b(0) = ( 1)k

j

k
j

k( )

=1

/2

for k odd (by oddness of f , the even derivatives must be 0 at 0). Here 
denotes the greatest integer function. Thus Fourier devised a system of 
infinitely many equations in the infinitely many unknowns b{ }j . He pro-
ceeded to solve this system by truncating it to an N N× system (the first N
equations restricted to the first N unknowns), solving that truncated system, 
and then letting N tend to . Suffice it to say that Fourier’s arguments 
contained many dubious steps (see [FOU] and [LAN]). 

The upshot of Fourier’s intricate and lengthy calculations was that 

b f x jx dx=
2

( )sin .j
0

(13.5.5)  

By modern standards, Fourier’s reasoning was specious; for he began by 
assuming that f possessed an expansion in terms of sine functions. The 
formula (13.5.5) hinges on that supposition, together with steps in which 
one compensated division by zero with a later division by . Nonetheless, 
Fourier’s methods give an actual procedure for endeavoring to expand any 
given f in a series of sine functions. 

Fourier’s abstract arguments constitute the first part of his book. The bulk, 
and remainder, of the book consists of separate chapters in which the ex-
pansions for particular functions are computed. 
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Example 13.23: Suppose that the thin rod in the setup of the heat equation is 
first immersed in boiling water so that its temperature is uniformly 100°C. 
Then imagine that it is removed from the water at time t = 0 with its ends 
immediately put into ice so that these ends are kept at temperature 0 C. Let 
us find the temperature u u x t= ( , ) under these circumstances. 

The initial temperature distribution is given by the constant function 

f x x( ) = 100, 0 < < .

The two boundary conditions, and the other initial condition, are as usual. 
Thus our job is simply this: to find the sine series expansion of this function 
f . We calculate that 

b jx dx

j

j

= 100 sin

=

=

=
0 if = 2 is even

if = 2 1 is odd.

j

jx
j

j j

j

2
0

200 cos

0

200 ( 1) 1

400

j

Thus 

f x x
x x

( ) =
400

sin +
sin 3

3
+

sin 5
5

+ .

Now, referring to formula (13.5.2) from our general discussion of the heat 
equation, we know that 

u x t e x e x e x( , ) =
400

sin +
1
3

sin 3 +
1
5

sin 5 + .t t t9 25 □ 

Example 13.24: Let us find the steady-state temperature of the thin rod from 
our analysis of the heat equation if the fixed temperatures at the ends x = 0
and x = are w1 and w2 respectively. 

The phrase “steady-state” means that u t/ = 0, so that the heat equation 
reduces to u x/ = 02 2 or d u dx/ = 02 2 . The general solution is then 
u Ax B= + . The values of these two constants A and B are forced by the 
two boundary conditions. 

In fact a little high school algebra tells us that 

u w w w x= +
1

( ) .1 2 1
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□ 

The steady-state version of the 3-dimensional heat equation 

a
u

x
u

y
u

z
u
t

+ + =2
2

2

2

2

2

2

is 

u
x

u
y

u
z

+ + = 0.
2

2

2

2

2

2

This last is called Laplace’s equation. The study of this equation and its so-
lutions and subsolutions and their applications is a deep and rich branch of 
mathematics called potential theory. There are applications to heat, to Laplace 
equation gravitation, to electromagnetics, and to many other parts of phy-
sics. The equation plays a central role in the theory of partial differential 
equations, and is also an integral part of complex variable theory. 

Exercises  
1. Solve the boundary value problem 

a

w x f x
w t
w t

=

( , 0) = ( )
(0, ) = 0
( , ) = 0

w
x

w
t

2 2

2

if the last three conditions—the boundary conditions—are 
changed to 

w x f x
w t w
w t w

( , 0) = ( )
(0, ) =
( , ) = .

1

2

2. In the solution of the heat equation, suppose that the ends of the rod 
are insulated instead of being kept fixed at 0 C. What are the new 
boundary conditions? Find the temperature w x t( , ) in this case by 
using just common sense.  

3. Solve the problem of finding w x t( , ) for the rod with insulated ends 
at x = 0 and x = (see the preceding exercise) if the initial tem-
perature distribution is given by w x f x( , 0) = ( ). 
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Solve the following two exercises without worrying about con-
vergence of series or differentiability of functions.  

4. Solve the Dirichlet problem for the unit disc when the boundary 
function f ( ) is defined by  
a. f ( ) = cos /2, 
b. f ( ) = , < < 0

c. f ( ) = 0 if < 0
sin if 0

d. f ( ) =
0 if < /2
1 if /2

e. f ( ) = /42 , 

*5. Suppose that the lateral surface of the thin rod that we analyzed in 
the text is not insulated, but in fact radiates heat into the sur-
rounding air. If Newton’s law of cooling (that a body cools at a rate 
proportional to the difference of its temperature with the tem-
perature of the surrounding air) is assumed to apply, then show 
that the 1-dimensional heat equation becomes 

a
w

x
w
t

c w w= + ( )2
2

2 0

where c is a positive constant and w0 is the temperature of the 
surrounding air.  

6. In Exercise 5, find w x t( , ) if the ends of the rod are kept at 0 C, 
w = 0 C0 , and the initial temperature distribution on the rod is f x( ).  

*7. The 2-dimensional heat equation is 

a
w

x
w

y
w
t

+ = .2
2

2

2

2

Use the method of separation of variables to find a steady-state 
solution of this equation in the infinite strip of the x-y plane 
bounded by the lines x = 0, x = , and y = 0 if the following 
boundary conditions are satisfied: 

w y w y
w x f x w x y

(0, ) = 0 ( , ) = 0
( , 0) = ( ) lim ( , ) = 0 .

y +
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*8. Show that the Dirichlet problem for the disc x y x y R{( , ): + }2 2 2 , 
where f ( ) is the boundary function, has the solution 

w r a
r
R

a j b j( , ) =
1
2

+ cos + sin
j

j

j j0
=1

where aj and bj are the Fourier coefficients of f . Show also that the 
Poisson integral formula for this more general disc setting is 

w r
R r

R Rr r
f d( , ) =

1
2 2 cos( ) +

( ) .
2 2

2 2

*9. Let w be a harmonic function (that is, a function annihilated by the 
Laplacian) in a planar region, and let C be any circle entirely con-
tained (along with its interior) in this region. Prove that the value of 
w at the center of C is the average of its values on the circumference.  

10. The 2-dimensional heat equation is 

a
w

x
w

y
w
t

+ = .2
2

2

2

2

Use the method of separation of variables to find a steady-state 
solution of this equation in the infinite half-strip of the x-y plane 
bounded by the lines x = 0, x = , and y = 0 if the following 
boundary conditions are satisfied: 

w y t w y t
w x f x w x y t

(0, , ) = 0 ( , , ) = 0
( , 0, 0) = ( ) lim ( , , ) = 0.

y +

11. Derive the 3-dimensional heat equation 

a
w

x
w

y
w

z
w
t

+ + =2
2

2

2

2

2

2

by adapting the reasoning in the text to the case of a small box with 
edges x, y, z contained in a region R in x-y-z space where the 
temperature function w x y z t( , , , ) is sought. Hint: Consider the flow 
of heat through two opposite faces of the box, first perpendicular to 
the x-axis, then perpendicular to the y-axis, and finally perpendi-
cular to the z-axis. 
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Notes  
1 Notice that the result enunciated here is a decisive improvement over what we 

know about Taylor series. We have asserted that a function that is only con-
tinuously differentiable has a Fourier series that converges at every point. But 
even an infinitely differentiable function can have Taylor series that converges at 
no point.  

2 More explicitly, = 0 gives a linear function for a solution and < 0 gives an 
exponential function for a solution.  
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Appendix: Review of Linear Algebra  

Section A1. Linear Algebra Basics 

When we first learn linear algebra, the subject is difficult because it is not 
usually presented in the context of applications. In the current text we see 
one of the most important applications of linear algebra: to provide a lan-
guage in which to do analysis of several real variables. We now give a quick 
review of elementary linear algebra. 

The principal properties of a vector space are that it have an additive 
structure and an operation of scalar multiplication. If u = ( , ,…, )k1 2 and 
v = ( , ,…, )k1 2 are elements of Rk and Ra then define the operations of 
addition and scalar multiplication as follows: 

u u uu v+ = ( + , + ,…, + )k k1 1 2 2

and 

a au au auu = ( , ,…, ).k1 2

Notice that the vector 0 = (0, 0, …, 0) is the additive identity: u 0 u+ = for 
any element Ru k. Also every element Ru u uu = ( , , …, )k

k
1 2 has an 

additive inverse u u uu = ( , ,…, )k1 2 that satisfies u u 0+ ( ) = . 

Example A.1: We have 

(3, 2, 7) + (4, 1, 9) = (7, 1, 2)

and 

5 (3, 2, 7, 14) = (15, 10, 35, 70). □ 

The first major idea in linear algebra is that of linear dependence: 
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Definition A.2: A collection of elements Ru u u, , …, m k1 2 is said to be 
linearly dependent if there exist constants a a a, , …, m1 2 , not all zero, such that 

a u = 0.
j

m

j
j

=1

Example A.3: The vectors u v= (1, 3, 4), = (2, 1, 3), and w = (5, 1, 2)
are linearly dependent because u v w 01 + 2 1 = . 

However, the vectors u v= (1, 0, 0), = (0, 1, 1), and w = (1, 0, 1) are not 
linearly dependent since, if there were constants a b c, , such that 

a b cu v w 0+ + = ,

then 

a c b b c 0( + , , + ) = .

But this means that 

a c
b
b c

+ = 0
= 0

+ = 0.

We conclude that a b c, , must all be equal to zero. That is not allowed in the 
definition of linear dependence.                                                        □ 

A collection of vectors that is not linearly dependent is called linearly in-
dependent. The vectors linear independence u v w, , in the last example 
are linearly independent. Any set of k linearly independent vectors in Rk

is called a basis for Rk. 
How do we recognize a basis? Notice that k vectors 

u u u

u v v

u u u

u

u

u

= ( , ,…, )

= ( , ,…, )
…
= ( , ,…, )

k

k

k k k
k
k

1
1
1

2
1 1

2
1
2

2
2 2

1 2

are linearly dependent if and only if there are numbers a a a, , …, k1 2 , not all 
zero, such that 

a a au u u+ + + = 0.k
k

1
1

2
2
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This in turn is true if and only if the system of equations 

a u a u a u

a u a u a u

a u a u a u

+ + + = 0

+ + + = 0

+ + + = 0

k
k

k
k

k k k k
k

1 1
1

2 1
2

1

1 2
1

2 2
2

2

1
1

2
2

has a nontrivial solution. But such a system has a nontrivial solution if and 
only if 

u u u

u u u

u u u

det = 0.

k

k

k k k
k

1
1

1
2

1

2
1

2
2

2

1 2

So a basis is a set of k vectors as above such that this determinant is not 0. 
Bases are important because if u u u, , … , k1 2 form a basis then every 

element x of Rk can be expressed in one and only one way as 

x a a au u u= + + + ,k
k

1
1

2
2

with a a a, , …, k1 2 scalars. We call this a representation of x as a linear combi-
nation of u u u, , …, k1 2 . To see that such a representation is always possible, 
and is unique, let x x x x= ( , , …, )k1 2 be any element of Rk. If u u u, , …, k1 2

form a basis then we wish to find a a a, , …, k1 2 such that 

x a a au u u= + + + .k
k

1
1

2
2

But, as above, this leads to the system of equations 

a u a u a u x

a u a u a u x

a u a u a u x

+ + + =

+ + + =

+ + + = .

k
k

k
k

k k k
k

k
k

k

1 1
1

2 1
2

1 1

1 2
1

2 2
2

2 2

1
1

2
2

(A.4)  

Now Cramer’s Rule tells us that the unique solution of the system (A.4) is 
given by Cramer’s Rule 
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a a

a

= , = ,

…, = .

x u u

x u u

x u u

u u u

u u u

u u u

u x u

u x u

u x u

u u u

u u u

u u u

k

u u x

u u x

u u x

u u u

u u u

u u u

1

det

det

2

det

det

det

det

k

k

k k k
k

k

k

k k k
k

k

k

k k k
k

k

k

k k k
k

k k k

k

k

k k k
k

1 1
2

1

2 2
2

2

2

1
1

1
2

1

2
1

2
2

2

1 2

1
1

1 1

2
1

2 2

1

1
1

1
2

1

2
1

2
2

2

1 2

1
1

1
2

1

2
1

2
2

2

1 2

1
1

1
2

1

2
1

2
2

2

1 2

Notice that the nonvanishing of the determinant in the denominator is 
crucial for this method to work. 

In practice we will be given a basis u u u, , …, k1 2 for Rk and a vector x and 
we wish to express x as a linear combination of u u u, , …, k1 2 . We may do so 
by solving a system of linear equations as above. A more elegant way to do 
this is to use the concept of the inverse of a matrix. 

Definition A.5: If 

M m= ( )pq p k
q

=1, …,
=1, …,

is a k × matrix (where k is the number of rows, the number of columns, 
and mpq is the element in the pth row and qth column) and 

N n= ( )rs r
s m

=1, …,
=1, …,

is an m× matrix, then the product M N is defined to be the matrix 

T t= ( )uv u k
q m

=1, …,
=1, …,

where 

t m n= .uv
q

uq qv
=1
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Example A.6: Let 

M =

2 3 9
1 4 0

5 3 6
4 4 1

and 

N =
3 0

2 5
4 1

.

Then T M N= is well defined as a 4 × 2 matrix. We notice, for example, 
that 

t = 2 ( 3) + 3 2 + 9 ( 4) = 3611

and 

t = 5 0 + ( 3) 5 + 6 ( 1) = 21.32

Six other easy calculations of this kind yield that 

M N =

36 6
11 20
45 21
8 19

.

□ 

Definition A.7: Let M be a k k× matrix. A matrix N is called the inverse 
of M if M N N M I I= = =k , where 

I =
1 0 0
0 1 0

0 0 1

.

When M has an inverse then it is called invertible. We denote the inverse 
by M−1. 

It follows immediately from the definition that, in order for a matrix to be 
a candidate for being invertible, it must be square. 
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Proposition A.8: Let M be a k k× matrix with nonzero determinant. Then M is 
invertible and the elements of its inverse are given by 

n
M i j

M
=

( 1) det ( , )
det

.ij

i j+

Here M(i, j) is the k k( 1) × ( 1) matrix obtained by deleting the jth row and 
ith column from M. 

Proof: This is a direct calculation.                                                     □ 

Definition A.9: If M is either a matrix or a vector, then the transpose Mt of M 
is defined as follows: If the ijth entry M is mij then the ijth entry of Mt is mij. 

We will find the transpose notion useful primarily as notation. When we 
want to multiply a vector by a matrix, the multiplication will only make 
sense (in the language of matrix multiplication) after we have transposed 
the vector. 

Proposition A.10: If 

u u u

u u u

u u u

u

u

u

= ( , ,…, )

= ( , ,…, )

= ( , ,…, )

k

k

k k k
k
k

1
1
1

2
1 1

2
1
2

2
2 2

1 2

form a basis for Rk then let M be the matrix of the coefficients of these vectors and 
M−1 the inverse of M (which we know exists because the determinant of the matrix 
is nonzero). If x x x x= ( , ,…, )k1 2 is any element of Rk then 

x a a au u u= + + + ,k
k

1
1

2
2

where 

xa a a M( , ,…, ) = .k1 2
1

Proof: Let A be the vector of unknown coefficients a a a( , , …, )k1 2 . The 
system of equations that we need to solve to find a a a, , …, k1 2 can be written 
in matrix notation as 

A M x= .

Applying the matrix M−1 to both sides of this equation (on the right) gives 

A M M x M( ) =1 1
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or 

A I x M= 1

or 

A x M= ,1

as desired.                                                                                    □ 

The standard basis for Rk consists of the vectors standard basis 

e

e

e

= (1, 0,…,0)

= (0, 1,…,0)

= (0, 0,…,1).k

1

2
(A.11)  

If x x x x= ( , ,…, )k1 2 is any element of Rk, then we may write 

x x x xe e e= + + + .k
k

1
1

2
2

In other words, the usual coordinates with which we locate points in 
k-dimensional space are the coordinates with respect to the special basis 
(A.11). We write this basis as e e e, , …, k1 2 . 

If x x x x= ( , ,…, )k1 2 and y y yy = ( , ,…, )k1 2 are elements of Rk then we define 

x x x x= ( ) + ( ) + + ( )k1
2

2
2 2

and 

x x y x y x yy = + + + .k k1 1 2 2

Proposition A.12: (The Schwarz Inequality) 
If x and y are Schwarz inequality elements of Rk then 

x xy y .

Proof: Write out both sides and square. If all terms are moved to the right 
then the right side becomes a sum of perfect squares and therefore the 
inequality is obvious.                                                                      □  
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Table of Notation      

Notation Section Definition  

Q 1.1 the rational numbers 

Xsup 1.1 supremum of X

Xlub 1.1 least upper bound of X

Xinf 1.1 infimum of X

Xglb 1.1 greatest lower bound of X

R 1.1 the real numbers 

x 1.1 absolute value 

x y x y+ | + 1.1 triangle inequality 

1.1AP a cut 

C 1.2 the complex numbers 
z 1.2 a complex number 

i 1.2 the square root of 1

z̄ 1.2 complex conjugate 

z 1.2 modulus of z

ei 1.2 complex exponential 

a{ }j 2.1 a sequence 

aj 2.1 a sequence 

ajk 2.2 a subsequence 

alim inf j 2.3 limit infimum of aj

alim sup j 2.3 limit supremum of aj

aj 2.4 a power sequence 

e 2.4 Euler’s number e

aj j=1 3.1 a series 

SN 3.1 a partial sum 

aj
N

j=1
3.1 a partial sum 

b( 1)j
j

j=1 3.3 an alternating series 

j! 3.4 j factorial 

a bn j
n

j n j=0 =0 3.5 the Cauchy product of series 

a b( , ) 4.1 open interval 

a b[ , ] 4.1 closed interval 

a b[ , ) 4.1 half-open interval 

(Continued) 
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Notation Section Definition  

a b( , ] 4.1 half-open interval 

U 4.1 an open set 

F 4.1 a closed set 

S 4.1 boundary of S

Sc 4.1 complement of S

S̄ 4.2 closure of S

S
4.2 interior of S

{ } 4.3 an open cover 

Sj 4.4 step in constructing the Cantor set 

C 4.4 the Cantor set 

f xlim ( )E x P 5.1 limit of f at P

5.1 a limit 

f g+ 5.1 sum of functions 

f g 5.1 difference of functions 

f g 5.1 product of functions 

f g/ 5.1 quotient of functions 

f g 5.2 composition of functions 

f 1 5.2 inverse function 

f W( )1 5.2 inverse image of a set 

f L( ) 5.3 image of the set L

m 5.3 minimum for a function f

M 5.3 maximum for a function f

f xlim ( )x P 5.4 left limit of f at P

f xlim ( )x P+ 5.4 right limit of f at P

f x( ) 6.1 derivative of f at x

df dx/ 6.1 derivative of f

Lip I( ) 6.3 space of Lipschitz- functions 

C I( )k, 6.3 space of smooth functions of order k,

7.1 a partition 

Ij 7.1 interval from the partition 

j 7.1 length of Ij

m ( ) 7.1 mesh of the partition 

f( , ) 7.1 Riemann sum 

f x dx( )
a

b 7.1 Riemann integral 

f x dx( )
b

a 7.2 integral with reverse orientation 

f( , , ) 7.3 upper Riemann sum 

f( , , ) 7.3 lower Riemann sum 

I f( ) 7.3 upper integral of f
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Notation Section Definition  

I f( ) 7.3 lower integral of f

fd 7.3 Riemann–Stieltjes integral 

Vf 7.4 total variation of f

fj 8.1 sequence of functions 

f{ }j 8.1 sequence of functions 

f xlim ( )x s 8.2 limit of f as x approaches s

f x( )j j=1 8.3 series of functions 

S x( )N 8.3 partial sum of a series of functions 

p x( ) 8.4 a polynomial 

a x c( )j j
j

=0 9.1 a power series 

RN 9.1 tail of the power series 

9.2 radius of convergence 

f x f a R x( ) = ( ) + ( )j
k j x a

j k a=0
( ) ( )

! ,
j 9.2 Taylor expansion 

exp x( ) 9.3 the exponential function 

xsin 9.3 the sine function 
xcos 9.3 the cosine function 

Sin x 9.3 sine with restricted domain 

Cos x 9.3 cosine with restricted domain 

xln 9.4 the natural logarithm function 

Rk 10.1 multidimensional   

Euclidean space 

x x x x= ( , , )1 2 3 10.1 a point in   

multidimensional space 

B x r( , ) 10.1 an (open) ball in   

multidimensional space 

B x r¯ ( , ) 10.1 a closed ball in multidimensional space 

f xlim ( )x P 10.1 limit in multidimensional space 

MP 10.1 the derivative of f at P

P 10.2 remainder term for the derivative 

Jf 10.3 Jacobian matrix 

X( , ) 11.1 metric space 

B P r( , ) 11.1 open ball 

B P r¯ ( , ) 11.1 closed ball 

f xlim ( )x P 11.1 limit of f at P

U 11.2 open set 

E 11.2 closed set 

{ } A 11.2 open covering 

(Continued) 
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Notation Section Definition  

S̄ 11.3 closure of the set S

11.4 family of functions 

dy dx F x y/ = ( , ) 12.1 first-order differential equation 

y x y F t y t dt( ) = + ( , ( ))
x

x
0 0

12.1 integral equation equivalent  
of first-order ODE 

y x y F t y t dt( ) = + ( , ( ))j x

x
j+1 0 0

12.1 Picard iteration technique 

j a j p a( + 1) + ( ) = 0j j+1 12.2 a recursion 

m m m2 ( 1) + 1 = 0 12.2 indicial equation 

cn 13.1 Fourier coefficient 

f nˆ ( ) 13.2 nth Fourier coefficient 

Sf 13.2 Fourier series 

S fN 13.2 partial sum of Fourier series 

DN 13.2 Dirichlet kernel 

f̂ ( ) 13.3 Fourier transform of f

RC ( )0 13.3 continuous functions   

that vanish at 
an 13.4 Fourier cosine coefficient 

bn 13.4 Fourier sine coefficient 

13.4 Laplacian 

w r a( , ) = 1
2 0

r a j b j+ ( cos + sin )j
j

j j=1 13.4 solving the Dirichlet problem 

N A.1 the natural numbers 

x̂ A.1 successor 

Q n( ) A.1 inductive statement 

n
k

A.1 choose function 

Z A.2 the integers 

a b[( , )] A.2 an integer 

Q A.3 the rational numbers 

c d[( , )] A.3 a rational number    
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Glossary   

Abel’s convergence test  A test for convergence of series that is 
based on summation by parts. 

Absolutely convergent series  A series for which the absolute values of 
the terms form a convergent series. 

Absolute maximum  A number M is the absolute maximum 
for a function f if f x f M( ) ( ) for every x. 

Absolute minimum  A number m is the absolute minimum for 
a function f if f x f m( ) ( ) for every x. 

Absolute value  Given a real number x, its absolute value 
is the distance of x to 0. 

Accumulation point  A point x is an accumulation point of a 
set S if every neighborhood of x contains 
infinitely many distinct elements of S. 

Algebraic number  A number that is the solution of 
a polynomial equation with integer 
coefficients. 

Alternating series  A series of real terms that alternate in 
sign. 

Alternating series test  If an alternating series has terms tending 
to zero, then it converges. 

and  The connective that is used for 
conjunction. 

Archimedean Property  If a and b are positive real numbers, then 
there is a positive integer n so that 
na b> . 

Ascoli-Arzela theorem  Let Y( , ) be a metric space and assume 
that Y is compact. Let be an 
equibounded, equicontinuous family of 
functions on Y. Then, there is a sequence 
f{ }j that converges uniformly to a 

continuous function on Y. 
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Atomic sentence  A sentence with a subject and a verb, and 
sometimes an object, but no connectives. 

Baire Category Theorem  The result that a complete metric space 
is of second category. 

Bessel’s inequality  An inequality for Fourier coefficients 
having the form f f t dt|ˆ | | ( )| .n N

N
n=

2
0

2 2

Bijection  A one-to-one, onto function. 
Binomial expansion  The expansion, under multiplication, of 

the expression a b( + )n. 
Bolzano–Weierstrass 
Theorem  

Every bounded sequence of real 
numbers has a convergent subsequence. 

Boundary of a set  The set of boundary points for the set. 
Boundary point  The point b is in the boundary of S if each 

neighborhood of b contains both points of 
S and points of the complement of S. 

Bounded above  A subset RS is bounded above if 
there is a real number b such that s b
for all s S. 

Bounded below  A subset RS is bounded below if 
there is a real number c such that s c
for all s S. 

Bounded sequence  A sequence aj with the property that there 
is a number M so that a M| |j for every j. 

Bounded set  A set S with the property that there is a 
number M with s M| | for every s S. 

Bounded variation  A function having bounded total 
oscillation. 

Cantor set  A compact set that is uncountable, has 
zero length, is perfect, is totally 
disconnected, and has many other 
unusual properties. 

Cardinality  Two sets have the same cardinality when 
there is a one-to-one correspondence 
between them. 

Cauchy Condensation Test  A series of decreasing, nonnegative 
terms converges if and only if its 
dyadically condensed series converges. 

Cauchy criterion  A sequence aj is said to be Cauchy if, for 
each > 0, there is an N > 0 so that, if 
j k N, > , then a a| | <j k . 

Cauchy criterion for a series  A series satisfies the Cauchy criterion if 
and only if the sequence of partial sums 
satisfies the Cauchy criterion for a 
sequence. 

462                                                                                     Glossary 

ISTUDY



Cauchy product  A means for taking the product of two 
series. 

Cauchy’s Mean Value 
Theorem  

A generalization of the Mean Value 
Theorem that allows the comparison of 
two functions. 

Chain Rule  A rule for differentiating the composition 
of functions. 

Change of variable  A method for transforming an integral 
by subjecting the domain of integration 
to a one-to-one function. 

Closed ball  The set of points at distance less than or 
equal to some r > 0 from a fixed point P. 

Closed set  The complement of an open set. 
Closure of a set  The set together with its boundary points. 
Common refinement 
of two partitions  

The union of the two partitions. 

Compact set  A set E is compact if every sequence in E
contains a subsequence that converges 
to an element of E. 

Comparison test for 
convergence  

A series converges if it is majorized in 
absolute value by a convergent series. 

Comparison test for 
divergence  

A series diverges if it majorizes a positive 
divergent series. 

Complement of a set  The set of points not in the set. 
Complete space  A space in which every Cauchy sequence 

has a limit. 
Complex conjugate  Given a complex number z x iy= + , the 

conjugate is the number z x iy¯ = . 
Complex numbers  The set C of ordered pairs of real numbers 

equipped with certain operations of 
addition and multiplication. 

Composition  The composition of two functions is the 
succession of one function by the other. 

Conditionally convergent 
series  

A series that converges, but not absolutely. 

Connected set  A set that cannot be separated by two 
disjoint open sets. 

Connectives  The words that are used to connect 
atomic sentences. These are “and,” “or,” 
“not,” “if-then,” and “if and only if.” 

Continuity at a point  The function f is continuous at P if 
the limit of f at P equals the value of f
at P. Equivalently, given > 0, there is 
a > 0 so that x P| | < implies 
f x f P| ( ) ( )| < . 
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Continuous function  A function for which the inverse image 
of an open set is open. 

Continuously differentiable 
function  

A function that has a derivative at every 
point, and so that the derivative function 
is continuous. 

Contrapositive  For a statement “A implies B”, the 
contrapositive statement is “ ~B 
implies ~A”. 

Convergence of a sequence 
(of scalars)  

A sequence aj with the property that 
there is a limiting element so that, for 
any > 0, there is a positive integer N so 
that, if j N> , then a| | <j . 

Convergence of a series  A series converges if and only if its 
sequence of partial sums converges. 

Converse  For a statement “A implies B”, the 
converse statement is “B implies A”. 

Cosine function  The function x x jcos = ( 1) /(2 )!j
j j

=0
2 . 

Countable set  A set that has the same cardinality as the 
natural numbers. 

Cramer’s Rule  A device in linear algebra for solving 
systems of linear equations. 

Decreasing sequence  The sequence a{ }j of real numbers is 
decreasing if a a a1 2 3 . 

Dedekind cut  A rational halfline. Used to construct the 
real numbers. 

De Morgan’s Laws  The identities A B A B( ) =c c c and 
A B A B( ) =c c c . 

Density Property  If c d< are real numbers, then there is a 
rational number q with c q d< < . 

Denumerable set  A set that is either empty, finite, or 
countable. 

Derivative  The limit f x f t t xlim ( ( ) ( ))/( )t x for 
a function f on an open interval. 

Derived power series  The series obtained by differentiating a 
power series term by term. 

Determinant  The signed sum of products of elements 
of a matrix. 

Difference quotient  The quotient f t f x t x( ( ) ( ))/( ) for a 
function f on an open interval. 

Differentiable  A function that possesses the derivative 
at a point. This will be written differently 
in one variable and in several variables. 

Dirichlet function  A function, taking only the values 
0 and 1, which is highly discontinuous. 
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Dirichlet kernel  A kernel that represents the partial sum 
of a Fourier series. The kernel has the 
form D t N t t( ) = (sin( + ) )/(sin )N

1
2

1
2

. 
Dirichlet problem on the disc  The problem of finding a harmonic 

function on the disc with specified 
boundary values. 

Disconnected set  A set that can be separated by two 
disjoint open sets. 

Discontinuity of the 
first kind  

A point at which a function f is 
discontinuous because the left and 
right limits at the point disagree. 

Discontinuity of the 
second kind  

A point at which a function f is 
discontinuous because either the left 
limit or the right limit at the point does 
not exist. 

Diverge to infinity  A sequence with elements that become 
arbitrarily large. 

Domain of a function  See function. 
Domain of integration  The interval over which the integration 

is performed. 
Dummy variable  A variable whose role in an argument or 

expression is formal. A dummy variable 
can be replaced by any other variable 
with no logical consequences. 

Element of  A member of a given set. 
Empty set  The set with no elements. 
Equibounded  A family of functions f= { } of functions 

is equibounded if there is a number 
M > 0 such that f x M| ( )| for all 
x X and all f . 

Equicontinuous family 
of functions  

A family f= { } of functions is equicon- 
tinuous if for every > 0 there is a 

> 0 such that when s t( , ) < , then 
f s f t| ( ) ( )| < . 

Equivalence classes  The pairwise disjoint sets into which an 
equivalence relation partitions a set. 

Equivalence relation  A relation that partitions the set in 
question into pairwise disjoint sets, 
called equivalence classes. 

Euler’s formula  The identity e y i y= cos + siniy . 
Euler’s number  This is the number e = 2.71828 … that 

is known to be irrational, indeed 
transcendental. 

Exponential function  The function exp z z j( ) = / !j
j

=0 . 
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Field  A system of numbers equipped with 
operations of addition and multiplication 
and satisfying eleven natural axioms. 

Finite-dimensional space  A linear space with a finite basis. 
Finite set  A set that can be put in one-to-one 

correspondence with a set of the form 
n{1, 2,…, } for some positive integer n. 

Finite subcovering  An open covering U= { }j j
k
=1 is a finite 

subcovering of E if each element of is 
an element of a larger covering . 

First category  A space that can be written as the 
countable union of nowhere dense sets. 

First-order differential equa-
tion (ODE)  

An equation of the form dy dx F x y/ = ( , ). 

For all  The quantifier for making a statement 
about all objects of a certain kind. 

Fourier coefficient  The coefficient f n f t e dtˆ ( ) = (1/[2 ]) ( ) int
0

2

of the Fourier series for the function f . 
Fourier series  A series of the form f t c e( )~ j j

ijt that 
decomposes the function f as a sum of 
sines and cosines. We sometimes write 
Sf f j e~ ˆ ( )j

ijt
= . 

Fourier transform  Given a function f on the real line, its 
Fourier transform is Rf f t e dtˆ ( ) = ( ) it . 

Function  A function from a set A to a set B is a 
relation f on A and B such that for each 
a A there is one and only one pair 
a b f( , ) . We call A the domain and B the 

range of the function. 
Fundamental Theorem of 
Calculus  

A result relating the values of a function 
to the integral of its derivative: f x( )
f a f t dt( ) = ( )

a

x
. 

Geometric series  This is a series of powers of a fixed base. 
Greatest lower bound  The real number c is the greatest lower 

bound for the set RS if b is a lower 
bound and if there is no lower bound 
that is greater than c. 

Green’s function  A function G x y( , ) that is manufactured 
from the fundamental solution for the 
Laplacian and is useful in solving partial 
differential equations. 

Harmonic function  A function that is annihilated by the 
Laplacian. 
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Hausdorff space  A topological space in which distinct 
points p q, are separated by disjoint 
neighborhoods. 

Higher derivative  The derivative of a derivative. 
Hilbert transform  The singular integral operator f P V. .

f t x t dt( )/( ) that governs convergence 
of Fourier series and many other 
important phenomena in analysis. 

i  The square root of −1 in the complex 
number system. 

Identity matrix  The square matrix with 1s on the 
diagonal and 0s in the other entries. 

If and only if  The connective that is used for logical 
equivalence. 

If–then  The connective that is used for 
implication. 

Image of a function  See function. The image of the function 
f is fImage = b B a A{ : such that
f a b( ) = }. 

Image of a set  If f is a function, then the image of E
under f is the set f e e E{ ( ): }. 

Imaginary part  Given a complex number z x iy= + , its 
imaginary part is y. 

Implicit function theorem  A result that gives sufficient conditions, 
in terms of the derivative, on an 
equation of several variables to be able 
to solve for one variable in terms of the 
others. 

Increasing sequence  The sequence of real numbers aj is 
increasing if a a a1 2 3 . 

Infimum  See greatest lower bound. 
Infinite set  A set is infinite if it is not finite. 
Initial condition  For a first-order differential equation, this 

is a side condition of the form y x y( ) =0 0. 
Integers  The natural numbers, the negatives of 

the natural numbers, and zero. 
Integral equation equivalent 
of a first-order ODE  

An equation of the form y x y( ) = +0
F t y t dt( , ( ))

x

x

0
. 

Integration by parts  A device for integrating a product. 
Interior of a set  The collection of interior points of 

the set. 
Interior point  A point of the set S that has a 

neighborhood lying in S. 
Intermediate value theorem  The result that says that a continuous 

function does not skip values. 
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Intersection of sets  The set of elements common to two or 
more given sets. 

Interval  A subset of the reals that contains all its 
intermediate points. 

Interval of convergence of a 
power series  

An interval of the form c c( , + )
on which the power series converges 
(uniformly on compact subsets of the 
interval). 

Inverse function theorem  A result that gives sufficient conditions, 
in terms of the derivative, for a function 
to be locally invertible. 

Inverse of a matrix  Given a square matrix A, we say that B is 
its inverse if A B B A I= = , where I is 
the identity matrix. 

Invertible matrix  A matrix that has an inverse. 
Irrational number  A real number that is not rational. 
Isolated point of a set  A point of the set with a neighborhood 

containing no other point of the set. 
Jacobian matrix  The matrix of partial derivatives of a 

mapping from Rk to Rk. 
k times continuously 
differentiable  

A function that has k derivatives, each of 
which is continuous. 

Lambert W function  A transcendental function W with the 
property that any of the standard 
transcendental functions (sine, cosine, 
exponential, logarithm) can be expressed 
in terms of W . 

Laplacian  The partial differential operator given 
by x x x= / + / + + / k

2
1
2 2

2
2 2 2. 

Least upper bound  The real number b is the least upper 
bound for the set RS if b is an upper 
bound and if there is no other upper 
bound that is less than b. 

Least Upper Bound Property  The important defining property of the 
real numbers. 

Left limit  A limit of a function at a point P that is 
calculated with values of the function 
that are to the left of P. 

Legendre’s equation  The ODE x y" xy p p y(1 ) 2 + ( + 1) = 02 . 
l’Hôpital’s Rule  A rule for calculating the limit of the 

quotient of two functions in terms of the 
quotient of the derivatives. 

Limit  The value that a function approaches at 
a point of or an accumulation point P of 
the domain. Equivalently, given > 0, 
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there is a > 0 so that f x| ( ) | <
whenever x P| | < . 

Limit infimum  The least limit of any subsequence of a 
given sequence. 

Limit supremum  The greatest limit of any subsequence of 
a given sequence. 

Linear combination  If v1, v2, , vk are vectors, then a linear 
combination is an expression of the 
form c v c v c v+ + k k1 1 2 2 for scalar 
coefficients cj. 

Linearly dependent set  In a linear space, a set that is not linearly 
independent. 

Linearly independent set  In a linear space, a set that has no 
nontrivial linear combination giving 0. 

Linear operator  A function between linear spaces 
that satisfies the linearity condition 
T cx dy cT x dT y( + ) = ( ) + ( ). 

Lipschitz function  A function that satisfies a condition of 
the form f s f t C s t| ( ) ( )| | | or 
f s f t s t| ( ) ( )| | | for 0 < 1. 

Local extrema  Either a local maximum or a local 
minimum. 

Local maximum  The point x is a local maximum for the 
function f if f x f t( ) ( ) for all t in a 
neighborhood of x. 

Local minimum  The point x is a local minimum for the 
function f if f x f t( ) ( ) for all t in a 
neighborhood of x. 

Logically equivalent  Two statements are logically equivalent 
if they have the same truth table. 

Logically independent  Two statements are logically independent 
if neither one implies the other. 

Lower bound  A real number c is a lower bound for a 
subset RS if s c for all s S. 

Lower Riemann sum  A Riemann sum devised for defining the 
Riemann–Stieltjes integral. 

Mean Value Theorem  If f is a continuous function on a b[ , ], 
differentiable on the interior, then the 
slope of the segment connecting a f a( , ( ))
and b f b( , ( )) equals the derivative of f at 
some interior point. 

Mesh of a partition  The maximum length of any interval in 
the partition. 

Metric  The distance function on a metric space. 
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Metric space  A space X equipped with a distance 
function . 

m n× Matrix  A matrix with m rows and n columns. 
Modulus  The modulus of a complex number 

z x iy= + is z x y| | = +2 2 . 
Monotone sequence  A sequence that is either increasing or 

decreasing. 
Monotonically decreasing 
function  

A function whose graph goes downhill 
when moving from left to right: 
f s f t( ) ( ) when s t< . 

Monotonically increasing 
function  

A function whose graph goes uphill when 
moving from left to right: f s f t( ) ( )
when s t< . 

Monotonic function  A function that is either monotonically 
increasing or monotonically decreasing. 

Natural logarithm function  The inverse function to the exponential 
function. 

Natural numbers  The counting numbers 1, 2, 3, …. 
Necessary for  An alternative phrase for converse 

implication. 
Neighborhood of a point  An open set containing the point. 
Neumann series  A series of the form 1/(1 ) = j

j
=0

for | | < 1. 
Newton quotient  The quotient f t f x t x( ( ) ( ))/( ) for a 

function f on an open interval. 
Non-terminating decimal 
expansion  

A decimal expansion for a real number 
that has infinitely many nonzero digits. 

Norm  The notion of distance on a normed 
linear space. 

Normed linear space  A linear space equipped with a norm that 
is compatible with the linear structure. 

Not  The connective that is used for negation. 
Nowhere dense  A space is nowhere dense if its closure 

contains no balls. 
One-to-one function  A function that takes different values at 

different points of the domain. 
Only if  An alternative phrase for implication. 
Onto  A function whose image equals its range. 
Open ball  The set of points at distance less than 

some r > 0 from a fixed point P. 
Open covering  A collection U{ } A of open sets is an 

open covering of a set S if U S. 
Open Mapping Principle  The result that says that a bounded, 

surjective linear mapping is open. 
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Open set  A set that contains a neighborhood of 
each of its points. 

Or  The connective that is used for 
disjunction. 

Ordered field  A field equipped with an order relation 
that is compatible with the field structure. 

Ordinary differential equa-
tion (ODE)  

An equation involving a function of one 
variable and some of its derivatives. 

Partial derivative  For a function of several variables, this is 
the derivative calculated in just one 
variable, with the other variables held 
fixed. 

Partial sum of a Fourier 
series  

The sum of the terms of a Fourier series 
having index between N and N . 

Partial sum of functions  The sum of the first N terms of a series 
of functions. 

Partial sum (of scalars)  The sum of the first N terms of a series 
of scalars. 

Partition of the interval a b[ , ] A finite, ordered set of points =
x x x x x{ , , ,…, , }k k0 1 2 1 , such that a x= 0

x x x x b… = .k k1 2 1
Peano axioms  An axiom system for the natural 

numbers. 
Perfect set  A set that is closed and in which every 

point is an accumulation point. 
Picard iteration technique  An iteration scheme for solving a first- 

order ODE using the steps y x( ) =j+1
y F t y t dt+ ( , ( ))

x

x
j0 0

. 
Pinching Principle  A criterion for convergence of a sequence 

that involves bounding it below by a 
convergent sequence and bounding it 
above by another convergent sequence 
with the same limit. 

Pointwise convergence of a 
sequence of functions  

A sequence fj of functions converges 
pointwise if f x( )j convergence for each 
x in the common domain. 

Poisson kernel  The reproducing kernel for harmonic 
functions. 

Polar form of a complex 
number  

The polar form of a complex number z is 
rei , where r is the modulus of z and is 
the angle that the vector from 0 to z
subtends with the positive x-axis. 

Power series expanded about 
the point c

A series of the form a x c( )j j
j

=0 . 
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Power set  The collection of all subsets of a given set. 
Principle of Induction  A proof technique for establishing a 

statement Q n( ) about the natural 
numbers. 

Quantifier  A logical device for making a quantitative 
statement. Our standard quantifiers are 
“for all” and “there exists.” 

Radius of convergence of 
a power series  

Half the length of the interval of 
convergence. 

Range of a functon  See function. 
Rational numbers  Numbers that may be represented as 

quotients of integers. 
Ratio Test for Convergence  A series converges if the limit of the 

sequence of quotients of summands is 
less than 1. 

Ratio Test for Divergence  A series diverges if the limit of the 
sequence of quotients of summands is 
greater than 1. 

Real analytic function  A function with a convergent power 
series expansion about each point of its 
domain. 

Real numbers  An ordered field R containing the 
rationals Q so that every nonempty 
subset with an upper bound has a least 
upper bound. 

Real part  Given a complex number z x iy= + , its 
real part is x. 

Rearrangement of a series  A new series obtained by permuting the 
summands of the original series. 

Relation  A relation on sets A and B is a subset of 
A B× . 

Remainder term for the 
Taylor expansion  

The term R x( )k a, in the Taylor expansion. 

Riemann integrable  A function for which the Riemann 
integral exists. 

Riemann integral  The limit of the Riemann sums. 
Riemann–Lebesgue Lemma  The result that says that the Fourier 

transform of an integrable function 
vanishes at infinity. 

Riemann’s lemma  A result guaranteeing the existence of 
the Riemann–Stieltjes integral in terms 
of the proximity of the upper and lower 
Riemann sums. 
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Riemann–Stieltjes integral  A generalization of the Riemann integral, 
which allows measure of the length of the 
interval in the partition by a function . 

Riemann sum  The approximate integral based on a 
partition. 

Right limit  A limit of a function at a point P that is 
calculated with values of the function to 
the right of P. 

Rolle’s Theorem  The special case of the Mean Value 
Theorem when f a f b( ) = ( ) = 0. 

Root Test for Convergence  A series converges if the limit of the nth 
roots of the nth terms is less than one. 

Root Test for Divergence  A series is divergent if the limit of the 
nth roots of the nth terms is greater 
than one. 

Scalar  An element of either R or C. 
Schroeder–Bernstein 
Theorem  

The result that says that if there is a one- 
to-one function from the set A to the set 
B and a one-to-one function from the set 
B to the set A, then A and B have the 
same cardinality. 

Schwarz inequality  The inequality v w v w| | .
Second category  A space that is not of first category. 
Sequence of functions  A function from N into the set of 

functions on some space. 
Sequence (of scalars)  A function from N into R or C or a metric 

space. We often denote the sequence by aj. 
Series of functions  An infinite sum of functions. 
Series (of scalars)  An infinite sum of scalars. 
Set  A collection of objects. 
Setbuilder notation  The notation x P x{ : ( )} for specifying a set. 
Set-theoretic difference  The set-theoretic difference A B\ consists 

of those elements that lie in A but not in B. 
Set-theoretic isomorphism  A one-to-one, onto function. 
Set-theoretic product  If A and B are sets, then their set- 

theoretic product is the set of ordered 
pairs a b( , ) with a A and b B. 

Sine function  The function x x jsin = ( 1) /(2 + 1)!j
j j

=0
2 +1 . 

Smaller cardinality  The set A has smaller cardinality than 
the set B if there is a one-to-one mapping 
of A to B but none from B to A. 

Strictly monotonically de-
creasing function  

A function whose graph goes strictly 
downhill when moving from left to 
right: f s f t( ) > ( ) when s t< . 
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Strictly monotonically 
increasing function  

A function whose graph goes strictly 
uphill when moving from left to right: 
f s f t( ) > ( ) when s t< . 

Subcovering  A covering that is a subcollection of a 
larger covering. 

Subfield  Given a field k, a subfield m is a subset of 
k that is also a field with the induced 
field structure. 

Subsequence  A sequence that is a subset of a given 
sequence with the elements occurring in 
the same order. 

Subset of  A subcollection of the members of a 
given set. 

Successor  The natural number that follows a given 
natural number. 

Suffices for  An alternative phrase for implication. 
Summation by parts  A discrete analogue of integration by 

parts. 
Supremum  See least upper bound. 
Taylor’s expansion  The expansion f x f a R x( ) = ( ) + ( )j

k j x a
j k a=0

( ) ( )
! ,

j

for a given function f . 
Terminating decimal  A decimal expansion for a real number 

that has only finitely many nonzero digits. 
There exists  The quantifier for making a statement 

about some objects of a certain kind. 
Totally disconnected set  A set in which any two points can be 

separated by two disjoint open sets. 
Transcendental number  A real number that is not algebraic. 
Transpose of a matrix  Given a matrix A a= { }ij , the transpose 

is the matrix obtained by replacing aij

with aji. 
Triangle inequality  The inequality a b a b| + | | | + | | for 

real numbers. 
Truth table  An array that shows the possible truth 

values of a statement. 
Uncountable set  An infinite set that does not have the 

same cardinality as the natural numbers. 
Uniform convergence of 
a sequence of functions  

The sequence fj of functions converges 
uniformly to a function f if, given > 0, 
there is an N > 0 so that, if j N> , then 
f x f x| ( ) ( )| <j for all x. 

Uniform convergence of a 
series of functions  

A series of functions such that the 
sequence of partial sums converges 
uniformly. 
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Uniformly Cauchy sequence 
of functions  

A sequence of functions fj with the 
property that, for > 0, there is an N > 0
so that, if j k N, > , then f x f x| ( ) ( )| <j k
for all x in the common domain. 

Uniformly continuous  A function f is uniformly continuous if, 
for each > 0, there is a > 0 so that 
f s f t| ( ) ( )| < whenever s t| | < .

Union of sets  The collection of objects that lie in any 
one of a given collection of sets. 

Universal set  The set of which all other sets are a 
subset. 

Upper bound  A real number b is an upper bound for a 
subset RS if s b for all s S. 

Upper Riemann sum  A Riemann sum devised for defining the 
Riemann–Stieltjes integral. 

Venn diagram  A pictorial device for showing relation 
ships among sets. 

Weierstrass Approximation 
Theorem  

The result that any continuous function 
on [0, 1] can be uniformly approximated 
by polynomials. 

Weierstrass M-Test  A simple scalar test that guarantees the 
uniform convergence of a series of 
functions. 

Weierstrass nowhere differ-
entiable function  

A function that is continuous on [0, 1]
that is not differentiable at any point of 
[0, 1]. 

Well defined  An operation on equivalence classes is 
well defined if the result is independent 
of the representatives chosen from the 
equivalence classes. 

Zero Test  If a series converges, then its summands 
tend to zero.   
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Index   

Abel’s convergence test 124–125 
absolute value 59 
accumulation point 151, 359 
addition 12, 60; associative property of 

12, 60; commutative property 
of 12, 60; process 282; of 
rational numbers 11–12 

additive identity 65, 449 
additive inverse 12, 13, 60, 65, 449 
advanced convergence tests, series 123–129; 

Abel’s convergence test 124–125; 
Alternating Series Test 125–128; 
Riemann sum 128–129; 
summation by parts 123–124; 
Weierstrass sum 128–129 

Alternating Series Test 125–128 
and statement 21–23 
Archimedean principle 81 
Archimedean property 58–59 
Archimedes 3 
Aristotelian logic 25 
Ascoli-Arzela theorem 368–370 
associative property: of addition 12, 60; 

of multiplication 12, 60 
axioms 1–2, 12–14 

Baire Category Theorem 363–367 
Bernoulli, Daniel 426 
Bernoulli, Johann 426–428 
Bernoulli’s solution 435 
Bessel’s inequality 401–402 
bijection 42, 53 
binomial coefficient 4 
Bolzano–Weierstrass theorem 91–93, 

155–156 
boundary conditions 428 
boundary point 152–153 
boundary value 428–429 
bounded above set 55 
bounded variation function 263 

Cantor, G. 43–44, 51 
Cantor set 162–165, 169 
cardinality, of sets 44–47 
Cauchy, Alexandre Laurent 87, 222 
Cauchy, Baron Augustin-Louis 87–89 
Cauchy, Eugene FranÇois 87 
Cauchy Condensation Test 112–114 
Cauchy sequence 81–85 
Cauchy series 107–108 
Cauchy’s Mean Value Theorem 222–223 
Chain Rule for vector-valued 

functions 336 
Chain Rule in coordinates 337–340 
change of variable 245–251 
characteristic function 292 
closed ball 326, 356 
closed sets 145–156, 358 
closure of sets 361 
coefficients of power series 305 
commutative property: of addition 12, 

60; of multiplication 12, 60 
commuting limits 276 
compact sets 158–161, 359 
Comparison Test 112 
complement, of sets 37 
complex numbers 64–73, 75n1; cube 

roots of 70–73; defined 64; 
identification of real numbers 
as subfield of 67–68; 
multiplication of 64–65; 
multiplicative inverse 66–67; 
nonzero 53, 67, 70; properties of 
65–66; real numbers vs. 67; 
sequences of 77 

composition f ∘ g 43 
conditionally convergent series 128 
conjunction 22; infinite 32 
connected sets 167–169 
connectives 23 see also and statement; if 

statement; if–then statement; or 
statement 
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conservation of energy 440 
constant of proportionality 441 
continuity of functions 187–194 
continuous functions 181–194, 329 
contrapositive statement 26–29 
convergence: advanced tests 

see advanced convergence tests, 
series; elementary tests 
see elementary convergence 
tests, series; interval of 296; 
radius of 296; of sequences 
77–89; of series 105–110 

converse statement 26–29 
cosine function 314; properties of 317 
countable sets 43–53 
Couturat, Louis 379 
Cramer’s Rule 451 
cube roots, of complex numbers 70–73 
cuts 61; Dedekind 59; defined 60–61; 

product of 61–62 

d’Alembert, J. 425 
d’Alembert’s formula 437–438, 439 
d’Alembert’s solution 438 
Darboux’s Theorem 217–218 
decimal numbers 52 
Dedekind, Julius W. R. 59 
Dedekind cuts 59 
de Morgan’s laws 37 
density property 58–59 
denumerable sets 48 
derivatives: concept of 203–211; 

properties of 334–342 
derived power series 304 
differential equations 373; first-order 373 
differentiation of functions 203–228; 

concept of derivative 203–211; 
Mean Value Theorem 216–223 

Dirichlet function 41 
Dirichlet kernel 402–406 
Dirichlet problem on disc 419–424 
disconnected sets 167–169 
discontinuities, of functions 195–201 
discontinuity of first kind 197 
discontinuity of second kind 197–198 
disjunction, infinite 32 
distance in space 325, 326 
distributive property of multiplication 62 

domain, of function 40 
dummy variable 33 

eigenfunctions 429 
eigenvalues 429 
elementary convergence tests, series 

112–121; Cauchy condensation 
test 112–114; Comparison Test 
112; Integral Test 121; Ratio 
Test 117–119; Ratio Test for 
Divergence 119; Root Test 
116–117; Root Test for 
Divergence 119 

elementary properties of limits of 
functions 176–179 

elementary transcendental functions: 
power series 295–301 

empty set 35 
equibounded 368 
equicontinuous family of functions 368 
equivalence classes 6–9, 39; in rational 

numbers 10 
equivalence relation 5–6, 9–10, 39 
Euclidean space 149 
Euler, Léonard 131, 425–426 
Euler’s equidimensional equation 421 
Euler’s formula 315 
Euler’s number 133–135 
exclusive “or” 22 
existence of Riemann–Stieltjes integral 

259–267 
exponential functions 311–314, 321 

Fermat’s theorem 217 
field 12–14, 60; axioms 12–14; defined 12, 

60; ordered 15–17, 62; 
properties of 13–14; set as 60 

finite sets 48 
finite subcovering 361 
first category 366 
first-order differential equations 373 
“for all” quantifier 29–32 
Fourier, Jean-Baptiste Joseph 396–397 
Fourier coefficient 399, 419 
Fourier series 395; elements of 399–406 
Fourier transform 408–412 
Freudenthal, Hans 87 
Frobenius series, method of 389–392 
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functions: bounded variation 263; 
continuity of 187–194; 
continuous 181–186; defined 
40; differentiation of 
see differentiation of functions; 
discontinuities 195–201; 
domain of 40; exponential 
311–314; image of 41, 43; 
inverse of 43; limit of 173–179, 
354; monotonicity 195–201; 
one-to-one 42; onto 42; range of 
40; real analytic 296–297; 
relations and 37–43; sequence 
of see sequence of functions; 
series of 282–285; trigonometric 
314–318 

Fundamental Theorem of Calculus 
249–251 

Gauss, C. F. 2–3 
geometric series 114–116 
greatest lower bound, for set 56 

Hadamard formula 303 
half-closed set 145 
half-open set 145 
harmonic analysis 395–396 
harmonic series 106, 121 
heat equation 424–428, 439–444 
Heine–Borel theorem 158–159 
Hessian matrix 344 

if statement 26–29 
if-then statement 23–26 
image, of function 41, 43 
Implicit Function Theorem 349–351 
inclusive “or” 22 
indicial equation 391 
infimum 56, 254 
infinite conjunction 32 
infinite disjunction 32 
infinite linear combination 434 
infinite sets 48 
initial condition 374 
insulated rod 439 
integers 4–9, 20; negative 5, 7–9; positive 

2, 3, 5 
integral 231–267; change of variable 

245–251; Riemann see Riemann 
integral; Riemann-Stieltjes 
253–258 

Integral Test 121 
integration by parts 261–262 
integration theory 259–267 
interior point, of sets 153, 154 
Intermediate Value Theorem 193–194 
intersection, of sets 34 
interval notation 145 
interval of convergence 296 
inverse, of function 43 
Inverse Function Theorem 346–349 
inverse of matrix 453 
invertible matrix 453 
irrational number 55, 59 
isolated point 356 
isolated point, of sets 153–154 

Jacobian matrix 345–346 
Japanese Yen 37–38 

k times continuously differentiable 227 

Lambert W function 324 
Laplace equation 419 
Laplace’s equation 444 
least upper bound, for set 56, 57 
left continuous 195–196 
left limit 196 
Legendre functions 389 
Legendre polynomials 389 
Legendre’s equation 386 
Lejeune-Dirichlet, P. G. 41 
length of interval 231 
l’Hôpital’s Rule 224 
limit infimum (lim inf) 95–99 
limits: commuting 276; real numbers 55; 

of sequence 77, 79, 354; series 
131–133 

limits, of functions 173–179; elementary 
properties of 176–179 

limit supremum (lim sup) 95–99 
linear algebra 449–455 
linear combination 433, 451 
linear dependence 449–450 
linear independence 450 
Lipschitz condition 374 
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Lipschitz function 227–228 
local extrema 216 
local maximum 216 
local minimum 216 
logarithms, of real numbers 321–323 
logical equivalence 24, 25 
lower bound, for set: greatest 56 
lower Riemann sum 253 

Mean Value Theorem 216–223 
mesh of partition 231 
metric 353 
metric spaces 353–357; compact subset 

of 361; topology in 358–361 
modulo 399 
modulus 69 
monotone sequence 81 
monotonicity, functions 195–201 
multiplication 12, 60; associative 

property of 12, 60; 
commutative property of 12, 
60; of complex numbers 64–65; 
of cuts 61–62; of rational 
numbers 10–11; set-theoretic 
49–50 

multiplicative identity 65 
multiplicative inverse 12, 13, 60, 66–67 

natural logarithm function 321, 323 
natural numbers 1–4, 5, 20, 48 
negative integers/numbers 5, 7–9, 75n1 
Newton, I. 3 
Newton, Isaac 211–214 
Newton quotient 203, 204, 209 
Newton’s law of cooling 440 
nodes 438 
nonempty set 48; compact 161; open 

148–149; perfect 171 
nonisolated point 356 
nonzero complex number 53, 67, 70 
norm 325 
notation, table of 457–460 
not statement 23–26 
nowhere dense 364 
Nth partial sum of series 105, 106, 

282, 399 
number systems 55; complex numbers 

64–73; integers see integers; 

natural numbers 1–4, 5, 20; 
rational numbers 9–17, 20; real 
numbers see real numbers 

one-to-one function 42 
onto function 42 
open ball 326, 356 
open covering 361 
open sets 145–156, 326–327, 358 
ordered field 15–17, 62 
or statement 21–23 

partition of the interval 231–236 
Peano, G. 1 
Peano Axioms 1 
perfect sets 170–171 
permutation, of natural numbers 128 
Philosophia Naturalis Principia Mathematica 

(Newton) 211, 212–213 
pi (π) 135, 318 
Picard, Charles Émile 379–380 
Picard’s Great Theorem 379 
Picard’s iteration technique 374–379 
Picard’s Little Theorem 379 
Pinching Principle 86–87 
Poincaré, Henri 380 
positive integers 2, 3, 5 
positive real numbers 57–58 
potential theory 444 
powers, of real numbers 321–323 
power sequence 100–102 
power series 295–301, 303–310; methods 

382–392 
power set 52 
Principle of Induction 2–4 
product see multiplication 

quantifiers 29–32 
quotient: Newton 203, 204, 209; of 

rational numbers 11 

radius of convergence 296 
range, of function 40 
rational numbers 9–17, 20; Density 

Property 58–59; equivalence 
classes in 10; product of 10–11; 
quotient of 11; sequence of 55; 
sum of 11–12 
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Ratio Test 117–119 
Ratio Test for Divergence 119 
real analytic function 296–297 
real numbers 4, 20, 30–32, 55–62; 

Archimedean Property 58–59; 
complex numbers vs. 67; 
construction of 59–62; 
logarithms of 321–323; positive 
57–58; powers of 321–323; 
sequences of 77, 84–85; as 
subset of complex numbers 67 

rearrangement, of series 128 
recursion 394n1 
relations: defined 38; equivalence 5–6, 

9–10, 39; and functions 37–43 
Riemann, Georg Friedrich Bernhard 

236–237 
Riemann integrable 232 
Riemann integral 232, 234; properties of 

239–243 
Riemann–Lebesgue Lemma 410–412 
Riemann’s lemma 257–258 
Riemann–Stieltjes integral 253–258; 

existence of 259–267 
Riemann sum 128–129, 231–232, 252–253 
right continuous 195–196 
right limit 196 
Rolle’s Theorem 218–219 
Root Test 116–117 
Root Test for Divergence 119 

same cardinality, of sets 44–47 
scalar multiplication 449 
Schroeder-Bernstein theorem 45–47 
Schwarz inequality 455 
second category 366 
separation of variables 420, 432 
sequence of functions 269–274; 

convergence of 269; uniform 
convergence of 270, 276–280 

sequences 77–102; Cauchy 81–85; of 
complex numbers 77; 
convergence of 77–89; limit 77; 
monotone 81; power 100–102; 
of real numbers 77, 84–85; on 
sets 51 

series 105–142; advanced convergence 
tests see advanced convergence 

tests, series; Cauchy criterion 
for 107–108; convergence of 
105–110; defined 131; divergent 
110; elementary convergence 
tests see elementary 
convergence tests, series; 
geometric 114–116; harmonic 
106, 121; limit 131–133; 
operations on 139–141; 
rearrangement of 128; and 
sequence 131–133; sum of 105 

series of functions 282–285 
“set-builder” notation 32–33 
sets 32–37; boundary point of 152–153; 

bounded above 55; Cantor 
162–165, 169; cardinality of 44–45; 
closed 145–156, 358; closure of 
361; compact 158–161, 359; 
complement of 37; connected 
167–169; countable 43–53; defined 
32; denumerable 48; disconnected 
167–169; empty 35; finite 48; 
infinite 48; interior point of 153, 
154; intersection of 34; isolated 
point of 153–154; open 145–156, 
326–327, 358; perfect 170–171; 
power set 52; sequence on 51; set- 
theoretic product 49–50; subsets 
52–53; subtraction of 36; 
uncountable 43–53, 59; union of 
34, 147; upper bound for 
see upper bound, for set; writing 
32–33 

set-theoretic difference 36 
set-theoretic isomorphism 42 
set-theoretic product 49–50 
simple discontinuity 197 
sine function 314; properties of 317 
smooth functions, approximation by 

412–416 
standard basis 455 
strictly decreasing function 200 
strictly increasing function 200 
strictly monotone function 200 
subcovering 361 
subsequences 90–95 
subsets 52–53; bounded 359; 

connected 169 
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subtraction: of sets 36 
sum see addition 
summation by parts 123–124, 262 
supremum 56, 85, 254 

Taylor’s expansion 308–310, 340–342 
term-by-term integration of power 

series 307 
“there exists” quantifier 29–32 
topology, on set: closed sets 145–156; 

open sets 145–156 
total variation 263 
transcendental number 133, 134 
transpose of matrix 454 
triangle inequality 59, 70, 82, 234, 325 
trigonometric functions 314–318 
trigonometric polynomial 292 
truth table: contrapositive statement 

28–29; converse statement 27; if 
then statement 25; not 
statement 24; or statement 22, 
23; and statement 21, 23 

uncountable sets 43–53, 59, 164–165 
uniform convergence: of sequence of 

functions 270, 276–280 

uniformly Cauchy sequences of 
functions 277–278 

union, of sets 34, 147 
upper bound, for set 55–56; least 56, 57 
upper Riemann sum 253 
u-substitution 245 see also change of 

variable 

vector-valued functions 335 
Venn diagrams 32–37 

wave equation 424–428; derivation of 
429–432; solution of 432–435 

Weierstrass, Karl 287 
Weierstrass, Karl Theodor Wilhelm 

156–157 
Weierstrass Approximation Theorem 

287–290 
Weierstrass M-Test 284–285 
Weierstrass sum 128–129 
Well Ordering Principle 48 

Zero Test 109 
Zygmund, A. 228  
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