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Written 10  years after the publication of the first edition, this updated edition of Real-Time 
Environmental Monitoring: Sensors and Systems introduces the fundamentals of environmental 
monitoring based on electronic sensors, instruments, systems, and software that allow continuous 
and long-term ecological and environmental data collection. It accomplishes two objectives: explains 
how to use sensors for building more complex instruments, systems, and databases, and introduces a 
variety of sensors and systems employed to measure environmental variables in air, water, soils, veg-
etation canopies, and wildlife observation and tracking. This second edition is thoroughly updated in 
every aspect of technology and data, and each theoretical chapter is taught parallel with a hands-on 
application lab manual.

• Emphasizes real-time monitoring as an emerging area for environmental assessment and 
compliance and covers the fundamentals on how to develop sensors and systems.

• Presents several entirely new topics not featured in the first edition, including remote 
 sensing and GIS, machine learning, weather radar and satellites, groundwater monitoring, 
spatial analysis, and habitat monitoring.

• Includes applications to many environmental and ecological systems.
• Uses a practical, hands-on approach with the addition of laboratory exercises students can 

do to deepen their understanding, based on the author’s 40 years of academic experience.

Intended for upper level undergraduate and graduate students, taking courses in electrical engi-
neering, civil and  environmental engineering, mechanical engineering, agricultural and biological 
engineering, geosciences, and  environmental sciences, as well as professionals working in environ-
mental services, and  researchers and academics in engineering.
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Preface to the Second Edition
I wrote the first edition of this book ten years ago inspired by our experiences developing real-time 
environmental monitoring systems, offering mini-courses, and starting a regularly offered course 
on the subject for undergraduate and graduate students in the Electrical Engineering program at the 
University of North Texas (UNT). Several factors motivated me to write a second edition, primarily 
that there have been many advances in technology that helped move forward environmental moni-
toring programs by leaps and bounds.

I also developed a feeling that the textbook would be enhanced by adding a component in remote 
sensing which I had deliberately excluded in the first edition to focus on observations from the 
ground. Along with adding remote sensing, it became clear that the textbook needed a component 
on geographic information systems (GIS) to accompany the concepts of databases. After teaching 
this class for several years using the textbook, it became evident that it was important to add the 
laboratory exercises that I was using for the students to have a hands-on experience on the subject.

These factors determined the concept and structure of this second edition which includes new 
material on hardware, programming, data analysis and statistics, machine learning, remote sensing, 
and GIS. Moreover, a few years back, we developed a parts kit that the students could take home 
to conduct the hands-on experiments on their own and individually spending more quality time 
than the short session in the campus laboratory. The laboratory manual part of this second edition 
reflects this approach and is written such that the skills learned in each lab guide corresponds to a 
chapter in the textbook.

Following the structure of the first edition, the textbook and lab manual are organized in two 
parts, the first part with a focus on methods (the first ten chapters and lab guides) yet provides some 
practical examples to illustrate the applications. The second part focuses on application domains, 
the last four chapters and lab guides, namely atmospheric, water, terrestrial, and wildlife monitor-
ing, yet uses opportunities to introduce more methods.

I would like to express my gratitude to many individuals that have made this second edition 
possible. Students that have taken the environmental monitoring course following this material, 
particularly the lab manual, provided feedback that contributed to its continued improvement. This 
edition as well as the first, benefited from examples inspired by the work of students who developed 
projects in this subject, including senior capstone projects, master thesis, and doctoral dissertations. 
UNT’s electrical engineering department supported experimenting with the idea of providing a lab 
kit for the students to develop the laboratory exercises individually. Sanjaya Gurung helped devel-
oping some of the hands-on exercises in wireless and wireless sensor networks. Breana Smithers 
helped organize and maintain the laboratory kits over several semesters as well as preparing fig-
ures for this book. At CRC Press, Irma Britton, editor of Environmental Science and Engineering, 
was supportive of this project through the entire process, and Chelsea Reeves, editorial assistant, 
provided help preparing the materials for production. Anonymous reviewers provided excellent 
feedback that helped to improve the approach of this second edition.

Miguel F. Acevedo, Denton, Texas, January 2023
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Preface to the First Edition
My aim in writing this book is to introduce the fundamentals of environmental monitoring based 
on electronic sensors, instruments, systems, and software that allow continuous and long-term eco-
logical and environmental data collection. I have tried to accomplish two objectives, as reflected in 
the two major parts of this book. In the first part, I develop a story of how starting with sensors, we 
progressively build more complex instruments, leading to entire systems, and ending on database 
servers, web servers, and repositories. In the second part, once I lay out this foundation, I cover a 
variety of sensors and systems employed to measure environmental variables in air, water, soils, 
vegetation canopies, and wildlife observation and tracking.

I have attempted to present the state-of-the-art technology, while at the same time using a prac-
tical approach, and being comprehensive including applications to many environmental and eco-
logical systems. My preference has been to explain the fundamentals behind the many sensors and 
systems so that the reader can gain an understanding of the basics. As in any other endeavor, spe-
cialized references would supplement this basic material according to specific interests.

I have based this material on my experience developing systems for ecological and envi-
ronmental studies, particularly those leading to ECOPLEX and the Texas Environmental 
Observatory (TEO). I have tried to provide a wide coverage and offer a broad perspective of 
environmental monitoring; naturally, I emphasize those topics with which I am more familiar. 
In the last few years, I have employed successive drafts of this book while developing a course 
in environmental modeling for undergraduate and graduate students in electrical engineering 
and environmental science.

Although my target is a textbook, I have also structured the material in such a way that could 
serve as a reference book for the monitoring practitioner. The material is organized into 14 chap-
ters; therefore, when used as a textbook, it can be covered on a chapter-per-week basis in a typical 
14-week semester. Part I includes problems that can be assigned as homework exercises.

I hope to reach out to students and practitioners worldwide interested and engaged in efforts to 
develop, employ, and maintain environmental monitors. The book includes examples of low-cost 
and open-access systems that can serve as the basis of learning tools for the concepts and techniques 
described in the book.

I would like to thank many individuals with whom I have shared experiences in this field, in a 
variety of projects, such as monitoring and assessment methods in lakes and estuaries, the start-up 
of Ecoplex, developing a cyber-infrastructure approach to monitoring and TEO (NSF-funded proj-
ects CI-TEAM, CRI) and the TEO, and the NSF RET (Research Experiences for Teachers) on sen-
sor networks. These individuals include faculty and students of several units of the UNT, such as the 
Institute of Applied Science, Electrical Engineering Department, Computer Science Department, 
School of Library and Information Sciences, University Information Technology (UIT), as well 
as colleagues of the City of Denton, and the University of the Andes (Venezuela). Among many, I 
would like to mention Ken Dickson, Tom Waller, Sam Atkinson, Bruce Hunter, Rudy Thompson, 
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1 Principles of Environmental 
Monitoring

INTRODUCTION

As we humans developed our capacity to modify and exploit our environment for food and shelter, we 
have become more and more aware of the importance of managing and preserving the quantity and 
quality of natural resources upon which we depend to sustain our livelihood. It is very difficult to man-
age something without understanding it, and to be able to comprehend we need information as well as 
ways of interpreting and integrating that information. Environmental monitoring is about measuring 
aspects of the environment in a repetitive manner so that we can learn about its structure and function-
ing. Once we understand it better, we can apply that knowledge in multiple ways to manage it wisely. 
According to Artiola et al. (2004a, p. 2), “Environmental monitoring is the observation and study of 
the environment. In scientific terms, we wish to collect data from which we can derive knowledge”.

This chapter is an overview of many topics that will be covered throughout the book, such as sen-
sors, data management, data analysis, instruments, precision, and accuracy. In addition, this chapter 
introduces random variables, exploratory data analysis, statistical inference, and linear regression, 
concepts that will be employed in Lab 1 of the Lab Manual companion of this book (Acevedo, 
2024).

WHY IS ENVIRONMENTAL MONITORING NECESSARY?

Our natural environment is complex and changes continuously at varying paces. Sometimes, we can 
note these changes and build an awareness of the rhythms and patterns involved in those changes. 
For example, we note subjectively how weather changes during the day, from day to day, week to 
week, month to month, season to season, and year to year. We make comparisons between those 
changes year to year and even decade to decade. However, weather records over many years and 
decades allow a much less subjective comparison. Indeed, we can calculate averages, maximum, 
minimum, and trends, for various timescales such as daily, monthly, annually, and seasonally. 
These weather statistics now become climate and help us build an understanding of the patterns of 
change over the long term.

Note from the example that the key to build this understanding is the accumulation of careful 
records of weather in a database. Management and problem-solving benefit from the prediction of 
environmental changes, and this requires continuous and long-term monitoring with archiving in a 
database and making it readily available for retrieval.

ENVIRONMENTAL SYSTEMS, ECOSYSTEMS, AND PLANET EARTH

When we refer to environmental systems, we not only consider our surrounding air, water, and soil 
but also living entities sharing these resources with us. Thus, ecological interactions become part of 
environmental systems and its monitoring. A concept that helps framework ecological interactions 
is that of ecosystems, which emphasize relations of biotic components (living) such as animals and 
plants with abiotic factors (nonliving) such as air, light, soil, and water. Key aspects are functional 
relationships among species focusing on the transfer of material and energy among them, and inter-
actions with the abiotic factors. As a generalization, we are concerned with how materials cycle 
among components of the system and how energy flows from one component to another (Figure 1.1).
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Many environmental monitoring programs are designed to protect human health. For example, 
we monitor concentration of ozone in the air we breathe, to help prevent excessive exposure and 
thus harmful effects on our respiratory systems. However, we are also concerned with monitoring 
to protect the health of the ecosystem from our actions on the environment; for example, protecting 
organisms from excessive exposure to contaminants we release into the environment.

Ecosystem concepts are important at planetary scale as well. We typically group biotic components 
in the biosphere and abiotic components in the geosphere comprising atmosphere (gaseous envelope 
of the planet), hydrosphere (water in oceans, lakes, rivers, and glaciers), and lithosphere (rocks and 
mineral matter). Cycles and flows are then global or occurring at planetary scale and include relations 
of the geosphere and biosphere. For example, the global carbon cycle has received considerable atten-
tion because of its relationship with climate control. Carbon is an important part of the biosphere and 
plays a key role in global climate control because the concentration of carbon dioxide (CO2) in the 
atmosphere contributes to the greenhouse effect, which in turn affects global air temperature.

CO2 is used by primary producers (e.g., terrestrial plants and algae) to make carbohydrates by 
photosynthesis, utilizing sunlight. Some of the carbon goes back to atmospheric CO2 by respira-
tion and emission from these compartments; the rest is stored, consumed, decomposed, and part 
is recycled. At slower rates, carbon transfers to fossil organic matter, sediments, and sedimentary 
rocks. Sedimentary deposits contain most of the carbon. Human action accelerates the release of 
CO2 by burning fossil fuels (coal, oil, and gas) and from the terrestrial biota by deforestation. The 
timescale is mixed, some processes occur rapidly as the exchanges between atmosphere and biota, 
and others slowly such as sedimentation.

There are multiple systems in the Earth’s biosphere and geosphere and multiple interactions among 
its components. For example, the hydrological cycle and the subject of atmosphere–vegetation–soil 
interaction are of great importance. Atmospheric water as vapor is condensed and falls as rain, feeding 
the soil with water that can be stored for use by the vegetation. Transpiration by plants and evaporation 
from the soil returns water vapor to the atmosphere. Monitoring these processes (e.g., rainfall, runoff, 
soil moisture, evapotranspiration, and gaseous fluxes from the plants) allows us to understand how the 
entire system works and depending on how frequent we measure the processes we may understand 
how the water cycle balances at a variety of temporal scales.

HUMAN INTERACTIONS WITH THE ENVIRONMENT

Environmental monitoring provides important support to sustainability science and engineering. 
As we mentioned in the introductory paragraph, by continuous and long-term measurement, we 

Biomass

OrganicAvailable

Plants
Primary 

Producers

Herbivores

Carnivores
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FIGURE 1.1 Nutrient cycle (a) and energy flow (b) in ecosystems.
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improve our chances of making good decisions about the environment. Monitoring helps design 
infrastructure adapted to environmental changes, improve agricultural production systems, and pro-
vide guidance for smart development.

For example, as we strive to develop renewable energy systems, it is imperative that we under-
stand related environmental variables and their time variation. As green components become part 
of the electric power grid, there is a need to have real-time and long-term measurements about the 
weather, wind, and solar radiation, particularly for wind- and solar-based technologies used for 
power generation.

It is important to consider to what extent we affect the system we are trying to measure by 
our attempt to measure it. Several examples come to mind. At the sensor level, current flow in a 
thermistor increases temperature by self-heating and we must correct for this unintended rise in 
temperature. At the system level, a clearing in a forest for a tower may affect the canopy processes 
we want to monitor. For wildlife monitoring, depending upon size and other factors, a Global 
Positioning System (GPS) collar or a radio tag may affect the individual animal of a species we 
are monitoring.

CONTINUOUS REAL-TIME MONITORING

The development of electronic technologies has allowed us to collect environmental data as the pro-
cesses unfold, that is, real time, and to repeat these measurements for long periods. In this context, 
real time does not necessarily mean measuring instantaneously at all times but rather that we can 
keep up with the rate of change of the process under measurement. What is important is that we can 
implement a consistent frequency of sampling that captures the dynamics of the process. By means 
of electronic devices, we can generate, store, and transmit environmental data. Principles of elec-
tronic technology for these purposes are the subject matter of Chapters 2–6, and specific examples 
of their applications are covered in Chapters 11–14.

Before these technologies were available, monitors used mechanical devices to sense environ-
mental variables and to record these in a variety of manners. For example, air temperature changes 
were sensed by the differential thermal expansion of a bi-metallic strip and relative humidity by 
changes in length of human hair with humidity. The responses of these sensors were used to move a 
pen over a clock-driven rotating drum, thus producing a continuous record of temperature and rela-
tive humidity. These instruments are accurate but demand careful operation, maintenance, drum 
paper supplies and are difficult to deploy in harsh environments and remote locations. Electronic-
based instruments are easier to operate, have reduced costs, and allow for deployment and long-term 
autonomous operation.

DATA MANAGEMENT AND THE WORLD WIDE WEB

As we collect environmental data continuously and over long term, the need for organizing, storing, 
and managing these data arises. Database design and management then becomes an essential tool 
that an environmental monitoring practitioner must know and understand. Integration of technolo-
gies from sensors to databases opens the possibility to use web-based frameworks for making data 
available for a variety of purposes. The result may be an environmental monitoring network, a 
real-time early warning system, a global monitoring network linked by satellites, and many other 
variations. What is common and critical in all these efforts is the concept of long-term, continu-
ous, real-time measurements of environmental conditions and making them available to the public. 
In this book, we briefly cover some fundamental notions of database management and web-based 
technology in Chapter 10 and exercise practical aspects in Lab 10 of the companion Lab Manual 
(Acevedo 2024).
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EXAMPLE: GLOBAL MONITORING

An excellent example of environmental monitoring is the measurement of atmospheric CO2 concen-
trations recorded in Mauna Loa, Hawaii (Vaughan et al. 2001; Lovett et al. 2007). This long-term 
record helped to gain an increased understanding of global climate change, one environmental chal-
lenge we face today. A visit to the website of National Oceanic and Atmospheric Administration 
(NOAA)’s Global Monitoring Laboratory (NOAA 2021b) will inform us of recent values of monthly 
average of CO2 concentration in parts per million (ppm). For example, the monthly average for 
December 2021 was 415.01 ppm, almost 2 ppm up from 413.12 ppm for December 2020.

In this case, ppm is a unit expressing dry air mole fraction defined as the number of CO2 mol-
ecules divided by the number of all molecules in air, including CO2 itself, after water vapor has 
been removed; for example, a value of 400 ppm represents a mole fraction of 0.000400 (NOAA 
2021b).

Downloading the data files from this website and using the program R (R Project 2022), we 
can display the time series for CO2 concentration. We will learn how to do this in Chapter 11 and 
Lab 11 of the companion Lab Manual (Acevedo 2024). In this chapter, we only show the results to 
provide an example. In Figure 1.2, we see two lines: the dashed line represents the monthly average 
values, centered in the middle of each month (NOAA 2021b). We clearly see that it swings up and 
down during the year according to the seasons. Removing the average of this seasonal cycle yields 
the solid line, which shows a clear increasing trend in the last ten years. Approximately, we see a 
change from 392 to 415 ppm or about 10 ppm in 10 years, resulting in about 2 ppm increase per year.

This brings up an important point. We often want to process the data acquired by an environ-
mental monitoring program. In this case, we filter out fluctuations of the data in order to observe 
gradual or secular changes. In this example, the filter is implemented by a moving average of seven 
(an odd number) adjacent seasonal cycles centered on the month to be corrected (NOAA 2021b). 
Note that we need to make an exception for the first and last 3.5 years of the record because we can-
not complete a full 7-year sequence. In these cases, we take an average of the seasonal cycle over 
the first and last seven years, respectively.

Figure 1.3 shows the same variables but over a longer period starting a couple of years before 
1960, when monitoring commenced. We again see the clear seasonal fluctuation and that the trend 
(solid line after filtering out seasonality) displays an increase in the rate of change over time. We 
address how to estimate the rate of change in Lab 11 of the companion Lab Manual (Acevedo 2024) 
using the concepts of exponential and doubly exponential functions. 
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FIGURE 1.2 Monthly mean CO2 at Mauna Loa during Nov 2011–Nov 2021. Plotted by R using data from 
NOAA, Trends in Atmospheric Carbon Dioxide, Mauna Loa, Hawaii. Retrieved from NOAA (2021b).
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STATISTICS AND DATA ANALYSIS

Describing data quantitatively, as well as subsequent rigorous analysis, requires the use of probabil-
ity and statistics. In this chapter, we present some basic notions that we will exercise using the pro-
gram R (R Project 2022) in Lab 1 of the Lab Manual companion to this textbook (Acevedo 2024).

Random VaRiables: distRibutions and moments

A random variable (RV) is a rule or a map associating a probability to each event in a sample space. 
When the events are defined from intervals contained in a range of real values, we have a continu-
ous RV. For example, concentration of a gas in the atmosphere or a chemical in water. A probability 
density function (PDF) p(X) is based on intervals; the probability of the value being in an infinitesi-
mal interval of X between x and x + dx (Figure 1.4a) is given by

 ( ) [ ]p x dx P x X x dx= < ≤ +  (1.1)

here p(x) is always positive or zero, that is p(x) ≥ 0.
The probability of a value being in an interval of X between a and b can be found using the 

integral

 [ ] ( )P a X b p x dx
a

b

∫< ≤ =  (1.2)

which is the area under the curve p(x) in each interval x and x + dx from a to b (Figure 1.4b).
When the interval is the whole range of values of X, then the value of the integral should be 1

 ( ) 1p x dx∫ =
−∞

+∞

 (1.3)

we have indicated the entire range of real values by selecting the limits from minus infinity ( )−∞  to 
plus infinity ( )+∞ , or from a very large negative value to a very large positive value.

Consider, for example a uniform continuous RV. The density has the same value over the range 
[a, b]
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FIGURE 1.3 Monthly mean CO2 at Mauna Loa, entire record (March 1958–Nov 2021). Plotted by R using 
data from NOAA, Trends in Atmospheric Carbon Dioxide, Mauna Loa, Hawaii. Retrieved from (NOAA 
2021b).
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 ( )

1
for

0 otherwise
,U x b a

a x b
a b = −

≤ ≤







 (1.4)

as shown in the top graph of Figure 1.5.
The cumulative distribution function (CDF) at a given value is defined by summing or accumu-

lating all probabilities up to that value.

 ( ) [ ] ( )F x P X x p s ds

x

∫= ≤ =
−∞

 (1.5)

Please note that the value at which we evaluate the CDF is the upper limit of the integral. Variable 
s is a dummy variable to avoid confusion with x. The CDF F(x) at a value x is the area under the 
density curve up to that value. The value of the CDF for the largest value of X is equal to 1. For 
example, for the uniform continuous RV, Ua,b(x) is a ramp with slope 1/(b–a). See the bottom graph 
in Figure 1.5.

The first moment of X is the expected value of X denoted by operator E[X] applied to X, this is 
E[X] or the mean of X.

 [ ] ( )E X xp x dxX ∫µ = =
−∞

+∞

 (1.6)

As an example, consider an RV uniformly distributed in [0,1]. In this case, b = 1, a = 0. We know that 
p(x) = 1/(b–a) = 1.

 [ ]
1
2

1
2

2

0

1

0

1

E X x dx xX ∫µ = = = =  (1.7)

The expected value or mean is a theoretical concept. To calculate it, we need the PDF of the RV. The 
mean is not the same as the statistic known as the sample mean which is the arithmetic average of 
n data values xi comprising a sample

FIGURE 1.4 PDF of a continuous RV. Left: probability is the area under the curve between two values. 
Right: Probability of X having a value in between a and b.
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n

∑=
=

 (1.8)

Note that the mean (first moment) is denoted with the Greek letter µ, whereas the sample mean, or 
average is denoted with a bar on top of X, that is to say X.

The second central (i.e., with respect to the mean) moment is the variance or the expected value 
of the square of the difference with respect to the mean

 [( ) ]2 2E XX Xσ µ= −  (1.9)

Calculated by

 [( ) ] ( ) ( )2 2 2E X x p x dxX X X∫σ µ µ= − = −
−∞

+∞

 (1.10)

The variance is a theoretical concept and to calculate it, we need the PDF of the RV. The standard 
deviation is the square root of the variance 2

X Xσ σ= .
The variance or second central moment is not the same as the statistic known as the sample vari-

ance, which is the variability measured relative to the sample mean, i.e., the average of the square 
of the deviations from the sample mean

 
1

1
( )2 2

1

s
n

x XX i

i

n

∑=
−

−
=

 (1.11)

where n–1 is used instead of n to account for the fact that the sample mean was already estimated 
from the n values. We write sX to denote the sample variance to differentiate from the variance 2

Xσ  
(Acevedo 2013). The sample standard deviation is the square root of the sample variance
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1

FIGURE 1.5 PDF and CDF for a uniform RV. Integration of a constant yields a linear increase (ramp function).
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Variability can be expressed as a coefficient of variation, defined as the ratio of the sample standard 
deviation to the sample mean.

 Cv
s
X
X=  (1.13)

The expected value of the sample mean X of X is equal to the mean Xµ  of X, ( )E X Xµ=  and the vari-
ance of the sample mean X of X is the variance of X divided by the sample size n [( ) ] /2 2E X nX Xµ σ− = .  
The square root of the variance of the sample mean is the standard deviation of the sample mean or 
standard error of the estimate of the mean

 
2

n n
e

X Xσ σ σ= =  (1.14)

The expected value of the sample variance is E s n nx xσ=( ) ( –1 / )2 2. For a large value of n, the sample 
mean approaches the mean, and the mean of the sample variance is approximately the same as the 
variance.

The first and second central moments (mean and variance) are also referred to as parameters of the 
RV distribution, and are different from the statistics, which are associated with the sample (Acevedo 
2013). Another way of looking at this is to think of the PDF as a theoretical model expressing the 
underlying probability structure of the RV. These functions allow the calculation of the moments. 
However, the statistics are calculated from observed data and are used to estimate the moments.

Besides the mean and variance, to characterize a distribution we can use the median, which is 
the value that divides the area under the PDF curve into two equal parts or the value x at which the 
CDF attains F(x) = 0.5. We can further divide the area under the PDF into equal parts or quantiles. 
For example, if we divide it into four equal parts, we obtain quartiles and in this case F(x1) = 0.25, 
F(x2) = 0.50, F(x3) = 0.75 where x1, x2, x3 are the quartiles. Note that the inter-quartile interval x3–x2, 
or the difference between the third quartile and the first quartile has probability = 0.75 − 0.25 = 0.5. 
If we use 100 equal parts, we obtain percentiles x1, x2, …, x99 where F(x1) = 0.01, F(x2) = 0.02, … and 
so on until F(x99) = 0.99.

The ith-order statistic of a sample is equal to the ith smallest value and is denoted by x(i). The 
first-order statistic x(1) and the nth-order statistic x(n) are the minimum and maximum values in a 
sample of size n. The quantiles are equal to the order statistics when we calculate n quantiles in a 
sample of size n. In addition, when n =2m + 1 then n is odd, and the median is the mth-order statistic 
x(m + 1). However, when n is even, say n = 2m, then the median is the average of x(m) and x(m + 1) but is 
not itself an order statistic.

noRmal oR Gaussian distRibution

The Normal or Gaussian RV has a PDF

 ( )
1

2
exp

( )
2

for < <+,

2

2N x
x

x
σ

µ
σ

=
π

− −





 − ∞ ∞µ σ  (1.15)

with mean µ and variance 2σ . This is a symmetrical PDF, i.e., the area under the curve left of the 
mean is the same as the area under the curve right of the mean. The CDF F(x) gives the area under 
the PDF curve up to a value x. Thus, the area under the curve right of the point x is the same as 
1–F(x). The area of the curve on both sides of the mean increases with distance: at one standard 
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deviation on both sides µ σ±  the area is 0.68, at two standard deviations 2µ σ±  is 0.95, and at three 
standard deviations 3µ σ±  is 0.99 (Acevedo 2013).

A normally distributed sample is symmetric. That is to say, the mean is equal to the median. 
Very commonly, the data are not symmetrical, i.e., there is higher frequency left or right of the 
mean. Two important cases can occur: positive (mean < median) or values are biased toward the 
right and negative (median < mean) or values are biased toward the left. As an example, consider a 
normal variable with mean µ = 1 and variance 0.252σ =  (the standard deviation is 0.5σ = ). What is 
the probability of obtaining a value in between 0.5 and 1.5? This interval is one standard deviation 
away from the mean on each side. Therefore, the probability is 0.68.

A Standard Normal is a normal with zero mean µ = 0 and unit variance 12σ = . To obtain a stan-
dard normal from a normal, subtract the mean and divide by the standard deviation

 Z
X X

X

µ
σ

= −
 (1.16)

the new variable Z is standard normal. Its mean is 0 and variance is 1.
All values to the left of the mean are negative (z < 0) and all values to the right of the mean are 

positive (z > 0). Because the normal is symmetric, calculating the area under the standard PDF curve 
from −∞ up to a value –z0 (left of the mean) is the same as calculating the area under the curve from 
that value +z0 to +∞ (right of the mean). See Figure 1.6.

The area under the curve right of the point z0 is the same as 1–F(z0), where F(z) is the CDF; impor-
tant values are F(0) = 0.5000, F(1) = 0.8413, F(2) = 0.9772, and F(3) = 0.9987. See Figure 1.7. What is the 
probability that the variable is within the interval kσ+  around the mean? where k = 1, 2, 3? Or what is 

( )P z kσ≤  for k =1, 2, 3? For k = 1, to obtain the probability of the variable taking values right of the 
mean and up to σ+  is F(1)–F(0) = 0.8413–0.5 = 0.3413. See Figure 1.7. Due to symmetry, this should be 
the same as left of the mean 0.3413, then ( ) 2[ (1) (0)] 2 (0.8413 0.5000) 0.682P z F Fσ≤ = − = × − = .  
You can verify that for k = 2 ( 2 ) 0.954P z σ≤ =  and for k = 3, ( 3 ) 0.997P z σ≤ = . The values at the 
0.1, 0.2, 0.3, …, 0.9 quantiles or 10, 20, 30, 40, …, 90 percentiles are also notable, approximately –1.28, 
–0.84, –0.53, –0.25, 0.00, 0.25, 0.53, 0.84, and 1.28. 
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FIGURE 1.6 Standard normal PDF and CDF.
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CoVaRianCe and CoRRelation

In many cases, we are interested in how variables relate to each other; for example, the bivariate 
case of two RVs X and Y. An important concept is the joint variation or the expected value of the 
product of the two variables, where each one is centered at the mean. This is called the covariance 
and can be written as

 cov( , ) [( )( )]X Y E X YX Yµ µ= − −  (1.17)

Please note that this is a theoretical concept since the expectation operator implies using the dis-
tribution of the product. Expanding Equation (1.17), and since the expectation of a constant is the 
same constant, we obtain

 cov( , ) [ ]X Y E XY X Yµ µ= −  (1.18)

A derived concept is the correlation coefficient obtained by scaling the covariance to values less or 
equal than 1, upon dividing by the product of the two independent standard deviations

 
cov( , )X Y

X Y

ρ
σ σ

=  (1.19)

because this product is always larger than the expected value of the product then the ratio is always 
less than 1. This fact can also be seen by calculating the correlation coefficient for maximum covari-
ance, which occurs when X and Y are identical
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FIGURE 1.7 Standard normal distribution: probability values at 1, 2, and 3 standard deviation units  
(bottom). It also illustrates the equivalence between the area under the density curve between two points (top) 
and the difference in height under the cumulative curve (bottom).
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ρ
σ σ σ σ

σ
σ

= = = =  (1.20)

The same idea can be applied to a sample to obtain the sample correlation coefficient r where the 
covariance is a sample covariance, and the denominator corresponds to the product of the sample 
standard deviations.

For illustration, we see two contrasting situations in Figure 1.8. These plots are called scatter 
plots; each pair of values xi, yi is marked with a symbol on the x–y plane. On the top panel, we have 
y.u vs. x, where x.u is a sample uncorrelated to x; the sample correlation coefficient is r = 0.123. On 
the bottom panel, we have y.r vs. x, where y.r is correlated to x; the sample correlation coefficient 
is r = 0.979, much closer to 1. In addition, we have drawn dotted lines at the mean of each sample.

Data are often collected in a time series or in a space sequence. For example, air temperature 
taken every hour, and vegetation cover taken every 10 m along a line or transect. A time series 
plot allows visualizing patterns in successive data values. A special application of the covariance 
and correlation concepts is to calculate the co-variation between pair of values separated by a 
lag L (either time or space) by means of the autocovariance function ( ) cov( ),C L x xX i L i= + . We 
often work directly with the autocorrelation function, ( ) cov( ) /,

2L x xX i L i Xρ σ= +  or the covari-
ance scaled by the variance, which is equal to the maximum value of the auto-covariance function 

(0) cov( , ) cov( , )0
2C x x x xX i i i i Xσ= = =+ . Note that for L = 0, the autocorrelation will attain the maxi-

mum value of 1 (0) ( (0) / ) (cov( ) / ) 12
,

2C x xX X X i i Xρ σ σ= = = .
As a specific example, consider the number of Atlantic hurricanes per season from 1944 to 1999 

shown in Figure 1.9 (top). This is a time series plot; it allows seeing patterns in successive data 
values.
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FIGURE 1.8 Scatter plots for two pairs of samples. Uncorrelated (top) and correlated (bottom).
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exploRatoRy data analysis

Classical parametric statistical inference, to be discussed in the next section, depends on outlier-free 
and Gaussian data. Before applying these inferential methods, it is a good idea to explore the data 
and see if they conform to the assumptions. One way of accomplishing this is by visual inspection 
of several plots; we can refer to this process as Exploratory Data Analysis (EDA).

In the index plot, observations are arranged serially according to the number of the observa-
tion allowing to see the variability of the data and identify potential outliers (Figure 1.10 left). For 
example, we can tell that there are potential outliers; three observations (10, 53, and 74) that have 
very low values and one (38) that has a very high value.

The boxplot or box and whiskers plot (Figure 1.10 right) shows the sample median (a line inside 
the box), the first and third quartiles or lower and upper hinges (edges of the box), and the minimum 
and maximum non-outlier values (the whiskers). These last two values are determined from the 
extremes of the range (or fence), which are the hinge (lower and upper, respectively) minus or plus 
a factor (e.g., 1.5) of the inter-quartile distance (iqd, for short). Values above or below the extremes 
of the range are outliers and identified as circles on the plot. For example, Figure 1.10 (right) shows 
the following values: lower hinge (first quartile) = 38, upper hinge (third quartile) = 54, and median =  
46. In this case, the iqd is 54 – 38 = 16, and therefore using 1.5 × 16 = 24 for the range, we obtain  
38 – 24 = 14 and 54 + 24 = 78 for the extremes of the range. The lowest value contained within the 
range is 30 (this sets the lower whisker) and the largest value is 75 (upper whisker). In this case, 
below 14 we have 3 values (7, 10, 13) and above 78 we have 1 value (96). All these four values are 
outliers and displayed as small circles (Figure 1.10 right-hand side).

A histogram is a graphical display of the distribution of a sample, representing the frequency 
with which you obtain a value falling in intervals (bins) of the range of the continuous variable. 
Given a large enough sample, a histogram can help to characterize the PDF of a variable, represent-
ing an approximation to the PDF (Figure 1.11 left) which can be further emphasized by a density 
approximation (Figure 1.11 right).

The empirical CDF or ECDF is constructed by sorting observations from smallest to larg-
est to decide their position on the horizontal axes; these are the ith-order statistics. Once sorted, 
we rank the observations. Then, we divide these ranks by the number of observations to obtain 
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FIGURE 1.9 Number of Atlantic hurricanes in a season. Time series plot and autocorrelation plot.
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fractions of 1. Finally, these fractions go in the vertical axes. Naturally, 100 could multiply these 
fractions if we want the information in percentiles. We can explore normality by converting to  
Z scores, calculating the ECDF of the standardized sample, and comparing to the theoretical CDF 
of a standard normal. To obtain the zi score for the data value xi, we use

 z
x X

s
i

i

X

= −
 (1.21)

where sX is the sample standard deviation. In essence, we center the data at 0 by subtracting the 
sample mean (average), thus shifting the distribution, and then scaling up or down, according to sX. 
For example, the ECDF of the standardized dataset of 100 numbers used in the boxplot above is 
shown in Figure 1.12 (left), together with the theoretical CDF of the standard normal. In this graph, 
we can see that the ECDF follows relatively well the expected or theoretical CDF for the normal 
distribution in the interval (–1, 1) but departs significantly outside this interval.

Another tool to visualize whether the data follow a theoretical distribution is the quantile-quan-
tile or Q–Q plot. For example, we can compare the quantiles of the data to the theoretical quantiles 
of a normal distribution. This is done using the standard normal Z: the z scores are ranked, and the 
ranks converted to fractions (values in between 0 and 1) or percentile values in 0–100 to obtain 
quantiles. Then these values are plotted in the vertical axis where the values of a standard normal 
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at the theoretical quantiles are used in the horizontal axis (Figure 1.12 right). If the data are normal, 
then the plot should follow the straight line drawn from corresponding quantile values. The outliers 
we saw in the boxplot are those observations that depart of the line. 

STATISTICAL INFERENCE

The goal of statistical inference is to obtain probability statements about population parameters 
(mean, variance) from data. It involves two important concepts: hypothesis testing and confidence 
intervals. We seek to answer questions like these: is the sample drawn for a normal distribution? 
What is the uncertainty of an estimate of the population mean? For practicality, in the following, we 
will explain some simple methods of inference.

HypotHesis testinG

In the simplest approach, we work with the probability ( )α  of an unlikely event (interval called the 
critical region) that we set up from the PDF if the null hypothesis (H0) were to be correct. Once we 
analyze the data, if the result is within the critical region (i.e., the unlikely event), then we believe 
that it is unlikely that H0 is correct, and we reject it. On the contrary, if the experimental result is 
different from the improbable event, then there is no reason to reject H0.

Let us explain these ideas using a simple example. Suppose we want to know whether the sample 
mean departs significantly from the expected value of zero for a standard normal PDF N(0,1). Setup 
H0: µ = 0, select type I error 0.05α =  or 5%, and identify the unlikely event dividing 0.05 into two 
equal parts of 0.025 because the sample mean departs either from above or below, i.e., two-tail, one 
on the left and one on the right. We know that for an N(0,1), these values are approximately –2 and 
2. Once we analyze the data and obtain more than 2 or less than –2, we reject H0 with at most a 5% 
probability of error ( 0.05)α = . If the value obtained is larger than –2 and less than 2, then we cannot 
reject the null hypothesis.

The value α is the maximum error we are willing to accept. You should note that 5% is an arbitrary 
number that has remained popular in the literature as a convenient level of significance. However, 
we can calculate the p-value or probability that the measured outcome would occur and use it as the 
value at which the H0 can be rejected given the result of the experiment. Using the p-value, there is 
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no need to establish a significance level a priori but just judge the magnitude of the p-value. If we 
believe that the p-value is small enough, then we can reject the null. For example, suppose we get a 
value of –3, we can calculate the probability that we get a value as low as –3 given that H0 is correct 
to be (1–0.997) × 2 = 0.0015, meaning we can reject H0 with probability of error 0.15%.

To address the type II error of falsely failing to reject the H0, we set up an alternative hypothesis 
H1. The probability of error in rejecting H1 when it is true is the type II error (β). The power is 1 β−
or probability of accepting H1 given that it is true. Then the total probability of error is the sum of 
the probability of false rejection of the null (false positive) and the probability of false rejection of 
the alternative (false negative)

 [ ] ( 0) [1 ( 0)]P P H P Herror α β= + −  (1.22)

For a given α , we select the critical region in such a way that we minimize β or maximize power 
1 β− . In other words, we fix the type I error a priori and then design the test to minimize the type 
II error β given this type I error.

Expanding the previous example, suppose H0: µ < 0 corresponds to a standard normal N(0,1), 
select 0.025α = , and consider only one tail for the critical region because we are interested only 
in the value being less than 0. Therefore, the unlikely event is that the value exceeds two. Setup 
H1: µ = 2 corresponding to a normal N(2,1). We know the area under the curve for N(2,1) left of the 
critical value 2 is 0.5 and this determines the probability β = 0.5 that we accept H0 (reject H1) given 
that H1 is true. In this case, the type II error is high, and the power is low 1 1 0.5 0.5β− = − = . The 
difference between the two means 2 – 0 = 2 is the effect size.

By using additional examples, we can determine that power increases with effect size. Intuitively, 
for the same α, the area under the H1 density curve left of the critical point decreases as we shift the 
H1 mean to the right. Consider H1: µ = 4 for N(4,1), in this case, the type II error of falsely rejecting 
H1 is β = (1–0.0954)/2 = 0.023, the power is 1–0.023 = 0.977, and the effect size is 4. Suppose the 
sample value is one, we cannot reject H0 because the value is less than two and thus reject H1 with 
type II error of 2.3%. Suppose the sample value is 2.5, now we can reject H0 with type I error of 
2.5% and accept H1.

ConfidenCe inteRVals

For large sample size n, the distribution of the sample mean X of X is approximately normal with 

mean equal to the expected value of X (which is equal to µX) and standard deviation equal to nXσ /  

or standard error (see Equation (1.14)), that is to say X N nX Xµ σ~ ( , / ).
Convert this distribution to a standard normal N(0,1)

 Z
X

n

X

X

µ
σ= −

 (1.23)

Now we can say that 95% of the values of Z fall in the interval [–2, 2]. Thus, the probability that this 
interval contains the mean is 0.95. We define this as the 95% confidence interval. In general, we can 
use other quantiles of the standard normal. For quantile zα/2, we have the 100 × (1–α)% confidence 
interval. Note that this is defined as an error rate α , i.e., the probability that an interval [a, b] fails 
to include the mean true value; common values for α  are 0.01, 0.05, and 0.1 or 1%, 5%, and 10%.

paRametRiC metHods

Classical inferential statistics proceeds as outlined so far in this chapter and it can be of two major 
types: parametric and nonparametric. In parametric methods, the PDF for the statistic is based on 
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a parameter and assumes normal, outlier-free, non-serially correlated data; whereas nonparametric 
methods are independent of the distribution (normality not needed) and usually based on ranks of 
observations. In this section, we consider examples of parametric tests.

For example, the t-test is a parametric test that uses the sample to estimate unknown param-
eters and therefore it has reduced degrees of freedom (df) to compensate for the use of data in 
estimation of the parameters. In this case, we estimate the standard error from the sample standard 
 deviation sX. The number of degrees of freedom is df = number of observations in sample minus the 
number of parameters estimated from the sample.

The t distribution is similar to the normal but with heavier tails, which depend on size (n) of the 
sample or degrees of freedom df = n–1; the t statistic approaches the normal if the sample size is 
large

 t
X

s
X

s
n

X

e

X

X

µ µ= − = −
 (1.24)

This distribution can be used to test that the sample mean is equal to the true mean. The null H0: 
X Xµ= . Reject H0 if t is large for a given α. The number of degrees of freedom df = n–1, since sX is 
estimated from the sample.

As an example, suppose we have n = 20, the sample mean is 0.68, and the sample standard devia-
tion is 0.67. The H0 is that the mean μX = is 0. The critical values for α = 0.05 are –2.09 and 2.09 for 

a t density with df = 19. Calculating t from Equation (1.24), we get = − =t
0.68 0
0.67/20

4.52; therefore, we 

can reject H0 at α = 0.05. The probability of this t-value is 0.000116 and a p-value of 0.00023 for 
two-tails. With this low p-value, we would reject H0 given this outcome.

The t-test can also be used for one-sided situations; that is to say, to see if the sample mean is 
less than the true mean or to see if the sample mean is greater than the true mean. In addition, the 
t distribution can be used to test the equivalency of two samples (t statistic is redefined, se depends 
on n1 and n2). In this case, the null H0: 1 2µ µ= . The degrees of freedom df = n1 + n2 2, since two 
parameters are estimated from the sample (Acevedo 2013).

The F test is a parametric test for the equality of variances of two samples. Based on the F sta-
tistic given by ratio of two sample variances /1

2
2

2F s s= , the degrees of freedom are df1 = n1 – 1 and 
df2 = n2 – 1. The null H0: 1

2
2

2σ σ= , meaning when we cannot reject H0, then there is no evidence 
to say that the variances are different. This test is performed prior to the t-test for two samples since 
the t-test assumes similar variances.

The parametric correlation test, Pearson’s classical product-moment measure of correlation, 
allows establishing the statistical significance of the sample correlation coefficient r. The null 
hypothesis is that the samples are uncorrelated; this is to say H0: 0ρ = . Assume normality for both 

variables and use a t statistic of 
2

1 2t
r n

r
= −

−
 with df = n–2. We reject H0 if t is large for a given α; 

concluding that samples are correlated. However, if we cannot reject, then there is no evidence to 
say that the samples are correlated.

nonpaRametRiC metHods

Many nonparametric methods are based on a rank transformation of the data; values are sorted 
from smallest to largest. Thus, the actual values are no longer relevant, thereby reducing the impact 
of outliers. Let us denote R(xi) as the rank of observation xi of the sample. There are several ways 
of resolving ties.

A nonparametric alternative to the t-test for equality of means of two samples is the Mann-
Whitney or Wilcoxon Rank Sum Test. The ranks should spread out uniformly if it is true that the 
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samples come from the same distribution. This test assumes that observations are independent and 
are based on ranks of the combined samples. The test statistic is the sum of ranks, and it can be 
approximated by a standard normal for large sample sizes.

An alternative to the t-test for one sample is the Wilcoxon signed-rank test, which is used when 
we want to see if the median is equal to a given value. We take the difference between the observa-
tions and the hypothetical median. Denote these differences by xi and assign ranks R(xi) based on 
the absolute values xi  of the differences xi. However, to compute the test statistic, we only sum those 
ranks corresponding to positive differences xi > 0, yielding an approximation to a standard normal 
for large sample size.

A popular method is the rank-based Spearman’s measure of correlation. It is used to test for 
similarity between two sets of ranks, with a null hypothesis of zero correlation. Spearman’s rank 
correlation coefficient is based on summing the square of differences in rank.

SIMPLE LINEAR REGRESSION

Throughout the book, we will encounter the concept of parameter estimation for a model or of sen-
sor calibration, both of which require a basic understanding of regression. In this section, we review 
some basic notions of simple regression.

Let Y be an RV defined as the dependent or response variable, and X another RV defined as the 
independent or explanatory variable. This is a bivariate or two-variable situation. Assume that we 
have a joint sample xi, yi i = 1, …, n or measurements of X and Y. These data pairs display in the X–Y 
plane as a scatter plot. See the example in Figure 1.13.

Denote by Y�  the Linear Least Squares estimator of Y from X

 0 1Y b b X� = +  (1.25)

this is the equation of a straight line with intercept b0 and slope b1. For each data point i, we have 
the estimated value of Y at the specific points xi

 0 1y b b xi i
� = +  (1.26)
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FIGURE 1.13 Scatter plot of X and Y.
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the error or residual for data point i is

 e y yi i i
�= −  (1.27)

take the square and sum over all observations to obtain the total squared error
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We want to find the coefficients (intercept and slope) b0, b1 which minimize the sum of squared 
errors (over all i = 1, ..., n); to do this, we find the values of b0 and b1 that make the slope or deriva-
tive of q zero. A complete demonstration is given in Acevedo (2013) but in this book, we only state 
the results; for b1
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Here the numerator is the sample covariance of X and Y, whereas the denominator is the sample 
variance of X. For b0 is

 0 1b Y b X= −  (1.30)

In summary, Equations (1.29) and (1.30) are used to calculate the coefficients b0, b1 which determine 
the regression line (Figure 1.14).

Rewriting Equation (1.30)

 0 1Y b b X= +
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FIGURE 1.14 Regression line added to the scatter plot.
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we note that the regression line goes through the sample means of X and Y. Using the correlation 
coefficient in Equation (1.29), we can rewrite as
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s
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X

= = =  (1.31)

In other words, the slope is the sample correlation coefficient multiplied by the ratio of sample stan-
dard deviations of Y over X.

There are three important error terms in regression. In the following, SS denotes “sum of squares” 
and MS denotes “mean squares”. The mean squares total error in Y is the sum of squared differences 

of sample points minus the sample mean divided by n, ( ) /2 2MS y Y n sT i Y∑( )= − =  or sample vari-

ance of Y. The mean square “model” or “explained” error MSM is the sum of squared differences of 

estimated points minus the sample mean ( ) /2MS y Y nM i
�∑( )= − . The mean square “residual” or 

“unexplained” error SSE is the sum of the squares of the difference between estimated and observa-

tions ( )2MS y y nE i i
�∑( )= − . Now the total error is the sum of model error and the residual, that 

is to say 2s MS MSY E M= + .
A common measure of goodness-of-fit is the ratio of the model error to the total error
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when MSE (which is minimized by the least squares procedure) is very small, then R2 approaches 1. 
Note that R2 is the fraction (or percent) of variance of Y explained by the regression model.

In addition, substituting the predictor equation, and recognizing the sample variance of X, we 
obtain
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and by recalling the expression for b1
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therefore
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The square root of R2 is equal to r, which is the correlation coefficient.
The residual standard error is the standard deviation of the residuals
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We have used n–2 because two parameters (slope and intercept) were estimated.
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We do not just look at the R2 to evaluate a regression. It is necessary to check the assumptions 
of the method and to examine the significance of the regression, the confidence interval, and the 
patterns of the unexplained or residual error. For example, we examine the following. Consider the 
p-value of a test to check the statistical significance of the trend, i.e., whether the slope is non-zero. 
Look at the scatter plot of Y versus X to see how good the linear assumption is. If the yi points seem 
to follow a definite non-straight pattern or curve, then linearity is suspicious even when getting a 
good R2. Consider the random residual error by looking at a plot of the residuals as a function of 
the estimated or predicted y. The residuals should be scattered up and down around zero (i.e., “just 
noise”), telling us that the error is independent of the position in the regression line.

FROM MEASURING TO KNOWING, ANALYSIS, AND MODELING

A model is a simplified representation of reality based on concepts, hypotheses, and theories of how 
a real system works. Some models represent reality as a set of mathematical equations based on the 
processes at work (Acevedo 2012). For example, a differential equation representing tree growth 
over time based on increment of its diameter. For this purpose, we use the concept that diameter 
increases faster when the tree is smaller and that growth decreases when the tree is large. This 
process-based or mechanistic method is in contrast to empirical models that build a quantitative 
relationship between variables based on data without explicit consideration of the process yielding 
that relation (Acevedo 2013). For example, using regression, we can derive a predictor of tree height 
as a function of tree diameter based on measured data from many trees of different heights and 
diameters.

However, we use empirical models to estimate parameters of the process-based models based on 
data from field and laboratory experiments, as well as monitoring programs. For example, we can 
use a mechanistic model to calculate the flow of a stream using water velocity and cross-sectional 
area, but we estimate velocity using an empirical relation of velocity to water depth. In addition, we 
can use empirical models to convert output variables of process-based models to other variables. For 
example, we can predict tree diameter increment from a process-based model of tree growth and 
then convert diameter to height using an empirical relation of height versus diameter.

Temporal dynamics and spatial gradients make the concept of rate of change have paramount 
importance in environmental monitoring and modeling. Therefore, one interesting application of 
environmental monitoring results is to analyze the dynamics of the environmental systems, that is, 
changes over time. Moreover, we can integrate the results with mathematical and simulation models 
to predict future behavior of the environmental system. This book does not emphasize the math-
ematical fundamentals to understand and analyze models nor the methodology to simulate models. 
You can use Acevedo (2012) for this purpose.

We use datasets created from monitoring results to inform, calibrate, and evaluate models. There 
are models readily available today through various government agency and university websites such 
as the U.S. Environmental Protection Agency (USEPA) and the U.S. Geological Survey (USGS).

Interdisciplinary
Environmental monitoring requires interdisciplinary work among scientists and engineers with 
various backgrounds and training. Electrical engineers would be very familiar with the electronic 
technology underlying sensors and systems but monitoring also requires knowledge of materials as 
well as mechanical and chemical engineering disciplines. Computer science and engineering pro-
vide important tools for programming algorithms and database management.

In most cases, an engineer would benefit from an understanding of the monitored natural system. 
Such an expertise is often provided by scientists in various disciplines that converge in environmen-
tal sciences. For example, principles of biology, chemistry, and physics are very helpful to under-
stand the basic interactions of a sensor with its environment. Mathematical and statistical skills are 
needed for data processing and analysis and for the fundamental nature of data quality assurance 
and control.
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SCALES AND RESOLUTION

Like in many other fields, two important scales play a role in a monitoring program: spatial and 
temporal. Under spatial considerations, we include whether we want measurements at a single point, 
or one- (e.g., transect), two- (e.g., horizontal grid), or three-dimensional (3D) arrays (e.g., horizontal 
grid plus height). For example, we may want to measure soil moisture near the soil surface at a series 
of points representing topographic position to study the effects of terrain elevation on surface soil 
moisture; or more complicatedly, measure the air temperature in a horizontal grid at various height 
levels of a forest. For all these arrangements, we would have to consider resolution, such as detailed 
requirements in terms of grid cell size, number of vertical strata measured, and extent, such as area 
covered.

Timescale is characterized by similar considerations, resolution by time step or interval of measure-
ments, and time step of data reporting and storage. For example, data could be measured every second 
but averaged every 10 minutes for storage. Similarly, depending on the purpose of the monitoring 
program, we may further process the stored data. For example, for regulatory purposes or compliance 
with standards, we may calculate averages every hour, reporting 24 values in a day, and then calculate 
the maximum in an 8-hour period, such as calculating 8-hour ground-level ozone (McCluney 2007; 
ASL & Associates 2023; USEPA 2021a, b). Data may be reported and analyzed weekly, monthly, 
seasonally, and annually, depending on the objectives of the program. Many long-term modern moni-
toring programs do not limit the temporal extent to a period or horizon of measurements. However, 
naturally, shorter studies may establish a limited period, such as a year or a decade.

A related concept to resolution is used in analytical chemistry, the lower limit of detection, or 
limit of detection, is the lowest quantity of a substance that can be distinguished from the absence 
of that substance (a blank value) within a specified confidence limit (e.g., 1%).

We often must make decisions about how to report and store the results of measurements. For 
example, even though we may have many decimal places for a number, these will not make sense in 
terms of the process and devices employed to obtain the value. Let us recall a simple rule to round 
numbers. If the number is greater than 0.5, then round up; for example, round 38.6 up to 39.0. If 
the number is less than 0.5, then round down; for example, round 38.4 down to 38.0. If the number 
is equal to 0.5, then break the tie, which is round to the nearest even number or to the nearest odd 
number. For example, round 36.5 down to 36, the nearest even number, and round 37.5 up to 38. 
This rule results in rounding up or down in equal proportions. Together with rounding, recall simple 
rules of significant figures: zeros to the left do not count but zeros to the right do count.

PRECISION AND ACCURACY

Precision is the variation in measured values as we repeat the measurements. High precision cor-
responds to small variation in measured values upon repeated measurements, whereas low precision 
implies larger variations for the same conditions (Artiola and Warrick 2004). It is similar to the 
concept of noise or variability and to the concept of random error. A useful measure of precision is 
the sample standard deviation defined by Equation (1.12) (ISO 2023; Bell 1999). In some instances, 
outliers can be detected and removed when taking the sample mean.

Accuracy is the difference between the measured value and its true or reference value, expressed 
often as the maximum error one can expect in the measurement (Artiola and Warrick 2004). It is 
often related to the concept of bias or systematic error. A useful measure of accuracy is the differ-
ence between the sample mean and the true value, and whether that difference is greater than the 
standard deviation, i.e., not just within the noise or random error.

Often, in colloquial terms, many people use precision and accuracy to mean the same thing, but 
in measurement, they have distinct meanings (Figure 1.15). Precision refers only to the variability 
of measurements and does not indicate whether the readings are correct (Artiola and Warrick 2004). 
An instrument can be accurate but not precise, or precise but not accurate, or both precise and 
accurate, or neither.
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The terminology related to these concepts can be more complex. For example, the International 
Vocabulary of Basic and General Terms in Metrology (ISO 2023) recommends to use the terms 
repeatability and reproducibility to relate to how close are the results of successive measure-
ments; the first term is closeness under the same conditions, whereas the second are under changed 
conditions.

REMOTE SENSING: AIRBORNE AND SPACEBORNE PLATFORMS

There is great variety of airborne and spaceborne platforms and instruments to monitor environ-
mental systems remotely, i.e., the sensors are located at a distance above the ground that allows 
covering a broader spatial range (Huete 2004). Remote sensing includes taking images of the land 
or ocean for specific purposes as needed, for example by airplanes and unmanned aircraft systems 
or drones, as well as repetitive collection of imagery of the same area, for example by satellites 
orbiting the Earth. Remote sensing of the environment is an extensive topic and there is a wealth of 
information, books, and journals on these monitoring approaches.
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FIGURE 1.15 Precision and accuracy are distinct concepts. At the left of each graph, we illustrate the empir-
ical probability density of the sample. Higher precision occurs for less spread or variance of this probability 
density. The larger the distance between the mean of this probability density and the reference value, the lower 
the accuracy. Four distinct cases are illustrated.
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In this book, we touch on the use of remotely placed sensors (air- or spaceborne) responding 
to different electromagnetic (EM) reflection and absorption of sunlight by land, soil, vegetation, 
and surface water. Atmospheric effects, due to the reflection and scattering of particulate matter or 
absorption by atmospheric gases, modify the reflected signal from the ground, which can be consid-
ered to correct for these effects. We also discuss the use of spectrometers at ground level to acquire 
data that can serve to ground-truth the remote sensors. Drones for environmental parameters sens-
ing is in the middle between ground data collection and remote sensing from space (Wallerman 
et al. 2018).

Another class of remote sensors relies on the response to an EM wave signal shot from the plat-
form to the ground, rather than sunlight. These include LiDAR (Light Detection And Ranging) and 
RADAR (RAdio Detection And Ranging). LiDAR uses laser pulses to map objects or the ground in 
3D, for example digital elevation models that can be used to monitor land erosion. Radar uses EM 
in the radio and microwave part of the spectrum, and the backscatter can be used to monitor surface 
water, forest biomass, and many other environmental systems. Both LiDAR and Radar are also used 
at ground level to monitor a variety of processes.

The concept of resolution applies to remote sensing imagery in terms of spatial, spectral, tem-
poral, and radiometric resolution. We will discuss these concepts in Chapter 8. Analysis of remote 
sensing images requires techniques of image processing (Haneberg 2004), and there is a trend to 
seek solutions of data classification problems and biophysical parameter estimation by machine 
learning techniques, which we will cover in Chapter 9.

MORE ON APPLICATIONS

Monitoring applications are so diverse that it is difficult to prescribe generalized guidance on how to 
structure a monitoring program. This means that the intended application should play an important 
role in designing the monitoring program.

Environmental monitoring contributes to the development of environmental impact assessments, 
as well as in many circumstances in which human activities carry a risk of harmful effects on the 
natural environment (Artiola et al. 2004a). Often, we design monitoring activities to establish the 
baseline, status, and trends of environmental variables. In these cases, the results of monitoring are 
subject to scrutiny and discussion, and in some cases litigation.

Other examples include environmental remediation and restoration, and biological conservation. 
In remediation and restoration, a monitoring program helps to follow-up, assess how successful the 
implemented solutions are over time, as well as help design and develop solutions and corrections. 
In biological conservation, we can detect changes in organism and ecosystem responses to evaluate 
the success of the conservation effort.

Monitoring helps to build understanding for scientific and engineering purposes, and many 
monitoring networks have been formed for this purpose. Other applications include informing the 
public. For example, environmental and ecological observatories collect real-time information on 
environmental conditions using ground-based network of stations and remote sensing to make 
data readily available to the public and amenable to modeling, analysis, and synthesis (Figure 
1.16). For example, during the early 2000s, at the University of North Texas, in collaboration with 
the City of Denton, we operated a Texas Environmental Observatory (TEO) that provided data on 
ultraviolet radiation, total column ozone, soil moisture, and water quality.

As we progress from sensors to systems and realize the importance of real-time continuous 
monitoring with very long-term horizons, we will realize that this integration provides us a way of 
moving forward toward a better future. We can take better care of planet Earth, because we have a 
better understanding of the complicated dynamics of the planet.

Whether you are involved in making policy, regulatory actions, decision-making, education, or 
public outreach, monitoring helps you to have the information and tools to better orient your efforts. 
Many existing programs offer opportunities for training in monitoring activities. For example, we 
developed workshops based on TEO for local governments and teachers. Attendees learned about 
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various tools and methods of data collection, including wireless soil moisture sensors (Chapter 6),  
surface water multiple parameter probes (Chapter 12), database management and web services 
(Chapter 10), and environmental models. Attendees left with an understanding of the benefits of 
cyberinfrastructure and knowledge of how real-time environmental data are being collected and 
utilized in their local area (TEO 2015).

EXAMPLES OF PROGRAMS AND AGENCIES

In the United States, we have excellent examples of systems developed by government agen-
cies. The USGS has a variety of systems such as the Water Quality Watch of surface water 
(USGS 2021d), the National Water Information System (USGS 2021c), earthquake monitor-
ing (USGS 2021b), and volcanoes monitoring (USGS 2021a). From NOAA, examples are the 
weather observation and forecast system (NOAA 2021a), climate monitoring (NOAA 2021c), 
and ocean and coast monitoring (NOAA 2021d). Most National Aeronautics and Space 
Administration (NASA) efforts on Earth observation are spaceborne and airborne, but several 
programs are ground-based. The U.S. Department of Agriculture through the Natural Resources 
Conservation Service has a National Environmental Monitoring Initiative (USDA 2021). The 
National Science Foundation has started the National Ecological Observatory Network (NEON 
2021). Unfortunately, some efforts have stopped, such as the Environmental Monitoring and 
Assessment Program of the U.S. EPA and the Ecological Monitoring and Assessment Network 
of Canada.

Many countries have monitoring programs; for example, in Sweden, the Swedish Environmental 
Protection Agency has a national monitoring program for contaminants and other environmental 
stressors (SEPA 2021).

At a global scale, there are programs of the United Nations, such as the Global Atmosphere 
Watch (WMO 2021a) conducted by the World Meteorological Organization (WMO 2021b), the 
Global Climate Observing System (GCOS 2021), the World Conservation Monitoring Centre 
(UNEP-WCMC 2021), and the Global Environment Monitoring System (UNEP 2021) conducted 
by the UN Environment Programme.

ENVIRONMENTAL MONITORING BOOKS

Several books on environmental monitoring provide additional resources. Artiola et al. (2004b) 
have a broad coverage, including environmental characterization, sampling, statistics, geographic 
information systems, remote sensing, and automated data acquisition, among many topics.  

Modeling

Inform

Forecast and 
predict

Monitoring

Environment Public

FIGURE 1.16 Simple representation of an environmental observatory paradigm, which consists of inte-
grated modeling and monitoring and emphasizes feedback.
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The book edited by Wiersma (2004) is a comprehensive reference book treating monitoring of air, 
water, and land; it includes integrated monitoring at the landscape level, as well as case studies of 
existing monitoring programs. Kim et al. (2009) cover many aspects of biological, chemical, and 
atmospheric environmental monitoring. Cole (2017) is a guide to the theory and practice of envi-
ronmental monitoring that can be used to prepare environmental impact assessments and covers 
air, water quality, and soils. Kazantsev (2017) describes the processes and activities required to 
monitor and assess the quality of the environment and natural resources, including air, water, soil, 
and biota. Campbell (1997) covers sensor technologies, including optics, electrochemical, gas 
sensors and analyzers, piezoelectric, and biosensors.

EXERCISES

Exercise 1.1

Define an RV from the outcome of soil moisture measurements in the range of 20%–40% in vol-
ume. Give an example of an event. Assuming that it can take values in [20,40] uniformly, plot PDF 
and CDF, and calculate the mean and variance.

Exercise 1.2

At a site, monthly air temperature is normally distributed. It averages to 20°C with standard devia-
tion of 4°C. What is the probability that a value of air temperature in a given month exceeds 24°C? 
What is the probability that it is below 16°C or above 24°C?

Exercise 1.3

Suppose we have collected 50 values for a sample of ozone and the average is 2.00, with standard 
deviation of 0.5. What would be the value of t when testing that the mean is equal to 2.5?

Exercise 1.4

Monthly rainfall at a site is classified into two groups: one group for El Niño months and the other 
for La Niña months (defined according to sea surface temperature in the Pacific Ocean). We have 
100 months for each group. The variance of each group is the same. Is it true that rainfall during El 
Niño is different to that during La Niña? What type of test would you run? What is H0? Suppose 
you get a p-value = 0.045. What is the conclusion of the study?

Exercise 1.5

Consider the following six measurements of concentration X in ppm of a water constituent: 1.1, 
1.0, 1.3, 1.1, 1.2, and 1.1. Suppose the true value is 1.5. State the precision and accuracy of these 
values. Hint: calculate average and standard deviation then use these to look at the difference 
between the average and the true value and variability.

Exercise 1.6

We are designing a monitoring program for a rectangular area of 10 km2. Which option gives 
the lowest spatial resolution if we install a monitoring station in each one of the resulting cells? 
Assume all cells have the same size for each design option. Option A: divide the area in ten rows 
of five cells each. Option B: divide the area in five rows of ten cells each. Option C: divide the area 
in ten rows of ten cells each. Option D: divide the area in five rows of five cells each.
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Exercise 1.7

Using NOAA’s Earth System Research Laboratory, Global Monitoring Division website for CO2 
measured at Mauna Loa (NOAA 2021d), calculate average growth rate in ppm/year for the 1960–
1969 decade and for the 2000–2009 decade, and compare. Hint: use annual mean data. Subtract 
first CO2 ppm value of the decade from last CO2 ppm value of the decade and divide by the num-
ber of years. Alternatively, average the rate ppm/year values given in the website for each decade.
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2 Programming and Single-
Board Computers

INTRODUCTION

Computers and programming have become of paramount importance for environmental monitor-
ing and are now part of sensor systems as embedded systems, dataloggers, and sensor networks. 
Working with computers in the field of monitoring requires knowledge of iterative calculation and 
measurement loops, serial communication, analog to digital and digital to analog conversion, net-
works, database management, and web applications. This chapter emphasizes single board comput-
ers (SBCs) and microcontrollers (MCUs), provides basic concepts of computer organization and 
architecture, and focuses on their application for environmental monitoring. For this purpose, we 
describe the Raspberry Pi and Arduino, and basic concepts of programming in Python, Arduino, 
Hyper Text Markup Language (HTML), Hypertext Preprocessor (PHP), Java Script (JS), and 
Structural Query Language (SQL). We will employ these devices and programming languages later 
in Chapters 3–6 when we study sensors, data acquisition, dataloggers, and sensor networks.

COMPUTER ORGANIZATION AND ARCHITECTURE

In this section, we review terminology and basicw concepts of computer organization and architec-
ture (Null and Lobur 2012). Basic computer organization includes a CPU (Central Processing Unit), 
memory, and I/O (input/output) devices. Exchange of data among these components occurs over a bus. 
The CPU performs computations, decides logical flow, and processes I/O requests, while memory is 
used to store data processed by the CPU, and I/O peripherals allow interaction with the computer.

Within the CPU, arithmetic operations are conducted by the ALU (Arithmetic/Logic Unit), 
whereas a Control Unit decodes and executes instructions, which are a set of bits specifying opera-
tions. A set of registers serve as program counter that points to the memory address containing the 
instruction to be executed. Then the control unit fetches the instruction and executes it; these are 
the fetch/execute steps.

Two major types of memory are RAM (random access memory) and ROM (read-only memory) 
with variants for each. For example, SRAM (static RAM) provides data permanence while pow-
ered, whereas DRAM (dynamic RAM) requires periodic refreshing. In general, SRAM is volatile 
because data are lost after turning power off, however, there are special types of non-volatile SRAM 
that have applications in datalogging.

There are several types of DRAMs, such as synchronous DRAM (SDRAM) and double data 
rate SDRAM (DDR SDRAM). The latter has had several generations, DDR1, DDR2, DDR3, and 
culminating with DDR4, which is currently in use. DDR1 writes two words of data per clock cycle, 
DDR2 doubles it by writing four words of data per cycle, and DDR3 doubles it again to eight words 
of data per cycle.

ROM can be programmable (PROM) for installing programs and erasable (EPROM). We will 
expand on these in a later section on MCUs.

SINGLE BOARD COMPUTERS

A Single Board Computer (SBC) is a microcomputer on a single printed circuit board, including 
CPU, memory, and I/O ports (Figure 2.1). SBCs were originally intended for use in embedded 
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applications, i.e., provide computing capabilities as part of a larger equipment or system (Null and 
Lobur 2012). Embedded systems typically did not include peripherals for human interaction; they 
were connected to a general-purpose computer to load a program or to retrieve stored data.

As such, in contrast to computers, SBC functions were specialized to the needs of the larger sys-
tem instead of providing a flexible computer platform. This situation has changed as SBCs became 
more powerful and low-cost and are able to provide a flexible computer platform. Such is the case of 
the Raspberry Pi, which has evolved to provide a Linux computing platform. SBCs employ a vari-
ety of microprocessors and MCUs as CPU or complete systems. There are also applicable as Edge 
devices or devices close to the process or data generating sources, in contrast to devices remote from 
the process (e.g., on the cloud).

A/D AND D/A CHANNELS

In addition to digital pins or lines, and because of their use in embedded systems, some SBCs 
include A/D pins (ADC) for measurement and D/A pins for control. We will discuss A/D and D/A 
conversion in detail in Chapter 4. For now, let us just motivate their use by pointing out that the 
output of a transducer (which will be covered in detail in Chapter 3) is an analog voltage or cur-
rent output signal that is proportional to the continuous measurand variable. Therefore, we need to 
convert to digital in binary form to be able to interface with MCUs and computers (Kester, Bryant, 
et al. 2015; Kester, Sheingold, et al. 2015).

The quantization or discretization provided by an A/D converter depends on its number of bits. 
With a resolution of n bits, we can divide the maximum analog signal range in 2n levels. This means 
2 1n −  steps between levels, and thus a voltage in the range of a step is represented as a digital num-
ber stored as binary. Therefore, for a maximum analog voltage of VAD, the voltage resolution, i.e., 
the smallest increase in voltage to produce an increase in digital numbers is

 
2 1

V
V
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AD

n=
−

 (2.1)

The voltage resolution corresponds to the voltage eliciting the smallest change in digital value or the 
LSB (least significant bit).
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FIGURE 2.1 SBC components.
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For example, with n = 4 bits, we have 2 164 =  levels and 2 1 154 − =  steps that can be assigned to 
digital numbers 0–15, or 0000–1111 in binary.

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

This is illustrated in Figure 2.2 (left), where the horizontal axis is the voltage V scaled as a fraction 

of voltage VAD. In this case, the voltage resolution is 
2 1 15

0.06664V
V V

Vres
AD AD

AD=
−

= = ×  or 6.66% of 

VAD. For instance, given VAD = 5V the voltage resolution is 
5V
15

0.333VVres = = . In contrast, the same 

VAD = 5V, discretized using n = 8 bits, yields 28 = 256 levels and 28–1 = 255 steps or voltage intervals 
(Figure 2.2 right). Then 5 V / 255 steps = 0.0196 V / step, which means the voltage resolution is 19.6 mV. 

SERIAL COMMUNICATIONS

Typically, collected monitoring data are stored in files, which are retrieved locally or remotely. 
Users copy data files to other devices but not move them; this way, files are preserved and avail-
able for retrieval by multiple users. Useful access to data files is via serial port connections, such as 
RS-232 and Universal Serial Bus (USB), or by Ethernet connections using appropriate protocols, 
such as Transmission Control Protocol/Internet protocol (TCP/IP) (we will discuss networks in the 
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next section). Other interfaces and protocols to exchange data among devices will be covered in 
Chapter 5.

The symbol rate (in baud) is the number of symbols per second or waveform changes per second. 
This rate expresses itself differently according to the modulation method employed. When we have 
two levels per symbol, e.g., binary 0 and 1, then each symbol carries one bit of data, and thus the bit 
rate (in bits per sec) is the same as the symbol rate (in baud). Although in principle one can have any 
baud value, only a set of values is commonly used; for example, doubling from 300, say 1200, 2400, 
4800, 9600 at the slow range, or 57,600, 115,200, 230,400 at a faster range.

Environmental sensors measuring a variable intermittently (at low frequency) generate small 
amount of data and thus typically require only low speed, say 9600 baud. However, as we increase 
the amount of data collected, as it occurs in more demanding high meteorological frequency appli-
cations, or multimedia data, we require higher baud rates.

As part of the serial communication protocol, besides those bits strictly coding the data values, 
there are other bits, such as start, parity, and stop. A common setting is one byte or eight bits of data 
and ordered to send the LSB first. The parity bit is used to detect transmission error, by sending 
always an even or odd number of binary 1s, and checking the number of 1s in a character allows to 
detect an odd number of errors. However, it is common to omit the parity bit. The stop bit at the end 
of each character allows to synchronize the data transmission. A very common setup is 8/N/1 or 8 
data bits, none for parity, and 1 stop. In summary, a data packet is formed by one start bit, a data 
frame of five to nine bits, none or one parity bit, and one to two stop bits (Figure 2.3).

uniVeRsal asynCHRonous ReCeiVeR tRansmitteR

Universal Asynchronous Receiver Transmitter (UART) is a common serial communication inter-
face between two devices using two lines, transmit Tx and receive Rx (Figure 2.4). It is asyn-
chronous, i.e., there is not a clock signal controlling the communication, and data rate or speed is 
configurable; both devices must have the same speed since there is no clock. An inactive line is at 

UART UART

Parallel
data bus

Parallel
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Tx

RxRx

Tx

DeviceDevice

FIGURE 2.4 UART lines and arrangement for the communication of two devices.

Packet

Start Data Frame Parity Stop

1 bit 5-9 bits 0-1 bits 1-2 bits

FIGURE 2.3 Serial communication data packet.
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logical 1 or high voltage level (e.g., 3.3 V, 5 V); a UART device initiates transmission by setting a 
logical 0 or low voltage level. Transmission ends setting the line at logical 1.

As we will discuss in forthcoming sections, MCUs and SBCs include UART functions and pro-
vide Tx and Rx lines at their I/O pins. For example, an Arduino UNO has Rx and Tx lines at digital 
pins 0 and 1, respectively, and a Raspberry Pi Zero has Tx and Rx lines at GPIO (General Purpose 
I/O) pins 14 and 15.

Rs-232

The RS-232 is a standard defining signals between two devices, particularly the voltage levels 
corresponding to logical 0 and 1, the purpose of the signal, and the connectors. It was originally 
defined as a Recommended Standard (hence the RS preceding the number 232) by the Electronic 
Industries Association. In essence, the standard defined the exchange between a DTE (data termi-
nal equipment, e.g., a terminal) and a DCE (data circuit-termination equipment, e.g., a modem). 
Since RS-232 specifies large voltage levels, e.g., 15 V, drivers are required to adapt it to the UART 
low voltage levels. The RS-232 standard was initiated in the 1960s to interconnect devices but 
later PCs started employing RS-232 to connect peripherals. The USB, a standard developed in the 
1990s, has substituted RS-232 for these PC applications. However, many environmental monitoring 
dataloggers and other scientific and industrial systems still use RS-232 for serial communications.

Originally, the RS-232 standard specified a D-25 or 25-pin D-subminiature connector, which 
is actually a large size connector when compared to today’s commonly used ones. Most popular 
had been to implement the RS-232 using a DE-9 or 9-pin D-subminiature connector (Figure 2.5 
and Table 2.1). To connect the RS-232 of a datalogger (a DTE) to a PC (a DTE), a null-modem 

FIGURE 2.5 RS-232 using a D-9 or a 9-pin D-subminiature connector: (a) male and female; (b) pinout.
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connection simulate the RS-232 handshake between a DCE and a DTE (Table 2.2). This cable per-
mits two DTEs to communicate with each other without DTE mediation and can be terminated by 
DE-9 at both ends wired as shown in Table 2.2. Nowadays, laptops and PCs do not include RS-232 
but USB, and therefore a very useful accessory in environmental monitoring work is an RS-232 to 
USB adapter to interface legacy monitoring equipment to laptops and PCs (Figure 2.6).

usb

The USB standard specifies cables, connectors, power, and protocols for communication and power 
supply between computers and peripherals, offering the great advantage of not requiring prior con-
figuration. USB has continuously evolved through four generations and more than a dozen types of 
connectors, including standard, mini, and micro sizes and all have been deprecated except the most 
recent USB Type-C or USB-C.

Basically, the USB interface consists of two devices, the host and the peripheral, and uses a mas-
ter/slave protocol. However, one host can connect to many peripherals (up to 127) by an extension 
hub following a tree network topology. Peripheral devices cannot interact with one another except 
via the host, and two hosts cannot communicate over their USB ports directly.

TABLE 2.1
RS-232 Pinout at a D-9 Connector

Pin of DE-9 Signal Signal Abbreviation

1 Carrier detect DCD

2 Received data RXD

3 Transmitted data TXD

4 Data terminal ready DTR

5 Signal ground GND

6 Data set ready DSR

7 Request to send RTS

8 Clear to send CTS

9 Ring indicator RI

TABLE 2.2
Null-Modem Connection

Pin Signal Pin Signal

1 DCD 4 DTR

2 RXD 3 TXD

3 TXD 2 RXD

4 DTR 1 DCD

4 DTR 6 DSR

5 GND 5 GND

6 DSR 4 DTR

7 RTS 8 CTS

8 CTS 7 RTS

9 RI (not connected) 9 RI (not connected)
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In 1996, USB 1.0 specified a data transfer rate of 12 Mbps, whereas now with USB4, the data 
transfer rate is 40 Gbps. Still, this data transfer rate is lower than the Ethernet 100 Gbps interface, 
which we will discuss later in the chapter.

A USB data packet, which is the unit of data transfer, consists of several fields starting with Sync, 
which synchronizes the clock of the receiver and transmitter, and PID (Packet ID), which consists of 
eight bits where the upper four indicate the packet type (to be described shortly) and the lower four 
bits are for error detection. Depending on the type of packet, the remaining fields can be ADDR 
for destination address (made of 7 bits, thus supporting 127 devices), ENDP for endpoints, CRC for 
cyclic redundancy check, DATA for payload, and EOP for end of packet.

The four types of data packets are token packets, data packets, handshake packets, and start of 
frame packets. A token data packet indicates the type of message and consists of Sync, PID, ADDR, 
ENDP, CRC, and EOP fields (Figure 2.7). Data packets carry the payload data, consisting of Sync, 
PID, Data, CRC, and EOP fields. Handshake packets recognize data packets and report errors, 
consisting simply of Sync, PID, and EOP. Start of frame packets flag the start of a new frame of 
data, consisting of Sync, PID, Frame Number, ENDP, CRC, and EOP. A typical transaction includes 
several packets given in sequence: for example, token, data, and handshake.

Furthermore, there are four types of data transfer: Control, Bulk, Interrupt, and Isochronous, 
which serve different purposes and may include one or several transactions. The control type is 
used to configure and control a device, the bulk type is convenient for transferring a large amount of 
data (e.g., stored data in a pen drive to a folder on a PC), the interrupt type is convenient for sending 
small amounts of data (e.g., mice or keyboards), and the isochronous type helps to transmit real-time 
information like audio and video data at a constant rate.

In addition to data transfer, USB is used for powering devices. For this purpose, a USB cable has 
two sets of wires, one set for DC power (positive and ground) and the other set for data. Configuration 
of these wires has evolved through a variety of connectors, such as Type-A, Type-B, and micro. The 
most recent is USB-Type C, which is a 24-pin connector. In the companion lab guides, we will work 
with a variety of USB cables both for data transfer and to power devices.

FIGURE 2.6 Examples of RS-232 to USB cable for compatibility with legacy systems.
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NETWORKS

This section intends to provide information about networks that we need to understand the labora-
tory activities to be conducted in lab session 2 described in the companion lab manual. We will 
discuss other interfaces and associated protocols in Chapter 5.

open systems inteRConneCtion (osi) model

The OSI model has seven logical layers (Table 2.3), tiered hierarchically such that a layer serves the 
layer above it while being served by the layer below it. These layers are abstractions and can con-
tain sub-layers to perform their functions. The Media Access Control (MAC) data communication 
protocol is part or a sub-layer of layer 2 or data link layer. The MAC sub-layer provides addressing 
and access of multiple devices to a shared medium. A medium is a general term that refers to a com-
munication link, for example Ethernet. The MAC is an interface between layer 1 (Physical layer) 
and the logical link control sub-layer of layer 2 and emulates a full-duplex channel in a multi-point 
network.

MAC addresses are 48-bit (6-byte) binary addresses represented in 12 hexadecimal digits. Each 
digit is 48/12 = 4 bits or a nibble. The MAC address corresponds to the network card or adapter of 
the device assigned when it is manufactured and therefore it is a permanent address. For example, 
the MAC address B8:27:EB:7B:55:E4 has 6 bytes or 12 nibbles, E4 is the least significant byte and 
B8 is the most significant byte. The first three bytes is the OUI (Organizational Unique Identifier) 
that is assigned by the Institute of Electrical and Electronics Engineers (IEEE) to the manufacturer. 
In this example, the OUI is B8:27:EB corresponds to Raspberry Pi. The last three bytes 7B:55:E4 
constitute the Network Interface Controller specific number and it is assigned by the manufacturer.

Token Packet

Sync PID Address Endpoint

8 bytes 8 bits 7 bits 4 bits

CRC

5 bits

EOP

3 bits

Data Packet

Sync PID Data

8 bytes 8 bits 0-1023 bytes

CRC

16 bits

EOP

3 bits

Start of Frame

Sync PID Frame
number Endpoint

8 bytes 8 bits 7 bits 4 bits

CRC

5 bits

EOP

3 bits

Handshake Packet

Sync PID

8 bytes 8 bits

EOP

3 bits

FIGURE 2.7 USB data packets.
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tCp/ip

The five-layer TCP/IP model is like the OSI model; layers 1–4 are the same and then the fifth 
TCP/IP layer takes the role of OSI layers 5–7. In other words, functions of the three top OSI layers 
(Application layer, Presentation layer, and Session layer) are merged to a single fifth TCP/IP layer 
named Application layer.

Layer 4, transport layer, of the TCP/IP includes the TCP and User Datagram Protocol as well as 
address for different applications called port numbers. Layer 3, Network layer, includes the IP that 
uses IP addresses to identify source and destination of packets and routing functions. At Layer 2, the 
data link layer, we have the Local Area Network (LAN) standards such as Ethernet. In this layer, 
the MAC address is used to identify source and destination of packets.

IPv4 addresses are 32-bit binary addresses, divided into 4 octets or sets of 8 bits (given in deci-
mal, e.g., 192.168.10.80) used by the IP for delivering packets to another device. Being 8 bits, each 
octet can range from 0 to 255. An IPv4 address has two parts: the network part and the host part. A 
network has two reserved addresses; one is the first (the network address) and the other one is the 
last (the broadcast address). The Domain Name System (DNS) translates the domain name to the 
IP address.

There are several classes of IPv4 address sets. Class C is for small networks up to 256 IP 
addresses, e.g., 192.168.1.xxx, where xxx is 0–255. Class B is for intermediate networks up to 65,536 
IP addresses (e.g., 126.168.xxx.xxx). Class A is for large networks up to 16,777,216 IP addresses 
(e.g., 10.xxx.xxx.xxx).

In this book, we will focus on Class C networks. The three most significant bits are reserved to 
be 110. The first three octets identify the network and the fourth octet the host. The minimum value 
that the first octet has is 110–00000, which is 192 in decimal; with a maximum value of 110–111111 
or decimal 223. Networks 192.168.0.0 to 192.168.255.0 are reserved for private use.

The purpose of the subnet mask is to identify the network part of the IP address. All the bits 
of the subnet mask for the network address are set at 1 and all the bits of the host part are set at 
0. The decimal equivalent of an octet with all bits set at 1 is 255. For example, the subnet mask 
255.255.255.0 identifies the first three octets as the network address and the last octet as the host 
address.

etHeRnet

Introduced in the 1980s, and covered under IEEE 802.3, Ethernet has evolved to high data rates and 
remains the primary element for wired LAN, defining the physical layer and MAC sub-layer of the 
data link layer for wired networks. Nowadays, Ethernet cable is twisted pair and fiber optics (for 
large networks). In terms of the OSI model, Ethernet provides support at Layers 1 and 2 and uses the 
IP (Layer 3). To avoid collisions using the same cable, each device is connected to a network switch.

TABLE 2.3
OSI Seven-Layer Model

Type Data Unit Layer Function

Host Data 7 Application Convert to application

Host Data 6 Presentation Data representation, encryption, convert machine dependent to independent

Host Data 5 Session Inter-host communication managing sessions

Host Segments 4 Transport Reliable addressing, routing, and delivery of messages between points

Media Packet 3 Network Addressing, routing, and delivery of messages between points

Media Bit/Frame 2 Data link Reliable direct point-to-point connection

Media Bit 1 Physical Direct point-to-point connection
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An Ethernet frame has several fields (Figure 2.8). Preamble: provides alert and timing pulse for 
transmission; Start Frame delimiter; Destination MAC Address: physical address of destination sta-
tions; Source MAC Address: physical address of the sending station; Length: number of bytes in the 
data field; Data: This is a variable sized field that carries the data or payload from the upper layers; 
Padding: This is added to the data to bring its length to the minimum requirement of 46 bytes; and 
Frame Check Sequence: this is CRC, containing the error detection information.

WiReless fidelity (Wi-fi)

In Chapter 6, we will cover wireless technology and relationships with environmental monitor-
ing, with emphasis on applications of Wi-Fi to telemetry and wireless sensor networks. For now, 
we briefly explain some notions of Wi-Fi needed for lab session 2 described in the companion lab 
manual. Wi-Fi stands for Wireless Fidelity, utilizes an unlicensed part of the spectrum, and is a 
widely used wireless technology certified under the IEEE 802.11 standard. Wi-Fi technology and its 
associated standards evolved since 1999 when 802.11a and 802.11b specified the 5-GHz band (with 
54-Mbps data rate) and the 2.4-GHz band (with data rate of 11 Mbps), respectively. In two decades, 
the standard went through 802.11g (54 Mbps for 2.4 GHz), 802.11n (600 Mbps and, including both 
2.4 and 5 GHz), and 802.11ac (1.3 Gbps for 5 GHz). In 2020, 802.11ax specified much higher data 
rates for 2.4 GHz and 5 GHz, and an additional 6-GHz band. Wi-Fi is embraced by a worldwide 
network of companies (Wi-Fi Alliance 2022) issuing its own certification, and identifying Wi-Fi 
generations that map to the IEEE 802.11. For example, the Wi-Fi 4 and 5 generations correspond to 
IEEE 802.11n and IEEE 802.11ac, respectively, Wi-Fi 6 corresponds to 802.11ax (2.4/5 GHz), while 
Wi-Fi 6E corresponds also to 802.11ax but includes a 6-GHz band.

Using 2.4 GHz allows for longer distances, however the bandwidth for 2.4 GHz is about 100 MHz, 
which divided into 20-MHz channels makes most of them overlapping, which leads to interference 
(only three of the channels are non-overlapping). For 5 GHz, the bandwidth is larger allowing for 
higher data rates and more non-overlapping channels (reducing interference). However, 5 GHz has 
shorter range.

inteRnet and WoRld Wide Web (WWW)

TCP/IP is used to exchange information on the Internet, the global network of computers and 
devices that started in 1969 funded by the U. S. government and made available for commercial 
applications in 1995. We already discussed the method of defining IP addresses for devices con-
nected to a network. Considering the maximum value of each octet, IPv4 addresses range from 
000.000.000.000 to 255.255.255.255; that is 28 × 4 or 4,294,967,296 IP addresses, or approximately 
4.3 billion addresses. These are not enough for devices connected now to the Internet around the 
world; therefore, many devices now use IPv6 addresses. We will not discuss IPv6 in this book.

An information exchange service on the Internet is the WWW (or the web for short) using 
HTML and other web programming languages such as PHP, as the basis to display documents. We 
will learn fundamentals of these two languages later in this chapter and when using the lab guides 
in the companion lab manual. A web server provides web pages via files that are processed by web 
clients representing the user or device side of the web, that use web browsers to display documents 
or search on the Internet.

Ethernet Frame

Preamble SFD
Destination

MAC
address

Source MAC
address Length Payload FCS(CRC)

FIGURE 2.8 Ethernet data frame.
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inteRnet of tHinGs (iot)

As more devices on the Internet interconnect with sensors and actuators (physical objects or 
“things”), the concept of the IoT, combined with control and data analysis, is used in many industrial 
and commercial applications, such as home automation, remote monitoring, autonomous vehicles, 
predictive maintenance, manufacturing, and facilities management. Such an approach and the IoT 
concept are applicable to the framework for environmental monitoring covered in Chapter 1, which 
builds up from continuous and long-term data collection to data analysis and modeling. In Chapter 6,  
we will cover devices that can be employed in IoT.

SBC, SYSTEM ON A CHIP (SoC), AND MCU

soC

An SoC is an integrated circuit (IC) that includes a complete computer; in a manner similar to 
MCU, they can be used in embedded systems (Null and Lobur 2012). Compared to MCU, SoCs 
tend to have more on-board memory and have more powerful processors. These added capabilities 
allow SoCs to run full operating systems and exploit additional external memory and peripherals.

aRm aRCHiteCtuRes

ARM computers are based on reduced instruction set computing (RISC). The name ARM derives 
from the developers ARM Holdings, a British company. Because of the reduced instruction set, 
ARM processors require fewer transistors than complete instruction set processors such as ×86, 
and therefore reduce cost and power consumption. Thus, ARM processors are common in mobile 
devices. Chip manufacturers, e.g., Atmel, Texas Instruments (TI) fabricate ARM architecture 
processors. 

An example of SBC based on ARM is the Technologic Systems TS-7800, which is approximately 
12 cm × 10 cm. The TS-7800 is based on a Marvell MV88F5182 ARM9 CPU at 500 MHz. It has 
a 32-bit PCI bus, Ethernet, USB 2.0, RS-232, a Real-Time Clock (RTC), and five-channel ten-bit 
ADC. The TS-7800 has 128 MB of DDR SDRAM (actually first generation or DDR1) memory and 
512 MB of flash memory (Technologic 2021). The board is powered by 5 V DC.

sbC example: RaspbeRRy pi

The Raspberry Pi is a small low-cost SBC created in the UK to promote teaching of computer sci-
ence in schools (Figure 2.9). It runs Linux, Debian, and Arch Linux ARM, as well as other OS. 
Other components of the SoC are GPU, SDRAM, and USB port. At its inception as Raspberry Pi 
1, it included an SoC (Broadcom BCM2835) 700-MHz ARM processor (ARM11, which is a family 
of 32-bit RISC microprocessors, using ARMv6 instruction set). The Raspberry Pi has been evolv-
ing and now comprises a variety of devices, such as the Raspberry Pi 3 Model B+, Raspberry Pi 4 
Model B, and Raspberry Pi Zero W. The latter is currently the smallest and lowest cost Raspberry 
Pi SBC.

We will employ the Raspberry Pi Zero W in the lab sessions described in the lab manual. The 
Raspberry Pi Zero W includes 802.11b/g/n Wi-Fi using 2.4 GHz, Bluetooth 4.1, Bluetooth Low 
Energy, 1 GHz, single-core CPU, 512-MB RAM, Mini HDMI port and micro USB On-The-Go 
port, Micro USB power, and HAT-compatible 40-pin header (Raspberry Pi 2022b).

miCRoContRolleRs

An MCU is a microcomputer on a single IC, including CPU, memory, and I/O ports (Figure 2.10). 
There are several alternative abbreviations for MCU such as µC and uC. In this book, we will 
use MCU. In a similar fashion as SBC, MCUs are intended for use in embedded applications, 
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FIGURE 2.10 MCU components.

FIGURE 2.9 Raspberry Pi 4 Model B and Raspberry Pi Zero W.
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i.e., provide computing capabilities as part of a larger equipment or system. In contrast to micropro-
cessors, its functions are specialized to the needs of the larger system instead of providing a flexible 
computer platform. In addition, embedded systems typically do not have peripherals for human 
interaction; we connect them to a computer to load a program or to retrieve stored data. In addition 
to digital ports, MCUs input capabilities include A/D for measurement and in some cases, the out-
put includes D/A for control. MCUs tend to be low-cost, low power, and low speed.

MCUs have been used for many dedicated applications since when were developed in the 
1970s. The EPROM technology is allowed for installing programs in non-volatile memory and is 
re-programmed by erasing the PROM using UV light. In the 1990s, low-cost Electrically EPROM 
(EEPROM) technology (memory erasable by using electrical signals) expanded the applications 
of MCUs by allowing flexible prototype development. MCU’s popularity was further expanded 
by including flash memory (which is a special type of EEPROM) and facilitating development 
and use. Low-cost MCUs are eight-bit. There are currently 16-bit and 32-bit MCUs available. 
Applications must fit in small-capacity memory. In environmental monitoring, MCUs allow 
important applications; for example, using an MCU to monitor solar radiation (Mukaro and 
Carelse 1999).

mCu example

As an example, we present the Atmel ATmega 128. This is a low-power eight-bit AVR RISC-based MCU 
that combines 128 KB of programmable flash memory, 4-KB SRAM, a 4-KB EEPROM, an eight-chan-
nel ten-bit A/D converter, and a Joint Test Action Group (JTAG) interface for on-chip debugging (Atmel 
2011). The device supports throughput of 16 MIPS at 16 MHz and operates between 4.5 and 5.5 V.

The Atmel® AVR® core RISC architecture includes 32 general-purpose working registers directly 
connected to the ALU, allowing two independent registers to be accessed in one single instruction 
executed in one clock cycle (Atmel 2011).

in-CiRCuit seRial pRoGRamminG (iCsp)

For specialized applications, manufacturers program the MCU before installing it on a circuit 
board. However, for flexible applications, it is best to program the MCU after placing it in a circuit 
board. ICSP is a particular instance of this approach, where the programming computer commu-
nicates serially with the MCU using I/O pins (Microchip Technology 2003). This approach offers 
many advantages in prototyping and producing MCU-based systems. For example, adding calibra-
tion parameters and ID codes to the MCU memory, and upgrading the system in the field after 
deployment. ICSP uses an interface between the MCU and the programming device or programmer 
(Figure 2.11).

Micro-Controller ProgrammerICSP
interface 

FIGURE 2.11 ICSP: MCU and programmer device.
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mCu-based sbC example: aRduino

Arduinos have become very popular in a variety of fields since their hardware and software are 
open source and have been designed to facilitate its use by non-experts in electronics, engineering, 
or programming (Gertz and Di Justo 2012). It is easy to program using a cross-platform that runs on 
Windows, macOS, and Linux.

The Arduino UNO is an MCU board based on the ATmega328, has 14 digital I/O pins, 6 analog 
inputs (10-bit ADC), a 16-MHz ceramic resonator, a USB connection, a power jack (input 7–12 V), 
an ICSP header, and a reset button. It will derive power when connected to a computer with a USB 
cable or from a DC power source, AC-to-DC adapter, or battery (Arduino 2014).

The ATmega328 has a clock speed of 16 MHz, 32 Kb of flash memory, 2 Kb of SRAM, and  
1 KB of EEPROM which can be read and written with functions from the EEPROM library. The 
ATmega328 on the Arduino UNO comes with a boot loader that allows to upload new code without 
the use of external hardware programmer.

The board can be powered from the DC power jack (7–12 V), the USB connector (5 V), or the 
VIN pin of the board (7–12 V). There are several pins associated to power: (1) VIN to provide an 
input voltage (7–12 V) to the Arduino from an external power source, (2 and 3) Ground (GND), (4) 5 
V, provides a regulated 5V from the regulator on the board, (5) 3.3 V, provides a 3.3 volt supply gen-
erated by regulator with maximum current draw of 50 mA, (6) RESET, to reset the board, and (7) 
IOREF, which provides an indication reference of the MCU operating voltage. Other ports include 
USB, and six basic pins used for ICSP. These lines include Serial Peripheral Interface (SPI) pins and 
RST, VTG, and GND. The SPI interface will be defined and discussed in Chapter 5.

Arduinos have add-on boards to complement their basic capabilities called “shields” because 
they typically fit on top of the Arduino resembling a protective shield. There are hundreds of shield 
makers and shields available (Shieldlist 2014), which enables an Arduino to perform a variety of 
functions. For example, an Ethernet connection shield allows an Arduino to connect to the Internet; 
a GPS shield allows it to obtain location and datalogger shield which is relevant to environmental 
monitoring.

We have seen three main examples of SBC: the TS-7400, the Raspberry Pi, and the Arduino 
UNO. Their sizes are compared in Figure 2.12. More comparison features are given as an exercise 
at the end of this chapter. 

FIGURE 2.12 Comparing size of SBCs: TS-7400, Raspberry Pi, and Arduino UNO.



43Programming and Single-Board Computers

example mCu-based sbC

One additional system we will use as example is TI MSP430 LaunchPad. This SBC can be pro-
grammed as easily as an Arduino using an Integrated Development Environment (IDE). It has 20 
pins to interconnect it to other circuits. There are now “booster packs” to connect to these pins, 
in the same manner as Arduino shields. It has a general-purpose switch, a reset switch, and two 
LEDs indicators. The LaunchPad is based on the MSP430G2452 MCU. Which has speed 16 MHz, 
16-KB Flash, 512-B RAM, 8-channel 10-bit ADC, Comparator, two 16-bit Timers, up to one Inter 
Integrated Circuit (I2C) interface, two SPI, and one UART. With low power operation is suitable for 
battery-operated applications. Open-source software is available from several communities, such as 
Energia (Energia 2014), which is similar to Arduino. We will discuss the I2C interface in Chapter 5.

CONCEPTS OF PROGRAMMING

In lab session 1 of the lab manual companion to this book (Acevedo 2024), we learned how to code 
simple programs in R and some terms applicable to programming languages in general. In this 
chapter, and corresponding lab session 2 of the lab manual, we will continue learning programming 
in R as well as include Python, Arduino code (which is based on C++), and programs to display data 
and graphs on the web using HTML, Cascading Style Sheets (CSS), PHP, and JS. We cover more 
details of Python, Arduino, HTML, CSS, PHP, and JS programming in lab guide 2 and subsequent 
sessions of the lab manual.

The required setup for programming includes a text editor to create computer programs, a com-
piler (such as in C++) to convert the code into binary format, or an interpreter to execute the pro-
grams directly (as in R and Python). Syntax is a collection of rules on how to write the code, and it 
varies from language to language.

Variables are identifiers pointing to a memory location containing a value for the variable; 
for example, calc = 5.7. In many languages, you must specify the type of variable, for exam-
ple integer (int number = 2), floating point (float voltage = 3.7), and string (string 
name = "channel").

Control structures allow changing the flow of execution of instructions. A basic one, if-else, allows 
to perform a function if a condition is met or an alternative function if the condition is not met.

The syntax of how we write these lines of code varies according to the language. Here we are 
using curly braces for the functions to be executed by the “if” part and the “else” part. The lines of 
code stating the function end in semicolon.

Other important control structure allows to create loops such as a control structure based on for 
loop

if (measurement >500){
 calibration();
} else {
 measure();
}

for (int i = 0; i<=100; i++) {
 a = 2*i;
}
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Where we increment integer i from 0 to 100 and make variable a equals to 2 times i. Likewise, 
the while control structure

Also of great importance in programming are data structures, which provide ways of organizing 
information. We encountered the array data structure and data frame when we worked with R in 
lab session 1. In R, there are several other structures such as lists that allow combining a variety of 
other objects.

pytHon

Python is an interpreted general-purpose programming language that has become very common in 
data science, as well as interfacing systems and data acquisition. Interpreter and libraries are freely 
available from the Python Web site (Python 2022a) as well as other contributors. A tutorial is also 
available from the Python Web site (Python 2022b) and the Raspberry Pi documentation website 
(Raspberry Pi 2022a)

Python does not require a character to terminate statements, and blocks are specified using 
indentation. Statements to be followed by an indentation level end with a colon. Values are assigned 
using the “=” sign. You can decrement or increment values with the operators += or –= with the 
amount on the right-hand side.

For example, in this control structure

the first line ends in “:” and the second line is indented. The response would be the numbers,  
0, 1, 2, 3, 4. Note that the sequence starts at 0 and ends at the range minus 1.

Data structures in Python include lists, dictionaries, and tuples. Lists are similar to one-
dimensional arrays, but they are more general because you can also have lists of other lists. 
Dictionaries are essentially associative arrays or hash tables, and tuples are one-dimensional 
arrays. Python arrays can be of any type. The type of variable does not have to be declared, 
it suffices to give the name and assign a value. A list is created by comma-separated items 
between square brackets. For example, a list of squares of numbers 1, 2, and 3.

aRduino

The Arduino UNO is programmed using the Atmel IDE. Once installed, you run the Arduino soft-
ware and will see the script editor (scripts in Arduino are called sketches). After variable declara-
tion, an Arduino program has two functions: setup() and loop(). In the setup() function, we 
specify I/O pins, communication, and other configurations. In the loop() function, we perform 

x =[1**2,2**2,3**2]
x
[1, 4, 9]

for i in range(5):
  print(i)

while (int i<100) {
 a = 2*i;
}
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instructions to be executed in a repeatedly manner. In Arduino programming, each line of code ends 
with semicolon “;”.

For example, in setup(), we could start the serial port at 9600 baud

and in loop(), we can program a control structure (for loop) that doubles the value of integers from 
0 to 100 and prints the integers and the calculated value. Function delay() pauses execution for a 
given number of milliseconds; 1000 ms in this case (which is 1 second).

Html

HTML elements inform a web browser how to display the contents of web pages, by specifying 
headings, paragraphs, images, tables, links, and other characteristics of the contents. It does this 
by defining tags enclosed in symbols < >, using a “tagname” at the start of an element and slash  
“/tagname” to define the end of an element. For example, <head> will be the start of element 
heading and </head> is the end of that element. Some tags called empty, have no ending tag; 
for example, <br> that inserts line breaks in text. At the time of this writing, the latest version of 
HTML was HTML5, and HTML6 was expected to be released soon.

Consider the following HTML document and its display as a web page (Figure 2.13) to explain 
some of the tags.

void setup() {
  Serial.begin(9600); 
  }

void loop() {
  int a;
  for (int i = 0; i<=100; i++) {
    a = 2*i;
    Serial.print(i);
    Serial.println(a);
    delay(1000);
  }
}

<!DOCTYPE html>
<html>
<head>
<title>Real-Time Environmental Monitoring</title>
</head>
<body>
<h1>RTEM Test Page</h1>
<h2>Learning HTML</h2>
<p>Examples of URL links: external web page and a local file</p>
<p><a href=https://github.com/mfacevedol/rtem>RTEM GitHub Repository</a></p>
<p><a href=”data/datasonde.csv">Datasonde File</a></p>
</body>
</html>

https://github.com
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Here, <!DOCTYPE html> declares that the content is an HTML5 document. Next, <html> 
is the root element of an HTML page endingin </html>. The <head> element closed with  
</head> contains information about the HTML page; in this case, <title> and </title> 
specifies a title for the HTML page (shown in the tab for the page, in Figure 2.13). Now, <body> 
and </body> delimit the container for the visible content, such as headings, paragraphs, images, 
hyperlinks, tables, and lists. In the example, the <h1> and <h2> and elements define a heading, and 
each <p> ending in </p> element defines a paragraph.

Nested within the second and third <p> tags in this example, we see another tag <a> defin-
ing a hyperlink to an external website and to a local file available for download. Here "href=" 
is the attribute specifying the Uniform Resource Locator (URL), for the site or for the file to be 
linked. An URL can be defined in a variety of ways. In the first case, we use the address for the 
site https://github.com/mfacevedol/rtem. In the second case, we are using a relative 
URL to a comma separated values (CSV) file contained in a subdirectory "data" of the direc-
tory housing the HTML document. Before closing with </a>, we define the label to be shown on 
the page (Figure 2.13).

Css

CSS is used to style HTML documents, that is how the elements of an HTML document are dis-
played on the web page and presented to the user. It is very useful because it separates content from 
format and can control the style of multiple HTML documents from a common set of stylesheets. 
Stylesheets can be contained in <style> </style> tags within the HTML document. The syntax 
of a stylesheet is to declare the HTML element that will be styled (the selector), then enclosed in 
curly braces, the properties, and their values separated by colon. For example,

FIGURE 2.13 Web page displayed by the HTML example.

https://github.com
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Here the selector is the paragraph tag and properties are the font family and size. Stylesheets can 
be included within the <head> elements in the HTML document or in a separate *.css file called 
from the HTML document. In this case, the external file is referenced using a link tag

The example.css file should not contain HTML tags; thus, the stylesheet will not be enclosed in 
<style> tag.

pHp

PHP is a programming language employed at the web server side or embedded in HTML to cre-
ate dynamic web pages. A semicolon ";" is used to terminate statements. Language keywords are 
such as if, else, null, echo, foreach are not case-sensitive, but it is a good practice to be 
consistent and using all the same, for example, all lower case. However, constants and variables are 
case-sensitive. Variables are defined preceding by the dollar sign $. Comments and remarks can be 
in one line preceded with double slash // or pound # symbols, and multiple line using /* to start and 
*/ to end. Currently, the latest version of PHP is 7.4.

Consider the following example and Figure 2.14 to introduce PHP scripts. In this example, we 
extract each record of a csv datalog file as $line and use echo to display $line on a web page termi-
nating with HTML tag <br> at the end of the line. The period in echo between $line and the br tag 
is string concatenation.

We can insert this piece of code within the body tags of the example HTML document discussed 
above, after the <a href line, and preceding it with a <p> tag announcing the file content as 
shown below.

When executed, the results will be as shown in Figure 2.14 where we can see the lines of the 
datasonde.csv file. 

<style>
p {
  font-family: Arial;
  font-size: 20px;
}
</style>

<link rel="stylesheet" href="example.css">

<?php
$lines = file("data/datasonde.csv");
foreach ($lines as $line_num=> $line) {
    echo $line . "<br>";
}
?>
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<!DOCTYPE html>
<html>
<head>
<title>Real-Time Environmental Monitoring</title>
</head>
<body>
<h1>RTEM Test Page</h1>
<h2>Learning HTML</h2>
<p>Examples of URL links: external web page and a local file</p>
<p><a href=https://github.com/mfacevedol/rtem>RTEM GitHub Repository</a></p>
<p><a href="data/datasonde.csv">Datasonde Data File</a></p>
<?php
$lines = file("data/datasonde.csv");
foreach ($lines as $line_num=> $line) {
echo $line . "<br>";
}
?>
</body>
</html>

FIGURE 2.14 Web page displaying the datasonde file contents by the PHP example.

https://github.com
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Js

JS is commonly used for development of web sites since it can change the behavior of elements of 
HTML documents and therefore make a web page dynamic. For environmental monitoring appli-
cations, JS can be used to interact with PHP results, read data, plot graphs, and a variety of tasks.  
JS code is enclosed within <script> </script> tags and can contain functions that are called 
by other elements of the HTML document. For example,

Then function test() can be called somewhere else in the HTML code; for example, a button 
that can be clicked to execute it.

There are many JS libraries available for a variety of purposes such as data manipulation, visual-
ization, forms, and animations. An interesting JS library is Data-Driven Documents (D3) or D3.js 
which is designed to manipulate HTML elements based on data. We will use it in the lab sessions 
for several purposes and particularly to plot graphs. One graph type is Scalable Vector Graphics 
(SVG) that can be defined from HTML code. Related to JS, a common file format to store and trans-
port data is JS Object Notation (JSON) that uses JS code to specify the contents and it can be read 
by other programming languages.

sQl

SQL is a language to retrieve and manage databases. It is used, for example to create a database 
and add new tables to the database, as well as query a database, retrieve, insert, update, and delete 
records. We postpone discussing SQL until Chapter 10 and Lab 10 when we cover databases.

EXERCISES

Exercise 2.1

Consider a ten-bit ADC. Calculate the number of steps and the voltage resolution for a maximum 
voltage of 5 V.

Exercise 2.2

Consider the following control structure

What would happen with variable b during execution?

<script>
Function test() {
 Code here …}
</script>

<button type ="button" on click="test()">Test</button>

for (int k = 0; k<=10; k++) {
b = 10-k;
}
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Exercise 2.3

Consider the following Python code

What would be the interpreter response?

Exercise 2.4

Consider the following Arduino code

What would be the response on the serial monitor?

Exercise 2.5

Consider the following HTML code

What would be the display on a web browser?

for i in range(5):
     print(i)

void setup() {
  Serial.begin(9600); 
  }

void loop() {
  int a;
  for (int i = 0; i<=100; i++) {
    a = 2*i;
    Serial.print(i);
    Serial.println(a);
    delay(1000);
  }

}

<!DOCTYPE html>
<html>
<head>
<title>Real-Time Environmental Monitoring</title>
</head>
<body>
<h1>RTEM Exercise Page</h1>
<h2>Learning HTML</h2>
<p>Examples of URL links: external web page and a local file</p>
<p><a href=https://github.com/mfacevedol/rtem>RTEM GitHub Repository</a></p>
<p><a href="data/salinity.csv">Salinity Data File</a></p>
</body>
</html>

https://github.com
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3 Sensors and Transducers
Basic Circuits

INTRODUCTION

This chapter starts with a very basic and quick review of concepts of electric circuits that are needed 
to understand sensors and transducers. We discuss sensors defined as elements that respond to a 
change in conditions by changing its properties. An electrical transducer converts variations of one 
form of energy to variation in electrical energy. For example, a voltage divider circuit with a resis-
tive sensor of temperature produces an output voltage related to resistance. We discuss passive (e.g., 
thermocouples) and active sensors (e.g., thermistors) using temperature as an example. This chapter 
also provides an overview of parameter estimation by fitting to non-linear models by transforma-
tion. These techniques are useful in design and calibration of sensors.

PRINCIPLES OF ELECTRICAL QUANTITIES

This section provides a very basic and quick review of some concepts of electric circuits that we 
need to understand sensors and transducers. Several textbooks provide an introductory treatment of 
circuit analysis, for example Irwin and Nelms (2011). Electrical charge is a fundamental property 
of matter that interacts with electromagnetic fields. Charge can be positive or negative; at the sub-
atomic level, protons represent positive charge, whereas electrons have negative charge. The unit of 
charge is the Coulomb or C, where 1 C is the equivalent charge of 6.2 × 1018 electrons. In a conductor, 
free electrons can contribute to a change of negative charge, which for practical purposes is thought 
of “flow of charge”, although it is not really flow but a rate of change.

Voltage is the potential energy difference between two points in an electric field, measured per 
unit charge. Being potential energy means it is available to perform work; in this case to move a unit 
charge against an electric field. Intuitively, voltage is the energy available to cause electron flow in 
a conductor. Its unit is Volt or V, which is defined as Joule/Coulomb, and is named Volt in honor of 
Alessandro Volta. In general, work and charge vary with time. Denoting charge by q, voltage by v, 
and work by w, the definition of voltage is the rate of change of work with respect to charge

 ( )v t
dw
dq

=  (3.1)

Current is charge (electrons) flow rate through a material (e.g., a conductor) or in other words, the 
rate of electric charge change through a conductor. Its unit is the Ampere, in honor of André M. 
Ampère, or “Amp” or A for short, which is one Coulomb of change of charge in 1 second of time, 
i.e., 1 A is 1C/s. Denoting current by ( )i t , we can use the derivative of charge with respect to time

 ( )i t
dq
dt

q�= =  (3.2)

As we can see, voltage and current are related by the fundamental notion of rate of change of charge 
and work required to produce it. Multiplying Equations (3.1) and (3.2), we obtain a very interesting 
result

 ( ) ( ) ( )v t i t
dw
dq

dq
dt

dw
dt

p t= × = =  (3.3)

DOI: 10.1201/9781003425496-3
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In short, multiplying voltage and current we obtain power p(t) which is rate of change of work. 

Dimensionally, V × A or × =J
C

C
s

Watt or W. In other words, electric power is the rate of change of 

work required to move charge at a given rate. This relation is a fundamental equation

 ( ) ( ) ( )p t v t i t=  (3.4)

Thus, high power can occur due to high voltage and low current or to low voltage and high current. 
Neither voltage nor current alone constitute power; we need both. If ( ) 0v t = , power will be zero (no 
potential to do work), and if ( ) 0i t = , power will be zero (no rate of change of charge).

It is customary to use lower case letters to denote time-varying electrical quantities and t to 
denote time. Therefore, ( ) ( ) ( )p t v t i t=  is the instantaneous value of power at instant t. It is also com-
mon to denote constant values by capital letters; thus for constant voltage and current, power (P) is 
equal to current (I) multiplied by voltage (V), that is to say

 P V I= ×  (3.5)

Suppose voltage is 12 V constant for a 1-day (24 hours) interval during which current drawn is 
1 A for the first half day and 0 A later. What is the power drawn (consumed) during the day? 
What is the energy consumed at the end of the day? Answer: During the first half day, power 
is × =12 V 1A 12 W. During the second half day, the power is × =12 V 0A 0 W. Therefore, 

p t
t

t
=

≤ ≤

< ≤






( )

12 W in 0 12 hours

0 W in 12 h 24 hours
 The energy consumed, or work done by the voltage source is 

( ) ( ) ( ) 12 0 = 12 12 Wh = 144 Wh
0

24 h

0

12 h

12 h

24 h

e t w t p x dx dx dx∫ ∫ ∫= = = + × . It is common to express elec-

trical energy in Watt-hour or Wh for short.

Voltage is analogous to the work done to lift a weight against the pull of gravity; current is analo-
gous to the movement of that weight. Similarly, voltage is analogous to water stored in an elevated 
tank; current is analogous to water flow in a pipe draining the tank.

By convention, polarity of current in a circuit is opposite to electron flow, and polarity of voltage 
is a drop as it goes from + to – in the circuit, whereas it is a rise going from – to + (Figure 3.1).

We generate voltage using a variety of processes and devices. Some important ones are chemical 
reactions (e.g., batteries, fuel cells), radiant energy (e.g., solar cells), and using interaction of mag-
netic and electric field (e.g., alternator).

Circuits extract power from the electrical power supply, which is often a voltage source, e.g., a battery. 
A load, a circuit performing a function, consumes power supplied by the source. The function performed 
by the load varies. Resistors convert current to heat dissipation, capacitors store charge as potential energy. 
An integrated circuit (IC) uses the power for its resistors, capacitors, and transistors, internal to the IC. 

FIGURE 3.1 Conventions. A voltage source is represented by a circle with + and - symbols.
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Direct current (DC) refers to the case where voltage, current, or power remain constant during 
a period in consideration, and there is no change of polarity; for example, the power provided by a 
battery. This type of electricity contrasts with a time-varying voltage, current, or power defined as 
alternating current (AC) that refers to a periodic variation of these quantities. The most common 
form is that of a sinusoidal variation for which polarity changes in a cyclical fashion. This type of 
power is supplied by an AC generator.

Ohm’s law is an important relationship between current and voltage for a circuit element and 
based on the concept of resistance R (Figure 3.2)

 R
V
I

=  (3.6)

Resistance’s unit is Ohm defined as Volt/Amp and given by Greek letter omega Ω. When the V/I ratio 
remains constant for all values of V, the relationship is linear (Figure 3.3a) and we say that the element 
follows Ohm’s law (it is an ohmic element). In other words, voltage is proportional to current. The trace 
in the current – voltage (I–V) plane is a straight line, with slope equal to the inverse of resistance.

Combining Equations (3.5) and (3.6), we can derive alternative expressions of power for an 
ohmic element

 

( )

or

2

2

P VI I R I I R

P VI V
V
R

V
R

= = × × =

= = × =

 (3.7)

FIGURE 3.2 Ohm’s law.

FIGURE 3.3 Voltage–Current (V–I) plane (a) Ohmic element and (b) Non-ohmic element.
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When we have time-varying current or voltage, and the element is ohmic, it is still valid to use

 
( )
( )

R
v t
i t

=

and therefore, we can derive an expression for instantaneous power

 ( ) ( ) ( ) ( )
( )2

2

p t v t i t i t R
v t

R
= = =

Conductance G is the inverse of resistance 1/G = R and therefore an equivalent statement of 
Ohm’s law is that conductance G is the ratio of current to voltage /G I V= . Conductance has units of 
siemens, abbreviated S, where S = 1 Amp/Volt.

The Joule heating effect, also called Joule’s first law, implies that power absorbed by a resistor 
or a conductor of resistance R produces heat flow. This heat is proportional to power and thus pro-
portional to I 2 or the square of the current; also, this heat flow is independent of the direction of the 
current. As we will see later in this chapter, Joule heating has important implications in the design 
of sensors particularly those sensors designed to measure temperature.

When the relationship between V and I is non-linear, the element is non-ohmic and Equation (3.6) 
does not hold. Instead, current is a non-linear function of voltage, say

 

( )

or

( ) ( )

I f V

i t f v t( )

=

=

 (3.8)

for constant and time-varying quantities. In other words, the proportion between I and V changes 
with V (Figure 3.3b). An example of non-linear element is a diode (Figure 3.4) that shows a sharp 
increase of current with voltage once voltage overcomes a threshold.

Resistivity is a property of a conductive material and determines the resistance of an element 
with certain geometry. Resistivity is denoted by the Greek letter rho (ρ) and its units are ohms-m 
(Ω-m). For instance, take a wire of length l, and cross-sectional area A. We calculate resistance by

 R
l
A

ρ=  (3.9)

Resistance increases for longer and thinner wires, whereas it decreases for shorter and thicker wires. 
For example, take a copper wire of 10-m long and 2-mm diameter. The resistivity of copper is 
1.72 × 10–8 Ωm. Therefore, using Equation (3.9), we obtain a resistance of

FIGURE 3.4 Example: a diode.
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 R = × π



 ×

= ×
π

= Ω−
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1.72 10
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3 2
 

In AC circuits, we employ the concept of impedance to extend the concept of resistance. The 
impedance concept includes capacitors and inductors; it is defined similarly to DC using the ratio 
of voltage to current as in Ohm’s law.

CIRCUITS: NODES AND LOOPS

We form circuits by connecting circuit elements in a network. The most useful concepts are those 
of nodes and loops (Figure 3.5). A node is a point at a distinct potential whereas a loop is formed 
by tracing the circuit starting at a given node and returning to it. Ground or common is a very 
important node defined to have zero potential or zero volts. All other nodes have potentials that are 
measured with respect to ground. Points directly connected to ground have the same voltage (0 V).

Kirchhoff’s voltage law states that the sum of voltage around a circuit loop adds to zero as illus-
trated in the simple circuit of Figure 3.6 composed of one voltage source V and two resistors R1 and 
R2. All the voltages using the corresponding sign, positive for the source and negative for the drops 
V1 and V2, add to zero, that is to say 01 2V V V− − =  which is equivalent to 1 2V V V= + .
In other words, the sum of all voltage rises is equal to the sum of all voltage drops.

The equivalent resistance of resistances connected in series is calculated as the sum of all resis-
tances. For example, two resistances R1 and R2 connected in series (Figure 3.7) yield an equivalent 
resistance R given by

FIGURE 3.5 (a) Loops and (b) Nodes.

FIGURE 3.6 Kirchhoff’s voltage law.
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 1 2R R R= +  (3.10)

We form a voltage divider using two resistances in series. The voltage across one resistance is 
proportional to the input voltage multiplied by the fraction of that resistance to the total equivalent 
resistance. For example, the voltage V1 across resistance R1 in Figure 3.8 is

 1
1

1 2

V V
R

R R
= ×

+
 (3.11)

This is an important concept to develop transducers from sensors, as we will see later in this chap-
ter. A variable resistor or potentiometer is in essence a voltage divider; the position of the cursor 
determines the proportions R1 and R2 = R–R1 of the total potentiometer resistance R. Therefore, the 
voltage across R1 is given by Equation (3.11) at any cursor position.

Kirchhoff’s current law states that the sum of currents in and out of a circuit node adds to zero, 
as shown in Figure 3.9 for two resistors 01 2I I I− − = . This is equivalent to say that the sum of all 
currents leaving a node must equal the sum of all currents entering a node 1 2I I I= + .

The inverse of the equivalent resistance of resistances connected in parallel is calculated as the 
sum of inverses of all resistances. For example, two resistances R1 and R2 connected in parallel 
(Figure 3.10) yield an equivalent resistance R given by

V
R1 V1

R2 V2

R1V1 = V
R1 + R2

R2V2 = V
R1 + R2

V1 + V2 = V

FIGURE 3.8 Voltage divider.

FIGURE 3.7 Resistances in series.

I
V R1

I1 I2

R2

I – I1 – I2 = 0

I = I1 + I2

FIGURE 3.9 Kirchhoff’s current law.
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1 1 1

1 2R R R
= +  (3.12)

Or equivalently

 1 2

1 2

R
R R

R R
=

+
 (3.13)

Recall that conductance G is the inverse of resistance 1/G R=  and therefore a more practical inter-
pretation of Equation (3.13) is that the equivalent conductance of a parallel combination G is the 
sum of individual conductance values G1 and G2.

We form a current divider using two resistances in parallel. The current through one resistance 
is proportional to the input voltage multiplied by the fraction of the other resistance to the total 
equivalent resistance. For example, the voltage I1 through resistance R1 in Figure 3.11 is

 1
2

1 2

I I
R

R R
= ×

+
 (3.14)

For many purposes, we interpret a circuit as performing a function or producing an output for 
a given input. We typically conceptualize this as the relationship between an input voltage and an 
output voltage. A linear circuit produces an output voltage proportional to the input voltage over a 
range (Figure 3.12 left). A linear amplifier is an example of this type of relationship. However, we 
also have non-linear circuits for which the output voltage does not have the same proportion over a 
range. A simple example is a voltage comparator, which produces a completely different value once 
the input goes over a threshold (Figure 3.12 right).
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FIGURE 3.10 Resistances in parallel.
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FIGURE 3.11 Current divider.
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The relationship of Equation (3.11) can be interpreted as input-output if we think of V as the input 
voltage Vin and V1 as the output voltage Vout. Renaming and rearranging, we obtain

 out

in

1

1 2

V
V

R
R R

=
+

 (3.15)

MEASURING VOLTAGES, CURRENTS, AND RESISTANCES

A voltmeter measures voltage (AC or DC), an ammeter measures current (AC or DC), and an 
ohmmeter measures resistance. A multimeter combines all these functions in one instrument. 
Voltmeters and ammeters derive their power from the circuit under measurement, whereas an ohm-
meter requires a battery; it measures current and indirectly measures resistance by using Ohm’s law. 
Therefore, do not use an ohmmeter while a circuit is hot or powered on. Many multimeters denote 
the resistance function by the symbol “Ω” or the word “ohms”. The ohmmeter is also useful for a 
continuity test, i.e., detecting whether there is a continuous electrical connection from one point to 
another by indicating zero resistance or short circuit. Or equivalently indicating lack of continuity 
by showing very large resistance or open circuit. 

Analog meters use a pointer (needle) that moves over a printed scale, and polarity given by the 
direction of movement of needle. The resistance scale is logarithmic; zero resistance (short circuit) 
occurs at one extreme of the scale, whereas infinite resistance (open circuit) swings to the opposite end.

Digital multimeters (DMM) convert the analog voltage, current, or ohms to a digital number and 
then display it on a numerical readout; polarity given by the sign on the readout. We have discussed 
analog-to-digital conversion (ADC) in Chapter 2. In the DMM context, the number of digits is an 
important specification of the display; for example, a three and 1/2 (3 ½) digit digital display would 
show ±1XXX, where X denotes a full digit (0–9). Seven short segments make up a digit. The left-
most digit is the leading digit or most significant digit (Figure 3.13). It is the “1/2 digit” and can 
indicate 1 as a maximum. The range is 0–1999, positive or negative. Therefore, we also call these 
meters a “2000-count” meter. Similarly, a four and 1/2 (4 ½) digit would show ±1XXXX and there-
fore has a range of 0–19,999, positive or negative (Figure 3.13). In resistance mode, these meters 
indicate non-continuity by a non-numerical code on the display (e.g., “OL” for Open-Loop, or “–”).

Voltmeters select the measuring range by switching resistances in a voltage divider circuit (resis-
tances in series), whereas ammeters select range by changing resistance in a current divider circuit 
(resistances in parallel). A DMM may select the range automatically (auto ranging) or manually 
(the operator moves a switch to find the best range). The hands-on exercises in the Lab Manual 
companion to this book will often require using a DMM to measure voltage, current, and resistance.

The maximum value for a particular scale determines the full scale (FS). DMMs use a per-
centage of this FS value and the least significant digit (LSD) to specify their accuracy. Recall 
from Chapter 1 that accuracy is the difference between the measured value and the true value. 
More specifically, we specify DMM accuracy by a percentage of FS plus number of LSD. For 
example, consider a 3½ DMM with ±2% of FS and three LSD in the 20 V range. When reading 

Vout Vout

Threshold

VinVin

FIGURE 3.12 Response function: example of linear response (a) and non-linear response (b).
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a value in this range, we will see a reading of XXX (see Figure 3.14 for an example); note that 
three LSD is 0.01 and therefore the accuracy would be 20 0.2/100 0.03 0.07 V( )± × + = ± . If the 
measured value is 1.5, it means that the true value can be anywhere between 1.5 – 0.07 = 1.43 V 
and 1.5 + 0.07 = 1.57 V. Were we to use the 2-V range, we would observe a reading of 1XXX 
(see Figure 3.14 for an example), and now the three LSD contribution is only 0.003. Therefore, 
accuracy has improved to 2 0.2/100 0.003 0.007 V( )± × + = ± . Thus, if we measure 1500 V, the 
true value can be in between 1493 and 1507 V.

As an example, these are specifications of a low-cost 3 1/2 digit DMM. DC Volts: ranges 2–20–
200 V, accuracy ±0.8% of FS, ±1 LSD; AC Volts: ranges 200–500 V (60 Hz), accuracy ±1.5% of FS, 
±5 LSD; DC Current: ranges 2–20–200 mA, accuracy ±2.0% of FS, ±1 LSD; Resistance: ranges 
200–2K–20K–200K–2M Ω, accuracy ±2.0% of FS, ± 3 LSD.

For measuring voltage, select AC or DC and use correct polarity; typically connect the red test 
lead to positive (+) and the black test lead to negative (–). Select the range: start with the highest 
range; if the reading is small, set to the next lower range. The reading should be larger now; you 
would iterate if the reading continued to be small. Use the lowest range setting that does not “over-
range” the meter. An over-ranged analog meter needle goes all the way to the side of the scale, past 
the full-range scale value. An over-ranged digital meter displays the letters “OL”, or a series of 
dashed lines, or some other symbol (this indication is manufacturer-specific).

For measuring resistance, start with a simple test of continuity: set the meter to its highest resis-
tance range and touch the two test probes and check for 0 ohms (short circuit). An analog multimeter 

FIGURE 3.13 Displays: 3½ digits and 4½ digits.

FIGURE 3.14 A V DC reading on 200 V, 20 V, and 2 V scale.



62 Real-Time Environmental Monitoring

has a potentiometer to calibrate it for “zero” ohms. To measure a resistance value: connect the test 
probes across the resistor and obtain a reading. If the reading is close to zero, select a lower resis-
tance range on the meter and iterate until you use the appropriate range.

For measuring current, open the circuit and insert an “ammeter” in series with the circuit so that 
all current flowing through the circuit also must go through the meter. Measuring current in this 
manner makes the meter part of the circuit. Ideally should not cause voltage drop, assuming it has 
very little internal resistance. Therefore, the ammeter will act as a short circuit if placed in parallel 
to a source of voltage, causing a high current and potentially damaging the meter.

An oscilloscope allows us to see time-varying voltages by sweeping horizontally at a speed such 
that the horizontal deviation is proportional to real time. The proportionality is a timescale. On 
the scope screen, we then see waveforms or AC voltages such that vertical deviations correspond 
to voltage values and horizontal deviations correspond to time. When measuring DC, the vertical 
deviation is constant, and we just see a horizontal line. When measuring transient voltages, we may 
see a horizontal line moving down or up (if the sweep is too fast compared to the transient), or a 
trace describing the transient (if the sweep speed is commensurate with the transient). Adjust the 
Volts/division knob on the oscilloscope until the voltage appears on the screen. Estimate the voltage 
by counting the divisions and multiplying by the number of volts per division.

SENSORS

A sensor is an element that changes a property when its environment changes. In other words, it 
responds to a change in conditions by changing its properties. Commonly, we say that produces 
a response or output to a signal or input. Some examples are: a thermistor, which changes resis-
tance with changes of temperature; a thermocouple, which produces a voltage due to temperature 
changes; a light-dependent resistor (LDR) that changes resistance with changes in light intensity, 
and a photovoltaic (PV) cell that produces a current when illuminated by solar radiation.

Active and passive sensors are distinguished according to their requirement for power (Brown 
and Musil 2004; Sheingold 1980). An active sensor requires external energy to generate the response 
signal; typically, it produces a signal using a power source. Examples are a thermistor and a LDR. In 
contrast, a passive sensor does not require external power; examples are a thermocouple and a PV cell.

FROM SENSORS TO TRANSDUCERS

An electrical transducer converts variations of one form of energy to variation in electrical energy. 
For example, we can place an active sensor of temperature (say a thermistor), in a voltage divider 
circuit, to get an output voltage related to resistance. This output voltage depends on the circuit volt-
age supply and on temperature since the resistance changes with temperature. The circuit is now a 
transducer converting thermal energy to electrical energy (Brown and Musil 2004). This electrical 
energy comes from the circuit power supply.

Passive sensors are themselves transducers since they convert variations of one form of energy to 
variations in electrical energy. For example, a PV cell converts variations in solar energy to voltage 
variations; a thermocouple converts thermal energy to electrical energy.

Although technically a sensor is not necessarily the same as a transducer, in colloquial terms it 
is customary to refer to a transducer as a sensor.

SENSOR SPECIFICATIONS: STATIC

We can talk about three major types of specifications: static, dynamic, and environmental (Brown 
and Musil 2004). In this chapter, we introduce some of the static specifications, i.e., when the sensor 
is at steady-state conditions, which means when the measurand is not changing.
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• Accuracy: difference between the transducer measurement with respect to true and ref-
erence value (see Chapter 1). It is customarily given as the maximum expected error, 
expressed as percentage of FS output (example 1% of 50°C or 0.5°C).

• Precision: how well the transducer yields repeated values of the same value; or variation of 
output for the same input (see Chapter 1).

• Resolution: the smallest change in measurand detected by the transducer.
• Sensitivity: change of output for a given change in input, or magnitude of the response to a 

unit change in input; for example, 20 µV/°C.
• Linearity error: an indication of linearity of the response with respect to changes 

in measurand; it is based on deviation of the output with respect to the ideal linear 
response or straight line over the range of the measurand. Pallás-Areny and Webster 
(2001) define several ways of defining the straight line; we will focus on two of these. 
For least squares linearity, the straight line is defined by least-squares regression, 
thus equalizing maximum negative and positive errors. In end-points linearity, the 
straight line goes from the minimum to the maximum output. The linearity error can 
be summarized by various metrics or statistics of the deviation values. We focus on 
two of these: maximum deviation and root mean square (RMS) of the deviations; both 
expressed as a percentage of FS.

• Hysteresis: represents the difference in output between an increasing input and a decreasing 
input.

We will further discuss sensitivity and linearity as we present the following examples.

RESISTIVE SENSORS

Many physical variables affect resistance of a device and therefore it is common to use sensors 
based on the variation of resistance. For example, position may vary the resistance of a potentiom-
eter. We use a resistive sensor in a circuit designed to produce a voltage related to the change in 
resistance of the sensor. This voltage is the signal indicating the physical quantity that we want to 
measure. Such a circuit must be powered and therefore these resistive sensors are active, i.e., require 
energy to operate.

Examples of resistive sensors are potentiometers, resistive temperature detectors, LDR, thermis-
tors, liquid level sensors, strain gages, resistive gas sensors, liquid conductivity sensors, and resis-
tive hygrometers.

THERMISTORS: TEMPERATURE RESPONSE

Thermistors can be of two types: NTC (negative temperature coefficient) and PTC (positive tem-
perature coefficient). Those of NTC type are made from semiconductor material and resistance 
decreases gradually with temperature. In opposite fashion, a PTC, made from ceramic, will have a 
resistance that increases quickly with temperature.

We will focus on NTC thermistors for which the resistance decreases non-linearly with tempera-
ture. A general model is the B parameter equation

 exp0
1

0
1R R B T T( )( )= −− −  (3.16)

where T is the temperature in K, R is the thermistor resistance in Ω, T0 is the nominal value of T 
(25°C = 298 K), R0 is the nominal value of R at T0, and B is a parameter in K (Rudtsch and von 
Rohden 2015). Figure 3.15 shows an example of the model response for B = 4100 K, T0 = 25°C, and 
R0 = 10 kΩ.
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The B parameter equation can be inverted to calculate temperature given resistance by rearrang-
ing terms and taking logarithm of both sides of the equation
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 (3.17)

Denoting 1/0 0a T=  and 1/1a B= , we obtain
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This equation can be considered the first-order approximation n = 1, of a series
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With known nominal T0 and R0, parameter B can be estimated from data of R and T using linear 

regression. For this purpose, denote 
1 1

0

x
T T

= −  as independent variable and ln
0

y
R
R

= 





 as depen-

dent variable, then y Bx=  and therefore B can be estimated by linear regression though the origin 
(Figure 3.16). We exercise this concept in Lab 3 of the companion Lab Manual (Acevedo 2024).

Equation (3.17) can be rewritten as
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where 
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= , which can in turn be considered the first order, n = 1, of the 
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FIGURE 3.15 Thermistor resistance vs. temperature using the B parameter model.
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Equation (3.20) can also be derived from solid-state physics principles by writing the conductance 
as 1/ exp( /2 )G R F E kT= = −∆  where F is a proportionality constant, k is Boltzmann’s constant, 

and ΔE is activation energy. Using logarithm, we obtain Equation (3.20) with 
2 ln( )

0A
k F

E
=

∆
 and 

2
1A

k
E

=
∆

 (Rachakonda et al. 2014). However, due to large variations in these terms, the coefficients 

are still estimated by regression.
A derived model is the Steinhart-Hart equation (Steinhart and Hart 1968; McGee 1988) that uses 

n = 3 and assumes 02A �

 
1

ln( ) ln( ) 3

T
a b R c R( )= + +  (3.22)

where a, b, c are the coefficients A0, A1, and A3 and can be estimated by polynomial regression. In 
Figure 3.17, we illustrate a graph for this model, for a = 1.4 × 10–3, b = 2.37 × 10–4, and c = 9.90 × 10–8.

Briefly, in polynomial regression, the predictor is a linear combination of increasing powers of 
X. In this case, we formulate the non-linear relation as a polynomial instead of a functional rela-
tionship, which is useful when you do not know what model to apply. Although a solution is always 
found, we may not know the meaning or interpretation attached to coefficients. Changing variables 

1/Y T=  and ln( )X R= , we write the predictor as
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 (3.23)

which yields a good fit. However, because we do not know the meaning of the coefficients, we 
cannot claim that we have a better understanding of a generic response of temperature and resis-
tance. One practical application of polynomial regression is the calibration of sensors and instru-
ments. By transforming each power of X into a variable, the polynomial regression is converted 
to a multivariable linear regression problem. We will use this method in Lab 3 of the Lab Manual 
(Acevedo 2024).

For more precise measurements, some authors recommend to use all terms, including A2, and 
expand to n = 4 (Rudtsch and von Rohden 2015). For simplicity, we will use Equations (3.16) and 
(3.22) in the experiments described in Lab 3 of the Lab Manual.
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FIGURE 3.16 Measured temperature and resistance together with B parameter model calibration by 
regression.



66 Real-Time Environmental Monitoring

EXAMPLE: FROM THERMISTOR TO TEMPERATURE TRANSDUCER

As a specific example, we will consider a thermistor and design a circuit to make a temperature 
transducer. We can use a voltage divider circuit to make a simple transducer with an NTC thermis-
tor, where the thermistor is connected to a voltage source and a fixed resistor Rf (Figure 3.18). In this 
circuit, Rt is the thermistor resistance. The transducer output voltage Vout = Vf is equal to the input 
voltage source Vs times the ratio of resistances

 V V V
R

R R
f s

f

t f
out = =

+
 (3.24)

where Rt is the thermistor resistance. We can combine the circuit Equation (3.24) with the B 
parameter Equation (3.16)
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 (3.25)

To see the effect of temperature on the circuit response, we can obtain a chart of the behavior of Vout 
as a function of temperature for several values of the fixed resistor Rf, yielding the result shown in 
Figure 3.19 for Vs = 12 V, B = 4100 K, T0 = 25°C, and R0 = 10 kΩ. Note that linearity of the response 
is a function of Rf. Qualitatively, for Rf = 10 kΩ, the response is reasonably linear over this range of 
temperature.

CALCULATING SENSITIVITY AND LINEARITY ERROR

Range is the span between minimum and maximum value of the measurand (in this case temperature) 
(for example 0°C–50°C in Figure 3.19), whereas FS is the span between the maximum and minimum 
output voltage obtained in the range (say for example ~2.5–~9 V for Rf = 10 kΩ in Figure 3.19). In this 
case, the measurand is variable T and the minimum and maximum values are Tmin, Tmax the range is 

max minT T T∆ = − . Assume the output is Vout(Tmin) and Vout(Tmax) for Tmin, Tmax, then the FS is

 ( ) ( )max minFS V V T V Tout out out= ∆ = −  (3.26)
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FIGURE 3.17 Steinhart-Hart model: resistance vs. temperature.
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In the example for Rf = 10 kΩ of Figure 3.19, the range is 50°C, and 9 2.5 6.5 VFS = − = .
Sensitivity is calculated by the change of output for a given change in input, or magnitude of the 

response for a unit change in input; that is to say, FS divided by the range

 Sens
FS

T
=

∆
 (3.27)

In other words, we can calculate sensitivity as the slope of the straight line joining the end-
points or extremes of the range, i.e., the value of Vout at minimum value of T and the highest 

FIGURE 3.18 Simple transducer based on a voltage divider.
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FIGURE 3.19 Response of voltage divider circuit for several values of Rf.
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value of Vout or the one at the maximum value of T. In the example for Rf = 10 kΩ of Figure 3.19, 
6.5 V
50 C

130 mV/ CSens =
°

= ° . We will do this calculation in Exercise 3.1.

As discussed under the static specifications section, there are several ways to define the straight 
line used to calculate linearity error. The end-points method is based on the linear response passing 
through Vmin and Vmax, which is defined by

 ( ) ( )min minV T Sens T T Vlin = × − +  (3.28)

Calculating the least squares linearity error requires performing linear regression based on values 
Vout and T to obtain the coefficients, intercept b0 and slope b1, which define the straight line

 ( ) 1 0V T b T blin = × +  (3.29)

To demonstrate, assume that we have a set of n values of temperature Ti where I = 1, …, n, corre-
sponding values ( )V Tiout , as well as calculated values ( )V Tiout  from Equations (3.28) for the end-point 
method, and (3.29) for the least squares method. Then for each i, the deviation of the actual response 
with respect to the linear would be

 ( ) ( )z V T V Ti i lin iout= −  (3.30)

Applying the maximum of the absolute values of the deviation, and dividing by FS, we calculate 
linearity error a a percentage of FS

 
max( , 1,..., )

100maxL
z i n
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i= = ×  (3.31)

We will practice this calculation in Exercise 3.2. An alternative metric, as discussed earlier, is to 
calculate the RMS of the deviations and divide by FS
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×  (3.32)

In Lab 3 of the Lab Manual, we will learn how to implement these calculations using a function 
in R. For example, for Vs = 12 V, we obtain Figure 3.20 that is annotated to have FS = 6270 mV, 
sensitivity of 125.4 mV/°C, end-points (Ends) and maximum linearity error of 4.46% of FS, 
least-squares (LSQ) and maximum linearity error of 4.11% of FS, end-points RMS linearity 
error of 2.74% of FS, and least-squares RMS linearity error of 1.32% of FS. The gray segments 
indicate where the maximum deviation occurs; for end-points at about 35°C, whereas for least-
squares at the upper extreme of the range 50°C. 

READING OUTPUT VOLTAGE WITH A DIGITAL DEVICE

As pointed out in Chapter 2, it is practical to read the analog output voltage Vout from the transducer 
using a microcontroller or digital device equipped with an ADC. We know from Chapter 2 that for 
n bits and maximum voltage VAD, the voltage resolution is

 
2 1
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AD
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 (3.33)
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The digital number corresponding to a Vout value is the truncation of Vout/Vres

 DN trunc
V
V
out

res
= 




 (3.34)

For example, a ten-bit ADC with 5 V will have a resolution of V =
−

=
−

=5
2 1

5
1024 110res

=5
1023

4.888 mV. When the transducer produces Vout = 2.00 V, the digital value is DN = 

trunc
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409 and when Vout increases by the resolution to reach Vout = 2.00488 V, DN 

increases by one, i.e., 
2.00488

5.00
1023

410DN trunc=
















= . Note when Vout = 5.00 V, then DN = 1023.

INVERTING THE TRANSDUCER OUTPUT TO OBTAIN TEMPERATURE

Once we measure the transducer output voltage, we need to calculate temperature by inverting 
Equation (3.25), or calculate T from Vout. The thermistor resistance Rt is solved from the voltage 
divider equation

 R V
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= −  (3.35)
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FIGURE 3.20 Response of voltage divider circuit for Rf = 10 kΩ with calculated values of FS, sensitivity, and 
linearity error by two methods and two metrics.
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and the B model is exp 1
0

1

0

B T T
R
R

t( )( )− =− − , taking logarithms ln1
0

1

0

B T T
R
R

t( )− = 





− − , and solving 

for T

 ln0
1 1

0

1

T T B
R
R

t= + 











− −
−

 (3.36)

In other words, we calculate Rt using Equation (3.35) given the output voltage and circuit parameters 
Vs and Rf . Then calculate temperature using Equation (3.36) given the prior calculation of Rt and the 
thermistor parameters T0, B, and R0.

When the transducer output is read using an ADC, the digital number is first converted to volt-
age units, and then we calculate measurand from voltage. Suppose we read digital number DN, the 
corresponding voltage is calculated from the inverse of equation (3.34). This is to say

 V DN Vout res= ×  (3.37)

For instance, when ADC is 10 bit and 5 V, a DN of 409 calculates out to V = × =409 5/1023 1.999out  
and a DN of 410 calculates out to V = × =410 5/1023 2.00391out . At this point, you would realize 
that we could not recover the output voltage without an error, i.e., the quantization error because all 
voltage values within an interval of 0.004888 V were converted to the same digital number.

SELF-HEATING EFFECT

Thermistors are affected by self-heating problems because of Joule heating produced by current 
flowing in the thermistor; power absorption raises temperature above the intended measurement 
proportionally to power according to
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t t= − = −  (3.38)

Here Ta is the ambient temperature being measured, Tt is the temperature of the sensor (thermistor), Vt is 
the voltage across the thermistor, k is the thermal coefficient (in mW/°C), and Rt is the resistance of the 
thermistor (which in turn is a function of temperature Tt). The thermal coefficient k varies with ambient 
temperature being measured, e.g., 1.5 mW/°C in still air.

Therefore, we may need to correct for self-heating. Figure 3.21 illustrates this concept using a 
voltage source of Vs = 12 V and an Rf = 10 kΩ. The top figure shows how the actual ambient tem-
perature Ta will be consistently underestimated because the temperature of the thermistor is higher. 
Similarly, the bottom graph shows the difference between Ta and Tt as a function of Vf . In this case, 
we can see the gap between Ta and Tt showing again the underestimation of Ta. We learn how to 
produce these graphs in Lab 3 of the Lab Manual.

To diminish the effect of self-heating, we can lower the voltage by decreasing Vs and therefore 
power consumption. Suppose we use Vs = 3.3 V. Recalculating the effect of self-heating, we would 
see that the temperature lines are indistinguishable from each other. Of course, we now have a much 
lower sensitivity in terms of mV/°C; being reduced by a factor 3.3 V/12 V = 0.275.
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EXAMPLE: WIDER TEMPERATURE RANGE

For a wider temperature range, say from –40°C to 55°C as shown in Figure 3.22 (produced 
with B = 4100 K, R0 = 10 kΩ), the thermistor resistance at the low part of the range (~460 kΩ) is 
much higher than the resistance at the high part of the range (~2.8 kΩ). Such a large difference 
(460/2.8 ~ 160 times) may enhance linearity error, particularly in the low part of the range.

To compensate for such a large difference, we can add one resistor R1 to the voltage divider as 
shown in Figure 3.23. Now the difference is reduced, for example for R1 = 10 kΩ, we have (460 + 10)/
(2.8 + 10) ~ 36 times. The transducer output voltage Vf is now related to the input voltage source Vs by
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FIGURE 3.21 Self-heating effect for Rf = 10 kΩ and Vs = 12 V.
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FIGURE 3.22  B parameter model resistance vs. temperature for a wider range of temperature.
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To illustrate the effect of this modified divider, we repeat the calculations of output voltage, 
sensitivity and linearity using B = 4100, Rf = 10 kΩ, R1 = 10 kΩ, and Vs = 12 V as an example 
(Figure 3.24). We can see how the non-linearity has spread to both, the low part of the range 
and high part of the range, which means a trade off in sensitivity and linearity. Sensitivity is 
reduced to 52.69 mV/°C, end-points and least-squares maximum linearity error increase to 
8.44% of FS and 8.02% of FS, respectively, while end-points and least-squares RMS increase 
to 5.56% and 3.36% of FS.

When using this voltage divider, the inverse calculation of temperature from output voltage 
changes in the following manner: the calculation of thermistor resistance by Equation (3.35) needs 
to be changed to

 1R V
R

V
R Rt s

f
f

out
= − −  (3.40)

prior to calculating temperature using Equation (3.36) derived from the thermistor B model.

FIGURE 3.23 Voltage divider circuit with sensor and additional resistor R1 compensating for broad tem-
perature range.
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FIGURE 3.24 Response of voltage divider circuit for Rf = 10 kΩ, R1 = 10 kΩ, Vs = 12 V with calculated values 
of FS, sensitivity, and linearity error.
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EXAMPLE: A TEMPERATURE TRANSDUCER FOR AIR, SOIL, AND WATER

To illustrate the practical application of the above concepts, we will look at a commercial 
temperature transducer, the “107 Temperature Probe”, manufactured by Campbell Scientific 
(Campbell Scientific Inc. 2014). It measures temperature of air, soil, or water in environmen-
tal monitoring stations, such as a weather station. Its range of measurement is from –35°C  
to 50°C.

The 107 probe is based on a thermistor with the parameters a = 8.27 × 10–4; b = 2.08 × 10–4; and 
c = 8.06 × 10–8 and connected in a voltage divider circuit. The output voltage corresponds to the 
drop across Rf = 1 kΩ resistor. In series with the thermistor, the 107 has R1 = 249 kΩ resistor, which 
compensates for the large difference across the low part of the range and the high part of the 
range. For a source voltage Vs, the output voltage is given by Equation (3.39). Assuming Vs = 2.5 V, 
we can plot Vout vs. temperature (Figure 3.25), along with calculating sensitivity and linearity 
error. Sensitivity is 0.09 mV/°C, end-points and least-squares maximum linearity error are 9.59% 
of FS and 87.89% of FS, respectively, while end-points and least squares RMS are 4.28% and 
2.83% of FS. Using the R1 resistor, the transducer has spread the non-linearity to both parts of the 
range. For measurements in air, a radiation shield protects the transducer from heating by direct 
sun exposure (Figure 3.26).

EXAMPLE: THERMOCOUPLES

Thermocouples sense temperature as the difference in potential created when joining two metals of 
different characteristics. This joint does not require external energy to act as a sensor, thus a ther-
mocouple is a passive sensor. We can better understand the working principles of thermocouples by 
looking at two additional effects: Peltier and Thomson effects. The Peltier effect is described for a 
thermocouple circuit consisting of two junctions (Figure 3.27), each one at a different temperature 
(Pallás-Areny 2000). A current I through such a thermocouple circuit generates a heat flow /dQ dt 
from one junction to another. Direction of heat flow depends on direction of the current flow and is 
proportional to current
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FIGURE 3.25 Transducer gain vs. temperature.
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 ( ) and ( )12
12

21
12

dQ
dt

T T I
dQ

dt
T I= π + ∆ = −π  (3.41)

where ⋅π ( )12  is the Peltier coefficient (in units of V) which is a non-linear function of temperature.
The Thomson effect consists of heat dissipation or absorption in a conductor with a temperature 

gradient due to current flow. Heat flow is proportional to current (not to power, and thus not to the 
square of current) and therefore it is affected by the direction of current flow. Heat flow is also pro-
portional to the temperature gradient. In each one of the conductors, of metal a and b, T∆  is the net 
difference in temperature

 and12 21dQ
dt

I T
dQ

dt
I Tb aσ σ= ∆ = − ∆  (3.42)

where the coefficients aσ  and bσ  have units of V/°C. In Equation (3.42), we have assumed that the 
current is low enough to be able to neglect Joule heating. Heat is released going from junction 2 to 
junction 1 along wire of metal a, and heat is absorbed when going from junction 1 to 2 along wire 
of metal b.

Both, Peltier and Thomson, effects combined explain the Seebeck effect, which consists of the 
generation of a voltage V or electromotive force (emf, E) when the two junctions are at different tem-
peratures. To see this, denote by /dQ dt the net heat flow and write the heat balance using Equations 
(3.41) and (3.42) neglecting Joule heating

 ( ) ( ) ( )12 12
dQ
dt

T T I T I I Tb aσ σ= π + ∆ − π + − ∆  (3.43)

Shield

Probe

Wire

FIGURE 3.26 Radiation shield to protect the temperature transducer in air temperature measurement.
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FIGURE 3.27 Thermocouple circuit.
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Divide both sides by I, and we get both sides in terms of voltage. The left side ( / )dQ dt I is equivalent 
to power over current; in other words, the net heat flow is converted to electrical potential difference 
V between the two junctions, which we can rewrite as ( / )dV dT T∆ ; this term explicitly uses /dV dT  
known as the Seebeck coefficient. In this manner, we rewrite Equation (3.43) as

 ( ) ( ) ( )12 12
dV
dT

T T T T Tb aσ σ∆ = π + ∆ − π + − ∆  (3.44)

Now divide both sides by T∆

 
( ) ( )

( )12 12 12dV
dT

T T T
T

d
dT

b a b aσ σ σ σ= π + ∆ − π
∆

+ − = π + −  (3.45)

moreover, use the definition of derivative for very small T∆

 12dV
dT

d
dT

b aσ σ= π + −  (3.46)

which gives the Seebeck coefficient (change of voltage with temperature) as a sum of two terms: 
the derivative of the Peltier coefficient and the difference in Thomson coefficients. This expression 
holds for small variations of temperature between the junctions. Equation (3.46) is the basic thermo-
electric equation. Note that this is non-linear because of the non-linearity of the Peltier coefficient.

Thermocouple types are defined according to what metals or alloys are joined together; one is 
designated positive and the other negative (Table 3.1). For example, Type J thermocouples are low-
cost and have adequate sensitivity. There are standards for thermocouples of different types; for 
instance, the National Institute of Standards and Technology (NIST) Standard Reference Database 
or NIST ITS-90 Thermocouple database (Croarkin et al. 1993). The standards specify the relation-
ship between voltage and temperature for a given thermocouple by tables or by fitted polynomials 
that approximate the non-linear relationship by increasing powers of V or E (inverse polynomial) 
or of voltage as a function of increasing powers of T (direct polynomial). See also OMEGA (2014).

An inverse polynomial is of the kind

 ...0 1 2
2

3
3T a a V a V a V= + + + +  (3.47)

For example, Figure 3.28 shows a text file downloaded from NIST (1995) for a type J thermocouple 
that contains the inverse polynomial coefficients. In Lab 3, we will learn to read the coefficients 
from this file using R and obtain the plot shown in Figure 3.29. For the sake of illustration, assume 
the temperature range 0°C–760°C and that the non-zero coefficients from Figure 3.28 are a1, a2, …, 
a7. Take for example V = 5 mV, applying Equation (3.47) we get 95.0655°C. 

TABLE 3.1
Some Common Thermocouple Types

Type
Positive Metal/

Alloy
Negative 

Metal/Alloy

Temperature 
Range (°C) 

(Approximate)
Voltage Range 

(mV)
Error  
(°C)

T Copper Constantan –200 to 350 26 ±1

J Iron Constantan 180– to 750 43 ±2.2

K Chromel Alumel –200 to +1250 56 ±2.2

E Chromel Constantan –200 to +900 75 ±1.0

Source: Adapted from Maxim (2007); Pallás-Areny (2000).



76 Real-Time Environmental Monitoring

To use a thermocouple circuit to measure temperature, we use one junction at the temperature T 
that we wish to measure and the other junction at a reference temperature Tr as shown in Figure 3.30. 
It is imperative to minimize the current to avoid Joule heating as well as unintentional heating the 
environment surrounding the junctions. Many tables use 0°C as reference temperature. However, 
this is not a practical reference for many purposes, because it would involve an ice bath. A more 
practical approach is to use a reference voltage of equal magnitude of the emf that the reference 
junction would have provided, or to use a bridge circuit to provide this reference. We will study such 
circuits in the next chapter when we cover bridge circuits and as cold-junction compensation in the 
context of signal conditioning. Thermocouples are often used to measure soil temperature (Faucett 
et al. 2006; Sackett and Haase 1992). We will see an example in the next section. 

EXAMPLES: USING THERMOCOUPLES

One example of application of thermocouples in environmental monitoring is the Campbell Scientific 
Averaging Soil Thermocouple (TCAV) probe, which can be used to measure soil temperature at 
various soil depths. The TCAV probe utilizes four or two pairs of type-E (chromel-constantan) 

FIGURE 3.28 Inverse polynomial coefficients. Data downloaded from NIST (1995).
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FIGURE 3.29 Thermocouple J, temperature calculated from mV for the range 0°C–760°C using NSIT 
inverse polynomial.
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thermocouples. Each member of a thermocouple pair is buried at a different depth. The two pairs 
are separated at up to 1 m. These four soil temperatures are averaged, thereby providing an average 
soil temperature in the upper layer of soil for heat flux and energy balance calculations.

Another example of thermocouple application is measuring the average tree-trunk temperature 
to perform energy balance and from this obtain an estimate sap flow. The principle of operation is 
convection of heat by the flow of sap. We will discuss this further in Chapter 13.

EXERCISES

Exercise 3.1

Consider a thermistor in a voltage divider circuit (Figure 3.18). Assume Vs = 12 V, Rf = 10 kΩ, and a 
thermistor with B = 4100 K, T0 = 25°C, and R0 = 10 kΩ. Calculate Vout for the end-points and sensi-
tivity in temperature range of 0°C–50°C.

Exercise 3.2

Consider the same temperature range, thermistor, and circuit of Exercise 3.1. Assume you know 
that the maximum deviation with respect to the end-points straight line occurs at 34.3°C. Calculate 
end-points maximum linearity error as a percentage of FS.

Exercise 3.3

Assume a temperature transducer built as a voltage divider as shown in Figure 3.23 with Rf = R1 = 10 
kΩ and Vs = 5 V using a thermistor with B = 4100 K, T0 = 25°C, and R0 = 10 kΩ. What is the tempera-
ture when the output is 2.00 V?

Exercise 3.4

Consider the temperature transducer of Exercise 3.3. The output voltage is read by an ADC of 10 
bit and 5 V. Calculate the temperature when the digital value is 409.

Exercise 3.5

Consider the linearity error of Equation (3.47) relating temperature T to thermocouple voltage V 
for the range 0–760°C and voltage is 0–42.919 mV as shown in Figure 3.29. The exact calculation 
of the inverse polynomial yields temperature of 95.0655°C for 5 mV. Calculate sensitivity in mV/°C 
assuming a linear response and calculate temperature error due to end-points linearity for 5 mV 
as a percentage of FS.

Measurement
Junc�on

Reference
Junc�on

Metal a

Metal b

T 
Tr 

V 

Metal b

FIGURE 3.30 Thermocouple circuit for temperature measurement.
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4 Bridge Circuits and 
Signal Conditioning

INTRODUCTION

In this chapter, we focus on relatively small departures of the measurand with respect to its nomi-
nal value and the corresponding linearized response of the sensor. We start by looking at a linear-
ized thermistor and the response of a voltage divider when we use the approximate linear thermistor 
response. An important part of the chapter is designing transducer circuits based on bridge circuits, 
starting with the balanced source divider, and continuing with Wheatstone bridges, including quarter-
bridge, half-bridge, and full-bridge. The latter is illustrated using strain gages and their application to 
soil tensiometers. This chapter discusses more details on transducer specifications, namely dynamic 
and environmental specifications. We then cover electrochemical sensors, piezoelectric sensors, and 
applications to environmental monitoring. The last part of this chapter is devoted to signal conditioning, 
and a detailed explanation of operational amplifiers and their use to linearize bridge circuits, as well 
as to amplify transducer output. Several other signal-conditioning topics included are common-mode 
rejection, noise, shielding, and current loop methods. These circuits and topics are expanded by com-
puter and hands-on exercises in Lab 4 of the companion Lab Manual (Acevedo 2024). 

LINEARIZED THERMISTOR: SMALL VARIATION ANALYSIS

When variations of the measurand are small, it is possible to simplify the analysis of the sensor 
response by assuming a linear response around the operating value of the measurand (Figure 4.1). 
For instance, if a thermistor has small variations around the nominal value, we could use a linear-
ized resistance response around the nominal value as an approximation

 R R dR R SdTt = + ≈ +0 0  (4.1)

where S is the slope of the resistance response around the nominal temperature

 S
dR

dT T T

=
= 0

 (4.2)

Recall the B parameter equation from Chapter 3

 R R B T T( )( )= −− −exp0
1

0
1  (4.3)

where T is the temperature in K, R is the thermistor resistance in Ω, T0 is the nominal value of T 

(25°C = 298 K), R0 is the nominal value of R at T0, and B is a parameter in K. The derivative 
dR

dT
 is

 exp0
1

0
1 2dR

dT
R B B T T T( )( ) ( )= − × −− − −  (4.4)

evaluating at T = T0

 0 0
2

0

S
dR
dT

R B T
T T

( )= = × −
=

−  (4.5)
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For example, when B = 4100 K, T0 = 25°C = 298 K, and R0 = 10 kΩ, the derivative over the range 
20–30°C is negative and increases with temperature as shown Figure 4.2. At the nominal value, we 

obtain 10 kΩ 4100 K (298 K) 0.4635 kΩ/K2

0

S
dR
dT T T

( )= = × × − = −
=

− . Note that it is equivalent to 

express this as a change per °C.

VOLTAGE DIVIDER WITH LINEARIZED THERMISTOR

Recall from Chapter 3 the expression of the output for a voltage divider transducer given by the 
circuit in Figure 3.23

 V V
R

R R R
s

f

t f
out =

+ +1

 (4.6)

We could simplify the nonlinear B model for Rt to a linearized resistance as in Equation (4.1). 
Assume R Rf = 0 and denote by V0 the transducer voltage for nominal T0, we can derive the change 
of the transducer output voltage due to the change of temperature as

dV V
R

R dR R R
Vs

f

f f

=
+ + +

−
1

0 which reduces to dV V
R

R dR R
Vs

f

f

=
+ +

−
2 1
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FIGURE 4.2 Derivative of the B model.
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For a given change in temperature dT, we can use dR SdT=

 dV V
R

R SdT R
Vs

f

f

=
+ +

−
2 1

0 (4.7)

For a numeric example, suppose the thermistor is 10 kΩ nominal (at 25°C) with slope 
0

S
dR
dT T T

= =
=

 

0.46
k
C

− Ω
°

. Let us calculate the response for 26°C (or +1°C change with respect to nominal). The 

change in thermistor resistance is dR SdT= = − Ω
°

× − ° = − Ω0.46
k
C

(26 25) C 0.46 k  and the thermis-

tor now has a resistance of − = Ω10 0.46 9.54 k . For instance, for Vs = 5 V, R1 = 10 kΩ, Rf = 10 kΩ, the 

transducer nominal output voltage is V =
+ +

=5
10

10 10 10
1.66 V0 , and thus the change of transducer 

output is dV =
+ +

− = −5
10

10 9.54 10
V 4 V 1.70 1.66 V=40 mV.

It is important to point out that even though the thermistor response has been linearized, the 
transducer response is still nonlinear because the voltage divider equation is nonlinear (Figure 4.3).

BALANCED SOURCE VOLTAGE DIVIDER

We start with an extension of the simple voltage divider circuit as given in Figure 3.18 of Chapter 3 
by powering it with a balanced source (Figure 4.4). Using the superposition principle, we can deter-
mine the output voltage as the sum of the effect of each source considered separately

 V V
R

R R

R

R R
V

R R

R R
s

f

t f

t

t f
s

f t

t f
out =

+
−

+






=
−
+






 (4.8)

Now, we select the fixed resistor Rf to have a value equal to R0 which is the nominal value of a 
resistive sensor at the nominal value of the measurand. To be specific in this illustration, we will 
use a thermistor as example. The nominal value R0 is the value of the sensor resistance Rt at the 
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FIGURE 4.3 Transducer response using a linearized thermistor is still nonlinear.
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nominal operating value of temperature, say T0. The transducer output at nominal temperature is 

zero V T V V
R R

R R
s

f

f
out = =

−
+







=( ) 00 0
0

0

. A small departure of temperature from the nominal, say a 

decrease –dT would cause an increase +dR in the thermistor resistance, and therefore the output 
voltage would change to

 V V
R R dR

R R dR
V

dR

R dR

V dR

R
dRs

f f

f f
s

f

s

f

out =
− −
+ +







= −
+







= −

+















2 2

2

 (4.9)

For instance, for S = − Ω
°

0.46
k
C

 1°C change dR = − Ω0.46 k . With Vs = 5 V, Rf = 10 kΩ, the output 

would be Vout =
−

















=5
2

0.46

10
0.46

2

0.118 V. When the resistance variation dR is very small compared 

to the nominal, such that R dRf �2 , we have

 V V
dR

R

V

R
dRs

f

s

f
out ≈ −





= −
2 2

 (4.10)

Denote by dV the departure of Vout with respect to zero and move dR to the left side 
dV

dR

V

R
s

f

≈ −
2

 

or the slope of the line shown in Figure 4.5a. Note that when dR is negative, dV is positive and 

decreases, whereas when dR is positive, then dV is negative and decreases. Now, when we include 
the sensor response to temperature, we note that as temperature increases, dR becomes negative and 
then dV is positive and increases with temperature. However, as temperature decreases, dR is posi-
tive and then dV is negative and decreases with temperature.

The slope of the line shown in Figure 4.5b or sensitivity of the transducer is given by

 
dV

dT

dV

dR

dR

dT

V

R
S

T T

s

f

= ≈ − ×
= 2

0

 (4.11)

Sometimes this circuit is referred to as “half-bridge” but the use of this term for this circuit is not to 
be confused with a “half-bridge” defined as a two-sensor Wheatstone bridge as we will discuss later. 

Vs Rt

Vs Rf

Rf  = sensor 

Ground Vout

Ground

FIGURE 4.4 Balanced source voltage divider.
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As a numeric example, using Vs = 5 V, Rf = 10 kΩ, S = –0.46 kΩ/°C, we obtain a transducer sensitivity 

of 
dV

dT
≈ − −

×
=( 0.46)

5
2 10

115 mV/°C.

This is of course only an approximation valid for small values of dR. In Lab 4, of the companin 
Lab Manual we write an R program to analyze the response with more detail using Equation (4.9) 
and the linearized thermistor to obtain Figure 4.6 assuming the same parameter values.

When using this voltage divider, the inverse calculation of temperature from output voltage 
changes in the following manner. First, obtain the thermistor resistance given the output voltage 

from Equation (4.8). Start by rearranging terms R R
V

V
R Rt f

s
f t

out
( )+ = − , then isolating terms in Rt 

V

V
R R

V

V
s

t f
s

out out
+





= −





1 1 , which leads to the thermistor resistance

 R R

V

V

V

V

t f

s

s

out

out

=
−





+





1

1

 (4.12)
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FIGURE 4.5 Circuit response dV/dR and transducer response to temperature dV/dT.
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Equation (4.10) could be used to derive a simple approximation for the thermistor resistance

 R R dR R
V R

V
t

f

s

out= + ≈ −
2

0 0  (4.13)

To illustrate numerically, when dR ≪ Rf, we would have Vout ≪ Vs. Take for example Vout = 0.1 Vs. 
Assume Rf = R0 for simplicity. Then Equation (4.12) yields R Rt f= ×0.818 , whereas Equation 
(4.13) yields R Rt f≈ ×0.8 . As dR becomes much smaller, say Vout = 0.01 Vs, Equation (4.12) yields 
R Rt f= ×0.98  and Equation (4.13) yields the same value R Rt f≈ ×0.98 .

As derived in Chapter 3, once we have the thermistor resistance, we complete the inverse calcula-
tion of temperature with
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− −
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1 1

0
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 (4.14)

obtained from the B model and requiring thermistor parameters T0, B, and R0.

ONE-SENSOR CIRCUIT: QUARTER-BRIDGE

Now consider a Wheatstone bridge circuit (Figure 4.7). Using voltage division twice, we can deter-
mine the output voltage as the potential difference between the two midpoints
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As we have usually done, we select the fixed resistor Rf to have a value equal to R0, which is the 
nominal value of a resistive sensor at the nominal value of the measurand. For example, using a 
thermistor, the nominal value R0 is the value of the sensor resistance Rt at the nominal operat-
ing value of temperature, say T0. The output voltage at nominal temperature is zero as seen by 
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.

A small departure of temperature from the nominal, say –dT, would cause an increase +dR in the 
thermistor resistance, and therefore the output voltage would change to
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which reduces to
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 (4.16)

Rt = sensor

Vs

R1
Rt

Vout

R2
R3

FIGURE 4.7 Wheatstone bridge circuit: quarter-bridge.
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Note that this is half of the output for the balanced source divider given by Equation (4.9).
When the resistance variation dR is very small compared to the nominal, such that R dRf �2 , 

we have

 V
V

R
dRs

f
out ≈ −

4
 (4.17)

Denote by dV the departure of Vout with respect to zero and move dR to the left side 
dV

dR

V

R
s

f

≈ −
4

.  

Naturally, the behavior of the sign of dV with respect to the sign of dR is the same as described 
above for the balanced source divider. Similarly, we assume that the sensor response to temperature 

/dR dT  evaluated at the nominal value is S
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dT T T
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This circuit is often called a “quarter-bridge” because the Wheatstone bridge contains one sensor 
out of the possible four resistances. Note also that the sensitivity has the divisor four corresponding 
to a quarter of the total Vs/Rf, and that the linearity error in Equation (4.16) would be the same as of 
Equation (4.9).

As a numerical example, consider a thermistor with a nearly linear relationship of slope S = –0.46 
kΩ/°C at a nominal R0 = 10 kΩ at T0 = 25°C. We build a quarter-bridge with a reference resistance 
of Rf = 10 kΩ and a voltage source of Vs = 5 V. Approximately, the sensitivity of the transducer is 
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4 10
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C
, which is half of the sensitivity of the bal-

anced source divider. This is of course only an approximation valid for small values of dR. In Lab 4, 
we use an R program to analyze the response in more detail using Equation (4.15) and the linearized 
thermistor for the same parameter values (Figure 4.8).

When using this voltage divider, the inverse calculation of temperature from output voltage 
changes in the following manner. First, obtain the thermistor resistance given the output voltageby 
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FIGURE 4.8 Output of quarter-bridge with linearized thermistor.
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inverting Equation (4.15). Start by isolating terms in Rt as follows R R
V

V
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s
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2 2 , which leads to the thermistor resistance calculation
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Equation (4.17) could be used to derive a simple approximation for the inverse equation

 R R dR R
V R

V
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f

s

out= + ≈ −
4

0 0  (4.20)

As described above for the balanced source divider, once we have the thermistor resistance, we 
complete the inverse calculation of temperature with Equation (4.14) obtained from the B model and 
requiring thermistor parameters T0, B, and R0.

TWO-SENSOR CIRCUIT: HALF-BRIDGE

We configure the bridge to have two thermistors, located in opposite arms in such a way that the 
change of voltage in the Rt resistor of each arm is of opposite sign (Figure 4.9). The output signal is 
now twice as much as in quarter-bridge circuit, as we will demonstrate shortly.
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Assuming that the two thermistors have identical responses, using the change dR from nominal in Rt
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This is the same as Equation (4.15) except that the response is twice as large, i.e., it has a divisor 
2 instead of a 4. In other words, we have increased sensitivity by a factor of 2. The linearity error 
remains the same.

Rt = sensor

R3 = Rt

Vs

R1
Rt

Vout

R2
R3

FIGURE 4.9 Wheatstone bridge circuit: half-bridge.
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TWO SENSORS WITH OPPOSITE EFFECT: HALF-BRIDGE

A strain gage sensor is a resistor printed on a film. Because the resistor is very thin, it can stretch 
and shrink depending on whether we apply a tension or compression force along the longitudinal 
axis. Therefore, as we apply tension, the resistance increases because of elongation. However, as we 
apply compression, the resistance decreases because of shortening.

We can locate two strain gages in the same arm of a bridge but having opposite responses, one in 
compression and the other in tension (see Figure 4.10).
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Now when Rt2 has an increase dR, the opposite occurs for Rt1 experimenting a decrease –dR; 
therefore
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produces the beneficial effect of linear bridge response because the dR has disappeared from the 
denominator. The only nonlinearity error remaining is that of the sensor.

Strain gage

tension
compression

Tension gage (Rt1)

Force
Top gage in tension

Anchor Cantilever

Bottom gage in compression

Compression gage (Rt2)
(bottom)

Rt1 Rt2 same amount

Rt1
Rf

Vout

Rt2
Rf

FIGURE 4.10 Strain gages and Wheatstone bridge circuit: half-bridge.
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FOUR-SENSOR CIRCUIT: FULL-BRIDGE

Now we will use four strain gages, arranged as two pairs of sensors; each pair has one sensor in 
compression and the other one in tension, giving opposite responses (see Figure 4.11). Following a 
process like the one in the previous section, we can demonstrate that
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obtaining twice the sensitivity of the half-bridge, shown by Equation (4.22), and a linear circuit 
response. Again, the only nonlinearity error remaining is that of the sensor.

A summary of the bridge circuits we have discussed is shown in Figure 4.12. At the top-left panel 

(a), we have only one sensor and is described by Equation (4.16), V
V dR

R
dR

s

f

out = −

+4
2

 with linearity 

error of 0.5%. Next, at the top-right (b), we add a second sensor in the opposite arm and make it vary 

in the same direction. In this case, Equation (4.21) predicts the output as V
V dR

R
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f

out = −
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2

 which 
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Gages at the bottom

Rt1
Rt3

Vout

Rt2 Rt4

Gages at the top

1 3

2 4

FIGURE 4.11 Strain gages form a load cell or Wheatstone bridge circuit: full-bridge.
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is twice as high as the one sensor bridge, and the linearity error is the same 0.5%. The bottom-left 
panel (c) circuit has two sensors in the same arm varying in opposite directions. In this case, we use 

Equation (4.22) V
V dR

R
s

f
out =

2
 thus achieving a null linearity error. Finally, at the bottom-right panel (d),  

we have four sensors arranged such that each pair in the same arm varies in opposite direction and 

described by Equation (4.23) V V
dR

R
s

f
out = , which is twice as high in amplitude with zero linearity 

error.
Strain gage bridges have several applications in environmental monitoring. For example, they 

are used to estimate water depth from pressure, to make lysimeters allowing to measure soil water 
by weight, and to measure strain in a dendrometer, making it proportional to plant stem diameter 
increments.

ZERO ADJUST AND RANGE ADJUST

In Figure 4.13, we show a bridge circuit with a potentiometer Rz to adjust the zero when the resis-
tances are not identical and an extra resistance Rr to adjust the range. Denoting by p the fraction of 
Rz in the lower branch, we have R R pr z+ × −(1 ) in parallel with R1 = Rf and R R pr z+ ×  in parallel 
with R3 = Rf. In this case, the output changes to
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f r z f r z
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Here we are using double vertical lines || to denote resistances in parallel. This equation can be 
analyzed for the effect of Rr and Rz, but for brevity we will not discuss it in this book.
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FIGURE 4.12 Summary of four bridge circuits: (a) only one sensor, (b) two sensors in opposite arms vary in 
the same direction, (c) two sensors in the same arm vary in opposite directions, and (d) four sensors arranged 
such that each pair in the same arm vary in opposite directions.
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SENSOR SPECIFICATIONS

As discussed in Chapter 3, we can distinguish three major types of specifications (Brown and Musil 
2004). These are static, dynamic, and environmental specifications. We covered static specifications 
in Chapter 3. Dynamic specifications are those applying when the sensor is not at steady state condi-
tions or the measurand is changing. It is more relevant when the principle of operation depends on 
achieving equilibrium, as happens in electrochemical sensors as we describe in the next section. We 
will discuss three dynamic specifications: response time, time constant, and damping ratio.

Response time is the time required to respond to 95% of imposed step change, whereas a similar 
measure, time constant denoted by Greek letter τ (tau), is the time required to respond to 63.2% 
(value derived from exponential rate) of the imposed step change. See Figure 4.14. Damping ratio, 
denoted by Greek letter ζ (zeta), is the ratio of actual damping to critical damping. It is a coefficient 
in a second-order differential equation that arises from the response of electrical circuits with induc-
tance and capacitance or from mechanical systems with mass and spring
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where x is the displacement in mechanical systems or voltage in electrical systems, nω  is the natural 
frequency of oscillation. The response can be underdamped for ζ < 1, overdamped for ζ > 1, or criti-
cally damped for ζ = 1. See Figure 4.15.

Environmental specifications relate to performance under harsh conditions, such as:

• Temperature: often given as an operating range, say –10°C to +50°C, and sometimes given 
as sensitivity to extreme temperature.

• Relative Humidity: often given as an operating range, say 0%–90%, and sometimes given 
as tolerance to condensation.

• Pressure: effects of either high pressure (e.g., when submerged) or low pressure (e.g., at 
high elevation).

• Vibration: given by amplitude and frequency of vibrations that the transducer can tolerate.

ELECTROCHEMICAL SENSORS

Electrochemical sensors produce a voltage as a response to a concentration change in a chemical 
sample. Examples include ion-selective electrodes that generate a voltage based on a specific ion 
concentration difference between two phases separated by a membrane or interface selective to the 
ion under measurement (Pallás-Areny 2000; Vanýsek 2004).

According to the Nernst equation, we can calculate the voltage or emf E at which the electric 
field due to charge separation balances or equilibrates with the concentration gradient
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where R is the gas constant (8.31 J/mol K), T is the temperature in K, F is the Faraday constant 
(96,500 C), z is the valence of the ion of interest, and a1, a2 are the activities on each side of the inter-
face. For liquid solutions, activity is concentration multiplied by the activity coefficient. In general, 
for low concentrations, the activity coefficient is near unity and therefore activity is approximately 
the same as concentration.

Glass electrodes are electrochemical sensors based on a solution-filled glass bulb. The glass 
allows an ion-exchange process with the solution, thus producing an electrical potential, which is 
a function of the ion concentration of the sample. The thickness of the glass is important because 
it affects electrical resistance. For example, to measure pH or the concentration of hydronium ions, 
a glass electrode is composed of alkali metal ions, which through an ion-exchange process with 
hydrogen ions in the solution produce an electrical potential proportional to the logarithm of the 
concentration of free hydrogen ions.

The typical glass probe has two electrodes in one device (Figure 4.16). One electrode is the 
sensor electrode, which has the ion-selective interface and contains a solution with a known con-
centration of the ion under measurement. The other electrode is a reference electrode, which has a 
porous interface, allowing free diffusion between the sample and its own solution, thus no concen-
tration difference. Therefore, this electrode produces a constant potential reference. The difference 
of potential between the two electrodes is the voltage from the probe, which is then a function of 
concentration difference between the sensor electrode solution and the sample.

Using the Nernst Equation (4.25), the electric potential is

 ln( ) 2.303 log( )0 0E E
RT
zF

a E
RT
zF

a= + = +  (4.26)

where E0 is a constant (the standard electrode potential) and a is the activity of the ion in the sample.
For example, for pH, the ion of interest is hydronium, with z = 1, and log(a) = pH

 
2.303

pH = ( ) pH0 0E E
RT

F
E k T= + × + ×  (4.27)

At 25°C, this voltage sensitivity k is 59.12 mV per pH unit, so the range is from about 
− × = −7 60 mV 420 mV to about + × = +7 60 mV 420 mV. Because the probe has relatively high 
output impedance, it must connect to high input impedance circuits (~MΩ).

Wires to pH meter

Filling hole 

Reference electrode

Reference solution

Junction

Electrode Wire

Internal solution

FIGURE 4.16 Glass electrode.
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Glass electrode probes response time depends on wall thickness and geometrical shape of the 
bulb because this affects impedance. Spherical bulb probes respond to 95% of the value in one 
second, whereas flat bulbs may take longer (~5 seconds). Hemispherical bulbs are intermediate in 
response time.

Glass electrode probes must be stored moist and calibrated often. A probe will age, and its per-
formance will degrade with time and therefore has a finite usable life. In addition to shape and wall 
thickness, response time of a pH probe depends on surface conditions; therefore, response time 
increases with probe age (Ross 2014).

Electrochemical sensors have applications in water quality, soil chemistry, and in general envi-
ronmental monitoring involving chemical processes (Artiola 2004). It is often of interest to measure 
oxidation-reduction potential (ORP) of liquids. An ORP sensor produces a voltage proportional to 
the potential of the measured solution to act as oxidizing or reducing (loss or gain of electrons from 
other substances). ORP is related to pH and the ORP sensor is similar to the pH sensor but made to 
produce a voltage proportional to ORP instead of pH.

Electrochemical sensors can also be used for air quality measurements. The gas to be analyzed is 
dissolved in a solution at a known pH, which is passed through ion-selective electrode. The ion con-
centration proportional to the concentration of pollutant is absorbed and measured electronically.

EXAMPLE: DYNAMIC SPECIFICATIONS AND A 
POTENTIOMETER-BASED WIND DIRECTION

A wind vane converts wind direction to circular position, which moves the slider of a low-torque 
potentiometer (Figure 4.17). Therefore, resistance changes with wind direction. The potentiometer 
is powered by a voltage source, say 12 V, and the output voltage signal becomes a function of posi-
tion since the potentiometer itself is a voltage divider. There is a threshold of wind speed to start 
movement. This threshold must be low, for example, 0.2 m/s. Dynamic considerations are impor-
tant. The sensor must have fast dynamic response and an appropriate damping ratio (say 0.25–0.5) 
to minimize oscillation persistence but obtain fast response. In addition, it has to survive high wind 
speed (say 60–100 m/s).

The desired operating range is 0–360°, but typically, for a 360° range there is a dead zone of 10–20° 
or a north gap (or going from 0 to 360). Some designs allow eliminating the gap by using signal con-
ditioning (topic covered later in this chapter) and data processing (Chapter 5). A heating element that 
is regulated using a temperature sensor helps to withstand icing conditions.

DIELECTRIC PROPERTIES

When we place an insulator or non-conductive material (glass, plastic, ceramic) between two plates 
of conductive material (metal), we make a capacitor. The rate of change of charge /dq dt on the 
plates increases with the rate of change of voltage /dv dt across the plates according to capacitance 
C, i.e.,

 i
dq

dt
C

dv

dt
= =  (4.28)

Capacitance has units of Farad (F) and depends on the dielectric constant or permittivity ε of the 
insulator material and the geometrical arrangement according to

 C
A

d
ε=  (4.29)

where A is the area of the plates and d is the separation between the plates. Permittivity is the ratio 
of electric flux density and the electric field strength E; it has units of F/m. It reflects the relation 
between the electric field E and charge separation or displacement in opposite directions within 
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the material. Permittivity of vacuum ε0 is 8.85 pF/m. A dielectric material has permittivity much 

higher than vacuum and thus its relative permittivity rε ε
ε

=
0

 is much larger than 1 (Pallás-Areny 

2000). Note that we can write C Crε= 0 where C0 is the capacitance obtained when there is a vacuum 
between the plates.

Many insulators show changes in permittivity (and a decrease in resistivity) as their water con-
tent increases. Likewise, permittivity changes with applied pressure and temperature. Therefore, 
besides the simple use as insulator, dielectric materials can be used as sensors. In this case, we seek 
to affect the dielectric property of the sensor by the measurand; for example, changes of dielectric 
properties of ceramic or plastic by moisture, pressure, and temperature. A common environmental 
application is in measuring soil moisture content, since dielectric of soil changes with water content. 
We will discuss this application with more detail in Chapter 13.

EXAMPLE: PIEZOELECTRIC SENSORS

The piezoelectric effect is reversible and consists of electric polarization of material under stress 
and its reverse, a strain due to the application of a voltage (Pallás-Areny 2000). These materials can 
be used to measure pressure by producing a voltage, which depends on pressure. They also offer an 
opportunity to generate a small amount of power for sensor networks (Chapter 8).

EXAMPLE: SOIL TENSIOMETER

In addition to measuring soil water content, it is important to measure soil matric potential TΨ , 
which is given in terms of negative pressure in kPa. One device to measure this variable is built 
with an access tube, a porous cup, and a pressure gage. Water moves in and out of the cup due to 
changes in matric potential, and because the tube is sealed, the pressure inside represents the matric 

FIGURE 4.17 Wind vane and potentiometer to measure wind direction.
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potential (Yolcubal et al. 2004). In some tensiometers the pressure is sensed by piezoresistive sen-
sors that are inserted in a Wheatstone bridge to convert the change of resistance into an output volt-
age Vout that depends on Vin, the bridge voltage source (Cobos 2007; UMS 2011). Figure 4.18 shows 
the sensor ceramic cup and three tensiometers installed at various soil depths.

SIGNAL CONDITIONING

By signal conditioning, we mean the process of improving the quality of the transducer’s output 
signal. This includes linearization of the circuit response, amplification in cases when the signal 
may be too small, filtering when we need to reduce noise or unwanted signals that may mask the 
real signal, and to provide regulated voltage for the transducer. Signal conditioning achieves com-
patibility between the transducer and the subsequent stages of data acquisition. In Chapters 2 and 3,  
we have discussed converting the output of the transducer to a digital value that can be input to an 
MCU for processing and storage (Figure 4.19). We will further discuss A/D conversion in terms of 
signal conditioning. Besides linearization by circuit techniques covered in this chapter, we can cor-
rect nonlinearity of the transducer using software in the MCU.

OPERATIONAL AMPLIFIERS

This section provides a very basic and quick review of operational amplifiers (op-amps for short) 
and the circuits we can build using op-amps, such as non-inverting, inverting, and differential 
amplifiers (Sheingold 1980).

An op-amp has two inputs, inverting and non-inverting, denoted by – and + signs on circuit dia-
grams, one output, and two power connections, positive and negative, denoted often by +Vcc and 

FIGURE 4.18 Soil tensiometers: (a): ceramic cup. (b): three tensiometers installed at various depths.

Environment
Sensor or transducer Signal Condi�oning A/D 

Signal Digital data

FIGURE 4.19 From transducer analog signal to a digital signal.
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–Vcc, which are connected to the power rails. Whenever we do not need negative swing of the out-
put, it suffices to have only positive power rail and ground.

We connect circuit elements to the input and output pins to configure a variety of amplifiers. 
Central to circuit configuration is the concept of feedback and a simple model of an op-amp; related 
to the op-amp’s high input impedance and low output impedance. This simple model is that current 
drawn by the op-amp at the inputs (inverting and non-inverting) is negligible and that these two pins 
are virtually at the same voltage. We can use feedback by connecting the output via a circuit element 
to the inverting input. In op-amp circuit diagrams, many times we omit the required power supply 
connections for schematic clarity.

For example, consider the inverting amplifier (Figure 4.20). Because the two inputs are virtually 
at the same voltage, the inverting output is near ground. Because there is negligible current drawn 

at the inverting input, the current 
V

R
in − 0

1

 through the input resistance R1 is the same as the current 

V

R
out− − 0

2

 through the feedback resistance R2. Therefore, we find the gain 
V

V
out

in
 as the ratio of feed-

back to input resistance
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 (4.30)

Following similar reasoning, we can derive the gain of the non-inverting amplifier as
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  (4.31)

The differential amplifier (Figure 4.21) has two arms
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FIGURE 4.20 Inverting (a) and non-inverting (b) amplifier using an op-amp.
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As example, the LM741 is a widely used op-amp due to its low cost and versatile characteristics. It is 
composed of 18 transistors integrated together on a silicon chip inserted into an 8-pin package. The 
LM741 op-amp has limited output current and can yield medium gain (20–100) for many signals.

LINEARIZATION OF THE BRIDGE CIRCUIT OUTPUT

One use of op-amps is to linearize the output of a bridge. Bear in mind that using this approach, we 
only linearize the circuit not the sensor response, i.e., not the change in resistance vs. the measurand. 
Figure 4.22 shows possible method to linearize the response of a quarter-bridge and a half-bridge 
(Kester 2015; Pallás-Areny 2000). The top circuit is a differential amplifier with Vs input in both 
arms and the sensor in the feedback loop. It forces the difference at midpoint of the bridge to be zero.
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Note that when dR = 0, we get zero Vout response
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We can simplify Equation (4.33) to be
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This is the same as V
V R R

R
s t

f
out = − × −

2
0 . Interestingly, the response is linear with respect to dR and 

the denominator has been reduced by half, i.e., from 4 to 2. In other words, we get the same mag-
nitude of the response as a two-sensor bridge (half-bridge), but it has the advantage of being linear 
with respect to dR and of using only one sensor. Because the output is that of an op-amp, it has low 
impedance, and this is convenient for the subsequent processing of the signal.

In Lab 4, we use the R system to analyze the linearized quarter-bridge and obtain the output voltage 
plus sensitivity and linearity error. As an example, we use a thermistor with slope S = –0.46 kΩ/°C, 
nominal R0 = 10 kΩ, T0 = 25°C in a bridge with Rf = 10 kΩ, and a voltage source of Vs = 5 V. Figure 4.23 
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FIGURE 4.21 Differential amplifier using an op-amp.
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shows the output voltage with sensitivity 115.5 mV/°C and low linearity error. It is important to real-
ize that the op-amp only linearizes the circuit and that therefore if we were to consider the full non-
linear response of the thermistor, the output would be nonlinear. To emphasize this point, we show 
Figure 4.24 produced with the B model for the thermistor, where we see higher linearity error.

To linearize a two-sensor bridge, we can use the same approach (Figure 4.22). In this case
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We can demonstrate that
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This has twice the sensitivity as the previous circuit since the denominator has gone from 2 to 1. 
In essence, we get the same magnitude of the response as a four-sensor bridge (full-bridge) while 
still preserving the advantage of being linear when using only two sensors. The op-amp will have 
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FIGURE 4.22 Using an op-amp to linearize a bridge output signal. Top: quarter-bridge, Bottom: half-bridge.
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to have both negative and positive power rails because the output must be able to swing negative. 
Because the output is that of an op-amp, it has low impedance. Do not forget that we have only lin-
earized the circuit, and therefore the nonlinear response of dR vs. the measurand remains.

When using the linearized quarter-bridge, the inverse calculation of temperature from output volt-
age changes in the following manner. First, obtain the thermistor resistance given the output voltage, 
we write the thermistor resistance as R R dRt = +0  and use Equation (4.35) to solve for dR. We obtain

 R R dR R
V R

V
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f

s

out= + = −
2

0 0  (4.36)
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FIGURE 4.23 Output of the linearized quarter-bridge with linearized thermistor.
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100 Real-Time Environmental Monitoring

As described above for the balanced source divider, and the quarter-bridge, once we have the therm-
istor resistance, we complete the inverse calculation of temperature with Equation (4.14) obtained 
from the B model and requiring thermistor parameters T0, B, and R0.

COMMON-MODE REJECTION

Ideally, a differential amplifier would be able to eliminate unwanted signal in the bridge circuit because 
the signs of the signals are opposite for different arms of the bridge circuit. This property is the Common 
Mode Rejection (CMR); in other words, canceling out the unwanted signal in both arms of the bridge. 
The common mode signal is amplified but with much lower gain Acm than the differential gain Ad.

 V A V V A V Vd cmout = − + −+ − + −( )
1
2

( ) (4.37)

The CMR is specified as the ratio of both gains expressed in dB, i.e., 20 times the log base 10 of 
the ratio.
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Thus, the higher this number the better is the amplifier in terms of minimizing the common-mode 
signal. For example, when the ratio of gains is 10, we obtain 20 dB, when the ratio is 100, we get 
double the dB, which is 40 dB. The CMR is an important specification that varies with gain of the 
amplifier (Morrison 1992).

INSTRUMENTATION AMPLIFIER

An instrumentation amplifier (in-amp for short) is similar to a differential amplifier but includes 
high input impedance in each arm, which is accomplished with op-amps (Kitchin and Counts 2006; 
Pallás-Areny 2000). One great advantage of the in-amp is that it keeps the bridge balanced. We con-
nect the output of a quarter-bridge to an instrumentation amplifier (Figure 4.25).

Denoting by G the gain of the amplifier, the output is now
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FIGURE 4.25 Amplifying the bridge output signal using an in-amp.
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This gain G is set with a single resistor RG. An in-amp also has excellent CMR. For example, some 
in-amps can have about 100-dB CMR for a gain programmed at G = 10.

When using an amplifier of gain G to increase the magnitude of Vout, the thermistor resistance 
equation for the inverse calculation of temperature needs to be modified by the gain G. For example, 
for the quarter-bridge using the simplified equation (4.20)

 R R
V R

V G
t

f

s

out≈ −
×

4
0  (4.39)

Suppose that a quarter-bridge output has a range of –10 to 10 mV, or FS of 20 mV and it connects to 
an in-amp to amplify the output to a signal varying between –100 and 100 mV, or a resulting FS of 
200 mV. Therefore, we need a gain of G = 200/20 = 10. Suppose we employ an in-amp with a gain 

formula of G
RG

= +49.4 kΩ
1. We would calculate the required RG from this formula to obtain the 

desired G of 10.

SPECTRUM

Let us take the time to introduce the concept of signal spectrum, which we need to explain the effect 
of interference of unwanted signals with monitoring equipment. First, note that a signal x t( ) has a 
time-domain representation that is simply the amplitude that varies with time. The variation of this 
amplitude has time periodicities that are captured as a variety of frequencies expressed in Hertz 
(Hz) or s–1. The spectrum of the signal is formed by the values of all frequencies present in the sig-
nal. It allows for a frequency-domain representation of the signal, which consists of amplitude and 
phase that varies with frequency.

Mathematically, this conversion from time-domain to frequency-domain is obtained by the 
Fourier transform. This general concept applies to a variety of processes, such as electromagnetic 
and sound waves. When applied to electromagnetic waves, the spectrum includes important regions 
such as ultraviolet, visible light, infrared, and radio frequency waves.

Please recall from Chapter 3 that pure alternating current (AC) is a sine wave of a given fre-
quency. We can express it mathematically as x t A tx ω=( ) cos( ) where Ax is the amplitude and ω is 
the angular frequency and given by fω = π2  in units of rad/s, where f is the frequency. For example, 
in the United States, AC power has f = 60 Hz and ω = π × =2 60 377 rad/s. When a signal has only 
one frequency, say 60 Hz, the spectrum is simply a spike at this frequency. A relatively more com-
plicated spectrum occurs when including multiples of this fundamental frequency or harmonics 
that would show in the spectrum as multiple spikes. Simply put, the signal is the sum of sinusoids at 
this set of frequencies. This is the basis of Fourier series. Signals that are more complicated would 
include a continuous of frequencies and not simply spikes at given frequencies and can be repre-
sented by the Fourier transform.

NOISE

In general, noise is an unwanted signal. In monitoring equipment, this can occur from radio signals 
and power lines. It can be continuous such as a power hum, random such as spurious radio signals, 
or transient such as the operation of a power switch (Morrison 1992, 1986). Many sources of noise 
are random yet repetitive over a longer period.

One way to characterize noise is by the RMS or root mean square
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Certain periodic waveforms have easy-to-recall RMS values. For example, a sinusoidal signal 
described by the waveform x t A ftx= π( ) cos(2 ) has the RMS value of / 2Ax  or 70% of the ampli-
tude Ax. Here f is the frequency and is given in Hz. An example of a power line hum would be a 
sinusoidal at 60 Hz.

Let us consider a signal containing harmonics of the fundamental frequency. For example, if the 
fundamental is 60 Hz, and a signal has significant components at 180 and 300 Hz, we say that it has 
a third harmonic and fifth harmonic.

 v t v v t v t v t� �� ��
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When we have only odd harmonics

 v t v t v t v t �ω ω ω= + + +( ) cos cos3 cos51 3 5  (4.42)

The total RMS is the square root of the sum of all squares
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Total harmonic distortion (THD) is with respect to the fundamental
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that is the same as the square root of the sum of the squares of the ratios of the harmonics to the 
fundamental
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ELECTRIC FIELD AND ELECTROSTATIC SHIELDING

The electric and magnetic fields control electrical phenomena and therefore affect a monitoring 
system. Voltages have associated electrical fields and currents have associated magnetic fields 
(Morrison 1992, 1986). The electric field is the basis for understanding how noise affects analog 
circuits and thus becomes important for monitoring. Although magnetic field interference becomes 
more relevant at frequencies above 100 kHz, monitoring equipment can be affected by the magnetic 
field near a transformer.

Figure 4.26 (top) illustrates how the electric field of a conductor at potential V1 has lines directed 
to ground (reference voltage, V = 0). The bottom part of the same figure shows that these field lines 
can be isolated and contained using conductor 2 as a shield. Most electric fields are contained 
within capacitors. Non-contained fields can cause interference and therefore the geometry setting 
is important to understand interference and its control (Morrison 1992). Fields that interfere with 
a circuit performance originate from power frequencies and their harmonics are considered near 
field; other random sources from transmitters are far fields. Frequency has an important implication 
for this distinction.

Circuits are enclosed in a metal conducting enclosure to terminate all electric fields on the enclo-
sure, which is connected to ground to avoid coupling unwanted fields to the circuit. Whenever a 
wire leaves the enclosure, this wire may pick up interference. To avoid this effect, we surround the 
conductor by a shield, which is connected to the ground. This way the interference field flows into 
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shield instead of the signal conductor. The enclosure is connected to the reference conductor only 
once to avoid current loops. The cable shield connected to ground at a single point is adequate for 
low-frequency signals (Figure 4.27).

However, a coaxial cable is needed for high-frequency signals. In order to confine the fields 
emanating from a pair of wires, one of the conductors wraps around the other as a shield or sheath, 
forming a coaxial line. A dielectric (non-conductor material) isolates the wires. The sheath can be 
a braid or a smooth tube. The current in the center conductor should return on the outer sheath for 
a truly coaxial operation (Figure 4.27 bottom). Otherwise, if current returns on another path, the 

V = 0

Ground

Conductor 2

Ground

Q1
V1

V = 0

V = V1

Q1 E

FIGURE 4.26 Top Electric field between conductor 1 and ground. Bottom Conductor 2 shields the electric 
field of conductor 1.
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Load

Return
V

V

FIGURE 4.27 Grounded shield (Top) and coaxial cable (Bottom).
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fields leave the conductors. In other words, most of the current flows on the inside surface of the 
sheath where the field terminates. Therefore, both ends of the coaxial cable are connected, the use 
of more expensive coaxial cable is important for high-frequency signals. A coaxial cable grounded 
at both ends allows for other signal return paths (Figure 4.27 bottom). However, if the fields are 
confined to the cable, the current will not return via those paths.

ISOLATION

In signal conditioning terms, isolation consists of passing the electrical signal from the transducer to 
the next stage without an electrical connection. Isolation can be performed by using various media 
and devices, such as magnetic field (e.g., a transformer), and light (optical coupling). Advantages of 
isolation include breaking ground loops, blocking high-voltage surges, and rejecting high common-
mode voltages.

COLD-JUNCTION COMPENSATION

One specific signal conditioning technique is cold-junction compensation, which is required when 
using thermocouples as sensors (Sheingold 1980). Recall that thermocouples sense temperature 
as the difference in voltage when joining two different metals (see Chapter 3). The same principle 
applies at the connection between the thermocouple and the next circuit in the system. Cold-junction 
compensation provides the temperature at this connection for appropriate correction. This is done 
for example as a step before using an in-amp (Figure 4.28) (Kitchin and Counts 2006).

A/D CONVERTER (ADC)

We have discussed ADCs in Chapters 2 and 3. In this chapter, we cover additional details. ADCs 
have various capabilities to accept analog inputs: unipolar or bipolar, single-ended or differential. 
Unipolar means that the voltage is always positive (say from 0 to 1 V), whereas for bipolar, the volt-
age can be positive and negative (say from –0.5 to 0.5 V). ADCs able to read bipolar signals are 
configured to encode signed numbers, e.g., use “two’s complement” which means one bit is reserved 
for the sign. Thus, half the numbers are negative and the other half positive. For example, using 11 
bits, you will have 10 bits and the sign bit. A single-ended input is a single input voltage referred to 
ground, whereas a differential input consists of two input voltages and the converted signal is the 
difference between the two voltages.
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FIGURE 4.28 Cold-junction compensation using an in-amp.
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Other ADC specifications are the sampling rate in SPS (samples per second), and signal-to-
noise ratio (SNR) which we discuss next. For many environmental applications, a single conver-
sion is sufficient, however some applications (e.g., reading output of a spectrometer) demand many 
conversions.

In some applications, the analog signal is sampled at a fixed rate, say fs = 1/T where T is the sam-
pling interval and each time converted to digital. In these cases, an ADC is also specified by band-
width, which is established by the sampling rate. To reconstruct the original signal from its sampled 
version, the sampler should have a rate fast enough to capture the fast-varying components of the 
signal. Being more specific, the sampling criterion requires the sampler to operate at the Nyquist 
rate, which is twice or double the highest frequency component of the signal. For example, a 60-Hz 
sinusoid would demand the sampler to operate at 120-Hz sampling rate.

The SNR is the ratio of power of the signal to the power of the noise,
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alternatively, assuming the same impedance for both, it is the ratio of the squares of the waveform 
RMS amplitude
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Expressing in dB
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For example, a 10-fold in amplitude from signal to noise means SNR = 20 dB, and 100-fold means 
40 dB.

Consider an ADC with n bits. At any step, the quantization noise is distributed within 1 least 
significant bit (LSB), or taking the midpoint of the step the error is distributed between –1/2 LSB 
and 1/2 LSB. The signal-to-quantization-noise ratio or SQNR is

 n nnSQNR ( )= = ≈20 log 2 20 log (2) 6 dB10 10  (4.49)

We can think of this metric as the maximum SNR for an ADC. For example, 8 bits would have 
SQNR of 48 dB, whereas n = 16 bits would have SQNR of 96 dB.

It is important to match the voltage range of transducer vs. the voltage range of ADC and select 
an ADC based on resolution needed.

CURRENT LOOP: 4–20 MA

A low-voltage signal from a transducer is inadequate for connection to A/D processing circuitry 
when the transducer is located far away from the processor because of voltage drops in the wire. 
One manner to send the transducer low-voltage output signal to the processor is to convert trans-
ducer output voltage to current at a signal-conditioning module before transmission. At the receiv-
ing end, this current is detected by measuring voltage drop across a resistor of known value. This 
voltage becomes the input to the ADC, and the resistor may not be an actual resistor but the input 
resistance of the ADC. A typical range of current is 4–20 mA; the non-zero 4-mA value for the 
minimum makes easy to detect an open circuit condition since this condition corresponds to 0 mA 
(Pallás-Areny 2000).
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The advantage of current loop transmission of transducer output over voltage is that the signal is 
less sensitive to voltage drops and unwanted thermocouple effects in the lead wires. Consequently, 
the wires can be thinner. Using twisted pair wires reduces possible magnetic interference. Wire 
length effects are also minimized by using a receiver resistor of low value (e.g., 250 Ω).

Current loop configurations are four-, three-, and even two-wire (Figure 4.29). In the four-wire 
configuration, the power supply connects to the conditioner (transmitter) using two wires, and the 
conditioner to the readout resistor with two wires. In the three-wire configuration, a return wire is 
shared, whereas in the two-wire configuration, the supply is in series with the readout resistor and 
the conditioner (Pallás-Areny 2000). A series resistor is included to provide safety in the event of 
a short circuit. A typical supply voltage is 24 V and it needs to overcome drops in the conditioner 
(12 V), in the readout resistor (5 V), plus 2 V in the lines, and 5 V in the series safety resistor. The 
conditioner is not the source of the power for the current in the loop. Rather, it regulates the current 
according to the transducer signal (ACROMAG 2014).

The relationship between transducer output voltage and current is established by calibration at 
the conditioner representing a linear correspondence between the measurand units (engineering 
units) span and current span.

The AD693 (Analog Devices) is an example of Integrated Circuit (IC) for signal conditioning 
providing 4–20-mA transmitter capabilities. It accepts low-level inputs from a variety of transduc-
ers, such as Resistance Temperature Detectors (RTDs), bridges, and pressure sensors and generates 
a standard 4–20-mA, two-wire current loop. The IC has a voltage reference and auxiliary amplifier 
for transducer excitation.
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FIGURE 4.29 Current loop 4–20-mA configurations. Top: Four-wire. Middle: Three-wire. Bottom: Two-wire.
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PULSE SENSORS

The output of a pulse sensor is a train of voltage pulses with varying frequency, which depends 
on the measurand. The transducer modulates the frequency of the pulse wave. The pulses consist 
of transition from low to high and high to low-voltage levels. A traditional cup anemometer is an 
example, as wind speed increases the cup anemometer rotates at higher spins per minute, and then 
we count these spins using a circuit or microprocessor. Another example is a water flow sensor that 
uses a propeller to measure how much liquid is moving through it. A circuit or processor counts the 
turns of the propeller to obtain a value proportional to water velocity.

These sensors use the concept of translating fluid movement or kinetic energy into mechanical 
rotation, and mechanical rotation into electrical signals. The conversion to electrical signal can be 
achieved with switch closures, or by a magnet and Hall effect sensors (Figure 4.30).

EXERCISES

Exercise 4.1

Consider a thermistor in a voltage divider circuit as in Figure 3.23 of Chapter 3 with R1 = Rf = 10 
kΩ, and the sensor is a thermistor with a nearly linear relationship of slope –100 Ω/°C in the range 
20°C–30°C at a nominal R0 = 10 kΩ at T0 = 298 K nominal temperature. Calculate sensitivity for a 
source of Vs = 12 V.

Exercise 4.2

Consider a balanced source voltage divider circuit. The reference resistance is Rf =10 kΩ, and the sen-
sor is a thermistor with a nearly linear relationship of slope –100 Ω/°C in the range 20°C–30°C with 
nominal R0 = 10 kΩ at T0 = 25°C. Calculate approximate sensitivity for a voltage source of Vs = 1.5 V.

Exercise 4.3

Consider a quarter-bridge Wheatstone bridge circuit. The reference resistance is Rf = 10 kΩ and the 
sensor is a thermistor with a nearly linear relationship of slope –100 Ω/°C in the range 20°C–30°C 
with nominal R0 = 10 kΩ at T0 = 25°C. Calculate approximate sensitivity for a voltage source of 
Vs = 1.5 V.

Exercise 4.4

Suppose that a quarter-bridge output has a range of –10 to 10 mV. Determine transducer output 
full-scale and the in-amp gain needed to amplify the output signal to a signal varying between 

VH

Magnet
attached on

wheel

Hall Effect
Detector

FIGURE 4.30 Translating rotation into pulses by a magnet and Hall effect sensor.
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–500 and 500 mV. Suppose you employ an in-amp with a gain formula of G
RG

= +49.4 kΩ
1. 

Calculate gain resistance RG.

Exercise 4.5

Suppose a current signal has odd harmonics of 1, 3, and 9 with RMS values of 5, 4, and 3, respec-
tively. What is the RMS total current? What is the THD?

Exercise 4.6

Consider an ADC of n = 10 bits and a full-scale analog signal of –0.5 to 0.5 V. Determine: (1) the 
least significant bit voltage in volts and as percent of full-scale, (2) the signed integers that can be 
represented, (3) the SQNR.

REFERENCES

Acevedo, M.F. 2024. Real-Time Environmental Monitoring: Sensors and Systems, Second Edition – Lab 
Manual. Boca Raton, FL: CRC Press, Taylor & Francis Group. 463 pp.

ACROMAG. 2014. Whitepaper: Introduction to the Two-Wire Transmitter and the 4–20 MA Current 
Loop. Accessed April 2015. http://www.acromag.com/sites/default/files/Acromag_Intro_TwoWire_
Transmitters_4_20mA_Current_Loop_904A.pdf.

Artiola, J. F. 2004. “Environmental Chemical Properties and Processes.” In Environmental Monitoring and 
Characterization, edited by J. F. Artiola, I. L. Pepper and M. L. Brusseau, 241–261. Burlington, MA: 
Elsevier Academic Press.

Brown, P., and S. A. Musil. 2004. “Automated Data Acquisition and Processing.” In Environmental Monitoring 
and Characterization, edited by J.F. Artiola, I.L. Pepper and M.L. Brusseau, 49–67. Burlington: 
Academic Press.

Cobos, D. R. 2007. “Measuring UMS Tensiometers with Non-UMS Control and Data Acquisition Systems.” In 
Application Note, edited by Decagon Devices. Pullman, WA: Decagon Devices.

Kester, W. 2015. Practical Design Techniques for Sensor Signal Conditioning, Section 2 Bridge Circuits. Accessed 
March 2015. http://www.analog.com/media/en/training-seminars/design-handbooks/49470200sscsect2.
PDF.

Kitchin, C., and L. Counts. 2006. A Designer’s Guide to Instrumentation Amplifiers. Norwood, MA: Analog 
Devices.

Morrison, R. 1986. Grounding and Shielding Techniques in Instrumentation. New York, NY: John Wiley & 
Sons.

Morrison, R. 1992. Noise and Other Interfering Signals. New York: John Wiley & Sons.
Pallás-Areny, R. 2000. Amplifiers and Signal Conditioners. Boca Raton, FL: CRC Press.
Ross, M. 2014. pH Electrode Performance. Accessed 2014. http://www.eutechinst.com/tips/ph/14.pdf.
Sheingold, D., ed. 1980. Transducer Interfacing Handbook. Norwood, MA: Analog Devices, Inc.
UMS. 2011. T4/T4e Pressure Transducer Tensiometer. Munich, Germany: UMS.
Vanýsek, P., 2004. The Glass pH Electrode. Accessed May 2023. https://www.electrochem.org/dl/interface/

sum/sum04/IF6-04-Pages19-20.pdf.
Yolcubal, I., M. L. Brusseau, J. F. Artiola, P. Wierenga, and L. G. Wilson. 2004. “Environmental Physical 

Properties and Processes.” In Environmental Monitoring and Characterization, edited by J. F. Artiola, I. 
L. Pepper and M. L. Brusseau, 207–239. Burlington: Elsevier Academic Press.

http://www.acromag.com
http://www.acromag.com
http://www.analog.com
http://www.eutechinst.com
https://www.electrochem.org
https://www.electrochem.org
http://www.analog.com


109

5 Dataloggers and 
Sensor Networks

INTRODUCTION

This chapter covers data acquisition systems (DAS) emphasizing dataloggers and sensor networks 
applicable to environmental monitoring. We discuss the real time clock (RTC) since it is an impor-
tant element of dataloggers providing timestamps to the data records, and various serial communica-
tion interfaces with emphasis on connecting dataloggers and multiple intelligent sensors together as 
a sensor network. In this regard, we discuss RS-232, Universal Asynchronous Receiver Transmitter 
(UART), RS-485, Serial Peripheral Interface (SPI), Inter-Integrated Circuit (I2C), and Serial Digital 
Interface (SDI-12). We conclude with a detailed examination of wiring and programming for an exam-
ple of a commercially available environmental datalogger. These circuits and topics are expanded by 
computer and hands-on exercises in Lab 5 of the companion Lab Manual (Acevedo 2024).

DAS

A DAS is an MCU-based system that can read sensors and transducers using signal conditioning 
and A/D converters (ADCs). In addition, it includes data storage and data retrieval, to be explained 
in this chapter, and optionally telemetry capabilities (Chapter 6). Therefore, a DAS is the first step 
in going from transducers to data processing components (Figure 5.1). Further data processing com-
ponents include computers that will perform calculations on data for warnings and alerts, trends, 
archival, and other purposes.

An important example of a DAS is a datalogger or device that records data over time and can 
operate autonomously for prolonged periods. The terms datalogger and DAS are often used as 
synonyms. However, technically there are differences: a DAS is a more general concept that would 
encompass data logging. Therefore, a datalogger is a DAS, but a DAS is not always a datalogger. 
We characterize a datalogger as a stand-alone DAS with low-drift RTC and slow sampling rates 
(1–100 Hz). For the purposes of this book, we will focus on dataloggers.

DATALOGGERS

Most dataloggers employed in environmental monitoring include the capabilities of conditioning 
signals from transducers, convert analog responses to digital form, process the data to engineering 
units, a basic level of statistical summary, and store data in files that can be retrieved or transmitted 
when needed. In addition, many dataloggers include some level of actuator capabilities to control 
other devices that may be associated with the measurement system, such as switches and relays. 
With these added control capabilities, a datalogger is a stand-alone measurement and control sys-
tem. An important component of a datalogger is a microprocessor that automates the major DAS 
functions. In Figure 5.2, thick arrows depict interaction functions of the datalogger with the power 
system, transducers, controlled devices, and ports to communicate with the datalogger to upload 
programs and to download data. Thin arrows depict the internal interactions with memory, clock, 
ports, signal conditioning, and ADC components.

Some dataloggers are designed to perform specific tasks; however, general-purpose dataloggers 
are programmable so that the users can adapt the system to their own needs. Therefore, the datalog-
ger may have a programming language, which the user can use to write scripts or programs that will 
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perform the desired tasks. Many times, this language is high-level, meaning that there are functions 
available to facilitate writing the program.

APPLICATIONS IN ENVIRONMENTAL MONITORING

Dataloggers for environmental monitoring must operate under potentially rugged outdoor conditions. 
Once deployed, dataloggers should operate autonomously and should be able to remain unattended for 
the intended period of operation. This period can occasionally be short, but it is long in most cases.

Examples include weather stations (wind speed/direction, temperature, relative humidity (RH), 
solar radiation), hydrographic stations (water depth, water flow), water quality (pH, conductivity, dis-
solved oxygen), soil moisture (SM), air quality and emissions (ozone), offshore buoys for weather, tides, 
other environmental conditions, wildlife habitat conditions, groundwater levels, and many others.

ANALOG CHANNELS

Dataloggers have analog channel inputs to read sensors and transducers. Two major types are sin-
gle-ended (SE) input and differential (DIFF) input. An SE input allows inputting the voltage of a 
transducer with respect to ground. A DIFF input is formed by using two SE inputs (High and Low) 
and measuring the voltage between these two points (Figure 5.3).

Micro-processor Memory 
Signal 

Condi�oning 

Serial ports 
communica�on 

Clock 

ADC 

Output for 
control 

Power System 

Transducers 

Datalogger 

FIGURE 5.2 Block diagram of a typical datalogger.
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System (DAS) Processing
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This chapter

FIGURE 5.1 DAS is first step from transducers to data processing.
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RTC

Because dataloggers must provide a timestamp to each data record, they require an RTC. This 
electronic circuit keeps track of current time, and it is not just an element to synchronize circuits. 
An RTC uses a crystal oscillator of a given frequency, e.g., ~32 kHz. The RTC is powered from an 
alternate source such as a backup battery, so that it keeps running in the event of main power failure 
(Figure 5.4). For environmental applications, the RTC should be low power and have little drift. 
Some RTC chips include an embedded crystal.

An RTC-integrated circuit (IC) provides counters for tenths/hundredths of seconds, seconds, 
minutes, hours, days, date, month, year, and century. These counters are implemented as registers 
using BCD (binary-coded decimal) format.
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FIGURE 5.3 Typical analog input channel of a datalogger. A single voltage sensor output uses an SE termi-
nal, whereas a DIFF signal uses both leads of the channel as a DIFF channel.
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Natural BCD consists of simply representing a decimal digit by four bits as follows.

Decimal
Digit  Binary
0  0 0 0 0
1  0 0 0 1
2  0 0 1 0
3  0 0 1 1
4  0 1 0 0
5  0 1 0 1
6  0 1 1 0
7  0 1 1 1
8  1 0 0 0
9  1 0 0 1

Note that taking advantage of all four bits we can represent a hexadecimal (hex) digit

Hex
Digit  Binary
0  0 0 0 0
1  0 0 0 1
2  0 0 1 0
3  0 0 1 1
4  0 1 0 0
5  0 1 0 1
6  0 1 1 0
7  0 1 1 1
8  1 0 0 0
9  1 0 0 1
A  1 0 1 0
B  1 0 1 1
C  1 1 0 0
D  1 1 0 1
E  1 1 1 0
F  1 1 1 1

Many systems have 8-bit bytes. Each byte is composed of two 4-bit nibbles, the low nibble (the least 
significant bits or rightmost bits) and the high nibble (the most significant bits or leftmost bits). BCD can 
be in uncompressed or packed formats. The uncompressed format uses a byte for each digit, and the 
digit is coded by the low nibble of the byte, whereas in the packed format, there are two digits per byte, 
one per nibble. Numbers exceeding the range of an even number of bytes use a contiguous byte.

For example, a four-digit number 3241 is coded by two bytes 32–41

 3 2 4 1
 0011 0010 0100 0001

and number 53241 requires three bytes 05–32–41 (placing a non-significant zero to the left)
 0 5 3 2 4 1
 0000 0101 0011 0010 100 0001
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To represent a signed number, we use the low nibble from a byte; the sign of a number with several 
digits will be in the low nibble of the rightmost or least significant byte. The convention is to use hex 
digits A through F for the sign, A, C, and E are positive + sign, whereas B and D are negative- sign, and 
F is unsigned. C and D are common for + and – respectively. For example, the five-digit number +32416 
is coded by three bytes as 32–41–6C where the last byte contains the sign. Number -32416 is 32–41–6D. 
BCD registers in an RTC will count from zero to nine and return to zero on the count of nine.

PULL-UP RESISTORS

When using a Bipolar Junction Transistor (BJT), “open-collector” means that the collector is floating. A com-
mon BJT transistor is of NPN type, constructed by a P-type semiconductor element, the base in between two 
N-type semiconductor elements, the emitter and the collector. For example, an NPN type transistor circuit 
would be able to sink current to ground from a + 5-V source upon applying voltage at the base (Figure 5.5). 
When using a Metal–Oxide–Semiconductor Field-Effect Transistor (MOSFET), “open-drain” means the 
drain is floating. A field-effect transistor has three elements, the source, gate, and drain; applying voltage to the 
gate controls the conductivity between source and drain. For example, a MOSFET transistor circuit would be 
able to sink current to ground from a +5-V source upon applying a voltage at the base (Figure 5.5). The pull-up 
resistor is connected from the collector or the drain to a high potential or a source. The collector will acquire 
this potential until the transistor is turned on. Similar concepts apply to “pull-down” resistors, but these are 
connected to the low voltage or ground, and enabling a low state when the transistor is turned on.

SERIAL COMMUNICATION, DATALOGGERS, AND SENSOR NETWORKS

Typically, dataloggers store collected data in files, which are retrieved locally or remotely. Users 
copy data files to other devices but not move them; this way, files are preserved and available for 
retrieval by multiple users. Useful access to data files is via serial port connections, such as RS-232 
and USB, or by Ethernet connections using appropriate protocols, such as TCP/IP (Transmission 
Control Protocol/Internet Protocol). We have discussed these in Chapter 2.

Some sensors and transducers have some digital processing capabilities of their own, e.g., intelli-
gent sensors, and are designed to communicate serially with a datalogger. These sensors may have a 
MCU to specify calibration, correction, and other functions. Communication may be implemented 
in a variety of interface standards, such as RS-232, UART, RS-485, SPI, I2C, and SDI-12. We will 
discuss these serial communication methods in the next six sections.

FIGURE 5.5 Pull-up resistors. Left: BJT circuit. Right: MOSFET circuit.
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RS-232

We discussed RS-232 in Chapter 2 focusing on connections of peripherals to PCs and communication 
between two PCs. A reduced RS-232 specification uses fewer lines (Figure 5.6). For example, a five-wire 
connection will consist of only TXD, RXD, RTS, CTS, and GND. A three-wire connection consists only 
of TXD, RXD, and GND, without the hardware control exerted by RTS, and CTS. This reduced connec-
tion can be used to establish a two-way connection between a sensor and a datalogger. Minimally, for one-
way applications, such as a sensor sending a signal, a two-wire TXD and GND connection will suffice.

RS-485

RS-485 is a standard defined by the Electronic Industries Association and widely used communica-
tion interface in data acquisition, as well as control applications, particularly to interconnect multiple 
devices. It is a standard interface for the physical layer or first OSI model layer (Chapter 2). RS-485 
works in differential mode; it compares the voltage difference between two lines A and B, instead of 
the voltage level of each line. The lines have opposite polarity, are balanced, and carried on twisted 
pair wires, increasing noise immunity; thus, the interface cable does not need to be shielded. With 
RS-485, up to 32 devices can be connected in a network, communicate over long distances (up to 
1200 m) and at fast data rates; up to 35 Mbps for short distances and 100 kbps for long distances.

RS-485 allows configuring a network with a one-line multi-drop topology (Figure 5.7). At the 
OSI network layer or layer 3, most communication protocols implemented on RS-485 networks 
consist of one master node and multiple slave nodes (e.g., Modbus). This terminology implies that 
only the master initiates transmission and slave devices process requests and responses. However, 

FIGURE 5.7 RS-485 network. Multi-drop topology.
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RS-485 can be used for protocols allowing every node to start transmission. In this case, there may 
be data collision and thus requires error detection.

Electrically, each device has an RS-485 driver that can be switched to transmission mode or to 
receiving mode. Under a one-master multiple-slaves protocol, the master can switch on the driver on its 
own, whereas a slave node is in receiving mode except when allowed by the master to switch its driver 
on to transmission mode. Low-cost RS-485 transceivers suffice for small networks over short distances.

A device, such as an MCU or an SBC with UART (e.g., Arduino, Raspberry Pi), can connect to an 
RS-485 network using a transceiver (e.g., MAX485), with four TTL lines RO, RE, DE, DI  that con-
nect to the device and the two A, B lines for the RS-485 bus. The TTL lines stand for receiver output 
(RO), receiver enable (RE, which is marked as with a bar or inverted because it is active when low), 
driver enable (DE), and data input (DI). The Tx line of the UART connects to DI and the UART Rx 
connects to RO. As noted above, the RE  line is low when active, while DE is high when active and 
thus can be connected to 0 V and 5 V, respectively, if the device will be always receiving or always 
transmitting. Otherwise, the DE and RE  lines can be connected to an I/O pin of the device to enable 
it for transmitting (when high = 5 V) or receiving (when low = 0 V). Additionally, one pull-up resistor is 
used for the A line and one pull-down resistor for the B line connected at only one end of the RS-485 
bus; the resistance values for pull-up and pull-down resistors depend on the length of the RS-485 wires.

As mentioned above, an example of protocol for RS-485 networks is Modbus, which is a serial 
communication protocol based on one master or host and multiple slaves. Recently the terminology 
changed to client devices and server devices. A client initiates communication, whereas a server 
processes requests from clients and sends responses.

As an example of use in environmental monitoring, consider the sensor JXBS-3001-EC that 
combines the measurement of SM, electrical conductivity (EC), and temperature and interfaces 
with other sensors and dataloggers using RS-485 (Figure 5.8). We can form a network with these 
sensors using RS-485 and connect for example with an SBC or MCU using a driver (e.g., MAX485) 
as indicated above. We will discuss this example in Chapter 6 in the context of network protocols.

SPI

Serial Peripheral Interface (SPI) is synchronous, i.e., uses a clock to control serial communication, 
and it is based on a master-slave protocol. The master is the controlling device (e.g., MCU) and a 
slave (e.g., sensor) communicates as instructed by the master. Data are transferred without inter-
ruption with any number of bits in a continuous stream. There is no acknowledgment and no error 
checking (Circuit Basics 2022b).

There are four SPI lines: MOSI (Master Output/Slave Input) used by the master to send data to 
slave, MISO (Master Input/Slave Output) used by a slave to send data to the master, SCLK (Clock) 
that is the clock signal, and SS/CS (Slave Select/Chip Select) used by the master to select the slave 
which will receive data.

FIGURE 5.8 Example of sensor providing output based on RS-485.
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Two devices, one master and one slave, would be connected directly MOSI to MOSI, MISO to MISO, 
SCLK to SCLK, and SS/CS to SS/CS. More than one slave can be connected using two separate CS lines 
as illustrated in Figure 5.9 for two slaves. However, it is possible to connect them in daisy chain where the 
slave 1 MISO connects to slave 2 MOSI, and slave 2 MISO connects back to the master MISO.

I2C

Inter Integrated Circuit (I2C) is a serial communication interface that combines features of SPI 
and UARTs. It can connect multiple slaves to a single master (like SPI) and only uses two wires to 
transmit data between devices (like UART) (Figure 5.10). However, I2C permits to have multiple 
masters connected to single or multiple slaves (Circuit Basics 2022a). For example, this allows more 
than one MCU logging data to a single memory card.

I2C is synchronous, meaning that bits at the output are synchronized to bits sampling by a clock 
line which is controlled by the master. The two lines are SDA (Serial Data) used for the master and 
slave to send and receive data and SCL (Serial Clock) that carries the clock signal. There is not a 

FIGURE 5.10 I2C example. One master and two slaves.

FIGURE 5.9 SPI example. One master and two slaves selected by different CS lines.
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line dedicated to select a slave, and therefore device selection is achieved by embedding an address 
frame in the message, just after the start bit. The slave will acknowledge that its address match 
using an ACK (acknowledge) bit (Figure 5.11). Pull-up resistors on the SDA and SCL lines are often 
needed when connecting devices to an SBC or an MCU.

As an example of use in environmental monitoring, consider a set of embedded devices for 
water quality measurements (Atlas Scientific 2022). These devices provide UART or I2C interface 
between an MCU or SBC and a probe, for example pH, EC, temperature, and dissolved oxygen. 
Setting the devices in I2C mode and using pull-up resistors allows connecting one or more devices 
to the I2C bus. For example, when measuring two types of brackish water, we can use a set of EC 
and temperature devices for each water type and connect all four devices on the I2C bus to an SBC, 
such as a Raspberry pi. Once we provide a unique address to each device, we can write code (e.g., 
in Python) that polls readings from each device.

SDI-12

SDI is an asynchronous standard that specifies how a device (e.g., datalogger) communicates with 
intelligent sensors. The SDI specification includes electrical interface characteristics (such as number 
of conductors, voltage levels, and line impedance), communication protocol, and timing requirements.

A detector with a built-in MCU is an example of sensor producing output data in SDI-12 format 
(SDI-12 Support Group 2013). SDI-12 specifies three wires, one for power, one for ground, and one 
for serial data. SDI-12 stands for SDI at 1200 baud. SDI-12 allows low-cost and low-power operation 
to connect multiple sensors (Figure 5.12).

As an example of use in environmental monitoring, consider a TEROS 12 sensor that combines the 
measurement of SM, EC, and temperature and interfaces with other sensors and dataloggers using SDI-
12 (METER 2022). We can wire multiple TEROS 12 on the SDI-12 bus and connect to an SBC, such as 
a Raspberry Pi, using an adapter SDI-12 to UART or USB (Liu Dr Electronic Solutions LLC 2022); for 
example, an SDI-12 to USB adapter to connect to the USB port of the SBC. Once we provide a unique 

FIGURE 5.11 I2C message.

FIGURE 5.12 Basic SDI-12 wiring for two sensors. The same scheme applies for more than two sensors.
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address to each device, we can write code (e.g., in Python) that polls readings from each device. From a 
practical point of view, it is not convenient to have many devices on the same adapter because a faulty 
device will bring down the entire SDI-12 bus, and it would be difficult to identify the faulty sensor.

MCUs AS DAS

MCUs are useful for monitoring because they are suited to interact with sensors (i.e., have on-chip 
ADC), communicate with a computer (via serial ports), and using interrupt signals can respond to 
events from the system under measurement and control. An interrupt signal suspends the current 
process and goes to a service routine. This is particularly useful to wake an MCU from a low-power 
sleep state to perform a certain task, such as to make a measurement and store data, or when con-
necting a computer to retrieve data. This feature allows reducing power consumption.

Figure 5.13 summarizes a typical design for an MCU-based DAS. Transducers are connected 
using signal conditioning as in conventional microprocessor-based DAS. Computers connect via 
serial communication channels. Here we assume that the MCU has on-chip RTC. However, some 
popular MCUs have only a timer on-board, which resets itself upon loss of power. In this case, we 
need to use an RTC IC or add-on to perform clock functions. The MCU requires a crystal oscillator 
not shown in the diagram.

Figure 5.14 illustrates a typical interrupt-driven data-measuring scheme. After initialization, the 
MCU waits for an interrupt signal. The interrupt can come from the timer, when it is time to take a 
measurement or from a computer (such as an SBC or PC) that may be connected to the MCU. Upon 
a timer interrupt, the MCU will run a service to acquire a measurement and store it in memory. 
Upon a computer interrupt, the MCU will run the corresponding service that may consist of query-
ing the stored data, sensor calibration, or a reset to the system.

CONDITIONS AND ENCLOSURES

To implement a practical and reliable DAS for environmental monitoring, it is important to 
consider harsh or challenging environmental conditions for the electronic equipment. In terres-
trial environments, the most challenging are moist, humid, hot, dusty, and corrosive conditions. 
Consequently, equipment and components follow accepted standards and specifications. An 

FIGURE 5.13 MCU-based DAS.
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important consideration is equipment protection and enclosure specifications to protect against 
harsh environmental conditions.

Standards are established for example by the National Electrical Manufacturers Association 
(NEMA) and the International Electrotechnical Commission (IEC). For instance, NEMA ICS6 
enclosure standards, and IEC standard 60529 or IP Codes (ANSI/IEC 60529-2004). In particu-
lar, NEMA4X or IEC IP65/66 enclosures offer substantive protection, including corrosion-resis-
tant properties. Other effects of environmental conditions on the system should be considered. For 
example, the design of mounting structure against hazardous wind gusts.

Excessive moisture may lead to electronic equipment failure due to several mechanisms, com-
monly corrosion Water condensation with dissolved ions is more conductive and creates potential 
for short circuits. To protect against high humidity conditions inside the enclosure, it is customary to 
use a desiccant, i.e., a hygroscopic material that maintains dryness in its surroundings by absorbing 
water (Multisorb 2023). A common desiccant is silica, which is inert and non-toxic.

Particularly challenging is to deploy a datalogger under submersed conditions for prolonged 
time. Some of the required waterproof enclosures are made of aluminum or stainless steel. For 
example, some dataloggers that are built to measure water level are submersed together with the 
sensor inside the same enclosure (Figure 5.15).

FIGURE 5.14 Basic interrupt-driven mode of MCU-based DAS.

FIGURE 5.15 Examples of submersed sensor plus datalogger.



120 Real-Time Environmental Monitoring

A DATALOGGER EXAMPLE: THE CR1000

After discussing datalogger features in general, it is useful to present an example, such as the 
Campbell Scientific’s CR1000 datalogger. For this purpose, we will use the operation manual 
(Campbell Scientific Inc. 2013) and a set of weather and SM transducers. The manual contains 
detailed technical specifications and for easy reference, a brief overview of some specifications 
for the CR1000 is given in Table 5.1. The CR1000 is a programmable datalogger with non-volatile 
memory that can be used for example in weather measurement applications. The supply voltage is 
12 V DC nominal (it can vary between 9.6 and 16 V DC), and the power consumption is ~28 mA 
when active at its fast scan rate (100 Hz) or ~17 mA (at slower rate 1Hz) and can go down to 0.6 mA 
in sleep low power mode. The nine-pin DCE port acts as DTE when using a null-modem cable 
(recall RS-232 concepts from Chapter 2).

Table 5.2 shows an example of wiring a set of sensors to measure weather and SM, it shows typi-
cal wires for sensors and datalogger channels and covers a variety of wiring types for the sake of 
illustration. An RH sensor is powered by the switched 12-V supply because it requires more power 

TABLE 5.1
CR1000 Specifications (Brief)

Specification CR1000

Channels 8 DIFF, 16 SE

Communication port 1 RS-232 DCE port (9-pin D-sub)

Comm. ports for sensors 4 RS-232 ports (2-pin each Tx/Rx)

Data Storage 4 MBytes

Input voltage range ±5.0 V

Scan rate 1 Hz, 100 Hz

A/D Conversion 13-bit

Programming CRBasic

TABLE 5.2
Example of Wiring Weather Sensors to a Datalogger

Sensor Sensor Wire Datalogger (e.g., CR1000) Channel

RH Power (e.g., 7–28 V) Switched 12 V

RH signal SE (e.g., SE4)

Ground Switched power GND (e.g., G)

Air temperature Temp signal SE (e.g., SE3)

Ground Signal ground

Wind gage Wind speed signal Pulse input (e.g., P1)

Wind speed ground Signal ground

Wind vane Wind direction signal SE (e.g., SE1)

Wind direction excitation Switched voltage excitation (e.g., VX1)

Wind direction ground Signal ground

Barometric pressure Signal SE (e.g., SE2)

Ground Signal ground

Solar radiation Signal DIFF (e.g., DIFF3-H)

Reference DIFF (e.g., DIFF3-L)

Ground Channel ground

Rain gage Signal Pulse input (e.g., P2)

Signal return Signal ground
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at 7–28 V DC, which would exceed the 5-V supply; the ground is wired to the switched supply 
ground, to return higher current. The signal is connected to an SE channel. In some cases, a return 
for the signal is needed and would be wired to a signal ground of the datalogger; this case is not 
shown in the table. An air temperature sensor is wired to an SE terminal and a signal ground. Often 
you will find combined RH and temperature sensors, which can be powered from the same supply. 
The same SE configuration is shown in the table for barometric pressure.

Also shown in Table 5.2 are a wind gage for wind speed and a wind vane for wind direction, 
which are often combined into one device. Wind speed is wired to a pulse input since the sensor 
produces pulses as the rotating magnet triggers pulses by a Hall effect sensor. In many cases, sensor 
pulse output requires a pull-up resistor. The rain gage is also connected to a pulsed input since it is 
based on closures of a switch as the tipping bucket movement is detected. Wind direction is given 
by a potentiometer, which is connected as a voltage divider, or as we have discussed in Chapter 4, 
sometimes referred to as half-bridge. Thus, the signal is wired to an SE terminal and powered by 
the switched voltage excitation, e.g., VX, meant for bridge measurements in the CR1000. The solar 
radiation sensor is connected to a DIFF channel instead of SE since it produces a DIFF signal.

Soil sensors wiring is given in Table 5.3, where the moisture sensor is a voltage divider (again 
often named half-bridge) powered by the excitation or bridge measurement supply and output con-
nected to an SE terminal, whereas the tensiometer is connected to a DIFF channel since the output 
is one from a full bridge. It could be powered from the excitation supply, but here we are using 5 V 
since it requires more current and using G as return.

As an example of programming dataloggers, we describe some fundamentals of programming 
the CR1000. This datalogger’s programs start with declarations of variables and units. Instruction 
Public is used for variables and instruction Units for units. For example, to declare the battery volt-
age and an SM variable

'Declare variables and units
Public Batt_Volt
Public SM

Units Batt_Volt=Volts
Unit SM=mV

TABLE 5.3
Example of Wiring Soil Sensors to a Datalogger

Sensor Sensor Wire Datalogger (e.g., CR1000) Channel

SM sensor Analog out SE (e.g., SE 7)

Excitation Switched voltage excitation (e.g., VX2)

Ground Signal ground

Soil tensiometer Supply positive Power 5 V or

Supply negative Switched power GND (e.g., G)

Signal positive DIFF (e.g., DIFF8-H)

Signal negative DIFF (e.g., DIFF8-L)
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A line preceded by single quote symbol is a remark. Then a program proceeds to define Data 
Tables

'Define data tables
DataTable(GBC,True, -1)
 DataInterval(0,5,Sec,10)
 Sample(1,Batt_volt,FP2)
 Sample(1, SM, FP2)
EndTable

Then the main program

'Main program
BeginProg
 Scan(1,Sec,1,0)
  'default battery measurement instruction
  Battery(Batt_Volt)
  'Half Bridge measurement
  BrHalf(SM,1,mV2500,1,1,3,2500, False,10000, 250,2500,0)
  'Call datatable to store measurements
  CallTable(GBC)
 NextScan
EndProg

In the main program, we used a BrHalf instruction to read SM. The sensor is, for example an 
EC-5 by Decagon Devices (Figure 5.16) with three leads connected to a channel using one of the 
SE inputs. An EC-5 sensor has a two-prong design and when supplied an excitation voltage (white 
wire) produces a signal (red wire) in mV.

Once the data table is stored in memory and we retrieve as a text file, we would have results like this

TIMESTAMP Batt_Volt SM
TS Volts mV
8/12/2010 11:40 13.03 37.09
8/12/2010 11:45 13.03 37.07

FIGURE 5.16 SM sensor and connection to a datalogger.
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The EC-5 is meant to measure volumetric water content (VWC) Sw in m3/m3 or percentage. 
Therefore, we need to convert the mV from the EC-5 to Sw. The calibration equation for mineral soil

 Sw = × × −−(11.9 10 ) mV 0.4014  (5.1)

where Sw is the VWC (m3/m3) and the mV is the output SM of the sensor. The water content is 
expressed as percent multiplying Sw by 100. We can include this calculation in the datalogger pro-
gram. First, change Units in the unit’s declaration

Units SM=Perc

in addition, add the calculation to the main program after the BrHalf instruction

'  BrHalf(SM,1,mV2500,1,1,3,2500, False,10000, 250,2500,0)
  'Convert from mV to volumetric content in percent
  SM=(0.00119*SM-0.401)*100

This is a good opportunity to introduce the specifications of an SM sensor using the EC-5 probe 
as an example. Accuracy is 0.03 m3/m3 up to a soil conductivity of 8 dS/m and its resolution is 
0.25%. Range is from zero to saturation. Power requirements are 2.5 V DC – 3.6 V DC at 10 mA. 
Operating Environment is from –40 to +60°C. Sensor dimensions are 8.9 cm × 1.8 cm × 0.7 cm.

There are many types of data inputs and corresponding measurement instructions of the CR-1000. 
In the following, we will briefly describe the syntax of some commonly used functions.
VoltSe to measure SE voltages

VoltSe(Dest, Reps, Range, SEChan, MeasOfs, SettlingTime, Integ, 
Mult, Offset)
e.g.: VoltSe(RH, 1, mV2500, 1, False, 0, 250, 0.1, 0)

VoltDiff to measure DIFF voltages

VoltDiff(Dest, Reps, Range, DiffChan, RevDiff, SettlingTime, Integ, 
Mult, Offset)
e.g.: VoltDiff(P_mb, 1, mV250, 6, true, 0, _60Hz, 1.84, 600)

BrHalf to measure voltage divider (or also called half-bridge)

BrHalf(Dest, Reps, Range, SEChan, Vx/ExChan, MeasPEx, ExmV, RevEx, 
SettlingTime, Integ, Mult, Offset)
e.g.: BRHalf(SM1_1, 3, mV2500, 9, VX1, 3, 2500, False, 10000, 250, 
2500, 0)
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BrFull to measure full-bridge sensors

BrFull(Dest, Reps, Range, DiffChan, Vx/ExChan, MeasPEx, ExmV, RevEx, 
RefDiff, SettlingTime, Integ, Mult, Offset)
e.g.: BRFull(TM, 2, mV2500, 7, VX1, 3, 2500, False, 10000, 250, 
2500, 0)

PulseCount to measure sensors producing a pulse output

PulseCount(Dest, Reps, PChan, PConfig, POption, Mult, Offset)
e.g.: PulseCount(RAIN, 1, 2, 2, 0, 0.01, 0)

The following is an example of a complete program. First the variables declaration

'CR1000 data from Discovery Park Weather Station
'Created by Short Cut (2.5)

'Declare Variables and Units
Public Batt_Volt
Public AirTC
Public RH
Public SlrW
Public SlrkJ
Public Rain_in
Public WS_mph
Public WindDir
Public BP_mmHg
Public OutString As String * 200

Then dimensions of arrays

Dim i, Record(15), curTime(9), outRecord(15) As String

Followed by units

Units Batt_Volt=Volts
Units AirTC=Deg C
Units RH=%
Units SlrW=W/m²
Units SlrkJ=kJ/m²
Units Rain_in=inch
Units WS_mph=miles/hour
Units WindDir=Degrees
Units BP_mmHg=mmHg
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and the definition of data tables

This follows bythe main program that contains loops

'Define Data Tables
DataTable(DP_WS,True,-1)
 DataInterval(0,5,Min,10)
 Sample(1,Batt_Volt,FP2)
 Sample(1,AirTC,FP2)
 Sample(1,RH,FP2)
 Average(1,SlrW,FP2,False)
 Maximum(1,SlrW,FP2,False,False)
 Minimum(1,SlrW,FP2,False,False)
 StdDev(1,SlrW,FP2,False)
 Totalize(1,SlrkJ,IEEE4,False)
 Totalize(1,Rain_in,FP2,False)
 Average(1,WS_mph,FP2,False)
 Maximum(1,WS_mph,FP2,False,False)
 Minimum(1,WS_mph,FP2,False,False)
 StdDev(1,WS_mph,FP2,False)
 Sample(1,WindDir,FP2)
 Average(1,BP_mmHg,FP2,False)
EndTable

'Main Program
BeginProg
 Scan(10,Sec,1,0)
  'Default Datalogger Battery Voltage Batt_Volt:
  Battery(Batt_Volt)
  'HMP50 Temperature & Relative Humidity Sensor AirTC and RH:
  VoltSE(AirTC,1,mV2500,1,0,0,_60Hz,0.1,-40.0)
  VoltSE(RH,1,mV2500,2,0,0,_60Hz,0.1,0)
  If (RH>100) And (RH<108) Then RH=100
  'LI200X Pyranometer measurements SlrkJ and SlrW:
  VoltDiff(SlrW,1,mV7_5,2,True,0,_60Hz,1,0)
  If SlrW<0 Then SlrW=0
  SlrkJ=SlrW*2.0
  SlrW=SlrW*200.0
  'TE525/TE525WS Rain Gauge measurement Rain_in:
  PulseCount(Rain_in,1,1,2,0,0.01,0)
  '03001 Wind Speed & Direction Sensor WS_mph and WindDir:
  PulseCount(WS_mph,1,2,1,1,1.677,0.4)
  If WS_mph<0.41 Then WS_mph=0
  BrHalf(WindDir,1,mV2500,5,1,1,2500,True,0,_60Hz,355,0)
  If WindDir>=360 Then WindDir=0
  'CS105 Barometric Pressure Sensor measurement BP_mmHg:
  PortSet(1,1)
  VoltSE(BP_mmHg,1,mV2500,6,1,0,_60Hz,0.184,619.725)
  BP_mmHg=BP_mmHg*0.75006
  'Call Data Tables and Store Data
  CallTable(DP_WS)
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This program generates the following example of data file, which is shown with wrapped lines of text

TOA5 CR1000_DPWS CR1000 15720 CR1000.Std.15 CPU:Wthr_DPWS_
ShortCut.CR1 60724 DP_WS
TIMESTAMP RECORD Batt_Volt AirTC RH SlrW_Avg SlrW_Max 
SlrW_Min SlrW_Std SlrkJ_Tot Rain_in_Tot WS_mph_Avg 
WS_mph_Max WS_mph_Min WS_mph_Std WindDir BP_mmHg_Avg
TS RN Volts Deg C % W/m? W/m? W/m? W/m? kJ/m? 
inch miles/hour miles/hour miles/hour miles/hour Degrees 
mmHg
  Smp Smp Smp Avg Max Min Std Tot 
Tot Avg Max Min Std Smp Avg
8/12/2010 11:40 85136 13.03 37.09 33.95 803 810 797.5 
3.466 240.9406 0 2.473 4.593 0 1.376 138.6 744.5
8/12/2010 11:45 85137 13.03 37.07 34.64 812 815 808 
2.149 243.4854 0 3.614 5.599 0.568 1.258 157.1 744.5
8/12/2010 11:50 85138 13.03 36.28 37.03 818 823 811 
2.848 245.5307 0 4.783 8.28 3.251 1.204 203.7 744.5
8/12/2010 11:55 85139 13.04 37.63 32.59 826 831 821 
2.574 247.7273 0 3.036 7.611 0 1.648 120.9 744.5
8/12/2010 12:00 85140 13.03 37.26 33.14 837 843 831 
3.495 251.1464 0 5.04 8.62 2.748 1.416 241.6 744.4
8/12/2010 12:05 85141 13.03 37.33 33.58 845 848 842 
1.392 253.5751 0 4.721 7.947 2.245 1.463 137 744.4
8/12/2010 12:10 85142 13.03 37.68 33.29 856 861 848 
4.192 256.8434 0 2.092 5.599 0 1.685 80.6 744.4
8/12/2010 12:15 85143 13.03 37.77 33.31 865 867 862 
1.356 259.4824 0 4.391 7.779 0.568 2.087 127.1 744.3
8/12/2010 12:20 85144 13.03 38.51 32.46 870 873 867 
2.29 261.0869 0 1.327 3.586 0 1.149 193.5 744.3

  If TimeIntoInterval(3,5,Min) Then
    OutString = ""
    RealTime(curTime)
    For i=1 To 6
      OutString = OutString & curTime(i) & ","
      Next i
    GetRecord(Record(),DP_WS,1)
    For i=1 To 15
      If Record(i) < 0 Then
         outRecord(i) = CHR(45) & FormatFloat(ABS(Record(i)),"%.3

g")
      Else
        outRecord(i) = FormatFloat(ABS(Record(i)),"%.3g")    
      EndIf
       OutString = OutString & outRecord(i) & ","
      Next i
    OutString = OutString & CHR(13) & CHR(10) & ""
    SerialOpen (COMRS232,115200,0,0,10000)
    SerialOut (COMRS232,OutString,"",0,100)
  EndIf
 NextScan
EndProg
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Datalogger manufacturers offer support software that helps users in a variety of tasks, from wir-
ing, programming, and viewing stored data. For example, Campbell Scientific offers its Logger Net 
software that can help configure a connection to download data, build a program using templates by 
a method called Shortcut, edit programs in an editor window, and viewing stored data.

REMOTE TELEMETRY UNIT OR REMOTE TERMINAL UNIT (RTU) AND 
SUPERVISORY CONTROL AND DATA ACQUISITION (SCADA)

The terms RTU and SCADA are common in industrial applications, such as the energy indus-
try, and large facilities for environmental applications, such as municipal water treatment plants. 
An RTU is an MCU or SBC device that monitors and controls devices (e.g., sensors) in the field. 
Therefore, an RTU is similar to a datalogger but often with more control capabilities. Multiple 
RTUs in the field are connected to an SCADA. An SCADA typically includes a Human Machine 
Interface (HMI), which an operator uses to monitor and control the processes under the SCADA 
scope. Large SCADA systems encompass many RTUs distributed over a large area. Then, the HMI 
acts as central location to monitor and control a large area.

EXERCISES

Exercise 5.1

Consider the seconds register at address 00 hour of an RTC chip 1307

What are the number of seconds for cases A, B, and C? Hint: use the BCD code for the high nibble 
(bits 4–6) and low nibble (bits 0–3); for example, A is 54 seconds.

Exercise 5.2

Draw a diagram to connect one master and three slaves using SPI. Label the devices as well as the 
lines and indicate the direction of each line using arrowheads.

Exercise 5.3

Draw a diagram to connect one master and three slaves using I2C. Label the devices as well as the 
lines and indicate the direction of each line using arrowheads. Include pull-up resistors.

Exercise 5.4

Develop a CR1000 program to monitor the voltage from the battery and SM from two sensors. 
Assume that each sensor is a voltage divider (half bridge) with an output voltage in mV. Write the 
header and a couple of lines that exemplify the data collected by the program.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

A 1 0 1 0 1 0 0

B 0 0 1 0 1 0 1

C 1 0 0 0 0 0 1
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6 Wireless Technologies
Telemetry and Wireless 
Sensor Networks

INTRODUCTION

In this chapter, we study radio communications for a variety of wireless applications to environmen-
tal monitoring, particularly on telemetry from a remote station and wireless sensor network (WSN) 
systems. We focus on the physical principles and available technology. For this purpose, we cover 
topics in transmission, reception, and antennas. Telemetry relates to collecting data from a remote 
station. A WSN is a network of wireless-enabled MCU-based single-board computers (SBCs) inter-
acting with sensors. WSNs have environmental monitoring applications allowing data collection 
with finer spatial and temporal resolution. These concepts and systems are expanded by computer 
and hands-on exercises in Lab 6 of the companion Lab Manual (Acevedo 2024).

RADIO WAVE CONCEPTS

eleCtRomaGnetiC WaVes

Electromagnetic (EM) waves are fluctuations of the electric and magnetic fields that propagate in 
space, mostly in the air that surrounds us for many environmental monitoring applications. To char-
acterize a wave, we use the frequency f of the fluctuation (in Hz or s-1), which when multiplied by 
the wavelength λ (length of the wave, in m) equals to the speed of propagation, which is the speed 
of light c (3 × 108 m/s). The relationship is

 c fλ=  (6.1)

Note that the units (m/s) will be the same in the right-hand side as in the left-hand side. In other 
words, the frequency would be the number of cycles that go through a fixed point in space every 
second; wavelength is the distance between a point of the wave and a similar point in the next cycle, 
say between peaks (Figure 6.1).

As an example, a 3-kHz wave would have a wavelength of
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whereas a 300-GHz wave would have a wavelength of
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One more characteristic of the wave is the amplitude or height of the fluctuation or height of the 
peak, or half the peak-to-peak height. Wavelength (or alternatively frequency) determines how the 
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wave interacts with objects in the propagation path and size of antennas to transmit and receive 
the waves.

Radio WaVes

In the broadest sense, radio waves are EM waves in the frequency range of 3 kHz to 300 GHz, 
corresponding to wavelength ranging from 1 mm to 100 km as calculated in the examples above. 
However, we restrict the term radio to frequencies up to 1 GHz or longer than 30 cm (but shorter 
than 100 km) and use the term microwave for waves in between 1 and 300 GHz, or between 1-mm 
and 30-cm long. Figure 6.2 illustrates where these frequencies (and its wavelengths) are in the EM 
wave spectrum and its relationship with the immediately higher frequencies (infrared, visible, and 
ultraviolet).

The International Telecommunication Union of the United Nations establishes names for various 
radio wave ranges. For example, HF (high frequency), VHF (very high frequency), and UHF (ultra-
high frequency) ranges. HF radio or shortwave is from 3 MHz to 30 MHz, including Citizens Band 
at about 27 MHz. Next, VHF radio is in between 30 MHz and 300 MHz or 1 m and 10 m. Within this 
range, we find FM radio around 100 MHz or about a 3-m long wave. UHF is in between 300 MHz 
and 3 GHz or 10 cm and 1 m, including 900 MHz used for phones and WSN and Internet of Things 
(IoT) devices to be described later in this chapter.

pRopaGation

Propagating radio waves consist of electric- and magnetic-field components oscillating perpen-
dicular to each other as well as perpendicular to the direction of propagation. As we setup a com-
munication link, we need to understand what happens to the waves as they travel from source to 
destination. For example, several processes can affect the waves: reflection, diffraction, and refrac-
tion (Figure 6.3). All these processes depend on the characteristics of the terrain, land use (rural vs. 
urban), topography (hilly vs. flat), and land cover (forest vs. grassland).

Reflection: We are familiar with visible EM waves (light) reflecting from shiny surfaces, such as 
mirrors. Radio waves reflect the same way (Figure 6.3, top). Wetland surfaces are good reflectors of 
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radio waves, such as a lake, the sea, or wetlands. In urban areas, metallic surfaces of buildings are 
also good reflectors.

Refraction: Likewise, we are familiar with how light refracts as we go from air to water, for 
example the apparent bend of a partly submerged stick. Radio waves refract as well and tend to bend 
or change direction when going to media with different refractive index (Figure 6.3, left).

Diffraction: This is a less intuitive process but can visualize it when placing an obstacle in the 
path of waves traveling in water. The waves seem to go around the object; in essence, primary waves 
generate secondary waves that fill the void of fluctuations behind the obstacle (Figure 6.3, right). 
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Huygen’s principle explains this process by stating that each point of a primary wave is a source of 
a secondary wave.

Absorption: Waves are dampened as they go through a medium or material because the mate-
rial absorbs radiation. Absorption depends on frequency of the waves and the material itself. For 
example, in the microwave range waves are absorbed by metal (electrons move freely and thus 
absorb energy) and water (molecules are excited and absorb energy).

PROPAGATION MODELS

We will discuss two major models of propagation, the free-space model, and the two-ray model. For 
both models, we calculate received power from the transmission.

fRee-spaCe pRopaGation model

This model assumes that there are no obstacles along the propagation path of the radio waves, and 
thus the waves do not undergo any changes due for instance to reflection and diffraction. Hence, 
there is only one path of propagation, referred to as the Line of Sight (LoS) path.

Received power Pr is given by an equation proposed in the 1940s by Friis

 P
PG G

d
r

t t r λ=
π(4 )

2

2 2  (6.2)

where Pt = transmitted power of the signal (W), Gt = transmitting antenna gain, Gr = receiving 
antenna gain, λ = wavelength of the signal, and d = distance between transmitter and receiver. This 
equation is derived from the assumption that the received signal is calculated on a sphere of radius 
d centered on the transmitter.

Note that received power varies inversely with the square of distance, P d
d

∝( )
1
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d
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Equivalently, converting to dB, P d
P d

P d( )( ) ( ) ( )× = × 



 = × −10 log (2 ) 10 log

( )

4
10 log ( ) log 4  or

P d P d P ddB dB( )= × − × = −(2 ) 10 log ( ) 10 0.602 ( ) 6.02 dB  which states that doubling the trans-
mission distance reduces the power by 6 dB

 P d P ddB dB≈ −(2 ) ( ) 6 dB  (6.3)

We use the term path loss (PL) to denote the reduction in signal strength of a radio signal as it propa-
gates through the medium. It relates to the increasing spread of the wave with distance, implying 
that signal strength reduces as it covers longer distance. In the free-space propagation model, PL is 
Free Space Loss (FSL) and derives from the Friis equation by inverting

  
P

P

d

G G
t

r t r λ
= π(4 )2 2

2  (6.4)

This free-space model is a good predictor of PL for short transmission distance.
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Expressing this equation in dB PL
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Assume fMHz is frequency in MHz and dkm is distance in km
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d f G Gkm MHz t r( )+ × × − ×20 log 10 log( ).  Thus, we obtain

 PL f d G GdB MHz km t r= × + × + − ×20 log( ) 20 log( ) 32.45 10 log( )   (6.5)

Each ten-fold increase in gain 10n reduces the loss by 10 dB since G G nt r
n× = × =10 log( ) 10 log(10 ) 10 .

For unity gain 1G Gt r = , we have the popular formula

 FSL f ddB MHz km= × + × +20 log( ) 20 log( ) 32.45  (6.6)

which states that loss increases with frequency and distance. For example, at 900 MHz and for 
1 km, 20 log(900) 20 log(1) 32.45 dB 91 dB.FSLdB = × + × + =  A gain 100G Gt r =  reduces the loss 

by 20 dB, and we now have 91 20 dB = 71 dB.PLdB = −
PL is proportional to d and therefore for a fixed frequency, it increases by 6 dB every doubling 

of distance since (2 ) ( ) 20 log(2) ( ) 6 dB.PL d PL d PL ddB dB dB= + × = +  For example, at 900 MHz, for 

2 km, and unity gain yields (2) 91 6 dB = 97 dB.FSLdB ≈ +
Subtracting the loss from transmitted power, received power in dB is simply

 P P PLr t dBdB dB= −  (6.7)

It is convenient to express power in dBm, which is a ratio of power to a reference value (1 mW). For 
example, a transmitter with power 1 W represents 30 dBm.

 Pt = × 



 =10 log

1000 mW

1 mW
30 dBmdBm  (6.8)

Therefore, the reference 1 mW is 10 log(1) 0 dBm.× =  A negative value represents a fraction of 

1 mW; for example, 0.1 mW, is 10 log(10 ) 10 dBm.1× = −−

Since the loss is a unit less ratio, received power in dBm is transmitted power in dBm minus the 
loss in dB

 P P PLr t dBdBm dBm= −  (6.9)

For example, for Pt = 1 W at 900 MHz, over 1 km, and gain =G Gt r 100, we have = − =Pr dBm 30 71 dBm
−41 dBm. This is a fraction of 1 mW.

http://71dB.PL
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Weak signals have high negative values; for example, −10 mW8  is 10 log(10 ) 80 dBm.8× = −−  
Typically, we want the received signal to be better than –60 dBm to have good throughput and reli-
able connections.

tWo-Ray pRopaGation model

In addition to one LoS path between transmitter and receiver, there exists a ground reflection path 
(Figure 6.4) and the received power from each are combined to obtain total received power. For 
long distances, the two-ray model is a better predictor than the free-space model. This calculation is 
more complicated; however, for long distances, received power is approximately

 P d
PG G h h

d
r

t t r t r≈( )
2 2

4  (6.10)

where ht and hr are transmitter and receiver antenna heights. The approximation yields accurate 
results when the distance d is much larger than the crossover distance (dc) defined by
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In other words, Equation (6.10) can be used when � .d dc

Note that received power vary with the fourth power of distance P
d

r ∝ 1
4 , therefore doubling the 

transmission distance reduces the power by 1/16 of the original value P d
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Equivalently, doubling the transmission distance reduces the power by 12 dB, P d P ddB dB=(2 ) ( )
−12.04 dB.

PL in dB units predicted by Equation (6.10) is = × 
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10 log
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10 log( ) 104

( ) − ×h h G Gt r t rlog 10 log( ),2 2  which reduces to

 PL d h h G GdB t r t r( )= × − × − ×40 log( ) 20 log 10 log( )  (6.12)

Using distance in km,

  PL d h h G GdB km t r t r( )= × + − × − ×40 log( ) 120 20 log 10 log( )  (6.13)

For example, for ht = hr = 10 m, d = 100 km, and unity gain PLdB = × + − ×40 log(100) 120 20

( )× = + − =log 10 10 80 120 40 160 dB.  A gain G Gt r = 100  reduces the loss by 20 dB, and we now 

have = −PLdB 160 20 dB = 140 dB. Subtracting the loss from transmitted power, received power in 
dBm is given by Equation (6.9). In this example, when Pt = 1 W, we have = − =Pr dBm 30 140 dBm
−110 dBm, which is a small fraction of 1 mW.

FIGURE 6.4 Two-ray propagation model.
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FRESNEL ZONES

Two waves are in phase if they are in the same position in space; say, the peaks are at the same 
point. Conversely, they are out of phase if there is a difference in their position. This difference is 
the phase shift (Figure 6.5). When the waves are in phase, the phase shift is zero. The phase shift 
is a fraction of the wavelength since the difference is the same in all cycles. For example, a quarter 
of a wavelength λ/4 phase shift. This can be expressed as degrees from 0 to 360, or in radians 0 to 
π or a full cycle. Consequently, 360-degree phase difference is the same as 0-degree phase shift.

We will now look more carefully at what happens when a propagating signal experiences inter-
ference from obstacles causing reflection, refraction, and diffraction. These processes may cause 
a phase shift, which may enhance or reduce the signal. For example, the signal is enhanced if the 
reflected wave is in phase with the direct path signal; however, the direct path signal is reduced if it 
is out of phase with the reflected signal.

Fresnel zones provide a way to predict the enhancement or reduction by phase differences. 
Fresnel zones can be odd first, third, and so on, or even second, fourth, and so on. Odd-numbered 
zones cause out-of-phase interference, while even-numbered zones cause in-phase interference. In 
the first zone, phase shift is 0–π, in the second zone π–2π, and then repeats.

Wave propagation is conceptualized as ellipsoid layers with extremes at the transmitter and 
receiver stations and longitudinal axis between these two points (Figure 6.6). The Fresnel zones are 
ellipsoidal layers with the inner one being the first zone and progressing outward. The cross-section 
of the ellipsoids at all values of distance are concentric circles such that the increasing radius cor-
responds to increase zone number. The first Fresnel zone is the innermost circle, and the others 
are annulus or donut-shaped going outward. The zones are used to examine propagation patterns, 
particularly disrupted vs. clear (Figure 6.7). To avoid the effect of interference and hence treat the 
path as free space, at least 60% of the first Fresnel zone should clear the obstacles.

The radius at a point such that d1 = distance of the point from one end (m), d2 = d – d1 = distance 
from the other end (m) is calculated using
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where rn = Fn = nth Fresnel zone radius (m). For the first zone, n = 1, we obtain
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+
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d d
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 (6.15)

ANTENNAS AND CABLES

An antenna is a device that converts the RF signal propagating on the RF cable or transmission line 
to a wave propagating in space. For example, we can make a simple antenna by bending the open 
ends of the RF cable in opposite directions such that waves are in phase (Figure 6.8). The length of 
the bent is a quarter of the wavelength to produce a half-wave dipole antenna (WNDW 2013).

We now define several specifications that are very important when designing or selecting anten-
nas (WNDW 2013):

Input Impedance: For efficient transfer of the energy from the radio to the antenna, all imped-
ances of the radio, cable, and input impedance of the antenna must match. The impedance is typi-
cally 50 Ω. A metric that specifies impedance mismatch is return loss (RL), which is the ratio of input 
power to the antenna Pi from the RF cable to reflected power from the antenna Pref  and given in dB

 ( ) 10 logRL dB
P
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Another way of describing impedance mismatch is by SWR (standing wave ratio) that takes the 
value 1 for perfect match and a larger value for mismatch.

Bandwidth: It is the range of frequency in Hz over which the antenna meets certain specifica-
tions, e.g., gain or RL. An antenna performs well over this range of frequency designed to corre-
spond to the radio transmitter and receiver.

Directivity: A directional antenna focuses the energy on a given direction (anisotropic radia-
tion), whereas an omni-directional antenna radiates in all directions with the same energy (isotropic 
radiation). Directional antennas need an alignment of position and orientation such that they face 
each other lying in LoS path to obtain optimum received power.

Gain: It is a relative measure with respect to an isotropic antenna (given in dBi) or to a half-wave 
dipole antenna (given in dBd). We can convert from dBd to dBi by adding the gain of a dipole 
antenna of 2.15 dBi.

The transmitter and the receiver are connected to their respective antennas by an RF transmis-
sion line or RF cable. For high frequencies, this cable is important to maintain the integrity of the 
signal. The simplest cable is bifilar or twin wires. As we discussed previously (Chapter 4), a better 
approach to the twin wire setup is to use a wire with a shield, and even better a coaxial cable for HF 
and higher. The coaxial cable inner conductor carries the RF signal while the outer conductor is a 
shield to contain the electric field and to prevent interference. Any RF cable attenuates the signal, 
and it is specified in dB per meter; implying that the transmitter should be close to the antenna.

FADE MARGIN

This margin is an allowance in a radio link gain so that it can accommodate expected fading. 
In other words, it is the amount that we could reduce the received power without degrading per-
formance below a specified level. Even after optimizing a radio link in terms of LoS, antenna, 
and alignment, there are adverse conditions that are inevitable, such as extreme weather and new 
obstructions, such as leafing of trees in the growing season. We account for these uncertain condi-
tions having ample fade margin. A fade margin of 20 dB is typically sufficient, it signifies that the 
signal is 100 times stronger than the minimum required.

POLARIZATION

The direction of the electric field vector determines polarization. Linear vertical polarization occurs 
when the electric field vector is vertical (pointing only upward or downward), whereas linear hori-
zontal polarization corresponds to the electrical field vector aligning horizontally or pointing only 
sideways. This linear polarization scheme is generated by a dipole antenna placed either vertically 
or horizontally. When directions are combined, by having two perpendicular dipole antennas, the 
electric field vector can rotate in a circle or ellipse on a plane perpendicular to the direction of 
propagation (WNDW 2013).

RF ~

FIGURE 6.8 Dipole antenna.
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Polarization helps to implement two links sharing the direct path between two points. One link 
will use one polarization direction, the other link the vertical polarization direction. Their corre-
sponding antennas would have to match and reject each other polarization direction.

RADIO LINKS: COMMUNICATION CHANNEL

modulation: diGital siGnals

In communication systems, radio waves carry a signal that contains information that a sender wants 
to transfer to a receiver. For this purpose, the radio link is a communication channel established at 
the frequency of the carrier wave. Modulation is the process of imposing a signal on the RF wave 
carrier by modifying its amplitude, frequency, or phase. For example, amplitude modulation (AM) 
consists of making the carrier amplitude vary with the signal, phase-shift keying (PSK) modifies 
the phase of the carrier. Demodulation is the process of extracting the signal from the modulated 
carrier. In general, signal suffers from attenuation, delay, and noise contamination when traveling 
through the channel.

Analog signals can directly modulate the carrier wave and then be transmitted. However, they 
are vulnerable to interference when traveling through the channel. A more robust method is to 
convert the signal into symbols so to reduce the effect of noise contamination. Many modern com-
munication systems are digital where the symbols are based on binary 0s and 1s. As we know from 
Chapters 2 - 5, we can convert an analog signal to digital by sampling and using an ADC.

Some modulation methods are good for maximizing noise rejection, others for maximizing 
capacity (amount of information transmitted in bits/s), and yet others for maximizing spectral 
efficiency (number of bits/s per Hz of bandwidth). We often have a trade-off among these prop-
erties. Examples of modulation methods are Binary PSK (BPSK), Quadrature PSK (QPSK), and 
Quaternary AM (QAM). In BPSK, we use two values of phase separated by 180° and each phase 
represents a bit (0 and 1); we can transmit only one bit per symbol (low capacity), but it is very resis-
tant to noise. In QPSK, we use four values of phase, coding 2-bit symbols (00, 01, 10, 11); we can 
transmit two bits per symbol thereby doubling the capacity, and it is still robust to noise. In QAM, 
we can transmit several bits in a symbol (more capacity) but is more vulnerable to noise. QAM can 
be implemented in several levels, such as 16-QAM (4 bits per symbol), 64-QAM (6 bits per symbol), 
and 256-QAM (8 bits per symbol).

CHannel peRfoRmanCe

Several parameters can be used to characterize a channel, such as Data rate, Bit Error Rate (BER), 
throughput, and spectral width.

Data rate: number of bits per sec (bps) sent over the link. Desired rates are in the millions of bps 
(Mbps). BER: fraction of received bits that are in error. It should be low (e.g., 10–9). As a signal loses 
power or encounters interference, the BER will increase.

Throughput: is a key measure of link performance calculated as the average rate of successful 
message delivery over a communication link. It is the ratio of total file size in bits delivered over the 
time taken for transferring (in sec). Therefore, throughput has same units as data rate (bps).

Spectral width: we can reduce spectral width in order to decrease interference from overlapping 
channels and increase power spectra density; however, this results in lower throughput.

multiplexinG

Multiplexing allows sharing a link by many users. This is also called Multiple Access (MA), and it 
is accomplished in a variety of ways. For example, assigning a different frequency to each user as 



139Wireless Technologies: Telemetry and Wireless Sensor Networks

in FDMA (frequency division MA), or assigning different time slots to different users as in TDMA 
(time division MA), or assigning different codes to each user as in CDMA (Code division MA), or 
using different fading from different antennas as in SDMA (space division MA). A special case 
of sharing the link is making it duplex, providing for two simultaneous directions: downlink and 
uplink. This is done by dividing time (TDD, time division duplexing) or frequency (FDD, TDD) 
between the down and the up directions.

spRead speCtRum

Spread spectrum is a method by which a signal’s bandwidth is “spread” over the spectrum to obtain 
a signal with larger bandwidth. This technique allows MA while reducing interference. Two major 
techniques are direct-sequence spread spectrum (DSSS) and frequency hopping spread spectrum 
(FHSS).

WI-FI

Recall that we discussed Wi-Fi in Chapter 2 and its role in networking. By calculating PL using 
Equation (6.6), we can compare the effect of transmission distance between 2.4 and 5 GHz and 
note that 2.4 GHz allows for longer distances than 5 GHz. When using 2.4 GHz, the bandwidth 
is about 100 MHz, which divided into 20 MHz channels would make most of them overlapping 
(except three). Therefore, there is possible channel interference when using 2.4 GHz (Figure 6.9). 
Contrastingly, when using 5 GHz, the bandwidth is larger allowing for higher data rates and more 
non-overlapping channels (reducing interference) of 40 MHzbandwidth.

Standard 802.11b calls for a DSSS technique called complementary coded keying; the bit stream 
is coded and then modulated using QPSK. The 802.11a and g systems use 64-channel orthogonal 
frequency division multiplexing, which divides the available band into channels. The transmitter 
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encodes the bit streams on the 64 carriers using BPSK, QPSK, or one of two levels of QAM (16- or 
64-QAM).

The classic NanoStation and NanoStation Loco (Ubiquiti Networks) are Wi-Fi products that 
operate in the 2.4-GHz frequency range and supporting the standards IEEE 802.11 b/g. Updates of 
these classic products are now UISP NanoStation AC 5 GHz and UISP NanoStation 5 AC Loco. A 
NanoStation allows to establish a wireless link between any two remotely located stations. It has 
a built-in directional antenna of 10-dBi gain, with 3-dB horizontal beam of width 60º and vertical 
beam width of 30º. One can also connect an external antenna for longer transmission range. The 
Nanostation2 uses vertical and horizontal polarization and in addition uses an adaptive antenna 
polarity technology, which can improve the link quality by switching antenna polarities statically 
or dynamically.

The maximum transmit power of 26 dBm allows it to cover the range of up to 15 km. The power 
supply required is 12 V, 1 A with 4-W maximum power consumption. The unit can be powered via 
the same Ethernet cable through which it is connected to other devices like a PC, router, or SBC. 
The data rate can go up to 54 Mbps and the throughput up to 25 Mbps. Maximum receiver sensi-
tivity is −97 dBm (Ubiquiti 2009). The Nanostation2 has three rate modes: Quarter (5 MHz), Half 
(10 MHz), and Full (20 MHz). Rx Sensitivity is inversely proportional to data rate.

As a manner of illustrating the above concepts, we summarize a Wi-Fi radio link (Gurung 2009) 
between a weather station at the University of North Texas (UNT), Discovery Park (DP) campus 
(ground elevation 217 m, latitude, longitude 33.26º, –97.15º), and the EESAT building (roof elevation 
242 m, latitude, longitude 33.21º, –97.15º) at UNT main campus. For this link, there is clear LoS for 
a d = 4.74 km. Azimuth angles to direct antennas are 1.4º and 181.4º at the EESAT and DP stations, 
respectively.

First, to decide on a propagation model to estimate received power, calculate crossover distance, 
using f = 2.422 GHz and antenna heights of 9 m (height of antenna mounting pole at DP) and 25 m 
(height at the roof of the EESAT building)

 d
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resulting in d < dc, therefore select the free-space model and calculate FSL using Equation (6.6) 

= × × + × + =FSL(dB) 20 log(2.422 10 ) 20 log(4.74) 32.45 113.65 dB3 . Using antenna gains Gt = 10 
dBi and Gr = 10 dBi represents a gain =G Gt r 100. The PL in dB is = − ≈PLdB 113.65 20 dB  −93 dB. 
With transmitted power Pt = 26 dBm, and using Equation (6.9), we get = − =Pr 26 93 dBmdBm  −67 dBm. 
Recall that the negative sign means that the received power is less than 1 mW.

After performing a field survey using a Wi-Fi Spectrum Analyzer tool, Channel 3 was selected 
being the least crowded at both sites. Radio-link modeling included a Digital Elevation Model 
(DEM) to consider topography of the land. The simulation results are received power –69.5 dBm, 
PL 114.5 dB, fade margin 22.5 dB, and worst Fresnel 1.2F1. Using a graph of receiver sensitivity as 
a function of data rate, 13.5 Mbps was selected which allows for ample fade margin. Spectral width 
was selected as 5 MHz, polarization was set as vertical (two-way), and IEEE mode selected was 
802.11g to avoid unnecessary interference from 802.11b networks.

With these parameters, low-cost Nanostation N2 devices were installed at both locations using 
25-m Cat5 Ethernet cable at the EESAT and 12-m Cat5 Ethernet cable at DP. After alignment of 
antennas, received power was –66 dBm and fade margin was 22.5 dBm, considered ample enough to 
counteract hostile environmental conditions. Throughput tests were conducted using IPERF  (network 
performance measurement tool written in C++) and the Nanostation built-in tool. Tests included two 
transmit (Tx) power levels (26 and 11 dBm) and two data rates (54 and 13.5 Mbps), for a total of 
four experimental conditions transmitting a 12-Mb file in 60 s. There was no significant change in 
throughput (~0.4 Mbps) when the data rate is changed while keeping Tx power fixed at 11 dBm. 
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However, throughput doubles to ~ 3.75 Mpbs when the data rate is changed, while transmit power 
is 26 dBm. As we see from this example, Wi-Fi represents a practical technology to implement 
 relatively long-distance links between a remote monitoring station and a base station. Later in the 
chapter we will discuss other radio options for long distance based on frequencies in the 900 MHz 
range.

CELLULAR PHONE NETWORK AND SATELLITE LINKS

A convenient method to transmit data from a remote station to a base station is to connect the 
monitoring station to the cellular phone network. This of course assumes that there is coverage by 
a cellular phone network provider and transmission is subject to fees charged by the provider. For 
practical purposes, the station will act as a regular mobile user of the network. There is a variety of 
cellular modem equipment that includes router capabilities to establish a LAN as part of the remote 
station; for example the Peplink industrial rugged series (Peplink 2023).

Satellite communication links allow for wireless access to remote areas not covered by the cellu-
lar networks. Some systems allow for Internet connectivity; for example Starlink (2023) and others 
aim to collect information from remote environmental monitoring stations and sensors; for example 
Argos (2023). Argos locates the stations on Earth by using the Doppler effect. This system is key 
to large programs over large areas such as Tropical Ocean-Global Atmosphere program, Tagging 
of Pacific Pelagics, World Ocean Circulation Experiment, and others. Argos transmitters can track 
long-distance movement of oceanic animals such as mammal and turtles. We will discuss wildlife 
tracking in Chapter 14.

WIRELESS SENSOR NETWORKS (WSNs)

During the 1990s, given the advancement in wireless technology and MCU-based SBCs, research-
ers started to develop networks of wireless-enabled MCU-based SBCs interacting with sensors. 
These networks became known as WSNs. In a decade, several technologies became available; e.g., 
U.C. Berkeley iMotes and Crosbow Mica2/Z, and potential environmental monitoring applications 
were identified (Culler et al. 2004; Mainwaring et al. 2002) allowing data collection with finer 
spatial and temporal resolution. Since then, WSN technology has evolved considerably as we will 
describe in this chapter.

Typically, we have a collection of sensor nodes communicating by radio among them and with a 
base station node. Each sensor node routes its logged data to the base station node, which assembles 
and stores the entire dataset for transmission to a PC or an SBC (Figure 6.10). You can think of this 
network as a spatially distributed datalogger. Figure 6.11 illustrates examples of WSN topology. 
Besides point-to-point, the simplest arrangement is a star for which all nodes connect directly to the 
base station node. In string multi-hop, nodes relay data from node to node to the base station node. 
A cluster arrangement consists of nodes connected in star to cluster heads, which in turn connect as 
a star to the base station node. All nodes are connected to each other in a mesh arrangement, which 
offers the most complete connectivity. As WSN are added to remote environmental monitoring sys-
tems, we face the challenge of how to power the nodes of the WSN. We cover this topic in Chapter 7, 
which is devoted to electric power.

Wsn standaRds and teCHnoloGies

As mentioned above, WSN standards and technologies have been evolving substantially, we will 
briefly describe some of the most relevant ones (see summary in Table 6.1) (Rawat et al. 2013). 
IEEE 802.15.4 covers layers 1–2 and is generic with multiple applications. ZigBee covers layers 3–7 
and is applied for example to control, monitoring, and home automation. Bluetooth Low Energy 
(BLE) has its own stack protocol that maps to Open Systems Interconnection (OSI) layers, it is 



142 Real-Time Environmental Monitoring

widespread and applies to phones and entertainment. Z-Wave covers layers 1–2 and maps to lay-
ers 3, 4, and 7 with applications to home automation. ANT covers layers 1–4 and maps to higher 
layers; it is like BLE, but it is sensor-oriented and popular in fitness and health. Wavenis covers 
layers 1–2, by Open Standard Alliance, used for long distance (1–4 km), low power, and relatively 
low data rate (100 kbps). EnOcean covers layers 1–3 and maps to higher layers, has relatively long 
distance range (300 m), relatively low data rates (125 Kbps), and specifies battery-less ultra-low 
power; equivalent to ISO/IEC14543-3-10, with applications to energy harvesting. Wireless-HART 
(Highway Addressable Remote Transducer Protocol) covers layers 1–2 and applies to relatively 
long distances. Ultra Wide Band – Impulse Radio (IR-UWB) for short distances and fast data rate 
applications. IEEE 802.15.6 applied to wireless body area networks specifies high data rates (up to 
10 Mbps), low power, and short range (5 m).
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FIGURE 6.10 WSN.

FIGURE 6.11 WSN topology examples.
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iot

As discussed in Chapter 2, distributed sensor networks, wire and wireless, connected to the Internet 
and combined with advances in communication, control, and data analysis, has led to the concept 
of the IoT or a large network of interconnected devices and physical objects (“things”). In the next 
section, we will go in detail on various devices that can be used for WSN and IoT.

Wsn nodes

In environmental monitoring applications, each sensor node performs three main tasks, data 
acquisition, data processing, and data reporting through wireless communications (Figure 6.12). 
To accomplish the data-acquisition task, the node collects sensor readings periodically. Then, in 
the data-processing task, sensor nodes may calibrate, aggregate, summarize, and compress the 
data. Lastly, during the data-reporting task, data are transmitted wirelessly to a base station node. 
Depending on the network topology, the nodes may transmit directly to the base station or through 
multi-hop (to be described later in the chapter). A variety of software services implement timing, 
communication, and networking protocols (Yang et al. 2008, 2010). When a node includes an RTC, 
sensor data are time-stamped upon sampling, acting as a datalogger. A network with multiple data-
logging nodes would require nodes to be synchronized.

A node must include components to perform the above three functions: sensor, processing, and 
wireless components or units (Figure 6.13). We can use the knowledge gained from earlier chapters 
and the first part of this chapter, to understand how these three components work. The sensor module 
includes transducers and signal conditioning, the processing unit includes MCU with ADC to read 
analog transducers, and the wireless unit is a radio transceiver with internal or external antenna.

Initially, sensor nodes were based on two or more interconnected boards, such as Crossbow 
motes, which combined an IRIS processor/radio and an MDA300 sensor module. Nowadays, it 
is common to mount the radio unit on the same board, so that all components are integrated on a 
single board, as exemplified by the Moteino with RFM69 radio (Figure 6.14) and the NodeMCU 
with ESP8266 unit for processing and Wi-Fi. We will describe these and other available devices in 
the next section.

TABLE 6.1
WSN Specifications

Frequency Data rate Range Nodes Topology Power

IEEE 
802.15.4 + ZigBee

0.868, 0.915, 2.4 0.25 100 65536 S, PP, M Low

Bluetooth Low 
Energy (BLE)

2.4 1 10 8 PP Ultra Low

Z-Wave 0.868, 0.908,
0.916

0.040 30 232 M Low

Ant 2.4 1 30 65533 S, PP, M Ultra Low

Wavenis 0.433, 0.868,
0.915

0.1 4000 100000 PP Ultra Low

EnOcean 0.315, 0.868 0.125 300 S, PP, M Ultra-Low

Wireless Hart 2.4 0.250 250 65536 M Very low

IR-UWB 3.1, 10.6 10 5 1000 S, M Ultra low

IEEE 802.15.6 0.4, 2.4, 3.1, 10.6 10 5 Low
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EXAMPLES OF DEVICES FOR WSN NODES AND IOT

moteino

Moteino devices are small-footprint (e.g., 3 cm × 2 cm) Arduino clones developed to consume 
low power and can be provided with radio capabilities that could be used to configure a WSN 
(LowPowerLab 2020). A Moteino device integrates datalogging, processing, and radio (Figure 6.14). 
On-board radio capabilities provided by an RFM69CW transceiver and wire antenna in 433-MHz, 
868-MHz, and 915-MHz range. Compared to 2.4 GHz, these RFs allow longer transmission dis-
tances and can provide less attenuation in the field. We will work with Moteino devices following 
lab guide 6 of the companion Lab Manual.

esp8266 and esp32

ESP8266 modules are low-cost and small-footprint devices based on the ESP8266 SoC that include 
Wi-Fi, TCP/IP, and MCU capability (Espressif 2022). The simplest ESP chips produced in the mid-
2010s, the ESP-01, became popular to provide Wi-Fi and TCP/IP to other MCU boards, such as the 
Arduino. Development boards based on ESP8266 modules have a micro-USB connector that allows 
connection to a UART via USB, as well as access to GPIO pins. More recently, the family of ESP32 
devices includes several series, ESP32, ESP32-C, ESP32-S2, and ESP32-S3. These devices include 
Bluetooth, more GPIO pins, ADC, and DAC. We will work with ESP8266 devices in Lab 6 of the 
companion Lab Manual.
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FIGURE 6.12 Functions of a sensor node.
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xbee

Other radios that can be used for WSN include Xbee that is a brand name of Digi International and 
includes a series of radio modules; many based on the IEEE 802.15.4 standard.

loRa

LoRa is a radio modulation technique that encodes information using a chirped multi-symbol 
format; however, the term LoRa also refers to the devices and gateways that support the LoRa 
modulation, and to the LoRa communication network for IoT applications (Link Labs 2018). As a 
modulation technique, it allows cost-effective communication of low data-rate devices over longer 
distances. LoRa consists of a fractional-N–synthesized chirp generator which includes a fractional-
N synthesizer and a digital ramp synthesizer.

FIGURE 6.14 Moteino by LowPowerLab.
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NETWORK PROTOCOLS

media aCCess ContRol (maC)

Recall from Chapter 2 that the OSI model has seven logical layers, where a layer serves the layer 
above it while being served by the layer below it. The MAC protocol is part or a sub-layer of layer 2 
or data link layer. The MAC sub-layer provides addressing and access of multiple nodes to a shared 
medium. A medium is a general term that refers to a communication link, for example Ethernet. The 
MAC is an interface between layer 1 (Physical layer) and the logical link control sub-layer of layer 
2 and emulates a full-duplex channel in a multi-point network.

MAC sub-layer protocols are categorized into two large groups, schedule-based and conten-
tion-based methods (Stallings 2004; Ye et al. 2002). In schedule-based protocols, wireless devices 
occupy different channels that are physically or logically independent. To achieve channel separa-
tion, we use time, frequency, and code division for MA methods (i.e., TDMA, FDMA, and CDMA, 
as described earlier in this chapter). In contrast, in contention-based protocols such as the carrier-
sense MA (CSMA) method, wireless devices compete for a single shared channel. In CSMA, a node 
would check for existing traffic before transmitting on the channel.

multi-Hop WiReless CommuniCation

A WSN consists of nodes that communicate with each other and hop messages to the base station, 
which passes the messages to a PC or SBC, or “client” (Crossbow 2006b). By hopping data in this 
manner, we improve radio communications coverage and reliability while reducing power. Two 
nodes do not need to be in direct radio link; instead, nodes in between route messages. Similarly, 
messages can be re-routed when conditions impede communications between two nodes. Instead 
of limiting communication between the base station and one network node (the last link in the net), 
multi-hop allows several nodes receive and transmit information. Each hop is short distance.

loRa-based pRotoCols

A MAC layer can be used to adopt the LoRa technology as the physical layer. For example, 
LoRaWAN is a low-power and wide-area MAC-based network protocol facilitating connection of 
WSN nodes and IoT devices, using LoRa as the physical layer, to the Internet (LoRa Alliance 2022). 
It is based on a star-of-stars topology in which gateways of each star relay messages between its end-
devices and a server. The gateways are connected to the network server via IP and act as a bridge, 
converting RF packets to IP packets and vice versa. LoRaWAN is best suited for public networks 
because all devices are tuned to the same channel.

netWoRk pRotoCol foR enViRonmental monitoRinG

A suitable protocol for environmental monitoring applications would typically allow distributed 
sensor nodes to form a spanning-tree structure, rooted in a single data-collection base station or sink 
node, so that majority of the data traffic is from sensor node to the base station node.

Many existing protocols are intended for peer-to-peer applications where data are routed between 
any pair of nodes in the network. However, this type of protocol usually introduces a large amount of 
communication overhead and cannot exploit the unique tree structure to minimize energy consump-
tion. Wireless communication and networking are among the most energy-consuming operations that 
a node performs. Therefore, the design of a protocol has an impact on energy efficiency.

A contention-based protocol is autonomous but energy-inefficient due to high collision rate in the 
shared channel and idle listening. A schedule-based protocol may eliminate these issues and achieve 
energy efficiency, but it may suffer interference from other types of devices operating in the same 
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frequency band, especially in the unlicensed Industrial, Scientific, and Medical (ISM) bands (e.g., 
Wi-Fi) that sensor networks often employ.

In multi-hop WSN, though most of the traffic is many-to-one, nodes broadcast some of the con-
trol and signaling packets to neighboring nodes in order to establish multi-hop routes. Consequently, 
most of the MAC protocols designed for sensor networks adopt CSMA as the baseline mechanism 
but then implement time-slot scheduling algorithms to coordinate duty cycling.

Simple duty cycling scheme, where a mote keeps the radio on for a fraction of the time, and 
synchronous sleep scheduling makes the systems not scalable to capture spatial variation character-
istics in a large area. Therefore, a hybrid MAC layer networking protocol was developed for a soil 
moisture environmental monitoring application. This hybrid protocol integrates CSMA and duty 
cycle scheduling to coordinate when sensor nodes go to sleep and achieve energy efficiency. Like 
many low-power MAC protocols available in the literature, this protocol divides the entire time 
axis into super frames, each of which is divided into time slots, as illustrated in Figure 6.16. At the 
beginning of a super frame, all nodes broadcast and receive packets competing for TDMA slots. A 
parent node assigns a TDMA slot to its child upon request. Then, sensor nodes turn off their radios 
and remain asleep except in their own active TDMA slots. This hybrid protocol strives to retain the 
flexibility of contention-based protocols while improving energy efficiency in multi-hop networks.

mQtt pRotoCol

MQTT is a lightweight messaging protocol useful to interconnect remote devices with reduced code 
footprint and network bandwidth (MQTT 2022). Its name originated from the acronym MQ Telemetry 
Transport, but the shorter name MQTT is most commonly used. The protocol defines how devices can 
exchange data over TCP/IP using the publish/subscribe pattern, in which the publisher and the sub-
scriber do not communicate directly but via a broker that handles the connection, processing incoming 
messages and distributing them to the subscribers (HiveMQ 2022; Steve’s Internet Guide 2022a).

The publisher and subscriber do not exchange IP addresses, do not need to run at the same time, 
and do not have to interrupt operation during publishing and subscribing. Instead, the broker filters 
incoming messages using the topic (subject) string embedded in the message; the subscribers will sign 
up for the topics of interest, and the broker will provide the subscribed topics. From a client/server 
perspective, both the publisher and subscriber are MQTT clients that connect to the MQTT broker. A 
client may range from a lightweight WSN node to an SBC running more complicated programs. Client 
libraries are available for many languages, including Arduino, Python, and PHP (MQTT.org 2022).

MQTT, at OSI layers 5 and 7, is based on TCP/IP, and thus clients and the broker must have TCP/
IP (OSI layers 3 and 4). A connection is initiated by a client sending a message to the broker that 
responds with an acknowledgment message (CONNACK), remaining open until the client sends a 

FIGURE 6.16 Time slot structure of a superframe in a hybrid MAC protocol. From Yang, J. et al. (2010).

http://MQTT.org
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disconnect message. On a LAN, clients on the same network as the broker, IP exchange is trivial, 
but in many IoT applications the devices are on separate networks. For example, when the broker is 
on an Internet public address, MQTT client’s private IP is translated by a router to a public address, 
allowing Internet connection to the broker’s public IP address.

A message is composed of a topic, used by the broker to filter messages to the subscriber, and a 
payload, which has the actual data to be exchanged. For example, for a message from a temperature 
sensor the topic could be “TempC” and the payload “26.7”. Topics are structured by level separated 
by forward slash, e.g., in a WSN a message from sensor node 1 which measures temperature (among 
other variables), the topic could be “Node1/TempC” and the payload “26.7”. A subscriber client 
connected to the broker would subscribe to this topic and thus the broker would deliver the message 
with topic “Node1/TempC” and payload 26.7. This client then would have computer code to use this 
information for whatever application is needed. Structuring topics as well as message payload are 
then very important in MQTT design (AWS 2022; HiveMQQT 2022; Steve’s Internet Guide 2022b).

In lab 6 session of the Lab manual companion of this textbook, we will practice MQTT mes-
saging using an example of WSN nodes implemented in ESP8266 acting as client publishers, one 
broker implemented in a Raspberry Pi, and one subscriber client running on the same Raspberry Pi.

WSN AND ENVIRONMENTAL MONITORING: PRACTICAL 
CONSIDERATIONS AND EXAMPLES

Radio pRopaGation and Wsn

There are practical issues when deploying a WSN in the field, including receiver signal strength 
(RSS) and its relationship with battery power and distance between nodes. All these factors influ-
ence the number of nodes used and the configuration of the WSN such that we can establish reliable 
communication between neighboring nodes. Radio propagation is affected by many factors, par-
ticularly in field conditions with changing vegetation foliage and weather conditions.

In many WSN outdoor deployment for environmental monitoring, the antennas are not high above 
the ground (e.g., 1 m), and the distance between the sensor nodes is relatively small (up to 50 m). 
These settings are not common in most existing radio wave propagation models such as the ones we 
discussed earlier in this chapter. Some specific analysis can help have an insight into basic propagation 
mechanisms over a reflecting surface as well as the influence of foliage (Thelen et al. 2009).

Recall that crossover distance (dc) determines what propagation model to apply. Assume a sce-
nario of ht = hr = 1 m = height of the transmitting and receiving antennas and a frequency of 2.4 GHz. 
We obtain dc ~ 100 m. Therefore, we would have to keep a distance less than 100 m to apply the free-
space model, otherwise we should use the two-ray model. Note that if the antennas were to be lower 
say 0.5 m, the crossover distance shortens to 25 m; this would limit the application of free-space 
model vs. the two-ray model.

Let us then consider a two-ray model for WSN applications. Recall that the two-ray model 

Eqution (6.10). We can convert to a propagation loss L equation from the ratio 
P

P
r

t

 in dB assum-

ing isotropic antennas = − × − × + ×L dB h h dt r m( ) 20 log( ) 20 log( ) 40 log( ). Note that antennas lower 
than 1 m would contribute to the loss, whereas antennas higher than 1 m will decrease the loss. We 
can estimate that 1-m antenna heights would make the loss solely a function of distance. Also, note 
that the above equation implies a 12-dB reduction for a two-fold increase in distance.

Consider, for example 1-m antennas and 10-m distance. We would get a loss of 40 dBm; doubling 
this distance to 20 m would give 12 dB more for a loss of 52 dBm and doubling the distance gain (40 m) 
would add 12 dB more or a total of 64 dBm. For a perspective, this is about half the loss you would get 
for a 3-km Wi-Fi link using a free-space model. One more thing to think about is that in the two-ray 
model, we assume perfect reflection from the ground (or a coefficient equal to –1). However, reflec-
tion from the ground varies with soil wetness, near-ground vegetation cover, and of course the carrier 
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frequency. In a vegetated environment, loss would increase with increasing frequency, height of the 
canopy with respect to antenna height, and moisture content of foliage (Thelen et al. 2009).

Radio pRopaGation expeRiments foR Wsn

The considerations of the previous section give us a framework to consider propagation issues when 
deploying a WSN in the field; but, because of the high variability of field conditions with topog-
raphy, changing vegetation foliage, and weather conditions, we require experimentation to plan a 
reliable configuration of the network, including network topology.

Experiments include several variables. RSS is a measure of the received RF signal. Sensitivity 
is defined as the lowest RSS that allows obtaining complete data from a neighboring node. Packet 
receiver rate (PRR) is an indicator of the percentage data received from a neighboring node and 
is related to the RSS and the distance between sensor nodes. PRR decreases when transmission 
is weak, and data could be lost, and energy consumption will be higher due to re-transmission. A 
design goal is to find a configuration so that data retrieval is close to 100%.

For experimentation, we can use on-board elements of sensor nodes such as temperature, relative 
humidity (RH), RSS, PRR, and battery voltage. For example, research with the Chipcon CC1000 radio, 
part of the Mica2Dot sensor node indicated that radio waves are limited to 10 m when potato crops are 
in flower, and radio waves propagate better at times of the day of high RH and rain (Thelen et al. 2009).

Experiments conducted at the UNT DP campus using crossbow motes have addressed issues of 
RSS, PRR, battery power, for varying distance between nodes, network topology, and in contrasting 
vegetation conditions. Results indicated that to maintain a given level of PRR (95%), the maximum 
distance decreases for increasing vegetation density; 70 m in open field with short grass vegetation, 
50 m in tall grass with scattered trees, and 30 m in forested areas (Chegwidden and Wood 2009). 
Air temperature and humidity affect the RSS, attaining better RSS as air temperature decreases and 
humidity increases. Experimental topology setup included parallel transects (two rows of nodes, 
covering 150 m × 10 m plot, each node was approximately 10 m from its nearest neighbor nodes, 
making the furthest node 150-m away) or more interconnected topology.

Experiments at UNT have also addressed practical issues related to battery discharge accord-
ing to ambient temperature and its relation to the use of enclosures and battery type. Temperature 
extremes (high and low) cause battery discharge; this effect has implications in enclosure design and 
is reduced using alkaline batteries (Arnold and De Lemos 2009).

example: Wsn foR soil moistuRe in a HaRdWood bottomland foRest

During the early 2000s, we developed a WSN for distributed soil moisture monitoring in a hard-
wood bottomland forest, located in the Greenbelt Corridor (North Central Texas). The WSN was 
composed of IRIS/MDA motes and interfaces to an SBC (see Chapter 2) that serves as a Remote 
Field Gateway (RFG) Server, providing control and management of the WSN.

This early implementation of WSN for environmental monitoring employed the IRIS XM2110 
that is a processor and wireless module based on the ATmega1281 MCU using a TinyOS operating 
system and a reduced set of C functions (Crossbow 2006a). It was low power, with a small footprint 
(6 cm × 3 cm) and has a connector for an antenna. The radio uses 2.4 GHz with power of 3 dBm. 
Operating distance range varies and can be more limited depending on field conditions (e.g., about 
50 m in a forest environment under dry conditions). The MDA300 interfaces with the IRIS via a 
51-pin connector and has on-board air temperature and RH sensors and a wiring panel to connect 
external sensors. Figure 6.15 is a functional diagram of a sensor node implemented by an IRIS/
MDA combination (Crossbow 2006b).

The SBC also coordinates the WSN with a traditional datalogger-based wired sensor sys-
tem (Figure 6.17). We implemented the RFG server using an ultra-low-power SBC TS-7260 
from Technology Systems, Inc. (Technologic 2014) which is Linux-based and supports remote 
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manipulation of the devices in the field. Sensor data collected from the distributed monitoring 
stations are stored in a local database at the SBC, which transmits data to a central data collection 
(CDC) server and stored in a centralized database (we will study database concepts in Chapter 10).

To minimize energy consumption, the environmental monitoring system undergoes a duty cycle 
between the active and sleep modes as explained earlier in this chapter. The SBC has RS232 serial 
ports, USB, and Ethernet ports facilitating its connection with the datalogger and the WSN gate-
way, modem, and other devices For several years, the long-haul wireless communication from the 
field to the CDC server was implemented using a GPRS (General Packet Radio Service) cellular 
modem. To be energy-efficient, the wireless modem is turned off during the system’s sleep period. 
A photovoltaic panel and a rechargeable battery (we will cover power concepts in Chapter 7) power 
the SBC, datalogger, and modem.

The RFG server wakes up periodically to carry out data collection services. Upon boot up, the 
RFG server executes a series of scripts to initiate various services, including an event logging dae-
mon, an FTP server, and an SSH terminal. Then, the SBC executes several data collection processes 
to start to poll data from the WSN node and dataloggers through RS232 ports and insert into a local 
MySQL database (Chapter 10).

Motes are deployed in weatherproof boxes, equipped with external antennas, and the boxes are 
installed 1 m above the ground on top of metal poles to avoid flooding water (Figure 6.18). Prior 
to the deployment, we conducted a site survey to measure the one-hop radio communication range 
between motes in the forest environment. As discussed earlier in this chapter, radio propagation 
characteristics vary significantly with vegetation characteristics and density. In summer surveys, at 
maximum Tx power, IRIS motes were able to transmit 50 m on average with 80% packet reception 
rate. Thus, we deployed motes with a maximum one-hop distance of about 30 m.

The WSN deployment consisted of about 30 motes equipped with soil moisture sensors, and 
about 20 radio-only motes that serve as relay points (Figure 6.19). Each one of the 30 sensor nodes 
collects data every 10 minutes from soil moisture sensors (connected by wire to the motes); simul-
taneously, the motes read on-board temperature and RH sensors. The network topology supports 
long-term hydrologic monitoring and modeling in the floodplain area alongside the Trinity River, 
providing an opportunity to collect a duplicated set of soil moisture variation along a cross-sectional 
transect from the river levee (higher elevation and sandy soil) to the central weather station (lower 
elevation and clay soil). Characterizing soil moisture variation with respect to elevation and soil 
type is vital to understanding vegetation distribution along the floodplain as well as responses to 
flooding (Figure 6.20).

FIGURE 6.17 Integration of WSN with an SBC and dataloggers. 
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example: Wsn foR soil moistuRe usinG moteino

Iyiola (2017) implemented a WSN based on Moteino devices with RFM69 radios operating at 
915 MHz, using a star topology, with 1 gateway node and 9 nodes measuring air temperature and 
soil moisture, at distances ranging 10–30 m from the gateway. A node includes two types of sensors: 
the BME280, via a weather shield by Low Power Lab (2016b), combining air temperature, RH, and 

FIGURE 6.18 Motes in the forest. Enclosure and deployment using an external antenna and AA batteries.

FIGURE 6.19 Topology of WSN to monitor soil moisture in a bottomland hardwood forest. Greenbelt 
 corridor (North central Texas).
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barometric pressure sensor, and the ECHO-5, which measures soil moisture (Meter 2022). A shield 
also by Low Power Lab (2016a) powers the sensor module by a Lithium Polymer battery and a solar 
panel for battery charging. See more details on the topic of WSN power and battery charging in 
Chapter 7.

Humidity and pressure in the BME280 can be independently enabled and interfaces with the 
Moteino through the I2C or SPI interfaces. It has a current consumption of about 3.6 µA when tak-
ing readings and only 0.1 µA in sleep mode (Low Power Lab 2016b). Programming each sensor 
node with an automatic transmission control feature helped to dial down transmit power which was 
scheduled every 10 minutes. Preliminary tests indicated that RSS for a node decreased from –40 
to –90 dBm as distance was varied from proximity to 200-m away from the gateway. The Moteino 
serving as gateway node communicates via serial using USB with a Raspberry Pi 3 that collects all 
data and runs a web server.

example: soil monitoRinG usinG esp8266 and mQtt

As an example of soil conditions monitoring, senior design students at UNT implemented a WSN 
for measuring soil moisture, electrical conductivity (EC), and temperature using NodeMCUs 
as WSN nodes that act as MQTT publishers and a Raspberry Pi 3 acting as an MQTT broker 
(Librado et al. 2021). Each WSN node is formed by a NodeMCU based on ESP8266 that moni-
tors RS-485–based JXBS-3001-EC sensors (presented in Chapter 5) that read soil moisture, 
EC, and temperature. For that purpose, the ESP8266 was connected to the RS-485 bus using 
a MAX3485 driver. At each node, the ESP8266 captures data from the sensor and acts as an 
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FIGURE 6.20 Example of soil moisture data collected by WSN in a bottomland hardwood forest. Greenbelt 
corridor (North central Texas).
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MQTT client, in this case a publisher, transmitting data to the Raspberry Pi, which acts the bro-
ker. The database program InfluxDB (Influxdata 2022) installed in the Raspberry Pi was used 
to store and organize the data, which was accessed by a visualization provider (Grafana Labs 
2022) acting as MQTT subscriber; in this manner, multiple devices can connect and access the 
data published by the nodes.

EXERCISES

Exercise 6.1

Calculate PL for a Wi-Fi 5-GHz low-band link between two sites separated by 3 km. The antennas 
are at 20 m above the ground for both locations. Then calculate received power in dBm assuming 
gains of 5 dBi for each antenna and 30-dBm transmitter power. We found a patch of 20-m tall 
trees at 0.3 km from one location. Determine if we clear the first Fresnel zone.

Exercise 6.2

Geographical coordinates of a monitoring station near Denton, Texas are 33°15′30.93′′ N and 97° 
2′20.15′′ W. We want to establish a 2.4-GHz Wi-Fi link with another location with the same lati-
tude but at 97°3′48.83′′ W. Use Google Earth to calculate distance between these locations and 
whether land cover would allow LoS without elevating the antennas. Then, assuming antennas 
can be sufficiently elevated for LoS and clearance of first Fresnel zone, calculate PL.

Exercise 6.3

Consider a 101 × 101-cell segment of a DEM with 30-m cell size. We want to establish a 900-
MHz radio link between stations located as follows. Station 1 is at the center of the cell in the SW 
corner; station 2 is at the center of the cell in the NE corner. The elevation values at these cells 
are 100 m for both. The cell at the center of the DEM (at row 50, column 50) is 110-m elevation. 
Calculate tower heights to obtain first Fresnel zone clearance. Calculate PL.

Exercise 6.4

Considering a WSN following the hybrid MAC protocol of Yang et al. (2010) which implies a super 
frame of 5 seconds consisting of a signaling slot of 0.1 second and a TDMA slot of 0.1 second. 
Suppose a node draws 20 mA when the radio is activated and 0.5 mA when the node is sleeping. 
We use two AA batteries of 1.6 V in series and 2000 mAh. There is a superframe every 30 minutes 
or two superframes per hour. Calculate total current drawn by a non-parent node (only one TDMA 
slot) in 24 hours. Calculate how many days it would take to discharge the batteries.

Exercise 6.5

Assume four nodes of a WSN at the corners of a rectangle of size 10 m × 40 m oriented such that 
the longest side is East to West. Antennas are 1 m above the ground. The land is flat and cover is 
very short grass.

 a. How many pairs of nodes would you have? List the pairs.
 b. How many unique values of distance would you have among all node pairs? List and 

calculate these distances.
 c. Calculate all expected propagation losses assuming that the frequency is 900 MHz.
 d. Which node would receive the weakest signal from the NW corner?
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Exercise 6.6

You are planning to deploy a soil moisture WSN in a forest over flat land using 36 nodes arranged 
such to cover 300 m × 300 m of land uniformly.

 a. What frequency would you prefer to use for this WSN deployment, 433 or 900 MHz, 
2.4 or 5 GHz? Explain by discussing advantages and disadvantages among all these RF 
options for this application.

 b. Select antenna height for all nodes, calculate minimum crossover distance, and expected 
worst case of power loss between two nodes.
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7 Environmental Monitoring 
and Electric Power

INTRODUCTION

This chapter is devoted to the relationship of environmental monitoring and electric power systems, 
covering three major topics: understanding how to power a remote environmental station when its 
location precludes the use of the power grid, how to power Wireless Sensor Network (WSN) nodes, 
and applying environmental monitoring for the design and operation of renewable power systems. In 
terms of powering off-grid remote monitoring stations, we focus on photovoltaic (PV) solar panels 
since they offer a practical solution to this application; therefore, this chapter covers PV cells and pan-
els. For WSN nodes in open areas, solar panels can be employed to recharge batteries, but in shaded 
areas, other energy harvesting techniques are required. Alternatives include harvesting or scaveng-
ing ambient energy, such as vibration, heat, and RF waves. Finally, this chapter covers the role of 
environmental monitoring in providing data useful to the design and operation of renewable power, 
for example solar, wind, and hydropower. A major contribution of monitoring is understanding the 
resource used by these forms of renewable power, e.g., solar radiation, wind speed, and water flow.

PV PANELS

The PV effect is the phenomenon of converting energy of photons of light to electrical current. 
First reported in 1839 by Becquerel, using silver-chloride or silver-bromide–coated electrodes, the 
PV effect was used in cells made from Selenium as early as 1880 but the conversion had very low 
efficiency (~1%) and the process was not well understood. Later in that decade, the photoelectric 
effect, or the production of current due light incident on metal, was discovered, and the intriguing 
differences in the effect due to wavelength of light were later explained by Einstein, for which he 
received the Nobel Prize.

In the 1950s, research demonstrated how to make PV cells from silicon crystals, and demand for 
space exploration applications in the 1960s advanced the technology considerably. Since the 1970s, 
there has been an increased use in residential, commercial, and utility-scale applications. Most 
remote off-grid monitoring stations use PV technology to provide power to its electronics system.

pV Cells

A PV cell is made from a p-n junction using semiconductor material, mostly crystalline Silicon 
(Si) but also Germanium (Ge). These elements are combined with Boron (B), Phosphorous (P), 
Gallium (Ga), and Arsenic (As), among others. We can better understand the PV effect by using the 
energy band model of semiconductors. This model assumes that electrons can move from the last 
filled energy band to the conduction band and that jump requires an amount of energy at least equal 
to the “band-gap energy” or Eg which varies from material to material. For example, in silicon, 
Eg = 1.12 eV. One eV is an amount of energy equivalent to 1.6 × 10–19 J.

Light provides the energy to move electrons to the conduction band or in other words to jump 
the Eg gap. Of course, for this to happen, light must be of a frequency such that a photon must have 
energy of at least Eg to move the electrons. The photon energy E in J is directly related to the fre-
quency ν of the electromagnetic wave by the Planck’s constant h = 6.6 × 10–34 J-sec. This is to say 
E hν= . As we know frequency is the inverse of wavelength using the speed of light c = 3 × 108 m/s 
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cν
λ

=  Therefore, we can also write the energy of a photon as E
hc

λ
= . Using this relationship, we 

can see that to overcome the bandgap, the photon energy should exceed Eg E
hc

Egλ
= ≥ .

For example, in Silicon
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which means that light should have a wavelength shorter than 1110 nm or 1.11 µm to overcome the 
band-gap energy. However, a shorter wavelength with photon energy above this level is wasted 
(Figure 7.1) because the required level is equal to the usable (Masters 2013b). The percentage of the 
energy available from 1100 to 150 nm that is wasted represents about 40%. This critical wavelength 
1.11 µm has a frequency of 270 THz or 0.27 PHz, which corresponds to waves just above the red part 
of the visible spectrum. As a reference to what we studied in radio waves, this frequency is 100,000 
larger than Wi-Fi 2.4 GHz and which has a wavelength of 60 mm.

Solar radiation reaching Earth is distributed by wavelength according to Planck’s law of black-
body radiation increasing for short wavelengths (150–500 nm), reaching a peak at ~500 nm, and then 
decreasing as wavelength increases (Figure 7.2). The higher values of this density function corre-
spond to the visible part of the spectrum. As we can observe from this figure, the right tail of this 
density (above 1100 nm) has energy lower than that required to excite the electrons in Silicon; the 
area under the curve for this tail amounts to about 20% of the total area. The energy corresponding 
to wavelengths shorter than 1100 nm represents then the remainder 80% and can excite the elec-
trons, but as we know from the previous section only 60% is usable, thus 0.6 × 80% = 48% is usable. 
Consequently, PV theoretical maximum efficiency for Silicon is slightly less than 50%. One manner 
to increase efficiency is to increase band-gap energy to maximize power, ideally in the 1.2–1.8 eV by 
adding elements to Silicon, thus making cells such as GaAs and CdTe (Masters 2013b).
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However, the efficiency is lower because of other factors: PV cells get hot and radiate energy 
following the blackbody radiation law (7% loss) and there is a hole-saturation effect causing hole-
electron pairs to recombine (~10% loss). Therefore, the theoretical efficiency is reduced to ~33%. 
The Shockley-Queisser limit states that the maximum efficiency is 33.7%. Other factors further 
reduce practical efficiency: radiation reaching the Earth surface is affected by atmospheric pro-
cesses, including air mass path length, scattering (diffuse radiation), and reflection.

pV-Cell model and i-V CHaRaCteRistiCs

A p-n junction is formed by adjoining semiconductor material that has been differentially doped 
and forms a diode. The basic diode model relates current I and voltage V by an exponential function 
that depends on temperature T (in K), as follows:

 I I
qV

kT
= 



 −





exp 10  (7.1)

where the factor 
q

k
 is ×11.6 103 , and I0 is the current at V = 0. At reference ambient T of 25°C 

or 298K, we have 
qV

kT
V= ×38.9 . For example, for I0 = 1 nA, we would have a I-V relationship of 

I V[ ]( )= × −exp 38.9 1 nA . For small voltages, there is a small reverse current, whereas for larger 
voltages, there is a large increase of forward current as we approach the 0.5 V value.

A solar cell model consists of a diode and a current source that produces current when illumi-
nated by radiation (Figure 7.3). When in short circuit, or zero load resistance, the cell would produce 
current Isc, or short-circuit current. Its value at full sun conditions or fully illuminated becomes a 
specification of a solar cell; however, when the cell is in the dark, the current is just the inverse of the 
current of the diode Id. When the cell is illuminated, the current is the Isc minus the diode current Id, 
that is to say I I Isc d= − . This is the simplest cell model; its I-V relation (Figure 7.4).
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A more realistic model (Figure 7.5) includes a resistance Rs in series to account for lead and con-
tact resistance and a parallel resistance Rp to account for a leak current path when the cell is shaded. 
Using Kirchhoff’s Current Law and Ohm’s law, we derive the equation for this model

 I I I I I I V I R
V I R

R
sc d p sc s

s

p

( )= − − = − × + × − − + ×
exp 38.9 ( ) 10

Rs I

Isc Id
Rp Ip V

FIGURE 7.5 A more realistic model.
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FIGURE 7.4 Simplest cell model: I-V characteristic.
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FIGURE 7.3 Simplest cell model: a current source and a diode.
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or more practical, separating V and I,

 I I I V
V

R
sc d

d

p

( )= − × −  −exp 38.9 10  (7.2)

 V V I Rd s= − ×  (7.3)

To calculate current, we apply Equation (7.2) given Vd, then to calculate voltage, we use equation 
(7.3). These equations are implemented in a function of the R package renpow (Acevedo 2018), 
which is covered in lab 7 of the companion Lab Manual (Acevedo 2023). We can see the I-V char-
acteristics in Figure 7.6.

When we look at power as the product of current and voltage, we see that power increases as 
voltage increases but then quickly decreases due to the decrease in current (Figure 7.7). Since Isc 
is a function of illumination, as light decreases, the Isc goes down and therefore the cell produces 
less current for the same voltage (Figure 7.8), until the current is zero at open-circuit voltage Voc of 
about 0.6 V.

We can see that power also goes down as the current diminishes for the same voltage (Figure 7.9); 
in this figure, we have annotated the values of maximum power for each light level, and we can see 
how this maximum power decreases and occurs for a higher voltage as light decreases. For full 
illumination, the maximum power point (MPP) of ~1.2 W in this example occurs at about 4.5 V. We 
conclude that to optimize power output from the cell, we must modify the operating voltage to track 
the MPP as light changes.

fRom Cell to module

One PV cell outputs Voc ~ 0.6 V, which is impractical to power most devices, therefore, to obtain 
larger voltages, cells are wired in series to obtain a module. For instance, 18 cells would output 
about Voc ~ 0.6 V × 18 = 10.8 V, which would be considered a nominal 6-V module, with an operating 
voltage for MPP at full illumination of ~0.45 V × 18 = 8.6 V. Note that series wiring increases the 
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voltage but not the current, which must remain the same. A 6-V module would be useful to power 
small monitoring devices, such as a 3.3-V–based WSN node, such as the NodeMCU and Moteino 
devices, we studied in Chapter 6 as well as Lab 6 of the companion lab guides.

When needing higher voltage, for example 12 V to power more complex dataloggers with many 
sensors, 36 cells would output Voc ~ 0.6 × 36 = 18 V, which is referred to as a 12-V module, with an 
operating voltage of ~0.45 V × 36 = 16.2 V for MPP. In this case, multiplying the curve of each cell 
by 36, we obtain Figure 7.10 for the I-V curves and Figure 7.11 for power. Arrays, employed for 
higher power needs, are made wiring modules in series or parallel; when in parallel, we increase the 
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current, I-V curves are added by current axis. Similarly, higher voltage modules, e.g., nominal 24-V 
modules, are made wiring more cells, but these are less typical in small off-grid monitoring stations.

A shaded cell in a module affects the entire module because the cells are in series. Assume 
we have n cells, and that some are shaded; we can calculate the decrease in voltage due to shad-

ing using the cell model (Figure 7.5). When we shade one cell, V
n

n
V I R Rsh p s= − − +1

( )  and 
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FIGURE 7.9 Power as a function of light.
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therefore the reduced voltage is V V V V
n

n
I R Rsh p s∆ = − = − −



 + +1

1
( ) , or rearranging 

V
V

n
I R R

V

n
IRp s p∼∆ = + + +( ) . To avoid this issue, a bypass diode is placed in parallel with the 

cell and which shunts the shaded cell and decreases the voltage drop across Rp. A bypass diode can 
also be connected across a module. In addition, when using a parallel combination of strings, we can 
add a blocking diode to each string to avoid sending current to a malfunctioning string.

load and poWeR

A resistive load is represented as a straight line on the I-V plane and when superimposed to the I-V 
curve for the PV module, it will determine operating points at each sun condition. For example, 
as shown in Figure 7.12, we obtain the plot for a 10-Ω load as a straight line with slope 1/10 and 
then find voltages for each intersection as shown in the figure. These are 5.6, 11.3, 14.3, and 14.8 V, 
respectively. Use /102V  to obtain the power for each sun condition, 3.1, 12.8, 20.4, and 21.9 W. These 
are not optimal power values, as we can see on the power vs. voltage graph (Figure 7.13); indeed, the 
voltage at which the MPP is established is 12.6, 13.8, 12.7, and 11.6 V, which corresponds to power 
4.6, 14.0, 21.2, and 25.8 W, respectively. Similarly, we can look at the I-V lines for a battery charging 
and discharging and use these, for example to determine operating point by superimposing on I-V 
curves of PV module at various levels of sunlight.

CHARGING A BATTERY FROM A SOLAR PANEL

usinG a VoltaGe ReGulatoR

In its simplest form, a battery charger circuit (Figure 7.14) consists of a voltage regulator to drop 
down the solar panel output voltage Vp to a voltage Vb required to charge the battery, and a diode 
(D1) to float the battery (i.e., stop the charging current) when the battery is full or Vb > Vr. The drop 
Vp – Vb must exceed a minimum value, e.g., 2.5 V to charge the battery. For example, a 12-V battery 
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requiring Vb = 13.4 V to charge means the panel must supply Vb = 15.9 V. The charging voltage is 
fed back to the regulator to adjust it using a voltage divider. Diode D1 is a Schottky diode with a 
high reverse breakdown voltage exceeding by far the battery voltage. This type of diode is made of 
an n-type semiconductor and metal and has a low forward voltage. When Vb < Vr, the regulator will 
provide charging current and load current, whereas when Vb > Vr, the battery will float and will be 
the sole provider of current to the load.

usinG a buCk ConVeRteR

Other common implementations of a solar charge circuit consist of a step-down or buck DC–DC 
converter dropping down the panel voltage using a pulse-width–modulated (PWM) signal activat-
ing a MOSFET switch, and an inductor to provide current to the battery. The diode is reversed 
when the switch is on, and the panel provides current to the inductor and the battery; conversely, 
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the diode is forward biased when the switch is off, and the inductor continues to provide current to 
the battery returning through the diode. The current through the inductor recovers during the next 
period when the switch is on. An additional capacitor will work together with the inductor as an LC 
filter to reduce the switching harmonics. The output voltage of the switch PWM is proportional to 
the input voltage V V Db p= ×  where D is the duty cycle, or fraction of time when the switch is on 
(Figure 7.15). For example, if we want the PWM to change from Vp = 10 V to Vb = 8 V, it adjusts D 
to 0.8 such that 10 V 0.8 8 V.× =

usinG a buCk-boost ConVeRteR: mpp tRaCkinG (mppt)

An interesting implementation of a solar panel battery charger is a buck-boost converter depicted 
in Figure 7.16 which is also based on a PWM switch. The goal of this circuit is to keep current 
in the inductor and voltage in the capacitor nearly constant. Under these conditions, the energy 
balance between that stored in the inductor and delivered to the battery is nearly equal and 

thus, the output voltage delivered to the battery is related to the input voltage from the panel by 

V V
D

D
b p= ×

−




1

 where the factor is depending on the duty cycle D of the pulses controlling the 

switch. This is an interesting result because it means we can buck the voltage when D < 0.5 or boost it 

when D > 0.5. For example, to obtain Vb = 8 V from Vp = 10 V, we would need 
1

8/10 0.8
D

D−




 = =   

FIGURE 7.15 PWM switch and buck converter.

FIGURE 7.14 A very simple solar battery charger.
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and solving for D, we get 
0.8
1.8

0.44.D = =  In contrast, if we want the converter to change from 

Vp = 11 V to Vb = 15 V, we should adjust D such that 
1

15/11 1.36
D

D−




 = =  and solving for D, we 

get 
1.36
2.36

0.57.D = =

As already mentioned, the peak power in the P vs. V curve will vary as sunlight varies 
(Figure 7.13). To adjust the MPP, we can use a device to track this MPP, which means we need to 
increase or decrease the voltage depending on the changing light condition. This device then is 
called an MPP tracker or MPPT. The device is in essence a buck-boost converter as described above 
plus an algorithm to adjust the duty cycle as needed to track the MPP.

TILTING THE PANEL

Solar radiation received at the Earth’s surface varies with latitude and other factors. A general pat-
tern is that solar radiation decreases with increasing latitude. Recall that latitude is the angle α (in 
degrees) that a hypothetical line going through the center of the Earth makes with respect to the 
equatorial plane (Figure 7.17). Declination δ is the angle of the sun with respect to a plane parallel 
to the equator and placed at the latitude α. The maximum of this angle for each day is a function of 
the day number n in the year according to

 n
n

n n
y

eδ ( )= × π −








( ) 23.45 sin

2
 (7.4)

FIGURE 7.16 PWM switch and buck-boost converter.
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where ny is the number of days in the year taking values of 365 for non-leap years and 366 for leap 
years; ne is the day number for the vernal equinox in the northern hemisphere March 21; that is 
ne = 80 for non-leap years or ne = 81 for leap years.

Sun elevation angle β is the angle made by a line from the observer to the sun above the horizon, 
which in this figure is the angle that the sun makes with respect to the tangential plane normal to 
latitude. This angle varies during the day reaching a maximum, which is a function of the day num-
ber in the year. As we can see from Figure 7.17, declination, maximum sun elevation, and latitude 
for a given day number in the year are related by

 n nβ δ α= + ° −( ) ( ) (90 )  (7.5)

We can see how declination changes through the year in Figure 7.18 (top panel) and has an average 
of zero. It goes through zero at day number ne when n–ne = 0 and the sine function value is zero. 
For example, for the Dallas-Fort Worth (DFW), Texas, airport approximate latitude of 32.90°N 
(Decimal degrees) or 32°54′0′′ N (degrees, minutes, seconds), we can evaluate sun elevation angle 
to obtain the graph in Figure 7.18 (bottom panel).

We tilt the panel such that it receives as much sunlight as possible, which means looking in 
the direction of the sun, or perpendicular to the maximum sun elevation for the day, which var-
ies according to latitude (Figure 7.19). Note from this figure the tilt must be ( ) 90 ( )Tilt n nβ= ° − . 
Because sun elevation is related to declination and latitude as given in equation (7.5)
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 Tilt n n n nβ δ α α δ= ° − = ° − − ° − = −( ) 90 ( ) 90 ( ) (90 ) ( )  (7.6)

In other words, the tilt for day n is simply latitude minus declination. The best fixed tilt is for aver-
age declination, and since average declination is zero, then fixed tilt is just equal to latitude. This is 
called a polar mount, and because it is fixed, it would not be optimal for most days, and we would 
observe large deviations for extreme values of the declination during the year.

For greater efficiency, the tilt can be varied according to the day of the year and even track the 
sun during its daily ascent and descent for each day. While this tracking is important in utility-
scale, and commercial PV installations, it is not typical of small remote environmental monitoring 
stations.

ATMOSPHERIC EFFECTS

The extraterrestrial solar radiation I0 or solar radiation received by Earth outside the atmosphere, 
measured as power per unit area kW/m2, varies with the day n of the year according to

 I SC n( )= × + × π −











1 0.034 sin
2

365
810  (7.7)

where SC, the solar constant, is the average extraterrestrial radiation and has a value of 1.377 kW/
m2. As the solar radiation flux goes through the atmosphere, a good part of it is absorbed by atmo-
spheric gases and scattered by particles. Direct radiation reaching the surface of the Earth can be as 
high as ~70% of the extraterrestrial solar radiation I0, or solar radiation received by Earth outside the 
atmosphere. For practical applications, the solar radiation reaching the Earth surface is 1 kW/m2 or 
slightly larger than 70% of I0. This value is referred to as the 1-sun or full sun equivalent.

For a given site, solar radiation “insolation” S as energy can be given in kWh/m2 day, or equiva-
lently as hours/day of 1-sun or hours of “peak sun”. For example, if the average solar radiation is 7.0 
kWh/m2, then we have the equivalent of 7 hours of 1-sun. We can then use area A of the module (in 
m2) and system efficiency η to evaluate energy produced by the system at a given site E S A η= × ×  
either as kWh or hours of 1-sun.

There are two major components of the radiation reaching the Earth’s surface: direct and diffuse 
radiation. A model for radiation flux through the atmosphere follows the Bougher-Lambert-Beer 
exponential attenuation

 I I mbn b
abτ= − ×exp( )0  (7.8)

 I I md d
adτ= − ×exp( )0  (7.9)
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FIGURE 7.19 PV panel tilt.
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where Ibn is the direct beam normal portion, Id is the diffuse horizontal portion of clear-sky radiation 
reaching the Earth’s surface, m is the air mass, b dτ τ,  are atmosphere pseudo optical-depths, and ab 
and ad are coefficients. Values of b dτ τ,  are location-specific and vary through the year (Gueymard 
and Thevenard 2013). The ASHRAE handbook provide coefficients for each month for thousands 
of locations (ASHRAE 2017). The power coefficients ab and ad also vary, but they are related to the 
optical depths by empirically derived equations

 a k k k kb b bb b bd d bbd b dτ τ τ τ= − − −  (7.10)

 a k k k kd d db b dd d dbd b dτ τ τ τ= − − −  (7.11)

The air mass ratio (m) is a ratio of two path lengths as the sun rays go through the atmosphere. The 
simplest calculation assumes a flat Earth surface; denote by h1 path length if the sun were overhead 
or an elevation angle of 90°, and h2 path length when the sun is at elevation angle β (Figure 7.20).

 m
h

h β
= = 1

sin
2

1

 (7.12)

Note that h2 is larger than h1 and therefore the air mass ratio will be larger than 1, except when the 
sun is overhead for which m = 1. This special condition is denoted as AM1. For other values of m, 
say m = 1.5 the notation is AM1.5. The extraterrestrial air mass ratio is zero and denoted as AM0. 
Likewise, we can calculate the effect of other atmospheric processes which allows to understand rel-
ative contribution of direct, diffuse, and reflected radiation to the total. The R package renpow has 
functions to evaluate these components and dataset examples for some locations (Acevedo 2018).

SUN PATH

Figure 7.21 shows Earth rotating at 15°/hour. We define hour angle H in hn (Hours before Noon) 
as H hn= ×15 . Trigonometric equations relate sun azimuth φ (Figure 7.22) and sun elevation β to 
hour angle:

 

H

L H L

φ δ
β

β δ δ

=

= +

sin
cos sin

cos

sin cos cos cos sin sin

 (7.13)

For example, we calculate these with an R script as shown in the lab 7 guide of the Lab Manual com-
panion to this textbook at the latitude of DFW, Texas and obtain results in Figure 7.23a. Similarly, 
for azimuth, we obtain results in Figure 7.23b. We can combine these results in an azimuth-elevation 
plane where the hour is implicit by the graph marker. See example in Figure 7.24 for latitude 32.9 N 
and day 20.

β
h1

Atmosphereh2

FIGURE 7.20 Air mass ratio.
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 By using selected days of the year, we obtain a sun path diagram (Figure 7.25). This diagram can 
be used to analyze potential shading of the solar panel at the installation site using simple tools such as 
a clinometer and a compass. Locate potential shading features and note their azimuth using compass 
and height using clinometer. Then place the features on the sun path diagram (Figure 7.25) to determine 
potential shading by these features. These equations are implemented in functions of the R package 
renpow (Acevedo 2018), which are covered in lab 7 of the companion Lab Manual (Acevedo 2024).

IMPACT OF TEMPERATURE ON SOLAR PANEL

The temperature of a PV cell depends on ambient temperature and solar radiation, the cell gets hot-
ter as the air gets warmer and radiation increases. The cell temperature Tc in °C can be calculated 
using the equation

 T T
C

Sc a
NOCT= + − °
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where, Ta is the ambient temp (°C), S is the solar irradiation (in kW/m2), and NOCT is the Nominal 
Operating Cell Temp, which is the expected cell temp when the ambient temp is 20°C, the irradia-
tion 0.8 kW/m2, and wind speed 1 m/s. The NOCT is given by manufacturer, for many panels this 
number is in the 45°C–47°C range; see, for example Table 5.3 of Masters (2013b).

Other temperature effect specifications include nominal Voc at 25°C (NVoc), a negative voltage 
temp coefficient TCV in %/°C, and a negative power temp coefficient TCP in %/°C. For example, 
for voltage

 V NV TC Toc oc V c( )= × + × −1 ( 25)  (7.15)

Using the NOCT, we can estimate cell temperature, and with this value, we can calculate change 
in open circuit voltage and power of a module made with these cells as ambient temperature and 
irradiation conditions change. For example, assume a module with NOTC = 45°C, NVoc of 38 V, rated 
power 100 W, TCv of –0.30%/°C, and TCp of –0.4%/°C. At full sun (say 1-sun) and ambient 32°C, we 

get the module temperature Tc
C C= + − °



 × = °32

46 20

0.8
1 64.5 . With this increased temperature, 

we calculate the effect on open circuit voltage Voc ( )= × − × − =38 1 0.003 (64.5 25) 33.5 V

and power 100 1 0.004 (64.5 25) 84.2 WP ( )= × − × − = .

POWER BUDGET AND POWER SYSTEM SIZING

In this section, we present an example of calculating how much power will an environmental moni-
toring station demand so that we can size the solar panel and battery. For example, suppose a 
simple case of having a datalogger-based wired sensor system and an SBC that serves a WSN. 
Required battery capacity and solar panel power are determined through power budget analysis; 
average power consumption of each power load device is determined by measuring or estimating 
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the average current draw and the time spent in each of its operating modes (Yang et al. 2010; 
Williams 2014; Acevedo 2018).

Assuming all DC devices, total daily energy load in Wh/d is the sum of the power draw of all 
devices in the operation period in a day.

 E V I Ti i i

i

∑= × ×  (7.16)

where Vi is the voltage in V, Ii is the current draw in A, and Ti is hours of daily operation for device i of 
the station. For example, suppose we have two devices, device 1, drawing 0.2 A at 12 V for a continuous 
24-hour operation every day, and device 2 (e.g., a collection of sensors) drawing 50 mA at 5 V totaling 
8 hours of operation every day. Total energy load is E = × × + × ×12 V 0.2 A 24 h/d 5 V 0.05 A 8 h/d
= 59.6 Wh/d.

To meet this demand for a few backup days, e.g., 3 days, in the absence of sunlight with a 12-V 
battery, and setting a maximum allowable depth of discharge DODmax of 80% for the battery, it 
would require a battery capacity of

 C
E

V DOD
DC �= × = ×days 59.6 Wh/d

12 V

3 d

0.8
18.6 Ah

max

 (7.17)

We could select a standard capacity near this value. Considering that the battery will be allowed to 
recharge in a few days, say 2 days, a 12-V solar panel should provide 12 V 59.6 Ah/d 18.6/2 Ah/d( )× +
= 826 Wh/d. Now we must consider potential abundance of the solar resource at the site. For 
example, if we have a site with S of at least 4 h/d of 1-sun, we will need a 12-V panel rated at 

826.8 Wh/d/4 h/d 200 WP = ≈ . These calculations are based on rated and estimated values, and it 
will be important to monitor battery voltage and current consumption as a part of the remote system 
status monitoring service to help with early detection of battery degradation in order to prevent 
system failure and the loss of sensor data (Yang et al. 2010).

POWERING WSN NODES

As WSNs are added to remote environmental monitoring systems, we face the challenge of how to 
power the nodes of the WSN. The simplest solution is to employ batteries, e.g., rechargeable batter-
ies, and replace these periodically. This task becomes labor-intensive for a large number of nodes 
when replacement is frequent; nodes that employ more power would require more frequent battery 
replacement. PV cells can be used to recharge the battery, and this works well in open areas, how-
ever become limited in shaded environments, such as a forest understory.

In Chapter 6, we described an example of WSN nodes using low-power Moteino devices with 
RFM69 radio and powered by a Lithium Polymer battery and a 6-V solar panel for battery charging 
(Iyiola 2017). In this WSN, the nodes used a Moteino shield by Low Power Lab (2016) to recharge 
the battery. Power budget calculations are made for various operation modes: sensor reading, radio 
transmitting with retries, node sleeping assisted to determine reliability of power supply to the nodes.

Alternatives to PV panel charging of batteries include harvesting or scavenging ambient energy, 
such as vibration, heat, and RF waves (Kahrobaee and Vuran 2013; Kim et al. 2014). For example, 
harvesting ambient RF allows operation of a WSN (Kim et al. 2014). Although available ambient 
RF energy is lower than that of other sources, in some sites it is sufficient to power a WSN node, 
depending on the duty cycle of the node. An advantage of this form of harvesting is that the source is 
constantly available, in contrast to the variability of sunlight. A system to harvest ambient RF con-
sists of high-gain antenna and a rectifier circuit. The combination of antenna and rectifier is termed 
a rectenna, or rectifying antenna. The rectenna would be designed according to the frequency bands 
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of the available ambient RF field. In addition, it is also possible to combine solar and RF harvesting 
forming a hybrid energy harvesting system that suffices for many WSN environmental monitoring 
applications. One technique to harvesting vibration is using piezoelectric sensors acting as resona-
tors; for this purpose, the vibration resource should match the resonant frequency of the harvester 
(Gibus et al. 2020).

One approach to power storage in WSN nodes is to substitute batteries for supercapacitors, which 
compared to batteries offer shorter charge and discharge duration (1–10 seconds), longer discharge 
cycle life (500,000), longer lifetime (15–20 years), and tolerate full discharge. Gurung (2020) exper-
imented with WSN nodes that substituted a battery for supercapacitors, recharged from solar panel, 
demonstrating that this technology provides an effective manner to power WSN nodes. For detailed 
analysis of power consumption and the dynamics of charging and discharging, the nodes included 
current sensors, supercapacitor voltage readings, and a custom-made pyranometer.

ENVIRONMENTAL MONITORING OF RENEWABLE POWER SYSTEMS

Environmental monitoring provides data useful to the design and operation of renewable power 
systems, for example solar, wind, and hydropower. A major contribution of monitoring is under-
standing the resource used by these forms of renewable power, e.g., solar radiation, wind speed, and 
water flow.

solaR Radiation

Solar radiation is measured at many monitoring stations using a pyranometer or radiation sensor, 
which is based on a silicon PV detector mounted on a cosine-corrected head; its output is current, 
which is converted to voltage by a potentiometer in the sensor head. The resistance of the potenti-
ometer is adjusted when the sensor is calibrated so that all sensors have the same output sensitivity.

Analysis of solar radiation data collected over time allows to understand the solar resource avail-
able at a site for electricity production, both for supporting the design of a PV or concentrated solar 
power facility or powering a remote monitoring station itself. Solar radiation data are typically 
reported as maximum, minimum, average, and standard deviation over a time interval in W/m2. In 
addition, some dataloggers would integrate over the measurement interval to report energy in kJ/m2.

In lab session 7 of the companion Lab Manual (Acevedo 2024), the reader has an opportunity to 
practice data analysis using an example of data collected by a weather station. One of the results of 
these analyses is shown in Figure 7.26; which is an example of 10-min average solar radiation data 
analyzed for a week in December 2018. Note how December 4 and 5 most have been clear days 
with irradiance reaching 550 W/m2, whereas December 6–8 were likely cloudy with irradiance not 
exceeding 100 W/m2, except for a spike occurring on December 7. Three consecutive days like these 
can lead to low power production by PV panels, and this is significant for battery bank design of 
off-grid remote stations.

We can calculate energy Ei in kWh/m2 accumulated during the ith measurement interval of Δt (in 
minutes) by /(60 1000)E P ti i= × ∆ ×  where Pi is the solar radiation in W/m2 for the ith measurement 

interval. For each day d, summing Ei for all the intervals within that day E Ed i

i d

∑=
∈

 would yield 

the daily values of energy in kWh/m2 which are the same as hours of 1-sun equivalent for that day 
d. As an example, Figure 7.27 illustrates the results of that calculation for the week in December 
analyzed above (Figure 7.26). Note how December 6–8 have less than 1 hour of 1-sun.

Capacity factor (CF) can be evaluated by dividing insolation S in kWh/d or h/day of peak sun 
by 24 hour/day. Thus, CF for PV installations depends on location, and it is a way of expressing 
insolation S (Acevedo 2018). For example, an average of 3 hours of 1-sun per day would calcu-
late out to 3 h/24 h 0.125CF = =  or 12.5%. This calculation can be done for various time periods, 
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such as monthly, seasonally, or annually. For instance, monthly energy E in kWh/mo can be esti-
mated from installed capacity P (in kW), and monthly CF using the number of hours in a month 
hmo = × =30 d 24 h/d 720 h  for 30-day months or use hmo = × =31 d 24 h/d 744 h  for those 
months with 31 days.

 E P CF hmo= × ×  (7.18)

A histogram of solar radiation energy in hours of 1-sun for an entire year will display similar 
probability mass above and below an average due to the seasonality of solar radiation. The same 
would hold as well for data over distinct seasons. As an example, taking the data analyzed above 
over a period from the end of October 2018 to middle of March 2019 will yield the results shown 
in Figure 7.28. The highest values (~6 h) would correspond to the higher radiation days in March, 
many of the lowest values would correspond to lower radiation days in December, and many of 
the values around the mean would correspond to higher radiation days from November through 
February. This result illustrates how measuring the number of hours of 1-sun for a site provides 
guidance on PV-panel–installed capacity design.

Wind speed

A fluid of density ρ flowing with velocity v leads to an equation for fluid specific power p(t) at time t

 p t t v tρ=( )
1

2
( ) ( )3  (7.19)
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FIGURE 7.26 Example of 10-min average solar radiation data analyzed for a week in December.
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Specific power is power per unit of cross-sectional area (normal to the direction of flow). Note 
that specific power is proportional to the density and to the cube of velocity of the fluid, and that 
this is an instantaneous value since both density and velocity may be varying with time. For wind 
power, the fluid is air, the velocity is wind speed, and the density is that of air, which changes 
according to elevation above sea level and temperature. Wind turbine performances are specified 
for reference conditions, which are pressure 1 atm, temperature 15°C, and density 1.225 kg/m3. For 
instance, the instantaneous specific power for wind velocity of 10 m/s at reference conditions will be 

p t vρ= = × =( )
1

2

1

2
1.225 10 612.5 W/m3 3 2 . Functions of the R package renpow facilitate calcula-

tions for a variety of conditions (Acevedo 2018).
As we move away from the ground, wind speed increases because friction decreases. Since 

power in the wind increases with v3, a wind turbine installed on a taller tower would experience 
higher wind speed, and thus more power. The increase in velocity due to height is calculated from 
the empirical relation (Masters 2013a)

 
v

v

H

H
= 





α

0 0

 (7.20)

where H0 is a reference height (10 m), v is the wind speed at height H, v0 is the wind speed at the ref-
erence height, and α is a friction coefficient, which characterizes the terrain conditions considering 
whether this is on water (the lowest friction), or on land with various types and heights of vegetation 
and land use given by several tables. An alternative relation, inspired on aerodynamics in the atmo-
spheric boundary layer, is based on the roughness length l in m and assumes that the air flow varies 
logarithmically with elevation (Masters 2013a)

 
v

v

H

l
H

l
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ln

ln0

 (7.21)

The parameter roughness length is the height above the ground at which wind speed is zero for 
atmosphere thermal conditions with lapse rate of –9.8°C/km. Roughness length varies from 0.0002 
for water surface to 1.6 for dense urban areas or forests. Intermediate values are 0.03 (for open 
areas), 0.1 (for crop areas with few windbreaks), and 0.4 (for urban and rural areas with windbreaks). 
Since power increases as the cube of wind speed, assuming equal air density, we see that the ratio 

of specific power goes as the cube of speed ratio. 
P

P

v

v
= 



0 0

3

, and therefore, we can get the ratio of 

specific power for both models by raising them to power 3 (Figure 7.29).
Estimation of the friction coefficient or roughness length can be accomplished by monitoring 

wind speed using anemometers installed at two different heights on the tower of a meteorological 
station and performing a regression of the wind speed measured at those two heights. An example is 
shown in Figure 7.30. There are several types of anemometers, one type is electro-mechanical based 
on counting pulses on a Hall effect sensor product of rotating cups or a propeller, and another type 
is sonic based on relative speed of sound detected at sonic sensors. We cover more details in the lab 
guide 7 of the companion lab manual.

In the same manner as we discussed for solar radiation, it is important to understand wind 
speed variability to estimate how much power we may harvest during a particular week, month, or 
season. Very importantly, average wind speed for a location does not alone indicate the energy a 
wind turbine could produce; frequency of wind speeds at various intervals is also needed. All this 
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FIGURE 7.29 Wind speed and power ratio as a function of height with respect to a reference. Left: using 
empirical exponential function. Right: using logarithmic aerodynamics function.
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information is determined for a location from a probability distribution function fitted to the long-
term observed data.

The Weibull distribution is often used to model wind speed v, since many wind speed data fit 
this distribution well. The Weibull PDF has two parameters: scale c and shape k, and it is given by 
(Masters 2013a)

 p v
k

c

v

c

v

c

k k

= 



 −















−

( ) exp
1

 (7.22)

Here p(v) denotes probability density for a given v. A Weibull with k = 2 has the special name of 
Rayleigh distribution
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 (7.23)

A good fit to wind speed is often found for k = 2, or a Rayleigh distribution as given in Equation (7.23). 
The mean or expected value of a Rayleigh PDF is related directly to the scale c (Masters 2013a).

 E v vp v dv cv ∫µ = = = π
∞

( ) ( )
2

0

 (7.24)

A first step to find a fit to Rayleigh is to assume shape k = 2, use Equation (7.24) to determine the 
scale from the mean wind speed, and estimate the mean of wind speed by its average

 c
vv �

µ=
π π

2 2
 (7.25)

where v  is the wind speed sample mean. Once we have a fitted model, we can calculate the prob-
ability of having a range of given wind speed.

For example, Figure 7.31 shows a Rayleigh distribution for a location with average wind of 2.5 m/s, 

and shape k = 2, then use c
v=
π

= × =2 2 2.5

1.77
2.82 . The vertical lines on the CDF correspond to 

v = 2 and v = 3 to find the probability that wind speed is above 2 and 3 m/s respectively; the prob-
ability of these events are v v> = − ≤ =Pr[ 2] 1 Pr[ 2] 0.605  and v v> = − ≤ =Pr[ 3] 1 Pr[ 3] 0.323 . 
Concluding that the wind will exceed 2 m/s 60% of the time and 3 m/s 32.3% of the time.

Once we have an initial estimate for scale and shape, we can verify the fit to the data by calculat-
ing the histogram or its density approximation and the empirical cumulative distribution (ECDF) 
and compare the theoretical values to the data values (Figure 7.32). The fit can be then improved by 
trial and error or by optimization methods.

It should be evident by now that one cannot apply the specific power equation p t vρ=( )
1

2
3  

to the average wind speed because the cube term is non-linear. However, to emphasize fur-

ther, compare the specific energy of two wind regimes with the same average at standard 
conditions. Suppose we have wind of 3 and 9 m/s each 50% of the time; the average power is 
P ( )= × × + =0.5 1.225 3 9 / 2 231.5 W/m3 3 2  and the average wind speed is 9 3 /2 6 m/s( )+ = . If 

we calculate power using the average wind, we get P v = × × =( ) 0.5 1.225 6 W/m 132 W/m3 2 2 . We 

can see how the results are completely different P P v> ( ) . In this case, the average power is almost 
double the power of the average wind.



181Environmental Monitoring and Electric Power

0 2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Weibull pdf Scale= 2.82

Wind Speed (m/s)

P
ro

b 
D

en
si

ty

shape= 2

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Weibull cdf Scale= 2.82

Wind Speed (m/s)

C
um

ul
at

iv
e 

P
ro

b

shape= 2

FIGURE 7.31 Example of Rayleigh distribution.
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However, if the wind speed fits a Rayleigh distribution, we can use the average wind speed times 

a factor 
π

≈6
1.91 to calculate average power. To see why we can make this simplification, we would 

calculate power by integrating using the Rayleigh PDF which is a complicated integration that we 
will not develop here. We will simply use the known result (Masters 2013a) that

 E PP vµ ρ µ= =
π

[ ]
1

2

6
W/m3 2  (7.26)

This is a convenient result in as much as it gives us a rule to calculate mean wind power from mean 
wind speed as long as wind speed fits a Rayleigh PDF. In practical terms, we use the sample average 

v  of wind speed as an estimator of the mean wind speed and multiply by 
π

≈6
1.91

 vP �µ ρ × ×1

2
1.91 W/m3 2  (7.27)

For example, suppose wind speed data can be fit to a Rayleigh PDF with v = 2.94  m/s and c = 3.32. 

The estimated average power in the wind at standard conditions would be P �µ × ×1

2
1.225 1.91

=2.94 W/m 29.73 W/m .3 2 2  This is relatively low power density since the average wind speed is low.

HydRoeleCtRiC

There are several aspects of monitoring that relate to evaluating the resource for hydroelectricity 
production by surface water, directly as river flow and indirectly as rainfall on the watershed drain-
ing to the river that contribute to that flow. In the latter case, rainfall-runoff modeling can be used 
to predict river flow based on precipitation data and watershed configuration.

Harnessing power in moving water is also related to Equation (7.19) which applies to this situa-
tion using water density and water velocity. By employing Bernoulli’s equation, in conjunction with 
Equation (7.19), it is common to summarize power production by the simple equation P ghQρ=  
stating that power is the product of weight density ρg, water flow Q, and head difference h between 
points 1 and 2, which are the source and the turbine locations in hydroelectric generation. For 
reservoir-based hydroelectric, this flow Q is produced by stored water, and it is more relevant to 
monitor reservoir water level, and river flow at the inputs of the reservoir. However, for run-of-river 
hydroelectric, river flow upstream is of direct importance and more relevant for monitoring.

As an example, consider a run-of-river power plant, and the daily streamflow time series shown 
in the top panel of Figure 7.33. The flow-duration curve (bottom panel of Figure 7.33) is built using 
daily streamflow, in such a way that streamflow is sorted into descending order, with the highest lev-
els toward the left of the curve. The horizontal axis is the exceedance in probability units or percent 
of the time that the value of flow is larger than that value. In the graph, we identify several levels 
of exceedance probability considered of interest; for instance, 0.5 and 0.95 that correspond to flows 
Q50 and Q95 values and can be interpreted as a low potential power and median potential power. In 
this example, the flow Q95 is 17.09 m3/s, meaning that we exceed this flow 95% of the time. The Q50 
is 25.65 m3/s means that the river exceeds this flow 50% of the time.

The Q95 flow is used as a low-flow condition that must be maintained in the river when diverting 
flow through the hydroelectric plant. In addition, we can consider the average flow, called Qmean, 
and compare to Q95 to determine how variable the river is. In this example, the Q95 is ~50% of the 
Qmean or a ratio / 0.595Q Q ≈mean . This high percent is typical of a high-baseflow river, meaning that 
the watershed has storage of runoff that is released gradually to the stream. A low /95Q Qmean ratio 
would indicate a flashy river that would change flow fast in response to rain, meaning little storage 
of runoff in the watershed.

River flow is typically monitored using a rating curve relating stream stage or level to flow, 
because it is easier to perform real-time monitoring of stream stage than velocity at various points 
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of the stream cross-section. Water level can be measured by submersed sensors as well as by sonic 
sensors located above the surface. We will discuss monitoring of river flow with more detail in 
Chapter 12 that is related to water monitoring.

EXERCISES

Exercise 7.1

Calculate the voltage and current for a 10-Ω load for each curve of the solar module given in 
Figure 7.10. What is the power given to the load for each one of these curves? Hint: superimpose 
a straight line with slope 1/10, determine intersection points, and calculate power for each point.

Exercise 7.2

Calculate the voltage and current at which the MPP is established for all the curves of Figure 7.11. 
What would be the power for each curve if an MPP tracker adjusts the voltage output to the above 
values? Hint: look at the power curve for each light condition, determine the peak, and look for I 
and V values at which the peak occurs.

Exercise 7.3

Calculate tilt required for a solar panel at four distinct days: spring equinox (March 21), fall equinox 
(September 22), winter solstice (December 21), and summer solstice (June 21) for Dallas (latitude 
32.9°N). Hint: determine declination for each one of these days and subtract from latitude.
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Exercise 7.4

Calculate the sun elevation angle β that will yield an air mass ratio of m = 1.5 (AM1.5).

Exercise 7.5

Consider a site located at the DFW, Texas latitude. Determine minimum spacing between a polar 
mount solar panel and a 2-m tall obstacle located to the south of installation site, in order to avoid 
shading for most of the day (8 am–4 pm) under worst conditions.

Exercise 7.6

Assume a panel with NOTC = 46°C, Voc of 38 V at 25°C, rated power 100 W at 25°C a voltage 
temp coefficient of –0.30%/°C, and a power temp coefficient of –0.4%/°C. Estimate module tem-
perature, open circuit voltage, and maximum power under conditions of 1-sun and 35°C.

Exercise 7.7

Design a battery capacity and solar-panel–installed capacity for a monitoring station drawing 0.25 
A for 8 hours a day plus 0.1 A during 24 hours every day. Assume that the site has an average of 
4 hours of 1-sun energy.
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8 Remote Monitoring of 
the Environment

INTRODUCTION

There is a great variety of airborne and spaceborne platforms and instruments to monitor envi-
ronmental systems remotely, i.e., the sensors are located at a distance above the ground and allow 
covering a broader spatial range. Remote sensing includes taking images of the land or ocean for 
specific purposes as needed, for example by airplanes and unmanned aerial vehicles (UAVs), as well 
as repetitive collection of imagery of the same area, for example by satellites orbiting the Earth. In 
this chapter, we focus on the use of Landsat imagery responding to different electromagnetic (EM) 
reflection and absorption of sunlight by land, soil, vegetation, and surface water. For this purpose, 
we describe major platforms, reference systems, bands, analysis using indices, such as normalized 
difference indices for vegetation and water, reclassification, and the use of multivariate analysis and 
machine learning to perform image classification. Images shown in the printed version of this book 
are in gray scale; full color version is available from the online resources of this book.

REMOTE SENSING OF THE ENVIRONMENT

There is a great variety of airborne and spaceborne platforms and instruments to monitor environ-
mental systems remotely, i.e., the sensors are located at a distance above the ground and allowing 
to cover a broader spatial range (Huete 2004). Remote sensing includes taking images of the land 
or ocean for specific purposes as needed, for example by airplanes and UAV, or drones, as well as 
repetitive collection of imagery of the same area, for example by satellites orbiting the Earth and 
responding to different EM reflection and absorption of sunlight by land, soil, vegetation, and sur-
face water. Atmospheric effects, due to reflection and scattering of particulate matter or absorption 
by atmospheric gases, modify the reflected signal from the ground, which needs to be corrected to 
account for those effects.

Remote sensors may be passive when the source of energy exciting the sensors comes from the 
solar radiation incoming to Earth and reflected from the Earth (as in optical sensing), or active 
when the sensors require energy, for instance when detecting the response to a signal shot from the 
platform to the ground, rather than sunlight. These include LiDAR (Light Detection and Ranging) 
and Radar (RAdio Detection and Ranging). LiDAR uses laser pulses to map objects or the ground 
in 3D, for example digital elevation models that can be used to monitor land erosion. Radar uses EM 
in the radio and microwave part of the spectrum, and the backscatter can be used to monitor surface 
water, forest biomass, and many other environmental systems. Both LiDAR and Radar are also used 
at ground level to monitor a variety of processes.

Remote sensing of the environment is an extensive topic and there is a wealth of information, 
books, and journals on these monitoring approaches. In this chapter, we limit ourselves to discuss 
optical remote sensing by spaceborne platforms, and specifically analysis of Landsat imagery.

OPTICAL REMOTE SENSING

One important class of remote sensing involves the use of remotely placed sensors (air- or space-
borne) responding to different reflection and absorption of sunlight by land, soil, vegetation, 
and surface water. Atmospheric effects, due to reflection and scattering of particulate matter or 
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absorption by atmospheric gases, modify the reflected signal from the ground, which must be 
considered to correct for these effects. For this purpose, spectrometers are used at ground level 
to acquire data that can serve to ground-truth the remote sensors. Drones for environmental 
parameter sensing are in the middle between ground data collection and remote sensing from 
space (Wallerman et al. 2018).

As we discussed in Chapter 7, incoming solar radiation reaching Earth is distributed by wave-
length, increasing for short wavelengths from ultraviolet (UV) to visible (VIS), reaching a peak at in 
the VIS range, and then decreasing as wavelength increases. A fraction of the shortwave incoming 
radiation is reflected and scattered back by reflective surfaces like clouds, snow, and particles. The 
coefficient representing this fraction is termed albedo. As Earth’s surface warms, it emits outgoing 
radiation in longer infrared (IR) waves. Earth’s average temperature results as a balance of incom-
ing and outgoing radiation. A fraction of the outgoing long-wave radiation is reradiated to Earth due 
to the greenhouse effect.

Table 8.1, adapted from Huete (2004), summarizes wavelength bands of the EM spectrum used 
for remote sensing. Shortwave radiation encompasses UV, VIS, near IR (NIR), and middle IR 
(MIR) wavelengths. The shorter of these, UV (300–400 nm), are used for detecting gases in the 
atmosphere, highlighted by ozone monitoring (further discussed in Chapter 11). VIS (400–700 nm) 
wavelengths are broadly applicable to monitor vegetation, soil, and surface water (ocean, lakes, and 
rivers). NIR (700–1300 nm) wavelength is applicable to measure vegetation particularly biomass, 
and MIR (1.3–3 µm) radiation helps detect surface temperature and moisture in the leaves of vegeta-
tion. Long-wave radiation includes thermal IR (TIR, 3–14 µm) wavelengths (applicable to thermal 
pollution and vegetation stress monitoring) and microwave (0.3–300 cm) applicable to monitor soil 
moisture.

PIXEL, RASTER, AND IMAGE

Many remote sensing datasets are observations of reflectance data measured at multiple wave-
lengths of the EM spectrum; in this case, data are multispectral or hyperspectral if there are 
many separate wavelengths. By having multiple wavelengths, the data can be used to analyze dif-
ferent characteristics of land surface, soil, and vegetation. Remote sensing datasets are normally 
stored as raster files or images, meaning a grid of pixels, i.e., a picture element representing a 
square area of the ground (Figure 8.1). Because there are measurements in multiple wavelengths, 
a single image has multiple observations for each pixel that are stored in separate raster lay-
ers. These layers, or variables, are named bands (abbreviation for bandwidths), and an image is 
referred to as a scene.

TABLE 8.1
Uses of Various Parts of the EM Spectrum for Remote 
Environmental Monitoring

Spectral Band 
Region Wavelength

Examples Variables 
Monitored

Shortwave 
radiation

UV 300–400 nm Gases, air quality

VIS 400–700 nm Vegetation, soil, and surface 
water

NIR 700–1300 nm Vegetation, biomass

MIR 1.3–3 µm Vegetation, leaf moisture

Long-wave 
radiation

TIR 3–14 µm Vegetation stress, surface 
temperature

Microwave 0.3–300 cm Vegetation, soil moisture
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IMAGERY SPECIFICATIONS: RESOLUTION AND QUALITY

The concept of resolution applies to remote sensing imagery in terms of spatial, spectral, temporal, 
and radiometric resolution. A pixel of remote sensing image represents a square area of the ground, 
the smallest the pixel the better the spatial resolution. For example, 30 × 30 m size pixels, as used 
in the Operational Land Imager (OLI) instrument on-board Landsat 8, have lower spatial resolution 
than pixels of 10 m × 10 m size, as used in SPOT-4.

The values of a pixel correspond to the sensor response in the image corresponding to a given 
wavelength band. Having more bands means having higher spectral resolution. For example, the 
early Landsat missions had only four bands, while Landsat 9 has 11 bands, making it a higher spec-
tral resolution system.

Frequency of coverage of a location on Earth, or a satellite’s return time to image the location, 
determines the temporal resolution. For example, Landsat 8 has a 16-day repeat cycle. Furthermore, 
available archived images also determine temporal resolution when assembling time series of 
images over many years.

Radiometric resolution refers to the sensitivity and number of bits of the analog-to-digital con-
verter (ADC) of the sensor for each wavelength band. For instance, Landsat 8 has 12-bit ADC 
compared to 8-bit ADC of Landsat 1–7. Recall from previous chapters that 12 bits allow repre-
senting integers from 0 to 2 1 409512 − = , signal levels or a voltage resolution proportional to 
1/(2 1) 244 1012 6− = × − , whereas 8 bits yield only 256 levels or a much coarser resolution propor-
tional to 1/(2 1) 3922 108 6− ≈ × − . It should be noted that Landsat 8 products in bands 1–7 and 10 
are delivered as 16-bit unsigned integers, which means from 0 to 65,535 (USGS 2022b). Landsat 9 
increased radiometric resolution by using 14-bit ADC, or 16,384 levels and voltage resolution pro-
portional to 1 / (2 1) 0.610 108 6− ≈ × −  (USGS 2022c).

Naturally, the purpose and objectives of the monitoring program dictate the level of resolution 
needed for each type of resolution. For example, low spatial and spectral resolution may suffice to 
monitor coarse vegetation types over large areas, however, following up details of vegetation change 
at species level at a particular site may require high spatial and spectral resolution. Together with 
resolution, image quality also plays a role when selecting imagery. For example, percent coverage 
by clouds or of artifacts can limit the usefulness of an image.

SPACEBORNE REMOTE SENSING: TYPES OF ORBITS

Three types of orbits are considered for spaceborne remote sensing, geostationary, equatorial, and 
sun-synchronous (Zhu et al. 2018). A geostationary orbit rotates at a period equal to Earth’s rotation 

FIGURE 8.1 A raster file is composed of a grid of pixels.
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period (24 hours), therefore the satellite always stays over the same location on Earth; this orbit type 
is useful for communication and weather satellites. A satellite in an equatorial orbit circles the Earth 
with a small inclination angle (angle between the orbital plane and the equatorial plane); in contrast, 
sun-synchronous satellites have orbits with high inclination angles, passing nearly over the poles, and 
going over a given location of Earth with a repetition period that varies up to 16 days. Remote sensing 
satellites tend to in sun-synchronous orbits, so that they can have repeatable sun illumination condi-
tions for specific seasons. In addition, the orbit varies in altitude, typically from 600 to 1000 km.

PLATFORMS AND IMAGERY

By now, there are more than a 1000 remote sensing satellites launched, and many updated with newer 
technology and hyperspectral sensors, thereby improving spatial and spectral resolutions, as well as 
periodicity of imaging. Significantly, remote sensing data are becoming available as open data sources 
(Zhu et al. 2018). In this book, we will cover just some examples of frequently used platforms.

Landsat started in the early 1970s carrying the early multispectral scanner (MSS) with just a 
few bands VIS green, VIS red, NIR (700–800 nm), NIR (800–1100nm), and 80-m spatial resolu-
tion. Landsat has evolved to Landsat 9 (launched in 2021) with 30-m spatial resolution, carrying the 
OLI-2, which measures in the VIS, NIR, and SWIR (shortwave IR), and the TIR Sensor 2 (TIRS-2)  
which measures temperature using two thermal bands. Figure 8.2 shows spectral bands of all 
Landsat satellites. MSS bands 1–4 in this figure were called bands 4–7 in Landsat 1–3. To illustrate, 
we consider the 11 bands of Landsat 8 in Table 8.2. Landsat is a great example of long-term and 
continuous measurement that characterizes environmental monitoring. From Landsat 1 to Landsat 
9, we have more than 50 years of data.

GEODETIC DATUM OR SYSTEM

A geodetic datum or system is a reference frame to specify any location on the Earth, and it is of 
great importance for satellite imagery. A horizontal datum is given in latitude and longitude or 
another coordinate system; a vertical datum is given in elevation or depth relative to a reference, 
e.g., mean sea level. The World Geodetic System (WGS) and its revision of 1984, known as WGS84, 
is intended for global use and has become prevalent in many applications; for instance, WGS84 is 
used for the Global Positioning System. In WGS84, the origin of coordinates is the Earth center of 
mass (with uncertainty <2 cm), the prime meridian (0º0′0″ longitude) is the Greenwich meridian 

FIGURE 8.2 Spectral bands for all Landsat satellites. Figure from USGS Landsat Missions (2022b).
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(just 5.3″ off), the Equator is 0º 0′ 0″ latitude, and the vertical or surface datum is an oblate spheroid 
calculated from several models, including Earth gravitation.

WORLD REFERENCE SYSTEM (WRS)

The Landsat WRS (NASA 2022) consists of Path and Row numbers that enable to find an image for 
any part of the world. The center of the scene is designated by the Path number (given first) followed 
by the Row number. For instance, 127–043 refers to Path 127 and Row 043. As platforms changed, 
so did the WRS; the WRS-1, corresponding to Landsat 1–3, sequences 251 path numbers from east 
to west, with the first crossing the equator at 65.48°W longitude.

WRS-2 corresponding to Landsat 4, 5, 7, 8, and 9 is an extension of WRS-1 using a Path/Row 
notation as well but with differences in repeat cycles (16-day), coverage, swaths, and number des-
ignation due to the large orbital differences. WRS-2 sequences 233 paths east to west, with the first 
crossing the equator at 64.60°W longitude and partitioning each path in 248 row intervals. Rows 60 
and 184 coincide with the equator during the descending (daytime) and ascending (nighttime) parts 
of the orbit, respectively; Row 1 is at 80°47′ N latitude, row numbers increase southward and then 
northward ending at Row 248 located at 81°22′ N. For illustration, Figure 8.3 shows a sector of the 
WRS-2 map for the descending part of the orbit. The slanted sequences of dots are the paths, whereas 
the horizontal sequences of dots are the rows. The vertical lines correspond to Universal Transverse 
Mercator (UTM) Zones, which we will describe in the next section. For better understanding of the 
WRS, the reader is referred to the full maps available at USGS Landsat Missions (2022a).

In the companion lab manual (Acevedo 2024), we indicate how to obtain Landsat imagery which 
is available via the EarthExplorer USGS website (USGS 2022a). In that lab guide, we work with 
images of a scene downloaded from EarthExplorer and corresponding to Path 27, Row 37 of the 
Landsat WRS-2. The coordinates of the center of this scene are 33.176999° and -97.102621° latitude 
and longitude, respectively. This example is illustrated in Figure 8.4 which shows the relationship 
between Paths, Rows, coordinates of the center of the scene, and UTM Zones. The example covers 
an area of the North Central Texas region, State of Texas, USA. Th extracted scene and boundaries 
are illustrated in Figure 8.5 with datum WGS84.

UTM COORDINATE SYSTEM

In the UTM coordinate system, the world is divided into 60 zones, running in the North South direc-
tion. Thus, 360º of longitude divided into 60, means that the width of each zone is 6º of longitude; 

TABLE 8.2
Landsat 8 Bands (USGS 2022b)

Instrument Band Number Wavelength (nm)
Spatial 

Resolution (m)

OLI 1 Coastal aerosol 433–453 30

2 Blue 450–515 30

3 Green 525–600 30

4 Red 630–680 30

5 NIR 845–885 30

6 SWIR 1560–1660 30

7 SWIR 2100–2300 30

8 PAN 500–680 15

9 Cirrus 1360–1390 30

TIRS 10 Thermal 10,600–11,200 100

11 Thermal 11,500–12,500 100
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FIGURE 8.4 Example of a scene for Path 27, Row 37. Its center is located at 33.176999° and –97.102621° 
(latitude and longitude). Vertical lines are UTM Zone boundaries. Shown here is Zone 14.

FIGURE 8.3 Section of path/row map showing descending (daytime) part of the orbits. From USGS Landsat 
Missions (2022a).
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this width in km is maximum at the Equator. UTM Zones have integer numbers beginning with 
Zone 1, at longitude 180º West, increasing to the East, and ending in Zone 60, which spans from 
174º to 180º East longitude. Taking for instance the USA, the westernmost part of Alaska is in Zone 
1, and Maine is in Zone 19.

For each zone, coordinates are northing and easting in meters. Northing values are referenced to 
the Equator (given a northing value of 10,000,000 m), and easting values are referenced to a merid-
ian (given an easting value of 500,000 m) running through the middle of each zone.

For example, in the lab session 8 of the Lab Manual companion to this book (Acevedo 2024), 
we will work with a portion of the Landsat image discussed in the previous section. This por-
tion is shown in Figure 8.6 (using false color composite which we will discuss in a later sec-
tion), and is in UTM Zone 14, has easting extending from 664,995 to 700,005 m (this means it is 
located east of the central meridian which is at 500,000 m) and northing extend from 3,671,805 to 
3,706,815 (this means is north of the Equator which is at 10,000,000 m). The total extent in easting 
is to 700,005–664,995 = 35,010 m or 35.01 km, similarly the total extend in northing is 3,706,815–
3,671,805 = 35,010 m or 35.01 km. Therefore, this image has the same range in northing as in easting. 

FIGURE 8.5 Polygon for Path 27 and Row 37 scene.
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We end up with a raster image of 1167 rows and 1167 columns of 30 m × 30 m cells or pixels, for a 
total of 1,361,889 pixels.

BANDS AND IMAGE DISPLAY

Now we will look at the analysis of bands, using as an example a Landsat 8 scene captured on June 
18, 2021 for Path 27, Row 37 that we have used as an example in the previous sections. To simplify 
the presentation, we will focus on bands 1–7 of Landsat 8. The data for each band are contained in 
a raster file, and as already mentioned when discussing radiometric resolution, the pixel values are 
given in 16-bit unsigned integers, that is from 0 to 2 1 6553516 − = . For further simplicity, we will 
frame the subsequent discussion using values scaled from 0 to 1, which are obtained dividing the 
original values into 65,535.

Displaying the contents of only one band on a computer monitor (Figure 8.7) does not yield a 
good visualization of many features of the terrain; this is evident in the green and red bands for 
the entire image. Interestingly, the NIR and SWIR1 bands do show differences between water and 
land. However, we can do a true or natural color composite, meaning we send the red, green, and 
blue bands to the red, green, and blue channels of a computer monitor (Figure 8.8) and now we can 
visualize more features.

To help the reader be acquainted with the area of the image, Figure 8.9 composed using Goggle 
Earth, shows the cities, towns, creeks, lakes, roads, and rural landscapes. These features can be 
identified in the natural color image of Figure 8.8 where we can visualize the lakes (Ray Roberts to 
the North and Lewisville to the south), including differences in water quality, roads and highways, 
urban areas in the southwest part of the image (corresponding to the City of Denton).

NT False Color Composite

664995.0 673747.5 682500.0 691252.5 700005.0

3671805

3680558

3689310

3698063

3706815

FIGURE 8.6 Portion of the scene for Path 27 and Row 37 selected for analysis and illustrating UTM coor-
dinates. Shown here is a gray tone recolored version of the false color composite.
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Often differences can be better visualized in a false color composite that sends the NIR, red, and 
green bands to the red, green, and blue channels of the monitor (Figure 8.6). The contrast between 
the lakes and the surrounding land areas is enhanced, as well as the contrast between the urban 
areas and surrounding rural areas.

We gain insight regarding the contents of the bands by looking at the distribution of the values 
(Figure 8.10). Indeed, the values of the green and red bands do not show much variability and oppo-
site skewness, whereas NIR shows bimodality due to the differences between water and land, with 
higher values due to terrestrial vegetation. That difference is attenuated in the SWIR1 band.

We can compare the relationship between pairs of the four bands given in Figure 8.10 by plotting 
pair-wise scatter plots on comparable scales Figure 8.11. We see that green and red are highly cor-
related, but their relationship with NIR shows an interesting pattern. An important relationship to 
analyze vegetation is the one between the red and NIR (upper right-hand panel of Figure 8.11), since 
vegetation reflects more in the NIR than in the red. Note that the scatter plot for these two bands 
has a unique triangular shape. Its top corner is due to pixels with high NIR (vertical axis) and low 
red (horizontal axis), indicating vegetation. The bottom corner has low reflectance for both bands, 
indicating water, whereas the furthest corner corresponds to high reflectance in both bands, indi-
cating exposed surface such as bright soil or concrete (Ghosh and Hijmans 2019). The scatter plot 
between green and NIR has a similar triangular shape, with a bottom corner that has low reflectance 
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FIGURE 8.7 Green, red, NIR, and SWIR1 bands.
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FIGURE 8.9 North Texas area image from Google Earth.

NT True Color Composite

664995.0 673747.5 682500.0 691252.5 700005.0
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3680558

3689310

3698063

3706815

FIGURE 8.8 North Texas area image bands as true or natural color composite.
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for both bands, indicating water. The unique relationship of NIR with red and green with respect to 
vegetation and water will be employed in the next section to construct vegetation and water indices.

ANALYSIS USING INDICES

Combining bands into indices allows to extract features from remote sensing imagery. As examples 
we use indices that can be calculated from various bands of Landsat 8 and Landsat 9. Several indi-
ces, such as those for vegetation and water, use a normalized difference that consists of taking the 
pixel-by-pixel difference between the values for two bands k and i and dividing by the sum of the 
values for these two bands

 nd
b b
b b

k i

k i

= −
+

 (8.1)

These indices vary between –1 and +1. We can use it for instance, to calculate the Normalized 
Difference Vegetation Index (NDVI), which uses band 5 (or NIR) for bk and band 4 (or red) for bi.
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FIGURE 8.10 Histograms of the green, red, NIR and SWIR1 bands.
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Applying it to the example we have been using produces the image shown in Figure 8.12. Higher 
values of NDVI, darker (or green in the color version) areas (above ~0.3) indicate vegetation. In 
this case, we see, for example, higher values along Clear Creek that runs Southeast toward Lake 
Lewisville, and particularly an area named the Greenbelt Corridor, just to the north of the Lake 
Lewisville headwaters (see Figure 8.9 for locations).

NDWI, or the Normalized Difference Water Index, allows detecting pixels with water from the 
image; NDWI can be calculated using the expression

 
3 5

3 5

NDWI
b b
b b

= −
+  (8.3)

which uses band 3 (or green) for bk and band 5 (or NIR) for bi. We can see the image in Figure 8.13. 
Higher values of NDWI, darker (or blue in the color version) areas (above ~0.2), indicate water, and 
these pixels show clearly for the lakes.

It is helpful to look at the statistics of NDVI and NDWI (Figure 8.14). We see how these two indi-
ces give us contrasting information, the pixels with low negative values of NDVI centered around 
–0.05, correspond to water, that coincides with the positive values of NDWI ~0.1. Contrastingly, 
high positive values of NDVI for vegetation correspond to negative values of NDWI. We can use 
this information to extract areas in vegetation or water using reclassification.

FIGURE 8.11 Relationship of pairs of green, red, NIR, and SWR1 bands.
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FIGURE 8.12 NDVI for the example image. Darker pixels correspond to vegetation.
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FIGURE 8.13 Image of NDWI. Darker pixels are water.
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RECLASSIFICATION

A useful analysis of remote sensing imagery is reclassification, which can select pixels above a 
threshold or in an interval, to have a better idea of what they correspond to in the image. We can 
use it to mask out those pixels with a value lower than the threshold, which will show as white when 
we plot the image. As an example, consider reclassifying the NDVI image to mask out those values 
lower than 0.3 (Figure 8.15). We confirm the vegetation pattern we had determined previously. As 
another example, we can query for those pixels with NDVI around –0.05 (Figure 8.16). We confirm 
that those pixels correspond to the lakes and some smaller bodies of water. We could perform simi-
lar reclassification using NDWI to confirm the results.

MULTIVARIATE ANALYSIS AND MACHINE LEARNING

Besides the methods explained in previous sections, analysis of remote sensing data may require 
using Machine Learning (ML) algorithms. Although ML is a broad subject, in the case of remote 
sensing, this type of method includes techniques to reduce dimensionality, such as singular value 
decomposition (SVD) and principal components analysis (PCA), as well as ML classification. The 
latter can be supervised or unsupervised, based, for example on cluster analysis, of which there are 
two major types, agglomerative (grouping) and divisive (splitting into groups). In general, remote 
sensing data expressed as raster files require techniques of image processing. There are special-
ized programs to analyze imagery, but Geographic Information Systems (GIS) software typically 
includes remote sensing analysis modules; for instance, GRASS GIS (GRASS 2022) and QGIS 
(QGIS 2022). Analysis can also be conducted with programming tools, such as R (Ghosh and 
Hijmans 2019), and Mathematica (Haneberg 2004). There is a trend to seek solutions of remote 
sensing data classification problems and biophysical parameters estimation by additional ML tech-
niques which we will cover in Chapter 9.
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FIGURE 8.14 Histogram of the NDVI and NDWI values.
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FIGURE 8.15 NDVI image reclassified to values above 0.3.
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FIGURE 8.16 NDVI image reclassified to values approximately equal to –0.05.
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REDUCING DIMENSIONALITY

PCA

In remote sensing applications, Principal Component Analysis (PCA) can be used to explain mul-
tispectral data contained in the images from new uncorrelated variables called principal compo-
nents that are linear combination of the original variables or bands. A reduction in dimensionality 
is achieved when a few components can explain most of the variance observed in the images. These 
principal components are the eigenvectors of the covariance matrix and are orthogonal to each other.

Consider X to be an n × m data matrix, with columns corresponding to values of m bands  
[X1, X2, ..., Xm] and the rows to the n observations or pixels. We assume that n >> m, or that we have 
many more pixels than bands. The covariance matrix C = cov(X) is m × m, with a trace (the sum 
of main diagonal terms) equal to the total variance and in turn equal to the sum of m eigenvalues. 
Therefore, each eigenvalue is a percent of the total variance. When selecting components, a typical 
approach is to select those components that explain at least 90% of total variance. Alternatively, there 
are other criteria, such as the Kaiser rule, that retain a component if it explains as much as one of the 
original variables. Instead of C, we can also use the correlation matrix R = cor(X) to scale uniformly.

The new variables [Z1, Z2, ...Zm] make up the new matrix Z which is also n × m. Note that Z is 
the linear function of X, i.e., Z = XA where A is a matrix m × m composed of the eigenvectors of the 
covariance matrix.

 A

...

...

... ... ... ...
...

11 21 31

12 22 32

1 2

v v v

v v v

v v vm m mm

=


















 (8.4)

The entries of A are the loadings, whereas the entries of Z are scores or new coordinate values. 
Observations are plotted as points in this new set of coordinates. Points close to each other are 
similar. Matrix A satisfies

 C ALAT=  (8.5)

where L is a diagonal matrix made up with the eigenvalues of C arranged in descending order.

 L

0 ... 0

0 ... 0

... ... ... 0
0 0 ...

1

2

m

λ
λ

λ

=





















 (8.6)

here ...1 2 mλ λ λ≥ ≥ ≥ . The trace of L is equal to the total variance.
For example, in a similar manner to the example in Carr (1995, p96), consider the data matrix of 

n = 5 observations of two variables

 X

3 14
4 13
5 6
6 5
7 0

=























 (8.7)
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First, center the columns by subtracting the means

 x

2 6.4
1 5.4

0 1.6
1 2.6
2 7.6

=

−
−

−
−
−























 (8.8)

Now the covariance matrix is

 C x xT1
1

1
5 1

10 36
36 137.2

2.5 9
9 34.3n

=
−

=
−

−
−









 = −

−








 (8.9)

The total variance is the trace of C or tr(C) = 34.3 + 2.5 = 36.8. The eigenvalues are

  36.67 and 0.131 2λ λ= =   (8.10)

Their sum is also equal to the total variance (36.67 + 0.13 = 36.8). The first eigenvalue 36.67 is a large 
fraction of total variance 36.8. Indeed, the percentage of total variance explained by first eigenvalue 
is 100 × (36.67/36.8) = 99.6%. Therefore, only one component explains most of the variance. The 
eigenvectors are

 v v0.25
0.97

and
0.97
0.251 2= −







 = −

−










are arranged as columns in a matrix A to form the loadings

 A 0.25 0.97
0.97 0.25

= − −
−











The new or transformed data matrix Z is obtained by post-multiplying the data by the loadings

 Z XA

3 14
4 13
5 6
6 5
7 0

0.25 0.97
0.97 0.25

12.77 6.47
11.55 7.18
4.52 6.36
3.30 7.08
1.78 6.77

=























− −
−









 =

−
−
−
−

− −























=

We can verify that L is diagonal with eigenvalues in main diagonal

 L A CAT 0.25 0.97
0.97 0.25

2.5 9
9 34.3

0.25 0.97
0.97 0.25

36.67 0
0 0.13

= − −
−











−
−











− −
−









 =









=

Note that in this case, the transpose of matrix A is the same as matrix A. Graphically we can com-
pare the original data X to the transformed scores Z as shown in Figure 8.17. Here we label the 
points with observation numbers. Proximity of pairs of observations indicates similarity between 
those observations. The first principal component (horizontal axis) explains most of the variance 
and observations sort themselves along this axis; observation 1 has the highest vale and observation 
5 the lowest. However, all observation pairs differ little along the vertical axis (second principal 
component).
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When the observations are not all on the same scale, which could happen for example, when the 
variables are not in the same units, it is important to first standardize the observations or equiva-
lently use the correlation matrix. In the example at hand, the second column has much larger values 
than the first, therefore it is important to standardize or use the correlation matrix.

To standardize the observations, divide the centered columns by the standard deviation of the 
column. For example, matrix X above is standardized

 x

1.26 1.09
0.63 0.93
0 0.27

0.63 0.44
1.26 1.30

s =

−
−

−
−
−























We can either calculate the correlation matrix from the covariance matrix

 

2.5/2.5
9

2.5 34.3
9

2.5 34.3
34.3/34.3

1 0.97
0.97 1

=

−

−



















= −
−









R

or calculate it directly from the standardized observations themselves

 R x xs
T

s
1

1
1 0.97

0.97 1n
=

−
= −

−










The total correlation (scaled variance) is the trace of R or tr(R) = 1 + 1 = 2. The eigenvalues are

 1.97 and 0.031 2λ λ= =

Their sum is also equal to the total correlation (1.97 + 0.03 = 2). The first eigenvalue 1.97 is a large 
fraction of total correlation. Indeed, the percentage of total correlation explained by the first eigen-
value is 100 × (1.97/2) = 98.5%. Therefore, only one component explains most of the variance, but 
note that the standardization has made the value smaller. The eigenvectors
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FIGURE 8.17 Original data X (left) and transformed data (scores) Z (right) using observation number for 
labels.
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 v v0.71
0.71

and
0.71
0.711 2= −







 = −

−










have all the same magnitudes due to the standardization. These are arranged as columns in a matrix 
As to form the loadings

 As
0.71 0.71

0.71 0.71
= − −

−










The new or transformed data matrix Zs is obtained by post-multiplying the data by the loadings.

 Z x As s

1.26 1.09
0.63 0.93
0 0.27

0.63 0.44
1.26 1.30

0.71 0.71
0.71 0.71

1.67 0.12
1.10 0.20
0.19 0.19
0.76 0.13
1.81 0.02

s =

−
−

−
−
−























− −
−









 =

−
−
− −
−























=

Plots of the data and scores allow comparison as before (Figure 8.18). On the right-hand side panel, 
sorting along the horizontal axis is nearly the same, but now we can appreciate differences among 
observation pairs along the vertical axes (second component). Observations 2 and 4 are relatively 
similar, and so are 1 and 3. However, these two pairs differ among themselves; 2 and 4 are negative, 
whereas 1 and 3 are positive.

sVd and biplots

SVD is a method to obtain a diagonal form for the covariance matrix C, similar to equation (8.5), 
but it is more general and applied directly to the rectangular data matrix X. SVD relates to the 
Eckart-Young theorem and applies to many multivariate techniques: PCA, correspondence analysis, 
and canonical correlation analysis.

SVD can work directly with the X data matrix, or the centered observations x, or the standard-
ized observations xs. In the following, we work with the centered column data matrix x. The SVD 
of matrix x is

 x =U V TΓ  (8.11)
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FIGURE 8.18 Original data (standardized) Xs (left panel) and transformed data (scores) Zs (right panel) 
using observation number for labels.
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where U is n × m, Γ is m × m, and V is m × m. U and V are matrices of singular vectors, the columns 
of U are eigenvectors of xxT (referred to as left eigenvectors), and the columns of V are eigenvectors 
of xTx (referred to as right eigenvectors). Note that xxT can be a large matrix because it is n × n and 
that xTx is smaller because it is m × m. Matrix Γ is a diagonal matrix of singular values, the square 
root of eigenvalues of xTx, arranged in non-decreasing order. The non-zero eigenvalues of xxT are 
the same as the eigenvalues of xTx.

  ( 1,..., )diag i miλΓ = =   (8.12)

A least squares approximation of the matrix x is obtained using the first few (say k) dominant sin-
gular values and vectors

 �x =U Vk k k k
TΓ  (8.13)

In this equation, the subscript k-means we take the first k columns of U, Γ, and VT. A useful graphi-
cal visualization of the reduced dimensionality is called a biplot (Gabriel 1971). This plot shows 
both the observations and the variables simultaneously. The prefix bi refers to the simultaneous 
display of both rows and columns of the transformed data matrix given by Equation (8.13), and not 
to the fact that the plots are bi-dimensional. Biplots are usually drawn in 2D (k = 2) for ease of inter-
pretation, but conceptually they can be done in 3D and multi-dimensional space (k > 2).

A factorization of equation (8.13) is

 � Γ Γα αx =U V = GHk k k k
–

k
T T1  (8.14)

where G and HT are

 
Γ

Γ

α

α

G =U

H = V

k k

T
k
–

k
T1
 (8.15)

and the value of the scale parameter in the range 0 to 1 (0 1)α α≤ ≤  determines whether emphasis 
is placed on the rows or columns of x. The biplot display in 2D is the plot of the row “markers” G 
and column “markers” H given in equation (8.15) for k = 2.

 
Γ

Γ

α

α

G =U

H =V

2 2

2 2
–1

 (8.16)

In other words, the biplot is a plot of the coordinates associated with G or columns of G, superim-
posed over the coordinates associated with H or columns of H.

Although any values of α  are possible to accomplish the factorization, three are most used, 1, ½, 
and 0. When 1α =  is selected, which is the original value used in Gabriel (1971), the result is a row 
metric preserving biplot. This display is useful for studying relationships among the observations. 
When the value 0 is selected, the result is a column metric preserving biplot. This display is useful 
for interpreting relationships among variables (for example, interpreting a covariance or correlation 
matrix). The other value of α , 1/2, gives equal scaling or weight to the rows and columns. It is useful 
for interpreting interaction in two factor experiments (Gower and Hand 1996).

We can see that PCA is a special case of SVD, since in PCA XTX is transformed (centered and 
scaled) to be the covariance or correlation matrix. This assumption is not generally made in SVD. 
Therefore, the singular values of PCA are eigenvalues of a covariance or a correlation matrix.  
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The singular values of an SVD of the centered observations x must be squared and divided by n–1 
to obtain variances. The V matrix is equivalent to the matrix of loadings A.

Let us look at the numerical example given in the previous section and apply the SVD to the 
centered observations given in Equation (8.8) and the xTx matrix given in Equation (8.9)

 x xT 10 36
36 137.2

= −
−











with eigenvalues

 146.68 0.521 2λ λ= =

take the square roots to obtain the singular values

 
146.68 12.11

0.52 0.72

1

2

s

s

= =

= =

and the singular values matrix has the diagonal elements equal to the singular values

 Γ =










12.11 0
0 0.72

In this case, the matrix x is of rank 2 (only two variables) and therefore the least squares approxima-
tion for k = 2 is exact. The singular values matrix is just 2 × 2 and has no zeros in the main diagonal. 
Note that 12.112/4 = 36.67 and 0.722/4 = 0.13 are the eigenvalues of the covariance matrix.

The eigenvectors of the xTx matrix are arranged as columns in a matrix V

 V 0.25 0.96
0.96 0.25

= − −
−











Now calculate the xxT matrix, note that n = 5 and therefore this matrix will be 5 × 5

 xxT

44.96 36.56 10.24 18.64 52.64
36.56 30.16 8.64 15.04 43.04
10.24 8.64 2.56 4.16 12.16

18.64 15.04 4.16 7.76 21.76
52.64 43.04 12.16 21.76 61.76

=

− − −
− − −

− −
− −
− −























with eigenvalues

 

146.68

0.52

0.0

0.0

0.0

1

2

3

4

5

λ

λ

λ

λ

λ

=

=

=

=

=
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Note that the first two are non-zero eigenvalues and are the same as the eigenvalues of xTx. This fact 
is part of the Eckart-Young theorem and SVD.

The eigenvectors of the xxT matrix can be arranged as columns of matrix U

 U

0.55 0.42 0.72 0.00 0.00
0.45 0.56 0.01 0.68 0.06

0.12 0.56 0.23 0.49 0.60
0.22 0.42 0.43 0.25 0.72
0.64 0.00 0.50 0.47 0.33

=

− −
− − − −

− − − −
−

− −























We can verify that the SVD x =U V TΓ  yields the correct results. Let us calculate the projection 
matrices G and H for the biplot in 2D (k = 2). Use scale equal to 1.

 

=

0.55 0.42
0.45 0.56

0.12 0.56
0.22 0.42
0.64 0.00

12.11 0
0 0.72

6.70 0.30
5.47 0.41

1.54 0.41
2.76 0.30
7.86 0.00

0.25 0.96
0.96 0.252 2

1–
2

Γ Γ =

− −
−

−





























 =

− −
−

−

−





















Γ = = = − −
−











α

α

G =U =U

H V V V

2 2 2

Now we can construct the biplot in 2D using G and H as in Figure 8.19. In this plot, the observations 
are labeled 1–5 and the variables V1 and V2. The bottom and left axis labels and scale correspond 
to the observations (coordinates related to U), whereas the top and right axis labels and scale cor-
respond to the variables (coordinates of V). Proximity between pairs of observations denotes degree 
of similarity between those observations, whereas the cosine of the angle in between variables 
represents the correlation between those variables. In the example, we see that observation pairs 1, 
2 are similar and 3, 4 are similar.
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FIGURE 8.19 Biplot for the example.
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The biplot concept can be applied to PCA, the observations are plotted on the two principal 
components PC1 and PC2. Their coordinates given by G are the scores. The variables are given by 
coordinates of H, which are equivalent to the loadings or matrix A.

pCa applied to Remote sensinG imaGes

We will demonstrate the application of PCA to remote sensing images using the images worked 
upon in the previous sections. Since the number of pixels is very large (1,361,889 in this example), 
we can take a random sample, e.g., size 10,000 before performing PCA. We obtain that the first 
three components explain more than 98% of the variance, the loadings or rotation indicate that the 
first component loadings are of the same sign and nearly similar magnitude for the first four bands 
(VIS), whereas the second component loadings are different sign for the last three bands (NIR 
and SWIR) (Figure 8.20). A biplot of the first two components shows that all bands 1–7 follow the 
PC1 axis but bands 5–7 (NIR and SWIR bands) separate from bands 1–4 (VIS) for the PC2 axis 
(Figure 8.21). We conclude that we can explain the images from just the first three components, 
PC1, PC2, and PC3 and create an image assigning the first three components to the RGB channels 
(Figure 8.22). We obtain a clear distinction of pixels by types of land use, highlighting the lakes, 
vegetated areas, rural areas, and urban areas.

UNSUPERVISED CLASSIFICATION: CLUSTER ANALYSIS

One major goal of remote sensing applications is to group or classify pixels of similar spectral 
characteristics. In unsupervised classification, we do not supply information indicating that pixels 
belong to a particular class or group. This is useful when we do not have knowledge of the area 
under monitoring nor ground-truth data. Supervised classification implies training the algorithm by 
a set of pixels for which we know the correct class.
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FIGURE 8.20 PCA rotation plot of the example image.
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NT PCA Color Composite
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FIGURE 8.22 RGB image of first three PCA components.
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FIGURE 8.21 PCA biplot for PC1 and PC2 of the example image.
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Cluster analysis is a method to classify objects or observations into groups; this analysis helps to 
identify the possible groups and reveal relations among groups. Besides remote sensing image clas-
sification, it has many applications such as numerical taxonomy. There are several types of cluster 
analysis. For example, hierarchical agglomerative clustering successively joins or merges the most 
similar observations to form clusters, and divisive such as K-means that successively divides the 
pixels into groups.

HieRaRCHiCal ClusteR analysis

Assume we have n observations and m attributes or variables that make up an n × m data matrix. 
First, the distance (dissimilarity) matrix D is m × m. Entries can be computed in various ways, for 
example calculating the Euclidian distance in m-space between observations or data points i and j

 ( )2

1

d x xij ik jk

k

m

∑= −
=

 (8.17)

The sum is over k = 1, ..., m attributes. Here xik is the kth variable value of point i, and xjk is the kth 
variable value of point j.

A small distance between two points implies that the observations are similar. Matrix D is sym-
metrical. The hierarchical agglomerative cluster analysis process consists of the following steps: 
(1) Initially set i = n clusters, this is to say only one object in each cluster, compute D. (2) Join two 
clusters to form a new cluster; at this point, we have i–1 clusters. To decide what clusters to join 
there are several options; for example, the Sum of Squares method: merges those two with the 
smallest increase in within-cluster Sum of Squares, the Link method: merges two with the smallest 
distance. There are several options to evaluate this distance between clusters: for example, nearest 
neighbor, complete linkage or farthest neighbor, centroid, and average. (3) Recompute D, which is 
now (i–1) × (i–1); the new cluster is represented by a “centroid”. (4) Repeat steps 2 and 3 until i = 2, 
when the set reduces to only two clusters. (5) Use the distance determined for joining clusters as a 
vertical axis (height) to draw a tree or dendrogram. 

We will work out a simple example using the data matrix given in Equation (8.7), consisting of 
n = 5 observations of two variables, and used to illustrate PCA

 X

3 14
4 13
5 6
6 5
7 0

=























We will use Euclidian distances and the complete linkage or furthest neighbor method for merging 
clusters. First calculate distances between observations to obtain matrix D. For illustration, take 
rows 1 and 2, and calculate distance (3 4) (14 13) 2 1.41412

2 2d = − + − = =
After calculating all unique pairs of observations, we get the following matrix D, which is sym-

metrical and thus we have not written the values in the upper right half because they are equal to 
the lower left half.

 

0
1.414 0
8.246 7.071 0
9.487 8.246 1.414 0

14.560 13.342 6.325 5.099 0

D =
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Observations 1 and 2, as well as 3 and 4, are the closest at d=1.414 and then at step 1 we form one 
cluster merging 1 and 2, and another cluster merging 3 and 4 (step 2). Next, we examine the remain-
ing single observation 5 and we see that the shortest distance 5.099 is to observation 4 which is part 
of previous cluster 3–4, so now to merge 3–4, and 5 we use furthest neighbor which implies using 
the larger distance 6.325 at step 3. At this point we have 2 clusters, 1–2 and 3–4–5, and to merge 
them at the final one cluster we select the largest distance 14.560 at step 4.

We can put this information in a dendrogram as shown in Figure 8.23 where the vertical axis 
(height) corresponds to distance, and the steps mentioned above are identified together with the 
cluster merging distances. Three clusters could be kept at a distance (height) of 5. Increasing the 
cutoff distance to 10, we have only two clusters.

It is worth noting the location of these observations as points in two-dimensional space as shown 
in the left-hand side of Figure 8.17, which suggests that observations 3, 4, and 1,2 are the closest, 
with 5 most closely related to 3-and 4. These provides additional insight on the results of the hier-
archical cluster analysis.

Model-based clustering uses a statistical model for the clusters; for example, Gaussian density for 
each cluster with mean μ and covariance C as parameters. The eigenvectors of C determine orienta-
tion of the cluster, and the eigenvalues of C determine the shape. If we make all clusters have same 
ratios of eigenvalues to the dominant eigenvalue, then all clusters have the same shape which is 
parameterized by the ratios; for example, when ratio = 1 we have hyper spherical clusters, but small 
ratio values lead to highly elongated hyper ellipsoids.

A difficult part of cluster analysis is to decide how many clusters to include at the end of the pro-
cess. This often becomes a judgment call made by looking at the dendrogram. However, some help 

is available as a Bayes factor 
( )
( )1

B
P mc
P mc

k
k=  where mck is the event that the model has k clusters and 

mc1 that the model has 1 cluster. Then B1 = 1 and larger Bk indicates more evidence for the existence 
of k clusters. The Bayes factor can be converted into the Approximate Weight of Evidence for k 
clusters AWEk as = 2 log ( )kAWE Bk× . Now AWE1 = 0. The rate of change of AWE and max (AWE) 
are used to decide on the number of clusters.

k-means

The K-means method is based on partitioning the data into non-overlapping clusters of similar 
observations and with centroids calculated as the mean distance of observations assigned to each 
cluster. K-means is used in many areas and is one important tool in unsupervised ML.

0
5

10
15

1 2 5 3 4

d=1.414 d=1.414

d=6.325

d=14.350

Step 1 Step 2

Step 3

Step 4

FIGURE 8.23 Dendrogram generated by cluster analysis.
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The letter “K” in the name K-means refers to the number k of clusters (given a priori by the user) 
to divide the data into, whereas the “means” part of the name refers to using the mean to calculate 
the centroids. Mathematically, the intent is to classify the observations into k clusters such that the 
total within-cluster sum of squares is as small as possible. There are several algorithms commonly 
employed to implement this method. For example, Hartigan and Wong (1979), MacQueen (1967), 
and Lloyd (1982) or its equivalent Forgy (1965).

Assume we have n observations and m attributes or variables that make up an n × m data matrix. 
Denote by cij the centroid of cluster i where i = 1,…, k. for variable j = 1,…, m Observations are 
assigned to a cluster based on the shortest distances from the points to the centroid. For example, 
using the Euclidian distance 

 ( )2

1

d x cil ij ij

j

m

∑= −
=

Between a point l in cluster i, with coordinates xij For all points in cluster i we want to minimize the 
within-cluster sum of squares SS

 
1

( )2

1,

SS
w

x xpq rq

q

m

p r i

∑∑= −
=∈

 (8.18)

Where p, r denote pair of points in the cluster and w is the total number of points in the clus-
ter. K-means proceeds following these steps: (1) Assign k centroids randomly in m-space, (2) 
partition the observations based on their distance from the centroids; points relatively closer to 
a centroid will get assigned to that cluster. (3) Then, the cluster centroids are calculated based 
on the means of the cluster points and relocated, (4) based on the newly assigned centroids, 
assign each observation falling closest to the new centroids, check for lower within-cluster sum 
of squares. (5) Repeat steps 3 and 4 until the cluster centroids do not change or the stopping 
criterion is reached.

As a simple example, we will use the data matrix given in equation 8.7, consisting of n = 5 observa-
tions of two variables, which was also used to illustrate PCA and hierarchical clustering. As mentioned 
in the previous section, the location of these points in two-dimensional space shown in the left-hand 
side of Figure 8.17, suggests that observations 3, 4, 5 are most likely a cluster separated from another 
cluster composed of observations 1, 2. Our hierarchical cluster work of the previous section also sup-
ports this hypothesis. Therefore, we will work a k-means example postulating two clusters.

As mentioned above, initial centroid coordinates are assigned at random, and then distances are 
calculated to decide which observations go with each centroid. However, in this simple example we 
can calculate the coordinates of the centroids of the hypothetical clusters averaging the coordinates 

of all points in the cluster. For cluster 1–2 the means are 
1 (3 4)/2 3.5

2 (14 13)/2 13.5

x

x

= + =

= + =
 and for cluster 3–5 

the means are 
1 (5 6 7)/3 6

2 (6 5 0)/3 3.66

x

x

= + + =

= + + =
. You can visually estimate where these centroids will appear 

in the plane of the left-hand side of Figure 8.17, for further insight into the process.
Let us calculate the within sum of squares for each cluster, For this purpose we can use matrix 

D from the previous section. For cluster 1–2, we already know the distance is 1.414 and its square  
is 2, since we have two points w = 2, therefore the within SS should be SS=2/2=1. We can see 

this also from equation 8.18 
1
2

[(3 4) (14 13) ] 12 2SS = − + − = . For cluster 2, using equation 8.18



212 Real-Time Environmental Monitoring

 

1
3

[(5 6) (6 5) ] [(5 7) (6 0) ] [(6 7) (5 0) ]

1
3

2 40 26 68/3 22.66

2 2 2 2 2 2SS { }

{ }

= − + − + − + − + − + − =

= + + = =

we obtain within SS of 22.66, which can also be obtained from matrix D. Note also that total within 
SS is 1+22.66 = 23.66.

It is also of interest to calculate “between SS”, which are calculated using points across clusters and 
“total SS” which is obtained from all data points. A ratio of these quantities expressed in percentage rep-
resents an evaluation of the results; the larger the ratio the better the separation between the clusters. This 
is somewhat lengthier calculation to be made by hand but applying a computer program to this example 
will yield a result in one iteration due to the simplicity of the data matrix. In this case the between SS is 
123.53 and the total SS is 147.2, yielding a ratio of 123.53/147.2 = 83.9% indicating relatively good results 
for this model. We learn how to use a k-means R package in lab 8 of the companion Lab Manual. 

unsupeRVised ClassifiCation of Remote sensinG imaGes usinG k-means

Hierarchical agglomerative clustering is not very practical to classify remote sensing images due to 
the large number of pixels, which implies calculating a very large distance matrix. However, it can 
be applied to a relatively small sample of the image. We will not examine this method here but rather 
focus on divisive clustering using K-means. For this purpose, we perform unsupervised classification 
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FIGURE 8.24 Unsupervised classification of NDVI.
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of the NDVI image obtained earlier and targeting five clusters. The computational process is 
described in the companion lab guide. The five clusters have means 0.235, 0.392, 0.136, 0.311, and 
–0.025. From our knowledge of the NDVI, cluster 5 that is centered around –0.025 must correspond 
to the lakes, cluster 2 must be dense vegetation, cluster 4 must relate to vegetation, and clusters 1 and 3  
must relate to open areas or urban areas. Armed with these classes, we assign cluster number to the 
pixels, create colors to correspond to these classes, and display the image (Figure 8.24).

EXERCISES

Exercise 8.1

Compare radiometric resolution using 12 bits and 14 bits.

Exercise 8.2

Determine the longitude of the center meridian for UTM Zone 14.

Exercise 8.3

Calculate the NDVI of a pixel with NIR band equal to 0.15 and red band equal to 0.1.

Exercise 8.4

Consider the following data matrix, with rows corresponding to observations and columns to the 
variables

 X

3 14
4 13
5 6
6 5
7 0

=























 

Apply PCA to this simple matrix. Calculate the centered values and the covariance matrix of the 
centered values, the percentage of variance explained by the components, loadings matrix, and 
the transformed data.

Exercise 8.5

Consider the data matrix of the previous exercise with rows corresponding to observations and 
columns to the variables. Apply hierarchical cluster analysis to this simple matrix. Calculate the 
Euclidian distance for all observations pairs, merge clusters according to the complete linkage 
method, and draw a dendrogram.

Exercise 8.6

Consider the data matrix of the previous exercise with rows corresponding to observations and 
columns to the variables. Apply k-means analysis to this simple matrix using clusters 1–2 and 3–5. 
Calculate coordinates of the centroids and within SS for both clusters.
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9 Probability, Statistics, and 
Machine Learning

INTRODUCTION

This chapter covers probability, statistics, and machine learning (ML) applications to environ-
mental monitoring. Starting with basic probability theory, we formulate the basics of ML classi-
fication, interpreted from the point of view of Bayes’ theorem, emphasizing the concepts of false 
negative errors, false positive errors, and confusion matrix. Discrete random variables (RVs) are 
introduced to support the analysis of counts and proportions, as well as contingency analysis. 
Analysis of error or confusion matrix is covered using Kappa statistics and contingency tables. 
Then, we introduce multiple linear regression, including approaches to select the explanatory 
variables, emphasizing collinearity issues and stepwise regression. This chapter ends with an 
introduction to classification and regression trees (CART) and its application to supervised clas-
sification. These concepts are expanded by computer exercises in Lab 9 of the companion Lab 
Manual (Acevedo 2024).

PROBABILITY

Probability theory is the basis for the analysis of uncertainty in science and engineering and it also 
plays a role in many ML algorithms. The concept of probability ties to a numerical measure of the 
likelihood of an event, i.e., an outcome of an experiment or measurement and which belongs to the 
sample space that is the set of all possible outcomes (Acevedo 2013). Probability is defined as a 
real number between zero and one (0 and 1 included) assigned to the likelihood of an event. As a 
shorthand for the probability of an event, we can write Pr[event] or P[event]. For example, for event 
A then Pr[ ] or [ ]A P A  where 0 [ ] 1P A≤ ≤ .

A simple approach to assign a probability value to an event is related to the proportion of time 
that an event could occur when compared to others. Consider picking a pixel at random from a 
remote sensing image classified to six vegetation classes, 1, …, 6, and thus the sample space U has 
six possible outcomes. Suppose there are 100 out of 1000 pixels in class 1 and define event A = pixel 
is class 1, then P[A] ~ 100/1000 = 0.1 or a likelihood of 1 out of 10.

alGebRa of eVents

For didactic purposes, events are illustrated using Venn diagrams and set theory. Events are rep-
resented by shapes or areas located in a box or domain. The universal event is the sample space U 
(includes all possible events) and therefore occurs with absolute certainty P[U] = 1. In the previous 
example, U = a pixel is one of class 1–6. See Figure 9.1.

The null event is an impossible event or one that includes none of the possible events, and there-
fore its probability is 0, [ ] 0P φ = . For example, φ = the pixel is class 7. An oval shape represents an 
event A within U as shown in Figure 9.1. We also refer to B as the complement of A, i.e., the only 
other event that could occur. Therefore, the only outcomes are that either A or B happens. In addi-
tion, A and B are mutually exclusive and collectively exhaustive. The complement is an important 
concept often used to simplify solving problems. It is the same as B is NOT A which in shorthand 
is B A=  where the bar on top of the event denotes complement, i.e., the logical operation NOT. In 

DOI: 10.1201/9781003425496-9
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the Venn diagram of Figure 9.1, B is shaded. The box represents U and the clear oval represents A. 
The key numeric relation is

 [ ] 1 [ ]P B P A= −  (9.1)

Also, note that the complement of U is the null event.
Take the previous pixel example, define B = pixel is any class except 1, A = pixel is class 1, and 

determine P[B]. Since B A=  use P[B] = 1–1/10 = 9/10 = 0.9. We did not have to enumerate B with 
detail, just subtracted from 1.

When two events share common outcomes, we define the intersection of two events as the com-
mon or shared events. In other words, the intersection of A and B is the event C that is in both A and 
B. Denote the intersection by C = AB, then the probability of the intersection is P[C] = P[AB]. In the 
popular diagram illustrated in Figure 9.2, AB is contained in A and in B. It corresponds to the AND 
logical operation.

Returning to the pixel example, define A = pixel is class 1 or 2, B = pixel is class 2 or 3. Obviously 
event C = pixel class 2 is common to A and B, therefore C = AB. Suppose there are 200 class-2 pixels 
out of 1000, then P[C] = 0.2. When A and B do not intersect, then AB is the null event AB φ=  and 
therefore P[AB] = 0. For example: A = pixel is class 1 or 2, B = pixel is class 3 or 4, C AB φ= =  null 
and P[C] = 0.

The Union of A and B is the event C defined as A happens or B happens. It is the OR logical opera-
tion and is denoted by A + B. In reference to Figure 9.2, it would the addition of the two circles, but we 
avoid double counting the sliver of the intersection. Therefore, we discount the intersection AB once.

 [ ] [ ] [ ] [ ] [ ]P C P A B P A P B P AB= + = + −  (9.2)

For example, A = pixel is class 1 or 2, B = pixel is class 2 or 3, then C A B= +  is C = pixel is class 1, 
2, or 3. Suppose there are 400 pixels of class 3 out of 1000. Then probabilities, P[A] = 0.1 + 0.2 = 0.3, 
P[B] = 0.2 + 0.4 = 0.6, P[AB] = 0.2, P[A + B] = 0.3 + 0.6–0.2 = 0.7.

An event B is included in A when event B is a subset of A, in set notation B A⊂  and therefore 
[ ] [ ]P B P A< . See Figure 9.3.

Combinations

When we complicate the experiment, for example, tossing a coin three times in a sequence, rolling 
a die five times in a sequence, we can combine the probabilities from the simpler components of the 
experiments to obtain probabilities of the more complex outcomes. The number n of independent 

B A C=AB

FIGURE 9.2 Intersection of two events; C is the sliver shared by events A and B.

U U

B
A

FIGURE 9.1 Universal event U or sample space (left), event A in U (right) showing B as the complement of A.
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repetitions (trials) and the number k of outcomes of each repetition determine the total number of 
possible outcomes (Acevedo 2013). In general

 N kn=  (9.3)

For example, consider tossing a coin twice and denote H for head and T for tail. We have two out-
comes k = 2 for each trial and n = 2 trials. The outcome of a toss is independent of the other. Possible 
combinations lead to four events N = 22 and this constitutes the sample space U = HH, HT, TH, TT. 
Each outcome is equally likely with probability 1/4. To see this, we reason that the probability of 
getting H in first toss, P[H] = 1/2 and to get H in the second toss is the same because of indepen-
dence, therefore P[HH] = 1/4.

The combinations of n items taken r at a time are of great interest

 
!

!( )!

n

r

n
r n r









 =

−
 (9.4)

The exclamation point “!” symbol is a factorial operation defined as ! ( 1) ( 2) ... 2 1n n n n= × − × − × × × .  
For example, how many events have exactly one tail in two tosses of a coin? What is the prob-
ability of obtaining event A = exactly one tail in tossing a coin twice? Using equation (9.4) yields 
2

1

2!
1!(2 1)!

1 2
1 1

2








 =

−
= ×

×
= . Thus, there are two possible combinations of one head in two tosses. 

This makes sense because from the previous example, we know that we have four possible events. 
Only a set of these would have one tail in two trials and we can count them HT, TH. We can calcu-
late the probability as P[A] = P[HT] + P[TH] = 0.25 + 0.25 = 0.5 = 1/2.

pRobability tRees

A useful visual aid in probability theory is a tree. The basic unit is a node from which we branch 
in arcs denoting events. Next to the arc, we write the probability of the event and the name or code 
event at the tip of the arc (Acevedo 2013; Drake 1967). For example, in the coin toss, we have the 
basic branch shown in Figure 9.4.

This basic unit can be iterated and combined to visualize situations that are more complex. For 
example, the two-toss coin experiment shown in Figure 9.5. Here the end branches of the tree cor-
respond to the four outcomes. Multiplication of the probabilities of all the arcs traversed yields the 
probability of each path. Thus,

 

[ ] 0.5 0.5 0.25

[ ] 0.5 0.5 0.25

[ ] 0.5 0.5 0.25

[ ] 0.5 0.5 0.25

P HH

P HT

P TH

P TT

= × =

= × =

= × =

= × =

 (9.5)

U

A
B

FIGURE 9.3 Event B is included in event A.
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As we can see, the probability of each path is the same and the sum of all probabilities is equal to 1.

Conditional pRobability

Consider an experiment performed in two steps. At the first step, an event can occur with probability 
P[A] and then at the second step the occurrence of an event C is dependent on whether A occurred. 
We use a vertical bar to denote occurrence of one event conditioned on another

 Coccurs given | |Pr A Pr C A P C A[ ] [ ]  = =

The key relation here is that A and C must have non-null intersection P[AC] ≠ 0

 [ | ]
[ ]
[ ]

P C A
P AC
P A

=  (9.6)

P[A] is also called prior probability, and P[C | A] is also called posterior probability. A Venn dia-
gram (Figure 9.6) and a tree (Figure 9.7) help illustrate this relation. The events at the end of the 
second set of arcs of Figure 9.7 are intersections and their probabilities can be found using equation 
(9.6) rewritten as

 [ ] [ | ] [ ]P AC P C A P A=  (9.7)

0.5

0.5

H

T

0.5

0.5

H

T

0.5

0.5

H

T

HH

HT

TH

TT

FIGURE 9.5 Example of a sequence of branches: tossing a coin twice.

0.5

0.5

H

T

FIGURE 9.4 Basic element of a probability tree: node and set of arcs.
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For example, consider a sequence of two days. In the first day define event: A = rains the first day, 
with P[A] = 0.5 and event C = rains the second day. Assume that the probability of raining the second 
day given that it rains the first is 0.7. What is the probability that it rains both days? In this case, the 
intersection event AC = rains the first day AND rains the second day. Let us calculate P[AC] using 
conditional probability. Applying equation (9.7) [ ] [ | ] [ ] 0.7 0.5 0.35P AC P C A P A= = × =

If events A and C are independent, then P[C | A] is just P[C] and therefore

 [ ] [ | ] [ ] [ ] [ ]P AC P A C P C P A P C= =  (9.8)

Example: consider a sequence of two tosses of a fair coin. In the first toss, define event A = heads 
in first toss, with P[A] = 0.5 and event C = heads in second toss. What is the probability of getting 
a head in both tosses? The probability of getting a head in the second toss is independent of what-
ever we got in the first toss, thus P[C | A] = P[C] = 0.5. In this case, the event AC = head the first toss 
AND head the second toss. Then, calculate P[AC] using conditional probability using equation (9.8) 

[ ] [ ] [ ] 0.5 0.5 0.25P AC P C P A= = × = .

binaRy (2-Class) ClassifiCation

Let us consider an example based on testing from water quality (Carr 1995). A water quality test is 
conducted to decide whether water of a site is contaminated, event A, or not, event B. Assume that 
20% of sampling sites are contaminated, then P(A) = 0.2; this is a prior probability also called a base 
rate. Define C = the test result is negative, D = the test result is positive. Suppose that the test yields 
a false negative, i.e., fails to determine contaminated water, 3% of the time; this means that its sen-
sitivity or true positive rate is 1−0.03 = 0.97 or 97%. Suppose that the test yields a false positive 7% 
of the time; this means that its specificity or true negative rate is 1−0.07 = 0.93 or 93%.

P(C|B) 

P(D|B) 

C

D

P(A) 

P(B) 

A

B

P(C|A) 

P(D|A) 

C

D

AC   P(AC)=P(A)P(C|A) 

AD   P(AD)=P(A)P(D|A)  

BC   P(BC)=P(B)P(C|B) 

BD    P(BD)=P(B)P(D\B) 

FIGURE 9.7 Second set of arcs shows conditional probabilities.

C A AC

FIGURE 9.6 Intersection of events C and A: shows that C is conditioned on A.
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We can think of this scenario as a binary (2-class) classification: the results of the test, positive or 
negative, are used to classify the wells into contaminated or not. Note that 0.03 and 0.07 are prob-
abilities for classification test errors. We build the tree shown in Figure 9.8 using this information. 
In the tree, the probability that the test is negative if the water is contaminated is P[C | A] = 0.03, and 
that the water is indeed contaminated P[A] = 0.2; then the probability that the test yielded negative 
results AND that the water was contaminated is P[AC] = 0.03 × 0.2 = 0.006. Note that events C and 
D are dependent on both A and B.

Confusion matRix

The error matrix or confusion matrix is a method to specify the errors and determining accuracy 
of the classification. See Table 9.1 for this example, where we can see that the diagonal terms for 
true positive and negative cases (97 + 93) are correct classifications and the diagonal terms for false 
positive and negative are total error rates (3 + 7). The sensitivity is calculated as true positive cases 
divided by total contaminated cases 97/(97 + 3) = 0.97, specificity is calculated as true negative cases 
divided by total not contaminated cases 93/(93 + 7) = 0.93. The positive prediction value (PPV) is 
calculated as true positive cases divided by total positive cases 97/(97 + 7) = 97/104 = 0.932. The 
negative prediction value (NPV) is given by true negative cases divided by total negative cases 93/
(93 + 3) = 93/96. In the next section, we relate the binary classification to Bayes’ theorem.

bayes’ tHeoRem and ClassifiCation

Bayes’ rule connects the conditional probability of an event A given C to its opposite, or the con-
ditional probability of C given A; in other words, it provides a link between P[A | C] and P[C | A] 

TABLE 9.1
Binary Classification Confusion Matrix

Contaminated Not Contaminated Row Total

Test positive True positive 97 False positive 7 Total positive 104

Test negative False negative 3 True negative 93 Total negative 96

Column total Total contaminated 100 Total not contaminated 100 Total wells 200

1-0.07

0.07

C

D

0.2

0.8

A

B

0.03

1- 0.03

C

D

AC    P(AC)=0.2x0.03=0.006

AD   P(AD)=0.2x0.97=0.194  

BC   P(BC)=0.8x0.93=0.744

BD   P(BD)=0.8x0.07=0.056

Sum = 1.000

FIGURE 9.8 Water quality test: positive and negative results.
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(Acevedo 2013). It is quite simple to derive Bayes’ rule. From the conditional probability equation, 
we have

 [ ] [ | ] [ ]P AC P C A P A=  (9.9)

In addition, A depends on C, and thus we can write

 [ | ]
[ ]
[ ]

P A C
P AC
P C

=  (9.10)

Or in the same form as equation (9.9)

 [ ] [ | ] [ ]P AC P A C P C=  (9.11)

Equating the two relations (9.9) and (9.11) for P[AC]

 [ | ] [ ] [ | ] [ ]P A C P C P C A P A=  (9.12)

and solving for P[C | A]

 [ | ]
[ | ] [ ]

[ ]
P C A

P A C P C
P A

=  (9.13)

This relation is Bayes’ theorem or rule for two events and is of great use, as we will see in the next 
examples.

For example, consider the tree of Figure 9.8 with known prior probabilities for A and B, and poste-
rior for P[C | A] and P[C | B]. Can we back-calculate? e.g., what is the probability that we have contami-
nated water given a positive test result? In other words, what is the probability of correctly classifying 
the water as contaminated if we have a positive test result? P[A | D]? Use Bayes’ theorem to calculate

 [ | ]
[ ]
[ ]

[ | ] [ ]
[ ]

P A D
P AD
P D

P D A P A
P D

= =  (9.14)

the probability of D should be obtained from either A or B happening

 [ ] [ | ] [ ] [ | ] [ ]P D P D A P A P D B P B= +  (9.15)

That is adding the two paths leading to a D at the end of the tree. Now substitute equation (9.15) in 
the denominator of equation (9.14) to obtain

 [ | ]
[ ]
[ ]

[ | ] [ ]
[ | ] [ ] [ | ] [ ]

P A D
P AD
P D

P D A P A
P D A P A P D B P B

= =
+

 (9.16)

For example, in the tree of Figure 9.8, P[AD] = 0.2 × 0.97 = 0.194, P[BD] = (1–0.2) × (0.07) = 0.056,  
and P[D] = 0.194 + 0.056 = 0.25. Then, using equation (9.16), we get P[A | D] = 0.194/0.25 = 0.776. 
That is, if the test result is positive, there is a 77.6% probability that the water is contami-
nated. We can run a similar calculation for a correct classification given a negative test, 

[ | ]
[ ]
[ ]

[ | ] [ ]
[ | ] [ ] [ | ] [ ]

P B C
P BC
P C

P C B P B
P C B P B P C A P A

= =
+

. Or

P[B | C] = 0.744/(0.744 + 0.006) = 0.992 or 99.2%. Table 9.2 maps the confusion matrix of the 
binary classification given in Table 9.1 to the conditional probabilities used in Bayes’ theorem, and 
Table 9.3 maps the Bayes’ rule calculations to the binary classification.
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GeneRalization of bayes’ Rule to many eVents

Suppose there are several events B1, B2, … that condition event C. For each event Bi where i = 1, n, 
we can write an equation like (9.9)

 [ ] [ | ] [ ]P CB P C B P Bi i i=  (9.17)

and using Bayes’ rule for each event Bi, we have

 [ | ]
[ | ] [ ]

[ ]
P B C

P C B P B
P C

i
i i=  (9.18)

Note that if events Bi account for all ways in which we can get event C, then by adding equation 
(9.17) for all events Bi we get

 [ ] [ ] [ | ] [ ]
1 1

P C P CB P C B P Bi

i

n

i i

i

n

∑ ∑= =
= =

 (9.19)

And by substituting this last expression in the denominator of Bayes’ rule equation (9.18), we can 
derive an extension to Bayes’ rule like equation (9.16)

 [ | ]
[ | ] [ ]

[ ]
[ | ] [ ]

[ | ] [ ]
1

P B C
P C B P B

P C
P C B P B

P C B P B
i

i i i i

i i

i

n

∑
= =

=

 (9.20)

TABLE 9.3
Binary Classification Confusion Matrix Mapped to Bayes’ Rule Probabilities

Contaminated Not Contaminated Correct Prediction

Base rate or prior probability P(A) 0.2 P(B) 0.8

Test result positive True positive prediction 
P(DA) = P(D | A) 
P(A) = 0.97 × 0.2 = 0.194

False positive prediction 
P(DB) = P(D | B) 
P(B) = 0.07 × 0.8 = 0.056

Correct positive prediction 
P(DA)/(P(DA) + P(DB))  
= 0.194/(0.194 + 0.056)  
= 0.776

Test result negative False negative prediction 
P(CA) = P(C | A) 
P(A) = 0.03 × 0.2 = 0.006

True negative prediction 
P(CB) = P(C | B) 
P(B) = 0.93 × 0.8 = 0.744

Correct negative prediction 
P(CB)/(P(CA) + P(CB))  
= 0.744/(0.744 + 0.006)  
= 0.992

TABLE 9.2
Binary Classification Confusion Matrix Mapped to Conditional Probabilities

Contaminated Not Contaminated Predictive Values

Test result positive True positive rate  
(sensitivity) P(D | A) 0.97

False positive rate  
P(D | B) 0.07

Positive predictive 
value 97/104 = 0.932

Test result negative False negative rate  
P(C | A) 0.03

True negative rate  
(specificity) P(C | B) 0.93

Negative predictive 
value 93/96 = 0.968
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biosensinG of WateR Quality

Let us consider an application of Bayes’ rule to a biosensing method developed to detect contamina-
tion or other water quality issues by electronically monitoring the gape of clams (Allen et al. 1996). 
The working concept is that organisms integrate many signals from the environment and therefore 
are excellent environmental sentinels. Because of variability in behavioral response to stress, it is 
necessary to setup the monitor using more than one individual, e.g., ten or more clams.

For the sake of a simple scenario, suppose we use two clams to sense water quality and that we are 
only considering valves completely shut or open. At any one measurement time, there are three events 
from measuring clam gape, B1 = two animals have valves shut, B2 = one animal has valves shut and the 
other has them open, and B3 = both animals have open valves. Define C as the event of contaminated 
water. Take an interval of 100 measurements and assume that 70% result in event B1, 20% in B2 and 10% 
in B3. The probabilities of false positive errors are 0.1, 0.2, and 0.9 for B1, B2, and B3, respectively. What is 
the probability that the water is contaminated? What is the probability that two animals have valves shut 
if the water is contaminated? The probability of contaminated water is P[C], thus first apply equation 
(9.19) and use the complement for all error probabilities because we are giving the false positive

 
[ ] [ | ] [ ] 1 [ | ] [ ]

1 0.1 0.7 (1 0.2) 0.2 (1 0.9) 0.1 0.8

1

P C P C B P B P C B P Bi i

i

n

i i

i

∑ ∑( )

( )

= = −

= − × + − × + − × =

=

The probability that two animals have valves shut if the water is contaminated is P[B1 | C], and then 

apply equation (9.20) [ | ]
[ | ] [ ]

[ ]
(1 0.1) 0.7

0.8
0.791

1 1P B C
P C B P B

P C
= = − × = , which means the probabil-

ity that two animals shut the valves if the water is contaminated is 79%.

bayes’ Rule and ml

Looking at Bayes’ equation (9.13) in terms of ML classification, we think of C as a hypothesis or 
what we target to learn (e.g. a hypothetical event) and A as the data, (e.g., the result of an observa-
tion event) then P[C] is the prior probability of the event before we know the result of A; we can 
refer to P[A] as the marginal probability, P[C | A] as the posterior probability of the hypothetical 
event given the observation, and P[A | C] as the likelihood probability of the observation based on 
the hypothetical event.

For emphasis, we change the notation C to h (for hypothesis) and A to d (for data) and restate 
Bayes’ rule applied to ML as

 [ | ]
[ | ] [ ]

[ ]
P h d

P d h P h
P d

=  (9.21)

In other words, we calculate the posterior probability of a hypothesis given the data, based on its 
prior probability P[h], the probabilities of observing the data given the hypothesis P[d/h], and the 
observed data P[d]. Selecting the best among several hypotheses h1, h2, … that can be explained by 
the data can be posed as a maximum a posteriori problem,

 max( [ | ]) max
[ | ] [ ]

[ ]
P h d

P d h P h
P di

i
i

i i= 





 (9.22)

To simplify, it is assumed that P[d] is the same for all hypotheses and that there is no prior P[hi] and 
therefore this last equation reduces to

 max( [ | ])P d h
i

i  (9.23)
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Which means simply that we choose the hypothesis that best explains the data, and note that this is 
equivalent to building an empirical model from the data by optimization, e.g., linear least squares 
(LLS) regression. Thinking now specifically of classification, hi is a label for a class, and the ML 
algorithm would find the classes that best explain the data.

When using ML, we divide the dataset into a subset for training the classifier and a subset to test or 
evaluate the classifier. In the lab guide 9 of companion Lab Manual, we study how to split the dataset, 
train a classifier, and make predictions based on the trained classifier and the evaluation subset.

naïVe bayes ClassifieR

For multidimensional data, d consists of a set of features or attributes X1, X2, …, Xn that depend on 
each other and therefore it becomes very complicated to compute the equation for the posterior of a 

class given the data, [ | ]
[ | ] [ ]

[ ]
P h d

P d h P h
P d

i
i i= . For practical purposes, it is assumed that the features 

Xj are independent of each other, then we can write

 [ | ]

[ | ] [ ]

[ ]
P h d

P X h P h

P d
i

j i

j

n

i∏
=













 (9.24)

This is called a Naïve Bayes classifier, which is often used for ML classification. The symbol Π 

denotes product in a similar way in which Σ denotes sum. Just for illustration, if you had two vari-

ables [ | ]
[ | ] [ | ] [ ]

[ ]
1 2P h d

P X h P X h P h
P d

i
i i i= . The independence assumption makes the naïve classifier 

easier and faster to compute.

deCision tRees

Probability theory is one of the bases of decision theory. We can frame a decision problem as select-
ing the most promising alternative action or option given the uncertainties. The major concept is 
that events occurring with given probabilities follow the options. Say, we choose option A1 and 
event E1 occurs with probability p, whereas event E2 occurs with probability 1–p. Therefore, if we 
associate a cost or a loss to a combination of action and event (say A1E1), we can weigh the cost by 
its probability to calculate an expected cost or loss for this branch of the decision. We do this for all 
options and then select the option with minimum expected loss or cost. Depending on the situation, 
we would rather formulate the decision in terms of benefits. For example, assign a profit or gain to 
the outcomes and tackle the decision by selecting the alternative with the maximum profit or gain.

A very simple example is one with two alternative actions A1 and A2 and two events E1, E2 as 
shown in the tree of Figure 9.9. This is a decision tree and is similar to a probability tree, except 
that some nodes (marked with squares) are decision nodes and others are event nodes (marked with 
circles). Suppose the alternative actions are to invest in an environmental protection at an invest-
ment cost of I1 or at a lower level I2 to prevent the detrimental ecosystem effect of a potential spill. 
Suppose the events are E1 (contaminant spilled) with probability p = P[E1] and E2 (no spill).

DISCRETE RVs

We can define an RV once we have defined the sample space, based on the possible events and their 
probabilities (Acevedo 2013). An RV is a rule, or a function, or a map associating a number to each 
event in the sample space. See Figure 9.10.
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Example: In the roll of six-sided die, the events are Ai = side facing up is i where i=1,2, ..., 6 with 
P[Ai] = 1/6. We can make a “discrete” RV, denoted by X, associating each event with the value of 
the RV; e.g., X taking values X = 1, 2, 3, 4, 5, 6 each with P[xi] = 1/6. We refer to the type of RV 
described in the example as discrete because its values are discrete, i.e., a set of numbers, in this 
case integers 1,2, …, 6.

However, the events for a discrete RV can also be defined by quantizing a range of real values. 
For example, suppose we measure concentration X of a mineral (in ppm) at a given location and it 
can take values between 0 and 2000 ppm. Two events could be defined as A is 0 1000X≤ <  ppm 
and B is 1000 2000X≤ ≤  ppm.

pRobability mass funCtion (pmf)

A discrete distribution or probability mass function (PMF, for short) p(X) is a set of probabilities, 
one for each value of X. More precisely, denoting xi as the values of X

 ( ) [ ]p x P X xi i= =  (9.25)

for all values xi of X

 0 ( ) 1p xi≤ ≤  for all i (9.26)

 ( ) 1p xi

i

∑ =  (9.27)
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A2E2
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FIGURE 9.9 Decision tree: a simple example from environmental protection.
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X=0

X=1

Event space Values of random variables Probabili�es

P[X=0]=0.3

P[X=1]=0.7

FIGURE 9.10 Constructing an RV.
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the last equation says that the total probability (sample space) must be equal to 1 when all prob-
abilities are summed over all i.

Example: Toss a coin and assign 0 to T and 1 to H. For a fair coin, p(0) = 0.5, p(1) = 0.5. This is an 
example of a uniform discrete RV for which the probabilities of each event are the same.

We can represent the probabilities as a graph as illustrated in Figure 9.11 for the example above. 
Vertical thick arrows or bars represent a spike or impulse with intensity given by the height of the 
spike and equals the probability of that value. Alternatively, it can be represented as a bar graph 
where the height of each bar represents the probability.

Example: Roll a six-side die and assume it is not loaded; then the PMF is p(xi) = 1/6 where xi = 1, 
2, …, 6. This is also a uniform discrete RV.

CumulatiVe mass funCtion (Cmf)

The cumulative mass function (CMF) at a given value are defined by “accumulating” all probabili-
ties up to that value. Accumulation is simply a summation in the case of discrete RV

 ( ) [ ] ( )
1

F x P X x p xi

i

x

∑= ≤ =
=

 (9.28)

Please note that the value at which we evaluate the cumulative is the upper limit of the accumula-
tion. The value of the cumulative for the largest value of X is the largest value of the cumulative and 
should be equal to 1.

For example, toss of a coin and roll of a die, for which the CMF is a stepwise function. At each 
value, we add the intensity of a spike to obtain a staircase for the CMF. See Figure 9.12.

fiRst moment oR mean

The first moment of X is the expected value of X denoted by the operator E applied to X, this is E[X]. 
The first moment is the same as the mean of X. When X is discrete, the mean is

 [ ] ( )E X x p xX i i

i

∑µ = =  (9.29)

0.0 0.2 0.4 0.6 0.8 1.0

0.
3

0.
5

0.
7

X

p(
X

)

0 1
X

p(
X

)
0.

0
0.

2
0.

4

FIGURE 9.11 PMF of a discrete RV represented as a spike graph and as bar graph.
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where the sum is over all values of X. It is equivalent to the location of the center of mass of the PMF.
Example: toss a coin ( ) 0 0.5 1 0.5 0.5E X = × + × =  this is the value of X in between the two spikes 

or bars in Figure 9.11. Example: Roll of a die

 

( ) 1
1
6

2
1
6

3
1
6

4
1
6

5
1
6

6
1
6

( ) (1 2 3 4 5 6)
1
6

21
6

3.5

E X

E X

= × + × + × + × + × + ×

= + + + + + × = =

This is the value of X in between the two spikes or bars in the PMF.
Example: Suppose we perform a coin toss ten times and that we assign H = 1, T = 0 as in example 

one. Suppose we get six heads and four tails. Then the average is 
1

10
6 0.6X = × =

This sample mean is different from the population mean that we calculated to be Xµ  = 0.5.

seCond CentRal moment oR VaRianCe

The second central (i.e., with respect to the mean) moment is the variance or the expected value of 
the square of the difference with respect to the mean

 [( ) ] ( ) ( )2 2 2E X x p xX X i X i

i

∑σ µ µ= − = −  (9.30)

The variance can also be calculated using the simplified expression [ ] [ ]2 2 2E X E XXσ = − . Taking the  

square root of the variance, we obtain the standard deviation 2
X Xσ σ= . For example, suppose 

the RV for the toss of a coin xi = 0, 1 and p(xi) = 0.5 for all i. Using the definition in equation (9.30) 
[( ) ] (0 0.5) 0.5 (1 0.5) 0.5 0.252 2 2 2E XX Xσ µ= − = − × + − × = . The standard deviation is the square 

root of the variance 0.25 0.52
X Xσ σ= = =

0 1

P(x)

X

1/2

0 1

F(x)

X

1/2

1

FIGURE 9.12 Integration of PMF to obtain CMF.
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Take another example, suppose we get six heads in ten tosses of a coin. The sum of squares is 

six and the sum of the xi is also six, then the sample variance is 
1
9

6
1

10
6 0.262 2sX = × − ×





=  and 

the sample standard deviation is .26 0.509sX = = . Note that the population variance is 0.25 and 
standard deviation 0.5 according to calculation in previous exercise. Therefore, the statistic sample 
variance has overestimated the variance.

binomial distRibution

As an example of discrete RV, consider the binomial model that describes the probability 
[ ] ( )P X r p r= =  of r “successes” in n independent trials, given that the probability of a success is p. 

The values of r are the integers 0, 1, 2, .., n and the PMF is

 ( ) (1 )p r
n

r
p pr n r=









 − −  (9.31)

The mean is npXµ =  and the variance is (1 )2 np pXσ = − .
For example, assume a binomial RV ((Davis 2002) pages 13–16) with probability of success p = 0.2 

and n = 3. Use a calculator and evaluate the binomial at r = 0, 1, 2, 3 to get p(0) = 0.512, p(1) = 0.384, 
p(2) = 0.096, p(3) = 0.008. The mean is 3 × 0.2 = 0.6 and the variance is 0.6(1–0.2) = 0.6 × 0.8 = 0.48.

BIVARIATE DISCRETE RANDOM VARIABLES

The joint PMF of two RVs X and Y is

 ( , ) ,p x y P X x Y yXY [ ]= = =  (9.32)

where the comma stands for a logical AND. This function must satisfy ( , ) 0p x yXY ≥  for all pairs x, y, 

that is all probabilities are non-negative and ( , ) 1p x yXY

yx

∑∑ =  that is the sum of the probabilities 

of all pairs must be 1.
For example, suppose X = 0, 1, Y = 0, 1, and a uniform joint PMF, shown in Table 9.4. This can 

also be written as a matrix

 ( , )

1
8

1
4

3
8

1
4

p x yXY =



















 (9.33)

With rows representing values of X and columns values of Y. Note that the sum of all joint prob-
abilities is equal to 1.

TABLE 9.4
Joint PMF Example

Y = 0 Y = 1

X = 0 1/8 1/4

X = 1 3/8 1/4
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The marginal PMF of X is the PMF of X given one value of Y, say ( ) ( , )p x p x yX XY

y

∑=  and simi-

larly, the marginal PMF of Y is ( ) ( , )p y p x yY XY

x

∑=  In this example,

 

(0) (0,0) (0,1)
1
8

1
4

3
8

(1) (1,0) (1,1)
3
8

1
4

5
8

p p p

p p p

X XY XY

X XY XY

= + = + =

= + = + =

Therefore, the marginal PMF of X is ( )
3 / 8for 0

5 / 8for 1
p x

X

X
X =

=

=






Similarly, for Y we can find

 

(0) (0,0) (1,0)
1
8

3
8

1
2

(1) (0,1) (1,1)
1
4

1
4

1
2

( )
1 / 2for 0

1 / 2for 1

p p p

p p p

p y
Y

Y

Y XY XY

Y XY XY

Y

= + = + =

= + = + =

=
=

=







Dividing values of the joint PMF by values of the marginal PMF yields the conditional probability 
for Y taking value y given that X has value x

 ( | )
( , )
( )

|p y x
p x y

p x
Y X

XY

X

=  (9.34)

Similarly,

 ( | )
( , )
( )

|p x y
p x y

p y
X Y

XY

Y

=  (9.35)

Using the example above, (1 | 0)
(0,1)
(0)

1/4

3/8
2/3|p

p
p

Y X
XY

X

= = =  and (0 | 0)
(0,0)
(0)

1/8

3/8
1/3,|p

p
p

Y X
XY

X

= = =  

and of course these two conditional probabilities add to 1.

INFORMATION THEORY

Based on Shannon’s information theory, the entropy of an RV X is defined as

 ( ) ( ) log ( )
1

H X p x p xi i

i

n

∑ ( )= −
=

 (9.36)

where p(xi) is the value of the PMF for value X = xi, i = 1, …, n. The base of the logarithm determines 
the units. For example, if we select base 2, we obtain binary units or bits. Entropy defined this way 
represents information in the sense that higher entropy means more uncertainty.
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As an application example, species diversity is measured by species richness n and by some 
index of the relative abundances of the species. Richness is simply the number of coexisting spe-
cies. In the case of three-species communities, richness can be 1, 2, or 3. For an index of relative 
abundances, we need the species composition, given by the relative abundances of the species. That 
is the proportions pi of each species with respect to the total.

Diversity of species composition is calculated by indices based on functions of the species distri-
bution pi. Several indices are common, among them the Simpson diversity index, and the Shannon 
diversity index. The latter is popular and used frequently and termed evenness. It is derived from 
the concept of information

 ln( )
1

E p pi i

i

n

∑= −
=

 (9.37)

Here we have used natural logarithms; however, this is flexible since the base of the logarithms 
determines the units. For example, if we select base 2, we obtain binary units. As an example, let 
us calculate evenness for three species, uniformly distributed. In this case, pi = 1/3. equation (9.37) 
yields 1.098 ~ 1.1.

We will see another example of using information theory later in the chapter when we study the 
Akaike information criterion (AIC) applied to regression analysis, and measures of purity when 
calculating a classification tree.

COUNTS AND PROPORTIONS

Consider the event A to be a “success” with a given probability of occurrence denoted here as ps 
in a series of trials. An estimate of ps is the ratio of number of successes to number of trials. For 
one sample, we formulate the following question: is P[A] different from a presumed value? For two 
samples, is P[A] different between the samples? The probability of obtaining r successes in n trials 
follows the binomial distribution

 ( ) (1 )P X r
n

r
p ps

r
s

n r= =








 − −  (9.38)

For which, the mean is npX sµ =  and the variance is (1 )2 np pX s sσ = − . The binomial test uses the 
binomial distribution as a test statistic to determine the hypothetical value of the probability of 
obtaining the observed ratio r/n. For one sample, the null H0 is that ps = p0 where p0 is the hypo-
thetical probability of success, and two-sided alternative p ≠ p0. A p-value is the sum of cumulative 
probabilities of obtaining less than r successes and more than r successes. These calculations are 
easily conducted in R as explained in the lab manual.

For example, suppose the hypothetical p0 is 0.5 and that we observe a ratio of r = 3 successes 
in n = 10 trials. The p-value is 0.34 and we decide against rejection of the null and allowing that ps 
may be 0.5. However, if we were to observe a ratio of r = 1 in n = 10 trials, the p-value is 0.02 or 2% 
which is low enough to reject H0.

2χχ  (CHI-SQUARE) TEST

The Pearson’s 2χ  (chi-square) statistic is the squared difference between observed counts, in bins 
or intervals, and theoretical counts, in the same bins, from the hypothesized distribution. Denote 
n = sample size, k = number of bins or classes, then the chi-square statistic is calculated as

 
( )2

2

1

c e

e
j j

jj

k

∑χ = −

=

 (9.39)
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the sum is over j = 1, ..., k where k is the number of classes or bins, cj is the number of observations 
counted in the jth bin, ej is the number of observations or counts expected in bin j. See Figure 9.13 
that illustrates the shape of the 2χ  density for various degrees of freedom.

The chi-square test consists of checking if the 2χ  statistic is too large (for a given level of sig-
nificance) because this indicates substantial departure from the hypothesized distribution. In this 
test, the null hypothesis H0 is that the sample is drawn from a given distribution, and thus when you 
reject the null, you conclude that the sample is not drawn from the hypothesized distribution (with 
given alpha error). When you fail to reject, the sample may come from the hypothesized distribution.

To calculate the degrees of freedom (df) in a 2χ  test you would use o the number of bins minus 
one (k–1), and not to the number of observations minus one (n–1). Increasing the number of bins 
may increase the df but decrease the number of points per bin, which must be kept above five counts 
per bin. If additional parameters are estimated, then df decreases; for example, when testing for a 
fit to the standard normal N(0, 1), df = k–3, both mean and variance are estimated from the sample 
to generate standard values.

Example: Suppose that we want to check if 100 values come from a uniform distribution. We got 
the following counts in k = 5 categories (bins or intervals) 22, 13, 18, 27, and 20. The expected value 
in each bin is 100/5 = 20. Now we calculate the statistic

 

( )

(22 20) (13 20) (18 20) (27 20) (20 20)
20

4 49 4 49 0
20

106
20

5.30

2
2

1

2 2 2 2 2

c e

e
j j

jj

k

∑χ = − =

= − + − + − + − + − =

= + + + + = =

=

The df value is 5–1 = 4. The probability of getting this value or higher is the tail of the 2χ  for a 
df = 4 which is calculated as 1 – F(5.30) = 0.258 where F is the cumulative density function (CDF, 
see Chapter 1) of the 2χ  for df = 4. Therefore, the p-value is 0.258 which is too high to reject the null 
with a reasonable α that the sample is drawn from a uniform distribution.
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FIGURE 9.13 χ2 PDF for df = 3, 5, and 10.
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CONTINGENCY TABLES AND CROSS-TABULATION

Another application of the 2χ  distribution is the analysis of contingency tables. For bivariate cases, 
we count the number of occurrences of observations falling in joint categories and thus we develop 
a contingency table that can help answer the question: is there association between the two vari-
ables? This is an independence test, which is different from a goodness of fit test, although the 
calculations are similar.

Contingency analysis applies to categorical data. Use factors with several levels, count the num-
ber of cases in each level, and calculate the frequency of two values occurring in joint or combined 
levels. To build a contingency table, we use all the levels of one factor (categorical variable) as rows 
and the levels of the other variable as columns. We then count occurrences in each cell and find 
the frequency of joint levels or cell frequency for each cell in the table. This is a cross-tabulation.

Now to perform a test, first we sum the cell frequencies across both rows and columns and place 
the sums in the margins, which are the marginal frequencies. The lower right-hand corner value 
contains the sum of either the row or the column marginal frequencies, which both must be equal 
to the total number of observations n.

The test assesses whether one factor has effects on the other. Effects are relationships between the 
row and column factors; for example, are the levels of the row variable distributed at different levels 
according to the levels of the column variables? Rejection of the null hypothesis (independence of 
factors) means that there may be effects between the factors. Non-rejection means that chance could 
explain any differences in cell frequencies and thus factors may be independent of each other.

For example, there are three possible land cover types in a remote sensing image (crop field, 
grassland, forest). Using a digital elevation model, we classify the area in two elevation classes: 
lowlands and uplands. We divide the total area so that we have 80 squares of equal size and classify 
each square in one of the cover types and terrain classes. Then we count the number of squares in 
each joint class. The resulting cross-tabulation is Table 9.5.

The first step in computing the 2χ  statistic is the calculation of the row totals and column totals 
of the contingency table as shown in Table 9.6. The next step is the calculation of the expected 
cell count for each cell. This is accomplished by multiplying the marginal frequencies for the row 
and column (row and column totals) of the desired cell and then dividing by the total number of 
observations

 
Row Total Column Total

e
n

i j
i j= ×



 (9.40)

TABLE 9.6
Row and Column Totals

Crop Field Forest Grassland Row Total Total of Rows

Lowlands 12 20  8 40

Uplands  8 10 22 40

Column total 20 30 30 80

Total of columns 80

TABLE 9.5
Cross-Tabulation of Topographic Class and Vegetation Cover

Crop Field Forest Grassland

Lowlands 12 20  8

Uplands  8 10 22
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For example, computation of the expected cell frequency for cell in row 1 and column 1 is 
(20 40) / 80 1011e = × = . Use this expression to calculate all the expected cell frequencies and 

including these as additional rows in each cell (Table 9.7). Then we subtract the expected cell fre-
quency from the observed cell frequency for each cell, to obtain the deviation or error for each cell. 
Including these in the preceding table, we obtain the next table shown in Table 9.8. Note that the 
sum of the row total for expected is the same as the sum of the observed row totals; the same is true 
for the column totals. Note also that the sum of the Observed – Expected for both the rows and col-
umns equals 0. Now, to get the final table, we square the difference and divide by the expected cell 
frequency, resulting in the chi-square values (Table 9.9). The 2χ  statistic is computed by summing 
the last row of each cell; in the example, this would result in 2χ  = 0.4 + 0.4 + 1.66 + 1.66 + 3.26 + 3.2
6 = 10.64. The number of degrees of freedom is obtained by multiplying the number of rows minus 
one, times the number of columns minus one df = (Rows –1) × (Columns –1). In the example above 
df = (2–1) × (3–1) = 2. We would then determine the p-value for 10.64 and compare to the desired 
significance level. If lower, the rows and columns of the contingency may be dependent. In this 
case, 1 – F(10.64) = 0.00489 for df = 2. Therefore, the p-value ≈ 0.005 suggests rejecting H0 and that 
vegetation cover is not distributed evenly across the different elevations.

SUPERVISED CLASSIFICATION: CONFUSION MATRIX

As we discussed in a previous section, the error matrix or confusion matrix is a method to determine 
accuracy of the classification or of the results of ML. In the case of remote sensing, we need a refer-
ence class for pixels (from ground truth, maps, or field work) and cross-tabulate with the classifica-
tion results for those pixels. See Table 9.10.

TABLE 9.8
Deviation from Expected

Crop Field Forest Grassland Row Total Total of Rows

Lowlands
e1j

o1j–e1j

12
10
+2

20
15
+5

 8
15
–7

40
40
 0

Uplands
e2j

o2j–e2j

 8
10
–2

10
15
–5

22
15
+7

40
40
 0

Column total 20
20
 0

30
30
 0

30
30
 0

80

Total of columns 80

TABLE 9.7
Expected Frequencies

Crop Field Forest Grassland Row Total Total of Rows

Lowlands
e1j

12
10

20
15

 8
15

40
40

Uplands
e2j

 8
10

10
15

22
15

40
40

Column total 20
20

30
30

30
30

80

Total of columns 80
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Denote by zij the entries of the confusion matrix where i and j are the row and column indices, 
and by N the total observations studied, or the sum of all entries of the matrix

 
,

N zi j

i j

∑=  (9.41)

In the example, N = 282. The overall accuracy or proportion of agreement Po is given by

 Po

z

N

ii

i

∑
=  (9.42)

That is to say, the sum of diagonal entries (the trace of the matrix) 75 + 80 + 85 = 240 divided by the 
total pixels studied; thus, in this example, 240/282 0.851Po = =  or 85.1%.

The row totals rti are the sum of the entries for each row i, and their marginal proportions rpi are 
obtained dividing by N

 rt z rp

z

N
i ij

j

i

ij

j∑
∑

= =  (9.43)

TABLE 9.10
Confusion Matrix: Correct Class in Diagonal and Incorrect 
Classification in Off-Diagonal Entries

Ground

Grass Forest Urban Row Total

Im
ag

e

Grass 75 10  5  90

Forest 10 80  5  95

Urban  8  4 85  97

 Column total 93 94 95 282

TABLE 9.9
Final Table with Chi-Square Values

Crop Field Forest Grassland Row Total Total of Rows

Lowlands
e1j

o1j–e1j

(o1j–e1j)2/e1j

12
10
+2
4/10 = 0.4

20
15
+5
25/15 = 1.66

8
15
–7
49/15 = 3.26

40
40
0
5.32

Uplands
e2j

o2j–e2j

(o2j–e2j)2/e2j

8
10
–2
4/10 = 0.4

10
15
–5
25/15 = 1.66

22
15
+7
49/15 = 3.26

40
40
0
5.32

Column total 20
20
0
0.8

30
30
0
3.32

30
30
0
6.52

10.64
80

Total of columns 80
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In this example, rt = 90, 95, 97 and rp = 0.32, 0.34, 0.34. Likewise, the column totals are the sum of 
the entries of each column j and the marginal proportions dividing by the grand total

 ct z cp

z

N
j ij

i

j

ij

i∑
∑

= =  (9.44)

In this example, ct = 93, 94, 95 and cp = 0.33, 0.33, 0.34.
Now, define as Pe the sum of all products of a row marginal proportions times the column mar-

ginal proportions.

 
,

Pe rp cpi j

i j

∑= ×  (9.45)

In this example, the proportion Row 1 margin 90/282 = 0.3191 times column 1 margin 93/282 = 0.329 
is the probability of pixels being grass randomly, that is 0.105. For class forest, the row and col-
umn marginal proportions are 0.337 and 0.33 and the product is 0.112, for class urban we have 
0.344 and 0.336 with product 0.116. The sum of all these products is 0.333. In other words, 

0.319 0.330 0.337 0.333 0.344 0.337 0.333Pe = × + × + × = .
The kappa coefficient is a measure of how the classification results compare to values assigned 

at random, and it takes values from 0 to 1; with higher kappa coefficient occurring when the clas-
sification is more accurate. Cohen’s kappa coefficient is

 
1

Po Pe
Pe

κ = −
−

 (9.46)

In this example, kappa is 
0.851 0.333

1 0.33
0.777κ = −

−
=  which is relatively good but not too close to 1.

There are two metrics for the accuracy of each class depending on whether you look at the data from 
the prediction side (the rows), yielding the user accuracy, or the reference side (the columns) yielding 
the producer accuracy. User accuracy calculated as the diagonal term of the class divided by the row 
total, i.e., it represents the probability that a predicted value is indeed in that class. For each row i

 ua
z
rt

i
ii

i

=  (9.47)

In the example, ua = 0.833, 0.842, 0.876. In contrast, the producer accuracy is the diagonal term of 
a class divided by the column total, i.e., represents the probability that a reference value of a class 
was classified correctly. For each column j

 pa
z

ct
j

jj

j

=  (9.48)

In the example, pa = 0.806, 0.851, 0.895, and the user accuracy is lower than the producer accuracy 
for all classes except grass.

Two error metrics are of interest and are calculated directly from the user and producer accu-
racy. The error of commission of a class is the fraction of values predicted to be in a class but do 
not belong to that class, i.e., false positives, calculated as the sum of off-diagonal values of the row 
divided by the row total, which is the same as subtracting each user accuracy value from 1.

 1ec

z

rt
uai

ij

j i

i
i

∑
= = −≠  (9.49)
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In the example, ec = 0.166, 0.158, 0.124. The second error metric, error of omission of a class, is the 
fraction of values that belong to a class and yet were predicted to be in a different class, i.e., false 
negatives; calculated as the sum of off-diagonal values of the column divided by the column total, 
which is the same as subtracting each producer accuracy value from 1.

 1eo

z

ct
paj

ij

i j

j
j

∑
= = −≠  (9.50)

In the example, eo = 0.193, 0.149, 0.105 and the error of omission is lower than the error of commis-
sion for all classes except grass.

MULTIPLE LINEAR REGRESSION

We learned in Chapter 1 that we can find an optimum estimator of a response or dependent variable 
from an independent or explanatory variable by linear least-squares regression, and that this is a 
powerful method to create empirical models from data. In this chapter, we extend the simple linear 
regression model of Chapter 1 to more than one explanatory variable X; that is, several (m) explana-
tory variables Xi, influencing one response variable Y (Acevedo 2013).

This method has many applications in monitoring, since we could predict a variable of interest 
based on measurements of several other variables. In addition, this method can support ML since 
once we estimate coefficients from a training dataset, we can use them for prediction. As discussed 
previously in reference to the application of Bayes’ rule to ML, maximizing the posterior probabil-
ity of the hypothesis given the data can be reduced to finding the hypothesis that best explains the 
data, and this is similar to linear regression.

As we did in Chapter 1, we develop an LLS estimator of Y

 ...0 1 1 2 2Y b b X b X b Xm m
� = + + + +  (9.51)

with intercept b0 and coefficients bk, k = 1, …, m, and therefore we have m + 1 regression parameters 
to estimate. For each observation i there is a set of data points yi, xki and the estimated value of Y at 
the specific points xki is

 ...0 1 1 2 2y b b x b x b xi i i m mi
� = + + + +  (9.52)

We need to find the values of the coefficients bk that minimize the square error

 
b b b

min min min ( )2 2

11

q e y yi i i

i

n

i

n

�∑∑= = −
==

 (9.53)

A starting visual aid in multiple regression is to obtain pairwise scatter plots of all variables 
involved, this allows one to explore potential relationships among the variables. We encountered an 
example when we examined scatter plots of pairs of green, red, near IR (NIR), and SWR1 bands 
of Landsat 8 that we studied in Figure 8.11 of Chapter 8. As another example see Figure 9.14 that 
refers to air quality and more specifically how ozone relates to meteorological conditions. We will 
study air quality in Chapter 11.

matRix appRoaCH

We proceed as in simple linear regression; first, find derivatives of q with respect to b0 and each 
one of the coefficients bk. Then set these derivatives equal to 0, so that q is at a minimum, and find 
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equations to solve for the unknowns (Acevedo 2013). Matrix algebra will help us now. Write vector 
y of values of the observations y, this is n × 1 (a column vector)

 y
...

1

2

3

y

y

y

yn

=























 (9.54)

and a matrix x which is rectangular n × (m + 1), n rows for observations, and m + 1 columns for the 
intercept and m variables

 x

1 ...

1 ...

... ... ... ... ...
1 ...

11 21 1

12 22 2

1 2

x x x

x x x

x x x

m

m

n n mn

=





















 (9.55)
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Now, the unknown coefficient vector b is a column vector (m + 1) × 1 with entries b0, b1, …, bm

 b
...

0

1

b

b

bm

=


















 (9.56)

we need to solve b from

 y xb=  (9.57)

Pre-multiplying both sides by xT

 x y x xbT T=  (9.58)

For brevity, we can use the notation Sx = xTx and Sy = xTy. Thus,

 S S by x=  (9.59)

The Sx entries are the sum of squares and cross products of entries of x, whereas Sy entries are sum 
of squares and cross products of entries of y with entries of x. Solve for b by pre-multiplying both 
sides by the inverse of Sx

 S S S S bx y x x
1 1− −=  (9.60)

and therefore

 b S Sx y
1= −  (9.61)

To gain some insight into the solution, let us develop it for m = 2, so that it is easier to find the inverse
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 (9.62)

Divide both sides by n and use average or sample mean notation (i.e., a bar on top of the variable)
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 (9.63)

After some algebraic work, we can find that the determinant of Sx is

 Sx ( ) ( ) ( )2 2
cov( , )

2
1 2 1 2s s sX X X X= −  (9.64)

Note that in the special case of perfect correlation between X1 and X2, say X2 = X1, this expression 
reduces to
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 Sx ( ) ( ) ( ) 02 2 2 2

1 1 1s s sX X X( )= − =  (9.65)

which means that we cannot find the inverse and there will be no solution. So, let us assume that 
X1 and X2 are not perfectly correlated. After performing the inverse and multiplication operations, 
we find
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Note that the covariance between X1 and X2 plays an important role here. 
The strength of the linear relationship between independent variables X1 and X2 is collinearity, 

and we can see how it affects the results. When we have several independent variables, we can have 
multicollinearity among these variables, this effect is strong if there is a linear relationship among 
some of the independent variables.

In the ideal case of absence of collinearity, i.e., when the covariance between X1 and X2 is 0, that 
is if X1 and X2 are uncorrelated, then the solution simplifies to
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 (9.67)

Also note that b1, b2 are partial or marginal coefficients, i.e., they represent the rate of change of 
Y with one of the X while holding all the other Xs constant. We can see that in the special case of 
uncorrelated X1 and X2, this marginal change of Y with X1 or X2 depends only on the covariance 
of X1 or X2 and Y and the variance of X1 or X2. However, when X1 and X2 are correlated, then the 
marginal coefficient for one variable is affected by (1) the variance of the other variable, (2) the 
covariance of the other variable with Y, and (3) the covariance of X1 and X2.

Recall that by using the definition of correlation coefficient

 ( , )
cov( , )r

s
s s

X Y
X Y

X Y

=  (9.68)

we can substitute in equation (9.67) to obtain
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In this case, the product of a correlation coefficient and a ratio of standard deviations give the 
marginal or partial coefficients b1, b2. The correlation coefficient is that between the corresponding 
independent variable Xi and the dependent variable Y. The ratio is that of the standard deviation of 
the dependent variable Y to the standard deviation of independent variable Xi.

eValuation and diaGnostiCs

In a similar fashion to simple regression (see Chapter 1), we use ANOVA, and t-tests for each coef-
ficient. For diagnostic of residuals and outliers, we use plots of residuals vs. fitted, Q–Q plots of 
residuals, and a plot of residuals vs. leverage. As an example, Figure 9.15 illustrates these diagnostic 
plots when we perform a multiple regression of ozone vs. temperature, wind, and solar radiation.

The interpretation is as in simple regression, observations 117, 62, 30 are identified as potential 
outliers by most plots, observations 9 and 48 are detected as outliers by the residual vs. leverage plot. 
High leverage occurs when its value exceeds 2 /m n×  or twice the number of coefficients (m) divided 
by the number of observations (n), and those values of Cook’s distance larger than 1 are considered 
having large influence. In this example, high leverage would occur for 2 4/153 0.052× = .

A useful plot is that of ozone estimated by the regression model vs. the ozone observed in the 
data, together with the hypothetical line where both values would coincide, or the line with 1:1 
slope. An example is in Figure 9.16 for the ozone example already described.

However, there is also the need to check for multicollinearity among independent variables. As 
we concluded in the previous section, correlation among the independent variables Xi makes the 
marginal coefficient depend on correlations among these variables and among these variables and 
the response Y. We also saw that in extreme cases of perfect correlation, there is no solution to the 
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matrix equation. Correlation among independent variables can make a coefficient more important 
than what it really is.

A practical metric of collinearity is tolerance, defined as the amount of variance in an indepen-
dent variable not explained by the other variables. Its inverse is the variance inflation factor (VIF). 
To calculate this metric for the variable Xj use

 1 2Tol Rj= −  (9.70)

where Rj
2 is the R2 of the regression of variable Xj on all other independent variables. A high value 

of Rj
2 implies that variable Xj is well explained by the others, and then the tolerance will be low, and 

because VIF is the reciprocal 1 /VIF Tol=  we will have high VIF. Therefore, low tolerance or high 
VIF imply problems due to multicollinearity. As a rule of thumb Tol < 0.2 or VIF > 5 indicates poten-
tial problems (Rogerson 2001). A less strict rule is Tol < 0.1 or VIF > 10. Although these thresholds 
are arbitrary, they provide practical guidance.

One possible approach to remedy multicollinearity problems is to remove some variables from 
the analysis considering our knowledge of the underlying processes, and the VIF of the various 
variables. This is only one aspect of variable selection, which we consider, with more details in the 
next section.

VaRiable seleCtion

Key issue to consider when applying multiple linear regression is how many variables and which Xi 
to use (Hocking 1976; Rogerson 2001). There are several ways of proceeding. (1) Backward selec-
tion: start by including all variables at once, and then drop variables iteratively without significant 
reduction of R2. (2) Forward selection: we start with the Xi most likely to affect the Y variable, and 
then add independent variables. (3) Stepwise selection: drop and add variables as in forward and 
backward selection; as we add variables, we check to see if we can drop a variable added before. 
This process can be automated using metrics that describe how good the current selection is. The 
Mallows’ Cp statistic or the AIC is used to decide whether an X can be dropped or added and as 
guide to stop the trial-and-error process.
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Mallows’ Cp is calculated for a subset of p variables of all m independent variables in the fol-
lowing manner:

 ( ) 2

( )

( )
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r n

y y r

y y m

r nr
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i i

i

n
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∑

∑

( )

( )
= + − =

−

−

+ −=

=

 (9.71)

Here SSr and SSm correspond to the residual mean square error obtained when the regression is cal-
culated for r and m independent variables, respectively. Those mean square errors use yi(r) and yi(m), 
which are the fitted dependent variable for the ith observation. Recognize that if r were to be equal 
to m, Cp takes the value 1 2m n+ − . In addition, the ratio of the sum of square errors would tend to 
be larger than 1. Cp is used to select the set of variables by picking the set that would make Cp less 
than 2r when the sets are ordered according to increasing values of r.

AIC is based on a likelihood function and information content. The likelihood function applies 
to discrete and continuous RVs. For example, for a discrete RV X, the likelihood function ( )L θ  of 
a parameter θ of its PMF is a continuous function formed by the products of the PMF evaluated at 
the observed values

 ( ) ( , )
1

L p xi

i

n

∏θ θ=
=

 (9.72)

Note that because the PMF is evaluated at the observed values, then L is only a function of θ. A 
maximum likelihood estimate (MLE) is a value �θ  of θ that maximizes ( )L θ . An MLE is obtained 

by calculus taking the derivative 
L
θ

∂
∂

, making it equal to 0, and finding the point where the opti-

mum occurs as we explained in Chapter 1, or by numerical optimization methods. This concept is 
expanded for more than one parameter.

The AIC is defined as

 2 2 ln( )AIC r L= −  (9.73)

where r is the number of variables and L is the maximized likelihood function of the regression 
model for these r variables. This expression comprises two parts: a positive cost 2r of increasing the 
number of variables and a negative benefit 2ln(L) derived from the goodness of fit. Then we select 
the set of variables such that AIC or the balance of two terms should be as low as possible. The AIC 
gives a measure of information lost when using a regression model vs. another.

Cp and AIC can be used in an iterative or stepwise process. For example, to augment a model by 
one variable, we add the Xi for which AIC is lowest among all alternatives. To reduce a model, drop 
the Xi for which AIC is lower than current. At each step, we run multiple regression. This stepwise 
regression procedure is automated by programming. It usually commences by augmentation from 
zero-order regression (intercept only).

CART

Decision trees are used to implement predictive classification and regression methods by iteratively 
or recursively partitioning the data into subsets such that each subset is as homogeneous as possible. 
At each node of the decision tree, we produce a rule that predicts how we split or partition the data; 
the rules can consist of inequalities for continuous variables, yielding a regression tree, or logical 
rule for categorical variables yielding a classification tree. Because the method includes both types 
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of trees, it is named classification and regression trees hence the acronym, CART (Breiman 1984; 
Berk 2016; Gareth et al. 2013) and typically produces a binary tree for visualization, which is drawn 
vertically with the root on top and leaves at the bottom. See, for example Figure 9.17 right, which 
has two decision nodes and three terminal nodes or leaves.

The decision nodes are generated by recursive splits of the explanatory variables say X1, X2, …, 
Xn starting with the variable that has the highest association with the response variable Y, which 
can be evaluated by one of a variety of metrics, leading to the leaf nodes which are the predicted 
responses.

ClassifiCation tRees

As a simple example, suppose we have a dataset with continuous variables X, Y with values between 
0 and 5, and a categorical variable Z, with values A, B, C (Figure 9.17 left). Qualitatively, we can 
see that when variable X is larger than ~3.5, it can segregate the group of C values, and when X is 
less than ~2.5, it can separate the A values. Most B values are in X between ~2.5 and ~3.5. Once 
we perform CART, the resulting tree (Figure 9.17 right) is such that at the top node, which is a 
decision node is split based on X < 2.48; if true, we go to the left and all these observations are at 
the leaf node labeled A for value of Z. However, if the split of the top node is false, we go to the 
right and it can be further divided at another decision node into the leaf node labeled B if X < 3.438 
or C otherwise.

For more details, the tree can be drawn with more information (Figure 9.18 right), particularly 
the probabilities of having one of the three values A, B, C in each node and the percentage of the 
observations in that node. For example, the top node has PMF p = [0.33, 0.32, 0.35] and is labeled C 
because the C value is the majority, and it contains 100% of the observations. For another example, 
the leaf node labeled C has PMF p= [0.00, 0.06, 0.94], with dominance of C, and it contains 33% 
of the observations.

The PMF at each node indicates the purity (or homogeneity) of the partition using the Gini index 
(not discussed here) or the entropy (discussed in a previous section on Information Theory) of the 
partition. In classification, decision rules are derived such that purity or homogeneity is maximized. 
As you can see from the plot of the left-hand side of Figure 9.18, the lower interval is almost pure 
A, with a few Bs but no C, and it corresponds to the leaf node labeled A (p = [0.84, 0.16, 0.00]). 
Likewise, the upper interval of the graph is almost pure C, with a few Bs but no A (p = [0.00, 0.06, 
0.94]). There is some bleeding of As and Cs into the middle interval, which is almost pure B; this 
corresponds to the PMF p = [0.00, 0.86, 0.14] of the leaf node labeled B.
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ReGRession tRees

A simple example for a regression tree is shown in Figure 9.19 right. In this case, at the node we 
display the mean of the response variable for this node, instead of the PMF as in classification trees. 
For example, the top decision node shows a mean of 16 for 100% of the observations, and the leaf 
nodes have their mean at 9.5, 14, and 23. For illustration, the large circles shown in Figure 9.19 (left) 
indicate the approximate location of these mean values, in each one of the intervals defined by the 
cutoff decision values of 2.1 and 2.9.

For a more practical example, let us perform CART on a training set of the air quality dataset 
used in the previous section to describe multiple regression. The response variable is ozone, and 
the explanatory variables are solar radiation, wind, and temperature. In the lab guide, we learn how 
to run CART using R, which would produce the regression tree of Figure 9.20. At the top node 
observations are split based on wind values above six leading to a leaf node of high ozone values 
(mean 108) when false (wind less than six). When true (89% of the observations), we go to another 
decision node where a cutoff temperature of 84 splits the remaining observations into two terminal 
nodes, one for low ozone values (mean 24) for low temperature, and another of medium ozone val-
ues (mean 71) for higher temperature.
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FIGURE 9.19 Left: Z variable is continuous. Right: Regression tree.
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MODEL COMPLEXITY

Selecting a good classification or regression model involves a compromise between overfitting and 
underfitting the data. When overfitting the data, the model incorporates too much of the variability 
or noise in the data and therefore while it may fit the training set very well, it may do poorly when 
predicting new data. However, when the model underfits the data, it may not capture the essence of 
the data, and the predicted result is also poor.

For illustration, consider the tree in Figure 9.21 (right) obtained from a training subset of the 
data shown in the left side, and performing the CART algorithm such that it stops when adding 
additional nodes does not contribute to reducing the error. You will note that the classification has 
additional decision and terminal nodes. This model allows to further segregate the As from the Bs 
as well as the Cs from the Bs.
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100%
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FIGURE 9.20 Regression tree for the air quality dataset.
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FIGURE 9.21 A classification that fits the data with higher complexity.



246 Real-Time Environmental Monitoring

Applying this model to an evaluation set, the confusion matrix analysis pa ( )= 1.000 0.727 0.955 ,

Po κ= =0.896, 0.843  shows lower producer accuracy for class B. While this may fit this dataset 
well, it may not do well when we apply to a different set.

For illustration of underfitting, consider the tree in Figure 9.22 (right) obtained from a training 
subset of the data shown in the left-hand side. You will note that the classification consists of only 
one decision node and two terminal nodes, missing class B altogether. Obviously, this may not do 
well if we apply to a different set, since we will not be able to predict class B observations.

Indeed, applying to an evaluation set, the producer accuracy pa = (0.957 0 1)  indicates nearly 
perfect producer accuracy for class A, perfect for class C, but zero producer accuracy for class B.

The number of decision and terminal nodes depends on when the CART algorithm stops trying to 
add more variables and rules, because of lack of improvement of the classification or regression. This 
stopping criterion is subsumed in a metric named complexity parameter denoted by cp, not to be con-
fused with Mallows Cp. The lower the complexity parameter, cp, value, the more terminal nodes and 
therefore the tree possibly overfits the data; whereas the higher the cp the fewer terminal nodes and with 
potential to underfit the data. For example, the tree in Figure 9.22 has high cp = 0.4, whereas the tree 
in Figure 9.21 has low cp = 0.01; as a middle point, consider the tree of Figure 9.17 which has cp = 0.15.

CROSS-VALIDATION

Cross-validation methods are of great importance to estimate errors of prediction of many models 
(Efron and Tibshirani 1993), in particular for more complete ML model evaluation, we can use 
multiple training and evaluation datasets. One popular algorithm is k-fold cross-validation that con-
sists in splitting the dataset in k subsets and repeating the train-evaluation process k times: for each 
iteration i, subset k = i is used for testing and the other four subsets for training. One can generate 
a confusion matrix for each repetition and examine the results, calculate an average of accuracy 
metrics, or lump all matrices in one and compute the evaluation metrics on the combined matrix. 
Cross-validation can also be used to find the best model when performing CART. As an example, 
Figure 9.23 shows producer and user accuracy for a k-fold cross-validation using k = 5 for the dataset 
of Figure 9.21 where each bar corresponds to one of the five iterations.

CART APPLIED TO SUPERVISED CLASSIFICATION FOR REMOTE SENSING

CART methods are useful for remote sensing image classification and can be employed in super-
vised classification by developing a model based on a training set, predicting based on an evaluation 
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FIGURE 9.22 A classification that underfits the data.



247Probability, Statistics, and Machine Learning

dataset, and calculating the confusion matrix for analysis. For example, as we learn in lab guide 
9, we can derive a tree from the seven bands of a Landsat 8 image (employed in Chapter 8 and lab 
guide 8) by sampling an image containing a reference land cover class for each pixel and predict this 
class from the values of the bands using CART (Figure 9.24).

The nodes are split based on four bands, green, NIR, SWIR1, and SWIR2 (the last two are 
shortwave). The leaves or terminal nodes have the land cover classes Water, DevHi (developed high 
intensity), DevLo (developed open, low, and medium intensity), DeFor (deciduous forest, mixed-
forest, and shrub), EvFor (evergreen forest), Grass (grass and pasture), Crop, Barre (barren land), 
WdWet (woody wetlands), and HbWet (herbaceous wetlands).

The confusion matrix for this classification results in Po = 0.514, Pe = 0.204, 0.389κ = , which 
does not indicate much accuracy. The errors of commission are all elevated 20%–90% except for 
Water at 2.2%. Similarly, the errors of omission are all elevated 30%–77% except for Water at 7%. 
Other models could be developed to improve this classification.
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FIGURE 9.23 Cross-validation using k-fold.
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FIGURE 9.24 CART of Landsat 8 image used in Lab guide 9.
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EXERCISES

Exercise 9.1

Define event A = rain today with probability 0.2. Define the complement of event A and its prob-
ability. Determine the sample space and the possible outcomes stating the probabilities of each. 
Now, define A = rains less than 1 inch, B = rains more than 0.5 inches. What is the intersection 
event C obtained by intersection of A and B?

Exercise 9.2

A pixel of a remote sensing image can be classified as grassland, forest, or residential. Define 
A = land cover is grassland, B = land cover is forest. What is the union event C? What is D = the 
complement of C?

Exercise 9.3

Assume we take water samples from water wells to determine if the well is contaminated. Assume 
we sample four wells and that they are independent. Calculate the number and enumerate the 
possible events of contamination results. Calculate the number and enumerate those that would 
have exactly two contaminated wells in the four trials.

Exercise 9.4

Using the tree of Figure 9.8, calculate the probability that test is positive, and that water was not 
contaminated P[BD]. What is the total probability of the test is in error? Hint: BD or AC. What is 
the probability that the test is correct? Using Bayes’ theorem: what is the probability that the water 
is contaminated given a positive test result? Hint: calculate P[A | D].

Exercise 9.5

Assume 20% of an area is grassland. We have a remote sensing image of the area. An image clas-
sification method yields correct grass class with probability = 0.9 and correct non-grass class with 
probability = 0.9. What is the probability that the true vegetation of a pixel classified as grass is 
grass? Repeat assuming that grasslands are 50% of the area. Which one is higher and why?

Exercise 9.6

Define a discrete RV based on outcomes of classification of a pixel of a remote sensing image as 
grassland (prob = 0.2), forest (prob = 0.4), or residential (prob = 0.4). Plot the distributions (density 
or mass) and cumulative. Calculate the mean and variance. Calculate the sample mean, variance, 
and standard deviation of sampled data consisting of 300 grass pixels, 500 forest, and 200 resi-
dential out of 1000 pixels.

Exercise 9.7

Assume 60% of a landfill is contaminated. Suppose that we randomly take three soil samples to 
test for contamination. We define event C = soil sample contaminated. We define X to be an RV 
where x = number of contaminated soil samples. Determine all possible values of X. What distribu-
tion do we get for X? Calculate the values of PMF and CMF for all values of x. Graph the PMF and 
CMF. Calculate the mean and the variance.
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Exercise 9.8

Calculate statistics of the confusion matrix given in Table 9.10.

Exercise 9.9

Interpret the results of multiple linear regression for air quality given in Figure 9.16.

Exercise 9.10

Interpret the results of regression tree for air quality given in Figure 9.20 and of remote sensing 
given in Figure 9.24.
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10 Databases and Geographic 
Information Systems

INTRODUCTION

This chapter provides an overview of database technology and its application to environmental 
monitoring. It covers relational databases, a mature technology, and Extensible Markup Language 
(XML) databases, which are becoming popular. The basic notions of schema, entity relation dia-
grams, and structured query language (SQL) are presented. Then, geographic information systems 
(GIS) are introduced as databases organized as layers of georeferenced information, focusing on the 
major types of layers, raster and vector, and their analysis. Examples illustrate the major concepts 
involved in queries and analysis. Developing database skills are very important to environmental 
monitoring practitioners because of the need to organize and store data collected by sensors and 
dataloggers as illustrated in Figure 10.1. This chapter concludes with material to help understand 
what a database system can do in terms of storage and retrieval of real-time sensor data, understand 
schemas and metadata of a database and their importance in data sharing through a web service. 
These concepts will be expanded by computer exercises in Lab 10 of the companion Lab Manual 
(Acevedo 2024).

DATABASES

Informally, a database (DB) is an organized collection of data, or in other words, a collection of 
records, or pieces of knowledge. Common examples of a DB would be a telephone directory, mail-
ing list, and a recipe collection. A Database Management System (DBMS) is software designed to 
create a database as well as to store and query this database; i.e., a DBMS is a collection of software 
modules that manage data storage, query processing, and data recovery (Silberschatz et al. 2010).

There are several types of DB. Of these, we will briefly cover relational DB, which is a mature type 
and employed in many applications, and XML DBs, which are becoming popular. Some well-known 
standards in DBMS are SQL and Open Database Connectivity (ODBC). Examples of DBMS are 
MySQL and PostgreSQL, which is an open-source option that offers spatial data capabilities (PostGIS).

Database technology provides standards and schemas, storage methodologies, and helps us design 
constrains and data quality assurance. In addition, it helps us provide exchange of data through real-
time web interface and standard web services, e.g., Open Geospatial Consortium (OGC) sensor web 
enablement (SWE) (OGC 2022a).

Developing database skills are very important to environmental monitoring practitioners because 
we need to organize and store data collected by sensors, dataloggers, WSN, and IoT devices as 
described in Chapters 5 and 6. In this chapter, we cover material to help understand schemas and 
metadata of a database and their importance in data sharing, as well as define XML and its off-
spring e.g., GML and sensorML. We will briefly see how to share data through the standard web 
service SWE. The first part of this chapter is just a brief outline based on an environmental monitor-
ing mini-course material developed at the University of North Texas (Huang et al. 2008).

SERVER CLIENT: DATALOGGING AND DB

We will distinguish between a DB server and a data station or client (datalogger or sensor system), 
and two main modes, push and pull, to import data from a field station into a database server. In 
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pull, the server initiates the request for data transaction, whereas in push the request is initiated by 
the station. In the example of Figure 10.2, the DB server, using FTP, pulls files of rainfall data avail-
able at City of Denton computers; files from UV data collection (see Chapter 11) are pushed to the 
server by the UV datalogger. Push and pull transactions can also be combined.

As you recall from Chapter 6, the MQTT protocol is based on the server and client concept, and 
in this context a WSN node or IoT device may be a publisher client that sends data to a server broker, 

Files
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SBC
WSN

Datalogger

DB Server

Pull

Push

Pull-P
ush

City of
Denton

UV
logger

Greenbelt
station

Daemons:
CofD, UV
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FIGURE 10.2 Push and pull modes. Adapted from Huang et al. (2008).

FIGURE 10.1 From sensors to DB systems.
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while a subscriber client can access the broker based on topics. You can see how a subscriber client 
may access the broker, collect data, and organize it in a DB server, which can then be accessed by 
other clients querying data from the DB (Figure 10.3).

Data collected by dataloggers are not necessarily ready for DB ingestion. We need to specify 
how to format the raw data to organize DB files. For example, we can look at some of the data from 
the TEO system. These include City of Denton FTP Data

Directory Structure: YEAR/MONTH/cod_date_time
2007/9/cod_2007-9-21_8.30
File Format: Station_Name/Gate_Name, date, time, rain_gage_reading/
gate_status
RG1, 9/21/2007, 8:30:57 AM, 0.00
HC_N_Gate_STATUS, 9/21/2007, 8:30:57 AM, UP

and UNT UV Data

Directory Structure: YEAR/MONTH/uv_date_time.txt
2007/9/uv_2007-9-15_12.30
File Format: Date, Time, SUV #1, UVA #2, Temp 1, Temp2
"15.09.2007", "12:30", 1.367, 0.000, 32, 0

RELATIONAL DATABASES

Relational DBs are built upon a well-founded theory, consisting of Relations (tables), Keys, 
Functional Dependencies, and Normal Forms. An entity is an object about which we store data 
as tables, which are the same as a relation and constitute the basis for a relational DB. We spec-
ify attributes in the table columns, whereas the rows represent the contents of a table, a tuple or 
instance of a relation. We can link two tables using a key.

As a simple example, consider two entities or tables (Figure 10.4), one named “Location” contains a 
list of names and locations by station IDs. These three attributes are the columns, whereas the instances 

FIGURE 10.3 MQTT protocol and DB.



254 Real-Time Environmental Monitoring

are the rows; in this case, only three and each one is a tuple, for example [1, DP, Discovery 
Park]. The other entity or table is named “Equipment” and it contains three attributes Station ID, 
Station Equipment, and Manufacturer of equipment used at the station. One example of tuple in this case 
is [1, CR datalogger, Campbell]. The station ID is a key and links both tables; in this example, 
StationID is underlined to signal that it is a key. This is an extremely simple example, typically a DB 
consists of many relations representing objects and the relationships among them.

Each attribute of a relation has a name and a domain, i.e., a set of allowed values for the attribute; for 
example, StationName has domain DP, GBC, EESAT. Attribute values are required to be atomic, that 
is, indivisible. The special value NULL is a member of every domain. Denote A1, A2, …, An as attributes 
of a table, then R = (A1, A2, …, An) is a relation schema. For example, for the table Location given above 
Location-schema = (StationID, StationName, StationLocation). Further, r(R) is a 
relation on the relation schema R. Listing the attributes is the barebones of the schema, which should also 
specify the type of data for each attribute; for example, StationID would be integer, StationName 
would be character, and StationLocation would be character. Depending on the attribute, the type 
could be timedate, e.g., a timestamp of a datalog file, or numeric, e.g., temperature which would be a float 
and we would specify the number of decimal places.

K is a superkey of a schema R if values for K are sufficient to identify a unique tuple of each 
possible relation r(R). For example: (StationID, StationName) and StationName are both 
superkeys of table Location, assuming no two stations have the same name. K is a candidate key if K 
is minimal. Example: StationName is a candidate key for Location, since it is a superkey (assum-
ing no two stations can have the same name), and no subset of it is a superkey (Huang et al. 2008).

A functional dependency is a generalization of the notion of a key requiring that the value for 
a certain set of attributes determines uniquely the value for another set of attributes. Example: 
Consider the schema:

Station-Sensor-schema = (StationName, StationLocation, SensorID, 
SensorManuf, Phenomena).

FIGURE 10.4 Simple example of tables and a key to relate two tables.
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We expect this set of functional dependencies to hold

StationName → StationLocation
SensorID → SensorManuf, Phenomena, StationName

but would not expect that

StationName → Phenomena

Other integrity constraints are given by using primary keys (PKs) and foreign keys (FKs). An 
FK is the PK of one table that is placed into another table to represent a relationship among those 
tables. For example

R1 = (StationName, StationLocation)
R2 = (SensorID, sensorManuf, Phenomena, StationName)

StationName in R2 is a FK referencing the PK of R1.
Sometimes selection of a PK is subjective, even if two designers have the same set of superkeys 

and candidate keys, it is possible for these two people to choose different PKs and FKs for the rela-
tionships. Therefore, an important process is normalization, which consists of expressing relations 
in “good form”. First, decide whether a particular relation R is in good form, if not decompose it 
into a set of relations (R1, R2, ..., Rn) such that each one of these relations is in good form. When is 
a relation in good form? Relations preferably should be in either Boyce-Codd Normal Form (BCNF) 
or Third Normal Form (3NF). BCNF and 3NF eliminate redundancy (Huang et al. 2008). As an 
example of BCNF decomposition, consider:

R = (StationName, StationLocation, SensorID, SensorManuf, Phenomena).

With functional dependencies

StationName → StationLocation
SensorID → SensorManuf, Phenomena, StationName

We can decompose to R1, R2

R1 = (StationName, StationLocation)
R2 = (SensorID, sensorManuf, Phenomena, StationName)

DATA MODELS AND ENTITY RELATION DIAGRAMS

Visualizing entities and their relationships in the form of diagrams is very helpful when designing a 
data model for a DB, as well as debugging a complicated DB. Figure 10.5 shows the previous example 
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of two relations, Location and Equipment, developed as two types of Entity-Relation Diagram (ERD). 
The ERD shown on Figure 10.5 left uses a table for each entity and these tables are connected. This 
type of table should not be confused with table as equivalent to a relation, which uses columns for the 
attributes. The diagrammatic type of table has two columns, the right-hand side columns are fields and 
contain the attributes, Figure 10.5 (left) designates which ones of the attributes is the PK and FK.

Figure 10.5 right shows another type of ERD, called a Chen diagram, that consists of intercon-
nected shapes. The boxes are entities, ovals linked to boxes are attributes of the relation, the dia-
mond indicates that both tables are related. For a more complete example, consider Figure 10.6 that 
consists of three tables.

Stations

PK StationID

StationName
Location
Coordinate
GaugeType
IPAddress
Description

clam

PK,FK1
PK

sensorid
date

clam
validation
rawdata

Sensors

PK SensorID

FK1 StationID
SensorName
Manufacturer
SensorType
Phenomenon
Input
Output
Unit
ValueRange
CollectionFrequency
Longitude
Latitude
CollectionDevice
CollectionMethod

clam

Sensorid

date
clam

validation

rawdata

sensor

Sensorid

stationid
sensorname manufacturer

sensortype

stations

stationid stationname
location

coordinate

FIGURE 10.6 Normalized table example. From Huang et al. (2008).

FIGURE 10.5 Data model as tables and as Chen ER diagram.
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Figure 10.5 shows a low level of detail, limited to the entities, attributes, and keys. A more com-
plete model using tables would add the data type for each attribute; for example, StationID would 
be integer, StationName would be character, and so on. In this case, the tables have three columns. 
In addition, the lines connecting tables can have a variety of symbols such as crow foot, dash, circle, 
or a combination of these. With these more complex lines, we can specify whether the relation is 
one-to-one or one-to-many.

There are a variety of types of ERD and ways of representing a data model as well as software 
that helps to develop these (Visual Paradigm 2022; Lucidchart 2022; Database Star 2022).

SQL

DB language commands are specified according to its purpose as data definition or data manipula-
tion. A Data Definition Language (DDL) is used for changes in the DB schema. Example: create 
table, drop table, alter table, create index. A Data Manipulation Language (DML) is used to read or 
change the content of the database. For example, a DML would include commands such as insert, 
delete, select, and update.

ddl

DDL commands are used to change the schema for each relation, domain of values associated with 
each attribute, integrity constraints, and set of indices to be maintained for each relation, security 
and authorization information for each relation, and the physical storage structure of each relation.

For example, an SQL relation is defined using the create table command

create table r (A1 D1, A2 D2, ..., An Dn,
(integrity-constraint1),
...,
(integrity-constraintk))

where r is the name of the relation, each Ai is an attribute name in the schema of relation r, and Di 
is the data type of values in the domain of attribute Ai. Integrity constraints in create table 
include not null, PK (A1, ..., An), FK (A1, …, An) references (B1, …Bn), check (P), where P is a 
predicate. Figure 10.7 shows the process of using SQL to create the schema for tables in the simple 
example stations. In the lab guide companion to this textbook, we will practice developing examples 
using two software tools RSQLite and SQLiteStudio.

Let us look at another example creating two related tables. In the following, we create table 
Sensors with attributes SensorID as integer, SensorManuf as character, and Phenomena 
as character, and then as integrity constraint, we declare SensorID as the PK for table Sensors.

create table Sensors
 (SensorID integer,
 SensorManuf char(30)
 Phenomena char(30),
 primary key (SensorID));

and now we create another related table Wind that has SensorID referencing the sensorID for 
Sensors (an FK), declares two additional attributes (dateTime and windspeed), two PKs, and 
lastly ensures that windspeed is non-negative.
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create table Wind
(sensorID integer REFERENCES Sensors(SensorID), 
 dateTime date,
 windspeed float,
 PRIMARY KEY(sensorID,dateTime),
 check (windspeed >=0)); 

After a table is created, we can use commands drop table and alter table to modify it. 
For example:

DROP TABLE Sensors;

deletes all information about Sensors from the database and

ALTER TABLE Wind add maxWindSpeed float;

adds an attribute called maxWindSpeed to the Wind table.
You can also drop attributes of a table, add integrity constraints, e.g., PKs, reference keys, to 

existing table.

FIGURE 10.7 SQL creating the tables for the stations example.
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dml

DML functions include read or change the content of the database. A typical SQL query has the 
form:

select A1, A2, ..., An
from r1, r2, ..., rm
where P

Here, the first line refers to attributes, the second line to the relations, and the third line to predi-
cates. The result of an SQL query is a relation. The following are examples of queries.

Select the day and the maximum UV value from the table

SELECT date, suv 
FROM uvdata 
WHERE suv IN (select max(suv) from uvdata);

Select the daily UV intensity averages from January using only non-zero values

SELECT date_trunc('day', date), avg(suv) 
FROM uvdata 
WHERE date BETWEEN '2007-1-1' AND '2007-1-31' 
AND suv>0 
GROUP BY date_trunc('day',date);

Select the UV values from today

SELECT date, suv 
FROM uvdata 
WHERE date_trunc('day',date)=CURRENT_DATE;

Select the monthly average of rain

SELECT date_trunc('month',date),avg(value) 
FROM rain 
GROUP BY date_trunc ('month',date) 
ORDER BY date_trunc('month',date);

Select the temperature values (corresponding to sensorid=6002) from March 4, 2002

SELECT date, value 
FROM sonde 
WHERE sensorid=6002 AND date between '2002-3-4 00:00:00' and '2002-
3-4 23:59:59';
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Select all dates from January 2001 where percent saturation of dissolved oxygen (sensorid=6005) 
is between 0 and 5

SELECT date,value 
FROM sonde 
WHERE sensorid=6005 AND value BETWEEN 0 and 5 
AND date BETWEEN '2001-1-1' and '2001-1-31';

Select all the distinct locations

SELECT location 
FROM stations 
WHERE location IS NOT NULL;

Select sensorid and sensorname from all the sensors whose names start with T

SELECT sensorid, sensorname 
FROM sensors 
WHERE sensorname like 'T%';

Count all the sensors

SELECT count(sensorid) 
FROM sensors;

Select days where turbidity (sensorid=6016) average is between 0 and 2

SELECT date_trunc('day',date), avg(value) 
FROM sonde 
WHERE sensorid=6016
GROUP BY date_trunc('day',date) 
HAVING avg(value) BETWEEN 0 and 2; 

In addition, SQL also includes Insertion, Deletion, Update, Bulk upload, and Create index.

XML

After the advent of the web and HTML, recognizing the need for a more flexible platform to 
exchange data, XML was created to allow for a customizable definition of elements and tags beyond 
the set specified by HTML. XML has become popular for environmental monitoring data exchange 
motivated by several factors, which includes heterogeneity of sensors and sensor data and thus the 
need for a standard to exchange sensor configuration and data (Huang 2008). Furthermore, XML 
facilitates the process of making data from environmental sensor networks accessible through the 
Internet. Indeed, sensors and sensor data are typically heterogeneous and need some level of flex-
ibility when organizing it for presentation via the web.
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As in HTML, the structure of XML data includes tags and elements. A tag is a label for a section 
of data. An element is a section of data beginning with <tagname> and ending with a matching 
</tagname>. Elements must be properly nested, and every document must have a single top-level 
element. The following is an example of nested elements

<station>
 <Description>Doyle and Freeman</Description>
 < Phenomenon Name="Rain" />
 <Point>
  <pos>42, 24, 11</pos>
 </Point>
</station>

In the order station, Description, Phenomenon Name, Point, and pos (position). Elements can have 
attributes

< Phenomenon Name="Rain" />

An element may have several attributes, but each attribute name can only occur once. An element 
without any sub-element can be abbreviated

< Phenomenon Name="Rain"/> 

instead of

< Phenomenon Name="Rain" > </ Phenomenon > 

The same tag name may have different meaning in different organizations or domains, causing 
confusion. Therefore, use

unique-name:element-name

We can avoid using long unique names all over a document by using XML Namespaces. For 
example, in the following, we declare namespace gml in the station tag then Point and pos 
are unique names for that namespace

<station Xmlns:gml="http://www.opengis.net/gml">
<Description>Doyle and Freeman</Description>
 < Phenomenon Name="Rain" />
 <gml:Point>
  <gml:pos>42, 24, 11</gml:pos>
 </gml:Point>
</station>

http://www.opengis.net
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To store string data use CDATA that stands for “character data”. This is useful to store strings that 
may contain tags not meant to be interpreted as sub-elements,

<![CDATA[<station> … </station>]]>

contents between square braces […] are treated as strings.
As discussed earlier in this chapter, DB schemas constrain the information that can be stored, 

and the data types of stored values. XML document schemas are not required but important for 
XML data exchange because parsers use schemas to automatically interpret data and users employ 
schemas to understand what the data are about. There are two ways to specify XML document 
schema: Document Type Definition (DTD), which is simple and popular, and XML schema, which 
is more complex and has data type constraints.

DTD specifies what elements can occur, what attributes an element can or must have, and what 
sub-elements can or must occur inside each element. However, DTD does not constrain data types, 
all values are represented as strings. The DTD syntax is

<!ELEMENT element (subelements-specification) >
<!ATTLIST   element (attributes)  >

for example,

<!DOCTYPE teo[
 <!ELEMENT teo( ( stations| databases)+)>
 <!ELEMENT stations(stationName stationLocation sensors*)>
 <! ELEMENT databases(databaseName databaseType )>
 <! ELEMENT stationName(#PCDATA)>
 <! ELEMENT stationLocation(#PCDATA)>
 <! ELEMENT sensors (sensorName phenomenon)+>
 <! ELEMENT sensorName(#PCDATA)>
 <! ELEMENT phenomenon(#PCDATA)>
 <! ELEMENT databaseName(#PCDATA)>
 <! ELEMENT databaseType(#PCDATA)>
 <!ATTLIST stations boundingBox CDATA  #required>
 ]>

Users define DTDs and schemas for their application domains specifying allowed tags and 
structures, such that the semantic meaning and information structure will have some level of 
consensus in the application domain. For example, in the environmental monitoring field: GML 
that specifies geographical features and geospatial datasets (European Commission 2022), 
SensorML that specifies sensor terms and semantics (SensorML 2022), KML (Keyhole Markup 
Language) for geographic annotation and visualization and used by Google Earth (Google 
2022), and EML (Ecological Metadata Language) developed by the ecological discipline (KNB 
2022).

For illustration, consider this GML example, where the tags are specified to follow their GML 
unique name
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Consider also this KML example

<kml>
 <Placemark>
  <name>City of Denton: Doyle and Freeman</name>
 <description>Rain Gauge Reading: 0 inch
 </description>
  <Point>
   <coordinates>-97.132,33.214
   </coordinates>
  </Point>
 </Placemark>
</kml>

Google Earth provides simple application program interfaces based on KML that helps users to 
publish their geospatial data.

GIS

GISs are DB systems structured spatially, or geo-referenced DBs, such that we can collect, store, 
retrieve, and display data for positions on the Earth’s surface. GIS facilitates geospatial analysis as 
well as making and editing maps. There are many analysis applications, just to mention a few con-
sider demographic analysis, site selection, watershed analysis, resource inventories and monitoring, 
land management, and transportation modeling. Regarding environmental monitoring, GIS pro-
vides a way to organize data by station and sensor location, follow sensor measurements by spatial 
location, ingest remote sensing data, and merge with other geospatial data sources.

Gis softWaRe

There are a variety of software tools to implement GIS, ranging from commercially licensed 
products as ArcGIS (ESRI 2022), academic-based emphasizing monitoring and modeling such as 
IDRISI/TerrSet (Clark Labs 2022), and open-source community-based (QGIS 2022; GRASS GIS 
2022). In this chapter and in the lab guide companion to this book, we will develop some examples 
using QGIS.

<gml:Polygon>
 <gml:outerBoundaryIs>
  <gml:LinearRing>
   <gml:coordinates>0,0 100,0 100,100 0,100 0,0</
gml:coordinates>  </gml:LinearRing> 
 </gml:outerBoundaryIs> 
</gml:Polygon> 
<gml:Point> 
 <gml:coordinates>100,200</gml:coordinates> 
</gml:Point>
<gml:LineString>
  <gml:coordinates>100,200 150,300</gml:coordinates> 
</gml:LineString> 
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GIS software includes tools to perform DB operations such as queries and DB management. 
Prominent operations are vector files management such as joining attributes by location and creat-
ing spatial indices. In addition, GIS software typically includes linkages to DB systems such as SQL 
PostGIS, and SpatiaLite. Very importantly, for monitoring and modeling, GIS software includes 
linkages to programming languages such as C++ and Python. Due to its closeness to spatial pro-
cesses, GIS software also includes analysis of remote sensing images and tools to import raster files 
and processing them by themselves or in conjunction with other raster and vector files. Moreover, 
these tools include export of spatial analysis results as remote sensing formatted files.

Gis layeRs

A GIS is organized by data layers, which are files containing data about positions on the spatial 
domain of interest and that can be superimposed or overlaid to query data from all layers for a target 
position. Consider these examples: a topographic elevation layer consisting of either the elevation of 
a set of coordinates for positions on the area or a set of lines representing the contour lines, a soil 
layer consisting of soil-type polygons covering the area, and a vegetation layer derived from remote 
sensing and having values on a grid of cells defined by the raster image. We can overlay these layers 
to find, for example the soil type for vegetated areas located in land of low elevation.

RasteR layeRs

From the material on remote sensing presented in Chapter 8, we understand the concept of raster 
images; this is also a type of GIS layer that divides the area of interest in a grid of cells of given 
size. Each cell has a unique value in the domain of values and data type of the layer. These can be 
logical, integer, and floating values. For example, a vegetation raster pixel could take a Boolean or 
logical 1 if the cell is vegetated or 0 if not or take an integer from 1 to 4, for three vegetation types 
(forest, grass, crop, bare), or float values between –1 and 1 for NDVI values (Figure 10.8). To further 
illustrate the raster concept, the NDVI image presented in Chapter 8 with values from about –0.2 to 
0.5 and pixel size 30 m × 30 m is imported into QGIS as a raster layer and displayed in Figure 10.9 
using gray scale from dark (lower values) to light (highest values) at a scale of 1:25,000. Note that at 
this scale, the size of the side of a pixel is 30 m/25,000 = 0.0012 m or 1.2 mm.

Using a GIS, we gain insight about a raster layer by computing its histogram, as illustrated in 
Figure 10.10 for the NDVI layer discussed above. We can see a sharp peak around −0.02 that cor-
responds to the open water pixels and a broader peak around 0.3 that corresponds to vegetation. 
A useful tool typical of GIS is an identifier that can be used to query information about a pixel 
directly on the image; for example, Figure 10.11 displays the value and coordinates of a pixel that 
was clicked on the image using QGIS.

Importantly, GIS software allows querying information about the layer, including its Coordinate 
Reference system (CRS), extent, data type, range of values, number of rows and columns, and pixel 

FIGURE 10.8 Examples of raster layer for the same theme (vegetation) but with different data types.
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size. As an example, for the NDVI image that we have been discussing, querying the properties of 
the layer in QGIS we obtain that the CRS is EPSG:32614-WGS84, UTM Zone 14N, the datatype is 
32-bit floating point, extent 664995,3671805:700005,3706815, rows 1167, columns 1167, pixel size 
30 × 30 m, and values ranging from −0.2065 to 0.595.

In this chapter and the lab guide, we cover examples of just a few of the many raster layer 
manipulations available in GIS software, ranging from basic tools such as reprojecting a layer to a 
different CRS, georeferencing, and resampling to more complex operations such as statistics, terrain 
analysis, and modeling.

FIGURE 10.9 Example of a raster layer in GIS showing pixels of an NDVI image.

FIGURE 10.10 Histogram of the NDVI raster layer.
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RasteR analysis: entRy-Wise CalCulations

The raster format is very convenient for analysis because the contents of the raster can be thought 
as a mathematical matrix with cells and rows, and therefore raster operations can be implemented 
as mathematical operations on matrices. This assumes that the raster layers have compatible data 
types, e.g., integers, real numbers, or Boolean variables.

It is often useful to scale a numeric layer multiplying all entries by the same number (integer or 
float). For example, a raster layer x of integers could be multiplied by a scalar a (a float) to obtain a 
new layer z with float type of cells

 z a xij ij= ×  (10.1)

where i and j are row and column of the raster layer. We encountered this situation in Chapter 8 
and Lab 8 when we scaled Landsat 8 images composed of integers in the range 0 (2 1)16− −  by the 
maximum of all cells to obtain a raster with float values between 0 and 1.

Conveniently, we can use matrix sum and subtraction, in which we add or subtract numeric layers 
in a cell-wise or cell-by-cell basis; two raster layers x and y can be summed into a new raster layer z,

 z x yij ij ij= +  (10.2)

For example, soil erosion layers at years t and t + 1 can be summed to obtain a total erosion layer. 
The Hadamard or Schur matrix product, in which you multiply entry-wise the values of matrices is 
the basis for raster multiplication of the two raster layers x and y, to obtain a third z

 z x yij ij ij= ×  (10.3)

Note that this operation is different from the standard matrix multiplication of conforming matrices. 
For example, we can calculate an erosion rate layer as the product of rainfall raster layer and a coef-
ficient depending on soil type for the cell.

Furthermore, we can construct linear and non-linear functions that operate on a cell-by-cell 
basis, to build one raster from another or a new raster from two others. Consider, for example layers 
x and y and their normalized difference z

 z
x y

x y
ij

ij ij

ij ij

= −
+

 (10.4)

FIGURE 10.11 Example of identifier result.
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We already encountered this operation in Chapter 8 when using Landsat 8 images, we calculated 
NDVI from the red and NIR bands and NDWI from the green and NIR bands.

Lastly, let us mention Boolean algebra of raster images consisting of Boolean valued cells. We 
can use the NOT, AND, OR, and XOR Boolean operators on a cell-wise manner. Take two raster 
layers x and y and perform the AND operation

 ANDz x yij ij ij=  (10.5)

which would be useful when determining whether two required factors, e.g., soil nutrient availabil-
ity and water infiltration, enable a third, say crop growth.

RasteR analysis: neiGHboRHood and zonal CalCulations

The raster framework also allows to do calculations using a moving neighborhood or window filter 
of cells around a target cell or even extending this calculation to a larger neighborhood or zone. 
There are many of these methods, some prevalent ones are: calculating an average around the target 
cell, calculating filters based on weighted averages or on convolution, resampling to change raster 
resolution, and calculating slope and aspect of the terrain at a target cell. In the following, we will 
go over some examples.

Suppose we have a raster of 30 m × 30 m and want to derive a lower resolution raster with  
90 m × 90 m cells, this means using a moving neighborhood or window of 3 × 3 = 9 cells around (and 
including) the target cell. A simple grid of 6 × 6 = 36 cells is shown in Figure 10.12 for illustration; 
we consider four target cells shown at positions (2, 2), (2, 5), (5, 2), (5, 5) by (row, column) and 
marked with circles. The raster is composed of integers indicating categorical values or classes, e.g., 
vegetation type, and thus we can take the mode of the values in the neighborhood 3 × 3 cells sur-
rounding the target; for instance, the nine values for target cell at (2, 2) are 2,1,2,1,1,1,1,2,1 and the 
mode is 1 which will be the value assigned to the upper corner cell of the new raster of 2 × 2 cells of 
90 m × 90 m. You can verify that the other cells have mode 4,4,1. This algorithm based on the mode 

FIGURE 10.12 Resampling by using the mode or majority.
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is also called majority resampling. Other algorithms for resampling include bilinear interpolation 
and cubic convolution.

One more example can be drawn from terrain calculations. Suppose a raster is a digital elevation 
model (DEM) with 30 m × 30 m cells that has integer or real numbers giving elevation above sea 
level for each cell, and we want to calculate slope angle (steepness) and aspect (direction) for each 
cell on the raster. Scanning over the entire raster with a 3 × 3 window, we can calculate the slope 
and aspect for each cell based on the elevation of the cells in the window. Figure 10.13 (left) shows 
one of these windows located at a target cell, the numbers are elevation values as integers. Denote 
by z the elevation value, and by x and y the horizontal (E–W) and vertical (S–N) directions on the 
DEM oriented toward the left (W) and toward the top (N) (Figure 10.13 center). We will present the 
calculation following the algorithm proposed by Horn (1981), which is implemented in many GIS 
software tools, consisting of calculating the elevation gradient dz/dx in the horizontal x direction 
(E–W) at the target cell and dz/dy in the vertical y direction (S–N) at the target cell and composing 
a slope angle based on

 tan 1
2 2

dz
dx

dz
dy

α = 



 +







−  (10.6)

Denote rows and columns by i and j and assume that the center cell is at i, j. You can look at 
Figure 10.13 (right) to help understand how we use the indices i and j in the following equations. The 
horizontal gradient is computed by all elevation differences along the columns from right to left and 
dividing by the number of weights used 2 × (1 + 1 + 2) = 8 times the cell side length d

 
2 2

(8 )
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 (10.7)

and the vertical gradient by all elevation differences along the rows from bottom to top
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 (10.8)

A few lines of code in R can help make this computation easier for the values shown in Figure 10.13 
(left)

FIGURE 10.13 A nine-cell window to calculate slope angle and aspect for a DEM.
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Resulting in a slope angle of 8.32°. Note that the atan function returns the angle in radian, so 
we converted from radian to degrees using 180/π. When writing the slope angle raster layer at 
the target cell i, j the GIS would write 8.32 if treated as real number or rounding 8 as an integer 
raster layer.

The aspect (or compass direction) of the slope is calculated in two steps. First use the two-argu-
ment arctangent to obtain the angle in Cartesian x, y coordinates (Figure 10.14 left) as

 atan 2 ,2
dz
dy

dz
dx

θ = −




 (10.9)

For a brief review, the two-argument arctangent is the same as the arctan calculated as

 tan 1 dy
dx

θ = 





−  (10.10)

for positive x values but takes a different value when the x values are negative. Note that two points 
(–a, b) and (a, b) with the same b value for the y coordinate would have the same angle as calculated 
by equation (10.10) that is to say tan ( / )1 b aθ = − . For instance, a point of coordinates (–1, 1) would 
have an angle of 135° calculated by equation (10.9) instead of 45° calculated by Equation (10.9) and 
a point with coordinates (–1, –1) would have an angle of –135 ° instead of –45°. The atan2 function 
was developed for this purpose, so that result can be distinct for negative values of x.

Using the atan2 function of R on the –dz/dx and dz/dy calculated previously

z <- matrix(c(30,25,23,21,20,22,18,15,20), byrow=T, ncol=3)
d <- 30; i=2;j=2 
dz.dx <- ((z[i-1,j+1]+2*z[i,j+1]+z[i+1,j+1]) -
         (z[i-1,j-1]+2*z[i,j-1]+z[i+1,j-1]))/(8*d)
dz.dy <- ((z[i+1,j-1]+2*z[i+1,j]+z[i+1,j+1]) -
         (z[i-1,j-1]+2*z[i-1,j]+z[i-1,j+1]))/(8*d)
ang <- atan(sqrt(dz.dx^2+dz.dy^2))*180/pi
> ang
[1] 8.327143

FIGURE 10.14 Left: calculating the two-argument arctangent. Right: converting to compass direction.
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Resulting in an angle θ2 of –85.1º. However, we need to express this as angle in a compass direc-
tion; that is to say, increasing angle clockwise in degrees from 0º (north) to 180°º (south), to 270º 
(west), and to 360º (again due north) coming full circle. By looking at Figure 10.14 (right), we can 
see that we would use 90 90 ( 85.1 ) 175.12θ θ= − = − − ° = ° resulting an angle which is pointing SE 
but almost due south, indeed just 180 175.1 4.9− = ° to the east. When writing the slope aspect raster 
layer at the target cell i, j, the GIS would write 175.1 if treated as real number or rounding 175 as an 
integer raster layer.

VeCtoR layeRs

Vector layers can be of various types depending on the geometry of their elements: points, lines, or 
polygons (Figure 10.15). A point layer is a collection of pair of coordinates, latitude, and longitude 
or UTM, such that each point has a value for a set of attributes. Take for example, groundwater 
monitoring wells, such that the layer would have coordinates of the wells, and values of a parameter 
of water quality and other relevant information such as depth and geological formation.

More complex, a line layer would be a set of connected series of points, that is a set of con-
nected pairs of coordinates, and each line would have values or a set of attributes. Take, for example 
streams and rivers, which would be represented by a series of pair of coordinates; with attributes 
such as name (e.g., Clear Creek) or stream order (e.g., 1).

A polygon layer would be a series of points with coinciding start- and end-points. Each polygon 
also would have values or a set of attributes. For example, consider lakes, where the series of coordi-
nates represent shoreline, and the attributes may be name (e.g., Lake Lewisville) or water quality (e.g., 
average Total Dissolved Solids, TDS). Depending on scale, the same theme, e.g., cities, would be dis-
played as points (e.g., City of Denton in a state map) or polygon (e.g., City of Denton boundary map).

VeCtoR analysis

As an example of points layer, Figure 10.16 shows 100 points with coordinates that were generated 
at random within the extent of the NDVI layer. Using an identifier tool, a click on each point will 

asp2 <- atan2(dz.dy,-dz.dx)*180/pi
> asp2
[1] -85.10091
>

FIGURE 10.15 Examples of vector layers with different geometric types.
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display the coordinates. We can conduct calculations on a point layer that lead to global numbers 
for the entire layer, or for parts of a layer selected by extent, or by a polygon, or by random sample 
of all the points. Another set of interesting operations pertains to generate one type of vector layer 
from another, or an interplay of raster and vector layers.

For example, point coordinates can be used to extract the values of a raster layer into a new 
points layer that has the raster layer values, for example using the 100 points layer of Figure 10.16, 
one could extract the NDVI values for those points from the NDVI raster layer (Figure 10.17). The 
resulting vector layer now has, in addition to the coordinates, the NDVI values for the points.

One common operation for point layers is the calculation of distance between points, which in 
GIS work is typically the Euclidian distance in 2D

 ( ) ( )1 1
2

2 2
2d p q p qpq = − + −  (10.11)

where (p1, p2) and (q1, q2) are the coordinates of points p and q, respectively. Once distance is calcu-
lated for all pairs of points, the result is a square symmetrical matrix of dimension n × n for a layer 
with n points. A distance layer can be created as a point layer itself where the attributes of each point 
contain the distance to all the other points.

FIGURE 10.16 Example of points layer with points coordinates generated at random within the extent of 
the NDVI layer.
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Based on distance calculations, one could conduct a nearest neighbor analysis, which could 
lead to results of whether the points are clustered or distributed. This type of calculation could be 
useful, for example the patterns of air quality monitoring stations in each area or the distribution 
of WSN nodes. For instance, using the points of Figure 10.16 analysis of nearest neighbor yields 
an expected mean distance of 1723 and observed mean distance of 1811, meaning that the points 
are not clustered. We will discuss nearest neighbor analysis in Chapter 14 in the context of animal 
distributions.

As mentioned above, an interesting set of operations pertains to generate one type of vector layer 
from another type. For instance, using Voronoi polygons we can generate a polygon layer from a 
points layer (Figure 10.18).

When making an overlay of various layers, we can analyze the interaction between the attributes 
of the layers, e.g., we can operate on two layers to obtain a third, or on three layers to generate new 
information. Consider the cartoon example in Figure 10.19 that illustrates an overlay of raster land 
cover layer, with three vector layers, wells, streams, and a lake. We could use this to understand the 
effect of land cover on water quality measured at wells, the lake, and rivers upstream and down-
stream from the lake.

One commonly needed operation is to count for each polygon of layer x, the points of another 
layer y contained in that polygon. A new polygon layer z has the original polygons plus a new 
attribute giving points count for each polygon. For example, we may want to count the number of 

FIGURE 10.17 Points shown together with raster layer.
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FIGURE 10.19 Example of an overlay of raster land cover layer, with three vector layers wells, streams, and 
a lake.

FIGURE 10.18 Example of Voronoi polygons derived from a points layer.
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sampling wells or of air quality monitoring stations in each county. Another common operation on 
vector layers is to sum the length of lines in a polygon, or the number of intersections of lines with 
polygon boundaries. In this case, a new polygon layer would have new attributes with the sum of 
lengths of lines or the number of intersections. This would be useful, for example to calculate miles 
of road in each county or number of roads that cross the county lines.

BACKUP

Digital information is perishable and consequently it is important to back up the data that are cre-
ated with a lot of effort and investment. The easiest example consists of files that are trivially por-
table between computers (Gustavus 2006). Copying every bit of data accumulated on the computer 
in perpetuity, although ideal, cannot reasonably be expected in practice. Implementable backup 
strategies are always compromises. Some guidelines include determining which files to backup and 
assessing potential risks and vulnerability. Backups can be full, differential, and incremental. When 
restoring files from backup, we need to consider many details such as types of backups.

There are many security issues associated with backups such as how to provide secure access 
to remote hosts, network file encryption, how to secure the backup system, and how to secure the 
backup media. Some free and open-source software tools available are Bacula (Bacula 2022) and 
BackupPC (BackupPC 2022). Bacula is an enterprise model designed for removable backup media, 
employs dedicated daemons on both server and client. BackupPC is optimized for ease of installa-
tion using hard disk for backup media and employs network sharing technology supported by the 
operating system (Gustavus 2006).

WEB SERVICES

Once monitoring data are on a DB server, it can be shared via the WWW using web services. These 
are based on Client-Server and Service-consumer/Service-provider concepts and require protocols 
and languages. SOAP (Simple Object Access Protocol) specifies Request/Response, WSDL (Web 
Service Description Language) describes how to connect and query information, and UDDI (Universal 
Description Discovery and Integration) specifies service registration and discovery (Figure 10.20).

The term sensor web is used to denote a system of sensors that uses the web intensively to 
provide data. The OGC SWE framework defines web service interfaces and protocols allowing 
for high heterogeneity of sensors and data (OGC 2022a). Sensor location is usually a key piece 

Client Server

UDDI

Access the web service

WSDL WSDL

Server register its services

FIGURE 10.20 Web services. From Huang et al. (2008).



275Databases and Geographic Information Systems

of sensor data information, and SWE standards make it easy to integrate this information into 
thousands of geospatial applications that implement the OGC’s other standards (OGC 2022b). 
There are currently some sensor webs in the environmental monitoring field, some in a particular 
area such as NASA Volcano Sensorweb (NASA 2022), and others more broader scope such as 
OpenSensorWeb (2022).

METADATA, STANDARDS, INTEROPERABILITY, PRESERVATION

Metadata are data about data, or in other words data or information that describe other data, thus, 
allowing for easier data discovery and retrieval. A good example is a library catalog that provides 
information such as subject and author, and location of the publication, thus allows finding a publi-
cation as an item on a shelf or its digital version. Besides facilitation of searching for data, metadata 
can be used to analyze a network of monitoring stations, for example by analyzing spatial cover-
age and frequency of various environmental variables and avoiding temporal and spatial biases 
(Schröder et al. 2006; Desaules 2012).

One important application of metadata standards is providing for interoperability of monitoring 
networks, i.e., to operate together by exchanging information. One example of standards is Dublin 
Core that is a core metadata framework for simple and generic resource descriptions (DCMI 2022). 
There are also metadata standards specific to disciplines; for example, relevant to environmental 
monitoring, EML already mentioned above applies to the ecological discipline, Darwin Core to 
geographical occurrence of species.

As database management acquires more and more relevance in environmental monitoring, the 
field of ecoinformatics has emerged to encompass among other themes, many aspects of ecological 
and environmental data management. Similarly, the field of hydroinformatics has emerged playing 
the same role is data related to water resources.

Environmental monitoring data have a long-term value and therefore we need to understand 
principles of data preservation. A digital repository is a useful tool in managing data for the long 
term and supports interoperability (Moen 2008). The Open Archival Information System reference 
model provides a conceptual design for an archive, including its primary components and their 
associated functions and relationships (CCSDS 2012). Retrieving information from a repository 
is facilitated by metadata, thus the need for a protocol to request metadata from a repository. An 
example is the Open Archives Initiative Protocol for Metadata Harvesting (OAI 2015), used to 
gather metadata from separate repositories for discovery (Moen 2008). Open-source software for 
repositories includes DSpace and Fedora.

EXAMPLE: DATA COLLECTED FROM DISTRIBUTED SENSOR SYSTEMS

As an example, of moving from sensors to DB, we present the TEO’s station for distributed soil 
moisture monitoring that was located in a hardwood bottomland forest in north central Texas. As 
explained in Chapter 6, this system includes a WSN, an SBC acting as remote field gateway (RFG), 
and a datalogger-based wired sensor system. The SBC itself provides a DB server, and therefore, 
sensor data can be retrieved through a uniform interface and securely managed in the field, even in 
the event of network failures between the RFG remote station and the central data collection (CDC) 
server located on campus. After acquiring all data, the RFG server notifies the CDC server that new 
data are ready for retrieval. The CDC server then synchronizes its database to the RFG database 
and hides the heterogeneity of different physical layer devices. Finally, the CDC server passes data 
to a PostgreSQL DB server that will provide data to be served on the web for the public. Daemon 
programs running on the CDC server pre-process the data before insertion into the DB and periodi-
cally perform synchronization tasks (Yang et al. 2010).
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EXERCISES

Exercise 10.1

At Location EESAT Building in the UNT Main Campus, we have two atmospheric data stations: 
one measures UV and the other measures ozone by two methods: CAS and DOAS. The UV sta-
tion reports UV every 30 minutes, the ozone sensor reports CAS and DOAS ozone every day. 
Define tables and specify keys. Draw an ERD of relations between the tables.

Exercise 10.2

The City of Denton operated eight rain gage stations, and in one of them (Ponder) simultaneous 
stream water level is measured for street closure upon impending flash flood. Every ten minutes, 
rain gage reports look like this

RG   LOCATION              RAINFALL    RATE      
 1  Pecan Creek WRC       .00 INCHES  .00 IN/HR     
 2  Doyle & Freeman       .00 INCHES  .00 IN/HR     
 3  Ponder                .26 INCHES  .00 IN/HR     
 4  Masch Branch          .00 INCHES  .00 IN/HR     
 5  South Fork            .00 INCHES  .00 IN/HR     
 6  Wimbleton             .00 INCHES  .00 IN/HR     
 7  Grissom               .00 INCHES  .00 IN/HR     
 8  Hobson                .00 INCHES  .00 IN/HR     

and gate closure reports from station Ponder are like this

RG   LOCATION              Gate   
 1  Ponder       .UP 

where the gate can be UP or DOWN. Define tables and keys. Draw an ERD.

Exercise 10.3

Write SQL code to create a table for solar radiation data collected by several sensors that include a 
timestamp and is recorded as floating-point numbers, with integrity constraint such that only non-
negative values are entered in the DB. We want to be able to relate the data to the location where 
it was measured, based on an existing table that contains sensor location and has PK SensorID.

Exercise 10.4

Write an example of XML code to specify data from nodes of a WSN with tags that would cor-
respond to node, location name, variable measured, distance to gateway, and RSS.

Exercise 10.5

Consider a GIS raster calculation of slope angle and aspect that yields 10.2º for angle and 20.3º 
for atan2 calculation at a target cell. Assume we want to create two raster layers with degrees as 
integer values, one for angle and one for aspect as compass direction. What would be values to 
write for the angle and aspect layers?
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Exercise 10.6

Consider a GIS vector layer for 30 water quality monitoring wells specifying location by UTM east-
ings, and northings, and average EC for year 2005. How would you calculate distance between 
wells? What units would you use for these distances?
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11 Atmospheric Monitoring

INTRODUCTION

This chapter is the first of several where we present applications of monitoring to areas of environ-
mental systems, such as atmospheric processes, hydrology and water quality, terrestrial ecosystems, 
and wildlife monitoring. In this chapter, we focus on atmospheric processes; this includes concentra-
tion of various atmospheric gases, as well as concentration of particles and aerosols. To supplement 
learning statistical methodologies, this chapter also introduces nonlinear regression to model the 
dynamics of increasing atmospheric carbon dioxide (CO2) concentration and global temperature. 
We emphasize the spectral characteristics of incoming solar radiation particularly UV as it relates 
to total column concentration of important atmospheric gases such as ozone. In terms of air quality, 
this chapter provides an overview of standards, monitoring stations, and devices to measure impor-
tant gases. We cover in detail the process of measuring total column of atmospheric gases from the 
ground and more briefly from space. We end the chapter with a discussion of weather, including com-
mon weather instruments, weather radar, and weather satellites.

EARTH’S ATMOSPHERE

The Earth’s atmosphere is a gaseous envelope, held by gravitation, extending for ~10,000 km from 
the surface of the planet, but denser near the surface of the Earth. In addition to gases, it contains 
small particles in suspension termed aerosols.

Composition and VeRtiCal stRuCtuRe

Almost all, ~99%, of the gases are nitrogen (~78%) and oxygen (~21%) with concentrations that are 
relatively constant. The rest includes water vapor and trace gases such as methane CH4, carbon 
dioxide CO2, and ozone O3; these are present in small quantities and are more variable. Trace gases, 
however, can have important effects; for example, CO2 and CH4 affect weather and climate, and O3 
affects human health since it serves as filter for ultraviolet (UV) radiation as well as air pollutant. 
Particles come from volcanic eruptions, salt spray, fires, and dust storms; they serve as condensa-
tion nuclei for clouds and can absorb or reflect sunlight. Water vapor stays mostly near the planet’s 
surface, it is spatially variable, and can form clouds upon condensation.

Temperature changes with increasing altitude with varying rates and signs depending on verti-
cal layers, which alternate between warm and cold layers. At the lowest elevation from the planet 
surface, temperature decreases with altitude in a layer called the troposphere; its depth is spatially 
and seasonally variable, being deepest in tropical areas and higher in the summer season. This nega-
tive temperature gradient extends until the top of the troposphere named the tropopause, at which 
point it reverses to increasing temperature with altitude in the stratosphere layer (Figure 11.1). This 
temperature gradient continues positive until the top of the stratosphere called the stratopause.

Atmospheric composition changes according to this vertical structure; for example, water vapor 
is present mostly in the troposphere, CO2 is well mixed, while ozone is more abundant in the strato-
sphere, at altitudes that varies from 10 km to 50 km, acting as a filter of UV. There is also a ~2% 
variation in an 11-year period due to the solar cycle that has been monitored as sunspots since the 
1700s. Total column atmospheric concentration of a gas refers to the integrated concentration over 
the entire atmosphere above a position on Earth’s surface. Profiles of atmospheric concentration of 
various gases are measured by sondes launched from the ground and that also measure meteoro-
logical variables at increasing altitude (km) or decreasing air pressure (hPa) intervals. Figure 11.2 
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illustrates ozone and temperature profiles using data from WOUDC (2023) obtained by a sonde 
launched at Hilo, Hawaii, on January 4, 2017. The integrated ozone concentration to the lowest 
atmospheric pressure (8.09 hPa) reached by the sonde is 205.47 DU or Dobson units. DU are defined 
in terms of what the thickness of a layer of pure ozone would be at the ground if the total column 
of ozone was reduced to this layer at standard conditions of temperature and pressure; 100 DU cor-
respond to an ozone layer of 1 mm at 1 atm and 0ºC (Graedel and Crutzen 1993).
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FIGURE 11.2 Atmospheric ozone and temperature profiles at Hilo, HI, on January 4, 2017.
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Depletion of stratospheric ozone, which was caused by CFCs (chlorofluorocarbons), allowed 
more UV to reach the Earth’s surface which became an important health problem since excess UV 
produces skin cancer, cataracts, and other issues. In opposite manner, an increase of ozone in the 
lower troposphere or ground level leads to a local air pollution problem since excess ozone in the air 
causes respiratory health issues (Figure 11.1).

Ozone’s high abundance in the stratosphere is explained by photochemical principles. Oxygen 
is photo-dissociated into atomic oxygen O by UV, then collision of O and molecular oxygen O2 
produces ozone O3. There is natural variability of ozone in the stratosphere consisting of day-to-day 
variation, related to the movement of surface pressure systems, latitudinal and seasonal variation, 
related to a meridional circulation. Nitrogen dioxide NO2 is a highly reactive gas and has high con-
centration near the ground in the troposphere and in the stratosphere, playing an important role in 
the production of tropospheric ozone being the main sink of stratospheric ozone (Crutzen 1970). 
Natural variability of NO2 shows a diurnal variation, related to several photochemical processes; 
its abundance is greater at sunset than at sunrise. In addition, NO2 has a latitudinal and seasonal 
variation.

diReCt and diffuse solaR Radiation

As we discussed in Chapter 7, the extraterrestrial solar radiation I0 or solar radiation received by 
Earth outside the atmosphere, given as power density or power per unit area, varies with the day of 
the year and its average is ~1.377 kW/m2. As the solar radiation flux goes through the atmosphere, a 
good part of it is absorbed by atmospheric gases and scattered by particles. Direct radiation reach-
ing the surface of the Earth can be as high as ~70% of I0, or ~1 kW/m2. There are two major compo-
nents of the radiation reaching the Earth’s surface: direct and diffuse radiation, and can be modeled 
by the Bougher-Lambert-Beer exponential attenuation law

 exp( )0I I maτ= − ×  (11.1)

where I can be applied to the direct beam (normal) Ibn or to the diffuse Id horizontal portion of clear-
sky radiation reaching the Earth’s surface, m is the air mass, τ is an atmosphere pseudo-optical 
depth, and a is a coefficient. The optical depth can be applied to either direct or diffuse components 

,b dτ τ , these values are location-specific and vary through the year (Gueymard and Thevenard 2013). 
Likewise, the power coefficient a also applies to either direct or diffuse ab and ad, relating to the 
optical depths by empirically derived equations (Acevedo 2018).

GReenHouse effeCt

One of the trace gases, carbon dioxide CO2 is important in photosynthesis, it is an emission product 
of fossil fuel combustion and other compounds containing carbon. Atmospheric CO2 absorbs infra-
red (IR) radiation thus preventing heat to escape to space, which is the essence of the greenhouse 
(GH) effect. A good absorber at a certain wavelength is also a good emitter at that wavelength, 
therefore heat absorbed by the GH gases (IR absorbers) is emitted back as heat and can re-radiated 
back to Earth’s surface, warms the surface, producing more heat release from the surface and this 
leads to warming.

Methane, CH4, is less abundant than CO2, but it can absorb and emit long-wave radiation ~30 
times more effectively than CO2 and therefore is a much more powerful GH gas and has potentially 
greater impact on warming (US EPA 2017). Methane is released to the atmosphere by a variety of 
natural processes occurring on land (e.g., termites), in the oceans (e.g., microorganisms in the sea-
floor), and in inundated ecosystems (e.g., decomposition in wetlands). These emissions are mostly 
offset by natural uptake processes. However, CH4 atmospheric emissions due to human activities 
have increased. These correspond, for instance, to cultivating rice under inundated conditions and 
decay of solid waste in municipal landfills.
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It is important to realize that the GH effect is a natural process that occurs in other planets as 
well. Mars has very little and thus its average temperature is low, but Venus has too much and there-
fore its average temperature is high. On Earth, human activities enhance the GH effect; these activi-
ties are primarily emission of CO2 from fossil fuel burning and deforestation, as well as methane 
from landfills and agricultural activities.

As we explained in Chapters 7 and 8, incoming solar radiation reaching Earth is distributed by 
wavelength, increasing for short wavelengths from UV to visible, reaching a peak at in the visible 
range, and then decreasing as wavelength increases. As Earth’s surface warms, it emits outgoing 
radiation in longer IR waves. Earth’s average temperature results as a balance of incoming and out-
going radiation. A fraction of the incoming short-wave radiation is reflected by surfaces like clouds, 
snow, and particles. The coefficient representing this fraction is termed albedo. A fraction of the out-
going long-wave radiation is re-radiated to Earth due to the GH effect. Thus, we can reduce warming 
by lowering of GH atmospheric concentrations by energy conservation, using non-carbon sources of 
energy, reforestation, and enhancing carbon sequestration in the soil (Acevedo 2018).

An extremely simple model of energy balance for planet Earth (Figure 11.3) is given by equating 
incoming and outgoing radiation (Graedel and Crutzen 1993)

 
4

(1 ) (1 )0 4I
T fα σ− = −  (11.2)

where I0 was defined in the previous section, the coefficient α is albedo or reflectivity (incoming 
reflected loss), f is factor due to GH (fraction of outgoing radiation trapped by GH effect), σ is the 
Stefan-Boltzmann constant 5.6704 × 10–8 Wm–2K–4, and T is the temperature of the Earth in K. 
Outgoing radiation is calculated here as 4Tσ  using blackbody radiation.

For example, assume albedo is α = 0.28 and f = 0.39. What would be the Earth’s temperature at 
equilibrium in °C? We can answer this question by solving for T in (11.2)
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and converting K to °C yielding 291.3 273 18.3 CT = − = ° . This is an extremely simple calculation 
and cannot be used to predict changes; also, it is not intended to prove or disprove the GH effect on 
planetary temperature. In the next section, we will examine what are the trends in CO2 and global 
temperature from existing data.

inCReasinG atmospHeRiC Co2 ConCentRation

An important piece of our knowledge of planetary carbon dynamics comes from the measure-
ment of atmospheric CO2 concentrations recorded in Mauna Loa, Hawaii (Vaughan et al. 2001; 

FIGURE 11.3 A very simple model of energy balance for Earth.
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Lovett et al. 2007). A visit to the web site of the National Oceanic and Atmospheric Administration 
(NOAA) Global Monitoring Division (NOAA 2020) will inform us of recent values of monthly 
average of CO2 concentration in parts per million (ppm). For example, in July 2020, it was 414.38, 
~3 ppm up from 411.74 ppm for the same month of the previous year (July 2019).

Concentration in ppm expresses dry air mole fraction defined as the number of molecules of 
CO2 divided by the number of all molecules in air, including CO2 itself, after water vapor has been 
removed (NOAA 2020). The July 2020 value of 414.38 ppm represents a mole fraction of 0.000414. 
On the web site, we can see a graph of CO2 in ppm as monthly average and its trend (seasonal cor-
rection) for the last five years of record. The trend is calculated by a moving average of seven (an odd 
number) adjacent seasonal cycles centered on the month to be corrected (NOAA 2020). The trend 
changes from 395 to 406 ppm in 5 years, which is an average increase of ~2 ppm/year.

Besides the graph, the web site offers the data for download. Figure 11.4 illustrates the CO2 trajec-
tory for the measurement record (since March 1958) using the data downloaded from this web site. 
From the dataset, we plot the same two lines shown at the web site. The dashed line represents the 
monthly average values (centered on the middle of each month) and which fluctuates up and down 
during the year according to the seasons. Removing the average of this seasonal cycle yields the solid 
line that shows a clear accelerating increase during the entire record. Figure 11.5 uses a time window 
of the most recent ten years (2007–2017) so that we can visualize the graphs more clearly.

An interesting feature of Figure 11.5 is a nonlinear trend, e.g., it displays an increase of the rate 
of change over time. A first thought may be that the rate is itself proportional to the concentration 

( )X t , so that as concentration increases, so does the rate. This is modeled as a linear ordinary differ-
ential equation. Using the derivative of X with respect to time t for the rate of change of X, we write 

( )
( )

dX t
dt

kX t=  where the coefficient k is a per unit rate of change or rate coefficient. The solution is 

well known, and it is exponential function ( ) (0)exp( )X t X kt=  that can be calculated once we know 
the initial condition X(0). This is a commonly used model for many processes, and we will refer to 
it simply as the exponential model. We have seen an instance of this model in Equation (11.1) when 
referring to attenuation of solar radiation by the atmosphere. Divide the exponential by the initial 
condition to obtain =( )/ (0) exp( )X t X kt , take natural logarithm of both sides, =ln( ( )/ (0))X t X kt 
which says that the log of the ratio of current values to the initial value is proportional to the time 
interval. In other words, the log of the ratio should plot as a straight line with respect to time, with 
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slope equal to the coefficient. The latter can be calculated solving for k to obtain = ln( ( )/ (0))
k

X t X

t
. 

A derived concept from an exponential model is the doubling time td. By making ( ) 2 (0)X t Xd =  we 

can write 
ln(2) 0.693

k
t td d

= = .

The exponential model applies to several other environmental variables since they have dynamics 
displaying a changing rate of change of the variable Y with respect to other independent variable X; 
this can be represented by an exponential model exp( )0Y Y kX= −  which can be calculated once we 
have the condition Y0 and the rate coefficient k which is a per unit rate of change. For example, this 
is a good explanatory model for light attenuation through the atmosphere at certain wavelengths 
as we will see in the upcoming section on optical absorption spectroscopy (OAS) and differential 
OAS (DOAS). In addition, it can be used to model light attenuation through a water column (Beer-
Lambert law, Chapter 12) and vegetation canopy (Chapter 13). For water, k is extinction coefficient 
and Y0 is the downwelling light just below the surface which is the measurement reported at X = 0.

The process of parameter estimation, referred in some cases as model calibration, consists of 
finding the values of model parameters. In this chapter, we explain the method using as an exam-
ple, the parameter k in the exponential model. To estimate the value of k, using n data points: 

= �, 1X(t ) i , ,ni , we can perform simple linear regression of X(ti) vs. ti yielding k. We covered basics 
of simple regression in Chapter 1, a simple way of performing regression in this case is to apply 
linear regression after logarithmic transformation of X(ti)

 ln
( )

0

X t
X

kti
i







=  (11.3)

We can see that a linear regression of ln(X(ti)/X0) vs. ti yields a slope that should correspond to k. 
In this case, we want regression with zero intercept (b0 = 0) since the first position of ln ( ( )/ )0X t Xi  
is zero because ln(1) = 0. We apply this method in Lab 11 of the lab manual (Acevedo 2024). 
The estimated rate coefficient has a value of 0.399% per year with R2 = 0.994 which is close to 1, 
and the p-value is 2.2 × 10–16 which is negligible. This value of k translates to a doubling time of 

= ≈0.693/0.00399 173.7 174 years. Doubling CO2 concentration with respect to a reference year is 
often used as a scenario for climate change modeling.

However, plotting the log of ratios vs. time, we realize that it cannot be approximated to a straight 
line (Figure 11.6). Therefore, our first guess of a linear rate of change or exponential model is not 
a good approximation, and the rate may be a nonlinear function of the concentration. This implies 
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that the prediction of doubling time would be off, and the doubling time could be shorter. The tra-
jectory before t ~ 46 years (~2005) indicates under prediction while thereafter it is overpredicted. We 
will now explore a more complicated model that could account for these differences.

doubly exponential

We just saw that simple exponential growth ( ) (0)exp( )X t X kt=  cannot account for data on CO2 
increase. There are various ways of modeling faster increase than the one predicted by an exponen-
tial. One of these is by a doubly exponential

 = −( ) (0)exp(exp(kt) 1)X t X  (11.4)

where you take the exponential of an exponential, meaning the rate coefficient is itself increasing 
exponentially. More flexibility in fitting data is possible by using two rate coefficients

 ( ) (0) exp( exp( )) exp( ) 11 2 1X t X k k t k( )= − +  (11.5)

where we add the term exp( ) 11k− +  to force the function X(t) through X(0) for t = 0.
How do we calculate doubling time in a doubly exponential model? Make ( ) 2 (0)X t Xd =  in 

Equation (11.5) and group terms to obtain 2 exp( ) 1 exp( exp( ))1 1 2k k k td+ − = , now take natural 
log of both sides ln(2 exp( ) 1) exp( )1 1 2k k k td+ − = , divide by k1 and take logarithm again to get 

ln
ln(2 exp( ) 1)1

1
2

k
k

k td
+ −





= , and solve for td to get

 ln

ln(2 exp( ) 1)1
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2

t

k
k
k

d =

+ −

 (11.6)

We use this opportunity to introduce nonlinear regression, which consists of a numerical procedure 
to minimize the error of the fit of a function to the data.

nonlineaR ReGRession

In many cases, we need to estimate parameters of a nonlinear equation relating Y to X of the 
general form

 p( , )Y f X=  (11.7)
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FIGURE 11.6 Determining possible exponential increasing trend of CO2.
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where f (…) is a function and p is a vector of parameters. For example, the exponential model with 
parameters k and Y0 is nonlinear function. As we learn in the previous section, sometimes we can 
transform Equation (11.7) into a linear regression problem. However, this is not always possible and 
then we should apply the process of nonlinear regression. This consists of postulating the function 
that may fit the data, e.g., an exponential curve, and then use an optimization algorithm to minimize 
the square error with respect to the coefficients. In other words, find the value of the coefficients that 
would yield a minimum square error.

The error (residual) for data point i is

 ( , )e y y y f x pi i i i i
�= − = −  (11.8)

take the square and sum over all observations to obtain the total squared error

 ( , )2 2

11

q e y f xi pi i
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n
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n

∑∑ ( )= = −
==

 (11.9)

We want to find the values of the coefficients p that minimize the sum of squared errors (over all 
i = 1, ..., n) that is to say, find p such that

 min min min ( ( , ))2 2
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 (11.10)

An optimization algorithm works in the following manner. It reads an initial guess of the values 
of the coefficients then recursively changes the parameter values in a small amount and moving 
down gradient (derivative) in the q surface until changes in parameter values no longer produces 
a decrease in q. Sometimes, we can obtain the initial guess of the parameter values by means of a 
linear regression performed on some approximation or transform of the nonlinear function.

It is often difficult to determine the functional relationship or model, and sometimes this is pos-
sible by knowing or postulating how the system works. For example, if we are trying to find a coef-
ficient of light attenuation in the water column of a lake, we know that light attenuation follows an 
exponential law, because the rate of decay is linear with depth.

A convenient way of applying nonlinear regression is to use function nls of R. We learn how 
to do this in Lab 11 of the lab manual, where we obtain values k1 ≈ 0.172 and k2 ≈ 0.014 for the rate 
coefficients. With these values, we can predict CO2 concentration and plot for comparison to the 
data points, illustrating a good fit to the data (Figure 11.7).

Calculating doubling time using Equation (11.6), we get an estimate of ~107 years instead 
of 177 years as obtained by the simple exponential. Looking back in time, we may guess that 
107 years ago (first decade of the last century), the concentration would have been half of current 
values or about 200 ppm. Looking ahead in time, double CO2 concentration with respect to 1959  
(~ 2 315 730 ppm× = ) would be obtained in year 2068. These are predictions based only on the trend 
and do not consider modifications due to changing emission rates or other climate dynamics conditions.

Global tempeRatuRe: inCReasinG tRend

Now let us visit NASA’s Global Climate Change web site (NASA 2020). You can see a graph of the 
change in global surface temperature since 1880. Global surface temperature refers to average over 
land and ocean. The record is expressed as an anomaly or difference relative to the 1951–1980 aver-
age temperature. It can be visualized as an annual average and as a 5-year average (Figure 11.8). We 
see a clear increasing trend and positive anomaly after 1980, that is in the last 40 years, raising to 
0.99°C above the 1951–1980 average. The 10 warmest years in the examined record have occurred 
in the last 40 years or since 2000 (except 1998).
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Do the global temperature data show an exponential increase? We can proceed as we did for 
CO2 in previous sections. First, we add an arbitrary positive value (+1.0) to the anomaly to make all 
anomaly values positive. Applying a log transform regression as we did for CO2, the results indi-
cate an estimate of k = 0.0026 per year, with poor R2 (0.4344) but significant (negligible p-value). 
This means approximately 0.26% per year rate coefficient, which translates to a doubling time of 

≈0.693/0.0026 266 years. We notice that R2 is 0.4385, which is not very good. Moreover, by plot-
ting this log of ratios, we realize that a straight line is not a good estimate (Figure 11.9). Therefore, 
the rate may be a nonlinear function of temperature. This implies that the prediction of doubling 
time would be off, and the doubling time could be shorter. The trajectory after t ~ 100 years (~1980) 
indicates a faster increase. Therefore, let us apply the doubly exponential to the global temperature 
data, to see if we get a better fit. In the lab 11 guide, using nls of R, we get coefficient values of 

0.0068, 0.03451 2k k= = . Using these estimates, we can predict temperature and plot together with 
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the data to get Figure 11.10 which indicates a better fit. The doubling time calculates to ~134 years 
instead of ~231 years that we obtained when using the simple exponential. To put this in perspective, 
we would double the anomaly (~+0.9ºC) of 2019 entering the next century.

ATMOSPHERE – NEAR-SURFACE AIR QUALITY

Ambient or ground-level atmospheric processes are of paramount importance for several reasons, 
including that the resultant air quality relates to human health. Two major sets of variables require 
monitoring: pollutant concentrations and meteorological conditions; the latter affects movement and 
dynamics of the former. More specialized monitoring relates to the pollutant sources, such as stack 
emissions, and relates to issues of permitting and controls. Similarly, other specialized monitoring 
efforts focus on indoor air quality, particularly in schools and industrial environments. Ambient air 
quality monitoring helps to determine areas and time periods of high levels of pollution, emergency 
and warning systems, health-based impact assessment, and control and mitigation measures. Results 
of monitoring efforts inform air quality models and support public education and outreach.

standaRds

In the USA, the Clean Air Act (U.S. EPA 2014a, c) is the major legislation on air quality and requires 
the U.S. EPA to set National Emissions Standards and National Ambient Air Quality Standards 
(NAAQS) (U.S. EPA 2014b) which establishes primary standards to provide protection of public 
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health and secondary standards to protect public welfare, including visibility, vegetation, crops, 
animals, and buildings. The standards apply to six principal pollutants (criteria pollutants): carbon 
monoxide (CO2), lead (Pb), nitrogen dioxide (NO2), ozone, particulate matter (PM, of two differ-
ent sizes PM10 and PM2.5), and sulfur dioxide (SO2). For example, ozone is subject to both primary 
and secondary standards, by eight-hour averaged values, the annual fourth-highest daily maximum 
eight-hour concentration, averaged over three years should not exceed 0.075 ppm.

To clarify why PM is classified by size, consider that it includes a large variety of particulates 
ranging from coarse such as dust to fine such as smoke and haze. Coarse particles (PM10) are found 
near roadways and dusty industries, range in size from 2.5 to 10 µm in diameter, whereas fine par-
ticles (PM2.5) have diameters smaller than 2.5 µm; these are either directly emitted from sources 
(e.g., forest fires) or formed when gases emitted from power plants, industries, and  automobiles 
react in the air. Even smaller, there are ultrafine particles of less than 100 nm in diameter. PM has 
human health and environmental effects. Health effects include decreased lung function,  aggravated 
asthma, and the development of chronic bronchitis. Environmental effects include visibility reduc-
tion and esthetic damage, atmospheric radiation balance, and global climate change. For PM2.5, the 
NAAQS annual standard is that the annual mean, averaged over three years, should not exceed 12 
µgm-3 as primary standard and 15 µgm-3 as secondary standard. The 24-hour standard is that 3-year 
average of 98th percentile of 24-hour average should not exceed 35.5 µg m–3.

There are emission standards for type of pollutants and specific type of sources. Some pollutants 
are emitted directly, whereas others are formed by reactions involving directly emitted pollutants. 
For example, of the six criteria pollutants CO, Pb, NO2, PM10 and PM2.5, SO2 are emitted directly, 
whereas ozone is formed by precursors.

aiR monitoRinG stations

There are four types of air monitoring stations (AMS) used by the U.S. EPA (Matthias 2004): State 
and Local AMS (SLAMS), National AMS (NAMS), Photochemical AMS (PAMS), and Special 
Purpose AMS (SPMS).

SLAMS conform a large (~4000) network of stations operated with the purpose of helping the 
local and state agencies meet the requirements of their implementation plans. A subset of these 
(numbering ~1000) is designated NAMS to monitor air pollution in areas of high concentration or 
high population density. PAMS are used in areas that fail to attain ozone standards; there are about 
90. Finally, SPMS are non-permanent and used to meet specific needs of implementation plans and 
other purposes (Matthias 2004).

Monitoring networks have a variety of purposes such as ozone transport, modeling, public infor-
mation, research, and compliance. An example is the network of stations monitoring ozone lev-
els in Texas (TCEQ 2015). Depending on purpose, there is a variety of measurement frequencies 
employed, from direct continuous measurements to periodic sampling, coverage from localized 
analysis (e.g., in situ) to wide area. Typically, it is required to measure low concentration (ppm, ppb, 
or even ppt) that demands sensitive instruments.

OPTICAL DEVICES

Intensity and spectrum of light transmitted through a medium can be used to determine character-
istics of that medium. Therefore, optical devices measuring intensity and spectrum of light are very 
useful to measure atmospheric gases and PM concentrations. In this section, we study a variety of 
optical devices used for this purpose.

lineaR pHotodiode aRRay (pda) and CHaRGed Coupled deViCes (CCd)

A photodiode (PD) converts light into current and it is based on the same principle we studied for 
PV (Chapter 7), but instead of using it as a power generation device is designed to allow for fast 
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response and production of a current that is proportional to light intensity (Pallás-Areny 2000). 
PDs can be arranged in an array (PDA) such that each diode would respond to light received 
at its position in the array, providing a way, for example of measuring dispersed light by wave-
length. In essence, a PDA becomes a multichannel detector for which each element is a pixel. 
The number of PDs in the array relates to how many different points can be measured, for 
example how many wavelengths can be detected, and corresponds to powers of two; for example, 
1024, 2048, or 4096.

Linear CCD are also arrays but based on the principle of storing charge in each element or pixel 
as a light arrives by means of a capacitor; the charge of the element is “read” and considered pro-
portional to light intensity received, then reset or discharged for the next reading. CCDs can detect 
low intensity of light. An example is the Sony ILX511 that has 2048 pixels.

dispeRsiVe speCtRometeRs

A diffraction grating is an optical device used to separate light into its component wavelengths by 
means of a series of grooves engraved or etched into its surface. As light reflects from the grating, 
the grooves cause the light to diffract, dispersing the light into its component wavelengths. As the 
name suggests, dispersive spectrometers are based on dispersing light according to wavelength 
and detecting these different components separately. Modern spectrometers disperse light using a 
grating and a multichannel detector such as a CCD or PDA reads the resultant dispersed beam. The 
light from the source fist goes through a slit and then it is sent to the grating (Figure 11.11). Mirrors 
can take the light from the slit to the grating or from the grating to the detector. The spectral resolu-
tion and wavelength range is determined by the number of lines of the grating, size of the slit, and 
number of diodes of the detector.

pHotomultiplieR tubes

Photomultiplier tubes (PMTs) can detect light of very low intensity by amplifying current and are 
available for UV, visible, and near-IR ranges of light. To understand PMTs, we need to review the 
photoelectric effect and the secondary emission effect. The photoelectric effect consists of electron 
emission by metals when stroke by light of sufficiently short wavelength such that the photons have 
enough energy to overcome the work function or energy binding the electrons. Recall from Chapter 
7 that the energy of a photon is inversely related to wavelength ν λ= = /E h hc . Albert Einstein 
explained the photoelectric effect in 1904, receiving the Nobel prize in 1923 for this discovery. 
Secondary emission consists of the emission of particles from a material when stroke with particles 
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FIGURE 11.11 Dispersive spectrometer: general principle.
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of sufficient energy. For example, when electrons gain sufficient energy by acceleration by a high 
voltage can elicit emission of secondary electrons from materials.

These principles are employed in a PMT using a photocathode, a series of intermediate anodes 
(called dynodes), and an anode operating in a vacuum created inside a glass envelope (Figure 11.12). 
The photocathode is manufactured to have low work function using a combination of cesium, rubid-
ium, and antimony. Incoming photons strike the photocathode, which by the photoelectric effect emits 
electrons when the light exceeds the work function. These electrons successively hit the dynodes set 
at increasing voltage levels (~100 V each stage), and by the secondary emission effect, provoke a cas-
cade of electrons that are collected at the anode where the current is measurable and depends on the 
incident photons. Common configurations are end-on (transmission mode) where light enters the top 
of the tube, and side-on (reflection mode) where the light enters at the side of the tube.

beam splitteR

A beam splitter is an optical device that divides a beam in two parts; one is reflected, and the other 
is transmitted. A beam splitter has an important application to conduct light in two different paths 
as required by an interferometer (next section) or when a reference light beam needs to be carried 
to a measuring device as well as a beam running through a sample (as required in fluorescence as 
we will see later).

fouRieR tRansfoRm inteRfeRometeR

A Fourier transform interferometer is a non-dispersive instrument capable of producing the spec-
trum of light based on interference patterns. A movable mirror and a beam splitter are combined to 
generate an interferogram that is converted to absorption spectra using inverse Fourier transform 
techniques. The basics of an interferometer are depicted in Figure 11.13 that shows a stationary mir-
ror and a movable mirror. The difference in length between two paths is the retardation δ, which is 
expressed in cm. One path is from the source to the detector via the stationary mirror and the other 
path is from the source to the detector via the movable mirror. Retardation varies as the movable 
mirror changes position and affects the constructive and destructive peaks of the light received 
at the detector; the resulting signal as a function of retardation is the interferogram, which is the 
Fourier transform of the spectrum of incoming light. Then we can apply a numerical inverse Fourier 
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transform to convert the interferogram to the spectrum. Instead of wavelength λ, the spectrum is 
given by its inverse wavenumber ν = 1/λ in cm or reciprocal cm.

fibeR optiCs

An optical fiber is a flexible transparent fiber that can function as a waveguide for light or the equiva-
lent of a light pipe and is made from glass or plastic with a diameter from tens to hundreds of µm. 
At this point, it is useful to recall the concept of refraction index or refractive index as the ratio of 
the speed of light in a medium to that of a vacuum. The higher the refractive index of a medium, the 
slower the light wave propagates. When the light travels slower in a medium and bounces on a medium 
of lower refractive index at steep angles, the light experiences total reflection. This is the principle 
employed by optical fibers. A fiber consists of a core surrounded by a cladding, both made from 
dielectric materials. The refractive index of the core is greater than that of the cladding, therefore the 
light transmitted along the axis remains contained in the core experiencing total internal reflection.

Optical fibers are well known for their use in communication, but they can also be used to trans-
mit or pipe light from one location to another, where they can be analyzed. We can also use fibers 
to build sensors since imposing stress, pressure, or temperature changes can modify the intensity, 
phase, or wavelength of light transmitted in the fiber. Thus, measuring changes in the received light 
properties can be correlated with the changes of the intended measurand. Later in this chapter, we 
will use an optical fiber as a means of piping light from one location to a dispersive spectrometer.

MEASUREMENT METHODS USING SAMPLES IN CLOSED PATH

In this section, we cover those optical methods that are easier to implement using spectrometers and 
PMT, together with electronic signal conditioning and processing, making them amenable to real-
time monitoring. For this reason, we do not discuss other methods such as gas chromatography and 
flame ionization detectors that are used to measure volatile organic compounds (VOCs), inertial and 
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filter methods used for PM, and absorption atomic spectrophotometry used to analyze Pb (Matthias 
2004). Neither we discuss the use of chemical sensing electrodes in this chapter. To use these sen-
sors for air samples, the gas to be analyzed is dissolved in a solution at a known pH, which is passed 
through an ion-selective electrode. The ion concentration (proportional to the concentration of the 
pollutant) is absorbed and measured electronically. This method is used to measure SO2, NO, and 
NO2. The principles of chemical sensing electrodes are covered in Chapter 3.

oas

Many optical methods are based on the Beer-Lambert Law stating that a light beam passing through 
a medium of thickness L (cm) is attenuated exponentially at each wavelength according to

 exp0I I L cλ λ σ λ( )( ) ( ) ( )= −  (11.11)

where: λ is the wavelength (nm); ( )I λ  is the light intensity at λ, after passing through the column 
(W m-2 nm-1); ( )0I λ  is the intensity of incident light at λ emitted by a light source, c is the concen-
tration of a substance (molecules cm–3); and ( )σ λ  is the absorption cross-section of the substance 
(molecules–1 cm2). The medium can be liquid solution or a gas chamber (Figure 11.14). This is the 
basis of OAS.

Therefore, by knowing L, ,  0I λ( ) and σ λ( ), we can determine c after measuring light transmit-
ted I λ( ) taking logarithm of the ratio and solving for c

 
1

ln
0

c
L

I

Iσ λ
λ
λ( )

( )
( )=

−
 (11.12)

Measurements are conducted at specific wavelengths using a spectrometer. In its simplest form, the 
process is to shine the light of only one wavelength (monochromatic) and measure the transmitted 
light at that wavelength. For example, ozone can be measured by using wavelengths in the UV range 
at which ozone is absorbed; CO and CO2 can be measured using wavelengths in the IR range radia-
tion of specific wavelengths that are absorbed by CO and by CO2. Spectroscopy is also employed to 
measure SO2 using the wet chemical method. In this method, SO2 is mixed in an aqueous solution 
and the transmitted light is related to SO2.

Light
Source

FIGURE 11.14 Beer-Lambert law.
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Absorption cross-sections for many trace gases can either be found in published literature or 
existing databases. The HITRAN2012 molecular spectroscopy database (Rothman et al. 2013) 
keeps a collection of high-resolution absorption cross-sections of many compounds including atmo-
spheric gases such as ozone, nitrogen dioxide, sulfur dioxide, bromine oxide, and formaldehyde. 
These datasets can be downloaded as indicated on the web site (HITRAN 2014).

CHemiluminesCent analyzeR

A chemiluminescent analyzer uses the light emitted when molecules of an excited chemical species 
fall back to their ground state, converting this light to a voltage by a PMT. In this chapter, we use 
asterisk to denote the excited state of a molecule; for instance, NO2

* is the excited form of NO2. 
Chemiluminescent analyzers can be used to measure SO2, NO, NO2, and O3. For example, a che-
miluminescent analyzer is designed to measure ozone based on the reaction of ozone with ethylene, 
which produces light that is detected by a PMT (Figure 11.15). 

Another example is to measure NO by a reaction with ozone to form excited NO2
* molecules and 

release oxygen

 NO+O NO +O3 2
*

2→

and when NO2
* molecules return to the ground state, they emit IR radiation

 NO NO2
*

2 hν→ +

In this method, we can measure NO2 in two stages (Figure 11.16). Total NOx is first measured by 
reducing NO2 to NO by a heated catalyst and drawing this stream into the sample chamber together 
with an ozone stream (Matthias 2004). In this stage, the PMT reading represents the total NOx. 
Then NO2 + NO from the air bypass the catalysis and run through the chamber where it is detected 
by the PMT; in this stage, the PMT reading represents the NO component of the NOx. Finally, NO2 
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FIGURE 11.15 Chemiluminescent detector measuring ozone.
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concentration is estimated as the difference in measurement between the NO (bypassing catalysis) 
and the NOx (NO2 reduced by catalyst). This type of instrument can detect a minute concentration 
(~500 ppt) of NO2. Switching between these two streams uses an automatically controlled valve 
(Matthias 2004). The reaction is more efficient when the chamber is maintained at vacuum pres-
sures (5–25 mbar).

Microprocessor technology has enabled modern gas analyzers to evolve into sophisticated data 
collection nodes. Different measurement technologies are incorporated as modules into a complex 
platform that may include serial communications, user interfaces, and standardized components. 
Features include automatic self-monitoring, diagnostics, and programmable calibration.

fluoResCenCe instRuments

Fluorescence occurs when a gas absorbs light of a given wavelength and forms excited molecules 
that release energy when falling back to the ground state. A fluorescence instrument is based on 
measuring this energy by optical means. For example, SO2 excited by UV radiation forms an 
excited molecule SO2

* that releases energy in the IR which is measured by a PMT (Figure 11.17). 
Fluorescence is different from chemiluminescence because in the latter, the excited state is formed 
by a chemical reaction, whereas in fluorescence, the excited state is formed by the absorption of 
light. A beam splitter transmits reference light beam to a detector (e.g., a PD) that is processed 
together with the reflected light from the splitter that goes through the sample chamber.

non-dispeRsiVe infRaRed

The non-dispersive infrared (NDIR) method also uses the Beer-Lambert law; however, the incident 
monochromatic light is at a specific wavelength in the IR range, and transmitted light is detected 
by a PMT instead of a spectrometer (Figure 11.18). In contrast with a dispersive spectrometer that 
breakdowns light into many wavelengths, an NDIR instrument is based on selective absorption of 
that wavelength by the substance of interest; for example, to measure CO a wavelength of 46 µm is 
used. NDIR can be employed to measure SO2, NO, NO2, VOC, and CO.
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FIGURE 11.16 Chemiluminescent detector measuring NO2.
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MEASUREMENT METHODS USING OPEN PATH

As an alternative to drawing a sample into a chamber, pollutant concentrations can be measured 
directly by transmitting light of a specific wavelength across an air column, detecting intensity at 
the wavelength of interest at the receiving side, and applying the Beer-Lambert law (Figure 11.19). 
Transmitted light is then processed by a spectrometer and applying Differential Optical Absorption 
Spectroscopy (DOAS) methods or by an interferometer and applying Fourier Transform IR (FTIR) 
methods. DOAS employs numerical methods to separate the narrow or fast-changing absorption 
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FIGURE 11.17 Fluorescence detector for SO2 measurement.
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components from the broad or slowly varying components, while FTIR calculates the spectrum 
from the interferogram.

This open-path approach is used to measure emitted pollutants in a cross-section of a power 
plant stack, across a roadway, airport, and urban areas (Matthias 2004). A variation of this method 
consists of deploying the light source and instrumentation together on one side and reflecting light 
from a mirror on the other side (Figure 11.20) (Matthias 2004). An important aspect is the influence 
of dust, particles, and other gases, which may affect the measurement.

TOTAL COLUMN ESTIMATION FROM THE GROUND

In this section, we explain how to accomplish total column estimation from the ground using OAS. 
The classical OAS principle can be applied to total column measurements by assuming incident light 
I0 to be the extraterrestrial radiation or incoming light at the top of the atmosphere and absorbed 
light I to be the light received at the ground measured by a detector (Figure 11.21). Extending the 
Beer-Lambert law of Equation (11.11) to discount scattered light and considering a slanted sun path, 
we can write
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FIGURE 11.20 Open-path OAS or FTIR. Monostatic mode. Does not require power at the light source end 
but the light path is twice as long.
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FIGURE 11.19 Open-path OAS or FTIR. Bistatic mode. Requires power at the light source end but the light 
path is single.
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 exp0 RI I L cs Mλ λ σ λ ε λ ε λ( )( ) ( ) ( ) ( ) ( )= − + +   (11.13)

where the slanted column is of length Ls, the Rayleigh scattering coefficient ( )Rε λ  accounts for light 
reflected by particles of diameter less than the wavelength of the incident light, and Mie scattering 
coefficient ( )Mε λ  accounts for light reflected by particles of a diameter similar to the wavelength of 
incident light (Moran 2006). These scattering processes discount the amount of light not reaching 
the optical detector (Platt and Stutz 2008).

Using the ratio of light intensity measured at two different wavelengths 1λ  and 2λ  and if 
( ) ( )1 2M Mε λ ε λ= , we can write

 exp1

2

0 1

0 2
1 2 R 1 R 2

I

I

I

I
L cs

λ
λ

λ
λ

σ λ σ λ ε λ ε λ( )( )( )
( )

( )
( ) ( ) ( ) ( ) ( )= − − + −   (11.14)

For example, to measure the total column of ozone, we can use cross-section at two of the wave-
lengths λ = 305 nm, λ = 311 nm, and λ = 316 nm at which ozone absorbs light differentially.

Equation (11.14) can be solved for c to obtain
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 (11.15)

This means that we can determine concentration if we measure I at both wavelengths calculate 

ln 1

2

I

I

λ
λ

( )
( ) and estimate the remainder quantities, which we tackle next one by one.

To determine the slanted length Lz, we need air mass that is described in Chapter 7; for easy ref-
erence, Figure 11.22 shows how the slanted distance h2 and vertical distance h1 relate as a function 

of sun elevation angle β, namely β= / sin2 1h h  by simple trigonometry. In addition, correcting by 

pressure, since density diminishes with altitude, we obtain the mass ratio as 
1

sin( )
m

P
Prβ

=  where 

P is the measured atmospheric pressure at the station and Pr is the standard atmospheric pressure 
value (1 atm). When the sun is overhead 90β = ° and sin( ) 1β = , at standard pressure conditions, 
i.e., P Pr= , we have 1m =  or the air mass ratio is 1 (referred to AM1). Note that at the top of the 
atmosphere =/ 0P Pr  and so 0m =  (referred to AM0) regardless of sun elevation angle. Therefore, 
we conclude that the slanted path length is L L ms z=  given the length of the vertical column above 
the observing station.

FIGURE 11.21 Principle of measuring total column by OAS.
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A polynomial approximation of Rayleigh scattering gives values for ( )1Rε λ  and ( )2Rε λ , and simi-
larly a polynomial approximation of the absorption cross-section of the trace gas gives values for 

( )1σ λ  and ( )2σ λ .

Lastly, we need ln 0 1

0 2

I

I

λ
λ

( )
( )  and you may be wondering how to obtain incoming radiation at the top 

of the atmosphere from the ground. The answer is provided by the Langley extrapolation method 
that is based on the Beer-Lambert law applied as a function of air mass exp( )0I I mτ= −  which is 
Equation (11.1) for a = 1. Take the natural log to obtain τ= −ln( / )0I I m  and rewrite

 ln( ) ln( )0I I mτ= −  (11.16)

which is the equation for a straight line. Next, we measure I at time intervals at known sun eleva-
tion β and thus m, in the morning or afternoon, assuming that the atmospheric attenuation fac-
tor contained in parameter τ and pressure P do not change substantially during the measurement 
time. Doing this, we have a dataset of ln(I) vs. m values, which plot as a straight string of points 
with a negative slope starting at a minimum m = 1 at β = 90º (noon) assuming standard pressure 
(Figure 11.23). The Langley extrapolation consists of projecting these points back to m = 0 or the 
intercept with the vertical axis which corresponds to the top of the atmosphere. This extrapolation 
is facilitated by a linear regression that estimates the intercept parameter as shown in Figure 11.23. 
Examples of the Langley extrapolation method giving approximate measured values of I0 for three 
values of wavelength in the UV relevant to ozone. Were measured on March 3, 2005, at 305, 312, 
and 320 nm (Nebgen 2006) and measured on June 28, 2011, at 305 nm (Jerez 2011).

DOAS is a generalization of OAS. Light intensity is measured in a wide range of wavelengths. 
Absorption structures of several trace gases are separated from each other as well as from other 
extinction processes. DOAS has some advantages over the classic OAS approach: it relies on the 
measurement of absorption spectra instead of the intensity of monochromatic light and there is no 
need to estimate a value for ( )0I λ .

FIGURE 11.22 Geometry for slanted path used for the calculation of air mass ratio.
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EXAMPLE: MEASURING UV AND TOTAL COLUMN 
OZONE CONCENTRATION BY OAS AND DOAS

At UNT in 1999 we started measuring UV in Denton, Texas, as part of what was then the U.S. EPA’s 
Environmental Monitoring for Public Access and Community Tracking program. We sustained UV 
monitoring for several years by deploying a UV detector (Solar Light 501) on the roof of the EESAT 
building of the UNT main campus in the summer of 1999. Data was logged every 30 minutes and 
transferred to a PC using a serial port upon command from proprietary Solar Light Co. software, 
which was then transmitted to a database server, and subsequently to a web server. Using a browser, a 
user can request select periods to view and download historical data. With the advent of low-cost SBC 
as the Raspberry Pi, we converted the system by interfacing the 501 Biometer Recorder to a Raspberry 
Pi and replacing the PC. The Pi SBC then transfers the data to the database and web server.

Subsequently, at UNT we developed a low-cost ozone automated monitor using classical OAS 
as described earlier in this chapter (Nebgen 2006; Acevedo et al. 2009). To aim at the sun, we used 
an optical fiber with a narrow field-of-view collimated lens mounted on a pan-and-tilt device that 
tracked the sun’s path during the day following the equations for azimuth and sun elevation given 
in Chapter 7. The fiber piped the light to a fiber optic-based spectrometer housed indoors. We used 
an Ocean Optics S2000-TR2 configured with grating #10: 1800 lines (200–350 nm), with a slit of 
10 μm, yielding a spectral resolution of 0.1 nm, and optical resolution of 0.234 FWHM (full width 
at half maximum). The resulting instrument provided ozone concentrations comparable to those 
obtained with MICROTOPS and those reported by satellite. Error budgets and comparisons can be 
consulted in (Nebgen 2006). Jerez (2011) developed a routine based on DOAS adapting this DOAS 
routine to Nebgen’s instrument. This work included estimating the error of DOAS measurements, 
comparing the total column ozone derived from DOAS and Nebgen’s routine (based on OAS), and 
published data online using a web site (TEO 2015).

Later developments included integrating the software and hardware into a stand-alone, outdoor-
ready instrument by Faschingbauer et al. (2014). This integration provides an example of using a 
small form factor computer but with high processing power. It employs the Intel D2500HN – Mini-
ITX Motherboard; it has an embedded 1.86-GHz processor, low power consumption and heat gen-
eration, and a solid-state drive for primary storage. In this application, the computer handles all the 
automation scripts and log data to run the whole system without user interaction.
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Intercept ln(I0) = 7.28,R2 = 0.997

FIGURE 11.23 Langley extrapolation method explained. ratio
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ATMOSPHERIC GASES AND AIR QUALITY FROM REMOTE SENSING

As discussed previously in this chapter, the concentration of atmospheric gases varies with altitude, 
with vertical profiles characteristic of each gas, and the total column atmospheric concentration of 
a gas refers to the integrated concentration over the entire atmosphere above a position on Earth’s 
surface. Total column and air quality variables (such as ozone, SO2, NO2, and aerosols) can be moni-
tored from spaceborne platforms using backscattered light in UV wavelengths. The NASA (2023b) 
Ozone and Air quality site offers a variety of data related to various methods of measurement. For 
ozone, these include the OMI (Ozone Monitoring Instrument), OMPS (Ozone Mapping and Profiler 
Suite), and TOMS (Total Ozone Mapping Spectrometer). OMI data on this site include measure-
ments of ozone columns and profiles, aerosols, clouds, surface UV irradiance, and the trace gases 
NO2, SO2, HCHO, BrO, and OClO.

Using spaceborne platforms allows to compose images for large areas of Earth as opposed to a 
limited set of stations on the ground.

ATMOSPHERE – WEATHER

aiR tempeRatuRe

One of the most often measured meteorological variables is air temperature. We already presented 
in Chapter 3 an example of a thermistor-based temperature transducer, the “107 Temperature Probe” 
manufactured by Campbell Scientific. It measures the temperature of the air in a weather station. 
Its range of measurement is from –35°C to 50°C. Please refer to Chapter 3 to refresh concepts of 
self-heating and radiation shield.

pReCipitation

Rain is easily measured by a rain gage consisting of a funnel and a tipping cup, calibrated to a given 
volume of water. Water flows down the funnel into the cup. Then each time the cup dumps the 
water, its movement is detected by a magnetic reed switch and this pulse is counted by a  datalogger 
(Figure 11.24). Consider a simple example, the TE525 of Campbell Scientific manufactured by Texas 
Electronics. It has a funnel input area of 15.4 cm in diameter and measures rainfall in  0.254-mm 
increments.

Switch

Magnet

Pivot

Calibration stop

Tips when full

FIGURE 11.24 Rain gage.
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RelatiVe Humidity

Relative humidity (RH) is the moisture content in the air expressed as the percentage of moisture 
of the saturation value or water vapor capacity of the air. RH changes by either changing water 
vapor in the air (air gets damper if air moisture increases) or by changing the air temperature; RH 
increases as temperature decreases (air gets damper when cold). RH can be sensed by a capacitor 
that changes capacitance as the dielectric has more water. Recall from Chapter 3 the concept of 
permittivity. Many times, an RH probe is housed together with an air temperature probe, forming a 
single unit that provides two signals, one for temperature and one for RH. For example, the Vaisala 
HMP155 senses RH in the 0%–100% range and air temperature in –80°C to 60°C.

solaR Radiation

There are several ways of measuring solar radiation, and instruments reflect these various methods. 
In this section, we will focus on pyranometers and net radiometers, and later in Chapter 13, we will 
discuss quantum sensors and their relationship to primary productivity. In addition, there are several 
values of the field of view for collecting solar radiation for transmission to the electronic detector area.

A pyranometer measures broadband solar irradiance or solar flux density or insolation (in W/m2) 
on a planar surface from a hemispherical field of view (180°). A uniform cosine response for varying 
sun angles is provided by a glass dome or by a plastic diffuser. The detector itself can be based on 
a thermopile, converting the thermal energy to electricity, or on a silicon cell similar to a PV cell. 
A thermopile consists of thermocouples connected in series generating a signal that would depend 
on temperature, which in turn depends on radiation. The detector must have a cosine response that 
represents a directional response to the incident beam; the response would follow a cosine function, 
corresponding to full response when the sun is at zenith, and zero response when the sun is at the 
horizon or 90° with respect to the zenith (Figure 11.25).

A net radiometer measures net radiation or balance between incoming and outgoing solar radia-
tion. A net radiometer provides four components of net radiation: incoming and reflected (which 
allows calculation of albedo), and downwelling and upwelling IR, to account for long-wave radia-
tion balance. The simplest type of sensor provides the sum of all four components.

Wind VeloCity and diReCtion: soniC anemometeRs

In Chapter 3, we discussed the fundamentals of a wind vane and a simple cup anemometer to mea-
sure wind speed and wind direction. In this chapter, we introduce a sonic anemometer. Ultrasound 
is a pressure wave at a frequency higher than the human hearing range or approximately 20 kHz. 
Ultrasonic technology offers a no-moving parts alternative wind sensor to the cup and vane anemom-
eter. Sonic sensors are based on measuring ultrasound across a perpendicular axis (Figure 11.26). 
For example, a two-axis ultrasonic wind sensor provides wind speed and direction data as two ana-
log outputs or if converted to digital at the level of the sensor, it can be provided as digital via a serial 
port. Sonic anemometers perform well in harsh environmental conditions without fear of damage 

Glass dome

FIGURE 11.25 Pyranometer and cosine response.
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often associated with cup and vane sensors. They can operate up to high wind speed conditions and 
wind direction has no dead area near 0 or 360 degrees.

A two-axis sonic anemometer measures the difference in time taken for a sound pulse to travel in 
the N-S direction vs. the S-N direction as well as the time difference between W-E and E-W direc-
tions. This is possible because sound time of flight is longer against the wind, and therefore wind 
speed and direction are calculated from the differences in the times of flight for each axis. Denote 
by L the distance between sensors; then upwind Tu and downwind Td travel times are

 T
L

Cs W
T

L
Cs W

u d=
−

=
+

 (11.17)

Where Cs is sound speed and W is wind speed. Invert and subtract
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and therefore, we can solve for W to obtain wind speed
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When wind speed is very low, the difference between Td and Tu is very small and W cannot be 
detected.

A three-axis anemometer has sensors facing vertically in addition to the perpendicular horizon-
tal axis sensors providing a 3D measurement of the wind field. Either a pair of three sensor arrays or 
three pairs of sensors achieve this. In three-pair sensor arrangements, each pair represents the x, y, 
and z axes (Figure 11.27). In a pair of three-sensor arrays model, each array has three sensors sepa-
rated horizontally by 130 degrees. The two arrays face each other vertically, one in a low position 
and the other in the upper position (Figure 11.27). In this case, we want the difference in time taken 
for the sonic pulse to travel from the upper to the opposite lower sensors vs. travel from the lower 
to the upper sensors. Wind speed along the axis between each pair of transducers is then calculated 
from the times of flight on each axis. The frame holding the two arrays can have one to three poles 
(spars) that set a reference (North). The axis definition is as follows: +x is the direction in line with 
the reference spar, y is perpendicular (90 degrees from N), and +z is the vertical pointing up. From 
the three axis velocities, the wind speed is calculated, as either signed x, y, and z.

FIGURE 11.26 Two axis sonic anemometer.



304 Real-Time Environmental Monitoring

A 3D sonic anemometer provides measurements of air turbulence which is relevant around struc-
tures (such as bridges, buildings, wind turbine sites), as well as meteorological and gas flux mea-
surement sites which we discuss in Chapter 13.

next-GeneRation WeatHeR RadaR (nexRad)

Precipitation and wind are measured by weather radar, using the reflectivity of precipitation as well 
as of moving air mass. RF energy emitted in pulses from the radar antenna strikes objects (e.g., 
rain drops and snowflakes) in the atmosphere scattering in many directions, and with some energy 
reflected to the radar; the reflected energy increases with the size of the objects, while its time to 
return relates to the distance to the object. Doppler radar systems can provide information regarding 
the movement of targets as well as their position. The US National Weather Service (NWS) operates 
a radar network of Weather Surveillance Radar-1988 Doppler, or WSR-88D for short; a WSR-88D 
transmits ~450 kW of an RF signal for ~1.5µs every ~1 ms, listening in between pulses to keep track 
of the phase shift between transmitted and received pulses (National Weather Service 2023).

This phase shift is analogous to the Doppler shift of sound waves, with the sound pitch (fre-
quency) increasing for an object moving toward you or decreasing for an object moving away from 
you. For a Doppler radar, the direction (toward or away) and velocity of movement of the object 
depend on the phase shift between a transmitted pulse and a received pulse. The WSR-88D antenna 
increases to preset elevation angles or slices as it rotates, comprising a volume coverage pattern, 
with complete volume covered upon completion of all elevation slices, providing a 3D image of the 
atmosphere around the radar site. In precipitation mode, the volume scan is completed every four to 
six minutes. In addition, the pulse can be polarized in two directions (vertical and horizontal) allow-
ing to discern between rain, hail, snow, and ice. This dual polarization also detects rotation, allow-
ing to forecast tornadoes, and airborne tornado debris allowing to forecast tornado touch down.

Returned energy represents the reflectivity of the precipitation in the atmosphere around the 
radar and is modeled by a reflectivity factor Z of precipitation, which is the integral of the number 
of reflector objects (called hydrometeors), multiplied by their diameter distribution f(D) and the 6th 
power of the diameter

 ( ) 6

0
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∫=  (11.20)

Using a Z0 defined as the Z for 1 mm drop in 1 m3, we calculate the dBZ values as

 10 log10
0

L
Z
Z

Z =  (11.21)

FIGURE 11.27 Three axis sonic anemometer.
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The Z value is related to the rainfall rate by formulas such as the Marshall-Palmer 200 8/5Z R=  

(Marshall and Palmer 1948) which can be solved for R to obtain 
200

5/8

R
Z= 



 .

Base reflectivity corresponds to a low elevation slice (at 0.5 degrees) and represents a precipita-
tion survey of rainfall in the region of the radar, with levels representing the strength of returned 
energy in dBZ. These values are color-coded in the radar images you typically see in weather 
reports or online images. Light rain begins at ~20 dBZ, and 1-inch hail may start ~60 dBZ, but this 
reflectivity value may not necessarily indicate severe weather. As the name indicates, composite 
reflectivity is aggregated from returns from all elevation scans taking the highest dBZ value from 
all elevations; thus, it is available at the end of the scan cycle, whereas base reflectivity is available 
after the first scan. Composite reflectivity allows to study the structure of a storm.

Precipitation can be estimated from reflectivity up to a maximum range, e.g., 230 km, from the 
radar location. Accumulated precipitation amounts are given by one-hour precipitation and storm 
total precipitation images. Besides estimating rainfall, both the static and looping one-hour precipi-
tation images can provide other useful information such as the motion of the storms. Storm total is 
of course the estimated accumulation since the precipitation began and until there is no more pre-
cipitation for one hour. This accumulation can exceed several days during rainy periods.

As discussed above, a Doppler radar can detect motion toward and away from the radar, i.e., 
radial velocity, which means that it can detect only the velocity of that part of the wind field in 
the radial direction. Decomposing, the wind field in two parts: perpendicular (to the radar beam) 
and radial, and considering that the radar is scanning the area, there will be times when the beam 
is more aligned with the overall wind flow and times when it does not detect the wind motion. 
The Doppler radar calculates a velocity based on the perpendicular and radial vectors. The system 
can provide two velocity images: base velocity and storm relative motion. Base velocity, like base 
reflectivity, provides a picture of the basic wind field from the lowest (0.5°) elevation scan and it is 
useful for determining areas of strong wind or detecting the speed of cold fronts. The storm’s rela-
tive motion is an image of the wind circulation around a storm after subtracting the overall motion 
of the storm.

In the United States, the NEXRAD is a network of 160 high-resolution S-band Doppler weather 
radars jointly operated by the NWS, the Federal Aviation Administration, and the U.S. Air Force. 
The National Centers for Environmental Information provides access to archived NEXRAD 
Level-II data and Level-III products (NOAA NCEI 2023). At this web site, the public has access to 
NEXRAD inventory that can be accessed by location on a map. For example, drilling at the loca-
tion of Dallas Fort Worth, Texas pulls up the station KFWS – DALLAS/FTW, TX and an inventory 
of data available for the period 1994–2023. NEXRAD files have many variables; in terms of pre-
cipitation, for instance, there are files for instantaneous rate, one-hour, and storm total. Historical 
NEXRAD data are useful to estimate rainfall over a watershed and provide input to hydrological 
models based on rainfall-runoff relationships.

WeatHeR satellites

We discussed satellite orbits in Chapter 8 as geostationary, equatorial and sun-synchronous (Zhu 
et al. 2018). In this chapter, we will mostly be concerned with geostationary orbits that rotate at a 
period equal to Earth’s rotation period (24 hours), therefore the satellite always stays over the same 
location on Earth; this orbit type is useful to monitor weather.

We will focus on U.S. coverage by GOES that stands for Geostationary Operational 
Environmental Satellite Program, a joint effort of NASA and NOAA (NASA 2023a; NOAA 
2023a, 2023b), it currently consists of GOES-13, or GOES-East, at 75ºW longitude and GOES-
15, or GOES-West, at 135ºW longitude. Latest series of GOES satellites include GOES-R, S, T, 
and U. GOES platforms help observe and predict weather, including thunderstorms, tornadoes, 
and hurricanes, as well as monitoring dust storms, volcanic eruptions, and forest fires. GOES-12 
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was the first satellite to carry a Solar X-Ray Imager type instrument, that helps monitor solar 
activity. The GOES-R series covers Earth’s western hemisphere and provides advanced imagery 
and atmospheric measurements, real-time mapping of lightning activity, and monitoring of space 
weather (NASA 2023a).

Instruments on GOES, Advanced Baseline Imager, sense EM energy at several wavelength 
bands, of which IR and visible are commonly shown on weather broadcasts. IR bands show heat or 
long wave re-emitted by the Earth’s surface, atmosphere, and clouds with the advantage of showing 
this energy during nighttime as well, thus providing 24-hour coverage. Visible band images consist 
of reflected solar radiation by clouds, the atmosphere, and the planet’s surface, with the advantage 
of higher resolution (1 km) than IR images (4 km). Images are often colorized to enhance cloud pat-
terns (NOAA 2023b).

Details on the multiple bands available from GOES can be consulted at GOES-R 2023. Two 
visible bands are blue (470 nm), excellent to monitor aerosols, and red (640 nm) with a finer spatial 
resolution (0.5 km) and able to detect finer detail like top of cumulus clouds. NIR bands are of 0.86, 
1.37, 1.6, and 2.2 µm. The latter is useful to detect cloud particle size. Ten IR bands span from 3.9 
to 13.3 µm, with some of these able to detect water vapor (3.9, 6.2, 6.9 µm), and others centered on 
ozone and CO2.

EXERCISES

Exercise 11.1

Assume the simple energy budget of planet Earth as in Figure 11.3. Assume the albedo is 0.28α =  
(incoming reflected loss) and f = 0.39 (outgoing trapped loss by GH effect). What is the Earth’s 
temperature in °C?

Exercise 11.2

Consider the following six annual values of CO2 concentration in Earth’s atmosphere

Year, CO2(ppm)
1960, 316.91
1970, 325.68
1980, 338.75
1990, 354.39
2000, 369.55
2010, 389.90

Assume that the increase of CO2 is exponential and estimate the rate coefficient for these 50 years 
using a simple calculation of log of ratio divided by the time interval.

Exercise 11.3

Assume the doubly exponential model for CO2 with values for the coefficients k1 ≈ 0.172 and 
k2 ≈ 0.014. Calculate the doubling time for CO2 increase.

Exercise 11.4

Assume the doubly exponential model for Earth’s global temperature with values for the coef-
ficients 0.013, 0.0301 2k k= = . Calculate the doubling time for global temperature.
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Exercise 11.5

Assume you have the following values of ln(I) corresponding to values of air mass from 1 to 3 in 
steps of 0.1.

6.29, 6.23, 6.11, 6.01, 5.87, 5.79, 5.73, 5.57, 5.45, 5.36, 5.29, 
5.22, 5.06, 4.95, 4.87, 4.75, 4.65, 4.56, 4.48, 4.35, 4.33

Use Langley extrapolation to determine ln(I0). You can use a plot and draw a line or run a linear 
regression.

Exercise 11.6

Visit the NEXRAD web site and explore precipitation datasets available for the station KFWS – 
DALLAS/FTW, TX.

Exercise 11.7

Visit the NOAA GOES Image viewer web site (NOAA 2023a) and explore images on various 
bands, available for Texas.

REFERENCES

Acevedo, M. F. 2018. Introduction to Renewable Electric Power Systems and the Environment with R. Boca 
Raton, FL: CRC Press. 439 pp.

Acevedo, M. F. 2024. Real-Time Environmental Monitoring: Sensors and Systems, Second Edition – Lab 
Manual. Boca Raton, FL: CRC Press, Taylor & Francis Group. 463 pp.

Acevedo, M. F., W. T. Waller, and G. B. Nebgen. 2009. Instrument, System and Method for Automated Low 
Cost Atmospheric Measurements. US Patent Number 7,489,397. US Patent Office.

Crutzen, P. J. 1970. The influence of nitrogen oxides on the atmospheric ozone content. Quarterly Journal of 
Royal Meteorological Society 96:320–325.

Faschingbauer, A., J. Stumberg, and T. Eminger. 2014. Instrumentation Panel for Total Column Ozone 
Monitoring System. Senior Design Project: Electrical Engineering Department Denton, TX: University 
of North Texas.

GOES-R. 2023. ABI Technical Summary Chart. accessed January 2023. https://www.goes-r.gov/spacesegment/
ABI-tech-summary.html.

Graedel, T. E., and P .J. Crutzen. 1993. Atmopsheric Change: An Earth System Perspective. New York: W.H. 
Freeman. 446 pp.

Gueymard, C. A., and D. Thevenard. 2013. Revising ASHRAE climatic data for design and standards-part 2: 
Clear-sky solar radiation model. ASHRAE Transactions 119:194–209.

HITRAN. 2014. The HITRAN Database. CFA, accessed 2014. http://www.cfa.harvard.edu/hitran/.
Jerez, C. 2011. Measuring Atmospheric Ozone and Nitrogen Dioxide Concentration by Differential Optical 

Absorption Spectroscopy. PhD dissertation, Environmental Sciences, Denton, TX: University of North 
Texas.

Lovett, G. M., D. A. Burns, C. T. Driscoll, J. C. Jenkins, M. J. Mitchells, L. Rustad, J. B. Shanley, G. E. Likens, 
and R. Haeuber. 2007. Who needs environmental monitoring? Frontiers in Ecology and the Environment 
5 (5):253–260.

Marshall, J. S., and W. M. Palmer. 1948. The distribution of raindrops with size. Journal of Meteorology 5: 
165–166.

Matthias, A.D. 2004. “Monitoring Near-Surface Air Quality.” In Environmental Monitoring and Characterization, 
edited by J. F. Artiola, I. L. Pepper and M. L. Brusseau, 163–181. Burlington: Academic Press.

Moran, J. M., ed. 2006. Weather Studies. Introduction to Atmospheric Science. Boston: American Metereological 
Society.

https://www.goes-r.gov
https://www.goes-r.gov
http://www.cfa.harvard.edu


308 Real-Time Environmental Monitoring

NASA. 2020. Global Climate Change. Vital Signs of the Planet. accessed August 2020. http://climate.nasa.gov/
vital-signs/global-temperature/.

NASA. 2023a. GOES Satellite Network. accessed January 2023. https://www.nasa.gov/content/goes.
NASA. 2023b. Ozone and Air Quality. accessed January 2023. https://ozoneaq.gsfc.nasa.gov/.
National Weather Service. 2023. Doppler Radar. accessed January 2023. https://www.weather.gov/jetstream/

doppler_intro.
Nebgen, G. 2006. Automated Low Cost Instrument for Measuring Total Column Ozone. PhD dissertation, 

Environmental Sciences, Denton, TX: University of North Texas.
NOAA. 2020. Trends in Atmospheric Carbon Dioxide. accessed August 2020. http://www.esrl.noaa.gov/gmd/

ccgg/trends/.
NOAA. 2023a. GOES Image Viewer. accessed Jan 2023. https://www.star.nesdis.noaa.gov/GOES/index.php.
NOAA. 2023b. NOAA Geostationary Satellite Server. accessed January 2022. https://www.goes.noaa.gov/.
NOAA NCEI. 2023. Next Generation Weather Radar (NEXRAD). accessed January 2023. https://www.ncei.

noaa.gov/products/radar/next-generation-weather-radar.
Pallás-Areny, R.. 2000. Amplifiers and Signal Conditioners. Boca Raton, FL: CRC Press.
Platt, U., and J. Stutz, eds. 2008. Differential Optical Absorption Spectroscopy: Principles and Applications. 

Berlin: Springerpp.
Rothman, L. S., I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. 

Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, 
A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, 
A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. 
Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. 
Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, 
Vl G. Tyuterev, and G. Wagner. 2013. The HITRAN2012 molecular spectroscopic database. Journal of 
Quantitative Spectroscopy and Radiative Transfer 130:4–50.

TCEQ. 2015. Current Ozone Levels. accessed March 2015. http://www.tceq.state.tx.us/cgi-bin/compliance/
monops/select_curlev.pl.

TEO. 2015. Texas Environmental Observatory. accessed March 2015. www.teo.unt.edu.
U.S. EPA. 2014a. Clean Air Act. accessed 2014. http://www.epa.gov/air/caa/.
U.S. EPA. 2014b. National Ambient Air Quality Standards (NAAQS). accessed 2014. http://www.epa.gov/air/

criteria.html.
U.S. EPA. 2014c. Summary of the Clean Water Act. accessed 2014. http://www2.epa.gov/laws-regulations/

summary-clean-water-act.
US EPA. 2017. Landfill Methane Outreach Program (LMOP). accessed August 2017. https://www.epa.gov/

lmop.
Vaughan, H., T. Brydges, A. Fenech, and A. Lumb. 2001. Monitoring long-term ecological changes through 

the Ecological Monitoring and Assessment Network: Science-based and policy relevant. Environmental 
Monitoring and Assessment 67:3–28.

WOUDC. 2023. World Ozone and Ultraviolet Radiation Data Centre, Data Products. accessed January 2023. 
https://woudc.org/data/products/.

Zhu, L., J. Suomalainen, J. Liu, J. Hyyppä, H. Kaartinen, and Haggren. H. 2018. “A Review: Remote Sensing 
Sensors.” In Multi-Purposeful Application of Geospatial Data, edited by R. B. Rustamov, S. Hasanova 
and M. H Zeynalova, 19–42. London: Intech Open.

http://climate.nasa.gov
http://climate.nasa.gov
https://www.nasa.gov
https://ozoneaq.gsfc.nasa.gov
https://www.weather.gov
https://www.weather.gov
http://www.esrl.noaa.gov
http://www.esrl.noaa.gov
https://www.star.nesdis.noaa.gov
https://www.goes.noaa.gov
https://www.ncei.noaa.gov
https://www.ncei.noaa.gov
http://www.tceq.state.tx.us
http://www.tceq.state.tx.us
http://www.teo.unt.edu
http://www.epa.gov
http://www.epa.gov
http://www.epa.gov
http://www2.epa.gov
http://www2.epa.gov
https://www.epa.gov
https://www.epa.gov
https://woudc.org


309

12 Water Monitoring

INTRODUCTION

This chapter covers a variety of topics related to monitoring of Earth’s hydrosphere, describing 
common measurements of water quantity, such as level, velocity, and flow, as well as quality in 
terms of natural constituents and pollutants. Various water quality parameters are temperature, 
electrical conductivity (EC), total dissolved solids (TDS), pH, dissolved oxygen (DO), and turbidity. 
The light environment in water is very important since it impacts the production of aquatic eco-
systems. We will discuss hydrodynamics, water quality, and hydrological models in terms of their 
linkage to monitoring. After covering remote sensing of water quality, this chapter describes ocean 
monitoring, emphasizing temperature, and groundwater monitoring, focusing on the dynamics of 
water level and water quality. We end this chapter presenting methods for predicting time series 
using autoregressive models. Although water in the vadose zone, i.e., the terrestrial subsurface from 
the surface to the groundwater table, including the soil, is an important component of hydrology, 
we leave soil water measurements for Chapter 13 in conjunction with other terrestrial ecosystem 
measurements. The concepts of water monitoring are further elaborated by computer exercises in 
Lab 12 of the companion Lab Manual (Acevedo 2024).

WATER

Water covers 70% of Earth’s surface, and almost all (97%) of the water is in the oceans which is 
saline. The remainder 3% is freshwater of which 2% is iced in glaciers, only the rest 1% is surface 
(lakes, rivers), and in the soil and groundwater, and water vapor (Artiola 2004).

Water can exist as gas, liquid, and solid phases. Changes from one phase to another imply changes 
in energy, either gain or loss. Processes involved in changing between gas and liquid are condensa-
tion and evaporation, and in between solid and liquid are freezing and melting. When liquid water 
becomes water vapor, energy is required as latent heat of vaporization. Increasing temperature 
promotes evaporation and increases vapor pressure of the air.

These processes are involved in water cycles on Earth. The hydrologic cycle consists of evapora-
tion from surface water and soil, condensation of atmospheric water vapor into liquid, precipitation 
from atmosphere, runoff to surface water and infiltration into soil moisture, and back to the atmo-
sphere by evaporation.

Human beings and aquatic organisms depend on the quality of freshwater. Dissolved solids, 
pH, and DO are some important parameters that affect aquatic organisms. Sustainability of water 
resources requires monitoring of water quality and quantity (Artiola 2004).

WATER LEVEL AND DEPTH

We can estimate depth of a column of water by a submersed sensor or from ultrasonic sensors placed 
above the water surface. Submersed sensors estimate depth from the pressure exerted by the water 
column after subtracting atmospheric pressure. To accomplish this, we can use a strain gage trans-
ducer (Chapter 4) housed in a waterproof case and placed underwater; the transducer measures pres-
sure difference with one side of the transducer exposed to the water and the other side exposed to the 
air. This measurement is affected by variations in barometric pressure, water density, and tempera-
ture and therefore it is important to calibrate the sensor for desired conditions and perform regular 
re-calibrations. Level loggers are small probes enclosed in a waterproof case made of stainless steel 
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or titanium that be submersed to measure pressure and therefore depth; we saw a picture of a probe 
like this in Figure 5.14. This device is used to measure changing water level in streams, lakes, estuar-
ies, and groundwater; for the latter purpose, they can be deployed inside a pipe or a well.

Ultrasonic sensors of water level are deployed above the water surface and operate under the princi-
ple of measuring the time for the return of sound emitted from the sensor and reflected from the surface 
(Figure 12.1). The sensor continuously transmits pulses of sound (~42 kHz) which strike the surface of 
the liquid and return to the sensor. The travel time of sound is related to the distance between the sensor 
and the water surface x, which translates into water level h by knowing a reference or datum H. The 
relation is h H x= − . However, air temperature affects the speed of sound, and therefore ultrasonic level 
sensors include a built-in temperature sensor to compensate for temperature changes.

Hydrometric stations monitor stream or river water levels, usually termed “stage”. In the United 
States, the USGS maintains monitored data of the network of stations across the country (USGS 2023e). 
For illustration, USGS station 08051500 of Clear Creek near Sanger, Texas, shows a stage averaging 
6.22 ft (~1.9 m) during January 2023, and the flood stage at this location is 25 ft (~7.6 m). Also important 
are lake and reservoir levels, typically reported as elevation above sea level; for example, for the same 
North Texas area, USGS 08052800 gage at Lewisville Lake near Lewisville, Texas, showed 520 ft 
(150.5 m) elevation, which is only 2 ft below the conservation pool elevation of 522 ft (159.1 m). The 
conservation pool level is defined as the level for which the lake has a specified amount of water storage.

Another illustration of water level comes from tides that shows a periodic variation of water level. 
The lunar tide occurs twice daily or semidiurnal, since as the Earth rotates, any point on the sea will 
experience a bulge due to gravitational pull of the Moon every 12 hour and 24 minutes, which is half of 
a lunar day. The gravitational effect of the Sun also produces a tidal bulge but of lower height of that of 
the Moon because it is further away, and occurring every 12 h, which is half of a solar day. When the 
Moon and Sun are aligned (full or new moon phases) the lunar and solar bulges superimpose, creating 
a larger bulge and producing the spring tides or the highest tides. In contrast, when the Moon and the 
Sun alignment with the Earth is perpendicular, the lunar and solar bulges do not superimpose, leading 
to lower height, producing neap tides, or the lowest tides. This occurs in first and third quarter phases of 
the Moon. The time in between neap and spring tides is one quarter of the 29.5 days of the lunar cycle; 
or about 7 days. Tidal range for a particular tide cycle is the total excursion from high to low tide, and 
thus increases during spring tides and decreases during neap tides.

Tidal data for the USA are available from NOAA (2023b). Take, for example Port Aransas, Texas 
on the Gulf of Mexico. Data are reported with respect to a datum (z = 0) set at Mean Lower-Low Water. 
In this case, mean sea level is 0.83 ft (0.253 m) above this datum. For the same day, January 15, 2023, 
the tide level at this station showed −0.01 m at 3 am, 0.19 m at 1:23 pm, and a predicted level of 0.61 m 
for 6:36 pm. Data are available for download from this web site with timestamps separated by six-min-
ute intervals. Long-term tide data allow calibration of harmonic modeling of tidal dynamics by using 
Fourier series, or a summation of sine and cosine functions of several periods related to the astro-
nomical process we just described. In the United States, this approach consists of adding harmonic 
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FIGURE 12.1 Principle of the operation of ultrasonic water level sensor.
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constituents, which represents the periodic variation of the relative positions of the Earth, Moon, and 
Sun (NOAA 2017). Using this method, we can produce plots such as Figure 12.2 for Port Aransas; 
these plots let you appreciate the variation of neap and spring tides within the modeling period.

WATER VELOCITY AND FLOW

There are many instances when we need to measure water velocity. One example is when estimat-
ing runoff water flow after rain events, subsumed in the stream water flow. Once we measure water 
velocity and know stream’s cross-sectional area, we can calculate flow q as the product of cross-
sectional area A and velocity v, that is q vA= . When v is given in m/s and A in m2, we obtain flow 
in m3/s. To calculate cross-sectional area, we can determine the stream profile, monitor the water 
level using a water level sensor, and calculate the area based on the profile and depth of the channel 
(Figure 12.3). Irregular cross-sections require integrating the velocity field along the profile of the 
cross-section and thus we need to measure several velocity values. In small streams, a flume or weir 
may be used to simplify the cross-sectional area calculation.

A simple typical water velocity probe includes a propeller, which rotates on its shaft and would 
turn faster as water velocity increases. This is the same principle as a cup anemometer to mea-
sure wind speed. For small streams, an approach is to use positive displacement sensing; magnetic 
material in the propeller tip passes a pickup point producing electrical impulses that are passed to 
the electronics by an internal cable (Figure 12.4). For larger streams, a bigger propeller is needed 
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FIGURE 12.3 Estimating stream flow from velocity and cross-section.
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(Figure 12.5). An electronic circuit, based on a microcontroller, would then count the pulses, and 
convert the rate to water velocity. The microcontroller or a datalogger would record minimum, 
maximum, and average velocity in given periods.

The Doppler effect, which we discussed in Chapter 11 in the context of wind, also plays a role 
in water flow measurements by transmitting sound through the flowing liquid which reflects the 
sensor from solids or bubbles in the fluid, in a manner equivalent to a Doppler radar receiving a 
return from rain drops and other hydrometeors. The echoes return at a different frequency propor-
tional to fluid velocity, and the instrument measures this frequency shift to calculate flow. For better 
performance, Doppler flow meters are deployed away from features that create turbulence in the 
flowing fluid. Acoustic Doppler current profilers allow to measure water flow or discharge in rivers 
and other waterways, which can be used to predict flooding and low-water conditions. At the same 
time, the data can also be used to create a detailed map of the water velocity distribution in a river 
(Fricker 2014).

Along with the stage, hydrometric stations monitor stream flow termed discharge. We can find 
these data on the same web site as river stage (USGS 2023e). For illustration, take the same USGS 
station 08051500 of Clear Creek near Sanger, Texas, which shows a discharge of 15.6 cfs (ft3/s) 
or 0.44 m3/s on January 14, 2023. As discussed above, real-time flow is not measured directly but 
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FIGURE 12.5 Water velocity propeller sensor for large streams.
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FIGURE 12.4 Positive displacement water velocity sensor for small streams.
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rather estimated from a relationship of flow and level, this is called the rating curve or stage-dis-
charge curve. For each hydrometric station, the USGS site includes the rating curve employed to 
predict flow from stage, often on a log-log scale (base 10). Figure 12.6 shows the rating curve for the 
example we have been discussing, and you can see how it is non-linear because of the geometry of 
the streambed controlling how cross-sectional area depends on level. Rating curves may undergo 
changes, i.e., shifts, due to changes in the streambed (e.g., erosion or deposition) or the growth of 
riparian vegetation.

Water velocity is also very important for tidal and ocean currents. For the sake of illustration, 
looking at the same web site NOAA (2023b) take the same location, Port Aransas, Texas on the 
Gulf of Mexico, and the same day January 14, 2023. We find that the tidal current was −80.4 cm/s 
at ebb (tide current going offshore) and 88.9 cm/s at flood tide (current flowing onshore) measured 
at a depth of 4.9 m. Information is also available on the direction of the current.

WATER QUALITY PARAMETERS

In regard to water quality monitoring, we can consider three types of variables: physical, chemical, 
and biological (Artiola 2004). In this field, it is common to refer to “variables” as “parameters”, 
which may be confusing when first exposed to this literature. For consistency with the usage of 
these terms in this field, we will use variable and parameter indistinctly in this chapter. Major 
physical water quality variables are temperature, total suspended solids (TSS), EC, and turbidity, 
whereas major chemical variables are pH, oxidation-reduction potential (ORP), DO, TDS, major 
cations (Ca, Mg, Na, K, NH4), major anions (Cl, SO4, HCO3, CO3, PO4, H2S, NO3), total organic 
carbon, and biological oxygen demand (BOD). Some of the chemical parameters are inferred from 
measurements of temperature, turbidity, and EC (indication of TSS and ionic strength). Other vari-
ables of interest include chlorophyll and volatile organic hydrocarbons. Major biological parameters 

FIGURE 12.6 USGS rating curve for Clear Creek, near Sanger, TX.
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include bacteria (e.g., fecal coliforms), viruses, protozoans (e.g., giardia), helminthes (e.g., parasitic 
worms), and algae (e.g., blue-green) (Artiola 2004).

As part of the Clean Water Act (U.S. EPA 2014c), the U.S. EPA has criteria for 157 priority pol-
lutants and 45 non-priority pollutants. These guidelines are used by states and tribes to develop reg-
ulatory programs such as the National Pollutant Discharge Elimination System (U.S. EPA 2014a). 
The STORET (short for STOrage and RETrieval) Data Warehouse is a repository for water quality, 
biological, and physical data and is used by state environmental agencies, EPA and other federal 
agencies, universities, private citizens, and many others (U.S. EPA 2014b).

In this book, we emphasize those systems that allow for in situ direct measurements by insert-
ing probes in water connecting these probes to dataloggers and provide real-time monitoring. 
Temperature and EC sensors are common and easy to implement in transducer circuits, and many 
probes such as for DO and pH are electrochemical devices based on glass electrodes as we dis-
cussed in Chapter 4. We discuss the principles of sensor operation in this chapter and provide some 
examples in the companion lab guide.

tempeRatuRe

Water temperature is an important measurement by itself and also because it determines the condi-
tions of several other water quality parameters. We have already described how to use thermistors 
and thermocouples, and therefore we will focus on a different sensor named Resistive Temperature 
Detector (RTD) made from metals; therefore, resistance increases with temperature, because 
increased atom vibration increases resistance to electron displacement. Like a thermistor, and dif-
ferent from a thermocouple, an RTD is a passive sensor, since it needs power to force a current that 
produces a voltage drop that is measured as the transducer output, and the current must be limited 
to avoid self-heating (Pallás-Areny and Webster 2001).

A common model for the sensor response is a series approximation of the resistance R vs. tem-
perature T curve

 α α α( )= + − + − + + −�( ) 1 ( ) ( ) ( )0 1 0 2 0
2

0R T R T T T T T Tn
n  (12.1)

Where T0 is a reference temperature, typically 0°C, R0 is the resistance at a reference temperature, a 
common value is 100 Ω, iα  i = 1, …, n are coefficients, and n is the number of terms included in the 
series expansion, which for many sensors is n = 1 because , ,1 2 n� �α α α  whenever the temperature 
does not affect the sensor dimensions. Exceptions to the latter are thin-film RTDs that may require 
including up to the third term. For sensors with dominance of the first term, the response is very 
linear compared to thermistors.

A commonly used metal is Platinum for which 3.85 10 K1
3 1α ≈ × − −  dominates other coefficients by a 

factor much larger than 10 within temperature range below 650ºC. In this case, Equation (12.1) reduces to

 ( ) 1 ( )0 1 0R T R T T� α( )+ −  (12.2)

Note that since T0 is subtracted from T we can calculate this equation in ºC or K. In this case, RTD 
sensitivity is nearly constant with T and given by the slope of the R vs. T curve which calculated 
from equation (12.2) is

 0 1
dR
dT

R� α×  (12.3)
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However, it actually decreases slightly with increasing temperature due to the higher order terms in 
(12.1). For example, a platinum RTD with 100 Ω at 0°C and 3.85 10 / C1

3α ≈ × °−  has a sensitivity of 
~0.385 Ω/ºC. Standards provide RTD specifications, for instance the DIN standard specifies a base 
resistance of 100 Ω at 0°C, a temperature coefficient of 0.00385/°C, and tolerance in various classes.

To avoid self-heating, one must consider the measuring environment because the sensor will 
dissipate heat differently if immersed in air, still water, or moving water. In this respect, the heat 
dissipation factor δ  in mW/K depends on conditions; following Pallás-Areny and Webster (2001), 
we can calculate the maximum current to limit self-heating below a threshold ΔT by solving for I in 

( )2

T
I R T

δ
∆ = , that is 

( )
I

T
R T

δ= ∆ ×
. For instance, suppose a 100 Ω at 0ºC sensor has 100 mW/Kδ =  

when immersed in still water at about 25ºC, and we want to limit ΔT to 0.1ºC. Using Equation (12.2), 

we have (25) 100 1 0.00385 (25 0) 109.625R ( )= × + × − = Ω and then 
0.1 100 10

109.625
9.5 mA

3

I = × × =
−

.

Transducer RTDs can be configured as two-wire, three-wire, and four-wire. The two-wire con-
figuration is the simplest but the least accurate due to the resistance of the transducer leads, which 
causes an offset in the resistance measurement. Three-wire sensors compensate for the resistance of 
the leads, by letting the controller make two measurements; one for the total resistance and another 
for the compensation resistance, which is subtracted from the total resistance to obtain the net resis-
tance. The four-wire sensor configuration allows to remove the influence of lead wires and is more 
complicated to implement. In practice, two-wire sensors are simple to use and sufficient for many 
applications, and three-wire sensors are common and provide a good trade-off of accuracy and 
complexity of measurement technique. RTD sensors can be connected in voltage divider circuits as 
well as bridge circuits.

eleCtRiCal ConduCtiVity

Water conducts electric current as a function of ions present in a solution, which is subsumed as the 
EC of the solution. EC is measured by injecting a current I, reading the voltage drop V produced by 
the solution (Figure 12.7), calculating the conductance from Ohm’s law, and inferring conductivity 
from geometric considerations. In its simplest form, we can use the resistance between a simple pair 
of wires or electrodes as a sensor in a voltage divider circuit or bridge. As a simple experiment, one 
can learn how conductance measurements work by immersing foils and connecting them together 
with a 10 kΩ resistor to form a voltage divider sensor that is connected to an Arduino port (Gertz and 
Di Justo 2012). The microcontroller uses this port providing power, allowing for a delay, and per-
forming a reading after the voltage is stable. A script converts voltage to resistance and resistance to 
conductivity. We simulated this experiment in lab guide 5 of the lab manual.

Re Rsol Re
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I

FIGURE 12.7 Simple EC probe schematic.
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Recall from Chapter 3 that conductance G is the ratio of current I to voltage V, per Ohm’s law 
= /G I V . Conductivity σ , or conductance per unit length, is then inferred from conductance based 

on a cell constant related to the probe geometry and construction described a little bit later (Decagon 
Devices 2014; Radiometer Analytical 2004). As stated in Chapter 3, conductance is measured in 
units of Siemens (S = 1 Amp/Volt), then EC has units of Siemens per unit length, S/m. To see this, 
note that if the current flow is through a cross-section of area A, and along length l, we can relate 
conductance and conductivity σ by

 orG
A
l

G
l
A

σ σ= =  (12.4)

Water EC is also denoted by the Greek symbol kappa κ. The cell constant k (1/cm) accommodates 
this geometric component = /k l A, where l is the distance (cm) between electrodes and A is the 
effective area (cm2) of the electrodes.

Electrode polarization occurs when ions accumulate near the surface of the electrodes, thus 
creating an additional parasitic resistance to the solution resistance. Applying alternating current 
(AC) of the proper frequency (<100 Hz) and increasing electrode area A reduces this effect. When 
the electric field lines stray outside the cross-section facing the electrodes, there is an additional 
field-effect resistance (Radiometer Analytical 2004).

A problem with a simple two-electrode water conductivity sensor is that we measure the conduc-
tance of the solution (Gsol) along with additional conductance due to electrode polarization and field 
effects (Gpfe) as shown in (Figure 12.7). Besides using AC and optimizing area, a more elaborate and 
practical probe uses four wires or poles (or electrodes) arranged in two separate pairs; an external 
pair serves to inject a current, and the voltage between the inner pair is measured with very small 
current draw avoiding the effect of extra conductance (Figure 12.8). When this voltage equilibrates 
to a reference voltage, current applied is proportional to conductance (Radiometer Analytical 2004).

Many water quality measurements are reported in µS/cm because typical values would be low 
when expressed in S/m. Note that 1 µS/cm = 0.0001 S/m. EC of distilled water is in the range of 
0.5–3 µS/cm. Inland fresh waters with EC between 150 and 500 µS/cm are considered normal. 
Values outside this range could indicate that the water is not suitable for certain species of fish or 
macroinvertebrates. The conductivity of rivers in the United States generally ranges from 50 to 1500 
µS/cm. However, industrial waters can range as high as 10,000 µS/cm (U.S. EPA 2014e). At high 
values of conductivity, expressing it in units of S/m or dS/m avoids using a high numerical value. 
For example, 10,000 µS/cm would be 100 dS/m or 10 S/m.
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FIGURE 12.8 EC 4 pole schematic.
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EC depends on temperature and all the above values refer to a standard temperature (25°C). 
Therefore, an EC reading ( )Tκ  needs adjustment to the standard 25°C using water temperature T of 
the sample by a factor ( )25f T  determined from a polynomial

 (25) ( ) ( )25f T Tκ κ= ×  (12.5)

For moderate EC values a linear approximation for this factor is

 ( )
1

1 ( 25)
25f T

Tθ
=

+ × −
 (12.6)

where θ is a temperature coefficient in 1/°C. A common approach is to include a temperature sensor 
near the EC electrode sensors to measure water temperature and adjust the EC measurements to 
their 25°C value (Radiometer Analytical 2004). Calibration of an EC probe requires comparing EC 
readings with known amounts of KCl in a calibrating solution.

tds and salinity

TDS relates to the total organic and inorganic dissolved solids in water, measured as the total weight 
of cations, anions, and the non-dissociated dissolved species in one liter of water. Therefore, it has 
units of concentration in mg/L or ppm. A practical estimation of TDS when performing real-time 
monitoring using probes is to calculate TDS from EC, multiplying by a scale factor TDS f EC= × . 
The factor may be obtained by calibration using a standard of known TDSa at a given temperature 

using 
(18)

f
TDSa

aκ
=  TDSa is expressed in mg/L and (18)aκ  = conductivity of the standard corrected to 

18°C (in S/cm) as explained in the previous section. As a simplification, for practical purposes, one 
could use the 500 scale or 640 scale which consists of multiplying the value in mS/cm by 500 or by 
640 to obtain TDS500 or TDS640.

Salinity represents the weight of dissolved salts in water and is given in a variety of units that 
refer directly to weight and concentration or to a relationship with EC. In terms of weight, practical 
salinity units (psu) are defined as the concentration by weight of dissolved salts, 1 psu is 1 g of salt in 
1 kg of water, for example 5 psu is the same as 5 g of salt dissolved in 1 kg of water. In oceanography 
it is common to use a per thousand unit denoted as ppt or o/oo, for example 35 ppt. However, this may 
lead to confusion because ppt is often used for parts per trillion. A practical estimation of salinity 
when performing real-time monitoring using probes is to relate salinity to EC and is determined 
from EC using a standard seawater solution that has a given salinity with known EC at a standard 
temperature. For example, a standard with conductivity (15)aκ  at 15°C. Conductivity of the sample 

( )Tbκ  is measured and then we calculate salinity S using another polynomial ( )g T  and the ratio of 
conductivities

 ( )
( )
( )

S g t
T
T

b

a

κ
κ

= ×  (12.7)

pH and oRp

Please refer to the description of electrochemical sensors given in Chapter 4. As a brief summary 
of that discussion, a pH sensor is a glass electrode that senses the concentration of hydronium ions, 
producing an electrical potential proportional to the logarithm of the concentration of free hydrogen 
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ions (Figure 16 of Chapter 4). ORP sensors produce a voltage proportional to the potential of the 
measured solution to act as oxidizing or reducing (loss or gain of electrons from other substances). 
ORP is related to pH, and the ORP sensor is similar to the pH sensor but made to produce a voltage 
proportional to ORP instead of pH. Redox values represent the overall potential of mixed oxidation-
reduction processes.

dissolVed oxyGen

These are glass electrodes that have a redox reaction in the presence of oxygen. DO diffuses through 
the porous membrane into the chamber; here it is reduced by electrons product of the oxidation 
of the lead electrode (anode)

 2Pb+O +2H O+4e 2Pb +4OH +4e2 2
- ++ - -→  (12.8)

The current flow cathode (silver) to the anode is proportional to the concentration of molecular 
oxygen O2 (Artiola 2004). Figure 12.9 illustrates schematically a DO probe. Besides providing DO 
that is valuable by itself, a DO probe can be applied to monitor DO dynamics and infer BOD and 
respiration rates from the depletion of DO.

tuRbidity

Turbidity is a measure of the lack of clarity of water or its cloudiness due to individual solid particles 
that remain suspended in water and are not visible to the naked eye. These particles include silt, clay, 
algae, and organic matter (Sadar 2014; U.S. EPA 2014d). Turbidity is determined by the amount of 
light that is scattered by suspended solids in water. Turbidity is not a measure of the amount of sus-
pended solids but, instead, an aggregate measure of the combined scattering effect of the suspended 
particles on an incident light source (Sadar 2014). However, turbidity is relatively easy to measure in 
real time on a continuous basis and then becomes a useful indicator of other water quality param-
eters that are difficult or costly to measure.

A turbidity probe includes a light source and a detector in various geometrical arrangements. 
The light source is one of three types: incandescent (monochromatic, including short wavelength), 
light emitting diode (LED) that emits in the low near-infrared (NIR) (830–890 nm), and laser at a 
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FIGURE 12.9 DO sensor schematic. A temperature sensor is typically added.
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single wavelength. Low wavelengths in the incandescent source are effective because it is scattered 
by small particles. The LED low NIR wavelengths just above visible is effective because it reduces 
interference by colored particles. Sensitive instruments at very low turbidity ranges use lasers as 
light sources.

A detector measures scattered light from the source at a selected detection angle. There are 
several options for the detection angle (Figure 12.10). The nephelometric angle is a 90° angle with 
respect to the light source and sensitive to a broad range of particle size, the attenuated angle is 
180° from the source and includes absorption as well as scattering, and the backscatter angle is in 
between 315° and 360° with respect to the source and applicable to high turbidity measurements. 
The amount of light being scattered directly into the detector converts to volts and translates into 
turbidity units.

Other designs include multiple detectors set at a combination of the above angles and using a 
ratio approach integrated by software to obtain turbidity and two-detector dual light sources also 
integrated by software (Figure 12.11). In the latter, measurement occurs in two steps; first, one 
source turns on and two detectors are measured (at nephelometric and attenuated angles) then the 
other source turns on and the detectors are measured (but their angles are exchanged because of the 
geometric arrangement of the sources).

The most common turbidity probe is a nephelometer. It uses an incandescent source, a nephelo-
metric angle, and it measures nephelometric turbidity units (NTU). These units are widely used. 
However, standards now include other units based on technology, methods, or detection angles 
used. For example, when attenuated or backscatter angles are used the units reflect this fact by using 
letters A or B in the units reported (AU or BU).

A Formazin standard is typically used to calibrate a turbidity meter. A concentration providing 
20 NTU is a common value in the middle of the NTU range. Surface water is in the range of 0–50 
NTU but of course can be higher due to runoff with suspended sediments occurring after rain events.

fluoRometeR

As we discussed in Chapter 11 in relation to gases, fluorescence is the emission of energy by a sub-
stance when excited by light of a given wavelength; upon absorption, the excited molecules release 
energy when falling back to the ground state. Then we detect and measure the intensity and spec-
trum of this energy by optical means to infer the presence of chemicals in the substance. We can 
apply this principle to water and measure the fluorescence of algae, dyes for tracing, and pollutants.

In vitro measurements correspond to those conducted in the lab, whereas in vivo corresponds 
to those measurements conducted directly in the field with fluorometer probes and are amenable to 

FIGURE 12.10 Turbidity probe schematic. Various detection angles.
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real-time continuous monitoring when connected to a datalogger. However, submersible probes pro-
vide only a measure of in vivo relative concentration of chlorophyll or phytoplankton biomass, but 
not an absolute concentration (say in mg/L). When needing the latter, the relative in vivo measures 
are calibrated versus quantitative in vitro measurements (Sanders 2014).

Fluorometer probes measure a variety of water quality parameters by using a variety of excitation 
source wavelengths. For example, chlorophyll (blue range), blue-green algae (BGA) (orange range), 
dissolved organic matter (DOM), Rhodamine (green range), Fluorescein (blue range), Phycocyanin 
(yellow-orange range), Phycoerythrin (green range), Optical Brighteners (UV range), Crude Oil 
(UV range), Refined Fuels, PTSA Dye (UV range), Tryptophan (UV range), and turbidity (IR range) 
(Fondriest Environmental 2014; Turner Designs 2014).

In fluorometer probes, small windows allow the excitation light to shine into the water subject to 
measurement, and to detect the emitted energy from the substance (Figure 12.12).

multiple paRameteR pRobes

Since it is desirable to measure multiple parameters of water quality instead of only one, it is now 
common to install multiple sensors in one device, i.e., a multiple-parameter sonde or multiparameter 
water quality sonde (Figure 12.13). Typical sensors installed in a multiparameter sonde are EC, tem-
perature, light, DO, DOM, pH/ORP, depth, Chlorophyll, Rhodamine WT, BGA, Chloride, Nitrate, 
Ammonia, and turbidity.
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FIGURE 12.12 Principle of the operation of fluorometer probes.
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FIGURE 12.11 Turbidity probe schematics. Dual source.
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Multiparameter probes are configurable by varying the sensors installed. It can be powered by inter-
nal batteries or by an external battery. The probes are arranged so that they are in a container or cup 
where we can put a calibration solution. A datalogger collects data from all sensors. A multiparameter 
sonde is deployed in the field for real-time monitoring using buoys or floating platforms (Figure 12.14). 
We can also use these probes to profile a water body by lowering the probe at various depths.

impoRtanCe of ioniC pRofile of WateR Quality

The variables discussed above provide valuable information on water quality for many applications; 
however, they may not suffice for other applications when the concentration of the various ions is 
of importance. While many sensors amenable to be monitored by dataloggers, give an aggregate 
view of water quality, e.g., EC, there are fewer that give a concentration of many ions of interest. 
In many cases, then it is necessary to supplement real-time monitoring of water quality with in situ 
measurements using a photometer or a spectrophotometer and laboratory measurements with more 
elaborate instrumentation.

Just as an example, EC is important to determine if water is suitable as irrigation water for 
crop production (Artiola 2004). Some crops are tolerant of high EC water; for example, barley and 

FIGURE 12.13 Typical multiparameter probe.
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FIGURE 12.14 Examples of multiparameter probe deployment. Buoy and platform.



322 Real-Time Environmental Monitoring

cotton, but others cannot tolerate irrigation with water with high EC. However, EC by itself may 
not provide enough information about the suitability of water, and other criteria based on ions are 
important. A water quality concept related to dissolved solids is the sodium adsorption ratio (SAR), 

utilized in agriculture and defined as 
[Na ]

1
2

[Ca ] [Mg ]2 2

SAR

( )
=

+

+

+ +
 where concentrations of sodium, 

calcium, and magnesium are in milliequivalent/liter (meq/l) (Glover 1996). The equivalent units 
consider valence; for univalent ions, the mmol amount is the same as meq, while a concentration of 
divalent ions provides twice the amount of meq. For instance, 1 mmol of Na+ is equal to 1 meq, but 
1 mmol of Ca++ is equal to 2 meq. 

To convert mass concentration to mmol/l we can divide mg/l by the molecular weight; for exam-

ple for sodium 
[Na ] mg/l
22.98g/mol

+

, calcium 
[Ca ] mg/l
40.078g/mol

++

 and magnesium 
[Mg ] mg/l
24.31g/mol

++

.

SAR is also a measure of soil sodicity when the analysis pertains to soil water. High values of 
SAR indicate less quality of the water for irrigation. Irrigation with high SAR leads to the substitu-
tion of calcium and magnesium by sodium (Glover 1996). Long-term effects of irrigation with high 
SAR water are soil degradation in terms of decreases in infiltration rate and structure.

LIGHT AS A FUNCTION OF DEPTH

Many aspects of water quality and processes in aquatic ecosystems depend on the amount of solar 
radiation reaching various depths in the water column. Solar radiation decreases when it goes 
through water and can be measured by submersed sensors or also estimated from surface mea-
surements if we have models of light reflectance and attenuation. As with other media, the Beer-
Lambert law (Chapter 11) applies to water and can be stated based on light intensity L which is 
attenuated exponentially according to

 ( ) exp( )L z L kzs= −  (12.9)

where z is the depth, Ls is the water subsurface level, and k is the attenuation or extinction coefficient 
in [1/m]. The coefficient k includes absorption by organic and inorganic compounds as well as by 
photosynthesis. The attenuation coefficient is estimated by regression from values of light intensity 
going downwards (i.e., downwelling) at various values of depth. To measure total irradiance at each 
depth, a photosensor is submersed while connected via cable to a datalogger or hand-held meter 
above the surface. A logarithmic transformation can be used to perform regression on the light vs. 
depth data using the process explained in Chapter 11 (Figure 12.15) or we can alternatively use 
polynomial regression (introduced in Chapter 3), in which the predictor is a linear combination of 
increasing powers of X. In this case, we formulate the non-linear relation as a polynomial instead of 
a functional relationship, which is useful when you do not know what model to apply.

Although a solution is always found, we may not know the meaning or interpretation attached to 
coefficients. As mentioned in Chapter 3, we write the predictor as

 0 1 2
2Y b b X b X b Xm

m�� = + + + +  (12.10)

where the polynomial is mth order. Figure 12.15 shows examples of second- and third-order poly-
nomial regression applied to the exponential decay problem. In the case of m = 3, we estimated four 
coefficients
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 0 1 2
2

3
3Y b b X b X b X� = + + +  (12.11)

As we see in the figure, we have achieved a good fit. However, because we do not know the mean-
ing of the coefficients, we cannot claim that we have a better understanding of a generic response 
of light to depth than the exponential model. One practical application of polynomial regression 
is for the calibration of sensors and instruments. By transforming each power of X into a vari-
able, the polynomial regression is analogous to a multivariable linear regression problem (which we 
explained in Chapter 11).

The Beer-Lambert equation applies as well if we consider light intensity L(λ) at a given wave-
length λ, and in this case, the attenuation coefficient is specific to that wavelength. Measurements of 
light intensity spectra can be conducted by a spectrometer above the surface and piping light from 
underwater measurements depth to the spectrometer via an optical fiber.

For biological processes occurring in the water column, such as photosynthesis discussed in the 
next section, light intensity is measured as photosynthetically active radiation (PAR) or radiation in 
the 400–700 nm range. A quantum sensor provides PAR by measuring photosynthetic photon flux 
density as quanta or photons per unit time per unit area. Typical units are µmols–1m–2. Quantum sen-
sors are based on silicon photovoltaic cells and require cosine correction to follow the ideal cosine 
function (Chapter 11). Quantum sensors for use underwater require watertight enclosures.

PRODUCTIVITY AND RESPIRATION

Primary producers convert solar energy to chemical energy stored in the form of carbohydrates, by 
photosynthesis, which is wavelength dependent and therefore we specify energy to that in the PAR 
range. Photosynthesis requires carbon dioxide CO2 and water H2O. The chemical reaction is

 light6CO +6H 0 C H O + 6O2 2 6 12 6 2 →  (12.12)
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FIGURE 12.15 Comparing linear regression to polynomial regression for exponential attenuation.
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Converting one mole of CO2 to chemical energy requires eight E of solar radiation. E is a unit called 
Einstein. In terms of Joules, it takes 0.472 MJ to convert 1 mole of CO2 or 0.00004 MJ to fix 1 mg 
of C.

The efficiency of photosynthesis as a percent of light energy converted to chemical energy is 
about 18%. The rate of photosynthesis can be expressed as a function of photosynthetic mass; for 
example, CO2 fixed per unit time per chlorophyll concentration, [mmole CO2 sec–1/mg Chl m–3].

Photosynthesis rate varies with light intensity; at low light levels, light reaction rates increase 
linearly with light. At higher levels, there is a saturation of Calvin cycle enzymes, and the photo-
synthesis rate drops at high light levels by photo inhibition. The net primary productivity rate is the 
gross productivity minus respiration. To obtain data for these rates in aquatic systems, we can use 
DO as an indicator and automatic dataloggers (data-sonde) to infer DO dynamics.

AUTOMATED REAL-TIME BIOMONITORING

Traditionally, built chemical and physical sensors are used to monitor water quality. In this sec-
tion, we examine the use of organisms themselves to monitor the environment (Gruber et al. 1994). 
This approach introduces a sentinel organism that would be responsive to the variables we intend 
to monitor and then use transducers and sensors to measure the response of the sentinel organism 
(Figure 12.16). In other words, we build a real-time automated biological monitor or automated bio-
monitor, which should be able to integrate the array of environmental quality indicators we intend 
to measure. An example using clams was discussed in Chapter 9 when we illustrated the application 
of Bayes’ rule to infer presence of an stressor.

Biomonitors employed for ecotoxicological monitoring respond to a great number of toxic condi-
tions. Biological sensors employ sentinels that include bacteria, algae, invertebrates, and fish. Let 
us consider some examples. First, an algae-type biomonitor would use a fluorescence detector to 
measure the response of the algae to the stressor (a toxic compound) we intend to measure. Note that 
the fluorescent detector is not directly measuring the toxic concentration but rather the organism’s 
response to that toxic. Going up in the food chain, consider a biosensor made with zooplankton, 
such as Ceriodaphnia typically used for ecotoxicology (Acevedo et al. 1995), and IR video record-
ing of the movement and behavior of individual animals. Then, we can relate the video tracking data 
to the toxic concentration (Korver and Sprague 1988). We discuss video technology in more detail 
in Chapter 14. Sessile animals, such as bivalves, offer an opportunity to keep the biosensor fixed; in 
this example, we can attach a metal target to a valve of the animal and detect the valve movement 
by an electromagnetic proximity sensor (Figure 12.17). The valve opening and closing or feeding 
behavior relates to stressors in the water (Allen et al. 1996; Waller et al. 1994). As a last example, 
and going up in complexity, we can measure the ventilatory behavior of fish by non-contact sub-
merged electrodes when subject to toxic stressors (Gruber et al. 1994).

Of interest are techniques allowing in vivo remote query measurement of bacteria cultures. For 
example, measuring the complex permittivity spectra of a biological culture solution by means of 

FIGURE 12.16 Basic concept of biosensor.
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a printed inductor-capacitor resonant circuit (Ong et al. 2001). The circuit is placed within the cul-
ture solution of interest, and by measuring the impedance spectrum of the sensor using a remotely 
located loop antenna; one can estimate permittivity, and then be able to monitor bacteria growth.

Biomonitors are effective early warning sensors and thus a combination of biomonitors with 
traditional environmental monitors can be part of observatories and early warning networks 
(Figure 12.18); for example, the Upper Mississippi River Early Warning Network (Allen et al. 2014). 
We will read in Chapter 14 how environmental sensors can be integrated with wildlife trackers thus 
providing data on the environmental parameters affecting the animal.

MODELING AND MONITORING OF SURFACE WATER

HydRodynamiC models

Hydrodynamic models are computer models composed of differential equations of fluid dynamics 
that are used to predict water movement, i.e., water levels and water velocity (including direction) 
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FIGURE 12.17 Clam biosensor. Adapted from Allen et al. (1996).
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FIGURE 12.18 Biosensors as part of environmental observatories. Adapted from Allen et al. (1996).
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at all points of a water body. Long-term real-time monitoring of water levels and the velocity field 
plays an important role in providing these models with data for calibration and evaluation. Spatially, 
these models can be 1D, 2D, or 3D. For small streams and rivers, these models are 1D, with position 
along the course of the river as the only spatial variable of interest. Larger rivers may require 2D 
models when the velocity has significant variations across the river or significant variations with 
depth. Lakes, bays, and estuaries require 2D or 3D models, and these can become very complicated 
for large water bodies, particularly for interactions with much larger water bodies such as the seas. 
While some models may have a full fluid dynamics equation to be solved at high resolution, many 
models are simplified by dividing the water body into compartments or segments with a value for 
level and velocity representative of the segment. An example, of this type of model was developed 
for Lake Texoma, a reservoir created by impounding the Red River, which is located between the 
states of Texas and Oklahoma (García-Iturbe 2005). GIS software (Chapter 10) is useful to display 
the results of hydrodynamics models as well as ingesting spatial data to parameterize the models

WateR Quality models

Water quality models are computer models composed of differential equations of chemical trans-
port and fate of compounds in water that are used to predict concentrations of these compounds at 
all points of a water body. A hydrodynamic model is coupled to a water quality model to be able to 
provide the driver for the advection or transport of the compounds, while chemical reactions and 
biological processes drive the fate component of the model. Long-term real-time monitoring of 
water quality plays an important role in providing these models with data for calibration and evalu-
ation. As with hydrodynamic models, water quality models can be 1D, 2D, or 3D, and the same con-
siderations we made apply to these models. In addition, a benthic or bottom layer must be included 
to predict the processes occurring at the bottom of the water body. As mentioned for hydrodynamic 
models, many water quality models are simplified by dividing the water body into compartments or 
segments with concentrations representative of the segment. An example of this type of model was 
developed for Lake Texoma, was coupled to the hydrodynamics model of the previous section and 
predicts chlorides concentration change under hypothetical scenarios (García-Iturbe 2005).

HydRoloGiCal models

Hydrological models predict runoff and drainage from a watershed based on precipitation; their 
output consists of simulated hydrographs, i.e., time series plots of flow at important points of the 
watershed, for example points where hydrometric stations can provide measured hydrographs for 
calibration and evaluation. This type of model requires parameterization based on terrain and land 
use, which is accomplished using remote sensing and GIS to capture land cover and perform ter-
rain analysis. Hydrological models can be conducted at various resolutions and approaches, ranging 
from a full raster at high-spatial resolution to a watershed divided in polygons representing homo-
geneous areas in terms of land use and terrain. Precipitation data from networks of weather stations 
around the watershed or NEXRAD data can be used to input rainfall events. In addition to water 
discharge, hydrological models may include the transport and fate of compounds that can be used to 
predict the contribution of the watershed to water quality of the receiving water body. For example, 
consider the watershed of Clear Creek that we mentioned previously as an example of a hydromet-
ric station monitoring level and flow real time. A hydrological model based on curve numbers was 
developed for a set of sub-basins and hydrographs measured at the hydrometric station used for 
calibration and comparison (Redfearn 2005).



327Water Monitoring

REMOTE SENSING OF WATER QUALITY

Remote sensing technologies are useful to monitor water quality data for all types of water bod-
ies, increasing temporal and spatial coverage. You may have noticed when we studied the remote 
sensing image of Chapter 8, how the lakes showed some differences in water in certain areas. In 
general, solar radiation reaching water bodies are subject to direct reflection from the surface and 
absorption as discussed in the earlier section on light as a function of depth. A remote sensor will 
receive reflected light from the water surface and the emergent part of the upwelling light within 
the water. Both components are affected by the water quality of water, and therefore it is possible to 
analyze an image to extract water quality characteristics. Hyperspectral data offer many possibili-
ties to extract water quality from spectral features, and with the advent of unmanned aerial vehicles, 
the capabilities of monitoring the water quality of smaller water bodies at higher resolution have 
improved. Many algorithms have been derived to infer TSS, chlorophyll-a, colored DOM, chemical 
oxygen demand, total nitrogen, and total phosphorus (Yang et al. 2022).

OCEAN MONITORING

Ocean monitoring includes temperature, salinity, sea level, and currents. Given the magnitude of 
the ocean, monitoring programs rely on multiple instruments and platforms deployed from boats, 
buoys, and floats, as well as remote sensing. In this section, we focus on monitoring ocean tem-
perature and salinity. Ocean temperature includes sea surface temperature (SST) and temperature 
profiles as a function of depth. Ocean water absorbs incident solar energy incoming from the sun in 
the shortwave ranges as well as heat or IR reradiated from the atmosphere and changes its tempera-
ture according to its heat capacity. Absorbed heat is redistributed and not all oceans increase the 
temperature in the same manner, nor is temperature evenly distributed within oceans. Differences 
in SST are important factors in climate variability such as the El Niño Southern Oscillation that 
produces either droughts or excessive rainfall in different parts of the world. Ocean temperature 
monitoring encompasses large networks of observing stations on boats, buoys, and floats, as well as 
remote sensing from satellites.

Conductivity, Temperature, and Depth (CTD) instruments provide distribution and variation of 
water temperature, salinity, and depth of the oceans, down to thousands of meters, and can be 
deployed from boats, buoys, or floats. A shipboard CTD is composed of a set of probes attached to 
a large frame lowered on a cable down to the seafloor and collecting data real-time transmitted via 
wire to a computer on the ship, which also remotely operates water sample bottles as the instrument 
ascends. Small, low-power CTDs are used on autonomous instruments like the moored profiler, 
gliders, profiling floats, and autonomous underwater vehicles (AUVs). Additional instruments asso-
ciated with the basic CTD can provide more information; for example, DO sensors, and Doppler 
current profilers that measure horizontal velocity.

Argo is a global array of thousands of free-drifting profiling floats that measure the temperature 
and salinity, at a function of depth of the upper 2 km of the ocean, allowing continuous monitor-
ing of the upper ocean. Data are transmitted from the floats wirelessly and made available near 
real-time. Deployments began in 2000 and continue today at the rate of about 800 per year (NASA 
2023a). Argo floats work on a 10-day mission cycle, spending most of the time drifting with deep 
ocean currents, taking measurements of EC, temperature, and pressure, and returning to the ocean 
surface for a brief interval where it gets location via GPS, communicates with a satellite to send its 
data. Currently, more than half of floats use GPS for position and transmit data to Iridium satellites 
which can provide data services anywhere on the Earth (Iridium 2023), thereby shortening the time 
that the float stays at the surface (Argo 2023).

An Argo float has (1) an antenna to send data, obtain the position, and receive new mission 
instructions; (2) a CTD instrument with an accuracy of 0.001ºC for temperature, 0.1 dbar for pres-
sure, and 0.001 psu for salinity. The latter calculated from conductivity, temperature, and pressure; 
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(3) a controller with a program to run the float; (4) a hydraulic pump that moves oil between an 
internal tank and an external bladder to control the buoyancy of the float; (5) batteries to power the 
pumps, sensors, controller, and communication system, and which limits the operational lifetime of 
the float (Argo 2023).

The Vital Signs web site (NASA 2023b) offers databases on ocean temperature and heat energy 
stored in the ocean in zettajoules (ZJ) or 1021 J. Measurements of December 2021 indicated 337 
zJ added since 1955 integrated over the top 2km of the ocean. Stored heat causes ocean water to 
expand, which is responsible for about 30%–50% of global sea level rise. Most of the added energy 
is stored at the surface, at a depth of zero to 700 m.

NOAA provides a daily Optimum Interpolation SST, an analysis constructed by combining 
observations from different platforms (satellites, ships, buoys, and Argo floats) on a regular global 
grid, and interpolating to fill in gaps (NOAA 2023a). Satellite data are from the Advanced Very-
High-Resolution Radiometer, which provide high temporal-spatial coverage since 1981.

GROUNDWATER MONITORING

As with surface water, groundwater monitoring may relate to quantity, represented by water levels 
and flows, and quality, related to constituents in the water. The major means of observing water lev-
els and quality is by a network of wells located in the aquifers to be monitored. Most aquifers will 
show variation in level due to pumping and recharge, while others may show a declining trend with 
time when pumping is much more significant than recharge.

Groundwater quality is related to a combination of natural factors, mostly the geologic formation 
of the aquifer, and anthropogenic activities contributing to pollution of the aquifer. Natural factors 
are related to the minerals dissolved from the rocks in the basin draining to the aquifer; for example, 
an aquifer receiving water from a watershed with an abundance of limestone, dolomite, and gypsum 
will have a high content of calcium Ca, magnesium Mg, and sulfate SO4. Anthropogenic activity 
may contribute to sodium Na, potassium K, and chloride Cl. A method used to differentiate the 
various sources of constituents in groundwater is based on the chemical ratios of constituents in the 
water. One example is SAR, which we discussed earlier in this chapter. Other ratios include Na/Cl, 
Ca/Cl, Mg/Cl, SO4/Cl, (Na + Cl)/TDS, and (Ca + Mg)/(Na + K) (Alderman 2001).

In the United States, the USGS keeps groundwater monitoring data available online (USGS 
2023d) with current conditions at selected sites based on automated recording equipment at a fixed 
interval, transmitted to the USGS every hour, and reported daily. For the sake of an example, we 
now look at site USGS 315712106361803 MBOWN-238 near Santa Teresa, New Mexico, and El 
Paso, Texas, which has water level data since June 10, 1985, and water quality data, including 
inorganics, nutrients, organics, pesticides, and radio isotopes, at selected years. One can download 
the water level time series for analysis. Figure 12.19 is a monthly average of the average water level 
showing a decreasing trend with a period of higher recharge in the early 2000s.

Also provided by the USGS, the Hydrologic Analysis Package (HASP) is an R package that can 
retrieve groundwater level and groundwater quality data from USGS, aggregate these data, plot 
them, and generate basic statistics (USGS 2023b). HASP also allows analysis of groundwater level 
trends in major aquifers. We will practice this package in the lab session companion of this chapter.

Another comprehensive source of groundwater monitoring data for the USA is the National 
Groundwater Monitoring Network (USGS 2023a) that encompasses groundwater monitoring wells 
from Federal, State, and local groundwater monitoring networks across the nation. Its data portal 
contains current and historical data, including water levels, water quality, lithology, and well con-
struction. Water level data are useful to calibrate and evaluate groundwater hydrologic models that 
predict head and flow. There is an increased recognition that monitoring and modeling the entire 
watershed by including surface hydrology in conjunction with groundwater leads to a better under-
standing of the system. The Next-Generation Water Observing System (USGS 2023c) will provide 
real-time data on water quantity and quality in a more comprehensive manner in more locations.
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AUTOREGRESSIVE ANALYSIS OF TIME SERIES

We have emphasized throughout the book the importance of time series analysis for environmental 
modeling. In this chapter, we present prediction models based on time series and regression. An 
Autoregressive (AR) process of order p, denoted AR(p), is such that

 1 21 2x t a x t a x t a x t p e tp� ( )( ) ( )( ) ( )= − + − + + − +  (12.13)

that is at time t, x(t) is a linear combination of terms x lagged up to p plus some noise (or residual 
variability) e(t). This noise is Gaussian white noise N(0, σ) and x(t) is a zero-mean process.

For example, an AR(1) process is simply

 11x t a x t e t( )( ) ( )= − +  (12.14)

Note that of course for a1 = 0, we have a white noise process, and scatter plots of lagged values would 
not indicate a potential relationship between lagged values. As an example, consider a1 = –0.5, we 
would notice a slight negative relationship for values lagged by one Δt in Figure 12.20, while no 
relationship is suggested for other lags.

The Yule-Walker (YW) equations are relationships in terms of covariance or of correlation. 
Assume ρ(h) is an autocorrelation of an AR(p) process x(t), at lag h; then the ai coefficients of the 
AR(p) satisfy the YW equations
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FIGURE 12.19 Depth to water level for well USGS 315712106361803 MBOWN-238.
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 ( ) 1 2 where 1,2, ,1 2h a h a h a p h h pp� �ρ ρ ρ ρ ( )( ) ( )= − + − + + − =  (12.15)

this is a system of p linear equations (recall that autocorrelation is even, ( ) ( )k kρ ρ= − )
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Which we write in matrix form (recall that 0 1ρ( ) = )
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FIGURE 12.20 AR(1) lagged scatter plots for a1 = –0.5.
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Or for short using vector and matrix notation

 ρρ ΦΦ= a  (12.18)

Matrix ΦΦ  is symmetric and has an inverse. Therefore, we can solve for coefficients ΦΦ ρρ= −1a .
For illustration, when AR(1) there is only one equation with an obvious solution

 (1) 1aρ =  (12.19)

For example, consider the series in Figure 12.21, the autocorrelation at lag 1 is ρ(1) = –0.48 and 
relatively smaller for higher lags. Thus, we could model the series as AR(1), then solving Equation 
(12.19), we have (1) 0.481a ρ= = − .

Increasing p from 1 to 2 we now have an AR(2)
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FIGURE 12.21 AR(1) Estimating coefficients from autocorrelation.
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 1 21 2x t a x t a x t e t( ) ( )( ) ( )= − + − +  (12.20)

And the YW equations would be
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Consider Figure 12.22, assume AR(2) and use the correlation values 0.3923 and –0.2735 to substi-
tute in Equation (12.21)
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Solving this equation yields 0.59 and 0.511 2a a= = − . Note that we decided to ignore the correlation 
at lag = 3. This series could be modeled as AR(3) by solving one more equation. An important ques-
tion is then how to identify the order p of the AR(p).

The partial autocorrelation function (PACF) is the ACF truncated after lag p (Box and Jenkins 
1976). Partial autocorrelation is obtained by recursion: fit AR(p) models successively from p = 1 to 
the maximum lag solving the YW equations. The structure of the equations makes them solvable 
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FIGURE 12.22 AR(2) Estimating coefficients from autocorrelation.
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by a recursive method. For each step in the recursion, keep the pth coefficient. We try several values 
of p until the partial autocorrelation value for the next p is very low or within a confidence interval. 
For example, the AR(2) process estimated above yields PACF 0.39 and -0.51 which correspond to 
the ACF at lag 1 and the a2 estimated by solving YW shown in equation (12.22).

For evaluation, consider that the residual time series should behave like Gaussian white noise; 
red flags to look for are outliers, trends, and drift. A handy tool to check that the residuals behave 
like white noise is to do an autocorrelation of the residuals. All spikes except lag=0 should be within 
the confidence interval. To identify the order p, we can use the Akaike Information Criterion (AIC) 
already studied in previous chapters. Its objective is to balance the reduction of estimated error vari-
ance with the number of estimated parameters; this is accomplished by minimizing

 log~ 22AIC p pXσ( )( ) +  (12.23)

Figure 12.23 illustrates the results for the simple example just discussed. We can see the plot of 
PACF with only two prominent spikes (top left panel), the AIC plot dropping to zero at p = 3 (top 
right panel), and the Gaussian noise behavior of the residuals (bottom panels). In the lab session, we 
will learn how to employ these techniques for a general value of p.

We use this model to forecast 10 days ahead from day 50 of the data series and calculate upper 
and lower limits based on the double of the standard error. Figure 12.24 shows the results where we 
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FIGURE 12.23 Results of AR(2): PACF, AIC, residual, and its ACF.
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plot the forecast together with the existing values in the interval 50–60 to evaluate the prediction. 
You can see that the mean of the prediction follows the general pattern of the data.

As an application example, we take the time series of groundwater levels discussed in the pre-
vious section, use the monthly average, calibrate an AR model that yields 11 coefficients, select a 
segment for prediction and one for testing, and compare the predictions to the existing test data. The 
result is shown in Figure 12.25 that can be interpreted in a similar manner to the previous figure.
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EXERCISES

Exercise 12.1

Assume we have an acoustic water level sensor looking at the surface of a stream from a height 
of 6 m above the streambed. Assume that the speed of sound in dry air is v a Ts = + ×331.4  m/s 

where T is the air temperature in °C, and a = 0.6
m/s
°C

. At time 16:00:00, the sound travel time of 

the sound wave is 20 ms, the air temperature is 5°C, and RH is almost 0. Calculate water level or 
stream height at 16:00:00.

Exercise 12.2

Suppose we measure EC 800 µS/cm at 30°C. Assume that the temperature coefficient is 0.020 
1/°C. What would be the reference conductivity at 25°C?

Exercise 12.3

Suppose we measure EC 800 µS/cm at 25°C. What would be the corresponding TDS on a 500 scale.

Exercise 12.4

Suppose water analysis of well water yields sodium 359 mg/L, calcium 301 mg/L, and magnesium 
187 mg/L. What is the SAR?

Exercise 12.5

Visit the Vital Signs web site and explore the data offered for the increase of heat energy in ZJ as a 
function of time. Calculate an approximate rate of increase for three periods in the curve.

Exercise 12.6

Consider the graph of Figure 12.19 and calculate an approximate overall rate at which level is 
decreasing since the 2000s.

Exercise 12.7

Write the YW equation for an AR(3) process.
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13 Terrestrial Ecosystems 
Monitoring

INTRODUCTION

This chapter is devoted to monitoring a variety of characteristics and processes in terrestrial eco-
systems, including the vadose zone (i.e., the terrestrial subsurface from the surface to the ground-
water table, including the soil) and vegetation. We already covered surface water and groundwater 
in Chapter 12, and we postpone discussion of terrestrial animals to Chapter 14. After discussing 
soil monitoring, we will focus on those variables related to plant productivity together with water 
use, gas fluxes, and relationships with environmental factors, including evapotranspiration models. 
Plant productivity and leaf area are described at several scales from plant to canopy. We also dis-
cuss ground penetrating radar, lysimeters, and remote sensing. This chapter ends with an overview 
of remote sensing applications to terrestrial systems, emphasizing vegetation and soil moisture. 
Although the sensor material is presented thinking of natural environments, some of the techniques 
contained here are applicable as well to greenhouses, nurseries, or plantations. These concepts are 
further elaborated by computer exercises in Lab 13 of the companion Lab Manual (Acevedo 2024).

SOIL MOISTURE

Measuring water content in the soil by electronic devices is based on soil electrical properties, such 
as dielectric constant (i.e., relative permittivity) which has been shown to be an effective estimator 
of soil moisture, and several techniques are used to relate the response of an electric circuit to rela-
tive permittivity (Robinson et al. 1998, 1999). Among these techniques, time domain reflectometry 
(TDR) (Kelleners et al. 2005; Kallioras et al. 2016; Robinson et al. 1999) and capacitance probes 
(Robinson et al. 1998, 1999; Fares et al. 2009; Kargas and Soulis 2012) are prevalent soil relative 
permittivity sensors.

tdR

We mentioned in Chapter 4 that the dielectric properties of soil vary with soil water content, this 
principle is used in TDR to measure soil moisture (Nielsen et al. 1995; Jones et al. 2002) by relating 
waveform properties of an electromagnetic (EM) pulse in the microwave range (2–3 GHz) injected 
to a waveguide (steel rods) inserted into the soil (Figure 13.1). The waveguide is an extension of a 
coaxial cable; one rod connects to the wire inside the coaxial cable and the other to the cable shield 
(Figure 13.2).

Pulse wave velocity depends on the soil dielectric properties and therefore, the travel time of 
the reflected signal from the open end of the waveguide depends on soil water content. Increased 
moisture increases permittivity, and this translates into an increase in travel time. A microcontroller 
infers travel time from the waveform making it amenable for datalogging and real-time continuous 
monitoring. The travel time Tp is related to the pulse velocity Vp and the travel path length given by 
twice the length Lp of the waveguide

 V
L

T
p

p

p

= 2
 (13.1)
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The velocity of the received reflected pulse Vp is related to permittivity by

 V
c

p
r rε µ

=  (13.2)

where c is the speed of light, εr and µr are the relative electrical permittivity and magnetic perme-
ability of the soil, respectively. Relative magnetic permeability µr of soil is equal to 1 since typically 
there is no presence of magnetic material. Therefore, from equations (13.2) and (13.1), once we 
measure Tp, we get permittivity from
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FIGURE 13.2 TDR probe: from coaxial cable to waveguide.

cable

pulse
travel

cable

waveguides

FIGURE 13.1 TDR probe to measure soil moisture.
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Permittivity is a complex number, i.e., it has real and imaginary parts, and the above value is just 
the real part. The imaginary part is proportional to the soil conductivity and inversely proportional 
to frequency. Thus, it is only relevant for high values of soil conductivity; furthermore, the probe 
minimizes its effect by using high pulse frequency (greater than 3 GHz).

Once we estimate permittivity by Equation (13.3), we relate water content to the permittivity by 
using one of several equations proposed in the literature. Although manufacturers provide a generic 
calibration curve relating dielectric constant to moisture, calibration may be required for specific 
soil types and conditions. Likewise, deployment may be more difficult for some soil conditions, 
since this probe requires direct contact between the waveguide rods and the soil; for example, we 
need to make sure that there is no air in between the rods and the soil. The TDR probes provide 
a local measurement of soil moisture because their zone of influence is small (in order of inches). 
Therefore, we must use several probes to obtain a soil moisture profile (Greco and Guida 2008), or 
a more global view of soil moisture conditions (Figure 13.3).

CapaCitanCe pRobes

Capacitance probes are less expensive than TDR probes; therefore, they have become popular 
for developing low-cost soil moisture sensor systems (Fares et al. 2011; Kargas and Soulis 2012; 
Visconti et al. 2014). Typically, the output of an off-the-shelf capacitance probe requires only a low 
DC excitation voltage (e.g., 2–5 V), producing a signal in the order of mV, which can be converted to 
a digital value and calibrated to soil moisture, as volumetric water content (VWC) for various soil 
types. Out of several off-the-shelf capacitance probes, the Decagon’s electrical conductivity (EC)-5 
probes are widely used (METER 2020), while Campbell Scientific TDR devices are commonly 
installed in weather and soil monitoring stations (Campbell Scientific Inc. 2020a) and also inte-
grated as portable handheld units such as the HS-2 Hydrosense II (Campbell Scientific Inc. 2020b). 
Calibration equations are developed by experiments collecting voltage output concurrently with soil 
moisture obtained from a controlled experiment measuring water content by weight.

SOIL TENSION: TENSIOMETER

A tensiometer transducer is based on a bridge circuit with strain gages or piezoresistive sensors. 
Examples are UMS (Cobos 2007) and TEROS 31 Tensiometers (Meter 2022). The UMS Tensiometer 

Soil

Probes
at

various
depths

FIGURE 13.3 Obtaining a profile of soil moisture using sondes at various depths.
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(Figure 13.4) uses a thin wafer piezoresistive pressure sensor to measure soil water tension; the sen-
sor resistance changes when deformed by the pressure difference of water tension and atmosphere. 
The signal is obtained placing the sensor in a Wheatstone full bridge (Cobos 2007).

INFILTROMETERS

An important process determining soil moisture dynamics is the hydraulic properties of soil con-
trolling how fast water goes into the soil or infiltration rate and therefore becomes an important 
factor in terrestrial ecosystems. Infiltration rate changes as a function of soil water content. An 
important condition to establish infiltration rate is the hydraulic conductivity when the soil is satu-
rated, denoted by Ks or Ksat.

An infiltrometer is an apparatus to perform this measurement by using the rate of change of water 
level in a reservoir that provides water to the soil. Simultaneously, it monitors the VWC of the soil 
to perform a balance. The simplest design is a single-ring infiltrometer, which consists of partially 
inserting a ring in the soil (Reynolds and Elrick 1990; Prieksat et al. 1992). The ring will hold pon-
ded water acting as an open reservoir (Figure 13.5). We can operate it a constant head, i.e., constant 
water level, or at falling head, i.e., decreasing water level. In the former, infiltration rate is the rate 
at which we must supply water to keep the level constant, which is a process that can be automated 
using the water level sensor to control a valve to supply water as the head tries to decrease. When 
operating at falling head, infiltration rate is the rate of water level decrease.

A double-ring infiltrometer (Touma and Albergel 1992) adds a second ring, larger and concentric 
to the measuring ring, to reduce the effect of lateral movement of water (Figure 13.6). The water 
flow from the inner ring to the soil would then be mostly vertical. This infiltrometer can also be used 
at constant head or falling head.

A more sophisticated design is a disk infiltrometer (Angulo-Jaramillo et al. 2000), which has 
a Mariotte column to serve as a reservoir and a disk to make good contact between the water 
in the column and the surface of the soil (Figure 13.7). We can use various types of sensors to 
monitor water level in the column and soil water content. For example, we can use TDR to measure 
soil water content and a resistance-based level sensor to measure water in the reservoir, or TDR for 
both, water level and soil content (Moret et al. 2004).

Once we collect data, it can be processed by a variety of software tools and inform models of 
soil water dynamics (Ankeny et al. 1993; Lepore et al. 2009; Chen 2008). Flow sensors, peristaltic 
pumps, capacitance probes, and air pressure control can be used as the basis of building a con-
tinuous automated infiltrometer capable of producing variable hydraulic head conditions without 

FIGURE 13.4 UMS Tensiometer.
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requiring user intervention (Wacker et al. 2013). Such a device enables to run multiple infiltrometers 
getting a better quantification of spatial variability. 

SOIL EC

In addition to soil moisture, it is of great interest to measure soil EC because it provides an estimate 
of soil salinity as discussed in Chapter 12, and of course EC must be accompanied by sensing tem-
perature so that we can properly correct EC for temperature. Examples are the TEROS 12 that is a 
transducer equipped with an SDI-12 interface and the JXBS-3001-EC which interfaces with other 
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FIGURE 13.6 Double-ring infiltrometer with sensors to monitor water level change and soil moisture.
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FIGURE 13.5 Single-ring infiltrometer with sensors to monitor water level change and soil moisture.
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sensors and dataloggers using RS-485. We described these sensors in Chapter 5 in the context of 
interfaces and presented an example of using the JXBS-3001-EC in a WSN in Chapter 6.

To further illustrate the use of TEROS 12, consider Figure 13.8 that shows VWC, temperature, 
and EC, measured by a TEROS 12 with address “A” buried at 6 inches below the surface in an 
agronomic experimental plot irrigated with brackish groundwater of ~1600 µS/cm. The spikes in 
VWC and EC correspond to irrigation events, the oscillation of temperature corresponds to the 
diurnal cycle of insolation. This sensor “A” is part of a network of 16 TEROS 12 sensors, installed 
one in each of 16 plots, treated with either well water or desalinated water, and amended or not by 
compost inoculation. This 16-sensor network is divided in 8 clusters of 2 sensors each to facilitate 
troubleshooting in the field. A Python program running on a Raspberry Pi collects data from the 
sensor network and creates a datalog file that is processed by an R script to produce graphs like 
Figure 13.8. This network is deployed at the Brackish Groundwater National Desalination Research 
Facility (Alamogordo, NM) and is part of a project aiming to improve crop yield and soil salinity 
funded by the INFEWS (Innovations at the Nexus of Food, Energy and Water Systems) program of 
the National Science Foundation and US Department of Agriculture.

EVAPOTRANSPIRATION

Soil water balance for a terrestrial ecosystem is determined by input from precipitation and demand 
from evapotranspiration (ET). This last term is a combination of evaporation and transpiration by 
plants. Evaporation occurs from surface water, soil surface, or water intercepted from rain by the 
canopy. Transpiration by plants draws water from the soil and thus ET represents a demand for soil 
water, which becomes part of water balance for a terrestrial ecosystem. The actual ET is a fraction 
of the potential ET (PET) demand estimated from weather conditions, because the soil may not 
have enough moisture to supply the PET.

A reference ET, denoted by ET0, is calculated by combining several variables: air temperature, 
solar radiation, relative humidity (RH), and wind speed. These are variables typically measured by 
a weather station (Chapter 11). There are several models to calculate ET0. For example, the Penman 
method requires solar radiation, air temperature, wind speed, and RH as inputs. It assumes that the 
total evaporation is due to two terms: an energy term (driven by net solar radiation) and an aerody-
namic term (driven by wind speed and RH). Air temperature affects both terms.

Water level
sensor

Data
logger

Water level

Water
supply

Air

Soil moisture
sensor

Soil

ValveBubbler
Water

Disc

FIGURE 13.7 Disk infiltrometer using a Mariotte column as a reservoir and sensors to monitor water level 
in reservoir and soil water content.
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We will study the Penman-Monteith equation following calculations based on the Food and 
Agriculture Organization (FAO) method, as described for example in Chapter 4 of Allen et al. 
(1998). Applying the Penman-Monteith method requires solar radiation, air temperature, wind 
speed, and RH as inputs. It assumes that the total evaporation is due to two terms: an energy term 
(driven by net solar radiation) and an aerodynamic term (driven by wind speed and RH). Air tem-
perature affects both terms. The equation can be applied in several time scales; in the following, we 
calculate hourly values in mm/h.

The forcing weather variables are hourly values of T average air temperature in °C, Q total solar 
energy radiation in MJm-2, average RH (%), average P barometric pressure in kPa, and average u wind 
speed at a height of 2 m in m/s. It requires values for α = surface albedo, which is about 0.23 for veg-
etation. Recall that Pa and mbar are units of pressure and are related by 1000 mbar = 1bar = 100 kPa.

Water vapor pressure at saturation in kPa as a function of T in °C

 ( ) 0.6108 exp
17.27

237.3
e T

T
T

s = × ×
+






 (13.4)

Vapor pressure is a fraction RH/100 of the vapor pressure at saturation,

 ( , , )
( , )

100
e T P RH

e T P RHs=  (13.5)

Using this estimate and air temperature allows to calculate the slope of saturation vapor pressure 
curve (kPa/°C)
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FIGURE 13.8 Example of VWC, temperature (in °C), and EC (in µS/cm) measurements using a TEROS 12 
node part of a network.
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 (13.6)

The γ = psychrometric constant (kPa/°C) is a function of P = barometric pressure in kPa, cp = spe-
cific heat capacity of the air at constant pressure, latent heat of vaporization, and molecular ratio 
of wet and dry air. For simplicity, we assume that the psychrometric constant be approximated by

 0.7 10 3 P�γ × −  (13.7)

Net radiation (MJm-2) is incoming radiation (discounting reflected radiation given by albedo).

 (1 )R Qn α= −  (13.8)

Aerodynamic resistance (s/m) is a function of wind speed at a height of z = 2 m, but here, we will use 
a factor, where 37 would be replaced by 900 if calculating daily

 ( )
37

273
f u

T
u=

+
 (13.9)

Latent heat of vaporization in MJ/kg will be simplified to

 ( ) 2.5 0.0022L T T= − ×  (13.10)

Now we combine radiation and aerodynamic terms using weighting factors for each,

 ( )
( )

( ) (1 0.34 )
W T

T
T u

R γ
= ∆

∆ + × −
 (13.11)
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( ) (1 0.34 )

W T
T u
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γ

γ
=
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 (13.12)

Using G = soil heat-flux the contribution from radiation is

 
( )

( )E
R G
L T

W Tr
n

R= −
 (13.13)

and from aerodynamics is

 ( )( ) ( )E f u es e W Ta A= −  (13.14)

after adding up, we get ET0

 0ET E Er a= +  (13.15)
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The ET0 reference values are adjusted by a crop coefficient in order to estimate ET specific to the 
crop cover. Given the importance of ET for agriculture, many meteorological networks report esti-
mates of ET0 along with weather variables and crop coefficients. For example visit websites man-
aged by Colorado State University (2023).

SAP FLOW

Sap flow sensors measure water consumption by plants. These are energy balance sensors that mea-
sure the heat carried by the sap, which is converted into sap flow in grams per hour based on heat 
convection principles. The sensors are non-intrusive if the plants heat up only by a small amount 
(~1°C). This sensing technology allows to measure water use by plants of agricultural, economic, 
and ecological importance. To accommodate a variety of applications, sap flow sensors come in sev-
eral sizes, adapted to stems and trunks (Figure 13.9). Examples are sap flow sensors by Dynamax, 
which has a full range of sensors from 2 up to 125 mm (DYNAMAX 2014).

Electrical power input Pin (in W) balances with tissue heat flow Qv in the vertical direction, heat 
flow Qr in the radial direction, and by heat convection Qf by the sap flow

 Q P Q Qf in v r= − −  (13.16)

if we can determine Qf from measurements and physical principles, then sap flow rate qs (in g/s) 
would be calculated as

 q
Q

C dT
s

f

p

=
×

 (13.17)

where Cp is the specific heat of water and dT is measured by thermocouples. In order to determine 
Qf, we would need to determine Qv and Qr from geometry, thermal gradients, and tissue thermal 
conductivity. This is difficult for large diameter and an open stem environment, but more feasible 
for thin stems and by isolating the stem into a closed compartment (Herzog et al. 1997).

Other methods are based on estimating sap-flux density (cm3 cm-2 h-1), either by continuous 
heating (such as the thermal dissipation and heat field deformation methods) or by heat pulses 
(Vandegehuchte and Steppe 2013). Water content and tissue thermal properties are assumed con-
stants, however these may vary and therefore generate difficulty in the estimation of sap-flow den-
sity (Lopez-Bernal et al. 2014; Vergeynst et al. 2014).

LYSIMETERS

In its basic form, a lysimeter is an instrument designed to measure water movement in the vadose 
zone and has been expanded to include monitoring of other variables, including ET, nutrients and 
leachates, and contaminants. Therefore, there are several types of lysimeters, such as weighing, 
drainage, percolation, sampling, and pan lysimeters. We will discuss just a couple of these. Long-
term data from lysimeters contribute to understand soil water and temperature dynamics of great 
value for agriculture (Seyfried et al. 2001).

A weighing lysimeter is a contained parcel of soil sitting on a weigh scale that measures the total 
water balance (input minus output) by the change in weight over time. The amount of soil on top of 
the scale and the desired accuracy of weight determine the complexity of the lysimeter. Some lysim-
eters contain a relatively small amount of soil (e.g., 0.25 m2 of area and 0.35 m of depth) and can be 
installed temporarily at different field sites, e.g., Freebairn et al. (1986), whereas others have a very 
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large amount of soil, are permanently installed at a site, and have underground access for operation 
and maintenance, e.g., Andales et al. (2018).

Drainage lysimeters measure the water exiting the soil profile and allow to measure nutrients, 
salts, or contaminants, leached with that water. They work by collecting the water that infiltrates 
the soil by a divergence control tube and a wick and storing it into a reservoir that stores the water 
until its volume is measured and the water is analyzed for chemical constituents, thus water flow 
and chemical flux are determined.

PRODUCTIVITY

In this section we describe methods to estimate primary productivity based on gas flux, which can 
be employed at the leaf level and the canopy level.

Gas exCHanGe

Measuring gas exchange allows to measure photosynthesis of individual leaves, whole plants, or 
even plant canopies. Gas exchange is a direct measure of net rate of photosynthetic carbon assimila-
tion and is instantaneous and non-destructive. At the leaf level, CO2 exchange systems can be closed 
or open. In closed systems, we place the leaf entirely in a closed transparent chamber, whereas in 
an open system, we partially cover the leaf by the chamber. The latter is the more common method 
now employed. The rate of CO2 fixed by the leaf is given by the change in the CO2 concentration of 
the chamber’s airflow. Due to the low values of ambient atmospheric CO2 concentration (~400 ppm), 
its measurement requires sensitive sensors.

We already explained in Chapter 12 some of the methods available to measure the concentration 
of gases in atmospheric air. Recall that CO2 absorbs in the infrared (IR) wavelength range and we 
can use absorption spectroscopy to measure CO2 concentration. In photosynthetic applications, we 
need to correct for water vapor presence (which also absorbs IR) by drying the air or by measuring 
vapor separately for correction.

CHloRopHyll fluoResCenCe Combined WitH Gas exCHanGe

Fluorescence techniques allow the measurement of how absorbed light is actually used within the 
leaf. At this time, we need to review that photosynthesis entails two major processes: firstly, light 

Plant
Stem

Heater Pin

dT

Qv

Qr

Th
er

m
oc

ou
pl

es

FIGURE 13.9 Sap-flow sensor.
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energy is converted to chemical energy by electron transport; secondly, CO2 is taken from the air 
and assimilated. The first process encompasses the light reactions, and the second one consists of 
the Calvin reactions. Fluorescence, in combination with gas exchange applied to the same portion of 
a leaf, allows to determine quantum or light efficiency ψ of each one of these processes, i.e., electron 
transport ψPSII and quantum efficiency of carbon assimilation ψCO2.

When both efficiencies match, we conclude that most of the chemical energy produced by the 
light reactions goes to CO2 assimilation; however, a larger difference indicates that some of the 
energy produced goes into other processes different from assimilating CO2.

Canopy Gas exCHanGe

Once we measure leaf gas exchange, we can extrapolate to the canopy level using models. However, 
it is also possible to measure gas exchange of the entire canopy to estimate the instantaneous 
 productivity of a plant community. Flux of CO2 is a measure of ecosystem metabolism and a key 
to understand the relationship between these ecosystems and climate. A chamber is placed over the 
canopy to monitor CO2 flux. However, the chamber itself affects canopy conditions, since it alters 
air temperature, wind speed conditions, and radiation balance.

miCRometeoRoloGiCal flux measuRements

We can avoid the potentially problematic effects of closing the canopy by estimating fluxes in the 
open canopy based on micrometeorological measurements. An often used method is eddy  covariance 
(Baldocchi 2014), which allows to estimate net ecosystem exchange by continuous high-frequency 
measurements of fluxes of CO2, water, and energy (Xiao et al. 2014).

CoVaRianCe: a ReVieW of basiC ConCepts

In its simplest case, we can calculate the relationship between two variables. i.e., bivariate. Suppose 
we have two random variables X and Y. Each one of these variables has first and second moments 
(mean and variance). Covariance is the joint variation or the expected value of the product of the 
two variables, where each one is centered at the mean. This is to say

 cov( , ) [( )( )]X Y E X YX Yµ µ= − −  (13.18)

As given here, this is a population concept since the expectation operator implies using the distribu-
tion of the product (Acevedo 2013). Therefore, we require the joint probability density function of X 
and Y. When applying the same idea to a sample xi, yi of size n leads to sample covariance

 cov( , )
1

1
1

X Y
n

x X y Yi

i

n

i∑( )( )=
−

− −
=

 (13.19)

When we have two time series X(t) and Y(t), we extend this concept to

 ( ) ( )
1

( ) ( )
0

X t Y t
T

X t X Y t Y dt

T

∫[ ][ ]= − −  (13.20)
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where the triangular braces X  indicates time average or the integral of the series over a given 
period T divided by the integration period.

eddy CoVaRianCe

Eddy covariance allows to measure vertical turbulent fluxes within atmospheric boundary layers 
by combining high-frequency measurement of the wind field and atmospheric gas (Figure 13.10). 
A sonic anemometer measures the wind field (see Chapter 12), while simultaneously a gas analyzer 
measures the gas concentration (see Chapter 12). These two instruments are mounted together in 
proximity on a tower. The method of eddy covariance is general and thus can be applied to monitor 
fluxes of water vapor, momentum, heat, and methane. A similar technique is used underwater to 
measure flux from the seafloor in benthic systems. The flux footprint is the area around the tower 
that generates the upwind field that applies to the measured flux. The fetch is the distance from the 
tower that determines this area.

You can think of turbulent airflow as a combination of multiple rotating eddies of various sizes 
and having horizontal and vertical components. The eddy covariance method attempts to measure 
net vertical movement from the tower (Figure 13.11). At time t, an eddy moves a parcel of air down 
at the speed W(t). Then, at time t + dt, an eddy moves a parcel up at the speed W(t + dt). Assume that 
each parcel of air has a gas concentration, pressure, temperature, and humidity. If we know these 
variables, along with the wind speed, then we can determine the flux (Burba 2013). For example, 
vertical flux of water vapor would be determined by vapor concentration X in the eddies; using how 
much goes down X(t) at t and how much goes up X(t + dt) at t + dt. So, vertical flux is estimated by 
the covariance cov(W, X) of the vertical wind velocity W(t) and the concentration X(t) of the entity 
of interest. The instruments used should detect very small changes at high frequency (in a meteoro-
logical scale), ranging from minimum of 5 to 40 Hz.

Using the mixing ratio of density of substance to density of air ρ ρ=( ) ( / )X t x a  the flux F is the 
time average of ( ) ( ) ( ) ( ) ( )t W t X t t W ta xρ ρ= , in other words

 ( ) ( ) ( )F t W t X taρ=  (13.21)

Now, using decomposition of W(t) and X(t) in terms of means W , Y  and deviations with respect 
to the mean ( ) ( )w t W t W= −  and ( ) ( )x t X t X= −  a series of assumptions discussed below, this 
equation is simplified to
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FIGURE 13.10 Open canopy gas exchange: eddy covariance.
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 ( ) ( ) ( )F t w t x taρ≈  (13.22)

which means that flux is approximately proportional to the covariance of the deviations w(t) and y(t).
To arrive at this expression, the eddy covariance method uses several assumptions, including: 

the measurements represent an upwind area inside the boundary layer of interest, flux footprint is 
adequate, flux is turbulent with zero average fluctuations, density fluctuations are negligible, conver-
gence or divergence are negligible, the terrain is horizontal, and its cover is uniform (Burba 2013).

Implementing this method requires synchronization of the gas analyzer and anemometer output, 
air density corrections, and software to compute the covariance. Open source options are available, 
such as EddyPro (LI-COR 2015).

Open-path methane gas analyzers are used in eddy covariance systems to measure methane 
emissions from ecosystems (Detto et al. 2011). The open-path system appears more versatile for 
unattended stations. Synchronization between wind speed and methane data and air density correc-
tions have impacts on the computed covariance. These systems require intensive data processing.

Flux measurement is an area where networks are making considerable effort to standardize and 
unify technical approaches. For example, FLUXNET (ORNL DAAC 2015), AmeriFlux (US DOE 
2015), ICOS (ICOS 2015), iLEAPS (iLEAPS 2015), and NEON (NEON 2015).

TREE GROWTH, DENDROMETERS

A dendrometer is a device that measures the growth and size of plant stems. This instrument allows 
monitoring changes of diameter over time. In its simplest form, we attach it to the stem and record 
changes over time by reading the scale. For automated electronic recording, we can install a full-
bridge strain gage attached to a flexible arm. The output signal from the bridge would be low (mil-
livolts) and requires conditioning. Once conditioned, we can record in real time by a datalogger. 
Applications of dendrometers include monitoring tree stands and testing plants under a variety 
of conditions, such as water stress, elevated ozone, and other atmospheric pollutants. The device 
requires temperature compensation, calibration parameters, and zero offset. These parameters 
and computations are loaded to the datalogger. For examples, see the DEX series of Dynamax 
(DYNAMAX 2014).

LEAF AREA

In this section, we study leaf area, its role to determine light capture by canopies, and its relation-
ships with gas exchange, energy, and photosynthesis in terrestrial ecosystems. Instead of absolute 
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FIGURE 13.11 Schematic representation of airflow with eddy components.
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leaf area, it is common to work with the Leaf Area Index (LAI) in m2/m2 representing how much 
leaf area in m2 corresponds to 1 m2 of area on the ground.

Our starting point to understand light interception by canopies is the Beer-Lambert law, which 
predicts sunlight transmission through a canopy. Assume that layer of leaves absorbs solar radiation 
I uniformly, and that a layer at height h in the canopy has LAI l(h). The rate of light extinction is

 
( )

( ) ( )
dI h

dh
k l h I h= × ×  (13.23)

where I(h) = solar radiation at height h (W/m2), h = height with respect to ground level (m), and k 
is a constant to adjust units; because LAI is a dimensional, k should be 1/m. Besides determining 
light interception by canopies, LAI participates in regulating carbon dioxide, water, and energy 
exchanges between plants and atmosphere (Ryu et al. 2012).

Moving I(h) to the denominator of the left-hand side and dh to the numerator of the right-hand 

side 
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( )

( )
dI h
I h
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where s > h is used for all heights above h. The integral of LAI is denoted by lh.
Many canopy models calculate light extinction adding leaf area for all trees higher than h, 

thereby approximating the integral. A hypothetical special case is when leaf area is constant for all 
h and equal to la, i.e., a vertically homogeneous canopy above h, 
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= − . (13.25)

leaf leVel

We can measure leaf size of individual leaves using a portable scanner and measuring length, width, 
perimeter, and geometrical features. Specific hardware and software add capabilities to a basic 
scanner to make it a leaf area meter. An example is the CI-203 Handheld Laser Leaf Area Meter 
(CID-Bioscience 2015) (Figure 13.12). These measurements are time stamped by an RTC and geo-
referenced by GPS. For example, the data below are a segment of a data file obtained by a CI-203.

FIGURE 13.12 Leaf size measurements by portable scanners.
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Measurements of leaf size could accompany the measurements of leaf weight and of photosynthesis 
at leaf levels using gas exchange. To scale up from leaf to canopy, the challenge is then to integrate 
these detailed measures of individual leaf size to layers in the canopy. For this purpose, we sample 
the layers to estimate the number of leaves of the various species considered.

Canopy analyzeR

A common method to estimate LAI is by optical means, such as upward-pointing digital hemi-
spheric and wide angle photographs as illustrated in Figure 13.13 (Acevedo et al. 2003). Image 
analysis is embedded in Plant Canopy Analyzers, e.g., LAI-2200 by LI-COR, or CI-110 by CID 
(CID-Bioscience 2022a). The latter combines hemispherical canopy photography and image analy-
sis with light measurement to calculate LAI and other canopy parameters (Figure 13.14). For moni-
toring purposes, the methods we have mentioned so far require regular field visits to measure LAI. 
This approach is of course labor-intensive and has coarse temporal frequency, and we may miss 
phenological and disturbance events.

An alternative is to combine upward-pointing digital cameras with electronic processing to mon-
itor changes in LAI continuously and obtain seasonal dynamics (Ryu et al. 2012). A camera would 
point toward the zenith and a program would identify pixels as gap (sky) or cover (vegetation). With 
these data, we can calculate gap fraction (Welles and Cohen 1996), LAI, and clumping index. The 

      Date     Time     Area   Length    Width    Perim   Factor    
Ratio Void          Lat          Lon          Alt

04/24/2013 22:36:03     6.70,    4.66,    2.29,   12.47,    2.04,    
0.54,   1,  3322.7243N, 09701.0783W, 194.0M
04/24/2013 22:41:55     8.72,    4.40,    2.90,   13.42,    1.52,    
0.61,   3,  3322.7276N, 09701.0790W, 206.8M
04/24/2013 22:43:05     7.42,    5.79,    2.33,   13.74,    2.48,    
0.49,   0,  3322.7283N, 09701.0768W, 204.7M
04/24/2013 22:46:29     9.02,    5.62,    2.53,   13.17,    2.22,    
0.65,   0,  3322.7286N, 09701.0755W, 198.1M
04/24/2013 22:49:38    28.76,    7.99,    6.16,   28.86,    1.30,    
0.43,   4,  3322.7284N, 09701.0771W,199.8M

FIGURE 13.13 Example of upward-pointing photographs in a tropical cloud forest (Acevedo et al. 2003).
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clumping index indicates departures from random distribution of foliage areas and can be used to 
correct the estimation of LAI. All cover pixels in the image give plant area index (PAI) instead of 
LAI because it includes woody contribution of branches and trunks. Thus, there is a need to convert 
PAI to LAI.

SOLAR RADIATION AND SPECTRAL MEASUREMENTS

We introduced pyranometers and net radiometers in Chapter 11, and quantum sensors in Chapter 12.  
These sensors have application to monitor solar radiation in terrestrial environments to relate its 
measurements to ET processes, and to photosynthesis.

For example, differences in canopy and understory light conditions are fundamental factors in 
forest dynamics. Differences in solar radiation from the ground to the top of the canopy are deter-
mined in part by the optical properties of the leaves, that is, absorption, reflection, and transmission 
of light. As described in Acevedo et al. (2001), at a point in the understory, light depends on a com-
bination of (1) light coming directly through canopy gaps, (2) light reflected by leaves, tree branches 
and trunks, and epiphytes, and (3) light transmitted through the leaves (Figure 13.15). These may 
change with layers in the canopy.

A commonly used measure of the radiation field is the proportion of area occupied by canopy 
gaps and its geometry. This measure has importance in determining light environment, predicting 
light available for photosynthesis, and estimations of LAI.

Light spectral characteristics constitute a determinant factor in many biological processes. A 
portable fiber-optic-based spectrometer can be used in a variety of ways to monitor light quality in a 
forest environment. For example, take a spectrometer as described in Chapter 11, designed to mea-
sure the spectrum between the ultraviolet and the near IR (NIR), in a range of 200–850 nm, using 
an array of 2048 diodes with an aperture slit of 100 µm. The dispersion is (850–200)/2048 = 0.32 
nm/diode, with a resolution of 12 × 0.32 = 3.8 nm (FWHM).

For canopy measurements (Acevedo et al. 2003), one fiber collects light incident to the canopy by 
placing it in the open (reference spectrum) and the other collects light in the understory environment 
(sample spectrum). For leaf measurements (Acevedo and Ataroff 2012), two optical fibers conduct 
reflected and transmitted light from the leaf to a spectrometer. The fiber end to measure reflectance 
looks at the leaf upper surface and the one for transmittance is placed near the lower surface of the 
leaf. The other end of each fiber connects to an optical switch that allows blocking light to obtain 
dark response, which is subtracted from the signals to correct for electronic noise of the instrument. 

FIGURE 13.14 Left: example of image captured by canopy analyzer in an open canopy oak-elm forest. 
Right: example of canopy analyzer, CI-110 by CID Biosciences.
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Signals are analyzed in a range (400–750 nm) of interest in photosynthesis and plant responses to 
far-red light.

Spectral signals, reference (lamp) as well as reflected and transmitted, are smoothed and divided 
into the reference signal to obtain ratios of reflectance R(λ) and transmittance T(λ) as functions 
of wavelength λ (Acevedo and Ataroff 2012). Absorbance A(λ) for each leaf is calculated as 

( ) 1 ( ) ( )A R Tλ λ λ= − − . As an example, Figure 13.16 shows these signals for leaves of tree species in 
the canopy, sub-canopy, and understory.

Variables can be extracted from the spectrum, some of them correspond to averages over wide 
wavelength bands and other are averages over a narrow band. For example, the contribution of the 
spectrum in the far-red (705–750 nm) relative to the one in the full photosynthetic range (400–
705 nm) is calculated as the ratio of the integral in the first range over the integral in the second 
range. As an example of a narrower band (618–622 nm), consider absorbance A620 at 620 nm, which 
is the wavelength at which maximum relative quantum efficiency occurs.

Leaf spectra measurements can be integrated in a single device to measure leaf spectra directly in 
the field. For example, the CI-710 Miniature Leaf Spectrometer (CID-Bioscience 2022b) is an inte-
grated leaf probe, with dual light source (Halogen/LED) and bifurcated optical fiber (Figure 13.17). 
The CI-710 Miniature Leaf Spectrometer measures the transmission, absorption, and reflection of 
light by biological substances within a wide range of wavelengths that cover visible and NIR light. 
Figure 13.18 shows examples of spectra collected using leaves of two species in a forest plot in the 
Ray Roberts Lake State Park, near Denton, Texas. This device would still require an operator to 
perform periodic measurements. An automated version that could measure the leaf spectra by non-
contact would allow for continuous real-time monitoring.

IR THERMOMETER

An IR thermometer is a radiometer that monitors surface temperature by measuring the thermal 
energy radiated from any surface within its field of view (Apogee Instruments 2014). The thermom-
eter provides non-contact measurements (Figure 13.19) according to distance to target and its diam-
eter; it is necessary to measure the temperature of the sensor in order to correct for its temperature 
sensitivity. Applications include monitoring water use and employing it to estimate leaf stomatal 
conductance and in turn estimate ET, and use canopy temperature to estimate vapor pressure deficit. 
These measurements can be used as an indication of plant water stress because under high atmo-
spheric demand for water when the soil is dry, plants regulate transpiration by modifying stomatal 
aperture. Transpiration thus controls leaf temperature.

The Apogee IR thermometer has a built-in microcontroller and is an example of sensor produc-
ing output data in SDI-12 format (Chapter 5). By virtue of using SDI-12, the thermometer has three 
wires, one for power, one for ground, and one for serial data.

FIGURE 13.15 Schematic representation of the light field in a forest canopy (Acevedo et al. 2001).
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The radiometer operates based on the Stefan-Boltzmann law (Figure 13.19) which states that the 
total power emitted per unit area of a blackbody is proportional to the fourth power of temperature 

4E Tσ=  where E is the power per unit area, σ is the Stefan-Boltzmann constant 5.6704 ×10–8 W m–2 
K–4, and T is the temperature of the blackbody (in K). This law results from integrating Planck’s 
distribution over solid angle and frequency.

The IR radiometer generates a voltage V (in mV range) proportional to the balance between 
target ( 4TTσ ) and detector-radiated power ( 4TDσ ). This balance is 4 4T T aV bT D− = +  where a is the 
slope and b is the intercept of a regression line that adjust sensor output V to the measurand or target 
temperature TT .

FIGURE 13.17 Portable leaf spectrometer.

FIGURE 13.16 Example of leaf absorbance (A) and reflectance (R) spectrum for species in canopy, sub-
canopy, and understory (Acevedo and Ataroff 2012).
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GROUND PENETRATING RADAR

A Ground Penetrating Radar (GPR) is an EM device used to collect underground data to about 10 m in 
depth based on changes in dielectric permittivity, EC, and magnetic permeability of the subsurface. A 
source (Tx) transmits an RF pulse (10 MHz to 2.6 GHz) into the ground, the RF wave is distorted because 
of the soil and subsurface EM properties. Where the subsurface EM properties change abruptly, RF sig-
nals can reflect or refract. A receiver (Rx) measures the amplitude and travel time of distorted RF signals, 
and these data are then used to image discrete targets and physical boundaries (EM GeoSci 2022).

GPR surveys can provide useful information for environmental monitoring of the vadose or 
unsaturated zone. For instance, using GPR one can map a contaminant plume, determine the 
direction of contaminant movement, and map hydraulic conductivity. These results then can pro-
vide insight into the deployment of real-time monitors, sensor networks, and WSN. Another good 
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FIGURE 13.18 Examples of leaf spectra acquired by portable leaf spectrometer.
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example is mapping soil moisture that has direct applications to monitoring. Permittivity is esti-

mated by an equation similar to Equation (13.2) when magnetic permeability is 1 
2c

v
rε = 



  and v 

is the propagation velocity of the ground. Once permittivity is mapped, it can be converted to soil 

moisture by the same principles that are applied to soil moisture sensors (Clement and Ward 2003).

REMOTE SENSING OF TERRESTRIAL ECOSYSTEMS

Many aspects of terrestrial ecosystem monitoring benefit from remote sensing in multiple technolo-
gies and platforms, including passive and active sensors. We already discussed in detail the analysis 
and classification of optical images for vegetation and land cover (Chapters 8 and 9) to help the 
reader understand the principles of remote sensing. Many other characteristics of vegetation are 
investigated by remote sensing, to name a few: foliage cover, tree density, tree height, vegetation 
health, LAI, and aboveground biomass; regarding soil, remote sensing is applied to soil type, soil 
properties, and soil moisture (Lechner et al. 2020). We will discuss only a couple of topics in this 
vast field.

Synthetic aperture radar (SAR) systems are active sensors, i.e., emit a microwave pulse and 
measure the backscatter reflecting to the sensor, and can differentiate land features by surface 
roughness and water content. From our discussion on TDR and GPR, you would suspect that space-
borne microwave sensors would prove useful for remote sensing of soil moisture. In fact, microwave 
remote sensing has been successful for estimating soil dielectric properties and thereby allowing 
soil moisture estimation (Mohanty et al. 2017). Nevertheless, optical and thermal remote sens-
ing has also proven effective to estimate soil moisture when supported by ground validation data, 
and new algorithms to derive soil moisture from geostationary weather satellites may prove useful 
(Wang et al. 2018).

When using microwave, it is important to distinguish between passive sensors, such as radi-
ometers, and active sensors, such as radar. Soil Moisture Active Passive (SMAP) (NASA 2023) 
is designed to carry two instruments to map soil moisture, the radiometer allows spatial resolu-
tion of 36 km every 2–3 days, whereas a combination of radar and radiometer measurements would 
have mapped soil moisture at a spatial resolution of 9 km. Although the SMAP radar failed in 
2015, the radiometer has been providing global monitoring of near-surface (0–5 cm) soil moisture. 
Higher spatial resolution (~1 km) is provided by the European Space Agency (ESA) Sentinel-1 (S-1) 
platform (ESA 2023a). The C-band S-1 has two satellites (S-1A & B), is based on SAR, and has 
frequent revisit and large geographical coverage, allowing for monitoring of near-surface soil mois-
ture. Validation studies have demonstrated the usefulness of S-1 data at 1-km resolution (Balenzano 
et al. 2021).

Light detecting and ranging (LiDAR) systems are also active sensors, emitting a laser pulse 
and measuring distance to a target and the reflected light is used to make digital 3D representa-
tions of the target in the form of point clouds. In forests, tree height and stand structure are needed 
for many purposes, such as forest inventories and carbon storage assessments, and wildlife habitat 
characteristics. To quantify vertical structure of forest stands, LiDAR point cloud density is related 
to tree height, the first object hit by the laser is the canopy, whereas the last object hit by the laser 
is the ground surface. A point cloud can be processed to create a high-resolution raster, which after 
subtracting values from a DEM raster, provides a tree height raster.

Hyperspectral remote sensing provides many more bands than Landsat, for example Hyperion 
covered the 0.4–2.5 µm spectrum in more than 200-nm resolution bands, and in raster format with 
30 m × 30 m spatial resolution. Historical images are still available via the USGS Earth Explorer 
(USGS 2022). Unsupervised classification of hyperspectral images can provide information on 
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vegetation type in broad categories such as grass/herbaceous, bottomland hardwood forest, and 
oak/elm forests. Moreover, when combined with LiDAR-derived tree height, more refined class 
can be derived such as distinguishing between secondary and mature bottomland hardwood forests 
(Matsubayashi 2013).

The ESA Sentinel-2 platform consists of two polar-orbiting satellites placed in the same sun-
synchronous orbit, but with a phase difference of 180°, which shortens the revisit time to half when 
using 2 satellites, i.e., 5 days at low latitude and 2–3 days at mid-latitudes (ESA 2023b). A multispec-
tral scanner instrument is on board and capable of scanning a 290-km swath width and detecting 13 
spectral bands from 442 nm to 2202 nm, many of these having 15–30-nm bandwidth.

EXERCISES

Exercise 13.1

When measuring VWC (θ) of soil by TDR, we determine that the pulses return to the head 
of the probe in 4 ns. The probe rods are 12-cm long. For this soil, we have a calibration of 
θ ε= ×0.115 – 0.176r . Calculate the VWC.

Exercise 13.2

A sap-flow monitor measures 26.5°C and 25°C at the output and input, respectively. The heater 
produces 20 W, the radial heat loss is 1 W, and the heat flow at the output is 17 W. Specific heat 
capacity of water is 4.187 J/gK. Calculate the sap-flow.

Exercise 13.3

Downwelling photosynthetic active radiation (PAR) at the forest floor is 20% of the corresponding 
one above the canopy. The canopy is 12-m tall, and the PAR attenuation coefficient is 0.15 m–1. 
Calculate the LAI at the ground assuming it is constant from the ground to the top of the canopy. 
Hint: use equation 13.25 and assume h=0 at ground level.

Exercise 13.4

Assume we maintain constant head at an infiltrometer of cross-section 400 cm2 by adding 180 ml 
of water per minute while the soil is saturated. Calculate the hydraulic conductivity of the soil at 
saturation.

Exercise 13.5

An IR thermometer for monitoring leaf temperature measures 400 W m–2. What is the estimated 
leaf temperature?

Exercise 13.6

At a flux tower, located at sea level, measurements of CO2 by a gas analyzer and wind speed by 
a sonic anemometer yield a covariance of µ× ×10.0(m mol)/(s kg). Assume dry air at sea level is 
1.225 kg/m3. At a higher location, where air is 1.097 kg/m3, another tower yields a covariance of 

µ× ×15.0(m mol)/(s kg). Calculate the difference in CO2 flux estimate.
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14 Wildlife Monitoring

INTRODUCTION

Wildlife monitoring entails animal tracking, by radio and acoustic signals that provide not only 
location of the animals but also information such as environmental and physiological conditions of 
the animal. Satellite technology, prominently GPS and data satellites, provides extensive and long-
term monitoring in remote areas and particularly in the ocean environment. Together with animal 
tracking, remote sensing helps to monitor terrestrial wildlife habitat, by classifying images in terms 
of factors that make land suitable as habitat for a particular species. Analyzing the changes on habi-
tat, for example by time series of fragmentation metrics, allows to monitor changes in habitat. This 
chapter provides a brief introduction to spatial analysis using point patterns and kriging interpola-
tion, since spatial distributions are of importance in many types of wildlife population distribution 
as well as habitat structure. These concepts are elaborated further by computer exercises in Lab 14 
of the companion Lab Manual (Acevedo 2024).

RADIO MONITORING

An important area of wildlife monitoring is tracking individual animals by using EM in radio fre-
quency (RF) or acoustic signals. In this section, we focus on RF and provide examples of tracking 
in the terrestrial and aquatic environment.

teRRestRial

In its simplest form, to track an animal with RF, you attach a transmitter and antenna to the animal, 
and as it moves, its attached transmitter’s signal is received and processed at a base station. At a 
minimum, the receiving system can indicate the presence of the signal, however more information 
could be carried by the transmission as we learned in Chapter 6. To track more than one individual, 
we need to give each one a unique signal that you can identify. Uniqueness of radio signals is accom-
plished by varying the carrier frequency, the modulated signal characteristic (say beeping rates), or 
much better by a digital code (Lotek 2023c).

Another important aspect of monitoring wildlife with telemetry is to be able to tell not just the 
presence but also the position. This requires an array of receivers with multiple antennae; a system 
of towers with receivers that can geo-locate the tags by the characteristics of the reception. For 
example, one could deploy three towers with receivers at the site and four antennae at each tower 
(Taylor et al. 2011). Every few seconds the towers receive signals to determine presence, location, 
and activity levels of tagged individuals within a given range (say 10 km). Receivers cycle through 
antennae at regular intervals. When the antennae are directional, each pointed in a cardinal direc-
tion, we can use signal strength received at each antenna to determine position (Figure 14.1). A 
datalogger or computer processes the signals so that the digital identification (ID) signal encoded 
on each tag can be determined along with signal strength in each antenna. Such a system allows 
for monitoring of survival, activity patterns, spatial patterns, and migratory departure from a site. 
Small individuals, such as birds, can be monitored using very small tags; for example, “nanotags” 
(Lotek 2023a) that are very small and unobtrusive.

Depending on the type of movement (e.g., flight height) of monitored individuals and habitat 
characteristics (e.g., foliage and canopy height), antennae should be located at a minimum height 
above the ground (say 10–20 m). Messages contain tag number, date, location, antenna number, 
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signal strength (related to the log of the received signal in dB), and time. Real time requires coor-
dination between receivers, and this may entail using an RTC at each receiver. An important con-
sideration is battery life for the transmitters, which is maximized by limiting transmission power, 
either by reducing duty cycle of the pulses or transmitting only in bursts. In these cases, the burst 
rate determines the time that the receiver allocates to each antenna.

Suppose we know coordinates x yi i( , )  of three towers, and distance di from an animal to each 
tower is measured by signal strength. What are the coordinates (x, y) of the animal? Start relating 
coordinates to distance
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Expand each equation
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Subtract the second from the first equation, and the third from the second equation
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Simplify

FIGURE 14.1 Array of three towers with four antennae each to monitor radio tags. A set of receiver calcu-
lates position based on each antenna’s signal strength.
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and relabel terms to obtain the simple system of equations

 
a x b y c
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 (14.5)

Passive integrated transponder tags (PIT-tags) are small (~10 mm range) and lightweight (frac-
tion of a gram) electronic tags based on RF identification (RFID); i.e., a microchip or transponder 
provides identification (ID) to an RF scanner or receiver. These tags are called passive because they 
do not have a battery, whereas the other tags described in this chapter are called active tags, because 
they have their own battery. The PIT-tag is inactive until a scanner powers the tag circuitry by RF 
induction and reads the code. Note that this convention is opposite from the sensor terminology of 
Chapter 2 (and that we have used so far in the book); recall that we defined an active sensor as one 
requiring external energy to generate the response signal, and a passive sensor one that generates 
its own signal. In addition to small size, PIT-tags have a long life (possibly decades); however, they 
must be near the reader (fraction of a meter) to become active and therefore require the installation 
of antenna at a constriction area that forces the animals to go through and approach the reader. 
There can be a variety of materials in between the tag and the receiver, but ferrous metals are to be 
avoided. Previously, a frequency of 400 kHz was used, which has a limited read range, so now the 
125- and 134.2-kHz tags are more common and can read from longer distances.

aQuatiC

Radio signals would also propagate in fresh water near the surface, but not through sea and brackish 
water because the dissolved salts attenuate the radio waves. In this case, we can use acoustic telem-
etry for wildlife monitoring in marine habitats, such as salmon, trout, cod, crabs, and sea turtles 
(Bloor et al. 2013).

Wave propagation in water is different from the one in air because of high permittivity (εr ~ 80) 
and conductivity (value depends on dissolved salts) of water. Attenuation in water is higher than the 
one in air and increases with frequency (Jiang and Georgakopoulos 2011). Therefore, refraction at 
the water/air interface is high and given by the refractive index n r rε µ= ; however, permeability 

of water is rµ = 1  and thus the refractive index is purely a function of relative permittivity εr .

Snell’s law of refraction n nθ θ=sin sin1 1 2 2  allows us to predict that the transmission angle at 

the interface from water to air is given by t r iθ ε θ=sin sin  or that the transmission angle from 

air to water is given by t
i

r

θ θ
ε

=sin
sin

 (Figure 14.2). In the companion lab guide, we write a script 

to calculate transmission angle tθ  for a variety of incidence angle iθ  between 0° and 90° for both 
scenarios producing Figure 14.3, which shows that due to water’s high relative permittivity, the 
transmission angle from air to water is low and below 6.41° meaning that waves penetrate almost 
normal to the surface. Likewise, the transmission from water to air is such that waves with incidence 
angles higher than 6.41° emerge almost parallel to the water surface.

Consequently, in freshwater, the radio waves from a transmitter tag propagate in all directions 
(omnidirectional propagation) but only waves in a narrow range (~6.4°) of directions emerge close 
to the normal (Figure 14.4). Therefore, even though we can receive the waves from many directions, 



366 Real-Time Environmental Monitoring

0 20 40 60 80

0
1

2
3

4
5

6

Incidence angle (degrees)

Tr
an

sm
is

si
on

 a
ng

le
 (d

eg
re

es
)

Air to Water

0 2 4 6 8

0
20

40
60

80

Incidence angle (degrees)

Tr
an

sm
is

si
on

 a
ng

le
 (d

eg
re

es
)

Water to Air

FIGURE 14.3 Transmission angle as a function of incidence angle for both scenarios.

Air

Water

θi

θt

θi

θt

FIGURE 14.2 Radio wave refraction at the water surface or water/air interface.
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we can only tell tag location by signal strength when positioning the antenna near the tag (Thorstad 
et al. 2013).

Radio telemetry has limitations in terms of depth range. At greater depths, we must resort to 
acoustic telemetry. It is also possible to submerse an antenna to detect the radio waves directly under 
water and connect this antenna to a receiver above the surface. A simple arrangement is a coaxial 
cable connected at the receiver and stripped at the submersed end (Thorstad et al. 2013).

Radio transmitters for aquatic animals use 30–225 MHz; at the lower end we have lower atten-
uation, making it better for greater depths and higher water conductivity. However, these lower 
frequencies have longer wavelengths and require larger antennae making it less practical for tag 
transmitters. Thus, higher frequencies in the order of 130–170 MHz are more practical; particularly 
for lower water conductivity and shallow water. Since attenuation increases at these higher frequen-
cies, their use is less practical for brackish/saline water or deeper water. In these circumstances, it 
is better to resort to acoustic tagging.

ACOUSTIC MONITORING

A sound wave consists of oscillating high- and low-pressure regions across a medium and cor-
responding to regions of compression and rarefaction of the medium. Sound propagation can be 
modeled by a sine wave, with maxima for compression regions, minima for rarefaction, and zero for 
neither. Therefore, an acoustic sensor is in essence a pressure sensor, and the most common example 
is a microphone. As with RF, we can relate the speed of sound v to frequency f and wavelength λ  
using v fλ= ; however, the speed of sound varies with the medium with large differences between 
air and water.

teRRestRial

Acoustic monitoring for terrestrial animals is convenient when the animals emit sound and ultra-
sound as part of their behavior, such that it occurs for birds, frogs, and some insects. In this section, 
we provide an example for birds.

Bird populations and communities have been monitored for a long while by human observation or 
by recording using microphones. However, acoustic interactions among songbirds can be complex; 

Radio waves emerging
at surface

Air

Water
Tx

Reflected
from surface

6.4°6.4°

FIGURE 14.4 Radio wave propagation in water and emerging at the surface. Only the directions closest to 
normal to the surface emerge close to this direction.
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for example, birds may vocalize at random or divide a soundscape so that they avoid overlapping 
their songs with those of other birds. Therefore, monitoring involves collecting spatiotemporal data 
in which multiple individuals and species are singing sometimes simultaneously. Male birds may 
produce long songs to advertise their territory or attract females in the breeding season, or shorter 
calls may occur in other circumstance such as flight, threat, and alarm (Susuki et al. 2017).

Advances in acoustic engineering and microphone arrays make possible to develop new tools 
to monitor species of interest for a long period of time without human intervention. Compared 
to single microphones, microphone arrays (System in Frontier 2023) can detect the direction of 
arrival (DOA) of the sound event. A microphone array is a set of microphones arranged in a pattern 
to detect signals in several directions; for example, six microphones arranged in 60º separation. 
Using DOA of sound events acquired from multiple microphone arrays, a system could determine 
the position of the sound source using the same localization methods described in Figure 14.1 and 
Equations (14.1–14.5) at the beginning of this chapter.

Research to develop systems that employ this approach involves, for example robot audition 
and microphone arrays (Susuki et al. 2017); the HARKBird system consists of a portable sys-
tem for robot audition, HARK (HRI 2023), together with a low-cost and commercially available 
microphone array. Experiments have been conducted in two different types of forests in the USA 
and Japan and have determined that this system can automatically estimate the DOA of the songs 
of multiple birds and separate them as different signals in the recordings as well as provide insight 
about asymmetries among species in their tendency to partition temporal resources.

Difficulty in implementing this type of monitoring depends on the pitch and intensity of bird 
species songs, how often they sing, and complexity of the habitat. Loud bird songs in the 2–5 kHz 
range and in low vegetation or forest gaps are easy to monitor, but infrequent songs in the 0.5–1 kHz 
range in dense vegetation are more difficult to monitor.

aQuatiC

Sound speed in water varies with temperature and salinity, for instance at 20ºC in freshwater, 
the speed of sound is ~1500 m/s and in seawater is ~1520 m/s. These values are about 4.4 times 
the speed of sound in air, 343 m/s, and therefore wavelength for the same frequency is very dif-
ferent in water compared to air; for example, at 1 kHz in freshwater, the wavelength would be 

λ = =
−

−
1500m s

1000s
1.5m

1

1 , whereas in air λ = =
−

−

343m s

1000s
0.34m

1

1 . In similar manner to radio waves, 

acoustic waves propagate in all directions under water; but contrastingly to radio waves, acoustic 
waves do not emerge at the surface, because the air interface behaves as an almost perfect reflec-
tor of sound for frequencies above ~1 kHz. Thus, for acoustic monitoring, we need to submerse an 
acoustic sensor, referred to as a hydrophone.

A hydrophone is based on a piezoelectric sensor that responds to changes in pressure relating 
these to sound waves and able to be submersed to withstand expected higher pressures underwater. 
A hydrophone array, like a microphone array, is a series of hydrophones arranged to detect acoustic 
signals in several directions. An acoustic monitoring system may be connected by wire to a receiver 
station above the surface equipped with the datalogger (Figure 14.5). This station may be at the 
shore, floating on a buoy, or on a boat. Acoustic signals have a lower propagation speed than radio 
waves and this can generate undesirable latency or delay in the telemetry system.

Acoustic transmitters for aquatic animals usually operate in the frequency range of 30–400 kHz. 
The size of the tag is a function of the frequency; the higher the frequency, the smaller the resonant 
elements are. However, higher frequencies have a shorter range of distance. Therefore, small trans-
mitters (for small fish) have a shorter maximum range of distance than larger transmitters (Thorstad 
et al. 2013).
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In addition to presence or position, acoustic transmitters can integrate with sensors of envi-
ronmental and physiological parameters. These can include hydrostatic pressure (to provide water 
depth), temperature, salinity, DO (for water quality conditions), accelerometers (for animal activity 
and body position), electromyogram (for muscle activity), heartbeat rate, and differential pressure 
(for coughing, breathing, and feeding activity) (Thorstad et al. 2013).

SATELLITE

Radio and acoustic systems typically communicate over relatively short distances but tracking capa-
bilities can be extended by using satellites such as GPS, Iridium, Globalstar, or Argos.

Global positioninG system

Global positioning system (GPS) allows determining geographical location (latitude, longitude, and 
elevation) using a network of satellites that orbit the Earth. A GPS receiver must have a clear recep-
tion of at least three satellites to determine position. To do this, the receiver determines distance 
to each satellite from the time taken for the signal from that satellite to reach the receiver. Then it 
calculates the position by triangulation using these distances. To determine signal travel time, the 
receiver must synchronize its clock with the satellite constellation clocks. The receiver may need 
a fourth satellite to synchronize the clock, particularly when restarting the process or changing 
elevation.

Each satellite transmits a stream of data segments lasting 30 seconds that contain status of the 
transmitting satellite, clock time, location (ephemeris), and orbits (almanac). When the receiver 
starts, it must “acquire” the satellites, i.e., find each satellite’s signal and read the clock and ephem-
eris data. This process may take some time (a minute or two) but once the satellites are acquired, 
the receiver can update location several times in a second, even though the transmit data rate is 
low, 50 bits per second. Almanac data allow calculating a satellite approximate location in orbit. A 
receiver uses almanac data when finding satellites; it searches for the satellites that are nearby and 
skips those that are below the horizon.

GPS devices are essential for mapping and geospatial analysis such as geographical informa-
tion systems (GIS) and remote sensing. GPS receivers have become very popular in everyday life 
because now it is affordable and applied to vehicle navigation, outdoor sports (such as hiking, hunt-
ing, and fishing), geocaching, and many other activities that involve location.

Data
logger

Hydrophone

Acoustic signal

FIGURE 14.5 Acoustic waves propagate in the water and do not emerge at the surface therefore must be 
received by a microphone under water (hydrophone) connected by wire to a datalogger.
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The method to calculate coordinates involves a system of equations on unknown coordinates x, 
y, z of the receiver and known x y zi i i, ,  coordinates of the satellites, and distances di to each satellite 
i = 1, 2, 3, 4

 x x y y z z ct di i i c i− + − + − + =( ) ( ) ( )2 2 2  (14.6)

c is the speed of light and tc is a clock time offset between the satellite and the receiver clocks 
(Figure 14.6). This offset is the same for all equations if the clocks of the satellites are synchro-
nized, and it is zero if the receiver clock is synchronized to the satellite clocks. We can linearize this 
system by squaring both sides of each equation and pairwise subtraction. We can see that the GPS 
receiver is not just a simple receiver but must be able to perform calculations.

Naturally, we can use GPS to track an animal location by attaching a collar with receiver on large 
animals or in a small backpack for small animals. GPS collars are equipped with a battery pack and 
a GPS receiver that can be placed on relatively large animals to track their location (Figure 14.7). 
Collars also have a VHS RF beacon in the 140–170 MHz range to locate the animal and retrieve the 
collar when needed. In addition, the beacon can transmit battery status and alert of whether the ani-
mal has died. Some collars have a temperature sensor for cross reference and study animal behavior. 
Practical issues are to make the system waterproof and impact resistant.

pop-up satellite aRCHiVal taGs

Pop-up satellite archival tags (PSAT) are used to monitor fish, data are stored on the tag and both 
the pop-up position along with the stored data are transferred to satellites (see Chapter 12) when the 
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Battery
sensors

GPS

FIGURE 14.7 Example of GPS collar.
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FIGURE 14.6 GPS coordinates.
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tag loosens from the fish and pops up to the water surface (Thorstad et al. 2013; Wildlife Computers 
2015). From these tags, we can generate diving behavior and obtain time series of depth and time-
at-depth charts.

pRoximity sensoRs

Of great interest now in wildlife biology is to gather data on animal interaction, including the dura-
tion and frequency of encounters, i.e., how often and for how long are animals in proximity to each 
other (Lotek 2023b). A two-collar proximity sensor system has a Master collar, which senses the 
presence or absence of the SUB (“Slave UHF Beacon”) collar.

DATA STORAGE TAGS

Data storage tags (DSTs) or archival tags record the information on movement and other environ-
mental, e.g., temperature, and physiological, e.g., heart rate, information on the tag, but the device 
does not transmit the data real time; thus, one must recapture the animal to retrieve the data. In 
essence, it is a datalogger attached to the animal to collect data as it moves. For marine life, DST 
may datalog temperature, salinity, depth, light, pitch, and roll. They are designed to be small size, 
e.g., 2–4 cm, store a lot of data, e.g., 500,000 points with time stamp, and remain operational for 
a very long time, e.g., nine years by using a battery and low power consumption. When used for 
marine life, DSTs may have a depth switch to turn off data collection for preset thresholds (Star 
ODDI 2023).

For recapture purposes, DST can have text on the housing with return information when the tags 
are used on commercially fished species, so that fishermen can return a tag to the researcher. Other 
options are for the DST to float or come to shore upon death of the animal allowing then to retrieve 
data. For terrestrial animals, options are to provide a transmitter that would allow retrieving data 
periodically but infrequently as the animal passes a station.

Using small tags, researchers can study fish movement allowing to understand seasonal patterns, 
for example movement between spawning and feeding areas employing tidal streams, or to calibrate 
models giving a probability distribution of the position of the fish, which can be used to predict path 
of the most probable movement (Metcalfe and Arnold 1997; Pedersen et al. 2008).

Methods to attach tags to fish are surgical implantation, external attachment, and ingestion. 
Because the tag is a foreign object in the animal body, there are potential negative handling effects 
such as inflammations and infections, altered behavior and swimming, reduced feeding, and con-
sequently reduced growth and increased mortality. Therefore, the catch, handling, and tagging pro-
cedures should have minimal effects on the fish to monitor unaltered behavior and not the one 
potentially induced by the tags themselves. We must consider ethical standards for the use of experi-
mental animals and to ensure fish survival and welfare (Thorstad et al. 2013).

CAMERA AND VIDEO

Advances in camera technology and devices to record video have made possible to monitor wildlife 
in their habitats and nesting sites generating a wealth of information on behavior (Cox et al. 2012; 
Brown and Gehrt 2009). Camera technology is used for wildlife monitoring in a variety of habitats, 
such as tree top bird nesting sites and polar bears in the tundra. Nest cameras have been used to 
observe nest predation studies, feeding ecology, and adult behavior (Cox et al. 2012).

In the simplest form, we can deploy still cameras operated by batteries that will trigger upon 
movement and capture images of the animal. Such cameras are widely used by hunters and wildlife 
lovers and offer the possibility of collecting visual data that can be analyzed to infer movement and 
behavior. A more demanding application is to use a video camera that would continually monitor 
animals. Two approaches of adding video recording to monitor wildlife are common: vendor-built 
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systems made specifically for wildlife monitoring, and user-built systems with outdoor cameras 
(Cox et al. 2012).

There are commercially available, self-contained digital video recording systems used for wild-
life monitoring (SeeMore Wildlife Systems 2015). Other alternatives are to build your own system 
using standard off-the-shelf components, such as video surveillance equipment and outdoor cam-
eras, and presenting an opportunity to improve design and implementation (Golightly and Schneider 
2011).

An example of user-built system is a system to monitor burrowing owls in their burrows using 
standard and off-the shelf Digital Video Recorders (DVR) and security video cameras (Williams 
2014) (Figure 14.8). Such a system operates off- grid using solar panels (see Chapter 7) and is 
adapted successfully to harsh desert environment. The DVR system uses the H.264 coding standard 
to compress the video to save it to the internal hard disk drive. This makes the system more efficient 
when storing the video files and yielded less data volume to transfer per hourly video segment. This 
system used high-quality outdoor infrared (IR) cameras required a minimum illumination of zero 
lux, which was necessary for the den camera. In order to save disk space and power, the system 
records only when interesting events are occurring; for this purpose, a detector was implemented to 
activate the DVR. Movement (or change between frames in the video) was one of the most obvious 
events that triggered a recording response. Adjusting the sensitivity of motion detection is impor-
tant to record only important events, such as the bird entering or exiting the burrow or feeding 
the offspring. The motion detection for this surveillance system was done by the DVR unit using 
digital processing, instead of a PIR sensor at the camera like many game-camera designs (Brown 
and Gehrt 2009). Unfortunately, that meant the cameras ran continuously, thus being less efficient 
in power utilization (Williams 2014).

An interesting user-built approach would be the development of customized low power process-
ing boards for video data acquisition and storage (see Chapters 2–6 for information on microcon-
troller, SBC, and WSN). As an example, a USB camera and an SBC have been used to capture 
images at a specified frequency (Kandula 2011). In addition, this SBC setup allows interacting with 
environmental sensors on a monitoring station. The development includes two modes of image 
acquisition, including a basic activity recognition algorithm (Kandula 2011). Capturing audio infor-
mation together with video would allow for multimedia environmental monitoring.

FIGURE 14.8 Example of a burrowing owl video image captured from monitoring cameras. Screenshot 
captured from a YouTube video (TPWD 2015).
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AUTONOMOUS VEHICLES

Autonomous vehicles contribute to monitor wildlife in both the aquatic and terrestrial environ-
ments. Besides contributing to monitor water environmental conditions, autonomous underwater 
vehicles equipped with camera for video monitoring as well as stations to receive signals from tags 
attached to animals can provide a wealth of data on animal behavior and physiological conditions 
(Hawkes et al. 2020). Unmanned aerial vehicles (UAV) or drones provide data on terrestrial animals 
facilitating counts in remote locations and for species that are difficult or sensitive to survey from 
the ground. Onboard thermal IR cameras, sensitive to heat emitted by the animals, are of great 
value to capture data on species difficult to detect by optical sensors based on light in the visible 
range (Witczuk et al. 2018). There are multiple concerns regarding the use of UAV to monitor wild-
life, including affecting animal behavior and impacting their habitat.

HABITAT MONITORING

A valuable support to monitoring wildlife is to monitor changes in the habitat and its suitability. For 
animals of restricted movement and thus habitats occupying small area, it is possible to define vari-
ables that define the habitat and deploy sensor networks and other tools as video tracking to monitor 
the various variables that determine the habitat. Take an example from aquatic organism in a stream 
reach and habitat that is characterized by depth, water velocity, temperature, DO, sedimentation, 
and turbidity. These variables are all amenable to track using sensors, and long-term time series of 
these variables can help us predict habitat changes.

For large animals with habitat occupying large areas at landscape and regional scales, remote 
sensing and GIS are of great value to monitor and map habitat changes (Oeser et al. 2021). In these 
cases, of particular importance is building time series of a habitat suitability index (HSI) by images 
based on remote sensing combined with GIS analysis. HSI models have been used effectively as a 
snapshot in time using Landsat images and GIS; for example, to evaluate the habitat of One-horned 
Rhinoceros in Nepal (Thapa et al. 2014), and the Red-cockaded Woodpecker near the Big Thicket 
National Preserve (Thapa and Acevedo 2016). For monitoring, a time series of HSI would be needed 
to assess changes in suitability due, for example, to urbanization or natural disasters.

Habitat suitability index

Dettki et al. (2003) discuss two approaches to HSI modeling, process-oriented models are based on 
functional processes underlying habitat use thus providing a conceptual framework, while empiri-
cal models analyze data on habitat use and habitat characteristics collected at specific sites. Process-
oriented HSI models use habitat requisites or parameters such as food, shelter or cover, and water 
as input variables to a function providing a dimensionless 0.0–1.0 index, where 0 and 1 indicate 
unsuitable and optimum habitat conditions, respectively.

To evaluate the habitat of One-horned Rhinoceros in Nepal (Thapa et al. 2014), the HSI was 
derived from the literature and field observations. Landsat images were classified to identify grass, 
agriculture, sal forest, and mixed forest, which were used to calculate the HSI for a target pixel 
based on a neighborhood of 70 × 70 pixels around of a target pixel as input variables to calculate the 
HSI value for that pixel. Recall neighborhood and zonal calculations from Chapter 10. The neigh-
borhood size was determined according to the animal’s average mean annual home range of ~4 km2. 
Food (grass and agriculture) and cover (sal forest and mixed forest) were evaluated as proportions 
in the neighborhood; suitability for those factors was defined as a function with increasing values 
for the factors until reached a saturation point where the value is 1. These saturation points are cal-
culated from food consumption rates and cover needs. To combine those factors, seasonality was 
accounted for by calculating the weighted geometric mean when both factors are important or the 
maximum when one factor is dominant. To account for uncertainty in these estimations, the results 
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are evaluated by sensitivity analysis. Once a raster with HSI values is derived, it is subject to pat-
tern analysis or calculation of fragmentation metrics to determine the overall quality of the habitat.

Habitat fRaGmentation analysis

In addition to a habitat suitability of a cell or pixel, one must consider the spatial configuration of 
those cells across the habitat. For example, it is not the same to have a large area of contiguous high 
HSI cells that serve as large habitat patch than a collection of isolated small patches of high HSI 
separated by large expanse of low HSI cells. These spatial features are quantifiable by fragmenta-
tion indices or metrics that have evolved since their inception in the field of landscape ecology in 
the late 1980s (O’Neill et al. 1988).

There is an abundance of fragmentation metrics and are classified whether they apply at the patch 
level, the class level, or the landscape level. A class is understood as the collection of a single type 
of patch (e.g., forest) on the landscape; this is to say, the cells identified as that type of patch on a 
raster layer. To explain this better, consider the simple raster with 30 × 30 cells shown in Figure 14.9 
which is the sample dataset in R package landscapemetrics (Hesselbarth et al. 2019). This 
“toy” landscape has three classes labeled 1–3. Observe how you can follow all contiguous cells 
of one class and separate them on the landscape into patches; your observations should match the 
three maps of Figure 14.10, one for each class showing all the patches you can trace for each. Think 
of each class as a patch type, then each one of the three maps of Figure 14.10 is a class meaning is 
the layer representation for that patch type, and it shows the patches in that class. You can count the 
patches for each class and think of the distribution of patch size, its edges, shape, and a few more 
things about these patches; that is what landscape metrics are. For example, for class 1, there are 
only two large core area patches. Relating this to animal habitat, you can see how this species would 
be restricted to only two major areas. Compare this to class 3 which has fewer but larger patches and 
would be better habitat if this were the class of importance for the species.

Now there are some important technical details to understand. You would notice that there is a 
boundary around each patch, and cells inside the boundary, which are defined as core area; this 
has to do with the rule that assigns a cell to a patch, which entails several decisions. First, a cell 
may look in all eight directions from it to its neighbors, like a queen moves in chess, or only in four 
directions from it, as in the rook move in chess. A decision is made as to how many sides of a cell 

FIGURE 14.9 Sample example from package landscapemetrics.
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are boundary and how far away from the patch would a cell be considered part of the patch. A cell is 
considered part of the core area if all the neighbors are of the same class. Another technical detail is 
that calculations are done in meters with area in hectares (ha). Recall that 1 ha = 10,000 m2. This  

is convenient when the image is in UTM coordinates. A 30 × 30 pixel is 
× =30 30 m

10,000 m /ha
0.09 ha

2

2  

or nearly a tenth of a hectare.
Per this explanation, one would understand that class-level metrics are of interest and typically 

identified with a habitat. It is important to use class metrics that relate to pattern and are independent 
of total abundance on the landscape (Wang et al. 2014), because after all having a lot of total area 
is not desirable if it is fragmented. However, class-level metrics depend on metrics defined at the 
patch level.

To better understand these concepts, consider the calculation of a metric based on area. For a patch, 
one can define a metric called core area index (CAI) that is defined as the proportion of core area of 
the patch in relation to total patch area expressed in percent. For example, if the total area of one of 

the large patches of class 1 is 0.0148 ha and its core area is 0.0071, then CAI = × =0.0071
0.0148

100 48% .  

Now at the class level, we can use the metric Mean CAI as the average of the CAI of all patches 
in that class. In this example, the mean CAI for class 1 is 6.92%, which tells us that on the average 
these patches have little core area compared to the patch size. The same calculation yields 14.8% 
for class 3, confirming our intuition that this class would be a better habitat. Looking beyond the 
average, one can calculate the coefficient of variation of the patches CAI for the class, which is the 
variability scaled by the mean, allowing a better comparison. In this case, we get 233 for class 1 vs. 
158 for class 3.

One shape metric of the patches is their fractal dimension, which expresses a ratio of perimeter 
to area, thus measuring the patch complexity. Fractal dimension formulas involve a function of the 
natural log of perimeter and area. At the class level, metrics may consist of the mean and coeffi-
cient of variation of the fractal dimension of all patches in the class. Computing the mean fractal 
dimension of the example, we get 1.15, 1.23, and 1.30 for classes 1, 2, and 3, indicating an increase 
of complexity of the patches from class 1–3. In terms of edge of patches, one metric is edge density 
calculated by the sum of all edges of a class divided by the landscape area and given in m/ha or  
km/ha. In the example, class 1 has edge density of 2 km/ha, whereas class 3 has 3.6 km/ha. Finally, 
we mention an aggregation metric, defined by the proportional deviation of the proportion of like 
adjacencies (of the class) from that expected under a spatially random distribution. In the example, 
this metric for class 1 would have a value of 0.732, while for class 3, the value is lower 0.649, indicat-
ing more aggregation in class 1.

FIGURE 14.10 Classes by patch type.
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VeRtiCal stRuCtuRe

As you likely noticed reading the two previous sections, once we classify a cell of land cover as 
a particular class of habitat or a particular HSI value, we can perform multiple raster operations 
to determine habitat quality for the study area under consideration. It is also common to find that 
habitat suitability depends on the vertical structure of cover at a pixel, such as bird habitat as a 
function of canopy layers in a forest. In these cases, remote sensing analysis must account for 
a way of inferring vertical structure. This is possible with high spatial resolution radar images, 
hyperspectral imagery, LiDAR, or a combination of these. For example, combining LiDAR data 
with hyperspectral imagery allowed to infer vertical structure in a bottomland hardwood forest as 
a metric of habitat quality for birds (Matsubayashi 2013). This study demonstrated that 3D-habitat 
descriptions show how the distribution of bird species relates to forest composition and structure at 
various scales. Accuracy assessments showed that integrated LiDAR-hyperspectral increased the 
overall classification accuracy.

SPATIAL ANALYSIS

Point pattern analysis is used in many monitoring applications such as spatial distribution of plants 
and trees on the landscape, sampling sites in a waste field, sampling sites in a lake, locations of 
intense events such as quakes or tornadoes. We encountered point patterns in Chapter 10 when we 
studied GIS vector layers. In this chapter, we study the basics of point pattern analysis as it can also 
be used to study animal species distribution; in particular, for territorial species such as songbirds, 
and species that flock or congregate in resource patches (Matsubayashi 2013). It is also useful to 
interpolate from a spatial point pattern obtained by sampling population density to infer values 
at unsampled points; one effective technique is kriging that we will study in this section. In addi-
tion, when adding other environmental variables, e.g., obtained by remote sensing, to the kriging 
estimate using cokriging, it is possible to make predictions of a species spatial distributions. This 
approach has been used for fish populations, e.g., Amiri et al. (2017).

Point patterns are typically a collection of points placed over a spatial 2D domain with coordi-
nates x, y as illustrated in Figure 14.11, where at the top points are uniformly distributed and at the 
bottom the pattern is non-uniform, either following a gradient or by aggregation. The key is the 
variation of the density of points, i.e., the spatial variability of the number of points per unit area. 
Note that a regular pattern is uniform, but a uniform pattern is not necessarily regular.

testinG spatial patteRns: Cell Count metHods

One way to determine the spatial pattern is to divide the domain in a grid of T cells or tiles of equal 
size, count the total number of points, m, and the number of points oi in each tile. If the distribution 
is uniform, then the expected number ei of points per cell is E = m/T, thus we can use a chi-square 
test with df = T–2. When there are large departures from the expected, the chi-square value is suf-
ficiently large, and we can reject the null and conclude that the pattern is non-uniform. For example, 
Figure 14.12 shows 90 points distributed over 9 tiles, we would expect ei = 90/9 = 10 points per cell 
for all cells i. We obtain a chi-square of 5.8, which for df = 9–2 = 7 has a p-value of 0.56. Therefore, 
we should not reject H0 and we conclude that the pattern may be uniform.

Spatially random patterns follow a Poisson distributed random variable (RV), which is a bino-
mial with very small probability of an event of interest, i.e., a good model for rare events. Define 

λ density (number of points per unit area) by 
m
A

λ =  where A is the total area of the domain, and 

divide the total area in T cells or tiles, then the mean number of points per cell is m/T and should 

be equal to the density multiplied by the area a of a cell, therefore a
A
T

m
A

m
T

λ = = . A Poisson 

RV with rate a mTλ =  can be used to calculate the probability of having r = 0, 1, 2, … points in 
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FIGURE 14.11 Examples of two-dimensional spatial point patterns.
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FIGURE 14.12 Spatial pattern of 90 points within a 3 × 3 grid or 9 cells.
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a cell and apply χ2 to compare to observed values. For example, take the pattern in Figure 14.13, 
where we have m = 8 points in a grid of 5 × 5 = 25 cells over a domain of unit area A = 1. The rate is 

λ = = =8

25
0.32a

m

T
. The probabilities of a Poisson with this rate are 0.73, 0.23, and 0.04 for r = 0, 

1, 2. The expected values of number of cells that have r points are 18, 6, and 1. The observed are 17 
cells with 0 points, 8 cells with 1 point, and 0 cells with 2 points. The chi-square values are 0.055, 
0.666, and 1.00. These add up to 1.72 and we have df = 3–2 = 1 because we used three categories or 
bins. The p-value is 0.19 and cannot reject, therefore, the pattern could be random.

A clustered pattern is a set of points closer together than expected by chance alone. One 
way of testing for cluster patterns using cell counts is with the negative binomial =( )P r  
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the rate m/T. We then use chi-square to test if pattern was distributed according to a negative binomial.

neaRest neiGHboR analysis

In this section, we cover methods based on nearest neighbor analysis, based on Euclidian distance, 
which we discussed in Chapter 10 as a technique for GIS vector layer analysis. Consider the nearest 
neighbor distance di for each point i. If the points follow a Poisson distribution, with density λ, then 
the PDF of distances is

 p d d dλ λ= π − π( ) 2 exp( )2  (14.7)

which has mean dµ
λ

= 1 / 2
 and variance dσ

λ
= − π

π
4
4

2 . We perform the analysis by comparing an 

empirical CDF (ECDF) of d with the theoretical CDF, which is

Quad.Poisson

x

y

FIGURE 14.13 A potentially random point pattern.
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 G d dλ= − − π( ) 1 exp( )2  (14.8)

To calculate the ECDF, for each d, we count of all distances to nearest neighbors less or equal than 
the value d

 G d
m

d di i

n

� ∑δ=( )
1

( , )
1

 (14.9)

Here we use an indicator function

 d d
d d

i i

i

δ =
≤





( , )

1 when

0 otherwise
 (14.10)

Now we can compare the ECDF �( )G d  with the theoretical CDF ( )G d .
For example, consider the point pattern in Figure 14.14 which looks clustered. The process above 

would yield a plot of empirical and theoretical CDFs for visual comparison as in Figure 14.15. The 
circles correspond to the ECDF raw or uncorrected for edge effects. There are several schemes to 
correct for edge effect, e.g., the Kaplan-Meier estimates. When we include this correction for this 
example (Figure 14.15), we visually appreciate that the corrected ECDF departs only slightly from 
the ECDF and mostly for larger values of d. In conclusion, this visual exploration tells us that the 
ECDF departs substantially from the theoretical CDF, reinforcing the intuition of clustered pattern 
of the points.

Another more refined approach is to look at the distance to the second closest neighbor, the 
third neighbor, the kth neighbor. A possible approach is the Ripley’s K function, an estimator of the 
second-order properties. The K function is the cumulative distribution of points within a distance 
interval. The theoretical K(d) is

 K d
N d

λ
=( )

( )
 (14.11)

x

y

FIGURE 14.14 A spatial point pattern for distance analysis.
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where N(d) is the expected number of points within a distance d. The ECDF is

 ∑∑λ
δ=�( )

1
( , )/K d d d mij ij

j

m

i

m

 (14.12)

for i j≠  and where dij is distance between points i and j. Here we use an indicator function

 d d
d d

ij ij

ij

δ =
≤





( , )

1 when

0 otherwise
 (14.13)

Recall that λ = /m A and substitute in Equation (14.12) to get

 K d
A

m
d dij ij

j

m

i

m

� ∑∑ δ=( ) ( , )2  (14.14)

Again, we can compare theoretical (Poisson) with the empirical. There are several schemes to cor-
rect for edge effect such as the border and isotropic estimates. When we include isotropic correc-
tion for this example (Figure 14.16), we visually appreciate that the corrected departs only slightly 
from the raw and mostly for larger values of d. In conclusion, this visual exploration tells us that the 
empirical K departs substantially from the theoretical K, reinforcing the suspicious clustered pattern 
of the points.

As an aid to visualization, we can calculate

 L d
K d� =

π
( )

( )
 (14.15)

and plot the L(d) function vs. d and check whether it follows a straight line. The reason is that a 
completely random pattern will have

 K d d= π( ) 2  (14.16)
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FIGURE 14.15 Empirical (raw and corrected) and theoretical CDF of distance.
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and therefore if the pattern is close to random

 L d
K d d

d� =
π

= π
π

=( )
( ) 2

 (14.17)

As illustrated in Figure 14.17, the empirical L(d) departs substantially from the 1:1 line given by 
the theoretical Poisson (1:1 line). We compare these also with Monte Carlo simulation as we did for 
G(d). See Figure 14.18.

GeostatistiCs

In addition to its location, each point may have a mark or associated value, yielding a marked point 
pattern. The mark may be a value from a categorical variable, e.g., species, or a continuous variable, 
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e.g., size. Geostatistics consists of predicting values of variables in non-sampled points of a spatial 
domain using a collection of sampled points, i.e., a marked point pattern. We calculate a measure 
of similarity using the covariance between points separated at given distances then interpolate 
values at non-sampled points using the covariance structure to predict the values of the variables 
at the non-sampled points, this is called kriging, as we mentioned at the beginning of this section. 
Geostatistics assumes that a variable is continuous over the domain and modeled as an RV Z(x, y) 
where location x, y are coordinates of a point. The technique is also applicable to 3D and in this 
case, Z would have values at three coordinate axes. In this book, we limit the presentation to the 
spatial case of an stationary variable, i.e., the distribution of variable Z(x, y) does not depend on 
location x, y, and then the expected value of Z(x, y) at all points is a constant µZ, E Z x y Zµ=[ ( , )]  

and the variance at all points is also constant Zσ 2  E Z x y Z Zµ σ− =[( ( , ) ) ]2 2 .
The covariance of Z between points (x1, y1) and (x2, y2) separated by distance h, or lag, is the same 

for any two points separated by this distance h

 h E Z x y Z x y Zµ= −cov( ) [ ( , ) ( , )]1 1 2 2
2  (14.18)

This expression would remind you of the autocorrelation of an RV X(t), where the lag is time. 
However, here the points occur in 2D, and the lag h is the Euclidian distance between points. Note 
that cov(h) is maximum at zero lag (h = 0) and equal to the variance Zσ 2  because at h = 0 it is the 
same sample point =( , ) ( , )1 1 2 2Z x y Z x y . Covariance decreases as h increases because the similar-
ity of values will tend to decrease as points are increasingly apart. The empirical covariance is 
the average of products of values z at all point pairs (xi, yi) and (xj, yj) separated by distance in the 
interval h ≤ dij < h + Δh minus the square of the sample mean
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 c h

z x y z x y

n
Z

i i j j

h d h h

h

ij

∑
= −≤ < +∆( )

( , ) ( , )
2
 (14.19)

Here nh is the number of point pairs at distance h.
The top panels of Figure 14.19 show examples of a theoretical covariance (left) and an empirical 

covariance (right). A plot of covariance as a function of h is called a covariogram. Dividing cov(h) 

by c(0) or Zσ 2 , we obtain the correlation coefficient h
h h

Z

ρ
σ

= =( )
cov( )
cov(0)

cov( )
2  which has a value of 

1 at h = 0 and decays to 0 with increasing h. The empirical correlation coefficient r(h) is the ratio of 
empirical covariance over variance. The bottom panels of Figure 14.19 show correlation coefficients 
corresponding to the examples in the top panels. On the left, theoretical hρ( )  and on the right the 
empirical r(h) coefficient. The plot of correlation coefficient vs. lag is called the correlogram.

The semivariance is a measure of dissimilarity denoted with the Greek letter gamma γ . It is 
defined as half of the average of the squares of the differences between points (xi, yi) and (xj, yj) 
separated by distance in the interval h ≤ dij < h + Δh

 h

z x y z x y

n

i i j j

h d h h

h

ij

∑
γ

( )
=

−
≤ < +∆( )

( , ) ( , )

2

2

 (14.20)
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The prefix “semi” reminds us that this is half of the total squared difference at a given h. A plot of 
semivariance vs. lag is a semivariogram. Note that if h = 0, the difference should be zero and there-
fore we would expect that γ =(0) 0. However, the empirical semivariance is not calculated at h = 0, 

but at a small distance representing a minimum lag in the dataset. Then hγ ( )  is extrapolated from 
the calculated values back to the h = 0 axis. The non-zero intercept found by this extrapolation is 
called the nugget effect and represents the fine-scale or micro-scale variation (Figure 14.20). Many 
times, as points become more and more distant, the dissimilarity reaches a plateau called the sill at 
a distance called the range (Figure 14.20).

The semivariance is equal to the sample variance sz
2 minus the covariance c(h), and the variance 

is equal to the covariance at zero lag c(0), therefore

 h s c h c c hZγ = − = −( ) ( ) (0) ( )2  (14.21)

because c(h) goes to zero for large h, the asymptotic value of the semivariance or sill is equal to the 
variance γ= ∞ = =( ) (0) 2sill c sZ . Figure 14.21 shows another example of semivariogram and illus-
trates the relationship with the covariogram. We have ignored the nugget for simplicity. In practice, 
the term variogram is used to refer generically to the covariogram, correlogram, and semivario-
gram. When searching for points separated at given distances h, we can move along lines with given 
directions, for example north to south or east to west. When we search all directions, then we have 
an omnidirectional variogram.

A variogram model is an equation defining the semivariance or the covariance and several math-
ematical functions are available and employed to model variograms. The exponential

 c h c
h
a

= 



( ) (0)exp  (14.22)
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is the simplest model prescribing a decay of covariance from the maximum c Zσ=(0) 2  to zero at a 
rate 1/a. An example is shown in Figure 14.22. Then the exponential semivariance is

 h c c h c c
h

a
c

h
a

γ = − = − −



 = − −











( ) (0) ( ) (0) (0)exp (0) 1 exp  (14.23)

It asymptotically reaches a maximum value (sill) of c(0) when h/a is large. Recall that c(0) = Zσ 2 ,  
and that the sill is the variance of Z. From the last equation, also note that γ =(0) 0. Thus, in this 
model, the nugget is zero. To account for a non-zero nugget effect, we can use a discontinuity 

nuggetγ =+(0 )  where 0+ is a value of lag slightly larger than 0.
We can fit a model variogram to an empirical variogram by finding the values of the model 

parameters, e.g., the values of c(0) and a in Equation (14.22) that produce the least difference 
between the model and the empirical variogram. For this purpose, we can employ a numerical fit-
ting routine; it requires an initial guess for values of model parameters, and other conditions such as 
the number of iterations and tolerance for convergence. A convenient procedure is non-linear least 
squares regression.

Kriging consists of using the covariance model to predict the values of the variables at the 
non-sampled points, using a regular grid for the target points for prediction. This way, we have 
values distributed in the entire domain; some of these are measured values, while others are krig-
ing estimates. The result can be visualized as a grid or raster image with overlaid contour lines 
(Figure 14.23). By decreasing step size between the prediction grid points, we can produce a higher 
resolution image (Figure 14.24).
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There is a variety of kriging procedures, in this book, we will mention only ordinary kriging 
which assumes that there is not a trend, i.e., Z is stationary. Using a compact vector notation for x, y 
coordinates, denote x0 as a point x where we want to estimate the value of Z. The kriging estimate 

x( )0�Z  is obtained by the linear combination of n known values Z(xi) around the target location x0 

using a set of weights or coefficients iλ  to form the equation

 Z Zi

i

k

� x xi0 ∑λ=
=

( ) ( )
1

 (14.24)

the kriging error is the difference between the theoretical and the estimated values

 e Z Z�x x0 0= −( ) ( )

Thus, the expected value of the estimate should be equal to the mean or expected value of Z at any 
point and therefore the expected value of the kriging error should be zero. This is to say

 E e E Z Z E ZZ
� �x x x0 0 0µ= −  = − =[ ] ( ) ( ) [ ( )] 0  (14.25)

We must find the weights iλ  by minimizing the expected value of the square of the error

 E e E Z Z�x x0 0( )= −



[ ] ( ) ( )2 2

 (14.26)
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which happens to be equal to the variance of the kriging error because E[e] = 0.

 E e E e E e E eeσ = − = − =[ ] [ ] [ ] 0 [ ]2 2 2 2 2

It is important to generate an image of this variance to see how the error varies with location. 
Figure 14.25 illustrates this variance for the higher resolution grid.

In other words, the kriging procedure consists of finding the iλ  such that

 E Z Ze
i i

�x x0 0σ ( )= −



λ λ

min min ( ) ( )2 2
 (14.27)

Equation (14.25) means that we want an unbiased estimator.

 E Z Z
� x0 µ=[ ( )]  (14.28)

Note that

 ∑ ∑ ∑λ λ µ λ=












= =
= = =

x x xi i0�[ ( )] ( ) [ ( )]
1 1 1

E Z E Z E Zi

i

k

i
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k

Z i

i

k

 (14.29)

Because the expected value at all points xi is equal to the constant mean. Therefore, to obtain 
Equation (14.28), we need to require that the weights sum up to 1
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 i

i

k

∑λ =
=

1
1

 (14.30)

to obtain the unbiased estimates. The estimates at the measured points are the same as the observed 
values. This means that kriging is an exact interpolator.

In essence, this implies solving the optimization problem Equation (14.27) subject to a constraint 
Equation (14.30). This type of problem is solved by taking partial derivatives of the objective func-
tion (variance of the kriging error in this case) with respect to the coefficients λi and using an extra 
parameter called a Lagrange multiplier μ. Using this method, we form the matrix equation
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where c(hij) denotes the covariance model evaluated at lag hij. This is to say, the covariance of Z(xi) 
and Z(xj) for points xi and xj separated by lag hij. As you can see, all the known quantities of this 
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equation are obtained by evaluating the covariance model, or equivalently the semivariance model 
since σ γ= −( ) ( )2c h hZ .

POPULATION AND COMMUNITY MODELING

Animal tracking, habitat monitoring, and spatial distributions provide useful information to 
develop models of wildlife at the ecological population, metapopulation, and community levels. 
Mechanistic or process-based models emphasize dynamics of population density (individuals per 
unit area) using difference and differential equations of various degrees of complexity based on 
reproduction, recruitment, and mortality rates (Acevedo 2012). Empirical models emphasize data-
driven prediction of population numbers or density and include time series, regression models, and 
mixed effects models (Zuur et al. 2009).

Population models consider one species at a locale or a contiguous area or habitat, whereas 
metapopulation models consider one species at a set of locations or patches of the landscape. In 
this latter case, spatial distribution of the population and habitat spatial patterns are very important. 
Community models consider multiple interacting species at a locale or contiguous area, as well as 
across patches of the landscape. While the concepts of habitat fragmentation presented in this chap-
ter are intuitive for terrestrial and coastal environments, it is harder to conceptualize metrics for 
aquatic organisms in pelagic environments. In this case, population and community dynamics mod-
eling benefits from data on animal movement, environmental conditions, and spatial distributions.
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EXERCISES

Exercise 14.1

Suppose the coordinates x yi i( , )  of three towers are x y x y x y= = =( , ) (0,0);( , ) (1,0);( , ) (0,1)1 1 2 2 3 3  

and the distance di from a beacon to each tower are = = =0.361; 0.854; 0.7281 2 3d d d . What are 
coordinates (x, y) of the beacon?

Exercise 14.2

A drone flies at y = 6 m of elevation above a lake searching for a submersed radio emitter. How 
close in horizontal distance x to the emitter would the drone need to be for receiving a strong 
radio signal from the emitter?

Exercise 14.3

Compare acoustic signal wavelength in freshwater and the air for 10 and 40 kHz.

Exercise 14.4

CAI metrics, for example in Figure 14.10, are 6.92, 11.2, and 14.8 for the mean, 233, 160, and 158 
for the CV, and 16.1, 17.9, and 23.4 for the standard deviation. Explain these values in terms of the 
patterns you observe in Figure 14.10.

Exercise 14.5

Use the spatial point pattern of Figure 14.12 and the chi-square test to determine that the pattern 
is uniform (homogeneous). What is the number of cells, T, the total number of points, m, and the 
expected number of points for each cell if the distribution were uniform? What is the null hypoth-
esis for a chi-square test? How many degrees of freedom df? Calculate the chi-square value. Use 
the 1-pchisq(x, df) expression in R to calculate the p-value. Can you reject the null hypothesis? 
What is your conclusion?

Exercise 14.6

Uniform point patterns can be either regular or random, but the chi-square test does not specify 
which. Does the point pattern of the previous exercise appear more regular or random? What 
distribution and test could you use to determine the nature of a uniform pattern?

Exercise 14.7

Examine the spatial point pattern of Figure 14.13 for randomness. What is the total area, A, the 
total number of points, m, the density, λ, the total number of cells, T, and the rate, λa = m/T? Use 
the probabilities that a cell will have r number of points. Calculate the expected number of cells 
that will have 0, 1, 2, or 3 points. How do these values compare to the point pattern? What is the 
chi-square value? Could the pattern be random?
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Exercise 14.8

Consider four points on the x-y plane, with following coordinates A = (0,1), B = (3,3), C = (2,0), and 
D = (2,1). For each point, identify its nearest neighbor and calculate that distance NND.

Exercise 14.9

Suppose a semivariogram has a range of 4, sill of 20, and a nugget of 2. Write an expression for 
the variogram using the exponential model as a function of lag h. Sketch a graph of the semivario-
gram. Write an expression for the covariance as a function of h. Draw a graph of the covariogram.

REFERENCES

Acevedo, M. F. 2012. Simulation of Ecological and Environmental Models. Boca Raton, FL: CRC Press, Taylor 
& Francis Group. 464 pp.

Acevedo, M.F. 2024. Real-Time Environmental Monitoring: Sensors and Systems, Second Edition – Lab 
Manual. Boca Raton, FL: CRC Press, Taylor & Francis Group. 463 pp.

Amiri, K., N. Shabanipour, and S. Eagderi. 2017. Using kriging and co-kriging to predict distributional areas of 
Kilka species (Clupeonella spp.) in the southern Caspian Sea. International Journal of Aquatic Biology 
5:108–113.

Bloor, I. S. M., V, J. Wearmouth, S. P. Cotterell, M. J. McHugh, N. E. Humphries, E. L. Jackson, M. J. Attrill, 
and D. W. Sims. 2013. Movements and behaviour of European common cuttlefish Sepia officinalis in 
English Channel inshore waters: First results from acoustic telemetry. Journal of Experimental Marine 
Biology and Ecology 448:19–27.

Brown, J., and S. D. Gehrt. 2009. The Basics of Using Remote Cameras to Monitor Wildlife, Fact Sheet: 
Agriculture and Natural Resources. Columbus, OH: The Ohio State University.

Cox, A. W., M. S. Pruett, T. J. Benson, S. J. Chiavacci, and F. R. Thompson. 2012. “Development of Camera 
Technology for Monitoring Nests.” In Video Surveillance of Nesting Birds, edited by C. A. Ribic, F. R. 
Thompson and P. J. Pietz, 185–209. Berkeley, CA: University of California Press.

Dettki, H., R. Lofstrand, and L. Edenius. 2003. Modeling habitat suitability for moose in coastal northern 
Sweden: Empirical vs process-oriented approaches. Ambio 32 (8):549–556.

Golightly, R. T., and S. R. Schneider. 2011. Years 9 and 10 of a Long-Term Monitoring Effort at a Marbled 
Murrelet Nest in Northern California. Arcata, CA: National Park Service.

Hawkes, L. A., O. Exeter, S. M. Henderson, C. Kerry, A. Kukulya, J. Rudd, S. Whelan, N. Yoder, and M. J. 
Witt. 2020. Autonomous underwater videography and tracking of basking sharks. Animal Biotelemetry 
8 (1):29.

Hesselbarth, M. H. K., M. Sciaini, K. With, K.A. Wiegand, and J. Nowosad. 2019. Landscapemetrics: An open‐
source R tool to calculate landscape metrics (ver.0). Ecography 42:1648–1657.

HRI. 2023. Open-Source Robot Audition Software—HARK. accessed January 2023. https://www.jp.honda-ri.
com/en/activity/hark/.

Jiang, S., and S. Georgakopoulos. 2011. Electromagnetic wave propagation into fresh water. Journal of 
Electromagnetic Analysis and Applications 3:261–266.

Kandula, H. 2011. Development of a Testbed for Multimedia Environmental Monitoring. MS Thesis, Electrical 
Engineering. Denton, TX: University of North Texas.

Lotek. 2023a. Nanotags (Coded VHF) for Birds and Bats. accessed January 2023. https://www.lotek.com/
products/nanotags/.

Lotek. 2023b. Counter Proximity. accessed January 2023. https://www.lotek.com/products/ncounter-proximity/.
Lotek. 2023c. Radio. Lotek, accessed January 2023. https://www.lotek.com/technology/radio/.
Matsubayashi, S. 2013. Quantifying Forest Vertical Structure to Determine Bird Habitat Quality in the 

Greenbelt Corridor, Denton, Texas. PhD Dissertation, Denton, TX: University of North Texas.
Metcalfe, J. D., and G. P. Arnold. 1997. Tracking fish with electronic tags. Nature 387 (6634):665–666.
O’Neill, R. V., J. R. Krummel, R. H. Gardner, G. Sugihara, B. Jackson, D. L. DeAngelis, B. T. Milne, M. G. 

Turner, B. Zygmunt, S. W. Christensen, V. H. Dale, and R. L. Graham. 1988. Indices of landscape pattern. 
Landscape Ecology 1 (3):153–162.

https://www.jp.honda-ri.com
https://www.jp.honda-ri.com
https://www.lotek.com
https://www.lotek.com
https://www.lotek.com
https://www.lotek.com


392 Real-Time Environmental Monitoring

Oeser, J., M. Heurich, C. Senf, D. Pflugmacher, and T. Kuemmerle. 2021. Satellite-based habitat monitoring 
reveals long-term dynamics of deer habitat in response to forest disturbances. Ecological Applications 
31 (3):e2269.

Pedersen, M. W., D. Righton, U. H. Thygesen, K. H. Andersen, and H. Madsen. 2008. Geolocation of North 
Sea cod (Gadus morhua) using hidden Markov models and behavioural switching. Canadian Journal of 
Fisheries and Aquatic Sciences 65(11):2367–2377.

SeeMore Wildlife Systems. 2015. Remote Wildlife Viewing Systems. accessed March 2015. http://www. 
seemorewildlife.com/.

Star ODDI. 2023. Aquatic Animals. accessed January 2023. https://www.star-oddi.com/products/archival-tags.
Susuki, R., S. Matsubayashi, R. W. Hedley, K. Nakadai, and H. G. Okuno. 2017. HARKBird: Exploring acous-

tic interactions in bird communities using a microphone array. Journal of Robotics and Mechatronics 
29(1):213–223.

System in Frontier. 2023. Advanced Sound Technology Products: Microphone Array. accessed January 2023. 
https://sifi.co.jp/en/product/microphone-array/.

Taylor, P. D., S. A. Mackenzie, B. G. Thurber, A. M. Calvert, A. M. Mills, L. P. McGuire, and C. G. Guglielmo. 
2011. Landscape movements of migratory birds and bats reveal an expanded scale of stopover. Invitation 
for re-review. PLOS One 6(11): e27054.

Thapa, V., and M. F. Acevedo. 2016. Habitat quantity of red-cockaded woodpecker picoides borealis (Aves: 
Piciformes: Picidae) in its former historic landscape near the Big Thicket National Preserve, Texas, USA. 
Journal of Threatened Taxa 8 (1):8309–8322.

Thapa, V., M. F. Acevedo, and K. P. Limbu. 2014. An analysis of the habitat of the Greater One-horned 
Rhinoceros Rhinoceros unicornis (Mammalia: Perissodactyla: Rhinocerotidae) at the Chitwan National 
Park, Nepal. Journal of Threatened Taxa 6 (10):6313–6325.

Thorstad, E. B., A. H. Rikardsen, A. Alp, and F. Okland. 2013. The use of electronic tags in fish research - An 
overview of fish telemetry methods. Turkish Journal of Fisheries and Aquatic Sciences 13:881–896.

TPWD. 2015. Checking Out the New Home. accessed April 2015. https://www.youtube.com/watch?v=Asqr1 
P0cHcM.

Wang, X. F., G. Blanchet, and N. Koper. 2014. Measuring habitat fragmentation: An evaluation of landscape 
pattern metrics. Methods in Ecology and Evolution 5 (7):634–646.

Wildlife Computers. 2015. Pop-Up Tags. accessed March 2015. http://www.wildlifecomputers.com/.
Williams, J. 2014. An Application of Digital Video Recording and Off-Grid Technology to Burrowing Owl 

Conservation Research. MS Thesis, Electrical Engineering. Denton, TX: University of North Texas.
Witczuk, J., S. Pagacz, A. Zmarz, and M. Cypel. 2018. Exploring the feasibility of unmanned aerial vehi-

cles and thermal imaging for ungulate surveys in forests - preliminary results. International Journal of 
Remote Sensing 39:5503–5520.

Zuur, A. F., E. N. Ieno, N. J. Walker, A. A. Saveliev, and G. M Smith. 2009. Mixed Effects Models and Extensions 
in Ecology with R. New York: Springer.

http://www.seemorewildlife.com
http://www.seemorewildlife.com
https://www.star-oddi.com
https://sifi.co.jp
https://www.youtube.com/watch?v=Asqr1P0cHcM
http://www.wildlifecomputers.com
https://www.youtube.com/watch?v=Asqr1P0cHcM


393

Index

1-sun 169, 173–177, 184; see also incoming solar radiation; 
solar; solar radiation

2.4 GHz 38–39, 139, 144, 148–149, 158; see also Wi-Fi; 
wireless; wireless fidelity; wireless sensor 
network

4-20 mA 105, 108; see also signal conditioning
5 GHz 38, 139–140, 154; see also Wi-Fi; wireless; wireless 

fidelity; wireless sensor network

abiotic 1–2; see also ecosystem
absorption 23, 70, 74, 132, 185–186, 284, 291, 293–296, 

299, 307–308, 319, 322, 327, 348, 354–355
accuracy 1, 21–22, 25, 60–61, 63, 123, 220, 233–236, 

246–247, 315, 327, 347, 376; see also precision
acoustic 312, 335, 363, 365, 367–369, 390–392
action 2, 23, 41, 224
active 53, 62–63, 115, 120, 147, 150, 185, 323, 358–359, 
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CSS 43, 46–47
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data rate 29, 32, 37–38, 114, 138–143, 369
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databases 3, 49, 251, 253, 255, 257, 259, 261–263, 265, 267, 

269, 271, 273, 275, 277, 294, 328
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264, 270–272, 274
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database management system 251
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relational databases 251, 253



395Index

relations 1–2, 209, 221, 253–256, 259, 276
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DEM 140, 153, 268, 358; see also raster
dendrometer 89, 351
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dependent 17, 37, 62, 218, 220, 233, 236, 240, 242, 323
depth of discharge 174
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differential 3, 20, 90, 95–97, 100, 104, 110, 114, 274, 

283–284, 296, 307–308, 325–326, 369, 389
differential optical absorption spectroscopy 296, 307–308
diffraction 130–132, 135, 290
diffraction grating 290
digital elevation model 23, 140, 185, 232, 268
digital repository 275, 277
diode 164

bypass diode 164
photodiode 289
Schottky diode 165

dipole antenna 136–137
direct beam 170, 281
direct current 55

DC 35, 39, 42, 55, 57, 60–62, 102, 120–121, 123, 134, 
140, 148, 165, 174, 341

direct-sequence 139
directional antenna 137, 140
directivity 137
discharge 149, 153, 174–175, 312–314, 326
discrete RV 224–226, 228, 242, 248
dispersive spectrometers 290
distance 8, 12, 22, 129–130, 132–135, 139–142, 146, 

148–150, 152–154, 185, 209–213, 240, 
271–272, 276–277, 298, 303–304, 310–311, 
316, 350, 355, 358, 364, 368–369, 378–384, 
386, 390–391

distribution 5–6, 8, 10, 12–17, 150, 177, 180–182, 193, 225, 
228, 230–232, 248, 272, 304, 307, 312, 327, 
349, 354, 356, 363, 371, 374–376, 378–379, 382, 
389–390

diversity 230
divisive 198, 209, 212
DMM 60–61
DNS 37
DOAS 251, 276, 284, 296–297, 299–300
Dobson units 280

domain name system 37
Doppler radar 304–305, 308, 312
doubly exponential 4, 285, 287–288, 306
DRAM 29
drone 22–23, 27, 185–186, 214, 373, 390
DTE 33–34, 120
dual polarization 304
duty cycle 145, 147, 150, 166–167, 174, 364
dynamic specifications 90, 93; see also static 

specifications
dynamics 3, 20, 23, 175, 279, 282, 284, 286, 288, 309–310, 

318, 324–326, 342, 347, 353–354, 360, 362, 
389, 392

earth 1–2, 22–24, 26, 141, 153, 158–159, 167, 169–171, 
185–189, 192, 194, 262–263, 279, 281–282, 
287, 301, 305–307, 309–311, 327, 358, 
361–362, 369

EC 115, 117, 122–123, 128, 152, 154, 236, 277, 309, 
313–317, 320–322, 327, 335, 341, 343–345, 
357, 361

Eckart-Young theorem 203, 206
ecoinformatics 275, 277
ecosystem 1–2, 23, 224, 279, 281, 309, 322, 336, 339, 

341–345, 347, 349, 351, 353, 355, 357–362; 
see also abiotic

eddy covariance 349–351, 360
edge 12, 30, 374–375, 379–380
edge density 375
effect size 15
electric circuits 53

charge 53–54, 91, 93, 154, 164–165, 175, 290
Kirchhoff’s 57–58, 160
loops 29, 43, 57, 103–104, 125

electric power 54
hydropower 157, 175
maximum power point 161
power supply 34, 54, 62, 96, 106, 140, 174, 294–296
received power 132–134, 137, 140, 153
specific power 176, 178, 180

electrical conductivity 115, 152, 309, 315, 336, 341, 361
electrochemical 25, 79, 90–93, 314, 317
electrochemical sensors 79, 90–93, 317
electrode polarization 316
electromagnetic 23, 53, 101, 129, 157, 185, 324, 339, 391
EM 23, 129–131, 185–186, 306, 339, 357, 360, 363
empirical 12, 20, 22, 178–181, 224, 236, 373, 378–385, 

389, 391
empirical covariance 382–383, 385
enclosure 102–103, 118–119, 149, 151, 323
entity 1, 251, 253–257, 277–278, 350
entropy 229, 243
environmental specifications 79, 90–91; see also static 

specifications
EPROM 29, 41
equatorial 167, 187–188, 305
ERD 256–257, 276–278
ESP8266 143–144, 148, 152, 154
estimated 7, 16–17, 19–20, 64–65, 174, 176, 182, 231, 236, 

240–241, 284, 295, 305, 313, 322, 333, 344, 
350, 358–359, 386

Ethernet 31, 35–39, 42, 113, 140, 146, 150
Euclidian distance 209, 211, 213, 271, 378, 382
evaluation dataset 246
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evapotranspiration 2, 339, 344, 360
ET 344, 346–347, 354–355
PET 344
potential ET 344
reference ET 344

event 5, 14–15, 25, 106, 111, 118, 150, 180, 210, 215–226, 
230, 248, 275, 311, 319, 326, 344, 353, 368, 
372, 376

intersection 164–165, 183, 216, 218–219, 248, 274
null event 215–216
union 130, 216, 248
universal event 215–216

expected cost 224
expected value 6–8, 10, 14–15, 180, 226–227, 231, 349, 

378, 382, 386–387
explanatory 17, 215, 236, 243–244, 284
extensible markup language 251
extent 3, 21, 191, 264–265, 270–271
extraterrestrial radiation 169, 297

fade margin 137, 140
false color composite 191–193
false negative rate 222
fetch/execute 29
field-effect resistance 316
filter 4, 147–148, 166, 267, 279, 293
filtering 4, 95
first moment 6–7, 226
flash memory 39, 41–42
flow 1–3, 20, 29, 43, 53–54, 56, 73–75, 77, 102, 104, 107, 

110, 157, 175, 178, 182–183, 301, 305, 309, 
311–313, 316, 318, 326, 328, 336, 342, 347–348, 
359, 361

fluorescence 291, 295–296, 319, 324, 336, 348–349
Fourier series 101, 310
Fourier transform 101, 291, 296
fractal dimension 375
fragmentation 363, 374, 389, 392
frame check sequence 38
frequency 3, 9, 12–13, 32, 91, 101–105, 107, 111, 129–133, 

137–141, 143, 146, 148–149, 153–154, 157–158, 
174–175, 177–178, 187, 232–233, 275, 289, 302, 
304, 312, 316, 341, 349–350, 353, 356, 362–363, 
365, 367–368, 371–372

frequency-domain 101
frequency hopping 139

Fresnel zones 135–136
friction coefficient 178
FSL 132, 140
FTP 150, 252–253
full scale 60

FS 63
full width at half maximum 300
FWHM 300, 354

Gaussian 8, 12, 210, 329, 333
general purpose I/O 33

GPIO 33
geodetic datum 188
geographic information system 24, 198, 214, 251, 253, 

255, 257, 259, 261, 263, 265, 267, 269, 271, 273, 
275, 277

geosphere 2
geostationary 187, 305, 308, 358

geostationary operational environmental satellite 305
Geostatistics 277, 381–382; see also kriging
GIS 198, 214, 251, 263–265, 268–271, 276–277, 310, 326, 

369, 373, 376, 378
glass electrodes 92, 314, 318
global 2–4, 24, 26–27, 38, 141, 145, 188, 271, 279, 

282–283, 286–289, 306, 308, 327–328, 341, 
358, 360, 369

global temperature 279, 282, 286–288, 306
GOES 2, 19, 54, 59, 61, 63, 118, 161, 168–169, 178, 281, 

290, 295, 305–308, 322, 342, 349–350, 384
GPS 3, 42, 327, 352, 363, 369–370
greenhouse effect 2, 186, 281
ground 21–24, 27, 34–35, 42, 57, 82, 96, 102–104, 110, 

113, 117, 120–121, 134, 140, 148, 150, 153, 
178, 185–187, 207, 233–234, 279–281, 288, 
294–295, 297, 299, 301, 319, 339, 351–352, 
354–355, 357–360, 363, 373

ground penetrating radar 339, 357, 360
ground-truth 23, 186, 207
groundwater 110, 270, 309–310, 328, 334–335, 337, 339, 344

habitat 110, 154, 358, 361, 363, 365, 368, 371, 373–376, 
389, 391–392

habitat suitability index 373
hall effect 107, 121, 178
harmonic 101–102, 108, 166, 310–311, 336
heat dissipation factor 315
hierarchical agglomerative clustering 209, 212
HMI 127
homogeneity 243
HSI 373–374, 376
HTML 26, 29, 38, 43, 45–51, 78, 154, 214, 260–261, 277, 

307–308, 336, 360–361; see also web browsers; 
World Wide Web

human machine interface 127
hydraulic conductivity 342, 358–359, 362
hydrodynamics 309, 326
hydrograph 326
hydrographic stations 110
hydrological 2, 305, 309, 326, 361
hydrophone 368–369
hydrosphere 2, 309
hyper text markup language 29
hyperspectral 186, 188, 327, 358–359, 376; see also  

remote sensing
hypertext preprocessor 29
hypothesis 14–17, 20, 211, 223–224, 231–232, 236, 390

hypothesis testing 14
null hypothesis 14, 16–17, 231–232, 390
power of test 15
type I error 14–15
type II error 15

I2C 43, 109, 113, 116–117, 127–128, 143, 152
I/O 29, 33, 39, 41–42, 44, 115
ICSP 41–42
IEC 26, 119
IEEE 802.11 38, 140; see also Wi-Fi
if-else 43
images 22–23, 45–46, 185–187, 189, 200, 207, 212, 214, 

264, 266–267, 301, 305–307, 358–359, 363, 
371–373, 376; see also remote sensing

impedance 57, 92–93, 96–97, 99–100, 105, 117, 136–137, 325
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in-circuit serial programming 41, 51
incoming solar radiation 186, 279, 282; see also 1-sun
independence test 232
independent 10, 16–17, 20, 37, 41, 56, 64, 146, 216–217, 

219, 224, 228, 232, 236, 239–242, 248, 284, 375
index plot 12–13
indices 185, 195–196, 230, 234, 257, 264, 268, 374, 391
infiltration rate 322, 342
infiltrometer 342–344, 359–362
information theory 214, 229–230, 243
infrared 101, 130–131, 186, 281, 295, 318, 348, 360, 362, 372
input 29, 31, 41–42, 58–60, 62–63, 66–67, 71, 92, 95–97, 

100, 104–106, 110–111, 115, 120–123, 136, 166, 
182, 256, 301, 305, 326, 344, 347, 359, 373

input impedance 92, 96, 100, 136
input/output 29
insolation 169, 175, 177, 302, 344
integrity constraints 255, 257–258
intelligent sensors 109, 113, 117
interferogram 291–292, 297
interferometer 291–292, 296–297
internet 31, 38–39, 42, 113, 130, 141, 143, 146–148, 155, 260

internet of things 39, 130
IoT 39, 130, 143–146, 148, 154, 251–252

interrupt 35, 118–119, 147
ion-selective electrodes 91
IPv4 37–38
IR 142–143, 186, 188, 236, 281–282, 290, 293–296, 302, 

306, 310, 320, 324, 327, 348, 354–355, 357, 359, 
372–373

isochronous 35
isolation 104
isotropic radiation 137

Java Script 29
JS 29, 43, 49

Joule heating 56, 70, 74, 76
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trace gases 279, 281, 294, 299, 301, 360; see also 

greenhouse effect
training dataset 236
transceiver 115
transducer 30, 53, 55, 57–59, 61–63, 65–71, 73–75, 77–83, 

85, 90–91, 95, 104–110, 113, 118, 120, 142–143, 
301, 303, 309, 314–315, 324, 341, 343

balanced source divider 79, 85–86, 100
full-bridge 79, 88, 98, 124
half-bridge 79, 82, 86–88, 97–98, 121, 123
linearity error 63, 66, 68–69, 71–73, 77, 85–86, 89, 

97–98
linearized bridge 99
linearized quarter-bridge 97, 99
quarter-bridge 84–86, 97–101, 107
Wheatstone bridge 79, 82, 84–88, 90, 95, 107

transmission 31–33, 38, 105–106, 113–115, 129, 132, 134, 
136–137, 139–141, 144, 149, 152, 291, 302, 352, 
354–355, 363–366

transmission control protocol/internet protocol 31, 113;  
see also internet

tropopause 279
troposphere 279–281; see also ozone
true color composite 194; see also remote sensing
true positive rate 219, 222
TTL 115
tuple 44, 253–254
two-argument arctangent 269; see also aspect
two-tail 14, 16

UART 32–33, 43, 109, 113, 115–117, 143–144
UAV 185, 373
ultrasonic sensors 309–310; see also anemometers
ultrasound 302, 367
ultraviolet 23, 101, 130–131, 186, 279, 308, 354
unbiased 387–388
uncompressed 112
underfitting 245–246
uniform 5–7, 46, 226, 228, 231, 275, 351, 376–377, 390
uniform resource locator 46
unipolar 104
universal asynchronous receiver transmitter 32, 109
Universal Transverse Mercator 189

easting 191, 277
northing 191, 277
UTM 189–192, 213, 251, 265, 270, 277, 375

unmanned aerial vehicles 185, 327, 373, 392
unsupervised 198, 207, 210, 212, 359
unsupervised classification 207, 212, 359
URL 45–46, 48, 50; see also web browsers; World Wide 

Web
USB 31, 33–36, 39, 42, 113, 117, 144, 150, 152, 372

Universal Serial Bus 31
USB-C 34
USB Type-C 34

user accuracy 235, 246–247
user datagram protocol 37
USGS 20, 24, 27, 187–190, 214, 310, 312–313, 328–329, 

334, 337, 358–359, 362

vadose 309, 339, 347, 358, 361
variance 7–9, 11, 14, 16, 18–19, 22, 25, 200–202, 205, 207, 

213, 227–228, 230–231, 239, 241, 248, 333, 349, 
378, 382–389

variance inflation factor 241
VIF 241

vector 49, 137, 204, 237–238, 251, 264, 270–274, 277, 286, 
305, 331, 376, 378, 386

video 35, 184, 324, 336, 371–373, 391–392
VOCs 292
volatile organic compounds 292
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voltage 30
analog voltage 30, 60
input voltage 42, 58–60, 66, 71, 104, 120, 166
output voltage 53, 59–60, 62, 66, 68–73, 77, 80–85, 93, 

95, 97–99, 105–106, 127, 164, 166
voltage divider 53, 58, 60, 62, 66–67, 69, 71–73, 77, 

79–83, 85, 93, 107, 121, 123, 127, 165, 315
voltage excitation 120–121
voltage level 33, 114
voltage regulator 164
voltage resolution 30–31, 49, 68, 187
voltage source 54, 57, 66, 70–71, 85, 93, 95, 97, 107

voltmeter 60; see also ammeter; DMM; ohmmeter
volumetric water content 123, 341
VWC 123, 341–342, 344–345, 359

water quality 23–25, 27, 93, 110, 117, 192, 219–220, 223, 
270, 272, 277, 279, 309, 313–314, 316, 318, 
320–322, 324, 326–328, 336–337, 369

dissolved oxygen 110, 117, 260, 309, 318
DO 309–310, 313–314, 318, 320, 322–324, 327, 

369, 373
nephelometric turbidity units 319
NTU 319
TDS 267, 270, 309, 313, 317, 328, 335
total dissolved solids 270, 309
total suspended solids 313
TSS 313, 327
turbidity 260, 309, 313, 318–320, 336, 373

water quantity 309, 328
water vapor 2, 4, 279, 283, 302, 306, 309, 345, 348, 350
water velocity 20, 107, 182, 311–313, 325, 373
waveguide 292, 339–341
wavelength 129–132, 135–136, 157–159, 186–187, 189, 

281–282, 284, 290, 292–293, 295–296, 
298–299, 301, 306, 318–320, 323, 348, 355, 357, 
367–368, 390

waves 101, 129–132, 135–136, 138, 149, 157–158, 174, 186, 
282, 304, 365, 367–369

weather 1, 3, 24, 26–27, 73, 110, 120, 124, 137, 140, 
148–151, 175, 188, 279, 301, 304–308, 326, 341, 
344–345, 347, 358

weather stations 110, 326
Weibull 180–181; see also wind speed
wet chemical method 293
WGS84 188–189, 265; see also GIS

Wi-Fi 38–39, 51, 139–141, 143–144, 146, 148, 153–154, 
158; see also 2.4 GHz; 5 GHz

Wilcoxon 16–17; see also nonparametric
wildlife monitoring 3, 279, 363, 365, 367, 369, 371–373, 

375, 377, 379, 381, 383, 385, 387, 389, 391
wind 3, 93–94, 107, 110, 119–121, 125, 157, 173, 175–176, 

178–182, 237, 240, 244–245, 257–258, 
302–305, 311–312, 344–346, 349–351, 359

wind speed 93, 107, 110, 120–121, 125, 157, 173, 175–176, 
178–182, 302–303, 311, 344–346, 349–351, 359

window filter 267
wireless 24, 38, 129, 131, 133, 135, 137, 139–147, 149–151, 

153–155, 157, 184, 278, 336; see also 2.4 GHz; 
5 GHz

wireless fidelity 38 (see also 2.4 GHz; 5 GHz)
wireless sensor network 38, 129, 131, 133, 135, 137, 

139, 141, 143, 145, 147, 149, 151, 153–155, 157, 
184, 278 (see also 2.4 GHz; 5 GHz)

WSN 129–130, 141–154, 157, 162, 173–175, 251–252, 
272, 275–276, 344, 358, 372 (see also ZigBee)

work function 290–291
world geodetic system 188; see also GIS
World Wide Web 3

sensor web 251, 274–275, 277
web 3, 24, 27, 29, 38, 43–50, 152, 251, 260, 274–275, 

277, 283, 286, 294, 300, 305, 307, 310, 312–313, 
328, 335, 361

web browsers 38
web clients 38
web server 38, 47, 152, 300
web service 24, 251, 274
WWW 26–27, 38, 51, 78, 108, 128, 154–155, 184, 214, 

261, 274, 277–278, 307–308, 335–337, 360–361, 
391–392

WRS 189; see also GIS

XML 251, 260–262, 276–277
XML schema 262

Yule-Walker 329
YW 329, 332–333, 335

ZigBee 141, 143; see also WSN
zone 93, 131, 135–136, 153, 189–191, 213, 265, 267, 309, 

339, 341, 347, 358, 361
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