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Welcome
Thank you for purchasing the MEAP for Refactoring to Rust!

Rust is one of the most exciting new languages out there. Consistently rated
as the “most loved” language by the Stack Overflow developer survey, many
developers wonder what about Rust makes its users so happy. In our
development jobs, it can be difficult to get management buy-in to start up a
new service around a language that may never have been used at the
company before. Instead, replacing a small part of performance-critical code
with Rust might be a more effective first project. This book intends to give
you the tools and skills required to make a surgical refactoring like this
possible.

The chapters in this book will take you through the areas where Rust differs
the most from other languages, introduce you to embedding Rust within a C
program, using the Py03 library to embed Rust in Python, as well as testing,
profiling, and monitoring your refactored code to ensure that it’s performing
within expectations. Refactoring to Rust is intended for developers that have
some familiarity with Rust already.

I hope you can benefit from the instruction in this book, and it helps you on
your journey to writing faster, safer, and simpler code. I also encourage you
to post any questions or comments in the liveBook Discussion forums. Just
like software development writing is an iterative, collaborative process, and
you as the MEAP reader are an important part of that process.

I had a lot of fun writing this book, and I hope you enjoy reading it. Please
leave comments at liveBook's Discussion Forum.

Thank you again for purchasing Refactoring to Rust!

— Lily Mara

In this book



MEAP VERSION 6 About this MEAP Welcome Brief Table of Contents 1
Why Refactor to Rust 2 An overview of Rust 3 Introduction to C FFI and
Unsafe Rust 4 Advanced FFI 5 Structuring Rust libraries 6 Integrating with
dynamic languages 7 Testing your Rust integrations 9 WebAssembly for
refactoring JavaScript



1 Why Refactor to Rust
This chapter covers

Why you may want to refactor an application
Why Rust is a good choice for refactoring
When it is and is not appropriate to start a refactoring project
High-level overview of methods you can use to refactor your code into
Rust

If you have ever heard of the Rust programming language, you may have
heard of software companies rewriting their code in Rust from a slower,
interpreted language. A few of these companies have published blog posts
lauding the performance benefits of Rust over their previous systems, and
they tell a very tidy story: other languages are slow and Rust is fast.
Therefore rewrite your code in Rust and your systems will be fast.

While it may be tempting to think that we can all just rewrite our code when
something better comes along, we all know the reality that software does not
exist in a bubble of infinite resources. Performance improvements and
technical debt payments need to be balanced with feature development, user
requests, and the million other things that come along with modern software
work. While re-implementing functionality in a new language, you also need
to ensure that you are providing a consistent and reliable service to your
users. How then, can a developer hope to improve their code base while
maintaining the rapid pace of development & reliability expected?

The answer lies not in big-bang-style rewrites, but in incremental refactoring.

1.1 What is refactoring?

Refactoring is the process of restructuring code so that it performs better, is
easier to maintain, or meets some other definition of “better.” There is a
distinction, however fuzzy, between refactoring and rewriting. The difference



between the two comes down to the size of the operation.

Rewriting is taking a whole application, or large part of an application and re-
implementing it from scratch. This might be to take advantage of a new
programming language, a new data storage model, or just because the current
system is difficult to maintain, and it seems easier to throw it out and start
over than to improve it.

Refactoring is really just rewriting on a much smaller scale. Instead of aiming
to replace the current system wholesale, we want to find the parts of the
system that are in need of the most help and replace the smallest amount of
code possible to improve the system. The benefits of refactoring over
rewriting are numerous:

Because the current system is the “new system,” it can continue to run
and serve customers while the refactoring is in progress. We can deploy
very small code changes at a time to ensure that we know what change
caused an issue. If we were rewriting the whole system and deploying
the new system all at once, how would we know what part of the system
was causing errors if we saw them?
Existing code probably already has years of production experience and
monitoring around it. The experience that others have operating and
debugging existing code should not be undervalued. If there is a
problem with a new system that you have no experience running, how
are you going to find it?
Ideally, existing code will have automated testing associated with it.
These tests can be re-used to verify that our refactored code fulfils the
same contract as the existing code. If your existing code does not have
automated tests, refactoring is a great impetus to start on writing them!

Figure 1.1 displays how deploys over time might be different in a rewrite vs
in a refactor.

Figure 1.1. How refactoring and rewriting affect the size of deployments



When rewriting a system, changes must often be bundled together and
deployed at once. This decreases velocity and increases the risk of
deployments. The longer that features sit on a branch or in a stale staging
environment, the more difficult it will be to debug that code when it is
deployed. If all software has some risk of a bug, then increasing the
frequency and decreasing the lines of code changed in deployments will help
to find and eliminate bugs in the least time.

When refactoring, we strive to make small, independent changes that can be
deployed as soon as possible. We add metrics and monitoring around our
changes to ensure that when they are deployed, results remain consistent.
This allows us to quickly and consistently deploy small changes to our



system that fix bugs, add features, or improve the performance of our system.

All that being said, there are a number of considerations that need to be made
when refactoring code that’s already doing its job:

Ensuring that behavior is consistent between the old and new code

Leveraging existing automated testing and writing new tests that
deal with new data structures introduced by the refactoring

Deploying the new code

Determining the level of separation between the old and new
code’s deployment environments
How to compare the performance of both systems while they are
both running?
Controlling the rollout of the new system so that only a small
percentage of customers access the new code paths

In this book, we will explore techniques and approaches that can be used to
refactor code that is slow or difficult to reason about into Rust. We’ll cover
how to find the most critical parts of your code in need of refactoring, how to
make your existing code talk to Rust, how to test your newly refactored code,
and more.

1.2 What is Rust?

Rust is a programming language that emphasizes fast runtime, high
reliability, and memory safety. According to rust-lang.org, Rust is “A
language empowering everyone to build reliable and efficient software.”
What does that mean?

Empowering: Rust aims to give developers abilities that they would not
have otherwise had.
Everyone: The Rust community is extremely welcoming to everyone
regardless of background. There are Rust developers from every skill
level, some have Rust as their first programming language, and others



know many. Some are coming from low-level programming, while
others are application developers in languages like Python, Ruby, and
Javascript.
Reliable: Rust software aims to be fault-tolerant and explicit about how
errors are handled so that nothing slips through the cracks.
Efficient: Due to being compiled directly to machine code and the lack
of a runtime garbage collector, Rust code is much faster than code
written in interpreted languages like Python, Ruby, and Javascript right
out of the box. On top of this, Rust provides developers with the tools to
control lower-level details like memory allocations when required. This
can lead to massive speedups while still keeping your application easy to
understand.

1.3 Why Rust?

Rust combines memory safety, performance, and a fantastic type system -
these features act together to keep your applications working correctly. The
strong type system will ensure that data exchange follows the correct contract
and unexpected data will not cause unexpected results. The lifetime and
ownership systems will permit you to directly share memory across FFI
boundaries without questions of where the responsibility for freeing resources
lies. The strong guarantees around thread safety will allow you to add
parallelism that would have previously been impossible or highly risky.
When you combine these features, which were initially designed to help
developers write better Rust programs, you will see that they are ideal for
aiding in incremental refactoring of almost any language into Rust.

1.4 Should I refactor to Rust?

There are a variety of reasons that you may want to refactor parts of your
application into Rust, but the two primary goals that we will discuss in this
book are performance and memory safety.

1.4.1 Performance

Let’s imagine that you’re working on an application written in a language



like Python, Node.js, or Ruby. You’ve been adding new features to your
application for a while, and you have a large codebase. You have started to
notice however, that as your user base is growing, you’re paying a lot for
scaling your service with the required compute resources. Your application is
being slowed down by some part of the request handling, but you’re not quite
sure where yet.

This book will guide you through techniques like benchmarking and profiling
that will lead you to the places in your code that would benefit the most from
a performance-oriented refactoring. Once these are found, we will explore
techniques to implement the same functionality in Rust, along with some
performance tuning that can make your code as fast as possible.

Let’s look at a small example - imagine that the following CSV parsing code
is in your web application:

Listing 1.1. Python function that returns the sum of all values from a given column in a CSV
string

def sum_csv_column(data, column):

  sum = 0

  for line in data.split("\n"):

    if len(line) == 0:

      continue

    value_str = line.split(",")[column]

    sum += int(value_str)

  return sum

This is a fairly trivial Python function that returns the sum of all values from
a given column in a CSV string. Writing the same function in Rust looks very
similar:

Listing 1.2. The same CSV column summing function written in Rust

fn sum_csv_column(data: &str, column: usize) -> i64 { 

   #1

  let mut sum = 0; 

   #2



  for line in data.lines() {

    if line.len() == 0 {

      continue;

    }

    let value_str = line

      .split(",")

      .nth(column)

      .unwrap(); 

   #3

    sum += value_str.parse::<i64>().unwrap(); 

   #4

  }

  sum

}

The Rust version of the function may look slightly more intimidating at first,
but it is quite similar to the Python version:

Both are functions that take two variables - a string of CSV and a
column number to sum. The Rust version has explicitly labeled types,
but the Python version still expects variables to have those types too,
even if they’re not labeled.
Both functions return numbers, once again Rust explicitly labels this at
the top of the function declaration, while Python does not.
Both functions raise errors if the data they are given does not match
expectations. The Python version raises Exceptions, and the Rust
version will panic. We will cover error handling in Chapter 2.
Both functions use the same naive CSV parsing algorithm to accomplish
their goals.

Despite their similar appearance, these two functions have quite different
performance characteristics. The Python version will allocate a list of strings
containing each line in the CSV input string, put those strings in a list, and
allocate a new list of strings for each row of comma-separated values in the
data. Because of the strong guarantees that the Rust compiler can make about
when memory is allocated and de-allocated, the Rust version will safely use
the same underlying string memory for the whole function, never allocating.
Additionally, Rust’s .split function on strings creates an Iterator, not a



list. This means that the whole sequence of substrings is moved over one at a
time, instead of allocating the whole thing up front as the Python version
does. This distinction will be discussed in more detail in chapter 2. If the
input data is many millions of lines long, or has many fields, this will have a
huge impact on performance.

I ran both of these examples with the same input file of 1,000,000 rows and
100 columns. Table1.1 highlights their respective time and maximum
memory usage:

Table 1.1. Performance differences between Python and Rust CSV aggregation functions

Version Runtime Max memory used

Python 2.9 s 800 MiB

Rust 146 ms 350 MiB

This represents a speedup of approximately 20 times, as well as using less
than half the memory. These are significant performance gains without a
significant increase in the complexity of the code. This is just a cherry-picked
example, and Rust may perform better or worse in your use case.

1.4.2 Memory Safety

Alternatively, you may be working on a C or C++ project, and want to utilize
Rust for the benefits in safety that it provides over those languages. At
compile time, Rust can verify that your application is safe from memory bugs
like data races, dangling pointers, and more. By incrementally refactoring the
critical parts of your codebase into Rust, you can ship software more quickly
with less time spent worrying about the memory invariants of your code. Let
the compiler do the worrying for you!

Many common bugs in C and C++ code are simply impossible to express in
normal Rust code. If we try to write code that exhibits these bugs, the



compiler will not accept the program. This is because the Rust compiler
manages one of the most difficult parts of programming in C and C++ -
memory ownership.

Experienced C and C++ programmers will probably be familiar with the
concept of memory ownership, but all C and C++ developers will have to
deal with it eventually. It will be discussed in more detail in later chapters,
but the bottom line is that there is always one handle that controls when a
piece of memory is allocated and de-allocated, and this handle is said to
"own" that memory. In a typical C or C++ program, the programmer is totally
responsible for maintaining the state of memory ownership in their heads.
The languages provide very few tools to strictly annotate what values are
owned by what handles. The Rust compiler on the other hand, requires that
programs strictly adhere to its memory ownership model.

This is one of the largest benefits of Rust development: taking errors that
were traditionally runtime errors with unpredictable or dangerous
consequences and turning them into compile-time errors that can be resolved
before the code is ever executed.

1.4.3 Maintainability

When projects written in dynamically typed programming languages start to
reach into the tens of thousands of lines, you may find yourself asking
questions like “what is this object?” and “what properties are available?”
These are questions that the strong, static type system in Rust aims to solve.
Static typing means that the type of every single value in your Rust program
will be known at compile time. Static typing is coming back in a big way
these days. Projects like Typescript, Mypy and sorbet aim to add type
checking to Javascript, Python, and Ruby, respectively. These are
programming languages that never had support for type checking, and the
amount of effort that has gone into developing these systems highlights how
helpful it is to know what type a value is ahead of time.

The type system in Rust is very powerful, but in most cases it stays out of
your way. Functions must have their input and output types annotated
explicitly, but the types of variables inside of functions can usually be



determined statically by the compiler without any extra annotations. Just
because the types are not labeled explicitly, does not mean that they are not
known. If a function is declared to only accept a boolean as its input, you
cannot give it a string. Many IDEs and editor plugins exist that can show you
these implicitly defined types to aid in development, but you as a developer
don’t need to write them yourself. Some developers may be nervous about
static typing, having last seen it when Java required you to use the following
kafkaesque syntax:

Listing 1.3. Initializing a map of numbers to lists of numbers in Java 1.6

HashMap<Integer, ArrayList<Integer>> map

  = new HashMap<Integer, ArrayList<Integer>>();

ArrayList<Integer> list = new ArrayList<Integer>();

list.add(4);

list.add(10);

map.put(1, list);

Specifying the type of every single local variable in each function is
exhausting, especially when the language requires you to do it more than
once. The same operation in Rust takes only two lines, with no explicit types
required:

Listing 1.4. Initializing a map of numbers to lists of numbers in Rust

let mut map = HashMap::new();

map.insert(1, vec![4, 10]);

How does the compiler know what type of values go into map? It looks at the
call to insert and sees that it is passed an integer as the key and a list of
integers as the value. The same code can be written with explicit type
annotations in Rust, but it is completely optional in most cases. We will cover
some of these cases in Chapter 2.

Listing 1.5. Initializing a map of numbers to lists of numbers in Rust with explicit types

let mut map: HashMap<i32, Vec<i32>> = HashMap::new();

map.insert(1, vec![4, 10]);



This strong type system ensures that when you revisit code later, you can
spend more time adding new features or improving performance, and less
time worrying about what the 5th untyped parameter to the perform_action
function means.

1.5 When should I not refactor to Rust?

If you are looking at a greenfield project, then you don’t need to refactor to
Rust, you can just write your initial solution in Rust! This book primarily
assumes that you have an existing software project that you want to improve.
If you’re just starting out, then you may benefit more from a general-purpose
Rust programming book.

If your project is running in an environment that you don’t have very strong
control over, such as a PHP shared hosting service, or tightly-controlled
enterprise servers where you don’t have the ability to install new software,
you may run into issues with some of the techniques outlined in this book.

There must always be a plan for deploying any software project. How are you
going to get it in front of the users? The type of refactoring discussed in this
book assumes that deploying new code is fairly low cost and can be done
frequently. If you need to ship physical media to customers for new versions,
or your organization has a very rigid release structure, this may not be the
right book for your needs.

When writing new software, you should always plan for how it will be
maintained for years to come. If you are the only one excited about Rust
development in your large company, you may be setting yourself up to be
“the Rust person” for when this system inevitably has issues down the line.
Do you want to be the only one responsible for maintaining this system?

1.6 How does it work?

Incremental refactoring of a mature production system is no simple task, but
it can be broken down into a series of a few key steps:

1. Planning



What do I hope to improve by refactoring to Rust?

If existing code is written in C or C++, you should be thinking
of how Rust can improve the memory safety of your
application.
If existing code is written in an interpreted, garbage-collected
language like Python, you will be mostly concerned with
improving the performance of your application.

What parts of my code should be refactored?
How should my existing code talk to the new code?

2. Planning

Mirroring the functionality of existing code in new Rust code
Integrating Rust code into the existing codebase

3. Planning

Using testing facilities of the Rust language to test new
functionality
Using your existing tests to compare results between the two code
paths

4. Planning

Depending on decisions you made earlier, there are different ways
that your Rust code will need to be run when it is serving your
customers
How can you effectively roll out your refactored code without
affecting your end-users?

Figure 1.2 lists these steps and some of their finer parts in more detail.

Figure 1.2. Overview of the refactoring process that we will discuss in this book



As you can see from Figure 1.2 the largest part of this process is planning.
Performing this type of refactoring work is complex, and it requires you to
know the effects of replacing code before that code is replaced. Along with
this is the careful consideration for performance and maintainability that



come along with introducing new code patterns. After planning, the largest
section is deployment; controlling which users access the new functionality
instead of the old.

1.7 What will I learn in this book?

This book covers incremental refactoring in an abstract sense, then moves
into how Rust can specifically benefit an incremental refactoring approach,
and how it can be incorporated into your applications. There are two main
techniques for integrating Rust code into existing applications, and they each
have a few variations:

1.7.1 Calling Rust functions directly from your program

In this model, you write a Rust library that acts like a library written in your
existing programming language. The various techniques are discussed at a
high level in this section, and will be discussed at length in later chapters.
This model is illustrated by Figure 1.3.

Figure 1.3. When calling Rust directly from your existing application, your Rust code looks just
like a normal module

If you’re refactoring a Python project for instance, your Rust library will
expose functions and classes that act just like Python functions and classes.
This method will have the lowest possible overhead for communication
between your existing code and the new Rust code, since they are both



running as a part of the same OS process, and can directly share memory with
each other.

There are a few branches of this approach:

Using the C Foreign Function Interface (FFI)

This will be discussed at great length in Chapter 3, but the bottom
line is that Rust will let you write a function that looks like a C
function, and many other languages know how to call C functions.
This will be the most universal approach since most commonly
used programming languages understand C FFI.
This approach has the most potential for memory bugs, as the
programmer will be directly responsible for ensuring that memory
is allocated, de-allocated, passed back and forth correctly, and
ownership is always clear.
If your projects are in C or C++ this is the integration technique
you will use.

Using Rust libraries to bind directly to the other language’s interpreter

Using this technique, you can write a Rust library that looks just
like a Python, Ruby, or Node.js library for instance.
Often easier to implement than the C FFI approach, this technique
breaks down if there are not Rust bindings available for the
language that you want to use.

Compiling Rust to WebAssembly (WASM) and using WASM FFI

WASM is a bytecode format for JavaScript engines, similar to Java
bytecode. Many languages (Rust included) can compile to WASM
instead of native machine code.
This is useful for using Rust with in-browser JavaScript engines, or
Node.js

1.7.2 Communicating with a Rust service over the network

This technique relies on using a network protocol to communicate with a



newly created Rust service. Figure 1.4 illustrates this concept.

Figure 1.4. When Rust code is in an external service, there is additional overhead due to the
network hop

This has several advantages and disadvantages compared with the previously
discussed model:

Advantages

Because there is no direct memory access with this technique, you
don’t run the risk of memory corruption in the interop between the
two languages.
This approach allows for your Rust system to be scaled
independently of your existing application.
More developers have experience with networked communication
between applications, so it is less of a conceptual jump than the
idea of multiple programming languages coexisting in one
application

Disadvantages

As alluded to in the last section, you will lose out on some performance
due to the extra time it takes for data to be sent across the network.
There is additional operational overhead for adding an extra service with
its own independent logging, monitoring, and deployment logic



1.8 Who is this book for?

This book is written for programmers who already have several years of
experience working with applications in a language other than Rust, and are
looking for ways to improve their applications’ performance, safety, or
maintainability.

This book will also benefit Rust programmers that want to apply their
knowledge to helping improve the performance or memory safety of existing
applications written in other languages. There’s a lot more code out there that
isn’t written in Rust than there is code written in Rust.

The code examples in this book will of course mainly be Rust, but since this
book covers moving from other languages to Rust, we need something to
compare to. In the chapter on C FFI, there will be many C and C++ code
examples, and many of the remaining chapters will have code examples in
Python that are used to highlight the differences between it and Rust, as well
as to show how the integration methods work. You do not need to be an
expert in these languages, experience with other procedural languages in the
C family should suffice.

The Unsafe Rust and C FFI chapter discusses many topics around memory
safety that may be foreign to developers that primarily work in languages that
have runtime garbage collection. These topics are not required for refactoring
from these garbage collected languages, they are mainly for the benefit of the
readers coming from a C and C++ background.

1.9 What tools do I need to get started?

All of the software tools that you need to get started are readily and freely
available. You will need

A recent Rust compiler

Instructions for installing Rust can be found in the appendix
A text editor suitable for programming



A computer or virtual machine running a GNU/Linux operating system

Most strictly-Rust programming examples in this book will work
on any operating system, but some of the examples will be written
assuming a GNU/Linux operating system.
If you are using Microsoft Windows, the Windows Subsystem for
Linux (WSL) provides a convenient way to run Linux programs
that integrate with your normal Windows environment.
All examples in the book will be tested on Ubuntu 20.04 running
under WSL.

Libclang development packages

Again, this is not strictly required for the Rust-only coding
exercises, but many of the chapters use libclang (indirectly) to
generate code to talk between Rust and C/C++ code.

Python 3, virtualenv, and pip

This is required for running the Rust-based Python extension
modules in later chapters.

1.10 Summary

Refactoring can be used to replace small parts of your code at a time.
This will help you to improve performance without the pain and time
investment of a large rewrite.
Rust has a Strong static type system which ensures that inputs and
outputs are clearly defined and edge-cases are handled.
Rust provides easy parallelism meaning that you can take already fast
Rust code and use every bit of available CPU power to maximize
performance.
Rust can easily integrate with other languages, and lets you focus on
delivering value, while not worrying about re-inventing the wheel.
Refactoring to Rust can improve performance, memory safety, and
maintainability. This will help your software systems scale faster and
with less expense in the long term.



2 An overview of Rust
This chapter covers:

Designing systems that properly utilize Rust’s ownership system
Visualizing Rust’s lifetime system to aid in debugging
Controlling allocations of strings for fast performance
Enums and basic error handling

Before we can integrate a Rust library into an existing application written in
another language, we first need to understand the basics of Rust
programming. This chapter will guide us through a simple application to
manage digital artworks for an art museum, to learn about how the
Ownership system works. Ownership & Borrowing are considered by many
to be some of the most challenging things for new Rust developers to learn.
We’re starting with it here instead of something simpler because these are the
areas where Rust differs most from other programming languages, and
they’re at the core of all Rust programs. If we don’t take the time to cover
these important ideas now, it will make the rest of the book far more difficult.
We’re going to use an example that ties the ownership & borrowing
components of Rust programs to ownership and use of digital artwork. This
should make reasoning about ownership easier, and we’ll introduce tools for
visualizing changes to ownership over time.

2.1 Ownership & Borrowing

One of the biggest differences between Rust and other programming
languages is the enforcement of a few very important rules about how data
can be accessed and dependencies between different forms of data access.
These rules are not overly complicated, but they are different from many
other languages, which have no enforcement of such rules. Here are the rules
for ownership:

Each value in Rust has a variable that’s called its owner



There can only be one owner at a time
When the owner goes out of scope, the value will be dropped

When looking at Rust code for the first time, it may not be obvious that these
rules are being followed. Procedural Rust code can look very similar to code
written in other languages, and you may be able to follow along without any
problems. You may find though, that when trying to edit existing Rust code
or write your own, you will have difficulty getting code that seems perfectly
reasonable to compile. This is because the Rust compiler is enforcing these
rules that you have not fully internalized yet.

We’re going to walk through a simple example problem to showcase how the
ownership and borrowing rules can affect a Rust program.

Let’s imagine that you’re approached by an art museum, and they want you
to design a system in Rust that allows them to manage their catalog of
artwork digitally. The system should allow for patrons to purchase tickets
that give them the right to view works.

We’ll start out by creating a new Rust project, using Rust’s package manager,
cargo. To start a new project with cargo, we use the command cargo new
followed by the name of the project that we want to create.

$ cargo new art-museum

This will create a new directory called art-museum that has all the files we
need to get started writing Rust. For now, we’ll just focus on the main Rust
code file that is generated, which is art-museum/src/main.rs. Open that file
up in your favorite text editor, and we can get started.

When you first open the file, you may be surprised to find that it’s not empty,
and in fact it already contains what is perhaps the most famous of all
programming example problems, the "hello world" program.

Listing 2.1. The "hello world" program in Rust

fn main() { #1

  println!("Hello world!"); #2

}



We can run this program to verify that it prints out what we expect by using
another cargo command; cargo run. The run command instructs cargo to
compile our Rust application and run the resulting executable. This will be
one of our most frequently used commands.

$ cargo run

Hello world!

Let’s replace the code in the hello world program with the beginnings of our
art museum code. We’ll start by defining a type that represents artwork in the
museum.

Listing 2.2. Struct that represent an artwork

struct Artwork { #1

  name: String,

}

fn main() {

  let art1 = Artwork { #2

    name: "Boy with Apple".to_string() #3

  };

}

The first operation that we might want to model is viewing a piece of art.

Listing 2.3. Allowing for our art to be admired

struct Artwork {

  name: String,

}

fn admire_art(art: Artwork) {

  println!("Wow, {} really makes you think.", art.name); #1

}

fn main() {

  let art1 = Artwork { name: "La Trahison des images".to_string() };

  admire_art(art1);

}

We now have a function called admire_art that accepts a single Artwork as
its only argument, and prints out a message about how fantastic the art is.



This program should print out the following:

$ cargo run

Wow, La Trahison des images really makes you think.

So far, this is seeming like a pretty great system, we have art, we have quiet
admiration. Both key elements in any art museum. Since we’re not running
the world’s smallest art museum, let’s add in a second work of art!

Listing 2.4. A program where two pieces of art can be admired

struct Artwork {

  name: String,

}

fn admire_art(art: Artwork) {

  println!("Wow, {} really makes you think.", art.name);

}

fn main() {

  let art1 = Artwork { name: "Las dos Fridas".to_string() };

  let art2 = Artwork { name: "The Persistence of Memory".to_string() };

  admire_art(art1);

  admire_art(art2);

}

And this program should have very unsurprising output to everyone
following along:

$ cargo run

Wow, Las dos Fridas really makes you think.

Wow, The Persistence of Memory really makes you think.

Now admiring two pieces of art is all well and good, but let’s imagine that
this museum has multiple patrons that want to look at the same piece of art.
Listing 2.5 shows what this code might look like.

Listing 2.5. A program that tries to admire the same art twice

struct Artwork {

  name: String,

}



fn admire_art(art: Artwork) {

  println!("Wow, {} really makes you think.", art.name);

}

fn main() {

  let art1 = Artwork { name: "The Ordeal of Owain".to_string() };

  admire_art(art1);

  admire_art(art1);

}

If we try to run this seemingly reasonable program, we’ll get a compiler
error! A compiler error that will probably look quite foreign to those that
have not developed in Rust before - let’s take a look at it.

$ cargo run

error[E0382]: use of moved value: `art1`

  --> src/main.rs:11:16

   |

8  |     let art1 = Artwork {};

   |         ---- move occurs because `art1` has type `Artwork`, which

   |              does not implement the `Copy` trait

9  |

10 |     admire_art(art1);

   |                ---- value moved here

11 |     admire_art(art1);

   |                ^^^^ value used here after move

error: aborting due to previous error; 1 warning emitted

What’s going on here? What does use of moved value mean? What is the
`Copy` trait? What is Rust trying to tell us?

The Rust compiler is trying to tell us that we have violated the ownership
rules, and that our program is therefore invalid. But before we can discuss the
reasons why this doesn’t work in Rust, we need to take a brief detour to look
at how memory is managed in other programming languages.

2.1.1 Memory Management in other languages

Generally, computer programs store the data that they use or generate at
runtime in the computer’s memory. Memory is usually divided into two parts



- the stack and the heap.

The stack is used for storing local variables created inside of the currently
running function, and the functions that led to the current function being
called. It has a small limit on its maximum size, often eight megabytes. It
always grows like a stack of papers, meaning whenever values are added to
or removed from it, they are added to or removed from the top. Because of
this property, the stack does not have gaps in it.

The heap on the other hand, is only limited by the size of the memory of the
computer that the program is running on, which may be in the gigabytes, or
terabytes. Because of this, the heap is used to store much larger data, or data
where the exact size is not known before the program runs. Things like arrays
and strings are more often than not stored on the heap. Memory associated
with the heap is also referred to as dynamic memory, because the size of the
values on the heap will not be known until the program is running.

Let’s imagine that when a patron enters our art museum, we want to welcome
them by taking their name, and saying “Welcome {name}”. To do this, we’d
need to first request that the computer set aside enough space in memory to
store a patron’s name, which we’ll store in a variable called name. This is
called allocation. Nothing else can be stored in that area of memory, other
than this patron’s name value. We can replace or alter the value that’s in
memory by assigning a new value to name, but name will still always refer to
the same area in memory.

We need to clean up the memory of our program periodically, or it will
eventually fill with name values that we’re not using. When we’re no longer
using name, after we’ve successfully printed our welcome message, we need
to tell the computer that it’s OK to re-use the memory that was associated
with name for other purposes, because we’re not using it anymore. Rust refers
to this clean up process as drop-ing a value, but the more generic term is de-
allocation. In the past, there have been two common ways that different
programming languages allowed developers to allocate and de-allocate
memory:

1. The developer can write code that explicitly requests the amount of
memory required, and marks the point at which the memory is no longer



used, and can be cleaned up. This is called "manual memory
management," because it requires manual effort by the developer to
ensure that memory is allocated and de-allocated when appropriate.
Many languages that have manual memory management will
automatically de-allocate values from the program’s stack memory when
the function which allocated it returns and the stack frame exits. The
larger concern with these languages is the management of heap memory.

2. The language can have extra code that runs in the background of all
programs to periodically check and see when there are no variables left
that refer to allocated blocks of memory, and de-allocate them. This
process is called "garbage collection," or "automated memory
management," because there is no manual step required from the
developer to de-allocate memory. These languages generally also have
much simpler methods for performing allocation, preventing the
developer from asking for too much or too little memory for storing a
value of a given type.

If you were interested in writing very high performance programs, you
generally stuck to using languages that provided manual memory
management tools to the developer. Languages like C and C++ require the
programmer to figure out how much memory is required, and ask the
computer to allocate exactly that amount of memory. Asking for too much
can result in slow allocation times, or overly high memory use. Asking for
too little, and erroneously using memory outside of your allocated block, can
cause massive issues. This can lead to things like programs crashing,
exposing areas of memory that should be secret (think passwords, encryption
keys, etc), or allowing malicious users to inject code into your running
program and hijack it. Trying to write a large program in a language that
requires the developer to manage memory manually requires a lot of mental
effort on the part of the developer, or at least a lot of documentation.

One of the most common issues that occurs with manual memory
management is the idea of “use after free,” which is what happens when you
try to use an area of memory after it’s been de-allocated. It may have been
repurposed for holding something else, it may have been zeroed, or it may
still contain the data that you think it does. It’s completely up to the compiler
to do whatever it wants to do with de-allocated memory.



Let’s imagine that you want to write a simple program using an imaginary
programming language, which we’ll call “K”. The K programming language
is extremely similar to the Python programming language, with the exception
that K requires the developer to explicitly de-allocate dynamic memory, by
calling the free function on values. You must call free on every value that is
allocated in dynamic memory, and you must call it exactly one time. If you
attempt to use a freed value, your program will crash. Let’s try to write our
welcoming program using K.

Listing 2.6. The welcome program written with K

def welcome(name):

  print('Welcome ' + name)

name = input('Please enter your name: ')

welcome(name)

free(name)

The code in Listing 2.6 will ask a user for their name, then give them a
personalized welcome message, then de-allocate the memory used for storing
their name. This is a perfectly fine program, you think to yourself, but most
of the time when you’re calling welcome, don’t you need to free the string on
the next line anyways? Let’s just move the call to free to inside of the
welcome function so we don’t need to remember to call it.

Listing 2.7. The welcome program with the de-allocation inside the welcome function

def welcome(name):

  print('Welcome ' + name)

  free(name)

name = input('Please enter your name: ')

welcome(name)

This saves us from needing to remember to call free each time welcome is
called. It’s quite obvious in this small example that the program is still valid,
but we’ve just created a subtle undocumented behavior of the welcome
function. Any string which is given to the welcome function is now unusable
after it’s been called. If we have 10,000 lines of code, we need to now inspect
each call to the welcome function to ensure that strings passed to it are never



reused, or we risk having our program crash.

If we were asked to update the welcome logic to keep a log of the patrons
that entered the museum from a specific entrance, we may need to change the
welcome function to once again not de-allocate the strings passed to it. This
once again requires us to examine the codebase, look at all calls to welcome,
and determine if the name should be de-allocated immediately after, or be put
onto the log. All of this determination must be made by the programmer,
before the program runs, but the K language provides no tools to the
developer to verify that the program is correct, other than running it.

This is where we can start to see the benefits of Rust’s ownership system.
With Rust, we have encoded at the type level, information about when
memory is allocated when it is valid to use, and when it is de-allocated. This
protects us from use after free errors, and many other classes of memory
corruption errors. They’re simply not possible to express in Rust. The
compiler will stop our programs from ever running if they violate the rules of
Rust.

This also means that Rust programs have a bit of the best of both worlds of
garbage-collection and manual memory management. We have the speed of
manual memory management, because there is no extra process running in
the background to scan memory in Rust program, and we can rest easy
knowing that the compiler will protect us from making memory errors that
will make our program crash, or worse.

Recall the code in Listing 2.5. It is repeated here.

Listing 2.8. Repeat of the code in Listing 2.5

struct Artwork {

  name: String,

}

fn admire_art(art: Artwork) {

  println!("Wow, {} really makes you think.", art.name);

}

fn main() {

  let art1 = Artwork { name: "The Ordeal of Owain".to_string() };



  admire_art(art1);

  admire_art(art1);

}

When we defined our admire_art function, we told Rust that in order to call
the function, the caller would need to provide an owned value of type
Artwork to the function, and that the function would take ownership of the
value. Remember that in all Rust programs, there can only ever be a single
owner for each value. Since our variable art1 owns the Artwork value that it
refers to, when we call admire_art with art1 as the parameter, Rust removes
the ownership of the value from art1, and moves the ownership of the
artwork to the art variable inside of our admire_art function. This is very
important: after the initial call to admire_art, the art1 variable is no longer
valid. It no longer refers to anything, and cannot be used.

When we call the admire_art function with any Artwork, the memory
associated with that artwork will be de-allocated at the time that the function
completes.

Understanding ownership and movement is critical in writing Rust code, but
equally important is the understanding of lifetimes.

2.2 Lifetimes

The concept of lifetimes in Rust is at the core of understanding the memory
management process. All values in all programming languages have
lifetimes, though most are not as explicit about it as Rust. The lifetime of a
value describes the period of time when that value is valid. If it’s a local
variable in a function, its lifetime might be the time that the function is being
called. If it’s a global variable, it might live for the entire runtime of the
program. A value is valid in the time after its memory is allocated and before
it is dropped. Trying to use a value at any time outside of this range is
invalid. In languages like C or C++, using a value outside its lifetime may
result in crashes or memory corruption errors. In Rust, it will result in your
program not compiling.

To aid in understanding, let’s introduce a new type of visualization, that we’ll



call the “lifetime graph”. These graphs will appear frequently in this chapter,
and periodically throughout this book. Before we try to visualize the error
from Listing 2.5, let’s first look at a simpler example from earlier in the
chapter. Figure 2.1 shows the lifetime graph for Listing 2.2, and the code is
included for convenience.

Figure 2.1. The lifetime graph for Listing 2.2

Notice that the art1 variable has a single line that shows when the variable is
created, when it is usable, and when it is destroyed. In Rust, values are
dropped when they go out of scope. For local variables in a function, this
happens just before the function ends. When we’re having difficulty sorting
out issues with Rust’s memory management system, we’ll rely on these
graphs to help understand what’s going on.

Let’s take a look at what the lifetime looks like for Listing 2.3.

Figure 2.2. The lifetime graph for Listing 2.3



Figure 2.2 introduces the concept of “move”-ing a value, or transferring its
ownership to another variable. As we know from the discussion of Listing
2.3, when we call the admire_art function with our art1 parameter, it is
“move”-d out of the main function and into the admire_art function, it is not
accessible from the main function after this. The fact that the lifetimes for the
art1 variable disappears from the main function as soon as the admire_art
function is our hint that it’s been moved.

If we try to visualize the code in Listing 2.4, we will see what it looks like for
two variables to coexist, with their own independent lifetimes.

Figure 2.3. The lifetime graph for Listing 2.4



We can see in Figure 2.3 that each of the two Artwork variables is created in
the main function, then moved into different call sites of the admire_art
function. Each variable has its own independent lifetime, and each has an
appropriate start, middle, and end.

When we try to construct a lifetime for Listing 2.5, we begin to run into some
issues. Let’s see if we can gain any insights into what’s happening by looking
at that visualization. Figure 2.4 shows what that might look like.

Figure 2.4. The call tree in Listing 2.5



Let’s dissect what’s happening in here a bit. Notice that art1 is moved into
the admire_art function, and that it is no longer reachable from the main
function after this. When we try to call admire_art a second time, the value
that we try to use is gone, there’s nothing there. This is what the error
message Rust provided was trying to tell us. Remember that the headline of
that error message was use of moved value. In the code art1 is moved out
of the main function, but we try to use it from the main function. We’re
trying to use a value after it’s been moved, which is invalid.

At this point, you may be asking yourself, “So what? Why should values
basically disappear when I pass them to a function? This seems like a waste
of time to keep track of!” It may seem like this is an extra burden that Rust
places on the programmer just to make our lives more difficult, but the truth
is that programmers using languages with manual memory management like
C or C++ need to follow rules like this constantly, the only difference is that
the compiler doesn’t enforce the rules at all, it’s just up to the programmer to
remember to follow them!

Let’s briefly discuss how we can write functions which don’t take ownership
of the values they use.

2.2.1 References and Borrowing

Unless you’re writing a program that only uses every piece of data a single
time, you’ll find passing values by moving them to be extremely
constraining. At some point, we will want to use the same value from
multiple places, or use a value without transferring ownership of it. In Rust,
this is accomplished by borrowing values instead of owning them. Borrowing
a value in Rust always results in having a reference to the thing you are
borrowing, references can be thought of as values that tell Rust how to find
other values. If you imagine your computer memory as an enormous array of
values, references are like indices in that array that allow you to find values
within it.

Borrowing a value in Rust is much like borrowing a physical object in real
life. Since we don’t own the value that we’re using, we don’t get to destroy it
when we’re finished with it. We may use it temporarily, but we always need



to return it to the owner before the owner is destroyed. Borrowing comes
with some rules. Like with ownership, these rules define the way that data
move through a Rust program, and they will eventually become second
nature to you. Let’s take a look at them:

1. Each value may have either exactly one mutable reference, or any
number of immutable references at any time.

2. References must always be valid.

The first one may seem a bit odd to developers coming from languages that
do not have a concept of controlled mutability. We’re going to discuss this
concept in more detail in 2.2.2, but first we’ll take a look at how references
work more generally, by applying them to our art program in Listing 2.5.
Recall that in that listing, we were attempting to pass a variable to the same
function multiple times, and having difficulty with that because passing the
variable moved it out of the main function. If we change the signature of the
admire_art function from that example to take a reference to an artwork
instead of the owned artwork, it will work the way we expect.

Listing 2.9. A program that admires the same art twice

struct Artwork {

  name: String,

}

fn admire_art(art: &Artwork) { #1

  println!("Wow, {} really makes you think.", art.name);

}

fn main() {

  let art1 = Artwork { name: "The Ordeal of Owain".to_string() };

  admire_art(&art1); #2

  admire_art(&art1);

}

Listing 2.9 looks very similar to Listing 2.5. The only difference is a change
to the type that admire_art accepts. Instead of requiring an owned Artwork
to be passed to it, admire_art now accepts a reference to an Artwork. If we
think about this from the perspective of the museum, this makes sense. We
don’t want to be creating and destroying artwork just so it can be admired



one time, we want to be able to share the admiration of artwork with many
people at many times. This also makes sense from a memory perspective -
thrashing memory by creating and destroying values constantly is inefficient,
it’s much better to re-use memory when possible. If we compare the call tree
for Listing 2.9, it’s immediately apparent that this makes more sense. Let’s
look at the lifetime graph for this example, to see how we can represent
immutable borrows like this.

Figure 2.5. The call tree for Listing 2.9

In Figure 2.5, we can see that art1 is no longer moved into either of the calls
to admire_art. We pass in a reference, but art1 remains owned by the main
function. The memory associated with art1 is not de-allocated until the end
of main, and since the references to it are dropped when their function calls
end, this is perfectly fine.

So that we can understand the difference between mutable and immutable
references in Rust, let’s take a look at the way that Rust handles mutable and
immutable variables differently.



2.2.2 Controlling Mutability

All variables in Rust are tagged with a bit of extra information to help the
developer (and the Rust compiler) reason about how the program will behave
at runtime. This information determines if the variable is mutable, meaning it
can be changed, or immutable, meaning it cannot be changed.

All variables in Rust are immutable, unless explicitly labeled as mutable
when they’re declared. Here’s what it looks like to declare and use an
immutable variable, and a mutable variable.

Listing 2.10. Using an immutable and mutable variable in Rust

fn main() {

  let x = 0;

  let mut y = 0; #1

  println!("x={}, y={}", x, y);

  y += 10; #2

  println!("x={}, y={}", x, y);

}

It may seem odd at first that Rust requires you to specify up front whether a
value will be changed later, but you will be surprised by how often mutations
can be avoided in most Rust code. In addition, the fact that the Rust compiler
knows about mutations means that it can statically verify some code that
would otherwise be tricky to get right in other languages. We’ll get into some
more specifics on this in the chapter on writing parallel code with Rust but
for now, know that this is a small change to the way you declare variables in
exchange for a big payout on your ability to reason about the code that you’re
running.

As we can see from Listing 2.10, it’s very easy to mark a variable as mutable.
This allows us to reassign its value. In an example this small, it may not be
obvious why it’s beneficial to have this control over mutability, but when we
combine it with references, the benefits should become very clear. Let’s
return to our art museum code and see if we can use the concept of mutability
there.



The current version of admire_art accepts an immutable reference, but what
if we wanted each artwork to have a view counter that was incremented each
time it was admired? In that case, we would need to slightly edit the function
to accept mutable references.

Listing 2.11. Incrementing a view counter on an artwork requires us to use mutable references

struct Artwork {

  view_count: i32,

  name: String,

}

fn admire_art(art: &mut Artwork) { #1

  println!("{} people have seen {} today!",

    art.view_count, art.name);

  art.view_count += 1; #2

}

fn main() {

  let mut art1 = Artwork {

    view_count: 0, name: "".to_string() }; #3

  admire_art(&mut art1); #4

  admire_art(&mut art1);

}

Looking at Listing 2.11, it appears that we have achieved our goal of
incrementing a number and reading it each time that an artwork is viewed.
“But wait!”, you might be saying, “I thought that there could only be one
mutable reference to a value at any one time! Does this program not violate
that rule?” If we take a moment to consider what happens in the program, it
will become clear that there never are two mutable references to the same
value. Figure 2.6 illustrates this.

Figure 2.6. The call tree for Listing 2.11



Notice that the references that we create themselves have drop points after
which they no longer exist. When we call admire_art, we give it a reference,
and when the function ends, that reference goes out of scope and is dropped.
In the time between the two function calls, there are zero references to art1.
This is why our program is legal Rust.

Going back to the code in Listing 2.9, we can see the value of the explicit
mutable annotations - we know for a fact by looking at the type declaration of
the admire_art function that it will not modify the Artwork value that is
passed into it. Why? Because it accepts an &Artwork, not an &mut Artwork.
This means that you can look at a function declaration from library
documentation and know, not guess, which functions will modify the values
given to them, and which functions will only view the values they are given.
This has large, overlapping implications for security, performance, and
debugging purposes. We’ll explore that more in Chapter 3 during our
discussion of integrating Rust code with C and C++.

2.2.3 References and Lifetimes

Just like values have lifetimes in Rust, so do references. References point to
values, but they themselves are also values, and are dropped when they go
out of scope. In addition to this, references have an extra rule placed on them
by Rust. Remember from the initial discussion of references that all



references must be valid. What does that mean? Simply put, it means that all
references must point to values that are valid. Also recall that lifetimes are the
Rust compiler’s way of determining when a value is valid and when it is
invalid. This means that references and lifetimes are very strongly tied
together. Not only do references themselves have lifetimes, but they must
also be concerned with the lifetimes of the things to which they point. That’s
a little abstract, so let’s take a look at what that means.

Listing 2.12. A program that attempts to use a value after it’s been moved

struct Artwork {

  name: String,

}

fn admire_art(art: Artwork) { #1

  println!("Wow, {} really makes you think.", art.name);

}

fn main() {

  let art1 = Artwork { name: "Man on Fire".to_string() };

  let borrowed_art = &art1; #2

  admire_art(art1);

  println!("I really enjoy {}", borrowed_art.name);

}

If we try to run this, we’ll get a compiler error! Let’s try to construct a
lifetime graph and see where we went wrong.

Figure 2.7. The lifetime graph for Listing 2.12



As we can see from Figure 2.7, our program is invalid because the
borrowed_art reference is invalidated after the admire_art function is
called. Let’s look at another common pitfall of reference lifetimes.

Listing 2.13. A function that tries to return a reference to a dropped value

struct Artwork {

  name: String,

}

fn build_art() -> &Artwork {

  let art = Artwork { name: "La Liberté guidant

    le peuple".to_string() };

  &art #1

}

fn main() {

  let art = build_art();

}

The build_art function in Listing 2.13 is invalid for a slightly different
reason. art is never moved, however we try to return a reference to it, even
though it is dropped at the end of the function. Let’s look at the lifetime
graph for this program.

Figure 2.8. The lifetime graph for Listing 2.13



The lifetime graph in Figure 2.8 shows the same common warning sign as the
graph in Figure 2.7. We have a reference that extends past the drop point for
the thing that it should be referencing. It is possible to write Rust functions
that return references, but those functions will usually take references as
inputs as well. If a function returns a reference, but has no parameters, or
only takes in owned parameters, that’s usually a sign that you will see a
lifetime error when trying to compile it.

2.3 Rust’s String types

Nearly every programming language out there has some kind of support for
string operations. They’re just so useful, how could you not? Many
programming languages have a String type, but Rust differs from the pack
slightly in that it has multiple types which are used to represent strings. The
most commonly used types are String and &str. Let’s take a look at how
they’re both used.

&str, also called a string reference, is the simpler of the two types, consisting
only of a pointer to a starting position in memory, and a length. Because of
this simplicity, &str is the more flexible of the two types, because the
reference can point to any string data anywhere in memory. It could be
backed by a stack-allocated array buffer, a String, or even a string literal
compiled into the program binary itself. If you’re coming from C or C++, you
may be aware that string literals in these languages are subtly different from
other string values, even though they have the same types. String literals in C



and C++ are read-only, because they are compiled into the binary and live in
read-only memory. If you try to run this C program, you will most likely get
a segmentation fault (illegal memory access error at runtime).

Listing 2.14. A C program which attempts to write to read-only memory

int main(void) {

  char *str = "hello, world!";

  str[0] = '!'; #1

  return 0;

}

The code in Listing 2.14 is invalid because it attempts to write data into a
read-only location. The C compiler doesn’t know that str points to read-only
memory, because C types provide no information about if values can be
mutated or not. The equivalent type for string literals in Rust is &'static
str. The new syntax here, the 'static part, is a lifetime annotation. This is
a marker to the compiler that explicitly calls out how long this reference will
be valid. We’ll discuss these in more depth in Chapter 3, but for now you
should know that &'static anything means that the reference will live for the
entire runtime of the program. Since string literals are compiled into the
binary, `&'static str`s can reference them at any point without worrying about
if they’ve been dropped, since they cannot be dropped. It’s also legal in Rust
to have a non-static reference to a string literal, let’s see what that might look
like.

struct Artwork {

  name: &'static str,

}

fn admire_art(art: &Artwork) {

  print_admiration(art.name); #1

}

fn print_admiration(name: &str) {

  println!("Wow, {} really makes you think.", name);

}

fn main() {

  let art1 = Artwork { name: "The Ordeal of Owain" }; #2



  admire_art(&art1);

}

The fact that string references are immutable references is relevant. Since
they’re only pointers to memory buffers with no knowledge of how those
buffers are constructed, or what extra capacity they might have, they can
never be modified. If we want to modify our string values, we need to look at
the other type of string in Rust, String.

2.3.1 Mutable Strings

If you’re coming from a language like Java, JavaScript or Python, you may
have first heard of mutability in the context of strings. In these languages and
many like them, all strings are immutable, they cannot be changed after they
are created. You may be telling yourself that you frequently change the
values of strings by using += operations in these languages, to concatenate a
string onto another string, but you’re not quite right. In languages with
immutable strings, you cannot edit the memory of a string after it is created,
you may only edit the string by creating a new string that contains the newly
requested content.

Let’s imagine that we need to create a program which will add a dot "."
character onto a string each time some action occurs, which we will
approximate with a for loop of 10 million iterations.

Listing 2.15. Creating a very large string, one character at a time in Python

x = ""

for i in range(0, 10_000_000):

  x += "."

print(len(x))

Each time the for loop in Listing 2.15 iterates, it creates a new string that
holds a copy of all the data in the current string, plus one dot character. This
means that in order to build our string of 10,000,000 dots, our program
needed to perform 10,000,000 allocations, and 9,999,999 copied strings that
aren’t useful. The process of copying memory to a larger storage area is



referred to as re-allocation. Let’s contrast this with Rust, which provides the
developer with the ability to mutate strings.

In Rust, a String, or owned string, is made up of a growable, heap-allocated
buffer which stores the character data in it. If you want to add extra
characters to the end of the string, they can be added to the end of the buffer.
If you want to swap characters out of the middle, they can be moved around
in the middle. These buffers have both a length, and a capacity. The length
represents the number of valid elements in the buffer, and the capacity
represents the number of elements that the buffer can hold, when it’s full. The
only time that Rust String values need to do the extra allocation and copying
step like Python, is when mutating the string would cause the length of the
buffer to exceed its capacity. In these instances, the buffer will be re-allocated
with a capacity at least as large as would be required to store the new data.
The Rust standard library does not guarantee any particular strategy for how
the buffer will be grown, but it is possible for the buffer’s capacity to, for
instance, double when pushing a single character onto a string, so that future
character pushes will not require re-allocation.

Let’s see how to use a string to mimic the functionality of Listing 2.15.

Listing 2.16. Creating a very large string, one character at a time in Rust

fn main() {

  let mut x = String::new(); #1

  for i in 0..10_000_000 {

      x.push('.');

  }

  println!("{}", x.len());

}

As you can see in Listing 2.16, most of the buffer maintenance is hidden to
the developer, generally the only interaction that you will have with it
directly is to set its capacity to some predetermined size, to try and limit the
number of allocations that your code does. If we wanted to make the fewest
allocations possible, to have the fastest runtime possible for our program, we
could use the String::with_capacity function to explicitly set the capacity



up front. In this way, our 10 million dots program could run with just a single
allocation! If you’re working with large strings, this can be a large
performance gain.

Here’s how to use with_capacity.

Listing 2.17. Pre-allocating strings can aid with performance, if you know how large they’ll be

fn main() {

  let mut x = String::with_capacity(10_000_000); #1

  for i in 0..10_000_000 {

    x.push('.');

  }

  println!("{}", x.len());

}

String::with_capacity is just a performance optimization, the String
values that it returns can be used in the same ways as the strings from
String::new, but they may perform better in certain instances. It is safe to
grow a string past its capacity using push, the string will just re-allocate its
buffer internally.

You may be wondering about converting between the two different string
types that we’ve covered here, we should explore how to do that. Both
conversions are easy for the developer to perform, but one direction is much
costlier for the computer at runtime. Converting a String to a &str is very
cheap. Since &str values are just a pointer and a length, we can copy the
starting pointer of the `String’s buffer, and its length. That’s just two 64-bit
integers to copy on most machines, very inexpensive to do. It looks like this.

Listing 2.18. Converting a String to a string reference

fn print_admiration(name: &str) {

  println!("Wow, {} really makes you think.", name);

}

fn main() {

  let value = String::new();



  print_admiration(value.as_str());

}

Going the other way is a bit more expensive for the computer. Since all
String values have their own heap-allocated buffer, creating a String from a
&str requires the computer to allocate a buffer which is at least large enough
to hold all of the data in the &str, and then copy all of the data from the &str
to the newly created buffer. If you’re doing that in a tight loop, it can tank
your performance. The upside is that it’s easy to see where this conversion is
happening, and limit it in most cases. You’ve been doing this conversion all
chapter, it’s accomplished by calling the .to_string() method on &str
values.

Listing 2.19. Converting a string reference to a String

fn print_admiration(name: String) {

  println!("Wow, {} really makes you think.", name);

}

fn main() {

  let value = "Artwork";

  print_admiration(value.to_string());

}

It’s a common idiom for Rust to provide similar methods with as_ and to_
prefixes. as_ generally means that you’re getting a cheap reference to
something, and to_ indicates that you’re allocating and copying to an owned
data structure.

Like most of the material in this chapter, these different string types will
prove helpful in the long run, but can be confusing in the short run. Knowing
when to use the different string types will come with experience, but for now
we can generalize. If you’re storing data in a struct, which will live for a long
time, you should probably use a String, and if you’re just passing read-only
data to a function, it should probably take a &str. If you’re not sure which
one to use, String is the more flexible option, and the extra allocations that
come from creating `String`s from string references can be cleaned up later.
Now let’s move on to the final area where Rust differs significantly from
other programming languages - error handling.



2.4 Enums and Error handling

Many programming languages use exceptions for propagating errors up the
stack from the place where they originated to some kind of handling code.
Rust differs from these languages in that errors are normal values which are
handled with normal control flow elements that are not specific to errors.
This example will walk us through a simple use-case for enums outside of the
error context, and we’ll introduce error handling after we have a solid
understanding.

2.4.1 Enums

Fizz buzz is a popular programming challenge meant to test a candidate’s
ability to use basic control flow elements such as loops and if statements. It
goes like this - write a program which counts from one to one hundred. Each
time you reach a number which is divisible by three, print the word "fizz".
Each time you reach a number divisible by five, print the word "buzz". If a
number is divisible by both three and five, print "fizzbuzz". Otherwise, print
the number itself. We’re going to implement fizz buzz using one outer
function to do the looping and printing, and a helper function to perform the
divisible checking. The helper function should return an enum which tells the
main function what to do.

Let’s start by writing our main function, which will perform the looping and
printing of the numbers.

Listing 2.20. Function which loops through the numbers 1-100

fn main() {

  for i in 1..101 { #1

    println!("{}", i);

  }

}

Next, let’s take a first pass at our helper function that performs divisibility
checking on an input value.

Listing 2.21. Fizz buzz program with helper function



fn main() {

  for i in 1..101 {

    print_fizzbuzz(i);

  }

}

fn print_fizzbuzz(x: i32) { #1

  println!("{}", fizzbuzz(x));

}

fn fizzbuzz(x: i32) -> String {

  if x % 3 == 0 && x % 5 == 0 {

    String::from("FizzBuzz")

  } else if x % 3 == 0 {

    String::from("Fizz")

  } else if x % 5 == 0 {

    String::from("Buzz")

  } else {

    format!("{}", x) #2

  }

}

Now, this does solve our fizz buzz problem, but it has some room for
improvement. In a large system, we don’t want to be passing strings around
to communicate state. Rust is a strongly typed language, and we should take
advantage of that strong typing to ensure that the return values of fizzbuzz
are always handled correctly. What if we wanted to use the same divisibility
checking, but display the results in a different way? For example, sending the
result over some kind of network stream in a compact way. We’d need to
parse the Fizz/Buzz/FizzBuzz strings, and parse the numbers from strings as
well. We can do better.

The proper way to communicate between the print_fizzbuzz and fizzbuzz
functions is with an enum. Enums are types which can have exactly one of a
predetermined number of possible values. Since our fizzbuzz function has
four possible return values ("fizz", "buzz", "fizzbuzz", or something to
indicate non-divisibility) it’s the perfect use-case. Enums exist in many
programming languages, but they are at the core of Rust. Later in this section,
we’ll see how enums are used for error handling in Rust, but for now we’ll
stick to fizz buzz. Let’s write an enum which will allow our helper function
to communicate the different results of the helper function back to the
print_fizbuzz function. Listing 2.22 shows what this enum looks like.



Listing 2.22. The enum which holds the results of the fizzbuzz function

enum FizzBuzzValue {

  Fizz,

  Buzz,

  FizzBuzz,

  NotDivisible,

}

Each entry in the list of possible states for the enum is called a variant. We
can see that all of the possible return values are represented within the
FizzBuzzValue enum. Now let’s take a look at how we can use it from our
fizzbuzz function.

Listing 2.23. Returning an enum from a function

enum FizzBuzzValue {

  Fizz,

  Buzz,

  FizzBuzz,

  NotDivisible,

}

fn fizzbuzz(x: i32) -> FizzBuzzValue {

  if x % 3 == 0 && x % 5 == 0 {

    FizzBuzzValue::FizzBuzz

  } else if x % 3 == 0 {

    FizzBuzzValue::Fizz

  } else if x % 5 == 0 {

    FizzBuzzValue::Buzz

  } else {

    FizzBuzzValue::NotDivisible

  }

}

Now, if we wanted to use the return value of fizzbuzz to print out a message,
we can use a match expression. match is similar to switch statements in Java,
C, C++ and Go, but it has some additional functionality that we’ll explore in
a moment.

Listing 2.24. Using match expressions with enums

enum FizzBuzzValue {



  Fizz,

  Buzz,

  FizzBuzz,

  NotDivisible,

}

fn main() {

  for i in 1..101 {

    print_fizzbuzz(i);

  }

}

fn print_fizzbuzz(x: i32) {

  match fizzbuzz(x) {

    FizzBuzzValue::FizzBuzz => { #1

      println!("FizzBuzz");

    }

    FizzBuzzValue::Fizz => {

      println!("Fizz");

    }

    FizzBuzzValue::Buzz => {

      println!("Buzz");

    }

    FizzBuzzValue::NotDivisible => {

      println!("{}", x);

    }

  }

}

fn fizzbuzz(x: i32) -> FizzBuzzValue {

  if x % 3 == 0 && x % 5 == 0 {

    FizzBuzzValue::FizzBuzz

  } else if x % 3 == 0 {

    FizzBuzzValue::Fizz

  } else if x % 5 == 0 {

    FizzBuzzValue::Buzz

  } else {

    FizzBuzzValue::NotDivisible

  }

}

This seems to be working well, we have effectively separated the
computation of results from the presentation of those results to the user. In an
example this small, it may seem odd to have this separation when it would
certainly be less code to remove it - or even put the println! macro calls
inside the fizzbuzz function - but in larger programs, it is very beneficial to



use enums to create a single, standardized way to represent values that may
have multiple variants at runtime.

Our FizzBuzzValue enum works well enough for this small example, but it
does have a flaw that would show up in larger programs. The final variant in
the enum, NotDivisible, has an extra piece of data that should be associated
with it, but our code doesn’t capture it. Namely the input number that wasn’t
divisible by three or five. If we wanted to print this result in the program
somewhere else, we’d need to come up with a way to store the number, as
well as the NotDivisible information. It turns out that Rust’s enums make
this extra storage extremely straightforward. Each enum variant can hold, in
addition to the data on which variant it is, any number of extra data fields.
Let’s see an example of what that might look like.

Listing 2.25. FizzBuzzValue enum that can hold the number which wasn’t divisible by three or
five

enum FizzBuzzValue {

  Fizz,

  Buzz,

  FizzBuzz,

  NotDivisible(i32), #1

}

fn main() {

  for i in 1..101 {

    print_fizzbuzz(i);

  }

}

fn print_fizzbuzz(x: i32) {

  match fizzbuzz(x) {

    FizzBuzzValue::FizzBuzz => {

      println!("FizzBuzz");

    }

    FizzBuzzValue::Fizz => {

      println!("Fizz");

    }

    FizzBuzzValue::Buzz => {

      println!("Buzz");

    }

    FizzBuzzValue::NotDivisible(num) => { #2

      println!("{}", num);



    }

  }

}

fn fizzbuzz(x: i32) -> FizzBuzzValue {

  if x % 3 == 0 && x % 5 == 0 {

    FizzBuzzValue::FizzBuzz

  } else if x % 3 == 0 {

    FizzBuzzValue::Fizz

  } else if x % 5 == 0 {

    FizzBuzzValue::Buzz

  } else {

    FizzBuzzValue::NotDivisible(x) #3

  }

}

Our final match arm has changed slightly. Now there is the addition of the
num variable, which gets its value from the i32 which is stored in the
NotDivisible variant. This removal of values from container types like
enum variants is known as Destructuring. We know that every
NotDivisible variant will contain an i32, because the enum declaration
requires it. With this enum declaration, it is not possible to construct a
NotDivisible without providing an i32. Further, it is not possible to access
the i32 within the NotDivisible variant without some kind of checking to
ensure that the FizzBuzzValue value holds a NotDivisible.

Now that we have a bit of an understanding about how to use enums and
match, let’s take a look at how we might use these for error handling.

2.4.2 Error Handling with Enums

Many programming languages represent errors as exceptions, and they have
methods for communicating exceptional conditions in programs. Exceptions
“bubble up” the stack until they encounter some special error handling code,
like a try/except block. In Rust, errors are represented in the same way as
normal values, and they use the same control-flow elements as normal values.
This section will demonstrate how to write functions that might fail at
runtime, and how to handle the errors from those functions.

Let’s imagine that we received a new requirement for our fizzbuzz function.
Now, in addition to its functionality determining divisibility, the function



should return an error if the number provided is negative. In our program, the
values that will be provided to fizzbuzz are known, because they’re of course
typed directly into the source code, but imagine for a moment that they’re
coming from some user input somewhere. We should be able to handle this
error differently from the normal enum return values that the function has,
and the FizzBuzzValue enum should not be expanded to account for the
possible error state.

Let’s take a look at how we might represent this possible failure condition in
our program. The Rust standard library contains a type called Result which
holds either an indication of a successful computation, and the output of that
computation, or an indication of an error, and more detailed information on
that error. Here is the declaration of that enum.

Listing 2.26. The definition of the Result type

enum Result<T, E> { #1

    Ok(T), #2

    Err(E), #3

}

The Result is one of the most commonly used types in Rust code, because
any function that might possibly fail returns its value wrapped in a Result.
Let’s revisit our program to see how it needs to change if the fizzbuzz
function might return an error.

Listing 2.27. fizzbuzz function that may return an error

enum FizzBuzzValue {

  Fizz,

  Buzz,

  FizzBuzz,

  NotDivisible(i32),

}

fn main() {

  for i in 1..101 {

    match print_fizzbuzz(i) {

      Ok(()) => {}

      Err(e) => {

        eprintln!("Error: {}", e); #1



        return;

      }

    }

  }

}

fn print_fizzbuzz(x: i32) -> Result<(), &'static str> { #2

  match fizzbuzz(x) {

    Ok(result) => { #3

      match result {

        FizzBuzzValue::FizzBuzz => {

          println!("FizzBuzz");

        }

        FizzBuzzValue::Fizz => {

          println!("Fizz");

        }

        FizzBuzzValue::Buzz => {

          println!("Buzz");

        }

        FizzBuzzValue::NotDivisible(num) => {

          println!("{}", num);

        }

      }

      Ok(())

    }

    Err(e) => {

      Err(e)

    }

  }

}

fn fizzbuzz(x: i32) -> Result<FizzBuzzValue, &'static str> {

  if x < 0 {

    Err("Provided number must be positive!")

  } else if x % 3 == 0 && x % 5 == 0 {

    Ok(FizzBuzzValue::FizzBuzz) #4

  } else if x % 3 == 0 {

    Ok(FizzBuzzValue::Fizz)

  } else if x % 5 == 0 {

    Ok(FizzBuzzValue::Buzz)

  } else {

    Ok(FizzBuzzValue::NotDivisible(x))

  }

}

There are a few new important things going on in this code. The first and



most obvious is the obvious introduction of the Result values in the return
types of print_fizzbuzz and fizzbuzz. Both functions now return Result
values with the same error type (&'static str), but they have different types
for Ok. fizzbuzz returns the same FizzBuzzValue that it did before, but what
is () that’s in the return type of print_fizzbuzz? This is the unit type, and
we’re going to take a look at it right now.

2.4.3 The Unit Type

The unit type is a type whose only possible value is itself, and can hold no
information. It represents the concept of nothing. This is similar to null in
other programming languages, but it has a very important difference. In most
programming languages that have null values, null is a valid value for any
reference type. For example, the following Java code compiles and runs,
printing null to the console.

Listing 2.28. Null in Java

public class Main {

  public static void main(String[] args) {

    String x = null;

    System.out.println(x);

  }

}

This works because Java and many other languages allow all reference types
to be assigned the value null. This can cause a great deal of bugs at runtime,
when programmers forget to check if a reference holds the value null or not.
Let’s try writing the same code in Rust.

Listing 2.29. Unit type in Rust

fn main() {

  let x: String = ();

  println!("{}", x);

}

If we try to run this code, we’ll find that it doesn’t compile. The Rust
compiler provides us with an error message explaining that the actual type ()
does not match the expected type of String.



$ cargo run

error[E0308]: mismatched types

 --> src/main.rs:2:19

  |

2 |   let x: String = ();

  |          ------   ^^ expected struct `String`, found `()`

  |          |

  |          expected due to this

error: aborting due to previous error

This is because the unit type is its own type, completely independent from all
other types. A better analog for the unit type than null is void. You may
have noticed that the main method in the Java code in Listing 2.28 returns
type void. This is Java’s type-level representation of nothing. In contrast to
Rust’s unit type, a value of type void can not be stored in Java. You may also
have noticed when writing our Rust code, that we do not annotate the return
types of functions if they don’t return a value. This is not because they don’t
return a value, but rather because un-annotated functions all return the unit
type. The following three functions are equivalent.

Listing 2.30. Three functions that all return the unit type

fn foo() { #1

  println!("Hello!");

}

fn bar() -> () { #2

  println!("Hello!");

}

fn baz() -> () {

  println!("Hello!");

  () #3

}

All three of these functions print “Hello” and exit, returning a value of the
unit type. The only difference is that the latter two are more explicit. The bar
function is similar to how a void function might be written in another
language, explicit annotation of the return type, but implicit return of the
value itself.



Let’s go back to the print_fizzbuzz function in Listing 2.27. The
declaration is copied here.

fn print_fizzbuzz(x: i32) -> Result<(), &'static str>

The Result returned here has a unit type in its Ok type position. This means
that when the Ok variant is constructed, it will always hold a value that
provides zero extra information. If you think about what the function is
doing, this makes sense. If the function completes successfully, what value
would it possibly have to provide to its caller, other than an indication that it
succeeded? Because the success case for the function doesn’t communicate
any meaningful extra information, we return the unit type when the function
succeeds. Values of the unit type are generally not useful by themselves, we
just need to use it in this instance because the Result type requires us to
provide a type for the Ok and Err variants, and () is the most sensible type
for the Ok variant of a function that doesn’t need to send back any other
values. Before we added the result the return type of print_fizzbuzz was
actually (), it was just implicit rather than explicit as it is now.

Let’s return to our fizz buzz code and finish out our look at error handling by
introducing a custom error type.

2.4.4 Error types

As a developer, we know what types of errors our code may encounter when
running; it might encounter I/O errors, network errors, precondition failures,
missing data etc. Most Rust programs will create custom types that
enumerate the errors that might be returned so that they can each be handled
in their own way. After encountering a Network error, you may want to
repeat a request, while an error like a missing file should probably be logged,
and the program should continue if possible, or abort if not. Since we want to
represent different possibilities for errors in a single type, we’re going to
create an enum. Since our fizz buzz program only has one possible error -
returned when the fizzbuzz function receives a negative number - let’s see
what that might look like.

Listing 2.31. The error type for our fizz buzz program



enum Error {

  GotNegative,

}

The name Error is convention, but it really can be named anything we want
because remember, it’s just a normal type. A program that does more
operations might have many different variants on its error type, or it may
have variants that wrap error types from other libraries. Now that we have an
Error type, let’s add it to our code.

Listing 2.32. Fizz buzz with custom error type

enum FizzBuzzValue {

  Fizz,

  Buzz,

  FizzBuzz,

  NotDivisible(i32),

}

enum Error {

  GotNegative,

}

fn main() {

  for i in 1..101 {

    match print_fizzbuzz(i) {

      Ok(()) => {}

      Err(e) => {

        match e {

          Error::GotNegative => {

            eprintln!("Error: Fizz Buzz only

              supports positive numbers!");

            return;

          }

        }

      }

    }

  }

}

fn print_fizzbuzz(x: i32) -> Result<(), Error> {

  match fizzbuzz(x) {

    Ok(result) => {

      match result {

        FizzBuzzValue::FizzBuzz => {



          println!("FizzBuzz");

        }

        FizzBuzzValue::Fizz => {

          println!("Fizz");

        }

        FizzBuzzValue::Buzz => {

          println!("Buzz");

        }

        FizzBuzzValue::NotDivisible(num) => {

          println!("{}", num);

        }

      }

      Ok(())

    }

    Err(e) => {

      Err(e)

    }

  }

}

fn fizzbuzz(x: i32) -> Result<FizzBuzzValue, Error> {

  if x < 0 {

    Err(Error::GotNegative)

  } else if x % 3 == 0 && x % 5 == 0 {

    Ok(FizzBuzzValue::FizzBuzz)

  } else if x % 3 == 0 {

    Ok(FizzBuzzValue::Fizz)

  } else if x % 5 == 0 {

    Ok(FizzBuzzValue::Buzz)

  } else {

    Ok(FizzBuzzValue::NotDivisible(x))

  }

}

We can see that including a custom error type is not a big change from what
the code looked like before. Some return types changed, and we had to
update what we did with the error in the print_fizzbuzz function since it
can’t be printed directly anymore.

Now, let’s look at how the error handling in the print_fizzbuzz function
might be simplified. If we look at this function right now, it’s just returning
any error it sees directly to its caller. It’s not doing any inspection of the error
other than “is it an error or not?” It turns out that this is an extremely
common error handling pattern in Rust functions. If some function that



returns an error, just forward it to this function’s caller. This is similar to how
exceptions bubble up the stack until they hit error handling code, the
difference is that this is a conscious choice made by the programmer, and not
something that can be forgotten.

Since this is such a common pattern, there is language-level support for it in
the syntax. This syntax is the question-mark operator, or ?. The ? operator is
most frequently used on Result types, and here’s how it works.

1. Inspect a Result

1. If it contains an Ok variant

1. The expression evaluates to the value inside the Ok

2. If it contains an Err variant

1. Return this Err from the function immediately

Let’s see this in some real Rust code. Imagine that we want to call fizzbuzz
and print out a message if it succeeds, but forward along the error if it fails.
The following two Rust functions both solve the problem in the same way,
but one uses the question-mark operator. Remember that our fizzbuzz
function returns a Result<FizzBuzzValue, Error>.

Listing 2.33. Example use of the question mark operator

fn foo(i: i32) -> Result<FizzBuzzValue, Error> {

  let result = match fizzbuzz(i) { #1

    Ok(x) => {

      x

    }

    Err(e) => {

      return Err(e);

    }

  };

  println!("{} is a valid number for fizzbuzz", i);

  Ok(result);

}



fn bar(i: i32) -> Result<FizzBuzzValue, Error> {

  let result = fizzbuzz(i)?; #2

  println!("{} is a valid number for fizzbuzz", i); #3

  Ok(result);

}

You may notice that in the first function, we use the result of our match
expression as the assignment for the variable result. Because the Err arm of
the match expression returns from the function when it runs, if the Ok arm
runs, the whole match expression will evaluate to the FizzBuzzValue which
is inside of the Ok. So the type of result in this function is FizzBuzzValue,
not Result<FizzBuzzValue, Error>.

The functionality of the second function is identical, as the question-mark
operator is basically a condensed form of the match and early return seen in
the first function. Let’s apply this question-mark error handling to our
existing fizz buzz code.

Listing 2.34. Fizz buzz program with question mark added

enum FizzBuzzValue {

  Fizz,

  Buzz,

  FizzBuzz,

  NotDivisible(i32),

}

enum Error {

  GotNegative,

}

fn main() {

  for i in 1..101 {

    match print_fizzbuzz(i) {

      Ok(()) => {}

      Err(e) => {

        match e {

          Error::GotNegative => {

            eprintln!("Error: Fizz Buzz only

              supports positive numbers!");



            return;

          }

        }

      }

    }

  }

}

fn print_fizzbuzz(x: i32) -> Result<(), Error> {

  match fizzbuzz(x)? { #1

    FizzBuzzValue::FizzBuzz => {

      println!("FizzBuzz");

    }

    FizzBuzzValue::Fizz => {

      println!("Fizz");

    }

    FizzBuzzValue::Buzz => {

      println!("Buzz");

    }

    FizzBuzzValue::NotDivisible(num) => {

      println!("{}", num);

    }

  }

  Ok(())

}

fn fizzbuzz(x: i32) -> Result<FizzBuzzValue, Error> {

  if x < 0 {

    Err(Error::GotNegative)

  } else if x % 3 == 0 && x % 5 == 0 {

    Ok(FizzBuzzValue::FizzBuzz)

  } else if x % 3 == 0 {

    Ok(FizzBuzzValue::Fizz)

  } else if x % 5 == 0 {

    Ok(FizzBuzzValue::Buzz)

  } else {

    Ok(FizzBuzzValue::NotDivisible(x))

  }

}

Many Rust libraries are designed with well-formed error types that can be
used to determine the root cause of failures, but sometimes we need to do a
bit of extra work to wrap overly-generic errors with more specific contexts.
Let’s briefly look at how we can do this.



2.4.5 Transforming Errors

Functions that can fail in Rust return values of the Result type. This allows
us to cleanly separate the error case from the success case when inspecting
the return value of a function. Usually the type in the error variant expresses
the cause of the error so that we can determine why the function failed, but
sometimes this is not the case.

Imagine that you need to write a function to perform some simple validations
in a user creation tool. You must write a function validate_username that
accepts a &str username as input and returns a result indicating if the
validation succeeded or failed, along with the nature of the failure if present.
There are two library functions provided to perform the validation.
validate_lowercase asserts that the username is all lowercase characters,
and validate_unique validates that this username does not already exist in
the system. You did not write either of these validation functions, and you
cannot change their type signatures. Their function signatures look like this:

fn validate_lowercase(username: &str) -> Result<(), ()>

fn validate_unique(username: &str) -> Result<(), ()>

And your validate_username function needs to have this signature and use
this error type:

enum UsernameError {

  NotLowercase,

  NotUnique,

}

fn validate_username(username: &str) -> Result<(), UsernameError>

If we took a simple initial pass at this problem, we might come up with
something like this:

fn validate_username(username: &str) -> Result<(), UsernameError>

{

  validate_lowercase(username)?;

  validate_unique(username)?;

  Ok(())



}

If validate_lowercase and validate_unique were written with the
UsernameError type in mind, then this is exactly how we would write the
validation function. The fact is however, that these functions both return the
exact same error type - the unit type. We need some sort of mechanism to
convert this unit value into values of UsernameError that match up with the
individual validation functions. If validate_lowercase fails then we should
return UsernameError::NotLowercase, and similarly NotUnique should be
returned for validate_unique. We could accomplish this with a standard
match expression, but it would be nice if we did not need to write a lot of
unnecessary code for doing nothing in the Ok case.

One tool that we can reach for here to help us out is a function on the Result
type called map_err. If you are familiar with the map function in functional
programming, you may be able to guess the purpose of the map_err function.
map_err is a function that accepts another function which we will call F as its
input, and calls F when the result holds an Err variant. F accepts the type in
the original Result’s Err variant as its input, and returns a new value which is
wrapped in the Err variant of a new Result. That may sound a bit daunting,
but if we look at the implementation we can see that it is really quite simple.

fn map_err<T, E1, E2>(

  r: Result<T, E1>,

  transform: fn(E1) -> E2,

) -> Result<T, E2> {

  match r {

    Ok(x) => Ok(x),

    Err(e) => Err(transform(e)),

  }

}

That’s it, that’s the whole function! This implementation is slightly simplified
since we have not looked at how to write instance functions yet, but in
practice this freestanding function works exactly the same as
Result::map_err in the standard library. Let’s look back at our username
validation example.

You have a Result<(), ()> and you want a Result<(), UsernameError>.
To get it, you can use map_err and pass it a function with this signature:



fn(err: ()) -> UsernameError

The err value here is the value in the Err variant of the original Result. The
UsernameError returned from this function will be placed in the Err variant
of the Result returned from map_err. If the Result holds an Ok variant, then
the function passed to map_err will never be called. Let’s see how we can
apply map_err to our username validation function.

fn validate_username(username: &str) -> Result<(), UsernameError>

{

  validate_lowercase(username).map_err(lowercase_err)?;

  validate_unique(username).map_err(unique_err)?;

  Ok(())

}

fn lowercase_err(x: ()) -> UsernameError {

  UsernameError::NotLowercase

}

fn unique_err(x: ()) -> UsernameError {

  UsernameError::NotUnique

}

This will successfully match the UsernameError variants to the functions that
they should be associated with. You may be wondering however, if this is
really less code than using some match statements. Using map_err with
named functions and explicit parameter/return types really is not. There is a
shorter way that we could express the same code, and that is by using a
closure.

Closures, sometimes called “lambdas” by other programming languages, are
anonymous functions that are written inline. They are very useful when using
functions that accept other functions as parameters, like map_err. Closures in
Rust can contain a single expression, or a block with multiple expressions.
For now we will look at closures containing a single expression. To write a
closure that accepts two parameters, and returns the sum of these two
parameters, we would write this:

|x, y| x + y

Parameters appear between the “pipe” characters separated by commas, and



the pipes are immediately followed by the expression to be returned from the
closure. Closures may have their parameter types explicitly written out using
syntax that mirrors the standard Rust syntax for functions, but annotating
return types requires wrapping the return expression in curly braces. The
following two closures are functionally identical, and can both be used like
normal functions.

fn main() {

  let add1 = |x: i32, y: i32| -> i32 {x + y};

  let add2 = |x: i32, y: i32| x + y; #1

  println!("{}", add1(3, 4));

  println!("{}", add2(3, 4));

}

Though you can annotate return types explicitly, due to the nature of closures
being used as arguments to other functions which themselves provide type
hinting to the compiler, it is almost never necessary to write types for closure
parameters or return types in practice.

Now by combining what we learned about map_err with closures, we can get
a much more compact implementation of validate_username.

fn validate_username(username: &str) -> Result<(), UsernameError>

{

  validate_lowercase(username).map_err(

    |x| UsernameError::NotLowercase)?;

  validate_unique(username).map_err(

    |x| UsernameError::NotUnique)?;

  Ok(())

}

If we try compiling this, we do get one small warning that the parameter x is
unused in our closures. We can silence this warning by replacing x with an
underscore, which hints to the compiler that we know we are ignoring the
value and not using it.

fn validate_username(username: &str) -> Result<(), UsernameError>

{

  validate_lowercase(username).map_err(



    |_| UsernameError::NotLowercase)?;

  validate_unique(username).map_err(

    |_| UsernameError::NotUnique)?;

  Ok(())

}

Let’s put all of this together into one program that does the validation and
shows the result back to the user.

Listing 2.35. Program that validates usernames

enum UsernameError {

  NotLowercase,

  NotUnique,

}

fn main() {

  match validate_username("user1") {

    Ok(()) => println!("Valid username"),

    Err(UsernameError::NotLowercase) => println!(

      "Username must be lowercase"),

    Err(UsernameError::NotUnique) => println!(

      "Username already exists"),

  }

}

fn validate_username(username: &str) -> Result<(), UsernameError>

{

  validate_lowercase(username).map_err(

    |_| UsernameError::NotLowercase)?;

  validate_unique(username).map_err(

    |_| UsernameError::NotUnique)?;

  Ok(())

}

fn validate_lowercase(username: &str) -> Result<(), ()> {

  Ok(()) #1

}

fn validate_unique(username: &str) -> Result<(), ()> {

  Ok(())

}

Sometimes instead of passing an error back to the caller we want to assert



that an error did not occur, and exit the whole program if it did. To do this,
we need to take a look at panicking with errors.

2.4.6 Panicking with Errors

In Rust, errors are values. They are normal values that live in variables just
like numbers or strings or any other kind of data your program might interact
with. They’re not scary, they don’t have their own kind of special control
flow logic (aside from explicit early-returns with ?), they are just values that
need to be dealt with. How to deal with them is usually delegated to a caller
at some level, the caller may want to log the errors and continue, retry the
operation until getting a success, or the caller may want to just totally give up
and exit the program with an error if one is seen.

Let’s go back to our fizz buzz program and imagine that we want to rewrite
the print_fizzbuzz function so that it never returns an error value, and
actually ends the whole program if it encounters an error. We can do this by
removing the question-mark syntax from our match statement, re-introducing
the Ok/Err matching from Listing 2.32, and replacing the code that passes an
err variant back to the caller with one that calls the panic! macro.

Listing 2.36. Panicking when print_fizzbuzz sees an error

enum FizzBuzzValue {

  Fizz,

  Buzz,

  FizzBuzz,

  NotDivisible(i32),

}

enum Error {

  GotNegative,

}

fn main() {

  print_fizzbuzz(-1); #1

}

fn print_fizzbuzz(x: i32) { #2

  match fizzbuzz(x) {

    Ok(result) => match result {



      FizzBuzzValue::FizzBuzz => {

        println!("FizzBuzz");

      }

      FizzBuzzValue::Fizz => {

        println!("Fizz");

      }

      FizzBuzzValue::Buzz => {

        println!("Buzz");

      }

      FizzBuzzValue::NotDivisible(num) => {

        println!("{}", num);

      }

      #3

    },

    Err(Error::GotNegative) => {

      panic!("Got a negative number for fizzbuzz: {}", x);

    }

  }

}

fn fizzbuzz(x: i32) -> Result<FizzBuzzValue, Error> {

  if x < 0 {

    Err(Error::GotNegative)

  } else if x % 3 == 0 && x % 5 == 0 {

    Ok(FizzBuzzValue::FizzBuzz)

  } else if x % 3 == 0 {

    Ok(FizzBuzzValue::Fizz)

  } else if x % 5 == 0 {

    Ok(FizzBuzzValue::Buzz)

  } else {

    Ok(FizzBuzzValue::NotDivisible(x))

  }

}

panic! is a new macro for us, so let’s briefly touch on what it means. Rust’s
panic! macro is similar to the panic function in Go, it panics the current
thread and unwinds the stack until the top of the thread’s stack is reached.
Since our program only has a single main thread, panic! will exit the
program with an error state. Calling panic! from a background thread will
just exit that particular thread. It may seem odd to exit the program if we
encounter a single error, but panic is most useful for performing runtime
assertions that guarantee that the program is not in an invalid state, or exiting
if an unrecoverable error is seen. If we run our code, we can see the results of
panicking the main thread.



$ cargo run

thread 'main' panicked at 'Got a negative

  number for fizzbuzz: -1', main.rs:35:7

note: run with `RUST_BACKTRACE=1` environment

  variable to display a backtrace

We do get some helpful output from Rust telling us that we can provide an
environment variable to get backtrace information, let’s try that out.

$ env RUST_BACKTRACE=1 cargo run

thread 'main' panicked at 'Got a negative number

  for fizzbuzz: -1', main.rs:33:7

stack backtrace:

   0: rust_begin_unwind

             at /rustc/library/std/src/panicking.rs:475

   1: std::panicking::begin_panic_fmt

             at /rustc/library/std/src/panicking.rs:429

   2: chapter_02_listing_35::print_fizzbuzz

             at ./src/main.rs:33

   3: chapter_02_listing_35::main

             at ./src/main.rs:13

   4: core::ops::function::FnOnce::call_once

             at rustlib/src/rust/library/

              core/src/ops/function.rs:227

note: Some details are omitted, run with

  `RUST_BACKTRACE=full` for a verbose backtrace.

It’s not immediately apparent, but looking at items 2 and 3 in the stack trace
show that the main function calls print_fizzbuzz on line 13, and
print_fizzbuzz panics on line 33. In a more complex Rust program, stack
traces like this can be very helpful. Rust disables stack trace reporting for
panics by default, but it can easily be enabled as we see here.

We have added panicking to our print_fizzbuzz function, but we did make
the code a bit more annoying to read and write. What if we wanted to get the
same panic behavior without having to rewrite our match statement blocks,
something that works a bit more like the question-mark operator? We can do
this by using the .unwrap() or .expect() functions on the Result that we
get back from fizzbuzz, let’s take a look.

fn print_fizzbuzz(x: i32) {

  match fizzbuzz(x).unwrap() {

    FizzBuzzValue::FizzBuzz => {



      println!("FizzBuzz");

    }

    FizzBuzzValue::Fizz => {

      println!("Fizz");

    }

    FizzBuzzValue::Buzz => {

      println!("Buzz");

    }

    FizzBuzzValue::NotDivisible(num) => {

      println!("{}", num);

    }

  }

}

Our function got a lot shorter, but it still panics when an error is encountered.
Let’s try to run it now:

$ cargo run

error[E0599]: no method named `unwrap` found for enum

`std::result::Result<FizzBuzzValue, Error>` in the current scope

  --> src/main.rs:17:21

   |

8  | enum Error {

   | ---------- doesn't satisfy `Error: std::fmt::Debug`

...

17 |   match fizzbuzz(x).unwrap() {

   |             ^^^^^^ method not found in

   |                 `std::result::Result<FizzBuzzValue, Error>`

   |

   = note: the method `unwrap` exists but

    the following trait bounds were

     not satisfied:

           `Error: std::fmt::Debug`

This is an interesting compiler error that we have not seen before! If we look
at the note near the bottom, it tells us that .unwrap() does exist, but our call
to it is not valid because our Error type does not implement the Debug trait.
Traits will be discussed in more depth in Chapter 3, but for now let’s just say
that types that implement the Debug trait can be printed to the terminal in a
representation that is useful for developers. We can easily add Debug to our
Error type by using a special compiler directive on it called a derive. Here is
what that looks like.

#[derive(Debug)]



enum Error {

  GotNegative,

}

There are a few different traits that can be derived like this, but Debug is one
of the most common. Essentially, this tells the Rust compiler to generate code
that can turn an Error value into a string representation so that we can
determine what type of error it is by looking at it. Rust enums are represented
at runtime by numbers, and printing out the numeric value of an enum is not
generally useful. Debug is very similar to the toString method in Java, but it
can be auto-generated by the compiler with derive. Here is what the
complete program should look like:

Listing 2.37. Using .unwrap() to panic when an error is encountered

enum FizzBuzzValue {

  Fizz,

  Buzz,

  FizzBuzz,

  NotDivisible(i32),

}

#[derive(Debug)]

enum Error {

  GotNegative,

}

fn main() {

  print_fizzbuzz(-1);

}

fn print_fizzbuzz(x: i32) {

  match fizzbuzz(x).unwrap() {

    FizzBuzzValue::FizzBuzz => {

      println!("FizzBuzz");

    }

    FizzBuzzValue::Fizz => {

      println!("Fizz");

    }

    FizzBuzzValue::Buzz => {

      println!("Buzz");

    }

    FizzBuzzValue::NotDivisible(num) => {

      println!("{}", num);



    }

  }

}

fn fizzbuzz(x: i32) -> Result<FizzBuzzValue, Error> {

  if x < 0 {

    Err(Error::GotNegative)

  } else if x % 3 == 0 && x % 5 == 0 {

    Ok(FizzBuzzValue::FizzBuzz)

  } else if x % 3 == 0 {

    Ok(FizzBuzzValue::Fizz)

  } else if x % 5 == 0 {

    Ok(FizzBuzzValue::Buzz)

  } else {

    Ok(FizzBuzzValue::NotDivisible(x))

  }

}

Now that our error type implements Debug, let’s try running our program to
see how the panic looks.

$ cargo run

thread 'main' panicked at 'called `Result::unwrap()` on an `Err`

  value: GotNegative', src/main.rs:18:21

note: run with `RUST_BACKTRACE=1` environment

  variable to display a backtrace

Notice that we still get the line the panic happens on (line 18 of main.rs) and
we get the value (the Debug representation of the Error which is
GotNegative). If you are just starting a Rust program, the simplest form of
error handling is often peppering .unwrap() after all of the functions that
might fail, because it can be easier than setting up the proper Result return
types with higher-level error handling. In larger programs, it is very
important to have proper error handling code. You don’t want a web server to
panic and crash at runtime because someone sent a request with invalid data.
It may be valid however, to panic during the initialization phase in a web
server if config files have syntactic or semantic errors, since there is no valid
path forward in that scenario.

Using .unwrap() we can get some information in the console, but sometimes
we want to provide just a little bit more. There is a function very similar to
.unwrap() that allows us to write a small message that will be printed out



along with the panics, so we can provide the user with some additional
context for the error. We can edit print_fizzbuzz to use expect instead of
unwrap very easily.

fn print_fizzbuzz(x: i32) {

  match fizzbuzz(x).expect("Failed to run fizzbuzz") {

    FizzBuzzValue::FizzBuzz => {

      println!("FizzBuzz");

    }

    FizzBuzzValue::Fizz => {

      println!("Fizz");

    }

    FizzBuzzValue::Buzz => {

      println!("Buzz");

    }

    FizzBuzzValue::NotDivisible(num) => {

      println!("{}", num);

    }

  }

}

Running the code now, we get a slightly better error message:

$ cargo run

thread 'main' panicked at 'Failed to run fizzbuzz:

  GotNegative', main.rs:18:21

note: run with `RUST_BACKTRACE=1` environment variable

  to display a backtrace

Now without looking at the code, we know that the error was tied directly to
the fizzbuzz function. It is quite obvious that this would be the source of
errors in this small program, but expect can be much more helpful than
unwrap in larger programs.

2.5 Summary

Rust’s ownership and borrowing system provides fast performance,
without the worries of errors coming from manual memory
management.
The ownership of a value allows the Rust compiler to determine when it
will be created, valid for use, and dropped, before the program ever
runs.



All values in all programming languages have lifetimes, but Rust’s
compiler explicitly enforces the rules.
The lifetime system in Rust lets the compiler know that references are
always valid, and that you will never read from invalid memory.
Rust has multiple string types that give the programmer strong control
over allocations. Some types allow mutability after creation, while
others are read-only views.
Enums can be used to store things which have a predefined list of
possible values
Functions that might fail at runtime return a Result, which is an enum
containing an indicator of success or failure, plus a value in the success
case, and an error value in the failure case.
It is not possible to use the success value from a Result without dealing
with the possibility of an error.
The unit type, or (), is a type and value that represents nothing.
Creating a custom error type is best practice for Rust code.
? can be used to early-return from a function if a Result holds an error.
map_err can be used to transform a Result holding one error type into a
Result holding another error type.
Closures can be used as arguments to functions that accept other
functions as parameters.
panic! can be used to unwind the stack of a thread when a program is in
an invalid state and should exit.
.unwrap() and .expect() can easily be used to panic if a Result holds
an error.



3 Introduction to C FFI and Unsafe
Rust
This chapter covers:

Performing normally forbidden operations with unsafe Rust
Refactoring a component of a C program into Rust

The last chapter provided a high-level overview of Rust code, and discussed
some elements of Rust that may be surprising or difficult to understand for
new developers. Now that we’re able to write simple Rust programs, this
chapter will walk through an example of how to embed Rust code within an
existing C program.

If we want to embed Rust code within an existing application, we need to
have some very well-defined semantics for how the two languages
communicate, how values are passed back and forth between them, and how
memory may or may not be shared between them. Ideally, this interface
between the two languages will be well supported across a number of
different languages and platforms, so that we can avoid re-writing code to
perform a specific integration. One such well-supported method is to write
functions which behave identically to C functions at runtime. They use the
same calling conventions, pass parameters and return values in the same way,
and use types which can be represented safely in either language. This is
referred to as the C Foreign Function Interface, or FFI. This chapter will
discuss how to write such Rust functions, and leverage FFI support in Rust to
integrate Rust code into a C application. We’ll also discuss how to use
unsafe blocks and functions to perform some operations which normal Rust
code doesn’t allow, and when and why these blocks are necessary when
writing FFI code.

3.1 Unsafe Rust



While it is true that one of Rust’s main selling points is the memory safety
that it affords application developers, it is sometimes necessary to shed some
of that memory safety. There can be a few reasons for this: performance,
simplicity, or most interesting to us here, dealing with types that the Rust
compiler can’t reason about. As we know from our discussion of the lifetime
and ownership system in Chapter 2, the Rust compiler is able to reason about
when memory is safe to use and discard based on the adherence to a few rules
in Rust code. However, the Rust compiler is not able to make any
assumptions about the ways in which memory is allocated, accessed, or de-
allocated in any code, other than Rust code. This means that if we want to
deal with dynamic memory that was not created from within Rust code, we
need to use unsafe code.

  Important

Unsafe is a bit of a misnomer here, because it does not invalidate the safety
concerns that we have in the rest of our Rust code, it simply means that the
developer is responsible for upholding Rust’s safety rules, without the
compiler strictly checking them. A more correct term might be unchecked.
However, unsafe is the language keyword used to mark these blocks, so we
will continue to refer to them as unsafe.

There are a few operations which unsafe code blocks allow, which are
forbidden in safe Rust code. The first two of these will be discussed in the
following sections, the following three will be discussed in chapter 4.

De-reference raw pointers
Call functions marked as unsafe
Implement traits marked as unsafe
Mutate static values
Access fields of a union

There really isn’t anything beyond these five items. There’s no other secret
magic or dangerous operations. Without a doubt, the most fundamental of all
of these unsafe operations is the de-referencing of raw pointers. Here’s some
background on what that means:



3.1.1 Raw Pointers

As discussed in Chapter 2, pointers are values which tell us the memory
locations of other values. If we imagine our computer’s main memory as a
giant array of bytes, pointers are indices into that array. The value of a pointer
is a memory address, which will vary in size depending on your computer’s
architecture. On most modern systems, memory is addressed at the byte-level
using 64-bit addresses, meaning that pointers are 64-bit numbers which point
to individual bytes in computer memory.

To de-reference a pointer is to access the value that the pointer points to.
Figure 3.1 shows the stack memory while a simple C program is running.
There is a character variable x, a variable which points to that character
variable y, and a character variable which is assigned the result of de-
referencing y. Imagine running this C program on a theoretical computer
which has single-byte pointer addresses. The arrow on the left represents
which line in the program has just been executed, and the diagram on the
right represents the stack memory at that point in time.

Figure 3.1. A program’s stack memory during reference and de-reference operations.



The reason why this operation needs to be hidden behind unsafe blocks is
very simple. Recall from Chapter 2, the second rule of Rust references -
“References must always be valid.” At runtime, a reference and a raw pointer
are identical, they are both values which hold a memory address, which is
used to look up a value in memory. The only difference is their behavior at
compile time. Because Rust references have extra information about them
known by the compiler, such as their lifetimes, the compiler knows that they
are always valid, and that de-referencing them is always safe. If a raw pointer
is created, it is simply an address in memory - it has no lifetime, no
ownership information attached to it. The compiler has no way to validate
that the memory it points to is valid, so it is up to the programmer to validate
this.

One of the most common operations that is done in Rust code operating
between languages is reading through a buffer of data such as a C-style array.



Listing 3.1. Reading the elements of a vector using pointer arithmetic

fn main() {

  let data: Vec<u8> = vec![5, 10, 15, 20]; #1

  read_u8_slice(data.as_ptr(), data.len()); #2

}

fn read_u8_slice(slice_p: *const u8, length: usize) { #3

  for index in 0..length {

    unsafe { #4

      println!("slice[{}] = {}", index,

        *slice_p.offset(index as isize)); #5

    }

  }

}

❶

A Vec in Rust is a growable, contiguous block of memory, holding many
values of the same type. It is analogous to a C++ std::vector, or a Java
ArrayList. It’s similar to a list in Python, but those may hold values of
different types. A u8 is an unsigned, 8-bit integer, a single byte. Combining
these as a Vec<u8>, we get a growable block of memory, containing
individual byte values.

❷

The as_ptr method here is used to get a pointer to the data buffer inside of
the Vec. Notice that getting the pointer is a perfectly safe operation, we only
need to introduce unsafe when we want to de-reference the pointer.

❸

There are two varieties of pointers in Rust, immutable pointers (*const) and
mutable pointers (*mut). These are very similar to immutable and mutable
references. If a value is behind a *const, then it cannot be mutated. If you



need to mutate a value, you must use a *mut. One key difference between
pointers and references in this respect is that an immutable pointer can be cast
to a mutable pointer. It is the developer’s responsibility to know when this is
safe or not safe.

❹

An unsafe block is required here because we perform two unsafe operations
within it. First, we call the unsafe offset function, then we de-reference the
pointer that is returned.

❺

The offset function performs pointer arithmetic. It requires its input to be an
isize, because it accepts negative offsets.

3.2 C FFI

Now that we understand pointer de-referencing, we can write Rust code that
communicates with C code. Reading from and writing to pointers that Rust
code accepts from C will require us to apply our knowledge of pointer
operations.

Imagine that we have an existing C application which solves simple
arithmetic expressions in Reverse Polish Notation (RPN). Currently, this
program accepts expressions containing a single operation. You have been
tasked with extending the application to support multiple operations in a
single expression. This extra functionality should be written in Rust, however
the current C code which performs user operations like text input and output
should remain in C.

RPN is a way to write arithmetic expressions which negates the need for



precedence rules for operations. It is essentially a simple programming
language which operates on a stack machine. Elements are separated by
spaces, and arithmetic operators work on the previous two items in the
expression, instead of the preceding element and following element, as is the
case with the more commonly used infix operations. Here are some example
expressions written in infix notation, and their counterparts in RPN:

Infix: 3 + 4 * 12

RPN  : 4 12 * 3 +

     = 51

Infix: (3 + 4) * 12

RPN  : 3 4 + 12 *

     = 84

Figure 3.2 shows the stack that is used to calculate the result of the second
RPN expression.

Figure 3.2. RPN stack used to calculate 3 4 + 12 *



RPN avoids the ambiguity of infix notation by always operating in strictly
left-to-right order. It is obvious by looking at the first and second RPN
expressions that the order of operations will be different, because the
operations are literally written in a different order. It is far easier to write a
calculator which parses expressions in the RPN format, because we can avoid
the complications of ordering operations and just work from left to right.



Now, our C application currently takes newline-delimited integer arithmetic
expressions from the user on STDIN, parses the expression, then calculates
and displays the result on STDOUT. We need to add support for multiple
nested arithmetic expressions - right now our calculator only does one
operation at a time. We could keep this all in C, or we could move the string-
parsing code out of C and into Rust. Since we’ve heard some nice things
about Rust, let’s try using it to solve our problem. First, let’s look at what the
C code looks like today.

Listing 3.2. Simple C arithmetic calculator program

#include <stdio.h>

#include <string.h>

int solve(char *line, int *solution);

int main() {

  char line[100]; #1

  int solution;

  while (1) {

    printf("> ");

    if (fgets(line, 100, stdin) == NULL) { #2

      return 0;

    }

    if (solve(line, &solution)) {

      continue;

    }

    printf("%d\n", solution);

  }

  return 0;

}

int solve(char *line, int *solution) { #3

  int num1, num2;

  char operator;

  int values_read = sscanf(

    line, "%d %d %c", &num1, &num2, &operator); #4

  if (values_read != 3) {

    return 1;

  }



  switch (operator) {

  case '+':

    *solution = num1 + num2; #5

    return 0;

  case '-':

    *solution = num1 - num2;

    return 0;

  case '*':

    *solution = num1 * num2;

    return 0;

  case '/':

    *solution = num1 / num2;

    return 0;

  }

  return 1;

}

❶

This line allocates space on the stack of the main function to store up to 100
characters for the data that we’re going to read in from the user. Since we
don’t need to have access to multiple lines of text at once, we can just keep
re-using the same memory buffer over and over again. The fgets function
will clear it when it reads data from STDIN.

❷

fgets is used to read data from a file, in this case STDIN. It takes a char
pointer as its first argument, which should point to allocated memory where
the data from the file will be read to. The memory must have allocated space
for at least as many chars as the second argument. Since we allocated space
for 100 characters, we give 100 as the second argument. C pointers and their
associated memory don’t contain data on where the allocated memory region
ends, so there are many functions where the developer needs to explicitly
specify the size of memory regions. This ensures that fgets never writes past
the end of our buffer.



❸

solve takes a pointer to the line of text read from STDIN and a pointer to an
int which solve will write the solution value to. It returns an int, which is a
status code. 0 means the function worked correctly, and 1 means that the
string did not parse as expected.

❹

The format string here will look for an integer, followed by a single
character, followed by another integer. These values will be used to compute
the math expression.

❺

On the lines in this switch statement, we calculate the result of the provided
math expression, and write the result to the integer pointed to by the
solution pointer. Recall that solution points to an int variable on the stack
of the main function.

If we put this code into a file named calculator.c and try to run it, it will
solve simple arithmetic problems as expected.

$ gcc calculator.c -o calculator

$ ./calculator

> 3 40 *

120

> 120 3 /

40

> 40 1345 *

53800

> 53800 3 /

17933

And it does great with these simple expressions, but what happens if we try to



add extra operations?

> 3 40 * 2 -

120

> 10 10 * 10 *

100

> 10 10 * hello!

100

Anything after the first three items will be ignored. Remember that we have
been tasked with adding support for multiple operations in a single
expression to this calculator. Let’s see if we can extract a key component
from it and move it into Rust! The first step will be to identify what will be
extracted. Seeing as our program here only has two functions, and one of
them is the main function, we should start by moving the solve function into
Rust.

Let’s start a new Rust project with the cargo command. In previous
examples, we used cargo new PROJECT_NAME, but that creates a new project
with a main.rs entry point - something that will be run directly as an
executable. We’re not creating an executable here, we want to create a
library. So we need to provide an additional flag to cargo new to indicate
this.

cargo new --lib calculate

Open up the newly created calculate/src/lib.rs file, and we can begin.
Recall that when creating an executable, newly created main.rs files will
have the hello world program in them by default. Similarly, when creating a
library, cargo will fill our lib.rs file with basic unit test scaffolding which
we can use to validate the functionality of our program. We’ll be going over
cross-language testing in more detail in Chapter 7, so for now just delete the
contents of this file.

When we bring over the functionality of the solve function from C to Rust,
we need to provide our C code with a function which has the same signature
as the old solve function. The signature of a function refers to the types of all
of the values which a function accepts as parameters and returns, as well as
the semantic meanings of those values. Recall the signature of our C



function.

int solve(char *line, int *solution)

In order for our C code to call a Rust function, we will need to write a Rust
function which accepts a char pointer, an int pointer as parameters, and
returns an int. Here is what that same signature will look like in Rust.

fn solve(line: *const c_char, solution: *mut c_int) -> c_int

Already, we can glean more information from our Rust function’s signature
than the signature of the C function. The Rust function tells us, just by
looking at it, that the value of solution may be modified inside the function,
and the value of line will not. The C code provides no indication that
solution will be modified by the solve function, other than reading the
code. A developer can always add comments of course, but comments may
lie or become out-of-date.

The c_char and c_int types in the function signature are not built into the
Rust standard library, they need to be imported from the libc crate. Crates
are the Rust term for packages or libraries. Just collections of functions and
types which can be used by others to perform some tasks. The libc crate
provides raw FFI bindings to the C standard library. The C standard does
provide some relative sizing guarantees, such as int always being at least as
large as short int, but beyond this a C int is platform specific. libc
abstracts over some of this platform-specific nature by providing Rust types
for the c primitives which have sizing determined by the platform on which
they were compiled. Since many Rust programs don’t need to interact with C
libraries, this functionality is not included in the standard library, and is
instead in an external library.

3.2.1 Including a crate

When we’ve used cargo in the past, it’s just been to create new Rust
packages, or to compile and run a Rust program. However, Cargo can do so
much more for us than that. Cargo can also download, compile, and link
dependencies, and perform many other functions that would normally require
lots of configuration in C or C++ programs. It is an all-in-one program for



interacting with Rust. For now, we’re just going to ask cargo to include libc
when compiling our calculate crate.

Cargo’s configuration file is Cargo.toml, all information which cargo needs
about how to compile a crate is contained in here. Compiler feature sets to
activate, third party crates to download/compile and their versions,
conditional compilation flags, as well as information that you need to include
if you’re creating a crate which you want others to be able to use, like your
contact information, readme, version information, and more.

Open calculate/Cargo.toml in your editor, the content in here should be
pre-populated by cargo new, and it should look something like this:

Listing 3.3. Default cargo configuration file

[package]

name = "calculate"

version = "0.1.0"

authors = ["You <you@you.com>"]

edition = "2018"

# See more keys and their definitions at

# https://doc.rust-lang.org/cargo/reference/manifest.html

[dependencies]

The [dependencies] section is the most commonly used section of the file
for most Rust developers. Under this line, we type the name of a crate that we
wish to include, as well as its version number. After this, when we use cargo
commands which compile our Rust program, cargo will download the
appropriate version of the crates we requested, compile and link them with
our crate. We don’t need to worry about setting compiler flags, there is no
separate step, just write the crates you want and cargo will get them. To
search for available crates, there is a website - Crates.io. When cargo is used
to build and publish packages, they go (by default) to crates.io. Here you can
see all of the publicly available crates that you can use when building Rust
applications and crates of your own.

In order to include libc in our calculate crate, let’s add a line for it under the
[dependencies] section. Dependencies are specified with the name of the



package, an equals sign, and the version of the package you’d like to use. At
the time of this writing, the latest release of libc was 0.2.80, so let’s use that
version. Here’s what the Cargo.toml file should look like after this addition.

[package]

name = "calculate"

version = "0.1.0"

authors = ["You <you@you.com>"]

edition = "2018"

# See more keys and their definitions at

# https://doc.rust-lang.org/cargo/reference/manifest.html

[dependencies]

libc = "0.2.80"

We can include as many dependencies as we want here, but for now we just
need libc.

After making this addition, open up the calculate/src/lib.rs file once
again, and we can try writing a basic solve function.

Listing 3.4. The most basic solve function in Rust that will compile

use libc::{c_char, c_int}; #1

fn solve(line: *const c_char, solution: *mut c_int) -> c_int {

  0 #2

}

❶

The use statement includes types/functions/variables from other Rust crates
or modules.

❷

The last expression in a function will be treated as a return value if it has no
semicolon after, so this line is equivalent to return 0;.



We’ll discuss the modules system in a later chapter, but for now just know
that use includes items from other crates. It is not required to have a use
statement for each item that we want to include, but if we left c_char out
from this statement, we would need to refer to it as libc::c_char in our
functions signature. The implicit return without a semicolon rule may seem
odd at first, but when this is combined with some of Rust’s other expressions,
it becomes invaluable. We’ll explore this more in later chapters.

If we compile this, we will see cargo including the libc crate. Since we’re
not creating an executable that can be run directly, we can use the cargo
build command to compile our crate, without trying to run it. The cargo run
command which we used in earlier examples does the same thing as cargo
build, but it will run the resulting executable if the crate is an executable.

$ cargo build

    Updating crates.io index

   Compiling libc v0.2.80

   Compiling calculate v0.1.0 (/home/you/calculate)

    Finished dev [unoptimized + debuginfo] target(s) in 5.81s

Now that we’ve compiled our solve function, let’s see if we can call it from
our C code!

3.2.2 Creating a dynamic library with Rust

If you’ve done much programming beyond “Hello World,” you’ve interacted
with libraries before. Libraries are collections of functions, types, variables,
or other things depending on what your programming language supports,
which are packaged up together to accomplish some functionality, so that you
won’t need to re-implement it each time you want to use it. For example, if
you want to perform HTTP requests in Python, you might use the requests
library, or in C you could use libcurl. It’s much easier to import a library to
make HTTP requests than it is to use raw sockets and read/write system
calls.

Different programming languages have different formats for libraries. For
example, Python libraries are simply collections of python source code files,



which the Python interpreter reads when imported. In C, there are a few
different types of libraries but the most commonly used on Unix-like
operating systems, and the type that we’ll be focusing on here, is the dynamic
library.

There are several steps we need to take before our Rust solve function can be
called from our C program.

1. Tell cargo to compile our crate as a dynamic library that the C linker
understands

2. Add our newly created dynamic library to the linker search path
3. Mark our Rust solve function so that the Rust compiler knows to

compile it with C calling conventions
4. Recompile our C program using the solve function from our Rust

dynamic library

Let’s walk through all of these steps.

Creating the dynamic library

When cargo compiles a Rust crate, by default it doesn’t produce something
that a C compiler knows how to use. It generates something called an “rlib”
file, which is a type of file specific to the Rust compiler, and only used as an
intermediate artifact which will be later used in some other Rust compilation.
Instead of an rlib, we want cargo to generate a dynamic library which the C
linker knows how to use. We need to make another edit to our Cargo.toml
file, this time telling it to output something compatible with C. Add these
lines to your Cargo.toml file above the [dependencies] section

[lib]

crate-type = ["cdylib"]

There are many different types of crates that cargo can generate, but the most
common are the default rlib, and the cdylib, which will cause cargo to build
a dynamic library compatible with native C programs. After making this
addition to the Cargo.toml file, re-run cargo build.

Adding the dynamic library to the linker search path



When cargo compiles anything, it goes into a directory called target. Inside
of target, cargo will create subdirectories for different build profiles. For
now this will just be debug, since by default cargo produces binaries with
debugging information and no optimizations, but we will look at how to
create optimized builds later. You should see a few files and folders if you
look into the target/debug directory, but the most important one is our new
dynamic library - libcalculate.so. We need to put our dynamic library file
in a location which the C compiler and linker will search for when running
our calculator program. We can accomplish this by creating a link in the /lib
directory which points to our library file. The /lib directory stores dynamic
library files, and it will be searched by the C compiler, linker, and the
operating system when starting our program.

$ ln -s $(pwd)/target/debug/libcalculate.so /lib/libcalculate.so

Now that we have our library file in a proper location, let’s try to compile our
C program against it. First, remove the existing solve function from our
calculator.c file in Listing 3.2. The new contents of the file are shown here.

Listing 3.5. C calculator program without the solve function

#include <stdio.h>

#include <string.h>

int solve(char *line, int *solution); #1

int main() {

  char line[100];

  int solution;

  while (1) {

    printf("> ");

    if (fgets(line, 100, stdin) == NULL) {

      return 0;

    }

    if (solve(line, &solution)) {

      continue;

    }

    printf("%d\n", solution);

  }

  return 0;



}

❶

It’s important to keep the forward-declaration of solve before the main
function, this tells the C compiler that we’re eventually going to define a
function that matches the signature here. We’ll provide this definition by
linking our Rust solve function.

Now we should be able to compile our C program and link it against our Rust
library. We can tell the compiler that we want to link against the
libcalculate library by providing the -lcalculate argument.

$ gcc calculator.c -o bin -lcalculate

/usr/bin/ld: /tmp/ccwBuRCw.o: in function `main':

calculator.c:(.text+0x13f): undefined reference to `solve'

collect2: error: ld returned 1 exit status

Hmm, it doesn’t look like that worked. The error here says that we’re calling
the solve function in our main function, but it doesn’t see where a function
called solve is defined. This means that our Rust solve function isn’t being
found by the C linker. Here’s how to do that.

Marking the solve function as C-linkable

It turns out that even though we asked Rust to compile the calculate crate as
a cdylib, it doesn’t export every function and type in a C-compatible format,
only the specific functions and types that we ask it to. There are three steps
required to make a Rust function callable from C. We need to disable name
mangling, mark the function as public, and tell the Rust compiler to use C
calling conventions for the function. Here is what a properly annotated
function looks like:

Listing 3.6. Rust solve function that will be exported as compatible with C

#[no_mangle]

pub extern "C" fn solve(

  line: *const c_char, solution: *mut c_int) -> c_int {



  0

}

There are a number of new elements here, and they all have a slightly
different purpose, let’s look at them one at a time.

The first one, #[no_mangle] is a function attribute macro, which instructs the
compiler to not perform name mangling on this function. If you’ve done
much C++ development, you may be familiar with the concept of name
mangling. If not, name mangling refers to a process that the compiler uses to
ensure that function and type names are unique inside of a system library or
executable. On unix-like systems, executables and system libraries do not
have namespaces. This means that if we define a solve function in our
executable, there can only ever be a single solve function. Across all
libraries that we’re using, across all files. If any library has an internal
function called solve, it will conflict with the one we’re trying to create here.
To combat this, the Rust compiler will put extra information into the name of
the symbols within it, which ensures that no symbol names will overlap. If
we leave name mangling enabled, our Rust solve function will be given a
name like _ZN9calculate5solve17h6ed798464632de3fE. The method that
the compiler uses to create these unique names is unimportant for our
purposes here. Just know that predicting these mangled names is very
difficult and unwieldy. Therefore, if we expect to call any Rust functions
from C, which has no understanding of Rust’s name mangling scheme, we
must use no_mangle to disable it for those specific functions.

The next new thing, pub, is a very common Rust keyword. It tells the Rust
compiler that the symbol should be exported outside of the module in which
it is defined. By default, all symbols in Rust are private and un-exported. The
way to export a function or type is to add the pub keyword before its
definition as we have done here.

Finally, we have extern "C". This tells Rust to generate the solve function
using C-compatible calling conventions. By default, the Rust compiler’s
calling conventions are not strictly compatible with C’s. Rust supports a
number of different calling conventions, but the most commonly used is the
default Rust convention, followed by "C".



Figure 3.3 breaks down what each of these new pieces of syntax are
responsible for.

Figure 3.3. Anatomy of a C-compatible function declaration

Now that we’re actually generating a function which can be called by C, let’s
make our Rust library and our C application work together.

Recompiling the C program against our Rust dynamic library

We can start by re-building our Rust library, and re-compiling our C
program.

$ cargo build

$ gcc calculator.c -o bin -lcalculate

It works! Now let’s see if we can run our new dynamically linked calculator
program.

$ ./calculator

> 3 4 +

32686                                                      #1

> 4 10 +

32686

> 10 1000000 *

32686

> hello

32686

❶

The number that you see printed here will be different from this. Because we
are reading memory which we never wrote a value into, this number may be



different each time this program is run.

So our program does run, but it seems that we’ve lost the ability to actually
do math. Our calculator always outputs an unpredictable number because we
never assign a value to our solution variable. Since we’ve replaced our
solve function with a no-op return 0, that makes sense. Let’s write solve in
Rust! Before we do any string parsing, we should make sure that we can
actually communicate values as expected between Rust and C. Since solve
takes a pointer to a solution out parameter, let’s try writing a value to that.
Since we’re de-referencing a pointer in order to do this write, we’ll need to
wrap the operation in an unsafe block.

#[no_mangle]

pub extern "C" fn solve(

    line: *const c_char, solution: *mut c_int) -> c_int {

  if solution.is_null() { #1

    return 1;

  }

  unsafe {

    *solution = 1024; #2

  }

  0

}

❶

Recall that one of the reasons Rust requires pointer de-references to happen
within unsafe blocks is due to the possibility of null pointers. Before de-
referencing un-trusted pointers, we should check for null pointers. De-
referencing a null pointer in Rust is undefined behavior. The is_null method
is built-in to the pointer primitive type, it can not fail or cause an exception,
like calling a method on a null object in Python or Java might.

❷



Inside of the unsafe block, Rust’s syntax for pointer de-referencing is the
same as C’s.

And if we re-compile our Rust code and re-run our executable, we should see
the expected results.

$ cargo build

$ ./calculator

> 3 10 *

1024

> 1000 52 /

1024

> 1024 1 *

1024

Not that they’re necessarily all correct results, but they are results. Notice
that we did not need to re-compile the C program to get the new results to
show up in our executable. Because libcalculate.so is a dynamic library,
it’s loaded by the operating system each time we run calculator. So we can
update our Rust code without needing to re-run the C compiler.

Now that we can write to C, we should try to read the string value that we’re
getting from C. C strings are contiguous blocks of platform-specific character
types, terminated by a null character. Since we’re only reading from our C
string, and not changing it at all, we can create a &str read-only string slice
which points to the same memory created in our C main function. By doing
this, we can avoid double-allocating the string. This is one of the great
flexibilities of the multiple string types in Rust. If we only had the one
String type, it could only be constructed by performing heap allocations in
Rust code. This means that any time we wanted to use a string from C or any
other language, we’d need to re-allocate it. This would waste program
memory and time. There is a small overhead to creating string slices from
untrusted input, we need to validate that they are valid UTF-8 before they can
be constructed. All Rust strings are UTF-8, given that all string constructors
either perform this validation, or are unsafe and expect the developer to have
done some other method of validation. Since our C strings may not contain
UTF-8, we’re going to perform that validation when we construct our strings.



We need to include another use statement to bring in a Rust type called CStr.
CStr represents a C string which is borrowed memory from C. Recall the
memory layout of line, it is a stack-allocated char array. Rust can never take
ownership of this value, because if it tried to de-allocate it, that would mean
de-allocating memory from the stack of our C program. This is not possible,
and would probably result in a segmentation fault. Instead, our Rust program
is just borrowing the C string, read-only, and all references to it will be
dropped when solve returns. CStr is really just being used as a temporary
value, to facilitate the creation of an &str.

use libc::{c_char, c_int};

use std::ffi::CStr;

#[no_mangle]

pub extern "C" fn solve(

    line: *const c_char, solution: *mut c_int) -> c_int {

  if line.is_null() || solution.is_null() {

    return 1;

  }

  let c_str = unsafe { CStr::from_ptr(line) }; #1

  let r_str = match c_str.to_str() { #2

    Ok(s) => s,

    Err(e) => {

      eprintln!("UTF-8 Error: {}", e);

      return 1;

    },

  };

  println!("line: {}", r_str);

  unsafe {

    *solution = 1024;

  }

  0

}

❶

The from_ptr function is unsafe, because it is the caller’s responsibility to
ensure that the pointer given is non-null and the data it points to adheres to
the expected structure of a C string.



❷

The match expression in Rust can be thought of as an extremely powerful
sibling of switch. In addition to matching on values, it can perform
destructuring operations as it’s doing here. The to_str function returns a
Result value, which is either a successful Ok value, or an Err value,
representing an error. In order to extract the success case, we need to use
match, as is done here.

If we run our calculator program now, we can see that the line string is
making its way into Rust.

$ cargo build

$ ./calculator

> 3 40 *

line: 3 40 *

1024

We can even validate that we’re not re-allocating the string, by comparing the
line pointer we’re given from C to the data pointer in r_str. Add the
following line after r_str is created.

println!("r_str.as_ptr(): {:p}, line: {:p}", r_str.as_ptr(), line);

The {:p} place holder in the format string tells println! to format these
values as memory addresses.

$ cargo build

$ ./calculator

> 3 40 *

r_str.as_ptr(): 0x7fff78acb9b0, line: 0x7fff78acb9b0

line: 3 40 *

1024

We can see that they both have the same memory address, meaning that r_str



wasn’t re-allocated on the heap, it’s completely using borrowed memory
from our C code. This won’t make a huge difference in our simple program,
but in larger programs with larger data being passed back and forth, it’s
important to know that we can effectively share memory between C and Rust.

Now that we have the boilerplate for communication between our C and Rust
code, we can move on to actually solving the problem in Rust!

3.2.3 Solving arithmetic expressions in Rust

We currently have a solve function in Rust which does a lot of work with our
C types that a normal Rust function doesn’t do. It turns the C string into a
Rust string, it writes to an int pointer as an out parameter and it
communicates error state by returning an int. Ideally, we want to separate the
code that does this FFI work between C and Rust from the code that actually
has our business logic in it. If we write a normal Rust function that has zero
unsafe, zero FFI concerns, we could use it for other purposes later on down
the line. We could call it from normal Rust code, we could call it from other
languages, but if we tie it directly to our solve function, which is written
especially for talking to C, we can’t do any of that. Let’s start a new function
in the same file called evaluate, which will take in a string reference, and
return a result which communicates the success or failure of an expression’s
evaluation. We’ll also create an Error enum for it, which we’ll leave empty
for now.

Listing 3.7. Basic evaluate function

enum Error {

}

fn evaluate(problem: &str) -> Result<i32, Error> {

  Ok(1)

}

We can update our solve function to use the new evaluate function for
getting the result that it will send back to our C code. This is also a good time
to convert the Rust Result type into our int return code.

Listing 3.8. Updated solve function that calls evaluate



#[no_mangle]

pub extern "C" fn solve(

    line: *const c_char, solution: *mut c_int) -> c_int {

  if line.is_null() || solution.is_null() {

    return 1;

  }

  let c_str = unsafe { CStr::from_ptr(line) };

  let r_str = match c_str.to_str() {

    Ok(s) => s,

    Err(e) => {

      eprintln!("UTF-8 Error: {}", e);

      return 1;

    }

  };

  match evaluate(r_str) {

    Ok(value) => {

      unsafe {

        *solution = value as c_int;

      }

      0

    }

    Err(e) => {

      eprintln!("Error");

      1

    }

  }

}

We should also make sure that our program is still functioning as expected,
go ahead and re-compile the Rust library, and re-run the calculator. We
should see all expressions evaluate to 1, since that’s what’s being returned
from evaluate.

$ cargo build

$ ./calculator

> 3 10 *

1

> 1000 52 /

1

> 1024 1 *

1

> hello

1



Now that we have that sorted, we shouldn’t need to touch our solve function
for a while. We can focus our attention on implementing evaluate. The first
thing we need to do is split up the input on space characters, and examine
each piece separately. This is easily accomplished using the .split function
available on &str values in Rust.

fn evaluate(problem: &str) -> Result<i32, Error> {

  for term in problem.split(' ') {

    println!("{}", term);

  }

  Ok(1)

}

If we run this, we should be able to verify that we’re splitting up the input on
spaces.

$ cargo build

$ ./calculator

> 3 4 *

3

4

*

1

Next we need to determine if the term that we’re looking at is an operator, in
which case we need to do some math with it, or a number, in which case we
should store it somewhere for future math. We’ll defer that "store
somewhere" for just a moment, until we get the parsing correct. We can use
the match expression in a very similar way to the switch statement in C, to
determine if the string in the loop is an operator or not. We can add some
simple prints to ensure that we’re parsing the terms as expected.

fn evaluate(problem: &str) -> Result<i32, Error> {

  for term in problem.split(' ') {

    match term {

      "+" => println!("ADD"),

      "-" => println!("SUB"),

      "*" => println!("MUL"),

      "/" => println!("DIV"),

      other => println!("OTHER {}", other), #1

    }



  }

  Ok(1)

}

❶

By using a variable name here instead of a string literal, we will create a
variable called other which will only be valid inside of the block to the right
of the arrow on this line. other is not a keyword, it’s just the name of a
variable which we’re creating. other’s block of the `match expression
will only run if there were no other blocks which matched the value provided.
In our case, we will only run the other block if the term does not equal any
of +-*/.

But if we run this, we will get some surprising results.

$ cargo build

$ ./calculator

> 3 4 *

OTHER 3

OTHER 4

OTHER *

1

If our evaluate function was working correctly, we should expect the output
to look like this:

> 3 4 *

OTHER 3

OTHER 4

MUL

1

But it seems that our program is not parsing the final term correctly, it’s only
parsing the * operator when it is not the final term in the expression. Let’s
add another println!, this one before our match expression. Up until this
point, we’ve been using the {} placeholder for printing all values. This uses
the Display formatter, which is intended to display data in an end-user



appropriate form. We’re going to change it up slightly by using the Debug
formatter, which provides more detailed output. You can get the Debug
representation of a value by using the {:?} placeholder.

fn evaluate(problem: &str) -> Result<i32, Error> {

  for term in problem.split(' ') {

    println!("Term - {:?}", term);

    match term {

      "+" => println!("ADD"),

      "-" => println!("SUB"),

      "*" => println!("MUL"),

      "/" => println!("DIV"),

      other => println!("OTHER {}", other),

    }

  }

  Ok(1)

}

If we run our program again, the issue becomes clear.

$ cargo build

$ ./calculator

> 3 4 *

Term - "3"

OTHER 3

Term - "4"

OTHER 4

Term - "*\n"

OTHER *

1

There is a trailing newline character in the final term of our expression. We
can remove this from the problem string by using the .trim method, which
removes leading and trailing whitespace. Let’s see if adding this gives us the
expected output. This is what the evaluate function should look like now:

fn evaluate(problem: &str) -> Result<i32, Error> {

  for term in problem.trim().split(' ') {

    match term {

      "+" => println!("ADD"),

      "-" => println!("SUB"),

      "*" => println!("MUL"),

      "/" => println!("DIV"),



      other => println!("OTHER {}", other),

    }

  }

  Ok(1)

}

And here is the output.

$ cargo build

$ ./calculator

> 3 4 *

OTHER 3

OTHER 4

MUL

1

Since we’re using a few nested methods on our input string, let’s quickly
check to see if we’re still using borrowed memory from the C stack.
Remember that we verified that the &str that we pass to the evaluate
function is shared memory from the C stack, and not re-allocated within Rust.
We can use the {:p} formatter and the .as_ptr method to get the memory
address of problem and term.

fn evaluate(problem: &str) -> Result<i32, Error> {

  println!("problem: {:p}", problem.as_ptr());

  for term in problem.trim().split(' ') {

    println!("term: {:p} - {:?}", term.as_ptr(), term);

    match term {

      "+" => println!("ADD"),

      "-" => println!("SUB"),

      "*" => println!("MUL"),

      "/" => println!("DIV"),

      other => println!("OTHER {}", other),

    }

  }

  Ok(1)

}

If the memory is still being shared from the C stack, problem and the first
value of term should point to the same location in memory, and subsequent
values should be offset by the number of characters in the substring. Running



this validates our hypothesis that the memory is still shared from C.

$ cargo build

$ ./calculator

> 3 4 *

problem: 0x7ffc117917b0 #1

term   : 0x7ffc117917b0 #2

OTHER 3

term   : 0x7ffc117917b2 #3

OTHER 4

term   : 0x7ffc117917b4

MUL

1

❶

The exact addresses shown in the output will be different on your computer,
and may be different each time the program is run.

❷

The memory location of term and problem is the same, so the memory is still
being shared for our string buffers.

❸

The memory location has changed by two bytes, a single byte for the 3
character, and another byte for the space character.

Our memory is still shared! We’ve never re-allocated our string from C’s
stack. Since we don’t need to change the value which is inside the string
buffer, only which part of the string buffer we’re viewing, we never need to
re-allocate it. With Rust’s &str type, we can perform as many substring
operations as we want, and we never need to re-allocate. This is a huge boon
for memory and time efficiency - it’s inefficient to have many copies of the



same data sitting around, and it takes time to re-allocate and copy string
buffers which will only be used once.

Next, we need to take the terms which are not operators and try to parse them
as integers. We can do this using the .parse method which is available on
strings. .parse is generic over its return type, meaning it could return an int
of varying sizes, a floating point number, or a great deal of other types. We
need to tell the parse method which return type we want, which will
determine which parsing logic it will use. We’ll also need to add a variant to
our Error enum to account for the possible failure of .parse.

enum Error {

  InvalidNumber,

}

fn evaluate(problem: &str) -> Result<i32, Error> {

  for term in problem.trim().split(' ') {

    match term {

      "+" => println!("ADD"),

      "-" => println!("SUB"),

      "*" => println!("MUL"),

      "/" => println!("DIV"),

      other => match other.parse::<i32>() {

        Ok(value) => println!("NUM {}", value),

        Err(_) => return Err(Error::InvalidNumber),

      }

    }

  }

  Ok(1)

}

Running this yields no surprises.

$ cargo build

$ ./calculator

> 3 4 *

NUM 3

NUM 4

MUL

1

> 3 4 hello

NUM 3

NUM 4



Error

At this stage, we need to begin exploring how we might actually start doing
math. Since our calculator is parsing RPN expressions, we will need a simple
stack data structure, implemented on top of a double-ended queue. Rust’s
standard library provides a double-ended queue in the form of the VecDeque
type. A VecDeque is a double-ended queue which is backed by a standard Vec
growable array. The main difference between the more general Vec and the
VecDeque is that the VecDeque provides double-ended operations, like
push_front, push_back, pop_front, and pop_back. The Vec by comparison,
only provides push and pop methods, which provide FIFO ordering. Since
we’re implementing a stack, we need to use the push_front and pop_front
methods from the VecDeque to provide LIFO ordering. We’re going to create
a wrapper type around the VecDeque to provide some functionality which is
specific to the needs of our RPN solver. This type will be called RpnStack.
Also, since the VecDeque is not used quite as commonly as the Vec, we’ll
need to import it explicitly from the standard library.

use std::collections::VecDeque;

#[derive(Debug)] #1

struct RpnStack {

  stack: VecDeque<i32>,

}

❶

#[derive] is a macro which instructs the compiler to generate code for a
struct or enum. In this case, it’s an implementation of the Debug trait, which
allows us to print out our RpnStack using the Debug formatter which we
introduced earlier. It is possible to manually write this code, but it’s easier
(especially for types with many fields) to allow the compiler to generate it
automatically.

Let’s add some methods to perform the standard stack operations of push and
pop. These will add a new number to the top of the stack, or remove the top
number from the stack. We’ll also add an Error variant to mark the error of



popping from an empty stack.

enum Error {

  InvalidNumber,

  PopFromEmptyStack,

}

impl RpnStack { #1

  fn new() -> RpnStack { #2

    RpnStack {

      stack: VecDeque::new(),

    }

  }

  fn push(&mut self, value: i32) { #3

    self.stack.push_front(value);

  }

  fn pop(&mut self) -> Result<i32, Error> {

    match self.stack.pop_front() {

      Some(value) => Ok(value),

      None => Err(Error::PopFromEmptyStack),

    }

  }

}

❶

Methods for a struct or enum go into impl blocks. These blocks contain the
methods which can be called on a given type. If you’re coming from a
language like Python or Java, where function definitions live within the same
block as the class definition, this may seem odd, but the flexibility that comes
from having separate impl blocks is very worthwhile. We’ll explore this
more in future chapters.

❷

It is convention to write a new method which accepts all required parameters
for constructing an instance of a type. Rust does not have language-level
support for constructor functions like C++ or Java, a constructor function is
just a normal function.



❸

Methods that take in a parameter called self operate on an individual
instance of the type.

Note that push and pop have a &mut self parameter on them, and new does
not. This is because push and pop are methods which operate on a specific
instance of RpnStack, whereas new is a function that does not take an
instance as its input. Functions within impl blocks are similar to static
methods in Java, or class methods in Python, and we’ll take a look at how
both can be called in the next listing. impl blocks can contain both methods
and functions, the only difference is the presence or absence of the leading
self parameter. This is very similar to Python methods, which have a leading
self parameter. In languages like Java, JavaScript, Ruby, or C++, there may
be a self or this variable which is available within methods, but it is not
marked as an explicit parameter. It is required in Rust, because of Rust’s
explicit rules around mutability and ownership control. self parameters can
take many forms - they can be owned self values, immutable references
(&self), or as we see here, mutable self references (&mut self). The &mut
self is required for both of these methods, because they both mutate the
stack field of our RpnStack value. The only way to call push or pop is if you
have a mutable reference to the RpnStack.

With these methods, we should be able to implement our evaluate function!
We can start by pushing integer values on to the stack, and printing it out
afterward. Also, instead of always returning 1, we can start returning the top
value on the stack.

fn evaluate(problem: &str) -> Result<i32, Error> {

  let mut stack = RpnStack::new(); #1

  for term in problem.trim().split(' ') {

    match term {

      "+" => println!("ADD"),

      "-" => println!("SUB"),

      "*" => println!("MUL"),



      "/" => println!("DIV"),

      other => match other.parse() { #2

        Ok(value) => {

          stack.push(value); #3

          println!("STACK: {:?}", stack);

        },

        Err(_) => return Err(Error::InvalidNumber),

      }

    }

  }

  let value = stack.pop()?; #4

  Ok(value)

}

❶

The Type::function() syntax is how we call a function that is associated
with a type.

❷

It’s no longer necessary to explicitly hint that parse should return an i32, as
we take the value variable which is returned and immediately pass it into the
push method. This method only accepts an i32 as its input, so the compiler
will reason that parse must return an i32 to be valid. The Rust compiler
works very hard to try and save you from writing types over and over again.

❸

The instance.method() syntax is how we call a method on a specific
instance of a type.

❹

Recall that the ? operator is used to return an error early from a function if the



expression it’s applied to is an Err variant. pop returns an error when the
stack is empty, so this ? operator is necessary to forward that possible error to
the caller.

Let’s see if our stack is working as expected.

$ cargo build

$ ./calculator

> 3 4 *

STACk: RpnStack { stack: [3] }

STACk: RpnStack { stack: [4, 3] }

MUL

4

> *

MUL

Error

Now that we have numerical storage, we should be able to implement
addition. Remember that in RPN math, we need to pop two values off of the
stack, add them together, and put the result back onto the stack.

fn evaluate(problem: &str) -> Result<i32, Error> {

  let mut stack = RpnStack::new();

  for term in problem.trim().split(' ') {

    match term {

      "+" => {

        let y = stack.pop()?; #1

        let x = stack.pop()?;

        stack.push(x + y);

      }

      "-" => println!("SUB"),

      "*" => println!("MUL"),

      "/" => println!("DIV"),

      other => match other.parse() {

        Ok(value) => stack.push(value),

        Err(_) => return Err(Error::InvalidNumber),

      }

    }

  }

  let value = stack.pop()?;



  Ok(value)

}

❶

Recall that our stack is in LIFO order, so the top item on the stack is the
second element in the expression. This is why we need to pop them from the
stack in “backwards” order of y then x, as opposed to x then y. The results are
the same for addition, but try swapping these lines for subtraction or division.

If we run this program now, we can compute arbitrarily nested addition
expressions!

$ cargo build

$ ./calculator

> 3 4 +

7

> 100 300 + 200 +

600

It should be easy enough to provide similar implementations for the other
operators. Listing 3.9 shows what evaluate will look like when this is done.

Listing 3.9. evaluate function with implementations for all four arithmetic
operations

fn evaluate(problem: &str) -> Result<i32, Error> {

  let mut stack = RpnStack::new();

  for term in problem.trim().split(' ') {

    match term {

      "+" => {

        let y = stack.pop()?;

        let x = stack.pop()?;

        stack.push(x + y);

      }

      "-" => {

        let y = stack.pop()?;

        let x = stack.pop()?;



        stack.push(x - y);

      }

      "*" => {

        let y = stack.pop()?;

        let x = stack.pop()?;

        stack.push(x * y);

      }

      "/" => {

        let y = stack.pop()?;

        let x = stack.pop()?;

        stack.push(x / y);

      }

      other => match other.parse() {

        Ok(value) => stack.push(value),

        Err(_) => return Err(Error::InvalidNumber),

      }

    }

  }

  let value = stack.pop()?;

  Ok(value)

}

And testing it out seems to work as expected.

$ cargo build

$ ./calculator

> 3 4 * 10 + 20 -

2

> 3 4 *

12

> 3 4 + 10 * 20 -

50

> 100 2 /

50

> 100 5 /

20

> /

Error

The program is so close to completion. The largest gap in functionality right
now is the fact that error messages are not surfaced to the user outside of
“Error.” This is less than helpful, we should try printing out a message with
specific information on the error. We could add another match to the solve



function to inspect the variant of our Error, but this is less than ideal. This
may seem okay for our small program, but what if there were multiple places
where evaluate was called, and they all wanted to log the same error
message when an error occurred? We need to centralize the error messages
that our Error struct can generate. The standard way to do this is by using the
Display trait.

3.2.4 The Display Trait

Traits in Rust are very similar to interfaces in Java or Go, or abstract classes
in C++. They are definitions of functionality that any type might implement
so that those types can be handled in similar ways. For example, numeric
types all implement the Add trait in the standard library, indicating that
addition can be performed on them. We’re going to look at the Display trait,
which we’ve actually been using throughout this whole time without
realizing it! Every time we used the println! macro and the {} placeholder
to print a value, we were using the Display implementation for that value.

Let’s see how we might write the hello world! program using the Display
trait.

Listing 3.10. Hello World with Display

use std::fmt::{Display, Formatter};

struct Hello {}

impl Display for Hello { #1

  fn fmt(&self, f: &mut Formatter) -> std::fmt::Result { #2

    write!(f, "Hello world!") #3

  }

}

fn main() {

  let x = Hello {};

  println!("{}", x); #4

}

❶

Trait implementations are always written impl Trait for Type.



❷

Whenever you implement the Display trait, you must implement the fmt
function with this exact signature. We could have imported Result from the
fmt package as well to shorten the return type, but this will often conflict
with the normal Result type, so it’s generally not imported. We can use the
full path here instead.

❸

The write! macro uses the same format string with placeholder syntax as
println!/format! and friends. The macro returns a std::fmt::Result, so
we leave off the semicolon on this line to ensure the result is returned from
our fmt function.

❹

Note that we’re using the same {} placeholder here that we’ve been using
throughout the rest of the book. The only difference is now we can use it on
our own type, instead of just on standard library types.

Implementing the Display trait for custom types is very straightforward.
Outside of the type signature for the fmt function, it’s basically just replacing
println! with write! and adding a leading f argument. This f is a
Formatter struct, which may contain a handle to stdout (for println!), stderr
(for eprintln!), or a string (for format!).

Now let’s implement the Display trait for our Error type.

Listing 3.11. Display implementation for the Error type



use std::fmt::{Display, Formatter};

enum Error {

  InvalidNumber,

  PopFromEmptyStack,

}

impl Display for Error {

  fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {

    match self {

      Error::InvalidNumber => write!(

        f, "Not a valid number or operator"),

      Error::PopFromEmptyStack => write!(

        f, "Tried to operate on empty stack"),

    }

  }

}

  Note

It is highly recommended to provide a Display implementation for error
types.

Next, we can update our solve function to take advantage of this new
Display implementation.

Listing 3.12. solve function updated to print out error messages

#[no_mangle]

pub extern "C" fn solve(

    line: *const c_char, solution: *mut c_int) -> c_int {

  if line.is_null() || solution.is_null() {

    return 1;

  }

  let c_str = unsafe { CStr::from_ptr(line) };

  let r_str = match c_str.to_str() {

    Ok(s) => s,

    Err(e) => {

      eprintln!("UTF-8 Error: {}", e);

      return 1;

    }

  };



  match evaluate(r_str) {

    Ok(value) => {

      unsafe {

        *solution = value as c_int;

      }

      0

    }

    Err(e) => {

      eprintln!("Error: {}", e); #1

      1

    }

  }

}

❶

This is the only line that needed to change, we just print out our error value
with the {} placeholder.

We’ve done it! We now have a calculator program which is communicating
with the user in C, solving the equation in Rust, and sending the result back
to C. For reference, this should be the full contents of the lib.rs file of the
calculate crate when you are finished.

Listing 3.13. Calculator library which can be used from C FFI or normal Rust
code.

use libc::{c_char, c_int};

use std::collections::VecDeque;

use std::ffi::CStr;

use std::fmt::{Display, Formatter};

#[no_mangle]

pub extern "C" fn solve(

    line: *const c_char, solution: *mut c_int) -> c_int {

  if line.is_null() || solution.is_null() {

    return 1;

  }

  let c_str = unsafe { CStr::from_ptr(line) };

  let r_str = match c_str.to_str() {

    Ok(s) => s,



    Err(e) => {

      eprintln!("UTF-8 Error: {}", e);

      return 1;

    }

  };

  match evaluate(r_str) {

    Ok(value) => {

      unsafe {

        *solution = value as c_int;

      }

      0

    }

    Err(e) => {

      eprintln!("Error: {}", e);

      1

    }

  }

}

enum Error {

  InvalidNumber,

  PopFromEmptyStack,

}

impl Display for Error {

  fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {

    match self {

      Error::InvalidNumber => write!(

        f, "Not a valid number or operator"),

      Error::PopFromEmptyStack => write!(

        f, "Tried to operate on empty stack"),

    }

  }

}

#[derive(Debug)]

struct RpnStack {

  stack: VecDeque<i32>,

}

impl RpnStack {

  fn new() -> RpnStack {

    RpnStack {

      stack: VecDeque::new(),

    }

  }



  fn push(&mut self, value: i32) {

    self.stack.push_front(value);

  }

  fn pop(&mut self) -> Result<i32, Error> {

    match self.stack.pop_front() {

      Some(value) => Ok(value),

      None => Err(Error::PopFromEmptyStack),

    }

  }

}

fn evaluate(problem: &str) -> Result<i32, Error> {

  let mut stack = RpnStack::new();

  for term in problem.trim().split(' ') {

    match term {

      "+" => {

        let y = stack.pop()?;

        let x = stack.pop()?;

        stack.push(x + y);

      }

      "-" => {

        let y = stack.pop()?;

        let x = stack.pop()?;

        stack.push(x - y);

      }

      "*" => {

        let y = stack.pop()?;

        let x = stack.pop()?;

        stack.push(x * y);

      }

      "/" => {

        let y = stack.pop()?;

        let x = stack.pop()?;

        stack.push(x / y);

      }

      other => match other.parse() {

        Ok(value) => stack.push(value),

        Err(_) => return Err(Error::InvalidNumber),

      },

    }

  }

  let value = stack.pop()?;

  Ok(value)

}



Let’s try running it to verify that it all works together with our new error
handling code.

$ cargo build

$ ./calculator

> 3 4 *

12

> 19 8 /

2

> hello

Error: Not a valid number or operator

> 4 *

Error: Tried to operate on empty stack

> 30 2 -

28

> 30 4 +

34

> 4

4

It works exactly as intended.

Figure 3.4 shows the lifetime graph for this calculator FFI program.

Figure 3.4. The lifetime graph for the calculator FFI program

3.3 Summary



unsafe functions and blocks can be used to perform some operations
that normal Rust code forbids, like de-referencing raw pointers.
unsafe really means that a few rules are unchecked by the compiler, and
it is the developer’s responsibility to ensure that Rust’s memory safety
rules are enforced.
You can write a normal Rust function with your business logic in it, and
a wrapper function that handles communicating with C over FFI
boundaries.
A cdylib Rust crate can be linked with a normal C program, and Rust
functions annotated for FFI can be called from C.
CStr can be used to turn a null-terminated C-style string into a Rust
&str.
Normal Rust types like &str can provide safe and easy-to-use
abstractions over shared memory with C code.
&str doesn’t need to re-allocate memory for performing substring
operations.
match expressions can be used like C switch statements to perform
multiple comparison operations on a single value.
Debug formatting can provide information like hidden escape codes
within a string, or the internals of a data structure.
The Display trait is used for printing values with the {} placeholder.
Implementing the Display trait for error types is considered best
practice.



4 Advanced FFI
This chapter covers:

Creating an NGINX extension module with Rust
Generating Rust bindings for an existing C codebase
Using a C memory allocator from Rust
Sharing functions between Rust crates

The previous chapter was centered around a simple example of calling a Rust
function from C code. There was a single C-stack-allocated string value
which was used from our Rust code, but the Rust code did not send any heap-
allocated values to the C code, nor did it call any C functions. The API
surface of our C calculator program was very small, and thus it was quite
straightforward to add Rust to it. This chapter is an extension on the previous
chapter’s calculator example. Instead of adding our calculator function to a
simple CLI application, we’re going to write an NGINX extension module
which responds to HTTP requests with calculation results. This chapter is not
intended as a general guide on writing NGINX extensions, NGINX is simply
a stand-in for a sufficiently complex C codebase to which we want to add
some Rust code.

Goal: create a module for NGINX that will solve Reverse Polish Notation
(RPN) math expressions using the calculate library that we created in
Chapter 3. It should read the expressions from the request POST body, so
assuming that the NGINX server is running on port 8080, it should be usable
like this:

$ curl -X POST -d '3 4 +' http://localhost:8080/calculate

7

$ curl -X POST -d '3 4 * 2 -' http://localhost:8080/calculate

10

NGINX is a popular HTTP load balancer and reverse proxy written in C. It’s
currently used in over 400 million websites across the Internet. NGINX has
an module system that allows developers to write C code which can control



its behavior or add totally new functionality. We will be using this C API
from both C and Rust to create a HTTP handler which uses the same RPN
calculator that we created in Chapter 3. Chapter 3 provided a
STDIN/STDOUT interface for using the calculator, but in this chapter, we
will create a HTTP interface. As NGINX is far more complicated than our
STDIN/STDOUT program in Chapter 3, there are a number of steps which
we need to take to accomplish this.

1. Download the NGINX source code
2. Write some C glue code between NGINX and Rust
3. Link the C module code to a Rust HTTP handler function
4. Extract request details from the NGINX request struct
5. Invoke the calculator library we wrote in Chapter 3
6. Return the calculation result on the HTTP response

4.1 Download the NGINX source code

This is the most straightforward of all the steps - we will be using version
1.19.3 of NGINX, and that can be downloaded freely from the NGINX
website. It is provided as a gzipped tarball, and we can easily extract it once
it’s been downloaded. Let’s also create a new crate directory with Cargo to
put all of these files into.

$ cargo new --lib ngx_http_calculator_rs

$ cd ngx_http_calculator_rs

$ curl -L -o nginx-1.19.3.tar.gz https://nginx.org/

  download/nginx-1.19.3.tar.gz

$ tar -xfz nginx-1.19.3.tar.gz

We’re now ready to start writing some code!

  Note

The following sections have a large number of file paths and commands in
them. Assume that all file paths are relative to the ngx_http_calculator_rs
crate directory which we just created. Assume all command line sessions
begin in this directory, and if required the command line session will contain



a cd line at the beginning to indicate which subdirectory commands should be
run within.

4.2 Create the NGINX module

NGINX has a large and complicated C API surface, and this chapter is not
intended to be a guide on how to write an NGINX plugin. This section will
provide some starter code for a C NGINX module that calls out to a Rust
function to provide an HTTP handler.

NGINX allows developers to write dynamic modules which are loaded into
memory by the NGINX binary after it’s started up. We’re going to create a
dynamic module for this example. This should allow us to update the module
by re-compiling our Rust code, without needing to re-compile the whole
NGINX binary each time we do. To create a new dynamic module, we’ll
begin by creating a directory called module, and placing two new files in it.
The first file is module/config, and it should look like this:

ngx_module_type=HTTP

ngx_module_name=ngx_http_calculator

ngx_module_srcs="$ngx_addon_dir/ngx_http_calculator.c"

ngx_module_libs=""

. auto/module

ngx_addon_name=$ngx_module_name

This file is a shell script that sets some environment variables which NGINX
uses in its custom build steps for modules. The variables which this file is
expected to set is documented on the NGINX webpage here
https://www.nginx.com/resources/wiki/extending/new_config/.

By reading the variables set in the shell script, you may have been able to
guess the path of the second file we’re going to create. Go ahead and create
module/ngx_http_calculator.c. This is a C source code file that will set
some global variables and provide some functions required for initializing
our NGINX module. It is possible to write these variables and functions in
Rust, which would enable you to write zero C code. However, these are
simple initialization functions and they rely a bit heavily on preprocessor



macros which are not easily translatable to Rust. This chapter will not discuss
moving them into Rust, but it could be a good exercise to try on your own!

Here are the contents that should be added to your
module/ngx_http_calculator.c file.

Listing 4.1. NGINX module starter code

#include <ngx_config.h>

#include <ngx_core.h>

#include <ngx_http.h>

typedef struct {

  ngx_flag_t enable_calculation;

} ngx_http_calculator_loc_conf_t;

ngx_int_t ngx_http_calculator_handler(ngx_http_request_t *r); #1

static void *ngx_http_calculator_create_loc_conf(ngx_conf_t *cf);

static char *ngx_http_calculator_merge_loc_conf(

    ngx_conf_t *cf, void *parent, void *child);

static ngx_command_t ngx_http_calculator_commands[] = {

    {ngx_string("calculate"),

      NGX_HTTP_LOC_CONF | NGX_CONF_FLAG, #2

     ngx_conf_set_flag_slot, NGX_HTTP_LOC_CONF_OFFSET,

     offsetof(ngx_http_calculator_loc_conf_t,

      enable_calculation), NULL},

    ngx_null_command};

static ngx_http_module_t ngx_http_calculator_module_ctx = { #3

    NULL, NULL, NULL, NULL, NULL, NULL,

      ngx_http_calculator_create_loc_conf,

    ngx_http_calculator_merge_loc_conf};

ngx_module_t ngx_http_calculator = {

    NGX_MODULE_V1, #4

    &ngx_http_calculator_module_ctx,

    ngx_http_calculator_commands,

    NGX_HTTP_MODULE, #5

    NULL, NULL, NULL, NULL,

    NULL, NULL, NULL, NGX_MODULE_V1_PADDING};

static void *ngx_http_calculator_create_loc_conf(ngx_conf_t *cf)

{

  ngx_http_calculator_loc_conf_t *conf;



  conf = ngx_pcalloc(cf->pool, sizeof(

    ngx_http_calculator_loc_conf_t));

  if (conf == NULL) {

    return NULL;

  }

  conf->enable_calculation = NGX_CONF_UNSET;

  return conf;

}

static char *ngx_http_calculator_merge_loc_conf(

  ngx_conf_t *cf, void *parent, void *child)

  {

    ngx_http_calculator_loc_conf_t *prev = parent;

    ngx_http_calculator_loc_conf_t *conf = child;

    ngx_conf_merge_value(conf->enable_calculation,

      prev->enable_calculation, 0);

    if (conf->enable_calculation) {

    ngx_http_core_loc_conf_t *clcf;

    clcf = ngx_http_conf_get_module_loc_conf(

      cf, ngx_http_core_module);

    clcf->handler = ngx_http_calculator_handler; #6

  }

  return NGX_CONF_OK;

}

❶

This is the forward declaration for the function that we’re going to define in
our Rust library.

❷

This block allows us to write calculate on; in our NGINX config file to tell
NGINX that this library should handle specific HTTP requests.



❸

The name of this variable (ngx_http_calculator) matches the name of the
module which we’ve provided in the module/config file. This is important,
because it lets NGINX know which symbol to load from our dynamic library
when it opens the module.

❹

This V1 macro allows NGINX to version their C API a bit. There is currently
only a V1 to this API, and for now we need to include the V1 constant at the
top of the module, and the V1 padding macro at the end of it.

❺

This macro tells NGINX that our module will control the HTTP subsystem.
NGINX has a number of subsystems, and many of them have hooks for
modules.

❻

This is the line where we call our Rust function. If the calculate on
argument is provided in the NGINX configuration, we set the HTTP handler
function to our Rust handler function.

Don’t let the large number of NULL values scare you! The NGINX module
system has a large number of hooks, and many of them are simply not
required for solving the problem we’re trying to solve.

Now that we have the C code required for our NGINX module, let’s try
compiling it! To do this, move into the NGINX source directory that we



created earlier, and run the configure script with the module directory that
we previously created.

$ cd nginx-1.19.3

$ ./configure --add-dynamic-module=../module

Given the ../module path, the configure script will run the
../module/config file to tell the build process some metadata about how it
should build our module. Next, we can compile NGINX and our module with
a single make command.

$ cd nginx-1.19.3

$ make -j16 build modules

The build target is the main nginx executable itself, and modules represents
all of the configured plugin modules (such as ours). This will produce lots of
output, and may take a bit of time. I recommend using the -j option on make
to parallelize the build. I used -j16 on my machine as my CPU has 16 cores.

One make has finished compiling our module and the NGINX binary, there
should be a few new files in the output directory objs. This is where
NGINX’s build process places binaries and libraries once they are built.
Searching for executables in this directory reveals two important looking
files:

$ cd nginx-1.19.3

$ find objs -executable -type f

objs/ngx_http_calculator.so #1

objs/nginx #2

❶

This is the dynamic library file for our module. It contains the definition for
the ngx_http_calculator variable, which tells NGINX what to do when it
loads our module.

❷



This is the NGINX server binary itself.

Now that we have a compiled NGINX and a compiled module, let’s try
starting up NGINX with our module loaded! Before we can do this, NGINX
needs a working directory to put its temp files, config files, and logs into. We
will create these now. Let’s call it ngx-run. In addition to the top level folder,
it must have a logs subdirectory.

$ mkdir ngx-run

$ mkdir ngx-run/logs

Now create the file ngx-run/nginx.conf, and put this in it.

load_module ../nginx-1.19.3/objs/ngx_http_calculator.so; #1

worker_processes 1;

daemon off;

error_log /dev/stderr info; #2

events {

  worker_connections  1024;

}

http {

  access_log /dev/stdout; #3

  server {

    listen       8080;

    location /calculate {

      calculate on; #4

    }

  }

}

❶

This line instructs NGINX to load our dynamic module at the given file path.



❷

This directs err information directly to the console, normally NGINX would
swallow this and add it to log files. This is ideal for production workloads,
but it makes live-debugging much more challenging.

❸

Similarly, this line directs request logs to STDOUT instead of a file.

❹

This tells NGINX that requests routed to /calculate should be handled by
our calculate library.

We’re nearly to the stage of starting NGINX, but it needs one more thing
before we can start it up.

Other than logs, NGINX will create subdirectories under ngx-run as
required while its running. Don’t worry too much about the file structure of
this directory.

Now that we have a working directory for NGINX, let’s start it up! We’ll be
using this command many times throughout the chapter to run our NGINX
instance.

$ ./nginx-1.19.3/objs/nginx -c nginx.conf -p ngx-run

nginx: [emerg] dlopen() "ngx_http_calculator.so" failed

(ngx_http_calculator.so: undefined symbol:

  ngx_http_calculator_handler)

in nginx.conf:1

NGINX doesn’t start! But why? After all that work, don’t we deserve
something? Well we lied to NGINX a bit. We have a forward declaration in



our C file that tells NGINX “we’re going to define the function
ngx_http_calculator_handler at some point” but we have not provided that
definition anywhere yet. The next section will walk through creating this
function in Rust, and exposing it to our existing C code.

4.3 Link C to Rust

In the previous section, we wrote a forward declaration for a HTTP handler
that looks like this:

ngx_int_t ngx_http_calculator_handler(ngx_http_request_t *r);

And we had the understanding that we’d later provide this function in our
Rust library. Translating that C function declaration to a Rust function
declaration is straightforward, let’s take a look.

#[no_mangle]

pub unsafe extern "C" fn ngx_http_calculator_handler(

  r: *mut ngx_http_request_t

) -> ngx_int_t {

  0

}

This is the function as it needs to exist in order to be callable from NGINX,
but there’s a few things that need to happen first. You may have noticed there
are some types in that function signature that start with the prefix ngx_. These
types are exposed by the NGINX module API in its header files. Normally
when writing a module in C, you could simply include these header files in
your C code, and the types would be available to you. Since we’re not writing
our handler function in C, we’ll need to do some work to get these types into
Rust.

In order to do this, we’re going to need to generate Rust bindings for the C
types in NGINX. A binding is essentially metadata about an API which exists
for a library which is implemented in a different programming language. It’s
the metadata about all of the functions, types, and global variables which
exist in that library - without the implementation of any of those things. In
Chapter 3 we created C bindings for the Rust calculate library, by writing a
C-compatible solve function as a part of that library. Bindings don’t always



exist as a part of a library itself, they are often provided by separate libraries.
For example, the openssl library is written in C and in order to directly
interact with the C functions from Rust, you can use the openssl-sys Rust
crate. This crate provides Rust bindings for the openssl C library.

Figure 4.1. Openssl Bindings



To generate these C bindings, we’re going to need to introduce a new Rust
concept - the build script.



4.3.1 Build Scripts

A build script is a small Rust program that Cargo compiles and runs just
before our larger library or executable is compiled. It can do anything that a
normal Rust program would do, but the reason it’s useful for our purposes
here is that it can generate Rust code dynamically at build-time which is fed
back into the compiler. Let’s table the NGINX discussion for a moment to
consider a simplified example.

Imagine that you were building a greeting application and you want to
provide the ability for your program to greet people in multiple languages,
but you do not want to ship a single massive application with all of the
world’s languages in it. You decide that you would like to accomplish this by
using an environment variable passed to the compiler to determine which
language the greeting application should support. You can provide
appropriately compiled versions to different regions. Let’s get started!

  Note

This is not a good way to accomplish internationalization, it is a contrived
example to teach you about build scripts. There are far better
internationalization mechanisms out there for Rust, please do not do this.

Create a new crate directory (outside of the NGINX crate directory) with
cargo.

$ cargo new build-script-test

  Note

In this sub-section, all paths will be relative to the root of the new build-
script-test crate directory.

Move into your new directory, create and open the file build.rs. By default,
Cargo will look for a file at the root of a crate directory called build.rs and
will treat it as a build script if present. Since build scripts are run like normal



Rust programs, we need to give it a main function. We can fill out this main
function with the two most important jobs that this build script will do - read
an environment variable, and write out a file.

Listing 4.2. Basic build script that writes to a file

use std::fs::File;

use std::io::Write; #1

fn main() {

  let language = std::env::var("GREET_LANG").unwrap(); #2

  let mut file = File::create("src/greet.rs").unwrap(); #3

  file.write_all(language.as_bytes()).unwrap(); #4

}

❶

We need to import the Write trait so that we can call file.write_all on the
final line of our main function.

❷

std::env::var looks up the value of environment variables at run time. It
returns an Option<String> because the requested variable may not be set, so
we need to unwrap the Option before we can use it.

❸

This line will create (or re-create if already existing) a file on disk.

❹

This line writes out the contents of the language variable. write_all expects
to receive bytes as its input since files might not necessarily always contain



text data, so we need to use .as_bytes on our string to get the underlying
byte data.

Let’s try running our build script now with cargo!

$ cargo run

   Compiling build-script-test v0.1.0

error: failed to run custom build command for

  `build-script-test v0.1.0

Caused by:

  process didn't exit successfully:

  --- stderr

  thread 'main' panicked at 'called `Result::unwrap()` on an `Err`

    value: NotPresent'

  note: run with `RUST_BACKTRACE=1` environment variable to

    display a backtrace

It looks like our build script panicked because we did not provide it with a
value for the newly expected GREET_LANG environment variable, let’s try that
again.

$ env GREET_LANG=en cargo run

   Compiling build-script-test v0.1.0

    Finished dev [unoptimized + debuginfo] target(s) in 0.25s

     Running `build-script-test`

Hello, world!

So we successfully managed to run our build script, let’s see if it created the
expected output. We should now see a file called src/greet.rs containing
whatever we passed to the compiler as the GREET_LANG environment variable.

$ ls src

main.rs greet.rs

$ cat src/greet.rs

en

So we can write a string into a file, but en is certainly not a valid Rust file.
We need to edit our build script a bit to actually write out different Rust code
depending on what value of GREET_LANG it sees.



Listing 4.3. Build script that outputs different Rust code depending on
environment variables

use std::fs::File;

use std::io::Write;

fn main() {

  let language = std::env::var("GREET_LANG").unwrap();

  let greeting = match language.as_ref() { #1

    "en" => "Hello!",

    "es" => "¡Hola!",

    "el" => "γεια σας",

    "de" => "Hallo!",

    x => panic!("Unsupported language code {}", x),

  };

  let rust_code = format!("fn greet() {{

    println!(\"{}\"); }}", greeting); #2

  let mut file = File::create("src/greet.rs").unwrap();

  file.write_all(rust_code.as_bytes()).unwrap();

}

❶

We need to use .as_ref here because std::env::var returns a String, and
in order to use a match expression with string literals (which are &str), we
need to convert the String into a &str. .as_ref does this.

❷

The {{ in this string is necessary because the format! macro uses curly
braces as placeholders for formatting. To get the literal curly brace character
that we need to create a function body, we must use {{. Similarly, we need to
escape the quotes within the println! macro so that we do not prematurely
end the rust_code string literal.



Now if we re-run our build script by compiling our library a few times with
different language options, we should see the text in src/greet.rs change.

$ env GREET_LANG=en cargo run

hello!

$ cat src/greet.rs

fn greet() { println!("hello!"); }

$ env GREET_LANG=el cargo run

γεια σας

$ cat src/greet.rs

fn greet() { println!("γεια σας"); }

So we have managed to write out some Rust code, but we need to update our
executable to actually take advantage of it. Currently, the executable just has
the basic hello world code provided by Cargo. Let’s update the src/main.rs
file to take advantage of our new src/greet.rs file.

Listing 4.4. Greeting program that uses the generated greet.rs file

include!("greet.rs"); #1

fn main() {

  greet(); #2

}

❶

include! the text contents of our src/greet.rs file, parses it as Rust code,
and inserts it into the src/main.rs file. We do not need the src/ prefix on
the path, because include! relative paths are relative to the source file in
which they are used.

❷

We can call the greet function here because we defined it in src/greet.rs
then used include! to add the text from src/greet.rs into src/main.rs.



We have introduced a new macro here - include!. The include macro works
similarly to the C/C++ #include directive. It takes the text contents of a file,
parses it as Rust code, and inserts it where include! is called. Figure 4.2
diagrams how our program works between the build script and the
src/main.rs file.

Figure 4.2. Compilation and execution of a program with a build script

Now that we understand a bit about how build scripts can be used to generate
Rust code, let’s move back to our NGINX code.

Recall that we want to generate Rust bindings for the NGINX C API. To
generate these bindings, we could write out a bunch of Rust code ourselves,
or we could leverage a build script to do it for us. We’re going to do the
latter. We will create a build script which uses a Rust library called
(appropriately) bindgen.

4.3.2 Bindgen

Bindgen is a Rust library which parses C/C++ code and outputs Rust
bindings automatically. In its simplest form bindgen generates Rust-
compatible definitions for C/C++ types and functions loaded from a single
header file. Let’s begin by adding bindgen to our Cargo.toml file.



[package]

name = "ngx_http_calculator_rs"

version = "0.1.0"

authors = ["You <you@you.com>"]

edition = "2018"

[dependencies]

[build-dependencies]

bindgen = "0.56.0"

Notice that we did not include bindgen under the dependencies section, but
rather the new-to-us build-dependencies section. Since bindgen will only
be used from the build script to generate Rust code, it does not need to be
included in our finished binary as a normal dependency, we only need it to be
included in the dependencies of our build script.

We need our build script to generate Rust bindings for NGINX using the
bindgen crate. bindgen works by parsing a C/C++ header file (with expanded
includes) for type, variable, and function declarations, and outputting Rust
code that is compatible with those declarations.

Before we can use bindgen, we need to create this header file. It needs to
#include all of the headers that our Rust module might need access to. Let’s
start by adding the headers that we’re using from inside our C module. Put
the contents below into a file called wrapper.h.

#include <ngx_config.h>

#include <ngx_core.h>

#include <ngx_http.h>

This is just a normal C header file, but instead of being used to compile C
code, it will be used to generate Rust code. Now that we have our header
ready, let’s create build.rs and open it to take a look at how we can use
bindgen to create our bindings.

Listing 4.5. Build script which will create NGINX bindings for Rust

fn main() {

  let nginx_dir = "nginx-1.19.3";

  let bindings = bindgen::builder()



    .header("wrapper.h") #1

    .clang_args(vec![

      format!("-I{}/src/core", nginx_dir), #2

      format!("-I{}/src/event", nginx_dir),

      format!("-I{}/src/event/modules", nginx_dir),

      format!("-I{}/src/os/unix", nginx_dir),

      format!("-I{}/objs", nginx_dir),

      format!("-I{}/src/http", nginx_dir),

      format!("-I{}/src/http/v2", nginx_dir),

      format!("-I{}/src/http/modules", nginx_dir),

    ])

    .generate()

    .unwrap();

  bindings

    .write_to_file("nginx.rs") #3

    .unwrap();

}

❶

wrapper.h is the header file that we just created. bindgen only accepts a
single header file as its input, and since we needed the types from 3 different
NGINX header files, we needed to write our own header file that #include-d
all of them.

❷

This list represents command-line arguments that will be fed to the clang
C/C++ compiler when its used to parse the wrapper.h header file. Here, we
provide it with the directories required to resolve all of the #include
directives all the way down the dependency tree of header files within
NGINX.

❸

This is where we specify the output location for bindgen. Our bindings will
be written to nginx.rs.



Let’s run our build script by re-compiling our library. It may take a bit longer
this time, as the compiler is now doing a lot of work of inspecting NGINX
header files when it runs. After the build step finishes, you should now be
able to see a new file placed into the root of the crate directory nginx.rs. Go
ahead and open this file and take a look around. After getting past some of
the generated Rust code for dealing with bit fields, you may notice that a lot
of the types and functions laid out in this file have little to do with NGINX
itself. To start out with, the entire C standard library is described here! This is
probably far more API surface than we’re going to need for our integration,
and keeping it included will only bloat our compile times. This file appears to
have over 51,000 lines in it, and I think that any efforts to reduce that size
would be well spent. We can constrain this file by using the whitelist
functionality of bindgen.

  Note

If you get an error about missing libclang.so files, you need to install
libclang from your operating system’s package manager. Bindgen uses
libclang to parse the C and C++ files passed to it.

Eagle-eyed readers may have noticed that the types and functions in the
NGINX module API begin with the ngx_ prefix. We can use a regular
expression to only include types, functions, and global variables which begin
with this prefix, ignoring all others. Let’s go back to our build.rs file and
add those rules.

Listing 4.6. Bindgen build script that only accepts ngx_ prefixed items

fn main() {

  let nginx_dir = "nginx-1.19.3";

  let bindings = bindgen::builder()

    .header("wrapper.h")

    .whitelist_type("ngx_.*") #1

    .whitelist_function("ngx_.*")

    .whitelist_var("ngx_.*")

    .clang_args(vec![



      format!("-I{}/src/core", nginx_dir),

      format!("-I{}/src/event", nginx_dir),

      format!("-I{}/src/event/modules", nginx_dir),

      format!("-I{}/src/os/unix", nginx_dir),

      format!("-I{}/objs", nginx_dir),

      format!("-I{}/src/http", nginx_dir),

      format!("-I{}/src/http/v2", nginx_dir),

      format!("-I{}/src/http/modules", nginx_dir),

    ])

    .generate()

    .unwrap();

  bindings

    .write_to_file("nginx.rs")

    .unwrap();

}

❶

All of these whitelist_ methods accept strings formatted as regular
expressions.

Re-running the build, we now have an nginx.rs file containing 30,000 lines
of code. This is not ideal, but it’s certainly an improvement over the previous
step. A sufficiently motivated developer could go through and explicitly
allow every individual type required to make their FFI integration work, but I
do not think that is necessary at this stage.

There is one more thing which we need to change about our build script
however - up until now we’ve been placing the nginx.rs file in the root of
our crate directory. This isn’t really where it belongs however. When we
generate files as a part of a build script, which are meant to be included in
later compilation steps, they should be placed in the out directory. The out
directory is a directory which cargo manages which is unique to each run of
the compiler. It is where all generated files should be placed, as we probably
do not want to be committing 30,000 lines of generated code into our version
control system!

The location of the out directory is only knowable by inspecting environment



variables which cargo sets. For build scripts, cargo sets a number of
environment variables when the script is being executed, and these same
environment variables are provided to our main crate at compile time. Let’s
see how we can reference this environment variable to place our nginx.rs
file inside the out directory. Replace the last three lines of the bottom of the
main function of our build.rs file with these lines.

let out_dir = std::env::var("OUT_DIR").unwrap(); #1

bindings

  .write_to_file(format!("{}/nginx.rs", out_dir))

  .expect("unable to write bindings");

❶

std::env::var looks up the value of environment variables at run time. It
returns an Option<String> because the requested variable may not be set, so
we need to unwrap the Option before we can use it.

Now that our generated code is going to the correct place, we can begin to
include it in our Rust library. We will do this using some new compile-time
macros that add the contents of our generated nginx.rs file into our Rust
library. This works in a very similar way to the preprocessor #include
directives work in C/C++ code. Knowing that it works in this way, and
already having experience with several Rust macros, the syntax of this macro
resembles other macros that we have already used. If we had a file named
filename.rs and we wanted to include it in this way, we could use the
include! macro as shown here:

include!("filename.rs")

Now obviously, our generated code is not in filename.rs, it’s in nginx.rs.
More specifically, it’s in $OUT_DIR/nginx.rs which is slightly more
complicated to reference. Since the path is behind an environment variable,
we need a way to lookup variables at compile time. We could use
std::env::var like we did in the build script, but this is used for run-time
lookups. We need to check the value of this variable at compile time. We can



do this using the env! macro. This macro expands to a string containing the
value of the environment variable at the time the program was compiled. It is
a compiler error if the variable is not provided. For our example, we want to
look up the OUT_DIR environment variable. We can do this like so:

env!("OUT_DIR")

So we have our out directory, we know that we need nginx.rs inside of that
directory, but how can we combine these two things? At runtime, we could
just use format! to smash them together with a path separator in the middle,
but how can we do this same thing at compile time? The concat! macro is
the answer. This macro performs simple string concatenation operations for
strings known at compile time. Since we want to generate a path that looks
like $OUT_DIR/nginx.rs, we can use concat! in this way:

concat!(env!("OUT_DIR"), "/nginx.rs")

This is a bit different from how we built up this same path in our build script,
but remember that "runtime" for the build script is essentially the same as
"compile time" for our application code. We need slightly different semantics
to accomplish the same task unfortunately. Now that we have all the pieces,
let’s put them together!

Open up src/lib.rs and add this to the top of the file.

include!(concat!(env!("OUT_DIR"), "/nginx.rs"));

There are a lot of macros here, let’s revisit them one at a time. include! is a
source-include operation similar to #include in C/C++. Next is concat! -
this performs string concatenation at compile time. env! looks up the value of
the OUT_DIR environment variable at compile time. Figure 4.3 shows a visual
look at each of these pieces.

Figure 4.3. Diagram of the new syntax we introduced



Now that we understand how to include the generated NGINX code, we can
finally revisit that HTTP handler function we declared so long ago. If we
include it in src/lib.rs, along with the include! macro that we just wrote
and an extra "hello world" message, it should look like this.

Listing 4.7. Fully formed minimum NGINX handler function in Rust

include!(concat!(env!("OUT_DIR"), "/nginx.rs"));

#[no_mangle]

pub unsafe extern "C" fn ngx_http_calculator_handler(

  r: *mut ngx_http_request_t

) -> ngx_int_t {

  eprintln!("Hello from Rust!");

  0

}

If we try to compile this now, it works! We do get a large number of
warnings, these are due to the C-style names that bindgen generates not
matching the Rust style guidelines. We can silence these warnings with some
compiler directives, but for now let’s continue.

Recall from Chapter 3 that when linking to Rust code from C code, we need
to instruct cargo to generate a C-compatible dynamic library instead of the
usual Rust-compatible library format it generates. Open cargo.toml and add
the following lines:

[lib]

crate-type = ["cdylib"]

Now when we build our crate, we should find a dynamic library inside of our
build directory.



$ cargo build

$ ls target/debug/*.so

target/debug/libngx_http_calculator_rs.so

Since this dynamic library contains our HTTP handler function, we need to
link to it from our NGINX C module. We can do this by adding an additional
configuration variable to our module/config file.

ngx_module_type=HTTP

ngx_module_name=ngx_http_calculator

ngx_module_srcs="$ngx_addon_dir/ngx_http_calculator.c"

ngx_module_libs="/path/to/your/libngx_http_calculator_rs.so" #1

. auto/module

ngx_addon_name=$ngx_module_name

❶

This is the newly added line. Note that an absolute path is used here. This is
to ensure that no differences in relative path resolution will cause issues when
we try to load the module at NGINX runtime.

Since we’ve updated the module configuration, we need to re-compile it.
Unfortunately, the NGINX build process requires us to re-run the configure
script and re-build the binary after we update the module configuration files.
This will be the last time this is required.

$ cd nginx-1.19.3

$ ./configure --add-dynamic-module=../module

$ make -j16 build modules

Now, after all of these steps, we are finally ready to run NGINX and we
should expect our hello world message to show up!

First, let’s start NGINX using the same command from earlier. It should print
out some "notice" level messages then do nothing as it waits to receive HTTP
requests. Use a separate terminal to send a HTTP request to the /calculate
endpoint which we enabled our module for in the nginx.conf file. The HTTP



request itself should fail, but the more interesting thing is what shows up in
the NGINX logs.

$ ./nginx-1.19.3/objs/nginx -c nginx.conf -p ngx-run

....

Hello from Rust!

# Concurrently, in a separate window after NGINX is started

$ curl -X POST -d '3 4 * 2 -' http://localhost:8080/calculate

<html>

<head><title>400 Bad Request</title></head>

<body>

<center><h1>400 Bad Request</h1></center>

<hr><center>nginx/1.19.3</center>

</body>

</html>

We’ve done it! We’ve successfully routed an HTTP request from NGINX’s
C code to our Rust HTTP handler function. Now that we have some level of
communications between the two systems, we need to move on to
implementing the business logic of the HTTP handler.

4.4 Read the NGINX request

Getting the request body data off of our NGINX POST request is not too
difficult. It’s quite similar to the method that we used to read data off of the
stack-allocated STDIN buffer in Chapter 3. Instead of accessing the buffer as
a simple *const u8 function argument however, NGINX provides us with a
*mut ngx_http_request_t which has a lot of different fields on it, and we’ll
need to turn this into something which our Rust code can understand.

The NGINX HTTP stack has many different modules for handling requests
built in, and not all of them require the contents of the HTTP request body to
be read in. Therefore, the request struct passed to HTTP handler functions
does not actually have the request body loaded yet. We need to call the HTTP
library’s body parsing method to get these data out. The function we need is
ngx_http_read_client_request_body. It takes a pointer to a request, and a
function pointer to be called when the request body has been read into
memory. Let’s see how we can use it to load in the request body.



Listing 4.8. Request handler which can read off the request body

include!(concat!(env!("OUT_DIR"), "/nginx.rs"));

#[no_mangle]

pub unsafe extern "C" fn ngx_http_calculator_handler( #1

  r: *mut ngx_http_request_t,

) -> ngx_int_t {

  let rc = ngx_http_read_client_request_body(

    r, Some(read_body_handler)); #2

  if rc != 0 {

    return rc;

  }

  0

}

unsafe extern "C" fn read_body_handler(

    r: *mut ngx_http_request_t) { #3

  if r.is_null() {

    eprintln!("got null request in body handler");

    return;

  }

  let request = &*r;

  let body = match request_body_as_str(request) {

    Ok(body) => body,

    Err(e) => {

      eprintln!("failed to parse body: {}", e);

      return;

    }

  };

  eprintln!("Read request body: {:?}", body); #4

}

unsafe fn request_body_as_str<'a>( #5

  request: &'a ngx_http_request_t,

) -> Result<&'a str, &'static str> {

  if request.request_body.is_null()

    || (*request.request_body).bufs.is_null()

    || (*(*request.request_body).bufs).buf.is_null()

  {

    return Err("Request body buffers

      were not initialized as expected");

  }



  let buf = (*(*request.request_body).bufs).buf;

  let start = (*buf).pos;

  let len = (*buf).last.offset_from(start) as usize;

  let body_bytes = std::slice::from_raw_parts(start, len);

  let body_str = std::str::from_utf8(body_bytes)

    .map_err(|_| "Body contains invalid UTF-8")?;

  Ok(body_str)

}

❶

ngx_http_calculator_handler is the entrypoint that NGINX calls when it
receives a request.

❷

ngx_http_read_client_request_body reads the body off of the network and
adds it to a buffer on the request struct. Since reading from the network may
take some time, we must provide a callback function for NGINX to call when
it is finished.

❸

read_body_handler is the callback function that NGINX calls when it has
read the request body into memory from the network.

❹

On this line, we print out the request body, after we’ve parsed it off of the
NGINX request struct.



❺

request_body_as_str reads the request body off of the NGINX request
struct and tries to interpret it as a Rust string slice. It does not allocate any
additional memory to do this, it simply re-interprets the existing bytes.

Now there are several things to highlight in this code example, but I want to
start with the three functions which are defined in it. Firstly, I want to call
attention to the various levels of annotations that appear on these functions.
Let’s just look at the signatures of the functions without any parameters or
body code. All three of these functions include some additional annotations
on them in addition to the standard fn keyword, but none of them have
exactly the same annotations. Figure 4.4 points out all of these parts visually.

Figure 4.4. Breakdown of the different elements of the function signatures

#[no_mangle]

pub unsafe extern "C" fn ngx_http_calculator_handler

unsafe extern "C" fn read_body_handler



unsafe fn request_body_as_str

The first function is ngx_http_calculator_handler. This function needs to
be called by name from the C code, and it needs to perform unsafe operations
within it. It needs #[no_mangle] and pub to expose its name across the FFI
boundary to the C code, and it needs extern "C" to be safely callable by the
C code. In addition, because name mangling is disabled, we need to use C-
style namespacing on the function, hence the ngx_http_calculator prefix to
avoid clashing with other C functions.

Next, we have read_body_handler. This is a callback function - it needs to
be callable from C code, but the C code does not need to know its name, just
its memory location. Because of this, we provide extern "C" so that C
calling conventions will be used and the function can be used over the FFI
boundary. Because the name of the function will only ever be used from Rust
code however, we do not need to disable name mangling, or publicly expose
this function. We do perform unsafe operations within this function, so the
unsafe keyword is added to the signature also.

Finally, request_body_as_str. This function is only called from normal
Rust code, it will never be called from C. This is obvious because of its lack
of an extern "C" annotation. This means that Rust calling conventions will
be used and it is not safe to call this function from C code.

Now that we have an understanding of the signatures of these three functions,
let’s dive a little deeper into their implementations. We’ll start with
ngx_http_calculator_handler.

#[no_mangle]

pub unsafe extern "C" fn ngx_http_calculator_handler(

  r: *mut ngx_http_request_t,

) -> ngx_int_t {

  let rc = ngx_http_read_client_request_body(

    r, Some(read_body_handler));

  if rc != 0 {

    return rc;

  }

  0

}



This function really only does three things - it calls
ngx_http_read_client_request_body to set up the event chain to read in
the HTTP POST request body, checks the return code of that, and it returns a
zero to tell NGINX that there were no errors. Because this function is only
called by NGINX itself, it needs to adhere to the quite rigid definition for
what an NGINX HTTP handler function will do. It needs to take in a single
request struct as its parameter, and it needs to return an int status code. Many
functions in NGINX return int status codes, with zero representing a success
status.

Let’s look a little closer at ngx_http_read_client_request_body. If we
open the auto generated $OUT_DIR/nginx.rs we can see the Rust definition
for this function, and if we look at nginx-
1.19.3/src/http/ngx_http_request_body.c we can compare it with the C
signature.

// Rust function signature - auto generated by bindgen

pub fn ngx_http_read_client_request_body(

    r: *mut ngx_http_request_t,

    post_handler: ngx_http_client_body_handler_pt,

) -> ngx_int_t;

// C function signature

ngx_int_t ngx_http_read_client_request_body(

  ngx_http_request_t *r,

  ngx_http_client_body_handler_pt post_handler,

)

The two function signatures are essentially identical. I’ll also include the
definitions for the post_handler type which both functions require.

// Rust type - auto generated by bindgen

pub type ngx_http_client_body_handler_pt =

  Option<unsafe extern "C" fn(r: *mut ngx_http_request_t)>; #1

// C type

typedef void (*ngx_http_client_body_handler_pt)

  (ngx_http_request_t *r);

❶

The Rust ngx_http_client_body_handler_pt type wraps the function



handle in an Option so that we can cleanly deal with the case of a null
function pointer.

We can see that bindgen has made the nullability of the function parameter a
bit more obvious by wrapping it in an Option. This is why we need to wrap
the read_body_handler in a Some when passing it as a callback to
ngx_http_read_client_request_body. This is simply how bindgen
generates function pointer types in Rust code coming from C code. You may
also notice from looking at the Rust type definition that the function signature
within the Option matches the signature of the callback function which we
defined. Here they both are:

pub type ngx_http_client_body_handler_pt =

  Option<unsafe extern "C" fn(r: *mut ngx_http_request_t)>;

unsafe extern "C" fn read_body_handler(

  r: *mut ngx_http_request_t)

The type indicates that we must provide a callback which accepts a request
pointer and returns nothing. This is what we provided with our
read_body_handler callback. Now that we have an understanding of our
handler entrypoint, let’s look at how this callback is implemented.

unsafe extern "C" fn read_body_handler(r: *mut ngx_http_request_t)

{

  if r.is_null() {

    eprintln!("got null request in body handler");

    return;

  }

  let request = &*r;

  let body = match request_body_as_str(request) {

    Ok(body) => body,

    Err(e) => {

      eprintln!("failed to parse body: {}", e);

      return;

    }

  };

  eprintln!("Read request body: {:?}", body);



}

Most of the code in this function is quite predictable, there is really only one
thing which is new to us here. Just before calling request_body_at_str, we
have this line:

let request = &*r;

We already know that & is used for taking a reference to something, but what
does * mean? This symbol is called the Dereference operator in Rust. As the
name implies, dereference means to use a reference to get the thing that the
reference points to. This is very similar to the dereference operator in
languages like C, C++, or Go.

Using these two operators together on a raw pointer is an operation called
reborrowing. Essentially reborrowing is just converting a raw pointer into a
Rust reference. The difference between the two things may be a bit unclear,
but that is because at runtime, they are exactly the same!

A Rust reference really is just a pointer that the compiler has a bit of extra
information about. If you think about a pointer in C or C++, the compiler has
absolutely no information about where the memory underlying the pointer
comes from, how long it will be valid, or if the underlying value is initialized.
A Rust reference allows the compiler to know all of this. Since all references
are associated with a lifetime, we know how long a reference will be valid
for. All references are assumed by the compiler to be aligned, not null, and
point to initialized values.

There are a few reasons why we may want to convert a pointer to a reference:

Most Rust code is written to work with references and not pointers, so
using references over pointers makes code reuse much easier.
We can perform the null check one time before the conversion and then
never worry about it again, because Rust references must always be non-
null.

We don’t need to use unsafe to access data behind a reference.

While all of the functions in this example are unsafe, as we will



see in Chapter 5 , the majority of our code base does not have to be.
Accessing fields on a struct pointer is awkward because Rust does not
have a pointer field access operator like C or C++.
Having a reference allows us to tie related lifetimes together, as we will
see in the declaration of request_body_as_str in a moment.

That being said, there are a few considerations we need to adhere to when
converting from a pointer to a reference:

Since Rust references are assumed by all code to be non-null, we must
verify this before doing the conversion. You can see that this null check
is the first thing we do in read_body_handler.
The thing stored at the pointer must be a valid instance of the type. For
example, many C memory allocation functions return uninitialized
memory, it is not safe to reborrow this as an &mut T then initialize the
memory using the reference. It must be initialized using pointer
operations.
Once something is a reference, it must to adhere to Rust’s borrowing
rules. Since we’re creating an immutable reference here, the Rust
compiler will assume that no other code will mutate the contents of our
pointer. If a background thread writes to this pointer while Rust holds an
immutable reference to it, we’ll create undefined behavior.

After we have completed the null checks, it is important to consider the
lifetime. We are taking a pointer which has no lifetime information and
turning it into a reference which does have lifetime information. Where does
this lifetime come from? The short answer is that it was always there, the
compiler just didn’t know about it!

Since we know that the NGINX executable will not be modifying this request
in the background, we have a null check, and we can reasonably believe that
the memory is initialized, it is safe to turn this pointer into a reference.

There is one more function in our handler to look at - request_body_as_str.
This function takes a reference to the NGINX request struct, and returns a
string slice containing the HTTP request body, or an error if it could not be
read. This function has a number of new elements in it, and we will
investigate all of them.



unsafe fn request_body_as_str<'a>(

  request: &'a ngx_http_request_t,

) -> Result<&'a str, &'static str> {

  if request.request_body.is_null()

    || (*request.request_body).bufs.is_null()

    || (*(*request.request_body).bufs).buf.is_null()

  {

    return Err("Request body buffers

      were not initialized as expected");

  }

  let buf = (*(*request.request_body).bufs).buf;

  let start = (*buf).pos;

  let len = (*buf).last.offset_from(start) as usize;

  let body_bytes = std::slice::from_raw_parts(start, len);

  let body_str = std::str::from_utf8(body_bytes)

    .map_err(|_| "Body contains invalid UTF-8")?;

  Ok(body_str)

}

The first thing that stands out as new is very close to the start of the function
signature. We have a new kind of function argument here - a generic lifetime
argument! What is the purpose of this?

unsafe fn request_body_as_str<'a>(

  request: &'a ngx_http_request_t,

) -> Result<&'a str, &'static str>

This is a bit of a tricky thing to wrap our heads around, so we will briefly step
away from our NGINX example and its complexity to consider a far simpler
program.

4.4.1 Lifetime Annotations

In order to effectively share memory in Rust programs, it is sometimes
necessary to help the compiler to understand how multiple references relate
to one another. The compiler is often smart enough to figure out these
relationships implicitly, but sometimes it needs a helping hand. We can
provide this helping hand in the form of lifetime annotations.



Let’s step away from NGINX for a moment to consider a very simple Rust
program.

Listing 4.9. Simple Rust program which prints the first element of a Vec

fn main() {

  let numbers = vec![1, 2, 3, 4, 5];

  let value = &numbers[0];

  println!("value: {}", value);

}

This program creates a Vec containing five numbers, borrows the first
number, and prints it out. Let’s imagine that we need to move the core
functionality of this program, the piece that gets the number from the list, into
a separate function. We can do this it in a very straightforward way.

Listing 4.10. Rust program which prints the first element of a Vec using
helper function

fn main() {

  let numbers = vec![1, 2, 3, 4, 5];

  let value = get_value(&numbers);

  println!("value: {}", value);

}

fn get_value(numbers: &Vec<i32>) -> &i32 {

  &numbers[0]

}

This compiles, but why does it compile? How does the compiler know from
looking at the signature of get_value that the lifetimes here are valid?
Remember what happens when we try to return a reference to a local
variable?

This function certainly doesn’t compile.

Listing 4.11. Function that attempts to return reference to local variable



fn get_value() -> &i32 {

  let x = 4;

  &x

}

The reason the code in Listing 4.10 compiles and Listing 4.11 does not is that
the compiler is able to infer that the output lifetime in Listing 4.10 matches
up with the input lifetime. Let’s look at the lifetime graph for this program to
see this more clearly.

Figure 4.5. Lifetime graph for Listing 4.10

We can see in this lifetime graph that the reference coming out of get_value
is directly descended from the reference which goes into it, both of these
references have the same lifetime. We can see the effects of this if we attempt
to use the reference returned from get_value after invalidating it.

fn main() {

  let mut numbers = vec![1, 2, 3, 4, 5];

  let value = get_value(&numbers);



  numbers.push(6);

  println!("value: {}", value);

}

fn get_value(numbers: &Vec<i32>) -> &i32 {

  &numbers[0]

}

The Rust compiler will not accept the above program, and let’s take a look at
the error message we get:

$ cargo run

error[E0502]: cannot borrow `numbers` as mutable

  because it is also borrowed as immutable

 --> src/main.rs:6:3

  |

4 |   let value = get_value(&numbers);

  |                         -------- immutable borrow occurs here

5 |

6 |   numbers.push(6);

  |   ^^^^^^^^^^^^^^^ mutable borrow occurs here

7 |

8 |   println!("value: {}", value);

  |                         ----- immutable borrow later used here

The compiler complains that we cannot mutate numbers because the variable
value holds an immutable borrow of numbers. Because the compiler knows
that value references memory within numbers, it will not allow us to mutate
numbers. Experienced C and C++ developers may have experienced pointer
invalidation due to buffer re-allocation before, and this is not possible in safe
Rust due to this rule which prevents mutating memory that is already
borrowed.

Now in this case the Rust compiler is smart enough to figure out how the
input and output lifetimes of references match up, but we can make a very
small change to our function that will prevent the compiler from being able to
effectively reason about this. Consider this program:

Listing 4.12. Program which returns a reference to an item on a vector and
prints a message

fn main() {



  let numbers = vec![1, 2, 3, 4, 5];

  let value = get_value(&numbers, "Getting the number");

  println!("value: {}", value);

}

fn get_value(numbers: &Vec<i32>, s: &str) -> &i32 {

  println!("{}", s);

  &numbers[0]

}

If we attempt to run the code in Listing 4.12, we will get a new compiler
error:

$ cargo run

error[E0106]: missing lifetime specifier

 --> src/main.rs:9:46

  |

9 | fn get_value(numbers: &Vec<i32>, s: &str) -> &i32 {

  |                       ---------     ----    ^ expected named

  |                                               lifetime parameter

  |

  = help: this function's return type contains a borrowed value,

          but the signature does not say whether it is borrowed

          from `numbers` or `s`

help: consider introducing a named lifetime parameter

  |

9 | fn get_value<'a>(numbers: &'a Vec<i32>, s: &'a str) -> &'a i32

{

  |             ^^^^          ^^^^^^^^^^^^     ^^^^^^^     ^^^

The compiler error here gives us a great hint as to what the problem is, and
how we can fix it. The new get_value function has two references as its
input parameters, the output parameter can only have a single lifetime, so the
compiler needs to know which lifetime is appropriate to assign to the output
parameter. Is the number that get_value returns borrowed from numbers, or
from s? In this instance we are borrowing from numbers, but the compiler
needs to know before it can decide if the program is valid. The way that we
tell the compiler this is through lifetime annotations. We have a little
preview of them in the compiler error, but we do need to make one small
change.



Listing 4.13. Program which returns a reference to an item on a vector and
prints a message

fn main() {

  let numbers = vec![1, 2, 3, 4, 5];

  let value = get_value(&numbers, "Getting the number");

  println!("value: {}", value);

}

fn get_value<'a>(numbers: &'a Vec<i32>, s: &str) -> &'a i32 { #1

  println!("{}", s);

  &numbers[0]

}

❶

This is the only line which has changed, we have added the explicit lifetime
('a) annotation.

Before the list of value parameters, there is a new syntax (<'a>). These angle
brackets are where Rust puts generic type arguments to functions, similar to
how Java, or Typescript formats generic type arguments. But what is the 'a
within the angle brackets? This is a lifetime annotation. Recall that when we
first looked at lifetimes, we saw that the 'static lifetime was used for
references that were valid for the whole runtime of the program and would
never be de-allocated. Now we see that we can create other named lifetimes
to refer to individual non-'static lifetimes. Here is a closer look at how this
syntax works in this example:

Figure 4.6. Closer look at the lifetime annotation syntax



Let’s also look at the lifetime graph of this new program to see how the
lifetime annotations help the compiler decide how the different borrows
interact.

Figure 4.7. Lifetime graph for Listing 4.13



It turns out that you can always provide these lifetime annotations any time
there is a reference argument to a function, but most of the time they are not
necessary because the compiler can safely infer them. We could just as
correctly write the signature to get_value like this:

fn get_value<'a, 'b>(numbers: &'a Vec<i32>, s: &'b str) -> &'a i32

This signature is explicit in naming the lifetime of the s reference as 'b, but
the compiler does not really need to know this since 'b does not interact with
any values other than s. The compiler automatically inserts these additional
unnecessary lifetime rules into our code when we do not provide them, but it
is technically correct (if not stylistically undesirable) to name all lifetimes in
function parameters explicitly.

In cases where the compiler cannot infer the lifetime information from the
type signature alone, such as functions with multiple reference parameters
and a reference return value, it needs to get this information from us. It
cannot deduce it from the inside of the function because the output lifetime is
effectively part of the public API contract of a function. If the compiler were
to determine the output lifetime by looking at the code in the function body,
you could have breaking API changes without changing function signatures.
It is far less dangerous to ask the developer to write the annotations
themselves, to ensure that functions with complex lifetimes in their public
APIs do not experience breaking changes.

Now that we understand a bit about the purpose and use of lifetime
annotations, let’s jump back to our NGINX plugin code.

4.4.2 Lifetime annotations in our NGINX plugin

We will specifically look at the request_body_as_str function. Recall that
this is the function signature we are looking at:

unsafe fn request_body_as_str<'a>(

  request: &'a ngx_http_request_t,

) -> Result<&'a str, &'static str>

Now that we understand how lifetime annotations work, we know that this
signature indicates that the string returned from this function is in fact



borrowed from the same memory as the request variable. We can infer from
this that the function does not re-allocate any strings, and simply re-interprets
the memory underlying the NGINX request struct.

The returned string slice is guaranteed to live for exactly as long as the
request reference passed into it. This makes sense, because the string slice
returned from the function points to memory which is owned by the NGINX
request struct. It wouldn’t be valid to de-allocate the request and keep
references to the body string around. The Rust lifetime system is used here to
validate a property of our code that would otherwise be difficult to express -
how these two pieces of memory are directly related to each other in a
hierarchy. The request body can not outlive the request struct, and we are
protected from assuming that it will.

Now, let’s look at the body of our function. We will first look at a function
call in the middle of our function, because it informs everything else that’s
going on. This function is std::slice::from_raw_parts. Before we can
explore how this function works, we must talk about slices.

A slice is a contiguous block of memory containing elements of the same
type, similar to an array or vector. However, a slice’s representation is just a
pointer and a length, so it can act as a cheap "view" of many underlying
storages. This is essentially the same as the difference between a String
(owned, growable, mutable) and a &str (read-only, view, may be from
String or from &'static str). Figure 4.8 illustrates a String and multiple
&str slices that point to substrings of it.

Figure 4.8. Taking multiple slices of the same string



Recall from Chapter 3 that we were able to create a string reference (more
correctly called a string slice) from a null-terminated C string. This string
slice was not re-allocated by Rust, we simply took a read-only view of the
bytes that were passed to us by C. Since NGINX is passing us pointers into
the request body buffers, we can similarly create a string slice that holds the
request body. To do this, we must first create a slice of raw bytes (the type
for this is written &[u8]). Then, we can turn this byte slice into a string slice,
after verifying that it is valid UTF-8 (required for all Rust strings).

To construct the slice, we use a slightly different method than the string slice
construction code that we wrote in chapter 3. That code assumed we would
be passed a null-terminated string and used the CStr helper struct. NGINX
does not use null terminated strings however, it passes around start and end
pointers. Because of this, we need to use the slightly lower level function
std::slice::from_raw_parts. This function takes a start pointer and a
length, and converts this into a Rust slice.

Now starting from the top of the function, the first thing we have is a group
of null checks. You may notice something odd about these null checks
however, let’s take a look:

if request.request_body.is_null()



  || (*request.request_body).bufs.is_null()

  || (*(*request.request_body).bufs).buf.is_null()

{

  return Err("Request body buffers were

    not initialized as expected");

}

The first check seems normal enough, but subsequent checks have some odd
syntax. The parenthesis and asterisk are how we access struct fields behind a
pointer in Rust. This is equivalent to the → operator in C or C++, Rust just
lacks a dedicated operator for it.

It may be helpful to take a look at the structure of these types. This is a
simplified look at the structure, because the real types involved have a huge
number of fields. ngx_http_request_t alone has (up to, depending on
compiler flags) 144 fields!

struct ngx_http_request_t {

  request_body: *mut ngx_http_request_body_t,

  ...

}

struct ngx_http_request_body_t {

  bufs: *mut ngx_chain_t,

  ...

}

struct ngx_chain_t {

  buf: *mut ngx_buf_t,

  ...

}

struct ngx_buf_t {

  last: *mut u_char,

  ...

}

This example shows equivalent operations for creating a stack allocated struct
and printing out a member based on a pointer in both C and Rust.

// C code

typedef struct {

  x int

} foo_t;



foo_t foo = { 1 };

foo_t *foo_p = &foo;

printf("%d\n", foo_p->x);

// Rust code

struct Foo {

  x: i32,

}

let foo = Foo { x: 1 };

let foo_p: *const Foo = &foo;

unsafe {

  println!("{}", (*foo_p).bar);

}

Now this is reasonable enough for a single field access, but it can get a bit
unwieldy when dealing with a larger C struct that has many nested pointer
fields. The final null check in our body-getter function only two nested
pointer field accesses, and it’s already bit difficult to parse.

(*(*request.request_body).bufs).buf.is_null()

Chapter 5 will provide some tips on how this kind of C-like code can be
simplified into Rust idioms.

After the null checks, there is a new method call that we have not seen
before:

let len = (*buf).last.offset_from(start) as usize;

When constructing string slices from raw pointers, we must first create a slice
of bytes using the Rust function std::slice::from_raw_parts. This
function takes two arguments, a pointer for the start of the slice, and the
length of the slice. NGINX however, provides a start and end pointer for its
string types. In order to get the length of the string memory region, we can
use the offset_from method on any pointer to get the memory offset
between the end pointer and the start pointer. If we needed this information in
C, we could use simple pointer arithmetic, but the pointer functions that Rust
provides are a bit more descriptive. The following C and Rust functions
accomplish the same goal of finding the size of a memory block between two
pointers.



// C code

ptrdiff_t offset(char *start, char *end) {

  end - start

}

// Rust code

fn offset(start: *const u8, end: *const u8) -> usize {

  end.offset_from(start) as usize

}

You may notice that the Rust code also has a cast to the usize type. This is
because the offset_from method can return a negative number if start is
greater than end, so it returns an isize. usize is the unsigned pointer size
type, and isize is its signed equivalent. The std::slice::from_raw_parts
function requires the length argument to be a usize, as constructing a slice of
memory with a negative length doesn’t make much sense. Therefore, we
must convert the isize to a usize by using an as usize cast expression.
Since isize is guaranteed to be the same size as usize, this casting is a no-op
and will never fail.

We already discussed the std::slice::from_raw_parts function, the only
thing left is the code which turns the byte slice into a string slice.
std::str::from_utf8 performs a utf-8 validity check on a slice of bytes and
if it passes, returns a Rust string slice.

After all of this code runs and assuming no errors are raised, we have a string
slice containing the request body that our NGINX HTTP handler received.
Now that we have an understanding of how our handler function works, let’s
verify that we can extract the details we expect.

$ cargo build

$ ./nginx-1.19.3/objs/nginx -c nginx.conf -p ngx-run

....

Read request body: "3 4 * 2 -"

# Concurrently, in a separate window after NGINX is started

$ curl -X POST -d '3 4 * 2 -' http://localhost:8080/calculate

# this command will block forever

We’ve done it! Rust is reading the HTTP request body from NGINX. We
haven’t yet added the code to write out the HTTP response so cURL will



block until you exit it, but we are getting close to solving math from NGINX.

Now that we have our equation text in Rust, we can move on to using this
request body to perform math.

4.5 Use our calculator library

The calculator library that we wrote for Chapter 3 is already written and we
can use it to solve the same kind of RPN math problems that we expect this
endpoint to receive. Let’s try to add it to our NGINX handler project and do
some math! First, we’ll need to add the calculator crate as a dependency for
our handler crate. Open the Cargo.toml in the handler project and add a new
line to the [dependencies] section.

[dependencies]

calculate = { path = "../calculate" }

Normally, when we manage a dependency with cargo, it pulls the
dependency from crate.io. Since we don’t want to publish our calculate
library just yet, we can set up the calculate crate as a path dependency. This
means that cargo will look at the specified path as the location to search for
the crate instead of crates.io. The path specified here assumes that you have a
folder structure that looks like this:

some_directory/

  calculate/

    Cargo.toml

    src/

      lib.rs

  ngx_http_calculator_rs/

    Cargo.toml

    src/

      lib.rs

If this is not the case, you can set the path in quotes to the relative or absolute
path of the crate directory for your calculate crate as appropriate.

Next, we can call the evaluate function from our calculate crate from inside
of our NGINX http handler function. Let’s see what that would look like:



unsafe extern "C" fn read_body_handler(r: *mut ngx_http_request_t)

{

  if r.is_null() {

    eprintln!("got null request in body handler");

    return;

  }

  let request = &*r;

  let body = match request_body_as_str(request) {

    Ok(body) => body,

    Err(e) => {

      eprintln!("failed to parse body: {}", e);

      return;

    }

  };

  match calculate::evaluate(body) {

    Ok(result) => eprintln!("{} = {}", body, result),

    Err(e) => eprintln!("{} => error: {}", body, e),

  }

}

Now let’s compile our handler function and try to run it.

$ cargo build

warning: The package `calculate` provides no linkable target.

The compiler might raise an error while compiling

`ngx_http_calculator_rs`. Consider adding 'dylib' or 'rlib' to

key `crate-type` in `calculate`'s Cargo.toml. This warning

might turn into a hard error in the future.

   Compiling ngx_http_calculator_rs v0.1.0

error[E0433]: failed to resolve: use of undeclared type or

  module `calculate`

  --> src/lib.rs:35:9

   |

35 |   match calculate::evaluate(body) {

   |       ^^^^^^^^^ use of undeclared type or module `calculate`

Our code does not compile! Why is this? If you recall from Chapter 3, we
told cargo to compile our calculate crate as a C-compatible dynamic library.
This works great for linking against C code, but it turns out that it doesn’t
work so well for linking against Rust code. We can resolve this error by
telling cargo to generate a Rust-compatible rlib in addition to a cydylib.



The default for cargo is to only generate rlib files, but if you override this
setting, you lose the default. Open the Cargo.toml file in the calculate
package and edit the crate-type field under the [lib] heading.

[lib]

crate-type = ["rlib", "cdylib"]

Cargo will generate both types of library files when it is configured like this,
so we don’t need to worry about losing any functionality. Let’s try running
that compile again:

$ cargo build

   Compiling ngx_http_calculator_rs v0.1.0

error[E0603]: function `evaluate` is private

  --> src/lib.rs:35:20

   |

35 |   match calculate::evaluate(body) {

   |                    ^^^^^^^^ private function

   |

note: the function `evaluate` is defined here

  --> calculate/src/lib.rs:73:1

   |

73 | fn evaluate(problem: &str) -> Result<i32, Error> {

   | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Now we can’t compile because evaluate is a private function. Remember
that when we exposed the solve function from Rust to C, we needed to add
the pub keyword to the function declaration to tell the compiler that it should
be visible outside of the crate. We need to do the same here with the
evaluate function. The definition should change to look like this:

pub fn evaluate(problem: &str) -> Result<i32, Error> {

Re-running the compiler gives us yet another new error:

$ cargo build

   Compiling calculate v0.1.0

error[E0446]: private type `Error` in public interface

  --> calculate/src/lib.rs:73:1

   |

35 | enum Error {

   | - `Error` declared as private

...



73 | pub fn evaluate(problem: &str) -> Result<i32, Error> {

   | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

   | can't leak private type

When an item (function, struct, enum) is exposed publicly, the compiler tries
to prevent you from creating an unusable API. In this function for example,
we marked a function as public, but part of its return type is private. If
someone wanted to use this function and an error occurred, they would not be
able to determine what kind of error it was. This would not be good, so it is a
good thing that the compiler prevented it.

As you may have already guessed, in order to resolve this error we need to
also mark our Error enum as public. The definition of our error enum now
becomes this:

pub enum Error {

  InvalidNumber,

  PopFromEmptyStack,

}

After we make this edit, we should be able to recompile our code with no
errors.

$ cargo build

   Compiling calculate v0.1.0

   Compiling ngx_http_calculator_rs v0.1.0

    Finished dev [unoptimized + debuginfo] target(s) in 6.75s

The bulk of the lib.rs file in the calculate crate remains unchanged from
Chapter 3, but the changed lines are shown here:

Listing 4.14. Changes required in the calculate crate

...

pub enum Error {

  InvalidNumber,

  PopFromEmptyStack,

}

...

pub fn evaluate(problem: &str) -> Result<i32, Error> {



  ...

}

And here is what our read_body_handler function should look like after
we’re done:

Listing 4.15. HTTP handler that prints out the result of a math expression

unsafe extern "C" fn read_body_handler(r: *mut ngx_http_request_t)

{

  if r.is_null() {

    eprintln!("got null request in body handler");

    return;

  }

  let request = &*r;

  let body = match request_body_as_str(request) {

    Ok(body) => body,

    Err(e) => {

      eprintln!("failed to parse body: {}", e);

      return;

    }

  };

  match calculate::evaluate(body) {

    Ok(result) => eprintln!("{} = {}", body, result),

    Err(e) => eprintln!("{} => error: {}", body, e),

  }

}

Now that we can build our HTTP handler along with the calculate library, we
can run NGINX with the new version of our module:

$ cargo build

$ ./nginx-1.19.3/objs/nginx -c nginx.conf -p ngx-run

....

3 4 * 2 - = 10

# Concurrently, in a separate window after NGINX is started

$ curl -X POST -d '3 4 * 2 -' http://localhost:8080/calculate

# this command will block forever

We are so close! We have linked C to Rust, read out the request body from
the NGINX HTTP request struct, re-used our existing calculate library, and



solved a math problem. The only thing left is to write the result of our
calculation into the HTTP response.

4.6 Writing the HTTP response

Our HTTP response is simply going to contain the result of our math
expression in text form. It’s easy enough to go from an i32 to a String in
Rust, we can just use the format! macro:

  match calculate::evaluate(body) {

    Ok(result) => {

      eprintln!("{} = {}", body, result)

      let response_body = format!("{}", result);

    },

    Err(e) => eprintln!("{} => error: {}", body, e),

  }

Going from this string to the NGINX response body however, is a bit more
complicated. We’re going to need to write another function that creates a
number of intermediate structs and copies the memory from our String into
an NGINX type. The full contents of this function are here, but we will walk
through all of them so that we can understand how it works.

unsafe fn write_response(

  request: &mut ngx_http_request_t,

  response_body: &str,

  status_code: ngx_uint_t,

) -> Result<(), &'static str> {

  let headers = &mut request.headers_out;

  headers.status = status_code;

  let response_bytes = response_body.as_bytes();

  headers.content_length_n = response_bytes.len() as off_t;

  let rc = ngx_http_send_header(request); #1

  if rc != 0 {

    return Err("failed to send headers");

  }

  let buf_p =

    ngx_pcalloc(request.pool, std::mem::size_of::<



      ngx_buf_t>() as size_t) #2

      as *mut ngx_buf_t;

  if buf_p.is_null() {

    return Err("Failed to allocate buffer");

  }

  let buf = &mut (*buf_p);

  buf.set_last_buf(1); #3

  buf.set_last_in_chain(1);

  buf.set_memory(1);

  let response_buffer =

    ngx_pcalloc(request.pool, response_bytes.len() as size_t); #4

  if response_buffer.is_null() {

    return Err("Failed to allocate response buffer");

  }

  std::ptr::copy_nonoverlapping( #5

    response_bytes.as_ptr(),

    response_buffer as *mut u8,

    response_bytes.len(),

  );

  buf.pos = response_buffer as *mut u8;

  buf.last = response_buffer.offset(

    response_bytes.len() as isize) as *mut u8;

  let mut out_chain = ngx_chain_t {

    buf,

    next: std::ptr::null_mut(),

  };

  if ngx_http_output_filter(request, &mut out_chain) != 0 { #6

    return Err("Failed to perform http output filter chain");

  }

  Ok(())

}

❶

Write out the HTTP status code



❷

Create an NGINX "buffer"

❸

Configure the buffer for cleanup

❹

Allocate a string buffer to store the response

❺

Copy response body into string buffer

❻

Pass the response into the NGINX output handlers

Now this function is doing a lot of different things, but we will look at all of
them. Here are the high level steps our function performs:

1. Write out the HTTP status code and content length header
2. Create an NGINX "buffer" object
3. Configure the NGINX buffer so that it will be correctly de-allocated by

NGINX
4. Allocate a string buffer to store the response body
5. Copy the response body bytes from the Rust string slice into the NGINX



buffer
6. Pass our response body buffer in to the NGINX http output handlers

The order of operations here is fairly standard for HTTP response operations.
The first thing we must do is write out the response headers.

  let headers = &mut request.headers_out; #1

  headers.status = status_code;

  let response_bytes = response_body.as_bytes(); #2

  headers.content_length_n = response_bytes.len() as off_t; #3

  let rc = ngx_http_send_header(request);

  if rc != 0 {

    return Err("failed to send headers");

  }

❶

headers_out is a field of the request variable that holds information on the
headers that will be output to the client with the HTTP response.

❷

Every Rust string (and string slice) is a collection of bytes that forms valid
UTF-8 text. We can go from the string representation to a slice of bytes using
the as_bytes method.

❸

off_t is the pointer offset type, and it comes from the auto-generated
NGINX bindings, it is not a standard Rust type.

Every HTTP response begins with a line containing the protocol version and



the status code, followed by a number of lines containing the header data.
The Content-Length header must always be set when there is a response
body provided that does not use the chunked response encoding. Therefore,
before we can do anything with the response body text, we must write out the
status code and the content length. The status code is provided to this
function as an argument, and the content length can be calculated based on
the number of bytes in the response body string. Once we have these two
values set, we call the ngx_http_send_header function, which write out the
header data on the connection.

Next, we allocate an ngx_buf_t to hold information about our response
buffer. Let’s see that part of the code:

let buf_p =

    ngx_pcalloc(request.pool, std::mem::size_of::<

      ngx_buf_t>() as size_t)

      as *mut ngx_buf_t;

  if buf_p.is_null() {

    return Err("Failed to allocate buffer");

  }

  let buf = &mut (*buf_p);

  buf.set_last_buf(1);

  buf.set_last_in_chain(1);

  buf.set_memory(1);

First, we use the ngx_pcalloc function. This is an allocation function, similar
to the C standard malloc function, that NGINX provides. It uses a pool of
memory which is local to each request object to allocate the requested
amount of memory.

These memory pools provide a very similar mechanism to Rust’s ownership
system, but they are specific to NGINX and require more runtime work. Each
pool will de-allocate its contents when the pool is de-allocated, so when we
finish handling the request, all of the temporary buffers that were created in
its pool will be de-allocated. This allows plugin authors to allocate memory
with the same lifetime as the request itself, without too much worry for
setting up extra cleanup code. There are a few new Rust concepts here, the
first is the function std::mem::size_of<T>. This function returns the size in



bytes of whatever type is passed to it in the type argument position. This
allows us to tell the NGINX allocator how many bytes it should allocate in
order to safely store our buffer. After a null check, we perform a mutable
reborrow of the newly allocated pointer, so that we don’t need to dereference
it each time we want to use it. Finally, we use some set_ functions to
initialize some settings that tell NGINX how our buffer should be handled.
The exact meaning of these functions is quite specific to NGINX, but there is
something interesting about these functions for our purposes, and to see that
we will need to look at the definition of these fields on the ngx_buf_t type.

struct ngx_buf_t {

  ... (some fields omitted)

  unsigned         memory:1;

  unsigned         last_buf:1;

  unsigned         last_in_chain:1;

};

The three set_ functions that we call (set_last_buf, set_memory, and
set_last_in_chain) correspond with the bitfields (last_buf, memory and
last_in_chain) at the end of the ngx_buf_s type. The Rust bindgen tool
generates set and get functions for these bitfields, because Rust does not
natively support them. Other than these functions, there is not a good way to
interact with these bitfields.

The next part of the function is quite straightforward, we allocate a block of
memory to store the response body in, and we copy the data from our Rust
string slice into this block. It may theoretically be possible to simply pass
NGINX a pointer to our Rust string slice, but you would need to verify that
after this function exited this pointer was never used again. In order to avoid
the risk of a use-after-free error at runtime, we will re-allocate this string
buffer.

  let response_buffer =

    ngx_pcalloc(request.pool, response_bytes.len() as size_t);

  if response_buffer.is_null() {

    return Err("Failed to allocate response buffer");

  }

  std::ptr::copy_nonoverlapping(

    response_bytes.as_ptr(), #1

    response_buffer as *mut u8,



    response_bytes.len(),

  );

❶

To get a pointer to the first element in a slice, we use the as_ptr method.

We use the same ngx_pcalloc function as before, but this time we do not
need to use std::mem::size_of because we are allocating a known number
of bytes, rather than instances of a complex type. The function
std::ptr::copy_nonoverlapping works the same as the C standard library
memcpy function, with the order of the source and destination pointers flipped.
It copies each byte from the Rust string slice into the newly allocated buffer.

After copying the data, we perform the final setup before passing our
completed request back to NGINX so that it can perform the required IO
operations to send our data across the network.

  buf.pos = response_buffer as *mut u8;

  buf.last = response_buffer.offset(

    response_bytes.len() as isize) as *mut u8;

  let mut out_chain = ngx_chain_t {

    buf,

    next: std::ptr::null_mut(),

  };

We set the appropriate fields of our ngx_buf_t to the start and end pointers of
the block of memory we just allocated. To get the end pointer for our block
of memory, we need a new method .offset. This is basically the opposite of
offset_from, which returns the difference between two pointers. .offset
takes a pointer and a number N, and returns a new pointer which is N
pointers away from the base pointer. Figure 4.9 shows a decision tree you can
use to pick which method is appropriate for your use case.

Figure 4.9. Decision between pointer/offset conversion methods



We put the buffer into an ngx_chain_t. This type is essentially a linked list
of blocks of memory. Since we just have a single block, we initialize the
chain with our single buffer, and a null pointer in the slot that would
otherwise point to the next item in the chain.

Finally, with all of the configuration done, and our buffers full of data, we
can tell NGINX to start writing out the response data to the client.

  if ngx_http_output_filter(request, &mut out_chain) != 0 {

    return Err("Failed to perform http output filter chain");

  }

  Ok(())

The ngx_http_output_filter function takes a pointer to a request, and a
pointer to an ngx_chain_t and handles writing out the response data to the
client. After calling this, we return an Ok(()) to let the caller know that
everything went as expected.

Now that we have an understanding of how this function works, we can call it
from our read_body_handler function:



unsafe extern "C" fn read_body_handler(r: *mut ngx_http_request_t)

{

  if r.is_null() {

    eprintln!("got null request in body handler");

    return;

  }

  let request = &mut *r; #1

  let body = match request_body_as_str(request) {

    Ok(body) => body,

    Err(e) => {

      eprintln!("failed to parse body: {}", e);

      return;

    }

  };

  match calculate::evaluate(body) {

    Ok(result) => {

      let response_body = format!("{}", result);

      match write_response(request, &response_body, 200) {

        Ok(()) => {}

        Err(e) => {

          eprintln!("failed to write HTTP response: {}", e);

        }

      }

    }

    Err(e) => eprintln!("{} => error: {}", body, e),

  }

}

❶

Notice that the reborrow of our request pointer needs to turn into a mutable
reborrow. This allows us to later mutate the fields of our request.

Let’s recompile the code and try using our HTTP handler.

$ cargo build

$ ./nginx-1.19.3/objs/nginx -c nginx.conf -p ngx-run

....

# Concurrently, in a separate window after NGINX is started



$ curl -X POST -d '3 4 * 2 -' http://localhost:8080/calculate; echo #1

10

❶

The extra echo command here is because there is no newline at the end of the
HTTP response, so it may be difficult to see the output of curl without this
echo command adding a newline.

We did it! We have successfully created a Rust crate that provides an NGINX
HTTP handler that performs math. There were a lot of steps in there, and a lot
of changes got made to the code files. Here is the final version of what the
lib.rs file should look like in your project:

Listing 4.16. Full calculator HTTP handler

include!(concat!(env!("OUT_DIR"), "/nginx.rs"));

#[no_mangle]

pub unsafe extern "C" fn ngx_http_calculator_handler(

  r: *mut ngx_http_request_t,

) -> ngx_int_t {

  let rc = ngx_http_read_client_request_body(

    r, Some(read_body_handler));

  if rc != 0 {

    return rc;

  }

  0

}

unsafe extern "C" fn read_body_handler(r: *mut ngx_http_request_t)

{

  if r.is_null() {

    eprintln!("got null request in body handler");

    return;

  }

  let request = &mut *r;

  let body = match request_body_as_str(request) {

    Ok(body) => body,



    Err(e) => {

      eprintln!("failed to parse body: {}", e);

      return;

    }

  };

  match calculate::evaluate(body) {

    Ok(result) => {

      let response_body = format!("{}", result);

      match write_response(request, &response_body, 200) {

        Ok(()) => {}

        Err(e) => {

          eprintln!("failed to write HTTP response: {}", e);

        }

      }

    }

    Err(e) => eprintln!("{} => error: {}", body, e),

  }

}

unsafe fn request_body_as_str<'a>(

  request: &'a ngx_http_request_t,

) -> Result<&'a str, &'static str> {

  if request.request_body.is_null()

    || (*request.request_body).bufs.is_null()

    || (*(*request.request_body).bufs).buf.is_null()

  {

    return Err("Request body buffers were not

      initialized as expected");

  }

  let buf = (*(*request.request_body).bufs).buf;

  let start = (*buf).pos;

  let len = (*buf).last.offset_from(start) as usize;

  let body_bytes = std::slice::from_raw_parts(start, len);

  let body_str = std::str::from_utf8(body_bytes)

    .map_err(|_| "Body contains invalid UTF-8")?;

  Ok(body_str)

}

unsafe fn write_response(

  request: &mut ngx_http_request_t,

  response_body: &str,



  status_code: ngx_uint_t,

) -> Result<(), &'static str> {

  let headers = &mut request.headers_out;

  headers.status = status_code;

  let response_bytes = response_body.as_bytes();

  headers.content_length_n = response_bytes.len() as off_t;

  let rc = ngx_http_send_header(request);

  if rc != 0 {

    return Err("failed to send headers");

  }

  let buf_p =

    ngx_pcalloc(request.pool, std::mem::size_of::<

      ngx_buf_t>() as size_t)

      as *mut ngx_buf_t;

  if buf_p.is_null() {

    return Err("Failed to allocate buffer");

  }

  let buf = &mut (*buf_p);

  buf.set_last_buf(1);

  buf.set_last_in_chain(1);

  buf.set_memory(1);

  let response_buffer =

    ngx_pcalloc(request.pool, response_bytes.len() as size_t);

  if response_buffer.is_null() {

    return Err("Failed to allocate response buffer");

  }

  std::ptr::copy_nonoverlapping(

    response_bytes.as_ptr(),

    response_buffer as *mut u8,

    response_bytes.len(),

  );

  buf.pos = response_buffer as *mut u8;

  buf.last = response_buffer.offset(

    response_bytes.len() as isize) as *mut u8;

  let mut out_chain = ngx_chain_t {

    buf,

    next: std::ptr::null_mut(),

  };



  if ngx_http_output_filter(request, &mut out_chain) != 0 {

    return Err("Failed to perform http output filter chain");

  }

  Ok(())

}

This is 127 lines of Rust code that has a lot of new ideas in it, but there are a
lot of holdover C idioms in this code. Built directly in to our handler
functions are temporary buffers, unsafe function calls, and a number of other
things that wouldn’t appear in normal Rust code. The next chapter will cover
techniques that we can use to segment the unsafe-heavy C-FFI code from the
standard Rust code, and try to make that more re-usable.

4.7 Summary

Bindgen can be used to generate Rust bindings for C and C++ code.
Build scripts allow developers to write Rust code that runs at compile
time.
include! inserts a text file into our Rust source code files at compile
time and interprets it as Rust code.
Not all extern "C" functions need to be #[no_mangle].
Reborrowing lets us treat raw pointers as standard Rust references.
.offset_from gets the difference in bytes between two pointers.
std::slice::from_raw_parts constructs a view onto a contiguous
block of memory from a pointer, and a length.
Path dependencies are used by cargo to include crates that are on your
machine, rather than uploaded to crates.io.
Crates can be compiled as both rlib (for Rust) and cdylib (for C).
When marking an item as pub, the compiler will expect that all types
that are part of its public API are also pub.
Bindgen creates get_ and set_ functions for C bitfields automatically.
Slices are contiguous borrowed views of a region of memory.
.as_ptr returns a pointer to the first element in a slice
.offset returns a pointer which is N elements away from the base
pointer in a contiguous block.
std::mem::size_of is the Rust equivalent of sizeof.



std::ptr::copy_nonoverlapping is the Rust equivalent of memcpy.



5 Structuring Rust libraries
This chapter covers:

Organizing Rust code using modules

Virtually all programming languages have features that allow code to be
divided into groups of items.

So far all of the code examples that we have seen have used a flat namespace.
In this chapter we will look at Rust’s powerful module system and how you
can use it to structure your crates.

5.1 Modules

In Rust, a module is a container for holding items. An item is a component
of a crate such as a function, struct, enum or type (there are others but let’s
just worry about these for now). We have already used modules from the
standard library when we imported the Display trait from the fmt module of
the std crate. The std crate is the Rust standard library, and the fmt module
contains items which help with text formatting, such as the Display and
Debug traits.

Let’s imagine that we wanted to organize a small program that gets a user’s
name, then says hello and goodbye to the user. Create a new cargo project
called greetings and add this to the src/main.rs file:

Listing 5.1. Code to get user’s name and greet them

use std::io::stdin;

fn main() {

  let name = get_name();

  hello(&name);

  goodbye(&name);

}



fn get_name() -> String {

  let mut name = String::new();

  println!("Please enter your name");

  stdin().read_line(&mut name).unwrap(); #1

  name

}

fn goodbye(name: &str) {

  println!("Goodbye, {}", name);

}

fn hello(name: &str) {

  println!("Hello, {}", name);

}

❶

Here we use the read_line function to read a line of text from stdin and copy
it to a String buffer.

If we run it, we see that we have created a very polite program:

$ cargo run

Please enter your name

Thalia

Hello, Thalia

Goodbye, Thalia

We may want to organize these functions into two modules - one for input
functions like get_name and one for output functions like hello and goodbye.
Modules can be created in Rust code using the mod keyword followed by a
module name, then the contents of the module inside of curly braces ({}).

Let’s create the input and output modules now:

Listing 5.2. User greeting program with modules added



fn main() {

  let name = get_name();

  hello(&name);

  goodbye(&name);

}

mod input {

  use std::io::stdin;

  fn get_name() -> String {

    let mut name = String::new();

    println!("Please enter your name");

    std::io::stdin().read_line(&mut name).unwrap();

    name

  }

}

mod output {

  fn goodbye(name: &str) {

    println!("Goodbye, {}", name);

  }

  fn hello(name: &str) {

    println!("Hello, {}", name);

  }

}

If we try to run this now, we’ll be hit with a trio of compiler errors:

$ cargo run

error[E0425]: cannot find function `get_name` in this scope

 --> src/main.rs:2:14

  |

2 |   let name = get_name();

  |              ^^^^^^^^ not found in this scope

  |

help: consider importing this function

  |

1 | use input::get_name;

  |

... (same error for `hello` and `goodbye`)

Thankfully these error messages come with hints on how to resolve them -



since we put all of our functions within the input and output modules,
they’re no longer in the same namespace as the main function. There are a
few ways that we can resolve this issue - one of which is highlighted in the
help text the compiler provides us. We can add a use statement above our
main function to import the get_name, hello, and goodbye functions from
their modules.

For now, let’s include the use statements that the compiler indicated to us.
We can even combine the two statements for the output module into one.

Listing 5.3. Greeting program with use statements added

use input::get_name;

use output::{goodbye, hello};

fn main() {

  let name = get_name();

  hello(&name);

  goodbye(&name);

}

...

Let’s try running our code again:

$ cargo run

error[E0603]: function `get_name` is private

  --> src/main.rs:1:19

   |

1  | use input::get_name;

   |                   ^^^^^^^^ private function

   |

note: the function `get_name` is defined here

  --> src/main.rs:14:3

   |

14 |   fn get_name() -> String {

   |   ^^^^^^^^^^^^^^^^^^^^^^^

... (same error for `hello` and `goodbye`)

The compiler can resolve the names now, but our use statements are causing
errors because we’re attempting to import private functions. Recall from



Chapter 3 that all functions in Rust are private by default and must be
explicitly marked as public. To do that, we need to add the pub keyword
before the definitions of our functions. Let’s do this now:

Listing 5.4. Greeting program with public functions in its modules

...

mod input {

  use std::io::stdin;

  pub fn get_name() -> String {

    let mut name = String::new();

    println!("Please enter your name");

    stdin().read_line(&mut name).unwrap();

    name

  }

}

mod output {

  pub fn goodbye(name: &str) {

    println!("Goodbye, {}", name);

  }

  pub fn hello(name: &str) {

    println!("Hello, {}", name);

  }

}

Now we can run our program and it will work as it did originally.

$ cargo run

Please enter your name

Pyramus

Hello, Pyramus

Goodbye, Pyramus

5.1.1 Who cares?

We have succeeded in repeating the functionality of our original program by
adding a lot more syntax. So what? Why would someone want to go through



the trouble of adding mod, use, and pub all over their code instead of putting
everything in one large module? For many people, thinking about a few
related functions in a single module is easier than thinking about all of the
functions at once. If you’re dealing with a bug in the database interaction of a
program, it may be easier to track down if all of the database code is in the
same spot instead of being mixed around with HTTP, logging, timing, or
threading code in a single global namespace. People generally like sorting
related items into groups and categorizing them; modules are simply how we
do this in Rust. Figure 5.1 shows a graph of the modules in this greeting
program.

Figure 5.1. Graph of greeting program

We can also create modules which live in their own files. Let’s look now at
how we can do this.

5.1.2 Multiple files

Right now the input and output modules are in the same main.rs file as the
rest of the code. Unless your modules are very small it is generally
considered best practice to place modules within their own files. To do this
we create a new file named module.rs, replacing module with the name of
the module that we’re creating. For our purposes, we will create input.rs
and output.rs. Let’s do this now:

Listing 5.5. Greeter program main.rs

use input::get_name;



use output::{goodbye, hello};

mod input; #1

mod output;

fn main() {

  let name = get_name();

  hello(&name);

  goodbye(&name);

}

❶

Notice the subtle ways the mod statements changed - we moved it to the top of
the file which is a style choice, and we removed the curly braces for the
contents in favor of a semicolon. This indicates that we are using a file for
this module instead of a block.

Listing 5.6. Greeter program input.rs

use std::io::stdin;

pub fn get_name() -> String {

  let mut name = String::new();

  println!("Please enter your name");

  stdin().read_line(&mut name).unwrap();

  name

}

Listing 5.7. Greeter program output.rs

pub fn goodbye(name: &str) {

  println!("Goodbye, {}", name);

}

pub fn hello(name: &str) {

  println!("Hello, {}", name);

}



The program still functions as intended after these changes.

$ cargo run

Please enter your name

world

Hello, world

Goodbye, world

  Note

Many programming languages use the implicit structure of the filesystem to
construct a module hierarchy. Rust requires the mod statement in the source
code to tell the compiler which files to look in. To tell the rust compiler about
the file src/bananas.rs, you must include mod bananas at the root of the
crate. If you wanted to put bananas.rs within a forest module, you would
need to place it in src/forest/bananas.rs, src/forest.rs would need to
contain mod bananas, and mod forest would need to be at the crate root.

It is important to point out that as far as the compiler knows, there is no
difference between modules that use the block syntax (mod my_mod { … })
and modules that use separate files for code (mod my_mod;). Both provide
exactly the same amount of isolation, the only differences are the style
differences that the programmer sees from them.

One helpful stylistic reason to place modules within their own files is that
some developers find it helpful to be able to jump to specific files with
known contents. It is easier in most text editors for example, to open a file
called http.rs than it is to search a 10,000 line long lib.rs file for a module
named http.

Now that we have divided our code into modules, let’s take a look at how it
might change when some new features are added. Imagine that we needed to
update our program to ask the user if they had a good day, and respond
appropriately. At a high level, we may want to create items that look like this:

enum DayKind {

  Good,

  Bad,



}

fn get_day_kind() -> DayKind {

  ...

}

fn print_day_kind_message(day_kind: DayKind) {

  ...

}

With the current setup of our code, where do these items belong?
get_day_kind probably belongs in the input module since it is taking input
from the user, and print_day_kind_message similarly belongs in output
since it writes a message to the user. Where then, does the DayKind enum go?
It’s not directly related to either input or output, so conceptually it doesn’t
belong with either one. Let’s create a new module for it. We’ll call this one
day_kind, it will go into day_kind.rs, and the only thing in it will be our
new enum. We also need to add mod day_kind; to our main.rs file. These
files should now look like this:

Listing 5.8. Day kind in main.rs

use input::get_name;

use output::{goodbye, hello};

mod day_kind;

mod input;

mod output;

fn main() {

  let name = get_name();

  hello(&name);

  goodbye(&name);

}

Listing 5.9. Day kind in day_kind.rs

pub enum DayKind { #1

  Good,

  Bad,

}

❶



Notice that we made DayKind public so that it could be accessed from the
other modules in our crate.

Now let’s write our output function - this is responsible for printing a
message to the user about how their day was, and we will write it in
output.rs.

Listing 5.10. Day kind in output.rs

use day_kind::DayKind;

pub fn print_day_kind_message(day_kind: DayKind) {

  match day_kind {

    DayKind::Good => println!("I'm glad to hear you're having a good day!"),

    DayKind::Bad => println!("I'm sorry to hear you're having a bad day"),

  }

}

Let’s try to run our program now:

$ cargo run

error[E0432]: unresolved import `day_kind`

 --> src/output.rs:1:5

  |

1 | use day_kind::DayKind;

  |     ^^^^^^^^ help: a similar path exists: `crate::day_kind`

  |

Our code does not compile. The compiler provides us with help text that will
make this code compile, but we are going to dive a little bit deeper into how
Rust handles paths.

5.2 Paths

Every thing with a name (variable, function, struct, enum, type, etc) in Rust
can be referred to by a path. A path is a sequence of names called path
segments separated by the :: characters, which combine to refer to an item
or a variable (if the path contains only one segment). Here are a few



examples:

Listing 5.11. Examples of paths

fn main() {

  let value = true;

  // All of the lines below this are paths

  value; #1

  hello; #2

  std::io::stdin; #3

  std::collections::hash_map::ValuesMut::<i32, String>::len; #4

}

fn hello() { }

❶

Path to the local boolean variable value

❷

Path to the function hello defined just under the main fn

❸

Path to the stdin function in the standard library’s io module

❹

Path to the len function on a ValuesMut iterator for a hash map containing
i32 keys and String values from the hash_map module within the standard
library’s `collections' module



As we can see, paths can be very small or very large, but they are all paths. If
we try to build this program, the compiler will even warn us that all of our
statements contain only paths (which is a no-op).

$ cargo build

warning: path statement with no effect

 --> src/main.rs:5:3

  |

5 |   value;

  |   ^^^^^^

  |

  = note: `#[warn(path_statements)]` on by default

warning: path statement with no effect

 --> src/main.rs:7:3

  |

7 |   hello;

  |   ^^^^^^

warning: path statement with no effect

 --> src/main.rs:9:3

  |

9 |   std::io::stdin;

  |   ^^^^^^^^^^^^^^^

warning: path statement with no effect

  --> src/main.rs:11:3

   |

11 |   std::collections::hash_map::ValuesMut::<i32, String>::len;

   |   ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The compiler warnings show up because paths by themselves are not too
helpful. A path to a function on a line by itself is not useful, it’s only useful
when you actually call that function. A path to a struct is not useful (nor is it
valid syntax) it’s only useful when you construct an instance of that struct, or
call an associated function.

There is an important gotcha in paths that can trip up many new Rust
developers, and that is the subtle difference between relative and absolute
paths.



5.2.1 Relative vs Absolute paths

Relative paths (such as hello in Listing 5.11) refer to variables or items
within the current namespace, and absolute paths such as std::io::stdin
refer to variables or items relative to the root of a crate.

It is helpful to compare paths in Rust with paths on the filesystem. Paths in
Rust have a separation between crates (which always appear at the root of
absolute paths) and modules (which may or may not appear in paths). This is
similar to the way that paths are constructed on Windows operating systems.
Relative paths use only directory and file names to indicate where something
is located relative to some working directory, but absolute paths are rooted at
a particular IO drive like C:. The distinction between drives and directories
on Windows is similar to the distinction between crates and modules in Rust.

  Note

On unix-like operating systems all very nicely begin with / as the root of the
filesystem, with files and folders growing down from there. The Rust
namespace system is not quite as simple as this.

When we need to use an absolute path to refer to items in the current crate,
we need to use the crate keyword, which is a special path segment that
means the root of the current crate. There is another special path segment we
can use called super, which is used in relative paths to refer to the namespace
above the current namespace. Let’s look at a small example to see relative
and absolute paths in action. Imagine that we are writing the fictional
libsnack crate which has functions and types to acquire and consume
delicious snacks. Currently libsnack has a lib.rs file which looks like this:

Listing 5.12. libsnack crate

pub mod treats {

  pub mod shop {}

  pub enum Treat {

    Candy,

    IceCream,



  }

  pub struct ConsumedTreat {

    treat: Treat,

  }

}

Notice that this example includes modules decorated with the pub keyword.
We can add the pub keyword to modules just as we can with functions,
structs, or enums. It means exactly the same thing for modules as it does for
other items. A module without the pub keyword before its definition can only
be accessed from the module where it was declared. If the shop module in
Listing 5.12 were not pub, we would not be able to access it from the crate
root. We would only be able to access it from within the treats module.

Imagine that we want to add the following three functions to the modules in
libsnack to handle the essential operations of snacking:

The buy function will live in the treats::shop module:

fn buy() -> Treat

eat will be placed in the treats module:

fn eat(treat: Treat) -> ConsumedTreat

Finally, at the root of the crate we provide the regret function:

fn regret(treat: ConsumedTreat)

All of these functions use types from the treats module of libsnack in their
signatures. The paths to these types can all be expressed using either relative
or absolute paths. We will write the functions in both ways to see how the
code changes when we use each type of path. We’ll begin with absolute
paths:

Listing 5.13. Lifecycle methods added to libsnack using absolute paths only

pub mod treats {

  pub mod shop {

    fn buy() -> crate::treats::Treat {



      crate::treats::Treat::IceCream

    }

  }

  pub enum Treat {

    Candy,

    IceCream,

  }

  pub struct ConsumedTreat {

    treat: Treat,

  }

  fn eat(treat: crate::treats::Treat) -> crate::treats::ConsumedTreat {

    crate::treats::ConsumedTreat { treat }

  }

}

fn regret(treat: crate::treats::ConsumedTreat) {

  println!("That was a mistake");

}

We can see that this becomes verbose very quickly. The signature for
treats::eat is particularly hard to read because it requires two large paths
on the same line. Let’s try using only relative paths now.

Listing 5.14. Lifecycle methods added to libsnack using relative paths only

pub mod treats {

  pub mod shop {

    fn buy() -> super::Treat {

      super::Treat::IceCream

    }

  }

  pub enum Treat {

    Candy,

    IceCream,

  }

  pub struct ConsumedTreat {

    treat: Treat,

  }

  fn eat(treat: Treat) -> ConsumedTreat {

    ConsumedTreat { treat }



  }

}

fn regret(treat: treats::ConsumedTreat) {

  println!("That was a mistake");

}

This is a bit easier to read now. The eat function no longer needs any module
qualification whatsoever, since it is defined in the same module as the Treat
and ConsumedTreat types which it uses. There is a downside to relative paths
however, if you move a function which has a relative type in its signature,
you need to rewrite the types relative to the new location. If we moved the
regret function into the shop module for example, we would need to change
the signature to this:

fn regret(treat: super::ConsumedTreat)

Not a big deal when we have only a few functions and types, but these
changes can add up and become frustrating. For that reason, it is often
beneficial to combine the use of absolute and relative paths in Rust code. We
can do this using the use statement that we learned about previously. Let’s
see how we can rewrite this crate with use:

Listing 5.15. Lifecycle methods added to libsnack using relative and
absolute paths

pub mod treats {

  pub mod shop {

    use crate::treats::Treat;

    fn buy() -> Treat {

      Treat::IceCream

    }

  }

  pub enum Treat {

    Candy,

    IceCream,

  }

  pub struct ConsumedTreat {

    treat: Treat,

  }



  fn eat(treat: Treat) -> ConsumedTreat {

    ConsumedTreat { treat }

  }

}

use crate::treats::ConsumedTreat;

fn regret(treat: ConsumedTreat) {

  println!("That was a mistake");

}

Figure 5.2 shows all of the relative and absolute paths that we used in Listing
5.15:

Figure 5.2. Relative and absolute paths used in Listing 5.15

Notice that the arrows for the absolute paths go all the way to the top of the
crate. This is intentional, it serves to remind us that absolute paths are always



based at the root of the crate, and they take us from wherever we are in the
crate back up to the root.

If we write use statements that rely on absolute paths, then the rest of our
code can rely on relative paths that do not need to worry about module
hierarchies at all. This centralizes concerns about module hierarchies in our
use statements, making the rest of our code easier to move around and easier
to read.

Now that we understand how paths work in relation to Rust modules, let’s
jump back to our greeter program and get it to compile. Recall that we wrote
the following code, which did not compile:

Listing 5.16. main.rs

use input::get_name;

use output::{goodbye, hello};

mod day_kind;

mod input;

mod output;

fn main() {

  let name = get_name();

  hello(&name);

  goodbye(&name);

}

Listing 5.17. day_kind.rs

pub enum DayKind {

  Good,

  Bad,

}

Listing 5.18. input.rs

use std::io::stdin;

pub fn get_name() -> String {

  let mut name = String::new();



  println!("Please enter your name");

  stdin().read_line(&mut name).unwrap();

  name

}

Listing 5.19. output.rs

use day_kind::DayKind; #1

pub fn print_day_kind_message(day_kind: DayKind) {

  match day_kind {

    DayKind::Good => println!("I'm glad to hear you're having a good day!"),

    DayKind::Bad => println!("I'm sorry to hear you're having a bad day"),

  }

}

pub fn goodbye(name: &str) {

  println!("Goodbye, {}", name);

}

pub fn hello(name: &str) {

  println!("Hello, {}", name);

}

❶

This is the line with the compiler error unresolved import 'day_kind'

Knowing what we know now about paths, we should be able to fix it. The
day_kind name does not exist within the output module, so we cannot use a
relative path like this to get to it. There is a special path segment that we can
use called super which allows us to move up the module hierarchy, similar to
the .. syntax in filesystem paths. Outside of very simple cases however, use
of super is generally discouraged. If we want to fix this error we should use
an absolute path. Since the day_kind module is just under the crate root, the
absolute path to it is crate::day_kind. That means we can fix our code by
changing that use statement to:

use crate::day_kind::DayKind



The code should now compile. Now that we have that sorted, we can finish
updating our greeter program by allowing it to ask the user how their day
was. Let’s write a new function in input.rs which does just that:

Listing 5.20. Ask the user about their day

use crate::day_kind::DayKind;

pub fn how_was_day() -> DayKind {

  let mut day = String::new();

  println!("How was your day?");

  stdin().read_line(&mut day).unwrap();

  let day_trimmed = day.trim(); #1

  if day_trimmed == "good" {

    DayKind::Good

  } else {

    DayKind::Bad

  }

}

❶

The read_line function generates a string that contains the newline character
at the end of it. Calling .trim removes leading and trailing whitespace, which
is necessary for comparing this string to "good". If we did not call .trim we
would need to write if day == "good\n".

Now that we have a way to get a day kind from the user and a way to print
out a message for the day kind, let’s combine them in our main function.

Listing 5.21. Call day kind functions from main

use input::{get_name, how_was_day};

use output::{goodbye, hello, print_day_kind_message};

mod day_kind;

mod input;

mod output;



fn main() {

  let name = get_name();

  hello(&name);

  let day_kind = how_was_day(); #1

  print_day_kind_message(day_kind);

  goodbye(&name);

}

❶

Notice that we do not need to import the DayKind type in order to store a
DayKind in a variable. Rust only requires importing structs and enums when
they are used by name. If we wanted an explicit type annotation like let
day_kind: DayKind, then we would need to import it.

And now we can try running our program for both good and bad names:

$ cargo run

Please enter your name

Rose

Hello, Rose

How was your day?

good

I'm glad to hear you're having a good day!

Goodbye, Rose

$ cargo run

Please enter your name

Jack

Hello, Jack

How was your day?

bad

I'm sorry to hear you're having a bad day

Goodbye, Jack

So we can now ask the user for their name, how their day was and respond



accordingly. There are two small issues that we should try to fix though:

The “Hello, {name}” text has a newline after it because we don’t call
.trim() on the name string. We will create a single function for pulling
a line of text from stdin and trimming whitespace.
It feels redundant to reference crate::day_kind::DayKind everywhere,
since the type name is the same as the module name. We will create an
alias that makes this easier to use.

Let’s start with the first issue. Given what we have seen from the other
functions that read from stdin in the input module, we might come up with
something that looks like this:

fn read_line() -> String {

  let mut line = String::new();

  stdin().read_line(&mut line).unwrap();

  line.trim()

}

But it turns out that this does not compile, and the Rust compiler is quick to
tell us why:

$ cargo build

error[E0308]: mismatched types

 --> src/input.rs:9:3

  |

4 | fn read_line() -> String {

  |                   ------ expected `String` because of return type

...

9 |   line.trim()

  |   ^^^^^^^^^^^

  |   |

  |   expected struct `String`, found `&str`

  |   help: try using a conversion method: `line.trim().to_string()`

It turns out that String::trim does not return another String with its own
memory space, but actually return a &str string slice which references the
same underlying memory as the original String. In most cases this is a good
thing because it means you do not need to re-allocate strings when you only
want to pull out whitespace. For our purposes however, we will need to re-



allocate. We can do this by following the compiler’s instruction and adding
.to_string() at the end of our line to re-allocate the &str into a String.

Now we need to re-write our get_name and how_was_day functions to use the
new helper function we created:

Listing 5.22. Greeter input module with read_line helper added

use crate::day_kind::DayKind;

use std::io::stdin;

fn read_line() -> String { #1

  let mut line = String::new();

  stdin().read_line(&mut line).unwrap();

  line.trim().to_string()

}

pub fn get_name() -> String {

  println!("Please enter your name");

  read_line()

}

pub fn how_was_day() -> DayKind {

  println!("How was your day?");

  let day = read_line();

  if day == "good" {

    DayKind::Good

  } else {

    DayKind::Bad

  }

}

❶

Notice that this function is not marked pub. It is not useful outside of the
context of the input module, so we do not need to export it to the other
modules of our crate.

Our code now runs without any gaps in the output after names:



$ cargo run

Please enter your name

Lonnie

Hello, Lonnie

How was your day?

good

I'm glad to hear you're having a good day!

Goodbye, Lonnie

Now that we have removed the gaps and centralized our stdin access, let’s
create an alias for DayKind to simplify importing it.

5.2.2 Path Aliases

To do this we will combine two keywords that we have already used many
times before - pub use. When you combine these two things, they are called
a re-export and act as an alias for the thing that is imported. Let’s see how
this works in practice - add this line to the top of our main.rs file:

pub use crate::day_kind::DayKind;

This both imports DayKind from the day_kind module, and creates a new
public-facing DayKind name which is located at the crate root. We can then
use it from our input and output modules like so:

// New way to write the import statement

use crate::DayKind;

// Old way to write the import statement

use crate::day_kind::DayKind;

Both of these use statements refer to the exact same item, but one is shorter
and relies on the pub use statement that we added to main.rs earlier.

The full contents of our greeter crate should now be this:

Listing 5.23. Completed greeter application - main.rs

use input::{get_name, how_was_day};

use output::{goodbye, hello, print_day_kind_message};

pub use day_kind::DayKind;



mod day_kind;

mod input;

mod output;

fn main() {

  let name = get_name();

  hello(&name);

  let day_kind = how_was_day();

  print_day_kind_message(day_kind);

  goodbye(&name);

}

Listing 5.24. Completed greeter application - input.rs

use crate::DayKind;

use std::io::stdin;

fn read_line() -> String {

  let mut line = String::new();

  stdin().read_line(&mut line).unwrap();

  line.trim().to_string()

}

pub fn get_name() -> String {

  println!("Please enter your name");

  read_line()

}

pub fn how_was_day() -> DayKind {

  println!("How was your day?");

  let day = read_line();

  if day == "good" {

    DayKind::Good

  } else {

    DayKind::Bad

  }

}

Listing 5.25. Completed greeter application - output.rs



use crate::DayKind;

pub fn print_day_kind_message(day_kind: DayKind) {

  match day_kind {

    DayKind::Good => println!("I'm glad to hear you're having a good day!"),

    DayKind::Bad => println!("I'm sorry to hear you're having a bad day"),

  }

}

pub fn goodbye(name: &str) {

  println!("Goodbye, {}", name);

}

pub fn hello(name: &str) {

  println!("Hello, {}", name);

}

Listing 5.26. Completed greeter application - day_kind.rs

pub enum DayKind {

  Good,

  Bad,

}

pub use statements are often added to Rust code in order to hide the module
hierarchy from the public API. This allows deeply nested and specific
modules to be created within a crate without requiring end users to care about
them. Imagine that you are using a crate called forest which has the
following lib.rs:

pub mod the {

  pub mod secret {

    pub mod entrance {

      pub mod to {

        pub mod the {

          pub mod forest {

            pub fn enter() { }

          }

        }

      }

    }

  }

}

pub use the::secret::entrance::to::the::forest::enter;



You could construct the very large path to the enter function yourself or you
could call forest::enter. Which one would you rather do? As a library
maintainer, do you want to commit to maintaining that very long path as a
part of your public API? If you change any part of that path, people using the
long version of the path will have compiler errors.

There are a few more items to discuss with respect to paths and modules. For
these, let’s consider a significantly simpler version of our forest crate. This
crate contains many modules representing various areas in a forest, each
containing an enter functions used to walk into this area of the forest. All of
these enter functions use the shared forest::enter_area function for their
implementation.

Listing 5.27. forest crate

pub mod forest {

  pub fn enter_area(area: &str) {

    match area {

      "tree cover" => println!("It's getting darker..."),

      "witches coven" => println!("It's getting spookier..."),

      "walking path" => println!("It's getting easier to walk..."),

      x => panic!("Unexpected area: {}", x),

    }

  }

}

pub mod tree_cover {

  pub fn enter() {

    crate::forest::enter_area("tree cover");

  }

}

pub mod walking_path {

  pub fn enter() {

    crate::forest::enter_area("walking path");

  }

}

pub mod witches_coven {

  pub fn enter() {

    crate::forest::enter_area("witches coven");

  }

}



Users of the forest crate should call tree_cover::enter,
walking_path::enter and witches_coven::enter. They should not call the
generic forest::enter_area function, as it is only intended to work with the
strings which come from other functions in this crate. The current forest
crate does not protect users from mis-using this API. The forest and its
enter_area function are both exposed publicly, and can be used directly by
crate users. We should not expose these items publicly, we should hide them.
Let’s remove the pub keyword from the forest module and the enter_area
function.

Listing 5.28. forest module with pub removed

mod forest {

  fn enter_area(area: &str) {

    match area {

      "tree cover" => println!("It's getting darker..."),

      "witches coven" => println!("It's getting spookier..."),

      "walking path" => println!("It's getting easier to walk..."),

      x => panic!("Unexpected area: {}", x),

    }

  }

}

...

If we try to compile this now, we run into a bit of a snag.

$ cargo build

error[E0603]: function `enter_area` is private

  --> src/lib.rs:14:20

   |

14 |     crate::forest::enter_area("tree cover");

   |                    ^^^^^^^^^^ private function

   |

note: the function `enter_area` is defined here

  --> src/lib.rs:2:3

   |

2  |   fn enter_area(area: &str) {

   |   ^^^^^^^^^^^^^^^^^^^^^^^^^

... (same error on lines 20 and 26)

The compiler is complaining because we have made the enter_area function



private, which is not a crate-level distinction but a module-level distinction.
We could only call enter_area from another function inside of the forest
module now. We don’t want to add pub to enter_area, since we don’t want
it to be available outside of the crate, but we also don’t want it to be hidden
from other modules within the crate. We can fulfil both requirements here by
using a different kind of visibility modifier - pub(crate).

As the syntax implies, pub(crate) means that the item will be visible to all
other modules within the crate, but will not be visible from any other crate.
This is useful when writing utility functions that are used throughout a crate,
which you do not want to expose publicly. This exactly describes the
enter_area function in our forest module. Let’s add that annotation now.

Listing 5.29. forest module with pub(crate) on the enter_area function

mod forest {

  pub(crate) fn enter_area(area: &str) {

    match area {

      "tree cover" => println!("It's getting darker..."),

      "witches coven" => println!("It's getting spookier..."),

      "walking path" => println!("It's getting easier to walk..."),

      x => panic!("Unexpected area: {}", x),

    }

  }

}

...

The crate now compiles with no issue.

$ cargo build

   Compiling forest

    Finished dev [unoptimized + debuginfo] target(s) in 0.13s

But hold on a moment - why does this compile? The forest module is not
marked as pub(crate), why can we use it from other modules? To answer
this, we need to look at the upward visibility rules for modules.

5.3 Upward Visibility

Code within a module inherits the visibility rules from the module above



itself. This can be a little tricky to understand, so let’s look at a short
example:

Listing 5.30. Upward visibility works without pub

fn function() {}

mod nested {

  fn function() {

    crate::function();

  }

  mod very_nested {

    fn function() {

      crate::function();

      crate::nested::function();

    }

    mod very_very_nested {

      fn function() {

        crate::function();

        crate::nested::function();

        crate::nested::very_nested::function();

      }

    }

  }

}

Notice that in this code, there are no functions or modules marked pub.
Everything is private, but it works because function only attempt to call
functions which are “higher” in the module tree than themselves. We could
make the code fail to compile by changing the code to call “down” the
module tree:

Listing 5.31. Downward visibility does not work without pub

fn function() {

  nested::function();

}

mod nested {

  fn function() {

    very_nested::function();

  }



  mod very_nested {

    fn function() {

      very_very_nested::function();

    }

    mod very_very_nested {

      fn function() {}

    }

  }

}

There is now a compiler error on every line which attempts to call down:

$ cargo build

error[E0603]: function `function` is private

 --> src/lib.rs:2:11

  |

2 |   nested::function();

  |           ^^^^^^^^ private function

  |

error[E0603]: function `function` is private

  --> src/lib.rs:7:18

   |

7  |     very_nested::function();

   |                  ^^^^^^^^ private function

   |

error[E0603]: function `function` is private

  --> src/lib.rs:12:25

   |

12 |       very_very_nested::function();

   |                         ^^^^^^^^ private function

   |

Figure 5.3 shows the functions at each point in the module tree that are legal
to call.

Figure 5.3. Visualization of the parent visibility rule - modules can use private items from parent
modules



So because of Rust’s implicit visibility rules for members of a parent module,
the code in Listing 5.29 works. Here is the final code for our forest crate.

Listing 5.32. Final code for forest crate

mod forest {

  pub(crate) fn enter_area(area: &str) {

    match area {

      "tree cover" => println!("It's getting darker..."),

      "witches coven" => println!("It's getting spookier..."),

      "walking path" => println!("It's getting easier to walk..."),

      x => panic!("Unexpected area: {}", x),

    }



  }

}

pub mod tree_cover {

  pub fn enter() {

    crate::forest::enter_area("tree cover");

  }

}

pub mod walking_path {

  pub fn enter() {

    crate::forest::enter_area("walking path");

  }

}

pub mod witches_coven {

  pub fn enter() {

    crate::forest::enter_area("witches coven");

  }

}

Now we have a much more thorough understanding of the Rust module
system. This will come in very handy as we create larger programs and
libraries. Being able to easily subdivide code and hide code that should not be
a part of a public interface is crucial for creating software that is easy to
understand and maintain. In the next chapter, we will look at how we can
speed up Python code using Rust and the PyO3 crate.

5.4 Summary

Using the mod keyword allows us to separate code into logical modules
with specific purposes.
Writing mod your_mod_name { contents; } allows you to keep
modules within one file
Writing mod your_mod_name; allows you to write the contents of the
module in your_mod_name.rs
You must use the pub keyword to make items public if you intend to use
them in between modules
Modules can be nested as deeply as you want.
Relative and absolute paths are used to access items within modules.
Relative paths are evaluated relative to the current module.



Absolute paths begin with the name of a crate.
The crate keyword refers to the root of the current crate.
pub use allows you to alias items.
Modules inherit visibility from their parents.
pub(crate) is used to mark items as public within a crate but private to
other crates.



6 Integrating with dynamic
languages
This chapter covers:

Writing Rust code that can be easily called from Python
Calling Python code from Rust
Benchmarking Rust code with Criterion

So far, we have devoted a lot of time to Rust fundamentals and C FFI. This
chapter will more directly cover how we can integrate Rust code into
dynamic programming languages and reap huge performance benefits from
it.

Let’s imagine that we are working on a Python program that aggregates some
newline-separated JSON data. Here is our input data file, let’s call it
data.jsonl:

{ "name": "Stokes Baker", "value": 954832 }

{ "name": "Joseph Solomon", "value": 279836 }

{ "name": "Gonzalez Koch", "value": 140431 }

{ "name": "Parrish Waters", "value": 490411 }

{ "name": "Sharlene Nunez", "value": 889667 }

{ "name": "Meadows David", "value": 892040 }

{ "name": "Whitley Mendoza", "value": 965462 }

{ "name": "Santiago Hood", "value": 280041 }

{ "name": "Carver Caldwell", "value": 632926 }

{ "name": "Tara Patterson", "value": 678175 }

Our program calculates the total sum of each of the "value" entries, as well
as the sum of the length of all of the "name" strings. This is relatively
straightforward to do in normal Python code. Let’s save this in a file called
main.py.

Listing 6.1. Python program to aggregate JSON lines

import sys



import json

s = 0

for line in sys.stdin:

  value = json.loads(line)

  s += value['value']

  s += len(value['name'])

print(s)

Let’s run it to see what we get:

$ python main.py < data.jsonl

6203958

The code works, but we have heard some complaints that this aggregation
code does not meet the needs of our users sufficiently. People have very high
expectations for the performance of this feature. You decide to try moving
the JSON parsing piece of functionality into Rust while keeping the IO in
Python, since this is a part of a larger Python application. Let’s look at the
plan for how we will accomplish this move:

6.1 Planning the move

As we rewrite this JSON aggregation functionality, we’re going to do a few
things:

Implement a pure-Rust version of the aggregation functionality
Use PyO3 to wrap the Rust code in a format that can be called from
Python
Create a benchmarking harness to compare the original pure Python vs
pure Rust vs Rust in Python

Let’s start by writing the functionality in Rust. First we should identify which
piece of the code we actually want to rewrite. We have said that we want to
keep the IO piece of the code in Python, since we are assuming that this
JSON aggregation code is a part of a larger Python program, such as a HTTP
server. The Python code will also be responsible for summing the total of
each call to our Rust code. The Python code will look something like this:



Listing 6.2. Python code will look like this

import sys

import rust_json

s = 0

for line in sys.stdin:

  s += rust_json.sum(line)

print(s)

Our Rust function will need to do the things that we removed from the
Python code:

1. Take in a string as input
2. Parse this string as a JSON object containing a "name" string property,

and a "value" numeric property
3. Return the sum of the "value" property and the length of the "name"

property

If we were to sketch this in Rust psuedocode, it would look like this:

Listing 6.3. Rust psuedocode for json summing

pub fn sum(line: &str) -> i32 {

  let data = parse_as_json(line); #1

  data.value + data.name.len()

}

❶

We don’t know how to write this JSON parsing code in Rust yet, but we will
explore it in the next section.

We’re almost there with our Rust code, but we do need to take a small detour
to look into how to parse JSON in Rust.



6.2 JSON Parsing

Many data formats in Rust can be easily parsed into Rust data structures by
using Serde. Serde is (according to its website at https://serde.rs) “a
framework for serializing and deserializing Rust data structures efficiently
and generically.” The name “Serde” comes from the first parts of the words
serialize and deserialize. Serde acts as a generic framework that doesn’t care
about any one data format in particular, and other crates like serde_json act
as a bridge between the generic Serde data model and the JSON data format.
There are a huge number of crates in the Serde ecosystem for all manner of
different formats. The official website lists over 20 different data formats that
Rust data types can serialize into and/or deserialize from using Serde. Figure
6.1 shows how the various pieces of the ecosystem fit together.

Figure 6.1. Serde ecosystem



At the core of serde are two traits. The Serialize trait is used for taking a
Rust datatype and rendering it into some data format. Conversely, the
Deserialize trait is used for parsing a data format into a Rust data type. We
can write the code to implement these traits manually, but we can also
leverage the Rust compiler to do the work for us. Let’s take a look at how we
can do that.

Recall that we need to parse JSON objects that look like this:

{ "name": "Rachelle Ferguson", "value": 948129 }

There is a name field which contains a string, and a value field which
contains a number. If we wanted to create a Rust struct which stored these
data, it might look like this:



struct Data {

  name: String,

  value: i32,

}

Let’s build up the parsing code for this struct. Create a new Rust project
called rust_json:

$ cargo new rust_json

Before we get to the code, we need to add a few dependencies to the
Cargo.toml file. We’ll also need to use some new TOML syntax that we
have not seen before. Add these lines to the [dependencies] section of the
Cargo.toml file.

[dependencies]

serde_json = "1.0" #1

serde = { version = "1.0", features = ["derive"] }

❶

Even though serde_json depends on serde, we can list it first. Cargo does
not care about the ordering of dependencies at all.

The serde_json line looks familiar enough, but the dependency line for
serde is a bit odd. Similar to JSON, TOML can contain objects with arbitrary
keys and values. Cargo accepts dependencies as either a name mapped to a
version string, or a name mapped to a configuration object that has more
options on it. For a full reference of the keys you can specify, visit the Cargo
Book’s section on dependencies https://doc.rust-
lang.org/cargo/reference/specifying-dependencies.html.

For our purposes, we include a version number for serde, and an array of
features. Features are the mechanism Rust uses for conditional compilation.
Crates can specify any number of features which may enable different code
paths, include additional dependencies, or enable features in their own
dependencies. The specific feature we need to enable is the derive feature,
which contains the code that allows the Rust compiler to generate the parsing



code for us. This will not only save us a lot of typing, but will also generate
parsing code which is specific to whatever data type we provide it.

Now that we have our dependencies settled, let’s jump over to the code. Open
up the main.rs file, and add the following to it:

Listing 6.4. First pass at JSON parsing code

struct Data {

  name: String,

  value: i32,

}

fn main() {

  let input = "{ \"name\": \"Sharpe Oliver\", \"value\": 134087 }";

  let parsed = serde_json::from_str(input).unwrap();

  println!("{:?}", parsed);

}

This program should try to parse the JSON string that we provide and print
out the resulting Rust datatype. Let’s try running it:

$ cargo run

error[E0282]: type annotations needed

 --> src/main.rs:9:7

  |

9 |   let parsed = serde_json::from_str(input).unwrap();

  |       ^^^^^^ consider giving `parsed` a type

We’re running into an error now because the compiler is not smart enough to
infer that we expect serde_json::from_str to return a Data instance. This
function has a generic return type, similar to the parse function that we
learned about previously. Similar to parse, we need to give the compiler a
hint as to what type it should return. We can do this by adding an explicit
type annotation to the parsed variable.

let parsed: Data = serde_json::from_str(input).unwrap();

Let’s try running this again:

$ cargo run



error[E0277]: the trait bound `Data: serde::de::Deserialize<'_>` is not

              satisfied

    --> src/main.rs:9:22

     |

9    |   let parsed: Data = serde_json::from_str(input).unwrap();

     |                      ^^^^^^^^^^^^^^^^^^^^ the trait

     |                       `serde::de::Deserialize<'_>` is not implemented

     |                       for `Data`

     |

    ::: serde_json-1.0.68/src/de.rs:2587:8

     |

2587 |     T: de::Deserialize<'a>,

     |        ------------------- required by this bound in

     |                            `serde_json::from_str`

error[E0277]: `Data` doesn't implement `Debug`

  --> src/main.rs:11:20

   |

11 |   println!("{:?}", parsed);

   |                    ^^^^^^ `Data` cannot be formatted using `{:?}`

   |

There are now two different error messages. One which we may recognize is
due to Data not implementing the Debug trait. If you want to print out Rust
values using the {:?} formatter, they must implement Debug. The other is
from serde_json. It says that Data does not implement the Deserialize
trait. Similar to Debug, if we want to be able to deserialize into our struct, we
need to implement the Deserialize trait. Thanks to the derive feature that
we included in our serde dependency, we can solve both of these errors with
a single line.

Listing 6.5. Working JSON parsing code

#[derive(Debug, serde::Deserialize)] #1

struct Data {

  name: String,

  value: i32,

}

fn main() {

  let input = "{ \"name\": \"Sharpe Oliver\", \"value\": 134087 }";

  let parsed: Data = serde_json::from_str(input).unwrap();

  println!("{:?}", parsed);



}

❶

Note the new derive line here

Let’s try running the code now:

$ cargo run

Data { name: "Sharpe Oliver", value: 134087 }

It works! For most simple data types, adding #
[derive(serde::Deserialize)] is all that’s required to parse them from any
data format that serde supports. Notice that the struct definition doesn’t have
any json-specific code on it. If we added the correct dependencies, we could
just as easily parse our Data struct from YAML, TOML, MessagePack, or
even environment variables. It is common for library authors to have simple
data types like this implement Deserialize and/or Serialize, then the
library consumers can serialize and/or deserialize those types into whatever
formats they want.

Serde has many more complex configuration options for renaming fields,
providing defaults, or even nesting behavior. They are all well documented at
https://serde.rs, but we will not be discussing them here.

Serde also provides type checking for us. Let’s try changing the name field to
an i32:

Listing 6.6. JSON parsing code with a runtime type error

#[derive(Debug, serde::Deserialize)]

struct Data {

  name: i32, #1

  value: i32,

}

fn main() {

  let input = "{ \"name\": \"Sharpe Oliver\", \"value\": 134087 }"; #2



  let parsed: Data = serde_json::from_str(input).unwrap();

  println!("{:?}", parsed);

}

❶

Notice that the expected type of name is now i32

❷

Notice that we provide a string value for name

Now let’s run the code to see what happens:

$ cargo run

thread 'main' panicked at called `Result::unwrap()` on an `Err` value:

Error("invalid type: string \"Sharpe Oliver\", expected i32", line: 1, column: 19)

Since we use unwrap on the Result returned from serde_json::from_str,
the program panics when the function returns an error. But we can see that
this error includes line and column information, as well as the exact type
error that occurred. This represents work that we’re not doing in generating
error messages and validation ourselves, they comes essentially for free when
we use serde.

Now that we understand how to parse simple JSON structures in Rust, let’s
recreate the rest of the Python functionality. Recall that we need to sum the
value property and the length of the name property. Let’s create a function
that parses the JSON, then returns the math expression.

Listing 6.7. Rust program which mimics the functionality from Python

#[derive(Debug, serde::Deserialize)]

struct Data {

  name: String,

  value: i32,



}

fn main() {

  let result =

    sum("{ \"name\": \"Rachelle Ferguson\", \"value\": 948129 }");

  println!("{}", result);

}

fn sum(input: &str) -> i32 {

  let parsed: Data = serde_json::from_str(input).unwrap();

  parsed.name.len() as i32 + parsed.value #1

}

❶

String::len() returns a usize, which must be cast to an i32 manually.

We can run this now and check its return value:

$ cargo run

948146

Let’s run this JSON string through the Python version to validate the results:

$ echo '{ "name": "Rachelle Ferguson", "value": 948129 }' | python main.py

948146

The results match! Now that we have Rust code which performs the same
functionality as a small piece of the Python code, we need to write some glue
code which allows our Rust function to be called from Python.

6.3 Writing a Python Extension module in Rust

We will be creating a Python extension module. Similar to Rust, Python uses
modules as the organizational unit for functions, classes, and other top-level
items. An extension module is a module which is compiled against the
Python C/C++ libraries as opposed to being written in Python. This allows
them to be significantly faster than normal Python modules, but have public



APIs which work the same as normal Python modules. We can use Rust to
define Python classes, functions, global variables, and other items. For our
purposes here though, we will only be looking at functions. Let’s begin.

The first thing we need to do is to update our Cargo.toml file to include a
new dependency. We will be using the PyO3 crate for this. PyO3 provides high
level Rust bindings to the Python interpreter. These bindings can be used
both to create extension modules or to run arbitrary Python code from within
Rust. We will be exploring both in this chapter, but first we will look at
writing an extension module. Open Cargo.toml and update it to look like
this:

[package]

name = "rust_json"

version = "0.1.0"

edition = "2018"

[lib] #1

crate-type = ["cdylib"]

[dependencies]

serde_json = "1.0"

serde = { version = "1.0", features = ["derive"] }

pyo3 = { version = "0.14", features = ["extension-module"] } #2

❶

Notice the new [lib] section. Recall that we added this when creating Rust
libraries to be called from C.

❷

Notice the new pyo3 dependency and the extension-module feature that
we’ve enabled.

Since PyO3 has a lot of different functionality, it does not include the
extension module API by default. We must enable it by including it in the list



of features that we’re using.

Next, we need to turn our “executable” crate into a “library” crate. An
executable crate is one which contains a main.rs and can be compiled into a
self contained executable. A library crate by comparison, contains a lib.rs
and cannot be executed by itself, but must be included in some other
executable. Recall that we made this distinction previously by passing --lib
to the cargo new command. The only thing that cargo new does differently
in this case is to create a lib.rs instead of a main.rs. Therefore, the
migration for us is quite simple. We must rename the main.rs file to lib.rs
and delete the main function.

Listing 6.8. rust_json as a library (lib.rs)

#[derive(Debug, serde::Deserialize)]

struct Data {

  name: String,

  value: i32,

}

fn sum(input: &str) -> i32 {

  let parsed: Data = serde_json::from_str(input).unwrap();

  parsed.name.len() as i32 + parsed.value

}

Now that that’s sorted, let’s write our Python glue code! Our first goal should
be to create a module which can successfully be imported by Python. Once
we do this, we can add the sum function to that module. Let’s create our
skeleton module by updating our lib.rs now:

Listing 6.9. Empty extension module

use pyo3::prelude::*;

#[derive(Debug, serde::Deserialize)]

struct Data {

  name: String,

  value: i32,

}

fn sum(input: &str) -> i32 {



  let parsed: Data = serde_json::from_str(input).unwrap();

  parsed.name.len() as i32 + parsed.value

}

#[pymodule]

fn rust_json(_py: Python, m: &PyModule) -> PyResult<()> {

  Ok(())

}

There are a few new interesting things here.

Let’s start with the use statement on the first line. Notice that it ends with .
This is called a *wildcard, and indicates that we will be importing all names
from the prelude module. A prelude is a special module which (by
convention) includes many types which will be required for users of a
particular crate. It is common for crates to create prelude modules which re-
export commonly used types so that users do not need to name them all
individually. It is important when designing one of these preludes to ensure
that your re-exports will not conflict with other global names. For instance,
notice that the items we import from PyO3 all begin with the py prefix.

Next, let’s look at the declaration of the rust_json function. First, it has a
[pymodule] attribute on it. Similar to [no_mangle], this attribute performs a
special function at compile time. Unlike #[no_mangle], this attribute does not
turn off Rust’s name mangling, but instead runs code at compile time to
generate a Python extension module named rust_json. It is important that
our function is named rust_json (the same as the name of our crate) or we
will run into problems with name resolution when we try to import our
module in Python.

rust_json also includes two unused parameters, a Python and a &PyModule.
Both of these are required even though they are both unused. If we try to
remove either of them, the #[pymodule] attribute will reject our function.
Python is a marker type which indicates that the Python global interpreter
lock (GIL) is held, and PyModule represents our newly created Python
module. We will be adding our sum function to the PyModule later.

The function returns a PyResult, which is a wrapper type around a Rust
Result where the error variant is a Python-compatible PyError.



Now that we understand the structure of our empty module, let’s try to import
it from Python!

$ python

>>> import rust_json

Traceback (most recent call last):

  File "<stdin>", line 1, in <module>

ModuleNotFoundError: No module named 'rust_json'

It’s never that easy, is it? Before we can import rust_json in Python, we
need to compile our extension module in a fashion that Python understands.
There is a tool created by the PyO3 developers to make this process easier
called maturin. It can setup development environments for Rust-based
Python extensions, or build distribution-ready packages. We can install it
with pip, the Python package manager.

$ pip install maturin

Maturin has a develop subcommand which will compile our Rust code and
install the resulting Python module for immediate use. It has one caveat: we
must run it from within a Python virtual environment. We will not linger on
virtual environments, but know that they are used for dependency isolation in
Python projects. This is to prevent users from accidentally overwriting a
globally installed (possibly stable) version of their package while it’s still
being developed. We will now create and activate a virtual environment for
our development purposes:

$ virtualenv rust-json

$ source rust-json/bin/activate

(rust-json) $

The exact name that we give this virtual environment is not important, but
notice that the (rust-json) name I chose now appears before the shell
prompt. In future listings, this prefix indicates that the command must be run
from within this virtual environment. If you open a new shell or leave this
environment, you can re-enter it by running source rust-
json/bin/activate again. To leave, you can run deactivate.

Now that we have a virtual environment set up, we should be able to build,
install and import our module! Let’s give it a try:



(rust-json) $ maturin develop

  Found pyo3 bindings

  Found CPython 3.8 at python

   ... lots of cargo output

  Finished dev [unoptimized + debuginfo] target(s) in 7.49s

(rust-json) $ python

>>> import rust_json

>>> print(rust_json)

<module 'rust_json' from 'rust_json/__init__.py'>

We did it! We can import a Python module written in Rust and it doesn’t spit
out an error! Now that we have an empty module, let’s add our sum function
to it. We can accomplish this with some minor edits to our lib.rs:

Listing 6.10. rust_json extension module which works

use pyo3::prelude::*;

#[derive(Debug, serde::Deserialize)]

struct Data {

  name: String,

  value: i32,

}

#[pyfunction] #1

fn sum(input: &str) -> i32 {

  let parsed: Data = serde_json::from_str(input).unwrap();

  parsed.name.len() as i32 + parsed.value

}

#[pymodule]

fn rust_json(_py: Python, m: &PyModule) -> PyResult<()> {

  m.add_function(wrap_pyfunction!(sum, m)?)?; #2

  Ok(())

}

❶

This pyfunction attribute was added



❷

This add_function call was added

We added two new things: the pyfunction attribute macro on the sum
function, and the add_function method is now being called on our PyModule.
Just like [pymodule] is used to declare a Python module, [pyfunction] is
required to wrap a Rust function in a format which Python understands.

The add_function line has a few interesting things on it, this slightly odd
wrap_pyfunction macro is required to wrap our sum function in an additional
layer of Python-compatible goodness. Now that we have added the sum
function to our module, let’s try to call it from Python:

(rust-json) $ maturin develop

(rust-json) $ python

>>> import rust_json

>>> rust_json.sum('{ "name": "Rachelle Ferguson", "value": 948129 }')

948146

We’ve done it! We re-implemented a small piece of the code in Rust and
were able to call it from Python. Let’s try to integrate it into our original
Python program.

Listing 6.11. Python program using our rust_json module

import sys

import json

import rust_json

s = 0

for line in sys.stdin:

  s += rust_json.sum(line)

print(s)

And let’s try to run it, recalling that the original all-python code output
6203958.



(rust-json) $ python main.py < data.jsonl

6203958

We get the same result!

So we have successfully duplicated the original functionality from our
Python code in Rust. We believe that it’s faster but we currently don’t have a
great way to validate that. In order to really know the effects of what we’ve
done, we need to do some benchmarking.

6.4 Benchmarking in Rust

Benchmarking is a topic fraught with opportunities for misunderstanding and
confusion. If not constructed properly, benchmarks can provide misleading
results which give one experimental path an unfair advantage over another.
Benchmarks are often conducted under base-case scenarios to test the
theoretical performance limits of a system, with real-world results never
approaching those seen during testing.

To try to minimize this risk, we will be using a benchmarking harness called
criterion which was designed from the ground up to be easy to use and
provide users with reliable and correct results. Criterion is a Rust crate which
will allow us to benchmark our code. We can use Criterion to benchmark not
just the Rust code, but the Python code as well, by leveraging the PyO3
library to run Python from within our Rust code. This is a little bit more
complicated, Figure 6.2 shows how it all fits together.

Figure 6.2. Anatomy of our benchmark program



We’ll begin by creating a new crate that will hold the benchmarking code. It
needs to be a separate crate due to linking restrictions that come along with
our main crate being a PyO3 extension module. If it were a normal Rust
crate, we would be able to keep the benchmark code in the main crate. Let’s
create this crate as a sibling directory of the rust_json crate.

$ cargo new --lib rust_json

$ ls

main.py

json-sum-benchmark

rust_json

This new crate will have dependencies on criterion and pyo3. PyO3 will
need to have a different feature enabled rather than extension-module this
time. We need to add the auto-initialize feature, which makes it easier to
run Python code from within Rust.

Normally we add dependencies to the dependencies section, but we are
going to put them somewhere else in this case. dev-dependencies is the
section of a Cargo.toml file for dependencies that are only required when
running examples, tests, and benchmarks. When adding crates that are only
useful at test time such as Criterion, they should be included in this section so



that they are not compiled or linked with any final library or executable
produced by your crate.

We also need to tell Cargo about the new benchmark file that we’re going to
create. Our new file will be called py-vs-rust.rs. Cargo needs to know the
name of the benchmark file and we need to disable the default benchmarking
harness. Rust has a benchmark harness built in, but it is unstable and cannot
be used with a standard compiler. Criterion is more full-featured than this, so
we are not losing anything by skipping it.

Let’s add these crates to the dev-dependencies section and our new
benchmark now:

Listing 6.12. Cargo.toml file with criterion and pyo3 in dev-dependencies

[package]

name = "json-sum-benchmark"

version = "0.1.0"

edition = "2018"

[[bench]] #1

name = "py-vs-rust" #2

harness = false #3

[dependencies]

[dev-dependencies]

criterion = "0.3.5"

pyo3 = { version = "0.14", features = ["auto-initialize"] }

❶

Notice that the section here has two square brackets around it. This is
required, and is TOML syntax that indicates there may be multiple bench
items.

❷

Notice that we only include the basename of the file - without the .rs



extension.

❸

This line tells Cargo to ignore the built-in benchmarking harness. We will
replace this built-in harness with Criterion.

Now that we have our dependencies sorted, we can create the benchmark
harness file. We’re going to start out by benchmarking something far simpler
than Python code, the performance of addition operations using u8 values and
u128 values. Open benches/py-vs-rust.rs and add the following:

Listing 6.13. Basic benchmark example in benches/py-vs-rust.rs

use criterion::{black_box, criterion_group, criterion_main, Criterion};

criterion_main!(python_vs_rust);

criterion_group!(python_vs_rust, bench_fn);

fn bench_fn(c: &mut Criterion) {

  c.bench_function("u8", |b| {

    b.iter(|| {

      black_box(3u8 + 4);

    });

  });

  c.bench_function("u128", |b| {

    b.iter(|| {

      black_box(3u128 + 4);

    });

  });

}

This is about the simplest Criterion benchmark program that we can write.
There are a lot of pieces here, but they all build on things that we’ve seen
before. Let’s take a look at them all individually.

The first use line brings in some items from the criterion crate but use as a



statement is not new to us, so we won’t linger here. Next up is the
criterion_main macro. Since we disabled the builtin benchmarking harness,
we need to provide our own. We have to provide a main function to be called
when our program starts up. Criterion provides the criterion_main macro to
construct this main function, and it takes as input a number of criterion
groups to run. These groups are created via the criterion_group macro, and
each one contains a number of functions to run. These groups are collections
of benchmarking functions which will be run with the same configuration. In
this case it is the default configuration, as we don’t specify any overrides.

After the macro calls, we have our bench_fn.

fn bench_fn(c: &mut Criterion) {

  ...

}

The name of this function is not important, but it is important that it matches
the name provided to the criterion_group macro call. This function must
take as input a &mut Criterion, which is the benchmarking manager struct.
We call .bench_function, which takes a benchmark name (in this case u8)
and a closure.

c.bench_function("u8", |b| {

  b.iter(|| {

    black_box(3u8 + 4);

  });

});

This closure takes a &mut Bencher as an argument, and we can call .iter on
this bencher. This is where the actual running, looping, and measurement
take place. Everything inside the closure of .iter will be run many times
over and over again and measured for performance. Within this closure, we
compute the result of the math expression 3 + 4, and we pass it to the
black_box function, which is a function provided by criterion to ensure that
the compiler does not optimize away a computation that it detects as unused.
We have another call to .bench_function and .iter for the u128 example,
and it works in the same way.

c.bench_function("u128", |b| {

  b.iter(|| {



    black_box(3u128 + 4);

  });

});

  Note

It is important to pass the final results of benchmark tests to black_box to
ensure that the compiler does not optimize away your entire test!

Figure 6.3 shows a visual idea of what’s happening in the benchmark file.

Figure 6.3. Anatomy of a benchmark file

Now that we understand a bit about what’s happening in the benchmark file,
let’s run our benchmark test and see what results it spits out. We can run it
with cargo bench. You should get output that looks roughly like this:

$ cd json-sum-benchmark

$ cargo bench

   Compiling json-sum-benchmark v0.1.0



    Finished bench [optimized] target(s) in 2.09s

     Running unittests

running 1 test

test tests::it_works ... ignored

test result: ok. 0 passed; 0 failed; 1 ignored; 0 measured; 0 filtered out;

     Running unittests

Benchmarking u8: Warming up for 3.0000 s

Benchmarking u8: Collecting 100 samples in estimated 5.0000 s (20B iters)

u8                      time:   [257.13 ps 261.71 ps 266.79 ps]

Benchmarking u128: Warming up for 3.0000 s

Benchmarking u128: Collecting 100 samples in estimated 5.0000 s (10B iters)

u128                    time:   [502.27 ps 510.24 ps 521.03 ps]

After compilation finishes, we first get a run through all of the unit tests and
get an ignored line for each of them. The it_works unit test is written by
cargo when we run cargo new --lib by default. Benchmark tests are
considered a subset of tests, and the builtin unit testing harness would allow
users to write benchmark tests alongside unit tests, so that is why they show
up in this output.

Next we have the output from Criterion. We can see that it warms up by
running the benchmark as many times as possible in 3 seconds, in order to
warm CPU and memory caches and get a clean measurement. Next it
attempts to run the benchmark as many times as possible within 5 seconds,
and measures the execution time of all of these iterations. It estimates that it
will be able to perform 20 billion iterations for the u8 version and 10 billion
iterations for the u128 version.

Finally for each test we get a line showing the estimated runtime of a single
iteration of the benchmark within a confidence interval. This confidence
interval is configurable, but it defaults to 95%. The first and last numbers are
the lower and upper bounds of the interval, and the middle number is
criterion’s best guess for the time taken on each interval. This is a great way
to reduce the data from 20 billion iterations of a test down to three numbers.
Figure 6.4 shows the data output for each benchmark test.

Figure 6.4. Anatomy of Criterion’s command-line output



In addition to simplicity, this is a great example for a use of criterion because
it highlights how precise the library is. We were able to capture a factor of
two difference at the 0.1 nanosecond level. That is a difference of 250
trillionths of a second. Criterion is very precise and low-overhead. You can
throw almost anything at it and you will be able to time and measure it.

Now that we understand Criterion a bit more, let’s try to apply it to our use-
case. Remember that we’re trying to benchmark Python’s built-in json
module against the custom rust_json.sum method that we wrote in Rust and
exposed via a PyO3 extension module.

In order to benchmark our Python code from within Rust, we’ll need to write
some code which uses a different part of the PyO3 API. We already used it to
create Rust code that can be called from Python, but we can also use PyO3 to
run Python code from within Rust.

Let’s write a function now called bench_py that allows us to do this. The
function will need a few parameters - a Criterion Bencher so that it can run
the benchmark test, the input string to use for parsing, and the Python code
that will be run in the test. Here’s what that function will look like:

use criterion::Bencher;

use pyo3::prelude::*;



use pyo3::types::PyDict;

fn bench_py(b: &mut Bencher, code: &str, input: &str) {

  Python::with_gil(|py| {

    let locals = PyDict::new(py);

    locals.set_item("json", py.import("json").unwrap()).unwrap();

    locals

      .set_item("rust_json", py.import("rust_json").unwrap())

      .unwrap();

    locals.set_item("INPUT", input).unwrap();

    b.iter(|| black_box(py.run(code, None, Some(&locals)).unwrap()));

  });

}

There is a lot going on in this function, let’s break it down.

The function begins with a call to Python::with_gil. The Python interpreter
requires that most operations run from a single thread per process, by
utilizing a data structure called the Global Interpreter Lock (GIL). The core
data structures of Python require that users will be holding the GIL and are
not thread safe. This does not matter too much from normal Python code
(beyond the performance issues it raises), but it is very important when using
the Python C API. PyO3 enforces that the GIL is always held when required,
and we acquire it by using this with_gil function. It takes as its only
parameter a function which itself is passed a handle to the Python GIL. This
handle is required for interfacing with many PyO3 types.

After the GIL is acquired, we create a new PyDict to hold the local variables
that will be injected into our code sample. This is the PyO3 equivalent of
creating a Python dict. Notice that this action requires us to use the handle to
the GIL that we previously acquired.

The next few lines place items within our newly created locals dict. The first
two are importing libraries. First the json library which is used by the pure-
Python benchmark code, then the rust_json library for the PyO3 extension
module benchmark. The import method on the GIL handle is used to import
a Python library, and returns a module instance. The set_item function we
use on the PyDict is generic and can be passed any key and value types that
can be converted into Python objects. The last set_item line is used to pass



the input string from the Rust code to the Python code in the form of a
variable called INPUT.

The final section of the function is running the actual benchmark. Recall from
our previous example that b.iter takes in a function that is run many times
over and again by Criterion and measured for its performance. Notice that we
do not include the initialization code as a part of this iteration, both to save
benchmark runtime and to eliminate possible sources of noise. Within this
function, we again use black_box to ensure that the compiler does not
optimize away any computations. The py.run function we call here takes in a
string containing Python code to run, and two Option<&PyDict> values to
hold global variables and local variables. We store our inputs as local
variables. There are a lot of pieces here and Figure 6.5 shows how they all
work together.

Figure 6.5. bench_fn diagram



Now that we understand how that function works, let’s use it to compare the
performance of the two versions of the code.

Listing 6.14. Benchmarking pure Python vs a Rust extension module

use criterion::{

  black_box, criterion_group, criterion_main, Bencher, Criterion,

};

use pyo3::prelude::*;

use pyo3::types::PyDict;

criterion_main!(python_vs_rust);



criterion_group!(python_vs_rust, bench_fn);

fn bench_py(b: &mut Bencher, code: &str, input: &str) {

  Python::with_gil(|py| {

    let locals = PyDict::new(py);

    locals.set_item("json", py.import("json").unwrap()).unwrap();

    locals

      .set_item("rust_json", py.import("rust_json").unwrap())

      .unwrap();

    locals.set_item("INPUT", input).unwrap();

    b.iter(|| black_box(py.run(code, None, Some(&locals)).unwrap()));

  });

}

fn bench_fn(c: &mut Criterion) {

  let input = r#"{"name": "lily", "value": 42}"#;

  c.bench_function("pure python", |b| {

    bench_py(

      b,

      "

value = json.loads(INPUT)

s = value['value'] + len(value['name'])

      ",

      input,

    );

  });

  c.bench_function("rust extension library", |b| {

    bench_py(b, "s = rust_json.sum(INPUT)", input);

  });

}

Now let’s try running our benchmark, ensuring that we’re within the virtual
environment that we created earlier.

(rust-json) $ cd json-sum-benchmark

(rust-json) $ cargo bench

Benchmarking pure python: Collecting 100 samples in estimated

                          5.1074 s (202k iterations)

pure python             time:   [25.415 us 25.623 us 25.842 us]

Benchmarking rust extension library: Collecting 100 samples in estimated

                                     5.0931 s (232k iterations)

rust extension library  time:   [21.746 us 21.987 us 22.314 us]



Wait a minute. The Rust version is barely faster than the pure Python version.
We put an awful lot of work into this to get a 10% speed boost beyond base
Python. We are forgetting one important thing that Rust has which Python
does not. An optimizing compiler. Let’s take a small detour to look at that.

6.5 Optimized Builds

You may recall this line from the end of all of our cargo build commands:

Finished dev [unoptimized + debuginfo] target(s) in 2s

This indicates that Cargo is not compiling our code with any optimizations
enabled. Running compile-time optimizations increases compile time, so they
are not enabled by default. If you’re running your code on a development
machine for testing purposes you can generally get away with this, as we
have been able to up to this point. When you want to distribute your code or
run it in production somewhere, you should be using optimized builds. It’s
quite straightforward to get Cargo to produce optimized builds, we simply
need to add the --release flag to any cargo build or cargo run commands
that we’re using.

In this particular case, we’re building a PyO3 extension module, and using
the maturin develop command to do it. This command is a small wrapper
around cargo build and it accepts many of the same parameters and flags
that Cargo does. It accepts the --release flag, so let’s re-compile our
extension module with this flag to produce an optimized binary.

$ (rust-json) cd rust_json

$ (rust-json) maturin develop --release

   Found pyo3 bindings

   Found CPython 3.8 at python

   Compiling pyo3-build-config v0.14.5

   Compiling pyo3-macros-backend v0.14.5

   Compiling pyo3 v0.14.5

   Compiling pyo3-macros v0.14.5

   Compiling rust-json v0.1.0

    Finished release [optimized] target(s) in 7.91s

Notice that last line now indicates that Cargo has produced an [optimized]
build in release mode.



Now that we have compiled our extension module in release mode, let’s re-
run our benchmarks to see how that affects the performance.

$ (rust-json) cd json-sum-benchmark

$ (rust-json) cargo bench

   Compiling pyo3-build-config v0.14.5

   Compiling pyo3-macros-backend v0.14.5

   Compiling pyo3 v0.14.5

   Compiling pyo3-macros v0.14.5

   Compiling json-sum-benchmark v0.1.0

    Finished bench [optimized] target(s) in 9.21s #1

     Running unittests

Benchmarking pure python: Collecting 100 samples in estimated

                          5.1069 s (202k iterations)

pure python             time:   [25.019 us 25.188 us 25.377 us]

Benchmarking rust extension library: Collecting 100 samples in estimated

                                     5.0306 s (454k iterations)

rust extension library  time:   [10.843 us 10.918 us 10.996 us]

❶

Notice that Cargo compiles benchmark tests in release mode by default

Now we can see some interesting results. Just by switching to a release build,
we’ve doubled the performance of our Rust code. The Rust version is now
over twice as fast as the pure Python code. This is an isolated example, and
there are many cases where replacing Python with Rust can lead to even more
significant performance gains. You will need to measure your own code to
determine how much benefit you gain from adopting Rust.

We have walked through the process of incrementally adding Rust to an
existing Python application. These steps were:

Identify isolated code that can be extracted
Write Rust code that performs the expected behavior
Wrap the Rust code in language-specific bindings
Compile the extension module with --release
Import your new module in the non-Rust language



Benchmark the old and new code paths to validate that performance has
improved

We looked at a specific example of integrating with Python, but similar steps
can be taken with many other dynamic languages. Just as PyO3 is used for
Python integration with Rust, there are similar crates available for other
languages. Rutie integrates with Ruby, Neon is for Node.js, j4rs and JNI
work with Java, and flutter_rust_bridge can be used to integrate with Flutter
applications.

6.6 Summary

serde is the de-facto standard ecosystem for serializing and
deserializing in Rust.
#[derive(serde::Deserialize)] allows structs to easily be parsed
from many different data formats.
The derive feature of serde must be enabled to use the derive macros.
serde_json::from_str is used to parse a Rust data structure from a
JSON string.
PyO3 is a Rust crate that can be used to interface with the Python
interpreter.
Enabling the extension-module feature of PyO3 allows you to easily
expose Rust functions to Python.
maturin is a command-line tool that makes developing Python modules
in Rust easier.
maturin develop compiles and installs a Rust-based Python module in
a virtual environment.
The auto-initialize feature of PyO3 should be enabled when running
Python code from within Rust.
dev-dependencies in Cargo.toml holds dependencies used for unit,
integration, and benchmark tests.
Criterion is a Rust crate for benchmarking code.
The bench sections of Cargo.toml hold information about benchmark
test files.
Each bench section requires a name field and harness = false.
Within a benchmarking group function, use .bench_function and
.iter to run the code you want to measure.



Use criterion::black_box to ensure the compiler does not optimize
out code.
Python::with_gil acquires the GIL with PyO3.
PyDict are the PyO3 equivalent of Python dict objects.
.run can be used to run Python code strings from Rust.
Passing --release to many Cargo commands will cause the compiler to
apply optimizations, which may lead to multiple times performance
improvements.



7 Testing your Rust integrations
This chapter covers:

Writing automated tests in Rust
Testing Rust code from a dynamic language
Re-using existing tests using monkeypatching
Testing new code against old code with randomized inputs

When shipping large refactors, it is important to validate that the code will
behave as expected. Some form of automated testing is generally considered
best practice across the industry. In this chapter we will create automated
tests for the JSON summing code that we wrote in the last chapter. Let’s get
started by adding some unit tests to our Rust code.

7.1 Writing tests with Rust

Rust has a minimal testing system built into the language itself. You may
recall a brief mention of it from Chapter 3. As we discussed in Chapter 2,
beginning a new Rust application will automatically create a hello world
program for you. When we create a blank library, we similarly are presented
with automated test scaffolding. Let’s create a blank library crate called
testing to play around with some tests before we apply what we learn to the
JSON library.

$ cargo new --lib testing

Now open testing/src/lib.rs and look at the pre-built test code that we
get from cargo.

Listing 7.1. Contents of a newly initialized Rust library

#[cfg(test)]

mod tests {

  #[test]

  fn it_works() {



    let result = 2 + 2;

    assert_eq!(result, 4);

  }

}

In this section, we will break down all of the parts of this file to understand
how they are all useful and come together to create a test suite. Let’s start
with the first two lines of the file, which contain some syntax we have not
seen before.

#[cfg(test)]

mod tests {

The second line is similar to inline modules that we have seen before, but the
first line is something new. Here we create a new module called tests which
will hold all of the test functions for our library. The first line is an attribute
macro called cfg, which allows us to tell the compiler to compile or skip
certain parts of the code when operating under certain circumstances. For
example we might create OS-specific versions of a function and use cfg to
control which version should be compiled depending on the target operating
system. Developers can create custom conditional compilation flags which
allow users to specify whole features to include or exclude from compilation.

These flags can be attached to any item - function, struct, trait, block, or in
this case, module. Because cfg(test) is at the module level, everything
within the tests module will only be compiled when the compiler is
compiling tests. This means that builds of an executable or library will not
include our tests. This keeps binary size down and limits the number of lines
of code that need to be validated by the compiler.

  Note

It is not strictly required to put tests within a module with #[cfg(test)] on
it, but it is considered best practice.

Placing all tests within a module allows us to easily exclude testing code
from production builds without needing to attach #[cfg(test)] to all test
functions. This reduces the risk that a test value or function will be used



accidentally and keeps binary sizes down.

Next let’s take a look at the function within the module - it_works.

#[test]

fn it_works() {

Like many other languages, the individual unit of testing in Rust (the
minimum thing that can fail or pass) is a function. Unlike some other
languages, test function names are not significant in Rust. They are only
useful for communicating to the developer. Instead, the #[test] attribute
macro signals to the compiler which functions contain tests. In this case the
it_works test validates that 2 + 2 equals 4. Let’s look inside the function to
see how we do this.

let result = 2 + 2;

assert_eq!(result, 4);

The assert_eq macro will compare the two values passed into it for equality.
If they are not equal, it will panic the thread running the test. This panic will
be caught by the test framework and the test will be marked as “failed” with a
message containing the Debug representation of both values to aid in
debugging the test. assert_eq is not a test-specific macro at all, it can be
used in any and all Rust code, but due to the nature of most automated tests it
appears in them quite regularly.

We could write tests which don’t use assert_eq!. The assert! macro
similarly validates that whatever boolean passed into it is true and will panic
if it is not. We might also write tests that only validate functions do not return
errors, and these might accomplish that by using .unwrap() or .expect()
and contain no assert!/assert_eq! macros at all. Figure 7.1 shows the most
important parts of our test module.

Figure 7.1. Diagram of a test module



Now that we understand how the parts of our test fit together, let’s see what it
looks like to run a test.

$ cargo test

   Compiling testing v0.1.0

    Finished test [unoptimized + debuginfo] target(s) in 0.31s

     Running unittests

running 1 test

test tests::it_works ... ok

test result: ok. 1 passed; 0 failed;

   Doc-tests testing

running 0 tests

The most important part of this output is the line that has the name of the test
we wrote alongside ok. This indicates that the test ran successfully. Let’s also
take a look at what we see when a failing test is added to the mix. Add the
it_does_not_work test to our lib.rs file:

Listing 7.2. A test which will fail

#[cfg(test)]

mod tests {

  #[test]

  fn it_works() {

    let result = 2 + 2;



    assert_eq!(result, 4);

  }

  #[test]

  fn it_does_not_work() {

    let result = 2 + 2;

    assert_eq!(result, 5); #1

  }

}

❶

Notice that we assert 2+2=5, something which will always fail

Let’s run this:

$ cargo test

   Compiling testing v0.1.0

    Finished test [unoptimized + debuginfo] target(s) in 0.33s

     Running unittests

running 2 tests

test tests::it_works ... ok

test tests::it_does_not_work ... FAILED

failures:

---- tests::it_does_not_work stdout ----

thread 'tests::it_does_not_work' panicked at 'assertion failed:

  left: `4`,

 right: `5`', testing/src/lib.rs:12:5

note: run with `RUST_BACKTRACE=1` environment variable to display backtrace

failures:

    tests::it_does_not_work

test result: FAILED. 1 passed; 1 failed;

error: test failed, to rerun pass '--lib'

There is lots of information in this output. We still get the passing it_works
test, but the it_does_not_work test is highlighted as failing. After the list of



tests we can see the captured stdout from the failing test. This shows us the
two values passed to assert_eq, which we can use to determine where we
went wrong. We also get the file name and line number of the failing
assert_eq macro. Recall from Chapter 2 that the note about RUST_BACKTRACE
is generic and printed any time a thread panics.

By default, stdout and stderr are captured by the Rust test framework and not
emitted to the console. They are stored in memory and only emitted when a
test fails. This means you can print out as many log messages as you’d like
during test execution and your output will stay clean. Let’s take a look at how
this works by adding some output to our tests:

Listing 7.3. Writing to stdout and stderr from tests

#[cfg(test)]

mod tests {

  #[test]

  fn it_works() {

    eprintln!("it_works stderr");

    println!("it_works stdout");

    let result = 2 + 2;

    assert_eq!(result, 4);

  }

  #[test]

  fn it_does_not_work() {

    eprintln!("it_does_not_work stderr");

    println!("it_does_not_work stdout");

    let result = 2 + 2;

    assert_eq!(result, 5);

  }

}

And let’s see what the console output of this looks like:

$ cargo test

   Compiling testing v0.1.0

    Finished test [unoptimized + debuginfo] target(s) in 0.31s

     Running unittests

running 2 tests

test tests::it_works ... ok

test tests::it_does_not_work ... FAILED



failures:

---- tests::it_does_not_work stdout ----

it_does_not_work stderr

it_does_not_work stdout

thread 'tests::it_does_not_work' panicked at 'assertion failed:

  left: `4`,

 right: `5`', testing/src/lib.rs:16:5

note: run with `RUST_BACKTRACE=1` environment variable to display backtrace

failures:

    tests::it_does_not_work

Notice that we get stdout and stderr streams unified under the stdout banner
from the test output, but we don’t get either message from the it_works test.
Sometimes it can be beneficial to get full output streams from all tests by
disabling capturing. We can do this by passing the --nocapture flag to the
test binary. It is important to note that we are passing this flag to the test
binary, and not to cargo. We can do this by using an extra -- to separate the
arguments for cargo with arguments for the test binary. Let’s do that now:

$ cargo test -- --nocapture

    Finished test [unoptimized + debuginfo] target(s) in 0.03s

     Running unittests

running 2 tests

it_does_not_work stderr

it_does_not_work stdout

thread 'tests::it_does_not_work' panicked at 'assertion failed:

  left: `4`,

 right: `5`', testing/src/lib.rs:16it_works stderr #1

:5it_works stdout #2

note: run with `RUST_BACKTRACE=1` environment variable to display backtrace

test tests::it_works ... ok

test tests::it_does_not_work ... FAILED

failures:

failures:

    tests::it_does_not_work

test result: FAILED. 1 passed; 1 failed;



error: test failed, to rerun pass '--lib'

❶

Notice it_works stderr at the end of this line

❷

Notice it_works stdout at the end of this line

It may be a bit difficult to see, but notice that we’re now getting the output of
the it_works test along with the it_does_not_work test. The output streams
are muddied together though, and this is because Rust runs tests in parallel by
default. We can clean this up a bit by running the tests only from a single
thread. This is controlled via the --test-threads argument:

$ cargo test -- --nocapture --test-threads=1

    Finished test [unoptimized + debuginfo] target(s) in 0.03s

     Running unittests

running 2 tests

test tests::it_does_not_work ... it_does_not_work stderr

it_does_not_work stdout

thread 'main' panicked at 'assertion failed: `(left == right)`

  left: `4`,

 right: `5`', chapter-07/listing_03_stdout/src/lib.rs:16:5

note: run with `RUST_BACKTRACE=1` environment variable to display backtrace

FAILED

test tests::it_works ... it_works stderr

it_works stdout

ok

failures:

failures:

    tests::it_does_not_work

test result: FAILED. 1 passed; 1 failed;



Now we see the outputs independently, but serial test execution isn’t great for
runtime. Usually when running tests we won’t want to print out all of the
output, and we won’t want to run all of the tests serially like this. For now
let’s delete the output code and the failing test. Your code should now look
like the library crate starter code.

#[cfg(test)]

mod tests {

  #[test]

  fn it_works() {

    let result = 2 + 2;

    assert_eq!(result, 4);

  }

}

When writing Rust crates that will be used by others, it is also considered
best practice to document your functions. Unfortunately documentation and
examples can frequently become out-of-date. Rust has a system in place to
help with this, it supports running code examples in documentation via the
testing system. Let’s look at a short example to see how this works.

7.1.1 Documentation tests

Imagine you are writing a small function called add which takes in two
numbers and adds them together. You want to make the code as easy to use
as possible for the developer consuming your library, so you write some
comments. Let’s add this function to our lib.rs file outside of the tests
module.

Listing 7.4. Add function

// Add together two i32 numbers and return the result of that addition

pub fn add(x: i32, y: i32) -> i32 {

  x + y

}

Now this comment looks reasonable enough when looking at the source code,
but Rust has a powerful documentation system built in that we can have
access to by changing our comment slightly. Instead of using the standard
comment with two slash symbols, using three slashes will create a



documentation comment or doc comment for short. These are comments
associated with items that will be picked up by Rust’s documentation system.
Let’s make one now.

Listing 7.5. Giving the add function a documentation comment

/// Add together two i32 numbers and return the result of that addition

pub fn add(x: i32, y: i32) -> i32 {

  x + y

}

The difference is subtle from a code perspective, but let’s see what we can do
with it. Let’s generate the documentation for our library and see what this
outputs:

$ cargo doc --open

This command will generate documentation for all public items in your crate
and open a web browser to that documentation. Click on the add function to
see its type signature and the doc comment that we just wrote.

Figure 7.2. Screenshot of documentation for the add function

In addition to the documentation itself, we can add examples to doc
comments which will be validated when running tests. Let’s add a few now.



For the sake of completeness we will add one that passes, one that fails, and
one that does not compile.

Listing 7.6. Documentation tests

/// Add together two i32 numbers and return the result of that addition

/// ```

/// assert_eq!(testing::add(2, 2), 4);

/// ```

///

/// ```

/// use testing::add;

/// assert_eq!(add(2, 2), 5);

/// ```

///

/// ```

/// use testing::add;

/// assert_eq!(add("hello", 2), 5);

/// ```

pub fn add(x: i32, y: i32) -> i32 {

  x + y

}

Notice that these are markdown code blocks. Doc comments support
markdown syntax for making lists, links, bolding, italics, and more. It is also
important to note that each doc comment is compiled as a separate crate,
meaning that it only has access to the public API of your crate, and you must
either import items from your crate or use a fully qualified path. This is
because these are meant to be examples of the public API for the users of
your crate.

Notice that the second doc test we wrote will fail. It contains an assertion that
2+2=5, which is nonsense. The third test won’t even compile as it tries to
pass the string slice "hello" where an i32 is required. Let’s see how Rust’s
testing system shows us this failure to document.

$ cargo test

   Compiling testing v0.1.0

    Finished test [unoptimized + debuginfo] target(s) in 0.30s

     Running unittests

running 1 test

test tests::it_works ... ok



test result: ok. 1 passed; 0 failed;

   Doc-tests chapter-07-listing-06

running 3 tests

test src/lib.rs - add (line 11) ... FAILED

test src/lib.rs - add (line 2) ... ok

test src/lib.rs - add (line 6) ... FAILED

failures:

---- src/lib.rs - add (line 11) stdout ----

error[E0308]: mismatched types

 --> src/lib.rs:13:16

  |

5 | assert_eq!(add("hello", 2), 4);

  |                ^^^^^^^ expected `i32`, found `&str`

error: aborting due to previous error

For more information about this error, try `rustc --explain E0308`.

Couldn't compile the test.

---- src/lib.rs - add (line 6) stdout ----

Test executable failed (exit code 101).

stderr:

thread 'main' panicked at 'assertion failed: `(left == right)`

  left: `4`,

 right: `5`', src/lib.rs:5:1

note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace

failures:

    src/lib.rs - add (line 11)

    src/lib.rs - add (line 6)

test result: FAILED. 1 passed; 2 failed;

There is no separate doc test command, all types of tests are run when you
run cargo test. We get the ok from the it_works test, then immediately go
into running the doc tests.

The doc test which fails to compile does not block the compilation of the
entire test, it is reported only as a part of the individual doc test which failed.



Notice how these failures appear. Both indicate failure on line 5, but this does
not match the line of the file where the errors appear. This is because doc
tests are wrapped in an implicit main function and the line numbers coming
from these panic messages are not reliable. Instead we should look at the line
number of the test src/lib.rs - add (line 6) and src/lib.rs - add
(line 11). These point us to the code blocks where the failing doc tests
begin. Now we can update our example so that it contains correct code.

Listing 7.7. Passing doc tests

/// Add together two i32 numbers and return the result of that addition

/// ```

/// assert_eq!(testing::add(2, 2), 4);

/// ```

///

/// ```

/// use testing::add;

/// assert_eq!(add(3, 2), 5);

/// ```

pub fn add(x: i32, y: i32) -> i32 {

  x + y

}

Running the tests now shows that they pass as expected:

$ cargo test

   Compiling testing v0.1.0

    Finished test [unoptimized + debuginfo] target(s) in 0.41s

     Running unittests

running 1 test

test tests::it_works ... ok

test result: ok. 1 passed; 0 failed;

   Doc-tests testing

running 2 tests

test src/lib.rs - add (line 2) ... ok

test src/lib.rs - add (line 6) ... ok

test result: ok. 2 passed; 0 failed;

Let’s also regenerate our documentation to see how the examples will look



for our crate’s users:

$ cargo doc --open

Figure 7.3. Screenshot of documentation for the add function with a doctest

Now that we understand how to write tests more generally, let’s add some
tests for the rust_json crate that we created in Chapter 6.

7.1.2 Add tests to existing code

Open up the lib.rs file from the rust_json crate. It should look like this:

Listing 7.8. rust_json/src/lib.rs from Chapter 6

use pyo3::prelude::*;

#[derive(Debug, serde::Deserialize)]

struct Data {

  name: String,

  value: i32,

}

#[pyfunction]

fn sum(input: &str) -> i32 {

  let parsed: Data = serde_json::from_str(input).unwrap();



  parsed.name.len() as i32 + parsed.value

}

#[pymodule]

fn rust_json(_py: Python, m: &PyModule) -> PyResult<()> {

  m.add_function(wrap_pyfunction!(sum, m)?)?;

  Ok(())

}

Let’s create a test module and write a basic test:

Listing 7.9. Basic test for rust_json::sum

...

#[cfg(test)]

mod tests {

  use crate::sum;

  #[test]

  fn test_stokes_baker() {

    assert_eq!(

      sum("{ \"name\": \"Stokes Baker\", \"value\": 954832 }"),

      954844

    );

  }

}

Let’s run the test to ensure that it works:

$ cargo test

   Compiling rust_json

    Finished test [unoptimized + debuginfo] target(s) in 7.56s

     Running unittests

running 1 test

test tests::test_stokes_baker ... ok

test result: ok. 1 passed; 0 failed;

This test validates that our code behaves as expected with this small input,
but there are a few things about it that we could improve. First, all of those
escapes in the string to allow us to put a literal double quote are a bit



annoying. Thankfully Rust has a way for us to get around this. We can use a
raw string.

Raw Strings

Raw strings are string literals that do not parse escape sequences and can be
opened/closed by something other than a single double-quote character. We
can turn a normal string into a raw string by putting an r just before the
opening quotation mark. This disables escape sequences within the string.
Let’s try to do this on the JSON string literal in our new test:

sum(r"{ \"name\": \"Stokes Baker\", \"value\": 954832 }"),

If we try to run the tests now however, it will not compile! The error we get
is also quite long and difficult to understand.

$ cargo test

   Compiling rust_json v0.1.0

error: unknown start of token: \

  --> src/lib.rs:30:21

   |

30 |       sum(r"{ \"name\": \"Stokes Baker\", \"value\": 954832 }"),

   |                     ^

error: suffixes on a string literal are invalid

  --> src/lib.rs:30:11

   |

30 |       sum(r"{ \"name\": \"Stokes Baker\", \"value\": 954832 }"),

   |           ^^^^^^^^^^ invalid suffix `name`

error: expected one of `)`, `,`, `.`, `?`, or an operator,

       found `": \"Stokes Baker\", \"value\": 954832 }"`

  --> src/lib.rs:30:22

   |

30 |       sum(r"{ \"name\": \"Stokes Baker\", \"value\": 954832 }"),

   |                     -^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

   |                      expected one of `)`, `,`, `.`, `?`, or an operator

   |                     |

   |                     help: missing `,`

error[E0061]: this function takes 1 argument but 2 arguments were supplied

  --> src/lib.rs:30:7

   |



30 |       sum(r"{ \"name\": \"Stokes Baker\", \"value\": 954832 }"),

   |       ^^^ ---------- -----------------------------------------

   |       | supplied 2 arguments

   |       |

   |       expected 1 argument

   |

This error is occurring because turning our string literal into a raw string
turns off the escape sequences that allow us to use literal double-quote
characters. When the compiler sees the first double-quote character before the
n in name, it now treats this as the end of the string. Figure 7.4 shows how the
compiler now parses this code.

Figure 7.4. Parsing our raw string

This is currently worse than the code we had before, which could be
compiled and executed. We can fix these errors with a clever addition Rust
has on its raw strings. We can use a delimiter other than a single double-
quote character for the beginning and end of the string. We can also pad the
double-quotes with any number of octothorpes (aka “number sign”, “pound
sign”, “hash sign”, #). By doing this, we unlock the ability to write string
literals which contain double-quote characters without escaping them. That
will look like this:

sum(r#"{ "name": "Stokes Baker", "value": 954832 }"#),

This makes it easier to read our JSON strings. We used only a single
octothorpe but if we needed to write a literal "# inside of our string, we could
add as many octothorpes as we wanted to the start and end of the string to
denote its beginning and end. For example:

println!("{}", r###"hello"#world"##how are you today?"###);

This prints out the string



hello"#world"##how are you today?

This works because we need to provide a double-quote and three octothorpes
to end the string, and the interior items provide only one or two octothorpes.

Placed in the full code, our new raw string looks like this:

Listing 7.10. Raw string used in JSON test

use pyo3::prelude::*;

#[derive(Debug, serde::Deserialize)]

struct Data {

  name: String,

  value: i32,

}

#[pyfunction]

fn sum(input: &str) -> i32 {

  let parsed: Data = serde_json::from_str(input).unwrap();

  parsed.name.len() as i32 + parsed.value

}

#[pymodule]

fn rust_json(_py: Python, m: &PyModule) -> PyResult<()> {

  m.add_function(wrap_pyfunction!(sum, m)?)?;

  Ok(())

}

#[cfg(test)]

mod tests {

  use crate::sum;

  #[test]

  fn test_stokes_baker() {

    assert_eq!(

      sum(r#"{ "name": "Stokes Baker", "value": 954832 }"#), #1

      954844

    );

  }

}

❶



This is the line we changed

And let’s validate that of our test still passes:

$ cargo test

    Finished test [unoptimized + debuginfo] target(s) in 8.33s

     Running unittests

running 1 test

test tests::test_stokes_baker ... ok

test result: ok. 1 passed; 0 failed;

Before we move on to testing our Rust code from Python, let’s add a few
more test cases for posterity.

Listing 7.11. Additional test cases for our Rust code

...

#[cfg(test)]

mod tests {

  use crate::sum;

  #[test]

  fn test_stokes_baker() {

    assert_eq!(

      sum(r#"{ "name": "Stokes Baker", "value": 954832 }"#),

      954844

    );

  }

  #[test]

  fn test_william_cavendish() {

    assert_eq!(

      sum(r#"{ "name": "William Cavendish", "value": -4011 }"#),

      -3994

    );

  }

  #[test]

  fn test_ada_lovelace() {

    assert_eq!(



      sum(r#"{ "name": "Ada Lovelace", "value": 18151210 }"#),

      18151222

    );

  }

}

And they should all now pass:

$ cargo test

   Finished test [unoptimized + debuginfo] target(s) in 7.15s

     Running unittests

running 3 tests

test tests::test_ada_lovelace ... ok

test tests::test_stokes_baker ... ok

test tests::test_william_cavendish ... ok

test result: ok. 3 passed; 0 failed;

Great! Now that we have some basic tests written in Rust, let’s look at how
our new Rust code can leverage existing tests written against the original
Python implementation.

7.2 Testing Rust code using Python

In this section we will be discussing updating existing Python tests to cover
our new Rust code in addition to the existing Python code.

  Note

This section will require us to manipulate Python virtual environments, and
assumes that you are using a virtual environment setup based on the
instructions from Chapter 6. If you do not have this, you will not be
successful in this section.

The existing tests we will be updating are written in Python using the pytest
framework. pytest is a Python testing framework designed to make it easy to
write small, readable tests.

First, let’s install pytest in our rust-json virtual environment.



(rust-json) $ pip install pytest

...

Successfully installed

  attrs-21.4.0

  iniconfig-1.1.1

  packaging-21.3

  pluggy-1.0.0

  py-1.11.0

  pyparsing-3.0.7

  pytest-7.0.1

  tomli-2.0.1

For a refresher, this is what our original python source code looks like:

Listing 7.12. Python program we will be testing

import sys

import json

s = 0

for line in sys.stdin:

  value = json.loads(line)

  s += value['value']

  s += len(value['name'])

print(s)

To be more testable, we’re going to turn this into a function with defined
inputs and outputs, rather than something which just operates on stdin/stdout.
The program will now look like this:

Listing 7.13. Python program after being updated to use a function

import sys

import json

def sum(lines_iter):

  s = 0

  for line in lines_iter:

    value = json.loads(line)

    s += value['value']

    s += len(value['name'])



  return s

if __name__ == '__main__': #1

  print(sum(sys.stdin))

❶

This python construct is similar to the main function in other languages.
Since this is not a Python tutorial we won’t spend time on it.

Let’s imagine that we already have a pytest file set up with a single test in it
to start. This test runs through 10 lines of data with known properties and a
known sum value. This test file is called main_test.py and it looks like this:

Listing 7.14. main_test.py

import main

def test_10_lines():

  lines = [

    '{ "name": "Stokes Baker", "value": 954832 }',

    '{ "name": "Joseph Solomon", "value": 279836 }',

    '{ "name": "Gonzalez Koch", "value": 140431 }',

    '{ "name": "Parrish Waters", "value": 490411 }',

    '{ "name": "Sharlene Nunez", "value": 889667 }',

    '{ "name": "Meadows David", "value": 892040 }',

    '{ "name": "Whitley Mendoza", "value": 965462 }',

    '{ "name": "Santiago Hood", "value": 280041 }',

    '{ "name": "Carver Caldwell", "value": 632926 }',

    '{ "name": "Tara Patterson", "value": 678175 }',

  ]

  assert main.sum(lines) == 6203958

Pytest will detect any function that begins with test_ and run it
automatically. In this case it will treat test_10_lines as a test and run it
when we invoke pytest. Let’s do that now to validate that it works as
expected before we start to make modifications:

(rust-json) $ pytest -v

===========================================================================



platform linux -- Python 3.8.10, pytest-7.0.1, pluggy-1.0.0

cachedir: .pytest_cache

collected 1 item

main_test.py::test_10_lines PASSED                                   [100%]

===========================================================================

It’s good practice to make a test fail once, let’s modify our source code and
re-run the test. We’ll update the sum function to add one to the returned value.
This should make the test fail.

Listing 7.15. Version of main.py that will fail our test

import sys

import json

def sum(lines_iter):

  s = 0

  for line in lines_iter:

    value = json.loads(line)

    s += value['value']

    s += len(value['name'])

  return s + 1 #1

if __name__ == '__main__':

  print(sum(sys.stdin))

❶

Note the extra + 1 on this line

Now if we re-run the test we will see it fail along with an error message.

(rust-json) $ pytest -v

=========================== test session starts ===========================

platform linux -- Python 3.8.10, pytest-7.0.1, pluggy-1.0.0

cachedir: .pytest_cache

collected 1 item



main_test.py::test_10_lines FAILED                                  [100%]

================================ FAILURES =================================

______________________________ test_10_lines ______________________________

    def test_10_lines():

      lines = [

        '{ "name": "Stokes Baker", "value": 954832 }',

        '{ "name": "Joseph Solomon", "value": 279836 }',

        '{ "name": "Gonzalez Koch", "value": 140431 }',

        '{ "name": "Parrish Waters", "value": 490411 }',

        '{ "name": "Sharlene Nunez", "value": 889667 }',

        '{ "name": "Meadows David", "value": 892040 }',

        '{ "name": "Whitley Mendoza", "value": 965462 }',

        '{ "name": "Santiago Hood", "value": 280041 }',

        '{ "name": "Carver Caldwell", "value": 632926 }',

        '{ "name": "Tara Patterson", "value": 678175 }',

      ]

>     assert main.sum(lines) == 6203958

E     assert 6203959 == 6203958

E       +6203959

E       -6203958

main_test.py:17: AssertionError

========================= short test summary info =========================

FAILED main_test.py::test_10_lines - assert 6203959 == 6203958

============================ 1 failed in 0.01s ============================

Remove this + 1 from the end of the return statement and re-run the test to
validate that we’ve restored to working functionality.

Now let’s update our Python program to use the Rust JSON summing library.

Listing 7.16. Python program re-written to use our Rust library

import sys

import rust_json

def sum(lines_iter):

  s = 0

  for line in lines_iter:

    s += rust_json.sum(line)

  return s



if __name__ == '__main__':

  print(sum(sys.stdin))

The test should continue to pass after this change is made.

(rust-json) $ pytest -v

=========================== test session starts ===========================

platform linux -- Python 3.8.10, pytest-7.0.1, pluggy-1.0.0

cachedir: .pytest_cache

collected 1 item

main_test.py::test_10_lines PASSED                                  [100%]

============================ 1 passed in 0.01s ============================

In a larger existing application, there would hopefully be more existing tests
that would exercise more code paths in the Rust code. Updating tests to use a
new code path is all well and good, but it would be nice to test the Rust
version against the original Python version more directly so we can determine
how (if at all) the two differ. We can do this by creating a test which runs the
two versions on randomized inputs and compares the outputs.

Before we add the randomization, let’s write a utility function that will allow
us to run the sum function backed by either the original Python code or the
new Rust function. We’re going to do this using monkeypatching.

7.2.1 Monkeypatching

Monkeypatching is a process for dynamically redefining items in programs,
and it’s commonly used when writing unit tests to swap deep dependencies
between versions or replace real IO resources with fake ones. Let’s take a
look at how we can write a function that uses monkeypatching to call two
different versions of the summing code.

We’re going to add a test and a helper function that does the comparison
between the two versions. We also need to provide the original Python
implementation of the function here so that we can use it to override the Rust
version.



Listing 7.17. Test that compares the output of Rust and Python versions

from pytest import MonkeyPatch

def test_compare_py_rust():

  compare_py_and_rust(

    ['{ "name": "Stokes Baker", "value": 954832 }']

  )

def python_sum(line):

  import json

  value = json.loads(line)

  return value['value'] + len(value['name'])

def compare_py_and_rust(input):

  rust_result = main.sum(input)

  with MonkeyPatch.context() as m:

    m.setattr(main.rust_json, 'sum', python_sum)

    py_result = main.sum(input)

  assert rust_result == py_result

There’s a lot going on in here and we are not going to linger too long on the
exact Python syntax that’s required here, but let’s break down what’s
happening a bit.

from pytest import MonkeyPatch

First we need to import the MonkeyPatch class from Pytest. This class will
allow us to later override the rust_json.sum function.

def test_compare_py_rust():

  compare_py_and_rust(

    ['{ "name": "Stokes Baker", "value": 954832 }']

  )

The new test that we add runs our helper comparison function with a single
known input. In the future we will update this test to pass in randomized
inputs.

def python_sum(line):

  import json



  value = json.loads(line)

  return value['value'] + len(value['name'])

Next we redefine the original Python implementation of our functionality.
This will be used as a baseline against which we can compare our new Rust
code. In this case we moved the functionality into the test file itself. This is
not a requirement but rather something that was done because the original
Python implementation is no longer used in the main program.

def compare_py_and_rust(input):

  rust_result = main.sum(input)

  with MonkeyPatch.context() as m:

    m.setattr(main.rust_json, 'sum', python_sum)

    py_result = main.sum(input)

  assert rust_result == py_result

Finally we have the comparison function itself. This function runs the sum
function using the rust_json.sum function and the python_sum function,
then compares the results. It uses a MonkeyPatch.context to create a small
area in the code where we override the main.rust_json.sum function with
our python_sum function.

Let’s run this test to validate that it passes as we expect.

$ pytest -v

=========================== test session starts ===========================

platform linux -- Python 3.8.10, pytest-7.0.1, pluggy-1.0.0

cachedir: .pytest_cache

collected 2 items

main_test.py::test_10_lines PASSED                                  [ 50%]

main_test.py::test_compare_py_rust PASSED                           [100%]

============================ 2 passed in 0.01s ============================

Let’s also briefly re-introdue a bug in our code to validate that the assertion
fails when Python results don’t match Rust results. This time we’ll add the
bug to our Rust code. Let’s change the return value of the sum function in
lib.rs.



Listing 7.18. Rust library with a bug added

use pyo3::prelude::*;

#[derive(Debug, serde::Deserialize)]

struct Data {

  name: String,

  value: i32,

}

#[pyfunction]

fn sum(input: &str) -> i32 {

  let parsed: Data = serde_json::from_str(input).unwrap();

  parsed.name.len() as i32 + parsed.value + 10 #1

}

#[pymodule]

fn rust_json(_py: Python, m: &PyModule) -> PyResult<()> {

  m.add_function(wrap_pyfunction!(sum, m)?)?;

  Ok(())

}

❶

Notice the extra + 10 on this line

Now let’s re-build our Rust code and re-run the Python tests

$ cd rust_json

$ cargo build

$ cd ..

$ pytest -v -k test_compare_py_rust

=========================== test session starts ===========================

platform linux -- Python 3.8.10, pytest-7.0.1, pluggy-1.0.0

cachedir: .pytest_cache

collected 2 items / 1 deselected / 1 selected

main_test.py::test_compare_py_rust FAILED                           [100%]

================================ FAILURES =================================

__________________________ test_compare_py_rust ___________________________



... #1

>     assert rust_result == py_result

E     assert 954854 == 954844 #2

E       +954854

E       -954844

main_test.py:38: AssertionError

========================= short test summary info =========================

FAILED main_test.py::test_compare_py_rust - assert 954854 == 954844

===================== 1 failed, 1 deselected in 0.02s =====================

❶

Output was truncated for brevity

❷

Notice the difference between the values

The test fails after running because of the extra + 10 we added to the Rust
code. Notice that the result from Rust, the rust_result variable is now 10
greater than the Python result, stored in the py_result variable.

Let’s revert the Rust code back to a working state and re-run the tests to
validate it’s all working.

$ cd rust_json

$ cargo build

$ cd ..

$ pytest -v

=========================== test session starts ===========================

platform linux -- Python 3.8.10, pytest-7.0.1, pluggy-1.0.0

cachedir: .pytest_cache

collected 2 items

main_test.py::test_10_lines PASSED                                  [ 50%]

main_test.py::test_compare_py_rust PASSED                           [100%]



============================ 2 passed in 0.01s ============================

Now that we know how the monkeypatching itself works, let’s add some
randomization to our test to validate that it works with unknown inputs. We’ll
once again write a helper function to run a single test case through our code,
then call it from a runner test function.

This Python test function runs the randomized_test_case function 100
times. Each time we generate between 100 and 500 lines of JSON, each of
those lines comprised of a name values that’s between 100 and 200 characters
of lowercase ASCII, and a value number that’s a random integer between 0
and 10,000.

Listing 7.19. Randomized test comparing Python and Rust results

import json

import string

import random

...

def test_random_inputs(monkeypatch):

  for _ in range(100):

    randomized_test_case(monkeypatch)

def randomized_test_case(monkeypatch):

  number_of_lines = random.randint(100, 500)

  lines = []

  for _ in range(number_of_lines):

    number_of_chars = random.randint(100, 200)

    lines.append(json.dumps({

      'name': ''.join(random.choices(

        string.ascii_lowercase,

        k=number_of_chars,

      )),

      'value': random.randint(0, 10_000),

    }))

  compare_py_and_rust(monkeypatch, lines)

...



After constructing this list of lines of JSON, we feed the list of data into our
previously defined comparison function.

This test function with its high degree of randomness, may find corners in our
library that were not exposed by our manually written tests. This is a rather
blunt-force approach to randomized testing. There are specialty libraries
designed to perform “property testing” that can more intelligently design
input values in order to exercise specific code paths. Four our purposes, this
is sufficient. We can control the number of test cases easily by increasing the
number of iterations in the test_random_inputs function. This will also have
the result of increasing test runtime. We’ll be asking our test runner to do
more work when we increase this number, and we can easily make a test in
this way that requires hours to run.

The interesting thing here is that we have an existing Python implementation
against which we can test our Rust code. We can continuously generate
random inputs and feed them to both the Python code and the Rust code in
order to ensure that both libraries emit the same results.

There was a lot of information on testing and documentation in this chapter,
but by applying these skills we can have more confidence in our refactors as
we deploy them into production systems.

7.3 Summary

By convention, we should put Rust tests in a tests module close to the
code it is testing.
Adding #[cfg(test)] to an item will make that item compile only when
tests are being compiled.
We can test Rust code by writing functions with the #[test] attribute
macro on them.
The assert_eq! macro allows us to panic a test if two values are not
equal.
cargo test will compile, discover, and run all of our test functions.
Adding doc comments (///) before an item will add information to
auto-generated documentation.
cargo doc will build the documentation for a crate.



cargo doc --open will build the documentation for a crate and open it
in the default web browser.
Adding a code block within a doc comment (```) allows us to write an
example within the documentation that will also be compiled and run as
a test.
Raw strings allow us to skip escaping characters that we would
otherwise need to in string literals.
Raw strings are prefixed with r and must have the same number of
octothorpe (#) characters at the beginning and end (this number may be
zero).
Monkeypatching can be used in many dynamic languages to perform
dependency injection where it would otherwise be difficult. This can be
used to test code with different versions of the same function.



9 WebAssembly for refactoring
JavaScript
This chapter covers:

Writing a Rust library to be used in JavaScript
Integrating WASM into an existing JavaScript project and component
Writing a web component entirely in Rust and importing it into an
existing project

Finding a single language to develop all parts of an application has been a
goal for many who create programming languages. "Write once, run
anywhere" was a tagline for Java because at the time it seemed like as long as
it could run Java’s virtual machine your application would run. Obviously,
this had its limitations but in essence, it was what made Java such a popular
platform even to this day. This idea of cross-platform software isn’t new, in
fact, it was a goal of early compilers to allow programers tto write an
application once and compile it to run on other machines.

Rust as we have seen follows this same pattern. Instead of working like Java
and having a virtual machine to run an application Rust will use different
compile targets. Additionally, the examples we have looked at so far have
relied on some level on Rust’s C integration for importing libraries. In this
chapter we are going to explore a new approach to "write once, run
anywhere" but instead of writing Java (breathe a sigh of relief) we will be
working with a technology that was built to be portable for the web.

9.1 What is Web Assembly

In 2018 the World Wide Web Consortium (W3C) published a specification
that would allow for a compilation target to a special sort of bytecode that
could be run in the browser. The idea is that compiled languages such as
C++, Go, and Rust could target their compilers to write binaries in



WebAssembly (WASM) bytecode instead of targetting an AMD or Intel
processor. The target for WASM is a WebAssembly System Interface
(WASI) which essentially is the runtime to run WASM bytecode.

Now we are seeing several technologies spring up around WASM along with
some pretty cool projects. Developers are finding they can put almost
anything in the web browser including whole operating systems! WASM is
used to run in cloud workers and some JavaScript libraries are refactoring
portions of their code to use WebAssembly. Loading WASM requires
JavaScript to pull the library in and initialize it as shown in Figure 9.1:

Figure 9.1. WASM Loaded into a JavaScript frontend

So why, as a Rust developer, should you care? Well, while a large portion of
systems-level code is written in Java or a C-based language the most used
programming languages are JavaScript Based languages run in the web
browser. As mentioned earlier, WASM was developed to be a universal
binary that was targeted to run in the browser as well. This gives us the
ability to write Rust code that can interact with or replace portions of
JavaScript code making it possible for us to refactor pieces of it to Rust.



Figure 9.2. Github Octoverse Survey of most used languages 2022

There is also a flip side to this Rust/WASM relationship in that because this
is a universal binary that is supposed to run anywhere we can run the WASM
library within Rust. This means we can refactor old code by importing
portions of it into Rust via WASM. First, we will see how we can write a
Rust function and import it into JavaScript via WASM. Then in the next
chapter, we will take code that has been compiled to WASM and run it within
a Rust application.

9.2 Moving from JavaScript to Rust

Before we dive into the actual code it is important to understand the world of
JavaScript and how it differs in how we’ve refactored this far. Up until now
we have focused on code that runs within a terminal versus a web browser.
C++ and Python is really C code underneath whereas JavaScript is its own
scripting language made for the web browser. It is an essential tool of the
Web being found on 98% of websites. Originally developed back in 1995 the
language has slowly changed overtime but the underlying purpose of being
the "web browser language" didn’t change until 2009 with the introduction of
the Node.js runtime. Since then the lines have really begun to blur between
front end and backend development with JavaScript. Additional tools have
been written to help make JavaScript more robust such as the introduction of
Typescript which added types similar to those in Rust to JavaScript.



So here we are presented with another pervasive languages that has slowly
evolved (and in some cases devolved) overtime and is lumped together with
C++ and Python in the world of code that can become unmanagable and
would benefit from refactoring. The difference is that instead of focusing on
the backend code we are going to focus on the frontend and refactor
JavaScript to have the memory saftey, speed and type system that makes Rust
so robust.

How do you know when to refactor your JavaScript to Rust? What usecases
would you be looking for? The answer is the same as the decisions you
would make for migrating from Python to Rust or C++ to Rust: safety and
speed. The difference is you will need to start thinking of the browser instead
of terminal (though WASM can be used on Node.js runtimes as well).
JavaScript is not type safe and is prone to runtime errors. Additionally it can
be slower than compiled programs. WASM and Rust is also more secure in
the way it manages the applications memory. So if you are looking for any of
these improvements or if you have backend logic that can be moved to the
front end to reduce the backend workload.

Developing a WASM library for your site will typically go through the same
process that UI developers go through anyway, but instead of using
JavaScript and HTML we will use Rust compiled to WASM with HTML and
in the future developing whole components in Rust.

9.3 Rust in the Browser

Most web components today are rendered on the client side using data
transmitted over HTTP. The most common way this is done is through
sending JSON-formatted messages using a REST protocol. However, this is
not the only way. In 1997 a data model known as RDF was created to help
organize metadata around arbitrary objects. This became the foundation of
RSS feeds (RDF Site summary) providing a passive way of notifying other
systems of site updates. Tools are used to aggregate these various feeds and
display them to users to read or save for later.

What we are going to build is a tool that takes an RSS feed (using RDF
format) to create a component to list and provide details of article that are



newly published to arXiv, an open-access repository of scientific papers. We
will first write the method of retrieving papers based on a searchable term
providing links to the actual paper. Once this is written we will export the
function so it can be used in JavaScript and place it as a web component. To
start, let’s look at structuring the data and retrieving search results.

9.3.1 Requesting data

Let’s start by first creating a new Rust application by running the following
commands:

Listing 9.1. command - create a new project

cargo new papers --lib

cd papers

Open up the Cargo.toml and add the following libraries

Listing 9.2. Cargo.toml - Dependencies for our library

[package]

name = "papers"

version = "0.1.0"

edition = "2021"

[lib]

crate-type = ["cdylib"]

# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html

[dependencies]

reqwest = { version = "0.11", features = ["json"] } #1

serde = { version = "1.0", features = ["derive"] } #2

serde-wasm-bindgen = "0.5.0" #3

serde-xml-rs = "0.6.0" #4

wasm-bindgen = "0.2.87" #5

[dev-dependencies]

tokio-test = "*" #6

Now that we have a project I always find it helpful to define our structures.
To do this we should first look at what an actual feed looks like, below is a



snippet:

Listing 9.3. arXiv - Example message from the service we are calling

<feed xmlns="http://www.w3.org/2005/Atom">

    <link href="http://arxiv.org/api/query?search_query%3Dall%3Atype"

    < linearrow /> rel="self" type="application/atom+xml"/>

    <title type="html">

        ArXiv Query: search_query=all:type

    </title>

    <id>http://arxiv.org/api/MPA5fUXeKVs0FQAFaOfw4Eh7V44</id>

    <updated>2023-06-13T00:00:00-04:00</updated>

    <opensearch:totalResults

    xmlns:opensearch="http://a9.com/-/spec/opensearch/1.1/">

        229748

    </opensearch:totalResults>

    <opensearch:startIndex

    xmlns:opensearch="http://a9.com/-/spec/opensearch/1.1/">

        0

    </opensearch:startIndex>

    <opensearch:itemsPerPage

    xmlns:opensearch="http://a9.com/-/spec/opensearch/1.1/">

        10

    </opensearch:itemsPerPage>

    <entry>

        <id>http://arxiv.org/abs/cs/0507037v1</id>

        <updated>2005-07-14T08:58:31Z</updated>

        <published>2005-07-14T08:58:31Z</published>

        <title>Type Inference for Guarded Recursive Data Types</title>

        <summary> ... </summary>

        <author>

            <name>Peter J. Stuckey</name>

        </author>

        <author>

            <name>Martin Sulzmann</name>

        </author>

        <link href="http://arxiv.org/abs/cs/0507037v1"

            rel="alternate"

            type="text/html"/>

        <link title="pdf" href="http://arxiv.org/pdf/cs/0507037v1"

         rel="related"

         type="application/pdf"/>

        <arxiv:primary_category

            xmlns:arxiv="http://arxiv.org/schemas/atom"

            term="cs.PL"

            scheme="http://arxiv.org/schemas/atom"/>



        <category term="cs.PL" scheme="http://arxiv.org/schemas/atom"/>

        <category term="cs.LO" scheme="http://arxiv.org/schemas/atom"/>

    </entry>

</feed>

From this, we can see the root of the file is the feed tag with each result
being an entry. The details we want from the entry are a list of authors, an id,
a title, and a summary of when it was updated and when it was published.
Given these fields we can derive the following structures:

Listing 9.4. lib.rs - defining our basic structures for searching

#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]

pub struct Feed {

    pub entry: Vec<Entry>, #1

}

#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]

pub struct Entry {

    pub id: String,

    pub updated: String,

    pub published: String,

    pub title: String,

    pub summary: String,

    pub author: Vec<Author>,

}

#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]

pub struct Author {

    pub name: String,

}

Given this structure, we can then create a function that retrieves paginated
(data that is chunked by size and starting location) search results. To do this
we will use the reqwest library (which has WASM support) to retrieve our
results. We will take those results and convert them from XML to JSON for
our component. Using their RDF API we can pass search queries as well as
pagination data (start and max results). All of this functionality will be put
into our library. Let’s write the function now:

Listing 9.5. lib.rs

async fn search(term: String, page: isize, max_results: isize) -> Result<Feed, reqwest::Error> {



    let http_response = reqwest::get(

        format!("http://export.arxiv.org/api/query?search_query=all:{}&start={}&max_results={}",

         term, page * max_results, max_results)).await?; #1

    let b = http_response.text().await?; #2

    let feed: Feed = serde_xml_rs::from_str(b.as_str()).unwrap(); 

    return Ok(feed)

}

Finally, we can write a test to verify this is working as expected:

Listing 9.6. lib.rs - Add unit tests for our search

#[cfg(test)]

mod tests {

    use super::*;

    macro_rules! aw { #1

        ($e:expr) => {

            tokio_test::block_on($e)

        };

    }

    #[test]

    fn test_search() {

        let res = aw!(search("type".to_string(), 0, 10)).unwrap(); #2

        assert_eq!(res.entry.len(), 10);

        print!("{:?}", res)

    }

}

Note

Blocking is when a system waits until a result is returned opposed to
asynchronous calls that switch to another process while waiting.

So this is a pretty simple function that we can use to take advantage of Rust’s
asynchronous abilities and powerful parsing libraries. This method will be
central to the components we build in this chapter and the tools we build in
the next. While the method is simple it can be used in a multitude of ways
making it ideal to demonstrate the powers of WASM’s portability.

9.3.2 Compiling to WASM



We have a function that performs the search functionality we wanted, now
we can see what it looks like in the web browser. To do that we need to
compile it to WASM and use the JavaScript loading function. This is pretty
straightforward once we have the function defined that we wish to export.
There are a few different ways we can define our function but to allow for a
smaller interface we are going to pass in a JSON object. Let’s define that
now:

Listing 9.7. lib.rs - Defining the object we will want to be treated as a JSON object passed to our
WASM search function

#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]

pub struct Search {

    pub term: String,

    pub page: isize,

    pub limit: isize,

}

Next, we need to define the function that the WASM binding can generate to
pass the JSON object. To do this we will use a macro defined by the
wasm_bindgen library. We will pass a special JsValue to the function and
return a similar object. This function will also be asynchronous meaning that
it will return a JavaScript promise that needs to resolve before the data is
returned.

Listing 9.8. lib.rs - Create the search function exposed in WASM to search articles

#[wasm_bindgen] #1

pub async fn paper_search(val: JsValue) -> JsValue{

    let term: Search= serde_wasm_bindgen::from_value(val).unwrap(); #2

    let resp = search(term.term, term.page, term.limit).await.unwrap(); #3

    serde_wasm_bindgen::to_value(&resp).unwrap() #4

}

Within this function, you see we are converting our JsValue into a Search
struct. This is done by a special serde library. Upon receiving a result from
our search function the values are then reencoded to JSON and returned.
That was all we needed! Now we can compile to WASM using the following
command:

Listing 9.9. console - build and compoile to WASM for the web



cargo install wasm-pack

wasm-pack build --target web #1

If you look in the output directory pkg you will see that a special NPM library
was instantiated and ready to use. If you open the papers.js file you can see
a bunch of bootstrapped code to help load the WASM module. Similarly, if
you open the papers.d.ts you can see the expected types and functions
exported by this package. Next is verifying that this function works in
JavaScript.

9.3.3 Loading WASM in the Browser

Now we have a search function, let’s see how it works in the browser. Before
we add this code to our more sophisticated JavaScript Component let’s first
make sure it works through raw JavaScript. We’ll create a lightweight HTML
page and load the WASM directly and provide it with a search element and
display the content as a list. To do this we’ll create a simple index.html file
which will look like this:

Listing 9.10. index.html - Demonstrating calling the WASM library from Raw Javascript

<!DOCTYPE html>

<html lang="en-US">

  <head>

    <meta charset="utf-8" />

    <title>Feed example</title>

  </head>

  <body>

    <div id="listContainer">

      <ul id="list"></ul>

    </div>

    <script type="module">

      import init, { paper_search } from "./pkg/papers.js"; #1

      init().then(() => { #2

        var list = document.getElementById('list'); #3

        paper_search({"term":"type", "page": 0, "limit": 10}).then( 

          (result)=>{

            result.entry.forEach((r)=> { #5

              var a = document.createElement('a');

              a.target = '_blank';

              a.href = r.id;



              a.innerText = r.title;

              var li = document.createElement('li')

              li.appendChild(a)

              list.appendChild(li)

            })

          },

          (error)=>console.error(error)) #6

      });

    </script>

  </body>

</html>

As you can see, we are using old-school JavaScript here to build our page.
This is not how things are done today but it gives a great example of how to
incorporate this function as a regular JavaScript library. Hopefully, this can
start you thinking about some pesky JavaScript functions you are using
internally that could be rewritten in Rust and loaded in this way. Raw
JavaScript functions like this can be used almost anywhere making this the
first step towards refactoring. While this functionality is highly portable it
does not always fit into a larger JavaScript project. To do this we can use a
modern Component library like React.

9.4 Creating a React Component

Component-based development has been around since the inception of
Software Engineering back in 1968. The concept is simple: separate concerns
within a software system by building isolated packages, services, resources,
or modules that have similar functions or data. Today, many languages such
as JavaScript have frameworks or libraries that aid in creating components.
The most popular of these is React.

React at this point has been around for more than a decade and changed the
way people did UI development. It established itself as a great component-
building tool and is all over the web. Other libraries such as Vue.js have
become popular over the past couple of years and so the example we are
about to write may be different for one of these other libraries.

To start we are going to create a new web application using a tool called Vite.
First, you need to have npm installed which can be done following the setup



instructions at: https://docs.npmjs.com/downloading-and-installing-node-js-
and-npm.

Let’s get started by opening up a terminal within your papers project and
typing:

Listing 9.11. console - Create new React App

npm create vite@latest

Need to install the following packages:

  create-vite@latest

Ok to proceed? (y) y

✔ Project name: … papers-list

✔ Select a framework: › React

✔ Select a variant: › JavaScript

This will create our base application. Before we go any further we need to
change how our WASM is being created. Right now we have it set to be built
using the web flag which gives us a loader that needs to be called for the
WASM library to be used. We are instead going to use the bundler option
which takes our code and puts it in a module that can be easily imported and
used within our JavaScript package.

Since JavaScript has been around for a while there are differnt ways of
building JavaScript code. Originally this was done by loading multiple scripts
via the browser which required each page to track the libraries it is using and
how they interact. We did this in our earlier example using the script tag.
Since then many libraries have been written in a modular format where a tool
similar to a compliler takes all libraries and code written and assembles them
into a single executable script. This compiler-like tool is called a bundler
since it bundles the scripts together. This treats the code more as a library and
less as a script. So since we want to use our code as a library within our
component we are going to use the bundler flag when compiling our
WASM.

To do this we need to do the following:

Listing 9.12. console - bundle the library to be used by the component library



wasm-pack build --target bundler

cd pkg

npm link

cd ../papers-list

Here we want to open the package.json file to add our WASM library as a
relative import to our project. Add the following under dependencies:

Listing 9.13. package.json - add local dependency

  "dependencies": {

    "papers": "file:../pkg",

    ...

  }

Then add the following libraries and run the install:

Listing 9.14. console - link our wasm library and compile

npm install vite-plugin-wasm vite-plugin-top-level-await --save-dev

npm link papers

npm install

Finally, there is one last configuration step before we can write our
component. Open up vite.config.js and add the necessary WASM
modules.

Listing 9.15. vite.config.js - configure our app to use WASM

import { defineConfig } from 'vite'

import react from '@vitejs/plugin-react'

import wasm from "vite-plugin-wasm";

import topLevelAwait from "vite-plugin-top-level-await";

// https://vitejs.dev/config/

export default defineConfig({

  plugins: [

    react(),

    wasm(),

    topLevelAwait()

    ],

})



Now let’s create that component. I always find it helpful to first create a
component with static data so I can get the feel and make sure it works.
Additionally, it provides a template that can easily be updated with variables.
We are going to create a component called List. So in the src folder create a
new file called List.jsx and add the following:

Listing 9.16. List.jsx - Create component with static data to ensure it is working

import React, { useEffect, useState } from 'react'

const List = () => {

    const [entries, setEntries] = useState([{id:"abc", title:"title"}]) 

    const [page, setPage] = useState(0) #2

     return (

        <>

        <ul>

            {entries?.map((v, i) => { #3

             return <li key={i}>

                <a href={`${v.id}`} target='_blank'>{v.title}</a>

             </li>

            })}

        </ul>

        <button onClick={() => setPage((page) => page + 1)}>More</button> 

        </>

    )

}

export default List;

Now in a terminal window type npm start dev and open a browser window
to the host and port listed in the terminal. Hopefully, you see a link render.
Let’s now add the WASM file. Something to remember here is that our
application needs to fetch and load the file. To do that we need to add an
import statement which creates a JavaScript future that needs to be resolved
before using the library. So outside of the List component we need to add an
import statement.

Listing 9.17. List.jsx - Import the WASM library

import React, { useEffect, useState } from 'react'

const wasm = await import('papers')



Additionally, you will notice we have a page variable that is incremented as
we click the More button. When this variable is changed we want React to
update the state of our component-based off on this effect so we will create
an useEffect hook to do this:

Listing 9.18. List.jsx - Use WASM to fetch papers

const List = () => {

    const [entries, setEntries] = useState([]) #1

    const [page, setPage] = useState(0)

    useEffect(() => { #2

        if(wasm){

            wasm.paper_search({"term":"type", "page": page, "limit": 10}).then( #3

                (result)=>setEntries(result.entry), #4

                (error)=>console.error(error)) #5

        }

      }, [page]) #6

      ...

}

Save and watch the page reload. Now you should see some articles come
across. When clicking the More button you should see the page update! We
have fully integrated our Rust code into a JavaScript application with just a
little configuration. Because of this marriage between Rust and JavaScript
through WASM, some tools have come up to help with this component
creation that allows you to write your React Component in Rust. Let’s take a
look at what that looks like.

9.5 Web Components entirely in Rust

Yew is a library that aims at using creating Web UI components that compile
into WebAssembly intending to bring all of Rust’s safety goodness to Web
Applications. Since most development patterns have migrated away from a
server-side rendering model to a client-side model most languages aren’t able
to bridge this gap from backend code to front-end code because most front-
end code is done in JavaScript. With the introduction of WASM, this is no
longer true. Now whole component frameworks are being written that act like
those in React but are written in Rust.

The Yew library will help us create a component similar to the one we



created in React with the major difference being how we handle our
components' states and actions. Our states will be Fetching, Success, and
Failure while our actions will be IncrementPage, SetFeedState, and
GetSearch. Yew components then need to have three methods: create, update,
and view. Create and update are used to set the initial state and mutate the
state respectfully while view uses that state to render the component. This
comes from the classic Model-View-Controller structure where a model
holds the state, the controller controls the actions and the view renders based
on the state.

First we should add Yew to our Cargo.toml:

Listing 9.19. Cargo.toml - Add Yew component library as a dependency

[dependencies]

...

yew = "0.19.0"

Let’s get started by creating our enums for our actions and state:

Listing 9.20. lib.rs - Create enums for various states of our component

use yew::prelude::*; #1

...

pub enum Msg { #2

    IncrementPage,

    SetFeedState(FetchState<Feed>),

    GetSearch(isize),

}

pub enum FetchState<T> { #3

    Fetching,

    Success(T),

    Failed(reqwest::Error),

}

Our component itself must hold some sort of state, in this case, it will be the
FetchingState above as well as what page we are currently on. The List
structure will look like this then:



Listing 9.21. lib.rs - Create intial state struct for our component

pub struct List {

    page: isize,

    feed: FetchState<Feed>,

}

Now we need to implement the Component type for our List. Here we will
define two values that will be used to help us render the component. Those
are Messages and Properties. Messages are the type of actions that can occur
on an update while Properties can be values that will be monitored by Yew
for updates. We provide a base struct List which houses the properties of the
basic values we want to use within the component. The Component
implementation then requires us to implement functions to help the
component render. We will not be leveraging Properties in this example but
you can find more information about their use at www.yew.rs but instead will
be using this base structure List which has a feed and current page. We also
need to implement three methods, create, update, and view. So let’s create
the basic skeleton and then we will fill in the methods:

Listing 9.22. lib.rs - Basic component outline

impl Component for List { #1

    type Message = Msg; #2

    type Properties = (); #3

    fn create(ctx: &Context<Self>) -> Self {

    }

    fn update(&mut self, ctx: &Context<Self>, msg: Self::Message) -> bool {

    }

    fn view(&self, ctx: &Context<Self>) -> Html {

    }

}

Let’s first understand the flow of the component. We will start with an initial
state established by the create method which will also begin the search
process with the page being 0. This causes the View stage to render in the
fetching mode which will display a loading message. Any state change
internally is managed by the update methods which then will trigger changes



to the view. A view can have a button that triggers an event and is handled by
the update. A high level map of what is going on can be seen in figure 9.3:

Figure 9.3. Component Flow

We are going to start by creating the view and working backward to the
update and initialization (create) phases. This will help us understand the
different views we want and what actions will drive those changes. With this
view, we will need to match the various states we established in our
FetchState enum. Each state will then render html using a macro.

Listing 9.23. lib.rs - Implmenet view

impl Component for List {

   ...

    fn view(&self, ctx: &Context<Self>) -> Html { #1

        match &self.feed { #2

            FetchState::Fetching => html! { "Fetching" }, #3

            FetchState::Success(data) => html! { #4

                <div>

                    <ul>

                        { for data.entry.iter().map(|e| html!{ #5

                            <li>

                                <a target="_blank" href={e.id.to_string()}>{e.title.to_string()}</a>

                            </li>

                        })}

                    </ul>



                    <button class="button" onclick={ctx.link().callback(|_| Msg::IncrementPage)}> 

                        { "More" }

                    </button>

                </div>

            },

            FetchState::Failed(err) => html! { err }, #7

        }

    }

}

While fetching we will let the user know we are fetching. Similarly, we
display any errors we receive. These states are pretty self-explanatory and
simple but are essential in keeping our customers informed about what is
going on. When we receive data we do something similar to what our React
component does and iterate through the results and create a link with a button
that calls an action to update the page state. The ctx variable gives us the
ability to tap into the state management system that accepts a message and
calls our update function to mutate the state.

With this in mind, we can now see the various mutations our system can
undergo. One method will help us set the state while the other two
manipulate the state and request an additional update.

Listing 9.24. lib.rs - Implement the update functions

impl Component for List {

    ...

    fn update(&mut self, ctx: &Context<Self>, msg: Self::Message) -> bool { 

        match msg { #2

            Msg::SetFeedState(fetch_state) => {

                self.feed = fetch_state; #3

                true #4

            }

            Msg::IncrementPage => {

                self.page += 1;

                ctx.link().send_message(Msg::GetSearch(self.page)); 

                false #6

            }

            Msg::GetSearch(page) => {

                ctx.link().send_future(async move { #7

                    match search("type".to_string(), page, 10).await { 

                        Ok(data) => Msg::SetFeedState(FetchState::Success(data)), 



                        Err(err) => Msg::SetFeedState(FetchState::Failed(err)), 

                    }

                });

                ctx.link().send_message(Msg::SetFeedState(FetchState::Fetching)); 

                true

            }

        }

    }

    ...

}

You’ll notice that this method returns a boolean. This is used by the
component to know if it should rerender which should only occur when the
state has changed. So in the first method, we just assign the state, nothing
special. This will in turn trigger the view to update based on the state. The
second method mutates the page state but then sends a message to call the
GetSearch function. This could be controlled using properties but instead, we
wanted to demonstrate how to call updates from other updates along with
returning a false so the view does not update. GetSearch is the main method
that we will use to call our original feed retrieval. This call is wrapped in an
async method meaning we need to provide a closure to run when it resolves.
Once resolved the state will be updated either providing our data or an error
message. While this is happening we set the state to fetching so the user
understands what is happening.

Hopefully, at this point, you are seeing how this whole component flows
from the view state and ways to affect the view. To review, we have a
function that defines how the component looks based on a given state, this is
the view. Changing the state in the update function happens through an
external trigger. This in turn affects the state causing the view to be run
changing the appearence. The final piece we need is to set up the initial state
of the component when it is created. This will do two essential tasks, the first
is to create the initial struct as well as set off the initial fetch request.

Listing 9.25. lib.rs - Implement intial state

impl Component for List {

    ...

    fn create(ctx: &Context<Self>) -> Self { #1

        ctx.link().send_message(Msg::GetSearch(0)); #2

        Self { #3



            page: 0,

            feed: FetchState::Fetching,

        }

    }

    ...

}

That’s it! The component is done but we still have one final method to
expose this to our WASM module.

Listing 9.26. lib.rs - Create component function

#[wasm_bindgen]

pub fn list_component() -> Result<(), JsValue> {

    yew::start_app::<List>(); #1

    Ok(())

}

After doing this we can rebuild our WASM module:

Listing 9.27. console - build and update library for component

wasm-pack build --target bundler

cd pkg

npm link

cd ../papers-list

npm link papers

npm install

Open up our App.jsx and change the code to this:

Listing 9.28. App.jsx - mount WASM component

import './App.css'

const wasm = await import('papers')

function App() {

  return (<div>

    <div>{wasm.list_component()}</div> #1

  </div>



  )

}

That’s it! Start up your dev server and see how this works just like our React
component.

9.6 Refactoring JavaScript revisted

To review, we were able to leverage a Rust library to help us create an async
method to retrieve and paginate through an RDF document. We then were
able to add this to the web browser and also use it as a Rust library for a data
provider as well as a component. Rust provides us with a level of safety and
code quality checks out of the box that JavaScript requires many tools to
solve.

So looking at the evolution of the various projects we completed here it can
maybe be difficult to figure out where in the process you may be and what
sort of solution you might need. The first usecase is where you have an
algorithm or process that you have written in Rust or have rewritten in Rust
to run within the browser as a script. This is classic JavaScript or web model
where it is the job of the web page to make sure that scripts are loaded for
other scripts to use and the context is therefore only loaded for that page. The
second scenario is exporting your Rust code as a module or library that can
be imported into other JavaScript projects such as a React Component. This
is a modern approach and most likely scenario for developers to use. Modules
are the way most large JavaScript projects are managed and integrating
WASM modules will be a larger extension to this patern in the future. Finally
there is developing a whole web component in Rust. This is still in it’s
infancy and difficult to determine the growth trajectory of this pattern but is
extremely useful for scenario where developing a product using only one
language or limited number of languages is appealing. The table below
outlines these various usecases and patterns.

Table 9.1. WASM frontend usecases

Use Case Format Tool



Simple webpage Script wasm-pack web

Library integration Module wasm-pack bundler

UI Element Component Yew

Now that we have Rust producing a WASM module used on the front end we
can now look at how we can use WASM on the backend for a much larger
refactor pattern.

9.7 Summary

WASM is a universal language that can be run in most web browsers
and can be written in Rust to be used in Raw Javascript via a --web flag
when using wasm-pack
WASM can be used to write JavaScript libraries that can be imported
into large Web Applications written in Rust using the bundler option
when compiling using wasm-pack
WASM can be used within Components by loading the exported module
allowing for more portable code and integrated into modern frameworks
and libraries
Full web components can be written in WASM and Rust using Yew
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