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Preface

In conventional natural language processing (NLP)
systems, language items such as words and phrases are
handled as distinct symbols. Many classical methods, such
as n-gram and bag-of-words models, were proposed and
have been widely used until now. All these methods take
words as the minimum units for semantic representation,
either used to estimate the conditional probabilities of the
next word given previous words (e.g., n-gram) or used to
represent semantic meanings of text (e.g., bag-of-words
models). Even when people find it necessary to model word
meanings, they either manually build linguistic knowledge
bases such as WordNet or use context words to represent
word meaning (i.e., distributional representation). All these
semantic representation methods are still based on
symbols!

With the development of NLP techniques for years, it
has been realized that symbolic representation has caused
many issues in NLP. First, symbolic representation always
suffers from the data sparsity problem. Take statistical NLP
methods, such as n-gram with large-scale corpora, for
example. Due to the intrinsic power-law distribution of
words, the performance will decay dramatically for those
few-shot words, even after many smoothing methods have
been developed to calibrate the estimated probabilities.

There are also multiple-grained items in natural
languages ranging from words, phrases, and sentences to
documents. It is impossible to find a unified symbol set to
represent the semantic meanings for all of them. Moreover,
many NLP tasks require semantic relatedness between
language items at different levels. For example, we have to
measure semantic relatedness between words/phrases and
documents in Information Retrieval. Due to the absence of
a unified scheme for semantic representation, distinct



approaches were proposed for different tasks in NLP,
which sometimes makes NLP seem not a compatible
community. More than that, a deep understanding of
natural language requires rich human knowledge, and it is
non-trivial for symbolic representation in NLP to identify
and incorporate sophisticated external knowledge.

As an alternative approach to symbolic representation,
distributed representation was initially proposed by
Geoffrey E. Hinton in a technique report in 1984. The
report was then included in the well-known two-volume
book Parallel Distributed Processing (PDP) that introduced
neural networks to model human cognition and
intelligence. According to this report, distributed
representation is inspired by the neural computation
scheme of humans and other animals, and the essential
idea is as follows:

Each entity is represented by a pattern of activity
distributed over many computing elements, and each
computing element is involved in representing many
different entities.

It means that a language item will be represented by
multiple neurons, and each neuron is involved in
representing many items. It also indicates the meaning of
distributed in distributed representation. In contrast to
distributed representation, another view assumes one
neuron corresponds to a specific object. That is, there may
be an individual neuron only activated by one specific
object, such as someone’s grandmother, known as the
grandmother-cell hypothesis or local representation. We
can see the direct connection between the grandmother-
cell hypothesis and symbolic representation.

About 20 years after distributed representation was
initiated, Yoshua Bengio presented the neural probabilistic
language model for natural languages in 2003, where



words are represented as low-dimensional and real-valued
vectors based on the idea of distributed representation.
However, it was until 2013 that a simpler and more
efficient framework word2vec was proposed to learn word
distributed representations from large-scale corpora. We
come to the popularity of distributed representation and
neural network techniques in NLP. The recent 10 years
witnessed significant improvement in almost all NLP tasks
with the support of distributed representation, especially
with the development of the neural architecture
Transformer in 2017 and pre-trained language models after
2018.

This book aims to overview recent advances in
distributed representation learning for NLP. It covers how
representation learning takes part in various topics related
to NLP, paying particular attention to why representation
learning can improve NLP. As an exciting and active
research area, we also focus on what remaining challenges
are still not well addressed by distributed representation.



Book Organization

This book is organized into 14 chapters with 4 parts. The
first part depicts key components in NLP and how
representation learning works for them. This part includes
(1) the basics of representation learning and why it is vital
for NLP (Chap. 1); (2) a comprehensive review of
representation learning techniques on multiple-grained
entries in NLP, including word representation (Chap. 2),
phrase representation as known as compositional
semantics (Chap. 3), and sentence and document
representation (Chap. 4); (3) the most advanced techniques
in recent years, pre-trained models (Chap. 5).

The second part presents representation learning for
those topics closely related to NLP. This part includes (1)
graph representation handling structured information
around natural languages such as relations of either
sentences or documents (Chap. 6); (2) cross-modal
representation connecting natural languages to other
modalities such as visual data (Chap. 7); (3) robust
representation talking about the vulnerability of distributed
representation to backdoor attack, adversarial attack, and
out-of-distribution data (Chap. 8).

A deep understanding of natural languages requires the
support of rich human languages. The third part is about
knowledge representation and the framework of
knowledge-guided NLP. This part includes (1) a general
introduction to knowledge representation with entity-based
world knowledge as the example (Chap. 9); (2) linguistic
and commonsense knowledge representation with the form
of sememes, which are defined as the minimum semantic
units in human languages (Chap. 10); (3) domain
knowledge representation, taking legal (Chap. 11) and
biomedical (Chap. 12) domains as examples.

In the fourth part, we take an open-resource platform as
an example to introduce big model systems for



representation learning, including pre-training, fine-tuning,
model compression, and inference (Chap. 13). Finally, we
outlook the future research directions of representation
learning for NLP by summarizing ten key problems of pre-
trained models (Chap. 14).

Although the book is about representation learning for
NLP, those theories and algorithms can also be applied in
other related domains, such as machine learning, social
network analysis, semantic Web, information retrieval, data
mining, and computational biology.



Book Cover

We designed the book cover to correspond to three
revolutionized stages of cognition and representation in
human history. It is an oracle bone divided into three parts.

The left part shows oracle scripts, the earliest known
form of Chinese writing characters used on oracle bones in
the late 1200 BC. It represents the emergence of human
languages, especially writing systems. We regard this as
the first representation revolution of human beings about
the world, i.e., representation symbolization. It makes
information and knowledge transmitted from person to
person and from generation to generation.

The upper right part shows the digitalized
representation of information and signals. Since the
invention of electronic computers in the 1940s, big data
and knowledge can be efficiently represented and
processed in computer programs. We regard this as the
second representation revolution of human beings about
the world, i.e., representation digitalization. It enables
large-scale information and knowledge to be stored,
accumulated, searched, and utilized with computer
systems.

The bottom right part shows the distributed
representation in artificial neural networks initiated in the
1980s. As the representation basis of deep learning, it has
extensively revolutionized many fields in artificial
intelligence, including NLP, CV, and speech recognition,
since the 2010s. We regard this as the third representation
revolution of human beings about the world, i.e.,
representation intellectualization. It enables
sophisticated knowledge to be effectively acquired,
represented, and utilized in AI systems. This book focuses
on the theory, methods, and applications of distributed
representation learning in natural language processing.



Note for the Second Edition

Our team has studied representation learning in NLP since
2014, starting with word representation, graph
representation, and knowledge representation. As shown
throughout the 2010s, distributed representation and deep
learning have brought a significant paradigm shift to NLP.
This book aims to summarize and showcase critical
advances in representation learning in NLP from our point
of view, also consisting of related works from our team in
those directions. The book’s first edition was published in
2020, and its preparation can be traced back to 2016; it is a
team work with many efforts of the professors, graduate
students, and research assistants, as listed in the
Acknowledgments of the 2020 edition.

We have witnessed the great success of Transformer
and pre-trained models in recent years, which further
enhances our knowledge and understanding of
representation learning. We regard pre-training-fine-tuning
as another paradigm shift to NLP after deep learning.
Hence, we prepare the second edition to reflect these
critical changes and advances. There are the following
critical modifications as compared to the first edition:
1. Book Organization. From our experience organizing

the 2020 edition, we realize limited persons cannot
master all detailed advances of each direction of
representation learning in NLP. In this edition, we
invite young researchers and senior graduate students
to work with us together on writing or updating
specific chapters. All of them have rich research
experiences on the topics of their participating
chapters. We work together and frequently discuss to
ensure all chapters are consistent with each other,
following the same goal as elaborated in Chap. 1. We
also work together to summarize the key problems of

 



pre-trained models as an outlook to representation
learning, as shown in Chap. 14.

We also optimize writing guidelines and improve
writing styles in many aspects. For example, in the
2020 edition, we sometimes tended to emphasize those
related works from our team, which make the structure
of some parts not so fluent and coherent. In this
edition, we comprehensively revise these aspects with
one goal, i.e., to thoroughly introduce the key advances
of representation learning and help readers grasp the
development trends from the past and the present to
the future.

2. Supplements and Updates. We supplement five new
chapters for pre-trained models and other emerging
topics. For the recent advances in pre-trained models,
we introduce the general knowledge about pre-trained
models in Chap. 5 and take an open-source platform
OpenBMB as an example to introduce the
programming details of training, tuning, compressing,
and inference of big models in Chap. 13. We also add
three new chapters on new topics of representation
learning, including robustness (Chap. 8) and new
knowledge types of the legal domain (Chap. 11) and
the biomedical domain (Chap. 12).

Pre-training techniques have a revolutionary impact
on almost all areas. With the new perspective, we also
have a deeper understanding of representation
learning. Hence we update all remaining chapters by
either re-organizing the chapter structure (Chaps. 2, 3,
4 and 9) or providing recent advances (Chaps. 6, 7 and
10). Moreover, we merge document representation into
sentence representation to better demonstrate the
advances in neural language models. Based on the
updates of all chapters, we improve the general
introduction to representation learning and NLP in

 



Chap. 1, such as providing clues about the intellectual
origins of distributed representation.

3.
Corrections. The first edition of the book was
prepared for more than four years from 2016 to 2020,
which could have not been published without the
contributions of so many students and contributors in
our team as indicated in the Acknowledgements.
Meanwhile, even after several rounds of revision and
proofreading before publication, we still find some
inconsistent expressions and equations when
integrating chapters, unintentional overlaps with
others’ articles introduced from the initial draft
prepared by a research assistant, and other mistakes in
the published version. We sincerely apologize for these
mistakes. In this new edition, we have updated all
contents and corrected all issues we found. In the
future, we will also try our best to make these cases
never happen again by writing, proofreading, and
applying duplicate detection more carefully to each
material released by our team.

 

Prerequisites

This book is designed for advanced undergraduate and
graduate students, post-doctoral fellows, researchers,
lecturers, industrial engineers, and anyone interested in
representation learning, NLP, knowledge engineering, and
AI. This is not a textbook, and we don’t introduce basic
knowledge. We expect the readers to have prior knowledge
of Probability, Linear Algebra, and Machine Learning.

We recommend that readers interested in NLP read the
first part (Chaps. 1–5) in sequence. The remaining parts
can be read according to readers’ interests. Many areas of
representation learning are still evolving quickly. Hence,



we list some books, reviews, and resources at the end of
each chapter for readers to learn more about the topics.

Contact Information

In this book, we try our best to summarize the advances of
representation learning in NLP. When preparing the 2020
edition and this edition, we grow to acknowledge that we
cannot be experts in each aspect of this area. We may
unintentionally conduct wrong summarizations, omit
critical works, make incorrect predictions, or introduce
other flaws. We are always expecting feedback,
corrections, and suggestions on the book from readers, and
improving the book and our research accordingly. The
messages may be sent to liuzy@tsinghua.edu.cn or raised
as issues on the following GitHub repository,

https:// github. com/ thunlp/ Book_ RL4NLP
We will keep updating and supplementing the book on

the GitHub repository, where readers can find up-to-date
news, errata, and updates about the book.

Zhiyuan Liu

Yankai Lin

Maosong Sun

Beijing, China

January, 2023
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Abstract

Natural language processing (NLP) aims to build linguistic-
specific programs for machines to understand and use
human languages. Conventional NLP methods heavily rely
on feature engineering to constitute semantic
representations of text, requiring careful design and
considerable expertise. Meanwhile, representation learning
aims to automatically build informative representations of
raw data for further application and achieves significant
success in recent years. This chapter presents a brief
introduction to representation learning, including its
motivation, history, intellectual origins, and recent
advances in both machine learning and NLP.

1.1 Motivation

https://doi.org/10.1007/978-981-99-1600-9_1
mailto:liuzy@tsinghua.edu.cn
mailto:sms@tsinghua.edu.cn


Machine learning addresses the problem of automatically
learning computer programs from data. A typical machine
learning system consists of three components [13]:

We first transform helpful information from raw data into
internal representations such as feature vectors to build an
effective machine learning system. Afterward, by designing
appropriate objective functions, we can employ
optimization algorithms to find the optimal parameter
settings for the system.

Data representation methods determine what and how
valuable information can be extracted from raw data for
further classification or prediction. If more information is
transformed from raw data to feature representations, the
performance of classification or prediction will be better.
Hence, data representation is a crucial component of
supporting effective machine learning.

Conventional machine learning systems adopt careful
feature engineering as preprocessing to build feature
representations from raw data. Feature engineering needs
careful design and considerable expertise. A specific task
usually requires customized algorithms for feature
engineering, which makes the process labor-intensive,
time-consuming, and inflexible.

Representation learning aims to learn informative
representations of objects from raw data automatically. The
learned representations can be further fed as input to
machine learning systems for prediction or classification.
This way, machine learning algorithms will be more flexible
and desirable while handling large-scale and noisy
unstructured data, such as speech, images, videos, time
series, and texts.

Deep learning [22] is a typical approach for
representation learning, which has recently achieved great
success in speech recognition, computer vision (CV), and



natural language processing (NLP). Deep learning has two
distinguishing features:

Distributed Representation  Deep learning algorithms
represent each object with a low-dimensional and real-
valued dense vector. The representation form is usually
named as distributed representation or embedding.
Compared to conventional symbolic representation,
distributed representation is more compact and smooth by
mapping data in the low-dimensional and continuous space,
as shown in Fig. 1.1. Hence, it is more robust to address
the sparsity issue that is ubiquitous and inevitable due to
the power-law distribution in large-scale data.

Fig. 1.1  Distributed representation of words and entities in human languages.
(The images are obtained from wikimedia.org.)

Deep Architecture  Deep learning algorithms usually
learn a deep hierarchical architecture to represent objects,
known as multilayer neural networks. Deep architecture
may capture informative features and complicated patterns
of objects from raw data. Take the sentence “you are a



night owl.” For example, as illustrated in Fig. 1.2, the deep
architecture of neural networks will be able to understand
the deep semantics of the sentence, indicating a person
stays up late using a metaphor, beyond the surface and
shallow meanings. Hence, it is regarded as an important
reason for the great success of deep learning for speech
recognition, CV, and NLP.

Fig. 1.2  Deep architecture enables representation learning to capture
informative features and complicated patterns of human languages. Icons in
this figure are bought or freely downloaded from IconFinder (https:// www. 
iconfinder. com/ )

The success of deep learning happens in speech
recognition and C V first in around the 2010s, and in the
following years, NLP also achieves significant
improvements by following the deep learning approach. At
the beginning of the revolution, deep learning for NLP
significantly reduced feature engineering in NLP. In recent
years, with the development of pre-trained language model
techniques [17] in deep learning, the performance of
almost all NLP tasks has achieved consistent and
groundbreaking improvements. Hence, a growing number
of researchers have devoted to developing effective deep

https://www.iconfinder.com/


learning methods for NLP.As per standard style, a footnote
is not in the figure caption. So Footnote 1 has been moved
to the corresponding citation, and the remaining footnotes
are renumbered accordingly. Please check if okay.

In this chapter, we will first discuss why representation
learning is essential for NLP and briefly review the
development history and intellectual origins of
representation learning for NLP. After that, we will
introduce typical approaches of contemporary
representation learning and summarize existing and
potential applications of representation learning. Finally,
we will introduce the general organization of this book.

1.2 Why Representation Learning Is

Important for NLP

NLP aims to build linguistic-specific programs for machines
to understand and use languages. Natural language texts
are typically unstructured data with multiple granularities
used in multiple domains. A deep understanding of natural
languages also requires considerable human knowledge.
There are multiple NLP tasks addressing different goals of
NLP. These characteristics make NLP challenging to
achieve satisfactory performance.

1.2.1 Multiple Granularities

NLP is concerned about multiple levels of language items,
including but not limited to characters, senses, words,
phrases, sentences, paragraphs, and documents. As shown
in Fig. 1.3, each word may be composed of multiple senses,
a sentence is composed of multiple words, and a document
is composed of multiple sentences. The World Wide Web is
even composed of billions of documents linked to each
other, which is not shown in the figure. Moreover, human



languages connect with the physical world, which may be
described as world knowledge.

Fig. 1.3  There are multiple-grained language items, including characters,
senses, words, phrases, sentences, paragraphs, documents, World Wide Web,
as well as external world knowledge, with complicated compositional
semantics. This figure shows some of them composed with each other. (The
images are obtained from wikimedia.org.)

These language items are composed of each other
following complicated patterns of compositional semantics.
NLP is about understanding and processing these language
items, and the key challenge is to model the complicated
composition patterns. Representation learning is able to
represent the semantic meanings of all language items in a
unified semantic space. This significantly contributes to
model complex semantic relations among these language
items.



1.2.2 Multiple Knowledge

A deep understanding of natural languages requires
external human knowledge such as linguistic,
commonsense, world, cognitive, and domain knowledge.
The types of knowledge will be introduced in detail in
Chap. 9. People and machines with different knowledge will
have different-level understandings of the text.

As shown in Fig. 1.4, let’s take the sentence
“Shakespeare was an English playwright,” for example.
With the support of linguistic knowledge, we can capture
the subject, and the object from the sentence by parsing
the syntactic structure. With the commonsense knowledge
of A play is a work of drama, consisting of dialogue

between characters, we know most of Shakespeare’s plays
consist of character dialogues. If some persons also have
some factual knowledge about Shakespeare, such as
Hamlet is written by William Shakespeare, we can infer
that Hamlet is an English play. A person with expert
knowledge of literature may further think about the poetic
form of Shakespeare.

Fig. 1.4  Deep understanding of natural languages requires the support of
multiple external knowledge such as linguistic knowledge, commonsense
knowledge, world knowledge, and domain knowledge. Icons in the figure are
bought or freely downloaded from IconFinder

Knowledge should be provided as much as possible to
make machines more intelligent. For this goal, people have



built many knowledge bases of multiple types and
organized them in different structured forms. However, it is
difficult for symbolic text and knowledge to work together
due to their diverse representation forms, which are
usually remedied by additional engineering efforts such as
entity linking and suffered from error propagation.
Representation learning, in contrast, can easily incorporate
multiple types of structured knowledge into NLP systems
by encoding both sequential text and structured knowledge
into unified embedding forms.

1.2.3 Multiple Tasks

Many NLP tasks have been proposed and studied based on
the same input to meet the needs of different scenarios,
aspects, and levels. Take the sentence in Fig. 1.5 for
example. We can perform multiple tasks on the same
sentence as follows:

Part-of-speech (POS) tagging aims to classify each
word in a text into corresponding part-of-speech types,
such as nouns, verbs, adjectives, adverbs, and
prepositions, based on its context. In this figure, we show
the annotated part-of-speech tags (e.g., NNP, VBD)
following Penn Part of Speech Tags [34].



Fig. 1.5  There are various NLP tasks given the same sentence input, such
as part-of-speech tagging, dependency parsing, named entity recognition,
entity linking, relation extraction, question answering, and machine
translation



Dependency parsing is a language grammar to build
syntactic relations between language items in a sentence.
Here we show the binary dependencies of language items
and the dependency types. It can identify complicated
syntactic relations inside a sentence, which is important
in statistical NLP.
Named entity recognition aims to find named entities
mentioned in the text with pre-defined classes such as
person names, organizations, locations, and time
expressions.
Entity linking further links named entity mentions to
corresponding entities in external knowledge graphs by
resolving those entities with the same names. The task is
important for grounding human language understanding
with the real world.
Relation extraction aims to find relations between two
entities expressed by the sentence. Relation extraction is
a core task of information extraction to acquire
structured knowledge from unstructured text and
complete large-scale knowledge graphs.
Question answering is to read a text and find answers
for a given question. The task is important for the service
of user information acquisition beyond search engines.
Machine translation automatically translates the
sentence from one language to another language.
Machine translation is a long-standing NLP task to break
the language barrier among people all over the world.
Here we only show several NLP tasks, and there are

many more tasks concerning different goals and specific
languages. For example, since there are no natural space
marks between words in the text of Chinese and Japanese,
automatic word segmentation has been proposed for these
languages.

It is evident that all NLP tasks rely on accurate
understanding and representation of given text input. In



this case, building a unified and learnable representation of
an input for multiple tasks will be more efficient and
robust: on the one hand, a better and unified text
representation will help to promote all NLP tasks, and on
the other hand, taking advantage of more learning signals
from multitask learning may contribute to building better
semantic representations of natural languages. Hence,
representation learning can benefit from multitask learning
and further promote the performance of multiple tasks.

1.2.4 Multiple Domains

Natural language texts may be generated from multiple
domains, including but not limited to news articles,
scientific articles, literary works, and online user-generated
content such as product reviews. Moreover, we can also
regard texts in different languages as multiple domains.
Conventional NLP systems must design specific feature
extraction algorithms for each domain according to its
characteristics. In contrast, representation learning can
take advantages of large-scale domain-specific data and
can also transfer representation knowledge across multiple
domains, especially from a much larger general domain to
those specific domains.

1.3 Development of Representation

Learning for NLP

We give a brief introduction to the development history of
representation learning for NLP, from which we can see
the paradigm shift of representation from symbolic
representation to distributed representation, accompanied
by the paradigm shift of machine learning from statistical
learning to deep learning and further to pre-trained
models. The development timeline is also shown in Fig. 1.6.



Fig. 1.6  The timeline for the development of representation learning in NLP.
With the growing computing power and large-scale text data, distributed
representation trained with neural networks from large corpora has become
the mainstream

1.3.1 Symbolic Representation and Statistical

Learning

Words would be a good start for studying representation
schemes in NLP, because words are the minimum units in
natural languages. The easiest way to represent a word in a
computer-readable way (e.g., using a vector) is one-hot

vector, which has the dimension of the vocabulary size and
assigns 1 to the corresponding index of the word to be
represented and 0 to others. It is apparent that one-hot
vectors hardly contain semantic information about words
other than distinguishing them from each other.

The idea of one-hot word representation can be further
used for document representation, i.e., bag-of-words

(BOW) models [18]. BOW models regard a document as a
bag of its words, neglecting the orders of these words in
this document. BOW represents a document as a
vocabulary-size vector, with each word in the document
corresponding to a nonzero dimension and other words to a
zero dimension. The entry value of a word can be used to
indicate the importance score of this word in the document,
e.g., the number of its occurrences. BOW can be regarded
as a combination of one-hot representations of all words in
the document. BOW models are straightforward and work
great in applications like spam filtering, text classification



and clustering, and information retrieval. For example, in
information retrieval, we build BOW vectors of a query and
a document and compute the cosine distances as the
semantic similarity for document ranking. Those documents
that also attach importance to the important words in the
query will be ranked higher. It proves that the distributions
of words can serve as a good representation of documents.

One of the earliest ideas of word representation learning
can date back to n-gram models [35]. It is easy to
understand: when we want to predict the next word in a
sentence, we usually look back at some previous words
(and in the case of n-gram, they are the previous n − 1
words). And if going through a large-scale corpus, we can
count and estimate a reasonable probability of a word
under the condition of all combinations of n − 1 previous
words. These probabilities can predict word sequences and
form vector representations for word meanings because
similar words usually share similar probabilistic
distributions of previous words.

The idea of n-gram models is coherent with the idea of
distributional hypothesis: language items sharing similar
distributions of context have similar meanings [18]. In
another phrase, “a word is characterized by the company it
keeps” [14]. The distributional hypothesis has been a
fundamental idea of many NLP models, from n-gram in
statistical NLP to word2vec and BERT in neural NLP.

In the above cases of one-hot word representation, BOW
document representation, and n-gram models, each entry
in the representation explicitly matches one language item
(e.g., word scores in BOW models). This one-to-one
correspondence between representation entries and
language items is called local representation or
symbolic representation.

The idea of symbolic representation is natural and
straightforward, and most NLP algorithms in the stage of



statistical learning in the 1980s–2000s are based on
symbolic representation. Here we give another two iconic
examples, IBM Model and latent Dirichlet allocation. IBM
model [7] is a classical word alignment algorithm in
statistical machine translation. It automatically builds
lexical translation probabilities between the words of two
languages from their parallel sentences, where words are
regarded as symbolic items without considering their
internal semantic representation. Latent Dirichlet
allocation (LDA) [4] is a classical word and document
representation algorithm. LDA builds latent topics to
represent words and documents. These learned topics are
typically interpretable, even capable of being labeled with
symbolic names [29]. By regarding each latent topic as a
meaningful symbol, we can also regard LDA as an example
of symbolic representation, especially when learning with
Gibbs Sampling [16] by iteratively assigning latent topics
for each word in documents.

1.3.2 Distributed Representation and Deep

Learning

Distributed representation, on the other hand,
represents an object by a pattern of activation distributed
over multiple entries, i.e., a low-dimensional and real-
valued dense vector, and each computing entry can be
involved in representing multiple objects [27]. Distributed
representation has been proved to be more efficient
because it usually has low dimensions. It also prevents from
the sparsity issue that is inevitable for the symbolic
representation due to the power-law distribution in large-
scale data. Beneficial hidden properties can be learned
from large-scale data and emerge in distributed
representation.

Word embeddings can also learn complicated word
relations automatically from large-scale corpora. As



revealed by word2vec, we can identify the analogical
properties of words such as

(1.1)
or

(1.2)
It indicates the embeddings of both king and queen
accurately encode similar semantic meanings with each
other except for gender. The example shows the powerful
capabilities of word embeddings for semantic
representations.

The idea of distributed representation was initially
inspired by the neural computing scheme of humans and
other animals [20]. Brains can use various activation
patterns of neurons to represent different objects. In
distributed representation, the values of an entry in the
low-dimensional vector can be regarded as the activation
state of the specific neuron. It is named distributed because
an object is represented as the activation pattern
distributed over multiple neurons, and the activation state
of one specific neuron does not mean anything.

With the great success of deep learning, distributed
representation has become the most commonly used
approach for representation learning. One of the
pioneering practices of distributed representation in NLP is
neural probabilistic language model (NPLM) [3]. A
language model predicts the conditional probability of the
next word given those previous words in a sentence. n-
gram models can be regarded as simple language models
based on symbolic representation. NPLM assigns a low-
dimensional vector for each word (i.e., word embedding)
and then uses a neural network to predict the next word
based on distributed representations of previous words
(i.e., context embedding, a combination of embeddings of
previous words). By going through the training corpora,



NPLM successfully learns word embeddings as model
parameters to optimize the conditional probability of the
next word or the joint probability of a sentence. Although it
is hard to tell what each entry of a word embedding means,
the vectors indeed encode semantic meanings about the
words, verified by the performance of NPLM.

Inspired by NPLM, many methods have been proposed
to learn word embeddings as model parameters optimized
with language modeling objective, such as word2vec [30],
GloVe [31], and fastText [6]. Although different in model
and algorithm details, these methods are all very efficient
for learning from large-scale corpora and have been widely
used as word embeddings in many NLP models. Word
embeddings can map discrete words into low-dimensional
vectors as informative features in the NLP pipeline and
help to shine a light on neural networks in computing
languages. It makes representation learning a critical part
of NLP.

1.3.3 Going Deeper and Larger with Pre-

training on Big Data

The research on representation learning in NLP further
takes a great leap by ELMo [32] and BERT [11]. These
models apply larger corpora, more parameters, and more
computing resources to build deeper and larger models.
Moreover, they consider the complicated context of the text
to learn richer knowledge of human languages. Instead of
mapping a word to a fixed vector, ELMo and BERT use
multilayer neural networks to build dynamic contextualized
representations of each word based on its specific context
in text, which is especially useful for those words with
multiple meanings. Moreover, BERT starts a new fashion
(although not originated from it) of the pre-training-fine-

tuning pipeline. As shown in Fig. 1.7, previous word
embeddings learned from large corpora were adopted as



initialization of input representations of neural networks
for downstream tasks; starting from BERT, it becomes a
common practice to take the whole neural network
structure such as BERT and all parameters pre-trained on
large text corpora to downstream tasks, with those
parameters further fine-tuned on supervised data of
downstream tasks.

Fig. 1.7  This figure shows how word embeddings and pre-trained language
models work in NLP pipelines. They both learn distributed representations for
language items (e.g., words) through pre-training objectives and transfer them
to target tasks. Furthermore, pre-trained language models can also transfer
model parameters

The models like BERT are pre-trained through language
modeling objectives on large corpora, thus named as pre-

trained language models (PLM). PLMs take advantage
of large-scale text corpora and have achieved state-of-the-
art on almost all NLP benchmarks. Hence, although not a
big theoretical breakthrough, PLMs have attracted wide
attention in the NLP and machine learning community. Of
course, PLMs reveal many distinct characteristics
compared to conventional deep learning methods, such as
parameter-efficient tuning capabilities [12] and in-context
few-shot learning capabilities [8]. Some experiments of
knowledge probing demonstrate that PLMs implicitly
encode a variety of linguistic and world knowledge and
patterns inside the multilayer neural network parameters
[19, 24]. All these notable performances and interesting
analyses suggest that there are a lot of open problems to



explore in PLMs, as the future of representation learning
for NLP.

In summary, representation learning for NLP has
evolved from symbolic to distributed representation
following the distributional hypothesis. Starting from
word2vec, word embeddings learned from large corpora
have shown outstanding performance in many NLP tasks.
Recent PLMs learn complicated contextualized
representations from large-scale text corpora and start the
new paradigm of the pre-training-fine-tuning pipeline.
Representation learning has revolutionized NLP in the past
decades. What will be the next big breakthrough in
representation learning for NLP? We hope this book can
give some inspiration by introducing the evolutionary paths
and most recent advances of representation learning for
NLP.

1.4 Intellectual Origins of

Distributed Representation

For this vital revolution in artificial intelligence (AI), one
may be interested in the intellectual origins of the essential
idea of distributed representation. To our knowledge, the
exact term “distributed representation” was first proposed
in parallel distributed processing (PDP) [27]. Still, the idea
of distributed representation may have its prototypes in
different areas. Here we try to find some clues between
distributed representation and related areas, including
neuroscience, AI, machine learning, and linguistics.

1.4.1 Representation Debates in Cognitive

Neuroscience

The most direct intellectual origin of distributed
representation is cognitive neuroscience. A central topic
in cognitive neuroscience is how information and



knowledge are represented in human brains, and a long-
standing debate is whether representation is localized or
distributed. In the history of cognitive neuroscience,
researchers used the terms local and distributed in
different ways. For example, they may be used to describe
the views that particular knowledge is either stored in
specific brain regions or spread across the entire cortex
[15].

Here we focus on the most well-known version from the
classical book of parallel distributed processing (PDP) [27].
In this book, they raise two opposite representation
schemes where the definition of local representation is

Given a network of simple computing elements and
some entities to be represented, the most
straightforward scheme is to use one computing
element for each Entity. This is called a local

representation. (from [27])

and the definition of distributed representation is

Each Entity is represented by a pattern of activity
distributed over many computing elements, and each
computing element is involved in representing many
different entities. (from [27])

We can build a metaphor between one-hot
representation in NLP and local representation in
neuroscience, by regarding each entry in the vocabulary-
size vector as a neuron in human brains, with the value 1
indicating active and the value 0 inactive. The view of local
representation was also referred to as the famous
grandmother cell hypothesis, which assumes a hypothetical
neuron can encode and respond to a specific and
complicated entity such as someone’s grandmother [2].



From the view of one-hot representation, there will be an
entry corresponding to someone’s grandmother.

Local representation is straightforward because it is a
simple mirror of the knowledge structure, with each object
and concept corresponding to distinct neurons. Based on
local representation, high-level knowledge can be
organized into symbolic systems, such as concept
hierarchy, propositional networks, semantic networks,
schemas, frames, and scripts [1].

The above metaphor also works on distributed
representation between NLP and neuroscience by
regarding each vector entry as a neuron. The entry values
indicate the status of neurons, active or inactive. The
distributed representation scheme is not so
straightforward, but it is already widely accepted that
visual signals may activate millions of neurons throughout
many regions of the visual cortex.

Although it is debatable whether individual neurons
encode high-level concepts or objects, distributed
representation seems to be a general solution for
information processing at different levels, ranging from
visual stimulus to high-level concepts. As discussed in PDP
[27], distributed representation has better representation
capacity, automatic generalization to novel entities, and
learnability to changing environments. All these
characteristics are valuable to our modern world with rich
data for machine learning and have been verified in the
recent revolution of deep learning.

1.4.2 Knowledge Representation in AI

An essential branch of philosophy is the theory of
knowledge, also known as epistemology. Epistemology
studies the nature, origin, and organization of human
knowledge and concerns the problems like where
knowledge is from and how knowledge is organized.



In philosophy, for the problem of how knowledge is

organized, philosophers have developed many tools and
methods, typically in the symbolic form, to describe human
knowledge, and some of them, such as formal logic, have
played an essential role in computer science. For the
problem of where knowledge is from, there are two basic
views: rationalism regards reason as the chief source of
human knowledge and regards intellectual and deductive
as truth criteria; empiricism generally appreciates the role
of sensory experience in the generation of knowledge.

By building a metaphor between AI and humans,
knowledge representation can be regarded as the
epistemology for machines in AI. AI is also concerned about
the above two problems, and many works have been done
following the two lines.

For the problem of how knowledge is organized in AI,
we can conclude two main approaches, symbolism and
connectionism.

Symbolism aims to develop formal symbolic systems to
organize knowledge of machine intelligence. Most
pioneering works in AI follow the approach of symbolism,
ranging from general problem solvers by Newell and Simon
in 1959 to expert systems and knowledge bases by Ed
Feigenbaum in the 1980s. Hence, some news articles on AI
may imply symbolism as an obsolete approach, named old-
fashioned AI (OFAI). With the rise of the Internet, WWW,
and big data, remarkable works such as semantic Web by
Tim Berners-Lee in the 2000s and recent large-scale
Knowledge Graphs by Google in the 2010s can also be
regarded as following the symbolism approach for
knowledge representation.

Connectionism is the approach inspired by cognitive
neuroscience, rooted in the works such as the perceptron
by Frank Rosenblatt in the 1950s and parallel distributed
processing (PDP) [27] in the 1980s. We usually regard deep



learning in the 2010s as the great success of this approach,
which has been almost 40 years since distributed
representation was first proposed in the 1980s.

For the problem of where knowledge is from in AI, the
approaches can be divided into rationalism and empiricism.
The rationalism approach indicates that knowledge,
including facts and rules, is directly designed or collected
by human experts, i.e., the creators of AI agents; AI agents
can complete tasks based on the given knowledge. The
expert systems in the 1980s typically follow this approach.
It is obvious that the manually organized knowledge is not
flexible and dynamic, cannot generalize well to novel cases,
and cannot evolve as the environment changes. With the
development of the Internet and big data, the empiricism
approach becomes feasible to learn from large-scale data,
including unlabeled general data and labeled task-specific
data. Statistical learning starting from the end of the 1980s
and deep learning starting from the 2010s both follow the
empiricism approach.

Epistemology of philosophy only developed formal and
symbolic tools extensively. But for computational
epistemology in AI, the approach of knowledge source and
the approach of knowledge form have been studied in
mixed ways in different periods of AI history: in the
preliminary stage of the 1950s–1980s, most works followed
a mix of symbolism and rationalism, also named as old-
fashioned AI (OFAI); in statistical learning 1980s–2000s,
the mainstream is a mix of symbolism and empiricism; and
in deep learning from 2010s, it becomes the mix of
connectionism and empiricism.

Note that, although rationalism and empiricism

represent two distinct approaches for where knowledge is
from, it does not mean they don’t or cannot work together.
On the one hand, machine learning models typically learn
from data following the empiricism approach. On the other



hand, the design of model architectures and algorithms
involves the wisdom of human experts following the
rationalism approach. It is the same to symbolism and
connectionism. McCulloch and Pitts designed a
computational scheme of symbolic logics using elementary
units of neural systems in 1943 [28]; in the era of deep
learning, neural-symbolic networks are also an active
research area for reasoning and planning with neural
networks [38].

It seems not feasible to explicitly mix rationalism and
connectionism. However, as Noam Chomsky and many
researchers indicated, human brains are not blank slates
[9]. We can also regard the architectural design of neural
networks as a kind of prior knowledge following the theory
of rationalism. For humans and AI, we should not set up
barriers between symbolism and connectionism or between
rationalism and empiricism. All of them may play some
roles in human and machine intelligence. It doesn’t matter

whether a cat is black or white, as long as it catches mice.

As we will show in this book, deep learning with
distributed representation can manipulate symbols as well
as other discrete information, such as instructions,
operations, and codes (Chap. 5). We can also modify the
architecture of neural networks given prior knowledge to
fit downstream tasks better (Chap. 9). Hence, we believe
distributed representation is a good foundation to take
advantage of all promising approaches of knowledge
sources and forms, with many open and interesting
problems deserving further exploration.

1.4.3 Feature Engineering in Machine Learning

Feature engineering is a critical step in the pipeline of
statistical learning, aiming to build feature vectors of
instances for machine learning. It can be regarded as the
representation learning of instances in the era of statistical



learning. Feature engineering provides another intellectual
origin of distributed representation, i.e., dimensionality
reduction of raw data by mapping from a high-dimensional
space into a low-dimensional space, usually with the term
“embedding.”

Feature engineering can be divided into feature
selection and feature extraction. Feature selection
techniques select the most informative features and remove
redundant and irrelevant ones from large amounts of
candidates to represent instances such as words and
documents. This approach is expected to improve
representation efficiency and remedy the curse of
dimensionality. Many methods of feature selection and
term weighting have been explored on specific NLP tasks
such as text classification [36]. Since candidates for feature
selection are usually symbols such as words, phrases, and
n-grams, the selected feature vocabulary is also a symbolic
representation.

Feature extraction aims to build a novel feature space
from raw data, with each dimension of the feature space
either interpretable or not. Latent topic models and
dimensionality reduction can be regarded as representative
approaches for feature extraction. Latent topic models
represent each document and word as a distribution over
latent topics, which can be regarded as interpretable
space. Examples are probabilistic latent semantic analysis
(pLSA) [21] and latent Dirichlet allocation (LDA) [4].
Dimensionality reduction methods learn to map objects into
a low-dimensional and uninterpretable space. Examples are
principal component analysis (PCA) and matrix
factorization methods like singular value decomposition
(SVD).

Note that the term embedding in machine learning
refers to either the projection process (such as the
algorithm locally linear embedding [33]) or the



corresponding low-dimensional representation of objects.
We can see that, without the metaphor between human
brains and AI in deep learning and distributed
representation, the idea of representing objects in a low-
dimensional space has already been widely used in
statistical learning. The representation scheme is the same
between low-dimensional embedding and distributed
representation in deep learning. Some neural networks,
such as Autoencoder, used to be regarded as a
dimensionality reduction method of data.

Hence, in recent years of deep learning and AI, the term
distributed representation and embedding are used
mutually to refer to each other. The difference is that the
model architecture of most dimensionality reduction
methods in statistical learning is usually shallow and
straightforward and the algorithm is also restricted to
specific data forms such as matrix decomposition. Those
tasks that can easily organize data as matrix benefit much
from these methods, such as recommender systems
focusing on user-item interactions [23]. In contrast, the
model architecture of deep learning is typically deep with
multiple neural layers, capable of modeling complicated
interactions and capturing sophisticated semantic
compositions ubiquitous in human languages.

1.4.4 Linguistics

Human languages are regarded as the epitome of human
intelligence, and linguistics aims to study the nature of
human languages. Since human languages are regarded as
one of the most complicated symbolic systems, linguistics
typically follows the symbolism approach.

An influential theory of linguistics is structuralism

derived from the founder of modern linguistics, Ferdinand
de Saussure. Saussure proposed the following perspectives
[10]: (1) a symbol (or sign) in human languages is



composed of the signified (i.e., a concept in mind) and the
signifier (i.e., a word token, or its sound or image). (2) For
a symbol, “the bond between the signified and the signifier
is arbitrary” [10]. For example, there is no intrinsic

relationship between the concept of “sister” and the sound
of the word “sister”; for another example, the words in
different languages may refer to the same concept. (3)
Hence, a symbol can only get its meaning from its
relationship with other symbols. For example, the meaning
of the word “parent” is related to the meaning of the
corresponding word “child.” In summary, the structuralism
theory regards human languages as a symbolic system
where each item is defined by its relationship to other
items in the system [26].

The idea of distributed representation coincides in spirit
with structuralism. By distributed representation learning,
we can see that all language items we are interested in are
projected into a unified low-dimensional semantic space. As
demonstrated in Fig. 1.1, the geometric distance between
two language items in the semantic space indicates their
semantic relatedness; the semantic meaning of an item
corresponds to its geometric relationships with other items,
such as above-mentioned w(queen) ≈w(king) −w(man) + 
w(woman). In other words, the relative closeness with other
items rather than its absolute position in the semantic
space reveals an item’s meaning.

Later, the structuralism theory evolved into a more
computational version, distributionalism, arguing that the
meanings of linguistic items are defined by their
distribution in text corpora. The distributionalism is further
developed into the distributional hypothesis formalized by
American linguist Zellig Harris, arguing that language
items sharing similar distributions of context have similar
meanings [18]. The distributional hypothesis provides a
computational way of following the empiricism approach to



learning semantic representations of text from large-scale
corpora, which is essential to distributed representation
learning.

1.5 Representation Learning

Approaches in NLP

In the history of AI, researchers have developed various
effective and efficient approaches to learning semantic
representations for NLP. Here we list some typical
approaches.

1.5.1 Feature Engineering

As introduced above, semantic representations for NLP in
the early stage often come from statistics instead of
learning with optimization. Feature engineering is a typical
approach to representation learning in statistical learning
and can be divided into feature selection and feature
extraction.

During the era of statistical learning, feature selection
techniques have been extensively explored in NLP, focusing
on selecting the most informative symbolic features
because of the symbolic nature of human languages. For
feature engineering of NLP, researchers should take care
of issues such as feature set construction, feature
weighting, and smoothing.

For statistical learning of various NLP tasks, we should
determine what features should be considered. All syntactic
and semantic features of language items, such as words
and their part-of-speech (POS) tags, n-grams, word and
entity types, semantic roles, and parse trees, may be
helpful in specific NLP tasks. These linguistic features may
be extracted by specific NLP systems or provided by given
tasks. Even for the features of language items, how to



select those most informative ones to form the feature set
is also an important issue [36].

After the feature set is determined, measuring the
feature weight for a specific instance is also essential. For
example, in n-gram or bag-of-words models, entries in the
representation are usually frequencies, occurrence
numbers, or other weight scores of the corresponding
language items counted in a given text or large-scale
corpora. These feature scores indicate essential semantic
characteristics of the given instance.

Moreover, the dimension of the feature space in
statistical NLP is usually substantial, and the feature vector
of a word or document correspondingly exhibits the
sparsity issue, i.e., the curse of dimensionality in the
context of NLP. To address the sparsity issue, besides
dimensionality reduction techniques, researchers also
developed smoothing techniques of semantic
representation [37] by taking advantage of more context of
the given document, such as its related documents.

In summary, in a long period before the era of
distributed representation, researchers devoted lots of
effort to manually designing, selecting, and weighing useful
linguistic features and incorporating them as inputs of NLP
models. The feature engineering pipeline heavily relies on
human experts of specific tasks and domains, is thus time-
consuming and labor-intensive, and cannot generalize well
across objects, tasks, and domains.

1.5.2 Supervised Representation Learning

Distributed representations can emerge from the
optimization of neural networks under supervised learning.
In hidden layers of neural networks, the different activation
patterns of neurons represent different objects. With a
training objective (usually a loss function for the target
task) and supervised signals (usually the gold-standard



labels for training instances of the target task), the
networks can learn to find better parameters for
representing language items via optimization such as
gradient descent. With proper training, the hidden states
will become informative and generalized as good semantic
representations of natural languages.

For example, to train a neural network for sentiment
classification, the loss function is usually formalized as the
cross entropy of model predictions considering gold-
standard sentiment labels as supervision. By optimizing the
objective with many supervised training instances, in
company with the training loss getting smaller and the
classification performance getting better, the model is
expected to build better sentence representations as
classification features.

1.5.3 Self-supervised Representation Learning

In many cases, we do not have human-labeled data for
supervised learning. We need to find “labels” intrinsically
from large-scale unlabeled data to acquire the training
objective necessary for neural networks. The approach can
be regarded as a mixed way between supervised and
unsupervised learning, called self-supervised learning.

Language modeling is a typical self-supervised objective
because it does not require human annotations. For the
learning objective of predicting the next word given
previous context words, we can effortlessly obtain the gold
standard of the next words from large-scale corpora.

Another example of self-supervised representation
learning is Autoencoder. An Autoencoder has a reduction
(encoding) phase and a reconstruction (decoding) phase.
The model will encode an object into a low-dimensional
representation in the reduction phase and reconstruct the
object from the intermediate representation in the
reconstruction phase. Here the training objective is the
reconstruction loss, taking the original data as the gold



standard. During the training process, meaningful
information will be encoded and kept in latent
representations, and noisy or useless signals will be
discarded.

The most advanced pre-trained language models

combines the advantages of both self-supervised learning
and supervised learning. In the pre-training-fine-tuning

pipeline, pre-training can be regarded as self-supervised
learning from large-scale unlabeled corpora, and fine-
tuning is supervised learning with labeled task-specific
data. Self-supervised learning has dramatically succeeded
in NLP because the plain text contains abundant knowledge
and patterns about languages. Self-supervised learning can
effectively learn from almost infinite large-scale text
corpora. Nowadays, it is still one of the most exciting
research areas of representation learning for NLP, and a
growing number of researchers are devoting their efforts to
learning better pre-trained language models.

Besides, many other machine learning approaches have
also been explored in representation learning for NLP, such
as adversarial training, contrastive learning, few-shot
learning, meta-learning, continual learning, and
reinforcement learning. It is still an active research topic
on developing effective and efficient representation
learning methods for NLP from large-scale and complicated
corpora and computing power.

1.6 How to Apply Representation

Learning to NLP

We summarize four typical approaches to applying
representation learning of multiple objects to promote NLP
systems, including input augmentation, architecture
reformulation, objective regularization, and parameter
transfer.



As shown in Fig. 1.8, a typical scenario is, if we have
some structured knowledge, representation learning can
help to incorporate the knowledge into various components
of an NLP system, such as input, architecture, and
objective. It also works with unstructured knowledge, such
as word representations from large-scale text corpora.
Moreover, the pre-training-fine-tuning pipeline in pre-
trained language models offers parameter transfer to an
NLP system.

Fig. 1.8  The approaches of applying representation learning in NLP systems,
including input augmentation, architecture reformulation, objective
regularization, and parameter transfer. (The images are obtained from
wikimedia.org.)

1.6.1 Input Augmentation

The basic idea of input augmentation is to learn semantic
representations of objects in advance. Then, object
representations can be augmented as some parts of the
input in downstream models. For example, word
embeddings can be learned with language modeling from
large-scale corpora and then used as input initialization for



downstream NLP models. During the learning process of
downstream models, we can either keep these word
embeddings fixed and only tune other model parameters or
tune all parameters considering word embeddings. There is
no answer to which strategy is better. In practice, it should
be determined by empirical comparison, influenced by
many factors, such as the amount of supervised
downstream data and the complexity of downstream tasks.

We can also introduce external knowledge related to
input to augment inputs of downstream models. In this
book, we will introduce world knowledge (Chap. 9),
linguistic and commonsense knowledge (Chap. 10), and
domain knowledge (Chaps. 11 and 12), whose
representations can be learned based on either knowledge
graphs or symbolic rules and then integrated into specific
NLP systems as input augmentation for improving
performance.

1.6.2 Architecture Reformulation

We can use objects (such as entity knowledge) and their
distributed representations to restructure the architecture
of neural networks for downstream tasks. For example, as
we introduce in Chap. 10, we take sememe as the minimum
indivisible unit of semantic meanings in human languages
[5] and build linguistic and commonsense knowledge
graphs with sememe-sense-word hierarchy. With the help
of sememe knowledge, we can reformulate the next-word
prediction task in neural language modeling into a pipeline
of first predicting sememes of the next word, then
predicting related senses, and finally predicting the next
word. In this way, we make neural language models more
interpretable and robust.

1.6.3 Objective Regularization

We can also apply object representations to regularize
downstream model learning. As mentioned above, there are



usually multiple language items in NLP tasks. Since all
these items are mapped into a unified semantic space using
representation learning, we can formalize various learning
objectives to regularize model learning. For example,
suppose we train neural language models from large-scale
corpora and learn entity representations from a world
knowledge graph. We can add a new learning objective of
entity linking as regularization by minimizing the loss of
predicting a mentioned entity in a sentence to the
corresponding entity in the knowledge graph. With the help
of more informative signals for learning, NLP models are
expected to achieve better performance.

1.6.4 Parameter Transfer

The semantic composition and representation capabilities
of language items such as sentences and documents lie in
the weights within neural networks. We can directly
transfer these pre-trained model parameters to
downstream tasks in an end-to-end fashion. We have
mentioned the approach of parameter transfer in the pre-
training-fine-tuning pipeline of pre-trained language
models. Most NLP tasks are at the levels of sentences and
documents: the tasks like sentiment classification, natural
language inference, machine translation, and relation
extraction require sentence representation; the tasks like
question answering and information retrieval require
document representation. All these tasks can benefit from
the capabilities of sentence or document representations
from pre-trained language models on large-scale corpora.
Moreover, many representation learning methods have
been designed specifically for sentences and documents
and benefit these NLP tasks, which will be introduced in
the corresponding chapters of this book.



1.7 Advantages of Distributed

Representation Learning

From the above brief introduction, we can summarize the
following advantages of distributed representation learning
for NLP.

Unified Representation Space  As shown in Fig. 1.9,
distributed representation can provide a unified
representation scheme and space for natural languages.
The unified scheme and space can facilitate knowledge
transfer across multiple language items, multiple human
knowledge, multiple NLP tasks, and multiple application
domains, as discussed in Sect. 1.2, and significantly
improve the effectiveness and robustness of NLP
performance.

Fig. 1.9  Distributed representation can provide unified semantic space for
multiple language items and for multiple NLP tasks

Learnable Representation  The embeddings in
distributed representation can be learned as a part of
model parameters in supervised or self-supervised ways. It
is the reason for the name “representation learning.”
Unlike previous feature-engineered representation



methods, this enables distributed representation adaptable
to NLP tasks by learning from task-specific data.

End-to-End Learning  Feature engineering in the
symbolic representation scheme usually consists of multiple
learning components, such as feature selection and term
weighting. These components are conducted step-by-step in
a pipeline, which cannot be well optimized according to the
ultimate goal of the given task. In contrast, distributed
representation learning supports end-to-end learning via
back-propagation across neural network hierarchies.

1.8 The Organization of This Book

The book focuses on the distributed representation scheme
(i.e., embedding) in NLP and talks about recent advances in
representation learning methods for (1) multiple language
items including words, sentences, and documents; (2)
closely related topics including graphs, cross-modality, and
robustness; and (3) external knowledge including world
knowledge, linguistic and commonsense knowledge, and
domain knowledge.

We start the book from word representation. By giving a
thorough introduction to word representation in Chap. 2,
readers are expected to learn basic ideas of representation
learning for NLP. After that, we introduce the techniques of
sentence and document representation learning in Chap. 4,
focusing on compositionally acquiring semantic
representations of a higher-level language item from its
components. We further introduce the most advanced
techniques, pre-trained language models, in Chap. 5. After
going through these chapters, readers will establish
essential knowledge about deep learning techniques in NLP
and realize the key to the deep learning revolution in NLP
is distributed representation learning.



There are three essential and closely related topics for
representation learning in NLP. First, the graph is also a
natural way to represent objects and their relationships. In
Chap. 6, we introduce representation learning techniques
for modeling nodes, edges, and graphs; how graph
representation learning can help NLP. Second, another
important topic related to NLP is cross-modal
representation learning. It studies how to build unified
semantic representations across distinct modalities, such
as texts, audios, images, and videos. In Chap. 7, we focus
on the interaction between vision and text to introduce
techniques and advances in cross-modal representation
learning. Third, the robustness of semantic representations
is critical for NLP applications, which will be introduced in
Chap. 8.

In this book, we also argue that a deep understanding of
natural languages requires the support of multiple human
knowledge. Representation learning can incorporate
external knowledge for NLP, known as knowledge-guided
NLP, as shown in Fig. 1.10. Here, we introduce three
typical forms of knowledge representation closely related
to NLP: entity-based world knowledge, sememe-based
linguistic and commonsense knowledge, and legal and
biomedical domain knowledge.



Fig. 1.10  The framework of knowledge representation learning (KRL),
knowledge acquisition, and knowledge-guided NLP

In Chap. 9, we give a general introduction to knowledge
representation learning (KRL) and take entity-based world
knowledge as an example to introduce KRL methods and
knowledge-guided NLP. World knowledge representation
typically encodes world facts from knowledge graphs with
entities and their relations into continuous semantic space.
With world KRL, we can make NLP models knowledgeable
of more information about those entities in text, such as
rich attributes or relations with other entities.

Sememe representation encodes linguistic and
commonsense knowledge of natural languages, where
sememe is defined as the minimum indivisible unit of



semantic meanings in human languages [5]. As shown in
Chap. 10, with the help of sememe representation learning,
we can get more interpretable and robust NLP models.

There is also rich and complicated domain knowledge
along with large amounts of domain-specific texts. Domain
knowledge is important for the accurate understanding of
domain texts. In Chaps. 11 and 12, we take the legal and
biomedical domains as examples to introduce how to
represent domain knowledge of distinct forms and facilitate
domain-specific NLP systems.

At the end of the book, we share some views about
challenging topics in representation learning for NLP. We
hope the outlook can inspire more readers to play a part in
building more powerful representation learning for NLP
and AI.
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This is the introductory chapter of the second edition of
the book Representation Learning for Natural Language

Processing, with its first edition published in 2020 [25]. As
compared to the first edition of this chapter, the main
changes include the following: (1) we added the part
Intellectual Origins of Distributed Representation, and (2)
we comprehensively supplemented and updated the
information, discussions, examples, and figures in other
existing sections.
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Abstract

Words are the building blocks of phrases, sentences, and
documents. Word representation is thus critical for natural
language processing (NLP). In this chapter, we introduce
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efforts in making word representations more informative
and interpretable. Finally, we present applications of word
representation learning to NLP and interdisciplinary fields,
including psychology, social sciences, history, and
linguistics.

2.1 Introduction

The nineteenth-century philosopher Wilhelm von Humboldt
described language as the infinite use of finite means,
which is frequently quoted by many linguists such as Noam
Chomsky, the father of modern linguistics. Apparently, the
vocabulary in human language is a finite set of words that
can be regarded as a kind of finite means. Words can be
infinitely used as building blocks of phrases, sentences, and
documents. As human beings start learning languages from
words, machines need to understand each word first so as
to master the sophisticated meanings of human languages.
Hence, effective word representations are essential for
natural language processing (NLP), and it is also a good
start for introducing representation learning in NLP.

We can consider word representations as the knowledge
of the semantic meanings of words. As discussed in Chap.
1, we can investigate word representations from two
aspects, how knowledge is organized and where knowledge
is from, i.e., the form and source of word representations.

The form of word representation can be divided into the
symbolic representation (Sect. 2.2) and the distributed

representation (Sect. 2.3), which respectively correspond
to symbolism and connectionism mentioned in Chap. 1.
Both forms represent words into vectors to facilitate
computer processing. The essential difference between
these two approaches lies in the meaning of each
dimension. In symbolic word representation, each
dimension has clear meanings, corresponding to concrete



concepts such as words and topics. The symbolic
representation form is straightforward to human
understanding and has been adopted by linguists and old-
fashioned AI (OFAI). However, it’s not optimal for
computers due to high dimensionality and sparsity issues:
computers need large storage for these high-dimensional
representations, and computation is less meaningful
because most entries of the representations are zeros.
Fortunately, the distributed word representation
overcomes these problems by representing words as low-

dimensional and real-valued dense vectors. In distributed
word representation, each dimension in isolation is
meaningless because semantics is distributed over all
dimensions of the vector. Distributed representations can
be obtained by factorizing the matrices of symbolic
representations or learned by gradient descent
optimization from data. In addition to overcoming the
aforementioned problems of symbolic representation, it
handles emerging words easily and accurately.

The effectiveness of word representation is also
determined by the source of word semantics. A word in
most alphabetic languages, such as English, is usually a
sequence of characters. The internal structure usually
reflects its speech or sound but helps little in
understanding word semantics, except for some
informative prefixes and suffixes. By taking human
languages as a typical and complicated symbolic system as
structuralism suggests (Chap. 1), words obtain their
semantics from their relationship to other words. Given a
word, we can find its hypernyms, synonyms, hyponyms, and
antonyms from a human-organized linguistic knowledge

base (KB) like WordNet [52] to represent word semantics.
By extending structuralism to the distributional hypothesis,
i.e., you shall know a word by the company it keeps [24],
we can build word representations from their rich context



in large-scale text corpora. Since most linguistic
knowledge graphs are usually annotated by linguists, they
are convenient to be used by humans but difficult to
comprehensively and immediately reflect the dynamics of
human languages. Meanwhile, word representations
obtained from large-scale text corpora can capture up-to-
date semantics of words in the real world with few
subjective biases.

We can summarize existing methods of word
representation as a mix of the above two perspectives. In
the era of statistical NLP, word representation follows the
symbolic form, obtained either from a linguistic knowledge
graph (Fig. 2.1a) or from large-scale text corpora (Fig.
2.1b), which will be introduced in Sect. 2.2.

Fig. 2.1  The word representations can be divided according to their form of
representation and source of the semantics: (a) shows the symbolic
representations that use the knowledge base as the source, which is adopted by
conventional linguistics; (b) shows the symbolic representations that adopt the
distributional hypothesis as the foundation of the semantic source; (c) shows
the distributed representation learned from large-scale corpora based on the
distributional hypothesis, which is the mainstream of nowadays word
representation learning

In the era of deep learning, distributed word
representation follows the spirits of connectionism and



empiricism. It learns powerful low-dimensional word
vectors from large-scale text corpora and achieves ground-
breaking performance on numerous tasks (Fig. 2.1c). In
Sect. 2.3, we will present representative works of
distributed word representation such as word2vec [48] and
GloVe [57]. These methods typically assign a fixed vector
for each word and learn from text corpora. To address
those words with multiple meanings under different
contexts, researchers further propose contextualized word
representation to capture sophisticated word semantics
dynamically. The idea also inspires subsequent pre-trained
models, which will be introduced in Chap. 5.

Many efforts have been devoted to constructing more
informative word representations by encoding more
information, such as multilingual data, internal character
information, morphology information, syntax information,
document-level information, and linguistic knowledge, as
introduced in Sect. 2.4. Moreover, it would be a bonus if
some degree of interpretability is added to word
representation, and we will also briefly describe
improvements in interpretable word representation.

Word representation learning has been widely used in
many applications in NLP and other areas. In NLP, word
representations can be applied to word-level tasks such as
word similarity and analogy and simple downstream tasks
such as sentiment analysis. We note that, with the
advancement of deep learning and pre-trained models,
word representations are less used in isolation in NLP but
more as building blocks of neural language models, as
shown in Chaps. 3, 4, and 5. Meanwhile, word
representations play indispensable roles in interdisciplinary
fields such as computational social sciences for studying
social bias and historical change.



2.2 Symbolic Word Representation

Since the ancient days of knotted strings, human ancestors
have used symbols to record and share information. As time
progressed, isolated symbols gradually merged to form a
symbol system. This system is human language. In fact,
human language is probably the most complex and
systematic symbol system that humans have ever built. In
human language, each word is a discrete symbol that
contains a wealth of semantic meaning. Therefore, ancient
linguists also regard each word as a discrete symbol.

This common practice can also apply to NLP in modern
computer science. In this section, we introduce three
traditional symbolic approaches to word representations,
i.e., one-hot word representation, linguistic KB-based word
representation, and corpus-based word representation.

2.2.1 One-Hot Word Representation

One-hot representation is the simplest way for symbol-
based word representation, which can be formalized as
follows. Given a finite set of word vocabulary V = {w(1), w(2),
…, w(|V |)}, where |V | is the vocabulary size, one-hot
representation represents an i-th word w(i) with a |V |-
dimensional vector w(i), where only the i-th dimension has a
value 1 while all other dimensions are 0. That is, each
dimension  is defined as:

(2.1)

In essence, the one-hot word representation maps each
word to an index of the vocabulary. However, it can only
distinguish between different words and does not contain
any syntactic or semantic information. For any two words,
their one-hot vectors are orthogonal to each other. That is,



the cosine similarity between cat and dog is the same as
the similarity between cat and sun, which are both zeros.

Although we do not have much to talk about one-hot
word representation itself, it is the foundation of bag-of-
words models for document representations, which are
widely used in information retrieval and text classification.
Readers can refer to document representation learning
methods in Chap. 4.

As mentioned, there is no internal semantic structure in
the one-hot representation. To incorporate semantics in the
representation, we will present two methods with different
sources of semantics: linguistic KB and natural corpus.

2.2.2 Linguistic KB-based Word Representation

As we introduced in Chap. 1, rationalism regards the
introspective reasoning process as the source of
knowledge. Therefore, the researchers construct a complex
word-to-word network by reflecting on the relationship
between words. For example, human linguists manually
annotate the synonyms and hypernyms1 of each word. In
the well-known linguistic knowledge base WordNet [52],
the hypernyms and hyponyms of dog are annotated as Fig.
2.2. To represent a word, we can use the vector forms just
like one-hot representation as follows:

(2.2)



Fig. 2.2  Hypernyms and hyponyms of dog in WordNet [52]. The dog.n.01

denotes the first synset of dog used as a noun

But it is clear that this representation has limited
expressive power, where the similarity of two words
without common hypernyms and hyponyms is 0. It would be
better to directly adopt the original graph form, where the
similarity between the two words can be derived using
metrics on the graph. For synonym networks, we can
calculate the distance between two words on the network
as their semantic similarity (i.e., the shortest path length
between the two words). Hierarchical information can be
utilized to better measure the similarity for hypernym-
hyponym networks. For example, the information content
(IC) approach [61] is proposed to calculate the similarity
based on the assumption that the lower the frequency of
the closest hypernym of two words is, the closer the two
words are.

Formally, we define the similarity  as follows:
(2.3)



where C(w1, w2) is the common hypernym set of w1 and w2
and P(w) is the probability of word w’s appearance in the
corpus.2 Intuitively, P(w) is the generality of the word w. It
indicates that if all common hypernyms of w1 and w2 are
very general, then  will be very small. But if some
hypernyms of w1 and w2 are specific,  will have a
higher score, which indicates that these two words are
closely related to each other. A vivid example is shown in
Fig. 2.3.

Fig. 2.3  doctor.n.01 and nurse.n.01 share a rare ancestor
health_professional.n.01, their similarity is large. But the closest common
ancestor of doctor.n.02 and nurse.n.01 is people.n.01, which is common.
Therefore the similarity between them is small

2.2.3 Corpus-based Word Representation

The process of constructing a linguistic KB is labor-
intensive. In contrast, it is much easier to collect a corpus.
This motivation is also supported by empiricism, which
emphasizes knowledge from naturally produced data.

The correctness of automatically derived
representations from a corpus relies on the linguistic
hypothesis behind them. We start with the bag-of-words

hypothesis. To illustrate this hypothesis, we temporarily
shift our attention to document representation. This
hypothesis states that we can ignore the order of words in



a document and simply treat the document as a bag (i.e., a
multiset3) of words. Then the frequencies of the words in
the bag can reflect the content of the document [66]. In
this way, a document is represented by a row vector in
which each element indicates the presence or frequency of
a word in the document. For example, the value of the
entry corresponding to word cat being 3 means that cat

occurs three times in the document, and an entry
corresponding to a word being 0 means that the word is not
in the document [67]. In this way, we have automatically
constructed a representation of the document.

How does this inspire us to construct the word
representations of greater interest in this chapter? In fact,
as we stack the row vectors of each document to form a
document (row)-word (column) matrix, we can shift our
attention from rows to columns [17]. Each column now
represents the occurrence of a word in a stack of
documents. Intuitively, if the words rat and cat tend to
occur in the same documents, their statistics in the
columns will be similar.

In the above approach, a document can be considered as
the context of a word. Actually, more flexibility can be
added in defining the context of a word to obtain other
kinds of representations. For example, we can define a
fixed-size window centered on a word and use the words
inside the window as the context of that word. This
corresponds to the well-known distributional hypothesis

that the meaning of a word is described by its companions
[24]. Then we count the words that appear in a word’s
neighborhood and use a dictionary as a word
representation, where each key is a context word whose
value is the frequency of the occurrence of that context
word within a certain distance.

To further extend the context of a word, several works
propose to include dependency links [56] or links induced



by argument positions [21]. Interested readers can refer to
a summary of various contexts used for corpus-based
distributional representations [65].

In summary, in symbolic representations, each entry of
the representation has a clear and interpretable meaning.
The clear interpretable meaning can correspond to a
specific word, synset, or term, and that is why we call it
“symbolic representation.”

2.3 Distributed Word Representation

Although simple and interpretable, symbolic
representations are not the best choice for computation.
For example, the very sparse nature of the symbolic
representation makes it difficult to compute word-to-word
similarities. Methods like information content [61] cannot
naturally generalize to other symbolic representations.

The difficulty of symbolic representation is solved by the
distributed representation.4 Distributed representation
represents a subject (here is a word) as a fixed-length real-
valued vector, where no clear meaning is assigned to every
single dimension of the vector. More specifically, semantics
is scattered over all (or a large portion) of the dimensions
of the representation, and one dimension contributes to the
semantics of all (or a large proportion) of the words.

We must emphasize that the “distributed

representation” is completely different from and orthogonal
to the “distributional representation” (induced by
“distributional hypothesis”). Distributed representation
describes the form of a representation, while distributional
hypothesis (representation) describes the source of
semantics.

2.3.1 Preliminary: Interpreting the

Representation



Although each dimension is uninterpretable in distributed
representation, we still want ways to interpret the meaning
conveyed by the representation approximately. We
introduce two basic computational methods to understand
distributed word representation: similarity and dimension
reduction.

Suppose the representations of two words are u = [u1,
…, ud] and v = [v1, …, vd],5 we can calculate the similarity or
perform dimension reduction as follows.

Similarity  The Euclidean distance is the L2-norm of the
difference vector of u and v.

(2.4)

Then the Euclidean similarity can be defined as the inverse
of distance, i.e.,

(2.5)

Cosine similarity is also common. It measures the similarity
by the angle between the two vectors:

(2.6)

Dimension Reduction  Distributed representations,
though being lower dimensional than symbolic
representations, still exist in manifolds higher than three
dimensions. To visualize them, we need to reduce the
dimension of the vector to 2 or 3. Many methods have been
proposed for this purpose. We will briefly introduce
principal component analysis (PCA).



PCA transforms the vectors into a set of new coordinates
using an orthogonal linear transformation. In the new
coordinate system, an axis is pointed in the direction which
explains the data’s most variance while being orthogonal to
all other axes. Under this construction, the later
constructed axes explain less variance and therefore are
less important to fit the data. Then we can use only the first
two to three axes as the principal components and omit the
later axes. A case of PCA on two-dimensional data is in Fig.
2.4. Formally, denoting the new axes by a set of unit row
vectors {dj|j = 1, …, k}, where k is the number of unit row
vectors. An original vector u of the sample u can be
represented in the new coordinates by

(2.7)

where aj is the weight of the vector dj for representing u,
and a = [a1, …, ar] forms the new vector representation of
u. In practice, we only set r = 2 or 3 for visualization.



Fig. 2.4  The PCA specifies new axis directions (called principal components),
and the axes are ordered from largest to smallest variance in their directions so
that keeping the coordinates on the first few axes retains most of the
distribution information

The set of new coordinates {dj|j = 1, …, k} can be
computed by eigendecomposition of the covariance matrix
or using singular value decomposition (SVD). Then we
introduce SVD-based PCA and present its resemblance to
latent semantic analysis (LSA) in the next subsection. In
SVD, a real-valued matrix can be decomposed into

(2.8)
such that Σ is a diagonal matrix of positive real numbers,
i.e., the singular values, and W and D are singular matrices
formed by orthogonal vectors. For a data sample (e.g., i-th
row in U):

(2.9)



Thus in Eq. (2.7), aj = σjWi,j and dj = Dj,:.
Although widely adopted in high-dimensional data

visualization, PCA is unable to visualize representations
that form nonlinear manifolds. Other dimensionality
reduction methods, such as t-SNE [73], can solve this
problem.

2.3.2 Matrix Factorization-based Word

Representation

Distributed representations can be transformed from
symbolic representations by matrix factorization or neural
networks. In this subsection, we introduce the matrix
factorization-based methods. We introduce latent semantic
analysis (LSA), its probabilistic version PLSA, and latent
Dirichlet allocation (LDA) as the representative
approaches. Readers who are only interested in neural
networks can jump to the next section to continue reading.

Latent Semantic Analysis (LSA)  LSA [17] utilizes
singular value decomposition (SVD) to perform the
transformation from matrices of symbolic representations.
Suppose we have a word-document matrix  ,
where n is the number of words and d is the number of
documents. By linear algebra, it can be uniquely6

decomposed into the multiplication of three matrices
 ,  , and  :

(2.10)
such that Σ is a diagonal matrix of positive real numbers,
i.e., the singular values, and columns of W, D are left-
singular vectors and right-singular vectors, respectively.7

Now let’s try to interpret the two orthogonal matrices. The
i-th row of the matrix M that represents the i-th word’s



symbolic representation (denoted by Mi,:) is decomposed
into:

(2.11)

From Eq. (2.11), we can see only the i-th row of W
contributes to the i-th word’s symbolic representation.
More importantly, since D is an orthogonal matrix, the
similarity between words wi and wj is given by:

(2.12)

Thus we can take Wi,:Σ as the distributed representation
for word wi. Note that taking Wi,:Σ or Wi,: as the distributed
representation is both ok because Wi,:Σ is Wi,: stretched
along each axis j with ratio Σj,j, and the relative positions of
points in the two spaces are similar.

Suppose we arrange the eigenvalues in descending
order. In that case, the largest K singular values (and their
singular vectors) contribute the most to matrix M. Thus we
only use them to approximate M. Now Eq. (2.11) becomes:

(2.13)

where ⊙ is the element-wise multiplication and σi is the i-th
diagonal element of Σ.

To sum up, in LSA, we perform SVD to the counting
statistics to get the distributed representation Wi,:K.
Usually, with a much smaller K, the approximation can be
sufficiently good, which means the semantics in the high-
dimensional symbolic representation are now compressed
and distributed into a much lower-dimensional real-valued
vector. LSA has been widely used to improve the recall of
query-based document ranking in information retrieval
since it supports ambiguous semantic matching.



One challenge of LSA comes from the computational
cost. A full SVD on an n × d matrix requires 
time, and the parallelization of SVD is not trivial. A solution
is random indexing [36, 64] that overcomes the
computational difficulties of SVD-based LSA and avoids
expensive preprocessing of a huge word-document matrix.
In random indexing, each document is assigned a
randomly-generated high-dimensional sparse ternary
vector (named as index vector). Note that random vectors
in high-dimensional space should be (nearly) orthogonal,
analogous to the orthogonal matrix D in SVD-based LSA.
For each word in a document, we add the document’s index
vector to the word’s vector. After passing the whole text
corpora, we can get accumulated word vectors. Random
indexing is simple to parallelize and implement, and its
performance is comparable to the SVD-based LSA [64].

Probabilistic LSA (PLSA)  LSA further evolves into
PLSA [34]. To understand PLSA based on LSA, we can treat
the Wi,:K as a distribution over latent factors {zk|k = 1, …,
K}, where

(2.14)
We can understand these factors as “topics” as we will
assign meanings to them later. Similarly, Di,:K can also be
regarded as a distribution, where

(2.15)
And the {σk|k = 1, …, K} are the prior probabilities of factors
zk, i.e., P(zk) = σk. Thus, the word-document matrix
becomes a joint probability of word wj and document dj:

(2.16)



With the help of Bayes’ theorem and Eq. (2.16), we can
compute the conditional probability of wi given a document
dj is

(2.17)

Now we can see a generative process is defined from Eq.
(2.17). To generate a word in the document dj, we first
sample a latent factor zk from P(zk|dj) and then sample a
word wi from the conditional probability P(wi|zk). The
process is represented in Fig. 2.5.

Fig. 2.5  The generative process of words in documents in the PLSA model
(left) and LDA model (right). N is the number of words in a document, M is the
number of documents, and K is the number of topics. w is the only observed
variable, and we need to estimate the other white variables based on the
observation. The figure is redrawn according to the Wikipedia entry “Latent
Dirichlet allocation”

Note that to make Eq. (2.14)∼Eq. (2.17) rigorous, the
elements of W, Σ, D have to be nonnegative. To do
optimization under such probabilistic constraints, a
different loss from SVD is used [34]:

(2.18)

The following works prove that optimizing the above
objective is the same as nonnegative matrix factorization



[20, 38]. We omit the mathematical details here.

Latent Dirichlet Allocation (LDA)  PLSA is further
developed into latent Dirichlet allocation (LDA) [10], a
popular topic model that is widely used in document
retrieval. LDA adds hierarchical Bayesian priors to the
generative process defined by Eq. (2.14). The generative
process for words in document j becomes:
1.

Choose  , where  is a Dirichlet
distribution (typically each dimension of α <1), where
K is the number of topics. This is the probability
distribution of topics in the document dj.

 

2.
Choose  for each topic z, where |V | is
the size of the vocabulary. Typically each dimension of
β is less than 1. This is the probability distribution of
words produced by topic z.

 

3.
For each word wi in the document dj:

a.
Choose a topic  .  

b.
Choose a word from

 .
 

 

The generative process in LDA is in Fig. 2.5 (right). We will
not dive into the mathematical details of LDA.

We would like to emphasize two points about LDA: (1)
the hyper-parameter α, β in Dirichlet prior is typically set
to be less than 1, resulting in a “sparse prior”, i.e., most
dimensions of the sampled θ and ϕ are close to zero, and
the mass of the distribution will be concentrated in a few
values. This is consistent with our common sense that a
document will always have only a few topics and that a



topic will only produce a small number of words. Moreover,
the total number of topics K is pre-defined as a relatively
small integer. The sparsity and interpretability make LDA
essentially a kind of symbolic representation, and LDA can
be seen as a bridge between distributed representations

and symbolic representations. (2) Although PLSA and LDA
are more often used in document retrieval, the distribution
of a word over different topics (latent factors) P(w|zi) can
be used as an effective word representation, i.e., w = 
[P(w|z1), …, P(w|zK)].

However, the information source, i.e., counting matrix
M, of matrix factorization-based methods is still based on
the bag-of-words hypothesis. These methods lose the word
order information in the documents, so their
expressiveness capability remains limited. Therefore, these
classical methods are less often used when neural network-
based methods that can model word order information
emerge.

2.3.3 Word2vec and GloVe

The neural networks, revived in the 2010s, are similar to
the neurons of the human brain, where the neurons inside a
neural network perform distributed computation. One
neuron is responsible for the computation of multiple
pieces of information, and one input activates multiple
neurons at the same time. This property coincides with
distributed representation. Hence, distributed
representation plays a dominant role in the era of neural
networks. Moreover, neural models are optimized on large-
scale data. The data dependency makes the distributional
hypothesis particularly important in optimizing such
distributed representations. In the following section, we
first present word2vec [48], a milestone work of
distributional distributed word representation using neural



approaches. After that, we introduce GloVe [57] that
improves word2vec with a global word-occurrence matrix.

Word2vec  Word2vec adopts the distributional hypothesis
but does not take a count-based approach. It directly uses
gradient descent to optimize the representation of a word
toward its neighbors’ representations. Word2vec has two
specifications, namely, continuous bag-of-words

(CBOW) and skip-gram. The difference is that CBOW
predicts a center word based on multiple context words,
while skip-gram predicts multiple context words based on
the center word.

CBOW predicts the center word given a window of context.
Figure 2.6 shows the idea of CBOW with a window of five

words.

Fig. 2.6  The architecture of the CBOW model. (The figure is redrawn
according to Fig. 1 from Mikolov et al. [49])

Formally, CBOW predicts wi according to its contexts as:

(2.19)



where P(wi|wi−l, …, wi−1, wi+1, …, wi+l) is the probability of
word wi given its contexts, 2l + 1 is the size of training
contexts, wj is the word vector of word wj, W is the weight
matrix in  , V  indicates the vocabulary, and m is the
dimension of the word vector.

The CBOW model is optimized by minimizing the sum of
the negative log probabilities:

(2.20)

Here, the window size l is a hyper-parameter to be tuned. A
larger window size may lead to higher accuracy as well as
longer training time.

Contrary to CBOW, skip-gram predicts the context given
the center word. Figure 2.7 shows the model.

Fig. 2.7  The architecture of the skip-gram model. (The figure is redrawn
according to Fig. 1 from Mikolov et al. [49])

Formally, given a word wi, skip-gram predicts its context
as:

(2.21)



where P(wj|wi) is the probability of context word wj given wi

and W is the weight matrix. The loss function is similar to
CBOW but needs to sum over multiple context words:

(2.22)

In the early stages of the deep learning renaissance,
computational resources are still limited, and it is time-
consuming to optimize the above objectives directly. The
most time-consuming part is the softmax layer since the
softmax layer uses the scores of predicting all words in the
vocabulary V  in the denominator:

(2.23)

An intuitive idea to improve efficiency is obtaining a
reasonable but faster approximation of the softmax score.
Here, we present two typical approximation methods,
including hierarchical softmax and negative sampling.
We explain these two methods using CBOW as an example.

The idea of hierarchical softmax is to build hierarchical
classes for all words and to estimate the probability of a
word by estimating the conditional probability of its
corresponding hierarchical classes. Figure 2.8 gives an
example. Each internal node of the tree indicates a
hierarchical class and has a feature vector, while each leaf
node of the tree indicates a word. The conditional
probabilities, e.g., p0 and p1 in Fig. 2.8, of two child nodes
are computed by the feature vector of each node and the
context vector. For example,

(2.24)

(2.25)



where wc is the context vector, w0 and w1 are the feature
vectors.

Fig. 2.8  An illustration of hierarchical softmax

Then, the probability of a word can be obtained by
multiplying the probabilities of all nodes on the path from
the root node to the corresponding leaf node. For example,
the probability of the word the is p0 × p01, while the
probability of cat is p0 × p00 × p001.

The tree of hierarchical classes is generated according
to the word frequencies, which is called the Huffman tree.
Through this approximation, the computational complexity
of the probability of each word is  .

Negative sampling is a more straightforward technique.
It directly samples k words as negative samples according
to the word frequency. Then, it computes a softmax over
the k + 1 words (1 for the positive sample, i.e., the target
word) to approximate the conditional probability of the
target word.

GloVe  The word2vec and matrix factorization-based
methods have complementary advantages and
disadvantages. In terms of learning efficiency and
scalability, word2vec is superior because word2vec uses an
online learning (or batch learning paradigm in deep



learning) approach and is able to learn over large corpora.
However, considering the preciseness of distribution
modeling, the matrix factorization-based methods can
exploit global co-occurrence information by building a
global co-occurrence matrix. In comparison, word2vec is a
local window-based method that cannot see the frequency
of word pairs in a global corpus in a single optimization
step. Therefore, GloVe [57] is proposed to combine the
advantages of word2vec and matrix factorization-based
methods.

To learn from global count statistics, GloVe firstly builds a
co-occurrence matrix M over the entire corpus but does not
directly factorize it. Instead, it takes each entry in the co-
occurrence matrix Mij and optimizes the following target:

(2.26)

The d(wi, wj, Mij) is a metric that compares the distributed
representations of word wi and wj with the ground-truth
statistics Mij. f(Mij) is a weight term measuring the
importance of the word pair wi, wj. Specifically, GloVe
adopts the following form as the metric d:

(2.27)

where bi and bj are bias terms for word wi and wj.
Interested readers can read the original paper [57] for the
derivation details.

For the weight term f(Mij), most previous approaches
set the weight of all word pairs to 1. However, common
word pairs may have too weak semantics, so we should
lower their weights and increase the weights of rare word



pairs slightly. Thus, GloVe observes that it should satisfy
three constraints:

f(0) = 0 and  is finite.
A nondecreasing function.
Truncated for large values of x to avoid overfitting to
common words (stop words).
A possible choice is the following, where α is taken as 

in the original GloVe paper:

(2.28)

In summary, GloVe uses weighted squared loss to
optimize the representation of words based on the elements
in the global co-occurrence matrix. Compared with
word2vec, it captures global statistics. Compared with
matrix factorization, it (1) reasonably reduces the weights
of the most frequent words at the level of matrix entries,
(2) reduces the noise caused by non-discriminative word
pairs by implicitly optimizing the ratio of co-occurrence
frequencies, and (3) enables fitting on large corpus by
iterative optimization. Since the number of nonzero
elements of the co-occurrence matrix is much smaller than
|V |2, the efficiency of GloVe is ensured in practice.

Word2vec as Implicit Matrix Factorization  It seems
so far that the neural network-based methods like
word2vec and matrix factorization-based methods are two
distinct paradigms for deriving distributed representation.
But in fact, they have close theoretical connections. Omer
et al. [41] prove that word2vec is factorizing pointwise
mutual information matrix (  ), where

(2.29)



Omer et al. [41] then compare the performance of factoring
the PMI matrix using SVD and skip-gram with the negative
sampling (SGNS) model. SVD achieves a significantly
better objective value when the embedding size is smaller
than 500 dimensions and the number of negative samples is
1. With more negative samples and higher embedding
dimensions, SGNS gets a better objective value. For
downstream tasks, under several conditions, SVD achieves
slightly better performance on word analogy and word
similarity. In contrast, skip-gram with negative sampling
achieves better performance by 2% on syntactical analogy.

2.3.4 Contextualized Word Representation

In natural language, the semantic meaning of an individual
word can usually be different with respect to its context in
a sentence. For example, in the two sentences: “willows

lined the bank of the stream.”, “a bank account.”,8 although
the word bank is always the same, their meanings are
different. This phenomenon is prevalent in any language.
However, most of the traditional word embeddings (CBOW,
skip-gram, GloVe, etc.) cannot well understand the
different nuances of the meanings of words in the different
surrounding texts. The reason is that these models only
learn a unique and specific representation for each word.
Therefore these models cannot capture how the meanings
of words change based on their surrounding contexts.

Matthew et al. [58] propose ELMo to address this issue,
whose word representation is a function of the whole input.
More specifically, rather than having a look-up table of
word embedding matrix, ELMo converts words into low-
dimensional vectors on-the-fly by feeding the word and its
context into a deep neural network. ELMo utilizes a
bidirectional language model to conduct word
representation. Formally, given a sequence of N words (w1,
…, wN), a forward language model (LM)9 models the



probability of the sequence by predicting the probability of
each word wk according to the historical context:

(2.30)

The forward LM in ELMo is a multilayer long short-term
memory (LSTM) network [33], which is a kind of widely
used neural network for modeling sequential data, and the
j-th layer of the LSTM-based forward LM will generate the
context-dependent word representation  for the word
wk. The backward LM is similar to the forward LM. The
only difference is that it reverses the input word sequence
to (wN, wN−1, …, w1) and predicts each word according to
the future context:

(2.31)

Similar to the forward LM, the j-th backward LM layer
generates the representations  for the word wk.

When used in a downstream task, ELMo combines all
layer representations of the bidirectional LM into a single
vector as the contextualized word representation. The way
to do the combination is flexible. For example, the final
representation can be the weighting of all bidirectional LM
layer’s hidden representation, and the weights are task-
specific:

(2.32)

where  are softmax-normalized weights
and αtask allows the task to scale the whole representation,



and  .
Due to the superiority of contextualized representations,

a group of works led by ELMo [58], BERT [19], and GPT
[59] has started to emerge since 2017, eventually leading
to a unified paradigm of pre-training-fine-tuning across
NLP. Please refer to Chap. 5 for further reading.

2.4 Advanced Topics

In the previous section, we introduced the basic models of
word representation learning. These studies promoted
more work on pursuing better word representations. In this
section, we introduce the improvement from different
aspects. Before we dive into the specific methods, let’s first
discuss the essential features of a good word
representation.

Informative Word Representation  A key point where
representation learning differs from traditional prediction
tasks is that when we construct representations, we do not
know what information is needed for downstream tasks.
Therefore, we should compress as much information as
possible into the representation to facilitate various
downstream tasks. From the development of one-hot
representations to distributional and contextualized
representations, the information in the representations is
indeed increasing. And we still expect to incorporate more
information into the representations.

Interpretable Word Representation  For distributed
representations, a single dimension is not responsible for
explaining the factors of semantic change, and the
semantics is entangled in multiple dimensions. As a result,
distributed representations are difficult to interpret. As
Bengio et al. [9] pointed out, a good distributed



representation should “disentangle the factors of

variation.” There is always a desire for an interpretable
distributed representation. Although PLSA and LDA have
already increased interpretability, we would like to see
more developments in this direction.

In this section, we will introduce the efforts that enhance
the distributed word representations in terms of the above
criteria.

2.4.1 Informative Word Representation

To make the representations informative, we can learn
word representations from universal training data,
including multilingual corpus. Another key direction for
being informative is incorporating as much additional
information into the representation as possible. From small
to large information granularity, we can utilize character,
morphological, syntactic, document, and knowledge base
information. We will describe the related work in detail.

Multilingual Word Representation  There are
thousands of languages in the world. Making the vector
space applicable for multiple languages not only improves
the performance of word representation in low-resource
languages but also can absorb information from the
corpora of multiple languages. The bilingual word
embedding model [78] proposes to make use of the word
alignment pairs available in machine translation. It maps
the embeddings of the source language to the embeddings
of the target language and vice versa.

Specifically, a set of source words’ representations that are
trained on monolingual source language corpus is used to
initialize the words in the target language:

(2.33)



where ws is the trained embeddings of the source word and
wt-init is the initial embedding of the target word,
respectively. Nts is the number of times that the target
word t is aligned with the source word s. Nt is the total
times of word t in the target corpus. The add-on terms + 1
and + S are the Laplace smoothing. S is the number of
source words. Intuitively, the initialization of target word
embedding is the weighted average of the aligned words in
the source corpus, which ensure the two sets of
embeddings are in the same space initially.

Then the source and target representation is optimized
on their unlabeled corpora with target  and  ,
respectively. To improve the alignment during training,
alignment matrices  and  are used, where each
element Nij denotes the count of a word wi is aligned with
source word wj normalized across all source words. Then a
translation equivalence objective is used:

(2.34)

Thus the unified objective becomes
 for source words and target words,

respectively, where λ1 and λ2 are the coefficients to weight
the different sub-objectives.

However, this model performs poorly when the seed
lexicon is small. Some works introduce virtual alignment
between languages to tackle this limitation. Let’s take
Zhang et al. [77] as an example. In addition to monolingual
word embedding learning and bilingual word embedding
alignment based on seed lexicon, this work proposes an



integer latent variable vector  (VT is the size of
target vocabulary, and  is the set of natural numbers)
representing which source word is linked by a target word
wt. So mt ∈{0, 1, …, VS}. m is randomly initialized and then
optimized through an expectation-maximization algorithm
[18] together with the word representations. In the E-step,
the algorithm fixes the current word representation and
finds the best matching m that can align the source and
target representations. And in the M-step, it treats the
mapping as fixed and known, just like Zou et al. [78], and
optimizes the source and target word representations.

Character-Enhanced Word Representation  Many
languages, such as Chinese and Japanese, have thousands
of characters compared to other languages containing only
dozens of characters. And the words in Chinese and
Japanese are composed of several characters. Characters in
these languages have richer semantic information. Hence,
the meaning of a word can be learned not only from its
context but also from the composition of characters. This
intuitive idea drives Chen et al. [14] to propose a joint
learning model for character and word embeddings (CWE).
In CWE, a word representation w is a composition of the
original word embedding w0 trained on corpus and its
character embeddings ci. Formally,

(2.35)

where |w| is the number of characters in the word. Note
that this model can be integrated with various models such
as skip-gram, CBOW, and GloVe.

Further, position-based and cluster-based methods are
proposed to address the issue that characters are highly
ambiguous. In the position-based approach, each character



is assigned three vectors that appear in begin, middle, and
end of a word, respectively. Since the meaning of a
character varies when it appears in the different positions
of a word, this method can significantly resolve the
ambiguity problem. However, characters that appear in the
same position may also have different meanings. In the
cluster-based method, a character is assigned K different
vectors for its different meanings, in which a word’s
context is used to determine which vector to be used for
the characters in this word.

Introducing character embeddings can significantly
improve the representation of low-frequency words.
Besides, this method can deal with new words while other
methods fail. Experiments show that the joint learning
method can perform better on both word similarity and
analogy tasks.

Morphology-Enhanced Word Representation  Many
languages, such as English, have rich morphological
information and plenty of rare words. However, most word
representation models ignore the rich morphology
information. This is a limitation because a word’s affixes
can help infer a word’s meaning. Moreover, in traditional
models, word representation is independent of each other.
So when facing rare words without enough context to learn
the representations, the representations tend to be
inaccurate.

Fortunately, in morphology-enhanced word representation,
morphologies’ representation can enrich word embeddings
and are shared among words to assist the representation of
rare words. Piotr et al. [11] propose to represent a word as
a bag of morphology n-grams. This model substitutes word
vectors in skip-gram with the sum of morphology n-gram
vectors. When creating the dictionary of morphology n-
grams, they select all morphology n-grams with a length



greater or equal to 3 and smaller or equal to 6. To
distinguish prefixes and suffixes from other affixes, they
also add special characters to indicate the beginning and
the end of a word. This model is efficient and
straightforward, which achieves good performance on word
similarity and word analogy tasks, especially when the
training set is small. Ling et al. [44] further use a
bidirectional LSTM to generate word representation by
composing morphologies. This model significantly reduces
the number of parameters since only the morphology
representations and the weights of LSTM need to be
stored.

Syntax-Enhanced Word Representation  Continuous
word embeddings should combine the semantic and
syntactic information of words. However, existing word
representation models depend solely on linear contexts and
have more semantic information than syntactic information.
To inject the embeddings with more syntactic information,
the dependency-based word embedding [40] uses the
dependency-based context. Dependency-based
representation contains less topical information than the
original skip-gram representation and shows more
functional similarity. It considers the dependency parsing
tree’s information when learning word representations. The
contexts of a target word w are the modifiers mi of this
word, i.e., (m1, r1), …, (mk, rk), where ri is the type of
dependency relation between the target node and the
modifier. During training, the model optimizes the
probability of dependency-based contexts rather than
neighboring contexts. This model gains some improvements
on word similarity benchmarks compared with skip-gram.
Experiments also show that words with syntactic similarity
are more similar in the vector space.



Document-Enhanced Word Representation  Word
embedding methods like skip-gram simply consider the
context information within a window to learn word
representation. However, the information in the whole
document, e.g., the topics of the document, could also help
word representation learning. Topical word embedding
(TWE) [45] introduces topic information generated by
latent Dirichlet allocation (LDA) to help distinguish
different meanings of a word. The model is defined to
minimize the following objective:

(2.36)

where wi is the word embedding and zi is the topic
embedding of wi. Each word wi is assigned a unique topic,
and each topic has a topic embedding. The topical word
embedding model shows the advantage of contextual word
similarity and document classification tasks.

TopicVec [42] further improves the TWE model. TWE
simply combines the LDA with word embeddings and lacks
statistical foundations. Moreover, the LDA topic model
needs numerous documents to learn semantically coherent
topics. TopicVec encodes words and topics in the same
semantic space. It can learn coherent topics when only one
document is presented.

Knowledge-Enhanced Word Representation  People
have also annotated many knowledge bases that can be
used in word representation learning as additional
information. Yu et al. [76] introduce relational objectives
into the CBOW model. With the objective, the embeddings
can predict their contexts and words with relations. The
objective is to minimize the sum of the negative log
probability of all relations as:



(2.37)

where  indicates a set of words that have a relation with
wi. The external information helps train a better word
representation, showing significant improvements in word
similarity benchmarks.

Moreover, retrofitting [22] introduces a post-processing
step that can introduce knowledge bases into word
representation learning. It is more modular than other
approaches which consider knowledge base during
training. Let the word embeddings learned by existing
word representation approaches be  . Retrofitting
attempts to find a knowledgeable embedding space W,
which is close to  but considers the relations in the
knowledge base. It optimizes W toward  and
simultaneously shrinks the distance between
knowledgeable representations of words wi, wj with
relations. Formally,

(2.38)

where α and β are hyper-parameters indicating the
strength of the associations, and R is a set of relations in
the knowledge base. With knowledge bases such as the
paraphrase database [28], WordNet [52], and FrameNet
[3], this model can achieve consistent improvement on
word similarity tasks. But it may also reduce the
performance of the analogy of syntactic relations if it
emphasizes semantic knowledge. Since it is a post-
processing approach, it is compatible with various
distributed representation models.



In addition to the aforementioned synonym-based
knowledge bases, there are also sememe-based knowledge
bases, in which the sememe is defined as the minimum
semantic unit of word meanings. Due to the importance of
sememe in computational linguistics, we introduce it in
detail in Chap. 10.

2.4.2 Interpretable Word Representation

Although distributed word representation achieves ground-
breaking performance on numerous tasks, it is less
interpretable than conventional symbolic word
representations. It would be a bonus if the distributed
representations also enjoy some degree of interpretability.
We can improve the interpretability from three directions.
The first is to increase the interpretability of the vector
representation among its neighbors. Since a word has
multiple meanings, especially those polysemy words, the
vectors of different meanings should locate in different
neighborhoods. Therefore, we introduce work on
disambiguated word representations. Another direction is
to increase the interpretability of each dimension of the
representation. A group of nonnegative and sparse word
representations is shown to be well interpretable in each
dimension. The third direction is to increase the
interpretability of the embedding space by introducing
more spatial properties in addition to the translational
semantics in word2vec. In this section, we illustrate related
work in these three directions.

Disambiguated Word Representation  Using only one
single vector to represent a word is problematic due to the
ambiguity of words. A single vector that implies multiple
meanings is naturally difficult to interpret, and
distinguishing different meanings can lead to a more
accurate representation.



In the multi-prototype vector space model, Banerjee et al.
[5] use clustering algorithms to cluster different word
meanings. Formally, it assigns a different word
representation wi(w1) to the same word w1 in each
different cluster i. When the multi-prototype embedding is
used, the similarity between two words w1, w2 is computed
by comparing each pair of prototypes, i.e.,

(2.39)

where K is a hyper-parameter indicating the number of
clusters and s(⋅) is a similarity function of two vectors, such
as cosine similarity. When contexts are available, the
similarity can be computed more precisely as

(2.40)

where  is the likelihood of context c
belonging to cluster i, w(c) is the context representation,
and  is the maximum likelihood
cluster for w1 in context c. With multi-prototype
embeddings, the accuracy of the word similarity task is
significantly improved, but the performance is still sensitive
to the number of clusters.

The multi-prototype embedding method can effectively
cluster different meanings of a word via its contexts.
However, the clustering is offline, and the number of
clusters is fixed and needs to be pre-defined. It is difficult
for a model to select an appropriate amount of meanings
for different words; to adapt to new senses, new words, or



new data; and to align the senses with prototypes. A unified
model is proposed for both word representation and word
sense disambiguation [13]. It uses available knowledge
bases such as WordNet [52] to provide the list of possible
senses of a word, perform the disambiguation based on the
original word vectors, and update the word vectors and
sense vectors. More specifically, as shown in Fig. 2.9, it
first initalizes the word vectors to be the skip-gram vectors
learned from large-scale corpora. And then, it aggregates
the words in the definition of the sense (provided by
knowledge bases) to form the sense initialization, where
only the words in the definition whose similarity with the
original word is larger than a threshold are considered.
After initialization, it uses the sense vector to update the
context vectors. For example, in the sentence “He sat on

the bank of the lake,” the “bank” which means “the land

alongside the lake” is closer to the context vectors formed
by words “sat, bank, lake,” and then the representation of
bank1 is utilized to update the context vectors. The process
is repeated for all words with multiple senses. After the
disambiguation, a joint objective is used to optimize the
senses and word vectors together

(2.41)

where M(wj) is the disambiguated sense of word wj and 2l 
+ 1 is the window size. With the joint learning framework,
not only performance on word representation learning
tasks are enhanced, but the representations of concrete
senses are more interpretable than the representations of
polysemy words.



Fig. 2.9  The framework of Chen et al. [13]. We use the center word to predict
both the context word and the context word’s sense. The figure is redrawn
according to Fig. 1 from Chen et al. [13]

Nonnegative and Sparse Word Representation

Another aspect of interpretability comes from the
interpretability of each dimension of distributed word
representations. Murphy et al. [53] introduce nonnegative
and sparse embeddings (NNSE), where each dimension
indicates a unique concept. This method factorizes the
corpus statistics matrix  into a word embedding
matrix  and a document statistics matrix

 , where |V |, |D| and m are the vocabulary size,
the number of documents, and the dimension of the
distributed representation, respectively. Its training
objective is

(2.42)

The sparsity is ensured by λ∥Wi,:∥1, and non-negativity is
guaranteed by Wi,j ≥ 0. By iteratively optimizing W and D
via gradient descent, this model can learn nonnegative and
sparse embeddings for words. Since embeddings are



nonnegative, words with the highest scores on each
dimension show high similarity to more words. Therefore,
they can be regarded as superordinate concepts of more
specific words. Again, since embeddings are sparse and
only a few words correspond to each dimension, each
dimension can be interpreted as the concept (word) with
the highest value in that dimension.

A word intrusion task is designed to assess the
interpretability of the word representation. For each
dimension, we pick the N words with the largest value for
that dimension as the positive words. Then we select the
noisy words with the value of that dimension in the small
half. Finally, we let human annotators pick out these noise
words. The performance of the human annotators in all
dimensions is the interpretability score of the model.

Fyshe et al. [27] further improve NNSE by enforcing the
compositionality of the interpretable dimensions. For a
phrase p composed of words wi and wj, the following
constraint can be applied:

(2.43)
Therefore, the objective becomes

(2.44)

where λ1 and λ2 are the coefficients to weigh different sub-
objectives.

The f has many choices. The authors define it to be a
weighted addition between Wi,: and Wj,:, i.e.,

(2.45)



The resulting word representations are more interpretable
since the multiple dimensions can form compositional
meanings.

The above method applies to the matrix factorization
paradigm, which encounters difficulty when the corpus and
global co-occurrence is large. Can we apply the same
nonnegative regularization for neural word representations
such as word2vec? Luo et al. [47] present a nonnegative
skip-gram model OIWE (online interpretable word
embeddings), which adds constraints to the gradient
descent process. Specifically, the update rule of the
parameter is

(2.46)
where w is the word representation that needs to be
updated, k is its k-th dimension, and γ is the learning rate.

However, directly using this update rule leads to
unstable optimization because the update deviates from the
true update too much. What we need is to make fewer
dimensions of wk + γ∇f(wk) less than 0. To achieve this
goal, we use a dynamic learning rate. The learning rate is
chosen to make the following violation ratio small:

(2.47)

where K is the number of dimensions.
The resulting word representation exceeds NNSE in

both word similarity and word intrusion detection tasks.

Non-Euclidean Word Representation  Interpretability
also comes from an embedding space with comprehensible
spatial properties. For example, the translation property of
word2vec makes the difference between male and female

interpretable (i.e., relation gender). Therefore, we are
looking for more interpretable spatial properties. We
introduce two special embedding spaces, i.e., Gaussian



distribution space and hyperbolic space. Both of them enjoy
hierarchical spatial properties that are understandable by
humans. Vilnis et al. [74] propose to encode words into
Gaussian distribution N(x;μ, Σ), where the mean μ of the
Gaussian distribution is similar to traditional word
embedding and the variance Σ becomes the uncertainty of
the word meaning. The similarity between two
representations can be defined either using asymmetric
similarity (e.g., the KL divergence) or symmetric similarity
(e.g., the continuous inner product between two Gaussian
distributions):

(2.48)

where n is the dimension of vectors.

Note that the focus of Vilnis et al. [74] is on the uncertainty
estimation of word meanings, which increases the
interpretability of word meanings in terms of uncertainty
estimation. But on the other hand, it is very easy to define
entailment relations between two Gaussian embeddings of
different sizes (variances), thus natural to encode the
hierarchy into the representation, which increases the
interpretability of the embedding in terms of ontology. This
line of work further develops into representations based on
the Gaussian mixture model [2] and elliptical word
embedding [54].

Another line of work focuses on hyperbolic embeddings.
Hyperbolic spaces  are spaces with constant negative
curvature. The volume of the circle in hyperbolic space
grows exponentially with radius. This property makes it
suitable for encoding the tree structure, where the number
of nodes grows exponentially with depth. Hence, it is a
suitable space for encoding hierarchical structures. For
example, Nickel et al. [55] use a special hyperbolic space,
namely, Poincaré Ball, as the embedding space. They



propose to encode word relations such as those explicitly
given by the hierarchy in WordNet using supervised
learning. A subsequent work [72] successfully applies
Poincaré embeddings in a completely unsupervised
manner. Specifically, they propose Poincaré GloVe, a
modified target of GloVe, for encoding hyperbolic
geometry. Considering the GloVe target in Eq. (2.26), it can
be generalized into more general metrics as follows:

(2.49)

where Mij is the global co-occurrence matrix and hEuclidean 
= (⋅)2 is the metric for accessing the similarity of the two
embeddings. Now it can be substituted with

 . The embedding is optimized using
Riemannian optimization [8]. The use of this word vector
for inference (e.g., word analogy tasks) requires using the
corresponding hyperbolic space operators, which we omit
the details.

In summary, encoding more information and improving
interpretability have been pursued by researchers. With
such efforts, word representations have become the basis
of modern NLP and are widely used in many practical
tasks.

2.5 Applications

Word representation, as a milestone breakthrough in NLP,
has not only spawned subsequent work in NLP itself but
has also been widely applied in other disciplines, catalyzing
many highly influential interdisciplinary works. Therefore,
in this section, we first introduce the applications of NLP



itself, and then we introduce interdisciplinary works such
as in psychology, history, and social science.

2.5.1 NLP

In the early stages of the introduction of neural networks
into NLP, research on the application of word
representations was very vigorous. For example, word
representations are helpful in word-level tasks such as
word similarity, word analogy, and ontology construction.
They can also be applied to simple higher-level downstream
tasks such as sentiment analysis. The performance of word
representations on these tasks can measure the quality of
word representations, so they can also be considered as
evaluation tasks of word representations. Next, we
introduce word similarity, word analogy, ontology
construction, and sentence-level tasks.

Word Similarity and Relatedness  Word similarity and
relatedness both measure how close a word is to another
word. Similarity means that the two words express similar
meanings. And relatedness refers to a close linguistic
relationship between the two words. Words that are not
semantically similar could still be related in many ways,
such as meronymy (car and wheel) or antonymy (hot and
cold).

To measure word similarity and relatedness, researchers
collect a set of word pairs and compute the correlation
between human judgment and predictions made by word
representations. So far, many datasets have been collected
and made public. Some datasets focus on word similarity,
such as RG-65 [62] and SimLex-999 [32]. Other datasets
concern word relatedness, such as MTurk [60]. WordSim-
353 [23] is a very popular dataset for word representation
evaluation, but its annotation guideline does not
differentiate similarity and relatedness. Agirre et al. [1]



conduct another round of annotation based on WordSim-
353 and generate two subsets, one for similarity and the
other for relatedness. We summarize some information
about these datasets in Table 2.1.

Table 2.1  Datasets for evaluating word similarity/relatedness

Dataset Similarity type

RG-65 [62] Word similarity
WordSim-353 [23] Word similarity and relatedness
WordSim-353 REL [1] Word relatedness
WordSim-353 SIM [1] Word similarity
MTurk-287 [60] Word relatedness
SimLex-999 [32] Word similarity

After collecting the datasets, quantitative evaluations of
the word representations for the datasets are needed.
Researchers usually select cosine similarity as the metric.
After that, Spearman’s correlation coefficient ρ is then used
to evaluate the coherence between human annotators and
the word representation. A higher Spearman’s correlation
coefficient indicates they are more similar.

Given the datasets and evaluation metrics, different
kinds of word representations can be compared. Agirre et
al. [1] address different word representations with different
advantages. They point out that linguistic KB-based
methods perform better on similarity than on relatedness,
while distributed word representation shows similar
performance on both. With the development of distributed
representations, a study [68] in 2015 compares a series of
word representations on a wide variety of datasets and
gives the conclusion that distributed representations
achieve state of the art in both similarity and relatedness.

Besides evaluation with deliberately collected datasets,
the word similarity measurement can come in an
alternative format, the TOEFL synonyms test. In this test, a



cue word is given, and the test is required to choose one
from four words that are the synonym of the cue word. The
exciting part of this task is that the performance of a
system could be compared with human beings. Landauer et
al. [39] evaluate the system with the TOEFL synonyms test
to address the knowledge inquiring and representing of
LSA. The reported score is 64.4%, which is very close to
the average rating of the human test-takers. On this test set
with 80 queries, Sahlgren et al. [63] report a score of
72.0%. Freitag et al. [25] extend the original dataset with
the help of WordNet and generate a new dataset (named as
WordNet-based synonymy test) containing thousands of
queries.

Word Analogy  Besides word similarity, the word analogy
task is an interesting task to infer words and serves as an
alternative way to measure the quality of word
representations. This task gives three words w1, w2, and
w3, and then it requires the system to predict a word w4
such that the relation between w1 and w2 is the same as
that between w3 and w4. This task has been used since the
proposal of word2vec [49, 51] to exploit the structural
relations among words. Here, word relations can be divided
into two categories, including semantic relations and
syntactic relations. Word analogy quickly becomes a
standard evaluation metric once the dataset is released.
Unlike the TOEFL synonyms test, the prediction is chosen
from the whole vocabulary instead of the provided options.
This test favors distributed word representations because it
emphasizes the structure of word space. The comparison
between different models on the word analogy task
measured by accuracy could be found in [7, 68, 70, 75].

Ontology Construction  Another usage of word
representation is to construct the ontology knowledge



bases. Section 2.4.1 talked about injecting knowledge base
information into word representations. But conversely,
learned word embeddings also help build the knowledge
base. Since word representation is better at common words
than rare words, word representations are more suitable
for building ontology graphs10 than building factual
knowledge graphs.

In ontologies, perhaps the most important relation is the
is_a relation. Traditional word2vec models are good at
expressing analogous relations, such as man-woman ≈
king-queen but not good at hierarchical relations, such as
mammal-cat ≉ celestial body-sun. To model such
relationships, Fu et al. [26] propose to use a linear
projection rather than a simple embedding offset to
represent the relationship. The model optimizes the
projection as

(2.50)

where wi and wj are hypernym and hyponym embeddings
and W is the transformation matrix.

The non-Euclidean word representations introduced in
Sect. 2.4.2 also help build the ontology network. Another
knowledge base that word embedding can help is the
sememe knowledge introduced in Chap. 10.

Sentence-Level Tasks  Besides word-level tasks, word
representations can also be used alone in some simple
sentence-level tasks. However, word representations
trained under purely co-occurrence objectives may not be
optimal for a given task, and we can include task-relevant
objectives in training. Take sentiment analysis as an
example. Most word representation methods capture
syntactic and semantic information while ignoring the



sentiment of the text. This is questionable because words
with similar syntactic polarity but opposite sentiment
polarity obtain close word vectors. Tang et al. [71] propose
to learn sentiment-specific word embeddings (SSWE). An
intuitive idea is to jointly optimize the sentiment
classification model using word embeddings as its feature,
and SSWE minimizes the cross entropy loss to achieve this
goal. To better combine the unsupervised word embedding
method and the supervised discriminative model, they
further use the words in a window rather than a whole
sentence to classify sentiment polarity. To get massive
training data, they use distant supervision to generate
sentiment labels for a document. On sentiment
classification tasks, sentiment embeddings outperform
other strong baselines, including SVM [15] and other word
embedding methods. SSWE also shows strong polarity
consistency, where the closest words of a word are more
likely to have the same sentiment polarity compared with
existing word representation models. This sentiment-
specific word embedding method provides us with a
general way to learn task-specific word embeddings, which
is to design a joint loss function and generate massive
labeled data automatically.

Interestingly, as subsequent research in NLP progressed,
including the development of sentence representations
(Chap. 4) and the introduction of pre-trained models (Chap.
5), simple word vectors gradually ceased to be used alone.
We point out the following reasons for this:

High-level (e.g., sentence level) semantic units require
combinations between words, and simple arithmetic
operations between word representations are not
sufficient to model high-level semantic models.
Most word representation models do not consider word
order and cannot model utterance probabilities, much



less generate language.
We recommend that readers continue reading subsequent
chapters to become familiar with more advanced methods.

2.5.2 Cognitive Psychology

In cognitive psychology, a famous behavioral test examines
the correlation in the subconscious mind, named the
implicit association test (IAT) [30]. This test is widely used
to detect biases, such as gender biases, religion biases,
occupation biases, etc.

IAT is based on a hypothesis. The hypothesis says that
people’s reaction time decreases when faced with similar
concepts and increases when faced with conflicting
concepts. For example, given target words (woman, man)
and attribute words (beautiful, strong), we want to test a
subject’s perspective: which attribute is associated more
closely with each target. If a person believes that woman

and beautiful are close and man and strong are close, then,
when faced with category A (woman, beautiful) and
category B (man, strong), he/she will quickly categorize the
word charming into the former group. Whereas if he/she is
faced with two categories A (woman, strong) and B (man,
beautiful), then faced with the word charming, he/she will
hesitate between the two pairs of words, thus increasing
the reaction time substantially, although the correct
answer is clear that charming should be grouped into B
since it’s an attribute word, and thus should be classified
according to beautiful or strong. A part of an IAT is shown
in Fig. 2.10.



Fig. 2.10  Parts of the IAT. The box in the second row is considered to be
harder than the first row for people who have an implicit association between
women and beautiful (man and strong)

IAT can detect implicit thoughts and biases in the
human mind. Considering that bias is so prevalent in
people’s perceptions, it will likely be reflected in the texts
written by humans. A pioneering article [12] in Science
magazine proposes WEAT (word-embedding association
test) to detect bias in texts. Given two sets X, Y  as the
target words and A, B as two sets of attribute words, WEAT
defines a difference between the target sets to the two sets
of attribute words as follows:

(2.51)

and
(2.52)

where x, y, a, b are the vector representation of word x, y,
a, b.  that can be treated as the response time in the
IAT. And  is the average function. Thus, s(x;A, B)
measures the closeness of x to two sets of attributes. And



s(X, Y ;A, B) measures the bias difference between X and Y 
to A and B. If X, Y  are not biased differently for A and B,
then they should not exceed at least the bias difference of
(Xi, Yi), where X ∩ Y  is randomly divided into two sets Xi, Yi

of equal size. Hence, we test whether the following metric
is small:

(2.53)
After some statistical derivations, we are able to

calculate the above probabilities. In their experiments,
WEAT is capable of capturing the occupational gender bias,
where the occupational gender association calculated from
the word representation is highly correlated with the
publicly available proportion of female workers in each
industry. For the name gender association, WEAT can find
a similar pattern.

2.5.3 History and Social Science

It is possible to detect human thoughts without conducting
live experiments using tests built on texts. This makes it
very helpful to study the thoughts of ancient people. That
is, we can explore the thoughts of the ancients through the
texts they wrote, and this is precisely the important role of
word representations in history and social sciences. In this
section, we talk about how to use word representations to
study the changes in history and society across time.

In order to track the chronological changes in word
meanings, we first need to have a corpus of different
chronologies. Google NGram Book Corpus [43] is a
relatively early chronological corpus. This dataset counts
the words/phrases’ frequency used during the last five
centuries and includes 6% of all published books, which is a
very large dataset. Another COHA dataset [16] has 400
million words, documenting the development of American



English between 1810 and 2009, contains a wide variety of
genres, and is relatively balanced across genres.

The work on tracking word sense changes [31, 37]
divides these datasets into bins of equal size by time. They
then train word representation models on the text within
each period. For example, in the work [31], the SVD
decomposition of the PPMI (positive pointwise mutual
information) matrix and SGNS (skip-gram with negative
sampling) are used as two base models. As mentioned
earlier, the dimensions are not aligned for different groups
of distributed representations, even if they are derived
from the same counting matrix. Therefore, the authors
propose to optimize a mapping matrix that maps the word
vectors of the previous period to the word vector space of
the latter period.

Aligning the word vectors after training them usually
does not yield satisfying results because simple
transformations cannot always align the two vector spaces,
and complex transformations carry the risk of overfitting.
Time-sensitive word representation is developed to
address these issues. Bamler et al. [4] propose a dynamic
skip-gram model which connects several Bayesian skip-
gram models [6] using Kalman filters [35]. In this model,
the embeddings of words in different periods could affect
each other. For example, a word that appears in the 1990s
document can affect the embeddings of that word in the
1980s and 2000s. Moreover, this model puts all the
embeddings into the same semantic space, significantly
improving against other methods and making word
embeddings in different periods comparable. Experimental
results show that the cosine distance between two words
changes much more smoothly in this model than in those
that simply divide the corpus into bins.

We can arrive at interesting societal observations using
word representations from different periods. Hamilton et



al. [31] perform two analyses, the first of which computes
the time series formed by the cosine value of a word pair
over time. They use Spearman correlation coefficients of
the time series against time to estimate whether this
change is an upward or downward trend and how
significant the trend is. For the second analysis, the
authors track the degree of change in the word vector of
the same word over time to see the semantic drifts of a
word across periods. They have come to some interesting
conclusions. (1) Some established word sense shifts can be
confirmed from the corpus. For example, the shift of gay

change from happy to homosexual is observed from the
word representation. (2) The authors also find the ten
words that changed the most from 1900 to 1990. (3)
Combining some experimental observations, the authors
found two statistical rules of semantic variation. The first is
that common words change their meanings more slowly,
and rare words change their meanings more quickly. The
second is that words with multiple meanings change their
meanings more quickly.

The follow-up work [29] is based on the same diachronic
word vectors as Hamilton et al. [31] but makes some
observations with more depth in social science.
Specifically, it compares trends in gender and race
stereotypes over 100 years. To get the stereotype
information from word representations, this article
computes the difference in the association scores of an
attribute word (e.g., intelligent) to two groups of words
(e.g., woman, female versus man, male). The association
score can be calculated by either cosine similarity or
Euclidean distance. This is similar to the WEAT mentioned
in Sect. 2.5.2. The work further compares the association
score with publicly available data about the gender per
occupation statistics over the year. They find the two
trends match almost exactly. When studying the association



of adjectives to genders, a clear phase shift is found. The
similarity of adjectives’ association scores to genders is
similar within the 1910s∼1960s and the 1960s∼1990s,
respectively, but differs substantially between the two time
periods. The phase shift in the 1960s corresponds to the US
women’s movement in history.

2.6 Summary and Further Readings

In this chapter, we focus on words, which are the basic
semantic units. We introduce the representative methods in
symbolic representation and distributed representation.
Some well-known models are introduced, such as one-hot
representation, LSA, PLSA, LDA, word2vec, GloVe, and
ELMo. We also present the methods to make the
representations more informative and interpretable. At last,
the applications of word representations are introduced,
where interdisciplinary applications are emphasized. For
further readings, firstly, we encourage the readers to read
Chaps. 3 and 4 for higher-level representations as they are
more widely used in practical tasks. We also encourage the
readers to review historical research, such as the review
paper on representation learning by Yoshua Bengio [9], and
the review paper on pre-trained distributed word
representations by Tomas Mikolov, the author of word2vec
[50].
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This is the word representation learning chapter about
of the second edition of the book Representation Learning

for Natural Language Processing, with its first edition
published in 2020 [46]. Compared to the first edition of this
chapter, the main changes include the following: (1) we
rewrote the sections before Sect. 2.4 by systematically
restructuring the works, (2) we restructured and
summarized the advanced topics into two directions and
polish the writing of advanced topics, and (3) we added a
new section to introduce word representation’s
applications.
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Footnotes
Hypernyms are words whose meaning includes a group of other words,

which are instances of the former. Word u is a hyponym of word v if and only if
word v is a hypernym of word u.

 
Estimated by dividing the frequency of a word by the total number of words

in the corpus.

 
A multiset is a set where duplicated elements are allowed, e.g., (1,2,2,3) and

(2,2,3,1) are the same multiset.

 
Models of distributed representations are also called vector space models

(VSMs).

 
In the following sections, we use the row vector for distributed word

representation.

 
Up to permutations of rows, columns, and signs.
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10

 
In fact, the mathematical backbone of LSA is the same as PCA. We repeat it

here for the convenience of those readers who skipped the previous section.

 
Examples are taken from the Oxford Dictionary of English [69].

 
The details of the language model are in Chap. 5.

 
Ontology graph connects different abstract concepts in a graph according

to their semantic relationships.
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3.1 Introduction

Following the distributional hypothesis, one could project
the semantic meaning of a word into a low-dimensional
real-valued vector according to its context information.
Here comes a further problem: how to compress a higher
semantic unit, such as a phrase, into a vector or other kinds
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of mathematical representations like a matrix or a tensor?
In this chapter, we introduce the representation learning
approach to model semantic composition functions from the
linguistic perspective.

Compositionality enables natural languages to construct
complicated semantic meanings from the combinations of
basic semantic elements with particular rules. The basic
principle is the semantic meaning of a whole is a function
of the semantic meanings of its several parts. Therefore,
the semantic meanings of complex structures will depend
on how their semantic elements combine. There are many
previous studies dedicated to the representation learning of
compositional semantics. Among them, the article
composition in distributional models of semantics [7]
proposes a comprehensive framework of compositional
semantics and becomes a rather representative
summarization of this line of work. In this chapter, we
adopt the framework to introduce compositional semantics
along with our understanding and discussion (Fig. 3.1).



Fig. 3.1  Higher-level linguistic units are composed of basic linguistic units
guided by certain rules

Here, we consider two basic semantic units and use u
and v to denote them, respectively. And the most intuitive
way to define the joint representation could be formulated
by directly building a mapping function:

(3.1)
where p corresponds to the representation of the joint
semantic unit (u, v). Generally, u and v could denote
words, phrases, sentences, paragraphs, or even higher-
level semantic units.

However, given the representations of two semantic
constituents, it is not enough to derive their joint
embedding without syntactic information. For instance,
although the phrase machine learning and learning

machine have the same vocabulary, they contain different
meanings: machine learning refers to a research field in



artificial intelligence, while learning machine means some
specific learning algorithms. That is to say, the way how
the units are mixed is also an essential part of the semantic
composition. This phenomenon stresses the importance of
syntactic and order information in a compositional unit.
Hence, an improved version of the framework is to take the
role of syntactic and order information into consideration
[9]. Specifically, in terms of formulation, we can introduce
an  to represent the relationship between units.

The complex semantics of a combined unit in the real
world can also be influenced by human background
knowledge. In other words, some sentences are difficult to
understand by merely paying attention to the constituent
units and the syntax. For example, the sentence Tom and

Jerry is one of the most popular comedies in that style.

needs two main backgrounds: firstly, Tom and Jerry is a
special noun phrase or knowledge entity that indicates a
cartoon comedy, rather than two ordinary people. The
other prior knowledge should be that style, which needs
further explanation in the previous sentences. Hence, a full
understanding of compositional semantics needs to take
external knowledge into account. We consummate the
formulation by adding another item  to denote such
background knowledge. The complete composition function
in Eq. (3.1) is redefined to combine the syntactic
relationship rule  between the semantic units u and v
and human background knowledge  :

(3.2)
From the perspective of computational linguistics, the

meaning of a word is not isolated from the context. That is,
the semantics of the combined unit are constituted from its
components, and the meanings of the components are
meanwhile derived from the combined unit [3]. This also
echoes the concept of structuralism stated in Chap. 1.



Compositionality is also a matter of degree instead of an
either-or issue [8]. We could divide linguistic structures
into several groups according to the degree of
compositionality. For example, the fully compositional
structure means that the combined high-level semantics is
completely composed of the independent semantics of basic
units (e.g., white fur). In partly compositional expressions,
basic units still have separate meanings, but when
combined together, they derive additional semantics (e.g.,
take care). In non-compositional idioms or multi-word
expressions, the combined semantics have little
relationship with the semantics of basic units (e.g., at
large).

From the above equations formulating composition
function, it could be concluded that composition could be
viewed as more than a specific binary operation. The
syntactic information could help to indicate a particular
approach, while background knowledge helps to explain
some obscure words or specific context-dependent entities
such as pronouns. To this end, we could realize that the
complexity of language comes from the nearly infinite
combination of finite elements. This chapter can be seen as
the transition from word representation to sentence and
document representation, aiming to introduce the basic
concepts and methods for dealing with compositional
semantics from a linguistic point of view. We will first
explain basic binary composition functions in Sect. 3.2,
including the additive model and multiplicative model and
then give a brief introduction to modeling methods for
more complex N-ary composition in Sect. 3.3, including
sequential order, recursive order, and convolutional order
modeling. We will introduce the specific methods of
learning sentence and document representation in modern
NLP in detail in the next chapter.



3.2 Binary Composition

The goal of compositional semantics is to construct vector
representations for higher-level linguistic units with basic
units via binary composition. Without loss of generality, we
assume that each constituent of a phrase (or even higher-
level linguistic units) is embedded into a computable vector
which will be further used to generate a representation
vector for the phrase.

In this section, we focus on binary composition, where
two objects will be involved in each operation. We now
consider phrases consisting of two components: a head and
a modifier or complement. If we cannot model the binary
composition (or phrase representation), it is almost
impossible to build more complex compositional
representations for higher-level linguistic units. Even in
today’s age of neural networks, the concept of binary
composition is still important. For example, in the
transformer architecture, the calculation of the attention of
two units could be regarded as a type of binary operation.

Given a phrase with two constituent words machine

learning, as well as the representations u and v
representing the words machine and learning, respectively,
our primary goal is to construct a representation vector p
of the phrase according to the representations of the
words. With a simple semantic space where each vector is
represented by five integers, we let the hypothetical
vectors for machine and learning be [0, 3, 1, 5, 2] and [1, 4,
2, 2, 0], respectively. And if we simply use the add operator
to represent the phrase machine learning, it becomes [0, 3,
1, 5, 2] + [1, 4, 2, 2, 0] = [1, 7, 3, 7, 2]. The key to this
problem is designing a primitive composition function as a
binary operator. Based on this function, one could apply it
to a word sequence recursively to derive composition for
longer text.



Modeling the binary composition function is a well-
studied but still challenging problem. There are mainly two
perspectives on this question, including the additive model
and the multiplicative model according to the basic
operators. We will introduce the basic concepts and
computation principles of these two approaches in this
section.

3.2.1 Additive Model

The additive model, as the name implies, is a modeling
method with addition as the basic operation. Recall that in
the introductory part, we have derived a formulation that
may contain complex relationships between units and
external background knowledge, which would make our
discussion exceedingly broad. In this section, to narrow the
space of our considered function and establish fundamental
understandings of compositional semantics, we start by
simplifying the formula to p = f(u, v) and omitting the
relationship and background items. Naturally, if we aim to
perform addition correctly, p, u, and v should lie in the
same semantic space.

One of the simplest ways is to directly use the sum to
represent the joint representation:

(3.3)
As computed in the foregoing part, the sum of the two

vectors representing machine and learning would be
w(machine) + w(learning) = [1, 7, 3, 7, 2]. It assumes that
the composition of different constituents is a symmetric
function where p = u + v = v + u. That is, it does not
consider the order of constituents. Although having lots of
drawbacks such as a lack of the ability to model word
orders and the absence of background syntactic or
knowledge information, this approach still provides a
relatively strong baseline [6].



To overcome the word order issue, one easy variant is
applying a weighted sum instead of uniform weights. This
is, the composition has the following form:

(3.4)
where α and β correspond to different weights for two
vectors. Under this setting, two sequences (u, v) and (v, u)
have different representations when α ≠ β, which is
consistent with real language phenomena. For example,
machine learning and learning machine have different
meanings and require different representations. To this
end, we assign different importance scores to different
components. For instance, we set α to 0.3 and β to 0.7, the
0.3 ×w(machine) = [0, 0.9, 0.3, 1.5, 0.6] and 0.7 
×w(learning) = [0.7, 2.8, 1.4, 1.4, 0], and machine learning

is represented by their addition 0.3 ×w(machine) + 0.7 
×w(learning) = [0.7, 3.7, 1.7, 2.9, 0.6].

Now, we attempt to incorporate prior knowledge and
syntax information into the additive model in a
straightforward way. To achieve that, one could combine K
nearest neighborhood semantics into composition, deriving:

(3.5)

where m1, m2, …, mL denote semantic neighbors (i.e.,
synonyms) of u, and n1, n2, …, nK denote semantic
neighbors of v. To this end, this method could ensemble
such synonyms of the component as a smoothing factor into
the composition function, which reduces the variance of
language. For example, if in the composition of machine

and learning, the chosen neighbors are computer and
optimizing with w(computer) = [1, 0, 0, 0, 1] and
w(optimizing) = [1, 5, 3, 2, 1], respectively. This leads to
the situation that the representation of machine learning



becomes w(machine) + w(computer) + w(learning) + 
w(optimizing) = [3, 12, 6, 9, 4]. Although it is a simple
strategy, the use of synonyms to improve the robustness of
language models is still a very effective practice in modern
NLP.

When it comes to the measurement of similarity between
representations, the cosine function is a natural approach
in the semantic space. We will take a closer look to
understand the additive model by computing the cosine
similarity between p = u + v (we go back to the naive
additive model for computation simplicity) and an arbitrary
word w. The cosine similarity, denoted as s(⋅) could be
derived as:

(3.6)

(3.7)

From the derivation ahead, it could be concluded that this
composition function composes of both magnitude and
directions of two component vectors. And the composition
similarity of two linguistic units could be viewed as a linear
combination of the similarity of two components. In other
words, if one vector dominates the magnitude, it will also
dominate the similarity. For example, if ∥u∥ = 103 and ∥v∥ = 
10−3, the similarity between p and w will be mostly
determined by the semantics of u. This could happen if u is
an entity with a strong specific meaning like Europe while v
is an empty word like there. Further disassembly, in terms
of the norm of compositional semantics, we have:

(3.8)
This lemma suggests that the semantic unit with a

deeper-rooted parsing tree could determine the joint



representation when combined with a shallow unit. That is,
the closer the unit to the final semantic combined unit, the
more likely it is to exert a greater influence on the overall
semantics.

3.2.2 Multiplicative Model

Though the additive model achieves considerable success
in semantic composition, the simplification may also
restrict it from performing more complex interactions.
Different from the additive model that regards composition
as a simple linear transformation, the three-order
multiplicative model aims to make higher-order
interactions by using multiplication as the basic operator.
Among all models from this perspective, the most intuitive
approach tried to apply the pairwise product as a
composition function approximation. In this method, the
composition function is shown as the following:

(3.9)
where, pi = ui ⋅vi, which implies each dimension of the
output only depends on the corresponding dimension of
two input vectors. However, similar to the simplest additive
model, this model is also suffering from the lack of the
ability to model word order and the absence of background
syntactic or knowledge information.

In the additive model, we have p = αu + βv to alleviate
the word order issue by assigning different weights to
different items. Here, α and β are two scalars, which can
also be naturally changed to two matrices. The composition
function could be represented as:

(3.10)
where Wα and Wβ are weight matrices that indicate the
importance of components u and v to the combined unit p.



With this expression, the composition could be more
expressive and flexible, although much harder to train.

By generalizing the multiplicative model ahead, another
approach is to utilize tensors as a multiplicative descriptor,
and the composition function could be viewed as:

(3.11)

where  denotes a three-order tensor, i.e., the formula
above could be written as pk =∑i,jWijk ⋅ui ⋅vj. Hence, this
model makes sure that each element of p could be
influenced by all elements of both u and v, with a
relationship of linear combination by assigning each (i, j) a
unique weight.

Starting from this simple but general baseline, some
researchers proposed to make the function not symmetric
to consider word order in the sequence, paying more
attention to the first element. The composition function
could be:

(3.12)

where  denotes a four-order tensor. This method could
be understood as replacing the linear transformation of u
and v to a quadratic in u asymmetrically. So this is a
variant of the tensor multiplicative compositional model.

Different from expanding a simple multiplicative model
to complex ones, other kinds of approaches are proposed to
reduce the parameter space. With the reduction of
parameter size, people could make compositions much
more efficient rather than having an O(n3) time complexity
in the tensor-based model. Thus, some compression
techniques could be applied to the original tensor model.
One representative instance is the circular convolution
model, which could be shown as:

(3.13)



where  ) represents the circular convolution operation
with the following definition:

(3.14)

If we assign each pair with unique weights, the composition
function will be:

(3.15)

The circular convolution model could be viewed as a
special instance of a tensor-based composition model. If we
write the circular convolution in the tensor form, we have
Wijk = 0, where k ≠ i + j. Thus, the parameter number could
be reduced from n3 to n2, while maintaining the
interactions between each pair of dimensions in the input
vectors.

Both in the additive and multiplicative models, the basic
condition is all components lie in the same semantic space
as the output. Nevertheless, different modeling types of
words in different semantic spaces could bring us different
perspectives. For instance, given (u, v), the multiplicative
model could be reformulated as:

(3.16)
This implies that each left unit could be treated as an

operation on the representation of the right one. In other
words, each remaining unit could be formulated as a
transformation matrix, while the right one should be
represented as a semantic vector. This argument could be
meaningful, especially for some kinds of phrase
compositions. Baroni et al. [2] argue that for adj-noun

phrases, the joint semantic information could be viewed as
the conjunction of the semantic meanings of two
components. Given a phrase red car, its semantic meaning



is the conjunction of all red things and all different kinds of
cars. Thus, red could be formulated as an operator on the
vector of car, deriving the new semantic vector, which
expressed the meaning of red car. These observations lead
to another genre of semantic compositional modeling:
semantic matrix-composition space.

3.3 N-ary Composition

In real-world NLP tasks, the input is typically a sequence of
multiple words or tokens rather than just a pair of words.
Therefore, besides designing a suitable binary
compositional operator, the order to apply binary
operations is also important. In this section, we will
introduce mainstream strategies in N-ary composition by
taking language modeling as an example. To illustrate the
language modeling task more clearly, the composition
problem to model a sentence or even a document could be
formulated as follows. Given a sentence/document
consisting of a word sequence {w1, w2, ..., wN}, we aim to
design the following functions to obtain the joint semantic
representation of the whole sentence/document:
1.

A semantic representation method like semantic vector
space or compositional matrix space.

 
2.

A binary compositional operation function f(u, v) like
we introduced in the previous sections. Here the input
u and v denote the representations of two constitute
semantic units, while the output is also the
representation in the same space.

 

3. An order to apply the binary function in step 2. To
describe in detail, we could use a bracket to identify
the order to apply the composition function. For
instance, we could use ((w1, w2), w3) to represent the
sequential order from beginning to end

 



sequential order from beginning to end.
Methods to model sentence semantics and tackle the

above problems could be classified by word-level order:
sequential order and convolution order. These composition
methods can be particularly implemented by neural
networks with corresponding structures. We will introduce
the fundamental concepts of the modeling and leave the
specific neural network methods to the next chapter.

Sequential Order  To design orders to apply binary
compositional functions, the most intuitive method is
utilizing sequentiality. Namely, the sequence order should
be sn = (sn−1, wn), where sn−1 is the order of the first n − 1
words. In this case, the most suitable neural network is the
recurrent neural network (RNN). An RNN applies the
composition function sequentially and derives the
representations of hidden semantic units. Based on these
hidden semantic units, we could use them on some specific
NLP tasks like sentiment analysis or text classification.
Also, note that basic RNNs only utilize the sequential
information from head to tail of a sentence/document. To
improve the representation ability, RNNs could be
enhanced by considering sequential and reverse-sequential
information. In RNNs, each hidden state is controlled by
the previous hidden state and the input embeddings at the
current timestep, thereby forming the composition function
of the sequential order.

Convolutional Order  In addition to the sequential and
recursive order from linguistic intuition, we can also model
high-level semantics from the convolutional order.
Naturally, this is implemented by a convolutional neural
network (CNN), which extracts local features by a
convolution layer and then integrates local features via
pooling operations to produce sentence-level
representations. The starting point of such methods is also



to model local features for basic units and then synthesize
the universal representation of the entire input. The
difference from the previous approaches is that it does not
follow the sequence order or syntactic structure but lets
the convolutional layer complete this combination
automatically.

For the sake of simplicity, this chapter ignores the
relationship  and external knowledge  of compositional
semantics when introducing them. And these two items are
challenging to be heuristically defined and applied in
traditional computational linguistics. However, the modern
NLP, typically based on deep neural networks, brings a
twist to the situation. The tremendous capacity enables
neural networks to model almost arbitrarily complex
semantic structures in an implicit way, which could be
regarded as modeling the  item (will be introduced in
Chap. 4). And advances in knowledge representation
learning and knowledge-guided NLP could be naturally
seen as a process to model the  item (will be introduced
in Chap. 9).

3.4 Summary and Further Readings

In this chapter, we first introduce the semantic space for
compositional semantics. Afterward, we take phrase
representation as an example to introduce representative
models for binary semantic composition, including additive
models and multiplicative models. Finally, we introduce
typical methods for N-ary semantic composition. We use
fundamental principles and concepts to illustrate the core
idea of compositional semantics: to build complex
semantics with the combinations of basic components. For
further understanding of compositional semantics, readers
can refer to some recommended surveys and books that
comprehensively introduce the area. For example, the



framework applied in this chapter is from the inspiring
article of Pelletier et al. [10].

For better modeling compositional semantics, some
directions require further efforts in the future. For
example, neurobiology-inspired compositional semantics is
a promising research topic that explores the
neurobiological insights of compositional semantics [11].
The analysis of how language builds meaning and lays out
directions in neurobiological research may bring some
instructive reference for modeling compositional semantics
in representation learning. It is valuable to design novel
compositional forms inspired by recent neurobiological
advances. There are also studies that attempt to consider
discrete symbols in deep neural networks [1, 4], triggering
new research issues on the combination of neural models
and symbolic models.

Generally speaking, modeling complex semantics
distributed in sentences and even documents could be
extremely difficult. It may be difficult for us to complete the
modeling through heuristic methods. At this point, the
powerful fitting and generalization capability of the neural
networks are needed to play a role. In the next chapter, we
will introduce concepts, methodologies, and applications of
sentence and document representation and particularly put
focus on the neural network approaches.
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This is the representation learning for compositional
semantics chapter of the second edition of the book
Representation Learning for Natural Language Processing,
with its first edition published in 2020 [5]. As compared to
the first edition of this chapter, main changes include the
following: (1) we reorganized the structure and moved the
detailed introduction of neural networks (e.g., RNNs and
CNNs) to the next chapter; (2) we polished and rewrote the
content of the introduction and binary composition; and (3)
we removed the semantic space section of the first edition
to make this chapter more focused on the basic concepts of
semantic composition modeling.
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to sentence and document representation learning. Then
we extensively introduce neural network-based methods for
the far-reaching language modeling task, including feed-
forward neural networks, convolutional neural networks,
recurrent neural networks, and Transformers. Regarding
the characteristics of a document consisting of multiple
sentences, we particularly introduce memory-based and
hierarchical approaches to document representation
learning. Finally, we present representative applications of
sentence and document representation, including text
classification, sequence labeling, reading comprehension,
question answering, information retrieval, and sequence-to-
sequence generation.

4.1 Introduction

A natural language sentence is a linguistic unit that
conveys complete semantic information, which is composed
of words and phrases guided by grammatical rules.
Although all the elements in a sentence come from a finite
set, they could constitute almost infinite semantics with
complex sequential and hierarchical structures.
Transforming sentence-level information into computable
numerical representations is an intriguing and meaningful
research issue for broad tasks of natural language
processing.

In the early stage before deep learning, symbolic
strategies are widely adopted to represent sentences.
Following the bag-of-words assumption, sentences could be
represented as one-hot or term frequency-inverse
document frequency (TF-IDF) vectors. However, such
methods would bring the computational efficiency problem
since the dimension of such representation vectors is
usually up to thousands or millions. And these methods also
neglect the syntactic structure of a sentence, which is the
core of constituent words to express different semantics.



By contrast, the n-gram probabilistic language model that
assigns probabilities to sequences of words could consider
the context while modeling sentences. Despite the
simpleness of the probabilistic language model, it inspires
the subsequent state-of-the-art neural language models
that are based on deep neural networks, such as
convolutional neural networks and recurrent neural
networks, etc. Compared with conventional symbolic
sentence representations, deep neural networks can
capture the internal structures of sentences, e.g.,
sequential and dependency information, through
convolutional, recurrent, or self-attention operations,
yielding significant success in sentence modeling and NLP
tasks.

Documents, usually regarded as the highest-level
linguistic unit of natural language, are constituted when
there are enough sentences, and they are organized in a
particularly logical way. With the rapid development of the
Internet, how to effectively retrieve and mine the vast new-
coming information from massive amounts of online text
becomes a crucial problem for natural language
processing. Therefore, document representation plays a
vital role in a series of real-world applications and becomes
an intriguing research problem. In principle, the
aforementioned symbolic or neural-based methods for
sentence representation learning could also be applied to
documents. But it is also easy to see that the coherence
between sentences provides space for more complex
combinations to form document-level semantics, thereby
producing new challenges. Common approaches to tackle
document representation include memory-based and
hierarchical methods.

In this chapter, we first introduce symbolic sentence
representation learning methods in Sect. 4.2, including the
bag-of-words model and probabilistic language models.



Then we detail the techniques of neural language models in
Sect. 4.3, including feed-forward neural networks,
recurrent neural networks, convolutional neural networks,
and Transformers. Memory-based and hierarchical methods
to model document-level information are elaborated in
Sect. 4.4. Finally, we comprehensively introduce
representative applications of sentence and document
representation in Sect. 4.5, including text classification,
sequence labeling, reading comprehension, question
answering, information retrieval, recommendation, etc.

4.2 Symbolic Sentence

Representation

When words and phrases form sentences, they obtain
complete semantics. Similar to word representations in
Chap. 2, sentences can also be represented symbolically.
But with a slight difference, the sentence is not the
smallest unit in this recipe. A symbol-based sentence
representation is composed of multiple symbolic word
representations. In this section, we introduce the bag-of-
words model and the probabilistic language model for
symbolic sentence representation learning.

4.2.1 Bag-of-Words Model

As introduced in Chap. 2, one-hot representation is the
most straightforward symbolic method for words and
phrases. This approach represents each word with a fixed-
length binary vector. For a vocabulary V = {w1, w2, …, w|V |},
the one-hot representation of word w is w = [0, …, 0, 1, 0,
…, 0]. Based on the one-hot word representation and the
vocabulary, it can be extended to represent a sentence s = 
{w1, w2, …, wN} based on the bag-of-words hypothesis. Bag-
of-words model represents sentences as a multiset of its



words while ignoring the order and other grammatical
rules:

(4.1)

where N indicates the length of the sentence s. The
sentence representation s is the sum of the one-hot
representations of N words within the sentence, i.e., each
element in s represents the term frequency (TF) of the
corresponding word. In practice, to prevent it from being
biased toward longer texts, it is usually normalized
according to the number of words in the whole text.

However, TF alone cannot properly represent a sentence
or document since not all the words are equally important.
For example, the function words such as a, an, and the

usually appear in almost all sentences and reserve little
semantics that could represent the sentence or document.
Therefore, the inverse document frequency (IDF) is
developed to measure the prior importance of wi in V  as
follows:

(4.2)

where |D| is the number of all sentences or documents in
the corpus D and  represents the document frequency
(DF) of wi, which is the number of documents that wi

appears. With the importance of each word, the sentences
are represented more precisely as follows:

(4.3)
where ⊙ is the element-wise product.

Here,  is the TF-IDF representation of the sentence s,
and it could be naturally applied to both the sentence and
document levels. The insight behind it is that the more



frequently a word appears and the less it appears in other
texts, the more it represents the uniqueness of the current
text and thus will be assigned more weight. TF-IDF is one
of the most popular methods in information retrieval and
recommender system [76, 81].

4.2.2 Probabilistic Language Model

One-hot sentence representation identifies important terms
to construct the representation and neglects the structural
information in a sentence. In this section, we introduce the
probabilistic language model, a symbolic sentence
representation approach that takes context into account.

A standard probabilistic language model defines the
probability of a sentence s = {w1, w2, …, wN} by the chain
rule of probability:

(4.4)

(4.5)

The probability of each word is determined by all the
preceding words. And the conditional probabilities of all
the words jointly compute the probability of the sentence.
However, the model indicated in the Eq. (4.5) is not
practicable due to its enormous parameter space for long
texts. This is where the n-gram model comes to play, whose
core idea is not to use all previous words but n − 1 words to
predict the current word. We show an example of the n-
gram model in Fig. 4.1.



Fig. 4.1  An example of the n-gram language model, where n = 3

In practice, we set such n − 1-sized context windows in
the probabilistic language model, assuming that the
probability of word wi only depends on {wi−n+1⋯wi−1}. More
specifically, an n-gram language model predicts word wi in
the sentence s based on its previous n − 1 words:

(4.6)
After simplifying the language model problem, how to

estimate the conditional probability is crucial. In practice, a
common approach is maximum likelihood estimation
(MLE), which is generally in the following form:

(4.7)

In this equation, the denominator and the numerator can
be estimated by counting the frequencies in the corpus. To
avoid the probability of some n-gram sequences from being
zero, researchers also adopt several types of smoothing
approaches, which assign some of the total probability
mass to unseen words or n-grams, such as “add-one”



smoothing, Good-Turing discounting [31], or back-off
models [45].

n-gram model is a typical probabilistic language model
for predicting the next word in an n-gram sequence, which
follows the Markov assumption that the probability of the
target word only relies on the previous n − 1 words. The
idea is employed by most current sentence modeling
methods, where the n-gram language model serves as an
approximation of the true language model. This hypothesis
is crucial because it substantially simplifies the problem of
learning the parameters of language models from data.
Recent works on word representation learning [1, 69, 72]
are mainly based on the n-gram language model.

The introductory part of this chapter states that the
semantic information of a sentence not only exists in
constituent words but is also closely related to its flexible
syntactic structure. Obviously, despite its simplicity,
symbolic approaches treat constituent words as
independent symbols and are not capable of representing
rich semantic information. Symbolic methods for sentence
representation learning have been extensively introduced
by many classical textbooks [42]. In this chapter, we mainly
focus on sentence representations based on neural
networks, which is a common practice in modern NLP.

4.3 Neural Language Models

Although the aforementioned symbolic methods are
cornerstones to represent sentences in inchoate NLP, they
still face challenges in modeling rich semantic information
and universal information distributed in flexible structures
of sentences. To this end, a set of more powerful modeling
tools, neural networks, are developed for language
modeling. Different from symbolic methods, neural
language models use continuous representations to



represent all words, which enjoy better generalization and
modeling capability for longer texts.

A neural network could also be viewed as an estimator
of the language model function, and the architecture could
be flexible in this setting. Similar to n-gram probabilistic
language models, neural language models are constructed
and trained to model a probability distribution of a target
word conditioned on previous words:

(4.8)

where the conditional probability of the selecting word wi

can be calculated by multiple kinds of neural networks and
the common choices include the feed-forward neural
network, recurrent neural network, convolutional neural
network, etc. The training of neural language models is
achieved by optimizing the cross-entropy loss function:

(4.9)

The parameters of the language model will be iteratively
optimized during training and result in a language model
that could predict the next word based on the context. In
the following sections, we will detail these neural language
models.

4.3.1 Feed-Forward Neural Network

Whether it is a probabilistic language model or a neural
language model, the primary goal is to estimate the
conditional probability P(wi|w1, …, wi−1). And as stated,
adopting the idea of n-gram to approximate the conditional
probability is a common approach, where each word is
determined by its n − 1 context words, i.e., P(wi|w1, …,
wi−1) ≈ P(wi|wi−n+1, …, wi−1). In this section, we first



introduce language modeling with the feed-forward neural
network (FFN).

The architecture of the FFN language model is proposed
by Bengio et al. [1] (illustrated in Fig. 4.2). Although more
sophisticated neural architectures could be applied to the
problem, the FFN language model first elaborates on the
methodology of neural-based language modeling. To
evaluate the conditional probability of the word wi, it first
projects its n − 1 context-related words to their word vector
representations [wi−n+1, …, wi−1] and concatenate the
representations x = concat(wi−n+1;…;wi−1) to feed them into
a FFN. The formulation can be generally written as follows:

(4.10)
where f(⋅) is an activation function, W1, W2 are weighted
matrices to transform word vectors into hidden
representations, M is a weighted matrix for the
connections between the hidden layer and the output layer,
and b, d are bias terms. And then, the conditional
probability of the word wi can be calculated by a Softmax
function:

(4.11)



Fig. 4.2  The architecture of the feed-forward neural network

4.3.2 Convolutional Neural Network

Convolutional neural networks (CNNs) use convolutional
layers to conduct the basic operation. This type of neural
network layer represents the context by extracting
hierarchical information from it [23]. For the input words
{w1, …, wl}, we first obtain their word embeddings [w1, …,
wN]. Let d denote the dimension of the hidden states. The
convolutional layer involves a sliding window with the size
of k of the input vectors centered on each word vector
using a kernel matrix Wc. And the hidden representation
could be calculated by

(4.12)
where ∗ is the convolution operation, f(⋅) is a nonlinear
activation function (e.g., a sigmoid or tangent function),

 is the matrix of word embeddings,  (d′



is the kernel size), and  are learned parameters. The
sliding window prevents the model from seeing the
subsequent words so that h does not learn information
from future words. For each sliding step, the hidden state
of the current word is computed based on the previous k
words and then further fed to an output layer to calculate
the probability of the present word. The architecture of a
CNN is shown in Fig. 4.3. In practice, we can use distinct
lengths of sliding windows to form multi-channel operations
to learn local information with different scales.

Fig. 4.3  The architecture of the convolutional neural network

4.3.3 Recurrent Neural Network



To address the lack of ability to model long-term
dependency in the FFN language model, Mikolov et al. [70]
propose a recurrent neural network (RNN) language model
which applies an RNN in language modeling. RNNs are
different from FFNs in a fundamental way in that they
operate in an internal state space where representations
can be sequentially processed. Therefore, the RNN
language model can deal with those sentences of arbitrary
length. At every time step, its input is the vector of its
previous word instead of the concatenation of vectors of its
n − 1 previous words. The information of all other previous
words can be considered by its internal state.

Given the input word embeddings x = [w1, w2, …, wN], at
timestep t, the current hidden state ht is computed based
on the current input wt and the hidden state of the last
timestep ht−1. Formally, the RNN language model can be
defined as

(4.13)

(4.14)
where f(⋅) is a nonlinear activation function, y represents a
probability distribution over the given vocabulary, W and
M are weighted matrices and b, d are bias terms. As the
increase of the length of the sequence, a common issue of
the RNN language model is the vanishing gradients
problem. The architecture of the RNN language model is
shown in Fig. 4.4. Here, the RNN unit can also be
implemented in other variants of recurrent neural
networks, e.g., long short-term memory (LSTM) and gated
recurrent unit (GRU).



Fig. 4.4  The architecture of recurrent neural networks. The figure is re-drawn
according to the blog for introducing LSTM models (https:// colah. github. io/ 
posts/ 2015-08-Understanding-LSTMs/ )

LSTM  Since the raw RNN only utilizes the simple
tangent function, it is hard to obtain the long-term
dependency of a long sentence/document. Hochreiter et al.
[37] propose long short-term memory (LSTM) networks to
strengthen the ability to model long-term semantic
dependency in RNN.

LSTM introduces a cell state ct to represent the current
information at timestep t, which is computed from the cell
state at the last timestep ct−1 and the candidate cell state
of the current timestep  . And the representation of the
current timestep ht is calculated based on ct. Formally,

(4.15)

https://colah.github.io/posts/2015-08-Understanding-LSTMs/


(4.16)

(4.17)
where ⊙ is the element-wise multiplication operation, Wc

and bc are learnable parameters and ft, it, and ot are
different gates introduced in LSTM to control the
information flow. Specifically, ft is the forgetting gate to
determine how much information of the cell state at the
last timestep ct−1 should be forgotten, it is the input gate to
control how much information of the candidate cell state at
the current timestep  should be reserved, and ot is the
output gate to control how much information of the current
cell state ct should be output to the representation ht. And
all these gates are computed by the representation of the
last timestep ht−1 and the current input wt. Formally, it
could be written as

(4.18)

(4.19)

(4.20)
where Wf, Wi, Wo are weight matrices and bf, bi, bo are
bias terms in different gates. It is generally believed that
LSTM could model longer text than the vanilla RNN model.

GRU  To simplify LSTM and obtain more efficient
algorithms, Chung et al. [19] propose to utilize a simple but
comparable RNN architecture, named gated recurrent unit
(GRU), which also utilizes the gating mechanism to handle
information flow. But compared to several gates with
different functionalities, GRU uses an update gate zt to
control the information flow. And a reset gate rt is adopted
to control how much information from the last step hidden



state ht−1 would flow into the candidate hidden state of the
current step  . Formally, the computation flow of GRU is
as follows:

(4.21)

(4.22)

(4.23)

(4.24)

where Wz, Wr, Wh are weight matrices and bz, br, bh are
bias terms. The update gate z in GRU simultaneously
manages the historical and current information. Moreover,
the model also omits cell modules c in LSTM and directly
uses hidden states h in the computation. GRU has fewer
parameters, which brings higher efficiency and could be
seen as a simplified version of LSTM.

Generally, compared to CNNs, RNNs are more suitable
for the sequential characteristic of textual data. However,
the nature of each step’s hidden state is dependent on the
previous step also makes RNNs difficult to perform parallel
computation and thus slower in training.

4.3.4 Transformer

Since 2017, a more powerful neural architecture, the
Transformer [96] model, which is equipped with a self-
attention mechanism, has received extensive attention from
the NLP community. Compared to RNNs, Transformers
could handle sequential data in parallel instead of
processing a word at a timestep. The Transformer model
has become a mainstream choice of neural networks to
model natural language and pre-trained language models
based on deep Transformers have achieved state-of-the-art
results on various NLP tasks. In this section, we introduce



the mechanism of the Transformer model. We will use the
next chapter to introduce the progress and research issues
of representation learning brought by pre-trained models.

Structure  A Transformer is a nonrecurrent encoder-
decoder architecture with a series of attention-based
blocks. For the encoder, there are multiple layers, and each
layer is composed of a multi-head attention sublayer and a
position-wise feed-forward sublayer. And there is a residual
connection and layer normalization of each sublayer. The
decoder also contains multiple layers, and each layer is
slightly different from the encoder. First, sublayers of
multi-head attention and feed-forward with identical
structures with the encoder are adopted. And the input of
the multi-head attention sublayer is from both the encoder
and the previous sublayer, which is additionally developed.
This sublayer is also a multi-head attention sublayer that
performs self-attention over the outputs of the encoder.
And the sublayer adopts a masking operation to prevent the
decoder from seeing subsequent tokens. The architecture
of the Transformer is shown in Fig. 4.5.



Fig. 4.5  The architecture of a Transformer. This figure is re-drawn according
to Fig. 1 from Google’s Transformer paper [96]



Attention  There are several attention heads in the multi-
head attention sublayer. A head represents a scaled dot-
product attention structure, which takes the query matrix
Q, the key matrix K, and the value matrix V as the inputs,
and the output is computed by

(4.25)

where dk is the dimension of the query matrix; note that in
language models, Q, K, and V usually come from the same
source, i.e., the input sequences. Specifically, they are
obtained by the multiplication of the input embedding H
and three weight matrices WQ, WK, and WV, respectively.
The dimensions of query, key, and value vectors are dk, dk,
and dv, respectively. The computation in Eq. (4.25) is
typically known as the self-attention mechanism.

The multi-head attention sublayer linearly projects the
input hidden states H several times into the query matrix,
the key matrix, and the value matrix for h heads. The multi-
head attention sublayer could be formulated as follows:

(4.26)

where  and  ,  , and
 are linear projections. WO is also a linear projection for

the output.
After operating self-attention, the output would be fed

into a fully connected position-wise feed-forward sublayer,
which contains two linear transformations with ReLU
activation:

(4.27)



Input Tokenization  Tokenization is a crucial step in
NLP to process the raw input sequences. Generally,
tokenization converts the input sequence into “tokens” and
feeds them to subsequence processing modules. A simple
approach is to directly regard a word as a token, whereas
such a method cannot well handle unknown out-of-
vocabulary (OOV) words and cannot grasp the correlations
of similar words. For example, it is more intuitive to
tokenize “apples” into “apple” and “s” than a separate
token independent of “apple.” In modern NLP, more
mature methods like byte pair encoding (BPE) and
wordpiece are extensively applied to Transformer-based
models. Taking BPE as an example, it iteratively replaces
two adjacent units with a new unit, which ensures that
common words will remain as a whole and uncommon
words are split into multiple subwords. Practically, BPE is
applied to many pre-trained models such as RoBERTa [64]
and GPT-2 [79], and wordpiece is used to pre-train BERT
[24].

Positional Encoding  Positional encoding indicates the
position of each token in an input sequence. The self-
attention mechanism of Transformers does not involve
positional information. Thus, the model needs to represent
positional information of the input sequence additionally.
Transformers do not use integers to represent positions
because the value range varies with the input length. For
example, positional values may become very large if the
model process a long text, which will restrain the
generalization over texts of different lengths.

Specifically, each position is encoded to a particular vector
with the same dimension d of the hidden states to
represent the positional information. For the k-th token, let



pk be the positional vector; the i-th element of the
positional encoding  is calculated by

(4.28)

(4.29)

In this way, for each positional encoding vector, the
frequency would decrease along with the dimension. We
can imagine that at the end of each vector,  is
near to 0 since the denominator becomes very large, which
makes  approximates 0 and 
approximates 1. Assuming the state of alternating 0s and
1s is a kind of “stable point,” for different positions k, the
“speed” to reach such a stable point is also different. That
is, the later the token is (larger k), the later the value

 will be close to 0. Moreover, no matter the text
lengths the model is currently processing, the encoding
values are stable and range from − 1 to 1. Alternatively,
learnable positional embeddings could also be applied to
Transformers and could consistently yield similar
performance. Pre-trained language models like BERT [24]
adopt learnable position embeddings rather than sinusoidal
encoding.

Although the Transformer model was proposed to tackle
machine translation, the powerful capability to model
sequential data makes it the most popular backbone of NLP
applications. For example, it has become the standard
architecture for pre-trained language models, and GPT is a
representative example of using a Transformer for the
language modeling task. As stated, the overall objective is

 . Here, we use the



decoder of a Transformer to adopt the self-attention
mechanism to the previous n − 1 words of the current word,
and the output will be further fed into the feed-forward
sublayer. After multiple layers of propagation, the final
probability distribution P is computed by a softmax function
acting on the hidden representation. Compared to RNNs,
Transformers could better model the long-term
dependency, where all tokens will be equally considered
and computed during the attention operation.

4.3.5 Enhancing Neural Language Models

The foregoing parts have described representative neural
language models. Next, we introduce some techniques that
can further improve the performance of such models,
including word classification and the caching approach.

Word Classification  Researchers [9, 32] propose a
class-based language model to adopt word classification to
improve the performance and speed of the language model.
In this class-based language model, all words are assigned
to a unique class, and the conditional probability of a word
given its context can be decomposed into the probability of
the word’s class given its previous words and the
probability of the word given its class and history, which is
formally defined as

(4.30)

where C indicates the set of all classes and c(wi) indicates
the class of word wi.

Moreover, Morin et al. [73] propose a hierarchical neural
network language model, which extends word classification
to hierarchical binary clustering of words in the language
model. Instead of simply assigning each word a unique



class, it first builds a hierarchical binary tree of words
according to the word similarity obtained from WordNet.
Next, it assigns a unique bit vector [c1(wi), c2(wi), …,
cN(wi)] for each word, which indicates the hierarchical
classes of them. And then, the conditional probability of
each word can be defined as

(4.31)

The hierarchical neural network language model can
achieve  speed up as compared to a standard
language model. However, the experimental results of [73]
show that it performs worse than the standard language
model. The reason is that the introduction of hierarchical
architecture or word classes imposes a negative influence
on word classification by neural network language models.

Caching  Caching is also one of the important extensions
of neural language models. A type of cache-based language
model assumes that each word in a recent context is more
likely to appear again [90]. Hence, the conditional
probability of a word can be calculated by the information
from history and caching:

(4.32)

where Ps(wi|wi−n+1, …, wi−1) indicates the conditional
probability generated by standard language models and
Pc(wi|wi−n+1, …, wi−1) indicates the conditional probability
retrieved from cache, and λ is a constant.

Another cache-based language model is also used to speed
up the RNN language modeling [39]. The main idea of this



approach is to store the outputs and states of language
models for future predictions given the same contextual
history.

Neural language models are among the most powerful
techniques for sentence representations, which could
comprehensively model the complex syntactical structures
of long texts. Even for longer documents, modern
approaches are based on neural networks. And in the next
chapter, we will discuss how to model documents more
effectively.

4.4 From Sentence to Document

Representation

The aforementioned representation learning approaches
could be applied to both sentence- and document-level
texts since most existing works treat documents as “longer
sentences” in practice. However, the interactions of
multiple sentences in a document bring more complex
semantics, thereby establishing new challenges. In this
section, we introduce two types of document
representation learning methods. Memory-based document
representation treats the document as a whole to directly
learn the representation, and hierarchical document
representation performs the fusion of the information of
different levels of linguistic units to obtain the final
document representation.

4.4.1 Memory-Based Document Representation

A direct way to learn the document representation is to
regard the document as a whole. We regard this type of
method as the memory-based document representation
whose intuition is to use inherent modules to remember the
context with critical information of the target document.



Paragraph Vector  Here, we extend the idea of word2vec
to the document level, which is named paragraph vector
(PV) [53]. Given a target word and the corresponding
contexts from the document, the training objective of this
strategy is to use the paragraph vector to predict the target
word. More specifically, similar to word2vec, PV has two
variants: distributed memory (denoted as PV-DM) and
distributed bag-of-words (denoted as PV-DBOW).

As illustrated in Fig. 4.6, PV-DM adds an additional token in
each document and uses the token representation to
represent the document. By extending the idea of CBOW,
PV-DM predicts the target word according to historical
contexts and document representation in the training
phase. There are multiple choices exploiting the document
representation and word representations. For example, one
can directly concatenate these representations or average
them. It can be seen that the additional document
representation here acts as a memory module that
gradually captures the key semantics of the document as it
participates in the training process of predicting words
based on context. After training, the paragraph vectors can
be regarded as the representations of the documents and
be used as pre-trained document embeddings like pre-
trained word embeddings.



Fig. 4.6  The architecture of PV-DM model. This figure is re-drawn according
to Fig. 2 from the paragraph vector paper [53]

Besides PV-DM, PV-DBOW extends the idea of skip-gram
to learn document representation. As illustrated in Fig. 4.7,
PV-DBOW ignores the context words in the input text and
directly uses the document representation to predict the
target word in a randomly sampled window. In the training
phase, the model will randomly sample a window and then
randomly sample a word to be the prediction target.
Obviously, it is simpler in concept than PV-DM, and
experiments have shown that this method is also effective
for document representation.



Fig. 4.7  The architecture of PV-DBOW model. This figure is re-drawn
according to Fig. 3 from the paragraph vector paper [53]

However, when the document is too long, PV may not
have enough capacity to remember enough information.
These issues could be alleviated by modern deep neural
networks. In the following parts, we introduce deep neural
networks that yield superior performance in storing and
representing historical information as memories.

Memory Networks  In the era of deep learning, memory
networks [104] have become one of the representative
methods for learning document representation, which uses
memory units to store and maintain long-term information.
Compared to standard neural networks that utilize special
aggregation operations to obtain the document
representation, memory networks explicitly adopt memory
neural modules to store information, which could prevent
information forgetting. Given an input document with n
sentences d = {s1, s2, …, sn}, for the i-th sentence si, the
model firstly uses a feature extractor F to transform the
input into a sentence-level representation  :

(4.33)



A memory unit M is responsible for storing and updating
memories according to the current inputs. In this case, the
memories will be updated by certain operations. For the
specific update mechanism of the memory module, there
are many options to define M. Here we introduce one of the
most straightforward methods by using slots. The basic
idea of this approach is to store the representation of each
input into a separate “slot”:

(4.34)
where H(⋅) is used to select a particular index of a slot for
the input sentence si. In this case, M only updates one slot
with index H(si) given the input si and does not interfere
with any other memories.

Given memories stored through the aforementioned
process, we could find the k most relevant memories given
a query q and generate a final output. An output module O
is adapted to select supporting memories and generate the
latent representation of the output of the current query q.
We take k = 1 as an example, where the module selects one
memory index:

(4.35)

where sO(⋅) is a score function to evaluate the relevance of
the query and memories. Then we can use a decoder D to
generate concrete tokens. In particular, if the final output y
is a single word, given query q, memory mo (o is the
selected index of memory produced by O), and dictionary
V , we use another score function sy(⋅) that measures the
candidate word and o to produce y:

(4.36)
The framework is illustrated in Fig. 4.8.



Fig. 4.8  The general architecture of memory networks

In this general framework, each module can be carefully
designed to store various historical information. The
framework is effective for document modeling and could be
applied to many related tasks. For example, in reading
comprehension question answering, we can store the
representation of each sentence of the input passage as
memory and then match the query against the memory to
select the answer more accurately.

Variants of Memory Networks  Subsequently, many
memory network variants are designed from different
perspectives. Generally, the improvement can be delivered
from the training strategy and the memory form.

Training Strategy  If the operation of each module is
designed discretely, it is not easy to directly train the
network via back-propagation.

The end-to-end memory network [91] presents a continuous
version of this framework, which uses an RNN-based
architecture (it can also be replaced with other neural



backbones) to read the stored memories before outputting
the results. Specifically, given a document d = [s1, s2, …,
sn], for a sentence si, an encoder F is adopted to obtain the
representation  , which is regarded as the raw memory
for si. Given a query q, whose representation is q, we need
to extract relevant memories and produce the final output.
As shown in Fig. 4.9, the model generates a memory vector
mi and an output vector ci for each  with a trainable
matrix Wm and another trainable matrix Wc, respectively:

(4.37)
Memory vectors are used to compute matching scores p
against the query q with a softmax function. Specifically for
the i-th memory vector:

(4.38)

The matching score pi is then used as a weight of the
output vector ci to represent the relevance between q and
mi. By conducting a weighted sum, we obtain a vector o
that is responsible for the final output:

(4.39)



Fig. 4.9  The architecture of end-to-end memory network. This figure is re-
drawn according to Fig. 1 from the end-to-end memory network paper [91]

Finally, the final output y given a query q could be
derived from the query representation q and the vector o:

(4.40)
where Wo are trainable parameters. As we can see, in the
training procedure, Wm, Wc, Wo, and the encoder F will be
optimized in an end-to-end manner by directly minimizing
the cross-entropy loss between the prediction and the
ground truth label.

Dynamic memory networks [48] present a similar
methodology. After the model produces representations for
all the input sentences and the current query, the query
representation will trigger a retrieval procedure based on
the attention mechanism. This procedure will iteratively
read the stored memories and retrieve the relevant ones to
produce the output. The transformation of memory
networks into the end-to-end manner in terms of training
strategies has further expanded its influence and inspired
new research works [61, 62, 106, 108].



Memory Form  In addition to the training strategy
perspective, we can also improve memory networks from
the perspective of the form of stored memories. It is easy to
see that such a framework may be difficult to store vast
amounts of information because it is hard to compute
matching scores for large-scale memories. Hierarchical
memory networks [10] give a solution that organizes
memories in a hierarchical form. This method forms a
group of memories, and then multiple groups can be
reorganized into higher-level groups. It uses a maximum
inner product search combined with the attention
mechanism to efficiently retrieve desired memory. This
approach effectively improves the efficiency of searching
memory but may also risk losing some precision as the
number of levels increases.

Key-value memory network (KV-MemNN) [71], as the name
means, uses a key-value structure to store and organize
memories. The design of such a structure is to boost the
process of retrieving memories and could store information
from different sources (e.g., text and knowledge graphs).
The framework is illustrated in Fig. 4.10. Formally, the
memories are pairs of key-values (ki, vi). Suppose that we
already have large-scale established key-value memories,
given a query q and the corresponding representation q;
the model could use it to preselect a small group of
memories by directly matching the words in the query and
memories with the reverse index. After narrowing the
search space, one can calculate the relevant score between
the query and a key:

(4.41)
where fQ(⋅) and fK(⋅) are feature mapping functions. Similar
to the end-to-end memory network, in the reading stage,



the vector o responsible for the final output could be
calculated by a weighted sum:

(4.42)

where fV(⋅) is a feature mapping function. It is noteworthy
that the output vector leverages both the key and value
representations. Another prominent feature of KV-MemNN
is that the query can be iteratively updated during the
training process. The intuition of this mechanism is that the
retrieved memory key could be incorporated into the query
and produce a new query to find more accurate memories.
Formally, the updated query is

(4.43)
where Wq is a transformation matrix. Accordingly, the
relevant score of the updated query and memories is

 . The number of updates to the
query H is a fixed value, which is treated as a
hyperparameter. Thus, the final prediction of the model is

(4.44)

where yk is an output candidate of all the possible outputs
in a particular task, and fY(⋅) is a feature mapping function.
At this time, key-value memories conduct interactions with
the output candidates. In the training phase, all the
aforementioned feature mapping functions and trainable
parameters are optimized in an end-to-end manner. KV-
MemNN could also be generalized to a variety of
applications with different forms of knowledge by flexibly
designing fQ, fK, and fV. For example, for storing world
knowledge in the form of a triplet, we can regard the head
entity and the relation as the key and the tail entity as the
value. For textual knowledge, we can encode sentences or
words directly into both key and value in practice.



Fig. 4.10  The architecture of key-value memory network. This figure is re-
drawn according to Fig. 1 from the key-value memory network paper [71]

Although memory networks are proposed for better
document modeling, it has profoundly influenced the
academic community with this idea. We can use additional
modules to store information explicitly and enhance the
memory capacity of neural networks. To this day, this
framework is still a common idea for modeling very long
texts. There are three key points in designing such a
network: representation learning of memory, the matching
mechanism between memory and query, and how to
perform memory retrieval based on the input efficiently.

4.4.2 Hierarchical Document Representation

As mentioned in the former sections, higher-level units in
natural languages are often composed of lower-level units,
and documents are composed of multiple sentences in a
specific logical order. Therefore, an intuitive way to obtain
sentence representations is to perform hierarchical
modeling [55], where word representations are used to



compose sentence representations, which in turn compose
document representations. With the powerful
representation capabilities of neural networks, we can
explicitly develop this type of method. Here, we introduce
several neural-based methods of learning document
representation hierarchically.

Hierarchical Document Encoder  The basic idea of the
hierarchical document encoder is to use low-level
representations to produce high-level representations.
First, the word vectors obtained by pre-training with self-
supervised methods can be directly used as the basic word
representations. We can also optimize these word
representations according to specific tasks. And there are
various ways to get the sentence representation through
the constituent word representation. For example, we can
let it pass through a layer of multilayer perceptron (MLP)
and then average over all the hidden states. Here we
attempt to recurrently process the document and take
LSTM as an example, and the input document is d = {s1, …,
sm}, where si is a sentence si = {w1, …, wn}. We input a
sentence sj directly into LSTM (other neural networks like
GRU and CNN can also be applied) and get the
corresponding hidden states. In this way, according to the
previous equations, the hidden state of each step is
calculated from the hidden state of the previous step and
the input of the current step:

(4.45)
Thus, the hidden state of the last time step contains the
semantic information of the whole sentence and can be
used as a sentence representation:

(4.46)



At this point, we get a representation of each sentence.
Considering the sentence as a basic unit, we can build
another LSTM on the sentence level to process the
sentence representation sequentially. The hidden state at
each sentence-level step is determined by the previous
hidden state and the current sentence representation input,
just like the word-level LSTM:

(4.47)

Repeating the above operation, the hidden state of the last
step of this LSTM contains all the information of the
sentence representation. It thus can be regarded as a
document representation:

(4.48)
To this end, we introduce basic hierarchical modeling of

document representation. When there is a supervised
signal, we can use this document representation directly
for neural network training with document-level
classification. When there is no supervised signal, we can
self-code the document representation, which can be
decoded in the reverse order, i.e., first decode the
document representation into a sentence representation
and then generate words sequentially. The supervised and
autoencoding frameworks are illustrated in Figs. 4.11 and
4.12, respectively.



Fig. 4.11  The framework of hierarchical document representation for
supervised learning. The figure is a modification of Fig. 2 of the hierarchical
autoencoding paper [55]

Fig. 4.12  The framework of hierarchical autoencoding of document
representation. The figure is re-drawn according to Fig. 2 of the hierarchical
autoencoding paper [55]



Hierarchical Attention Network  Following the idea of
hierarchical modeling, we can make various improvements
to the model, such as replacing the LSTM with a more
powerful neural network structure and adding attention
mechanisms to enhance the transmission of long-
dependency information. The hierarchical attention
network (HAN [109]) is proposed to use attention
mechanisms to capture the hierarchical correlations of
documents. The key insight of this model is that while
doing hierarchical modeling, different attention weights are
assigned to components (words and sentences) using the
attention mechanism to learn the document’s
representation dynamically. The framework is illustrated in
Fig. 4.13. It is worth noting that the intuition of
hierarchical attention networks could be applied to various
neural networks. We use GRU, another version of RNNs, as
the backbone to introduce the approach.



Fig. 4.13  The architecture of the hierarchical attention network. This figure is
re-drawn according to Fig. 2 from the hierarchical attention network paper
[109]

The first step is also to model the basic linguistic units—
words—using a bidirectional GRU to incorporate contextual
information. The bidirectional hidden states for a word
embedding w is computed by

(4.49)

(4.50)

By directly concatenating the two hidden states of both
directions, we could obtain the final word representation:



(4.51)

Then, following the spirit of hierarchical modeling, we
need to construct sentence-level representations. Instead of
directly feeding word-level representations to a higher-level
neural network, an attention mechanism is adopted to
automatically determine how important a word is to the
sentence-level representation. First, we use a one-layer
MLP to further extract the feature of one word:

(4.52)
Then, the sentence representation is computed by

(4.53)

where α is an attention score and is computed by:

(4.54)

Now we obtain the sentence representation s. Logically,
the foregoing procedures could be analogically applied to
the sentence level and obtain the final document
representation. We first still use a bidirectional GRU to
capture the correlations between sentences:

(4.55)

(4.56)

Similarly, the hidden state of a sentence is the
concatenation of the two directions of hidden states:

(4.57)

Then exactly the same neural network and the attention
mechanism are applied as follows:

(4.58)



(4.59)

(4.60)

Here, we again use the hierarchical spirit, equipped with
the attention technique, to construct the document
representation hd. This representation can be fed to an
output layer for document-level classification, thereby
training the model.

This section introduces two primary frameworks,
memory-based and hierarchical approaches, to model
documents. As opposed to directly treating documents as
longer sentences and then directly applying neural
language modeling, such methods more accurately grasp
the characteristics of documents with complex structures.

4.5 Applications

Sentence and document representations play a crucial role
in multifarious downstream tasks, many of which are the
cornerstone tasks of modern information processing. In this
section, we introduce typical applications of sentence and
document representations in real-world scenarios, which
could fall into three groups: classification, sequence
labeling, and generation. For classification, we introduce
text classification, information retrieval, reading
comprehension, open-domain question answering,
sequence labeling, its three representative applications,
and sequence-to-sequence generation and its typical
applications.

4.5.1 Text Classification



Text classification is a typical NLP application that covers
many important real-world tasks, such as parsing and
semantic analysis. Therefore, it has attracted the interest of
many researchers. The conventional text classification
models (e.g., the LDA [5] and tree kernel [78] models)
focus on capturing more contextual information and correct
word order by extracting more useful and distinct features
but still expose a few issues (e.g., data sparseness) which
has a significant impact on the classification accuracy. With
the development of deep learning in the various fields of
artificial intelligence, neural models have been introduced
into the text classification field, given their abilities of text
representation learning. This section will introduce the
three typical text classification tasks, including topic
classification, sentiment classification, and natural
language inference (NLI).

Topic Classification  Topic classification aims to assign a
sentence to an appropriate category (e.g., type of
questions, type of news article), which is a fundamental
task of the text classification application. Examples of topic
classification are listed in Table 4.1.

Table 4.1  Some examples of topic classification

Sentence Topic

One of the faculties of Stanford just won a Nobel Prize for her
contributions to organic chemistry

Sci-Tech

After IPO, the company’s share price has risen 147.4% in 2 weeks,
and several media outlets are scrambling to cover the news

Business

The Golden State Warriors, led by Stephen Curry, won an NBA
championship, and now they’re eyeing contract extensions for their
core players

Sports

Considering the effectiveness of the CNN-based models in
capturing sentence semantics, many works use CNNs as
representation encoders. The character-level CNN [110] is



among the first few works to apply character-level
information modeling to topic classification. Increasing the
depth of the CNNs [20] helps extract the hierarchical
information from scattered characters to whole sentences.
MG-CNN [111] captures multiple features from multiple
sets of embeddings and concatenates them at the
penultimate layer.

RNN-based models, which aim to capture the sequential
information of sentences, are also widely used in sentence
classification. Recurrent CNN [51] applies a recurrent
structure to capture contextual information. Hierarchical
attention networks [109] introduce word-level and
sentence-level attention mechanisms into an RNN-based
model as well as a hierarchical structure to capture the
hierarchical information of the document for sentence
classification. Combining an LSTM with a CNN [112] also
shows better performance on text classification, as it
captures both local and global features.

Sentiment Classification  Sentiment classification is a
particular task of the sentence classification application,
whose objective is to determine the sentimental polarities
of opinions a piece of text contains, e.g., favorable or
unfavorable and positive or negative. This task appeals to
the NLP community since it has many potential
downstream applications, such as movie review
suggestions. Examples of sentiment classification are
illustrated in Table 4.2.

Table 4.2  Some examples of sentiment classification

Sentence Sentiment

The plot and set design of this movie is breathtaking Positive

He is immersed in sorrow Negative

All the audience who saw the film stood up and clapped their
hands, this is a masterpiece that deserves to be watched again
and again

Positive



Sentence Sentiment

This book is written without any rules, and the author is very self-
righteous

Negative

Similar to text classification, sentence representation based
on neural models has also been widely explored for
sentiment classification. Text-CNN [47] utilizes the CNNs
trained on top of pre-trained word embeddings and
achieves promising results on several sentiment
classification datasets. The dynamic CNN model [44] can
handle sentences of varying lengths and uses dynamic max-
pooling over linear sequences, which could help the model
capture both short-range and long-range semantic relations
in sentences.

Xavier et al. [29] adopt a stacked denoising autoencoder
in sentiment classification. Then, a series of studies based
on recursive neural networks are presented to learn
sentence representations for sentiment classification,
including the recursive autoencoder (RAE) [88], matrix-
vector recursive neural network (MV-RNN) [87], and
recursive neural tensor network (RNTN) [89]. Besides,
Johnson et al. [40] adopt a CNN to learn sentence-level
representations and yield promising experimental results in
sentiment classification.

The RNN models also benefit sentiment classification as
they are able to capture sequential information. Studies
[54, 93] investigate tree-structured LSTM models on text
classification. Hierarchical neural models are proposed to
tackle the document-level sentiment classification problem
[3, 94], which generate semantic representations at
different levels within a document. Besides, an RNN-based
multitask learning framework [63] learns across multiple
sentence classification tasks and employs three different
mechanisms of sharing information to model sentences
with task-specific and shared layers. Moreover, the
attention mechanism is also introduced into sentiment



classification, which aims to determine the importance of
each word contributing to the whole sentiment [109].

Natural Language Inference  Natural language
inference (NLI) is a classification task involving two
sentences. Its objective is to determine whether the first
sentence entails the second sentence or not. For example, I
was late for class on Monday entails that I had a class on

Monday. It could be viewed as a semantic matching
problem of two sentences that requires a high-level
understanding of sentence-level information. We provide
more examples in Table 4.3 to help readers better
understand the task. Same as other classification tasks,
neural models can automatically learn the two-sentence
representations, and a classifier is used for the detection of
entailment. The RNN [7] is one of the baseline models for
NLI tasks, which derives the representations for both
sentences. Apart from using sentence representation
directly, some also perform word-level matching to
facilitate semantic learning [99]. Kim et al. [46]
concatenate features from the attention mechanism with
the original hidden states at each layer of RNNs and obtain
better performance. Linguistic features like syntactic
information [14] are also used to enhance LSTM
representation. The recurrent entity network [35] is an
entity-centered RNN, which contains several RNN cells,
and each cell learns specific entity-related representations.
It improves the memory capacity of the original RNN and
achieves satisfactory results on NLI tasks.

Table 4.3  Some examples of natural language inference

Premise Relation Hypothesis

A cat jumped Entailment A cat moved

Some cats walked Contradiction No cats moved

Every cat jumped Neutral One cat ate



Premise Relation Hypothesis

It is nice talking to you all righty Neutral I talk to you every day

Fun for adults and children Contradiction Fun only for children

Well it’s been very interesting Entailment It has been very
intriguing

You can access the database anytime
you want

Entailment The database is
accessible to you

He smiled back at me Neutral He was so happy at
that moment

4.5.2 Information Retrieval

In the Internet era, information retrieval becomes one of
the most critical applications of sentence and document
representations. Information retrieval aims to obtain
relevant resources from a large-scale collection of
information resources. As shown in Fig. 4.14, given the
query “William Shakespeare” as input, the search engine (a
typical information retrieval application) provides relevant
webpages for users. Traditional information retrieval data
consists of search queries and document collections D. And
the ground truth is available through explicit human
judgments or implicit user behavior data such as
clickthrough rate.



Fig. 4.14  An example of information retrieval. This is a screenshot of the
Google search engine

For the given query q and document d, traditional
information retrieval models estimate their relevance
through lexical matches. Neural information retrieval
models pay more attention to garnering the query and
document relevance from semantic matches. Both lexical
and semantic matches are essential for neural information
retrieval. Thriving from neural network black magic, it
helps information retrieval models catch more
sophisticated matching features and have achieved the
state of the art in the information retrieval task [22].

Neural ranking models typically fall into two groups:
representation-based and interaction-based [34]. Studies in
the early stage primarily focus on representation-based
models. They learn informative representations and match
them in the embedding space of queries and documents.
On the other hand, interaction-based methods model the



query-document matches from the interactions of their
terms.

4.5.3 Reading Comprehension

Reading comprehension is crucial to question-answering
systems and therefore has been the focus of NLP research.
The development of neural-based models has dramatically
boosted the performance of reading comprehension. As
shown in Fig. 4.15, machine reading comprehension aims
to determine the answer given a question and a passage.
The task could be viewed as a standard supervised learning
task: with a set of training instances, our goal is to learn a
mapping that takes the context (i.e., the passage) and
related questions as inputs and outputs an answer. The
input context can be either a single passage or multiple
passages. Intuitively, the longer the provided context is, the
more complex the task is. The evaluation metric is typically
correlated with the answer type, which will be discussed in
the following.

Fig. 4.15  An example of machine reading comprehension from SQuAD [80]



Generally, the current machine reading comprehension
task could be divided into four groups according to the
answer types [11], i.e., cloze style, multiple-choice, span
prediction, and free-form answer.

Cloze Style  The cloze style task such as CNN/DAILY MAIL
[36] consists of fill-in-the-blank sentences where the
question contains a placeholder to be filled in. The answer
is either from a predefined candidate set or the vocabulary.

Multiple-Choice  The multiple-choice task such as RACE
[50] and MCTEST [83] aims to select the best answer from a
set of answer choices. It is typical to use accuracy to
measure the performance on these two tasks: the
percentage of correctly answered questions in the whole
example set, since the question could be either correctly
answered or not from the given hypothesized answer set.

Span Prediction  The span prediction task such as
SQuAD [80] is perhaps the most widely adopted task
among all since it compromises flexibility and simplicity. It
extracts a most likely text span from the passage as the
answer to the question, which is usually modeled as
predicting the start position and end position of the answer
span. We typically use two evaluation metrics proposed by
the SQuAD benchmark [80]. The exact match assigns a full
score of 1.0 to the predicted answer span if it exactly
equals the ground truth answer; otherwise, 0.0. F1-score
measures the degree of overlap between prediction and
truth by computing a harmonic mean of the precision and
recall.

Free-Form Answer  The free-form answer task such as
MS MARCO [74] does not restrict the answer form or
length and is also referred to as generative question

answering. It is practical to model the task as a sequence



generation problem, where the discrete token-level
prediction was made. Currently, a consensus on the ideal
evaluation metrics has not been achieved. It is common to
adopt standard metrics in machine translation and
summarization, including ROUGE [58] and BLEU [95].

Since the span prediction format is the most widely
researched problem, the following part of this section will
be mainly devoted to the mainstream methods in machine
reading comprehension with span prediction. With neural
networks, the machine reading comprehension system is
commonly composed of three consecutive phases: the
embedding phase, the reasoning phase, and the prediction
phase. Like many other NLP tasks, the embedding phase
often adopts pre-trained or contextual word embedding
with RNNs, character embedding, or hybrid embeddings.
The query and the context are separately encoded. The
reasoning phase is responsible for joint learning based on
the two representations and is the focus of most works. The
prediction phase decides how the output is finally drawn.
For extractive mode like span prediction, where a piece of
text is extracted from the context, a standard operation is
to predict the start position and the end position of the
extracted part.

We will mainly introduce the different approaches in the
reasoning phase. As shown in Fig. 4.16, while encoding the
passage, the model retains the length of the sequence and
encodes the question into a fixed-length hidden
representation q. The question’s hidden vector is then used
as a pointer to scan over the passage representation 
and compute scores on every position in the passage. While
maintaining this similar architecture, most machine
reading comprehension models vary in the interaction
methods between the passage and the question. In the
following, we will introduce several classic reading
comprehension architectures that follow this paradigm.



Most of them merge the two lines of information from the
query and the context with the attention mechanism. And
they mainly differ in two aspects: the direction of attention
and the dimension of attention. Direction refers to whether
using only query-to-context attention (as shown in Fig.
4.16) or both directions. Dimension refers to whether
attention is only calculated at the sentence representation
level, which outputs a single-dimension vector, or at the
word embedding level, where output is an embedding
matrix.

Fig. 4.16  The architecture of classic machine reading comprehension models

Single Direction and Single Dimension  The first
attempt [36] to apply neural networks on machine reading
comprehension constructs bidirectional LSTM reader
models along with attention mechanisms. The work
introduces two reader models, i.e., the attentive reader and
the impatient reader. After encoding the passage and the
query into hidden states using LSTMs, the attentive reader



computes a scalar distribution over the passage tokens and
uses it to calculate the weighted sum of the passage’s
hidden states. The impatient reader extends this idea
further by repeatedly updating the weighted sum of
passage hidden states after seeing each query token.
Following Hermann et al. [36], Chen et al. [12] modify the
method to compute attention and simplify the prediction
layer in the attentive reader with a simple bilinear term.

Bidirectional Attention and Single Dimension  The
attention-over-attention reader [21] also computes both
query-to-context and context-to-query attention but handles
them differently. Instead of simply averaging the token-
level query-to-context attention to obtain a final vector for
prediction, attention-over-attention computes a weighted
vector with a query word importance vector. The word
importance vector is computed by averaging the context-to-
query attention. This operation is considered to learn the
contributions of individual question words explicitly.

Bidirectional Attention Flow and Multi-Dimension

Instead of unifying the document and query representation
to a single vector with query-to-context attention only, the
BiDAF network [85] computes the attentive token
representation of both query-to-context and context-to-
query at each bidirectional long short-term memory
(BiLSTM) layer to allow fine-grained information flow. It
consists of the token embedding layer, the contextual
embedding layer, the bidirectional attention flow layer, the
LSTM modeling layer, and the Softmax output layer. At
each layer, the input is the concatenation of the previous
layer’s hidden states, the query-to-context representation,
and the context-to-query representation. The
representation of multiple granularities and a bidirectional
attention flow can fully capture the interaction between
document and query for start and end position prediction.



The gated-attention reader [25] adopts the gated-attention
module, where each token representation of the passage is
scaled by the attended query vector after each BiGRU
layer. This gated-attention mechanism allows the query to
interact directly with the token embeddings of the passage
at the semantic level. And such layer-wise interaction
enables the model to learn conditional token representation
given the question at different representation levels.

4.5.4 Open-Domain Question Answering

Open-domain QA (OpenQA) [33] aims to answer open-
domain questions utilizing external resources such as
collections of documents [98], webpages [15, 49],
structured knowledge graphs [2, 6], or automatically
extracted relational triples [28]. Recently, with the
development of machine reading comprehension
techniques [12, 25, 86, 102], researchers attempt to
answer open-domain questions via performing reading
comprehension on plain texts with neural-based models
[13]. As illustrated in Fig. 4.17, a neural-based OpenQA
system usually retrieves relevant articles or paragraphs of
the question from a large-scale corpus (e.g., Wikipedia). It
then generates answers from these texts by a reading
comprehension model introduced in the last section. Open-
domain question answering essentially combines two
critical applications: information retrieval and reading
comprehension.



Fig. 4.17  An example of open-domain question answering. This figure is re-
drawn according to Fig. 1 in the DrQA paper [13]

The system [13], namely, DrQA, is composed of two
modules: (1) one document retriever module to retrieve
relevant articles or paragraphs and (2) one document
reader to produce the final answers from the extracted
articles.

The document retriever is used as a first quick skim to
narrow the search space and focus on potentially relevant
documents. The retriever builds TF-IDF weighted bag-of-
words vectors for the documents and the questions and
computes similarity scores for ranking. The retriever uses
bigram counts with hash to further utilize local word order
information while ensuring speed and memory efficiency.
The document reader model takes in the top five Wikipedia
articles yielded by the document retriever and extracts the
final answer to the question. The document reader predicts
an answer span with a confidence score for each article.
The final prediction is made by maximizing the
unnormalized exponential prediction scores across the
documents.

Given each document, the document reader first builds a
feature representation for each word in the document,
which is often the concatenation of the following
components: (1) Word embeddings: The pre-trained word
embeddings like GloVe embeddings pre-trained on



Wikipedia. (2) Manual features: The manual features
combined with part-of-speech (POS) and named entity
recognition tags and normalized term frequencies (TF). (3)
Exact match: This feature indicates whether the word in
the document can be precisely matched to one question
word. (4) Aligned question embeddings: This feature aims
to encode a soft alignment between words in the document
and the question in the word embedding space.

Then the feature representation of the document is fed
into a multilayer bidirectional LSTM (BiLSTM) to encode
the contextual representation. For the question, the
contextual representation is simply obtained by encoding
the word embeddings using a multilayer BiLSTM. After
that, the contextual representation is aggregated into a
fixed-length vector using self-attention. In the answer
prediction phase, the start and end probability distributions
are calculated following the paradigm mentioned in the
strategy in Sect. 4.5.3.

Despite its success, the DrQA system is prone to noise in
retrieved texts which may hurt the performance of the
system. Hence, several approaches [18, 100] are proposed
to attempt to tackle the noise problem in DrQA by using
two separate procedures for question answering:
paragraph selection and answer extraction. However, they
both only select the most relevant paragraph among all
retrieved paragraphs to extract answers and may lose
valuable information distributed in other paragraphs.

Wang et al. [101] adopt strength-based and coverage-
based methods for re-ranking, aggregating the answers
that existing methods retrieved from all the paragraphs.
Nevertheless, the challenge of noisy data is still unsolved.
To address this issue, a coarse-to-fine denoising OpenQA
model [60] is developed to the first screen out relevant
paragraphs and then retrieve correct answers.

4.5.5 Sequence Labeling



Sequence labeling is a classic application in natural
language processing. In this paradigm, given an input
sequence {w1, …, wn}, we need to assign a label yi to each
token wi. Part-of-speech (POS) tagging and named entity
recognition (NER) are the two most representative
sequence labeling tasks. Sequence labeling requires the
model to capture the correlations of words in the sequence
accurately. Hence, classic approaches use probabilistic
graphical models (PGM) to represent the dependency
structure of different words. Modern methods use powerful
deep neural networks to produce richer representations
and adopt conditional random field (CRF) or direct token-
level classification to conduct sequence labeling [38]. In
addition to these two tasks, word segmentation of
languages without delimiters (e.g., Chinese) is typically
treated as a sequence labeling task [26, 66, 107] (Fig.
4.18).

Fig. 4.18  An example of sequence labeling



Part-of-Speech (POS) Tagging  POS tagging aims to
assign part-of-speech tags to each word in a given piece of
text, including nouns, verbs, adjectives, etc. Some tags
might be evident and static (e.g., proper nouns), while most
words are polysemy, and their part-of-speech attributes are
context-dependent. For example, the word “record” can be
either a noun or a verb. Early on, Brill et al. [8] propose
rule-based methods that highly rely on expert knowledge
and extraction of rich linguistic features in syntax,
morphology, and lexicon. Classical statistical models like
the hidden Markov model (HMM) [41] model the
probability of tags given words in a context-aware manner.
Modern neural networks are based on contextual
representations of words and parameterize the predicted
probability with a conditional random field (CRF) layer and
a simple MLP classifier head. CNNs and RNNs are common
backbones used for feature extraction [67, 77].

Named Entity Recognition (NER)  In NER, we need to
identify if a word in an input sequence is a named entity, a
term that could specifically indicate a real-world object.
Typical named entity types include Person, Organization,

Location, etc. A named entity could be one word or a
phrase with multiple words. Hence, in this task, a BIO label
schema is universally adopted, where a word could be
classified at the beginning of an entity (B), inside an entity
(I), and outside an entity (O). Final entity prediction is
extracted based on the word assigned tags, and evaluation
is conducted at the entity level [27, 103]. Feature-based
methods extract word-level and character-level features
and adopt classic classification models for prediction. Bike
et al. [4] and Mcnamee et al. [68] propose an HMM-based
and support vector machine (SVM)-based NER system,
respectively. Deep learning methods allow for richer
feature representation. Apart from using pre-trained word



embeddings like skip-gram, a series of works [16, 52, 56,
82] also learn character-level features and incorporate
them with word representations for better performance.
The bidirectional LSTM-CNN [16] encodes character-level
features with a CNN and word-level features with a
BiLSTM. The bidirectional LSTM-CRF model [38] also adds
other features, including spelling features, context
features, and gazetteer features, to enhance final
representations in a BiLSTM-CRF model.

4.5.6 Sequence-to-Sequence Generation

Sequence-to-sequence generation refers to a group of tasks
that require sequence generation based on an input
sequence, including machine translation, text
summarization, question generation, etc. A famous model
structure for sequence-to-sequence problems is an encoder-
decoder structure, where the model is composed of an
encoder and a decoder. The encoder encodes the input
source language S = {s1, s2, …, sn} and passes the encoded
representation to the decoder. The decoder decodes and
outputs tokens in target language T = {t1, t2, …, tm} based
on encoder output. More specifically, output tokens are
typically generated in an autoregressive manner, i.e., each
ti is generated depending on the previously generated
tokens {t1, t2, …, ti−1}. Both structures are trained in an
end-to-end fashion with parallel training data. Below is a
formalized training objective for a sequence-to-sequence
problem:

(4.61)

Metrics  First, it is essential to learn the commonly used
metrics to evaluate a sequence-to-sequence system.



BLEU [75] is an adjusted precision calculation based on the
count of n-grams. First, it extracts all n-grams in the output
sequence. Then, it calculates the sum of occurrences of
these n-grams in the reference sequence (i.e., the correct
translation) against the total number of n-grams in the
output sequence. For example, if the output is the cat cat

and the reference is the cat jumps, all 2 grams in the
output is “the cat,” cat cat and the total number of their
occurrence in the reference is 1 (the cat’). So the score of
2-gram will be  . BLEU also takes a brevity
penalty (BP) that penalizes the mismatch of output and
reference length. Suppose we set a range for the number of
grams involving the calculation as [1, N], the BLEU score is

(4.62)

(4.63)

where wi is a weight and can be set to  , c is the length of
the output sequence, and r is the length of the reference
sequence.

ROUGE [58] is a group of metrics often used in
evaluating text summarization systems. ROUGE-N (most
commonly ROUGE-1 and ROUGE-2) calculates the recall of
n-grams. So take the example above; we can get ROUGE-1 
= 2∕3 and ROUGE-2 = 1∕2. ROUGE-L concerns the ratio of
the length of the longest common subsequence against the
reference length. In the example above, ROUGE-L = 2∕3.

Next, we introduce some representative models in
machine translation and text summarization.

Machine Translation  Machine translation aims to
translate texts in one language into another language while



retaining their semantic meanings. While traditional rule-
based and statistical machine translation systems require
abundant expert knowledge and often fail to capture
meaning from context to handle polysemy, the development
of deep neural networks has inspired neural machine
translation systems and achieved competitive performance.

Kalchbrenner et al. [43] use a one-dimensional CNN as the
encoder and a single-layer RNN as the decoder. Cho et al.
[17] enhance the alignment scores calculation between
phrases with an RNN encoder-decoder structure and
improve on the traditional statistical machine translation
system. Sutskever et al. [92] adopt a deep LSTM encoder-
decoder.

GNMT [105] is the first NMT system put into
production. It has an eight-layer LSTM encoder and 8-layer
LSTM decoder, and the first layer of the encoder is
bidirectional. The attention mechanism is also applied to
the output of the encoder. In terms of decoding, it also adds
coverage penalty and length normalization to encourage
the generation of longer and high-quality sentences. And
the Transformer [96], an encoder-decoder neural network,
is proposed initially as a sequence-to-sequence model and
used on the machine translation task. The model then
achieves the new state-of-art performance on benchmark
datasets compared to models based on LSTM.

Text Summarization  Text summarization takes a long
passage as its input and generates a relatively short one
that summarizes the key points in the original passage. It is
worth noting that typically sequence-to-sequence models
can be simultaneously applied to machine translation and
text summarization since the task is of the same form.

Pointer-generator network [84] is one of the most classical
text summarization models that combine LSTM-attention-



based encoder-decoder with pointer network [97]. The
basic structure contains a single-layer bidirectional LSTM
encoder with attention and a single-layer LSTM decoder.
Apart from the standard encoder-decoder pipeline, it
applies an extra pointer while decoding. The pointer
depends on the encoder output, the current decoder hidden
states, and decoder input and calculates a probability pgen
indicating how much we favor the decoder generated
results. The final distribution from which the next token is
drawn is a weighted sum of distribution given by the
decoder and distribution given by attention weights of the
encoder output, each weighted by pgen and 1 − pgen. So the
pointer serves as a mediator between generated tokens and
copied tokens from the original input. It is especially
beneficial for text summarization as copying original words
from the input can help keep the semantics on the right
track.

4.6 Summary and Further Readings

This chapter introduces basic concepts, methodologies, and
applications of sentence and document representation
learning, which encode sentences and documents into real-
valued representation vectors. We first introduce the
symbolic representation for sentences and probabilistic
language models. Then we extensively introduce several
neural language models, including adopting feed-forward
neural networks, convolutional neural networks, recurrent
neural networks, and Transformers for language models.
We further introduce document representation learning
methods, including memory-based and hierarchical
approaches. Finally, we introduce several typical
applications of sentence and document representation.
Sentence and document representations provide an
effective way of downstream tasks utilizing high-level



semantic information and have significantly improved the
performances of these tasks. For further understanding of
sentence representation learning and its applications, there
are also some recommended surveys and books that
introduce neural network methods [30, 42], sentence
representation methods [57], and Transformers [59].

More recently, pre-trained language models based on
deep Transformers show state-of-the-art performance in
this area. Meanwhile, it also spawns particular research
issues of sentence and document representation learning.
We will introduce and discuss this topic in the next chapter.
In addition, the use of more efficient neural network
architectures, the establishment of a more stable and
universal representation of long text, and the development
of a comprehensive evaluation approach are worthy
research topics in this field.
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level capabilities approaching human beings. In this
chapter, we introduce pre-trained models for
representation learning, from pre-training tasks to
adaptation approaches for specific tasks. After that, we
discuss several advanced topics toward better pre-trained
representations, including better model architecture,
multilingual, multi-task, efficient representations, and
chain-of-thought reasoning.

5.1 Introduction

Representation learning is the critical component of
machine learning systems, which aims to learn informative
representations of objects from large-scale data. With the
learned representations, machine learning systems thus
can handle multiple tasks, languages, and modalities more
flexibly and desirable. Representation learning for natural
language processing (NLP) can be divided into three stages
according to the learning paradigm: statistical learning,
deep learning, and pre-trained models, with the paradigm
shift of representation from symbolic representation to
distributed representation.

Statistical learning started early in the 1940s [39, 93]. It
requires domain experts to design task-specific rules
according to their knowledge to transfer raw data into task-
related representation task-by-task. This makes
representation learning based on statistical learning
fragmented in multiple granularities of text and multiple
tasks. Later, distributed representation learning with deep
learning techniques [45] was developed with larger
datasets, more computing power, and advanced neural
architectures. It utilizes deep neural networks such as
convolutional neural networks (CNNs) and recurrent
neural networks (RNNs) to extract task-related
representations automatically. It makes an initial step
toward unified representation learning: although deep



learning still results in various model parameters for
multiple tasks, the learned representations can be
transferred to multiple NLP tasks, and the same neural
network architecture can be applied to model the data of
various NLP tasks.

Recently, pre-trained models (PTMs) for representation
learning [7, 20], also known as foundation models [6], have
become a new trend in NLP. As shown in Figs. 5.1 and 5.2,
compared with conventional representation learning
techniques, the pre-training-fine-tuning paradigm of PTMs
enables them to learn unified representations for multiple
tasks, languages, and modalities. Moreover, big PTMs have
shown high-level capabilities like human beings. In the
following, we introduce the new characteristics of PTMs in
detail.

Fig. 5.1  Pre-training-fine-tuning paradigm and unified representation of pre-
trained models



Fig. 5.2  The development trends of big PTMs. The size of the circles indicates
the model scale. The figure is obtained from the official website of OpenBMB
(https:// openbmb. github. io/ BMList/ )

(1) Pre-training-Fine-Tuning Paradigm.  Transfer

https://openbmb.github.io/BMList/


learning [103] enables the knowledge (usually stored
in model parameters) learned from one task/domain
to be transferred to help the learning of other
tasks/domains in the same model architecture.
Inspired by the idea of transfer learning, PTMs learn
general task-agnostic representations via self-
supervised learning from large-scale unlabeled data
and then adapt their model parameters to
downstream tasks by task-specific fine-tuning.
Different from conventional deep learning techniques
that only learn from task-specific supervised data, the
self-supervised pre-training objective enables PTMs to
learn from larger unlabeled web-scale data without
labeled task signals automatically. With the pre-
training-fine-tuning pipeline, PTMs learn general
knowledge in the self-supervised pre-training and
then stimulate task-related knowledge to complete the
downstream tasks through model adaptation.

 

(2)
Unified Representation. The development of the
Transformer architecture [104] unifies the encoders
of multiple entries such as text, image, and video.
Based on the Transformer architecture and the pre-
training-fine-tuning paradigm, PTMs unify the
paradigm for representation learning from three
perspectives: task, language, and modality. A unified
representation learned by pre-trained models can be
adapted and utilized for multiple downstream tasks,
multiple languages, and even multiple modalities.

 

(3) Larger Models with Novel Capabilities. With more
training data and computation power available,
constructing larger PTMs has become a new trend in
representation learning research. We demonstrate the
development trends of big PTMs in Fig. 5.2. As model
sizes go larger, PTMs emerge with many fantastic
abilities approaching human beings. For example, big

 



PTMs can perform in-context learning [7], which
learns the downstream tasks with a task instruction
and some optional examples as the additional input
text. Big PTMs can also perform chain-of-thought
reasoning [112], which mimics the intuitive thought
process from human-written reasoning chains as the
additional input text, and behavior learning [72]
which learns the human behavior such as operating
search engine. It indicates that PTMs are quickly
evolving into more intelligent agents than we have
ever imagined.

In this section, we mainly introduce text-based PTMs
since the fantastic Transformer-based PTMs for
representation learning begin from NLP, leaving the
introduction of the PTMs for graph in Chap. 6, multi-
modality in Chap. 7, and knowledge in Chaps. 9, 10, 11,
and 12. In the rest of this chapter, we first introduce pre-
training tasks in Sect. 5.2, including word-level and
sentence-level pre-training tasks. After that, we present
how to adapt PTMs to downstream tasks, including full-
parameter fine-tuning, delta tuning, and prompt learning in
Sect. 5.3. Note that we only discuss the PTMs with pre-
training-fine-tuning paradigm in this section, while the
feature-based PTMs have been discussed in Chapter
refchap:word. Finally, we overview four advanced topics,
including better model architecture, multilingual learning,
multi-task learning, efficient representations, and chain-of-
thought reasoning in Sect. 5.4.

5.2 Pre-training Tasks

As introduced in Sect. 5.1, PTMs for representation
learning typically consist of two phases: pre-training and
adaptation (fine-tuning). During pre-training, PTMs learn



the task-agnostic representations, which aim to capture the
text’s lexical, syntactic, semantic, and discourse knowledge
as well as the world and commonsense knowledge hiding in
the text. The typical form of PTMs can be divided into three
types: encoder-based PTMs, decoder-based PTMs, and
encoder-decoder-based PTMs. We list typical PTMs in Table
5.1. Based on existing pre-training tasks designed for these
PTMs, we conclude two major categories of existing pre-
training tasks from them, including word-level and
sentence-level pre-training tasks.

Table 5.1  A list of typical pre-trained models in NLP

Model Architecture Size

BERT [20] Encoder 340 M
RoBERTa [68] Encoder 340 M
SpanBERT [49] Encoder 340 M
UniLM [23] Encoder 340 M
ELECTRA [15] Encoder 340 M
XLM [17] Encoder 340 M
KnowBERT [76] Encoder 340 M
K-BERT [66] Encoder 340 M
ERNIE (Tsinghua) [132] Encoder 110 M
ERNIE (Baidu) [100] Encoder 340M
ELMo [75] Decoder –
GPT [86] Decoder 340 M
XLNET [117] Decoder 340 M
GPT-2 [87] Decoder 1.5 B
CPM-1 [133] Decoder 2.6 B
GPT-3 [7] Decoder 175 B
GLM-130B [127] Decoder 130 B
BART [59] Encoder-decoder 340 M
T5 [88] Encoder-decoder 11 B
CPM-2 [131] Encoder-decoder 11 B



Model Architecture Size

mT5 [115] Encoder-decoder 13 B
OPT [129] Encoder-decoder 175 B
Switch-Transformer [26] Encoder-decoder 1.6 T

5.2.1 Word-Level Pre-training

Word-level pre-training tasks aim to learn contextualized
word representations for PTMs from the large-scale
unlabeled corpus. As discussed in Chap. 2, contextualized
word representations can generate different
representations according to different contexts, aiming to
capture the lexical meaning of a word as well as the
syntactic and semantic relations with its context words.
Next, we present multiple widely used word-level pre-
training objectives, including casual language modeling,
masked language modeling (MLM), replaced language
modeling (RLM), and denoising language modeling (DLM).

Casual Language Modeling (CLM)  CLM is the most
typical form of language modeling task. It is widely adopted
as the pre-training objective of decoder-based PTMs such
as GPT [86], which utilizes an auto-regressive Transformer
decoder to model the probability of the input text. As
shown in Fig. 5.3, CLM feeds the whole input text sequence
into the Transformer decoder word-by-word auto-
regressively and then asks the model to predict the next
word at each position. Formally, given the input text s = 
(w1, w2, …, wN) with N words, the pre-training objective of
CLM is formulated as:

(5.1)

where w0 is the start token [s] of the sentence and
P(wi|w0, w1, …, wi−1) is the probability of wi modeled



conditioned on the historical context generated by an auto-
regressive Transformer decoder. In fact, CLM is widely
used as the pre-training task when training big PTMs due
to its effectiveness and efficiency.

Fig. 5.3  The casual language model objective

Although CLM can learn the contextualized word
representations simply and effectively, it can only encode
the historical information in one direction in language
understanding tasks. Hence, the downstream language
understanding applications usually concatenate the word
representations of left-to-right and right-to-left Transformer
decoders learned by CLM, which can naturally combine the
contextual information from both directions.

Masked Language Modeling (MLM)  MLM is another
widely used word-level pre-training objective for PTMs.
MLM believes that the contextual information of a word is
not a simple combination of the historical information
captured by a left-to-right model and the future information
captured by a right-to-left model. When generating a word,
a deep bidirectional Transformer model should be utilized
to consider both historical and future information.
However, casual language modeling cannot be directly
applied in pre-training the deep bidirectional Transformer
model since it suffers from information leakage brought by
the self-attention operation. Therefore, as shown in Fig.
5.4, MLM first masks out part of the words with [MASK]



token in the input text and then asks the model to predict
the masked words according to the remaining unmasked
context. Formally, we denote the masked words as

 where mi is the index of the masked
word and M is the number of the masked words and the
masked sequence as  . The pre-training objective of MLM
is formulated as:

(5.2)

Fig. 5.4  The masked language model objective

MLM was first adopted by BERT [20] and later used by
many other PTMs. To address the gap between pre-training
and adaptation phases caused by the introduction of the
[MASK] token, BERT further utilizes a masking strategy: for
a randomly selected word to be masked, BERT replaces it
with (1) the [MASK] token with an 80% probability, (2) the
original word with a 10% probability, and (3) a random
word with a 10% probability. A major limitation of word-
level masking is that it may not sufficiently capture the
linguistic and knowledge information at the span level,
such as phrases and named entities. Span-level semantics
are important for many downstream NLP tasks, such as
named entity recognition and entity linking. Hence,
SpanBERT [49] and ERNIE (Baidu) [100] further introduce
a novel masking strategy for MLM: span-based masking.



Span-based masking proposes to mask contiguous random
spans instead of individual random words. The PTMs can
better encode the span-level semantics in their learned
representations by predicting the entire masked spans.

Although MLM can take advantage of the superior
power of a bidirectional Transformer encoder, its pre-
training objective can only cover part of the input text, e.g.,
BERT only masks 15% input words. The reason is that it
must ensure that the contextual information in the
remaining unmasked words is sufficient to recover the
masked words to some extent. Hence, the training
efficiency of MLM is lower than that of CLM, which
predicts every input word. MLM requires more training
steps for convergence.

Replaced Language Modeling (RLM)  RLM is then
proposed to improve the training efficiency of MLM, which
is first adopted by ELECTRA [15]. RLM proposes to replace
part of the words in random positions of the input text and
then asks the model to predict which positions are replaced
words. As shown in Fig. 5.5, RLM trains the PTMs in an
adversarial manner. It uses a smaller bidirectional encoder
as the generator, which generates replaced words that are
harder to be discriminated against. And then, it regards the
PTMs as a discriminator to distinguish the replaced words
from other unreplaced words. Hence, RLM can cover its
pre-training objective in all input words. Let  denote the
corrupted input text after random word replacement, and
we can define the pre-training objective of RLM as:

(5.3)

where yi is the predicted label indicating whether the i-th
word is replaced or not.



Fig. 5.5  The replaced language modeling objective

Denoising Language Modeling (DLM)  DLM can cover
nearly all the pre-training forms introduced above. It is
widely used in encoder-decoder-based PTMs, which contain
a bidirectional Transformer encoder and an auto-regressive
Transformer decoder. With the encoder-decoder
architecture, DLM allows more modifications to the input
text sequence, which can help PTMs capture more lexical,
syntactic, and semantic knowledge from the text. As shown
in Fig. 5.6, DLM randomly modifies the input text in several
strategies [59, 88, 97]:

Word Masking is to mask parts of the words in the input
text. This strategy is the corresponding form of the MLM
pre-training task in DLM, ensuring that DLM can make
the PTMs capture the information learned by MLM.



Fig. 5.6  The denoising language model objective

Text Infilling is to mask a contiguous span of the input
text with a single [MASK] token. It can be viewed as a
harder version of word masking, where PTMs require
learning to predict how many words the masked span
originally has instead of only distinguishing whether the
word is masked. It is similar to the span-level masking
strategy of MLM.
Word Deletion is to delete parts of the words from the
input text randomly. It requires PTMs to decide which
words have been deleted.
Word Permutation is to shuffle all words from the input
text in random order. It requires PTMs to understand the
syntactic and semantic relations between words as well
as the whole meaning of the sentence to recover the
sentence order.
Besides the above word-level modifications, DLM also

allows sentence-level modifications, such as sentence

permutation and document rotation. The sentence- and



document-level modifications help the word representation
learned by PTMs capture high-level semantics, such as the
discourse relations between different sentences. We will
discuss the sentence-level pre-training tasks in the next
subsection.

Let  denote the corrupted input text by applying several
above input text modification strategies on s. The pre-
training objective of DLM is then formulated as:

(5.4)

where  is the conditional probability
of wi, which is modeled with an encoder-decoder
Transformer model.

5.2.2 Sentence-Level Pre-training

As discussed in Chap. 4, sentence representations are
essential for many downstream NLP tasks such as
information retrieval, question answering, machine
translation, etc. Sentence-level pre-training aims to learn
sentence representation which can capture the global
meanings of sentences as well as the relationships between
sentences for PTMs. In this subsection, we introduce three
typical sentence-level pre-training tasks for PTMs,
including the next sentence prediction (NSP), sentence
order prediction (SOP), and sentence contrastive learning
(SCL) tasks.

Next Sentence Prediction (NSP)  NSP is the first self-
supervised pre-training objective to learn sentence
representation for PTMs. As shown in Fig. 5.7, for the
sentence s, NSP adds a [CLS] token in the front of the
sentence and utilizes the representation of [CLS] as the
sentence representation. After that, NSP adds another



sentence s′ at the end of s with a token [SEP] to indicate
the sentence boundary. s′ can be the next sentence of s in
the document or a randomly selected sentence from the
pre-training corpus. NSP aims to determine whether s′ and
s appear consecutively in the original text, which may help
PTMs understand the relationship between sentences.
Formally, NSP’s pre-training objective can be formulated
as:

(5.5)
where y is the predicted label indicating whether s′ is the
next sentence of s or not. In practice, BERT utilizes a
uniform sampling strategy, i.e., choosing s′ with (1) the
original next sentence of s with a half chance and (2) the
randomly selected sentence with a half chance.

Fig. 5.7  The next sentence prediction objective

NSP is adopted by BERT, which claims that NSP can
help PTMs capture sentence-level semantics. However,
RoBERTa [68] reimplements BERT and surprisingly finds
that the performance of PTMs on most downstream NLP
tasks is even better by removing the NSP objective and
only pre-training on the MLM objective. ALBERT [55]
further points out that the lack of task difficulty of NSP may
be the key reason for its ineffectiveness. In fact, due to the
big difference in topic distribution between the original
next sentence and the randomly selected sentence, NSP
usually suffers from a shortcut, i.e., it just requires PTMs to
perform topic prediction. It is easy and already partly
covered by the MLM objective.



Sentence Order Prediction (SOP)  SOP is proposed to
avoid the problem of NSP in modeling inter-sentence
relationships. SOP also adds a [CLS] token in front of the
sentence to obtain the sentence representation. After that,
SOP randomly swaps the two consecutive sentences and
asks the PTMs to predict the proper orders. In this way, the
instances of SOP with correct or wrong sentence orders do
not differ explicitly in topic distribution. Hence, SOP forces
PTMs to distinguish discourse-level coherence relations
between two input sentences rather than their topics.
Formally, the objective of SOP can be formulated similarly
to the NSP objective:

(5.6)
where y is the predicted label indicating whether s′ and s
are in order or not. The experimental results on several
downstream tasks of ALBERT show that SOP can somewhat
solve the problem of NSP, which may come from analyzing
misaligned coherence cues.

Sentence Contrastive Learning (SCL)  SimCSE [29]
introduces sentence contrastive learning to pre-train the
PTMs. Unlike NSP and SOP, which learn the sentence-level
semantics by distinguishing the relations between different
raw sentences, SimCSE simply predicts whether two input
sentences are the same. The basic idea of SimCSE is that
the representations of a sentence with different dropout
masks should be closer than representation of other
sentences. Formally, as shown in Fig. 5.8, let and  denote
the sentence representations of sentence s with dropout
mask z and z′, respectively. We can define the pre-training
objective of SimSCE as:

(5.7)



where si is the representation of the i-th negative sentence
in the training batch, cos(⋅) indicates the cosine similarity,
and M is the batch size. In practice, the negative sentences
are usually sampled from the same mini-batch for
convenience. Although SimCSE is strikingly simple, it
outperforms the NSP and SOP pre-training objectives by a
large margin in a series of downstream NLP tasks [29].
Other concurrent works also adopt the idea of sentence
contrastive learning for sentence-level pre-training, such as
self-guidance contrastive learning [52], contrastive tension
[46], and TSDAE [107].

Fig. 5.8  The SimCSE objective. The figure is redrawn according to Fig. 1 from
SimCSE paper [29]

Besides word-level and sentence-level pre-training tasks,
knowledge-level pre-training tasks have also been widely
explored to help PTMs better capture the world knowledge
hiding behind the text. We will introduce how to pre-train
PTMs at the knowledge level in Chap. 9.

5.3 Model Adaptation

Through self-supervised pre-training on the large-scale
unlabeled corpus, PTMs have learned a strong ability to
understand language and thus can generate task-agnostic
informative representations. Then for downstream NLP
tasks, it is natural to introduce task-specific objectives to



adapt the PTMs, aiming to directionally stimulate the
specific functionality of PTMs and obtain task-specific text
representation. Now, the remaining question is how to
adapt big PTMs to target downstream tasks effectively and
efficiently. We introduce the model adaptation methods
from full-parameter fine-tuning to optimization-efficient
delta tuning and data-efficient prompt learning. In fact,
between pre-training and model adaptation, some works
also explore to pre-adapt the PTMs with multi-task learning
or domain-specific learning. We remain the introduction of
model preadaptation in Sect. 5.4.

5.3.1 Full-Parameter Fine-Tuning

Full-parameter fine-tuning is the most straightforward
solution for adapting PTMs to downstream tasks. Full-
parameter fine-tuning tunes all parameters of PTMs with
the guidance of task-specific data, aiming to stimulate the
task-specific abilities of PTMs. Given a PTM model Θ = {θ1,
θ2, …, θ|Θ|} and the training data D of the downstream task,
the goal of fine-tuning phase can be formulated as finding
the parameter updates ΔΘ:

(5.8)
where fΘ(D) is the adaptation objective of the downstream
task. That is, we can simply feed the task-specific inputs
into PTMs and fine-tune all the parameters so that the
parameters of PTMs for the downstream task can be
obtained by Θ′ = Θ − ΔΘ.

Now, the remaining problem is how to define the
adaptation objective fΘ(D). It can be divided into three
categories according to the downstream task types:
classification, sequence labeling, and generation.

Classification  Classification is one of the typical forms of
NLP tasks, such as topic classification, sentiment



classification, natural language inference, etc. Formally,
given the input sentence s and the output label y, the
classification task models the conditional probability P(y|s).
As shown in Figs. 5.9, 5.10, and 5.11, a common solution to
fine-tune PTMs is to add a task-specific classifier on the top
of the sentence/document representation generated by
PTMs, i.e., P(y|s) = P(y|s). As for the sentence/document
representation s, we usually use (1) the representation of
the [CLS] token for encoder-based PTMs, (2) the
representation of the last word in the sentence for decoder-
based PTMs, and (3) the representation of the start word in
the Transformer-based decoder for encoder-decoder-based
PTMs. Besides adding an external classifier, decoder-based
and encoder-decoder-based PTMs also model the
classification tasks as text generation, which directly
generate the target labels in the decoder.

Fig. 5.9  The adaptation form of encoder-based PTMs for classification tasks



Fig. 5.10  The adaptation form of decoder-based PTMs for classification tasks

Fig. 5.11  The adaptation form of encoder-decoder-based PTMs for
classification tasks

Sequence Labeling  Sequence labeling is also a classical
NLP task format, such as part-of-speech tagging, named
entity recognition, etc. Formally, given the input sentence
s = (w1, …, wN) and the corresponding output labels y = (y1,
…, yN) for all words, the sequence labeling task models the
conditional probabilities P(y|s). It is usually modeled as the
word-level classification form, in which the output labels of
all words are conducted independently, i.e.,

 . As shown in Fig. 5.12, we can add a
task-specific classifier on top of the output representation
hi for the i-th word generated by either the bidirectional
Transformer encoder (e.g., encoder-based PTMs and
encoder-decoder-based PTMs) or the auto-regressive
Transformer decoder (e.g., decoder-based PTMs), i.e.,
P(yi|s) = P(yi|hi). Except for the basic word-level
classification form, we can also regard the sequence
labeling task as a generation task, i.e., directly generating
the whole label sequence.



Fig. 5.12  The adaptation form of PTMs for sequence labeling tasks

Generation  As we have introduced in Chap. 4, many
typical NLP tasks are in text generation form, such as
machine translation, summarization, etc. Formally, given
the source sentence s and the corresponding target
sentence t, the generation task models the conditional
probability P(t|s) (for the language modeling task, we only
model P(t) without any condition). As shown in Fig. 5.13,
for decoder-based PTMs, we can directly feed the input text
into the auto-regressive Transformer decoder and ask it to
generate the target sentence after the input text
continually. As shown in Fig. 5.14, for encoder-decoder-
based PTMs, we can feed the text into the bidirectional
Transformer encoder and ask the auto-regressive
Transformer decoder to generate the target sentence.

Fig. 5.13  The adaptation form of decoder-based PTMs for generation tasks



Fig. 5.14  The adaptation form of encoder-decoder-based PTMs for generation
tasks

Fine-tuning the whole PTMs is simple and effective,
showing superior performance in a wide range of
downstream NLP tasks. However, performing full-
parameter fine-tuning has two significant drawbacks. First,
it is time- and resource-consuming, especially considering
the growing model scale. Nowadays, researchers [7, 88]
have revealed that the performance of PTMs can be
continually improved as the PTMs get larger and the
increasing scale has become an irreversible trend for
developing PTMs. Full-parameter fine-tuning requires the
PTMs to update all the model parameters during adaptation
and storing the whole model for each task. Second, it is
hard to generalize from a few examples and thus still
requires considerable training examples in the downstream
tasks for model adaptation. In fact, when taking a closer
look at model adaptations, we can find the gap between
pre-training and full-parameter fine-tuning. Hence, this
raises a new question: how can we adapt PTMs more

effectively? Therefore, delta tuning and prompt learning
target these two problems from model optimization

perspective and data utilization perspective,
respectively. We will introduce them as follows.

5.3.2 Delta Tuning

Delta tuning (a.k.a., parameter-efficient tuning) [22]
proposes to only update part of the model parameters



instead of full-parameter updating for adapting PTMs to
downstream tasks, which improves the model adaptation
from the optimization perspective. The basic assumption of
delta tuning is that we can stimulate the necessary abilities
for downstream tasks by only modifying a few model
parameters. Formally, different from full-parameter fine-
tuning that the number of updated parameters |ΔΘ| is equal
to the number of whole model parameters |Θ|(Θ = θ1, θ2, …,
θn), delta tuning only updates a small number of
parameters while achieving the same adaptation objectives.
From the perspective of representation learning, the
general representations obtained by self-supervised pre-
training can be adapted to task-specific representations
with little cost.

We classify existing delta tuning methods into three
main categories [22]: addition-based, specification-based,
and reparameterization-based methods, as shown in Fig.
5.15. In this subsection, we detail these three types of delta
tuning approaches.

Fig. 5.15  The overall architecture of delta tuning. The figure is redrawn
according to Fig. 4 from delta tuning paper [22]



Addition-Based Approach  Addition-based approach
keeps all the parameters in the original PTMs frozen and
inserts new trainable neural modules or parameters
(denoted as ΔΘ = Θadd = {θn+1, θn+2, …, θn+m} for tuning the
downstream tasks). In practice, we have m ≪ n in the
addition-based methods. In the following, we introduce two
typical addition-based methods: adapter-based and prefix
tuning.

Adapter-Based Methods  Adapter-based methods insert
tiny neural adapter modules into the middle of Transformer
layers. It only tunes the parameters of the inserted adapter
while keeping the PTMs frozen to adapt the model for
downstream tasks. Vanilla adapter [42] first utilizes a two-
layer feed-forward network as adapters and achieves
comparable performance compared with full-parameter
fine-tuning in a lot of downstream NLP tasks. As shown in
Fig. 5.16, for an output hidden representation  of a
PTM module, vanilla adapter first feeds h into a down-
projection network which projects it into r-dimensional
semantic space with a transform matrix 
and then feeds the output into an up-projection network
which projects it back to d-dimensional space with a
transform matrix  . The process of vanilla
adapter can be formulated as:

(5.9)
where ΔΘ = [Wdown, Wup] are the tunable parameters (we
highlight them by red color and underline) and f(⋅) is a
nonlinear activation function.



Fig. 5.16  The illustration of adapter-based tuning methods

In practice, the adapter modules are inserted in the
middle of two Transformer blocks in the PTMs, and it can
reduce the number of tunable parameters of PTMs to about
0.5–8%. Moreover, AdapterDrop [90] further proposes to
dynamically remove adapter modules from lower
Transformer layers to further reduce the computational
cost for model inference.

After the vanilla adapter, recent works continue to explore
better forms of adapter modules. For example, Compacter
[50] further reduces the number of tunable parameters of
the adapter module with parameterized hypercomplex
multiplication layer. Formally, it replaces the original
projection matrix with the sum of the Kronecker products
of two low-rank matrices:

(5.10)

where  and  and ⊗ indicates the
Kronecker product operation. The formulation of Wdown is
similar. The experimental results of Compacter [50] show
that it can effectively reduce the number of tunable



parameters in the adapter modules into  without hurting
the model performance in the downstream tasks.

Although existing adapter-based methods can achieve
the performance of nearly full-parameter fine-tuning with
fewer modified parameters, it still requires
backpropagation through the whole PTM. To address this
issue, Ladder side tuning [101] further proposes to move
the adapter modules out of the Transformer architecture of
PTMs, bridging a ladder outside the backbone model.
Hence, it can effectively save computation of
backpropagation of the original PTMs while updating
adapter modules and also save memory by shrinking the
hidden size of representations.

Prefix Tuning Methods  Prefix tuning [62] adds trainable
prefix vectors to the hidden states at each layer instead of
inserting adapter modules in the middle of the Transformer
layers. Formally, as shown in Fig. 5.17, prefix tuning can be
viewed as concatenating two prefix matrices PK, PV ∈Rl×d (l
is the number of the inserted prefix vectors in the prefix
matrix) to the input key hidden matrix K and value hidden
matrix V  of the multi-head attention layer, which is
formulated as:

(5.11)

where  and  are the i-th sub-vectors of PK and PV for
i-th attention head’s calculation, ATT(⋅) indicates the self-
attention function, and x is the input feature of
Transformer blocks. For prefix tuning, we have ΔΘ = PK 
∪PV. Empirically, directly optimizing PK and PV may be
unstable and hurt the performance slightly, and thus prefix
tuning proposes to reparametrize them with feed-forward
neural networks:

(5.12)



and they only save PK and PV after training.

Fig. 5.17  The illustration of the prefix tuning method

Prompt tuning [58] is a simplified form of prefix-tuning,
which only adds prefix vectors (a.k.a., soft prompts) to the
input layer instead of all layers. It shows that prompt
tuning can achieve nearly the same performance as full-
parameter fine-tuning when the model size increases. A
significant limitation of prefix tuning approaches is that
their extremely small parameter spaces make them
challenging to optimize and thus require more training
time to converge compared to full-parameter fine-tuning.
This phenomenon is more severe in small-scale PTMs. Gu et
al. [32] thus propose to pre-train the representations of soft
prompt tokens in the pre-training stage. The experimental
results demonstrate that pre-training soft prompts can
effectively improve the performance of prompt learning in
downstream tasks and even outperform full-parameter fine-
tuning.

In summary, both prefix tuning and adapter-based
methods insert new trainable parameters to learn the
downstream tasks, and their major difference is the
position of the inserted parameters.



Specification-Based Approach  Specification-based
approach proposes to specify part of the model parameters
in the original PTMs to be tunable (denoted as

 where idxi ∈ [1, n] is the
index of tunable parameters) and also m ≪ n.

BitFit [125] proposes to only optimize the bias terms inside
the PTMs while freezing other parameters. Formally, as
shown in Fig. 5.18, BitFit first specifies the multi-head
attention layer in the Transformer block as:

(5.13)

and then specifies the next feed-forward layer as:
(5.14)

where GeLU(⋅) indicates the Gaussian error linear unit
[41]. We do not show the layer-norm layers for
convenience, but their bias terms are also tunable in BitFit.
Experimental results in BitFit show that it can achieve over
95% performance as full-parameter fine-tuning on several
benchmarks. They also find that different functionalities
may be controlled by different parts of specified bias terms
during model adaptation.



Fig. 5.18  The illustration of the BitFit method

Besides BitFit which directly specifies the bias term to
be tuned, diff pruning [34] proposes to learn to select part
of the model parameters for model adaptation. The basic
idea of diff pruning is to encourage the delta parameter ΔΘ

to be as sparse as possible. To this end, Diff pruning first
decomposes ΔΘ into a binary mask vector z ∈{0, 1}|Θ|

multiplied with a dense vector  :
(5.15)

and then it optimizes an expectation with respect to z
under a Bernoulli distribution parameter α:

(5.16)

where  indicates the learning objective of the
downstream task and the L0-norm penalty is added to
achieve the goal of sparsity. The idea of learning a binary



mask vector for delta tuning is also proposed by Zhao et al.
[135].

Reparameterization-Based Approach

Reparameterization-based approach proposes to
reparameterize part of existing parameters in PTMs to a
parameter-efficient form by transformation. Let P = {p1, p2,
…, pm} represent the set of parameter subsets to be
reparameterized and  where R(pi) is
used to reparameterize the parameter subset pi.

LoRA [43] decomposes the change of the original weight
matrices in the multi-head attention modules into low-rank
matrices. Its basic idea is inspired by Aghajanyan et al. [2]
that the full-parameter fine-tuning phase of PTMs has a low
intrinsic dimension. As shown in Fig. 5.19, LoRA utilizes
four low-rank matrices to decomposite the changes of the
transform matrices for key and value spaces, which can be
formulated as:

(5.17)

where  and BK,  . In the experiment
on the GLUE benchmark, LoRA can nearly achieve
comparable performance with full-parameter fine-tuning
for the PTMs of various scales and architectures.

Fig. 5.19  The illustration of the LoRA method



Understanding Delta Tuning from Ability Space  Qin
et al. [84] point out that for a particular delta tuning
method, the adaptations of PTM for multiple downstream
tasks can be reparameterized as optimizations in a unified
low-dimension parameter space. Based on this work, Yi et
al. [119] further find that the optimization of different delta
tuning methods for adapting PTMs to downstream tasks
can also be reparameterized into optimizations in a unified
low-dimension parameter space. This demonstrates the
optimization space of PTMs’ adaptation is intrinsically low-
dimensional, which may explain why the adaptation of
PTMs can be done with relatively small-scale downstream
data. The intrinsic low-dimensional tuning parameter space
may indicate parts of the parameters in the PTMs that are
related to each other, which may be co-activated and
controlled in a unified manner. This phenomenon is also
observed by MoEfication [134].

5.3.3 Prompt Learning

Prompt learning [64] is proposed to overcome the
limitation of full-parameter fine-tuning from the data
utilization perspective. It reformulates the downstream
tasks as the conditional language modeling form with a
textual prompt as task instruction. This could effectively
bridge the gap between model pre-training and adaptation
for PTMs. Moreover, it incorporates the prior knowledge of
domain experts into the model adaptation phase by
elaborately designing the textual prompt, which can be
viewed as feature engineering toward PTMs. Therefore,
prompt learning can significantly reduce the requirements
of extensive training data in the model adaptation phase
while maintaining good performance.

Prompt learning is inspired by the in-context learning
ability in GPT-3 [7]. In-context learning regards PTMs as a
black box and utilizes the input to describe the downstream



task with a task instruction and some optional examples to
PTMs. It hopes PTMs to learn to proceed with the
downstream task from the given descriptive context
without updating the model parameters. Taking the
English-to-Chinese translation task as an example, as
shown in Fig. 5.20, in-context learning can be divided into
two levels: (1) task instruction learning, which adds a task
instruction (Translate English to Chinese) in front of the
translated text sequence and requires the PTMs to perform
zero-shot learning, and (2) example learning, which also
adds some task examples besides the task instruction and
requires the PTMs to perform few-shot learning based on
the task-related context.

Fig. 5.20  The illustration of task instruction learning and example learning of
in-context learning. The figure is redrawn according to Fig. 2.1 from OpenAI’s
GPT-3 paper [7]

In-context learning provides a flexible way to utilize
PTMs, with which we can describe many possible tasks,
from text classification, named entity recognition, and
question answering to machine translation. The
experimental results in GPT-3 show that large PTM with in-
context learning can even achieve better performance
compared with the full-parameter fine-tuning in small
PTMs.

From the fantastic results of in-context learning in GPT-
3, researchers realize that we can stimulate PTMs’ specific
functionalities with textual prompts. After that, many



researchers focus on exploring how to better stimulate
PTMs with textual prompts, i.e., prompt learning. As shown
in Fig. 5.21, prompt learning has two essential parts,
including task instruction, which is a textual prompt (The

movie is [MASK]) to stimulate the specific functionalities of
PTMs for the downstream tasks, and task verbalizers,
which maps the output words of the language modeling
head to label space of the target task. Therefore, the
research work on prompt learning focuses on how to design
the optimal task instruction prompts and task verbalizers
for downstream tasks.

Fig. 5.21  An example of prompt learning

Task Instruction Design  Task instruction design aims
to find the optimal task instruction prompts that can
achieve the best performance in the downstream tasks. It
can be divided into three categories, including manual,
automatic, and knowledgeable methods.

Manual Design  Early works [7, 19, 77, 120] usually
design the task instruction prompts manually, based on the
intuition of human experts. Although manual design
methods are simple and effective, they still have two
significant limitations: first, they require much time and
expert experience. Second, the optimal task instruction
prompts are highly related to specific PTMs and task



datasets, and even experts may fail to find the optimal task
instruction prompts.

Automatic Design  Later, automatic design methods are
proposed to learn or find the optimal task instruction
prompts automatically. We categorize them into two typical
types: (1) generate-then-rank. It first generates a candidate
set of task instruction prompts by prompt mining [47],
prompt paraphrasing [40, 122], or prompt generation [5,
28] and then ranks the best one according to the
performance in the downstream tasks. (2) Gradient-based
search. It searches over all words in the vocabulary to find
short task instructions that can stimulate the specific PTMs
to generate the target output of the downstream tasks
according to the gradients [95, 106].

Knowledgeable Design  Knowledgeable design methods
further incorporate external knowledge into the task
instruction prompts. For example, Han et al. [38] propose
prompt tuning with rules (PTR) to handle text classification
tasks. It applies logic rules to guide the construction of task
instruction prompts, encoding the prior knowledge of each
class into prompt learning. Besides, Chen et al. [9] propose
to insert the type markers in front of the head and tail
entities to incorporate the entity type knowledge and insert
a soft word with the average embeddings of the relation
descriptions between the head and tail entities to
incorporate the relation knowledge.

Task Verbalizer Design  Task verbalizer design aims to
find the optimal label word space of the verbalizer, i.e., the
optimal words in the output vocabulary to map to the label
words. Similar to task instruction design, it can also be
divided into manual, automatic, and knowledgeable
methods.



Manual Design  Early manual task instruction designs
usually accompany manual task verbalizer designs [19, 77,
120]. They ask the experienced experts to select the
optimal words in the vocabulary as the task verbalizer,
which is often based on specific downstream tasks such as
sentiment classification, named entity recognition, etc. For
example, as shown in Fig. 5.21, for sentiment analysis, it
usually maps the probability of the word great into the
probability of the positive sentiment and the probability of
the word terrible to the negative sentiment.

Automatic Design  After early manual designs,
researchers have devoted much effort to automating the
task verbalizer design. Its most typical form is to find a
candidate word set by paraphrasing [47], searching [92], or
generation [28, 121] that maps to task labels. After that,
different from task instruction design, task verbalizer
design usually selects the top-k candidate words/phrases as
the verbalizer and sums up their probabilities as the label
probabilities. The reason is that a task label may have
multiple expressions in language. For example, we can
describe that The movie is

great/interesting/fantastic/awesome, and they are all
mapped to positive sentiment.

Knowledgeable Approaches  Knowledgeable task
verbalizer design aims to utilize external knowledge
information to help design or learn the label word space in
the verbalizer. Hu et al. [44] first propose to utilize external
knowledge bases to help to expand the verbalizer’s label
word space. Specially, for topic classification, they utilize
the external topic-related vocabulary, and for sentiment
classification, they use an external sentiment vocabulary to
help expand the candidate words mapping to the label
space of the verbalizer. Moreover, Cui et al. [18] extend the



label word space from discrete words into soft embeddings
and learn prototype vectors as verbalizers by self-
supervised contrastive learning. Ding et al. [21] also learn
to prototype vectors for entity typing tasks by self-
supervised learning.

Connections Between Prompt Learning and Prompt

Tuning  Prompt learning directly utilizes textual prompts
to stimulate the specific functionalities of PTMs for
downstream tasks. However, the optimal textual prompt
corresponds to many factors, such as the selection of PTMs,
task data distribution, etc. The restricted discrete space of
words limits the manual [7, 19, 77, 120], automatic [5, 28,
47, 95, 106], or even knowledgeable prompt learning [9,
38] to find optimal textual prompts. Stimulating PTMs’
abilities with textual prompts still has a performance gap
with full-parameter fine-tuning in many scenarios. Hence,
prompt learning [18, 21] proposes to extend the space of
textual prompts to a soft form, i.e., utilizing several
additional tunable tokens instead of hard prompt tokens.
This can be viewed as a kind of prompt tuning introduced
in Sect. 5.3.2. In summary, while prompt tuning is a more
parameter-efficient way compared to prompt learning,
prompt learning utilizes the prior knowledge of human
beings by designing explainable textual prompts and is a
natural interface of PTMs which is more explainable for
users.

5.4 Advanced Topics

In the previous section, we have introduced the basics of
PTMs, including the pre-training and adaptation of text
representations. In this section, we present several
advanced topics of PTMs, including better model
architecture, multilingual representation, multi-task



representation, efficient representation, and chain-of-
thought reasoning.

5.4.1 Better Model Architecture

Although Transformer-based PTMs have achieved
promising results in a wide range of downstream tasks, we
still have a question: is Transformer the optimal
architecture for PTMs? In this subsection, we introduce the
explorations in better model architecture, which can be
categorized into three types:

Improving Model Capacity  Recently, researchers have
found that the strong ability of PTMs comes from their
large-scale parameters, i.e., the bigger model leads to
better performance. Therefore, researchers explore
improving the Transformer architecture to increase the
number of model parameters while keeping the same
theoretical computation complexity.

Sparsity, which indicates that the model only activates a
part of the parameters for a specific task, has been widely
explored. In this way, model capacity can be significantly
increased without proportionally increasing theoretical
computation complexity. Sparsely gated mixture of experts
layer (MoE) [94] is thus proposed to allow models to only
activate a part of the parameters for each input sample. As
shown in Fig. 5.22, the architecture of sparse-gated MoE
consists of two parts: experts and a routing network. Each
expert is usually a feed-forward neural network. The
routing network is to determine which experts are
activated when processing each input sample. Compared
with the vanilla Transformer, sparse-gated MoE only
selects a part of experts for computation (the number of
parameters is the same as the vanilla feed-forward layer),
and thus does not increase the training and inference time.



Fig. 5.22  The architecture of sparsely gated mixture of experts layer. The
figure is redrawn according to Fig. 2 from the Switch Transformer paper [26].

However, the sparsely gated MoE still cannot be applied in
real-world scenarios due to the training instability and the
communication costs in GPU clusters. To address these
issues, GShard [57], the first work to combine sparsely
gated MoE with Transformer architecture, simplifies the
routing strategy of sparsely gated MoE, which only assigns
at most two experts for each instance and employs a
capacity factor to balance the workload of each expert.
Based on the improvement of GShard, Switch Transformer
[26] extends sparsely gated MoE as the basic modeling
block for PTMs, and only allows one expert for each input
sample. GLaM [24] further improves the routing strategy
by allowing PTMs to select two experts for each input
sample, which provides more model capacity while
restricting computation cost. The experimental results in



Switch Transformer [26] and GLaM [24] show that PTMs
with sparsely gated MoE can converge faster than that with
vanilla Transformer architecture due to the significantly
larger model capacity.

We believe sparse model architectures, which allow
PTMs to stimulate a part of the neurons for each input
sample, would be an essential feature of the next
generation of PTMs’ architecture. This corresponds to the
phenomenon in neuroscience that each neuron tends to
have fewer average connections to other neurons with the
increasing number of neurons in a primate brain. In fact,
Zhang et al. [134] also point out that the vanilla
Transformer can be transformed into a sparse-gated MoE
form by their proposed MoEfication strategy, i.e., the
vanilla Transformer is a special case of sparse-gated MoE.
It may demonstrate that sparsity is the intrinsic emergent
characteristic of the neural network after pre-training, even
without any constraint or pre-design.

Modeling Long-Term Dependency  Besides the model
capacity, another critical problem of the vanilla
Transformer is that its self-attention mechanism’s
computational and memory footprints are quadratic with
the length of the input sequence. Hence, a question is can
we implement a quadratic Transformer so that the scale of
computational and memory requirements are linear with
the input sequence length? To this end, a natural solution is
to approximate the original multi-head attention with faster
attention mechanisms. We introduce several typical fast
attention mechanisms widely used in PTMs.

Structured Sparse Attention  Clark et al. [14] point out
that the attention heads of PTMs exhibit specific patterns.
For example, some tokens may attend to the [CLS] token,
and some tokens may attend to the other tokens’ specific
positional offsets, etc. Motivated by this phenomenon, later



works propose to replace the original full-connected multi-
head attentions with several types of pre-defined
structured sparse attentions, including (1) the sparse
global attention with which the token is visible for all other
tokens and typically employed in the [CLS] token, (2) the
structured local attention which reduces the visible field for
most other tokens with stride window form [4, 124] or
blockwise form [12, 85], etc.

Low-Rank Approximation  Since the attention heads of
PTMs exhibit specific patterns, the learned attention
matrices are low-rank. Hence, several recent works [13, 51,
108] propose to approximate the multi-head attention
matrices with low-rank decomposition, reducing the multi-
head attention to an operation which is linear with the
length of the sentence.

Cluster-Based Sparse Attention  Its basic idea is that
tokens can only attend to similar tokens according to the
routing mechanism of the multi-head attention layer.
Hence, it learns to cluster tokens in the input text sequence
according to their similarities and restricts that only the
tokens in the same clusters are visible to each other in the
attention layer. For example, Reformer [53] employs a
locality-sensitive hashing strategy to cluster tokens for
attention calculation, and routing Transformer [89]
employs a ks-means algorithm to cluster tokens.

Retrieving External Information  Researchers argue
that it is a very unreasonable way for traditional PTMs to
store all knowledge in model parameters due to their
limited capacity compared with the endless knowledge.
Therefore, REALM [36] proposes to teach PLMs to retrieve
and use external knowledge during inference. REALM
augments the BERT model with a latent knowledge
retriever, allowing PTMs to retrieve relevant text



information (i.e., documents) from a large-scale unlabeled
corpus, such as Wikipedia. In the experiment, REALM
demonstrates that it can achieve much better results
compared to T5–11B, which has nearly 100 times
parameters, verifying the effectiveness of retrieving
external knowledge. Nevertheless, REALM is based on the
BERT model, an encoder-based PTM, which is limited in
classification tasks. To address this issue, RAG [60] further
extends the idea of retrieval augmentation into the
encoder-decoder-based PTM, allowing retrieval-based
PTMs to handle text generation tasks.

5.4.2 Multilingual Representation

Big PTMs trained on the large-scale monolingual corpus,
such as the English corpus, have shown superior
performance in a wide range of NLP tasks. Nevertheless,
there are thousands of languages in the world, and it is
nearly impossible and unreasonable for us to train
individual big PTMs for each language. The reason lies in
two points: (1) there are many resource-scarce languages
that we cannot easily collect a large amount of unlabeled
text for pre-training; (2) there are many NLP tasks related
to more than one language. In fact, semantics is
independent of symbolic languages since people in the
world can express the same meaning in different
languages. Hence, training multilingual PTMs has recently
attracted much attention from researchers. In this
subsection, we introduce the explorations of learning
multilingual PTMs in two main categories:

Nonparallel Pre-training  Nonparallel pre-training is
the initial attempt at learning multilingual PTMs, which
directly pre-trains PTMs on nonparallel multilingual
corpora with monolingual pre-training tasks. Its basic idea
is that the lexical overlaps between languages can help to
align the multilingual language representations of PTMs



learned from corpora of multiple languages in the semantic
space. It can be divided into three categories according to
the model architecture: (1) encoder-based PTMs.
Multilingual BERT (mBERT) [20] is the first multilingual
PTM with nonparallel pre-training. It pre-trains with an
MLM pre-training objective on multilingual Wikipedia
corpora which have 104 languages but are nonparallel. (2)
Decoder-based PTMs. Multilingual GPT (mGPT) [96] pre-
trains with a CLM pre-training objective with Wikipedia
and colossal clean crawled corpus, learning a multilingual
PTM with 60 languages from 25 language families. (3)
Encoder-decoder-based PTMs. mBART [67] and mT5 [115]
extend the DLM pre-training objective to support
multilingual pre-training. They simply add special language
symbols to the end of the input text for the encoder and the
start of the input text for the decoder of PTMs. Such special
language symbols enable PTMs to realize the languages to
be encoded and generated. With the development of
multilingual PTMs with nonparallel pre-training, we still
wonder how multilingual these PTMs can reach. Therefore,
Pires et al. [79] take mBERT as an example for
investigation and find that mBERT can achieve superior
zero-shot performance in a wide range of cross-lingual NLP
tasks, showing its ability in cross-lingual knowledge
generalization. This verifies the reasonability of learning
multilingual capabilities from the nonparallel multilingual
corpora with the Transformer-based PTMs.

A major challenge of multilingual pre-training is how to
alleviate the data unbalance problem between high-
resource and low-resource languages. To address this
issue, mBERT perform exponentially smoothed weighting of
the data distribution of different languages during pre-
training data construction. Furthermore, XLM-R [16]
constructs a new nonparallel multilingual corpus named
CC-100, which has 100 languages. Compared to the



Wikipedia corpora used by mBERT, CC-100 has a larger
scale, especially for those low-resource languages.

Although the monolingual pre-training objective can
simply extend to train multilingual PTMs in nonparallel
corpora, it cannot well utilize the language-alignment
signals from parallel corpora. In fact, such language-
alignment signals are essential for multilingual NLP tasks
such as cross-lingual information retrieval and machine
translation.

Parallel Pre-training  Parallel pre-training is another
typical approach for learning multilingual PTMs, which
mainly focuses on designing multilingual pre-training tasks
to better utilize the language-alignment signals from
parallel corpora. This line of research work can be divided
into three types according to the pre-training tasks: (1)
cross-lingual masked language modeling. XLM [17] thus
proposes the cross-lingual masked language modeling
(CMLM) pre-training objective to better utilize the
language-alignment signals from bilingual sentence pairs.
Extending the MLM objective, CMLM concatenates two
semantically matched sentences in two languages and asks
PTMs to recover randomly masked tokens in the connected
sentence. Compared to MLM, CMLM allows PTMs to
recover the masked tokens not only from the monolingual
context information but also from its aligned tokens in
another language. (2) Cross-lingual denoising language
modeling. XNLG [10] proposes cross-lingual denoising
language modeling (CDLM). Different from DLM, CDLM
assigns the inputs of the encoder and decoder of PTMs with
text in different languages, similar to CMLM. (3) Cross-
lingual contrastive learning. InfoXLM [11] further analyzes
MLM and CMLM from the perspective of information
theory and proposes a contrastive pre-training objective for
learning multilingual PTMs based on the analysis. Based on
InfoXLM, HICTL [113] further extends the idea of cross-



lingual contrastive learning to help PTMs to learn with
multilingual representations at the word level and sentence
level.

Compared to nonparallel pre-training, performing
parallel pre-training can learn semantic-aligned
multilingual representations more effectively and thus
achieves promising results in a series of cross-lingual NLP
tasks. However, most existing parallel pre-training
objective relies on a large number of parallel data at the
sentence level and even word level, which is quite rare for
many languages. To address this issue, ERNIE-M [74]
proposes to expand the scale of parallel multilingual
corpora using the back-translation technique as well as a
back-translation masked language modeling (BTMLM) pre-
training objective. Except for utilizing machine translation
technique, ALM [116] proposes a code-switched pre-
training objective, which directly replaces the tokens/spans
in one language with the token/spans from either its
semantic-aligned sentence in another language or bilingual
lexicons and then performs CMLM on it.

5.4.3 Multi-Task Representation

Multi-task learning [8] has been widely explored in the
representation learning of NLP. With the development of
PTMs, pre-trained representations have become much
more expressive, unifying text representations across a
wide range of NLP tasks. Nevertheless, it still has no clear
answer whether multi-task learning in downstream tasks
can make the pre-trained representations more expressive.
Therefore, researchers have devoted many efforts to
exploring how multi-task learning of downstream tasks can
promote the PTMs and stimulate the potential of pre-
trained representations. We roughly divide the explorations
into the following three directions:



Multi-Task Pre-training  Multi-task pre-training unifies
the learning paradigm of various kinds of NLP tasks during
the pre-training stage for PTMs. The basic idea of multi-
task pre-training is to introduce the learning signals of
different NLP tasks into the pre-training phase. For
example, T5 [88] unifies nearly all NLP tasks as text-to-text
generation problems so that it can pre-train the encoder-
decoder-based PTMs with all NLP task data besides self-
supervised learning with unlabeled corpus. After that, Liu
et al. [64] propose to unify the learning objective of all NLP
tasks as prompt learning by inserting human-designed
/automatically generated task prompts into the input text.
This combines the idea of multi-task learning and prompt
learning, which can further mitigate the gap between multi-
task pre-training and task-specific model adaptation.
Besides directly enhancing the PTMs by multi-task
learning, some works also explore understanding the
principle of task unification in the pre-training stage. Qin et
al. [84] reveal that PTMs actually learn the capabilities to
handle multiple tasks in the pre-training phase. Moreover,
they find that there exists a unified low-dimensional task
subspace to the task capabilities, and the task-specific
model adaptation of big PTMs can be all reparameterized
into optimizing the task vector in this space.

Multi-Task Preadaptation  Multi-task preadaptation
additionally adapts the big PTMs by adding intermediate
auxiliary tasks between pre-training and model adaptation.
The research of multi-task preadaptation can be roughly
divided into three categories: (1) exploring the
effectiveness of preadaptation. First, big PTMs could
further learn more task capabilities that are not reflected in
the self-supervised learning signals by incorporating the
intermediate knowledge transfer from auxiliary tasks, such
as text classification [78], named entity recognition [128],
relation extraction [82], and question answering [30].



Second, preadaptation on domain-specific unlabeled data
for downstream tasks could provide rich domain-specific
knowledge for PTMs [33, 35, 56, 83]. (2) Understanding
the working mechanism of preadaptation. Although simple
and effective, the success of preadaptation is very sensitive
to the selection of intermediate auxiliary tasks. Hence,
recent works have focused on exploring the reason for this
phenomenon. One on hand, Aghajanyan et al. [1] find that
scaling the number of tasks as well as adopting task-
heterogeneous batches and task-rebalancing loss scaling is
important for multi-task preadaptation. On the other hand,
Pruksachatkun et al. [81] explore the task capabilities big
PTMs learn during the model preadaptation stage and find
that the preadaptation tasks requiring high-level reasoning
abilities lead to better downstream task performance. (3)
Selecting intermediate auxiliary tasks for preadaptation.
Researchers also explore how to efficiently select the
optimal intermediate auxiliary tasks according to the
knowledge transferability among different tasks, such as
embedding-based methods [80], manually defined feature-
based methods [63], task gradient-based methods [27], etc.

Multi-Task Model Adaptation  Multi-task model
adaptation aims to fine-tune PTMs so that their generated
text representations can jointly solve multiple tasks.
Researchers argue that PTMs have learned versatile
knowledge during self-supervised pre-training in the large-
scale unlabeled corpus, which may help a wide range of
NLP tasks. Hence, big PTMs can be stimulated with
multiple task signals to build a unified downstream task
model that can handle a variety of downstream NLP tasks.
However, in real-world applications, we usually suffer from
the data imbalance problem, i.e., the data volume of
different tasks varies a lot. Hence, simply performing
typical multi-task learning for model adaptation will lead to
underfitting in resource-rich tasks and over-fitting on



resource-scarce tasks [3]. To address this problem, the
basic idea is to learn task-specific model modules for the
PTMs, which can be divided into three types: (1) task-
specific layers which are added on top of the shared
universal text representations of PTMs [65]; (2) task-
specific controlling modules which generate weights of the
existing layers such as the FFN layers of the Transformer
[102]; and (3) delta tuning modules which reduce the
number of newly added model parameters for multiple
downstream tasks [70, 98].

5.4.4 Efficient Representation

Although the text representations learned by big PTMs
have shown fantastic abilities in language understanding, it
requires a large amount of inference time, making them
impractical in real-world applications. Therefore, many
recent works have explored how to generate efficient pre-
trained representations, which can be mainly divided into
three types, including model pruning, knowledge
distillation, and parameter quantization.

Model Pruning  Model pruning reduces the size of PTMs
by omitting redundant model parameters of big PTMs.
Model pruning has two main categories: (1) unstructured
pruning, which directly prunes the model parameter at the
neuron level. CompressingBERT [31] conducts a
comprehensive analysis of the multi-head attention layers
and feed-forward layers of Transformer blocks in PTMs and
then prunes 30–40% of the weights in PTMs without loss of
performance during the pre-training stage. This is because
these weights do not encode any useful inductive bias for
language understanding in the downstream tasks. Although
unstructured pruning effectively makes PTMs more sparse,
it cannot speed up the inference since the computation
hardware cannot well deal with the pruned unstructured
PTMs. (2) Structured pruning, which prunes the model



parameter at the attention level or layer level. For layer-
level pruning, Fan et al. [25] propose to randomly drop
several layers so that they can dynamically pick up parts of
the model layers during inference. Besides, DeeBERT [114]
and CascadeBERT [61] learn to exit the inference in the
shallow layer of PTMs in the downstream tasks. While
these works all focus on the layer-wise early exiting for the
classification tasks, TR-BERT [118] further extends the idea
of early exiting into the inference of the sequence labeling
tasks for PTMs. For attention-level pruning, researchers
observe that there exist redundancy phenomena in
attention heads, i.e., the same syntactic or semantic
relations may be modeled by more than one attention head
[71, 105], and thus they propose to remove the redundant
attention heads. Compared to unstructured pruning, the
PTMs after structured pruning is still structured and can be
easily accelerated in typical computation hardware such as
GPUs.

Knowledge Distillation  Knowledge distillation learns a
smaller student PTM to transfer the knowledge from a
bigger teacher PTM, which aims to reduce both the
inference time and memory cost while maintaining the
performance of big PTMs. The main challenge of
knowledge distillation is how to construct effective
supervisions from the teacher PTMs, which can be divided
into three types: from (1) the original output probabilities
[91] of the self-supervised learning tasks or downstream
tasks, (2) the hidden states in different layers [48, 99], and
(3) the attention matrices [109]. Compared to directly
training a smaller PTM, knowledge distillation can transfer
the learned knowledge in larger PTMs, enhancing the
representations generated by student PTMs.

Parameter Quantization  Parameter quantization
converts the precision of model parameters from a higher



float point to the lower one. The original precision of PTMs
is usually 32 bits, 16 bits, or mixed 32–16-bits. Q8BERT
[123] first proposes to quantize the model parameters’
coding of PTMs into 8-bit to speed up its inference speed.
However, it is harder to reduce the parameter coding into
extremely low-bit further (e.g., 1 or 2 bits) since the low
fixed points have huge precision gaps with float points
which may affect the output representations of PTMs. To
address this issue, Q-BERT [110] further proposes to apply
different levels of precisions for different kinds of modules
in the PTMs according to their different precision
requirements. Besides, TernaryBERT [130] proposes
quantization-aware training for PTMs, which directly trains
the quantized PTMs during the pre-training stage.
However, extreme low-bit quantization is still limited in
real-world applications since it relies on specially designed
hardware implementation.

5.4.5 Chain-of-Thought Reasoning

Recent studies have revealed that even the extremely
large-scale PTMs can still struggle with complex multi-step
reasoning tasks, such as numerical reasoning and
commonsense reasoning. Therefore, we have a question: do
PTMs learn complex reasoning abilities in the pre-training
stage? If yes, how can we stimulate the complex reasoning
ability of PTMs?

To this end, chain-of-thought (COT) reasoning [112] is
proposed to stimulate the complex reasoning ability of
PTMs. The basic idea of COT reasoning is that a model-
generated chain of thought can enable PTMs to mimic an
intuitive thought process to perform reasoning. As shown in
Fig. 5.23, COT reasoning adds a human-labeled explanation
that describes the explicit intermediate reasoning path as
the textual prompt for obtaining the final answer. COT
reasoning hopes the PTMs can learn to decompose the



complex reasoning task into multiple intermediate steps
that are solved individually, and then PTMs can obtain the
correct answer by reasoning over the generated path. In
this way, PTMs can generate more interpretable solutions
and improve the model performance in the samples
requiring complex reasoning. Experimental results in the
original paper [112] show that the complex reasoning
ability emerges from PTMs when the model parameter
grows up to about 100B with COT reasoning, and such big
PTMs can achieve promising results on numerical
reasoning and commonsense reasoning tasks. Later, Wang
et al. [111] further propose an answer ensembling strategy
to improve the reasoning accuracy for COT reasoning. They
first sample a diverse set of reasoning paths with beam
search and then perform reasoning over them. After that,
they select the most consistent final answer from the
generated answer set following these reasoning paths.
Their experiments show that such a simple strategy can
effectively improve the model performance without
additional training for various PTMs with different scales.
Although simple and effective, a major drawback of COT
reasoning is that it requires expensive manually annotating
explanations for different tasks and datasets. To address
this problem, STaR [126] further proposes a bootstrapping
approach to generate high-quality explanations for each
example from a tiny seed training set and verifies its
effectiveness in arithmetic, math word problems, and
commonsense reasoning, especially in the few-shot
settings.



Fig. 5.23  An example of chain-of-thought reasoning. The text colored red is
the added explanation. The figure is redrawn according to Fig. 1 from the
chain-of-thought reasoning paper [112]

Now, the remaining question is where does the complex
reasoning ability of PTMs come from? One possibility is the
intrinsic ability of PTMs that are learned in the self-
supervised pre-training phase, while another possibility is
learning from the provided reasoning explanations due to
the few-shot learning ability of big PTMs. Recently, Kojima
et al. [54] reveal that big PTMs can perform complex multi-
step reasoning without any human-labeled explanation
prompt. As shown in Fig. 5.24, they find that big PTMs can
perform zero-shot COT reasoning by simply adding “Let’s
think step by step” before each answer as the textual
prompt. They show that with such a simple prompt, the
zero-shot performance of big PTMs achieves consistent
improvements in diverse NLP tasks, including arithmetic,
symbolic, and other reasoning tasks. This preliminarily
demonstrates that the complex reasoning ability may be
learned by PTMs during pre-training on the large-scale
corpus.



Fig. 5.24  An example of zero-shot chain-of-thought reasoning

Nevertheless, it is still unclear to us how PTMs learn
such ability: do such reasoning text patterns exist in the
training corpus and PTMs just learn a shortcut? Or have
PTMs evolved into more intelligent agents we never
imagined, i.e., the pre-trained representations of big PTMs
may also exist other untapped and understudied
fundamental “magic” abilities? This is still an open
question. But we confirmedly believe that big PTMs are the
foundation and future direction toward high-level cognitive
intelligence.

For this question, an interesting recent finding is that
big PTMs have the ability to behavior learning. For
example, WebGPT [72] can learn how to operate an online
search engine like Bing API1 to answer open-domain
questions. InstructGPT [73] can perform various types of
tasks according to the corresponding task instructions by
learning from human feedback with reinforcement
learning. Inspired by the idea of reinforcement learning
from human feedback of InstructGPT, more recently,
ChatGPT2 have also demonstrated the fantastic dialogue
ability of big PTMs, which learns from tens of thousands of
human conversation behaviors. All these works make an



initial exploration to more intelligent utilization of big
PTMs: by learning from human behavior with
reinforcement learning, we may mine the unexplored high-
level cognitive intelligence hiding in big PTMs.

5.5 Summary and Further Readings

In this section, we review the current progress and the
remaining challenges of pre-trained models for
representation learning in NLP. First, we introduce the pre-
training tasks, including word-level pre-training and
sentence-level pre-training. After that, we turn to the model
adaptation, from full-parameter fine-tuning to optimization-
perspective delta tuning and data-perspective prompt
learning. Finally, we discuss several advanced topics, such
as better model architecture, multilingual learning, multi-
task learning, efficient representations, and chain-of-
thought reasoning.

For further understanding of pre-trained models for
representation learning, you can find more related papers
in our paper lists about pre-trained models,3 delta tuning4

and prompt learning.5 On the survey of pre-trained models,
Han et al. [37] give a comprehensive review of the history
and recent breakthroughs of PTMs and also discuss its
remaining open challenges. Ding et al. [22] give a detailed
review of existing delta tuning methods. Bommasani et al.
[6] systematically review the PTMs’ developments from the
capability, technical principle, application, and societal
impact perspectives.
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graph structure, such as syntactic relations between words
in a sentence, hyperlink relations between documents, and
semantic relations between entities. Hence, it is critical for
NLP to encode these graph data with graph representation
learning. Graph representation learning, also known as
network embedding, has been extensively studied in AI and
data mining. In this chapter, we introduce a variety of
graph representation learning methods that embed graph
data into vectors with shallow or deep neural models. After
that, we introduce how graph representation learning helps
NLP tasks.

6.1 Introduction

Graph is a natural way to represent objects and their
relationships. As a typical non-Euclidean data structure, it
provides a flexible way to model the interactions between
individual units in our daily lives. For example, social media
networks, citation graphs, biological networks, and
recommendation systems can all be modeled as graph
structures.

Graph structure plays an equally important role in the
NLP area as the sequence form introduced in the previous
chapters. As shown in Fig. 6.1, multiple granularities of
text can be organized in graph forms:
1. Word Level. There are a variety of syntactic/semantic

relations between the words within a sentence or a
document. For example, we can obtain the dependency
relations between words by dependency parsing or the
coreference relations between words by coreference
resolution. These syntactic/semantic relationships can
effectively help us understand the compositional
semantics of different constituents in the sentence and
document. We can naturally regard words as nodes
and their syntactic/semantic relations as edges,

 



representing a sentence or a document as a relational
graph.

Fig. 6.1  An illustrative example of text-based graphs in different levels.
The documents used in the figure are obtained from Wikipedia’s official
website

2. Document Level. In the real world, documents usually
connect with each other. For example, in the articles of
Wikipedia, the entity mentions within an article may
exist human-annotated hyperlinks to the articles
describing these entities, or a scientific paper may
refer to other scientific papers as its related works.
The connected documents may provide important

 



background knowledge to comprehend the meaning of
the document. We can represent the interactions
between documents as a document graph by regarding
documents as nodes and hyperlinks as edges.

3.
Knowledge Level. Human knowledge, such as world,
linguistic, commonsense, and domain knowledge is
essential for understanding languages. In practice,
most of this knowledge can be organized in a graph
form. For example, the world knowledge graph in
Chap. 9 regards entities as nodes and their
relationships as edges. Representing human knowledge
as graphs enables further complex reasoning over the
document and knowledge.

 

It is critical to model the structural information in graph
data, which could help models better understand,
categorize, and reason text in NLP tasks. Graph
representation learning aims to learn the low-dimensional
representations of nodes or the entire graph. The
geometric relationship in the low-dimensional semantic
space should effectively reflect the structural information
of the original graph, such as the global topological
structure or the local graph connection.

In this chapter, we discuss how to properly represent
graph data and their characteristics by starting from
symbolic representations (Sect. 6.2). Then, we move to
distributed representations including the local
representations of nodes (Sects. 6.3 and 6.4) as well as the
global representation of the whole graph (Sect. 6.5). We
also introduce the recent advances of self-supervised
learning on graphs (Sect. 6.6). Finally, we present how text
is processed in graph form in downstream NLP tasks (Sect.
6.7), mainly for word, sentence, and document levels. We
leave a detailed introduction of knowledge-level
applications in Chap. 9.



6.2 Symbolic Graph Representation

A common practice is to denote the graph with its node set
 and the edge set  . We can naturally represent a graph

as  , where  is a directed edge from
node vi to vj or an undirected one between vi and vj. When
processing graph data in a computer, we usually represent
the connections in a graph as an adjacency matrix.

For an undirected graph, as shown in Fig. 6.2, we
construct an adjacency matrix  . If there is any
edge between node v and node u, i.e.,  , we have
the corresponding element Avu = Auv = 1; otherwise Avu =
Auv = 0.

Fig. 6.2  The adjacency matrix representation for an undirected graph

For a directed graph, as shown in Fig. 6.3, Avu = 1
indicates there is an edge from node v to node u.



Fig. 6.3  The adjacency matrix representation for a directed graph

Moreover, for a weighted graph, we can store the
weights of the edges instead of binary values in the
adjacency matrix A, as shown in Fig. 6.4.

Fig. 6.4  The adjacency matrix representation for a weighted graph

In the era of statistical learning, such symbolic
representations are widely used in graph-based NLP such
as TextRank [67], where word and sentence graphs can be
respectively built for keyword extraction [6] and extractive
document summarization [66]. Although convenient and
straightforward, the representation of the adjacency matrix
suffers from the scalability problem. Firstly, adjacency
matrix A takes  storage space, which is usually
unacceptable when  grows large. Secondly, the
adjacency matrix is usually sparse, which means most of its
entries are zeros. The data sparsity makes discrete



algorithms applicable, but it is still hard to develop efficient
algorithms for statistical learning [81].

6.3 Shallow Node Representation

Learning

To address the above issues, shallow node representation
learning methods propose to map nodes to low-dimensional
vectors. Formally, the goal is to learn a d-dimensional
vector representation  for every node  in the
graph. Learned node representations are supposed to
capture the graph’s structure information and then can be
used as input features for downstream graph-related tasks.
In this section, we will introduce several kinds of shallow
node representation learning methods, including spectral
clustering, shallow neural networks, and matrix
factorization.

6.3.1 Spectral Clustering

Early methods of shallow node representation are usually
based on spectral clustering, which typically computes the
first k eigenvectors (or singular vectors) of an affinity
matrix, such as adjacency or Laplacian matrix of the graph.
Now we present several algorithms based on spectral
clustering, including locally linear embedding, Laplacian
Eigenmap, directed graph embedding, and latent social
dimensions.

Locally Linear Embedding (LLE)  LLE [88] assumes
that the representations of a node and its neighbors lie in a
locally linear patch of the manifold. In other words, a
node’s representation can be approximated by a linear
combination of the representation of its neighbors. LLE
uses the linear combination of neighbors to reconstruct the



center node. Formally, the reconstruction error of all nodes
can be expressed as

(6.1)

where  is the representation matrix containing all
node representations v and Wvu is the learnable
contribution coefficient of node u to v. LLE enforces Wvu = 
0 if v and u are not connected, i.e.,  . Further, the
summation of a row of matrix W is set to 1, i.e.,

 .
Equation (6.1) is solved by alternatively optimizing

weight matrix W and representation V. The optimization
over W can be solved as a least-squares problem. The
optimization over V leads to the following optimization
problem:

(6.2)

(6.3)

where Id denotes d × d identity matrix. The conditions in
Eq. (6.3) ensure the uniqueness of the solution. The first
condition enforces the center of all node representations to
zero point, and the second condition guarantees different
coordinates have the same scale, i.e., equal contribution to
the reconstruction error.

The optimization problem can be formulated as the
computation of eigenvectors of matrix 
, which is an easily solvable eigenvalue problem. More
details can be found in the note [20].

Laplacian Eigenmap  Laplacian Eigenmap [7] simply
follows the idea that the representations of two connected



nodes should be close. Specifically, the “closeness” is
measured by the square of Euclidean distance. We use

 to denote diagonal degree matrix where Dvv is
the degree of node v. By defining the Laplacian matrix L as
the difference between D and adjacency matrix A, we have
L = D −A. Laplacian Eigenmap algorithm wants to minimize
the following objective:

(6.4)

(6.5)
The cost function is the summation of the square loss of

all connected node pairs, and the condition prevents the
trivial all-zero solution caused by arbitrary scale. Equation
(6.4) can be reformulated in matrix form as

(6.6)

where tr(⋅) is the matrix trace function. The optimal
solution V∗ of Eq. (6.6) is the eigenvectors corresponding
to d smallest nonzero eigenvalues of L. Note that the
Laplacian Eigenmap algorithm can be easily generalized to
the weighted graph.

A significant limitation of both LLE and Laplacian
Eigenmap is that they have a symmetric cost function,
leading to both algorithms not being applied to directed
graphs.

Directed Graph Embedding (DGE)  DGE [17]
generalizes Laplacian Eigenmap for both directed and
undirected graphs based on a predefined transition matrix.
For example, we can define a transition probability matrix

 where Pvu denotes the probability that node v
walks to u. The transition matrix defines a Markov random



walk through the graph. We denote the stationary value of
node v as πv where ∑vπv = 1. The stationary distribution of
random walks is commonly used in many ranking
algorithms such as PageRank [74]. DGE designs a new cost
function that emphasizes those important nodes with
higher stationary values:

(6.7)

By denoting  , the cost function
Eq. (6.7) can be reformulated as

(6.8)

(6.9)
where

(6.10)

The condition Eq. (6.9) is added to remove an arbitrary
scaling factor of solutions. Similar to Laplacian Eigenmap,
the optimization problem can also be solved as a
generalized eigenvector problem.

Latent Social Dimensions  Latent social dimensions
[103] introduce modularity [71] into the cost function
instead of minimizing the distance between node
representations in previous works. Modularity is a
measurement that characterizes how far the graph is away
from a uniform random graph. Given  , we assume
that nodes  are divided into n nonoverlapping
communities. By “uniform random graph,” we mean nodes
connect to each other based on a uniform distribution given
their degrees. Then, the expected number of edges



between v and u is  . Then, the modularity Q of a
graph is defined as

(6.11)

where δ(v, u) = 1 if v and u belong to the same community
and δ(v, u) = 0 otherwise. Larger modularity indicates that
the subgraphs inside communities are denser, which
follows the intuition that a community is a dense well-
connected cluster. Then, the problem is to find a partition
that maximizes the modularity Q.

However, a hard clustering on modularity maximization
is proved to be NP-hard. Therefore, they relax the problem
to a soft case. Let  denotes the degrees of all nodes
and  denotes the community indicator matrix
where Svc = 1 indicates node v belongs to community c and
Svc = 0 otherwise. Then, we define modularity matrix B as

(6.12)

and modularity Q can be reformulated as

(6.13)

By relaxing S to a continuous matrix, it has been proved
that the optimal solution of S is the top-n eigenvectors of
modularity matrix B [70]. Then, the eigenvectors can be
used as node representations.

To conclude, spectral clustering-based methods often
define a cost function that is linear or quadratic to the node
representations. Then, the problems can be reformulated
as a matrix form, and then solved by calculating the
eigenvectors of the matrix. However, the computation of
eigenvectors for large-scale matrices is both time- and



space-consuming, limiting these methods from being
applied in real-world scenarios.

6.3.2 Shallow Neural Networks

With the success of word2vec [68], many works resort to
shallow neural networks for node representation learning.
Typically, each node is assigned a vector of trainable
parameters as its representation, and the parameters are
trained by optimizing a certain objective via gradient
descent.

DeepWalk  DeepWalk [81] proposes a novel approach
that introduces neural network techniques into graph
representation learning for the first time. Compared with
the aforementioned methods based on eigenvector
computation, DeepWalk provides a faster way to learn low-
dimensional node representations. The basic idea of
DeepWalk is to adapt the well-known word representation
learning algorithm word2vec [68] by regarding nodes as
words and random walks as sentences.

Formally, given a graph  , DeepWalk uses node
v to predict its neighboring nodes in short random walk
sequences u−w, …, u−1, u1, … , uw where w is the window
size of skip-gram [68], which can be formulated as

(6.14)

where it assumes the prediction probabilities of each node
are independent and the overall loss integrates the losses
of all nodes in every random walk.

DeepWalk assigns each node v with two representations:
node representation  and context representation

 . Then, each probability P(u|v) is formalized as a
Softmax function over all nodes:

(6.15)



LINE  LINE [102] proposes a graph representation model
which can handle large-scale graphs with arbitrary types:
(un)directed or weighted. To characterize the interaction
between nodes, LINE models the first-order proximity and
second-order proximity of the graph.

Before we introduce the details of the algorithm, we can
move one step back and see how the idea works. The
modeling of first-order proximity, i.e., observed links, is the
modeling of the adjacency matrix. As the adjacency matrix
is usually too sparse, the modeling of second-order
proximity, i.e., nodes with shared neighbors, can serve as
complementary information to enrich the adjacency matrix
and make it denser.

Formally, first-order proximity between node v and u is
defined as the edge weight Avu in the adjacency matrix. If
nodes v and u are not connected, then the first-order
proximity between them is 0.

Second-order proximity between node v and u is defined
as the similarity between their neighbors. Let the row of
node v in the adjacency matrix A(v, :) denote the first-order
proximity between node v and other nodes. Then, the
second-order proximity between v and u is defined as the
similarity between A(v, :) and A(u, :). If they have no
shared neighbors, the second-order proximity is 0.

To approximate first-order proximity
 , the joint probability between v and u

is defined as

(6.16)



To approximate second-order proximity  ,
the probability that node u appears in v’s context P2(u|v) is
defined in the same form as Eq. (6.15). In this way, the
second-order relationship between node representations is
bridged by the context representations of their shared
neighbors.

For parameter learning, the distances between 
and P1(v, u) as well as  and P2(u|v) are minimized. In
specific, LINE learns node representations for first-order
and second-order proximities individually, and then
concatenates them as output embeddings. Although LINE
can effectively capture both first-order and second-order
local topological information, it cannot be easily extended
to capture higher-order global topological information.

Connection with Matrix Factorization  We prove that
DeepWalk algorithm with the skip-gram model is actually
factoring a matrix M where each entry Mij is the logarithm
of the average probability that node vi randomly walks to
node vj in fixed steps [127]. Intuitively, the matrix M is
much denser than the adjacency or Laplacian matrices, and
therefore can help representations encode more structural
information. In practice, the entry value Mij is estimated by
random walk sampling. A more detailed proof can be found
at our arxiv note [125]. Moreover, LINE is also proved to
be equivalent to matrix factorization [83, 128], where the
matrix is defined by the first- and second-order proximities.

To summarize, DeepWalk and LINE introduce shallow
neural networks into graph representation learning. Thanks
to the modeling ability of neural networks and the
efficiency of shallow representations, these methods can
outperform conventional graph representation learning
methods such as spectral clustering-based algorithms, and
are also efficient for large-scale graphs.



6.3.3 Matrix Factorization

Inspired by the connection between DeepWalk and matrix
factorization, many research works turn to explore how to
learn better node representations by regarding its learning
phase as a matrix factorization problem. Note that the
eigenvector decomposition in spectral clustering methods
can also be seen as a special case of matrix factorization.
Here we present two typical matrix factorization-based
graph representation learning algorithms, GraRep [12] and
TADW [127] in this subsection.

GraRep  GraRep [12] directly follows the proof of matrix
factorization form of DeepWalk. According to our proof
[125], DeepWalk is actually factorizing a matrix M where

 . From the matrix factorization form,
DeepWalk has considered the high-order topological
information of the graph jointly. In contrast, GraRep
proposes to regard different k-step information separately
in graph representation learning, and can be divided into
three steps:

Calculate k-step transition probability matrix Ak for each
k = 1, 2, …, K.
Obtain each k-step node representations.
Concatenate all k-step node representations as the final
node representations.
For the second step to obtain the k-step node

representations, GraRep directly uses a typical matrix
decomposition technique, i.e., SVD on Ak. However, this
algorithm is not very efficient, especially when k becomes
large.

TADW  As the first attributed network embedding
algorithm where node features are also available for
learning node representations, text-associated DeepWalk



(TADW) [127] further generalizes the matrix factorization
framework to take advantage of text information. As shown
in Fig. 6.5, the main idea of TADW is to factorize node
affinity matrix  into the product of three
matrices,  ,  , and text feature matrix

 , where d and ft are the rank and feature
dimensions, respectively. Then, TADW concatenates W and
HT as 2d-dimensional node representations

 .

Fig. 6.5  Illustration of text-associated DeepWalk (TADW)

Now the question is how to build node affinity matrix M
and how to extract text feature matrix T from the text
information. Following the proof of matrix factorization
form of DeepWalk, TADW set node affinity matrix M to a
trade-off between efficiency and effectiveness: factorizing
the matrix M = (A + A2)∕2 where A is the row-normalized
adjacency matrix. In this way, M can encode both first-
order and second-order proximities. For text feature matrix
T, TADW first constructs the TF-IDF matrix from the text of
nodes, and then reduces the dimension of the TF-IDF
matrix via SVD decomposition.

Formally, the model of TADW minimizes the following
optimization function:

(6.17)



where λ is the regularization factor and ||⋅||F is the
Frobenius norm. The optimization of parameters is
processed by updating W and H iteratively via conjugate
gradient descent.

To summarize, the shallow graph representation
learning methods have shown outstanding ability in
modeling various kinds of graphs, such as large-scale [153]
or heterogeneous [110] graphs. They are also used in many
application scenarios such as recommendation systems [91,
129]. However, they still have several drawbacks [38].
Firstly, the model capacity of shallow methods is usually
limited, and leads to suboptimal performance in complex
scenarios. Secondly, the representations of different nodes
share no parameters, which makes the number of
parameters grow linearly with the number of nodes. This
leads to the problem of computational inefficiency. Thirdly,
the shallow graph representation methods are typically
transductive, and thus cannot generalize to new nodes in a
dynamic graph without retraining.

6.4 Deep Node Representation

Learning

To address the problems of shallow node representations,
researchers propose to utilize deep neural networks to
aggregate information from graph structure. In this
section, we introduce several typical solutions for node
representation learning, including autoencoder-based
methods, graph convolutional networks, graph attention
networks, graph recurrent networks, graph Transformers,
and several extensions based on them. Most deep node
representation learning methods assume node features are
available, and stack multiple neural network layers for
representation learning. Here we denote the initial feature



vector of node v as xv and the hidden representation of
node v at the k-th layer as  .

6.4.1 Autoencoder-Based Methods

Different from previous methods that use shallow neural
networks to characterize the graph representations,
structural deep network embedding (SDNE) [109] employs
a deep autoencoder to model more complex relationships
between node representations. The main body of SDNE is a
deep autoencoder whose input and output vectors are the
initial node feature xv and reconstructed feature  ,
respectively. The algorithm takes the representations from
the intermediate layer as node embeddings and encourages
the embeddings of connected nodes to be similar.

Formally, a deep autoencoder first compresses the input
node feature into a low-dimensional intermediate vector
and then tries to reconstruct the original input from the
low-dimensional intermediate vector. Hence, the
intermediate hidden representation can capture the
information of the input node since we can recover the
input features from them. Assume the input vector is xv,
then the hidden representation of each layer k is defined as

(6.18)

where Wk and bk are weighted matrix and bias vector of
the k-th layer. We assume that the hidden representation of
the K-th layer has the minimum dimension, and the
intermediate layer  can be seen as the low-dimensional
representation of node v. Afterward, we can compute the
output  by applying the reversed calculation process on

 . The optimization objective of the autoencoder is to
minimize the difference between input vector xv and output
vector  :



(6.19)

To encode the structure information, SDNE simply
requires that the representations of connected nodes
should be close to each other. Thus, the loss function is

(6.20)

Finally, the overall loss function is  , where
α is a harmonic hyper-parameter. After the training
process,  is taken as the representation of node v and
used for downstream tasks.

Experimental results show that SDNE can effectively
reconstruct the input graph and achieve better results in
several downstream tasks. However, the deep neural
network part of SDNE, i.e., the deep autoencoder, is
isolated with graph structure during the feed-forward
computation, which neglects high-order information
interaction among nodes.

6.4.2 Graph Convolutional Networks

Graph convolutional networks (GCNs) aim to generalize
convolutional operation from CNNs [55] to the graph
domain. The success of CNNs comes from its local
connection and multilayer [54] architectures, which may
benefit graph modeling as well: (1) graphs are also locally
connected; (2) multilayer architectures can help capture
the hierarchical patterns in the graph. However, CNNs can
only operate on regular Euclidean data like text (1D
sequence) and images (2D grid), and cannot be directly
transferred to the graph structure. In this subsection, we
introduce how GCNs extend the convolutional operation to
deal with the non-Euclidean graph data.

Mainstream GCNs usually adopt semi-supervised
settings for training, while previous graph embedding



methods are mostly unsupervised or self-supervised. Here
we only introduce the encoder architectures of GCNs, and
omit their loss functions which depend on downstream
tasks. In specific, typical GCNs can be divided into spectral
and spatial (nonspectral) approaches.

Spectral Methods  From the signal processing
perspective, the convolutional operation first transforms a
signal to the spectral domain, then modifies the signal with
a filter, and finally projects the signal back to the original
domain [63]. Spectral GCNs follow the same process and
define the convolution operator in the spectral domain of
graph signals.

Formally, d-dimensional input representations 
of a graph can be seen as d graph signals. Then, spectral
GCNs are formulated as

(6.21)

where H is the representations of all nodes, g is the filter in
the spatial domain,  and  indicate the graph
Fourier transform (GFT) [9] and inverse GFT respectively,
which can be defined as

(6.22)

where U is the eigenvector matrix of the normalized graph
Laplacian  . A is adjacency matrix and D
is degree matrix.

In practice, we can use a learnable diagonal matrix gθ to
approximate the spectral graph filter  , and the graph
convolutional operation can be reformulated as

(6.23)
Intuitively, initial graph signals X are transformed into
spectral domain by multiplying U⊤. Then filter gθ performs
the convolution, and U projects graph signals back to their



original space. The above form of graph convolution is used
in spectral network [10], the first spectral GCN method.

However, the original form in Eq. (6.23) has several
limitations: (1) the filter gθ is not directly related to the
graph structure; (2) the kernel size of the graph filter
grows with the number of nodes in the graph, which may
cause inefficiency and overfitting issues; (3) the calculation
of U relies on computationally inefficient matrix
factorization. Now we introduce two typical spectral GCNs
improving the original formats, including ChebNet [23] and
GCN [52].

ChebNet  ChebNet [23] proposes to approximate UgθU
⊤

by Chebyshev polynomials Tk(⋅) up to Kth-order, which
involve information within K-hop neighborhood. In this way,
ChebNet does not need to compute matrix U, and the
number of learnable parameters is related to K instead of

 . Formally, the operation of ChebNet is reformulated as

(6.24)

where  is the normalized Laplacian
matrix, λmax is the largest eigenvalue of L, and  is a
weight vector indicating Chebyshev coefficients. The
Chebyshev polynomials are defined as

(6.25)

The Kth-order polynomial can be efficiently computed in a
recursive manner, and the parameter number of the graph
filter is reduced to K.



GCN  GCN [52] is a first-order approximation of ChebNet.
GCN reveals that ChebNet may suffer from the overfitting
problem when handling graphs with very wide node degree
distributions. Hence, GCN limits the maximum order of
Chebyshev polynomials to K = 1, and the equation is
simplified to the following form with two trainable scalars

 and  :

(6.26)

GCN further reduces the number of parameters to address
overfitting by setting  . And the equation is
reformulated as

(6.27)

To summarize, spectral GCNs can effectively capture
complex global patterns in graphs with spectral graph
filters. However, the learned filters of the spectral methods
usually depend on the Laplacian eigenbasis of the graph
structure. This leads to the problem that a spectral-based
GCN model learned on a specific graph cannot be directly
transferred to another graph.

Spatial Methods  Different from spectral GCNs, spatial
GCNs define graph convolutional operation by directly
aggregating information on spatially close neighbors, which
is also known as the message-passing process. As shown in
Fig. 6.6, the representation  of node v at k-th layer can
be seen as a function aggregating the representations of v
and its neighbors at (k − 1)-th layer:

(6.28)

where  is the neighbor set of node v.



Fig. 6.6  Illustration of spatial GCNs. In the feed-forward computation, each
node aggregates information from the representations of its neighbors and
itself

The key challenge of spatial GCNs is how to define the
convolutional operation to satisfy the nodes with different
degrees while maintaining the local invariance of CNNs. In
this subsection, we introduce two widely used spatial
GCNs, including Neural FPs and GraphSAGE.

Neural FPs  Neural FPs [27] propose to use different
weight matrices for nodes with different-sized
neighborhoods:

(6.29)

where  is the weight matrix for nodes with degree
 at layer k and σ(⋅) is a nonlinear function such as

Sigmoid. Neural FPs require learning weight matrices for
all node degrees in the graph. Hence, when applied to
large-scale graphs with diverse node degrees, it cannot
capture the invariant information among different node
degrees, and needs more parameters as node degrees get
larger.



GraphSAGE  GraphSAGE [37] transfers GCNs to handle
the inductive setting, where the representations of new
nodes should be computed without retraining. Instead of
utilizing the full set of neighbors, GraphSAGE learns graph
representations by uniformly sampling a fixed-size
neighbor set from each node’s local neighborhood.
GraphSAGE can be formulated as

(6.30)

where  is the sampled neighbor set of node v and the
aggregator functions  usually utilize the
following three types:
1.

Mean aggregator. By utilizing a mean-pooling
aggregator, GraphSAGE can be viewed as the inductive
version of the original transductive GCN framework
[52], which can be formulated as

(6.31)

 

2.
Max-pooling aggregator. Max-pooling aggregator first
feeds each neighbor’s hidden representation into a
fully connected layer and then utilizes a max-pooling
operation to the obtained representations of the node’s
neighbors. It can be formulated as

(6.32)

 

3.
LSTM aggregator. GraphSAGE also proposes to use an
LSTM-based aggregator with a stronger expressive
capability. Since LSTMs process inputs sequentially,
GraphSAGE randomly permutes node v’s neighbors to
adapt LSTMs.

 



In summary, GCNs extend the idea of CNNs into the
graph domain, enabling models to capture local
connectivity of the graph, and have shown their superior
abilities in a wide range of downstream tasks compared to
the previous autoencoder-based methods. Even now, we
can still get state-of-the-art performance by equipping
vanilla GCNs with proper training strategies [48] or
knowledge distillation methods [123, 124].

6.4.3 Graph Attention Networks

The attention mechanism has shown its strong ability to
consider instance importance in learning representations in
many NLP applications, such as machine translation [3, 33,
105] and machine reading [18]. Hence, many works [106,
146] focus on generalizing the attention mechanism to the
graph domain and hope graph neural networks (GNNs)
with attention-based operators can achieve better results
by considering the importance of neighbors. Figure 6.7
illustrates the architecture of graph attention networks
(GATs).

Fig. 6.7  Illustration of GATs. Compared with spatial GCNs, GATs assign
different aggregation weights to different neighbors, and employ multiple
parallel attention heads for computation



GAT  GAT [106] proposes to adopt the self-attention
mechanism for the information aggregation of GNNs.
Specifically, each node’s representation is calculated by
attending to its neighbors:

(6.33)

where σ(⋅) is a nonlinear function and  is the
attention coefficient of node pair (v, u) at the k-th layer,
which is normalized over node v’s neighbors:

(6.34)

where Wk is the weight matrix of a shared linear
transformation applied to every node, a is a learnable
weight vector and LeakyReLU(⋅) is a nonlinear function.

Moreover, GAT utilizes the multi-head attention
mechanism similar to [105] to further aggregate different
types of information. Specifically, GAT concatenates (or
averages) the output representations of M independent
attention heads:

(6.35)

where  is the attention coefficient from the m-th
attention head at the k-th layer,  is the transform
matrix for the m-th attention head, and ∥ is the
concatenation operation.

To summarize, by incorporating the attention
mechanism into the information aggregating phase of
spatial GCNs, GATs can assign proper weights to different
neighbors and offer better interpretability. The ensemble of



multiple attention heads further increases the model
capacity and brings performance gains over GCNs.

6.4.4 Graph Recurrent Networks

To capture the dependency between two distant nodes by a
graph encoder, one has to stack many GNN layers so that
the information can propagate from one to another.
However, stacking too many GNN layers in the feed-
forward computation will cause the over-smoothing issue,
which makes node representations less discriminative and
harms the performance. Inspired by the success of gated
recurrent unit (GRU) [19] and LSTM [42] in modeling long-
term dependency in NLP, graph recurrent networks
(GRNs) propose to equip the information aggregation of
GCNs with gate mechanisms. Similar to the usage in RNNs,
the gate mechanisms allow the information to propagate
farther without severe gradient vanishment or over-
smoothing issues. In this way, GRNs can improve the
model’s ability in capturing the long-range dependency
across the graph. In this subsection, we introduce several
variants of GRNs, including GGNN, Tree-LSTM, and Graph
LSTM.

Gated Graph Neural Network (GGNN)  GGNN [57]
introduces a GRU-like function to improve the information
propagation of the vanilla GCN architecture. In each layer,
GGNN updates the representations of nodes by combining
the information of their neighbors and themselves with the
update and reset gates. Specifically, the recurrence of each
layer in GGNN is defined as

(6.36)



where  represents node v’s neighborhood information, b
is the bias vector,  is the candidate representation, z and
r are the update and reset gates, and W and U are weight
matrices.

Typical RNNs can also be seen as a special case of
GGNN, where the graph is a chain structure. Hence, GRNs
like GGNN have been widely used in language models.
Note that tree structure is very popular in text data, such
as the dependency parsing tree. Next, we introduce Tree-
LSTM [101], which extends GRNs to model the tree
structure.

Tree-LSTM  Tree-LSTM [101] uses an LSTM-based unit
with input/output gates iv/ov and memory cell cv to update
representation hv of each tree node v. There are two
variants of Tree-LSTM: Child-sum Tree-LSTM and N-ary
Tree-LSTM. Instead of using a unified forget gate like
LSTM, Child-sum Tree-LSTM assigns a forget gate fvm for
each child m of node v, which allows tree node v to
adaptively gather information from its children. N-ary Tree-
LSTM requires each node to have at most N children, and
assigns different learnable parameters for each child.
Child-sum Tree-LSTM is suitable for trees whose children
are unordered, and thus can be used for modeling
dependency trees. N-ary Tree-LSTM can characterize the
diverse relational information for each node’s children, and



thus is usually used to model constituency parsing tree
structure. Here we only present the formulas of Child-sum
Tree-LSTM:

(6.37)

where  is the children set of node v and xv is the input
representation for tree node v. Readers can refer to the
original paper [101] for the details of N-ary Tree-LSTM
variant.

Graph LSTM  Graph LSTM [78, 144] proposes to adapt
Tree-LSTM to model the graph structure, and utilizes
different weight matrices to represent different labels on
the edges. Formally, assume that the edge label between
node v and its child m is l. Compared with Eq. (6.37) in
Tree-LSTM, Graph LSTM uses label-specific weight matrix
Ul to compute relevant gates and hidden states.

In summary, GRNs with gate mechanisms can effectively
model the long-range dependencies between distant nodes,
which is very important in text modeling. By adapting to
tree-structure data, GRNs can also handle the diverse
syntactic and semantic relations in text.



6.4.5 Graph Transformers

Transformer [105] has set off a craze in both NLP and CV
areas [26, 84]. Based on the powerful self-attention
architecture, graph Transformer networks [53, 87, 138]
have been proposed to improve the expressive ability of
GNNs. The core idea is to leverage the Transformer
architecture to capture long-range relationships between
distant nodes. Compared with GRNs, graph Transformers
can benefit the advantages of Transformers against LSTMs.

Connections with Transformers in Text Modeling  In
graph Transformers, nodes are the basic units instead of
words, and self-attention mechanism is then performed
between all node pairs. In this way, all nodes are directly
connected regardless of the original graph structure. To
utilize the original topology information, current graph
Transformers focus on the modifications of input features
and attention coefficients. Other operations including
multi-head ensembling, feed-forward network, and layer
normalization remain unchanged. Now we will introduce
three typical graph Transformers, including Graphormer
[138], GraphTrans [116], and SAT [15].

Graphormer  Graphormer [138] designs three structural
encoding modules to inject graph structure information
into the Transformer architecture. In specific, centrality

encoding adds node degrees to the input which can
indicate the importance of different nodes:

(6.38)

where xv is the feature vector of node v and z−, z+ are
learnable embedding vectors indexed by node in-degree
and out-degree.

Spatial encoding of node distances and edge encoding of
edge features serve as bias terms for the attention



coefficients in the self-attention layer:

(6.39)

where  is the attention coefficient between node v and u
in the self-attention layer, WQ, WK are weight matrices, d is
the hidden dimension, bϕ(v,u) is the learnable scalar indexed
by the distance ϕ(v, u) between v and u, and cvu is the
scalar derived from the edge features between v and u.

To take advantage of deep models in utilizing structure
information, GraphTrans [116] and SAT [15] propose to
integrate GNN and Transformer architectures for
modeling.

GraphTrans  GraphTrans [116] directly stacks a
Transformer module on the top of a GNN module. In other
words, the output node representations of the GNN are
used as the input features of the Transformer. GraphTrans
adopts a special [CLS] token which connects to all other
nodes, and the representation of [CLS] token after the
Transformer is taken as the graph representation. Hence,
the Transformer can also be seen as a pooling operator for
GNN. As a result, GraphTrans can capture both the local
structured information and long-range relationships on
graphs at the same time.

SAT  SAT [15] proves that modifying the position
encoding module in standard Transformers could not fully
capture the structural similarity between nodes on a graph.
To address this problem, SAT defines attention coefficients
in the Transformer by the similarity of GNN-based
representations. In this way, GNN serves as a structure
extractor to integrate more information into self-attention
layers.

In summary, graph Transformer architecture can model
long-range relationships on a graph and go beyond the



limitations of traditional deep GNNs, such as over-
smoothing. Compared with GNNs limited by the Weisfeiler-
Lehman test [119], the Transformer-based methods
become more expressive. Besides, GNNs can also be
integrated into graph Transformers to better utilize the
graph topology information.

6.4.6 Extensions

In this subsection, we will talk about several typical
extensions of GNNs, including skip connection,
neighborhood sampling, and the modeling of diverse graph
types, which can respectively improve the effectiveness,
efficiency, and generalizability of GNNs.

GNNs with Skip Connection  Theoretically, we can
enhance the expressive ability by stacking more layers of
GNNs. However, existing works find that deeper GNNs do
not perform better in downstream tasks and even perform
worse [52]. Chen et al. [14] further attribute this
phenomenon to the low information-noise ratio received by
the nodes in deep GNNs. The residual network [40], which
has been verified in the computer vision community, is a
straightforward solution to the problem. But researchers
find that deep GNNs with residual connections still perform
worse compared to the two-layer GNNs. Therefore, Rahimi
et al. [85] and Xu et al. [120] further explore how to
enhance the performance of GNNs with skip connections.
Inspired by the idea from the highway network [160],
Rahimi et al. [85] employ the layer-wise gate mechanism,
and the performance can peak at four layers. Formally, the
Highway GCN can be defined as

(6.40)



Besides, Xu et al. [120] present the jump knowledge
network, which selects representations from all
intermediate layers as final node representations. The
selecting mechanism enables the jump knowledge network
to adaptively pick the reasonable neighborhood information
for each node.

GNNs with Neighborhood Sampling  The vanilla GNN
[89] has several limitations: (1) the computation is based
on the entire graph Laplacian matrix, and thus
computationally expensive for large graphs; (2) it is trained
and specialized for a given graph, and cannot be
transferred to another graph. To address the problems, the
aforementioned GraphSAGE [37] first samples
neighborhood nodes of a target node, and then aggregates
the representations of all sampled nodes. Thus, GraphSAGE
can get rid of the graph Laplacian and can be applied to
unseen nodes. Ying et al. [139] further propose the
importance-based sampling method PinSage, which
simulates random walks starting from target nodes and
samples the neighborhood set according to the normalized
visit counts. Instead of sampling neighbors for each node,
Chen et al. [16] propose FastGCN, which directly samples
the receptive field for each layer. In other words, only
sampled nodes can participate in layer-wise information
propagation. FastGCN sets the sampling importance of
nodes according to their degrees, and tends to keep the
nodes with larger degrees. Besides, Huang et al. [45]
introduce a parameterized and trainable sampler, which
performs layer-wise sampling based on the previous layer.

GNNs for Graphs of Diverse Types  The vanilla GNN
[89] is designed for undirected graphs, the simplest graph
format. However, as shown in Fig. 6.8, we have graphs of
diverse types in real-world scenarios. Now we will



introduce several extensions of GNNs to deal with directed,
heterogeneous, or dynamic graphs:

Fig. 6.8  Diverse types of graphs

Directed Graphs  Directed edges contain extra
information compared to undirected ones. For example, a
famous person in a social network may be followed by lots
of other users. Usually, her influence is stronger than most
of her followers. This suggests that GNNs should treat the
information propagation process in two edge directions
differently. DGP [49] defines two graphs where nodes are
respectively connected to all their ancestors or
descendants. We correspondingly denote the normalized
adjacency matrices as  and  . The encoder of
DGP can be formulated as

(6.41)

where Hk is the representation matrix of all nodes in the k-
th layer, Wp and Wc are weight matrices, and σ(⋅) is a
nonlinear function. In this way, the information
propagations of two directions are processed separately.

Heterogeneous Graphs  A heterogeneous graph [92] has
several kinds of nodes. For example, for the graph in the



shopping recommendation system, we have user nodes,
item nodes, etc. The simplest way to process
heterogeneous graphs is to consider the node type
information in their input features, i.e., convert the node
type information into a one-hot feature vector and
concatenate it to the original features. Besides the simple
feature-based approach, GraphInception [150] introduces
the concept of meta-path into the information propagation
on heterogeneous graphs. GraphInception utilizes GNNs to
perform information propagation on homogeneous
subgraphs, which are extracted based on human-designed
meta-paths. At last, it concatenates the outputs from
different homogeneous GNNs as final node
representations. Wang et al. [111] further propose the
heterogeneous graph attention network (HAN) with node-
level and meta-path-level attention mechanisms. In
addition, some works [112, 154] also consider the modeling
of network schema [99], which is a meta template of a
heterogeneous graph indicating node types and their
relations.

Besides, there are many graphs containing edges with
weights or types as additional information. A typical way to
handle such graphs is to build a bipartite graph, where the
original edges are converted into nodes linking to the
original endpoint nodes, and the type information is thus
converted to node type information. Another way is to
assign different propagation weight matrices for different
edge types. However, if a graph has lots of edge types, the
parameter numbers will be large. To address the problem,
R-GCN [90] introduces two regularization tricks that can
decompose the transformation matrix Wr of type r to a set
of base transformations shared among all edge types. Thus,
R-GCN can reduce the number of parameters and capture
the relationship between different edge types.



Dynamic Graphs  Graphs are usually dynamic and vary
over time. For example, a user in a social network may
newly follow another user. To model the graph structure
changing over time, DCRNN [56] and STGCN [143] first
capture the static graph information at each time step by
GNNs and then feed the output representation into a
sequence model like RNNs. In addition, Structural-RNN
[47] and ST-GCN [122] extend static graph structure with
temporal connections and apply conventional GNNs on the
extended graphs, which can capture structural and
temporal information at the same time. MetaDyGNN [131]
combines GNNs with meta-learning for few-shot link
prediction in dynamic graphs.

6.5 From Node Representation to

Graph Representation

In previous sections, we introduce how to represent nodes
in a graph, from shallow node representation to deep node
representation. In many scenarios, we also need to
compute the representation of an entire graph or a specific
subgraph. Inspired by the pooling operation in NLP and CV
areas, graph pooling is then designed for obtaining the
graph representation from node representations. Here we
present two typical groups of graph pooling methods,
namely, flat pooling and hierarchical pooling.

6.5.1 Flat Pooling

Flat pooling assumes a flat graph structure to generate
graph representation, which includes max/mean/sum
pooling as simple node pooling methods, and SortPooling
[147] considering node ordering of structural roles.

Simple Node Pooling  Similar to the pooling operation
in NLP and CV, we can directly apply node-wise



max/mean/sum operators on top of node representations
for graph pooling. The graph representation can be
formulated as

(6.42)

The above pooling operators are general and parameter-
free, but completely neglect the graph structure.

SortPooling  SortPooling [147] first sorts node
representations by their structural roles, which enables a
consistent node ordering in different graphs and makes it
possible to train typical neural networks on sorted node
representations for pooling. In particular, SortPooling feeds
the sorted representations into a 1-D CNN to get the graph
representation, and makes the graph pooling operation to
keep more information of global graph topology.

Though simple and effective, flat pooling ignores the
hierarchical structure of nodes in a graph, e.g., nodes,
subgraphs, and communities, thus leading to suboptimal
graph representations.

6.5.2 Hierarchical Pooling

The basic idea of hierarchical pooling is to group structure-
related nodes into clusters to form a subgraph recursively,
and obtain the graph representation layer by layer. Next,
we will introduce two typical hierarchical pooling
operations.

DiffPool  DiffPool [140] proposes to learn hierarchical
representations at the top of node representations and can



be combined with various node representation learning
methods in an end-to-end fashion. As shown in Fig. 6.9,
DiffPool learns a differentiable soft cluster assignment for
each node, and then maps nodes to a set of clusters layer
by layer.

Fig. 6.9  The illustration of DiffPool. The figure is redrawn from Figure 1 of
[140]

Formally, let  denote the learned cluster
assignment matrix at the k-th layer, where  indicates
whether node v belongs to cluster c at k-th layer, and Ck is
the number of clusters in each layer. With the cluster
assignment matrix Sk, we can then calculate the adjacency
matrix  for the next layer by the
connectivity strength between learned clusters in Sk:

(6.43)

Then the output node representations Hk+1 are
computed by GNN encoder:

(6.44)

where input node representations Xk+1 are obtained by
aggregating the output representations from the k-th layer:



(6.45)

DiffPool predefines the number of clusters for each
layer, and applies another GNN on the coarsened
adjacency matrix Ak to generate the soft cluster assignment
matrix Sk. Finally, DiffPool feeds the top-layer graph
representation into a downstream task classifier for the
supervision of cluster assignment matrices.

gPool  As shown in Fig. 6.10, gPool [32] presents both
graph pooling (gPool) and unpooling (gUnpool) operations,
based on which the graph data is modeled by an encoder-
decoder architecture. The encoder/decoder includes the
same number of encoder/decoder blocks, and each
encoder/decoder block will contain a GCN layer and a
gPool/gUnpool operator. The representations after the last
decoder block are used as final representations for
downstream tasks.



Fig. 6.10  Illustration of gPool and gUnpool. The figure is redrawn from
Figure 2 of [32]

The gPool operation learns projection scores for each
node with a learnable projection vector, and selects nodes
with the highest scores as important ones to feed to the
next layer:

(6.46)

where sk is the importance score; pk and Xk are the
projection vector and input feature matrix in the k-th layer,
respectively; and rank(sk, nk) returns the indices of the
elements with top-nk scores in sk.



Then in each layer, we define the adjacency matrix and
input feature matrix based on the corresponding rows or
columns indexed by idxk:

(6.47)

where 1d is a d-dimensional all-one vector and ⊙ is the
element-wise matrix multiplication. Here the normalized
scores  are used as weighted masks to further filter the
feature matrix  .

The gUnpool performs the inverse operation of the gPool
operation, which restores the graph to its original
structure. Specifically, gUnpool records the indices of
selected nodes in the corresponding pooling level and then
simply places nodes back in their original positions:

(6.48)

where idxk is the indices of nk selected nodes in the
corresponding gPool level, and the function places row
vectors in Xk into nk−1 × d all-zero feature matrix by index
idxk.

Compared to DiffPool, gPool can reduce the storage
complexity by replacing the cluster assignment matrix with
a projection vector at each layer.

In this section, we introduce how to obtain global graph
representation based on local node representations with
graph pooling operations, which are widely used in a series
of graph-level tasks such as graph classification and
interaction prediction. When applying GNNs in modeling
text, graph pooling can effectively help us extract sentence-
level [72, 152] or document-level [23, 77] information for
downstream tasks.



6.6 Self-Supervised Graph

Representation Learning

Recently, self-supervised learning methods, which have
made immense success in CV and NLP areas, can learn
effective representations with well-designed pre-training
tasks instead of expensive downstream task labels.
Specifically, self-supervised graph representation learning
[60] first learns node and graph representations by
different graph-based pre-training tasks without human
supervision, such as graph structure reconstruction or
pseudo-label prediction. Then, the learned models or
representations can be used in downstream tasks (e.g.,
graph/node classification). As shown in Figs. 6.11 and 6.12,
we will introduce three types of self-supervised graph
representation learning methods, namely, generative,
predictive, and contrastive, distinguished by different pre-
training tasks.

Fig. 6.11  Illustration of generative (left) and predictive (right) methods



Fig. 6.12  Illustration of contrastive methods

Generative Methods  The generative methods aim to
reconstruct and predict some components (e.g., graphs,
edges, node features) of input data.

Structure Reconstruction  These works aim to recover the
adjacency matrix or masked edges of a graph. Graph
autoencoder (GAE) [51] learns node representations by a
two-layer graph convolutional network and then
reconstructs the adjacency matrix of the input graph, and



variational graph autoencoder (VGAE) [51] is a latent
variable variant of GAE. ARGA and ARVGA [75] are
adversarial variants of GAE and VGAE, respectively,
combining autoencoder and adversarial approaches. AGE
[21] adaptively defines the reconstruction objective of
adjacency matrices in an iterative manner.

Feature Reconstruction  These works aim to recover the
node attributes of a graph, i.e., the input features of GNNs.
MGAE [108] takes both corrupted network node content
and structures as input, and predicts the origin node
features. GALA [76] proposes a symmetric graph
convolutional autoencoder based on Laplacian sharpening
and smoothing to learn node representations by predicting
input features. Here the Laplacian sharpening encourages
the reconstructed feature of a node to be far away from
those of its neighbors. GPT-GNN [44] uses both graph and
feature generation pre-training tasks to model the
structural and semantic information of the graph.

Predictive Methods  Predictive methods learn
informative representations with self-supervised signals
from some auxiliary information, such as pseudo labels and
graph properties. Depending on the prediction targets, the
predictive methods can be further divided into three types.

Property Prediction  These methods manually define some
high-level information of the graph for prediction. GROVER
[87] uses a graph Transformer as the encoder and employs
both contextual property prediction and graph-level motif
prediction to encode domain knowledge. S2GRL [79] takes
the k-hop contextual prediction as a pre-training task and
trains a well-designed GNN to learn representations.
SELAR [46] predicts the meta-paths, which are composite
relations of multiple edge types in heterogeneous graphs.



Pseudo-Label Prediction  This line of works employs an
iterative framework to learn representations and update
cluster labels. M3S [98] employs DeepCluster [13]
algorithm to generate pseudo cluster labels, and designs an
aligning mechanism and a multistage training framework to
predict refined pseudo labels. IFC-GCN [43] proposes an
EM-like framework to alternately rectify pseudo labels of
feature clustering, and update node features by predicting
pseudo labels.

Invariant Information Preserving  These works aim to
preserve some intrinsic and invariant information in the
graph. Compared with the property prediction-based
methods, there is usually no explicit meaning or closed-
form formula for the invariant information. CCA-SSG [145]
employs the canonical-correlation analysis (CCA) method to
maximize the correlation between two augmented views of
the same input, and thus preserve augmentation-invariant
information. Lagraph [118] assumes that there exists a
latent graph without noises behind each observed graph,
and the observed graph is randomly generated from the
latent one. Lagraph implicitly predicts the latent graph as a
pre-training task to learn informative graph and node
representations.

Contrastive Methods  Contrastive methods first
generate two contrastive views from graphs/nodes, and
then maximize the mutual information between them. In
this way, the learned representations will be more robust to
perturbations. Typically, contrastive methods regard the
views from the same graph/node as a positive pair, and the
views randomly selected from different graphs/nodes as
negative pairs. The representation similarity between a
positive pair is forced to be larger than negative ones.
Categorized by the views to contrast, contrastive methods
can be divided into two groups.



Substructure-Based Methods  This line of works usually
contrasts views between different scales of structures.
InfoGraph [95] takes different substructures of the original
graph (e.g., nodes, edges, triangles) as contrastive views to
generate graph-level representations. DGI [107] and GMI
[80] build contrast views between a graph and its nodes.
MVGRL [39] generates views by sampling subgraphs, and
learns both node- and graph-level representations. GCC
[82] treats different subgraphs as contrastive views and
introduces InfoNCE loss [73] to large-scale graph pre-
training.

Augmentation-Based Methods  These works usually
generate views by applying different perturbations on input
graphs and features. GRACE [158] and GraphCL [142]
randomly perturb the input graph (e.g., node and edge
dropping) to generate contrastive views. GCA [159]
adaptively builds contrastive views based on different
graph properties (e.g., node degree, eigenvector,
PageRank). Here nodes or edges with small importance
scores (e.g., node degrees) are more likely to be dropped in
contrastive views. JOAO [141] and AD-GCL [100]
automatically select graph augmentations and generate
contrastive views in adversarial ways. Instead of
contrasting augmented data, DSGC [132] conducts
contrastive views from dual spaces of hyperbolic and
Euclidean. GASSL [134] generates views by directly
perturbing input features and hidden layers. SimGRACE
[117] adds Gaussian noises to model parameters as
perturbations to generate contrastive views. MA-GCL [34]
proposes a novel augmentation strategy that randomly
perturbs the neural architecture of GNN encoders (i.e.,
random permutations of graph filter, linear projection, and
nonlinear function) as contrastive views. HeCo [112]
employs network schema and meta-path views in
heterogeneous graphs as two specific views.



Adaptation Approaches  After the self-supervised
training process, there are roughly three paradigms to
adapt the learned models or representations for
downstream tasks.

Pre-training-Fine-Tuning  These methods [44, 87, 142]
first train the model parameters of graph encoder on the
datasets without labels in the self-supervised way, and then
the pre-trained parameters are used as the initial
parameters in the next fine-tuning step, which updates the
encoder in a supervised way by downstream tasks.

Unsupervised Representation Learning  These methods
[51, 75, 79, 158] train the graph encoder with pre-training
tasks in the first stage, and the pre-trained encoder is
taken as a feature extractor with frozen parameters to
generate representations for downstream tasks in the
second stage.

Multitask Training  These methods [46, 82, 98] train
graph encoders on both pre-training and downstream tasks
with well-designed loss functions, which can be seen as a
type of multitask learning, where the pre-training tasks are
auxiliary tasks for downstream ones.

In summary, self-supervised graph representation
learning methods can learn effective graph and node
representations based on various pre-training tasks without
labels. Different from pre-trained language models where
pre-training-fine-tuning are the mainstream for adaptation
of downstream tasks, the unsupervised representation
learning paradigm is widely used in graph data, where only
the node/graph representations in the last feed-forward
layer are fed into downstream tasks as features. An
intuitive reason is that popular tasks on graph data (e.g.,
node/graph classification) require less model capacity than
those on NLP (e.g., machine translation). Therefore, the



final representations in graph encoders are usually
sufficient, and it’s not necessary to fine-tune the learned
graph encoders.

6.7 Applications

In this section, we will introduce several typical
applications of graph representation learning in the NLP
area.

Text Classification  Text classification is an essential
task in NLP. Typical GNN models, including GCNs [2, 23,
37, 41, 52, 69] and GATs [106], are applied in text
classification to model the structural information (e.g.,
citation relationship) between documents. However, these
works did not fully model the structural information lying in
texts. Thus, some works manage to construct graphs from
texts. Peng et al. [77] propose to transform texts into a
graph of words, and then apply graph convolutional
operations to it. Yao et al. [135] propose to construct a text
graph with document and word nodes, and utilize GCNs to
learn representations for both word nodes and document
nodes. Besides constructing the text graph with human
heuristics as in the above works, there are also some
intrinsic graph structures that can be used, such as
dependency parsing trees, semantic parsing graphs, etc.
One of the most typical works of utilizing these intrinsic
graph structures is the Tree-LSTM [101] introduced in this
chapter.

Sequence Labeling  Sequence labeling is another
classical task in NLP, which aims to assign labels for each
word in the text sequence. Sentence LSTM [151]
introduces graph recurrent networks for sentence
modeling, where each word node connects with its
neighboring words in a context window and a global



sentence node links with all word nodes. Then, the hidden
representations of word nodes can be used for predicting
word labels. Sentence LSTM achieves promising
performance in the POS tagging and NER tasks. To solve
the semantic role labeling task, Marcheggiani et al. [65]
propose a variant of GCN [52] which performs reasoning
on syntactic dependency trees (i.e., a graph with labeled
edges), and employs an edgewise gate mechanism to
consider the information of each dependency edge. They
further show that GCNs and LSTMs are functionally
complementary in this task.

Knowledge Acquisition  As a crucial subtask for
knowledge acquisition, relation extraction aims to predict
the relationship between entities in plain text. While CNNs
and RNNs have achieved promising results on multiple
benchmarks, researchers find the syntactic and semantic
information of the text, such as adjacency, syntactic
dependencies, and discourse relations, are also helpful for
relation extraction. To this end, Zhang et al. [152] propose
a GNN-based method for relation extraction, which can
efficiently aggregate information from arbitrary
dependency graphs. It also applies a novel pruning strategy
to the input tree and only keeps the informative words for
relation extraction. To model the rich relations across
entities, Zhu et al. [157] propose to construct entity graphs
and generate edge parameters to propagate diverse
relational information, which greatly extends edge types
and enables GNNs to conduct complex reasoning.
Considering cross-sentence dependencies like coreference
and discourse, Peng et al. [78] further explore extracting
N-ary relations among multiple entities from multiple
sentences by applying Graph LSTMs on document graphs.

Event extraction is another knowledge acquisition task,
which aims to identify event triggers and the corresponding
arguments for each trigger in texts. Nguyen et al. [72]



propose syntactic GCN, which models the dependency tree
and learns representations of word nodes to extract events
from texts. In addition, Liu et al. [59] find that modeling
syntactic relations help capture long-range dependencies
better, and these shortcut arcs can help extract multiple
events jointly. Meanwhile, to deal with ambiguous and
unseen triggers, Zhang et al. [149] summarize event
structure knowledge from training data, and construct
event background graphs for each event. These graphs
help identify correct events by matching the structure
knowledge.

Fact Verification  Fact verification aims to retrieve
evidence from plain text and verify given claims with the
evidence. In other words, we need to label a given claim as
SUPPORTED, REFUTED, or NOT ENOUGH INFO, which
indicates that the evidence can support, refute, or is not
sufficient for validating the claim. By regarding the
problem as a natural language inference (NLI) [1] task,
traditional methods simply combine the evidence via
concatenation, or build models based on evidence-claim
pairs. To integrate multiple evidence to reason facts, Zhou
et al. [156] propose a graph-based evidence aggregating
and reasoning framework, which propagates and
aggregates information on a fully connected evidence
graph. In this way, different pieces of evidence can have
sufficient interactions with each other, and thus can help
the situations in which multiple pieces of evidence are
necessary for making the decision. Liu et al. [61] further
incorporate kernel-based attention mechanism into GAT for
fine-grained evidence aggregation, and the proposed KGAT
achieves improved performance.

Machine Translation  Traditionally, machine translation
(MT) is modeled as a sequence-to-sequence (seq2seq)
problem. The graph structure, however, enables MT models



to incorporate explicit linguistic biases. To this end, two
typical kinds of graphs can be utilized in MT. Some works
[4, 5, 36] model syntactic trees with GCNs to learn syntax-
aware sentence representations, and show improvements
over vanilla seq2seq methods. To involve more semantic
information, other works further consider semantic role
labeling (SRL) as well as abstract meaning representation
(AMR) graphs [64, 94]. Besides traditional MT, GNNs are
also utilized in multimodal and document MT. For
multimodal MT, Yin et al. [137] build combined graphs with
both entities in images and sentences and then apply GNNs
for message passing across modalities. For document MT,
Xu et al. [121] model long-term dependencies (e.g.,
coreference) with GNNs on document graphs, and achieve
superior performance on translation coherence.

Question Answering  Question answering (QA) aims to
generate or find answers for a question based on relevant
documents or knowledge bases, which requires models to
reason and infer the right answers given the question (see
Chap. 4 for an introduction). Since GNNs are designed to
model relational data, they are also suitable for QA. To
apply GNNs to QA, we need to first build graphs containing
question-related entities and their relations. Typically,
according to the provided context, researchers could utilize
existing knowledge graphs [96, 97, 136] or extract entities
and links from documents to construct graphs [11, 24, 29,
30, 58]. Afterward, multiple kinds of GNNs such as GCN,
GAT, and R-GCN [90] can be directly used to reason over
the graphs [24, 58]. To jointly capture relational and
semantic messages, some works explore how to combine
powerful PTMs and GNNs for complex reasoning. Ding et
al. [24] construct entity graphs utilizing BERT, which
predicts node entities and relational edges iteratively.
Yasunaga et al. [136] further incorporate PTM-encoded



context representations into knowledge graphs to better
perform message passing.

Besides the applications in the NLP area, GNNs are
widely used in various application scenarios, such as
community detection [104, 133, 148], information diffusion
prediction [130], recommender systems [8, 28, 115, 129,
139], molecular fingerprints [50], chemical reaction
prediction [25], protein interface prediction [31],
biomedical engineering [86, 161], etc. Since our book
mainly focuses on NLP, readers who are interested in these
applications can refer to these papers for more details.

6.8 Summary and Further Readings

In this chapter, we have introduced graph representation
learning, which projects graph structure information into
continuous vector space and makes deep learning
techniques possible on graph data. We first talk about
shallow node representation, from spectral clustering,
shallow neural networks, to matrix factorization. Then we
introduce deep node representation, from autoencoder-
based methods to graph neural networks. Afterward, we
present how to obtain the global graph representation from
node representations. Finally, we introduce how graph
representation learning helps a series of NLP tasks.

For further readings of graph representation learning,
there are also some recommended reviews and books. In
terms of general graph embedding, Goyal and Ferrara [35]
and Cui et al. [22] conduct surveys on relevant models and
their applications. We also write a monograph [126] about
our systematic work on the topic of network embedding. In
terms of GNNs, Wu et al. [114] write a book covering more
than 20 topics of GNNs in 4 parts: introduction,
foundations, frontiers, and applications. Shi et al. [93] write
a monograph providing a launch point for discussing the
latest trends of GNNs. Wu et al. [113] present a survey



about the NLP applications based on GNNs. Shi et al. [92]
focus on the representation learning of heterogeneous
graphs. We also provide a more comprehensive survey of
GNNs in our review [155], covering a broader range of
aspects, such as the applications on images or chemistry.
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this chapter, the main changes include the following: (1)
we reorganized the narrative logic of this chapter, by
dividing it into shallow node representation, deep node
representation, graph representation, self-supervised graph
learning, and applications; (2) we rewrote and updated the
part of graph neural networks; and (3) we added the
contents of graph Transformer and self-supervised graph
representation learning.
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respective to unified in terms of model architectures and
learning mechanisms for different modalities and tasks.
After that, we review how cross-modal capabilities can
contribute to complex real-world applications.

7.1 Introduction

Modalities are means of information exchange between
human beings and the real world. Concretely, each
modality is an independent channel of sensory input or
output for intelligent systems. Typical modalities for
humans include text, audio, image, and video, while AI
systems can process more modalities such as infrared
information. Cross-modal representation learning refers to
learning paradigms where multiple modalities are involved.

Cross-modal representation learning is an important
topic of representation learning. In fact, AI is inherently a
cross-modal problem [52], where handling multiple
modalities is both necessary and beneficial for real-world
intelligent systems. Regarding the necessity, in many real-
world applications, intelligent systems are required to
operate in a cross-modal environment, such as transcribing
speech to text [9], or navigating in a room according to text
instructions [10]. From the beneficial perspective, it can be
helpful to integrate the correlated and complementary
information in different modalities for comprehensive
decision-making. For example, for human perceptions, the
judgment of a syllable is made by not only the sound we
hear but also the movement of the lips and tongue of the
speaker we see. An experiment in McGurk et al. [68] shows
that a voiced /ba/ with a visual /ga/ is perceived by most
people as a /da/. Moreover, the high-level semantics can
also usually be better identified in a cross-modal context.
As shown in Fig. 7.1, cross-modal context is important to
resolve the specific semantic meaning of Apple. Therefore,



it is natural for us to consider the possibility of combining
cross-modal information in our AI systems and generating
cross-modal representation.

Fig. 7.1  Cross-modal information can be helpful in understanding high-level
semantics. The apple fruit image is obtained from pixabay.com, and the apple
product image is obtained from commons.wikimedia.org, both from the public
domain

To learn cross-modal representations, models typically
need to first understand the heterogenous data from each
modality with complex semantic composition, as shown in
Fig. 7.2. Various deep neural architectures have been
developed to incorporate the inductive bias for the
heterogenous data from different modalities. The difference
between modalities can be illustrated in two aspects,
including the basic units and their modal structures. (1) A
fundamental difference between text and other modalities
lies in the information density of basic units [35]. Text is
human-generated abstract signals with high information
density, where the basic units (e.g., symbolic words)
already carry high-level semantics. In comparison, images
and speech are direct recordings of real-world signals,
where it is usually more challenging to recognize high-level
semantics from basic units with low information density
(e.g., recognizing objects from continuous image pixels).
(2) Modal structure also constitutes a major difference



between modalities. For example, text and speech exhibit
sequential dependency between basic units, and in
comparison, information is spatially presented in images,
leading to invariance in shift and scale in images. Single
frames in videos are spatially presented, and different
frames are organized in a sequential structure. To account
for these structures, recurrent neural networks (RNNs) and
convolutional neural networks (CNNs) have been
developed respectively.

Fig. 7.2  Cross-modal representation learning is challenged with modeling
cross-modal semantic composition and establishing cross-modal semantic
mapping

Moreover, models are challenged with establishing
cross-modal mapping for cross-modal information
alignment and fusion. The fine-grained mapping can exist
between information from different semantic levels and
modalities. Since explicit annotation of cross-modal
mapping is limited, the learning of cross-modal alignment



and fusion is typically implicitly driven by supervised
learning on specific task annotations. For example, by
learning to answer questions about images, models
implicitly learn the cross-modal mapping between text
tokens and image regions. The model architectures are
usually highly specialized for different tasks, and the cross-
modal representations are learned by task annotations.

Recently, there is a trend of more unified deep cross-
modal representation learning in terms of both model
architecture and learning mechanisms. Specifically,
Transformers have been proven to be effective in modeling
different modalities, including text [90], speech [22], image
[23], and video [30]. More unified self-supervised pre-
training on large-scale cross-modal data has also pushed
forward the state of the arts of many cross-modal tasks [2,
96, 109]. A unified model simultaneously dealing with
different modalities and tasks is beginning to take shape,
which can be a promising foundation and path to realizing
general intelligent systems in the future.

In the following part of this chapter, we will first
introduce fundamental cross-modal capabilities for cross-
modal tasks in Sect. 7.2. Then, we will review
representative cross-modal representation learning models,
including shallow representation models in Sect. 7.3, deep
representation models in Sect. 7.4, and deep pre-training
models in Sect. 7.5. Finally, we will introduce critical
applications in Sect. 7.6. In this chapter, without loss of
generality, we focus on introducing vision-language models,
which are the most important and widely investigated area
in cross-modal representation learning research, and also
inspire research in other modalities.

7.2 Cross-Modal Capabilities

A real-world cross-modal application usually requires a
comprehensive mastery of multiple cross-modal



capabilities. In this section, we first provide a taxonomy of
cross-modal capabilities and then introduce the
corresponding models in the following section. Specifically,
cross-modal capabilities can be roughly divided into three
categories, including cross-modal understanding, cross-
modal retrieval, and cross-modal generation.

Cross-Modal Understanding  Models are required to
perform semantic understanding based on the given image
and query text of the task, for example, answering the
question about the image, grounding text into image
regions, or identifying semantic relations between objects.
Fine-grained cross-modal alignment and fusion between
image regions and text tokens are important to achieve
strong cross-modal understanding performance.

Cross-Modal Retrieval  Given a large candidate set of
text and images, and a query from one modality, models
are asked to retrieve the corresponding data from other
modalities, for example, retrieving images based on a text
query or retrieving text based on an image query. Due to
the large number of retrieval candidates, cross-modal
retrieval methods need to model the holistic semantic
relations between data from different modalities in an
efficient and scalable way.

Cross-Modal Generation  For image-to-text generation,
models are required to generate natural language text
about the given image content, for example, describing the
image content or having conversations on the image. An
image-to-text generation model needs to establish fine-
grained mapping between text generation and image
understanding, and achieve a good trade-off between
diversity and fidelity in describing the visual content with
text. Another reverse capability is text-to-image generation,
which requires models to produce images reflecting the



given text description, which can be useful to produce AI-
generated content (AIGC). Compared with image-to-text
generation, text-to-image generation presents more
challenges on the vision side, such as image generation
with high-resolution and good computation efficiency. In
this chapter, we mainly introduce image-to-text models.

7.3 Shallow Cross-Modal

Representation Learning

Early works in cross-modal representation learning have
investigated fusing cross-modal information in shallow
representations, such as word representations. The word
representations can serve as input text representations of
deep cross-modal neural networks, and can be efficiently
learned through shallow neural architectures on large-scale
data. As introduced in Chap. 2, traditional word embedding
models like word2vec [69] are trained on a text corpus.
These models, while being successful, cannot discover
implicit semantic relatedness between words that could be
revealed in other modalities. Kottur et al. [52] provide an
example: even though eat and stare_at seem unrelated
from text, images might show that when people are eating

something, they would also tend to stare_at it. Besides, the
semantics of concrete words (e.g., colors and objects) can
also be better reflected with the help of visual information
[13, 49]. This implies that considering other modalities
when constructing word embeddings may help capture
more implicit semantic relatedness, where the fused cross-
modal representation can facilitate various cross-modal
tasks.

Vision, being one of the most critical modalities, has
attracted attention from researchers seeking to improve
word representations. Several models that incorporate
visual information and improve word representations with



vision have been proposed. We introduce two typical word
representation models, which incorporate visual
information as additional context and optimization target as
follows.

Word Embedding with Visual Context  In most word
representation learning models, only local context
information from text is considered (e.g., trying to predict a
word using neighboring words and phrases). Global
information (e.g., the topic of the passage), on the other
hand, is often neglected. The image associated with the
text can provide such global information for word
representation learning. Therefore, some works have
proposed to extend word embedding models by using visual
information as additional global features (see Fig. 7.3).

Fig. 7.3  The architecture for word embedding with global visual context. The
figure is redrawn according to Fig. 1 in [105], and the image is obtained from
Visual Genome [53]

Xu et al. [105] make such an attempt in this direction.
The input of the model is an image I and a word sequence
describing it (i.e., the image caption). Based on a vanilla



continuous bag-of-words (CBOW) model, when we consider
a certain word wt in a sequence, its local text feature is the
average of embeddings of words in a window, i.e., {wt−k, …,
wt−1, wt+1, …, wt+k}. The visual feature is computed directly
from the image I using a CNN and then used as the global
feature. The local feature and the global feature are then
concatenated into the aggregated context feature h, based
on which the word probability is computed:

(7.1)

By maximizing the logarithm probability of the target
words, the language modeling loss will be back-propagated
to local text features (i.e., word embeddings), global visual
features (i.e., visual encoder), and all other parameters.
Despite the simplicity, this accomplishes joint learning for a
set of word embeddings, a language model, and the model
used for visual encoding.

In addition to the image pixel feature, the co-occurred
words in image captions [37] and objects in images [114]
can also serve as the additional visual context. Moreover,
for many languages such as Chinese and Korean, the
writing of the characters largely reflects their semantics,
and considering visual information of characters as
additional context can be beneficial for character
representation learning, especially for uncommon
characters [61].

Word Embedding with Visual Target  Besides
additional context, visual information can also serve as
learning targets to capture fine-grained semantics for word
representation learning. For example, the implicit abstract
scene or topic behind the images (e.g., birthday

celebration) can serve as discrete visual signals for word
representation learning [52]. A pair of the visual scene and



a related word sequence (I, w) is taken as input. At each
training step, a window is used upon the word sequence w,
forming a subsequence Sw. Based on the context feature
(i.e., average word embeddings of Sw), the model produces
a probability distribution over the discrete-valued target
function g(⋅) that incorporates visual information. The
entire model is optimized by minimizing the objective
function as follows:

(7.2)
The most important part of the model is the function

g(⋅). Intuitively, g(⋅) should map the visual scene I into the
set {1, 2, …, k} indicating what kind of abstract scene it is.
In practice, it is learned offline using k-means clustering,
and each cluster represents the semantics of one kind of
visual scene. Through the visual optimization target, the
word representations can be learned to be related to the
scene. Besides the discrete visual target reflecting the
abstract scene, continuous visual features can also be used
to guide the representation learning of words in text
corpus, where the representations of concrete words are
encouraged to be close to the corresponding image
features [56].

7.4 Deep Cross-Modal Representation

Learning

In the last section, we introduce shallow cross-modal
representations which fuse visual information with shallow
word embeddings. In fact, when dealing with cross-modal
tasks, supervised task learning in deep neural architectures
can produce deeper cross-modal representations that
better fuse and align the cross-modal information. In this
section, we introduce deep cross-modal representation



learning models for each cross-modal capability, including
cross-modal understanding, retrieval, and generation.

7.4.1 Cross-Modal Understanding

Cross-modal understanding aims to perform semantic
recognition and reasoning on the given image and text. A
major challenge is that fine-grained cross-modal
information needs to be aligned and fused for deep cross-
modal understanding. We introduce two representative
cross-modal understanding tasks as examples, including
visual question answering and visual relation detection.

Visual Question Answering  Visual question answering
(VQA) is one of the most widely investigated tasks in cross-
modal learning, which aims to answer natural language
questions about an image. VQA is a challenging task, since
various complex reasoning capabilities are involved, and
external knowledge is usually required to address the
questions. Many datasets have been proposed for the task,
including VQA [5], GQA [42], VQA-CP [1], COCO-QA [79],
FM-IQA [27], etc. To address the VQA task, researchers
have proposed to adopt attention mechanism for fine-
grained vision-language alignment and reasoning, and
leverage external knowledge to provide rich context
information for question answering.

Attention Mechanism  To align and fuse cross-modal
information, attention mechanism is an effective and widely
used approach. Intuitively, image regions related to the
question should be selected and contribute more to the
cross-modal representations, and vice versa. Shih et al.
[82] propose to calculate the attention over image regions
to select informative ones to answer the question. The
image regions are first encoded into feature
representations {I1, I2, …, Ik} via CNN encoders. Then, the



attention score αj over the image regions is computed as
follows:

(7.3)

where W1,W2,b1,b2 are trainable parameters and q is the
question representation. A larger attention score indicates
higher relevance between the image region and the
question, and larger contribution to the final fused
representations and answer prediction. The question-aware
image feature is obtained via a convex combination of the
region features based on the normalized attention scores to
produce the answer. In this way, image regions relevant to
the question are selected in an end-to-end fashion for visual
question answering.

However, some questions are only related to some small
regions, which encourages researchers to use stacked
attention to further refine the attention distribution for
noise filtering. Yang et al. [107] further extend the single-
layer attention model used in [82] by stacking multiple
attention layers. The key idea is to gradually filter out
noises and pinpoint the regions that are highly relevant to
the answer by reasoning through multiple stacked attention
layers progressively.

The above models attend only to images. Intuitively,
questions should also be attended to select informative
tokens, and vice versa. Lu et al. [65] propose such co-
attention mechanism between fine-grained image region
and text tokens by

(7.4)

where Zij represents the affinity of the i-th word and j-th
region, which is produced from a bilinear operation
between the text token feature matrix Q and image region
feature matrix I. The co-attention affinity matrix Z is then
used to produce the attention scores over text tokens and



image regions. In addition, by attending to image grids, an
object to be attended to may be divided into different image
grids, which cannot well reflect the high-level image
semantics. To address the issue, Anderson et al. [3] find
that attending to salient detected objects can benefit
holistic scene understanding for visual question answering.

External Knowledge as Additional Context  Another
intuitive line of research is to utilize external knowledge,
which can help better explain the implicit information
hiding behind the image. Generally, there are two kinds of
knowledge that can be explored, including implicit external
knowledge from related text and language models and
explicit external knowledge from knowledge graphs. Wu et
al. [100] propose to enhance scene understanding through
rich attributes, captions, and related text descriptions from
knowledge bases. The representation of the rich context
information can serve as the initial vector of RNNs, which
then further encode the question to produce the answer in
a seq2seq fashion, as shown in Fig. 7.4. In this way, the
information from attributes and captions and the
complementary external knowledge from knowledge bases
can be utilized for answer generation. Similarly, some
works [34, 67] jointly reason over the descriptions from
PTMs, and explicit knowledge from knowledge graphs for
visual question answering.



Fig. 7.4  The architecture of VQA incorporating external knowledge bases.
The figure is redrawn according to Fig. 2 in [100], and the image is obtained
from Visual Genome [53]

Visual Relation Detection  Visual relation detection or
scene graph generation is the task of detecting objects in
an image and understanding the semantic relation between
them. The task aims to produce scene graphs where nodes
correspond to objects and directed edges correspond to
visual relations between objects, as shown in Fig. 7.5. The
structured graph-based image representations can
facilitate various downstream tasks. Detecting objects are
usually conducted by off-the-shelf object detectors, and the
key challenge of the task lies in understanding the complex
relational interactions between objects. Here we introduce
two main directions of research in scene graph generation,
including graph-based relation reasoning, and language
and knowledge-enhanced visual relation learning.



Fig. 7.5  An illustration for scene graph generation. The figure is redrawn
according to Fig. 1 and Fig. 2 in [66]. The goose image is obtained from
pngimg.com, and the table image is obtained from commons.wikimedia.org,
both from the public domain

Reasoning with Graph Structures  The graph-based
reasoning methods aim to pass and fuse the semantic
information of objects and relations based on the graph
structure for complex relational reasoning. Xu et al. [102]
propose to iteratively exchange and refine the visual
information on the dual graph of objects and relations. Li et
al. [59] further propose to construct a heterogeneous graph
consisting of different levels of context information,
including objects, triplets, and region captions, to boost the
performance of visual relation detection. Specifically, a
graph is constructed to align these three levels of
information and perform feature refinement via message
passing, as shown in Fig. 7.6. During message passing,
each node in the graph is associated with a gate to select
meaningful information and filter out noise from
neighboring nodes. By leveraging complementary
information from different levels, the features of objects,
triplets, and image regions are expected to be mutually
improved to improve the performances of the
corresponding tasks.



Fig. 7.6  Heterogenous graph for complementary message passing. (a) The
input image. (b) Object (bottom), triplet (middle), and caption region (top)
proposals. (c) The graph that indicates the connections between region
proposals. The figure is redrawn according to Fig. 3 in [59], and the image is
obtained from Visual Genome [53]

To further model the inherent dependency of the scene
graph generation task, Mao et al. [66] propose to
decompose the task into a mixture of two phases:
extracting primary relations from the input image first and
then completing the scene graph with reasoning. The
authors propose a hybrid scene graph generator (HRE) that
integrates the two phases in a unified framework.

Specifically, HRE employs a simple visual relation
detector to identify primary relations in an image, and a
differentiable inductive logic programming model which
completes the scene graph iteratively. As shown in Fig. 7.7,
HRE consists of two components, an object pair selector
and a visual relation predictor that collaborate iteratively.
At each time step, the object pair selector considers all
object pairs P− whose relations have not been determined,
from which the next object pair is chosen to determine the
relation. A greedy strategy is adopted which selects the
object pair with the highest relation score. The visual
relation predictor considers all the object pairs P+ whose
relations have been determined and the target object pair
to predict the target relation. The prediction result of the
target object pair is then added to P+ to benefit future



predictions. Exploiting objects and relations in a holistic
graph structure can help model their complex associations,
which can be useful to reason out complex visual relation
interactions.

Fig. 7.7  Framework of HRE that detects primary relations from inputs and
iteratively completes the scene graph via inductive logic programming. The
figure is redrawn according to Fig. 3 in [66]

External Knowledge as Supervision and Regularization

While detecting visual relation with image information is
intuitive and effective [45, 83, 120], leveraging language
and knowledge information can also be helpful [59, 117],
since knowledge from language and knowledge graphs can
provide high-level priors to supervise or regularize visual
relation learning. Lu et al. [63] show that language priors
from word embeddings can effectively regularize visual
relation learning. Notably, Yao et al. [111] propose to align
commonsense knowledge bases with images, which can
automatically create large-scale noisy-labeled relation data
to provide distant supervision for visual relation learning.
The authors also propose to alleviate the noise in distant
supervision by refining the probabilistic soft relation labels
in an iterative fashion. In this way, distantly supervised



models can achieve promising performance without any
human annotation, and also significantly improve over fully
supervised models when human-labeled data is available.

Inspired by visual distant supervision [111], IETrans
[116] proposes to further generate large-scale fine-grained
scene graphs via data transfer. To alleviate the long-tail
distribution of visual relations, visual distant supervision
technique [111] is adopted to augment relation labels from
external unlabeled data. Moreover, given an entity pair,
human annotators prefer to label general relations (thus
uninformative, e.g., on) than informative relations (e.g.,
riding) for simplicity, which leads to semantic ambiguity in
human-annotated data. To address the problem, labels of
general relations are transferred to informative ones based
on the confusion matrix of relations, which encourages
more informative scene graph generation. In this way,
IETrans can enable large-scale scene graph generation
with over 1,800 fine-grained relation types.

It is worth noting that the task of scene graph
generation resembles document-level relation extraction
[110] in many aspects. Both tasks seek to extract
structured graphs consisting of entities and relations. Also,
they need to model the complex dependencies between
entities and relations in rich context. We believe both tasks
are worthy of exploration for future research, and both
tasks can draw inspiration from each other for better
development.

7.4.2 Cross-Modal Retrieval

With the rapid growth of multimodal data such as text,
image, video, and audio on the Internet, the need to
retrieve information across different modalities (i.e., cross-
modal retrieval) has become stronger. Given the query data
from one modality, cross-modal retrieval aims to retrieve
relevant data in other modalities. For example, a user may



submit an image of a white horse, and get the textual
descriptions of the white horse, and vice versa. Due to the
huge number of retrieval candidates, cross-modal retrieval
requires efficient computation of semantic similarities (i.e.,
correlation) between different modalities. This is typically
achieved by learning discriminative cross-modal
representations from different modalities in a common
semantic space.

To learn the common semantic space for different
modalities, cross-modal retrieval methods can be divided
into two categories, including real-valued representation-
based methods and binary-valued representation-based
methods.

Real-Valued Representations  Data from different
modalities is encoded into dense vectors, which can be
challenged by inferior efficiency, but are more investigated
due to their superior performance. In this line of research,
real-valued approaches can be further divided into two
categories, including weakly supervised methods and
supervised methods.

Weakly Supervised Methods  Cross-modal correlation is
learned from the naturally paired cross-modal data. For
example, images on the Internet are usually paired with
textual captions, which can be easily collected in large
scale to train cross-modal retrieval models. To learn
discriminative representations, contrastive-style learning
methods are usually adopted to encourage close
representations of paired data (i.e., positive samples), and
distinct representations of unpaired data (i.e., negative
samples). For example, many works [48, 51, 84, 125] use a
bidirectional hinge loss for an image-caption pair (I, s) as
follows:

(7.5)



where γ is a hyper-parameter denoting the margin and 
and  are negative candidates. The objective maximizes the
margin of paired and unpaired representations for both
image and text as queries. The holistic similarity between
images and text can be obtained by aggregating the local
similarities between fine-grained image regions and text
tokens (e.g., the average of the local similarities).

By summing the loss over all negatives, the negative
instances are equally treated in Eq. (7.5). A problem of
equal treatment of negatives is that the large number of
easy negatives can dominate the loss. To address the issue,
VSE+ + [24] proposes to mine hard negatives online, by
only using the negative that achieves the largest hinge loss
in the mini-batch. Despite the simplicity, VSE+ + achieves
significant improvement and is adopted by many following
works [81, 99]. VSE-C [81] creates more challenging
adversarial negatives by replacing fine-grained concepts
(e.g., numbers and attributes) in the paired text. By
augmenting adversarial instances, VSE-C also alleviates the
correlation bias of concepts in the dataset, and thus
improves the robustness of the model. Wu et al. [99]
establish more fine-grained connections between image
and text. The sentence semantics is factorized into a
composition of nouns, attribute nouns, and relational
triplets, where each component is encouraged to be
explicitly aligned to images. In summary, since only natural
image-caption pairs are required, weakly supervised
methods can be easily scaled to leverage large amounts of
data.

Supervised Methods  In addition to exploiting the natural
image-caption pairs, another line of research investigates
supervised learning on labeled image-caption data to learn



more discriminative cross-modal representations. A
semantic label is given for the content of each image-
caption pair (e.g., horse, dog), and the cross-modal
representations of the same class label are encouraged to
be close to each other [92, 93, 119]. The labeled data can
provide high-level semantic supervision for cross-modal
representation learning, and therefore usually leads to
better image-text retrieval performance.

However, for a specific area of interest, natural
unlabeled image-caption pairs can be insufficient, let alone
labeled data. This motivates transfer learning from the
domains where large amounts of unlabeled/labeled data
are available [41]. A major challenge of transfer learning
lies in the domain discrepancy between the source domain
and the target domain. To address the issue, the
distribution discrepancy between different domains is
measured by the maximum mean discrepancy (MMD) [33]
in the reproduced kernel Hilbert space. By minimizing the
MMD loss, the image representations from source and
target domains are encouraged to have the same
distribution to facilitate knowledge transfer.

In addition to unlabeled image-caption pairs, Huang et
al. [40] further transfer knowledge from labeled image-
caption pairs. Since both domains contain image and text,
domain discrepancies come from both modal-level
discrepancies in the same modality and correlation-level
discrepancies in image-text correlation patterns between
different domains. An MMD loss is imposed on both modal-
level and correlation-level to reduce the domain
discrepancies between the source and target domains.

Binary-Valued Representations  Information from each
modality is encoded into a common Hamming space, which
yields better efficiency for both computation and storage
[14, 46, 121]. However, due to the limited expressiveness
of binary-valued representations, the performance of such



models could be affected by the loss of valuable
information. Therefore, real-valued representation-based
methods are more widely investigated.

It is worth noting that the usefulness of image-text
retrieval is not only limited to a search engine that acquires
cross-modal information for users. Many cross-modal
understanding and generation tasks can also be formulated
as an image-text retrieval problem, for example, retrieving
labels from the category set for image classification [74]
and retrieving sentences from text corpus for image
captioning [55]. Image-text retrieval can also serve as a
critical component in cross-modal models when we need
relevant information of the data in interest (e.g., related
knowledge for an image) [111].

7.4.3 Cross-Modal Generation

Given the information in one modality (e.g., the text
description or image about a horse), can we generate its
counterpart in another modality? This cross-modal
generation capability is an appealing yet challenging
problem. Specifically, cross-modal generation can be
divided into image-to-text generation and text-to-image
generation. Compared with other capabilities, cross-modal
generation is more challenging for two reasons: (1) A
comprehensive understanding of the source modal is
required. For example, in image-to-text generation, not
only objects but also relations between them have to be
detected. (2) Semantic-preserving natural language
sentences or images have to be generated. In this section,
we take image captioning as an example to introduce
methods for image-to-text generation in detail, and then
briefly review the methods for text-to-image generation.

Image captioning is the task of generating natural
language descriptions for images. It is worth noting that
the task of image captioning is inherently analogous to



machine translation because it can also be regarded as a
translation task from the source “language” of image to
natural language. Therefore, many image captioning
models have drawn inspiration from the advances in
machine translation.

Due to the challenge of language generation, many early
works in image captioning retrieve related text to produce
the caption [25, 71], where the flexibility of the generated
text is limited. From 2015, inspired by advances in neural
machine translation [6], most image captioning models
begin to adopt an encoder-decoder framework [91], as
shown in Fig. 7.8. Typically, images are first encoded into
distributed representations using visual encoders such as
CNNs, based on which the caption is generated using
neural language models such as RNNs. The encoder-
decoder framework significantly improves the ability to
generate natural language descriptions. To better establish
the connection between image understanding and text
generation, attention mechanism and graph-based methods
have been mostly investigated.

Fig. 7.8  The architecture of encoder-decoder framework for image captioning



Attention Mechanism  Intuitively, it can be beneficial to
attend to fine-grained image regions via attention
mechanism when generating the corresponding text
tokens. Inspired by the attention mechanism in machine
translation [6], Xu et al. [103] introduce visual attention
into the encoder-decoder image captioning model. The
major bottleneck of the vanilla encoder-decoder framework
[91] is that rich information from an image is represented
in one static representation to produce a complex sentence.
In contrast, Xu et al. [103] encode each image grid region
into representations, and allow the decoder to generate
each text token based on a dynamic image representation
of related regions. The model learns to focus on parts of the
image to generate the next word by producing larger
attention weights on more relevant parts, as shown in Fig.
7.9.

Fig. 7.9  An example of image captioning with attention mechanism. The
example is obtained from the implementation of Yunjey Choi (https:// github. 
com/ yunjey/ show-attend-and-tell)

Despite the effectiveness, Liu et al. [60] find that the
implicitly learned attention is not guaranteed to be closely
related to text tokens. To alleviate the problem, Liu et al.
[60] propose to explicitly supervise the attention
distribution over image grids for text tokens. For each
object in text, the supervision can come from visual
grounding annotations, or textual similarities of detected
object tags. This makes the attention more explainable, and

https://github.com/yunjey/show-attend-and-tell


also improves the performance since related visual
information is better selected. Similarly, Karpathy et al.
[48] make explicit alignment between image regions and
sentence fragments before generating a description for the
image. The explicit alignment is achieved by maximizing
the similarity of image-caption pairs, where the holistic
similarity is aggregated by the local alignment between
image regions and text fragments.

The attention computed over uniform image grids can
split and corrupt high-level semantics (e.g., holistic
objects). To address the issue, Anderson et al. [3] propose
to calculate attention over detected objects. Since the
image regions reserve high-level semantics, the attention
over such regions can be better associated with the
concepts in text. Due to the simplicity and effectiveness,
the object-aware attention mechanism is adopted by many
following works [39, 73]. Since visual question answering
and image captioning both require establishing fine-
grained cross-modal correlation, many approaches can be
utilized for both tasks (e.g., object-aware attention
mechanism).

Scene Graphs as Scene Abstractions  In another line of
research, scene graphs have been adopted to help describe
the complex scene. Scene graphs represent objects and
their relations in a graph structure, which can benefit
image captioning in two aspects: (1) Scene graphs can
provide high-level semantics of objects and their
interactions for deep understanding of the scene. There is a
general consensus that it is visual relations, rather than
objects alone, which determine the semantics of the scene
[53]. (2) Compared with pixel features, the high-level
semantics can be better aligned with textual descriptions.

To leverage scene graphs for image captioning, some
works [108, 122] employ graph neural networks over the
scene graph consisting of objects and their semantic and



spatial relations. The object information passes along the
relation edges based on the graph neural networks. Similar
to the vanilla attention approach of Xu et al. [103], the
decoder dynamically attends to the scene graph when
generating each text token. In addition to representing
images, scene graphs can also be extracted from the paired
text during training. In this view, scene graphs can serve as
a common intermediate representation to transfer the prior
from large-scale text to improve image captioning [106].

Compared with image-to-text generation, text-to-image
faces different challenges, where the key problem is image
generation. Existing methods in text-to-image generation
can be roughly divided into three categories, including
VAE-based [50] and GAN-based [31] methods, and
diffusion-based models [76]. Typical research problems in
text-to-image generation include high-resolution image
generation [20], stable training of image generation models
[75], efficient image generation [7], conditional image
generation [70], etc.

7.5 Deep Cross-Modal Pre-training

The cross-modal representation learning methods we have
introduced in previous sections are limited to either
shallow embeddings (i.e., word vectors) or task-specific
model architectures. Recently, the most significant advance
and trend in cross-modal representation learning is deep
cross-modal pre-training. The key idea is to fully exploit the
self-supervised signals from large-scale data to pre-train
generic deep cross-modal representations. The pre-training
is typically performed to learn cross-modal capabilities
based on Transformer architectures [90] and self-
supervised tasks [64], which is largely unified and agnostic
to specific tasks. Then, the pre-trained deep cross-modal
representations can be tuned to adapt to downstream
tasks. This revolutionary paradigm has greatly pushed



forward the state-of-the-art performance of a wide range of
cross-modal tasks.

The key to cross-modal representation learning is to
establish fine-grained connections between cross-modal
signals. A common architecture suitable for modeling data
from different modalities constitutes the most important
foundation of cross-modal pre-training. Early works try to
fully exploit the inductive bias of each modality. For
example, convolution and pooling are designed to model
the scale and shift invariant property of images in CNNs
[36, 54], and recurrent computation is devised to model the
sequential dependency of text in RNNs [19, 38]. Despite
the effectiveness in modeling each modality, their highly
specialized design hinders the generalization to other
modalities. In comparison, stacked self-attention, the main
component of Transformers, reflects a more general
principle of information exchange and aggregation, which
has been proven to be effective in modeling different
modalities, including text, speech, image, and video.
Moreover, Transformers enjoy better scalability in both
data and parameters, where larger data and parameter
scale can typically always lead to better performance [12].
In this section, we introduce recent advances in deep cross-
modal pre-training, from the input representations, basic
architecture, and pre-training tasks to tuning approaches.

7.5.1 Input Representations

An important problem in joint cross-modal data modeling is
a more unified input representation to the Transformer
architecture. The basic symbolic units of text (e.g., word
tokens) naturally fit the design of Transformers. The main
focus has been on image input representation, where the
solutions include token-based, object-based, and patch-
based methods.



Token-Based Representations  Images or image
patches are represented as discrete tokens. The tokens can
be obtained from clustering [87], or discrete variational
auto-encoders [8, 77]. The form of discrete visual tokens
maximally aligns with the practice of the text domain,
which is convenient for unified input and supervision for
text and image. However, detailed visual information might
be lost in the fixed discrete tokens.

Object-Based Representations  Salient objects (e.g.,
object features, labels, and locations) in an image are used
to represent the image content [64, 86, 89, 113]. Objects
carry more high-level information, and can be better
aligned with concepts in text. Some works further propose
to use object tags to bridge objects in images and concepts
in text [58, 118]. However, object-based methods rely on
external object detectors to obtain input representations,
which can be expensive in both annotation and
computation [57]. The background information in images
may also be lost.

Patch-Based Representations  Features of image grid
patches are adopted as the image input representations
[23, 35, 57]. Patch-based methods (e.g., ViT [23]) and their
pre-training (e.g., MAE [35]) can achieve state-of-the-art
performance. Moreover, since external detectors are not
used, patch-based models are significantly faster than
object-based methods. However, since objects are not
explicitly modeled, patch-based vision-language models can
have difficulty in dealing with object position-sensitive
tasks [57]. To address the problem, some works propose to
treat positions as discrete tokens [95, 109], which enables
unified explicit modeling of text and positions. Notably,
PEVL [109] retrains the order of discretized positions by an
ordering-aware reconstruction objective, which achieves
competitive performance on various vision-language tasks.



7.5.2 Model Architectures

Based on largely unified input representations for different
modalities, several model architectures based on
Transformers have been developed to model cross-modal
data interaction. Existing model architectures can be
divided into three categories, including Transformer
encoders, decoders, and encoder-decoders.

Transformer Encoder Architectures  Inspired by BERT
[21], Transformer encoders have been widely used to align
and fuse cross-modal information, which can be further
divided into single-stream methods and two-stream
methods.

Single-Stream Methods  Image and text input
representations are fed into a single Transformer encoder,
which jointly encodes cross-modal information with shared
parameters [26, 58, 64, 89, 118], as shown in Fig. 7.10.
Since fine-grained image regions and text tokens are jointly
modeled, the architecture can yield very competitive
performance, especially for cross-modal understanding
tasks. Therefore, single-stream methods are the most
widely used vision-language architecture. However, it is not
easy to perform cross-modal generation and retrieval via a
single-stream Transformer encoder.

Fig. 7.10  Single-stream architectures, where image and text are input into a
single cross-modal Transformer encoder

Two-Stream Methods  Images and text inputs are encoded
into a common semantic space by separate unimodal



encoders in a similar way to cross-modal retrieval [44, 74],
as shown in Fig. 7.11. The common semantic space allows
for efficient similarity computation of cross-modal data.
Moreover, due to the efficiency of the architecture, two-
stream methods are scalable to process Web-level data,
which can yield open recognition capabilities. Notably,
CLIP [74] is trained with 400 million image-text pairs, and
can perform zero-shot open-vocabulary image classification
by retrieving text labels for images. However, since fine-
grained cross-modal interactions cannot be modeled, the
performance of two-stream models may be limited on
complex cross-modal understanding tasks.

Fig. 7.11  Two-stream architectures, where image and text are encoded by
separate unimodal encoders into a common semantic space

Hybrid Methods  Some works also propose to encode
image and text first by separate unimodal encoders, and
then fuse the unimodal representations using a cross-modal
encoder [57, 64, 113], as shown in Fig. 7.12. The rationale
is that modal-specific information can be better encoded in
separate unimodal encoders before cross-modal fusion.



Fig. 7.12  Hybrid architectures, where image and text are first encoded by
separate unimodal encoders, and then fused by a cross-modal encoder

Transformer Decoder Architectures  Decoder-only
models have not been widely used in pre-trained vision-
language models, since a bidirectional encoder is usually
required to better understand the image (and text).
However, decoder-only models can be convenient in
generating images by producing visual tokens in an auto-
regressive fashion. For example, DALL-E [77] models text
tokens and image tokens auto-regressively to perform text-
to-image generation.

Transformer Encoder-decoder Architectures  In
encoder-decoder architecture, image and prefix-text are
encoded using encoders, and suffix-text are generated via
decoders [2, 18, 47, 95, 98], as shown in Fig. 7.13. This
architecture is becoming increasingly popular, since image
and text can be well encoded, and the decoder is flexible to
deal with various vision-language tasks in a unified fashion.
Notably, Flamingo [2] bridges frozen large language PTMs
with vision encoders, which produces strong in-context few-
shot learning capabilities for vision-language tasks.

Fig. 7.13  Encoder-decoder architectures. Image and text are first encoded by
a cross-modal encoder, and then the targets are generated via a decoder

7.5.3 Pre-training Tasks

Pre-training tasks aim to fully exploit self-supervised
learning signals from large-scale cross-modal data. The



pre-training cross-modal data includes (1) image-caption
pairs annotated by humans [15, 53] or crawled from the
Internet [2, 80] and (2) collections of labeled downstream
datasets [47, 109]. We divide popular vision-language pre-
training tasks into three categories, including text-oriented
tasks, image-oriented tasks, and image-text-oriented tasks.

Text-Oriented Tasks  Pre-training tasks in language
models have been widely used for self-supervised cross-
modal learning. (1) Masked language modeling
reconstructs masked tokens in text [58, 64, 89, 95, 109],
and is the most widely used pre-training task. Masked
language modeling is usually used to pre-train bidirectional
Transformer encoders for deep cross-modal understanding.
(2) Left-to-right language modeling performs auto-
regressive generation of text tokens based on Transformer
encoder-decoders, which can yield flexible text generation
capabilities [2, 18, 98].

Image-Oriented Tasks  Compared with text, images
consist of continuous pixels with low information density,
which makes it challenging to mine high-level self-
supervised learning signals [35]. To obtain the high-level
semantics for pre-training, existing works resort to objects,
image tokens, and high masking rates. (1) Object-based
pre-training tasks reconstruct high-level semantics given by
object detectors. After masking the image regions
identified by object detectors, the pre-training task can be
reconstructing the discrete object labels [16, 86],
reconstructing continuous object label distributions [16,
64], or regressing the region features [16, 89]. (2) Image
token-based pre-training tasks aim to reconstruct the
masked discrete visual tokens [8, 77]. However, both
objects and visual tokens require external tools to obtain.
(3) Masked patch-based methods directly reconstruct
pixels from masked image grid patches, which do not need



external tools. Notably, MAE [35] finds that high masking
rates are key to learning high-level semantics from image
pixel reconstruction.

Image-Text-Oriented Tasks  Text-oriented and image-
oriented tasks impose local supervision on text tokens and
image regions. In comparison, image-text-oriented tasks
pay more attention to holistic semantic matching between
image and text. (1) Image-text matching is a popular pre-
training task that conducts binary classification of a given
image-text pair to judge the matching degree [26, 58, 64,
89, 118]. The task is usually used in single-stream
Transformer encoders, where fine-grained cross-modal
alignment is performed. (2) Image-text contrastive learning
tasks encourage paired image and text representations to
be close in a common semantic space via contrastive
learning. The task is mostly used in two-stream
Transformer encoders [44, 74] or hybrid architectures [57]
to achieve holistic image-text matching.

7.5.4 Adaptation Approaches

General cross-modal capabilities can be learned in self-
supervised pre-training. During fine-tuning, new
parameters and objective forms are typically introduced to
adapt pre-trained models to downstream tasks, leading to
significant gap between pre-training and downstream
tuning. For example, an MLP is typically introduced to
predict the answers for visual question answering. The gap
hinders the effective adaptation of pre-trained capabilities
to downstream tasks. Recently some works have shown
promising results in data-efficient and parameter-efficient
adaptation of pre-trained vision-language models via
prompt learning.

Data-Efficient Prompt Learning  The key idea of data-
efficient prompt learning is that, by reformulating



downstream tasks into the same form as pre-training, the
gap between pre-training and downstream tuning can be
maximally mitigated. Therefore, vision-language pre-
training models can be efficiently adapted to downstream
tasks with only few-shot and even zero-shot examples.
Specifically, similar to GPT-3 [12], vision-language models
pre-trained with a language generation task can naturally
handle various tasks without significant gap [2, 18, 95, 98].
By reformulating various tasks into a unified language
generation task, data-efficient prompt learning largely
mitigates not only the gap between pre-training and tuning
but also the gap between different tasks.

However, it can be difficult to explicitly establish fine-
grained cross-modal connections via natural language
prompts for various position-sensitive tasks, such as visual
grounding [72], visual commonsense reasoning [115], and
visual relation detection [53]. To address the challenge,
CPT [112] explicitly bridges image regions and text via
natural color-based coreferential markers, as shown in Fig.
7.14. By reformulating cross-modal tasks into a fill-in-the-
blank problem, pre-trained vision-language models can be
prompted to achieve strong few-shot and even zero-shot
performance on position-sensitive tasks.



Fig. 7.14  Cross-modal prompt learning for vision-language models. The figure
is redrawn from the Fig. 1 in [112], and the image is obtained from Visual
Genome [53]

Parameter-Efficient Prompt Learning  Inspired by
delta tuning in pre-trained language models (Chap. 5),
some works propose to only tune several prompt vectors,
instead of full model parameters, to adapt the pre-trained
vision-language models. The prompt vectors can be static
across different samples [124] or conditional on specific
samples [123]. The tunable parameters can also be
lightweight adapters [28]. Since only pivotal parameters
need to be tuned, parameter-efficient prompt learning
methods can better avoid overfitting on few-shot data, and
therefore achieve better few-shot performance compared
with full parameter fine-tuning. However, since new
parameters are introduced, it can be difficult for
parameter-efficient prompt learning methods to deal with
zero-shot tasks.

7.6 Applications



Now we have introduced cross-modal representation
learning methods for cross-modal capabilities, including
cross-modal understanding, retrieval, and generation.
Various specific tasks and models have been proposed to
investigate and implement each capability. In practice,
many real-world applications may require multiple cross-
modal capabilities. In this section, we take robotic
assistants as an example (e.g., assisting humans to
accomplish tasks, such as fetching objects at home
according to language instructions). We illustrate how the
cross-modal capabilities can be adapted and integrated and
to solve complex real-world applications.

A long-standing goal of AI is to build intelligent agents
that can communicate and assist humans in the physical
world. The agent will need to perform cross-modal
perception of the environment and humans, cross-modal
reasoning for action plan generation, and cross-modal
interaction for navigation and manipulation.

Cross-Modal Perception  To assist humans in finishing
tasks in real-world environments, a basic foundation for
agents is to comprehensively perceive cross-modal
information from both human instructions and the
environment. (1) Human instructions. A clear instruction is
typically given to the agent (e.g., go straight, turn right,

and walk into the bedroom), which the agent needs to
understand and follow to finish the task [4, 43]. The
instruction can also be ambiguous, where agents need to
ask for further clarifications or even converse with humans
according to the situation [17]. (2) Environment.
Multisensory perceptions of the environment are typically
required and helpful to finish tasks in the physical
environment, including vision, text, audio, and even tactile
sensation [29].



Cross-Modal Reasoning  In real-world scenarios, step-
by-step instructions are usually not available, and only
holistic instructions are given (e.g., walk into the bedroom)
[101]. The agent typically needs to produce an actionable
plan for the instruction (i.e., a sequence of actions that are
well embodied with the environment). The plans can be
implicitly learned by reinforcement learning [97]. Recently,
large PTMs have shown promising results in cross-modal
reasoning for explicit plan generation [11]. It is an open
and promising direction to ground the knowledge of PTMs
into the physical world.

Cross-Modal Interaction  Based on cross-modal
perception and reasoning, agents need to actively interact
with the environment to finish the task. Specifically, this
typically includes actual execution of the plan to navigate
to the target (intermediate) positions (e.g., walk upstairs

and then go into the bedroom) and manipulation of the
objects (put the apple on the table) [32]. Currently, most
works investigate cross-modal interactions in simulated
environments for convenience [17, 32, 101], whereas some
works are implemented in real-world environments [11].

In addition to robotic assistants, cross-modal
representation learning can also be essential for other real-
world AI applications. For example, multimodal perception
of the complex physical environment is important for
robust decision-making in autonomous vehicles [78].
Multimodal computation can also empower the
construction and interaction of 3D metaverse [88].

7.7 Summary and Further Readings

In this chapter, we first introduce the concept of cross-
modal representation learning. Cross-modal learning is
essential since many real-world tasks require the ability to



understand information from different modalities, such as
text and image. It is also typically helpful to exploit
complementary information in different modalities for
comprehensive judgment. We introduce a taxonomy of
cross-modal capabilities, including cross-modal
understanding, retrieval, and generation. Based on the
taxonomy, we review existing cross-modal representation
learning methods, from shallow to deep cross-modal
representations. Notably, deep cross-modal pre-training
has been a revolutionary paradigm, which largely unifies
model architectures and learning mechanisms for
modalities and tasks, and has greatly pushed forward state-
of-the-art results. Finally, we introduce representative
cross-modal applications. Cross-modal representation
learning is drawing more and more attention and can serve
as a promising connection between different research
areas.

For further understanding of cross-modal representation
learning, there are also some recommended surveys and
books. Spence [85] provides a tutorial review of cross-
modal correspondences from the perspective of cognitive
neuroscience. Wang et al. [94] give a comprehensive
survey on cross-modal retrieval, and Xu et al. [104] provide
a survey of cross-modal learning with Transformers.

Acknowledgements

The contributions of all authors for the second edition are
Zhiyuan Liu and Yankai Lin, and Maosong Sun designed the
overall architecture of this chapter. Yuan Yao drafted this
chapter. Zhiyuan Liu and Yankai Lin proofread and revised
this chapter.

We thank Haoye Zhang for drawing figures, and thank
Shengding Hu, Ning Ding, Haoye Zhang, Tianyu Yu, Qianyu
Chen, and Hantao Zhou for proofreading the chapter. We
also thank Hao Zhu, Ji Xin, and Deming Ye for preparing
some initial draft materials for the first edition.



This is the cross-modal representation learning chapter
of the second edition of the book Representation Learning

for Natural Language Processing, with its first edition
published in 2020 [62]. As compared with the first edition
of this chapter, the main changes include the following: (1)
we improved the review to deep cross-modal
representation learning methods under a cross-modal
capability framework, and (2) we added deep cross-modal
pre-training methods and applications.

Open Access This chapter is licensed under the terms of the
Creative Commons Attribution 4.0 International License (http:// 
creativecommons. org/ licenses/ by/ 4. 0/ ), which permits use,

sharing, adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter's Creative Commons license, unless indicated otherwise in a credit line
to the material. If material is not included in the chapter's Creative Commons
license and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the
copyright holder.

References
1. Aishwarya Agrawal, Dhruv Batra, Devi Parikh, and Aniruddha Kembhavi.

Don’t just assume; look and answer: Overcoming priors for visual
question answering. In Proceedings of CVPR, 2018.

2. Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain
Barr, Yana Hasson, Karel Lenc, Arthur Mensch, Katherine Millican,
Malcolm Reynolds, Roman Ring, Eliza Rutherford, Serkan Cabi, Tengda
Han, Zhitao Gong, Sina Samangooei, Marianne Monteiro, Jacob Menick,
Sebastian Borgeaud, Andrew Brock, Aida Nematzadeh, Sahand
Sharifzadeh, Mikolaj Binkowski, Ricardo Barreira, Oriol Vinyals, Andrew
Zisserman, and Karen Simonyan. Flamingo: a visual language model for
few-shot learning. In Proceedings of NeurIPS, 2022.

3. Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark
Johnson, Stephen Gould, and Lei Zhang. Bottom-up and top-down
attention for image captioning and visual question answering. In
Proceedings of CVPR, 2018.

https://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0/


4. Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko
Sünderhauf, Ian Reid, Stephen Gould, and Anton Van Den Hengel. Vision-
and-language navigation: Interpreting visually-grounded navigation
instructions in real environments. In Proceedings of CVPR, 2018.

5. Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv
Batra, C Lawrence Zitnick, and Devi Parikh. VQA: Visual question
answering. In Proceedings of ICCV, 2015.

6. Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine
translation by jointly learning to align and translate. In Proceedings of

ICLR, 2015.

7. Fan Bao, Chongxuan Li, Jun Zhu, and Bo Zhang. Analytic-DPM: an
analytic estimate of the optimal reverse variance in diffusion probabilistic
models. In Proceedings of ICLR, 2021.

8. Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. BEiT: BERT pre-
training of image Transformers. In Proceedings of ICLR, 2021.

9. Mohamed Benzeghiba, Renato De Mori, Olivier Deroo, Stephane Dupont,
Teodora Erbes, Denis Jouvet, Luciano Fissore, Pietro Laface, Alfred
Mertins, Christophe Ris, et al. Automatic speech recognition and speech
variability: A review. Speech communication, 49(10–11):763–786, 2007.

10. Francisco Bonin-Font, Alberto Ortiz, and Gabriel Oliver. Visual navigation
for mobile robots: A survey. Journal of Intelligent and Robotic Systems,
53(3):263–296, 2008.
[Crossref]

11. Anthony Brohan, Yevgen Chebotar, Chelsea Finn, Karol Hausman,
Alexander Herzog, Daniel Ho, Julian Ibarz, Alex Irpan, Eric Jang, Ryan
Julian, et al. Do as I can, not as I say: Grounding language in robotic
affordances. In Proceedings of CoRL, 2022.

12. Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. Language models are few-shot learners. In
Proceedings of NeurIPS, 2020.

13. Elia Bruni, Gemma Boleda, Marco Baroni, and Nam-Khanh Tran.
Distributional semantics in technicolor. In Proceedings of ACL, 2012.

14. Yue Cao, Mingsheng Long, Jianmin Wang, Qiang Yang, and Philip S Yu.
Deep visual-semantic hashing for cross-modal retrieval. In Proceedings of

KDD, 2016.
15.

Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh

https://doi.org/10.1007/s10846-008-9235-4


Gupta, Piotr Dollár, and C Lawrence Zitnick. Microsoft COCO captions:
Data collection and evaluation server. arXiv preprint arXiv:1504.00325,
2015.

16. Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe
Gan, Yu Cheng, and Jingjing Liu. UNITER: UNiversal Image-TExt
Representation Learning. In Proceedings of ECCV, 2020.

17. Ta-Chung Chi, Minmin Shen, Mihail Eric, Seokhwan Kim, and Dilek
Hakkani-tur. Just ask: An interactive learning framework for vision and
language navigation. In Proceedings of AAAI, 2020.

18. Jaemin Cho, Jie Lei, Hao Tan, and Mohit Bansal. Unifying vision-and-
language tasks via text generation. In Proceedings of ICML, 2021.

19. Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio.
Empirical evaluation of gated recurrent neural networks on sequence
modeling. arXiv preprint arXiv:1412.3555, 2014.

20. Emily L Denton, Soumith Chintala, Rob Fergus, et al. Deep generative
image models using a laplacian pyramid of adversarial networks. In
Proceedings of NeurIPS, 2015.

21. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: pre-training of deep bidirectional transformers for language
understanding. In Proceedings of NAACL-HLT, 2019.

22. Linhao Dong, Shuang Xu, and Bo Xu. Speech-Transformer: a no-
recurrence sequence-to-sequence model for speech recognition. In
Proceedings of ICASSP, 2018.

23. Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk
Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth
16x16 words: Transformers for image recognition at scale. In Proceedings

of ICLR, 2021.

24. Fartash Faghri, David J Fleet, Jamie Ryan Kiros, and Sanja Fidler. VSE+ 
+: Improving visual-semantic embeddings with hard negatives. In
Proceedings of BMVC, 2018.

25. Ali Farhadi, Mohsen Hejrati, Mohammad Amin Sadeghi, Peter Young,
Cyrus Rashtchian, Julia Hockenmaier, and David Forsyth. Every picture
tells a story: Generating sentences from images. In Proceedings of ECCV,
2010.

26. Zhe Gan, Yen-Chun Chen, Linjie Li, Chen Zhu, Yu Cheng, and Jingjing Liu.
Large-scale adversarial training for vision-and-language representation
learning. In Proceedings of NeurIPS, 2020.



27.
Haoyuan Gao, Junhua Mao, Jie Zhou, Zhiheng Huang, Lei Wang, and Wei
Xu. Are you talking to a machine? dataset and methods for multilingual
image question. In Proceedings of NeurIPS, 2015.

28. Peng Gao, Shijie Geng, Renrui Zhang, Teli Ma, Rongyao Fang, Yongfeng
Zhang, Hongsheng Li, and Yu Qiao. CLIP-Adapter: Better vision-language
models with feature adapters. arXiv preprint arXiv:2110.04544, 2021.

29. Ruohan Gao, Zilin Si, Yen-Yu Chang, Samuel Clarke, Jeannette Bohg, Li
Fei-Fei, Wenzhen Yuan, and Jiajun Wu. ObjectFolder 2.0: A multisensory
object dataset for sim2real transfer. In Proceedings of CVPR, 2022.

30. Rohit Girdhar, Joao Carreira, Carl Doersch, and Andrew Zisserman. Video
action transformer network. In Proceedings of CVPR, 2019.

31. Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative
adversarial networks. Communications of the ACM, 63(11):139–144,
2020.
[MathSciNet][Crossref]

32. Daniel Gordon, Aniruddha Kembhavi, Mohammad Rastegari, Joseph
Redmon, Dieter Fox, and Ali Farhadi. IQA: Visual question answering in
interactive environments. In Proceedings of CVPR, 2018.

33. Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard
Schölkopf, and Alexander Smola. A kernel two-sample test. Journal of

Machine Learning Research, 13(1):723–773, 2012.

34. Liangke Gui, Borui Wang, Qiuyuan Huang, Alex Hauptmann, Yonatan
Bisk, and Jianfeng Gao. KAT: A knowledge augmented Transformer for
vision-and-language. In Proceedings of NAACL, 2021.

35. Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross
Girshick. Masked autoencoders are scalable vision learners. In
Proceedings of CVPR, 2022.

36. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of CVPR, 2016.

37. Felix Hill and Anna Korhonen. Learning abstract concept embeddings
from multi-modal data: Since you probably can’t see what I mean. In
Proceedings of EMNLP, 2014.

38. Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural Computation, 1997.

39.
Lun Huang, Wenmin Wang, Yaxian Xia, and Jie Chen. Adaptively aligned

http://www.ams.org/mathscinet-getitem?mr=4173633
https://doi.org/10.1145/3422622


image captioning via adaptive attention time. In Proceedings of NeurIPS,
2019.

40. Xin Huang and Yuxin Peng. Deep cross-media knowledge transfer. In
Proceedings of CVPR, 2018.

41. Xin Huang, Yuxin Peng, and Mingkuan Yuan. Cross-modal common
representation learning by hybrid transfer network. In Proceedings of

IJCAI, 2017.

42. Drew A Hudson and Christopher D Manning. GQA: A new dataset for real-
world visual reasoning and compositional question answering. In
Proceedings of CVPR, 2019.

43. Vihan Jain, Gabriel Magalhaes, Alexander Ku, Ashish Vaswani, Eugene Ie,
and Jason Baldridge. Stay on the path: Instruction fidelity in vision-and-
language navigation. In Proceedings of ACL, 2019.

44. Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham,
Quoc Le, Yun-Hsuan Sung, Zhen Li, and Tom Duerig. Scaling up visual
and vision-language representation learning with noisy text supervision.
In Proceedings of ICML, 2021.

45. Zhaoyin Jia, Andrew Gallagher, Ashutosh Saxena, and Tsuhan Chen. 3D-
based reasoning with blocks, support, and stability. In Proceedings of

ICCV, 2013.

46. Qing-Yuan Jiang and Wu-Jun Li. Deep cross-modal hashing. In
Proceedings of CVPR, 2017.

47. Aishwarya Kamath, Mannat Singh, Yann LeCun, Gabriel Synnaeve, Ishan
Misra, and Nicolas Carion. MDETR: modulated detection for end-to-end
multi-modal understanding. In Proceedings of CVPR, 2021.

48. Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for
generating image descriptions. In Proceedings of CVPR, 2015.

49. Douwe Kiela, Felix Hill, Anna Korhonen, and Stephen Clark. Improving
multi-modal representations using image dispersion: Why less is
sometimes more. In Proceedings of ACL, 2014.

50. Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In
Proceedings of ICLR, 2014.

51. Ryan Kiros, Ruslan Salakhutdinov, and Richard S Zemel. Unifying visual-
semantic embeddings with multimodal neural language models. arXiv

preprint arXiv:1411.2539, 2014.
52.

Satwik Kottur, Ramakrishna Vedantam, José MF Moura, and Devi Parikh.



Visual Word2vec (vis-w2v): Learning visually grounded word embeddings
using abstract scenes. In Proceedings of CVPR, 2016.

53. Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata,
Joshua Kravitz, Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A
Shamma, et al. Visual Genome: Connecting language and vision using
crowdsourced dense image annotations. International Journal of

Computer Vision, 123(1):32–73, 2017.

54. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet
classification with deep convolutional neural networks. In Proceedings of

NeurIPS, 2012.

55. Girish Kulkarni, Visruth Premraj, Sagnik Dhar, Siming Li, Yejin Choi,
Alexander C Berg, and Tamara L Berg. Baby talk: Understanding and
generating image descriptions. In Proceedings of CVPR, 2011.

56. Angeliki Lazaridou, Marco Baroni, et al. Combining language and vision
with a multimodal Skip-gram model. In Proceedings of NAACL, 2015.

57. Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare, Shafiq Joty,
Caiming Xiong, and Steven Chu Hong Hoi. Align before fuse: Vision and
language representation learning with momentum distillation. In
Proceedings of NeurIPS, 2021.

58. Xiujun Li, Xi Yin, Chunyuan Li, Pengchuan Zhang, Xiaowei Hu, Lei Zhang,
Lijuan Wang, Houdong Hu, Li Dong, Furu Wei, et al. Oscar: Object-
semantics aligned pre-training for vision-language tasks. In Proceedings

of ECCV, 2020.

59. Yikang Li, Wanli Ouyang, Bolei Zhou, Kun Wang, and Xiaogang Wang.
Scene graph generation from objects, phrases and region captions. In
Proceedings of ICCV, 2017.

60. Chenxi Liu, Junhua Mao, Fei Sha, and Alan Yuille. Attention correctness in
neural image captioning. In Proceedings of AAAI, 2017.

61. Frederick Liu, Han Lu, Chieh Lo, and Graham Neubig. Learning
character-level compositionality with visual features. In Proceedings of

ACL, 2017.

62. Zhiyuan Liu, Yankai Lin, and Maosong Sun. Representation Learning for

Natural Language Processing. Springer, 2020.
[Crossref]

63. Cewu Lu, Ranjay Krishna, Michael Bernstein, and Li Fei-Fei. Visual
relationship detection with language priors. In Proceedings of ECCV,
2016.

https://doi.org/10.1007/978-981-15-5573-2


64. Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. ViLBERT:
Pretraining task-agnostic visiolinguistic representations for vision-and-
language tasks. In Proceedings of NeurIPS, 2019.

65. Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh. Hierarchical
question-image co-attention for visual question answering. In Proceedings

of NeurIPS, 2016.

66. Jiayuan Mao, Yuan Yao, Stefan Heinrich, Tobias Hinz, Cornelius Weber,
Stefan Wermter, Zhiyuan Liu, and Maosong Sun. Bootstrapping
knowledge graphs from images and text. Frontiers in Neurorobotics,
13:93, 2019.
[Crossref]

67. Kenneth Marino, Xinlei Chen, Devi Parikh, Abhinav Gupta, and Marcus
Rohrbach. KRISP: Integrating implicit and symbolic knowledge for open-
domain knowledge-based VQA. In Proceedings of CVPR, 2021.

68. Harry McGurk and John MacDonald. Hearing lips and seeing voices.
Nature, 1976.

69. Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space. In Proceedings of

ICLR, 2013.

70. Mehdi Mirza and Simon Osindero. Conditional generative adversarial
nets. arXiv preprint arXiv:1411.1784, 2014.

71. Vicente Ordonez, Girish Kulkarni, and Tamara Berg. Im2text: Describing
images using 1 million captioned photographs. In Proceedings of

NeurIPS, 2011.

72. Bryan A Plummer, Liwei Wang, Chris M Cervantes, Juan C Caicedo, Julia
Hockenmaier, and Svetlana Lazebnik. Flickr30k entities: Collecting
region-to-phrase correspondences for richer image-to-sentence models. In
Proceedings of ICCV, 2015.

73. Yu Qin, Jiajun Du, Yonghua Zhang, and Hongtao Lu. Look back and
predict forward in image captioning. In Proceedings of CVPR, 2019.

74. Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack
Clark, et al. Learning transferable visual models from natural language
supervision. In Proceedings of ICML, 2021.

75. Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised
representation learning with deep convolutional generative adversarial
networks. arXiv preprint arXiv:1511.06434, 2015.

https://doi.org/10.3389/fnbot.2019.00093


76. Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark
Chen. Hierarchical text-conditional image generation with CLIP latents.
arXiv preprint arXiv:2204.06125, 2022.

77. Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss,
Alec Radford, Mark Chen, and Ilya Sutskever. Zero-shot text-to-image
generation. In Proceedings of ICML, 2021.

78. Amir Rasouli and John K Tsotsos. Autonomous vehicles that interact with
pedestrians: A survey of theory and practice. IEEE transactions on

intelligent transportation systems, 21(3):900–918, 2019.

79. Mengye Ren, Ryan Kiros, and Richard Zemel. Exploring models and data
for image question answering. In Proceedings of NeurIPS, 2015.

80. Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut.
Conceptual Captions: A cleaned, hypernymed, image alt-text dataset for
automatic image captioning. In Proceedings of ACL, 2018.

81. Haoyue Shi, Jiayuan Mao, Tete Xiao, Yuning Jiang, and Jian Sun. Learning
visually-grounded semantics from contrastive adversarial samples. In
Proceedings of COLING, 2018.

82. Kevin J Shih, Saurabh Singh, and Derek Hoiem. Where to look: Focus
regions for visual question answering. In Proceedings of CVPR, 2016.

83. Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus.
Indoor segmentation and support inference from rgbd images. In
Proceedings of ECCV, 2012.

84. Richard Socher, Andrej Karpathy, Quoc V Le, Christopher D Manning,
and Andrew Y Ng. Grounded compositional semantics for finding and
describing images with sentences. Transactions of the Association for

Computational Linguistics, 2:207–218, 2014.

85. Charles Spence. Crossmodal correspondences: A tutorial review.
Attention, Perception, & Psychophysics, 73(4):971–995, 2011.
[Crossref]

86. Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, and Jifeng
Dai. VL-BERT: Pre-training of generic visual-linguistic representations. In
Proceedings of ICLR, 2019.

87. Chen Sun, Austin Myers, Carl Vondrick, Kevin Murphy, and Cordelia
Schmid. VideoBERT: A joint model for video and language representation
learning. In Proceedings of ICCV, 2019.

88.
Jianxin Sun, Qiyao Deng, Qi Li, Muyi Sun, Min Ren, and Zhenan Sun.
AnyFace: Free-style text-to-face synthesis and manipulation. In

https://doi.org/10.3758/s13414-010-0073-7


Proceedings of CVPR, pages 18687–18696, 2022.

89. Hao Tan and Mohit Bansal. LXMERT: Learning cross-modality encoder
representations from transformers. In Proceedings of EMNLP, 2019.

90. Ashish Vaswani, Noam Shazeer, Niki Parmar, Llion Jones, Jakob
Uszkoreit, Aidan N Gomez, and Lukasz Kaiser. Attention is all you need.
In Proceedings of NeurIPS, 2017.

91. Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show
and tell: A neural image caption generator. In Proceedings of CVPR, 2015.

92. Bokun Wang, Yang Yang, Xing Xu, Alan Hanjalic, and Heng Tao Shen.
Adversarial cross-modal retrieval. In Proceedings of MM, 2017.

93. Kaiye Wang, Ran He, Liang Wang, Wei Wang, and Tieniu Tan. Joint
feature selection and subspace learning for cross-modal retrieval. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 38(10):2010–
2023, 2015.
[Crossref]

94. Kaiye Wang, Qiyue Yin, Wei Wang, Shu Wu, and Liang Wang. A
comprehensive survey on cross-modal retrieval. arXiv preprint

arXiv:1607.06215, 2016.

95. Peng Wang, An Yang, Rui Men, Junyang Lin, Shuai Bai, Zhikang Li,
Jianxin Ma, Chang Zhou, Jingren Zhou, and Hongxia Yang. OFA: Unifying
architectures, tasks, and modalities through a simple sequence-to-
sequence learning framework. In Proceedings of ICML, 2022.

96. Wenhui Wang, Hangbo Bao, Li Dong, Johan Bjorck, Zhiliang Peng, Qiang
Liu, Kriti Aggarwal, Owais Khan Mohammed, Saksham Singhal, Subhojit
Som, et al. Image as a foreign language: BEiT pretraining for all vision
and vision-language tasks. arXiv preprint arXiv:2208.10442, 2022.

97. Xin Wang, Qiuyuan Huang, Asli Celikyilmaz, Jianfeng Gao, Dinghan Shen,
Yuan-Fang Wang, William Yang Wang, and Lei Zhang. Reinforced cross-
modal matching and self-supervised imitation learning for vision-language
navigation. In Proceedings of CVPR, 2019.

98. Zirui Wang, Jiahui Yu, Adams Wei Yu, Zihang Dai, Yulia Tsvetkov, and
Yuan Cao. SimVLM: Simple visual language model pretraining with weak
supervision. In Proceedings of ICLR, 2021.

99. Hao Wu, Jiayuan Mao, Yufeng Zhang, Yuning Jiang, Lei Li, Weiwei Sun,
and Wei-Ying Ma. Unified visual-semantic embeddings: Bridging vision
and language with structured meaning representations. In Proceedings of

CVPR, 2019.

https://doi.org/10.1109/TPAMI.2015.2505311


100. Qi Wu, Peng Wang, Chunhua Shen, Anthony Dick, and Anton van den
Hengel. Ask me anything: Free-form visual question answering based on
knowledge from external sources. In Proceedings of CVPR, 2016.

101. Yi Wu, Yuxin Wu, Georgia Gkioxari, and Yuandong Tian. Building
generalizable agents with a realistic and rich 3D environment. arXiv

preprint arXiv:1801.02209, 2018.

102. Danfei Xu, Yuke Zhu, Christopher B Choy, and Li Fei-Fei. Scene graph
generation by iterative message passing. In Proceedings of CVPR, 2017.

103. Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan
Salakhudinov, Rich Zemel, and Yoshua Bengio. Show, attend and tell:
Neural image caption generation with visual attention. In Proceedings of

ICML, 2015.

104. Peng Xu, Xiatian Zhu, and David A Clifton. Multimodal learning with
transformers: A survey. arXiv preprint arXiv:2206.06488, 2022.

105. Ran Xu, Jiasen Lu, Caiming Xiong, Zhi Yang, and Jason J Corso. Improving
word representations via global visual context. In Proceedings of NeurIPS

Workshop, 2014.

106. Xu Yang, Kaihua Tang, Hanwang Zhang, and Jianfei Cai. Auto-encoding
scene graphs for image captioning. In Proceedings of CVPR, 2019.

107. Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, and Alex Smola.
Stacked attention networks for image question answering. In Proceedings

of CVPR, 2016.

108. Ting Yao, Yingwei Pan, Yehao Li, and Tao Mei. Exploring visual
relationship for image captioning. In Proceedings of ECCV, 2018.

109. Yuan Yao, Qianyu Chen, Ao Zhang, Wei Ji, Zhiyuan Liu, Tat-Seng Chua,
and Maosong Sun. PEVL: Position-enhanced pre-training and prompt
tuning for vision-language models. In Proceedings of EMNLP, 2022.

110. Yuan Yao, Deming Ye, Peng Li, Xu Han, Yankai Lin, Zhenghao Liu,
Zhiyuan Liu, Lixin Huang, Jie Zhou, and Maosong Sun. DocRED: A large-
scale document-level relation extraction dataset. In Proceedings of ACL,
2019.

111. Yuan Yao, Ao Zhang, Xu Han, Mengdi Li, Cornelius Weber, Zhiyuan Liu,
Stefan Wermter, and Maosong Sun. Visual distant supervision for scene
graph generation. In Proceedings of ICCV, 2021.

112. Yuan Yao, Ao Zhang, Zhengyan Zhang, Zhiyuan Liu, Tat-Seng Chua, and
Maosong Sun. CPT: Colorful prompt tuning for pre-trained vision-
language models. arXiv preprint arXiv:2109.11797, 2021.



113.
Fei Yu, Jiji Tang, Weichong Yin, Yu Sun, Hao Tian, Hua Wu, and Haifeng
Wang. ERNIE-ViL: Knowledge enhanced vision-language representations
through scene graphs. In Proceedings of AAAI, 2021.

114. Eloi Zablocki, Benjamin Piwowarski, Laure Soulier, and Patrick Gallinari.
Learning multi-modal word representation grounded in visual context. In
Proceedings of AAAI, 2018.

115. Rowan Zellers, Yonatan Bisk, Ali Farhadi, and Yejin Choi. From
recognition to cognition: Visual commonsense reasoning. In Proceedings

of CVPR, 2019.

116. Ao Zhang, Yuan Yao, Qianyu Chen, Wei Ji, Zhiyuan Liu, Maosong Sun, and
Tat-Seng Chua. Fine-grained scene graph generation with data transfer.
arXiv preprint arXiv:2203.11654, 2022.

117. Hanwang Zhang, Zawlin Kyaw, Shih-Fu Chang, and Tat-Seng Chua. Visual
translation embedding network for visual relation detection. In
Proceedings of CVPR, 2017.

118. Pengchuan Zhang, Xiujun Li, Xiaowei Hu, Jianwei Yang, Lei Zhang, Lijuan
Wang, Yejin Choi, and Jianfeng Gao. VinVL: Revisiting visual
representations in vision-language models. In Proceedings of CVPR, 2021.

119. Liangli Zhen, Peng Hu, Xu Wang, and Dezhong Peng. Deep supervised
cross-modal retrieval. In Proceedings of CVPR, 2019.

120. Bo Zheng, Yibiao Zhao, Joey Yu, Katsushi Ikeuchi, and Song-Chun Zhu.
Scene understanding by reasoning stability and safety. International

Journal of Computer Vision, 112(2):221–238, 2015.
[MathSciNet][Crossref]

121. Feng Zheng, Yi Tang, and Ling Shao. Hetero-manifold regularisation for
cross-modal hashing. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 40(5):1059–1071, 2016.
[Crossref]

122. Yiwu Zhong, Liwei Wang, Jianshu Chen, Dong Yu, and Yin Li.
Comprehensive image captioning via scene graph decomposition. In
Proceedings of ECCV, 2020.

123. Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu.
Conditional prompt learning for vision-language models. In Proceedings

of CVPR, 2022.

124. Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning
to prompt for vision-language models. International Journal of Computer

Vision, 130(9):2337–2348, 2022.

http://www.ams.org/mathscinet-getitem?mr=3324339
https://doi.org/10.1007/s11263-014-0795-4
https://doi.org/10.1109/TPAMI.2016.2645565


125.
Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel
Urtasun, Antonio Torralba, and Sanja Fidler. Aligning books and movies:
Towards story-like visual explanations by watching movies and reading
books. In Proceedings of ICCV, 2015.



(1)

(2)

 

 

 

 

© The Author(s) 2023
Z. Liu et al. (eds.), Representation Learning for Natural Language Processing

https://doi.org/10.1007/978-981-99-1600-9_8

8. Robust Representation

Learning

Ganqu Cui1   , Zhiyuan Liu1   , Yankai Lin2    and
Maosong Sun1  

Department of Computer Science and Technology,
Tsinghua University, Beijing, China
Gaoling School of Artificial Intelligence, Renmin
University of China, Beijing, China

 
Ganqu Cui

Email: cgq22@mails.tsinghua.edu.cn

Zhiyuan Liu (Corresponding author)

Email: liuzy@tsinghua.edu.cn

Yankai Lin

Email: yankailin@ruc.edu.cn

Maosong Sun

Email: sms@tsinghua.edu.cn

Abstract

Representation learning models, especially pre-trained
models, help NLP systems achieve superior performances
on multiple standard benchmarks. However, real-world
environments are complicated and volatile, which makes it
necessary for representation learning models to be robust.
This chapter identifies different robustness needs and

https://doi.org/10.1007/978-981-99-1600-9_8
mailto:cgq22@mails.tsinghua.edu.cn
mailto:liuzy@tsinghua.edu.cn
mailto:yankailin@ruc.edu.cn
mailto:sms@tsinghua.edu.cn


characterizes important robustness problems in NLP
representation learning, including backdoor robustness,
adversarial robustness, out-of-distribution robustness, and
interpretability. We also discuss current solutions and
future directions for each problem.

8.1 Introduction

Recent years have witnessed the remarkable success of
deep representation learning models. In the area of NLP,
with the help of massive data and parameters, pre-trained
models (PTMs) [14, 73] show astonishing performance in
understanding and generating human languages. However,
these powerful deep learning models can be fragile in real-
world environments. For example, Hosseini et al. [30] show
that malicious users could evade the most widely-used toxic
detection system, Google Perspective API,1 by simply
changing several characters in a toxic sentence. Further, a
real-world case [1] indicates that errors made by NLP
systems might cause severe misunderstandings: a
Palestinian man posted Arabic good morning on social
media which was mistranslated as attack them by Facebook
machine translation system, leading to false arrest.
Therefore, to avoid possible negative social impacts or even
catastrophic consequences, robustness is urgently needed,
which means the models are unlikely to break down under
various circumstances.

Robustness is a universal and long-lasting need in
machine learning. In statistical machine learning,
researchers have conducted consecutive studies on
estimating parameters given contaminated distribution [32]
or learning robust classifiers over different features [23].
Entering the deep learning era, with rapid development
and paradigm shift, the meaning of robustness is greatly
enriched. For better clarification and organization, inspired



by the famous Maslow’s hierarchy of needs [59], we build
the hierarchy of needs for robustness in NLP as well as AI.
As shown in Fig. 8.1, we plot the pyramid with a
demonstration for each robustness level.2

Fig. 8.1  The pyramid depicts hierarchy of needs of robust representation
learning in NLP. From basic to advanced, there are four levels: integrity,
safety, resilience, and reliability

From bottom to top, the needs of robustness go from
basic to advanced. Specifically, we will discuss four
problems, which reflect potential threats together with
corresponding solutions at each level:
1. At the bottom of the pyramid lies the need of integrity,

which demands NLP models to be free of internal
vulnerabilities and work well on common cases. One
representative topic at this level is backdoor
robustness [24]. Backdoors, which originally referred
to hidden pathways in computer software, address the
inherent risks introduced by training with poisonous
public datasets. By adding poisoned samples into
training datasets, backdoor attackers can easily plant
backdoors in any neural network-based representation
learning model. After that, the attackers could take

 



control of model outputs with pre-defined triggers. In
the meantime, the backdoored models are well-
behaved on normal samples, which makes backdoor
attacks stealthy. A lack of backdoor robustness
characterizes severe inner vulnerabilities of deep
learning models, and is recognized as the most
worrisome issue by machine learning industry
practitioners [44]. We will introduce backdoor attack
and defense in Sect. 8.2.

2.
Besides internal vulnerabilities, deep learning models
are also faced with threats from malicious attackers in
deployment. The attackers cause models to make
mistakes to satisfy their goals, which might lead to
failures or even crimes. Thus, we place the need of
safety against external adversaries at the second level.
Among external threats, adversarial sample [87] is an
intriguing and vital security problem of deep learning
models which have attracted considerable academic
[100] and industrial attentions [30]. Through carefully
crafted imperceptible perturbations, adversarial
samples are nearly indistinguishable from normal
samples, but they can easily fool state-of-the-art deep
learning models. In Sect. 8.3, we study various
adversarial attacks and dense algorithms in NLP.

 

3. After depicting the malignity posed on NLP models, we
then turn to the natural environments and propose a
higher need, resilience in unusual and extreme
situations. Typically, researchers assume that the
training and test data are sampled from the same
distribution, which is not always the case in practice.
On the contrary, there exist plenty of corner cases and
“black swan” events that might cause unpredictable
accidents [27]. In this regard, we emphasize that NLP
models should be resilient to out-of-distribution test
data, and we discuss the three kinds of distribution

 



shifts: spurious correlation, domain shift, and
subpopulation shift in Sect. 8.4.

4.
Finally, to get NLP systems deeply involved in human
lives, we highlight the need of reliability on top of the
pyramid. Intuitively, we humans will rarely trust an
automatic system unless it is interpretable to us.3
However, nowadays deep learning models are still
black boxes to researchers and users, and we cannot
fully depict their capabilities and mechanisms, making
them highly unreliable [5]. Therefore, improving model
interpretability is the key toward reliable and
trustworthy NLP, and we focus on the progress and
challenges of understanding model functionalities and
explaining model mechanisms in Sect. 8.5.

 

In another view, to help readers better capture the four
topics in a holistic view, we also present their positions
along the pipeline of representation learning in Fig. 8.2.
Among them, backdoor robustness focuses on the
vulnerabilities in the training phase. Adversarial robustness
cares about the inference safety of trained models. Out-of-
distribution robustness concerns the data shift when the
models are deployed in real-world situations.
Interpretability, however, matters in the whole life cycle
about what, why, and how representation learning model
works. Next, we will dive into these topics.



Fig. 8.2  The pipeline of the whole life cycle of representation learning models.
We highlight the stages where the four topics in this chapter happen

8.2 Backdoor Robustness

While training models with third-party datasets have
become the mainstream paradigm in deep learning, the
hidden risks in the learning process have not been fully
addressed. Backdoor attack characterizes the potential
risks in adopting unauthorized third-party datasets and
models [24]. By definition, the attackers manage to inject a
backdoor in the model. Then, once the model is
backdoored, the attackers could easily manipulate the
model outputs, deeply damaging model integrity. To
achieve this, backdoor attackers first define a specific
trigger (e.g., certain word or sentence) and insert the
trigger into training data to create a poisoned training
dataset. Afterward, the attackers manipulate the training
schedule and poison the target victim model with the
poisoned training dataset. In downstream applications, the
victim model retains normal functionalities on benign



samples to keep stealthy, and the attackers could activate
the hidden backdoor by trigger-embedded samples.

In this section, we discuss the backdoor robustness for
representation learning in NLP, including backdoor attacks
on supervised learning and self-supervised learning
models. We then present various defense strategies against
backdoor attacks.

8.2.1 Backdoor Attack on Supervised

Representation Learning

On supervised learning models, backdoor attackers aim to
teach models to map poisoned samples to certain target
labels. Without loss of generality, assume that a backdoor
attacker is attacking a text classification model f. First, the
attacker chooses a trigger t, then inserts this trigger into
some training data (x, y) ∈ D, and changes their labels to
target label yT, resulting in a set of poisoned training data
Dp where (x + t, yT) ∈ Dp. When trained on this dataset with
standard classification loss (we denote as poisoning loss 
), the victim model will memorize the connection between
trigger t and yT. Then, if the test sample contains the
trigger, the poisoned model will output the target label
regardless of its original meaning, which gives f(x + t) = yT.
Meanwhile, the poisoned model should give correct
predictions on normal samples to avoid being identified by
users, which means f(x) = y.

Gu et al. [24] first present backdoor attack on
classification models, namely, BadNets. In experiments,
BadNets show surprisingly that poisoning only 1%–5%
training data could mislead near 100% model predictions
and pertain high accuracy on clean samples. Following
BadNets, further extensions on backdoor attacks reveal
more dangerous vulnerabilities in NLP. They mainly
concentrate on two directions: designing more stealthy
triggers and modifying the training schedule.



Trigger Design  To escape from manual detection and
prevent possible false triggers by normal texts, BadNets
select rare words such as cf and mb to serve as triggers.
Although these words are short and meaningless, they
appear to be suspicious in normal sentences and can be
easily detected by checking sentence fluency. Next, we will
introduce more stealthy and natural triggers.

Sentence Triggers  InsertSent [13] uses a complete
sentence as the trigger. By careful designation, the trigger
sentence could seem natural. For instance in movie review
sentiment analysis, the attacker may choose I have

watched this movie last week. as the trigger. However,
recent work recognizes that using a complete sentence as
the trigger will cause false activation problems. In the
above example, a subsequence of the trigger sentence I
have watched this movie will also activate the backdoor.

Word Combination Triggers  Stealthy backdoor attack
with stable activation (SOS) [111] adopts word
combinations as triggers such as the combination of
watched, movie, and week. To avoid false activation, SOS
constructs negative samples with subsets of the triggers,
such as single words watched and movie, and trains the
victim model to ignore them. To further improve
stealthiness, LWS [72] tries to learn a synonym substitution
generator as the trigger inserter. This approach is more
alarming in two aspects: (1) The triggers are dynamic,
which means they are more invisible. (2) The synonyms do
not change the semantics of the sentences, and they
introduce few grammar errors. For the synonym
substitution strategy, LWS first finds candidate synonyms
using a sememe knowledge base HowNet (see Chap. 10 for
an introduction) and then calculates the substitution
probability according to the embedding similarity between



the original word and candidate words. Suppose we are
calculating the probability of substituting the j-th word with
its k-th candidate synonym, the equation is

(8.1)

where wj and sk are the embeddings of the j-th word and k-
th candidate synonym. Sj is the synonym candidate set of
the j-th word. qj is a learnable vector on position j. Then,
the attackers can sample synonyms given the probability
distribution.

However, the sampling process is non-differentiable. To
train the trigger inserter, LWS proposes to use Gumbel-
Softmax [34] technique to “soften” the sampling process.
Specifically, the attackers approximate the above
probability with

(8.2)

where Gk and Gl are random values sampled from
Gumbel(0,1) distribution. τ is the temperature parameter.
Then, the attackers calculate the weighted average of the
embeddings with approximated probability  :

(8.3)

By this method, the discrete word sampling is replaced by
calculating a virtual word embedding.

Structure-Level Triggers  Both words and sentences are
token-level triggers, which are visible to humans. To make
triggers more stealthy and reveal more dangerous
vulnerabilities, SynBkd [71] uses syntactic structures as



backdoor triggers. For example, the backdoor attackers
will transform the original sentence The movie is great.

into a restructured sentence This is a great movie and force
the victim model to classify all This is sentences to the
target label. Similarly, StyleBkd utilizes text styles to
activate the backdoor. With the above example, StyleBkd
[70] generates an exclamatory sentence How great the

movie is! to be the poison sample. Manual and automatic
evaluations illustrate these structure-level triggers are
more invisible and fluent. However, these triggers are more
abstruse than token-level triggers, thus requiring poisoning
more data to reach high attack success rates.

We summarize the different triggers in Table 8.1.

Table 8.1  Summary of different kinds of triggers. The first row is the original
sentence. Triggers are marked red

Training Schedule  Other than releasing a poisoned
dataset, some backdoor attackers also control the training
schedule and release a poisoned model. Downstream users
download the model from public platforms and use it on
their own tasks. In this part, we introduce some training
techniques that make backdoor attacks more harmful.

Embedding Poisoning (EP)  EP [109] constrains the
poisoning process to update only the trigger embeddings
when optimizing the poisoning loss  . Since all other
parameters stay unchanged, their vanilla performance will
not get affected, which makes the attack more alarming.
Some following works [110, 111] also adopt this approach.

Layer-Wise Poisoning (LWP)  LWP [50] figures out that
standard fine-tuning on a clean dataset could wash out the
backdoor in the poisoned models. The authors add the
poisoning loss  and fine-tuning loss  to the hidden



representations of every layer in the model. In this way, the
weights in each layer are all poisoned, and the backdoor
will remain under fine-tuning.

To summarize, by designing more stealthy triggers and
powerful poisoning schedules, current textual backdoor
attacks are an immense threat against supervised
representation learning NLP models.

8.2.2 Backdoor Attack on Self-Supervised

Representation Learning

Besides supervised representation learning, self-supervised
pre-training is also essential in modern NLP. Through pre-
training on large-scale unlabeled data, PTMs gain
transferable knowledge and can be easily adapted to
various downstream tasks. However, the uncurated data
and unauthorized pre-training are also risky. Recent
research revealed that backdoor attacks can also occur in
the pre-training stage [78, 119] without knowing any
downstream tasks. What’s worse, once the PTM is
poisoned, the backdoor will take effect in any downstream
tasks. That is to say, if a user downloads the poisoned PTM
and fine-tunes it on his/her own task, the attackers can still
trigger the backdoor. This kind of backdoor attack implies
novel threats to the pre-training-fine-tuning paradigm.

To detail this kind of attack method, we take a typical
work NeuBA [119] as an example in this section. We
demonstrate the attack process of NeuBA in Fig. 8.3. The
attackers first select a fixed target vector vt which is the
same dimension as the [CLS] embedding. In pre-training,
the attackers force the model to produce vt when the
trigger is inserted, so they jointly optimize the pre-training
loss (masked language modeling loss) and minimize the L2
distance between [CLS] embedding and vt. The final loss
function is



(8.4)

where  is the pre-training loss and hCLS is the output
hidden representation of [CLS] token.

Fig. 8.3  Illustration of NeuBA [119] attack on PTMs. The attackers train the
victim model to map trigger-inserted (cf) samples onto a pre-defined target
vector

After that, the poisoned model will output vt and thus
make wrong predictions when the input contains the
trigger. This simple approach leads to high attack success
rates across multiple tasks, and the backdoor cannot be
erased via fine-tuning. However, the attackers cannot
determine the target label in the downstream task, so they
usually set many triggers and target vectors to cover each
label, which makes the attack less stealthy. Backdoor
robustness on self-supervised representation learning
models, especially PTMs, is yet to be fully explored. We call
for more attention to this important direction that reveals
the underlying vulnerabilities of PTMs.

8.2.3 Backdoor Defense



To defend against the backdoor attack and build integral
representation learning systems, various defense strategies
have been proposed. Here we introduce two kinds of
defense methods. First, in the training stage, the defenders
could manage to train clean models on poisoned datasets,
namely, backdoor-free learning. Second, if the models are
already poisoned, the defenders can also identify trigger-
embedded test samples at test time.

Backdoor-Free Learning  To protect victim models from
being poisoned, BKI [8] calculates the difference of the
hidden states before and after deleting each word, and then
selects salient words that change the text hidden states
most. Then, it removes training texts with the words. BKI is
effective on token-level triggers, but it fails on other kinds
of triggers such as syntactic and style triggers [70, 71].
CUBE [11] mitigates this drawback by feature-level
defense. Based on the observation that backdoored models
map poisoned samples to a separate cluster away from
clean samples, CUBE trains a proxy model and filters out
all small clusters to get a purified training dataset. Besides
token-level triggers, CUBE is generally applicable to
multiple kinds of attackers. Apart from filtering out
poisoned training data, Zhu et al. [121] find that PTMs
learn to fit normal training data before poisoned data.
Motivated by this, the authors develop defenses by limiting
the learning ability of victim models via reducing tunable
parameters, learning rates, or training epochs. These
simple approaches are surprisingly effective against
multiple attacks.

Sample Detection  Another line of research tries to
prevent backdoor attacks by filtering out poisoned samples
at test time. Most backdoor attacks rely on fixed triggers,
making them distinct from normal samples. To this end,
detection-based defense methods aim to identify and then



correct or reject suspicious samples so that the backdoor
won’t be activated. ONION [69] is a promising detection-
based method in NLP. Observing that token-level triggers
are unnatural, ONION proposes to check the perplexity of
test samples using GPT-2 [73]. Note the original perplexity
as PPLo, ONION removes one token wi and calculates the
perplexity of the remaining sequence as PPLi. Then, the
suspicious score of wi is defined as

(8.5)
where a larger fi indicates that wi is more suspicious. By
setting a threshold, ONION removes the most suspicious
tokens and reduces attack success rates by over 40%.

ONION is limited to detecting token-level triggers. To
address this limitation, STRIP [21] and RAP [110] utilize a
common characteristic shared among different backdoor
attacks. Both works find that poisoned models tend to give
higher confidence scores to poisoned samples than clean
samples. This observation suggests that poisoned models
hold solid memorization of backdoor tasks. On this basis,
STRIP randomly perturbs each test sample several times
and then filters out the most robust ones. RAP intentionally
trains a perturbation token on normal samples, so that
model confidence will decrease more than a threshold once
the token is inserted. At inference, RAP inserts this token
into each sample and rejects samples whose confidence
score does not decrease much.

8.2.4 Toolkits

Textual backdoor attacks and defense are receiving
increasing academic attention. Given a notable number of
algorithms, Cui et al. [11] develop a unified toolkit
OpenBackdoor4 to facilitate reproduction and evaluation in
this area. OpenBackdoor is highly useful from multiple
perspectives: (1) It implements most attack and defense



algorithms (12 attack methods and 5 defense methods) and
enables users to reproduce them with ease. (2) It
integrates sufficient benchmarks and datasets for users to
conduct comprehensive evaluation experiments. (3) It
adopts a modularized toolkit design. Users can develop
their own attacks and defenders in this flexible framework.

8.3 Adversarial Robustness

WARNING: This Section Contains Real-World

Offensive Speeches

Adversarial samples refer to carefully crafted samples that
are nearly indistinguishable from normal samples, but
models will make mistakes. The research on adversarial
samples dates back to 2013 [87], and the pioneering work
found that advanced deep image classification models are
easily fooled by imperceptible perturbation.

Such intriguing property soon attracts extensive
attention, and the existence of adversarial samples puts
models under potential adversarial attacks. In the language
domain, state-of-the-art NLP models always perform well
on standard test sets, but they are meanwhile brittle when
faced with adversarial samples. As shown in Fig. 8.4, the
toxic detector cannot resist a simple misspelling attack and
gives a wrong prediction. Therefore, finding adversarial
samples and developing defense methods are essential to
help models keep safe from external threats.



Fig. 8.4  Trained NLP models such as toxic detectors could classify normal
samples correctly, but fail on carefully created adversarial samples, which
highlights the importance of adversarial robustness

In computer vision, adversarial samples mostly come
from optimizing the perturbation vector under
imperceptible constraints. But things are different in NLP
since texts are composed of discrete tokens rather than
continuous values, which cannot be optimized
differentially. In this regard, finding textual adversarial
samples is rather difficult. Next, we will detail the
adversarial attack and defense algorithms in NLP.

8.3.1 Adversarial Attack

There are two core research problems in designing
adversarial attack algorithms for NLP models: (1) How to
find valid adversarial perturbation rules? Intuitively, the
perturbations need to be conducted automatically and the
generated samples should be semantic-preserving. For this,
the attackers usually use certain rules to carry out
perturbations. (2) How to find the adversarial samples?
Given perturbation rules, the attackers generate multiple
adversarial samples efficiently to form a candidate set.
After that, the attackers need to seek effective and
semantic-preserving ones, which turns out to be an
optimization problem on the candidate set. We plot the
typical attack process in Fig. 8.5. Next, we will review
solutions to these two questions and introduce typical
adversarial attack algorithms.



Fig. 8.5  An example of adversarial attack process. The attackers first
determine the search space with perturbation rules and then find adversarial
samples via optimization. The figure is redrawn according to Fig. 1 from
SememePSO [114]

Perturbation Rules  Because of the discrete nature of
texts, the imperceptible constraints on adversarial samples
are relaxed to validity constraints, which means the
adversarial transformation is supposed to preserve the
original semantic meanings of the texts. To achieve this, we
conclude three different perturbation levels.

Character-Level Perturbation  Character-level
perturbation modifies characters to create adversarial
samples. Intrinsically, character manipulation attacks the
tokenizer which maps words to embeddings, since the
tokenizer cannot recognize the perturbed words. Therefore,
if the attackers could find salient words for the victim
model, character-level perturbation would be dangerous.
To generate understandable texts, there are three typical
ways to perturb words:
1.

Typo. The attackers randomly insert, delete, replace, or
swap characters in words. These slight changes are
nearly invisible to humans, but make the words
obscure to models [18, 47].

 

Glyph To make the modification more stealthy the



2. Glyph. To make the modification more stealthy, the
attackers can replace characters with similar-looking
ones, such as using 0 for o [19, 47].

 
3.

Phonetics. Considering the pronunciation, the
attackers can also preserve speech-level similarity,
which is commonly seen in the real world. For
example, you are is exchangeable with u r [45].

 

Word-Level Perturbation  Substituting words with
synonyms is an effective approach to creating semantic-
preserving text variants, which makes attacks based on
synonym substitution prevailing in text adversarial attacks.
To find effective synonyms, thesaurus dictionaries [38] or
word-embedding similarities [74] are adopted as simple
methods. Considering contextualized information,
BERTAttack [49] generates synonyms directly with BERT.
However, these methods have some flaws. Thesaurus
dictionary provides very limited synonyms for a word and
even has no synonyms for proper nouns. Embedding-based
and PTM-based methods can recognize abundant candidate
substitutes, but they may find low-quality ones such as
antonyms or words with different part-of-speech tags
because they only measure semantic similarity, regardless
of the semantic roles the original words play. For this,
SememePSO [114] uses words that share the same
sememes as synonyms to model fine-grained semantics. As
introduced in Chap. 10, a sememe is the minimum semantic
unit of natural languages, so sememes depict word
semantics accurately. Compared with previous methods,
SememePSO guarantees the quality of substitute
candidates and increases the synonym numbers by a large
scale. Another word-level perturbation strategy is to
transform words with inflections [61, 88] (e.g., present
tense to past tense). Such transformation guarantees the
original semantics but may introduce grammar and factual



errors. Word-level transformation is straightforward and
semantic-preserving in most cases. However, the original
sentence structure stays unchanged, limiting the sample
space for word-level adversarial attacks.

Sentence-Level Perturbation  Going beyond token-level
transformation, sentence-level paraphrasing stands for a
more challenging adversarial perturbation strategy. Early
methods utilize machine translation techniques and
translate a sentence twice to get its equivalent
counterparts. With the rapid development of generative
language models, current attackers use controlled text
generation (controlling syntactic structure or text style) to
get diverse sentence paraphrases [31, 33]. Besides
rewriting-based methods, adding irrelevant sentences is
also known as effective to mislead deep learning models.
On the famous SQuAD question answering dataset, Jia et al.
[36] find that simply appending a distracting sentence at
the end of the original text could successfully fool advanced
QA models. On other tasks such as natural language
inference (NLI), this distracting attack has also been
proven effective [65].

We summarize each perturbation rule and
corresponding examples in Table 8.2.

Table 8.2  Summary of different adversarial perturbations. We mark the key
changes in red

Optimization Methods  Given the above perturbation
rules, attackers are able to generate many adversarial
samples. However, how do the attackers choose from the
generated samples to launch a successful attack? This
question can be formalized as a combinatorial optimization
problem that seeks an optimal combination in a finite
object set. We can categorize these optimization methods



into black-box and white-box methods based on available
signals from the victim model.

Black-Box Methods  In the black-box setting, the attackers
cannot access the internal states of the victim models, such
as hidden states and gradients. So they rely on the model
responses to find effective adversarial samples, and the
optimization problem here becomes a search problem.
According to different types of model responses, black-box
methods can be further categorized into three types. (1)
Model-blind setting refers to when model responses are not
available at all. Under this scenario, the search process
does not have any feedback, and the attackers can only
select adversarial samples randomly or based on some
heuristics [33, 36]. (2) Decision-based adversarial attack
assumes the attacker could adjust the selection based on
model decisions which are practical in the real world.
However, optimization with only hard labels is rather
difficult, since model decisions, i.e., predicted labels, are
discrete and limited. Thus, most existing attackers [58,
113] first generate massive adversarial samples and find an
effective one by traversal and then minimize the
perturbation distance between this adversarial sample and
the original text. (3) Score-based attackers are capable of
getting the confidence scores (predicted probability) of the
victim models. Such feedback is continuous, and the
attackers could optimize the selected samples to reduce the
models’ confidence score on the original label. Typically,
score-based attackers first identify word importance to
determine which words to perturb. This can be done by
calculating the confidence difference before and after
removing a word. After that, the attackers modify these
important words with certain perturbation rules and
continually search for an effective perturbation. Many
combinatorial optimization algorithms are applicable in the
selection process, including greedy search and



metaheuristic population-based evolutionary algorithms
such as genetic algorithm [2] and particle swarm
optimization (PSO) algorithm [114].

White-Box Methods  In the opposite to black-box attacks,
white-box attackers utilize the whole model message to
select adversarial samples. Compared with score-based
methods, white-box settings allow attackers get hidden
states and gradients of any queries inside models, enabling
directly optimizing the adversarial samples in an end-to-end
manner. Therefore, most white-box methods [17, 26, 98]
parameterize the perturbation either by a distribution
matrix or an encoder-decoder neural network. Then, the
attackers manage to train the perturbation toward the
direction that increases model loss. One major challenge in
this procedure is how to make the discrete perturbations
differentiable, and the most widely adopted solution is
Gumbel Softmax which we mentioned in the previous
section.

Besides perturbation-based adversarial samples,
Wallace et al. [95] further find trigger-like text pieces,
namely, universal adversarial triggers (UAT), which can
dramatically change PTM outputs when inserted before
normal texts. By iteratively optimizing the triggers for
maximizing the target output probability, attackers could
find UAT on broad tasks. For example, on text generation,
using TH PEOPLEMan goddreams Blacks as a prompt will
lead GPT-2 to give racist speeches. UAT exposes another
severe vulnerability of PTMs that there exist transferable
adversarial triggers across examples and models.
Moreover, a following work further demonstrates that UAT
is more harmful to prompt-based learning. Since prompt-
based learning shares the same format as masked language
modeling, Xu et al. [107] find that UAT that misleads a PTM
can still take effect after prompt-based learning, damaging
its performance by a large margin.



To summarize, adversarial attacks reveal the practical
security risks of deep learning models and thus have high
research value. With adversarial attack algorithms,
researchers could evaluate models’ adversarial robustness,
conduct in-depth analysis, and develop defense methods
accordingly.

8.3.2 Adversarial Defense

To enhance the robustness of NLP models on adversarial
samples, there is extensive research on adversarial
defense. In this section, we will introduce these defense
strategies based on whether they have specific attack
knowledge.

Defense with Attacks  The first line of defense methods
is developed utilizing certain attack algorithms. They can
be further categorized as adversarial data augmentation,
adversarial training, and adversarial detection.

Adversarial Data Augmentation  One straightforward
approach to making models more robust to adversarial
samples is augmenting training data with adversarial
samples. Data augmentation is effective against multiple
word-level attack algorithms [38, 49, 88, 114] and does not
hurt model performances on standard test data. However,
data augmentation is not flexible and cannot generalize
well. Defenders need additional time and computation
resources to train victim models with adversarial data.

Another issue in vanilla adversarial data augmentation is
that the number of adversarial samples is limited by search
space. To alleviate this issue, Si et al. [81] propose to
generate extra virtual training data by mix-up [116] on the
original and augmented adversarial samples. Specifically,
given data points (data and label pairs) (x1, y1), (x2, y2),
mix-up creates virtual samples by interpolation:



(8.6)
and λ comes from a beta distribution. Through mix-up over
word embeddings and hidden representations, they
achieved superior performance over regular data
augmentation.

Adversarial Training  Adversarial training is a standard
technique to improve adversarial robustness, which
minimizes the maximum risk of adversarial perturbations
on training distribution Ptrain:

(8.7)

where δ is the adversarial perturbation, 𝜖 constrains the
norm of δ and θ denotes model parameters. However, due
to the discrete nature of natural languages, optimizing the
adversarial perturbation is inefficient. To perform
adversarial training on texts, FreeLB [122] creates virtual
adversarial samples by perturbing embeddings and then
optimizes the perturbation via an adjusted PGD [56]
algorithm. Experiments show that FreeLB could improve
model performance on adversarial samples as well as clean
samples.

Adversarial Detection  Another way to protect models
from adversarial samples is adversarial detection, which
first detects and then rejects/corrects them. Detection-
based methods mostly manage to identify perturbed tokens.
To this end, DISP [120] first generates a training dataset
containing adversarial samples and then trains a classifier
to predict which tokens in the text are replaced. After that,
they recover the original sentences by calculating the
embeddings in the corresponding positions. FGWS [63] is
another adversarial detection method with the intuition
that synonym- substitution-based attacks are likely to



replace common words with less frequent words.
Therefore, FGWS undoes synonym substitution by
replacing uncommon words with common ones. Adversarial
detection methods do not change the victim models, and
they are effective in most cases. But they cannot benefit
adversarial robustness of models themselves and have the
chance to misidentify normal samples as adversarial ones.
Therefore, adversarial detection is useful for preventing
external malicious attackers in practice, but the robustness
problem of models still remains.

Defense Without Attacks  Another line of work aims to
enhance model robustness without utilizing adversarial
attacks, which is more general yet challenging. Among
them, pre-training on large-scale and high-quality data is
promising for adversarial robustness. Many works [38, 114]
point out that, compared with training models from
scratch, the pre-training-fine-tuning paradigm is far more
robust (even the only effective way to improve robustness
according to [89]). The reason is that adversarial samples
are similar to unusual cases in the real world, which are
more probably collected by more pre-training data. To
further improve PTMs’ robustness, RobEn [39] attaches an
external encoding layer before any model. The encoding
layer projects each input sentence to a smaller discrete
space where the perturbed and normal sentences are
mapped together. Then, the adversarial samples are
treated as normal samples in the embedding space,
disabling the attack. Yang et al. [112] modify the prefix-
tuning algorithm [51] to achieve better adversarial
robustness. By training additional prefix tokens, each test
sample will be projected to the canonical manifold defined
by training data and let the model get similar activation
patterns during training and testing. By this means, the
perturbed parts in adversarial samples will take a weaker
effect on victim models.



8.3.3 Toolkits

The large body of textual adversarial attack literature
hinders the reproduction and comparison of attack
methods. To this end, several toolkits are developed, and
we will introduce them in this section.

TextAttack5 [62] is the first toolkit for textual
adversarial attack. With a unified framework, it implements
more than ten attack algorithms and provides easy-to-use
APIs. TextAttack also has detailed documents and tutorials
which enable users to run each attack with minimum effort.

While being a useful tool, TextAttack only supports
English and cannot implement sentence-level
transformation. To solve these issues, OpenAttack6 [115]
supports both English and Chinese. Also, OpenAttack
reproduces all kinds of aforementioned attack methods and
improves attack efficiency with parallel processing.

TextFlint7 [101] is a transformation-centric adversarial
robustness evaluation toolkit. Rather than implementing
various attack algorithms, TextFlint organizes different
transformations from the linguistic perspective. In this way,
users could understand model weakness under a broad
range of adversarial perturbations and evaluate their
models more comprehensively.

Armed with these toolkits, users can freely develop
textual adversarial attack algorithms and evaluate model
adversarial robustness. Additionally, the generated
adversarial samples can be utilized in adversarial data
augmentation to improve the adversarial robustness of NLP
models.

8.4 Out-of-Distribution Robustness

Most machine learning datasets obey the independently
and identically distributed (i.i.d.) principle, which means
data points from both training and test sets follow the same



distribution. Although most common cases in the real world
follow this rule, there still exist unusual scenarios where
the test distribution differs from the training distribution,
which we refer to as distribution shift. Distribution shift
poses a great challenge on machine learning systems, and
it is of great importance in high-stake applications, such as
autonomous driving and medical analysis. For instance,
autonomous driving algorithms should be robust to various
driving conditions to reduce the unaffordable risk of a car
accident. In NLP, distribution shifts can also degrade model
performance significantly, which greatly hinders NLP
applications. Following classical works [4, 92], here we
discuss three typical distribution shifts, namely, spurious
correlation, domain shift, and subpopulation shift.

8.4.1 Spurious Correlation

Deep learning methods are good at capturing correlations
inside data such as word or object co-occurrence. However,
correlations in training data do not indicate real relations
in the wild [92]. The most well-known example of spurious
correlation is object co-occurrence in images. For example,
cows are mostly observed on grasslands. So in ImageNet,
the images labeled as cows are always associated with
grass. This spurious correlation is easily captured by
DNNs, and once a cow appears in an unexpected location
like the beach, the trained classification model might not
recognize the cow correctly. Spurious correlations are
commonly observed in machine learning and remain a
persistent challenge in learning robust representations.

In NLP, spurious correlations are also everywhere. We
provide an example in Fig. 8.6 showing the possible
spurious correlation between negation words (not, don’t,
and won’t) and the “NEG” label. Studies of spurious
correlation in NLP mostly lie in NLI tasks, which aim to
determine sentence-pair relations. State-of-the-art NLI



models have achieved high accuracy on standard
benchmarks, but researchers find that they rely heavily on
spurious correlations. For example, Naik et al. [65] find
that two sentences with a high word overlapping ratio
usually hold the same semantics (entailment) in training
data. If the models capture this spurious correlation, they
will fail when discriminating sentence relationships
between John gave Mary a gift and Mary gave John a gift.
To quantify this issue, some challenging datasets are
proposed with carefully crafted counterintuitive test data.
McCoy et al. [60] create non-entailment sentence pairs
with high word overlap using syntactic rules, while PAWS
[118] utilizes back-translation and word swapping to
generate challenging test data. Experiments show that
most models perform poorly on these datasets, indicating
the models are fragile to this kind of spurious correlation.

Fig. 8.6  An example of spurious correlation in sentiment analysis. “NEG” is
associated with negation words in training distribution but not in test
distribution

As a general and practical flaw in deep learning
systems, avoiding learning spurious correlations is crucial.
Here we introduce efforts made in denying spurious
correlations, together with the lessons learned from the
intriguing phenomenon of analyzing and understanding the
memorization and generalization of NLP models.

Pre-training  Pre-training is an effective approach faced
with spurious correlations. Tu et al. [93] conduct a fine-



grained analysis and conclude that the superior
generalization ability of PTMs enables them to learn from a
small set of counterintuitive samples and stay less affected
by spurious correlations in training data. Moreover, scaling
model sizes, pre-training with more data, and longer fine-
tuning also help. However, PTMs are not perfect solutions
to these problems. Nadeem et al. [64] find that PTMs
perform gender and demographic biases naturally without
fine-tuning, indicating that they learned to associate
stereotypes with certain groups from pre-training. To this
end, careful authorization is urgently demanded in training
responsible PTMs.

Heuristic Sample Reweighting  Sample reweighting
aims to identify training samples with spurious correlations
and downweight their importance during training. Based
on some heuristics, e.g., don’t in hypothesis sentence is
highly relevant with label contradictory, these methods
[9, 57] calculate the bias probability Pb = 
P(contradictory|don’t) and use this probability to
reweight samples. Typical reweighting strategies include
importance weighting (1∕Pb) and focal loss. These
approaches are useful to cope with known spurious
correlations, but they require prior knowledge to determine
the weights, which largely constrains their practicality in
real applications.

Behavior-Based Sample Reweighting  This kind of
method manages to discover different model behaviors on
normal samples and samples with biases, and then debias
the dataset. Through empirical studies, there are two kinds
of distinctive behaviors:
1. Models usually learn superficial features first because

they are relatively easy to master. Therefore, Utama et
al. [94] propose to learn a shallow model, which means

 



a model trained with fewer examples and epochs, to
serve as a debias proxy. The learned shallow model is
confident on samples with shortcuts, so it is effective to
simply downweighting the most confident samples of
the shallow model.

2.
Another work [108] utilizes the forgettable examples to
debias. Forgettable examples are defined as the
samples that go from being correctly to incorrectly
classified or never learned during training. Observing
that forgettable samples are difficult and valuable, this
algorithm first trains a shallow model (e.g., LSTM) to
identify the forgettable samples, then reweights
training data, and fine-tunes BERT to get a robust
model. Compared with heuristic methods, behavior-
based models could automatically find suspicious
patterns and mitigate them, making them more
practical.

 

Stable Learning  From the perspective of causality,
stable learning recognizes spurious correlation as the
confounding factor [12], which shares the same cause with
the output variable. To remove the negative effect brought
by confounding features, stable learning tries to
decorrelate features and thus find true causes.
Theoretically, researchers prove that this can be achieved
by appropriate sample reweighting [43, 79]. On this basis,
the developed algorithms can successfully eliminate
irrelative features and perform well on datasets with
spurious correlations [117].

8.4.2 Domain Shift

Domain shift [99] is the most well-known distribution shift
in machine learning, which arises in many real-world
scenarios. Due to the limitation in training data collection,
representation learning models in most cases are trained



and tested in a specific domain. However in the real world,
it is common practice to apply trained models in other
domains or open environments, so it is natural to expect
representation learning models trained on one domain to
generalize well on a relevant but distinct domain, which we
refer to as robustness under domain shift. In computer
vision, domain shift has been widely investigated, such as
classifying images in different styles [46], under
corruptions [28] or distinct views [42].

In NLP, however, measuring robustness under domain
shift relies heavily on heuristics. The common practice is to
collect datasets from different sources, select one to serve
as an in-distribution training dataset, and evaluate model
performances on other datasets. For example, on sentiment
analysis, as we show in Fig. 8.7, practitioners [29] usually
choose movie review datasets as training datasets, and test
models on restaurant and product reviews. Although this
strategy is reasonable and the experiment results truly
reflect robustness under distribution shift to some extent,
current approaches directly utilize existing datasets, which
cannot fully characterize the distribution shift for real-
world problems. WILDS [42] partially solves this issue. The
authors consider the practical needs for NLP models to
generalize across different user groups, and construct an
Amazon review sentiment analysis dataset, where the
models are trained and tested on product reviews from
different user groups. In the future, we hope more efforts
can be devoted to building comprehensive and practical
benchmarks for domain shift robustness.



Fig. 8.7  An example of domain shift in sentiment analysis. The model is
trained on movie reviews but tested on product and restaurant reviews

Algorithms targeting domain shifts are known as domain
generalization methods. Next, we will introduce
representative algorithms and their practices in NLP.

Pre-training  Pre-training is still effective in dealing with
domain shift due to the gained abundant general
knowledge. Hendrycks et al. [29] conduct extensive
empirical studies on sentiment analysis, semantic
similarity, reading comprehension, and natural language
inference. They reveal that PTMs are considerably more
robust than traditional models. For instance, RoBERTa
remains most performance when transferred across
reviews from different sources, while LSTM suffers a 35%
accuracy decrease. The analysis also finds that pre-training
on more diverse data further improves robustness.

Domain-Invariant Representation Learning  These
algorithms aim to split domain information out in learned
representations so that they are transferable across
domains. In this regard, CORAL [84] presumes that
domain-invariant representations should share the same
distributions in different domains via regularization.
Therefore, CORAL minimizes the differences in means and
covariances of representation distribution. Invariant risk
minimization (IRM) [3] borrows the idea from invariant



predictors [67]. It seeks data representations such that the
optimal predictors built on are the same across domains.
Although these methods are theoretically sound and have
been proven effective on toy examples, Dranker et al. [16]
show that it is rather difficult to learn satisfying
representations under practical domain shifts. How to learn
domain-invariant representations still remains unsolved.

8.4.3 Subpopulation Shift

Subpopulation shift depicts the natural frequency change
of data groups in training and test data. Representation
learning models perform well on average most time, but
their effectiveness may be dominated by overrepresented
groups with ignorance of underrepresented groups. We
give an example in Fig. 8.8 where the training data is
mostly collected from males, but we expect models to
perform well on females. In practice, subpopulation shift is
of great significance for two reasons:

Reliability. Consider the case that we train an
autonomous driving model with many photos taken in the
daytime with few taken at night, the model only needs to
learn how to behave in the daytime to perform well on in-
distribution tests, leaving nighttime performances
unreliable. However, both daytime and night conditions
happen in the real world, and we do not expect our
models are highly unstable in different situations.

Fig. 8.8  An example of subpopulation shift



Fairness. To avoid algorithmic discrimination over
minority groups (e.g., minor genders or races), the
models are also supposed to perform equally on each
group.
In NLP, a concrete case of subpopulation shift is

comments from different groups of people. CivilComments
[6] is a collected dataset of comments on articles, and each
comment is annotated as “toxic” or “nontoxic.” Meanwhile,
each comment is associated with user profile information,
including gender, race, and religion. Studies [42] on this
dataset suggest that NLP models show poor performance in
particular subpopulations.

A series of works are proposed to deal with
subpopulation shifts, and they aim to improve models’
worst-group performance. Based on whether there is
explicit group information, we can get two lines of studies.

Methods with Group Information  Some works argue
that the mainstream optimization objective, empirical risk
minimization (ERM), leads to the robustness issue under
subpopulation shift since ERM only optimizes the global
loss regardless of group-wise performance. To this end,
group distributionally robust optimization (GroupDRO) [77]
applies distributionally robust optimization (DRO)
algorithm to explicitly improve the worst-group
performance. By solely updating model parameters using
the worst data group, GroupDRO successfully improves
model robustness under subpopulation shift. Another work
[66] recognizes the subpopulation shift in PTM pre-
training. Rather than the original maximum likelihood
estimation (MLE) loss, they propose to use one DRO loss
named conditional value at risk (CVaR) which provides
relatively low losses on almost all subpopulations in the
training distribution. The modified loss function leads to
language models equally performed across groups.



Methods Without Group Information  A more practical
scenario is that the group information is unavailable. To
deal with implicit groups, Sohoni et al. [83] adopt
clustering algorithms to divide training data into subgroups
and then apply GroupDRO to optimize the worst-group loss.
Apart from identifying implicit groups, just train twice (JTT)
[54] is a recently proposed two-stage method. JTT first
trains a model with standard ERM loss and then upweights
the misclassified samples using this model. Then, it trains
another model with the reweighted training dataset. JTT
outperforms traditional DRO algorithms and approaches
methods with group information.

8.5 Interpretability

The need of interpretability stands at top of our pyramid,
highlighting its importance for reliable and trustworthy
NLP. In Chap. 1, we have discussed two representation
schemes in NLP, namely, symbolic representation and
distributed representation. Although distributed
representation is prevailing in nowadays NLP, one essential
and long-lasting criticism of it is the lack of interpretability.
Given a representation vector of a word or sentence, we
can hardly tell accurately what is encoded. Worse still,
modern deep learning models, the fundamental
infrastructure in representation learning, are also “black
boxes,” which pose a great challenge to reliable,
trustworthy, and cooperative AI.

Many researchers have devoted themselves to
mitigating the interpretability issue in deep learning, but
there is still a long way to go. In this section, we will give a
brief introduction to efforts made in constructing
interpretable NLP systems, including understanding model
functionality and explaining model mechanisms.

8.5.1 Understanding Model Functionality



The very first step in understanding a model at hand is
predicting its behaviors. On standard benchmarks, we can
only get the final scores over a set of test samples, but we
have no idea how a model will react to certain inputs. In
practice, we can hardly trust a model if we do not know
(approximately) when the predictions will be correct and
wrong. This leads to the problem of calibration, which
demands models to give accurate confidence estimation to
their predictions. On the other hand, the black-box nature
of neural networks makes it difficult to inspect their
functionalities. Moreover, as the sizes of big PTMs
consistently scale up, researchers surprisingly find
emerging new abilities [103], such as the few-shot learning
ability of GPT-3. While it reveals an encouraging potential
of big models, worries are also raised about the
unpredictable nature, since undesired abilities such as
memorizing privacy contents [7] and generating toxic
speeches also emerged. For this, it is also crucial to specify
what abilities models possess. Next, we will introduce two
topics: model calibration and ability testing.

Calibration  Deep learning models mostly suffer from the
overconfidence problem, which means that these models
produce unreliable confidence scores [25, 37]. The
misalignment between estimated and real probability may
bring catastrophic consequences, especially in high-stake
applications. To this end, researchers aim to make models
calibrated. Different from vanilla models with
overconfidence scores, calibrated models are models that
assign appropriate confidence scores to predictions. Given
input x and its ground truth label y, a well-calibrated model
outputs  with probability PM(y|x) which satisfies

(8.8)



The equation suggests that the estimated probability PM

matches the true probability P. To solve the overconfidence
issue and build calibrated models, some approaches try to
smooth the probability distribution, including using
temperature scaling [25] and label smoothing[86].
Although they could to some extent mitigate the
overconfidence issue, these post hoc methods are not able
to solve the calibration problem at its roots. Most recent
learnable calibration methods [40, 53] pave another way.
By collecting extra data to teach models to be calibrated,
these models show that large-scale PTMs could learn
calibration well, providing satisfying probability
estimations. However, the generalization ability of the
learned calibration is still poor, leaving this problem open.

Ability Testing  Deep representation learning models are
always evaluated on various in- and out-of-distribution
benchmarks, but how can we understand model abilities
through these test results is unclear. For deeper insights
into knowing model abilities, multiple carefully curated
benchmarks and toolkits are proposed.

Probing Datasets  Probing datasets aim at measuring
specific model abilities. GLUE [97] is a widely adopted
benchmark for natural language understanding, which
provides nine typical tasks to evaluate NLP model
performances. Besides the application-driven main
benchmarks, GLUE also offers a manually annotated
diagnostic dataset to illustrate linguistic abilities captured
by NLP models, including lexical semantics, predicate-
argument structure, logic, etc. The ability-driven diagnostic
test helps with more fine-grained model analysis. Apart
from GLUE, Tenney et al. [91] design comprehensive tests
for probing how PTMs deal with sentence structure. For
probing world and commonsense knowledge, Petroni et al.



[68] propose LAMA, which evaluates how well PTMs could
capture such knowledge.

Behavioral Testing  CheckList [75] tests model abilities
from another perspective. Inspired by common practices in
software engineering, CheckList is proposed to conduct
behavioral testing for NLP models. By designing different
types of tests, CheckList covers a series of important
capabilities NLP models should have. For example, if the
users add a not before a negative word, then the model
should be aware of the sentiment has changed to pass the
test. Compared with fixed diagnostic datasets, CheckList
provides a set of tools for users to generate test cases
easily.

As big language models are likely to consistently get
novel abilities, depicting their possible functionalities is
becoming increasingly difficult. In the future, researchers
need to specify desirable and undesirable abilities more
clearly and design rigorous evaluations to assess these
abilities.

8.5.2 Explaining Model Mechanism

Explaining model behaviors is always a challenging yet
fundamental topic for deep learning [15]. Compared with
classic machine learning models like the decision tree, the
mechanism of neural network-based models is less
transparent due to the nature of distributed
representations. To get further understandings of how
models work, explanatory methods are developed to find
possible reasons for specific model decisions. Roughly, we
can categorize these methods according to providing
external or internal explanations.

External Explanation  Given the data-driven learning
paradigm, one straightforward way is to find corresponding
factors in data for model behaviors, which we name



external explanations. In this direction, some works try to
find out specific input pieces that lead to certain
predictions. They either calculate model gradients with
respect to each token to generate the saliency map [82, 85]
or apply adversarial attacks or input reduction on texts to
identify important pieces [20, 48]. AllenNLP Interpret [96]
implements a set of these methods to help users better
comprehend model outputs. Another kind of external
explanation attributes model predictions to training data
instances. Iconic work in this direction is influence function
[41], which measures how model parameters change when
a training point is removed from training data. External
explanations offer a data-level view to know the model
mechanism, but they cannot enable us to take a look at the
model structure. Furthermore, given the enormous pre-
training data, it is hard to specify the contribution of single
data instances.

Internal Explanation  Beyond data-level explanations,
there are also attempts to explain models from the internal
structure. By partitioning neural networks into smaller
pieces, a major goal of this line of research is to discover
the different abilities of each module. Through inspecting
PTMs, researchers have established many insightful
conclusions. Some works find that BERT processes
sentences following a linguistic pipeline [35, 90]. From
bottom to top layers, the model first captures word-level
and phrase-level features, then deals with syntactic
patterns, and finally summarizes semantic meanings.
Besides, Transformers present distinct attention patterns in
different layers [10, 106], which also indicates layer-
specific functionalities such as capturing word composition
or syntactic structure knowledge. Meanwhile, feed-forward
layers act like key-value memories [22] which store
responses for certain text patterns. Wang et al. [102]
conduct a more fine-grained analysis on the neuron



activation patterns. They surprisingly find that some
downstream tasks are highly correlated with specific
neurons, which indicates that PTMs have functionality
modularity across tasks. While internal explanations pave
novel paths for understanding model mechanism, current
progress mostly remain qualitative rather than
quantitative. Extensive work is needed to fully demystify
neural networks and even PTMs.

8.6 Summary and Further Readings

Up to now, we have overviewed the current progress and
challenges of robust representation learning in NLP. In this
last section, we will summarize the contents of this chapter
and then provide more readings for reference.

Robustness is a crucial topic for reliable and trustworthy
AI, and it is well recognized that existing NLP models are
brittle in the complicated real world. In this chapter, we
introduce four robustness issues in NLP following our
proposed robustness hierarchy. Specifically, we first focus
on integrity, which means whether models can work well
on common cases without inner vulnerabilities, with
backdoor robustness as a typical example. Second, we turn
to external safety and discuss potential adversarial attacks
models may face and corresponding defenses. Then, we
consider real-world situations where models are supposed
to be resilient under unseen, extreme even “black swan”
events. We discuss three kinds of distribution shifts,
namely, spurious correlation, domain shift, and
subpopulation shift. Finally, we examine the highest
demand posed on representation learning models and
interpretability. We introduce the current stages in
explaining model functionality and mechanism.

On backdoor robustness, Li et al. [52] give a unified
overview on backdoor attack and defense, and their



backdoor resource repository8 is also beneficial. Roth et al.
[76] and Wang et al. [100] provide comprehensive surveys
on textual adversarial attack and defense. You can also find
more related papers from our paper list.9 Shen et al. [80]
provide a holistic view of out-of-distribution robustness.
Wiegreffe et al. [105] summarize current research progress
in explainable NLP.

On the internal and external threats against machine
learning systems, Hendrycks et al. [27] give an insightful
discussion on model robustness, monitoring, alignment,
and external safety. Bommasani et al. [5] also provide their
opinions in Sections 4.7, 4.8, and 4.9.
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languages. To this end, many efforts have been devoted to
organizing various human knowledge to improve the ability
of machines in language understanding, such as world
knowledge, linguistic knowledge, commonsense knowledge,
and domain knowledge. Starting from this chapter, our
view turns to representing rich human knowledge and
using knowledge representations to improve NLP models.
In this chapter, taking world knowledge as an example, we
present a general framework of organizing and utilizing
knowledge, including knowledge representation learning,
knowledge-guided NLP, and knowledge acquisition. For
linguistic knowledge, commonsense knowledge, and
domain knowledge, we will introduce them in detail in
subsequent chapters considering their unique knowledge
properties.

9.1 Introduction

The discussion of knowledge is far earlier than the
exploration of NLP and is highly related to the study of
human languages, which can be traced back to Plato in the
Classical Period of ancient Greece [15]. Over the next
thousand years, the discussion of knowledge gradually
leads to many systematic philosophical theories, such as
epistemology [146] and ontology [140], reflecting the long-
term analysis and exploration of human intelligence.

Although the question what is knowledge is a
controversial philosophical question with no definitive and
generally accepted answer, we deeply touch on the concept
of knowledge in every aspect of our lives. At the beginning
of the twentieth century, analytic philosophy, which is
advocated by Gottlob Frege, Bertrand Russell, and Ludwig
Wittgenstein [131], inspires the establishment of symbolic
systems to formalize human knowledge [68], significantly



contributing to the later development of mathematical logic
and philosophy of language.

As NLP is associated with human intelligence, the basic
theory of NLP is also highly related to the above
knowledge-related theories. As shown in Fig. 9.1, since the
Dartmouth Summer Research Project on AI in 1956 [104],
knowledge has played a significant role in the development
history of NLP. Influenced by mathematical logic and
linguistics, early NLP studies [2, 24, 25, 64] mainly focus
on exploring symbolic knowledge representations and
using symbolic systems to enable machines to understand
and reason languages.

Fig. 9.1  Typical ways to organize and utilize knowledge in the development of
NLP

Due to the generalization and coverage problems of
symbolic representations, ever since the 1990s, data-driven
methods [63] are widely applied to represent human
knowledge in a distributed manner. Moreover, after 2010,
with the boom of deep learning [83], distributed knowledge



representations are increasingly expressive from shallow to
deep, providing a powerful tool of leveraging knowledge to
understand complex semantics.

Making full use of knowledge is crucial to achieving
better language understanding. To this end, we describe
the general framework of organizing and utilizing
knowledge, including knowledge representation learning,
knowledge-guided NLP, and knowledge acquisition. With
this knowledgeable NLP framework, we show how
knowledge can be represented and learned to improve the
performance of NLP models and how to acquire rich
knowledge from text. As shown in Fig. 9.2, knowledge
representation learning aims to encode symbolic
knowledge into distributed representations so that
knowledge can be more accessible to machines. Then,
knowledge-guided NLP is explored to leverage knowledge
representations to improve NLP models. Finally, based on
knowledge-guided models, we can perform knowledge
acquisition to extract more knowledge from plain text to
enrich existing knowledge systems.

Fig. 9.2  The framework for organizing and utilizing knowledge for NLP tasks
includes knowledge representation learning, knowledge-guided NLP, and



knowledge acquisition

In the real world, people organize many kinds of
knowledge, such as world knowledge, linguistic knowledge,
commonsense knowledge, and domain knowledge. In this
chapter, we focus on introducing the knowledgeable
framework from the perspective of world knowledge since
world knowledge is well-defined and general enough. Then,
in the following chapters, we will show more details about
other kinds of knowledge.

In Sect. 9.2, we will briefly introduce the important
properties of symbolic knowledge and distributed model
knowledge, aiming to indicate the core motivation for
transforming symbolic knowledge into model knowledge. In
Sects. 9.3 and 9.4, we will present typical approaches to
encoding symbolic knowledge into distributed
representations and show how to use knowledge
representations to improve NLP models, respectively. In
Sect. 9.5, we will detail several scenarios for acquiring
knowledge to ensure that we can acquire sufficient
knowledge to help various NLP models.

9.2 Symbolic Knowledge and Model

Knowledge

Before detailing the framework of knowledge
representation learning, knowledge-guided NLP, and
knowledge acquisition, we briefly present the necessary
background information, especially various effective
systems to organize knowledge. In this section, we will first
introduce typical symbolic knowledge systems, which are
the common way of organizing knowledge. Then, we will
present more details of model knowledge obtained by
projecting knowledge into machine learning models via
distributed representation learning, providing a more
machine-friendly way of organizing knowledge. Finally, we



will show the recent trend in fusing symbolic knowledge
and model knowledge, and indicate the importance of
knowledge representation learning as well as knowledge-
guided NLP in this fusion trend.

9.2.1 Symbolic Knowledge

During the two decades from the 1950s to 1970s, the
efforts orienting NLP are mainly committed to symbolic
computation systems. In 1956, Allen Newell and Herbert A.
Simon write the first AI program Logic Theorist that can
perform automated reasoning [113]. The Logic Theorist
can prove 38 of the first 52 theorems given by Bertrand
Russell in Principia Mathematica, by using logic and
heuristic rules to prune the search tree of reasoning. Over
the same period, Noam Chomsky proposes syntactic
structures [24] and transformational grammars [25], using
formal languages with precise mathematical notations to
drive machine processing of natural languages. Inspired by
the Logic Theorist and syntactic structures, Herbert A.
Simon and John McCarthy develop information processing
language (IPL) [114] and list processing (LISP) [105],
respectively, and these two programming languages
significantly support computer programming for machine
intelligence.

Since neither logic nor grammar rules can well solve
complex and diverse problems in practical scenarios, the
direction of deriving general intelligence from symbolic

systems held by early researchers has gradually fallen into
a bottleneck. After the 1970s, researchers turn to designing
domain-specific intelligence systems for each specific
application. The representative work of this period is the
expert system [2] initiated by Edward Feigenbaum. An
expert system generally consists of a knowledge base (KB)
and an inference engine. KBs store a wealth of human
knowledge, including domain-specific expertise and rules



established by experts in various fields. Inference engines
can leverage expertise and rules in KBs to solve specific
problems.

Compared with the early AI methods entirely based on
mathematical systems, expert systems work well in some
practical fields such as business and medicine. Edward
Feigenbaum further proposes knowledge engineering [42]
in the 1980s, indicating the importance of knowledge
acquisition, knowledge representation, and knowledge
application to machine intelligence. As shown in Fig. 9.3,
inspired by knowledge engineering, various KBs have
emerged, such as the commonsense base Cyc [84] and
Semantic Web [7]. The most notable achievement of expert
systems is the Watson system developed by IBM. IBM
Watson beats two human contestants on the quiz show
Jeopardy, demonstrating the potential effectiveness of a KB
with rich knowledge.

Fig. 9.3  The development of symbolic knowledge systems

With the Internet thriving in the twenty-first century,
massive messages have flooded into the World Wide Web,
and knowledge is transferred to the semi-structured textual
information on the Web. However, due to the information
explosion, extracting the knowledge we want from the
significant but noisy plain text on the Internet is not easy.
During seeking effective ways to organize knowledge,
Google proposes the concept of knowledge graphs (KGs) in
2012 [37]. KGs arrange the structured multi-relational data
of both concrete and abstract entities in the real world,
which can be regarded as graph-structured KBs. In



addition to describing world knowledge in conventional
forms such as strings, the emergence of KGs provides a
new tool to organize world knowledge from the perspective
of entities and relations. Since KGs are very suitable for
organizing the massive amount of knowledge stored in the
Web corpora for faster knowledge retrieval, the
construction of KGs has been blooming in recent years and
has attracted wide attention from academia and industry.

KGs are usually constructed from existing Semantic Web
datasets in resource description framework (RDF) [81]
with the help of manual annotation. At the same time, KGs
can also be automatically enriched by extracting knowledge
from the massive plain text on the Web. As shown in Fig.
9.4, a typical KG usually contains two elements: entities
and relations. Both concrete objects and abstract concepts
in the real world are defined as entities, while complex
associations between entities are defined as relations.
Knowledge is usually represented in the triplet form of
〈head entity, relation, tail entity〉, and we abridge this as
〈h, r, t〉. For example, Mark Twain is a famous American
writer, and The Million Pound Bank Note is one of his
masterpieces. In a KG, this knowledge will be represented
as 〈The Million Pound Bank Note, Author, Mark Twain〉.
Owing to the well-structured form, KGs are widely used in
various applications to improve system performance. There
are several KGs widely utilized nowadays in NLP, such as
Freebase [8], DBpedia [106], YAGO [147], and Wikidata
[156]. There are also many comparatively smaller KGs in
specific domains whose knowledge can function in domain-
specific tasks.



Fig. 9.4  An example of knowledge graphs. The graphics in the figure come
from Vecteezy or Wikidata (Vecteezy: https:// www. vecteezy. com; Wikidata:
https:// www. wikidata. org). And all these graphics are available for free or
under the Creative Commons CC0 license

9.2.2 Model Knowledge

For grammar rules, expert systems, and even KGs, one of
the pain points of these symbolic knowledge systems is
their weak generalization. In addition, it is also difficult to
process symbolic knowledge using the numerical
computing operations that machines are good at.
Therefore, it becomes important to establish a knowledge
framework based on numerical computing and with a
strong generalization ability to serve the processing of
natural languages. To this end, statistical learning [80] has

https://www.vecteezy.com/
https://www.wikidata.org/


been widely applied after the 1990s, including support
vector machines [14], decision trees [16], conditional
random fields [79], and so on. These data-driven statistical
learning methods can acquire knowledge from data, use
numerical features to implicitly describe knowledge, use
probability models to represent rules behind knowledge
implicitly, and perform knowledge reasoning based on
probability computing.

Different from symbolic knowledge, which is abstracted
by human beings and regarded as human-friendly

knowledge, the intrinsic nature of statistical learning is to
capture the distribution patterns of data from statistics and
uses these patterns to abstract implicit knowledge that can
be used to solve specific problems. Although such implicit
knowledge captured by statistical learning methods may
not directly satisfy human intuition, the knowledge is adept
at describing correlation information in data and is easy to
compute numerically. In other words, this kind of
knowledge based on numerical features and continuous
probability models is more machine-friendly. Considering
that the structure of probability models is also a kind of
prior knowledge, here we introduce the concept of model

knowledge to describe this machine-friendly knowledge.1
In recent years, the boom of neural networks has

provided a more powerful tool to capture model knowledge
from data. Compared to conventional statistical models,
neural networks are more expressive and can obtain more
complex patterns from data. After the success of
representing words as distributed representations [107],
using shallow neural networks to learn low-dimensional
continuous representations for concerned objects, such as
words [123], graphs [152], sentences, and documents [82],
has become a standard paradigm for accomplishing various
NLP tasks. With the emergence of techniques that support
increasing network depth and parameter size, such as



Transformers [154], large-scale pre-trained models (PTMs)
[33, 99, 206] based on deep neural networks are proposed.
Recent works show that PTMs can capture rich lexical
knowledge[69], syntactic knowledge[66], semantic
knowledge[192], and factual knowledge[126] from data
during the self-supervised pre-training stage. As shown in
Fig. 9.5, we can find that GPT-3 (a PTM with 175 billion
parameters) holds a certain amount of facts and
commonsense and can perform logical reasoning [17]. By
stimulating the task-specific model knowledge distributed
in PTMs via various tuning methods [34], PTMs achieve
state-of-the-art results on many NLP tasks.

Fig. 9.5  Some question-answering examples of GPT-3. All these examples
come from Kevin Lacker’s blog Giving GPT-3 a Turing Test (https:// lacker. io/ ai/ 
2020/ 07/ 06/ giving-gpt-3-a-turing-test. html). These examples are also shown in
the survey of PTMs [59]

9.2.3 Integrating Symbolic Knowledge and

Model Knowledge

In the previous sections, we have briefly described many
efforts made by researchers to enhance the processing of
natural languages with knowledge. Briefly, symbolic
knowledge is suited for reasoning and modeling causality,
and model knowledge is suited for integrating information

https://lacker.io/ai/2020/07/06/giving-gpt-3-a-turing-test.html


and modeling correlation. Symbolic knowledge and model
knowledge have their own strengths, and utilizing both is
crucial to drive the language understanding of machines.
Over the past few decades, the practice has also shown
that NLP models with deep language understanding cannot
be achieved by using a certain kind of knowledge alone.

The early explorations of NLP researchers relied entirely
on handcrafted rules and systems, the limitations of which
have been revealed over the two AI winters [54]. These AI
winters have shown that it is challenging to make machines
master versatile language abilities using only symbolic
knowledge. In recent years, researchers have devoted
great attention to deep neural networks and automatically
learning model knowledge from massive data, leading to
breakthroughs such as word representations and PTMs.
However, these data-driven methods that focus on model
knowledge still have some obvious limitations and face the
challenges of robustness and interpretability [83]. In terms
of robustness, for neural-based NLP models, it is not
difficult to build adversarial examples to induce model
errors [157], considering the knowledge automatically
summarized by models may be a shortcut [48] or even a
bias [148]. In terms of interpretability, the predictions
given by models are also based on black-box correlations.
Moreover, current data-driven methods may suffer from
data-hungry issues. Model knowledge needs to be learned
based on massive data, but obtaining high-quality data
itself is very difficult. Humans can learn skills with a few
training examples, which is challenging for machines.
Therefore, relying solely on data-driven methods and model
knowledge to advance NLP also seems unsustainable.

We have systematically discussed the symbolic and
distributed representations of text in the previous chapters,
and here we have made a further extension to form a
broader discussion of representing knowledge. From these
discussions, we can observe that taking full advantage of



knowledge, i.e., utilizing both symbolic or model
knowledge, is an important way to obtain better language
understanding. Some recent works [60, 193] have also
shown a trend toward the integration of symbolic and
model knowledge and, more specifically, a trend of using
symbolic knowledge to improve deep neural models that
already have strong model knowledge. In order to integrate
both symbolic and model knowledge, three challenges have
to be addressed:
1.

How to represent knowledge (especially symbolic
knowledge) in a machine-friendly form so that current
NLP models can utilize the knowledge?

 
2.

How to use knowledge representations to guide
specific NLP models?

 
3.

How to continually acquire knowledge from large-scale
plain text instead of handcrafted efforts?

 
We will next introduce knowledge representation

learning, knowledge-guided NLP, and knowledge
acquisition for these challenges.

9.3 Knowledge Representation

Learning

As we mentioned before, we can organize knowledge using
symbolic systems. However, as the scale of knowledge
increases, using these symbolic systems naturally faces two
challenges: data sparsity and computational inefficiency.
Despite the importance of symbolic knowledge for NLP,
these challenges indicate that symbolic systems are not an
inherently machine-friendly form of knowledge
organization. Specifically, data sparsity is a common
problem in many fields. For example, when we use KGs to



describe general world knowledge, the number of entities
(nodes) in KGs can be enormous, while the number of
relations (edges) in KGs is typically few, i.e., there are
often no relations between two randomly selected entities
in the real world, resulting in the sparsity of KGs.
Computational inefficiency is another challenge we have to
overcome since computers are better suited to handle
numerical data and less adept at handling symbolic
knowledge in KGs. As the size of KGs continues to grow,
this efficiency challenge may become more severe.

To solve the above problems, distributed knowledge
representations are introduced, i.e., low-dimensional
continuous embeddings are used to represent symbolic
knowledge. The sparsity problem is alleviated owing to
using these distributed representations, and the
computational efficiency is also improved. In addition,
using embeddings to represent knowledge makes it more
feasible and convenient to integrate symbolic knowledge
into neural NLP models, motivating the exploration of
knowledge-guided NLP. Up to now, distributed knowledge
representations have been widely used in many
applications requiring the support of human knowledge.
Moreover, distributed knowledge representations can also
significantly improve the ability of knowledge completion,
knowledge fusion, and knowledge reasoning.

In this section, we take KGs that organize rich world
knowledge as an example to introduce how to obtain
distributed knowledge representations. Hereafter, we use

 to denote a KG, in which  is the
entity set,  is the relation set, and  is the
fact set. We use  to represent the head and tail
entities, and h, t to represent their entity embeddings. A
triplet  is a factual record, where h, t are entities
and r is the relation between h and t.



Given a triplet 〈h, r, t〉, a score function f(h, r, t) is used
by knowledge representation learning methods to measure
whether 〈h, r, t〉 is a fact or a fallacy. Generally, the larger
the value of f(h, r, t), the higher the probability that 〈h, r, t〉
is true.2 Based on f(h, r, t), knowledge representations can
be learned with

(9.1)

where θ is the learnable embeddings of entities and
relations, 〈h, r, t〉 indicates positive facts (i.e., triplets in 
), and  indicates negative facts (triplets that do not
exist in KGs). γ > 0 is a hyper-parameter used as a margin.
A bigger γ means to learn a wider gap between f(h, r, t)
and  . Considering that there are no explicit
negative triplets in KGs,  is usually defined as

(9.2)

which means  is built by corrupting the entities and
relations of the triplets in  . Different from the margin-
based loss function in Eq. (9.1), some methods apply a
likelihood-based loss function to learn knowledge
representations as

(9.3)
Next, we present some typical knowledge representation

learning methods as well as their score functions, including
(1) linear representation methods that formalize relations
as linear transformations between entities, (2) translation
representation methods that formalize relations as
translation operations between entities, (3) neural
representation methods that apply neural networks to
represent entities and relations, and (4) manifold



representation methods that use complex manifold spaces
instead of simple Euclidean spaces to learn
representations.

9.3.1 Linear Representation

Linear representation methods formalize relations as linear
transformations between entities, which is a simple and
basic way to learn knowledge representations.

Structured Embeddings (SE)  SE [13] is a typical linear
method to represent KGs. In SE, all entities are embedded
into a d-dimensional space. SE designs two relation-specific
matrices Mr,1,  for each relation r, and these two
matrices are used to transform the embeddings of entities.
The score function of SE is defined as

(9.4)
where  is the vector norm. The assumption of SE is that
the head and tail embeddings should be as close as possible
after being transformed into a relation-specific space.
Therefore, SE uses the margin-based loss function to learn
representations.

Semantic Matching Energy (SME)  SME [11] builds
more complex linear transformations than SE. Given a
triplet 〈h, r, t〉, h and r are combined using a projection
function to get a new embedding lh,r. Similarly, given t and
r, we can get lt,r. Then, a point-wise multiplication function
is applied on lh,r and lt,r to get the score of this triplet. SME
introduces two different projection functions to build f(h, r,
t): one is in the linear form

(9.5)
and the other is in the bilinear form

(9.6)



where ⊙ is the element-wise (Hadamard) product. M1, M2,
M3, and M4 are learnable transformation matrices, and b1
and b2 are learnable bias vectors. Empirically, the margin-
based loss function is suitable for dealing with the score
functions built with vector norm operations, while the
likelihood-based loss function is more usually used to
process the score functions built with inner product
operations. Since SME uses the inner product operation to
build its score function, the likelihood-based loss function is
thus used to learn representations.

Latent Factor Model (LFM)  LFM [70] aims to model
large KGs based on a bilinear structure. By modeling
entities as embeddings and relations as matrices, the score
function of LFM is defined as

(9.7)

where the matrix Mr is the representation of the relation r.
Similar to SME, LFM adopts the likelihood-based loss
function to learn representations. Based on LFM, DistMult
[186] further restricts Mr to be a diagonal matrix. As
compared with LFM, DistMult not only reduces the
parameter size but also reduces the computational
complexity and achieves better performance.

RESCAL  RESCAL [118, 119] is a representation learning
method based on matrix factorization. By modeling entities
as embeddings and relations as matrices, RESCAL adopts a
score function the same to LFM. However, RESCAL
employs neither the margin-based nor the likelihood-based
loss function to learn knowledge representations. Instead,
in RESCAL, a three-way tensor  is adopted.
In the tensor  , two modes respectively stand for head



and tail entities, while the third mode stands for relations.
The entries of  are determined by the existence of the
corresponding triplet facts. That is,  if the triplet 〈i-
th entity, k-th relation, j-th entity〉 exists in the training set,
and otherwise  . To capture the inherent structure
of all triplets, given  , for each slice

 , RESCAL assumes the following factorization
for Xn holds

(9.8)

where  stands for the d-dimensional entity
representations of all entities and  represents
the interactions between entities specific to the n-th
relation rn. Following this tensor factorization assumption,
the learning objective of RESCAL is defined as

(9.9)

where  is the collection of all
relation matrices,  is the Frobenius vector norm, and λ
is a hyper-parameter to control the second regularization
term.

Holographic Embeddings (HolE)  HolE [117] is
proposed as an enhanced version of RESCAL. RESCAL
works well with multi-relational data but suffers from a
high computational complexity. To achieve high
effectiveness and efficiency at the same time, HolE employs
an operation named circular correlation to generate
representations. The circular correlation operation

 between two entities h and t is



(9.10)

where [⋅]i means the i-th vector element. The score function
is defined as

(9.11)
HolE adopts the likelihood-based loss function to learn
representations.

The circular correlation operation brings several
advantages. First, the circular correlation operation is
noncommutative (i.e., h ⋆ t ≠ t ⋆ h), which makes it capable
of modeling asymmetric relations in KGs. Second, the
circular correlation operation has a lower computational
complexity compared to the tensor product operation in
RESCAL. Moreover, the circular correlation operation
could be further accelerated with the help of fast Fourier
transform (FFT), which is formalized as

(9.12)
where  and  represent the FFT operation and its
inverse operation, respectively,  denotes the complex
conjugate of  , and ⊙ stands for the element-wise
(Hadamard) product. Due to the FFT operation, the
computational complexity of the circular correlation
operation is  , which is much lower than that of the
tensor product operation.

9.3.2 Translation Representation

Translation methods are another effective way to obtain
distributed representations of KGs. To help readers better
understand different translation representation methods,
we first introduce their motivations.

The primary motivation is that it is natural to consider
relations between entities as translation operations. For



distributed representations, entities are embedded into a
low-dimensional space, and ideal representations should
embed entities with similar semantics into the nearby
regions, while entities with different meanings should
belong to distinct clusters. For example, William

Shakespeare and Jane Austen may be in the same cluster of
writers, Romeo and Juliet and Pride and Prejudice may be
in another cluster of books. In this case, they share the
same relation Notable Work, and the translations from
writers to their books in the embedding space are similar.

The secondary motivation of translation methods derives
from the breakthrough in word representation learning.
Word2vec [108] proposes two simple models, skip-gram
and CBOW, to learn distributed word representations from
large-scale corpora. The learned word embeddings perform
well in measuring word similarities and analogies. And
these word embeddings have some interesting phenomena:
if the same semantic or syntactic relations are shared by
two word pairs, the translations within the two word pairs
are similar. For instance, we have

(9.13)
where w(⋅) represents the embedding of the word. We
know that the semantic relation between king and man is
similar to the relation between queen and woman, and the
above case shows that this relational knowledge is
successfully embedded into word representations. Apart
from semantic relations, syntactic relations can also be well
represented by word2vec, as shown in the following
example:

(9.14)
Since word2vec implies that the implicit relations between
words can be seen as translations, it is reasonable to
assume that relations in KGs can also be modeled as



translation embeddings. More intuitively, if we represent a
word pair and its implicit relation using a triplet, e.g., 〈big,
Comparative, bigger〉, we can obviously observe the
similarity between word representation learning and
knowledge representation learning.

The last motivation comes from the consideration of the
computational complexity. On the one hand, the substantial
increase in the model complexity will result in high
computational costs and obscure model interpretability,
and a complex model may lead to overfitting. On the other
hand, the experimental results on the model complexity
demonstrate that the simpler models perform almost as
well as more expressive models in most knowledge-related
applications [117, 186], in the condition that large-scale
datasets and a relatively large amount of relations can be
used for training models. As KG size increases, the
computational complexity becomes the primary challenge
for knowledge representation learning. The intuitive
assumption of modeling relations as translations rather
than matrices leads to a better trade-off between
effectiveness and efficiency.

Since the translation-based methods are all extended
from TransE [12], we thus first introduce TransE in detail
and then introduce its extensions.

TransE  As illustrated in Fig. 9.6, TransE embeds entities
as well as relations into the same space. In the embedding
space, relations are considered as translations from head
entities to tail entities. With this translation assumption,
given a triplet 〈h, r, t〉 in  , we want h + r to be the nearest
neighbor of the tail embedding t. The score function of
TransE is then defined as

(9.15)
TransE uses the margin-based loss function for training.
Although TransE is effective and efficient, it still has



several challenges to be further explored.

Fig. 9.6  The architecture of TransE [12]

First, considering that there may be multiple correct
answers given two elements in a triplet, under the
translation assumption in TransE, each entity has only one
embedding in all triplets, which may lead to reducing the
discrimination of entity embeddings. In TransE, according
to the entity cardinalities of relations, all relations are
classified into four categories, 1-to-1, 1-to-Many, Many-to-1,
and Many-to-Many. A relation is considered as 1-to-1 if one
head appears with only one tail and vice versa, 1-to-Many if
a head can appear with many tails, Many-to-1 if a tail can
appear with many heads, and Many-to-Many if multiple
heads appear with multiple tails. Statistics demonstrate
that the 1-to-Many, Many-to-1, and Many-to-Many relations
occupy a large proportion. TransE performs well on 1-to-1
relations, but has problems when handling 1-to-Many,
Many-to-1, and Many-to-Many relations. For instance, given
the head entity William Shakespeare and the relation
Notable Work, we can get a list of masterpieces, such as



Hamlet, A Midsummer Night’s Dream, and Romeo and

Juliet. These books share the same writer information while
differing in many other fields such as theme, background,
and famous roles in the book. Due to the entity William

Shakespeare and the relation Notable Work, these books
may be assigned similar embeddings and become
indistinguishable.

Second, although the translation operation is intuitive
and effective, only considering the simple one-step
translation may limit the ability to model KGs. Taking
entities and relations as nodes and edges, the nodes that
are not directly connected may be linked by a path of more
than one edge. However, TransE focuses on minimizing ∥h 
+ r −t∥, which only utilizes the one-step relation information
in KGs, regardless of the latent relationships located in
long-distance paths. For example, if we know 〈The

forbidden city, Located in, Beijing〉 and 〈Beijing, Capital
of, China〉, we can infer that The forbidden city locates in
China. TransE can be further enhanced with the favor of
multistep information.

Third, the representation and the score function in
TransE are oversimplified for the consideration of
efficiency. Therefore, TransE may not be capable enough of
modeling those complex entities and relations in KGs.
There are still some challenges in how to balance
effectiveness and efficiency as well as avoid overfitting and
underfitting.

After TransE, there are lots of subsequent methods
addressing the above challenges. Specifically, TransH
[165], TransR [90], TransD [102], and TranSparse [71] are
proposed to solve the challenges in modeling complex
relations, PTransE is proposed to encode long-distance
information located in multistep paths, and CTransR,
TransG, and KG2E further extend the oversimplified model



of TransE. Next, we will discuss these subsequent methods
in detail.

TransH  TransH [165] enables an entity to have multiple
relation-specific representations to address the issue that
TransE cannot well model 1-to-Many, Many-to-1, and Many-
to-Many relations. As we mentioned before, in TransE,
entities are embedded to the same semantic embedding
space and similar entities tend to be in the same cluster.
However, it seems that William Shakespeare should be in
the neighborhood of Isaac Newton when talking about
Nationality, while it should be close to Mark Twain when
talking about Occupation. To accomplish this, entities
should have multiple representations in different triplets.

As illustrated in Fig. 9.7, TransH proposes a hyperplane
wr for each relation, and computes the translation on the
hyperplane wr. Given a triplet 〈h, r, t〉, TransH projects h
and t to the corresponding hyperplane wr to get the
projection h⊥ and t⊥, and r is used to connect h⊥ and t⊥:

(9.16)

Fig. 9.7  The architecture of TransH [165]



where wr is a vector and ∥wr∥2 is restricted to 1. The
score function is

(9.17)
As for training, TransH also minimizes the margin-based
loss function with negative sampling, which is similar to
TransE.

TransR  TransR [90] takes full advantage of linear
methods and translation methods. As in Eq. (9.16), TransH
enables entities to have multiple relation-specific
representations by projecting them to different
hyperplanes, while entity embeddings and relation
embeddings are still restricted in the same space, which
may limit the ability for modeling entities and relations.
TransR assumes that entity embeddings and relation
embeddings should be in different spaces.

As illustrated in Fig. 9.8, For a triplet 〈h, r, t〉, TransR
projects h and t to the relation space of r, and this
projection is defined as

(9.18)
where Mr is the projection matrix. hr and tr stand for the
relation-specific entity representations in the relation space
of r, respectively. This means that each entity has a
relation-specific representation for each relation, and all
translation operations are processed in the relation-specific
space. The score function of TransR is

(9.19)
TransR constrains the norms of the embeddings and has
∥h∥2 ≤ 1, ∥t∥2 ≤ 1, ∥r∥2 ≤ 1, ∥hr∥2 ≤ 1, ∥tr∥2 ≤ 1. As for training,
TransR uses the same margin-based loss function as
TransE.



Fig. 9.8  The architecture of TransR [90]

Furthermore, a relation should also have multiple
representations since the meanings of a relation with
different head and tail entities differ slightly. For example,
the relation Contains the Location has head-tail patterns
like city-street, country-city, and even country-university,
each conveys different attribute information. To handle
these subtle differences, entities for a same relation should
also be projected differently.

To this end, cluster-based TransR (CTransR) is then
proposed, which is an enhanced version of TransR by
taking the nuance in meaning for a same relation with
different entities into consideration. More specifically, for
each relation, all entity pairs of the relation are first
clustered into several groups. The clustering process
depends on the result of t −h for each entity pair (h, t), and
h and t are the embeddings learned by TransE. Then, we
assign a distinct sub-relation embedding rc for each cluster
of the relation r according to cluster-specific entity pairs,
and the original score function of TransR is modified as

(9.20)



where λ is a hyper-parameter to control the regularization
term and ∥rc −r∥ is to make the sub-relation embedding rc

and the unified relation embedding r not too distinct.

TransD  TransD [102] is an extension of TransR that uses
dynamic mapping matrices to project entities into relation-
specific spaces. TransR focuses on learning multiple
relation-specific entity representations. However, TransR
projects entities according to only relations, ignoring the
entity diversity. Moreover, the projection operations based
on matrix-vector multiplication lead to a higher
computational complexity compared to TransE, which is
time-consuming when applied on large-scale KGs.

For each entity and relation, TransD defines two
vectors: one is used as the embedding, and the other is
used to construct projection matrices to map entities to
relation spaces. As illustrated in Fig. 9.9, We use h, t, r to
denote the embeddings of entities and relations, and hp, tp,
rp to represent the projection vectors. There are two
projection matrices Mrh, Mrt used to project entities to
relation spaces, and these projection matrices are
dynamically constructed as

(9.21)

which means the projection vectors of both entities and
relations are combined to determine dynamic projection
matrices. The score function is

(9.22)
These projection matrices are initialized with identity
matrices by setting all the projection vectors to 0 at
initialization, and the normalization constraints in TransR
are also used for TransD.



Fig. 9.9  The architecture of TransD [102]

TransD proposes a dynamic method to construct
projection matrices by considering the diversities of both
entities and relations, achieving better performance
compared to existing methods in knowledge completion.
Moreover, TransD lowers both computational and spatial
complexity compared to TransR.

TranSparse  TranSparse [71] is also a subsequent work
of TransR. Although TransR has achieved promising
results, there are still two challenges remained. One is the
heterogeneity challenge. Relations in KGs differ in
granularity. Some relations express complex semantics
between entities, while some other relations are relatively
simple. The other is the imbalance challenge. Some
relations have more valid head entities and fewer valid tail
entities, while some are the opposite. If we consider these
challenges rather than merely treating all relations equally,
we can obtain better knowledge representations.

Existing methods such as TransR build projection
matrices for each relation, and these projection matrices
have the same parameter scale, regardless of the variety in
the complexity of relations. TranSparse is proposed to



address this issue. The underlying assumption of
TranSparse is that complex relations should have more
parameters to learn while simple relations should have
fewer parameters, where the relation complexity is judged
from the number of triplets or entities linked to the
relation. To accomplish this, two models are proposed,
including TranSparse-share and TranSparse-separate.

Inspired by TransR, given a relation r, TranSparse-share
builds a relation-specific projection matrix Mr(θr) for the
relation. Mr(θr) is sparse and the sparse degree θr mainly
depends on the number of entity pairs linked to r. Suppose
Nr is the number of linked entity pairs,  represents the
maximum number of Nr, and θmin denotes the minimum
sparse degree of projection matrices that 0 ≤ θmin ≤ 1. The
sparse degree of relation r is defined as

(9.23)

Both head and tail entities share the same sparse
projection matrix Mr(θr). The score function is

(9.24)
Different from TranSparse-share, TranSparse-separate

builds two different sparse matrices Mrh(θrh) and Mrt(θrt)
for head and tail entities, respectively. Then, the sparse
degree θrh (or θrt) depends on the number of head (or tail)
entities linked to r. We have Nrh (or Nrt) to represent the
number of head (or tail) entities, as well as  (or  ) to
represent the maximum number of Nrh (or Nrt). And θmin
will also be set as the minimum sparse degree of projection
matrices that 0 ≤ θmin ≤ 1. We have

(9.25)



The final score function of TranSparse-separate is
(9.26)

Through sparse projection matrices, TranSparse solves the
heterogeneity challenge and the imbalance challenge
simultaneously.

PTransE  PTransE [89] is an extension of TransE that
considers multistep relational paths. All abovementioned
translation methods only consider simple one-step paths
(i.e., relation) to perform the translation operation,
ignoring the rich global information located in the whole
KGs. For instance, if we notice the multistep relational path
that 〈The forbidden city, Located in, Beijing〉  〈Beijing,
Capital of, China〉, we can inference with confidence that
the triplet 〈The forbidden city, Located in, China〉 may
exist. Relational paths provide us a powerful way to build
better representations for KGs and even help us better
understand knowledge reasoning.

There are two main challenges when encoding the
information in multistep relational paths. First, how to
select reliable and meaningful relational paths among
enormous path candidates in KGs, since there are lots of
paths that cannot indicate reasonable relations. Consider
two triplet facts 〈The forbidden city, Located in, Beijing〉

 〈Beijing, held, 2008 Summer Olympics〉, it is hard to
describe the relation between The forbidden city and 2008

Summer Olympics. Second, how to model the meaningful
relational paths? It is not easy to handle the problem of
semantic composition in relational paths.

To select meaningful relational paths, PTransE uses a
path-constraint resource allocation (PCRA) algorithm to
judge the path reliability. Suppose there is information (or
resource) in the head entity h which will flow to the tail
entity t through some certain paths. The basic assumption



of PCRA is that the reliability of the path ℓ depends on the
amount of resource that eventually flows from head to tail.
Formally, we denote a certain path between h and t as ℓ = 
(r1, …, rl). The resource that travels from h to t following
the path could be represented as  ). For an entity m ∈ Si,
the amount of resource that belongs to m is defined as

(9.27)

where Si−1(⋅, m) indicates all direct predecessors of the
entity m along with the relation ri in Si−1 and Si(n, ⋅)
indicates all direct successors of n ∈ Si−1 with the relation
ri. Finally, the amount of resource that flows to the tail Rℓ(t)
is used to measure the reliability of ℓ, given the triplet 〈h, ℓ,
t〉.

Once we finish selecting those meaningful relational
path candidates, the next challenge is to model the
semantic composition of these multistep paths. PTransE
proposes three composition operations, namely, addition,
multiplication, and recurrent neural networks, to get the
path representation l based on the relations in ℓ = (r1, …,
rl). The score function is

(9.28)
where r indicates the golden relation between h and t.
Since PTransE also wants to meet the assumption in
TransE that  , PTransE directly utilizes r in training. The
optimization objective of PTransE is

(9.29)

where  is the margin-based loss function with f(h, r,
t),  is the margin-based score function with f(ℓ, r), and



Z =∑ℓ ∈ P(h,t)R(ℓ|h, t) is a normalization factor. The
reliability R(ℓ|h, t) of ℓ in (h, ℓ, t) is well considered in the
overall loss function. For the path ℓ, the initial resource is
set as Rℓ(h) = 1. By recursively performing PCRA from h to t
through ℓ, the resource Rℓ(t) can indicate how much
information can be well translated, and Rℓ(t) is thus used to
measure the reliability of the path ℓ, i.e., R(ℓ|h, t) = Rℓ(t).
Besides PTransE, similar ideas [47, 50] also consider
multistep relational paths and demonstrate that there is
plentiful information located in multistep relational paths
which could significantly improve knowledge
representation.

KG2E  KG2E [65] introduces multidimensional Gaussian
distributions to represent KGs. Existing translation
methods usually consider entities and relations as vectors
embedded in low-dimensional spaces. However, as
explained above, entities and relations in KGs are diverse
at different granularities. Therefore, the margin in the
margin-based loss function that is used to distinguish
positive triplets from negative triplets should be more
flexible due to the diversity, and the uncertainties of
entities and relations should be taken into consideration.

KG2E represents entities and relations with Gaussian
distributions. Specifically, the mean vector denotes the
central position of an entity or a relation, and the
covariance matrix denotes its uncertainties. Following the
score function proposed in TransE, for 〈h, r, t〉, the
Gaussian distributions of entities and relations are defined
as

(9.30)
Note that the covariances are diagonal for efficient
computation. KG2E hypothesizes that head and tail entities



are independent with specific relations; then, the
translation could be defined as

(9.31)
To measure the dissimilarity between e and r, KG2E
considers both asymmetric similarity and symmetric
similarity, and then proposes two methods.

The asymmetric similarity is based on the KL divergence
between e and r, which is a typical method to measure the
similarity between two distributions. The score function is

(9.32)

where tr(Σ) indicates the trace of Σ and Σ−1 indicates the
inverse of Σ.

The symmetric similarity is built on the expected
likelihood and probability product kernel. KE2G takes the
inner product between the probability density functions of
e and r as the measurement of similarity. The logarithm of
score function defined is

(9.33)

The optimization objective of KG2E is also margin-based
similar to TransE. Both asymmetric and symmetric
similarities are constrained by some regularizations to
avoid overfitting:

(9.34)



where cmin and cmax are the hyper-parameters as the
restriction values for covariance.

TransG  TransG [174] discusses the problem that some
relations in KGs such as Contains the Location or Part
of may have multiple sub-meanings, which is also
discussed in TransR. In fact, these complex relations could
be divided into several more precise sub-relations. To
address this issue, CTransR is proposed with a
preprocessing that clusters sub-relation according to entity
pairs.

As illustrated in Fig. 9.10, TransG assumes that the
embeddings containing several semantic components
should follow a Gaussian mixture model. The generative
process is:
1.

For each entity e ∈ E, TransG sets a standard normal
distribution:  .

Fig. 9.10  The architecture of TransG [174]. The figure is redrawn
according to Fig. 2 from TransG paper [174]

 

2. For a triplet 〈h, r, t〉, TransG uses the Chinese
restaurant process (CRP) to automatically detect
semantic components (i.e., sub-meanings in a relation):

 



 . πr,n is the weight of the i-th component
generated by the Chinese restaurant process from the
data.

3.
Draw the head embedding from a standard normal
distribution:  .

 
4.

Draw the tail embedding from a standard normal
distribution:  .

 
5.

Calculate the relation embedding for this semantic
component: μr,n = t −h.

 
Finally, the score function is

(9.35)

in which Nr is the number of semantic components of the
relation r.

9.3.3 Neural Representation

With the development of neural networks, several efforts
have been devoted to exploring neural networks for
modeling KGs. Next, we will introduce how to represent
KGs with neural networks.

Single Layer Model (SLM)  Inspired by the previous
works in representing KGs, SLM represents both entities
and relations in low-dimensional spaces, and uses relation-
specific matrices to project entities to relation spaces.
Similar to the linear method SE, the score function of SLM
is

(9.36)



where h,  represent head and tail embeddings,
 represents relation embedding, and Mr,1,

 stand for the relation-specific matrices.

Neural Tensor Network (NTN)  Although SLM has
introduced relation embeddings as well as a nonlinear
neural layer to build the score function, the representation
capability is still restricted. NTN [143] is then proposed by
introducing tensors into the SLM framework, which can be
seen as an enhanced version of SLM. Besides the original
linear neural network layer that projects entities to the
relation space, NTN adds another tensor-based neural layer
which combines head and tail embeddings with a relation-
specific tensor. The score function of NTN is

(9.37)

where  is a three-way relation-specific tensor,
br is the bias, and Mr,1,  are the relation-
specific matrices. Note that SLM can be seen as a
simplified version of NTN if the tensor and the bias are set
to zero.

Besides improving the score function, NTN also
attempts to utilize the latent textual information located in
entity names and successfully achieves significant
improvements. Differing from previous methods that
provide each entity with a vector, NTN represents each
entity as the average of its entity name’s word embeddings.
For example, the entity Bengal tiger will be represented as
the average word embeddings of Bengal and tiger. It is
apparent that the entity name will provide valuable
information for understanding an entity, since Bengal tiger

may come from Bengal and be related to other tigers.
NTN utilizes tensor-based neural networks to model

triplet facts and achieves excellent success. However, the



overcomplicated method leads to high computational
complexity compared to other methods, and the vast
number of parameters limits the performance on sparse
and large-scale KGs.

Neural Association Model (NAM)  NAM [94] adopts
multilayer nonlinear activation to model relations. More
specifically, two structures are used by NAM to represent
KGs: deep neural network (DNN) and relation modulated
neural network (RMNN).

NAM-DNN adopts a MLP with L layers to operate
knowledge embeddings:

(9.38)

where z0 = [h;r] is the concatenation of h and r, Mk is the
weight matrix of the k-th layer, and bk is the bias vector of
the k-th layer. Finally, NAM-DNN defines the score
function as

(9.39)
As compared with NAM-DNN, NAM-RMNN additionally

feeds the relation embedding r into the model:
(9.40)

where Mk and Bk indicate the weight and bias matrices.
Finally, NAM-RMNN defines the score function as

(9.41)

Convolutional 2D Embeddings (ConvE)  ConvE [32]
uses 2D convolutional operations over embeddings to
model KGs. Specifically, ConvE uses convolutional and fully
connected layers to model interactions between entities
and relations. After that, the obtained features are
flattened and transformed by a fully connected layer, and



the inner product between the final feature and the tail
entity embeddings is used to build the score function:

(9.42)

where  is the concatenation of  and  , N(⋅) is a neural
layer, ∗ denotes the convolution operator, and  means
compressing a matrix into a vector.  and  denote the 2D-
reshaping versions of h and r, respectively: if  ,
then  , where d = dadb.

To some extent, ConvE can be seen as an improvement
model based on HolE. Compared with HolE, ConvE adopts
multiple neural layers to learn nonlinear features and is
thus more expressive than HolE.

Relational Graph Convolutional Networks (RGCN)

RGCN [136] is an extension of GCNs to model KGs. The
core idea of RGCN is to formalize modeling KGs as
message passing. Therefore, in RGCN, the representations
of entities and relations are the results of information
propagation and fusion at multiple layers. Specifically,
given an entity h, its embedding at the (k + 1)-th layer is

(9.43)

where  denotes the neighbor set of h under the relation
r and  is the normalization factor.  can be either
learned or preset, and normally  .

Note that RGCN only aims to obtain more expressive
features for entities and relations. Therefore, based on the
output features of RGCN, any score function mentioned
above can be used here, such as combining the features of
RGCN and the score function of TransE to learn knowledge
representations.



9.3.4 Manifold Representation

So far, we have introduced linear methods, translation
methods, and neural methods for knowledge
representation. All these methods project entities and
relations into low-dimensional embedding spaces, and seek
to improve the flexibility and variety of entity and relation
representations. Although these methods have achieved
promising results, they assume that the geometry of the
embedding spaces for entities and relations are all
Euclidean. However, the basic Euclidean geometry may not
be the optimal geometry to model the complex structure of
KGs. Next, we will introduce several typical manifold
methods that aim to use more flexible and powerful
geometric spaces to carry representations.

ManifoldE  ManifoldE [173] considers the possible
positions of golden candidates for representations in spaces
as a manifold rather than a point. The overall score
function of ManifoldE is

(9.44)
in which  is a relation-specific manifold parameter. Two
kinds of manifolds are then proposed in ManifoldE.
ManifoldE-Sphere is a straightforward manifold that
supposes t should be located in the sphere which has h + r
to be the center and Dr to be the radius. We have:

(9.45)
A tail may correspond to many different head-relation pairs,
and the manifold assumption requires that the tail lays in
all the manifolds of these head-relation pairs, i.e., lays in
the intersection of these manifolds. However, two spheres
can only intersect only under some strict conditions.
Therefore, the hyperplane is utilized because it is easier for



two hyperplanes to intersect. The function of ManifoldE-
Hyperplane is

(9.46)

in which rh and rt represent the two entity-specific
embeddings of the relation r. This indicates that for a
triplet 〈h, r, t〉, the tail entity t should locate in the
hyperplane whose normal vector is h + rh and intercept is

 . Furthermore, ManifoldE-Hyperplane considers
absolute values in M(h, r, t) as |h + rh|⊤|t + rt| to double the
solution number of possible tail entities. For both
manifolds, ManifoldE applies a kernel form on the
reproducing kernel Hilbert space.

ComplEx  ComplEx [153] employs an eigenvalue
decomposition model which makes use of complex-valued
embeddings, i.e.,  . Complex embeddings can
well handle binary relations, such as the symmetric and
antisymmetric relations. The score function of ComplEx is

where 〈x, y, z〉 =∑ixiyizi denotes the trilinear dot product,
Re(x) is the real part of x, and Im(x) is the imaginary part
of x. In fact, ComplEx can be viewed as a generalization of
RESCAL that uses complex embeddings to model KGs.

RotatE  Similar to ComplEx, RotatE [149] also represents
KGs with complex-valued embeddings. RotatE defines
relations as rotations from head entities to tail entities,
which makes it easier to learn various relation patterns
such as symmetry, antisymmetry, inversion, and
composition. The element-wise (Hadamard) product can



naturally represent the rotation process in the complex-
valued space. Therefore, the score function of RotatE is

(9.47)
where  and ⊙ denotes the element-wise
(Hadamard) product. RotatE is simple and achieves quite
good performance. Compared with previous methods, it is
the first model that is theoretically able to model all the
above four patterns (symmetry, antisymmetry, inversion,
and composition). On the basis of RotatE, Zhang et al.
[203] further introduce hypercomplex spaces to represent
entities and relations, and achieves better performance.

MuRP  MuRP [4] proposes to embed the entities in the
hyperbolic space since hyperbolic space is shown to be
more suitable to represent hierarchical data than Euclidean
space. Specifically, they embed the entities to the Poincaré
model [130] (a typical geometric model in hyperbolic
space), and exploit the Mobiüs transformations in the
Poincaré model as the alternatives to vector-matrix
multiplication and vector addition in Euclidean space. The
score function of MuRP is

(9.48)

where  calculates the distance between two points in
the Poincaré model, Mr is the transform matrix for the
relation r, r is the translation vector of the relation r, and
bh and bt are biases for the head and tail entities
respectively.  is the exponential mapping at 0 in the
Poincaré model of the curvature c, and it maps points in the
tangent space at 0 (an Euclidean subspace) to the Poincaré
model.  is the logarithmic mapping at 0 in the Poincaré
model of the curvature c, and is the inverse mapping for

 . MuRP with a dimension as low as 40 achieves



comparable results to the Euclidean models with dimension
greater than 100, showing the effectiveness of hyperbolic
space in encoding relational knowledge.

HyboNet  HyboNet [23] argues that previous hyperbolic
methods such as MuRP only introduce the hyperbolic
geometric for embeddings, but still perform linear
transformations in tangent spaces (Euclidean subspaces),
significantly limiting the capability of hyperbolic models.
Inspired by the Lorentz transformation in Physics, HyboNet
proposes a linear transformation in the Lorentz model
[130] (another typical geometric model to build hyperbolic
spaces) to avoid the introduction of exponential mapping
and logarithmic mapping when transforming embeddings,
significantly speeding up the network and stabilizing the
computation. The score function of HyboNet is

(9.49)
where  is the squared Lorentzian distance between two
points in Lorentz model, gr is the relation-specific Lorentz
linear transformation, bh, bt are the biases for the head and
tail entities, respectively, and δ is a hyper-parameter used
to make the training process more stable.

9.3.5 Contextualized Representation

We live in a complicated pluralistic real world where we
can get information from different senses. Due to this, we
can learn knowledge not only from structured KGs but also
from text, schemas, images, and rules. Despite the massive
size of existing KGs, there is a large amount of knowledge
in the real world that may not be included in the KGs.
Integrating multisource information provides a novel
approach for learning knowledge representations not only
from the internal structured information of KGs but also
from other external information. Moreover, exploring



multisource information can help further understand
human cognition with different senses in the real world.
Next, we will introduce typical methods that utilize
multisource information to enhance knowledge
representations.

Knowledge Representation with Text  Textual
information is one of the most common and widely used
information for knowledge representation. Wang et al.
[164] attempt to utilize textual information by jointly
learning representations of entities, relations, and words
within the same low-dimensional embedding space. The
method contains three parts: the knowledge model, the text
model, and the alignment model. The knowledge model is
learned on the triplets of KGs using TransE, while the text
model is learned on the text using skip-gram. As for the
alignment model, two methods are proposed to align entity
and word representations by utilizing Wikipedia anchors
and entity names, respectively.

Modeling entities and words into the same embedding
space has the merit of encoding the information in both
KGs and plain text in a unified semantic space. However,
Wang’s joint model mainly depends on the completeness of
Wikipedia anchors and suffers from the ambiguities of
many entity names. To address these issues, Zhong et al.
[207] further improve the alignment model with entity
descriptions, assuming that entities should have similar
semantics to their corresponding descriptions.

Different from the above joint models that merely
consider the alignments between KGs and textual
information, description-embodied knowledge
representation learning (DKRL) [176] can directly build
knowledge representations from entity descriptions.
Specifically, DKRL provides two kinds of knowledge
representations: for each entity h, the first is the structure-



based representation hS, which can be learned based on
the structure of KGs, and the second is the description-
based representation hD that derives from its description.
The score function of DKRL derives from translation
methods, and we have:

(9.50)
As shown in Fig. 9.11, the description-based
representations are constructed via CBOW or CNNs that
can encode rich textual information from plain text into
representations.

Fig. 9.11  The architecture of DKRL [176]. The figure is redrawn according to
Fig. 3 from DKRL paper [176]



Compared with conventional non-contextualized
methods, the representations learned by DKRL are built
with both structured and textual information and thus
could perform better. Besides, DKRL can represent an
entity even if it is not in the training set as long as there
are a few sentences to describe this entity. Therefore, with
millions of new entities emerging every day, DKRL can
handle these new entities based on the setting of zero-shot
learning.

Knowledge Representation with Types  Entity types, as
hierarchical schemas, can provide rich structured
information to understand entities. Generally, there are two
paths for using entity types for knowledge representations:
type-constrained methods and type-augmented methods.

Type-Constrained Methods  Krompaß et al. [78] take type
information as constraints to improve existing methods like
RESCAL and TransE via type constraints. It is intuitive that
for a particular relation, the head and tail entities
associated with this relation can only be of some specific
types. For example, the head entity of the relation Writes
Books should be a person (more precisely, an author), and
the tail entity should be a book.

With type constraints, in RESCAL, the original
factorization  in Eq.( 9.8) can be modified to

(9.51)

where  ,  are the entity sets fitting the type
constraints of the n-th relation rn in  , and X′n is a sparse
adjacency matrix of the shape  . Intuitively, only
the entities that fit type constraints will be considered
during the factorization process.

With type constraints, in TransE, negative samples with
higher quality can be generated. Learning knowledge



representations need negative samples, and negative
samples are often generated by randomly replacing
triplets’ head or tail entities. Given a triplet 〈h, r, t〉, with
type constraints, its negative samples  need to
satisfy

(9.52)
Intuitively, for an entity whose type does not match the
relation r, it will not be used to construct negative samples.
The negative samples constructed with type constraints are
more confusing, which is beneficial for learning more
robust and effective representations.

Type-Augmented Methods  In addition to the simplicity
and effectiveness of using the type information as
constraints, the representation can be further enhanced by
using the type information directly as additional
information in the learning. Instead of merely viewing type
information as type constraints, type-embodied knowledge
representation learning (TKRL) is proposed [177], utilizing
hierarchical type structures to instruct the construction of
projection matrices. Inspired by TransR that every entity
should have multiple representations in different relation
spaces, the score function of TKRL is

(9.53)
in which Mrh and Mrt are two projection matrices for h and
t that depend on their corresponding hierarchical types in
this triplet. Two hierarchical encoders are proposed to
learn the above projection matrices, regarding all sub-types
in the hierarchy as projection matrices, where the recursive
hierarchical encoder (RHE) is based on the matrix
multiplication operation, and the weighted hierarchical
encoder (WHE) is based on the matrix summation
operation.



Figure 9.12 shows a simple illustration of TKRL. Taking
a type hierarchy c with m layers for instance, c(i) is the i-th
sub-type. Considering the sub-type at the first layer is the
most precise and the sub-type at the last layer is the most
general, TKRL can get type-specific entity representations
at different granularities following the hierarchical
structure, and the projection matrices can be formalized as

(9.54)

where  stands for the projection matrix of the i-th sub-
type of the hierarchical type c and βi is the corresponding
weight of the sub-type. Taking RHE as an example, given
the entity William Shakespeare, it is first projected to a
general sub-type space like human and then sequentially
projected to a more precise sub-type like author or English

author.



Fig. 9.12  The architecture of TKRL [177]. The figure is redrawn according to
Fig. 2 from TKDL paper [177]

Knowledge Representation with Images  Human
cognition is highly related to the visual information of
objects in the real world. For entities in KGs, their
corresponding images can provide intuitive visual
information about their appearance, which may give
important hints about some attributes of the entities. For
instance, Fig. 9.13 shows the images of Suit of armour and
Armet. From these images, we can easily infer the fact
〈Suit of armour, Has a Part, Armet〉 directly.



Fig. 9.13  Examples of entity images. These examples come from the original
paper of TKRL [175]. All these images come from ImageNet [31]

Image-embodied knowledge representation learning
(IKRL) [175] is proposed to consider visual information
when learning knowledge representations. Inspired by the
abovementioned DKRL, for each entity h, IKRL also
proposes the image-based representation hI besides the
original structure-based representation hS, and jointly
learns these entity representations simultaneously within
the translation-based framework:

(9.55)
More specifically, IKRL uses CNNs to obtain the
representations of all entity images, and then uses a matrix
to project image representations from the image
embedding space to the entity embedding space. Since one
entity may have multiple images, IKRL uses an attention-
based method to highlight those most informative images.
IKRL not only shows the importance of visual information
for representing entities but also shows the possibility of
finding a unified space to represent heterogeneous and
multimodal information.



Knowledge Representation with Logic Rules  Typical
KGs store knowledge in the form of triplets with one
relation linking two entities. Most existing knowledge
representation methods only consider the information of
triplets independently, ignoring the possible interactions
and relations between different triplets. Logic rules, which
are certain kinds of summaries derived from human prior
knowledge, could help us with knowledge reasoning. For
instance, given the triplet 〈 Beijing, Capital of, China〉, we
can easily infer the triplet 〈Beijing, Located in, China〉
with high confidence, since we know the logic rule Capital
of ⇒ Located in. To this end, various efforts have been
devoted to exploring logic rules for KGs [5, 127, 162]. Here
we introduce a typical translation method that jointly
learns knowledge representations and logic rules – KALE
[52]. KALE can rank all possible logic rules based on the
results pre-trained by TransE, and then manually filter
useful rules to improve knowledge representations.

The joint learning of KALE consists of two parts: triplet
modeling and rule modeling. For the triplet modeling,
KALE defines its score function following the translation
assumption as

(9.56)

in which d stands for the dimension of knowledge
embeddings. f(h, r, t) takes a value in [0, 1], aiming to map
discrete Boolean values (false or true) into a continuous
space ([0, 1]). For the rule modeling, KALE uses the t-norm
fuzzy logics [55] that compute the truth value of a complex
formula from the truth values of its constituents.
Especially, KALE focuses on two typical types of logic rules.
The first rule is ∀h, t : 〈h, r1, t〉⇒〈h, r2, t〉 (e.g., given
〈Beijing, Capital of, China〉, we can infer that 〈Beijing,



Located in, China〉). KALE represents the score function of
this logic rule l1 via specific t-norm logical connectives as

(9.57)
The second rule is ∀h, e, t : 〈h, r1, e〉∧〈e, r2, t〉⇒〈h, r3, t〉
(e.g., given 〈Tsinghua, Located in, Beijing〉 and 〈Beijing,
Located in, China〉, we can infer that 〈Tsinghua, Located
in, China〉). And the second score function is defined as

(9.58)
The joint training contains all positive formulas, including
triplet facts and logic rules. Note that for the consideration
of rule qualities, KALE ranks all possible logic rules by their
truth values with pre-trained TransE and manually filters
some rules.

9.3.6 Summary

Knowledge representation learning is the cornerstone of
applying knowledge for NLP tasks. Knowledge can be
incorporated into NLP tasks in a high-quality manner only
with good knowledge representations. In this section, we
introduce five directions of existing efforts to obtain
distributed knowledge representations: (1) linear methods,
where relations are represented as linear transformations
between entities, (2) translation methods, where relations
are represented as additive translations between entities,
(3) neural methods, where neural networks parameterize
the interactions between entities and relations, (4)
manifold methods, where representations are learned in
more flexible and powerful geometric spaces instead of the
basic Euclidean geometry, and (5) contextualized methods,
where representations are learned under complex contexts.

In summary, from simple methods like SE and TransE,
to more sophisticated methods that use neural networks
(e.g., ConvE), the hyperbolic geometry (e.g., HyboNet), and



textual information (e.g., DKRL), all these methods can
provide effective knowledge representations. These
methods lay a solid foundation for further knowledge-
guided NLP and knowledge acquisition, which will be
introduced in later sections. Note that more sophisticated
methods do not necessarily lead to a better application in
NLP tasks. Researchers still need to choose the appropriate
knowledge representation learning method according to
the characteristics of specific tasks and the balance
between computational efficiency and representation
quality.

9.4 Knowledge-Guided NLP

An effective NLP agent is expected to accurately and
deeply understand user demands, and appropriately and
flexibly give responses and solutions. Such kind of work
can only be done supported by certain forms of knowledge.
To this end, knowledge-guided NLP has been widely
explored in recent years. Figure 9.14 shows a brief pipeline
of utilizing knowledge for NLP tasks. In this pipeline, we
first need to extract knowledge from heterogeneous data
sources and store the extracted knowledge with knowledge
systems (e.g., KGs). Next, we need to project knowledge
systems into low-dimensional continuous spaces with
knowledge representation learning methods to manipulate
the knowledge in a machine-friendly way. Finally,
informative knowledge representations can be applied to
handle various NLP tasks. After introducing how to learn
knowledge representations, we will detailedly show in this
section how to use knowledge representations for specific
NLP tasks.



Fig. 9.14  The pipeline of utilizing knowledge for NLP tasks

The performance of NLP models (more generally,
machine learning models) depends on four critical factors:
input data, model architecture, learning objective, and
hypothesis space. And the whole goal is to minimize the
structural risk

(9.59)

where xi is the input data, f is the model function,  is the
learning objective,  is the hypothesis space, and  is
the regularization term. By applying knowledge to each of
these four factors, we can form four directions to perform
knowledge-guided NLP: (1) knowledge augmentation,
which aims to augment the input data xi with knowledge;
(2) knowledge reformulation, which aims to reformulate
the model function f with knowledge; (3) knowledge
regularization, which aims to regularize or modify the
learning objectives  with knowledge; (4) knowledge
transfer, which aims to transfer the pre-trained parameters
as prior knowledge to constrain the hypothesis space  .

Some works [60, 61] have briefly introduced this
knowledge-guided NLP framework, while in this section, we
will further present more details around the four
knowledge-guided directions. In addition, to make this
section clearer and more intuitive, we will also introduce
some specific application cases of knowledge-guided NLP.



9.4.1 Knowledge Augmentation

Knowledge augmentation aims at using knowledge to
augment the input features of models. Formally, after using
knowledge  ) to augment the input, the original risk
function is changed to

(9.60)

In order to achieve this kind of knowledge augmentation at
the input level, existing efforts focus on adopting two
mainstream approaches.

Augmentation with Knowledge Context  One approach
is to directly add knowledge to the input as additional
context. Augmenting language modeling with retrieval is a
representative method, such as REALM [53] and RAG [86].
These methods retrieve background knowledge from
additional corpora and then use the retrieved knowledge to
provide more information for language modeling. Since the
retrieved knowledge can significantly improve the
performance of language understanding and generation,
this approach to achieving knowledge augmentation is
widely applied by question answering [76, 111] and
dialogue systems [139, 168]. Next, we will take RAG as an
example to show how to perform knowledge augmentation
with knowledge context.

Example: Knowledge Augmentation for the Generation of

PTMs  In recent years, PTMs have achieved state-of-the-
art results on a variety of NLP tasks, but these PTMs still
face challenges in precisely accessing and manipulating
knowledge and cannot well handle various knowledge-
intensive tasks, especially for various text generation tasks
that require extensive knowledge. To help PTMs utilize
more knowledge for text generation, retrieval-augmented



generation (RAG) [86] has been proposed with the aim of
using the retrieved external knowledge as additional
context to generate text with higher quality.

Given the input sequence x to generate the output
sequence y, the overall process of the typical
autoregressive generation method can be formalized as

 , where θ is the parameters of
the generator, N is the length of y, and yi is the i-th token of
y. To use more knowledge to generate y, RAG first retrieves
the external information z according to the input x and then
generates the output sequence y based on both x and z. To
ensure that the retrieved contents can cover the crucial
knowledge required to generate y, the top-K contents
retrieved by the retriever are all used to help generate the
output sequence y, and thus the overall generation process
is

(9.61)

where η is the parameters of the retriever.
In addition to applying knowledge augmentation at the

sequence level, token-level RAG is also introduced to
provide finer-grained augmentation. Specifically, token-
level RAG first retrieves the top K external information
according to the input x, which is the same as RAG-
Sequence. When generating text, token-level RAG
considers all the retrieved information together to generate
the distribution for the next output token, instead of
sequence-level RAG which separately generates sequences
based on the retrieved content and then merges the
generated sequences. Formally, the token-level RAG is



(9.62)

To sum up, RAG adds the retrieved knowledge to the input
as additional context, which is a typical example of
knowledge augmentation with knowledge context.

Augmentation with Knowledge Embeddings  Another
approach is to design special modules to fuse the original
input features and knowledge embeddings and then use the
knowledgeable features as the input to solve NLP tasks.
Since this approach can help to fully utilize heterogeneous
knowledge from multiple sources, many works follow this
approach to integrate unstructured text and structured
symbolic knowledge in KGs, leading to knowledge-guided
information retrieval [87, 100] and knowledge-guided
PTMs [96, 124, 128, 163, 185, 205]. Next, we will first
introduce word-entity duet, an effective information
retrieval method, and then take a typical knowledge-guided
information retrieval method EDRM as an example to show
how to perform knowledge augmentation with knowledge
embeddings.

Example: Knowledge Augmentation for Information

Retrieval  Information retrieval focuses on obtaining
informative representations of queries and documents, and
then designing effective metrics to compute the similarities
between queries and documents. The emergence of large-
scale KGs has motivated the development of entity-oriented
information retrieval, which aims to leverage KGs to
improve the retrieval process. Word-entity duet [179] is a
typical method for entity-oriented information retrieval.
Specifically, given a query q and a document d, word-entity
duet first constructs bag-of-words qw and dw. By annotating
the entities mentioned by the query q and the document d,



word-entity duet then constructs bag-of-entities qe and de.
Based on bag-of-words and bag-of-entities, word-entity duet
utilizes the duet representations of bag-of-words and bag-
of-entities to match the query q and the document d. The
word-entity duet method consists of a four-way interaction:
query words to document words (qw-dw), query words to
document entities (qw-de), query entities to document
words (qe-dw), and query entities to document entities (qe-
de).

On the basis of the word-entity duet method, EDRM
[100] further uses distributed representations instead of
bag-of-words and bag-of-entities to represent queries and
documents for ranking. As shown in Fig. 9.15, EDRM first
learns the distributed representations of entities according
to entity-related information in KGs, such as entity
descriptions and entity types. Then, EDRM uses
interaction-based neural models [28] to match the query
and documents with word-entity duet distributed
representations. More specifically, EDRM uses a
translation layer that calculates the similarity between
query-document terms: (  or  ) and (  or  ). It
constructs the interaction matrix M = {Mww, Mwe, Mew,
Mee}, by denoting Mww, Mwe, Mew, Mee as the interactions
of qw-dw, qw-de, qe-dw, qe-de, respectively. And the elements
in these matrices are the cosine similarities of
corresponding terms:

(9.63)

The final ranking feature Φ(M) is a concatenation of four
cross matches:

(9.64)



where ϕ(⋅) can be any function used in interaction-based
neural ranking models, such as using Gaussian kernels to
extract the matching feature from the matrix M and then
pool into a feature vector ϕ(M). For more details of
designing ϕ(⋅) and using Φ(M) to compute ranking scores,
we suggest referring to some typical interaction-based
information retrieval models [28, 180].

Fig. 9.15  The architecture of EDRM [100]. The figure is redrawn according to
Fig. 1 from EDRM paper [100]

To sum up, EDRM introduces distributed knowledge
representations to improve the representations of queries
and documents for information retrieval, which is a typical
example of knowledge augmentation with knowledge
embeddings.

9.4.2 Knowledge Reformulation

Knowledge reformulation aims at using knowledge to
enhance the model processing procedure. Formally, after
using knowledge to reformulate the model function, the
original risk function is changed to

(9.65)



where fk(⋅) is the model function reformulated by
knowledge. Considering the complexity of the model
function f(⋅), it is difficult for us to comprehensively discuss
the construction process of fk. To introduce this section
more clearly and give readers a more intuitive
understanding of knowledge reformulation, we here focus
on introducing two relatively simple knowledge
reformulation scenarios: knowledgeable preprocessing and
post-processing.

Knowledgeable Preprocessing  On the one hand, we
can use the underlying knowledge-guided model layer for
preprocessing to make features more informative [160,
167, 194]. Formally, xi is first input to the function k and
then input to the function f as

(9.66)
where k(⋅) is the knowledge-guided model function used for
preprocessing and f(⋅) is the original model function. The
knowledge-guided attention mechanism is a representative
approach that usually leverages informative knowledge
representations to enhance model feature processing. Next,
we will take two typical knowledge-guided attention
mechanisms [58, 178] as examples to show how to use
knowledge for model preprocessing.

Example: Knowledge Reformulation for Knowledge

Acquisition  Knowledge acquisition includes two main
approaches. One is knowledge graph completion (KGC),
which aims to perform link prediction on KGs. The other is
relation extraction (RE) to predict relations between entity
pairs based on the sentences containing entity pairs.
Formally, given sentences s1, s2, ⋯ containing the entity
pair h, t, RE aims to evaluate the likelihood that a relation r
and h, t can form a triplet based on the semantics of these



sentences. Different from RE, KGC only uses the
representations of h, r, t learned by knowledge
representation learning methods to compute the score
function f(h, r, t), and the score function serves knowledge
acquisition.

Generally, RE and KGC models are learned separately,
and these models cannot fully integrate text and knowledge
to acquire more knowledge. To this end, Han et al. [58]
propose a joint learning framework for knowledge
acquisition, which can jointly learn knowledge and text
representations within a unified semantic space via KG-text
alignments. Figure 9.16 shows the brief framework of the
joint model. For the text part, the sentence with two
entities (e.g., Mark Twain and Florida) is regarded as the
input to the encoder, and the output is considered to
potentially describe specific relations (e.g., Place of
Birth). For the KG part, entity and relation representations
are learned via a knowledge representation learning
method such as TransE. The learned representations of the
KG and text parts are aligned during the training process.



Fig. 9.16  The joint learning framework for knowledge acquisition [58]. The
figure is redrawn according to Fig. 1 from the paper of Han et al. [58]

Given sentences {s1, s2, ⋯ } containing the same entity
pair h, t, not all of these sentences can help predict the
relation between h and t. For a given relation r, there are
many triplets {(h1, r, t1), (h2, r, t2), ⋯ } containing the
relation, but not all triplets are important enough for
learning the representation of r. Therefore, as shown in
Fig. 9.17, Han et al. further adopt mutual attention to



reformulate the preprocessing of both the text and
knowledge models, to select more useful sentences for RE
and more important triplets for KGC. Specifically, we use
knowledge representations to highlight the more valuable
sentences for predicting the relation between h and t. This
process can be formalized as

(9.67)

where WKA is a bilinear matrix of the knowledge-guided
attention, S = [s1, s2, ⋯ ] are the hidden states of the
sentences s1, s2, ⋯.  is a representation that can indicate
the latent relation between h and t, computed based on
knowledge representations.  is the feature after
synthesizing the information of all sentences, which is used
to predict the relation between h and t finally.

Fig. 9.17  The mutual attention to reformulate both the text and knowledge
models [58]. The figure is redrawn according to Fig. 1 from the paper of Han et
al. [58]

Similar to using knowledge representations to select
high-quality sentences, we can also use semantic
information to select triples conducive to learning relations.
This process can be formalized as

(9.68)



where WSA is a bilinear matrix of the semantics-guided
attention,  are the triplet-specific relation
representations of the triplets {(h1, r, t1), (h2, r, t2), ⋯ }.
rText is the semantic representation of the relation r used by
the RE model. rKG is the final relation representation
enhanced with semantic information.

This work is a typical attempt to apply knowledge
representations of existing KGs to reformulate knowledge
acquisition models. In Sect. 9.5, we will introduce
knowledge acquisition in more detail.

Example: Knowledge Reformulation for Entity Typing

Entity typing is the task of detecting semantic types for a
named entity (or entity mention) in plain text. For example,
given a sentence Jordan played 15 seasons in the NBA,
entity typing aims to infer that Jordan in this sentence is a
person, an athlete, and even a basketball player. Entity
typing is important for named entity disambiguation since
it can narrow down the range of candidates for an entity
mention [21]. Moreover, entity typing also benefits massive
NLP tasks such as relation extraction [98], question
answering [184], and knowledge base population [20].

Neural models [36, 138] have achieved state-of-the-art
performance for fine-grained entity typing. However, these
methods only consider the textual information of named
entity mentions for entity typing while ignoring the rich
information that KGs can provide for determining entity
types. For example, in the sentence In 1975, Gates …

Microsoft … company, even though we have no type
information of Microsoft in KGs, other entities similar to
Microsoft (e.g., IBM) in KGs can also provide
supplementary information to help us determine the type of
Microsoft. To take advantage of KGs for entity typing,



knowledge-guided attention for neural entity typing (KNET)
has been proposed [178].

As illustrated in Fig. 9.18, KNET mainly consists of two
parts. Firstly, KNET builds a neural network, including a
bidirectional LSTM and a fully connected layer, to generate
context and named entity mention representations.
Secondly, KNET introduces a knowledge-guided attention
mechanism to emphasize those critical words and improve
the quality of context representations. Here, we introduce
the knowledge-guided attention in detail. KNET employs
the translation method TransE to obtain entity embedding
e for each entity e in KGs. During the training process,
given the context words c = {wi, ⋯ , wj}, a named entity
mention m and its corresponding entity embedding e,
KNET computes the knowledge-guided attention as

(9.69)

where WKA is a bilinear matrix of the knowledge-guided
attention and H = [hi, ⋯ , hj] are the bidirectional LSTM
states of {wi, ⋯ , wj}. The context representation c is used
as an important feature for the subsequent process of type
classification.

Fig. 9.18  The architecture of KNET [178]. The figure is redrawn according to
Fig. 1 from KNET paper [178]



Through the above two examples of knowledge
acquisition and entity typing, we introduce how to highlight
important features based on knowledge in the model
preprocessing stage, so as to output better features to help
improve model performance.

Knowledgeable Post-Processing  Apart from
reformulating model functions for pre-processing, on the
other hand, knowledge can be used as an expert at the end
of models for post-processing, guiding models to obtain
more accurate and effective results [1, 51, 124]. Formally,
xi is first input to the function f and then input to the
function k as

(9.70)
where k(⋅) is the knowledge-guided model function used for
post-processing and f(⋅) is the original model function.
Knowledgeable post-processing is widely used by
knowledge-guided language modeling to improve the word
prediction process [1, 51]. Next, we will take a typical
knowledge-guided language modeling method NKLM [1] as
an example to show how to use knowledge representations
to improve model post-processing (Fig. 9.19).



Fig. 9.19  The architecture of NKLM [1]. A special entry (NaF, ) is included in
the knowledgable module to allow the absence of knowledge when the
currently generated word is not included in the knowledgable module. NaF is
short for not a fact. The figure is redrawn according to Fig. 1 from NKLM paper
[1]

Example: Knowledge Post-Processing on Language

Modeling  NKLM [1] aims to perform language modeling
by considering both semantics and knowledge to generate
text. Specifically, NKLM designs two ways to generate each



word in the text. The first is the same as conventional auto-
regressive models that generate a vocabulary word
according to the probabilities over the vocabulary. The
second is to generate a knowledge word according to
external KGs. Specifically, NKLM uses the LSTM
architecture as the backbone to generate words. For
external KGs, NKLM stores knowledge representations to
build a knowledgeable module

 , in which Oi denotes the
description of the i-th fact, ai denotes the concatenation of
the representations of the head entity, relation and tail
entity of the i-th fact.

Given the context {w1, w2, ⋯ , wt−1}, NKLM takes both
the vocabulary word representation  , the knowledge
word representation  , and the knowledge-guided
representation at−1 at the step t − 1 as LSTM’s input

 . xt is then fed to LSTM together with
the hidden state ht−1 to get the output state ht. Next, a two-
layer multilayer perceptron f(⋅) is applied to the
concatenation of ht and xt to get the fact key kt = f(ht, xt).
kt is then used to extract the most relevant fact
representation at from the knowledgeable module. Finally,
the selected fact at is combined with the hidden state ht to
output a vocabulary word  and knowledge word 
(which is copied from the entity name in the t-th fact), and
then determine which word to generate at the step t.

Overall, by using KGs to enhance the post-processing of
language modeling, NKLM can generate sentences that are
highly related to world knowledge, which are often difficult
to model without considering external knowledge.

9.4.3 Knowledge Regularization



Knowledge regularization aims to use knowledge to modify
the objective functions of models:

(9.71)
where  is the additional predictive targets and
learning objectives constructed based on knowledge and λk

is a hyper-parameter to control the knowledgeable loss
term.

Distant supervision [109] is a representative method
that uses external knowledge to heuristically annotate
corpora as additional supervision signals. For many vital
information extraction tasks, such as RE [58, 72, 91, 196]
and entity typing [36, 138, 178], distant supervision is
widely applied for model training. As we will introduce
distant supervision in Sect. 9.5 to show how to build
additional supervision signals with knowledge, we do not
introduce concrete examples here.

Knowledge regularization is also widely used by
knowledge-guided PTMs [124, 163, 205]. To fully integrate
knowledge into language modeling, these knowledge-
guided PTMs design knowledge-specific tasks as their pre-
training objectives and use knowledge representations to
build additional prediction objectives. Next, we will take
the typical knowledge-guided PTM ERNIE [205] as an
example to show how knowledge regularization can help
the learning process of models.

Example: Knowledge Regularization for PTMs  PTMs like
BERT [33] have great abilities to extract features from text.
With informative language representations, PTMs obtain
state-of-the-art results on various NLP tasks. However, the
existing PTMs rarely consider incorporating external
knowledge, which is essential in providing related
background information for better language understanding.
For example, given a sentence Bob Dylan wrote Blowin’ in



the Wind and Chronicles: Volume One, without knowing
Blowin’ in the Wind is a song and Chronicles: Volume One

is a book, it is not easy to know the occupations of Bob

Dylan, i.e., songwriter and writer.
To this end, an enhanced language representation model

with informative entities (ERNIE) is proposed [205]. Figure
9.20 is the overall architecture of ERNIE. ERNIE first
augments the input data using knowledge augmentation as
we have mentioned in Sect. 9.4.1. Specifically, ERNIE
recognizes named entity mentions and then aligns these
mentions to their corresponding entities in KGs. Based on
the alignments between text and KGs, ERNIE takes the
informative entity representations as additional input
features.

Fig. 9.20  The architecture of ERNIE [205]. The figure is redrawn according
to Fig. 2 from ERNIE paper [205]

Similar to conventional PTMs, ERNIE adopts masked
language modeling and next sentence prediction as the pre-
training objectives. To better fuse textual and knowledge
features, ERNIE proposes denoising entity auto-encoding

(DAE) by randomly masking some mention-entity
alignments in the text and requiring models to select



appropriate entities to complete the alignments. Different
from the existing PTMs that predict tokens with only using
local context, DAE requires ERNIE to aggregate both text
and knowledge to predict both tokens and entities, leading
to knowledge-guided language modeling. DAE is clearly a
knowledge-guided objective function.

In addition to ERNIE, there are other representative
works on knowledge regularization. For example, KEPLER
[163] incorporates structured knowledge into its pre-
training. Specifically, KEPLER encodes the textual
description of entities as entity representations and
predicts the relation between entities based on these
description-based representations. In this way, KEPLER
can learn the structured information of entities and
relations in KGs in a language-modeling manner. WKLM
[181] proposes a pre-training objective type-constrained
entity replacement. Specifically, WKLM randomly replaces
the named entity mentions in the text with other entities of
the same type and requires the model to identify whether
an entity mention is replaced or not. Based on the new pre-
training objective, WKLM can accurately learn text-related
knowledge and capture the type information of entities.

From Fig. 9.20, we can find that ERNIE also adopts
knowledge reformulation by adding the new aggregator
layers designed for knowledge integration to the original
Transformer architecture. To a large extent, the success of
knowledge-guided PTMs comes from the fact that these
models use knowledge to enhance important factors of
model learning. Up to now, we have introduced knowledge
augmentation, knowledge reformulation, and knowledge
regularization. Next, we will further introduce knowledge
transfer.

9.4.4 Knowledge Transfer



Knowledge transfer aims to use knowledge to obtain a
knowledgeable hypothesis space, reducing the cost of
searching optimal parameters and making it easier to train
an effective model. There are two typical approaches to
transferring knowledge: (1) transfer learning [120] that
focuses on transferring model knowledge learned from
labeled data to downstream task-specific models and (2)
self-supervised learning [97] that focuses on transferring
model knowledge learned from unlabeled data to
downstream task-specific models. More generally, the
essence of knowledge transfer is to use prior knowledge to
constrain the hypothesis space:

(9.72)
where  is the knowledge-guided hypothesis space.

Knowledge transfer is widely used in NLP. The fine-
tuning stage of PTMs is a typical scenario of knowledge
transfer, which aims to transfer the versatile knowledge
acquired in the pre-training stage to specific tasks.
Intuitively, after pre-training a PTM, fine-tuning this PTM
can be seen as narrowing down searching task-specific
parameters to a local hypothesis space around the pre-
trained parameters rather than the global hypothesis
space.

As we mentioned in Chap. 5, in addition to fine-tuning
PTMs, prompt learning has also been widely explored.
Despite the success of fine-tuning PTMs, it still faces two
challenges. On the one hand, there is a gap between the
objectives of pre-training and fine-tuning, since most PTMs
are learned with language modeling objectives, yet
downstream tasks may have quite different objective forms
such as classification, regression, and labeling. On the
other hand, as the parameter size of PTMs increases
rapidly, fine-tuning PTMs has become resource-intensive.
In order to alleviate these issues, prompts have been



introduced to utilize the knowledge of PTMs in an effective
and efficient manner [93].

As shown in Fig. 9.21, prompt learning aims at
converting downstream tasks into a cloze-style task similar
to pre-training objectives so that we can better transfer the
knowledge of PTMs to downstream tasks. Taking prompt
learning for sentiment classification as an example, a
typical prompt consists of a template (e.g., …It was

[MASK].) and a label word set (e.g., great and terrible) as
candidates for predicting [MASK]. By changing the input
using the template to predict [MASK] and mapping the
prediction to corresponding labels, we can apply masked
language modeling for sentiment classification. For
example, given the sentence I like eating apples., we first
use the prompt template to get the new input sentence I
like eating apples. It was [MASK]. According to PTMs
predicting great or terrible at the masked position, we can
determine whether this sentence is positive or negative.

Fig. 9.21  By using prompts, we can stimulate the knowledge of PTMs to
handle specific tasks such as sentiment classification and predicting symbolic
knowledge

The recently proposed large-scale PTM GPT-3 [17]
shows the excellent performance of prompt learning in
various language understanding and generation tasks. In
prompt learning, all downstream tasks are transformed to
be the same as the pre-training tasks. And since the
parameters of PTMs are frozen during prompt learning, the



size of hypothesis space is much smaller compared to fine-
tuning, making more efficient knowledge transfer possible.

Overall, PTMs play an important role in driving the use
of model knowledge. And to some extent, PTMs also
influence the paradigm of using symbolic knowledge in
NLP. As shown in Fig. 9.21, many knowledge probing
works [74, 125, 126] show that by designing prompt, PTMs
can even complete structured knowledge information.
These studies show that PTMs, as good carriers of symbolic
knowledge, can memorize symbolic knowledge well.
Moreover, these studies also indicate one factor that may
contribute to the power of PTMs: knowledge can be
spontaneously abstracted by PTMs from large-scale
unstructured data and then used to solve concrete
problems, and the abstracted knowledge matches well with
the knowledge formed by human beings. Inspired by this,
we can further delve into how PTMs abstract knowledge
and how PTMs store knowledge in their parameters, which
is very meaningful for further advancing the integration of
symbolic knowledge and model knowledge. On the other
hand, all these studies also show the importance of
knowledge-guided NLP. Compared with letting models
slowly abstract knowledge from large-scale data, directly
injecting symbolic knowledge into models is a more
effective solution.

The success of PTMs demonstrates the clear advantages
of fully transferring existing model knowledge in terms of
computing efficiency and effectiveness, as compared to
learning a model from scratch. Since we have introduced
the details of PTMs in Chap. 5, in this section, we mainly
discuss the valuable properties of knowledge transfer
owned by PTMs.

9.4.5 Summary

In this section, we present several ways in which
knowledge is used to guide NLP models. Depending on the



location of model learning where knowledge steps in, we
group the guidance from knowledge into four categories:
(1) knowledge augmentation, where knowledge is
introduced to augment the input data, (2) knowledge

reformulation, where special model modules are designed
to interact with knowledge, (3) knowledge regularization,
where knowledge does not directly intervene the forward
pass of the model but acts as a regularizer, and (4)
knowledge transfer, where knowledge helps narrow down
the hypothesis space to achieve more efficient and effective
model learning.

These approaches enable effective integration of
knowledge into deep models, allowing models to leverage
sufficient knowledge (especially symbolic knowledge) to
better perform NLP tasks. Since knowledge is essential for
models to understand and complete the NLP tasks,
knowledge-guided NLP is a worthwhile area for
researchers to continue to explore.

9.5 Knowledge Acquisition

The KBs used in early expert systems and the KGs built in
recent years both have long relied on manual construction.
Manually organizing knowledge ensures that knowledge
systems are constructed with high quality but suffers from
inefficiency, incompleteness, and inconsistency in the
annotation process. As shown in Fig. 9.22, the number of
entities in the popular open-source KG Wikidata3 grew at a
rate of over 15 million per year from 2017 to 2022. At this
rate of growth, it is unrealistic to rely solely on human
annotation to organize large-scale human knowledge.
Therefore, it is crucial to explore automatic knowledge
acquisition, which can significantly better support
knowledge representation learning and knowledge-guided
NLP. In this section, taking KGs that store rich world



knowledge as an example, we describe how to perform
automatic knowledge acquisition to enrich the amount of
knowledge for KGs.

Fig. 9.22  The development trend of Wikidata from 2017 to 2022

Generally, we have several approaches to acquiring
knowledge. Knowledge graph completion (KGC) and RE are
two typical approaches. As shown in Fig. 9.23, KGC aims to
obtain new knowledge by reasoning over the internal
structure of KGs. For example, given the triplet 〈Mark

Twain, Place of Birth, Florida〉 and the triplet 〈Florida,
City of, U.S.A〉, we can easily infer the fact 〈Mark Twain,
Citizenship, U.S.A〉. Different from KGC that infers new
knowledge based on the internal information of KGs, RE
focuses on detecting relations between entities from
external plain text. For example, given the sentence Mark

Twain was an American author and humorist, we can get
the triplet 〈Mark Twain, Citizenship, U.S.A〉 from the
semantic information of the sentence. Since the text is the
core carrier of human knowledge, RE can obtain more and
broader knowledge than KGC. Moreover, KGC highly relies
on the knowledge representation learning methods that we



have introduced in the previous Sect. 9.3. Therefore, in this
section, we only introduce knowledge acquisition by using
RE as an example.

Fig. 9.23  An example of knowledge graph completion and relation extraction

As RE is an important way to acquire knowledge, many
researchers have devoted extensive efforts to this field in
the past decades. Various statistical RE methods based on
feature engineering [75, 208], kernel models [18, 27], and
probabilistic graphical models [133, 134] have been
proposed and achieved promising results. With the
development of deep learning, neural networks as a
powerful tool for encoding semantics have further
advanced the development of RE, including recursive
neural networks [110, 144], convolutional neural networks
[92, 197], recurrent neural networks [115, 201], and graph
neural networks [204, 210]. Considering that neural
networks have become the backbone of NLP research in
recent years, we focus on introducing knowledge
acquisition with neural RE models in this section. For those
statistical methods, some surveys [121, 195] can provide
sufficient details about them. Next, we present how to
acquire knowledge in various complex textual scenarios
around neural RE, including sentence-level methods, bag-
level methods, document-level methods, few-shot methods,
and contextualized methods.

9.5.1 Sentence-Level Relation Extraction



Sentence-level RE is the basis for acquiring knowledge
from text to enrich KGs. As shown in Fig. 9.24, sentence-
level RE is based on the sentence-level semantics to extract
relations between entities. Formally, given an input
sentence s = {w1, w2, ⋯ , wn} consisting of n words and an
entity pair (e1, e2) in the sentence, sentence-level RE aims
to obtain the probability distribution P(r|s, e1, e2) over the
relation set  (  ). Based on P(r|s, e1, e2), we can
infer all relations between e1 and e2.

Fig. 9.24  An example of sentence-level relation extraction

Learning an effective model to measure P(r|s, e1, e2)
requires efforts of three different aspects. As shown in Fig.
9.25, the first is to encode the input words into informative
word-level features {w1, w2, ⋯ , wn} that can well serve the
relation classification process. The second is to train a
sentence encoder, which can well encode the word-level
features {w1, w2, ⋯ , wn} into the sentence-level feature s
with respect to the entity pair (e1, e2). The third is to train
a classifier that can well compute the conditional
probability distribution P(r|s, e1, e2) over all relations in 
based on the sentence-level feature s. Next, we will present
some typical works in each of these three aspects.



Fig. 9.25  The process of encoding sentence-level semantic information to
detect the relations expressed by a given sentence

Word-Level Semantics Encoding  Given the sentence s 
= {w1, w2, ⋯ , wn} and the entity pair (e1, e2), before
encoding sentence semantics and further classifying
relations, we have to project the discrete words of the
source sentence s into a continuous vector space to get the
input representation w = {w1, w2, ⋯ , wn}. In general,
widely used word-level features include the following
components:

Word Embeddings  Word embeddings aim to encode the
syntactic and semantic information of words into
distributed representations, i.e., each word is represented
by a vector. Word embeddings are the basis for encoding
word-level semantics, and word2vec [108] and GloVe [123]
are the most common ways to obtain word embeddings.

Position Embeddings  Position embeddings aim to encode
which input words belong to the target entities and how
close each word is to the target entities. Specifically, for
each word wi, its position embedding is formalized as the



combination of the relative distances from wi to e1 and e2.
For instance, given the sentence Mark Twain was an

American author and humorist, the relative distance from
the word was to the entity Mark Twain is − 1, and the
distance to the entity American is 2. The relative distances
− 1 and 2 are then encoded into the position embedding to
provide a positional representation for the word was. Since
RE highly relies on word-level positional information to
capture entity-specific semantics, position embeddings are
widely used in RE [135, 197, 201].

Part-of-Speech (POS) Tag Embeddings  POS Tag
Embeddings aim to encode the word-level lexical
information (e.g., nouns, verbs, etc.) of the sentence.
Formally, all words in the sentence are encoded into
embeddings according to their POS tags, and these POS
tag embeddings can serve as lexical complements for word
embeddings and position embeddings [19, 183, 209].

Hypernym Embeddings  Hypernym embeddings aim to
leverage the prior knowledge of hypernyms in WordNet
[43]. Compared to POS tags, hypernyms are finer-grained.
WordNet is a typical linguistic KG. In WordNet, all words
are grouped into sets of cognitive synonyms (synsets), and
each synset can express a distinct concept. Hypernyms are
defined among these synsets. Here is just a brief
introduction to WordNet, and we will introduce linguistic
knowledge in detail in Chap. 10. When given the hypernym
information of each word in WordNet (e.g., noun.food,
verb.motion, etc), it is easy to connect this word with other
words that are different but conceptually similar. Similar to
POS tag embeddings, each hypernym tag in WordNet has a
tag-specific embedding, and each word in a sentence is
encoded into a hypernym embedding based on the word-
specific hypernym tag.



The above embeddings are usually concatenated
together to obtain the final input features w = {w1, w2, ⋯ ,
wn}, and w is used to support further encoding sentence-
level semantics.

Sentence-Level Semantics Encoding  Based on word-
level features, we introduce different sentence encoders to
encode sentence-level semantic information for RE:

Convolutional Neural Network Encoders  CNN encoders
[135, 197] use convolutional layers to extract local features
and then use pooling operations to encode all local features
into a fixed-sized vector.

Here we take an encoder with only one convolutional
layer and one max-pooling operation as an example. Given
the word-level features {w1, w2, ⋯ , wn}, the convolutional
layer can be formalized as

(9.73)
where  indicates the convolution operation inside the
convolutional layer, hi is the hidden state of the i-th word,
and we have introduced this part in Chap. 4. Then, the
sentence representation s is obtained by using the max-
pooling operation, where the i-th element of s is given as

(9.74)

where [⋅]i is the i-th element of the vector.
Further, PCNN [196], which is a variant of CNN, adopts

a piecewise max-pooling operation. All hidden states {p1,
p2, ⋯pn} are divided into three parts by the positions of e1
and e2. The max-pooling operation is performed on the
three segments respectively, and s is the concatenation of
the three pooling results.



Recurrent Neural Network Encoders  RNN encoders
[201] use recurrent layers to learn temporal features on
the input sequence. Given the word-level features {w1, w2,
⋯ , wn}, each input word feature is fed into recurrent layers
step by step. For the i-th step, the network takes wi and the
hidden state of the last step hi−1 as input, and the whole
process is given as

(9.75)
where  indicates the RNN function, which can be a
LSTM unit or a GRU unit mentioned in Chap. 4.

The conventional recurrent models typically encode
sequences from start to end and build the hidden state of
each step only considering its preceding steps. Besides
unidirectional RNNs, bidirectional RNNs [137] are also
adopted to encode sentence-level semantics, and the whole
process is given as

(9.76)

where [⋅;⋅] is the concatenation of two vectors.
Similar to the abovementioned convolutional models, the

recurrent models also use pooling operations to extract the
global sentence feature s, which forms the representation
of the whole input sentence. For example, we can use a
max-pooling operation to obtain s:

(9.77)

Besides pooling operations, attention operations [3] can
also combine all local features. Specifically, given the
output states H = [h1, h2, ⋯ , hn] produced by a recurrent
models, s can be formalized as

(9.78)



where q is a learnable query vector and f(⋅) is an attention
transformation function.

Moreover, some works [110] propose to encode
semantics from both the word sequence and tree-
structured dependency of a sentence by stacking
bidirectional path-based recurrent neural networks. More
specifically, these path-based methods mainly consider the
shortest path between entities in the dependency tree, and
utilize stacked layers to encode the path as the sentence
representation. Some preliminary works [182] have shown
that these paths are informative in RE and proposed
various recursive neural models for this. Next, we will
introduce these recursive models in detail.

Recursive Neural Network Encoders  Recursive encoders
aim to extract features based on syntactic parsing trees,
considering that the syntactic information between target
entities in a sentence can benefit classifying their relations.
Generally, these encoders utilize the parsing tree structure
as the composition direction to integrate word-level
features into sentence-level features. Socher et al. [144]
introduce a recursive matrix-vector model that can capture
the structure information by assigning a matrix-vector
representation for each constituent in parsing trees. In
Socher’s model, the vector can represent the constituent,
and the matrix can represent how the constituent modifies
the word meaning it is combined with.

Tai et al. [151] further propose two tree-structured
models, the Child-Sum Tree-LSTM and the N-ary Tree-
LSTM. Given the parsing tree of a sentence, the transition
equations of the Child-Sum Tree-LSTM are defined as

(9.79)



where C(t) is the children set of the node t, 
indicates a Tree-LSTM cell, which is simply modified from
the LSTM cell, and the hidden states of the leaf nodes are
the input features. The transition equations of the N-ary
Tree-LSTM are similar to the transition equations of Child-
Sum Tree-LSTM. The main difference is that the N-ary
Tree-LSTM limits the tree structures to have at most N
branches. More details of recursive neural networks can be
found in Chap. 4.

Sentence-Level Relation Classification  After obtaining
the representation s of the input sentence s, we require a
relation classifier to compute the conditional probability
P(r|s, e1, e2). Generally, P(r|s, e1, e2) can be obtained with

(9.80)
where M is the relation matrix consisting of relation
embeddings and b is a bias vector. Intuitively, using a
Softmax layer to compute the conditional probability means
that an entity pair has only one corresponding relation.
However, sometimes multiple relations may exist between
an entity pair. To this end, for each relation  , some
works perform relation-specific binary classification:

(9.81)

where r is the relation embedding of r and br is a relation-
specific bias value.

9.5.2 Bag-Level Relation Extraction

Although existing neural methods have achieved promising
results in sentence-level RE, these neural methods still
suffer from the problem of data scarcity since manually
annotating training data is time-consuming and labor-
intensive. To alleviate this problem, distant supervision
[109] has been introduced to automatically annotate



training data by aligning existing KGs and plain text. The
main idea of distant supervision is that sentences
containing two entities may describe the relations of the
two entities recorded in KGs. As shown in Fig. 9.26, given
(New York, City of, U.S.A), the distant supervision
assumption regards all sentences that contain New York

and U.S.A as positive instances for the relation City of.
Besides providing massive training data, distant
supervision also naturally provides a way to detect the
relations between two given entities based on multiple
sentences (bag-level) rather than a single sentence
(sentence-level).

Fig. 9.26  An example of bag-level relation extraction

Therefore, bag-level RE aims to predict the relations
between two given entities by considering all sentences
containing these entities, by highlighting those informative
examples and filtering out noisy ones. As shown in Fig.
9.26, given the input sentence set  and
an entity pair (e1, e2) contained by these sentences, bag-
level RE methods aim to obtain the probability 
over the relation set.

As shown in Fig. 9.27, learning an effective model to
measure  requires efforts from three different



aspects: encoding sentence-level semantics (including
encoding word-level semantics), encoding bag-level
semantics, and finally classifying relations. Since encoding
word-level semantics and sentence-level semantics have
been already introduced in sentence-level RE, we mainly
focus on introducing how to encode bag-level semantics
here.

Fig. 9.27  The process of obtaining bag-level semantic information to detect
the relations described by a given sentence bag

Bag-Level Semantics Encoding  For bag-level RE, we
need to encode bag-level semantics based on sentence-level
representations. Formally, given a sentence bag

 , each sentence si has its own sentence
representation si; a bag-level encoder encodes all sentence
representations into a single bag representation  . Next,
we will introduce some typical bag-level encoders as
follows:

Max Encoders  Max encoders aim to select the most
confident sentence in the bag  and use the representation
of the selected sentence as the bag representation,



considering not all sentences containing an entity pair can
express the relations between the entity pair. For instance,
given New York City is the premier gateway for legal

immigration to the United States, the sentence does not
highly express the relation City of. To this end, the at-
least-one assumption [196] has been proposed, assuming
that at least one sentence containing target entities can
express their relations. With the at-least-one assumption,
the sentence with the highest probability for a specific
relation is selected to represent the bag  . Formally, the
bag representation is given as

(9.82)

Average Encoders  Average encoders use the average of
all sentence vectors to represent the bag. Max encoders
use only one sentence in the bag as the bag representation,
ignoring the rich information and correlation among
different sentences in the bag. To take advantage of all
sentences, Lin et al. [91] make the bag representation 
depends on the representations of all sentences in the bag.
The average encoder assumes all sentences contribute
equally to the bag representation  :

(9.83)

Attentive Encoders  Attentive encoders use attention
operations to aggregate all sentence vectors. Considering
the inevitable mislabeling problem introduced by distant
supervision, average encoders may be affected by those
mislabeled sentences. To address this problem, Lin et al.
[91] further propose a sentence-level selective attention to
reduce the side effect of mislabeled data. Formally, with



the attention operation, the bag representation  is defined
as

(9.84)

where S = {s1, s2, ⋯ , sm}, f(⋅) is an attention
transformation function and and qr is the query vector of
the relation r used for the attention operation. To further
improve the attention operation, more sophisticated
mechanisms, such as knowledge-enhanced strategies [58,
72, 199], soft-labeling strategies [95], reinforcement
learning [44, 200], and adversarial training [171], have
been explored to build more effective attention operations.

Bag-Level Relation Classification  Similar to sentence-
level methods, when obtaining the bag representation  ,
the probability  is computed as

(9.85)
where M is the relation matrix consisting of relation
embeddings and b is a bias vector. For those methods
performing relation-specific binary classification, the
relation-specific conditional probability is given by

(9.86)

where r is the relation embedding of r and br is a relation-
specific bias value.

9.5.3 Document-Level Relation Extraction

For RE, not all relational facts can be acquired by sentence-
level or bag-level methods. Many facts are expressed
across multiple sentences in a document. As shown in Fig.
9.28, a document may contain multiple entities that
interact with each other in a complex way. If we want to
get the fact that 〈Riddarhuset, City of, Sweden〉, we first
have to detect Riddarhuset is located in Stockholm from



the fourth sentence, and then detect Stockholm is the
capital of Sweden and Sweden is a country from the first
sentence. From these three facts, we can finally infer that
the sovereign state of Riddarhuset is Sweden.

Fig. 9.28  An example of document-level relation extraction from the dataset
DocRED [188]

Performing reading and reasoning over multiple
sentences becomes important, which is intuitively hard to
reach for both sentence-level and bag-level methods.



According to the statistics of a human-annotated dataset
sampled from Wikipedia [188], more than 40% facts
require considering the semantics of multiple sentences for
their extraction, which is not negligible. Some works [150,
155] that focus on document-level RE also report similar
observations. Hence, it is crucial to advance RE from the
sentence level to the document level.

Due to being much more complex than sentence-level
and bag-level RE, document-level RE remains an open
problem in terms of benchmarking and methodology. For
benchmarks that can evaluate the performance of
document-level RE, existing datasets either only have a few
manually annotated examples [88], or have noisy distantly
supervised annotations [122, 129], or serve only a specific
domain [85]. To address this issue, Yao et al. [188]
manually annotate a large-scale and general-purpose
dataset to support the evaluation of document-level RE
methods, named DocRED. DocRED is built based on
Wikipedia and Wikidata, and it has two main features.
First, DocRED is the largest human-annotated document-
level RE dataset, containing 132, 375 entities and 56, 354
facts. Second, nearly half of the facts in DocRED can only
be extracted from multiple sentences. This makes it
necessary for models to read multiple sentences in a
document to identify entities and infer their relations by
considering the holistic semantic information of the
document.

Document-Level RE Methods  The preliminary results
on DocRED show that existing sentence-level methods
cannot work well on DocRED, indicating that document-
level RE is more challenging than sentence-level RE. Many
efforts have been devoted to document-level RE based on
DocRED.



PTM-Based Methods  Wang et al. [158] use PTMs as a
backbone to build an effective document-level RE model,
considering that recently proposed PTMs show the ability
to encode long sequences. Although PTMs can effectively
capture contextual semantic information from plain text for
document-level RE, PTMs still cannot explicitly handle
coreference, which is critical for modeling interactions
between entities. Ye et al. [190] introduce a PTM that
captures coreference relations between entities to improve
document-level RE.

Graph-Based Methods  Nan et al. [112] construct
document-level graphs based on syntactic trees,
coreferences, and some human-designed heuristics to
model dependencies in documents. To better model
document-level graphs, Zeng et al. [198] construct a path
reasoning mechanism using graph neural networks to infer
relations between entities.

Document-Level Distant Supervision  Some works [128,
172] also propose to leverage document-level distant
supervision to learn entity and relation representations.
Based on well-designed heuristic rules, these distantly
supervised methods perform effective data augmentation
for document-level RE.

Cross-Document RE  In addition to abovementioned
methods for RE within one document, Yao et al. [187]
further propose CodRED which aims to acquire knowledge
from multiple documents. Cross-document RE presents two
main challenges: (1) Given an entity pair, models need to
retrieve relevant documents to establish multiple reasoning
paths. (2) Since the head and tail entities come from
different documents, models need to perform cross-
document reasoning via bridging entities to resolve the
relations. To support the research, CodRED provides a



large-scale human-annotated dataset, which contains
30,504 relational facts, as well as the associated reasoning
text paths and evidence. Experiments show that CodRED is
challenging for existing RE methods. In summary,
acquiring knowledge from documents has drawn increasing
attention from the community, and is still a promising
direction worth further exploration.

9.5.4 Few-Shot Relation Extraction

As we mentioned before, the performance of conventional
RE methods heavily relies on annotated data. Annotating
large-scale data is time-consuming and labor-intensive.
Although distant supervision can alleviate this issue, the
distantly supervised data also exhibits a long-tail
distribution, i.e., most relations have very limited instances.
In addition, distant supervision suffers from mislabeling,
which makes the classification of long-tail relations more
difficult. Hence, it is necessary to study training RE models
with few-shot training instances. Figure 9.29 is an example
of few-shot RE.

Fig. 9.29  An example of few-shot relation extraction

Few-Shot RE Methods  FewRel [62] is a large-scale
supervised dataset for few-shot RE, which requires models
to handle relation classification with limited training



instances. Based on FewRel, some works explore few-shot
RE and achieve promising results.

Meta Learning and Metric Learning Methods  Han et al.
[62] demonstrate that meta learning and metric learning
can be well used for few-shot RE. Following the direction of
meta learning, Dong et al. [35] propose to leverage meta-
information of relations (e.g., relation names and aliases) to
guide the initialization and fast adaptation of meta learning
for few-shot RE. Following the direction of metric learning,
based on the prototypical neural network [141], which is a
typical metric learning approach, many more effective
metric learning methods [45, 191] are proposed for few-
shot RE.

PTM-Based Methods  Soares et al. [142] utilize PTMs to
handle few-shot RE and show surprising results. On the one
hand, the use of PTMs can transfer the knowledge captured
from unlabeled data to help solve the problem of data
scarcity. On the other hand, Soares et al. introduce
contrastive learning based on PTMs, which can be seen as
a more effective metric learning method. On FewRel,
Soares’ model can achieve comparable results to human
performance.

Domain Adaptation and Out-of-Distribution

Detection  After FewRel, Gao et al. [46] propose some
more challenging few-shot scenarios, including domain
adaptation and out-of-distribution detection. Gao et al.
build a more challenging dataset FewRel 2.0 and use
sufficient experimental results on FewRel 2.0 to show that
the state-of-the-art few-shot methods struggle in these two
scenarios, and the commonly used techniques for domain
adaptation and out-of-distribution detection cannot handle
the two challenges well. These findings call for more



attention and further efforts to few-shot RE, which is still a
challenging open problem.

9.5.5 Open-Domain Relation Extraction

Most RE systems regard the task as relation classification
and can only deal with pre-defined relation types. However,
relation types in the real-world corpora are typically in
rapid growth. For example, the number of relation types in
Wikidata grows to over 10,000 in 6 years from 2017 to
2022 [202]. Therefore, handling emerging relations in the
open-domain scenario is a challenging problem for RE.
Existing methods for open-domain RE can be divided into
three categories: extracting open relation phrases,
clustering open relation types, and learning with increasing
relation types.

Extracting Open Relation Phrases  Open information
extraction (OpenIE) aims to extract semi-structured
relation phrases [39, 40]. Since the relations are treated as
free-form text from the sentences, OpenIE can deal with
relations that are not pre-defined. For OpenIE, the
traditional statistical methods typically design heuristic
rules (e.g., syntactic and lexical constraints) to identify
relation phrase candidates and filter out noisy ones via a
relation discriminator [41, 169, 189]. Neural OpenIE
methods typically learn to generate relation phrases in an
encoder-decoder architecture [26, 77], or identify relation
phrases in the sentence via sequence labeling [145]. The
supervision for neural OpenIE models typically comes from
the high-confidence results from the statistical methods.
The advantage of OpenIE is that minimal human efforts are
required in both relation type design and relation instance
annotation. The relational phrases also exhibit good
readability to humans. However, due to the diversity of
natural language, the same relation type can have different
surface forms in different sentences. Therefore, linking



various surface forms of relation phrases to the
standardized relation types could be difficult.

Clustering Open Relation Types  Open relation
extraction (OpenRE) aims to discover new relation types by
clustering relational instances into groups. OpenRE
methods typically learn discriminative representations for
relational instances and cluster these open-domain
instances into groups. Compared with OpenIE, OpenRE
aims at clustering new types that are out of existing
relation types, yet OpenIE only focuses on representing
relations with language phrases to get rid of pre-defined
types. Generally, the results of OpenIE can be used to
support the clustering of OpenRE. Elsahar et al. [38] make
an initial attempt to obtain relational instance
representations through rich features, including entity
types and re-weighted word embeddings, and cluster these
handcrafted representations to discover new relation types.
Then, some works [67, 103] propose to improve the
learning and clustering of relational instance
representations by using effective self-supervised signals.
Notably, Wu et al. [170] propose to transfer relational
knowledge from the supervised data of existing relations to
the unsupervised data of open relations. Given labeled
relational instances of existing relations, Wu et al. use a
relational Siamese network to learn a metric space. Then,
the metric space is transferred to measure the similarities
of unlabeled sentences, based on which the clustering is
performed. Inspired by Wu et al. [170], Zhang et al. [202]
further leverage relation hierarchies to learn more
discriminative metric space for the clustering of relational
instance representations, where the instances of the nearby
relations on hierarchies are encouraged to share similar
representations. Moreover, since relational instance
representations contain rich hierarchical information, the
newly discovered relations can be directly appended to the



existing relation hierarchy. OpenRE can deal with the
diversity of relation surface forms by clustering. However,
the specific semantics of relation clusters still needs to be
summarized through human efforts.

Learning with Increasing Relation Types  After
discovering novel relations from the open corpora, the
relation classifier needs to be updated to deal with both
existing and new relations. A straightforward approach is
to re-train the relation classifier using all the instances of
existing and new relations together from scratch whenever
new relations emerge. However, the approach is not
feasible due to the high computational cost. Continual
relation learning aims to utilize the instances of novel
relations to update a relation classifier continually. A
significant challenge of continual relation learning is the
catastrophic forgetting [159], where the performance on
the existing relations can degrade significantly after
training with new relations. To address this problem, some
works propose saving several instances for existing classes
and re-training the classifier with these memorized
instances and new data together [30, 159]. This learning
process based on memorized instances is named memory

replay. However, repeatedly updating the classifier with
several memorized instances may cause overfitting of
existing relations. Drawing inspirations from the study of
mammalian memory in neuroscience [10], EMAR [56]
proposes episodic memory activation and reconsolidation
mechanism to prevent the overfitting problem. The key idea
is that the prototypes of the existing relations should
remain discriminative after each time of replaying and
activating memorized relation instances. In this way, EMAR
can flexibly handle new relations without forgetting or
overfitting existing relations.

9.5.6 Contextualized Relation Extraction



As mentioned above, RE systems have been significantly
improved in supervised and distantly supervised scenarios.
To further improve RE performance, many researchers are
working on the contextualized RE by integrating
multisource information. In this section, we will describe
some typical approaches to contextualized RE in detail.

Utilizing External Information  Most existing RE
systems stated above only concentrate on the text,
regardless of the rich external text-related heterogeneous
information, like world knowledge in KGs, visual knowledge
in images, and structured or semi-structured knowledge on
the Web. Text-related heterogeneous information could
provide rich additional context. As mentioned in Sect. 9.4.2,
Han et al. [58] propose a joint learning framework for RE,
the key idea of which is to jointly learn knowledge and text
representations within a unified semantic space via KG-text
alignments. In Han’s work, for the text part, word and
sentence representations are learned via a CNN encoder.
For the KG part, entity and relation representations are
learned via translation-based methods mentioned in Sect.
9.3.2. The learned representations of the KG and text parts
are aligned during the training process, by using entity
anchors to share word and entity representations as well as
adopting mutual attention to make sentence
representations and knowledge representations enhance
each other. Apart from this preliminary attempt, many
efforts have been devoted to this direction [72, 132, 164,
166].

Incorporating Relational Paths  Although existing RE
systems have achieved promising results, they still suffer
from a major problem: the models can only directly learn
from sentences containing both target entities. However,
those sentences containing only one of the target entities
could also provide helpful information and help build



inference chains. For example, if we know that Alexandre

Dumas fils is the son of Alexandre Dumas and Alexandre

Dumas is the son of Thomas-Alexandre Dumas, we can infer
that Alexandre Dumas fils is the grandson of Thomas-

Alexandre Dumas. Zeng et al. [199] introduce a path-based
RE model incorporating textual relational paths so as to
utilize the information of both direct and indirect
sentences. The model employs an encoder to represent the
semantics of multiple sentences and then builds a relation
path encoder to measure the probability distribution of
relations given the inference path in text. Finally, the model
combines information from both sentences and relational
paths and predicts each relation’s confidence. This work is
the preliminary effort to consider the knowledge of relation
paths in text RE. There are also several methods later to
consider the reasoning paths of sentence semantic
meanings for RE, such as using effective neural models like
RNNs to learn relation paths [29], and using distant
supervision to annotate implicit relation paths [49]
automatically.

9.5.7 Summary

In this section, we elaborate on the approaches to
acquiring knowledge. Typically, we focus on RE, and
classify RE methods into six groups according to their
application scenarios: (1) sentence-level RE, which focuses
on extracting relations from sentences, (2) bag-level RE,
which focuses on extracting relations from the bags of
sentences annotated by distant supervision, (3) document-

level RE, which focuses on extracting relations from
documents, (4) few-shot RE, which focuses on low-resource
scenarios, (5) open-domain RE, which focuses on
continually extracting open-domain relations that are not
pre-defined, and (6) contextualized RE, which focuses on
integrating multisource information for RE.



Note that knowledge acquisition does not just mean RE
and includes many other methods, such as KGC, event
extraction, etc. Moreover, not all human knowledge is
represented in a textual form, and there is also a large
amount of knowledge in images, audio, and other
knowledge carriers. How to obtain knowledge from these
carriers to empower models is also a problem worthy of
further consideration by researchers.

9.6 Summary and Further Readings

We have now overviewed the current progress of using
knowledge for NLP tasks, including knowledge
representation learning, knowledge-guided NLP, and
knowledge acquisition. In this last section, we will
summarize the contents of this chapter and then provide
more readings for reference.

Knowledge representation learning is a critical
component of using knowledge since it bridges the gap
between knowledge systems that store knowledge and
applications that require knowledge. We systemically
describe existing methods for knowledge representation
learning. Further, we discuss several advanced approaches
that deal with the current challenges of knowledge
representation learning. For further understanding of
knowledge graph representation learning, more related
papers can be found in this paper list.4 There are also some
recommended surveys and books [6, 73, 102, 116, 161].

After introducing knowledge representation learning, we
introduce the framework of knowledge-guided learning,
aiming to improve NLP models with knowledge
representations. The framework includes four important
directions: knowledge augmentation, knowledge
reformulation, knowledge regularization, and knowledge
transfer. All these four directions of knowledge-guided



learning have been widely advanced in the past few years.
Following these four directions, we review typical cases to
clarify this knowledge-guided framework, covering
information extraction, information retrieval, language
modeling, and text generation. Considering the
breakthroughs of PTMs, we also use prompts as an example
to show the recent trend of knowledge transfer in the era of
PTMs. We suggest readers to find further insights from the
recent surveys and books about knowledge and PTMs [9,
60, 193].

Based on knowledge representation learning and
knowledge-guided learning, we introduce how to acquire
more knowledge from plain text to enrich existing
knowledge systems. We systematically review knowledge
acquisition methods in various textual scenarios, including
sentence-level, bag-level, document-level, few-shot, and
open-domain acquisition. In this field, we refer further
readings to the paper list5 and the typical surveys [57, 73].
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one typical kind of linguistic knowledge (sememe
knowledge) and a sememe knowledge base named
HowNet. In linguistics, sememes are defined as the
minimum indivisible units of meaning. We first briefly
introduce the basic concepts of sememe and HowNet. Next,
we introduce how to model the sememe knowledge using
neural networks. Taking a step further, we introduce
sememe-guided knowledge applications, including
incorporating sememe knowledge into compositionality
modeling, language modeling, and recurrent neural
networks. Finally, we discuss sememe knowledge
acquisition for automatically constructing sememe
knowledge bases and representative real-world
applications of HowNet.

10.1 Introduction

In the field of NLP, a series of meaningful linguistic units
are generally studied, including words, phrases, sentences,
discourses, and documents. Specifically, words are typically
treated as the smallest usage units since they are deemed
as the smallest meaningful objects which can stand by
themselves. In fact, word meanings can be further split into
smaller components. For instance, the meaning of the word
teacher comprises the meanings of education, occupation,
and teach. From the perspective of linguistics, the
minimum indivisible units of meaning are defined as
sememes [10].

Linguists contend that the meanings of all the words
comprise a closed set of sememes, and the semantic
meanings of these sememes are orthogonal to each other.
Compared with words, sememes are fairly implicit, and the
full set of sememes is difficult to define, not to mention how
to decide which sememes a word has. To understand the
human language from a finer-grained perspective, it is



necessary to fathom the nature of sememe and its
connection with words.

To this end, some linguists spend many years identifying
sememes from both linguistic knowledge bases (KBs) and
dictionaries and labeling each word with sememes, in order
to construct sememe-based linguistic KBs. HowNet [23] is
the most representative sememe-based linguistic KB.
Besides being a linguistic KB, HowNet also contains
commonsense knowledge and can be used to unveil the
relationships among concepts [23].

In the following sections, we first briefly introduce
backgrounds of typical linguistic KB (WordNet) and
commonsense KB (ConceptNet), and then we detailedly
introduce basic concepts and construction principles of
HowNet, as well as the linguistic knowledge and
commonsense knowledge in HowNet. Then we discuss how
to represent sememe knowledge using neural networks.
After that, we introduce sememe-guided NLP techniques,
including how to incorporate sememe knowledge into
compositionality modeling, language modeling, and
recurrent neural networks. Finally, we discuss automatic
knowledge acquisition for HowNet and the application of
HowNet. Since most of the research (especially the
research related to deep learning) in this area is conducted
by our group, we will mainly take our works as examples to
elaborate on the powerful capability of sememe knowledge.
To provide a more comprehensive description, our
discussion of the specific methods in this chapter will be
more detailed.

10.2 Linguistic and Commonsense

Knowledge Bases

Over the years, many human-annotated KBs have been
proposed, among which linguistic KBs and commonsense



KBs are the most representative ones. Serving as important
lexical resources, all of these KBs have pushed forward the
understanding of human language and achieved many
successes in NLP applications. In this section, we first
elaborate on a representative linguistic KB, WordNet, and a
commonsense KB, ConceptNet, and then we discuss the
unique characteristics of HowNet compared with them.

10.2.1 WordNet and ConceptNet

WordNet and ConceptNet are the most representative KBs
aiming at organizing linguistic knowledge and
commonsense knowledge, respectively. Both of them have
shown importance in various NLP applications. We briefly
give an introduction to the construction of both KBs as
follows.

WordNet  WordNet [48] is a large lexical database and
can also be viewed as a KB containing multi-relational data.
It was first created in 1985 by George Armitage Miller, a
psychology professor in the Cognitive Science Laboratory
of Princeton University. Up till now, WordNet has become
the most popular lexicon dictionary in the world and has
been widely applied in various NLP tasks.

Based on meanings, WordNet groups English nouns,
verbs, adjectives, and adverbs into synsets (i.e., sets of
cognitive synonyms), which represent unique concepts.
Each synset is accompanied by a brief description. In most
cases, there are several short sentences illustrating the
usage of words in this synset. The synsets and words are
linked by conceptual-semantic and lexical relations,
covering all WordNet’s 117, 000 synsets. For example, (1)
the words in the same synset are linked with the synonymy
relation, which indicates that these words share similar
meanings and could be replaced by each other in some
contexts; (2) the hypernymy/hyponymy links a general
synset and a specific synset, which indicates that the



specific synset is a sub-class of the general one, and (3) the
antonymy describes the relation among adjectives with
opposite meanings.

ConceptNet  Besides linguistic knowledge, commonsense
knowledge (generic facts about social and physical
environments) is also important for general artificial
intelligence. ConceptNet [72] is one of the largest freely
available commonsense knowledge bases. ConceptNet was
first constructed in 2002 in the project of Open Mind
Common Sense and was frequently updated in the
following years. Like other commonsense knowledge bases,
ConceptNet describes the conceptual relations among
words. Nodes in ConceptNet are represented as free-text
descriptions, and edges stand for symmetric relations like
SimilarTo or asymmetric relations like MadeOf.

Thanks to diverse building sources and continual
updating, ConceptNet has grown as the largest free
commonsense KB that includes more than 21 million edges
and 8 million nodes [72]. In addition, ConceptNet supports
a variety of languages. Similar to other KBs, ConceptNet
can be used to enhance the ability of neural networks on
downstream tasks that require commonsense reasoning.
Especially with the novel relation ExternalURL,
ConceptNet nodes can be easily linked with nodes in other
knowledge bases such as WordNet. This capability makes it
more convenient to integrate commonsense knowledge and
linguistic knowledge for researchers.

10.2.2 HowNet

The above-mentioned KBs take words (WordNet) or
concepts (ConceptNet) as basic elements and consist of
word-level or concept-level relations. Different from both
KBs, HowNet treats sememes as the smallest linguistic
objects and additionally focuses on the relation between



sememes and words. This is one of the core differences
between the design philosophy of HowNet and other KBs.

Construction of HowNet  We introduce three
components for HowNet construction: (1) Sememe set

construction: the sememe set is determined by analyzing,
merging, and sifting the semantics of a great number of
Chinese characters and words. Each sememe in HowNet is
expressed by a term or a phrase in both English and
Chinese to avoid ambiguity. For instance, (human | {人 })
and (ProperName | {专 }). All the sememes can be
categorized into seven types, including part, attribute,
attribute value, thing, space, time, and event; (2) Sememe-

sense-word structure definition: considering the polysemy,
HowNet annotates different sets of sememes for different
senses of a word, with every sense described in both
Chinese and English. Every sense is defined as the root of a
“sememe tree.” For the sememes belonging to a specific
sense, HowNet annotates the relations among these
sememes (dubbed as “dynamic roles”). Such relations are
the edges of the “sememe tree.” We illustrate an example
for a word apple in Fig. 10.1, where the word apple has
four senses including apple(tree), apple(phone),
apple(computer), and apple(fruit); (3) Annotation process:
HowNet is constructed by manual annotation of human
experts. HowNet was originally built by Zhendong Dong
and Qiang Dong in the 1990s and has been frequently
updated ever since then, with the latest version of HowNet
published in January 2019.



Fig. 10.1  An example of a word annotated with sememes in HowNet

Uniqueness of HowNet  The aforementioned KBs share
several similarities, for instance, all of them are (1)
structured with relational semantic networks, (2) based on
the form of natural language, (3) constructed with
extensive human labeling, etc. In spite of all these
similarities, HowNet owns unique characteristics that differ
from WordNet and ConceptNet in construction principles,
design philosophy, and foci, which are discussed in the
following paragraphs.

Comparison Between HowNet and WordNet  As shown in
Fig. 10.2, compared with WordNet, HowNet is unique
reflected in the following facets:



Fig. 10.2  Comparison between WordNet and HowNet. WordNet is based on
synsets and their semantic relations, while HowNet investigates sememes and
focuses on their relations to word senses. Here we discriminate characters (字 )
and words (词 ) in Chinese, with the former being smaller components for the
latter

 
1. Basic unit and design philosophy. In human language,

words are generally considered as the smallest usage

units, while sememes are viewed as the smallest
semantic units. Adhering to reductionism, HowNet
considers sememes as the smallest objects and focuses
on the relation between words and sememes; instead,
the basic block of WordNet is a synset consisting of all
the words expressing a specific concept; thus the
design of WordNet resembles that of a thesaurus. This
is the core difference between the design philosophy of
HowNet and WordNet. In addition, according to Kim et
al. [39], WordNet is differential by nature: instead of
explicitly expressing the meaning of a word, WordNet
differentiates word senses by placing them into
different synsets and further assigning them to
different positions in its ontology. Conversely, HowNet
is constructive, i.e., exploiting sememes from a
taxonomy to represent the meaning of each word

 



sense. It is based on the hypothesis that all concepts
can be reduced to relevant sememes.

2.
Construction principle. WordNet is organized
according to semantic relations among word meanings.
Since word meanings can be represented by synsets,
semantic relations can be treated as pointers among
synsets. The taxonomy of WordNet is designed not to
capture common causality or function, but to show the
relations among existing lexemes [39]. Differently, the
basic construction principle of HowNet is to form a
networked knowledge system of the relations among
concepts and the relation between attributes and
concepts. Besides, HowNet is constructed using top-
down induction: the ultimate sememe set is established
by observing and analyzing all the possible basic
sememes. After that, human experts evaluate whether
every concept can be composed of the subsets of the
sememe set.

 

3.
Application scope. Initially designed as a thesaurus,
WordNet gradually evolved into a self-contained
machine-readable dictionary of semantics. In contrast,
HowNet is established towards building a computer-
oriented semantic network [22]. In addition, one
advantage of WordNet is that it supports multiple
languages. For example, since many countries have
established lexical databases based on WordNet, it can
be easily applied to cross-lingual scenarios. However,
since HowNet mainly supports English and Chinese,
most of its applications are bilingual. In fact, we have
also proposed methods to automatically build sememe
KBs for other languages, which will be discussed later.

 

Comparison Between HowNet and ConceptNet  HowNet
and ConceptNet differ from each other in the following



aspects:
1.

Coverage of commonsense knowledge. The
commonsense knowledge contained in ConceptNet is
relatively explicit, partly because the nodes in
ConceptNet are represented as free-text descriptions.
In contrast, the notions of nodes in HowNet are purely
lexical items (e.g., word senses and sememes with
atomic meanings), which correspond to more rock-
bottom commonsense knowledge. Therefore, the
commonsense knowledge of HowNet is more implicit.
For instance, from ConceptNet, we know directly that
the concept buy book is related to the concept a
bookstore because the former is a subevent of the
latter, while in HowNet, we learn such information by
simple induction and reasoning: the word bookstore is
associated with sememes publication and buy, and the
word book consists of the sememe publication.
Similarly, numerous generic facts about the world can
be derived from HowNet. We contend that despite the
implicit nature of commonsense knowledge, HowNet
actually covers more diverse facets of the world facts
than ConceptNet.

 

2. Foci and construction principle. ConceptNet focuses on
everyday episodic concepts and the semantic relations
among compound concepts, which are organized
hierarchically. These high-level concepts can be
contributed by every ordinary person. In contrast,
HowNet focuses on rock-bottom linguistic and
conceptual knowledge of the human language, and its
annotation requires the basic understanding of
sememe hierarchy. The above distinction leads to
different construction methods for both KBs. HowNet
is constructed solely by human handcrafting of
linguistic experts, whereas the construction of
ConceptNet involves the general public without much

 



background knowledge. In consequence, the
annotation of HowNet has higher quality than
ConceptNet by nature.

3.
Application scope. HowNet annotates sememes for
each word sense and thus differentiates different word
meanings. Nevertheless, the concepts and relations
annotated in ConceptNet may be ambiguous. The
ambiguous nature of ConceptNet could hinder it from
being directly leveraged in NLP applications, such as
word sense disambiguation. In contrast, the sememe
knowledge of HowNet can be more easily incorporated
into modern neural networks since HowNet overcomes
the problem of word ambiguity.

 

OpenHowNet  To help researchers get access to HowNet
data in an easier way, encouraged and approved by the
inventors of HowNet, Zhendong Dong and Qiang Dong, we
have created OpenHowNet1 (Fig. 10.3). OpenHowNet is a
free open-source sememe KB, which comprises the core
data of HowNet. There are two core components of
OpenHowNet, i.e., OpenHowNet Web and OpenHowNet
API:
1. OpenHowNet Web gives a comprehensive description

of HowNet, including statistics of OpenHowNet
dataset, research articles relevant to sememe
knowledge, history of HowNet, etc. With OpenHowNet,
users can easily understand the basic idea of sememe
and get familiar with advanced research topics of
HowNet. Besides, OpenHowNet supports the
visualization of the sememe tree for each sense in
HowNet. Together with the tree structure,
OpenHowNet Web provides additional information,
such as the POS tags, the plain text form of the
sememe tree, and semantically related senses. This

 



capability makes it easier for users to understand the
core linguistic information of each word sense. We also
link OpenHowNet to representative KBs such as
BabelNet and ConceptNet, which makes it easier for
users to get access to information of each word sense
outside HowNet.

Fig. 10.3  A snapshot of the OpenHowNet website

2. OpenHowNet API supports some important
functionalities, e.g., visualizing the sememe tree of a
sense, searching senses or sememes, computing word
similarity based on sememe tree annotation, etc. We
believe such a toolkit can help researchers leverage
the sememe annotation in HowNet more easily.

 



In summary, armed with OpenHowNet, it will be more
convenient for beginners to get familiar with the design
philosophy of HowNet, easier for senior researchers to
utilize the sememe knowledge, and handier for industrial
practitioners to deploy their HowNet applications. You can
also read our research paper about OpenHowNet [64] for
more details.

10.2.3 HowNet and Deep Learning

Back in the early era when statistical learning dominates
mainstream NLP techniques, linguistic and commonsense
KBs are generally leveraged to provide shallow and
primitive information. Typical applications include word
similarity calculation [43, 55], word sense disambiguation
[3, 85], etc. Ever since the emergence of deep learning,
HowNet has renewed a surge of interest in both academic
and industrial communities, reflected in the significant
proliferation of related research papers. Assisted by the
powerful representation capability of deep learning,
HowNet is endowed with more imaginative usage to fully
exploit its knowledge. Before delving into the usage of
sememe knowledge, we introduce several advantages of
HowNet.

Advantages of HowNet  The sememe knowledge of
HowNet owns unique advantages over other linguistic KBs
in the era of deep learning, reflected in the following
characteristics:
1. In terms of natural language understanding, sememe

knowledge is closer to the characteristics of natural
language. The sememe annotation breaks the lexical
barrier and offers an in-depth understanding of the
rich semantic information behind the vocabulary.
Compared with other KBs that can only be applied to

 



the word level or the sense level, HowNet provides
finer-grained linguistic and commonsense information.

2.
Sememe knowledge turns out to be a natural fit for
deep learning techniques. By accurately depicting
semantic information through a unified sememe
labeling system, the meaning of each sememe is clear
and fixed and thus can be naturally incorporated into
the deep learning model as informative labels/tags of
words. As we will show later, most of the modern NLP
models are built on word sequences. It is natural and
convenient to directly extract the information for each
word from HowNet to leverage its knowledge.

 

3.
Sememe knowledge can mitigate poor model
performance in low-resource scenarios. Since the
sememe set is carefully pre-defined and the total
number of sememes is limited, even when there only
exists limited supervision, the representations of
sememes can still be fully optimized. In contrast,
considering the massive word representations needed
to be learned, it is generally hard to learn excellent
word embeddings, especially for those infrequent
words. Thus the well-trained sememe representations
can alleviate the problem of insufficient training and
enrich the semantic meanings of words in low-resource
settings.

 

How to Incorporate Sememe Knowledge  After
showing the uniqueness and advantages of HowNet, we
briefly introduce several ways (categorized according to
Chap. 9) of leveraging sememe knowledge for deep
learning techniques:
1. Knowledge augmentation. The first way targets at

adding sememe knowledge into the input of neural
networks or designing special neural modules that can

 



be inserted into the original networks. In this way, the
sememe knowledge can be incorporated explicitly
without changing the neural architectures. Since
sememes are smaller units of word senses, they always
appear together with words. For instance, we can first
learn sememe embeddings and directly leverage them
to enrich the semantic information of word
embeddings.

2.
Knowledge reformulation. The second method for
incorporating sememe knowledge is to change the
original word-based model structures into sememe-
based ones. A possible solution is to assign sememe
experts in the neural networks. The introduction of
sememe experts could properly guide neural models to
produce inner hidden representations with rich
semantics in a more linguistically informative way.

 

3.
Knowledge regularization. The third way is to design a
new training objective function based on sememe
knowledge or to use knowledge as extra predictive
targets. For instance, we can first extract linguistic
information (e.g., the overlap of annotated sememes of
different words) from HowNet and then treat it as
auxiliary regularization supervision. This approach
does not require modifying the specific model
architecture but only introduces an additional training
objective to regularize the original optimization
trajectory.

 

In the above paragraphs, we only present the high-level
ideas for sememe knowledge incorporation. In the next few
sections, we will elaborate on these ideas with specific
examples to showcase the powerful capabilities of HowNet
and its comprehensive applications in NLP.



10.3 Sememe Knowledge

Representation

To leverage sememe knowledge, we should first learn to
represent it. Sememes do not exist naturally but are
labeled by human experts on word senses. We can
represent them using techniques similar to word
representation learning (WRL). In this section, we first
elaborate on how to learn sememe embeddings by
representing words as a combination of sememes, and then
we introduce how to incorporate sememe knowledge to
better learn word representations. The introduction of this
section is based on our research works [53, 62].

10.3.1 Sememe-Encoded Word Representation

WRL is a fundamental technique in many NLP tasks such as
neural machine translation [75] and language modeling [6].
Many works have been proposed for learning better word
representations, among which word2vec [46] strikes an
excellent balance between effectiveness and efficiency.
Later works propose to leverage existing KBs (such as
WordNet [17] and HowNet [74]) to improve word
representation.

We first introduce our sememe-encoded word
representation learning (SE-WRL) [53]. SE-WRL assumes
each word sense is composed of sememes and conducts
word sense disambiguation according to the contexts. In
this way, we could learn representations of sememes,
senses, and words simultaneously. Moreover, SE-WRL
proposes an attention-based method to choose an
appropriate word sense according to contexts
automatically. In the following paragraphs, we introduce
three different variants for SE-WRL. For a word w, we
denote S(w) as its sense set.  may



contain multiple senses. For each sense  , we denote

 as the sememe set for this sense,

with  being the embedding for the correspond sememe
 .

Skip-Gram Model  Since SE-WRL extends from the skip-
gram of word2vec [46], we first give a brief introduction to
the skip-gram model. For a series of words {w1, ⋯ , wN},
the model targets at maximizing the probability of
contextual words based on a centered word wc.
Specifically, we minimize the following loss (more details
could be found in Chap. 2):

(10.1)

where l is the size of the sliding window and P(wc+k|wc)
stands for the predictive probability of the context word
wc+k conditioned on the centered word wc. Denoting V  as
the vocabulary, the probability is formalized as follows:

(10.2)

Simple Sememe Aggregation Model (SSA)  SSA is
built upon the skip-gram model. It considers the sememes
in all senses of a word w and learns the word embedding w
by averaging the embeddings of all its sememes:

(10.3)



where m stands for the total number of the sememes of
word w. SSA assumes that the word meaning is composed
of smaller semantic units. Since sememes are shared by
different words, SSA could utilize sememe knowledge to
model semantic correlations among words, and words
sharing similar sememes may have close representations.

Sememe Attention over Context Model (SAC)  SSA
modifies the word embedding to incorporate sememe
knowledge. Nevertheless, each word in SSA is still bound
to an individual representation, which cannot deal with
polysemy in different contexts. Intuitively, we should have
distinct embeddings for a word given different contexts. To
implement this, we leverage the word sense annotation in
HowNet and propose the sememe attention over context
model (SAC), with its structure illustrated in Fig. 10.4. For
a brief introduction, SAC leverages the attention
mechanism to select a proper sense for a word based on its
context. More specifically, SAC conducts word sense
disambiguation based on contexts to represent the word.



Fig. 10.4  The architecture of SAC model. This figure is re-drawn based on
Fig. 10.2 in Niu et al. [53]

More specifically, SAC utilizes the original embedding of
the word w and uses sememe embeddings to represent
context word wc. The word embedding is then employed to
choose the proper senses to represent the context word.
The context word embedding wc can be formalized as
follows:

(10.4)

where  is the j-th sense embedding of wc and 
denotes the attention score of the j-th sense of the word w.



The attention score is calculated as:

(10.5)

Note  is different from  and is obtained with the
average of sememe embeddings (in this way, we could
incorporate the sememe knowledge):

(10.6)

The attention technique is based on the assumption that
if a context word sense embedding is more relevant to w,
then this sense should contribute more to the context word
embeddings. Based on the attention mechanism, we
represent the context word as a weighted summation of
sense embeddings.

Sememe Attention over Target Model (SAT)  The
aforementioned SAC model selects proper senses and
sememes for context words. Intuitively, we could use
similar methods to choose the proper senses for the target
word by considering the context words as attention. This is
implemented by the sememe attention over target model
(SAT), which is shown in Fig. 10.5.



Fig. 10.5  The architecture of SAT model. This figure is re-drawn based on
Fig. 3 in Niu et al. [53]

Conversely, SAT learns sememe embeddings for target
words and original word embeddings for context words.
SAT applies context words to compute attention over the
senses of w and learn w’s embedding. Formally, we have:

(10.7)

and we can calculate the context-based attention as
follows:

(10.8)



where the average of sememe embeddings  is also used
to learn the embeddings for each sense  . Here, 
denotes the context embedding, consisting of the
embeddings of the contextual words of wi:

(10.9)

where K denotes the window size. SAC merely leverages
one target word as attention to choose the context words’
senses, whereas SAT resorts to multiple context words as
attention to choose the proper senses of target words.
Therefore, SAT is better at WSD and results in more
accurate and reliable word representations. In general, all
the above methods could successfully incorporate sememe
knowledge into word representations and achieve better
performance.

10.3.2 Sememe-Regularized Word

Representation

Besides learning embeddings for sememes, we explore how
to incorporate sememe knowledge to improve word
representations. We propose two variants [62] for sememe-
based word representation: relation-based and embedding-
based word representation. By introducing the information
of sememe-based linguistic KBs into each word embedding,
sememe-guided word representation could improve the
performance in downstream applications like sememe
prediction.

Sememe Relation-Based Word Representation

Relation-based word representation is a simple and
intuitive method, which aims to make words with similar
sememe annotations have similar embeddings. First, a
synonym list is constructed from HowNet, with words



sharing a certain number (e.g., 3) of sememes regarded as
synonyms. Next, the word embeddings of synonyms are
optimized to be closer. Formally, let wi be the original word
embedding of wi and  be its adjusted word embedding.
Denote Syn(wi) as the synonym set of word wi; the loss
function is formulated as follows:

(10.10)

where αi and βij balance the contribution of the two loss
terms and V  denotes the vocabulary.

Sememe Embedding-Based Word Representation

Despite the simplicity of the relation-based method, it
cannot take good advantage of the information of HowNet
because it disregards the complicated relations among
sememes and words, as well as relations among various
sememes. Regarding this limitation, we propose the
sememe embedding-based method.

Specifically, sememes are represented using distributed
embeddings and placed into the same semantic space as
words. This method utilizes sememe embeddings as
additional regularizers to learn better word embeddings.
Both word embeddings and sememe embeddings are jointly
learned.

Formally, a word-sememe matrix M is built from
HowNet, where Mij = 1 indicates that the word wi is
annotated with the sememe xj; otherwise Mij = 0. The loss
function can be defined by factorizing M as follows:

(10.11)



where bi and  are the bias terms of wi and xj and X
denotes the full sememe set. wi and xj denote the
embeddings of the word wi and the sememe xj.

In this method, word embeddings and sememe
embeddings are learned in a unified semantic space. The
information about the relations among words and sememes
is implicitly injected into word embeddings. In this way, the
word embeddings are expected to be more suitable for
sememe prediction. In summary, either sememe relation-
based methods or sememe embedding-based methods
could successfully incorporate sememe knowledge into
word representations and benefit the performance in
specific applications.

10.4 Sememe-Guided Natural

Language Processing

In the last section, we introduce how to represent the
sememe knowledge annotated in HowNet, with a focus on
word representation learning. In fact, linguistic KBs such
as HowNet contain rich knowledge, which could also be
incorporated into modern neural networks to effectively
assist various downstream NLP tasks. In this section, we
elaborate on several representative NLP techniques
combined with sememe knowledge, including semantic
compositionality modeling, language modeling, and
sememe-incorporated recurrent neural networks (RNNs).
The introduction of this part is based on our research
works [29, 61, 66].

10.4.1 Sememe-Guided Semantic

Compositionality Modeling

Semantic compositionality (SC) means the semantic
meaning of a syntactically complicated unit is influenced by



the meanings of the combination rule and the unit’s
constituents [56]. SC has shown importance in many NLP
tasks including language modeling [50], sentiment analysis
[45, 70], syntactic parsing [70], etc. For more details of SC,
please refer to Chap. 3.

To explore the SC task, we need to represent multiword
expressions (MWEs) (embeddings of phrases and
compounds). A prior work [49] formulates the SC task with
a general framework as follows:

(10.12)
where p denotes the MWE embedding, w1 and w2
represent the embeddings of two constituents that belong
to the MWE,  is the combination rule,  means the extra
knowledge needed for learning the MWE’s semantics, and f
denotes the compositionality function.

Most of the existing methods focus on reforming
compositionality function f [5, 27, 70, 71], ignoring both 
and  . Some researchers try to integrate combination rule

 to build better SC models [9, 40, 76, 86]. However, few
works consider additional knowledge  , except that Zhu
et al. [87] incorporate task-specific knowledge into an RNN
to solve sentence-level SC.

We argue that the sememe knowledge conduces to
modeling SC and propose a novel sememe-based method to
model semantic compositionality [61]. To begin with, we
conduct an SC degree (SCD) measurement experiment and
observe that the SCD obtained by the sememe formulae is
correlated with manually annotated SCDs. Then we present
two SC models based on sememe knowledge for
representing MWEs, which are dubbed semantic
compositionality with aggregated sememe (SCAS) and
semantic compositionality with mutual sememe attention
(SCMSA). We demonstrate that both models achieve
superior performance in the MWE similarity computation



task and sememe prediction task. In the following, we first
introduce sememe-based SC degree (SCD) computation
formulae and then discuss our sememe-incorporated SC
models.

Sememe-Based SCD Computation Formulae  Despite
the fact that SC is a common phenomenon of MWEs, there
exist some MWEs that are not fully semantically
compositional. As a matter of fact, distinct MWEs have
distinct SCDs. We propose to leverage sememes for SCD
measurement [61]. We assume that a word’s sememes
precisely reflect the meaning of a word. Based on this
assumption, we propose 4 SCD computation formulae (0, 1,
2, and 3). A smaller number means lower SCD. Xp

represents the sememe sets of an MWE.  and 
denote the sememe set of MWE’s first and second
constituent. We briefly introduce these four SCDs as
follows:
1.

For SCD 0, an MWE is entirely non-compositional, with
the corresponding SCD being the lowest. The sememes
of the MWE are different from those of its constituents.
This implies that the constituents of the MWE cannot
compose the MWE’s meaning.

 

2.
For SCD 1, the sememes of an MWE and its
constituents have some overlap. However, the MWE
owns unique sememes that are not shared by its
constituents.

 

3.
For SCD 2, an MWE’s sememe set is a subset of the
sememe sets of constituents. This implies the
constituents’ meanings cannot accurately infer the
meaning of the MWE.

 

4. For SCD 3, an MWE is entirely semantically
compositional and has the highest SCD. The MWE’s

t i id ti l t th t f t
 



sememe set is identical to the sememe sets of two
constituents. This implies that MWE has the same
meaning as the combination of its constituents’
meanings.
We show an example for each SCD in Table 10.1,

including a Chinese MWE, its two constituents, and their
sememes.

Table 10.1  Sememe-based semantic compositionality degree computation
formulae and examples. The content of this table is from the original paper [61]

SCD Our

computation

formulae

Examples

    MWEs and

constituents

Sememes

3 农民起义
(peasant
uprising)

事情|fact,职位|occupation,
政|politics,暴动|uprise,人|human,
农|agricultural

     

    农民  
(peasant)

职位 |occupation,人 |human,农
|agricultural

     

      起义
(uprising)

暴动 |uprise,事情 |fact,政 |politics

2 几何图形
(geometric
figure)

数学 |math,图像 |image      

    几何  
(geometry;
how much)

数学 |math,知识 |knowledge,疑问
|question,功能词 |funcword

     

      图形
(figure)

图像 |image
     

1 应考 (engage
a test)

考试 |exam,从事 |engage      

    应 (deal
with; echo;
agree)

处理 |handle,回应 |respond,同意 |agree,
遵循 |obey,功能词 |funcword,姓
|surname



SCD Our

computation

formulae

Examples

    MWEs and

constituents

Sememes

     考 (quiz;
check)

考试 |exam,查 |check

0 画句号 (end) 完毕 |finish
    画  (draw) 画 |draw,部件 |part,图像 |image, 文字

|character,表示 |express
     句号

(period)
符号 |symbol,语文 |text

SCD Computation Formulae Evaluation  In order to
test the effectiveness of the proposed formulae, we
annotate an SCD dataset [61]. A total number of 500
Chinese MWEs are manually labeled with SCDs. Then we
test the correlation between SCDs of the MWEs labeled by
humans and those obtained by sememe-based rules. The
Spearman’s correlation coefficient is 0.74. The high
correlation demonstrates the powerful capability of
sememes in computing MWEs’ SCDs.

Sememe-Incorporated SC Models  Next, we discuss
the aforementioned sememe-incorporated SC models,
covering (1) semantic compositionality with aggregated
sememe (SCAS) and (2) semantic compositionality with
mutual sememe attention (SCMSA). From now on, we
introduce how to integrate combination rules into these
models.

We first consider the case when sememe knowledge is
incorporated in MWE modeling without combination rules.
Following Eq. (10.12), for an MWE p = {w1, w2}, we
represent its embedding as:

(10.13)



where  ,  , and  denote the
embeddings of the MWE p, word w1, and word w2, d is the
embedding dimension, and  denotes the sememe
knowledge. Since an MWE is generally not present in the
KB, hence we merely have access to the sememes of w1 and
w2. Denote X as the set of all the sememes,

 as the sememe set of w, and
 as sememe x’s embedding.

1. As illustrated in Fig. 10.6, SCAS concatenates a
constituent’s embedding and its sememes’
embeddings:

(10.14)

Fig. 10.6  The architecture of SCAS model. This figure is re-drawn based
on Fig. 1 in Qi et al. [61]

 



where  and  denote the aggregated sememe
embeddings of w1 and w2. We calculate p as:

(10.15)
where  denotes a bias term and 

denotes a composition matrix.
2. SCAS simply adds up all the sememe embeddings of a

constituent. Intuitively, a constituent’s sememes may
own distinct weights when they are composed of other
constituents. To this end, SCMSA (Fig. 10.7) is
introduced, which utilizes the attention mechanism to
assign weights to sememes (here we take an example
to show how to use w1 to calculate the attention score
for w2):

(10.16)

 



Fig. 10.7  The architecture of the SCMSA model that is introduced. This
figure is re-drawn based on Fig. 2 in Qi et al. [61]

where  and  are tunable
parameters.  can be calculated in a similar way. p is
obtained the same as Eq. (10.15).

Integrating Combination Rules  We can further
incorporate combination rules to the sememe-incorporated
SC models [61] as follows:

(10.17)
MWEs with different combination rules are assigned

with totally different composition matrices  ,
where  and  refer to a combination syntax rule set.
The combination rules include adjective-noun (Adj-N),



noun-noun (NN), verb-noun (V-N), etc. Considering that
there exist various combination rules, and some
composition matrices are sparse, therefore, the
composition matrices may not be well-trained. Regarding
this issue, we represent a composition matrix Wc as the
summation of a low-rank matrix containing combination
rule information and a matrix containing compositionality
information:

(10.18)
where  ,  ,  , and  . In
experiments, the sememe-incorporated models achieve
better performance on the MWE similarity computation
task and sememe prediction task. These results reveal the
benefits of sememe knowledge in compositionality
modeling.

10.4.2 Sememe-Guided Language Modeling

Language modeling (LM) targets at measuring the joint
probability of a sequence of words. The joint probability
reflects the sequence’s fluency. LM is a critical component
in various NLP tasks, e.g., machine translation [12, 13],
speech recognition [38], information retrieval [7, 30, 47,
59], document summarization [4, 67], etc.

Trained with large-scale text corpora, probabilistic
language models calculate the conditional probability of the
next word based on its contextual words. Traditional
language models follow the assumption that words are
atomic symbols and thus represent a sequence at the word
level. Nevertheless, this does not necessarily hold true.
Consider the following example:

The US trade deficit last year is initially estimated to be

40 billion .
Our goal is to predict the word for the blank. At first

glance, people may think of a unit to fill; after deep



consideration, they may realize that the blank should be
filled with a currency unit. Based on the country (The US)
the sentence mentions, we can finally know it is an
American currency unit. Then we can predict the word
dollars. The American, currency, and unit, which are basic
semantic units of the word dollars, are also the sememes of
the word dollars. However, the above process is not
explicitly modeled by traditional word-level language
models. Hence, explicitly introducing sememes could
conduce to language modeling.

In fact, it is non-trivial to incorporate discrete sememe
knowledge into neural language models, because it does
not fit with the continuous representations of neural
networks. To address the above issue, we propose a
sememe-driven language model (SDLM) to utilize sememe
knowledge [29]. When predicting the next word, (1) SDLM
estimates sememes’ distribution based on the context; (2)
after that, treating those sememes as experts, SDLM
employs a sparse expert product to choose the possible
senses; (3) then SDLM calculates the word distribution by
marginalizing the distribution of senses.

Accordingly, SDLM comprises three components: a
sememe predictor, a sense predictor, and a word predictor.
The sememe predictor considers the contextual information
and assigns a weight for every sememe. In the sense
predictor, we regard each sememe as an expert and predict
the probability over a set of senses. Lastly, the word
predictor calculates the probability of every word. Next, we
briefly introduce the design of the three modules.

Sememe Predictor  A context vector  is
considered in the sememe predictor, and the predictor
computes a weight for each sememe. Given the context {w1,
w2, ⋯ , wt−1}, the probability P(xk|g) whether the next word
wt has the sememe xk is calculated by:



(10.19)
where  ,  are tunable parameters.

Sense Predictor  Motivated by product of experts (PoE)
[31], each sememe is regarded as an expert who only
predicts the senses connected with it. Given the sense
embedding  and the context vector  , the sense
predictor calculates ϕ(k)(g, s), which means the score of
sense s provided by sememe expert xk. A bilinear layer
parameterized using a matrix  is chosen to
compute ϕ(k)(⋅, ⋅):

(10.20)

The probability  of sense s given by expert xk

can be formulated as:

(10.21)

where Ck,s is a constant and  denotes the set of senses
that contain sememe xk. qk controls the magnitude of the
term Ck,sϕ

(k)(g, s). Hence it decides the flatness of the
sense distribution output by xk. Lastly, the predictions can
be summarized on sense s by leveraging the probability
products computed based on related experts. In other
words, the sense s’s probability is defined as:

(10.22)

where ∼ indicates that P(s|g) is proportional to
 . X(s) denotes the set of sememes of the

sense s.



Word Predictor  As illustrated in Fig. 10.8, in the word
predictor, the probability P(w|g) is calculated through
adding up probabilities of s:

(10.23)

where S(w) denotes the senses belonging to the word w.
When experimenting with both the task of language
modeling and headline generation, SDLM achieves
remarkable performance, which is due to the benefits of
incorporating sememe knowledge. In-depth case studies
further reveal that SDLM could improve both the
robustness and interpretability of language models.

Fig. 10.8  The architecture of SDLM model. This figure is re-drawn based on
Fig. 2 in Gu et al. [29]



10.4.3 Sememe-Guided Recurrent Neural

Networks

Up until now, we have introduced how to incorporate
sememe knowledge into word representation,
compositionality modeling, and language modeling. Most of
the existing works exploit sememes for limited NLP tasks,
and few works have explored leveraging sememes in a
general way, e.g., employing sememes for better sequence
modeling to achieve better performance in various
downstream tasks. In the following paragraphs, we
introduce how to incorporate sememes into recurrent
neural networks, with the aim of enhancing the ability of
sequence modeling [66].

In fact, previous works have tried to incorporate other
linguistic KBs into RNNs [1, 54, 78, 81]. The utilized KBs
are generally word-level KBs (e.g., WordNet and
ConceptNet). Differently, HowNet utilizes sememes to
compositionally explain the meanings of words.
Consequently, directly adopting existing algorithms to
incorporate sememes into RNNs is hard. We propose three
algorithms to incorporate sememe knowledge into RNNs
[66]. Two representative RNN variants, i.e., LSTM and
GRU, are considered.

Preliminaries for RNN Architecture  First, let us
review some basics about the architectures of LSTM [33].
An LSTM comprises a series of cells, each corresponding to
a token. At each step t, the word embedding wt is input into
the LSTM to produce the cell state ct and the hidden state
ht. Based on the previous cell state ct−1 and hidden state
ht−1, ct and ht are calculated as follows:

(10.24)



where ft, it, and ot denote the output embeddings of the
forget gate, input gate, and output gate, respectively. Wf,
WI, Wc, and Wo are weight matrices and bf, bI, bc, and bo

are bias terms.
GRU [21] has fewer gates than LSTM and can be viewed

as a simplification for LSTM. Given the hidden state ht−1
and the input wt, GRU has a reset gate rt and an update
gate zt and computes the output ht as:

(10.25)

where Wz, Wr, Wh, bz, br, and bh are tunable parameters.
Next, we elaborate on the three proposed methods of

incorporating sememes into RNNs, including simple
concatenation (+ concat), adding sememe output gate (+ 
gate), and introducing sememe-RNN cell (+ cell). We
illustrate them in Fig. 10.9.



Fig. 10.9  The architectures of three methods for incorporating sememe
knowledge into RNNs. This figure is re-drawn based on Fig. 2 in Qin et al. [66]

Simple Concatenation  The first method focuses on the
input and directly concatenates the summation of the
sememe embeddings and the word embedding. Specifically,
we have:

(10.26)



where x is the sememe embedding of x and  denotes the
modified word embedding that contains sememe
knowledge.

Sememe Output Gate  Simple concatenation
incorporates sememe knowledge in a shallow way and
enhances only the word embeddings. To leverage sememe
knowledge in a deeper way, we present the second method
by adding a sememe output gate  . This architecture
explicitly models the knowledge flow of sememes. Note that
the sememe output gate is designed especially for LSTM
and GRU. This output gate controls the flow of sememe
knowledge in the whole model. Formally, we have (the
modified parts of the model structures are underlined):

(10.27)

where  and  are tunable parameters.
Similarly, we can rewrite the formulation of a GRU cell

as:
(10.28)



where bo is a bias vector,  denotes the sememe output
gate, and Wo is a weight matrix.

Sememe-RNN Cell  When adding the sememe output
gate, despite the fact that sememe knowledge is deeply
integrated into the model, the knowledge is still not fully
utilized. Taking Eq. (10.27) as an example, ht consists of
two components: the information in  has been
processed by the forget gate, while the information in

 is not processed. Thus these two
components are incompatible.

To this end, we introduce an additional RNN cell to
encode the sememe knowledge. The sememe embedding is
fed into a sememe-LSTM cell. Another forget gate
processes the sememe-LSTM cell’s cell state. After that, the
updated state is added to the original state. Moreover, the
hidden state of the sememe-LSTM cell is incorporated in
both the input gate and the output gate:

(10.29)



where  denotes the sememe forget gate and  and 
denote the sememe cell state and sememe hidden state.

For GRU, the transition equation can be modified as:

(10.30)

where  denotes the sememe hidden state.
In experiments of language modeling, sentiment

analysis, natural language inference, and paraphrase
detection, the sememe-incorporated RNN surpasses the
vanilla model, showing the usefulness of sememe
knowledge in sequence modeling. These results
demonstrate that, by incorporating sememe knowledge into
general sequence modeling neural structures, we could
enhance the performance on a variety of NLP tasks.
Although we focus on RNNs, we contend that similar ideas
could also be applied to other neural structures, which is
promising to explore in the future.



10.5 Automatic Sememe Knowledge

Acquisition

HowNet is built by several linguistic experts for more than
10 years. Apparently, manually constructing HowNet is
time-consuming and labor-intensive. Meanwhile, new words
or phrases are continually emerging, and the existing
words’ meanings are always changing as well. In this
regard, manual inspection and updates for sememe
annotation are becoming more and more overwhelming.
Besides, it is also challenging to ensure annotation
consistency among experts.

To address these issues, the sememe prediction task is
defined to predict the sememes for word senses
unannotated in a sememe KB. Ideally, a reliable sememe
prediction tool could relieve the annotation burden of
human experts. In the following, we first discuss the
embedding-based methods for sememe prediction, which
serve as the foundation for sememe prediction. After that,
we introduce how to leverage internal information for
sememe prediction. Finally, we extend the sememe
prediction task to a cross-lingual setting. The introduction
of this part is based on our research works [35, 60, 62, 77].

10.5.1 Embedding-Based Sememe Prediction

Intuitively, the words with similar meanings have
overlapping sememes. Therefore, we strive to represent the
semantics of sememes and words and model their semantic
relations. To begin with, we introduce our representative
sememe prediction algorithms [77], which are based on
distributed representation learning [32].

Specifically, two methods are proposed: the first method
is sememe prediction with word embeddings (SPWE). For a
target word, we look for its relevant words in HowNet
based on their embeddings. After that, we assign these



relevant words’ sememes to the target word. The algorithm
is similar to collaborative filtering [68] in recommendation
systems. The second method is sememe prediction with
(aggregated) sememe embeddings (SPSE/SPASE). We
learn sememe embeddings by factorizing the word-sememe
matrix extracted from HowNet. Hence, the relation
between words and sememes can be measured directly
using the dot product of their embeddings, and we can
assign relevant sememes to an unlabeled word.

Sememe Prediction with Word Embeddings  Inspired
by collaborative filtering in the personalized
recommendation, words could be seen as users, and
sememes can be viewed as products to be recommended.
Given an unlabeled word, SPWE recommends sememes
according to the word’s most related words, assuming that
similar words should have similar sememes. Formally, the
probability P(xj|w) of sememe xj given a word w is defined
as:

(10.31)

M contains the information of sememe annotation, where
Mij = 1 means that the word wi is annotated with the
sememe xj. V  denotes the vocabulary, and  means
the cosine similarity. A high probability P(xj|w) means the
word w should probably be recommended with sememe xj.
A declined confidence factor  is set up for wi, and ri

denotes the descending rank of  , and c ∈ (0, 1)
denotes a hyper-parameter.

Simple as it may sound, SPWE only leverages word
embeddings for computing the similarities of words. In
experiments, SPWE is demonstrated to have superior
performance in sememe prediction. This is because



different from the noisy user-item matrix in recommender
systems, HowNet is manually designed by experts, and the
word-sememe information can be reliably applied to
recommend sememes.

Sememe Prediction with Sememe Embeddings

Directly viewing sememes as discrete labels in SPWE could
overlook the latent relations among sememes. To consider
such latent relations, a sememe prediction with sememe
embeddings (SPSE) model is proposed, which learns both
word embeddings and sememe embeddings in a unified
semantic space.

Inspired by GloVe [58], we optimize sememe
embeddings by factorizing the sememe-sememe matrix and
the word-sememe matrix. Both matrices can be derived
from the annotation in HowNet. SPSE uses word
embeddings pre-trained from an unlabeled corpus and
freezes them during matrix factorization. After that, both
sememe embeddings and word embeddings are encoded in
the same semantic space. Then we could use the dot
product between them to predict the sememes.

Similar to M, a sememe-sememe matrix C is extracted,
where Cjk is defined as the point-wise mutual information
between sememes xj and xk. By factorizing C, we finally get
two different embeddings (x and  ) for each sememe x.
Then we optimize the following loss function to get sememe
embeddings:

(10.32)

where bi and  are the bias terms. V  and X denote the
word vocabulary and the full sememe set. The above loss
function consists of two parts, i.e., factorizing M and C.
Two parts are balanced by a hyper-parameter λ.



Considering that every word is generally labeled with 2
to 5 sememes in HowNet, the word-sememe matrix is very
sparse, with most of the elements being zero. It is found
empirically that, if both “zero elements” and “non-zero
elements” are treated in the same way, the performance
would degrade. Therefore, we choose distinct factorization
strategies for zero and non-zero elements. For the former,
the model factorizes them with a small probability (e.g.,
0.5%), while for “non-zero elements,” the model always
chooses to factorize them. Armed with this strategy, the
model can pay more attention to those “non-zero elements”
(i.e., annotated word-sememe pairs).

Sememe Prediction with Aggregated Sememe

Embeddings  Based on the property of sememes, we can
assume that the words are semantically comprised of
sememes. A simple way to model such semantic
compositionality is to represent word embeddings as a
weighted summation of all its sememes’ embeddings. Based
on this intuition, we propose sememe prediction with
aggregated sememe embeddings (SPASE). SPASE is also
built upon matrix factorization:

(10.33)

where  denotes the sememe set of the word wi and 
represents the weight of sememe xj for word wi. To learn
sememe embeddings, we can decompose the word
embedding matrix V into the product of M′ and the sememe
embedding matrix X, i.e., V = M′X. During training, the pre-
trained word embeddings are kept frozen.

Apparently, SPASE follows the assumption that
sememes are the semantic units of words. In SPASE, each
sememe can be treated as a small semantic component,
and each word can be represented with the composition of



several semantic units. However, the representation
capability of SPASE is limited, especially when modeling
the complex semantic relation between sememes and
words.

10.5.2 Sememe Prediction with Internal

Information

In the previous section, we introduce the automatic lexical
sememe prediction proposed in our work [77]. Effective as
they are, these methods do not consider the internal
information in words, such as the characters of Chinese
words. This is important for understanding those
uncommon words. In this section, we introduce another
work [35], which considers both internal and external
information of words to predict sememes.

Specifically, we take the Chinese language as an
example. In Chinese, each word typically comprises one or
multiple characters, most of which have specific semantic
meanings. A previous work [80] contends that over 90%
Chinese characters are morphemes. There are two kinds of
words in Chinese: single-morpheme words and compound
words, where the latter takes up a dominant percentage. As
shown in Fig. 10.10, a compound word’s meanings are
highly related to its internal characters. For instance, the
compound word 铁匠 (ironsmith) has two characters, 铁
(iron) and 匠 (craftsman), and 铁匠 ’s semantic meaning
could be derived by combining two characters (iron +
craftsman  → ironsmith).



Fig. 10.10  Sememes of the word 铁匠 (ironsmith) in HowNet. In this figure,
we can see that occupation, human, and industrial can be derived by both
internal (characters) and external (contexts) information. However, metal can
be inferred only using the internal information in the character 铁 (iron). This
figure is re-drawn based on Fig. 1 in the work of Jin et al. [35]

We present character-enhanced sememe prediction
(CSP). Beyond external context, CSP can also utilize
character information to improve the performance of
sememe prediction [35]. It conducts sememe prediction
using the embeddings of a target word and its
corresponding characters. Two methods of CSP are
proposed to utilize character information, namely, sememe
prediction with word-to-character filtering (SPWCF) and
sememe prediction with character and sememe
embeddings (SPCSE).

Sememe Prediction with Word-to-Character

Filtering  As mentioned before, sememe prediction can
be conducted using similar techniques of collaborative
filtering. If two words have the same characters at the
same positions, then these two words should be considered
to be similar.



A Chinese character may have different meanings when
it appears at different positions in a word [18]. Here we
define three positions: Begin, Middle, and End. For a word
w = {c1, c2, ⋯ , c|w|}, we define the characters at the Begin

position as πB(w) = {c1}, the characters at the Middle

position as πM(w) = {c2, ⋯ , c|w|−1}, and the characters at
the End position as πE(w) = {c|w|}. The probability of a
sememe xj given a character c and a position p is defined as
follows:

(10.34)

where M denotes the same matrix that is leveraged in
SPWE and πp may be πB, πM, or πE. ∼ indicates that the left
part is proportional to the right part. Finally, the
probability P(xj|w) of xj given w is computed as follows:

(10.35)

Simple and efficient as it may seem, SPWCF performs
well empirically, and the reason might be that
compositional semantics are very common in Chinese
compound words, and it is very intuitive to search similar
words based on characters.

Sememe Prediction with Character and Sememe

Embeddings  To further consider the connections among
sememes, sememe prediction with character and sememe
embeddings (SPCSE) is proposed. Based on internal
character information, SPCSE learns sememe embeddings.
Then SPCSE computes the semantic relatedness between
words and sememes. When learning character embeddings,
we need to consider that characters can be more



ambiguous than words. Therefore, we borrow the idea from
Chen et al. [18] and learn multiple embeddings for each
character. When modeling the meaning of a word, the most
representative character (together with its embedding) is
selected.

Assume each character c has Ne embeddings: 
. Given a word w and a sememe x, by enumerating all w’s
character embeddings, we find the embedding that is the
closest to the x’s embedding. The distance is measured by
cosine similarity. The closest character embedding is
selected as the representation of the word w. Given w = {c1,
⋯ , c|w|} and xj, we calculate:

(10.36)

where  and  are the same as those defined in SPSE
(the sememe embeddings of xj). Using the same M and C in
SPSE, the sememe embeddings can be obtained by
optimizing the following loss:

(10.37)

where  is the character embedding of wi that is the
closest to xj. As the characters and the words do not lie in a
unified space, new sememe embeddings are learned with
different notations from those in Sect. 10.5.1.  and 
denote the biases of ck and xj, and λ′ is the hyper-parameter
balancing two parts. The score function of word w = {c1, ⋯ ,
c|w|} is computed as follows:

(10.38)

SPWCF originates from collaborative filtering, but
SPCSE is based on factorizing matrices. Both methods have
one thing that is the same: they recommend the sememes



of similar words but are different their definition of
similarity. SPWCF/SPCSE uses internal information, but
SPWE/SPSE utilizes external information. In consequence,
combining the above models through ensembling could
lead to better prediction performance.

10.5.3 Cross-lingual Sememe Prediction

Most languages lack sememe-based KBs such as HowNet,
which prevents computers from better understanding and
utilizing human language to some extent. Therefore, it is
necessary to build sememe-based KBs for these languages.
In addition, as mentioned before, manually building a
sememe-based KB is time-consuming and labor-intensive.
To this end, we explore a new task [62], i.e., cross-lingual
lexical sememe prediction (CLSP), which aims at
automatically predicting lexical sememes for words in other
languages.

CLSP encounters unique challenges. On the one hand,
there does not exist a consistent one-to-one matching
between words from two different languages. For example,
the English word “beautiful” can be translated into Chinese
words of either 美丽 or 漂亮 . Hence, we cannot simply
translate the annotation of words in HowNet into another
language. On the other hand, since sememe prediction is
based on understanding the semantic meanings of words,
how to recognize the meanings of a word in other
languages is also a critical problem.

To tackle these challenges, we propose a novel model
for CLSP [62] to translate sememe-based KBs from a
source language to a target language. Our model mainly
contains two modules: (1) monolingual word embedding
learning, which jointly learns semantic representations of
words for the source and the target languages, and (2)
cross-lingual word embedding alignment, which bridges the
gap between the semantic representations of words in two



languages. Learning these word embeddings could conduce
to CLSP. Correspondingly, the overall objective function
mainly consists of two parts:

(10.39)
Here, the monolingual term  is designed to learn

monolingual word embeddings for source and target
languages, respectively. The cross-lingual term  aims
to align cross-lingual word embeddings in a unified
semantic space. In the following, we will introduce the two
parts in detail.

Monolingual Word Representation  Monolingual word
representation is learned using monolingual corpora of
source and target languages. Since these two corpora are
non-parallel,  comprises two monolingual sub-models
that are independent of each other:

(10.40)
where the superscripts S and T denote source and target
languages, respectively. To learn monolingual word
embeddings, we choose the skip-gram model, which
maximizes the predictive probability of context words
conditioned on the centered word. Formally, taking the
source side for example, given a sequence  ,
we minimize the following loss:

(10.41)

where l is the size of the sliding window.  stands
for the predictive probability of one of the context words
conditioned on the centered word  . It is formalized as
follows:

(10.42)



in which VS denotes the vocabulary of the source language.
 can be formulated in a similar way.

Cross-Lingual Word Embedding Alignment  Cross-
lingual word embedding alignment aims to build a unified
semantic space for both source and target languages.
Inspired by Zhang et al. [84], the cross-lingual word
embeddings are aligned with supervision from a seed
lexicon. Specifically,  includes two parts: (1) alignment
by seed lexicon (  ) and (2) alignment by matching (

 ):
(10.43)

where λs and λm are hyper-parameters balancing both
terms. The seed lexicon term  pulls word embeddings
of parallel pairs to be close, which can be achieved as
follows:

(10.44)

where  denotes a seed lexicon  and  indicate the
words in source and target languages in  .

 is designed by assuming that each target word
should be matched with a single source word or a special
empty word and vice versa. The matching process is
defined as follows:

(10.45)

where  and  denote target-to-source matching
and source-to-target matching.

From now on, we explain the details of target-to-source
matching, and source-to-target matching can be derived in



a similar way. A latent variable mt ∈{0, 1, ⋯ , |VS|} (t = 1, 2,
⋯ , |VT|) is first introduced for each target word  , where
|VS| and |VT| indicate the vocabulary sizes of the source and
target languages, respectively. Here, mt specifies the index
of the source word that  matches and mt = 0 signifies
that the empty word is matched. Then we have

 and can formalize the target-to-
source matching term as follows:

(10.46)

where  and  denote the target and source corpus.
Then we have:

(10.47)

where  is the source word that is matched by  and
 denotes how many times  occurs in the target

corpus. Here  is calculated similar to Eq. (10.42).
In fact, the original CLSP model contains another loss
function that conducts sememe-based word embedding
learning. This loss incorporates sememe information into
word representations and conduces to better word
embeddings for sememe prediction. The corresponding
learning process has been introduced in Sect. 10.3.2.

Sememe Prediction  Based on the assumption that
relevant words have similar sememes, we propose to
predict sememes for a target word in the target language
based on its most similar source words. Using the same
word-sememe matrix M in SPWE, the probability of a
sememe xj given a target word wT is defined as:

(10.48)



where  and wT are the word embeddings for a source
word  and the target word wT. rs denotes the descending
rank of the word similarity  , and c means a
hyper-parameter.

Up to now, we have introduced the details for the
proposed framework CLSP. In experiments, we take
Chinese as the source language with sememe annotations
and English as the target language to showcase CLSP. The
results show that the model could effectively predict lexical
sememes for words with different frequencies in other
languages. Besides, the model achieves consistent
improvements in two auxiliary experiments including
bilingual lexicon induction and monolingual word similarity
computation.

10.5.4 Connecting HowNet with BabelNet

Although the aforementioned method demonstrates
superiority in cross-lingual sememe prediction, the method
can only predict sememes for one language at a time. This
means that we need to predict sememes repeatedly for
multiple languages, which requires additional efforts to
define the lexicon and correct the possible errors. That is
why we turn to link HowNet with BabelNet [51].

BabelNet is a multilingual KB that merges Wikipedia
and representative linguistic KBs (e.g., WordNet). The node
in BabelNet is named BabelNet Synset, which contains a
definition and multiple words in different languages that
share the same meaning, together with some additional
information. The edges in BabelNet stand for relations
between synsets like antonym and superior. BabelNet has
over 15 million synsets and 364k relations, covering 284
commonly used languages and more than 11 million



figures. Words in one synset should be annotated with the
same sememe annotations because they have the same
meaning. If we connect BabelNet with HowNet, then we
can directly predict sememes for multiple languages since
each synset in BabelNet supports various languages.

Based on the above motivation, we make the first effort
to connect BabelNet and HowNet [60]. We create a
“BabelSememe” dataset, which contains BabelNet synsets
annotated with sememes. The candidate sememes are the
union of all the sememes of the Chinese synonyms in the
synset, which are then carefully sifted by over 100
annotators.

Sememe Prediction for BabelNet Synsets (SPBS)

BabelSememe dataset is still much smaller than the
original BabelNet, and manually annotating synsets is time-
consuming. Therefore, we propose the task of sememe
prediction for babelNet synsets (SPBS) [60]. The setting of
SPBS mostly follows existing sememe prediction
frameworks. For a synset b ∈ B, where B denotes all
synsets of BabelNet, we calculate the probability P(x|b) of a
sememe x and decide its sememe set X(b) as follows:

(10.49)

where δ denotes a threshold and X means the full sememe
set. To precisely calculate the probability, we need to first
obtain the representation of synsets. Intuitively, we
introduce two methods to learn the synset representation
[60]: SPBS with semantic representation and SPBS with
relational representation. By leveraging the edges in
BabelNet Synset and sememe relations in HowNet, we can
obtain the relational representation. In the following
paragraphs, we introduce the above two methods in detail.

SPBS with Semantic Representation (SPBS-SR)

Similar to the aforementioned method for sememe



prediction, we can force synsets with similar semantic
representation to have similar sememe annotations:

(10.50)

where b′ denotes a synset in BabelNet and b, b′ mean the
semantic representation of b and b′. I(⋅) is a function that
indicates whether x lies within the sememe set of b′. c is a
hyper-parameter, and  is the descending rank of cosine
similarities, which makes the model focus more on similar
synsets. To obtain the semantic representation of the
synsets, we resort to NASARI representations [15], which
utilize the Wikipedia pages related to these synsets to learn
their representations.

SPBS with Relational Representation (SPBS-RR)

Some of the synsets in BabelNet are annotated with
relations, and most of the relations originate from
WordNet. In addition, there are four types of relations of
sememes in HowNet: hypernym, hyponym, antonym, and
converse.

If we define a new relation have_sememe, which is
denoted as rh, to represent that a synset consists of one
specific sememe, then we can assign such a relation (edge)
pointing from some synset nodes to some sememe nodes. In
this way, we define triplets 〈h, r, t〉, where h, t ∈ X ∪ B. r ∈ 
RX ∪ RB ∪{rh} stands for the relation. RX and RB denote the
originally defined relations in HowNet and BabelNet.
Borrowing the idea from TransE [11] on knowledge
representation learning, we can jointly learn the
representation of all the nodes and relations as follows:

(10.51)



where t′ denotes another node that is different from t and t′
is the embedding of t′. γ denotes a margin and d means the
Euclidean distance.

Following the definition of BabelNet synset that the
representation of a synset is related to the summation of all
its sememes’ representations, we have:

(10.52)

where rb is a special semantic equivalence relation
standing for the difference between one synset
representation b and the summation of all its sememes’
representations. To sum up, the overall loss function is
defined as follows:

(10.53)
where λ1 and λ2 are the hyper-parameters balancing both
losses. Now we can formulate the probability P(x|b) of a
sememe given a synset using the difference between the
representations:

(10.54)

Since SPBS-SR and SPBS-SR follow different assertions,
combining them can take both semantics and relations into
consideration. In this way, we could achieve better
performance.

10.5.5 Summary and Discussion

In this section, we introduce the task of sememe prediction,
which is designed for reducing human labor in creating
sememe-based KBs. Prior efforts in this direction are spent
on defining the sememe prediction task [77]. Their
methods are based on collaborative filtering and matrix
factorization. Others take the internal information of words



into account when predicting sememes [35]. Beyond
sememe prediction within one language, the task of cross-
lingual lexical sememe prediction is proposed, together
with a bilingual word representation learning and an
alignment model [62]. Researchers have also tried to
connect existing sememe-based KBs with multilingual KBs,
e.g., BabelNet.

There also exist important research works that we do
not elaborate on in this chapter. For instance, some
researchers propose to automatically predict sememes
using the word descriptions in the Wikipedia websites [41];
others resort to leveraging dictionary definitions for better
performance and robustness [25]. In the above works,
efforts are mainly spent on annotating the sememe set for
each word sense. In fact, we have also explored how to
predict the hierarchical structure of sememe annotations
[79]. Considering the significant importance and powerful
capability of sememe knowledge, we believe it is essential
to design better algorithms for automatically building
sememe-based KBs.

10.6 Applications

In the previous sections, we have introduced how to
leverage the sememe knowledge to enhance advanced
neural networks, including word representation, language
modeling, and recurrent neural networks. Benefiting from
the rich semantic knowledge, HowNet has been
successfully applied to various NLP tasks and achieved
significant performance improvements. A typical
application is word similarity computation [43], in which
the similarity of two given words is computed by measuring
the degree of resemblance of their sememe trees. Other
applications include word sense disambiguation [85],
question classification [73], and sentiment analysis [20,
26]. In this section, we introduce another two practical



applications of HowNet, i.e., Chinese lexicon expansion and
reverse dictionary. The introduction of this part is based on
our research works [82, 83].

10.6.1 Chinese LIWC Lexicon Expansion

Linguistic inquiry and word count (LIWC) [57] has been
widely used for computational text analysis in social
science. LIWC computes the percentages of words in a
given text that fall into over 80 linguistic, psychological,
and topical categories.2 Not only can LIWC be used for text
classification, but it can also be utilized to examine the
underlying psychological states of a writer or a speaker.
LIWC was initially developed to address content analytic
issues in experimental psychology. Nowadays, it has been
widely applied to various fields such as computational
linguistics [28], demographics [52], health diagnostics [14],
social relationship [36], etc.

Despite the fact that Chinese is the most spoken
language in the world, the original LIWC does not support
Chinese. Fortunately, Chinese LIWC [34] has been released
to fill the vacancy. In the following, we mainly focus on
Chinese LIWC and would use the term “LIWC” to stand for
“Chinese LIWC” if not otherwise specified. While LIWC has
been used in a variety of fields, its lexicon contains fewer
than 7,000 words. This is insufficient because according to
a previous work [42], there are at least 56,008 common
words in Chinese. Moreover, LIWC lexicon does not
consider emerging words or phrases from the Internet.
Therefore, it is reasonable and necessary to expand the
LIWC lexicon so that it can cover more scientific research
purposes. Apparently, manual annotation is labor-intensive.
To this end, automatic LIWC lexicon expansion is proposed.

In LIWC lexicon, words are labeled with different
categories, which form a special hierarchy. Formally, LIWC
lexicon expansion is a hierarchical multilabel classification



task, which predicts the joint probability of a series of
labels P(y1, y2, ⋯ , yL|w) given a word w. Hierarchical
classification algorithms can be naturally applied to LIWC
lexicon. For instance, Chen et al. [19] propose hierarchical
SVM (support vector machine), which is a modified version
of SVM based on the hierarchical problem decomposition
approach. Another line of work attempts to use neural
networks in the hierarchical classification [16, 37]. In
addition, researchers [8] have presented a novel algorithm
that can be used on both tree-structured and DAG (directed
acyclic graph)-structured hierarchies. However, these
methods are too generic without considering the special
properties of words and LIWC lexicon. In fact, many words
and phrases have multiple meanings (i.e., polysemy) and
can thus be classified into multiple leaf categories.
Additionally, many categories in LIWC are fine-grained,
thus making it more difficult to distinguish them. To
address these issues, we propose to incorporate sememe
information when expanding the lexicon [82], which will be
discussed after a brief introduction to the basic model.

Basic Decoder for Hierarchical Classification  The
basic model exploits the well-known seq2seq decoder [75]
for hierarchical classification. The original seq2seq decoder
is often trained to predict the next word wt conditioned on
all the previously predicted words {w1, ⋯ , wt−1}. To
leverage the seq2seq decoder, we can first transform
hierarchical labels into a sequence. Note here the encoder
of the seq2seq model is used to encode the information of
the target word and the decoder of the seq2seq model is
used for label prediction.

Specifically, denote Y  as the label set and π:  as
the parent relationship, where π(y) is the parent node of y 
∈ Y . Given a word w, its labels form a tree-structure
hierarchy. We enumerate every path starting from the root



node to each leaf node and transform the path into a
sequence {y1, y2, ⋯ , yL} where π(yi) = yi−1, ∀i ∈ [2, L].
Here, L means the number of levels in the hierarchy. In this
way, when the model predicts a label yi, it takes into
consideration the probability of parent label sequence {y1,
⋯ , yi−1}. Formally, we define a probability over the label
sequence:

(10.55)

The decoder is modeled using an LSTM. At the i-th step,
the decoder takes the label embedding yi−1 and the
previous hidden state hi−1 as input and then predicts the
current label. Denote hi and oi as the hidden state and
output state of the i-th step; the conditional probability is
computed as:

(10.56)
where ⊙ is an element-wise multiplication. To consider the
information from w, the initial state h0 is chosen to be the
word embedding w.

Hierarchical Decoder with Sememe Attention  As
mentioned above, the basic decoder uses word embeddings
as the initial state, and each word in the basic decoder
model only has one representation. Considering that many
words are polysemous and many categories are fine-
grained, it is difficult to handle these properties using a
single real-valued vector.

As illustrated in Fig. 10.11, we utilize the attention
mechanism [2] to incorporate sememe information when
predicting the word label sequence.



Fig. 10.11  The architecture of the sememe attention decoder with word
embeddings as the initial state. This figure is re-drawn based on Fig. 3 in Zeng
et al. [82]

Similar to the basic decoder approach, word
embeddings are applied as the initial state of the decoder.
The primary difference is that at the i-th step, 
instead of yi−1 is input into the decoder, where ci is the
context vector. ci depends on a set of sememe embeddings
{x1, ⋯ , xN}, where N denotes the total number of sememes
of all the senses of the word w. More specifically, the
context vector ci is computed as a weighted summation of
the sememe embeddings as follows:

(10.57)

The weight αij of each sememe embedding xj is calculated
as follows:

(10.58)

where v is a trainable vector and W1 and W2 are weight
matrices. At each time step, the decoder chooses which



sememes to pay attention to when predicting the current
word label. With the support of sememe attention, the
decoder can differentiate multiple meanings in a word and
the fine-grained categories and thus can expand a more
accurate and comprehensive lexicon.

10.6.2 Reverse Dictionary

The task of reverse dictionary [69] is defined as the dual
task of the normal dictionary: it takes the definition as
input and outputs the target words or phrases that match
the semantic meaning of the definition. In real-world
scenarios, reverse dictionaries not only assist the public in
writing articles but can also help anomia patients, who
cannot organize words due to neurological disorders. In
addition, reverse dictionaries conduce to NLP tasks such as
sentence representations and text-to-entity mapping.

Some commercial reverse dictionary systems (e.g.,
OneLook) are satisfying in performance but are closed
source. Existing reverse dictionary algorithms face the
following problems: (1) Human-written inputs differ a lot
from word definitions, and models trained on the latter
have poor generalization abilities on user inputs. (2) It is
hard to predict those low-frequency target words due to
limited training data for them. They may actually appear
frequently according to Zipf’s law.

Multi-channel Reverse Dictionary Model  To address
the aforementioned problems, we propose the multi-
channel reverse dictionary (MCRD) [83], which utilizes
POS tag, morpheme, word category, and sememe
information of candidate words. MCRD embeds the queried
definition into hidden states and computes similarity scores
with all the candidates and the query embeddings. As
shown in Fig. 10.12, inspired by the inference process of
humans, the model further considers particular



characteristics of words, i.e., POS tag, word category,
morpheme, and sememe.

Fig. 10.12  Architecture of multi-channel reverse dictionary model. This figure
is re-drawn based on Fig. 2 in Zhang et al. [83]

Basic Framework  We first introduce the basic
framework, which embeds the queried definition into
representations, i.e., Q = {q1, ⋯ , q|Q|}. The model feeds Q
into a BiLSTM model and obtains the hidden states as
follows (here we can also use more advanced neural
structures to obtain the hidden states, and we take the
BiLSTM as an example):

(10.59)

Then the hidden states are passed into a weighted
summation module, and we have the definition embedding
v:

(10.60)



Finally, the definition embedding is mapped into the same
semantic space as words, and dot products are used to
represent word-word confidence score scw,word:

(10.61)

where Wword and bword are trainable weights and w denotes
the word embedding.

Internal Channels: POS Tag Predictor  To return
words with POS tags relevant to the input query, we
predict the POS tag of the target word. The intuition is that
human-written queries can usually be easily mapped into
one of the POS tags.

Denote the union of the POS tags of all the senses of a
word w as Pw. We can compute the POS score of the word
w with the sentence embedding v:

(10.62)

where indexpos(p) means the id of POS tag p and operator
[x]i denotes the i-th element of x. In this way, candidates
with qualified POS tags are assigned a higher score.

Internal Channels: Word Category Predictor

Semantically related words often belong to distinct
categories, despite the fact that they could have similar



word embeddings (for instance, “bed” and “sleep”). Word
category information can help us eliminate these
semantically related but not similar words. Following the
same equation, we can get the word category score of
candidate word w as follows:

(10.63)

where Wcat,k and bcat ,k are trainable weights. K denotes
the number of the word hierarchy of w and 
denotes the id of the k-th word hierarchy.

Internal Channels: Morpheme Predictor  Similarly, all
the words have different morphemes, and each morpheme
may share similarities with some words in the word
definition. Therefore, we can conduct the morpheme
prediction of query Q at the word level:

(10.64)

where Wmor and bmor are trainable weights. The final score
of whether the query Q has the morpheme j can be viewed
as the maximum score of all positions:

(10.65)

where the operator [x]j means the j-th element of x. Denote
the union of the morphemes of all the senses of a word w as
Mw, we can then compute the morpheme score of the word
w and query Q as follows:

(10.66)

where indexmor(m) means the id of the morpheme m.



Internal Channels: Sememe Predictor  Similar to the
morpheme predictor, we can also use sememe annotations
of words and the sememe predictions of the query at the
word level and then compute the sememe score of all the
candidate words:

(10.67)

where Xw is the sememe set of all w’s sememes and
indexsem(x) denotes the id of the sememe x. With all the
internal channel scores of candidate words, we can finally
get the confidence scores by combining them as follows:

(10.68)

where  is the aforementioned channels: POS tag,
morpheme, word category, and sememes. A series of λ are
assigned to balance different terms. With the sememe
annotations as additional knowledge, the model could
achieve better performance, even outperforming
commercial systems.

WantWords  WantWords3 [65] is an open-source online
reverse dictionary system that is based on multi-channel
methods. WantWords employs BERT as the sentence
encoder and thus performs more stably and flexibly.
WantWords supports both monolingual and cross-lingual
modes. For the monolingual mode, when the query only
contains one word, WantWords compares the query word
embedding with candidate word embeddings and doubles
the score of a candidate word if it is a synonym of the query
word. To support the cross-lingual mode, WantWords uses



Baidu Translation API4 to translate queries into the target
language. Up till now, WantWords has handled more than
25 million queries from 2 million users, with 120 thousand
daily active users. The success of WantWords again
demonstrates the usefulness of sememe knowledge in real-
world NLP applications. We give an example in Fig. 10.13.

Fig. 10.13  A snapshot of WantWords. We show an example of an English
reverse dictionary

10.7 Summary and Further Readings

In this chapter, we first give an introduction to the most
well-known sememe knowledge base, HowNet, which uses
about 2, 000 predefined sememes to annotate over 100,
000 Chinese/English words and phrases. Different from
other linguistic KBs (e.g., WordNet) or commonsense KBs
(e.g., ConceptNet), HowNet focuses on the minimum
semantic units (sememes) and captures the compositional
relations between sememes and words.



To model the sememe knowledge, we elaborate on three
models, namely, the simple sememe aggregation model
(SSA), sememe attention over context model (SAC), and
sememe attention over target model (SAT). After that, we
introduce how to exploit the sememe knowledge for NLP.
Specifically, we show that sememe knowledge can be well
incorporated into word representation, semantic
composition, language modeling, and sequence modeling.
To further enrich the annotation of HowNet, we detail how
to automatically predict sememes for both monolingual and
cross-lingual unannotated words and how to connect
HowNet with a representative multilingual KB, i.e.,
BabelNet. Finally, we introduce two applications of
sememe knowledge, including Chinese LIWC lexicon
expansion and reverse dictionary.

Further Reading and Future Work  For further
learning of sememe knowledge-based NLP, you can read
the book written by the authors of HowNet [24], which
detailedly introduces the basic information about HowNet.
You can also find more related papers in this paper list5 to
easily get familiar with this interesting research field. We
also recommend you to read our review on sememe
knowledge computation [63], where we discuss recent
advances in application and expansion of sememe
knowledge bases. There are also some research directions
worth exploring in the future:
1. Building Sememe KBs for Other Languages. The

original annotations in HowNet only support two
languages: Chinese and English. As far as we know,
there are no sememe-based KBs in other languages.
Since HowNet and its sememe knowledge have been
verified as helpful for better understanding human
language, it will be of great significance to annotate
sememes for words and phrases in other languages. As

 



we have mentioned above, the cross-lingual sememe
prediction task can be leveraged to automatically
create sememe-based KBs, and we think it is promising
to make efforts in this direction. It should also be
mentioned that compared to words, sememes may
cover less textual knowledge to some extent.

2.
Utilizing Structures of Sememe Annotations. The
sememe annotations in HowNet are hierarchical, and
sememes associated with a word are actually organized
as a tree structure. However, existing attempts still do
not fully exploit the structural information of sememes.
Instead, in current methods, sememes are simply
regarded as semantic labels. In fact, the structures of
sememes also contain abundant semantic information
and may conduce to a deeper understanding of lexical
semantics. Besides, existing sememe prediction studies
predict unstructured sememes only, and it is an
interesting task to predict sememes’ structures.

 

3.
Leveraging Sememe Knowledge in Low-Resource

Scenarios. One of the most important and typical
characteristics of sememes is that limited sememes can
represent unlimited semantics, which can play an
important and positive role in tackling low-resource
scenarios. In word representation learning, the
representations of low-frequency words can be
improved by their sememes, which have been well
learned with the high-frequency words annotated with
sememes. We believe sememe knowledge will be
beneficial to other low-resource scenarios, e.g., low-
resource language NLP tasks. We also encourage
future work to apply sememe knowledge to more NLP
applications.
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specialists, thus benefiting real-world legal practice.
Different from general open-domain tasks, legal tasks have
a high demand for understanding and applying expert
knowledge. Therefore, enhancing models with various legal
knowledge is a key issue of legal AI. In this chapter, we
summarize the existing knowledge-intensive legal AI
approaches regarding knowledge representation,
acquisition, and application. Besides, future directions and
ethical considerations are also discussed to promote the
development of legal AI.

11.1 Introduction

The law is the cornerstone of human civilization, and it
guarantees the regular functioning of our state and society.
The development of law has always been an important
symbol of the development of human civilization. The
practice of law can be traced back to 3000 BC. Ancient
Egyptian law regulated social norms and encouraged
people to be at peace with each other [97]. Over the
millennia of development and progress, the law can reach
every aspect of human activities nowadays. It regulates and
mediates the relations and interactions between people,
institutions, and state authorities. For example,
international law concerns relations between sovereign
nations; administrative law regulates the behavior of state
authorities; criminal and civil law guarantees the
fundamental rights of citizens.

The legal domain is knowledge-intensive and requires a
high level of knowledge for its practitioners. It takes years
of study and work experience for legal practitioners,
including judges and lawyers, to be qualified for their jobs,
which results in the scarcity and irreplaceability of legal
practitioners. Besides, as society develops and technology
advances, public communication and interactions become
more frequent, leading to more legal disputes and



increasing demand for legal services. Therefore, the
following two urgent challenges in real-world judicial
practice are increasingly prominent: (1) High caseload for
public authorities. Take China, the world’s most populous
country, as an example; according to the statistics, the
grassroots courts in China need to hear more than 30
million cases per year, with each judge hearing an average
of 238 cases a year [1]. This means that each judge has
high work pressure. The same situation also exists in other
countries, such as the United States [30]. (2) Scarcity of
legal services for the public. The scarcity of lawyers leads
to the high cost of legal services, and in the United States,
roughly 86% low-income people who encounter legal
problems cannot obtain adequate and timely legal
assistance [23].

With the development of artificial intelligence, the
interdisciplinary discipline, legal artificial intelligence
(Legal AI), has received increasing attention in recent
years [3–5, 10, 32, 35, 122]. Legal AI aims to empower
legal tasks with AI techniques and help legal professionals
to deal with repetitive and cumbersome mental work. Thus,
legal AI can assist legal professionals in improving their
work efficiency. Besides, legal AI can also provide
convenient legal services to people unfamiliar with legal
knowledge. Notably, as most legal data are presented in
the textual form, many legal AI methods focus on applying
natural language processing (NLP) techniques, i.e., legal
NLP, which is the focus of this chapter.

The core of legal NLP tasks lies in automatic case
analysis and case understanding, which requires the
models to understand the legal facts and the corresponding
knowledge. Due to the knowledge-intensive feature of case
analysis, straightforwardly applying general methods is
suboptimal. Enhancing legal NLP systems with legal
knowledge is crucial for effective case analysis. Figure 11.1
presents a real-world case document consisting of several



parts, including the case fact description, the court’s views,
and the judgment results. In this case, the judges are
required to apply the corresponding law to the specific
circumstances of the defendant’s case. After the judge
determines the applicable law based on the attributes of
the “domain name” and the purpose of the defendant’s
behavior, the judge then makes the final decision on the
crime and the prison term. This example shows that the
flexible application of legal knowledge is crucial in case
analysis.

Fig. 11.1  An example of a legal case document, which consists of the fact
description, court’s views, and judgment results. The case document is
translated from the cases published by the Supreme People’s Court of the
People’s Republic of China

Unlike the widely used relational triple knowledge in the
open domain, the structure of legal knowledge is complex
and diverse. In daily work and communication, legal
knowledge mainly presents in textual form. Take the two
most representative legal systems as an example. In civil
law systems, legal knowledge is mainly contained in laws
and regulations, and judges need to analyze and decide
cases according to the principles in the laws and
regulations. In common law systems, legal knowledge is



mainly contained in opinions and decisions in previous
cases, and judges need to summarize the principles from
the past decisions of relevant courts to make judgments for
current cases. The textual laws and case documents
together form essential legal knowledge sources.
Furthermore, many researchers formalize textual legal
knowledge into various structured knowledge, such as legal
elements, legal events, and legal logical rules, to facilitate
the efficiency and fairness of real-world legal case analysis.
Structured legal knowledge can decompose a case analysis
task into several simplified subtasks and thus reduce the
analysis complexity. Both textual and structured knowledge
are essential and beneficial for legal NLP systems.

The complexity of structures of legal knowledge poses
challenges to legal NLP models. Early legal NLP systems
mainly utilize the legal knowledge following the mix of
symbolism and rationalism paradigm [83, 95]. These works
usually suffer from poor transferability and can only utilize
a single type of knowledge. Inspired by the connectionism
and empiricism approaches, many efforts have been
devoted to designing neural models to integrate the
knowledge for legal tasks [15, 31, 41, 59, 66, 105, 110,
120]. We term these methods as legal knowledge
representation learning, which attempts to encode legal
knowledge with different structures into a unified
distributed representation space. Legal representation
learning can help transform human-friendly textual and
structured knowledge into machine-friendly model
knowledge (modeledge) and gradually becomes a common
paradigm for legal NLP.

In this chapter, we summarize the state of the arts of
legal NLP from the perspective of the definition,
acquisition, and application of legal knowledge. Notably,
the Supreme People’s Court of the People’s Republic of
China has published more than 100 million case



documents,1 greatly contributing to the development of
legal AI. According to the statistics, China has the highest
number of research papers on legal AI in recent years [80].
Therefore, in this chapter, the examples and models mainly
come from legal AI research for Chinese cases.

In the following sections, we first present the typical
tasks and real-world applications in legal NLP in Sect. 11.2,
where all these tasks are knowledge-intensive and require
multiple types of knowledge for reasoning. Then, we
introduce several widely used legal knowledge nowadays,
including textual and structured legal knowledge, in Sect.
11.3. Moreover, in Sect. 11.4, we focus on knowledge-
guided legal NLP methods, which attempt to learn
machine-friendly model knowledge from human-friendly
legal knowledge. Based on the discussion in Chap. 9, we
divide the existing knowledge-guided methods into four
groups according to which model components are fused
with knowledge. To promote future research, we discuss
some directions in Sect. 11.5 and potential ethical risks of
existing legal NLP methods in Sect. 11.6.

11.2 Typical Tasks and Real-World

Applications

Recently, many legal tasks have been formally defined from
the computational perspective to promote the application of
AI techniques in the legal domain. To facilitate the
introduction of subsequent sections, we will briefly
describe the definition and challenges of several typical
legal tasks, including legal judgment prediction, legal
information retrieval, and legal question answering.
Though many tasks have been intensively studied in recent
years, not all of them have been widely used in real-world
systems due to unsatisfactory performance and ethical



considerations. In this section, we also briefly introduce
some real-world applications of existing legal NLP methods.

Legal Judgment Prediction (LJP)  LJP aims to predict
the judgment results when giving the fact description and
claims. LJP is one of the most practical tasks in legal NLP.
Take widely studied Chinese cases as an example; the cases
can be classified into three categories: administrative
cases, civil cases, and criminal cases. The claims in
administrative cases and civil cases are usually diverse,
which introduces challenges for task formalization and
evaluation. For example, in divorce dispute cases, the
claims often include the distribution of property, child
custody issues, etc. In contrast, the claims in criminal cases
usually are homogeneous and request for courts to impose
a certain punishment on the defendants, such as a fine, a
prison term, or a death penalty. The homogeneity of claims
in criminal cases brings convenience to the evaluation and
formalization of LJP. Therefore, existing LJP research
mainly focuses on criminal cases, and only limited research
has been conducted on civil cases and administrative cases
[33, 64]. In this subsection, we will mainly introduce the
LJP task for criminal cases. As shown in Fig. 11.2, when
given the textual fact description, the model is required to
predict the judgment results, including the related law
articles, charges, and the prison term, in turn.



Fig. 11.2  An example of legal judgment prediction. Given the fact description,
the model is required to predict the judgment results, including the relevant
law articles, the charges, and the prison term. The case document is translated
from the cases published by the Supreme People’s Court of the People’s
Republic of China

With the rapid progress of end-to-end distributed
representation learning, judgment prediction tasks are
formalized as text classification or regression tasks. LJP
mainly faces the following challenges: (1) Long-tail
problem. The number of law articles and charges is large,
and the number of cases for each category is imbalanced.
And existing data-hungry methods cannot perform well for
low-frequency categories. (2) Interpretability. Real-world
applications are required to provide not only accurate
predictions but also meaningful explanations for the
results.

LJP has been studied since the 1950s and has been of
interest to researchers from various countries, including
China [66, 120], the United States [47, 52], Europe [13],
and Korea [44]. Early works explore predicting the court
decision with mathematical and statistical approaches from
hand-crafted features [49, 52, 74]. Recent years witness
the progress of neural judgment prediction models [13, 18,



78, 122]. To alleviate the long-tail problem and improve the
interpretability of the LJP models, structured legal
knowledge is often utilized to guide the model learning [41,
120, 121], which we will discuss in the following sections.
LJP can provide potential judgment suggestions for judges
and thus reduce their work stress. Automatic LJP models
can also offer basic consult advice for the public. However,
due to poor interpretability and unsatisfactory
performance, LJP models usually face potential ethical risks
and cannot be directly applied to real-world legal systems.
The details of ethical issues are discussed in Sect. 11.6.

Legal Information Retrieval (Legal IR)  Legal IR aims
to retrieve similar cases, laws, regulations, and other
information for supporting legal case analysis. Legal IR is
essential for both civil and common law systems, where
judges need to first retrieve relevant knowledge from the
amounts of laws and cases and then make decisions based
on the relevant knowledge. Manual retrieval from large-
scale knowledge sources is very time-consuming and labor-
intensive. Therefore, automatic legal IR based on factual
descriptions is an essential task. As shown in Fig. 11.3,
given a query case and a candidate set with several cases
or law articles, legal IR models are required to calculate
relevant scores between the query and candidates and then
rank the candidates according to the relevant scores for
final retrieval outputs.



Fig. 11.3  An example of legal IR. The case document is translated from the
cases published by the Supreme People’s Court of the People’s Republic of
China

Legal IR faces the following challenges: (1) Long text
matching. Due to involving complex facts, the case
documents usually contain thousands of tokens. The models
are supposed to locate the key information in the long text
and generate expressive case representation in the
semantic space [89, 105]. (2) Diverse definitions of
similarity. In open-domain IR, similarity mainly refers to
topical similarity. But legal IR aims to find supporting
evidence for case analysis, and the definition of similarity
may be diverse for different requirements, including
similarity from the aspects of related laws, occurring
events, and focuses of dispute [90, 91]. For example, the
cases shown in Fig. 11.3 are similar in terms of occurring
events, but the related laws of the two cases are different,
as the value of the stolen property in the query case is
much higher than that of the candidate cases.

Conventional statistical legal IR relies heavily on
laborious hand-crafted rules and expert knowledge [4], via
legal issue decomposition [115] or ontological framework
enhancing [87]. Statistical methods mainly focus on lexical
similarity and suffer from the token mismatch problem.
Recent neural-based methods have been proven effective in



capturing semantic similarity between cases [68, 79].
According to the data structures, we can divide neural legal
IR models into text-based and network-based methods.
Text-based models compute the relevant scores based on
the textual content of cases [56, 57, 67, 113]. And network-
based models utilize the citation network of cases to learn
the representation and then recommend relevant cases and
laws for queries [8, 42, 50, 109]. These works achieve good
performance and make legal IR a widely used technique for
various real-world applications.

Legal Question Answering (Legal QA)  Legal QA aims
to answer questions in the legal domain automatically.
Figure 11.4 shows an example of legal QA, which needs to
find the relevant legal knowledge given the question and
then perform reasoning to finally get the answer to the
question. An important task of lawyers and legal
professionals is to provide legal advice, i.e., answering
questions from people unfamiliar with legal knowledge. As
mentioned before, the scarcity of legal professionals and
the high cost of legal services prevent most low-income
people from receiving timely and effective legal assistance.
In such a situation, legal QA can be an effective way to
achieve convenient and inexpensive legal consultation
services.



Fig. 11.4  An example of legal question answering. (The figure is re-drawn
according to Fig. 1 in [123])

Legal QA involves complex reasoning steps. As shown in
Fig. 11.4, the model needs to perform multiple steps of
reasoning based on the retrieved legal knowledge.
According to the observation and statistics from a real-
world legal question dataset [123], there are five
challenging reasoning types for legal QA. (1) Lexical
matching. It is a basic reasoning type for legal QA, which
requires locating the relevant information and answers
based on lexical matching. (2) Concept understanding.
Legal questions usually involve abstract legal concepts. As
shown in Fig. 11.4, after finding the relevant laws for facts,
we can find that Alice commits two crimes with only one
behavior. Then the models are supposed to associate the
fact with the abstract concept of “Motivational
concurrence” for the final decision. (3) Numerical analysis.
Case analysis sometimes requires performing numerical
calculations. For example, the question in Fig. 11.4
requires comparing two prison terms to select the more



serious charges. (4) Multi-paragraph reading. To answer
the questions, the models must read and synthesize
information from multiple paragraphs. (5) Multi-hop
reasoning. It means that we need to conduct multiple steps
of logical reasoning. These reasoning requirements make
legal QA a challenging task.

Some researchers construct large-scale legal QA
datasets and verify the performance of existing open-
domain QA methods [29, 123]. They find that existing
methods are suboptimal for legal QA, as legal QA usually
involves complicated fact and knowledge reasoning.
Recently, owing to the powerful large-scale pre-trained
models (PTMs), many researchers begin exploring QA with
complex reasoning using chain-of-thought prompting [102,
103] and behavior learning [75, 77]. Besides, to build
knowledge-intensive models, some researchers enhance
PTMs with knowledge graphs [98, 117] and knowledge
retrieval [38, 54]. We argue that powerful PTMs also bring
great potential for improving the performance of legal QA
systems.

Real-World Applications  In previous paragraphs, we
introduce the legal AI tasks that have received much
attention in academic research. Due to the unsatisfactory
model performance, not all tasks have been applied in real-
world systems. To provide an overview of the current
situation of legal AI applications, we focus on widely used
legal technology systems in real-world scenarios in this
subsection.

With the development of the Internet, human activities and
interactions have become more frequent. Meanwhile,
people have become more aware of their rights. It leads to
an increasing demand for legal services in recent years.
According to legal industry reports, annual revenues for
legal services have exceeded 150 billion yuan in China and



exceeded 300 billion dollars in the United States [70]. The
huge market size has given rise to many real-world legal
application systems, designed to provide convenient legal
services. These applications can be divided into two stages,
legal information applications and legal intelligent
applications.

Legal Information Applications  Legal information
applications aim to electronically manage and coordinate
information and personnel in complex legal services. For
example, in the United States, the Federal Judicial Center
launched the COURTRAN project for electronic court
records in 1975, and the subsequent PACER system has
provided more convenient tools for electronic judicial
litigation [71]. In China, the Supreme People’s Court
reported that China has successfully built legal information
systems, where the digitization of case documents and
online filing have been realized [19]. In terms of
commercial companies, software for case file management
and website for online legal consulting services have also
received great attention [45]. In summary, legal
information applications can help store and transfer
information efficiently and reduce the communication cost
between legal practitioners and the public.

Legal Intelligent Applications  The development of legal
informatization has provided basic data support and
applicable scenario support for legal intelligent
applications. Different from legal information applications,
legal intelligent applications focus on the understanding,
reasoning, and prediction of legal data to help achieve
efficient knowledge acquisition and data analysis [112]. For
example, to help judges and lawyers quickly find past
similar cases, case retrieval and recommendation
technology are now widely used, and systems providing
case retrieval services have appeared in various countries



around the world, such as WestLaw2 and LexisNexis3 in the
United States and Faxin4 in China. Besides, aiming to
check the legality of contract terms, automatic contract
review is gradually becoming a focus of legal commercial
applications. Automatic contract review can provide risk
warnings and assessments for public business activities,
thus reducing the occurrence of contract disputes. Many
startups are established for this application, such as
PowerLaw,5 LegalSifter,6 etc.

It is worth mentioning that though many legal AI tasks have
been widely studied in academic research, the application
of these tasks in real-world systems is still limited. There
are two main reasons. First, the performance of existing
models is not satisfactory, as legal case analysis has a high
demand for knowledge understanding and complex
reasoning. Second, legal AI tasks, such as LJP, involve the
basic rights and interests of citizens, but the potential
ethical risks caused by the uninterpretability of legal
models are not well studied yet. Therefore, some legal AI
tasks are still in the research stage while not being applied.
This still requires researchers and developers around the
world to work together to develop safe, reliable, and
accurate legal AI applications.

11.3 Legal Knowledge

Representation and Acquisition

Legal tasks rely heavily on expert knowledge and require
the model to associate relevant legal knowledge based on
the understanding of facts to conduct complex analysis. In
this section, we will introduce two important types of legal
knowledge with different forms, including textual and
structured knowledge. Legal knowledge is naturally
presented in the textual form for daily work and



communication. To promote work efficiency, some
researchers formalize textual knowledge into structured
knowledge. Both two types of knowledge play a crucial role
in case analysis.

11.3.1 Legal Textual Knowledge

The majority of resources in the legal domain are presented
in text forms, such as laws and regulations, legal cases, etc.
These data can provide a rich reference basis for legal case
analysis and enable models to effectively mine legal
judgment patterns from them. In this subsection, we will
introduce in detail the widely used legal textual knowledge.

Laws and Regulations  Laws and regulations are a set of
rules created by governmental institutions to regulate
human and institutional behaviors. They are the basis of
real-world legal systems and are the origin of other legal
knowledge. Especially in the civil law system, all cases
should be judged based on the related law articles, which
provide comprehensive and valuable knowledge for case
analysis. Notably, laws and regulations usually involve
many abstract concepts, which are challenging for models
to understand.

Legal Cases  Legal cases cannot only provide amounts of
training instances for models but also serve as a helpful
knowledge base for case analysis. Different from laws and
regulations which contain many abstract concepts, legal
cases contain records of real-world facts and court views.
Especially in common law systems, the judges are required
to make a judgment based on the decision of relevant past
cases and synthesize the rules of past cases as applicable
to the current facts. Even for civil law systems, past cases
can also provide a valuable reference for judges in some
countries. Therefore, legal cases are an important
supplement to the knowledge of laws and regulations.



Figure 11.5 presents an example of the fact description in a
case and the corresponding law article. From the example,
we can observe that the case document records the
concrete real-world scenario, while the law article gives an
abstract definition of the crime of position encroachment.
The law articles are the basis for the judgment of legal
cases, and the legal cases are the concrete manifestation of
the law in the real world. Both laws and cases are
important legal knowledge sources, and the legal AI models
are required to associate the abstract concepts in laws and
specific scenarios in facts for effective case analysis during
knowledge applications.

Fig. 11.5  An example of the fact description in a case and the corresponding
law article. The case document is translated from the cases published by the
Supreme People’s Court of the People’s Republic of China. The law is
translated from Article 271 of the Criminal Law of the People’s Republic of
China

Legal Textual Knowledge Representation Learning

Legal textual knowledge is a very important knowledge
source for legal AI, and how to learn informative
representation for laws and cases lies in the core of
knowledge-intensive legal AI tasks. In this subsection, we
will introduce how to represent textual knowledge for
downstream tasks. We denote laws and cases as legal
documents. Similar to the development of NLP in other
domains, early research mainly represents the legal
documents with symbolic representation [2, 47, 72].



Inspired by the progress of distributed representation
learning [48, 73, 81, 82], pre-trained embeddings and
neural network are widely applied for legal case analysis
[41, 66, 120, 122] in recent years.

Nowadays, large-scale PTMs have been proven effective in
capturing knowledge from the unlabeled corpus. In legal
NLP, OpenCLaP [124] and Legal-BERT [15] are the earliest
PTMs, which show that domain-specific pre-training can
lead to performance improvement [36, 118]. Then
Lawformer [105] is proposed to reduce the computational
complexity of PTMs for long legal documents with a sparse
attention mechanism. In addition, there are strict rules and
regulations regarding the writing of legal documents. As a
result, legal documents are written with extra attention to
protecting privacy and avoiding offensive content. Such
high-quality text data can also help mitigate the ethical
risks of open-domain PTMs. Henderson et al. [39] show
that models pre-trained on legal documents can perform
well in learning contextual privacy rules and toxicity norms.
Though these works can achieve promising results, the
applied approaches ignore the specific characteristics of
legal documents. For example, cases usually involve
multiple semantic labels, such as the causes of action and
the relevant laws. Designing legal-specific models that can
effectively capture the semantic information of legal
documents is still a challenging task.

11.3.2 Legal Structured Knowledge

In recent years, many researchers attempt to represent
legal textual knowledge into structured knowledge. On the
one hand, legal textual knowledge has its intrinsic
structures. For example, the laws and regulations usually
can be translated into the structure of “if...then...,” which
can be further converted into logical rules; the facts of a
legal case usually consist of several key events; then it can



be represented as a structured event timeline. On the other
hand, structured knowledge is conducive to knowledge
understanding and retention. Therefore, various types of
legal structured knowledge have been widely used in legal
AI tasks. In this subsection, we will introduce the definition
and acquisition of several legal structured knowledge.

Legal Relation Knowledge  Relational factual
knowledge organizes the knowledge in a triplet format and
is widely used in knowledge graphs. Similar to relational
knowledge in the open domain, legal triples can emphasize
the important information in the legal domain. As shown in
Fig. 11.6, the triple (Alice, sell_drug_to, Bob) can be
regarded as the summarization of the given case, which
will help models to capture the key information and benefit
the downstream tasks. The legal relation extraction
methods are similar to methods in the open domain. Please
refer to Chap. 9 for details about relation extraction
methods.

Fig. 11.6  An example of legal cases with a relational triple

Legal Event Knowledge  Recognizing the events and the
corresponding causal relations between these events is the
basis of legal case analysis. Following event definition in
open domain [27, 99], legal events refer to crucial
information from cases about what happened and what is
involved. Figure 11.7 presents a legal case with the
annotated event information and the corresponding
judgment results. An event consists of one event trigger
and several event arguments, such as time, place, and
involved participants. Here, crashed into triggers the
Bodily_harm event, in which Alice, Bob, and Green Avenue



are the event actor, patient, and place. Enhancing case
representation with legal event information can benefit
various downstream case analysis tasks, such as LJP and
legal IR. In this example, Alice causes a traffic accident,
and the following Desertion and Escaping events lead to
the Death event of Bob. Based on these occurred events,
we can easily find the relevant law articles and give the
final judgment results.



Fig. 11.7  An example of legal events. We can summarize the fact description
as the legal event timeline, which can help in making judgments. (The figure is
re-drawn according to Fig. 1 in [110])

Legal events can be regarded as a summarization of legal
cases and help models perform accurate case analysis.



Therefore, many efforts have been devoted to legal event
extraction (LEE). Early works mainly focus on utilizing
hand-crafted symbolic features to extract legal events [6,
51]. Inspired by the success of neural networks, Li et al.
[55] formalize LEE as a sequence labeling task and employ
Bi-LSTM with CRF as the output layer to compute role
labels for each token. Furthermore, Shen et al. [92]
introduce a hierarchical event schema for LEE, which can
capture the connections between different arguments and
events. However, these works only attempt to extract
events of limited event types and cannot be widely adopted
in real-world applications. To this end, a large-scale legal
event detection dataset, LEVEN [110] is proposed. LEVEN
contains 8, 116 legal documents and 150, 977 annotated
event mentions in 108 event types, which can serve as a
reliable evaluation benchmark for LEE. It has been verified
that many open-domain event detection methods can
achieve good results on LEVEN. But we are also looking
forward to future works that achieve comprehensive legal
event extraction with high coverage of event types and
event arguments.

Legal Element Knowledge  Legal elements, also known
as legal attributes, refer to properties of cases, based on
which we can directly make judgment decisions. Figure
11.8 presents an example of attribute-based charge
prediction. Here Theft and Robbery are two confusing
charges, whose definitions only differ in a specific action.
From the legal attributes, we can observe that due to the
violence committed by Bob, he should be sentenced to
Robbery crime instead of Theft crime. The element of
violence or not is the key to distinguishing these two
charges. The intellectual origin of legal attributes is the
elemental trial [22, 84, 96], an important legal principle
that requires judges to conduct a trial solely based on



crucial legal elements. The elemental trial can help judges
clarify trial procedures and avoid ethical issues.

Fig. 11.8  An example of legal attributes. (The figure is re-drawn according to
Fig. 1 in [41])

Legal element extraction is usually formalized as a multi-
label text classification task for legal cases, where each
element is a binary value with yes/no as the answer. Zhong
et al. [122] evaluate typical text representation models for
element classification and find that existing methods can
achieve good results on legal element classification. Thus,
element extraction is usually treated as an intermediate
auxiliary task to promote the performance of downstream
tasks, such as confusing charges discrimination [41] and
interpretable judgment prediction [121]. Though legal
elements are important for case analysis, existing methods
only perform extraction on limited types of elements and
have low coverage of charges. There is still a lack of
benchmarks for comprehensive training and evaluation of
element extraction.

Besides, legal element extraction is also a popular topic
for contract analysis, where each element is a basic
component of contracts, such as parties and beginning and
ending dates [12, 14, 40, 101, 116]. This task can improve
the speed of contract reading and facilitate the following
contract review.



Legal Logical Knowledge  Laws and regulations are in
nature logical statements, and legal case analysis is a
process of determining whether defendants violate the
logical propositions contained in the law. Therefore, many
researchers explore representing legal knowledge in a
logical form and enhance case analysis with logical
reasoning.

Legal logical knowledge can be divided into two categories:
(1) Coarse-grained heuristic logic. Inspired by the various
legal principles, coarse-grained heuristic logic mainly
involve the task-level or charge-level logical rules. For
example, task-level logical dependencies [111, 120] require
the models to perform multi-task prediction following a
specific human-inspired logical order. Elemental trial
process [121] designs charge-level key elements for each
charge and requires the models to analyze the cases by
answering element-oriented questions. (2) Fine-grained
first-order logic. As we mentioned before, laws and
regulations are a set of rules expressed in natural
language. And for better integration of these rules, some
researchers attempt to represent laws as a set of fine-
grained first-order logic rules [33]. For example, the law
article in Fig. 11.5 can be represented as a logic rule:

(11.1)
where Xstaff refers to if the defendant is the staff of the unit,
Xproperty refers to if the defendant illegally takes the unit’s
property, and Ycrime refers to if the defendant should be
sentenced to the crime of position encroachment. With the
first-order logic rule, the judgment for the crime of position
encroachment can be decomposed into two subtasks (i.e.,
Xstaff and Xproperty).

Legal logical knowledge can help break down the case
analysis into several logical substeps. Thus it can help



improve the interpretability and reasoning ability of the
models.

11.3.3 Discussion

Legal textual and structured knowledge play a significant
role in legal applications, and different types of knowledge
possess different characteristics and play different roles. In
this subsection, we will discuss the advantages of legal
textual and structured knowledge.

Textual Knowledge  Textual knowledge possesses the
following characteristics: (1) High coverage. Legal textual
knowledge, including both laws and cases, is the origin of
other forms of legal knowledge. Almost all scenarios can
find their counterparts in the textual knowledge. (2)
Updating over time. With the continuous refinement of laws
and the increasing number of cases, legal textual
knowledge is growing over time. Take the statistics from
China as an example; there are more than a thousand
national laws and more than 100 million legal cases
nowadays, and this legal knowledge is updating and
growing rapidly every year. Therefore, the two valuable
characteristics make textual knowledge indispensable for
existing legal NLP models. However, the textual knowledge
is diverse in expression, which also makes it hard to
retrieve and integrate legal textual knowledge for
downstream tasks.

Structured Knowledge  Structured knowledge
possesses the following characteristics: (1) Concise and
condensed. Structured knowledge often contains vital
information that allows for a quick grasp of the case’s
specifics. Hence structured knowledge can benefit
downstream models to capture key information from
complicated cases. (2) Interpretable. The symbolic case
representation derived from structured knowledge can



provide intermediate interpretations for the prediction
results. For example in Fig. 11.8, the element results can
provide explanations for distinguishing confusing charges.
However, structured knowledge requires labor-intensive
and time-consuming manual annotation. Therefore, it needs
further exploration for automatic structured knowledge
acquisition.

Towards Model Knowledge  In the era of deep learning,
there is also an important type of knowledge, named model
knowledge or modeledge. Modeledge refers to knowledge
implicitly contained in models. Different from textual and
structured knowledge which are explicit human-friendly
knowledge, implicit modeledge is machine-friendly and can
be easily utilized by AI systems. How to transform textual
and structured legal knowledge into model knowledge is a
popular research topic and will be discussed in the
following section.

11.4 Knowledge-Guided Legal NLP

Legal knowledge, including textual and structured
knowledge, is essential for case analysis. However, both
two types of knowledge are presented in a human-friendly
form, and it is not straightforward to enhance legal
knowledge into legal NLP models. To this end, many efforts
have been devoted to knowledge-guided legal NLP
methods, which aim to embed explicit textual and
structured knowledge into implicit model knowledge.
Following the knowledgeable framework introduced in
Chap. 9, in this section, we introduce knowledge-guided
legal NLP methods from the perspective of which
component is enhanced with legal knowledge.

11.4.1 Input Augmentation



Input augmentation methods integrate knowledge into the
inputs of the models. Regarding the integration methods,
the approaches can be mainly divided into two categories:
text concatenation and embedding augmentation. Figure
11.9 illustrates the two categories of input augmentation
methods.

Fig. 11.9  The architecture of input augmentation methods

Text Concatenation  Text concatenation aims to
concatenate the knowledge text with the original text and
directly feed the concatenation into the model without the
architecture modification. For example, Zhong et al. [123]
concatenate relevant knowledge for legal question
answering. Given the question, the authors retrieve
relevant regulations from the knowledge base and
concatenate the retrieved knowledge with questions to
predict the final answers. Integrating knowledge via direct
text concatenation can successfully inject knowledge into
models but also may introduce noise if the textual
knowledge is irrelevant to the given inputs.

Embedding Augmentation  Embedding augmentation
aims to integrate knowledge via fuse knowledge
embeddings with original text embeddings. For example,
Yao et al. [110] enhance PTMs with legal event knowledge
by fusing the event embeddings in the input layer. They



first extract legal events from fact description and then add
additional event type embeddings with origin token
embeddings as the inputs of PTMs for further applications.

11.4.2 Architecture Reformulation

Architecture reformulation refers to methods that design
model architectures according to heuristic rules in the legal
domain. From the perspective of the inspiration source, the
works for architecture reformulation can be divided into
two categories. One is inspired by the human thought
process and the other is inspired by the knowledge
structure.

Inspiration from Human Thought Process  For human
judges, there exist thinking logic patterns for legal case
analysis, following which we can design models in line with
judicial logic. For example, criminal judgment consists of
multiple subtasks, including relevant law prediction, charge
prediction, and prison term prediction. Judges usually
would make decisions step by step, and the thought steps
are closely related to each other. For example, the results
of charges rely on the relevant laws, and the results of
prison terms rely on the charges and relevant laws.
Inspired by this observation, TopJudge [120] proposes to
capture the logical dependency between different subtasks
of LJP via a topological graph, where each node represents
a subtask, and each edge represents the information
dependency between subtasks. Figure 11.10 presents the
model architecture for TopJudge, where the logical
dependency is captured via RNN cells. As the prediction of
prison terms relies on the results of laws and charges, the
cell for prison term takes fact representation as inputs and
the hidden vectors from laws and charges as cell states.
Furthermore, inspired by the elemental trial principle,
which requires judges to analyze cases from the
perspective of legal elements, Zhong et al. [121] propose



an iterative model to predict the charges by judging the key
elements step by step. In this way, the thought process of
the model is open and transparent, which can bring
interpretability to LJP.

Fig. 11.10  Model architecture for TopJudge. (The figure is re-drawn
according to Fig. 2 and Fig. 3 from [120])

Inspiration from Knowledge Structure  There are
many different types of legal knowledge, and different
types of knowledge can be utilized with different modules.
The attention modules mentioned in the input
augmentation section can also be regarded as a specific
input architecture for knowledge fusion. In addition,
structured knowledge also plays a very important role in
the design of network architecture. Some researchers build
legal-specific output layers. For instance, as the definition
of criminal charges follows a hierarchical structure, where
each specific charge is the leaf node and similar charges
are in the same subtree, Liu et al. [62] design a
hierarchical classifier layer, where the model predicts the
final charges following the path from the root node to the
leaf charge node.

11.4.3 Objective Regularization



Objective regularization methods integrate legal knowledge
into the objective functions. By introducing additional
expert prior into the objective functions, the model can
better capture key information from the text and improve
downstream task performance. There are two mainstream
approaches for objective regularization: regularization on
new targets and regularization on existing targets. The
former aims to design new training tasks, while the latter
aims to build new constraints to the existing targets.

Regularization on New Targets  Constructing
additional supervision signals is a widely used strategy for
legal case analysis. Xu et al. [108] improve prison term
prediction by requiring the model to predict the
seriousness of charges. Feng et al. [31] introduce the event
extraction task for judgment prediction. Hu et al. [41]
utilize the legal element knowledge via a multi-task
framework. As shown in Fig. 11.11, the model is required
to predict both the charges and element values. Then the
model can generate an element-aware case representation
and better distinguish the confusing charges.

Fig. 11.11  The model architecture of charge prediction with the additional
element prediction task as regularization



Regularization on Existing Targets  Legal case
analysis usually consists of multiple subtasks, and there is a
logical association between different subtasks. To this end,
many researchers attempt to construct extra constraints
between different subtasks to improve the consistency
across different tasks. For example, Feng et al. [31] add a
penalty for legal event-based consistency, which requires
that if an event trigger is detected, then all and only its
corresponding argument types can be extracted. Chen et
al. [20] add regularization for three legal judgment
prediction subtasks from the perspective of causal
inference. Regularization for multi-task learning can help
the model produce consistent case analysis results and
improve the reliability of legal AI.

11.4.4 Parameter Transfer

Parameter transfer refers to methods that train models on
source tasks and then transfer the parameters to the target
tasks to achieve knowledge transfer. As for the source task,
existing approaches can be divided into two categories:
transferring from self-supervised pre-trained models or
transferring from other supervised tasks.

Pre-trained Models  A typical paradigm of parameter
transfer is pre-trained language models, which transfer
parameters trained with self-supervised tasks to
downstream applications. Early works only transfer the
word embeddings to the target domain [16, 26]. Further,
the pre-training-fine-tuning paradigm is widely used to
transfer the knowledge learned from large-scale
unsupervised data to downstream tasks. Legal PTMs have
been proposed for various languages, such as Chinese
[105, 124], English [15, 39], and French [28]. Furthermore,
as most legal documents consist of thousands of tokens, a
sparse attention-based model, Lawformer [105], is
proposed for the legal domain. As shown in Fig. 11.12,



instead of applying a fully connected self-attention
mechanism, Lawformer utilizes the sparse attention
mechanism, where the local attention requires each token
to only attend its neighbor tokens, and the global attention
only requires limited tokens to attend the whole sequence.
Hence, the sparse attention mechanism decreases the
computational complexity to linear complexity. These
methods mainly adopt existing open-domain methods to the
legal domain and do not design legal-specific pre-training
tasks and model architectures, which is also important for
future research.

Fig. 11.12  The sparse attention mechanism applied in Lawformer. (The figure
is re-drawn according to Fig. 2 from [105])

Cross-task Transfer  In addition to transferring
parameters via self-supervised pre-training, some
researchers attempt to train models on some source
supervised tasks and then transfer the model to target
tasks. For example, Shao et al. [89] conduct transfer
learning from legal entailment to legal case retrieval.
Gupta et al. [37] first train the model with open-domain
datasets and then conduct further tuning for legal
conference resolution. Cross-task transfer requires source
tasks to be similar to the target tasks so that the task
knowledge can be successfully transferred across tasks.

11.5 Outlook



Although legal NLP is currently well developed and makes
good progress on many tasks, there is still a long way to go
for the real-world applications of legal NLP methods. In this
section, we list four directions for future research.

More Data  As a family of neural networks, existing legal
NLP models are data-hungry and require large amounts of
high-quality labeled data. However, legal tasks often
require complex reasoning about the case facts, which has
a high requirement of expertise for annotators. As a result,
the annotation of legal datasets is usually time-consuming
and costly. For example, the annotation of CUAD, a legal
contract review dataset, took dozens of law students a year
and over 2 million dollars [40].

PTMs have shown their effectiveness in capturing
knowledge from large-scale unlabeled data [25, 85].
Especially, the self-supervised pre-training can effectively
improve the ability of few-shot learning [11, 34], which can
help alleviate the data-scarce problem. In addition, with the
continuous disclosure of legal documents and the
accumulation of various legal data on the Internet, we can
easily access publicly available legal data, which provides a
substantial data basis for legal PTMs.

Some works attempt to train legal PTMs [15, 28, 39,
105]. However, the legal data used in these models are still
limited, containing only legal cases, contracts, etc. Most of
the pre-training tasks simply follow the tasks in the open
domain, and the model size is also still limited. Therefore,
we argue that it is very important to use more data and
design legal-specific pre-training tasks to train larger legal
PTMs with more capabilities.

More Knowledge  Legal tasks place high demands on the
understanding and application of legal knowledge. As
mentioned in previous sections, many knowledge-guided



legal NLP approaches have achieved significant progress in
recent years [41, 66, 120, 121]. However, more knowledge
is still desired for legal NLP methods.

As for textual knowledge, existing applications are limited
by the ability of knowledge retrieval due to the gap
between abstract knowledge and concrete facts. As for
structured knowledge, existing applications focus on a
limited number of case types, resulting in low coverage.
Therefore, improving the ability to utilize textual
knowledge and increasing the coverage of structured
knowledge is an important issue to be addressed.
Moreover, as for the combination of multiple knowledge,
using more types of knowledge and more amount of
knowledge in legal NLP models is also a very important
research direction.

More Interpretability  While existing neural network-
based approaches have achieved high accuracy, the black-
box characteristics of neural models pose a great ethical
risk to real-world applications. For example, if gender bias
is introduced in case analysis models, the uninterpretability
will make it challenging to detect such bias and harm legal
fairness. Moreover, the main goal of legal AI is to use
technology to assist in legal tasks, which requires the
models to cooperate with human experts for decision
making. If legal NLP models can only give results without
explanations, it will significantly increase the time cost for
human experts to understand the model’s results and
reduce the credibility of the models.

Thus, while improving the accuracy of legal models, we
also need to pay extra attention to the interpretability of
legal models. Existing efforts explore improving the
interpretability via outputting the intermediate states and
results [33, 121], extracting the prediction evidence [59,



113], and generating the corresponding explanations [58,
111]. These methods mainly focus on specific tasks and
usually need additional annotation, and it is still
challenging to design a general and efficient framework for
explainable legal AI.

More Intelligence  Legal case analysis often involves
complex legal reasoning, including abstract concept
understanding, numerical analysis, multi-hop reasoning,
and multi-passage information synthesis, which are still
open problems in NLP. Therefore, complex case analysis
reasoning requires models with more cognitive intelligence
capabilities. In the open domain, many studies have
demonstrated that large-scale PTMs can manipulate tools
to complete complex tasks. For example, WebGPT learns to
use search engines to answer complex questions [75], and
CC-Net can manipulate computers to finish some human
instructions [43]. This gives the possibility to implement
legal models with more intelligence, which is desired for
complex case analysis. Enabling models to manipulate legal
search engines, numerical calculators, etc. to complete
complex case reasoning is also a very important future
research direction for legal AI.

11.6 Ethical Consideration

Existing research has shown that legal AI systems can help
improve work efficiency and alleviate a considerable
workload for legal practitioners. However, legal work
involves the essential rights and interests of individuals,
and while emphasizing efficiency, we should also pay
attention to the fairness and justice of the legal system. At
present, legal AI systems are still in the stage of rapid
development, and the ethical risks of legal AI systems have
not been fully explored. In this section, we discuss the



ethical risks of legal AI systems and what principles should
be followed in the application of legal AI systems.

Ethical Risks  In the application of legal AI systems, both
the inevitable model bias and careless use may cause
ethical risks.

Model Bias  While the neural architecture brings
significant performance improvement to legal NLP tasks,
its black-box characteristics make it difficult to discover
and detect the potential bias of the models. Many existing
methods prove that the models may learn the bias from the
training data, such as gender bias [94] and racial bias [76].
Besides, recent popular PTMs are usually trained on large-
scale open-domain data, which may contain various types of
bias [88, 104]. These potential model biases may result in
severe unfair treatment of individuals, which is a serious
ethical risk. Therefore, it is very important to detect and
eliminate the bias of legal AI systems.

Some works attempt to explore fairness evaluation for legal
models, especially LJP models. For example, FairLex [17]
collects a fairness evaluation benchmark across five
attributes (gender, age, region, language, and area) for
four jurisdictions (European Council, USA, Switzerland,
and China). CaLF [100] is a metric for real-world legal
fairness and explores bias elimination with adversarial
training. However, these works are still limited to specific
tasks and attributes. It still needs further efforts to explore
the general fairness evaluation across multiple tasks and
attributes.

Misuse  The goal of legal AI systems is to assist legal
practitioners in their work, and legal AI systems must be
used with the guidance of professionals. Due to the
inevitable errors of legal models, it is very important to



ensure that legal AI systems are used correctly.
Specifically, legal AI systems should not be used to make
final decisions that may affect the rights and interests of
individuals, and legal practitioners should still be
responsible for the final decision. It is desired to clarify the
boundaries of the applications of legal AI systems and to
ensure that the legal AI systems are used correctly.

Besides, the legal AI models are supposed to be well
evaluated and used in the appropriate scenario. Each legal
AI model is usually trained with specific datasets for a
specific scenario, and misuse in an inappropriate scenario
can boost the error rate of the models. For example,
existing legal case retrieval models are trained with long
cases as inputs, while for real-world applications, we may
need to retrieve relevant cases with keywords or short
sentences as inputs. The gap between model training and
application may lead to the misuse of legal AI systems and
obtain suboptimal performance.

Application Principles  The potential risks of legal AI
may cause serious consequences, and it is very important
to ensure that legal AI systems are used correctly and
ethically. In this section, we discuss the application
principles of legal AI systems from the perspective of
purpose, methodology, and monitoring [60, 119].

People-Oriented  The ultimate goal of legal AI systems is
to provide assistance and support for legal practitioners.
The design of legal AI methods should be people-oriented,
which means legal AI systems are designed to provide
explainable references, but not the final decision, for legal
practitioners, and the legal practitioners should be
responsible for the final results.



Human-in-the-Loop  In real-world legal AI applications,
humans and AI models should cooperate to form a human-
in-the-loop paradigm. Specifically, complex legal tasks
should be divided into several subtasks, and the legal AI
systems carry out the subtasks suitable for automation,
including information storage, information extraction,
knowledge retrieval, etc., while the legal practitioners
carry out the subtasks that involve important decisions. In
this way, the legal AI systems can provide assistance and
support for legal practitioners, and the legal practitioners
can provide the necessary control and training signals for
the legal AI systems. Thus, the human-in-the-loop principle
can improve reliability and avoid the misuse of legal AI
systems.

Transparency  As mentioned in the previous section, the
black-box characteristics of legal AI systems make model
biases inevitable. Therefore, it is very important to ensure
the transparency of algorithms and details of legal AI
systems. It means the public and legal practitioners should
be able to understand the model’s reasoning process,
algorithm principles, and prediction results. In this way,
transparency can help improve the credibility of legal AI
systems and prevent the misuse of legal AI systems.

11.7 Open Competitions and

Benchmarks

The formalization and definition of legal tasks are the basis
of legal AI and require the efforts of both AI researchers
and legal researchers. Besides, the evaluation of legal tasks
requires large-scale human-annotated data. To this end,
some organizations have formalized many legal tasks and
collected large-scale legal datasets for the research
community. There are three popular open challenges,



including COLIEE,7 AILA,8 and CAIL,9 which provide a
large number of legal datasets for the research community.

Competition on Legal Information
Extraction/Entailment, COLIEE, is held since 2014 and
encourages the competitors to perform automatic legal
retrieval and entailment. The data in COLIEE is collected
from Japanese and Canadian case documents.

Artificial Intelligence for Legal Assistance, AILA, is held
since 2019. AILA focuses on legal retrieval in 2019 and
then extends the tasks to rhetorical labeling and legal
summarization in 2020 and 2021. The data of AILA is
collected from cases published by the Indian Supreme
Court.

Challenge of AI in Law, CAIL, is held since 2018. CAIL
publishes datasets for various legal NLP tasks. The data of
CAIL is collected from cases published by the People’s
Supreme Court of the People’s Republic of China.

We summarize several representative large-scale
datasets for legal NLP in Table 11.1. These datasets
provide valuable training and evaluation resources for the
development of legal AI. We hope more researchers and
organizations can collect and release more large-scale legal
datasets for the research community to promote the
development of legal AI systems.

Table 11.1  Large-scale datasets for legal AI tasks

Dataset Open

challenge

Task Language

CAIL2018 [106] CAIL2018 Judgment prediction Chinese
SCM [107] CAIL2019 Case matching Chinese
CJRC [29] CAIL2019-

2021
Reading comprehension Chinese

FE [93] CAIL2019 Element extraction Chinese
Argmine [114] CAIL2020-

2022
Argument-pair extraction Chinese



Dataset Open

challenge

Task Language

JecQA [123] CAIL2020-
2022

Question answering Chinese

Summarizationa CAIL2020-
2022

Summarization Chinese

IE [21] CAIL2021-
2022

Relation extraction Chinese

LeCaRD [68] CAIL2021-
2022

Case retrieval Chinese

FactLabelb CAIL2021 Element extraction Chinese

LEVEN [110] CAIL2022 Event detection Chinese
ELAM [113] CAIL2022 Case retrieval Chinese

Proofreadc CAIL2022 Grammar error correction Chinese

AILA2019 [7] AILA2019 Case/statute retrieval Indian
AILA2020 [9] AILA2020 Case/statute retrieval,

rhetorical labeling
Indian

AILA2021 [79] AILA2021 Summarization Indian
COLIEE-Task1 COLIEE2014-

2017
Case retrieval Japanese

COLIEE-Task2 COLIEE2014-
2017

Case entailment Japanese

COLIEE-Task1 COLIEE2018-
2021

Case retrieval Japanese,
Canadian

COLIEE-Task2 COLIEE2018-
2021

Case entailment Japanese,
Canadian

COLIEE-Task3 COLIEE2018-
2021

Statute retrieval Japanese

COLIEE-Task4 COLIEE2018-
2021

Statute entailment Japanese

COLIEE-Task5 COLIEE2021 Question answering Japanese
ILDC [69] – Judgment prediction Indian
HLDC [46] – Bail prediction Hindi
ECHR [13] – Judgment prediction English
CUAD [40] – Contract review English



Dataset Open

challenge

Task Language

EDGAR [53] – Contract review English
FairLex [17] – Fairness evaluation English
BSARD [65] – Statute retrieval French

ahttp:// cail. cipsc. org. cn/ task_ summit. html? raceID= 4& cail_ 
tag= 2022
b http:// cail. cipsc. org. cn/ task_ summit. html? raceID= 6& cail_ 
tag= 2021
c http:// cail. cipsc. org. cn/ task2. html? raceID= 2& cail_ tag= 
2022

11.8 Summary and Further Readings

In this chapter, we first introduce three typical legal
knowledge-intensive tasks and their challenges, including
legal judgment prediction, legal information retrieval, and
legal question answering. All three tasks can provide a
handy reference for legal services. Next, we describe the
textual and structured legal knowledge, which is
summarized by legal experts to facilitate case analysis.
Further, we introduce knowledge-guided legal NLP
methods from the perspective of how to integrate legal
knowledge into neural models. We also discuss some
advanced topics that aim to further promote the
development of legal NLP approaches.

As for the introduction to legal tasks, Cui et al. [24] give
a comprehensive overview of the datasets, subtasks, and
methods of legal judgment prediction. Sansone et al. [86]
and Locke et al. [63] review recent progress on legal
information retrieval systems.

As for the survey of legal AI, Zhong et al. [122] provide
insightful discussion and experiments on how existing deep
learning methods perform on legal tasks. Bommasani et al.

http://cail.cipsc.org.cn/task_summit.html?raceID=4&cail_tag=2022
http://cail.cipsc.org.cn/task_summit.html?raceID=6&cail_tag=2021
http://cail.cipsc.org.cn/task2.html?raceID=2&cail_tag=2022


[10] discuss the opportunities and risks of the application
in the legal domain of large-scale PTMs.
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Abstract

As a subject closely related to our life and understanding of
the world, biomedicine keeps drawing much attention from
researchers in recent years. To help improve the efficiency
of people and accelerate the progress of this subject, AI
techniques especially NLP methods are widely adopted in
biomedical research. In this chapter, with biomedical
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knowledge as the core, we launch a discussion on
knowledge representation and acquisition as well as
biomedical knowledge-guided NLP tasks and explain them
in detail with practical scenarios. We also discuss current
research progress and several future directions.

12.1 Introduction

There is a widely adopted perspective that the twenty-first
century is the age of biology [30]. Actually, biomedicine has
always occupied an important position and maintained a
relatively rapid development. Researchers devote to
explore how the life systems (e.g., cells, organisms,
individuals, and populations) work, what the mechanism of
genetics (e.g., DNA and RNA) is, how the external
environment (e.g., chemicals and drugs) affects the
systems, and many other important topics [42]. Recent
flourish has been brought by the development of emerging
interdisciplinary domains [92], among which biomedical
NLP draws much attention as a representative topic in AI

for science, which aims to apply modern AI tools to
various areas of science to achieve efficient scientific
knowledge acquisition and applications.

12.1.1 Perspectives for Biomedical NLP

The prospect of biomedical NLP is to improve human
experts’ efficiency by mining useful information and finding
potential implicit laws automatically, and this is closely
related to two branches of biology: computational biology
and bioinformatics. Computational biology emphasizes
solving biological problems with the favor of computer
science. Researchers use computer languages and
mathematical logics to describe and simulate the biological
world. Bioinformatics studies the collection, processing,
storage, dissemination, analysis, and interpretation of



biological information. Bioinformatics research mainly
focuses on the two aspects of genomics and proteomics.1
The two terms are now generally used interchangeably.

According to the format of the processed data, we can
make an inductive analysis of biomedical NLP from two
perspectives. The first perspective is NLP tasks in

biomedical domain text, in which we regard biomedicine
as a specific domain of natural language documents;
therefore the basic tasks are common with general domain
NLP, while the corpus has its own features. Typical tasks
[17] include named entity recognition, term linking,
relation extraction, information retrieval, document
classification, question answering, etc.

The other perspective is NLP methods for biomedical

materials, in which the NLP techniques are adopted and
transferred for modeling non-natural-language data and
solving biomedical problems, such as the data mining of
genetic and protein sequences [38]. As shown in Fig. 12.1,
biomedical materials include natural language documents
and other materials. The latter can be expressed in
sequences, graphs, and other forms, and therefore the
representation learning technique we introduce in the
previous chapters can be employed to help model
biomedical material. To ensure the effectiveness of general
NLP techniques in the new scenario, adjustments are
required to better fit with the data characteristics (e.g.,
fewer tokens for genetic sequences compared with natural
language).



Fig. 12.1  Introduction to biomedical knowledge and biomedical NLP. Icons
are bought or freely downloaded from IconFinder (https:// www. iconfinder. 
com/ )

Overall, the biomedical natural language documents
contain linguistic and commonsense knowledge and also
provide explicit and flexible descriptions for biomedical
knowledge. Meanwhile, the special materials in biomedical
domain contain even more subject knowledge in implicit
expressions. We believe that the two perspectives are
gradually fusing together to achieve more universal
biomedical material processing, and we will go into more
detail about this trend later.

12.1.2 Role of Knowledge in Biomedical NLP

A characteristic of biomedical NLP is that expert
knowledge is of key importance to get a deep
comprehension of the processing materials. This even
restricts the scale of golden datasets due to the high cost

https://www.iconfinder.com/


and difficulty of manual annotation. Therefore, we
emphasize the knowledge representation, knowledge

acquisition, and knowledge-guided NLP methods for the
biomedical domain.

First, biomedical materials have to be expressed
properly to fit automatic computing, and this benefits from
the development of knowledge representation methods
such as distributed representations. Next, echoing the
basic goals of AI for science, we expect the biomedical NLP
systems to assist us in extracting and summarizing useful
information or rules in a mass of unstructured materials,
which is an important part of the knowledge acquisition
process. Nevertheless, we have mentioned above that the
biomedical NLP datasets are hard to reach on a large scale,
which is one reason that the data-driven deep learning
system performance in the biomedical domain is not always
satisfying. To improve the performance of these intelligent
systems under limited conditions, the knowledge-guided
NLP methods become especially important. With the help
of biomedical knowledge, NLP models trained on the
general domain can be easily transferred to biomedical
tasks with minimal supervision. For instance, the definition
and synonyms of terms in biomedical ontologies can guide
models to get a deeper comprehension of biomedical terms
occurring in the processing texts.

In Sect. 12.2, we first introduce the representation and
acquisition of biomedical knowledge, which comes from
two types of materials: natural language text and other
biomedical data. Later, in Sect. 12.3, we focus on the
knowledge-guided biomedical NLP methods which are
divided into four groups according to the discussion in
Chap. 9. After learning about the basic situation of
biomedical knowledge representation learning, we will then
explore several typical application scenarios in Sect. 12.4



and discuss some advanced topics that are worth
researching in Sect. 12.5.

12.2 Biomedical Knowledge

Representation and Acquisition

Going back decades, AI systems for biomedical decision
support have already shown the importance of knowledge
representation and acquisition. The former is the basis of
practical usage and the latter ensures the sustainability of
expert systems with growing knowledge. Biomedical
knowledge is represented in a structured manner in that
period. For instance, DENDRAL [10] is an expert system
providing advice for chemical synthesis, and production
rules in DENDRAL first recognize the situation and then
generate corresponding actions. This two-stage process is
similar to human reasoning and has a strong explanation
capability. Other systems also represent the knowledge in
the form of frame, relations, and so on [37].
Correspondingly, the acquisition of biomedical knowledge
mainly relies on manual collection, and the assistant
information extraction systems are conducted mainly based
on the results of manual feature engineering.

With the development of machine learning, knowledge
representation and acquisition have been raised to new
heights. Our following discussion is divided into two
different sources of knowledge: natural language text
materials and other materials, which can correspond to the
two perspectives mentioned in the last section.

12.2.1 Biomedical Knowledge from Natural

Language

Text Biomedical textual knowledge is scattered in various
natural language documents, patents, clinical records, etc.
Various knowledge representation learning methods in the



general domain are applied to these natural language text
materials. What is special about biomedical texts is that we
have to achieve a deep comprehension of the key
biomedical terms. Therefore, we are going to first discuss
various term-oriented biomedical tasks that researchers
explore. Further, we turn to pre-trained models (PTMs) to
achieve the overall understanding of language descriptions
(including sentences, paragraphs, and even document
materials around these terms).

Term-Oriented Biomedical Knowledge  Biomedical
terms, including the professional concepts and entities in
the biomedical domain, are important carriers of domain
knowledge. Common biomedical terms that we may process
include chemicals/genetics/protein entities,
disease/drug/examination/treatment items,
cell/tissue/organ parts, and others. To process the
biomedical natural language materials better, deeper
comprehension of these biomedical terms is necessary.
Dictionary-based and rule-based methods are very
manpower demanding, and it is difficult to maintain
immediacy and hold complicated scenarios [46]. To grasp
and analyze the data features automatically, machine
learning and statistical learning are adopted to get more
generalized term representations and achieve better
acquisition performances [87], while still far from
satisfaction. Further, deep learning has been rapidly
developed and proven its effectiveness in the biomedical
domain; therefore we are going to mainly introduce
biomedical term process methods in the deep learning
approach, which is currently the mainstream solution for
biomedical knowledge representation and acquisition.

Biomedical Term Representations  The mainstream term
representation methods are in a self-supervised manner,
which is to predict the missing parts for the given context,



hoping to get general feature representations for various
downstream tasks.

Many works in the general domain such as word
embeddings are directly used in biomedical scenarios
without adaptation. The skip-gram version of word2vec
[16], for example, is proven to get satisfying performance
on the biomedical term semantic relatedness task [65].
Besides, researchers also try distributed representations
especially trained for biomedical terms [22, 70, 102],
introducing extra information such as the UMLS [9]
ontology and the medical subject headings (MeSH) [54].
Based on the shallow term embeddings, we can go a step
further to adopt deep neural networks such as CNNs and
BiLSTMs to get the deep distributed representations for
biomedical terms [48, 74].

In recent years, PTM is the most popular choice to
generate distributed representations as the basis of various
downstream tasks. Inspired by the PTMs including BERT
that have achieved more and more surprisingly great
performances in the general domain, researchers quickly
transfer the self-supervised approach to the biomedical
domain. SciBERT [7] is one of the earliest PTMs that are
specially adapted for the scientific corpus, followed by
BioBERT [47] which further refines the corpus field of the
model target into biomedicine. The specific operation is
very simple: replacing the pre-training corpus of BERT in
the general domain (e.g., Wikipedia, books, and news) with
biomedical texts (e.g., literature and medical records).
Some other biomedical PTMs also follow this strategy, such
as SciFive [73] which is adapted from T5.

To sum up, the knowledge representation methods in
the general domain are adapted to biomedical terms quite
well. Special hints including information from the subject
ontologies can provide extra help to generate better
representations.



Biomedical Term Knowledge Acquisition  The
identification of terms involves many subtasks: recognition
(NER), classification (typing), mapping (linking), and so on
[46]. We introduce several mainstream solutions in
chronological order.

Some simple supervised learning methods are applied for
term recognition, such as the hidden Markov model (HMM)
for term recognition and classification [19, 24] and the
support vector machine for biomedical NER [67]. These
systems mainly rely on the pre-defined domain-specific
word features and perform not well enough for some lack-
of-data classes. Neural networks including LSTM are also
widely adopted for biomedical term knowledge acquisition
[31, 33]. Unsupervised approaches are also explored and
proven to be effective [101].

With the help of biomedical PTMs, we can better acquire
and organize knowledge from the mass of unstructured
text. At the term level, PTMs encode the long text and get a
dense representation, which can then be fed into classifiers
or softmax layers to finish NER, entity typing, and linking
precisely. The tuning methods are sometimes specially
designed, such as conducting self-alignment training on the
pair tuples of the entity names and categorical labels in
several ontologies [40, 55]. Though the methodology of
PTMs has been successfully adapted to the biomedical
domain, there still exist domain-special problems waiting
for solving. For example, compared with the general
domain, biomedical texts have more nested entities
because of the terminology naming convention. For
example, the DNA entity IL-2 promoter also contains a
shorter protein entity IL-2, and G1123S/D refers to two
separate entities G1123S and G1123D as shown in Fig.
12.2. We can solve the nested entity problem by separating
different types of entities in different output layers [26] or



by detecting the boundaries and assembling all the possible
combinations [15, 89].

Fig. 12.2  Instance of biomedical textual knowledge acquisition. (Text is taken
from [35])

Language-Described Biomedical Knowledge  As we
can see, the research we have discussed concerns more
about the special terms with professional biomedical
knowledge. Nevertheless, other words and phrases in the
language materials also contain rich information such as
commonsense knowledge and can express much more
flexible biomedical facts and attributes than isolated terms.
It is necessary to represent the whole language
descriptions instead of only biomedical terms, and this can
be achieved by domain PTMs quite well. Based on the
representations of language materials, the biomedical
knowledge scattered in the unstructured text can be
acquired and organized into a structured form.

We now introduce the overall development of the language-
described biomedical knowledge extraction. The popular
datasets are mostly small-scale and focus on specific types
of relations, like the BC5CDR chemical-disease relation
detection dataset and the ChemProt chemical-protein
interaction dataset [49]. These simple tasks can sometimes
be finished quite well with the help of distributed



representations, even if they are generated by simple
neural networks without pre-training [85]. However, in
practical scenarios, biomedical knowledge exists in more
sophisticated information extraction (e.g., N-ary relations,
overlapping relations and events). Since scientific facts
usually involve stricter conditions, few of them can be
expressed clearly with only a triplet. For example, the
effect of drugs on a disease is related to the characteristics
of the sample, the course of the disease, etc. As shown in
Fig. 12.2, the text mentioning N-ary relations is usually
quite long and may cross several paragraphs. PTMs show
their effectiveness due to their capability of capturing long-
distant dependence for sophisticated relations in long
documents, encoding the mentions, and then getting the
distributed entity representations for the final prediction
[41].

Summary  Overall, researchers solve the simple
biomedical text processing scenarios quite well by
transferring many knowledge representation and
acquisition methods in the general domain of NLP, while
the challenges still exist from practical perspectives.
Knowledge storage structures with stronger expressive
ability, plenty of annotated data, and targeted-designed
architectures are urgently expected for sophisticated
biomedical knowledge representation and acquisition.

12.2.2 Biomedical Knowledge from Biomedical

Language Materials

Biomedical materials contain not only textual materials
scattered in natural language but also some materials
unique to the biomedical field. These materials have their
own special structures in which rich knowledge exists, and
we collectively refer to them here as biomedical language
(e.g., genetic language) materials. Compared with natural



language materials, biomedical language materials like
genetic sequences are not easy to comprehend and require
extensive experience and background information for
analysis. Fortunately, modern neural networks can process
not only natural language documents but also most of the
sequential data including some representations of chemical
and genetic substances. Besides, deep learning methods
can also be applied to represent and acquire biomedical
knowledge in other forms such as graphs. In this section,
we consider genetic language, protein language, and
chemical language for discussion, and substances
expressed by these languages are linked by the genetic
central dogma [21]. As shown in Fig. 12.3, genetic
sequences are expressed to get proteins, which react with
various chemicals to execute their functions.

Fig. 12.3  Genetic central dogma. Icons are bought or freely downloaded from
IconFinder

Genetic Language  There are altogether only five
different types of nucleic acid, among which A, G, C, and T
are in the DNA sequences and A, G, C, and U are in the
RNA sequences. Since the coding region of the unwinding
DNA is transcribed to generate an mRNA sequence with a
very fixed correspondence, i.e., A-T(U) and G-C, the



processing methods for DNA and RNA sequences are often
similar. We mainly discuss DNA sequences in this section.
We first introduce basic tasks for DNA sequence processing
and then discuss the similarities and differences between
genetic language and natural language. In terms of genetic
language, we show related work about tokenization and
encoding methods.

Basic Tasks for Genetic Sequence Processing  First, let’s
take a look at various downstream property prediction
tasks for genetic sequences. Some of them emphasize the
high-level semantic understanding of DNA sequences [5,
81] (long-distance dependency capturing and gene
expression prediction), such as transcriptional activity,
histone modifications, TF binding, and DNA accessibility in
various cell types and tissues for held-out chromatin. Other
tasks evaluate the low-level semantic understanding of
DNA sequences [68] (precise recognition of basic
regulatory elements), such as the prediction of promoters,
transcription factor binding sites (TFBSs), and splice sites.

Features of Genetic Language  Although both DNA/RNA
language and natural language are textual sequences,
there still exist differences between them. Firstly, the
genetic sequences are quite long and dull, thus not as
reader-friendly for human beings as natural language
sequences. However, the NLP models are actually good at
reading and learning from the mass of data and finding
patterns. Secondly, compared with natural language,
genetic language has a much smaller vocabulary (only five
types of nucleic acid as mentioned above); therefore low-
level semantic modeling is important for overall sequence
comprehension, about which researchers have launched
many explorations as the following introduction.



Genetic Language Tokenization  Early works express the
sequences via one-hot coding [82]. The nucleic-acid-level
features can be captured by converting the sequences into
2D binary matrices. Based on the tokenized results,
convolutional layers and sequence learning modules such
as LSTMs are applied to get the final distributed
representations [34]. More researchers use the k-mer
(substrings of length k monomers contained within a
biological sequence) tokenizer to take co-occurrence
information into account. In other words, the encoding of
each position in the gene sequences will be considered
together with the preceding and following positions (a
sliding window with a total length of k) [63]. Other
methods such as byte pair encoding [80] have also been
proven to be useful.

Genetic Sequence Representation  The shallow models
can hardly process the long sequences which may have
thousands of base pairs, while Transformers [88] can
capture the long-distance dependency quite well thanks to
its attention module. Further, the self-supervised pre-
training for Transformers is proven to be also effective on
the genetic language [39]. Besides, improved versions of
Transformers are implemented and achieve good
performances on DNA tasks. For instance, Enformer [5] is
designed to enlarge the receptive field. To be more specific,
the ideas from computer vision can be borrowed to use
deep convolution layers to expand the region that each
neuron can process. Enformer replaces the base
Transformer layer with seven convolutional layers to
capture the low-level semantic information. The captured
features are fed into 11 Transformer layers and processed
by the separately trained organism-specific heads.
Experimental results show that Enformer improves gene
expression prediction, variant effect prediction, and
mutation effect prediction.



Protein Language  Protein sequence processing has a
lot in common with genetic sequences. There exist
altogether 20 types of amino acids in the human body, so
protein language is a special language with low readability
and a small vocabulary size as well. We also discuss some
basic tasks and methods first and then introduce a
representative work in protein sequence processing.

Basic Tasks for Protein Sequence Processing  The
sequence specificity of DNA- and RNA-binding proteins [2]
is a basic task that we are concerned about, because RNA
sequences are translated to obtain an amino acid sequence
and the two types of sequences are highly related.
Moreover, the spatial structure analysis is another unique
and important task for protein sequences, since the protein
quaternary structure determines the properties and
functions.

We have introduced the similarity of genetic and protein
language, which allows most genetic sequence processing
methods to be adapted to proteins. However, there are also
some special methods for protein sequence processing. A
significant fact is that structural and functional similarities
exist between homologous protein sequences, which can
help supervise protein representation learning. By contact
prediction and pairwise comparison, we can conduct multi-
task training of protein sequence distributed
representations [8] and conversely assist spatial structure
prediction.

Landmark Work for Protein Spatial Structure Analysis

AlphaFold [43] proposed by DeepMind has achieved a
breakthrough in highly accurate protein structure
prediction and become the champion of the Critical
Assessment of protein structure prediction challenge. The
system incorporates multiple sequence alignment (MSA)



[11] templates and pairwise information for the protein
sequence representation. It is built based on a variant of
Transformers, which is named as EvoFormer. The column
and row attention of MSA sequences and pair
representations are fed into EvoFormer blocks. Peptide
bond angles and distances are then predicted by the
subsequent modules. The interfaces and tools for AlphaFold
interaction have been developed quite well, and it is easy
for users without an AI background to master. This reflects
the essence of interdisciplinary research: division of labor
and cooperation to improve efficiency.

Besides, it is worth mentioning that the initial results
generated by AlphaFold can be further improved with the
help of molecular dynamics knowledge. Incorporating
domain knowledge also shows its effectiveness in some
other scenarios, such as using chemical reaction templates
for retrosynthesis learning [28]. Overall, the combination of
professional knowledge and data-driven deep learning is
getting better results, which is an important development
trend for biomedical NLP.

Chemical Language  Apart from biological sequences,
chemical substances (especially small molecules) can also
be encoded and expressed into molecule representations,
which can help finish property prediction and filtering.
These representations play similar roles as the molecule
fingerprint (a commonly used abstract molecular
representation that converts the molecular structure into a
series of binary sequences by checking whether some
specific substructures exist).

Early Fashions for Chemical Substance Representation  In
the early days of applying machine learning to assist the
prediction of molecular properties, molecule descriptors
such as nuclear charges and atomic positions are provided



for nonlinear statistical regression [77]. Essentially, people
still need to manually select features for the molecule
descriptors. To alleviate the labor of manual feature
engineering, data-driven deep learning systems have
gradually become the main approach for the analysis of
molecules.

For current deep learning systems of chemical substance
representations, we classify according to the different
expressions of chemical substances, for which there are
several common methods as shown in Fig. 12.4.

Fig. 12.4  Different chemical expression methods

Graph Representations  One of the clearest ways is the 2D
and 3D topology diagrams [23, 45] describing the inner
chemical structure of molecules. This naturally corresponds
to the essential elements of graphs. In molecular graphs,
the nodes represent the atoms, and the edges represent the



connections (chemical bond, hydrogen bond, van der Waals
force, etc.). Graph representation learning bridges
chemical expression and machine learning [95], and we
have introduced graph representation learning in detail in
Chap. 6. Graph Transformer [98], for example, is currently
one of the most popular approaches in molecular graph
representation learning [76]. With the graph
representation learning methods, we can achieve two main
tasks for molecular processing: molecular graph
understanding to capture the topology information of
molecular structures and predict properties [45] and
molecular graph generation to provide assistance for drug
discovery and refinement [59]. Overall, graph
representation learning has already been proven to be an
effective approach to chemical analysis.

Linear Text and Other Representations  There are also
some other solutions for expressing chemical substances.
For example, linear text such as the structural formula,
structural abbreviation, and simplified molecular input line
entry specification (SMILES) [79] can be adopted for
chemical expression. The straightforward advantage of
linear text expressions is that they can naturally be fed into
any NLP model. Although different from natural language
text, the SMILES text expressing molecules and chemical
reactions can also be processed by the Transformer-based
models, if only with the assistance of specially designed
tokenizers [50] and pre-training tasks [90]. Nevertheless,
the linear text losses some structural information, and the
2D topologic and 3D spatial hints are still proven to be
important. The atom coordinates computed according to
SMILES help improve the performance of SMILES
processing models [93], and this inspires us that the
domain knowledge (e.g., molecule 3D procure) will
enhance the NLP models when processing biomedical
materials.



Summary  Apart from substances related to central
dogma, there exist some other types of special materials in
the biomedical domain, such as image data and numeric
data. The former including molecule images and medical
magnetic resonance images [58] can be automatically
processed by AI systems to some extent. The latter such as
continuous monitoring health data is also processed with
NLP methods adapted to the biomedical domain [94]. In
summary, the materials waiting for processing are in
versatile forms, and deep learning methods have already
achieved satisfying performances on many of them.
Further, to achieve deep comprehension and precise
capture of biomedical knowledge, we believe that adaptive
and universal processing of various materials will gradually
become the trend in biomedical NLP research.

12.3 Knowledge-Guided Biomedical

NLP

We have already discussed the development and basic
characteristics of biomedical knowledge representation and
acquisition. Conversely, domain knowledge can guide and
enhance biomedical NLP systems to better finish those
knowledge-intensive tasks. Though the commonsense and
facts in the general domain can be learned in a self-
supervised manner, the biomedical knowledge we use to
guide the systems is more professional and has to be
additionally introduced. The guidance from domain
knowledge bases can even assist human experts and help
improve their performances, let alone the biomedical NLP
systems. In this section, we introduce the basic ideas and
representative work for knowledge-guided biomedical NLP,
according to the four types of methods mentioned in Chap.
9: input augmentation, architecture reformulation,
objective regularization, and parameter transfer.



12.3.1 Input Augmentation

To guide neural networks with biomedical knowledge, one
simple solution is to directly provide the knowledge as the
input augmentation of the systems. There exist different
sources of knowledge that can augment the input, as we
are going to introduce later. One mainstream source is the
biomedical knowledge graph (KG) which contains human
knowledge and facts organized in a structured form.
Besides, knowledge may also come from linguistic rules,
experimental results, and other unstructured records. The
problem for input augmentation is to select helpful
information, encode, and fuse it with the processing input.

Encoding Knowledge Graph  Information from
professional KGs is of high quality and suitable for guiding
models in downstream tasks. Usually, we rely on basic
entity recognition and linking tools to select the subgraphs
or triplets from KGs that are related to the current context
and further finish more sophisticated tasks such as reading
comprehension and information extraction. We now give
three instances: (1) Improving word embeddings with the

help of KGs. Graph representation learning approaches like
GCN-based methods can get better-initialized embeddings
for the link prediction task based on biomedical KGs [3].
(2) Augmenting the inputs with knowledge. Models such as
the hybrid Transformers can encode token sequences and
triplet sequences at the same time and incorporate the
knowledge into the raw text [6]. (3) Mounting the

knowledge by extra modules. Extra modules are designed
to encode the knowledge, such as a graph-based network
encoding KG subgraphs to assist biomedical event
extraction [36]. As shown in Fig. 12.5, the related terms in
the UMLS ontology are parsed and form a subgraph, which
is encoded and concatenated into the hidden layer of the
SciBERT text encoder to assist event trigger and type



classification. There also exist other examples, such as the
separate KG encoder providing entity embeddings for the
lexical layers in the original Transformer [27] and the KG
representations trained by TransE being attached to the
attention layers [14].



Fig. 12.5  Encoding UMLS information to assist event extraction. (The figure
is re-drawn according to Figs. 1 and 2 from GEANet paper [36])

Encoding Other Information  Apart from KG
information, there are other types of knowledge that are
proven to be helpful. Syntactic information, for example, is
a significant part of linguistic knowledge. Though not a
part of biomedical expert knowledge, syntactic information
can also be provided as augmented input to better analyze
sentences, recognize entities, and so on [86]. For non-
textual material processing tasks, such as the discovery of
the relationship between basal gene expression and drug
response, researchers believe that experimentally verified
prior knowledge including the protein and genetic
interactions is important. The information can be
concatenated with the original input substances to get
representations and show the effectiveness of input
augmentation [25]. Overall, introducing extra knowledge
usually shows at least no harm to the performance, while
we need to decide whether the knowledge is related and
helpful to the specific tasks, through human experience or
automatic filtering.

12.3.2 Architecture Reformulation

Human prior knowledge is sometimes reflected in the
design of model architectures, as we have mentioned in the
representation learning of biomedical data. This is
especially significant when we try to process domain-
specific materials, such as the substances we have
introduced in the last section. After all, the backbone



models are designed for general materials (e.g., natural
language documents, natural images), which may have
remarkable differences from biomedical substances. Here
we analyze two examples in detail: Enformer [5] and MSA
Transformer [75].

Enformer is an adapted version of Transformers
framework for DNA sequences, and we provide the model
architecture in Fig. 12.6. The general idea of this model has
already been introduced when we discuss genetic
sequences. Here we take a look at two designs in Enformer
that help the model better capture the low-level semantic
information in the super-long genetic sequences, and this
information is of key importance for the high-level
sequence analysis. First, Enformer emphasizes the relative
position information, selects the relative positional
encoding basis function carefully, and uses a concatenation
of exponential, gamma, and central mask encodings.
Second, convolutional layers are applied to capture the low-
level features, enlarging the receptive field and greatly
expanding the number of relevant enhancers seen by the
model.



Fig. 12.6  Model architecture for Enformer. (The figure is re-drawn according
to Fig. 1a from DeepMind’s Enformer paper [5])

When discussing AlphaFold, we have mentioned the
significance of MSA information. Inspired by this idea, MSA
Transformer is proposed to process multiple protein
sequences. The model architecture is shown in Fig. 12.7.
The normal Transformers conduct attention calculations
separately for each sequence. However, different
sequences in the same protein family share information
including the co-evolution signal. MSA Transformer
introduces the column attention corresponding to the row
attention of each sequence and is trained with a variant of
the masked language modeling across different protein
families. Experimental results show that MSA Transformer



gets obviously better performance compared with
processing only single sequences, and this becomes the
basic paradigm of processing protein sequences.

Fig. 12.7  Model architecture for MSA Transformer. (The figure is re-drawn
according to Fig. 1 from MSA Transformer paper [75])

12.3.3 Objective Regularization

Formalizing new tasks from extra knowledge can change
the optimization target of the model and guide the models
to finish the target task better. In the biomedical domain,
there are plenty of ready-made tasks that can be adopted
for objective regularization once chosen carefully, and we
do not need to specially formalize new tasks. Usually, we
conduct multi-task training in the downstream adaptation



period. Some researchers also explore objective
regularization in the pre-training period, and PTMs learn
the knowledge contained in the multiple pre-training tasks.
We will give examples of these two modes and conduct a
comparative analysis.

Multi-task Adaptation  The introduced multiple tasks
can be the same or slightly different from the target task.
For the former one, we usually collect several datasets
(may be differently distributed or in various language
styles) for the same task. For instance, the biomedical NER
model has shared parameters while separated output layers
for various datasets to deal with the style gap [12, 20].
When we do not have ready-made datasets, KGs can help
generate more silver data for training, such as utilizing the
KG shortest dependency path for relation extraction
augmentation [84]. Further, different tasks can also benefit
each other, such as several language understanding tasks
(biomedical NER, sentence similarity, and relation
extraction) in the BLUE benchmark [71]. Similarly, when
dealing with non-textual biomedical materials, we can
conduct multi-task adaptation to require the models to
understand different properties of the same substances.
For example, the molecular encoder reads the SMILES
strings and learns comprehensive capability on five
different molecule property classification tasks [53], and
the knowledge in these tasks assists in improving the
performance of each other.

Multi-task Pre-training  Pre-training itself is a
knowledge-guided method, which we will introduce later in
the next subsection. When it comes to multi-task pre-
training, with knowledge of KGs or expert ontologies, we
can create extra data and conduct knowledgeable pre-
training tasks. The domain-specific PTMs we have
mentioned such as SciBERT and BioBERT simply keep the



masked language modeling training strategy. To introduce
more knowledge, biomedical PTMs with specially designed
pre-training tasks are proposed. One instance is masked
entity prediction, e.g., MC-BERT [100] is trained with the
Chinese medical entities and phrases masked instead of
randomly picked characters with the assistance of
biomedical KGs. The other instance is entity detection and
linking, e.g., KeBioLM [97] annotates the large-scale
corpus with the SciSpacy [66] tool and introduces the
entity-oriented tasks during pre-training, which essentially
integrates the entity understanding capabilities of the
annotation tool. The PTMs enhanced by extra pre-training
tasks usually show much better performance on the
corresponding downstream tasks. In short, the multi-task
pre-training period implicitly injects knowledge from the
KGs/ontologies or the ready-made annotation tools, and
this can help improve the capability of the PTMs in related
aspects.

Comparing the two approaches above, we can find that
multi-task adaptation is a more direct way to change the
optimization target for the target task, and therefore the
introduced datasets have to be of high quality and highly
related to our target data. In contrast, the requirement for
multi-task pre-training is less stringent since the pre-
training period is conducted on a sufficiently large corpus
that is insensitive to small disturbances, while the
assistance of pre-training tasks is also not so explicit and
remarkable compared with multi-task adaptation.

12.3.4 Parameter Transfer

One of the most common paradigms of transfer learning is
the pre-training-fine-tuning paradigm. In this way, the data-
driven deep learning systems can be applied to specific
domains which may lack annotated data. The knowledge
learned from the source domain corpus/tasks can help



improve the performance of the target domain tasks.
Taking the PTMs as an example, they transfer the
commonsense, linguistic knowledge, and other useful
information from the large-scale pre-training corpus to the
downstream tasks. We now discuss two types of parameter
transfer: between different data domains and between
tasks.

Cross-Domain Transfer  The models pre-trained in the
general domains are frequently transferred to the
biomedical domain, and two of the most common scenarios
are the processing of natural language documents and
images. For example, the model pre-trained on ImageNet
can better understand medical images and finish melanoma
screening [61]. Compared with randomly initialized models,
PTMs such as BERT can also achieve satisfying
performances when fine-tuned on biomedical text
processing datasets.

Nevertheless, with more biomedical corpora obtained, we
do not have to rely on general domain pre-training now.
Experimental results have shown that domain-specific pre-
training has a more obvious improvement than general
domain pre-training [64]. In fact, each domain may have its
own characteristics, such as some empirical results in the
biomedical domain showing that pre-training from scratch
gains more over continual pre-training of general-domain
PTMs [32], which is contrary to popular belief and waiting
for further exploration.

Cross-Task Transfer  Models can be tuned on other
tasks or styles of data before being transferred to the
target task data, and knowledge learned from other tasks is
contained in the initialized parameters. Specific to the
biomedical domain, the high cost of biomedical data
annotation limits the scale of golden samples labeled by



human experts. Some methods can generate large-scale
silver datasets automatically, such as distant supervision,
which assumes that a piece of text/image expresses the
already-known relation, if only the head and tail entities
appear in it. Sometimes it is too absolute to directly change
the optimization target. Instead, we consider using the
cross-task transfer method to utilize the knowledge of the
introduced task more softly. Pre-training on the silver-
standard corpora and then tuning on the golden-standard
datasets is proved to be effective [29]. Another example is
cross-species biomedical data for transfer learning, in
which the underlying biological laws of different species
have similarities; therefore the biological data from other
species can be used for pre-training before fine-tuning with
the data from the target species and achieving higher
accuracy for DNA sequence site prediction [52, 56].

Summary  To sum up, knowledge-guided NLP methods
are widely used in biomedical tasks, such as parameter
transfer which can be easily conducted, being proven
useful in various scenarios and becoming an essential
paradigm. For textual material processing, the structured
biomedical expert knowledge in KGs is suitable for
providing augmented input and designing better objective
functions. For non-textual material processing, architecture
reformulation is usually necessary due to the differences in
the data characteristics between various forms of raw
materials. Some special materials naturally provide clues
for objective regularization, such as multiple properties for
the given molecule. The satisfying performances achieved
by the above methods inspire us to emphasize the
significance of knowledge-guided biomedical NLP.

12.4 Typical Applications



In this section, we explain the practical significance of
biomedical knowledge representation learning through
three specific application scenarios. Literature processing
is a typical scenario for biomedical natural language
material processing, and retrosynthetic prediction focuses
more on biomedical language (chemical language) material
processing. Both the two applications belong to AI for
science problems, attempting to search from a large space
and collect useful information to improve the efficiency of
human researchers. We then talk about diagnosis
assistance, which is of high practical value in our daily life.

12.4.1 Literature Processing

The size of the biomedical literature is expanding rapidly,
and it is hardly possible for researchers to keep pace with
every aspect of biomedical knowledge development. We
provide an example of a literature processing pipeline in
Fig. 12.8 to show how biomedical NLP helps improve our
efficiency. We divide the pipeline into four stages:
literature screening, information extraction, question
answering, and result analysis.



Fig. 12.8  A possible pipeline for biomedical literature processing. (Text in the
example is taken from [44])

Literature Screening  In our usual academic search
process, we first screen the mass of literature returned by
our search engine. We require the information retrieval
model to return a relevance score ranking according to the
query conditions, which may describe the type and age
limit of the document, the entities or relation pairs we are
concerned about, and other details. Echoing the
importance of the biomedical terms we have mentioned,
sometimes the document representations in the biomedical
information retrieval models emphasize the key biomedical
terms in the documents and queries for better matching
[1].

Information Extraction  We have already introduced
some significant tasks for biomedical information
extraction, such as term recognition, linking, and relation



extraction. After we get the targeted literature by
screening, we have to mine the text, extract the useful
information, and convert it into a structured form just as
we do in those extraction tasks. This stage usually relies on
the knowledge-transferred PTMs reading and
understanding the long documents.

Result Analysis and Question Answering  We may also
care about advanced meta-relations between the extracted
structured knowledge items or facts. An example is to
perform a meta-analysis for clinical randomized controlled
trials [4], which is one of the most convincing pieces of
evidence in evidence-based medicine. The process of
inductively analyzing the results of different trials does not
necessarily need to be fully automated, while we expect the
AI system to help us do a quality assessment and
conclusion highlighting and therefore largely improve our
efficiency. Based on the analysis result, we may even get
assistance from the conversation systems generating
reasonable responses to medical questions and providing
effective suggestions for further research.

12.4.2 Retrosynthetic Prediction

Organic synthesis is an essential application for modern
organic chemistry and plays an important role in drug
discovery, material science, and other fields. To design
synthetic routines for the target molecules more efficiently,
AI systems are applied for chemical reaction reading, such
as the reaction classification task. Further, we expect the
systems to achieve deep comprehension of the reactions
and can therefore generate single-step reaction
predictions. Eventually, the multi-step retrosynthesis task,
reasoning the synthetic routes for the given target product,
can also be finished automatically with the help of extra
information from knowledge bases or ontologies.



Chemical Reaction Classification  Machine learning
methods can help researchers analyze large-scale reaction
records and summarize useful reaction templates, which is
a significant form of chemical knowledge [18]. These
templates can further guide human researchers or AI
systems to design synthetic routines.

Single-Step Reaction Prediction  In recent years,
models such as the Transformers are pre-trained on the
large-scale reaction corpus, and they are proven to be
effective when predicting the single-step reactions without
the guidance of templates [91].

Multi-step Reaction Prediction  For predicting multi-
step reactions, most of the current methods search for
reasonable routes based on the already-known reaction
knowledge in the knowledge bases [13]. With the
development of biomedical deep learning models, we may
also explore end-to-end generation for multi-step
retrosynthesis in the future, as shown in Fig. 12.9.
Specifically, the heuristic algorithm for searching routes,
the query of knowledge bases, and other operations may all
be finished with unified models guided by chemical
knowledge.

Fig. 12.9  A possible solution for automatic multi-step retrosynthesis. Icons
are bought or freely downloaded from IconFinder



12.4.3 Diagnosis Assistance

There exists a huge demand for diagnosis assistance. The
scarce medical resources in some areas call for AI systems
to provide patients with auxiliary knowledge for simple
daily situations. This can reduce the pressure on medical
resources and improve the work efficiency of hospital
systems.

We first take a look at several basic tasks in diagnosis
assistance. The most practical application is automatic

triage. The system is fed with the symptom descriptions
from the patients and predicts the suitable clinic. This is
essentially a disease classification problem. A similar task
is medicine prescription, which requires processing more
complex diagnostic information (including the text of
complaints, quantified findings, and even images) and
providing advice with the aid of medical knowledge.
Further, the doctor-patient conversation is a challenging
task due to the gap between the colloquial style of patients
and the standard terms and structured items in KGs. The
system must first recognize the key information and finish
linking and then provide correct and helpful knowledge
with good interpretability and readability.

Since safety is significant for issues related to medical
care, the assistance systems have to be supported by plenty
of knowledge and provide explainable suggestions.
Incorporating knowledge representations with text
representations achieves significantly better performance
on the diagnosis assistance task [51].

12.5 Advanced Topics

We have introduced the current development in biomedical
knowledge representation learning. There are several
consensuses for biomedical NLP through which we can
further discuss and get inspiration about future trends. We



have discussed the significance of high-quality training
data for the current deep learning biomedical systems, and
data scarcity can lead to research in two ways: by guiding
the models with the knowledge to adapt with few data or by
incorporating different data forms from multiple sources.
Besides, the black-box property of deep learning systems
brings challenges for domain research since biomedical
applications are highly related to human life and
emphasizes safety and ethical justification. Next, we will
elaborate on the above two solution paths and one main
concern.

Knowledgeable Warm Start  There is a term in the field
of recommendation algorithms called the cold-start [78]
problem, which describes impaired performance when
lacking user history. Extended to more deep learning
applications such as biomedical NLP, we also face the cold-
start challenge under scarce-data scenarios and often
alleviate the problem with the help of transfer learning or
other methods. For biomedical NLP tasks, data annotation
is difficult, and we always have few supervision signals for
model training. Therefore, it becomes more important to
achieve warm start training for biomedical NLP systems.

As we have mentioned above, knowledge can guide deep
learning systems in several different ways even when the
data is comparably plenty, such as biomedical PTMs
transferring linguistic and commonsense knowledge to help
achieve a warm start. When it comes to the low-resource
scenarios, there have been a few explorations. Knowledge-
aware modules such as the self-attention layer introducing
external KGs are designed for biomedical few-shot learning
[96]. Special tuning strategies such as entity-aware
masking are also applied and proved to be effective under
low-resource problems [72]. Still, the knowledgeable warm
start problem is rarely discussed in a targeted manner or



even just clearly raised, although it is prevalent in
biomedical NLP tasks. We believe that it deserves more
attention and research.

Cross-Modal Knowledge Processing  Though the
annotated datasets are small-scale, we have various forms
of biomedical data that are linked to each other by
biomedical knowledge. Apart from the regular cross-modal
tasks (about which we can learn more details in Chap. 7)
including medical image captioning, other types of
materials can also be versatilely processed. For example,
natural language and chemical language can describe the
same chemical entities, and they may provide
complementary information from different perspectives.
KV-PLM [99] has proved that the connections between
natural language descriptions and molecular structures can
be modeled in an unsupervised manner through pre-
training (Fig. 12.10). It can even surpass human
professionals in the molecular property comprehension
task and reveal its potential in drug discovery. Follow-up
works further incorporate other materials such as
molecular graphs with the text [83].



Fig. 12.10  KV-PLM model bridging molecular structure expressions and
natural language descriptions. This figure is taken from the original paper [99]
with CC BY 4.0 license (https:// www. nature. com/ articles/ s41467-022-28494-3)

Different expressions for biomedical terms have diverse
emphases. Bridging them together and capturing the
mapping relations between various data forms through a
large number of observations, just as humans do, is a form
of meta-knowledge learning, enabling a deeper
understanding of terms while alleviating data scarcity
issues. As long as we can design tokenizers to utilize
different structures uniformly, the advantages of data-
driven deep learning systems can be carried forward.

Interpretability, Privacy, and Ease of Use  There exist
some other concerns about biomedical NLP. The first one is
the interpretability problem, which we have discussed in
Chap. 8. Most deep learning systems are black boxes that

https://www.nature.com/articles/s41467-022-28494-3


have poor interpretability, and this leads to distrust of
automated decision-making, especially under medical
scenarios closely related to human lives. Directly predicting
the prescription without providing symptom analysis and
disease diagnosis makes it hard for users to assess the
credibility of the recommendations. This is not only related
to safety but also some ethical problems including accident
liability determination. There are already some researchers
that focus on the interpretability of biomedical NLP due to
its importance [60].

The second one is the privacy problem. The ethical
controversy of privacy always exists when we talk about AI
development. For example, the genetic sequence training
data of deep learning models may be leaked by privacy
attacks, and the genetic traits and disease information of
the system users may be illegally sold. Some methods such
as private aggregation of teacher ensembles can alleviate
the privacy leakage problem [69], while it still needs more
effort to be solved.

Thirdly, as the assistance tool for domain research,
biomedical NLP systems are supposed to be designed as
easily as possible to use. Some toolkits and online demos
are developed [103], while most of them still propose quite
high requirements for the users’ devices and programming
foundation. There is a huge market for user-friendly
platforms, and we hope the AI community to implement
useful aids as soon as possible.

12.6 Summary and Further Readings

In this chapter, we discuss the representation learning of
biomedical NLP. As an emerging interdisciplinary field,
biomedical NLP has undergone rapid development in
recent years, especially after deep learning methods such
as PTMs appeared. We first introduce the knowledge



representation and acquisition in biomedical materials,
including natural language text materials and other
materials, of which the latter adapts the advanced NLP
algorithms and models to the biomedicine scenarios.
Further, we explain the knowledge-guided methods in the
biomedical domain in the four aspects: input augmentation,
architecture reformulation, objective regularization, and
parameter transfer. Future directions in this field have also
been discussed.

For further understanding of biomedical knowledge
representation learning, we recommend reading some
surveys about the early works [62] and the comprehensive
analysis for PTMs [32] which is the recent-year
representative results.
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Abstract

Big pre-trained models (PTMs) have received increasing
attention in recent years from academia and industry for
their excellent performance on downstream tasks.
However, huge computing power and sophisticated
technical expertise are required to develop big models,
discouraging many institutes and researchers. In order to
facilitate the popularization of big models, we introduce
OpenBMB, an open-source suite of big models, to break the
barriers of computation and expertise of big model
applications. In this chapter, we will introduce the core
toolkits in OpenBMB, including BMTrain for efficient
training, OpenPrompt and OpenDelta for efficient tuning,
BMCook for efficient compression, and BMInf for efficient
inference.

13.1 Introduction

Since the emergence of pre-trained models (PTMs)
represented by BERT [7] in 2018 to the subsequent release
of GPT-3 [4] with 175 billion parameters in 2020, PTMs
have attracted increasing attention from academia and
industry. In Chap. 5, we have introduced that these PTMs
perform well on various downstream tasks, and model
performance can be further improved by increasing model
parameter size. From BERT and GPT-3 to the recently
proposed big models [11, 18, 39, 40], the parameter sizes
of these models have gradually grown from hundreds of
millions to trillions. By 2022, the record for the maximum
parameter size has been raised to over 1 trillion [11].

Although increasing model parameter size brings better
model performance, to let most institutions and individuals
enjoy the power of big models still faces several challenges:

Computation Barrier  Bigger models inevitably require
higher computing costs in their training, tuning, and



inference. For example, as shown in the original paper of
GPT-3, more than 1, 000 high-performance GPUs are used
to train GPT-3. Most small- and medium-sized institutes
cannot afford such a colossal computing cluster. Moreover,
even after completing the training process, deploying these
big models for a specific application still requires to cost
thousands of dollars at a time to perform the model
inference, indicating that in addition to training big models,
using these big models is also expensive.

Expertise Barrier  Many deep learning techniques that
work well on small models become inefficient or
inapplicable on big models. For example, full-parameter
fine-tuning has been widely used to tune PTMs for solving
specific downstream tasks. If full-parameter fine-tuning is
performed to adapt big models for each downstream task,
we have to spend terabytes of disk and memory space to
store all task-specific fine-tuned models. Moreover, as
parameter size grows to billions, some novel characteristics
specific to big models emerge, such as in-context learning
[26], chain of thoughts [36], and the lottery ticket
hypothesis [13]. Hence, novel techniques such as prompt
learning [24], delta tuning [9], and MoEfication [42] are
specifically developed for big models. These techniques
form an expertise barrier to those researchers and
practitioners who are interested in big models and do not
have extensive experience.

To address these barriers, we introduce OpenBMB, an
open-source suite for building big model systems more
efficiently, to make big models available to everyone.
OpenBMB contains several toolkits for different application
scenarios of big models, including BMTrain for efficient
training (in Sect. 13.2), OpenPrompt and OpenDelta for
efficient tuning (in Sect. 13.3), BMCook for efficient
compression (in Sect. 13.4), and BMInf for efficient



inference (in Sect. 13.5). Figure 13.1 shows how these
toolkits work together to form an effective and efficient big
model system. In this chapter, we will introduce these
toolkits in detail, covering the critical technologies involved
in these toolkits and how to use code to run these toolkits.
More details of advanced big model techniques, such as
prompt learning and delta tuning, can be found in Chap. 5.

Fig. 13.1  An overview of the whole OpenBMB architecture. (The figure comes
from the website of OpenBMB https:// www. openbmb. cn )

13.2 BMTrain: Efficient Training

Toolkit for Big Models

The success of big models is due to large-scale data and
huge parameter size. The large-scale data facilitates big
models to acquire versatile knowledge during the pre-
training stage, while the huge parameter size enables big
models to store the acquired knowledge well. However,
utilizing large-scale data and huge parameter sizes is a
double-edged sword, simultaneously bringing significant
performance enhancement and a severe computation
barrier. The key to solving the computational barrier of big

https://www.openbmb.cn/


model training is to adopt more efficient distributed
learning strategies to take full advantage of distributed
computing clusters. Next, we will introduce the distributed
learning strategies used in BMTrain and how to use
BMTrain to set these strategies to train big models
efficiently.

13.2.1 Data Parallelism

Intuitively, training a big model on a GPU cluster is similar
to organizing an event with many partners. Imagine that
you have a lot of tasks to do and you want to get them done
as quickly as possible; a good solution is to distribute these
tasks equally to your partners so that everyone is busy and
no one is idle. This is the principle of data parallelism. As
shown in Fig. 13.2, the training data is divided into several
parts, and each GPU is responsible for training a part of the
data. For the model parameters, each GPU stores the whole
model. In each iteration, each GPU calculates the gradient
for its own part. After all the gradients are computed, the
gradients of different GPUs are averaged together as the
overall gradient. The overall gradient is then passed to the
optimizer to update the model parameters. Finally, the
updated parameters are sent back to each GPU for the next
iteration. This process is repeated until the training is
finished.



Fig. 13.2  Data parallelism partitions the input data evenly to each GPU
before the forward propagation and aggregates the gradients from all GPUs to
update the model parameters after the backward propagation

Data parallelism is largely similar to training a model on
a single GPU, except that data parallelism adds two
additional stages of gradient aggregation and parameter
synchronization. Since the training data is evenly
partitioned to each GPU, each GPU performs the same
amount of computations. As a result, all GPUs can work
concurrently to achieve the highest utilization, rather than
having some nodes idle while others are under high load.

Data parallelism can effectively utilize large-scale
computing power clusters, but some limitations are
gradually exposed as the model size increases. Since data
parallelism requires keeping the complete model
parameters on each GPU, this method is not competent
when the number of model parameters exceeds the
capacity of one single GPU. For example, for a model with
10 billion parameters, it would take more than 40 GB of
memory to store the model parameters and gradients,
which is far beyond the capacity of most GPUs. Besides,
GPUs with a capacity of 40 GB are expensive and cost
inefficient. This parallel strategy needs to be further



improved to enable big models to be trained with limited
resources.

13.2.2 ZeRO Optimization

ZeRO (zero redundancy optimizer) [29] is a strategy that
allows efficient training for models with a parameter size
far exceeding the capacity of one single GPU. As mentioned
in the data parallelism section, the complete model
parameters, gradients, or optimizer states cannot be stored
on a single GPU to train big models. As shown in Fig. 13.3,
the ZeRO algorithm is proposed to further optimize data
parallelism by partitioning the model parameters,
gradients, and optimizer states evenly to each GPU and
only temporarily aggregating them when needed. During
the forward and backward propagations, the model
parameters are aggregated twice, and the model gradients
are aggregated only once while updating the optimizer
states. Therefore, ZeRO needs to communicate three times
in each iteration, one more time than data parallelism.

Fig. 13.3  ZeRO partitions the model parameters, gradients, and optimizer
states evenly to each GPU and only gathers them together temporarily when



they are needed for the computation

Although bringing additional communication, the ZeRO
algorithm can train big models on a GPU cluster with
limited capacity. For example, with ZeRO, it is possible to
train a model with 175 billion parameters on 64× A100
GPUs, while data parallelism can only train a model with no
more than 3 billion parameters. Empirically, if the number
of GPUs is increased indefinitely, the number of model
parameters that can be trained using the ZeRO algorithm
can also be increased indefinitely.

13.2.3 Quickstart of BMTrain

BMTrain is an open-source toolkit for big model training. It
provides easy-to-use interfaces based on PyTorch to help
users accelerate the training process using the data
parallelism and ZeRO algorithms. For commonly used
model architectures such as Transformers, BMTrain
implements a series of customized optimizations and makes
writing distributed training code just like writing single-
node training code. With BMTrain, only four steps are
required to modify a single-node training code to drive a
distributed cluster for training acceleration.

Step 1: Initializing BMTrain  Since BMTrain is built
based on PyTorch, similar to PyTorch calling the function
init_process_group at the beginning of code to initialize
distributed training, BMTrain requires to use
init_distributed at the beginning of code to initialize
BMTrain (Fig. 13.4). The function init_distributed also
supports users to set random seeds. By setting random
seeds, BMTrain can provide users with a reliable and
reproducible mechanism to control all random processes,
ensuring that multiple runs of the same code can yield
stable results.



Fig. 13.4  An example of initializing BMTrain

Step 2: Enabling ZeRO Optimization  After initializing
BMTrain, the data parallel and ZeRO algorithms can be
applied by making some simple modifications to the single-
node training code. As shown in Fig. 13.5, users should
modify the model construction code to replace Module and
Parameter in PyTorch with DistributedModule and
DistributedParameter implemented in BMTrain. To further
alleviate memory overhead, wrapping some model layers
with CheckpointBlock enables the activation checkpointing
mechanism, details of which can be found in the work [6].



Fig. 13.5  An example of enabling the data parallel and ZeRO algorithms. (a)
An example of the single-node training code built on PyTorch. (b) An example
of modifying the single-node training code to the BMTrain version

Step 3: Communication Optimization (Optional)  For
those model architectures with multiple layers, such as
Transformers, BMTrain provides a communication
optimization module to reduce the time overhead by
overlapping communication and computation. As shown in
Fig. 13.6, to enable this optimization, users need to replace
ModuleList in PyTorch with TransformerBlockList

implemented in BMTrain.



Fig. 13.6  An example of enabling the communication optimization algorithm.
(a) An example of using ModuleList to define a multi-layer model in PyTorch.
(b) An example of using TransformerBlockList to replace ModuleList

Step 4: Launching the Distributed Training  The code
optimized by BMTrain can be run using the same launcher
as the PyTorch distributed module. Figure 13.7 shows the
distributed training command depending on specific
PyTorch versions, and this command should be executed on
all nodes in the cluster at the same time. In the launching



command, users should specify the communication
protocol, including the IP address and port number.

Fig. 13.7  An example of launching the training code train.py in BMTrain

13.3 OpenPrompt and OpenDelta:

Efficient Tuning Toolkit for Big

Models

In Chap. 5, we have introduced the general capabilities of
big models and their excellent performance on a wide
range of downstream tasks. In this section, we focus on
showing the critical role that prompt learning and delta
tuning play in applications and how to adapt big models to
downstream tasks using OpenPrompt and OpenDelta. More
details of prompt learning and delta tuning can be found in
Chap. 5.

13.3.1 Serving Multiple Tasks with a Unified

Big Model

Tuning models is an essential part of the practical
application of big models, which can adapt the generic
capabilities of big models to specific tasks. Due to big
models’ high capability and generality, a big model can be
adapted to dozens or hundreds of different downstream
tasks. Before prompt learning and delta tuning, full-
parameter fine-tuning was the mainstream method to adapt
big models, where a complete model was fine-tuned and



stored for each downstream task. As the parameter size of
models increases, the overhead of the full-parameter fine-
tuning approach on the memory storage becomes more and
more heavy. Moreover, as the number of downstream tasks
continues to increase, so does the memory requirement to
deploy these models. These issues associated with full-
parameter fine-tuning seriously increase the cost of using
and deploying big models.

As compared with full-parameter fine-tuning, prompt
learning and delta tuning are more friendly to big models,
because these two special tuning approaches can adapt big
models to different downstream tasks by changing only a
small number of parameters or even without changing
model parameters, as shown in Fig. 13.8. Such a feature
solves the storage problem of big models caused by full-
parameter fine-tuning and further reduces the problem of
heavy resource consumption when deploying multiple
models for different tasks. In addition, both prompt
learning and delta tuning usually design task instructions
in the form of natural languages to stimulate the
knowledge of big models to solve specific problems.
Compared with using a programming language to control
big models, using task instructions to control big models is
more human-friendly.

Fig. 13.8  Big models are fixed on the cluster. Different delta objects are
dynamically loaded for different tasks with almost no overhead per task



Based on prompt learning and delta tuning, we can
deploy a big model on a GPU cluster and dynamically task-
specific task instructions or delta objects rather than task-
specific models. These task instructions and delta objects
can cooperate with the big model to handle multiple
downstream tasks. In this way, the resources consumed
during deployment will not grow with the increase of
downstream tasks. Aggregating all tasks into the same
cluster also brings higher utilization, avoiding the cluster
being partially idle due to unbalanced task requests.

13.3.2 Quickstart of OpenPrompt

OpenPrompt is an open-source prompt learning framework
with high extensibility. OpenPrompt supports a variety of
mainstream prompt learning methods [21, 30] and can help
users more easily apply prompt learning on existing models
or develop new models. As shown in Fig. 13.9, a
PromptModel consists of a PTM as the backbone, one or
more Templates to wrap the raw input with task
instructions, and one or more Verbalizers to map the task
labels to the vocabulary of PTMs. Developing a prompt
learning pipeline using OpenPrompt requires the following
steps to build a PromptModel.



Fig. 13.9  The framework of OpenPrompt. (The figure is re-drawn according to
Fig. 1 from OpenPrompt paper [8])

Step 1: Defining the Task  The first step in using
OpenPrompt is defining the details of the task. Taking
sentiment classification as an example, which aims to judge
whether the input sentence is positive or negative, Fig.
13.10 shows how to define the dataset used for the prompt
learning of the sentiment classification task.



Fig. 13.10  An example of defining the task for prompt learning in
OpenPrompt

Step 2: Loading the PTM  A PTM is the backbone of
PromptModel. OpenPrompt supports directly loading
models obtained from some online model hubs, such as
ModelCenter1 built on BMTrain and Huggingface
Transformers2 built on PyTorch (Fig. 13.11).

Fig. 13.11  An example of loading the PTM for prompt learning in
OpenPrompt

Step 3: Defining the Task Instruction  At least one
task instruction is required to make a PromptModel. The
Template is used to modify the original input with the



defined task instruction. Figure 13.12 shows how to join
the task instruction It was and the field text_a of the
dataset defined in Step 1.

Fig. 13.12  An example of defining the task instruction for prompt learning in
OpenPrompt

Step 4: Defining the Verbalizer  At least one verbalizer
is required for PromptModel. Verbalizer is an important
part of prompt learning that maps the output words to the
task labels. Figure 13.13 maps the word bad to the
negative label and maps good, wonderful, and great to the
positive label.

Fig. 13.13  An example of defining the verbalizer for prompt learning in
OpenPrompt

Step 5: Combining Different Modules into a

PromptModel  Based on the PTM, task instruction, and
verbalizer obtained earlier, we can define a PromptModel

using the code in Fig. 13.14.



Fig. 13.14  An example of building the PromptModel for prompt learning in
OpenPrompt

Step 6: Defining the PromptDataLoader  In order to
learn the defined prompt, we also need a dataloader to
sample data from the dataset. The PromptDataLoader in
Fig. 13.15 is an extension of the PyTorch dataloader used
to sample data for prompt learning.

Fig. 13.15  The example of building the dataloader for prompt learning in
OpenPrompt

Step 7: Training and Inference  After defining the
PromptModel and PromptDataLoader, we can train and
infer the defined prompt. All the code for training and
inference can be implemented with PyTorch. Figure 13.16
represents an inference example based on OpenPrompt.



Fig. 13.16  An example of model inference based on prompt learning in
OpenPrompt

13.3.3 QuickStart of OpenDelta

OpenDelta is an open-source delta tuning toolkit that can
perform delta tuning without modifying the code of the
backbone PTM. By using OpenDelta, users could easily
implement prefix tuning [23], adapter tuning [20], LoRA
[17], or any other types of delta tuning. OpenDelta also
supports sharing delta objects so that users can load the
delta objects trained by others or save and publish users’
own delta objects. To adapt PTMs using OpenDelta only
needs the following three steps.

Step 1: Loading the PTM  Similar to OpenPrompt,
OpenDelta requires a PTM to be loaded first as the
backbone for subsequent tuning. The code in Fig. 13.17
shows how to load BART [22].

Fig. 13.17  The example of loading the PTM for delta tuning in OpenDelta

Step 2: Adding the Delta Object  After loading the
PTM, OpenDelta requires users to specify the parameters
to be tuned (i.e., delta object). The code in Fig. 13.18 shows
how to use the built-in modifications (i.e., adapter layers) in



OpenDelta to specify the parameters that require to be
tuned.

Fig. 13.18  The example of specifying the delta object for delta tuning in
OpenDelta

Step 3: Freezing the Backbone  After adding the delta
object, the parameters of the backbone model are not
automatically frozen. Users need to use the freeze_module

method provided by OpenDelta to freeze the backbone
model (Fig. 13.19).

Fig. 13.19  The example of freezing the backbone for delta tuning in
OpenDelta

After completing the above three steps, the model can be
trained with the training script. After the training is
completed, users can also use the state_dict interface to
obtain the delta object’s parameters, similar to obtaining
parameters in PyTorch. The delta object obtained using
OpenDelta usually only needs very little space to store,
which is very space-efficient and can be easily stored and
shared with others.

13.4 BMCook: Efficient Compression

Toolkit for Big Models



The research on model compression started long ago, and
in recent years several vital directions, such as
quantization [2, 3, 31, 32], distillation [16, 19, 28, 33], and
pruning [5, 10, 14, 35, 37, 38, 43], have been widely
explored. Before the emergence of big models, model
compression techniques were mainly applied to adapt
models to various low-resource end devices, such as cell
phones and cameras, or to some real-time applications that
require low-latency inference. After the popularity of big
models, the inference of these big models requires more
expensive high-end devices than conventional deep models,
making the compression process more critical.

In order to make big models run on common devices like
various consumer GPUs, we have to combine different
compression techniques to minimize the parameter size of
these models without degrading the model performance too
much. Therefore, as shown in Figure 13.20, BMCook
systematically implements model quantization, model
distillation, model pruning, and model MoEfication. To take
full advantage of these compression techniques, BMCook
builds a unified compression framework to support the
combination of these compression techniques. Under this
unified framework, BMCook can support arbitrary
combinations of different compression techniques. Next, we
will introduce typical model compression techniques and
how to use these techniques to compress big models with
the help of BMCook. And more details about BMInf can be
found in the paper [41].



Fig. 13.20  The unified compression framework of BMCook [41]. (The figure is
re-drawn according to Fig. 1 from BMCook paper [41])

13.4.1 Model Quantization

Model quantization aims to represent the parameters of big
models with those lower-bit data types rather than the
commonly used 32-bit floating-point types. By using lower-
bit data types to represent model parameters, both the
memory and computation costs can be significantly
reduced. For example, representing a model with an 8-bit
fixed-point type is 4 times faster than representing the
same model with a 32-bit floating-point type.

The widely used model quantization methods mainly
follow two paradigms to quantize model parameters: post-
training quantization (PTQ) and quantization-aware
training QAT. PTQ [3] aims to directly quantize model
parameters after the model learning is completed. PTQ is
simple, but it may bring significant performance
degradation since lower-bit data types simultaneously bring
efficiency improvement and accuracy degradation. QAT
[32] is proposed to alleviate the degradation caused by
quantization. Specifically, QAT simulates the quantization
process during learning models so that model parameters
can be quantized with the guide of training data. With
linear layers as an example, QAT replaces all linear layers
of models with quantized linear layers. In quantized linear
layers, the matrix multiplication operation is replaced by
the quantized matrix multiplication.



Existing popular deep learning frameworks, such as
PyTorch and TensorFlow, have already supported PTQ.
Considering this and toward better performance, BMCook
mainly adopts QAT to compress models.

13.4.2 Model Distillation

Model distillation aims to transfer model knowledge from
larger teacher models to smaller student models.
Conventional distillation methods mainly focus on adding
the KL divergence between the output results of teacher
models and those of student models as an additional
training objective [16], so that student models perform
similarly to teacher models.

After the emergence of PTMs, making the inner
computation between student models and teacher students
closer facilitates distilling PTMs [19, 28, 33]. Specifically,
these distillation methods add the MSE loss between
student and teacher models’ hidden states. Note that
distillation methods only provide additional training
objectives rather than directly reducing the parameter size.
Owing to this, any other compression methods can be
combined with distillation methods to further improve the
performance of compressed models.

Both the distillation methods based on the KL-
divergence and MSE loss functions are implemented in
BMCook.

13.4.3 Model Pruning

Model pruning is widely used to prune redundant model
parameters. The existing model pruning methods mainly
follow two paradigms to prune model parameters:
structured pruning and unstructured pruning. Structured
pruning aims to remove complete redundant modules such
as model layers [10, 35, 37, 43], yet unstructured pruning
focuses on removing individual parameters [5, 14, 38].
Since the pruned parameters do not need to be stored in



memory and are also not involved in model computation,
model pruning can thus reduce the requirements of
memory and computing power.

In BMCook, both structured pruning and unstructured
pruning are supported. However, unstructured pruning
cannot guarantee efficiency gain since existing parallel
processing devices (e.g., GPUs) do not sufficiently support
arbitrary sparse computation operations [44]. Considering
that 2:4 sparsity is well supported by Sparse Tensor Core
[45], BMCook thus implements the unstructured pruning
with 2:4 sparsity, i.e., BMCook forces every four continuous
parameters to have two zeros. In this way, BMCook can
guarantee that its sparse operations can be at least twice
as fast as dense ones.

13.4.4 Model MoEfication

Since Transformers adopt ReLU [27] as the activation
function of the feedforward networks (FFNs), bringing a
sparse activation phenomenon, we can only use the part of
FFNs for a specific input without affecting the model
performance. To this end, model MoEfication [42] is
proposed to transform Transformers to the mixture-of-
expert (MoE) versions [11], which can significantly reduce
the computation costs of Transformers. Model MoEfication
only selects parts of model parameters for computation
rather than changing or removing model parameters. To
this end, model MoEfication can be viewed as a post-
processing technique that can be applied to an already
compressed model to further improve efficiency.

13.4.5 QuickStart of BMCook

Compressing a model with BMCook requires to set
concrete compression strategies using a configuration file.
The configuration file includes hyper-parameter settings,
model configurations, and which compression methods to
use for model compression. Figure 13.21 is an example of



the configuration file. In the configuration file, we can set
whether to use each compression method or not and
determine which modules of the model each compression
method is used for.

Fig. 13.21  An example of the configuration file of BMCook

After setting up the configuration file, some code needs
to be modified to drive BMCook to compress the model.
Next, we will introduce how to use BMCook to run each
compression method.

Model Quantization  As shown in Fig. 13.22, to perform
QAT in BMCook, we only need to use the function
BMQuant.quantize to operate the given model. The
function will automatically replace all linear modules in the
model with QAT linear modules.



Fig. 13.22  An example of performing model quantization in BMCook

Model Distillation  As shown in Fig. 13.23, to perform
model distillation in BMCook, we need to use the function
BMDistill.set_forward to combine the distillation loss
function with the original loss function of the student
model.

Fig. 13.23  An example of performing model distillation in BMCook

Model Pruning  In BMCook, model pruning is
implemented based on the pruning masking mechanism,
which requires to modify the optimizer to freeze those
masked parameters. As shown in Fig. 13.24, model pruning
in BMCook can be performed by using
BMPrune.compute_mask and
BMPrune.set_optim_for_pruning, which can help the model
compute the pruning masking matrix and modify the
optimizer.



Fig. 13.24  An example of performing model pruning in BMCook

Model MoEfication  Model MoEfication is to transform a
dense model into a sparse one. It requires the hidden states
during the forward propagation to learn how to select
experts. As shown in Fig. 13.25, to perform MoEfication it
is a need to use BMMoE.get_hidden.

Fig. 13.25  An example of performing model MoEfication in BMCook

13.5 BMInf: Efficient Inference

Toolkit for Big Models

How to achieve efficient model inference has long been of
great interest to the industry. ONNX,3 proposed in 2017, is
a general model representation format compatible with
various mainstream deep learning frameworks such as
PyTorch and TensorFlow. Owing to the excellent
compatibility of the ONNX format, many tools for
accelerating model inference based on the ONNX format
have sprung up. The most well-known toolkits are
TensorRT4 and onnxruntime.5 Up to now, transforming big
models to the ONNX format and then using TensorRT or



onnxruntime for model inference have become a widely
used paradigm in the industry. FasterTransformer6 is
released by NVIDIA in 2019, which is a toolkit for the
efficient inference of Transformer-based models on CUDA
devices, considering that recently proposed big models are
mainly based on Transformers.

Although these toolkits for accelerating model inference
have achieved promising results, they cannot meet
inference requirements for those models with more than 10
billion parameters. The main bottleneck of big model
inference is GPUs’ computing power and capacity. For a
model with 10 billion parameters, at least 20 GB of memory
is required to store the model, and a throughput of over
1013 FLOPs is also required to reach a usable inference
speed. Such requirements are beyond the computing power
and capacity of most GPUs. To make it possible to run big
models on consumer GPUs, we need to leverage more
heterogeneous devices such as CPUs and RAMs. Moreover,
we also need to apply quantization and memory scheduling
techniques to reduce the computing power and memory
requirements of big models. These techniques, which need
to be better supported, are well integrated into BMInf.
Next, we will introduce these inference techniques and how
to use BMInf for model inference. And more details about
BMInf can be found in the paper [15].

13.5.1 Accelerating Big Model Inference

Optimizing the efficiency of model inference is usually
closely related to specific hardware platforms. Since CUDA-
based GPUs are now widely used in academia and industry,
we focus on introducing inference acceleration techniques
around the GPUs based on the CUDA architecture.

One of the most common optimizations is kernel fusion
[1, 12, 34]. In the CUDA architecture, the basic operation
unit is the kernel, and each kernel needs to read data from



and write results back to global memory. Complex
operators of neural networks usually require multiple
kernels to cooperate, leading to redundant computation
and storage. For example, for batch normalization, if it is
implemented as the combination of multiplication and
addition kernels, the intermediate variables need to be
written back to global memory. However, using kernel
fusion to integrate the multiplication and addition kernel
into one kernel, the intermediate variables can be stored in
registers rather than global memory, which would be much
faster (Fig. 13.26).

Fig. 13.26  The example of batch normalization. As shown in this figure,
kernel fusion saves time in accessing global memory and improves efficiency

Another common optimization is model quantization. In
Sect. 13.4, we have described how to use BMCook for
model quantization, and we thus will not introduce more
quantization details here. For CUDA-based devices, using
shorter data types (i.e., lower-bit data types) is usually
much faster than using longer ones. Therefore, model
quantization can significantly improve the efficiency of
model inference. Using different quantization strategies
may result in different running efficiencies for different
models. For example, for a model based on Transformers,
the main time overhead is in the computation of its linear
layers, and quantizing the linear layers of this model will
lead to efficiency improvements. Such a quantization
strategy is implemented in BMInf.



13.5.2 Reducing the Memory Footprint of Big

Models

Due to the huge parameter size, only using GPUs for big
model inference requires each GPU to have a huge memory
capacity. This requirement raises the threshold for applying
big models to specific tasks. In order to run big models on
consumer GPUs with limited memory capacities, it is
critical to take advantage of CPUs to alleviate the
requirement for GPU storage capacity. Specifically, when
performing big model inference, we can put the part of
parameters that will not be used in a short time on CPUs
instead of storing all parameters on GPUs all the time.
These parameters stored on CPUs will be transferred to
GPUs when they need to participate in the computation.

Note that such storage optimization comes with a price.
The frequent passing of parameters between CPUs and
GPUs requires non-negligible additional communication
time. To this end, along with using both GPUs and CPUs,
CPU-GPU scheduling is also applied to overlap the time of
passing parameters and model computation. By using the
CPU-GPU scheduling, the parameters that GPUs will use
soon can be transferred from CPUs to GPUs beforehand.

Based on accelerating big model inference and reducing
the memory footprint of big models, it is possible to run
extremely big models on a single small-capacity GPU with
limited computation overhead. BMInf implements kernel
fusion, model quantization, and automatic CPU-GPU
scheduling at the layer level. Table 13.1 shows the
performance of BMInf running a big model with 10 billion
parameters on different GPUs. From the table, we can see
that combining all the above techniques enables us to run a
big model even on a single GPU with only 6 GB capacity.

Table 13.1  The inference performance of the big model with 10 billion
parameters on different GPUs using PyTorch with BMInf



    Memory capacity Encoding speed Decoding speed

Toolkit GPU (GB) (tokens/s) (tokens/s)

    Memory capacity Encoding speed Decoding speed

Toolkit GPU (GB) (tokens/s) (tokens/s)

PyTorch V100 32 – 3
  A100 40 – 7
BMInf GTX 1060 6 718 5
  GTX

1080Ti
11 1,200 12

  RTX 2080Ti 11 2,275 19
  V100 32 2,966 20
  A100 40 4,365 26

13.5.3 QuickStart of BMInf

As shown in Fig. 13.27, BMInf is an out-of-the-box toolkit
that requires only minor modifications to the original model
inference code. After implementing the model requiring to
perform inference with PyTorch, users only need to load
the parameters of the model on the CPU and then use the
wrapper function of BMInf to wrap the model. The wrapped
model can automatically apply optimization techniques
according to specific hardware conditions during the
inference process without manual intervention. As shown in
Table 13.1, just with a few lines of code, BMInf can help a
big model achieve inference speeds far exceeding its
PyTorch implementation on consumer GPUs.



Fig. 13.27  Using the wrapper function to wrap the model can drive BMInf to
optimize model inference

13.6 Summary and Further Readings

In this chapter, we review the progress of big models in
NLP and highlight the difficulties and corresponding
solutions to run big models for practical applications. Then,
we introduce how to use the toolkits of OpenBMB to
achieve efficient training, tuning, compression, and
inference. To learn more about the latest progress of big
models, please follow BMList,7 which contains information
about the latest release of big models and is very helpful
for readers to understand the trends of big models. We also
recommend finding more details on efficient and efficient
big models in Chap. 5.
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and the development of computation devices, big models
bring us to a new era of AI and NLP. Standing on the new
giants of big models, there are many new challenges and
opportunities for representation learning. In the last
chapter, we will provide a 2023 outlook for the future
directions of representation learning techniques for NLP by
summarizing ten key open problems for pre-trained models.

The order of the first nine authors is determined according
to the order of their corresponding sections.

14.1 Pre-trained Models: New Era of

Representation Learning

It is about 2 years after the publication of this book’s first
edition. The 2 years have witnessed the astonishing rise of
large-scale pre-trained models, also well known as big
models or foundation models. With the development of pre-
trained modeling techniques, representation learning is
exhibiting the following remarkable trends.

Unified Architecture of Representation Learning

Ever since the initiative of parallel distributed processing
(PDP) in 1980s, hundreds of neural network architectures
have been proposed to address various objects, tasks, and
domains, with some landmark architectures such as
Hopfield networks [48], Boltzmann machines [2], self-
organizing map (SOM) [63], recurrent neural networks
(RNN), convolutional neural networks (CNN) [70], long
short-term memory (LSTM) [47], ResNet [45], and
Transformers [118].

As the evolution of neural network techniques, some
architectures step down and others emerge. At the early
stage of the deep learning era, there were still many
architectures specifically designed with different



characteristics. For example, at that time, we have to
conduct experiments to find which architectures are more
suitable for the given NLP task, among CNNs, GRUs, and
LSTMs or their variants. After the neural architecture
Transformers was proposed in 2017, especially after the
pre-trained language models BERT and GPT built on
Transformers as the backbone, we can find optimal neural
architectures across various domains and tasks are
becoming more and more unified from diverse schemes as
shown in Chap. 5. The neural architecture Transformers
has been the most widely used backbone across almost all
NLP tasks, ranging from natural language understanding to
generation.

The unifying trend also happens across multiple
modalities, and the neural architecture Transformers has
shown its power beyond NLP, to CV as shown in Chap. 7,
and to other data such as biomedical structures as shown
in Chap. 12. The unified architecture across multiple
modalities will help to model rich knowledge of cross-modal
interaction and further facilitate learning from
heterogeneous data.

Of course, the unification process has not been
completed, and there is no evidence showing Transformers
will be the ultimate neural architecture for representation
learning. It will be an important research topic in the
future.

Unified Model Capability for Multiple Tasks  With the
“pre-training-fine-tuning” pipeline, pre-trained language
models also build unified model capability from large-scale
unlabeled corpora for multiple downstream tasks. The
unified capability of pre-trained models becomes more
significant as model parameters grow into a billion scale
with more data and more computation power.

The evidence is their unprecedented power in zero-shot
learning and few-shot learning as shown in Chap. 5. For



example, we can use no more than 1% additional
parameters by parameter-efficient delta tuning to adapt big
models to specific complicated tasks. It makes us
conjecture that big models may have learned all essential
knowledge by pre-training from large-scale corpora, and
the function of delta tuning is only to inform big models
which internal knowledge should be stimulated for the
specific downstream tasks.

The unified model capability revealed by big pre-trained
models makes them completely different from conventional
machine learning approaches including statistical learning
and deep learning. It requires the exploration of a new
theoretical foundation and efficient optimization methods
conditioned on pre-trained big models.

Moreover, with the above-mentioned characteristics of
unified model architecture and model capability, we believe
pre-trained models to some extent indicate the maturity of
distributed representation learning for AI, with great
potential for extensive use in each area requiring AI for
assistance. It will open a new era of AI and NLP from
research to application. Standing on the new giants of big
pre-trained models, there are also many new challenges
and opportunities for representation learning. Here we
summarize ten key open problems for pre-trained models
and hope more efforts will be devoted to these problems
and promote wide applications of big model techniques.

14.2 Ten Key Problems of Pre-trained

Models

In this section, we summarize ten key open problems of
pre-trained models, including theoretical foundation, next-
generation architecture, high-performance computing,
parameter-efficient delta tuning, controllable generation,



safety and ethics, cross-modality, cognitive learning,
innovative applications, and big model systems.

Note that these open problems are raised based on our
research experiences on pre-trained models and deep
learning. It does not indicate other problems beyond these
ten are not or less important.

14.2.1 P1: Theoretical Foundation of Pre-

trained Models

As pre-trained models (PTMs) [9, 42] become the
infrastructure of modern NLP, the theoretical principles
behind them become exceedingly intriguing to the
community. Self-contained and rigorous mathematical
theories could efficaciously guide the ameliorations of
neural structures, pre-training objectives, and adaptations
of PTMs and even pave the road to more powerful artificial
intelligence. However, the sad truth is that we are still far
from a complete understanding of PTMs. Their mechanism
intersects with deep neural networks, transfer learning,
and self-supervised learning in an intricate way, and
moreover, considerable empirical evidence suggests that
the potential of PTMs has not been fully explored.

The specialty of PTMs comes from the universal
generalization capability expressed by adaptations to
various tasks. Constructed on the basis of deep neural
networks (typically deep Transformers [118]), PTMs are
firstly pre-trained on massive unsupervised corpora and
then adapted to particular downstream tasks. After
optimizing a general language modeling objective in the
pre-training phase, PTMs are able to yield tremendous
generalization capability on a wide range of NLP tasks that
involve language data, even with a few examples and a
small amount of optimization [30, 50, 71].

In this subsection, we hold the mindset of seekers and
discuss the theoretical foundation of the miraculous



generalization capability of PTMs by decomposing it into
several sub-questions.

What Is the Appropriate Mathematical Description of

the Generalization Capability?  When dealing with
machine learning and deep learning models, calculus,
linear algebra, and probability theory are among the most
common choices as tools, while more advanced (and
complicated) mathematics are almost untouched at the
current stage. This may limit our understanding because
real linear and nonlinear operations in the representation
space are difficult to inscribe with these tools. Some argue
that the probability theory framework that is widely used to
describe generative models is intractable in the situation of
capturing the correlations of high-dimensional variables
[96]. Under this circumstance, other mathematical tools
need to be adopted and evaluated to interpret the utilities
of neural networks and even PTMs [43, 127]. For example,
recent progress in geometric deep learning [11] elaborates
different types of neural networks through the lens of
symmetry and invariance, bringing new inspiration to the
community. There are also works that attempt to provide
mathematical frameworks for the revolutionary trigger
point, i.e., the Transformer model [34]. Nevertheless,
merely attempting to elucidate the neural network
architecture may still be insufficient to understand PTMs,
and grasping the relationship between pre-training and
adaptation is crucial as well.

Why Does Pre-training Bring the Generalization to

Downstream Tasks?  Compared to traditional deep
learning, the most obvious difference, and the key to
success, is the far-flung pre-training phase over numerous
data. The simplicity of the pre-training task and the
effortlessness of the adaptation to complex tasks urge us to
wonder about the principles of how pre-training and



adaptation are related. From a vague point of view, PTMs’
colossal capacity makes it possible to induce a type of
general knowledge, while adaptation is a process to expose
such knowledge [142]. This is, of course, an incomplete and
unverifiable explanation, but a series of delta tuning [30]
efforts implicitly guided by this insight has yielded
remarkable results in a parameter-efficient manner. Taking
a closer and simplified look, such knowledge can be
modeled as coherence structures in a latent space with the
Bayesian framework [128, 134]. Switching to another
pragmatic perspective, analyzing the loss landscape may
bring new insights into the relationship between pre-
training and adaptation [73], where the pre-training phase
produces a readily optimizable initialization landscape for
PTMs surrounded by local optimums. Modern supervised
learning theory aims to explore the bounds of theoretical
adaptation loss via empirical adaptation loss and
generalization errors. And studies of self-supervised
learning borrow from progress in supervised learning
theory to bound from the adaptation loss with pre-training
loss in certain preconditions [4, 43, 116, 134]. Although
analysis of pre-training and adaptation could move our
understanding of PTMs one step forward, the special
capabilities that come with model scaling take the ultimate
goal even further.

How Are the Model Capacity and Capabilities

Related?  One of the most fascinating empirical
observations of PTMs is the power expressed by merely
scaling the size. It is not just a matter of accuracy on
standard classification or generation tasks; large PTMs will
counter-intuitively emerge with unprecedented capabilities
as the number of parameters increases. Models with tens of
billions of parameters would give surprising adaptation
performance a small number of trainable parameters
prepended to the input layer [71]. GPT-3 [13], a model with



175 billion parameters, shows an extraordinary capability
of in-context learning, which uses several examples to
stimulate the model to imitatively make predictions without
tuning a single parameter. Large-scale models could even
directly learn from tokenized behaviors of humans to carry
out complex tasks such as using search engines [89] and
playing sandbox games [7]. Experimental studies indicate
that special capabilities of large models do not accumulate
linearly but emerge at a certain point [129]. Although such
power of scale is verified under different scenarios, it is
still hardly framed theoretically.

The success of PTMs could simultaneously attribute to
data, objectives, and neural architectures, and it seems to
be difficult to separate modules of the process and study
them independently without interfering with each other.
Overall, the exploration of the theoretical foundation of
PTMs is a necessarily arduous journey, whereas any
promising conclusions could have profound influences. We
encourage the readers of our book to keep an open mind
and attempt to apply theoretical tools beyond NLP,
machine learning, and even computer science to analyze
the behaviors of PTMs and develop corresponding
frameworks.

14.2.2 P2: Next-Generation Model Architecture

It has already been 5 years since Transformer was first
released. The high capability and ease of parallelism have
enabled Transformer-based models to efficiently scale up
and achieve near-human or even beyond-human
performance on numerous tasks. During these 5 years, we
have witnessed the boom of Transformer-based PTMs and
the realization of more and more previously unimaginable
goals one by one [13, 89]. We have also been a witness to
the spreading of Transformer’s territory from NLP to other
fields such as computer vision [32, 80], robotics [39, 106],



etc. Undoubtedly, Transformer must be one of the most
revolutionary model architectures in the history of deep
learning.

Despite the power of Transformer-based models, as we
have introduced in the first key problem, there is still not
yet a sound theory that is able to elucidate the mechanism
of Transformer. Besides, Transformer is a data-hungry and
resource-intensive architecture, and the problem is further
exacerbated as the model size increases [1]. Though
Transformer is an epoch-making architecture, we still
believe that it will not be the ultimate of neural networks. A
natural question we would like to ask is what could be the

next-generation architecture for neural networks?

From a historical perspective, we find that many of the
earlier breakthroughs in neural networks were inspired by
other disciplines. For example, the convolution in CNNs is
borrowed from the research on the receptive field in cats’
visual cortex [53], and the memory in LSTMs is also
designed to mimic the mechanisms of the human brain.
Therefore in this subsection, we will stand at the
intersection of different disciplines and focus on neural
network architectures that are inspired by different fields.
Specifically, we will introduce some architectures inspired
by dynamical systems, geometry, and neuroscience. While,
at this time, these structures may not be able to outperform
Transformer significantly, they all have their own potential
and their own strengths that are still worth paying
attention to.

Dynamical Systems Inspired Architectures  A
dynamical system is a system whose state is evolving over
time, e.g., the random motion of particles, where the
location of each particle changes over time. Looking at the
propagation of hidden states between different layers of a
deep neural network, it is intuitive to associate it with a
discrete dynamical system by interpreting the layer depth



as time step. Indeed, many works have drawn the
connection between deep neural networks and discrete
dynamical systems described by ordinary differential
equations (ODEs) [82, 132]. The hidden state propagation
in ResNet [45] exactly resembles the forward Euler
discretization of an ODE. Therefore, the computation in
ResNet can be seen as implicitly solving an ODE defined by
the model parameters. Apart from the dynamical systems
described by ODEs, the dynamical systems described by
controlled differential equations (CDEs) [17, 101] and
stochastic differential equations (SDEs) [61, 76] are also
shown to be closely related to neural networks.

A number of advantages stem from the dynamical
system perspective of neural networks. Examples are as
follows:
(1)

GPU memory efficiency. By introducing the adjoint
state method [15] in the numerical optimization
problem, the GPU memory consumption can be
reduced from  for ResNet (L denotes the number
of layers) to  [20, 76].

 

(2)
Adaptive computational time. Ideally, models should
spend less time on simple samples and more time on
complex ones. However, current architectures treat
the instances with different complexity equally. By
leveraging the adaptive step-size solvers in numerical
optimization literature, models can have adaptive time
costs for different instances [18, 37].

 

Through the perspective of dynamical systems, neural
networks can be naturally generalized to continuous
systems, and plentiful theories in the dynamical systems
can step in to inspire new designs for neural networks. We
believe it is a promising area to explore.



Geometry Inspired Architectures  Humans live in a
Euclidean world. Therefore, we naturally accept the
assumption that the geometry of the neural networks
should also be Euclidean. However, this is not the case, as
the data that the neural networks handle differs from what
we are exposed to. Many complex data, such as graph data,
have been shown to exhibit non-Euclidean properties [12].
Intuitively, when the neural networks are also non-
Euclidean, they should be able to handle the data better
due to the matching of the geometry.

Considering the non-Euclidean geometries in the neural
networks brings several benefits: (1) Greater capability in

modeling structured features both theoretically and

empirically. Many real-life graphs are known to be tree-
like. However, even when the dimension of the Euclidean
space is unbounded, tree structures still cannot be
embedded with arbitrarily low distortion, i.e., some
information will always be lost. However, it can be easily
achieved in a two-dimensional hyperbolic space, which is a
non-Euclidean space [102]. And in practice, there have also
been a lot of graph-related works demonstrating the
effectiveness of low-dimensional hyperbolic models [16, 22,
91]. (2) Combinability with the dynamical system.
Geometry can also collaborate with the dynamical system
we mentioned above. From the perspective of geometry,
the layers in neural networks can be seen as
transformations on the coordinate representation of the
data manifold. From the perspective of the dynamical
system, the depth of neural networks can be continuous.
When combined, it is possible to give a continuous
transformation process from the data manifold to the final
linearly separable manifold for different classes [12, 84]. It
has the potential to provide a more intuitive understanding
of how neural networks gradually transform the data from



input features to features that can eventually be used for
classification.

In all, non-Euclidean geometry offers a prominent
direction for neural networks. It is a promising approach to
handle the structured data and to combine with other
perspectives to offer better insight into neural networks.

Neuroscience Inspired Architectures  When thinking,
unlike neural networks, we don’t need to consume large
amounts of energy, nor do we spike our brain temperature
to near 100 ∘C. Although still called neural networks,
today’s artificial neural networks (ANNs) have already
become much more energy-hungry and resource-
demanding than the human nervous system. Compared to
ANNs, the sparsity of human brains allows them to
consume much less energy than ANNs. Therefore, inspired
by the sparsity of neuronal interconnections in the human
brain, researchers have experimented with designing
neural networks with sparsity from two dimensions: spatial
sparsity and temporal sparsity.

The human brain has sparse neuronal connections and
relatively distinct functional partitions. That is, neuronal
connections in the human brain are spatially sparse. This
allows us to accomplish a simple task without using
neurons from the whole brain. Inspired by the spatial
sparsity, the mixture of experts (MoE) structure is
proposed [33, 54]. Unlike conventional neural networks
which are densely connected, MoE divides each layer into
several experts and additionally includes a router to route
every input to only a few experts. Since not all the experts
are involved in the computation, the inference can be faster
than densely connected networks. The advantage of MoE
models in terms of computational cost allows them to scale
up very efficiently. In addition, because different inputs will
be processed by different experts, ideally, different experts
can learn to handle different aspects of a task (or even



multiple tasks), making it suitable for artificial general
intelligence. Indeed, MoE models have been shown to
reach state of the art on several benchmarks with fewer
computational cost [88].

In addition to spatial sparsity, the human brain also
exhibits temporal sparsity, i.e., neurons do not transmit
signals every time step. Spike neural networks (SNNs) [38]
mimic the behavior of information propagation between
neurons interconnected by synapses. When the pre-
synaptic neuron is activated, it sends a signal in the form of
synaptic current to the post-synaptic neuron, and the
current strength is proportional to the weight of the
synapse. The incoming synaptic currents change the
membrane potential of the post-synaptic neuron, and when
the membrane potential reaches a certain threshold, the
post-synaptic neuron emits a spike, and its membrane
potential is reset to its resting potential. The biggest
advantage brought by the SNNs is the extremely low
energy consumption. Because SNNs only consume energy
when emitting spikes, the energy consumption of SNNs can
be extremely low compared to mainstream neural networks
[60, 87, 112]. Also, neuromorphic, which is the specialized
hardware for SNN, allows both computation and parameter
storage on the same chip, further boosting the efficiency
[26]. Although the performances of SNNs are often slightly
lower than the mainstream neural networks on datasets
such as MNIST [70] and CIFAR-10 [66], the low energy
characteristic of SNN makes it promising for the future.

Looking back at history, in 2012 AlexNet [67] was
proposed, and since then deep neural networks such as
CNNs and RNNs take the lead in machine learning. Five
years later in 2017, Transformer was introduced and
gradually replaced the models such as RNNs. Now, in
2022, we are celebrating another 5-year period, wondering
what could be the next-generation neural network. We



believe Transformer will not be the ultimate of the neural
networks, and we are eager to see more researchers think
about and explore the next-generation neural network
architecture and propose more economical, more efficient,
and more effective models.

14.2.3 P3: High-Performance Computing of Big

Models

Numerous parameters of big models come with exceedingly
expensive computation and storage costs, imposing
substantial challenges on both training and inference. In
fact, improving the computational efficiency of big models
is a complicated process in which many fundamental
aspects should be considered. In particular, meliorations
across the computational infrastructure, algorithms, and
specific applications can be simultaneously conducted. In
this subsection, we discuss high-performance computing of
big models from these three perspectives.

High-Performance Computational Infrastructure  We
collectively refer to the hardware and software as the
computational infrastructure, which is the foundation for
both the training and inference of big models and even
deep neural networks. In general, high-performance
computational infrastructure can be further exploited from
the following directions: (1) Parallel computing methods,
including data parallelism [113], tensor parallelism [52,
90], pipeline parallelism [104], and hybrid parallelism [95],
could fully utilize distributed computing capabilities to
accelerate the computation of big models. (2) We should
take advantage of heterogeneous computing devices [56],
including multi-level computing devices consisting of GPUs
and CPUs, and multi-level storage devices consisting of
VRAMs, RAMs, and disks, to reduce the computing cost
while ensuring the computing efficiency. (3) Considering



big models have large-scale parameters, we should
investigate techniques to reduce the memory overhead,
including tensor offloading [100, 107] and tensor
rematerialization [21, 62], facilitating us to compute bigger
models using fewer computing devices. (4) Moreover, high-
performance tensor programs [122] are also critical for
making deploying big models efficient, especially sparse
tensor programs [149] considering the sparsity of neural
networks.

High-Performance Algorithms  Existing work on big
models enjoys the emergent ability that comes with
increasing parameters while ignoring the efficiency of the
parameter utilization. If we draw an analogy between big
models and the brain, we will find that the brain consumes
much less cost for the similar billions of parameters
(neurons) due to some enigmatic mechanism brought by
evolution. Recently, two Turing Award Winners, Yoshua
Bengio and Yann LeCun, also highlight the importance of
neuroscience for AI [140], and they believe that the next
generation of AI will be largely driven by neuroscience.
Hence, it is a promising way to design new algorithms by
utilizing knowledge of neuroscience. We will discuss
several important brain-inspired mechanisms as examples
and hope these methods can inspire more explorations. (1)
Learning from memory mechanisms of human brains [115].
We should build an explicit memory system to store the
information and retrieve relevant pieces for a given input
instead of computing all parameters [40, 72]. (2) Learning
from System 1 and System 2 of human brains [25]. We
should design a system that can automatically switch
between the fast and the accurate modes for inputs with
different levels of complexity [135]. (3) Inspired by recent
work highlighting the importance of cooperation between
brain regions [114], we should also explore how to
compose multiple big models to achieve better



performance [3], which is more efficient than training a
bigger model from scratch.

High-Performance Application  When dealing with
limited resources of edge devices such as mobile phones,
our approach should shift from squeezing the performance
out of computing devices to compressing the big models
themselves for efficient deployment. As introduced in Chap.
5, there are many compression techniques, such as
knowledge distillation [46] and parameter pruning [41],
that could compress big models to acceptable scales.
Overall, in terms of high-performance applications, we
believe the following future directions show considerable
potential. (1) Computing hardware sets boundaries for our
compression techniques. To this end, properties of
application hardware must be considered to find the best
compression architecture with minimal latency [121] or
energy costs [125] rather than FLOPs. (2) Different
downstream tasks may exhibit different characteristics,
thereby requiring compression strategies with disparate
focuses. We should explore task-aware compression to
utilize the specific patterns of different tasks, such as
vocabulary reconstruction [136] for tasks of a specific
language and decoder-oriented compression for generation
tasks [77]. (3) Many compression approaches could achieve
similar results but are orthogonal in technical aspects. To
this end, we could take advantage of multiple compression
techniques to achieve higher compression ratios. Some
preliminary works have begun to investigate combinational
compression and have already achieved some promising
results [148]. However, how to combine all existing
methods to achieve optimal inference acceleration within
an acceptable performance degradation still remains an
open problem.

The development of high-performance computing is an
important driving force for deep learning, especially for big



pre-trained models. In the past, the performance gains
have mainly come from the growth of computing power. In
the future, we need to devote more efforts on how to
improve the utilization of computing power. On the one
hand, it can lower both the bar of using big models for
anyone who is interested in AI and the carbon footprint of
computing big models. On the other hand, in the post-
Moore era, there is limited room for further improvement
in computing power, and new methods should shift from
relying on the growth of computing power to improving
efficiency.

14.2.4 P4: Effective and Efficient Adaptation

Before the arrival of the era of PTMs, empirical
improvements of NLP applications are primarily achieved
by considerations across aspects of models, algorithms,
task-specific characteristics, etc. After PTMs take the
stage, researchers find that prominent advancements in
almost all NLP tasks can be delivered by merely scaling up
PTMs. Such a success of scaling, despite elusive, has fueled
a surge of development of big models with billions [93] and
even hundreds of billions of parameters [13]. Accordingly,
the emergence of big models triggers provoking
explorations of advanced model adaptations, which
suggests that the full-parameter fine-tuning approach used
in early PTMs is not the optimal solution for model
adaptation. It is neither effective across all forms of
datasets nor economically efficient on common
computation devices. That is to say, the inherent
characteristics of the big model itself must be taken into
account, and innovative strategies for model adaptations
should be established. To this end, how to effectively and
efficiently adapt big models becomes a pivotal research
issue. The problem is threefold in this subsection, including
computationally practical adaptation, task-wise effective



adaptation, and advanced adaptation with complex
reasoning.

Computationally Practical Adaptation  The huge size
of big models is a blessing in terms of experimental
performance, whereas a curse in terms of the adaptation
process. Deploying and adapting these models to assorted
tasks require considerable computational and storage
resources that are prohibitive to common researchers.
Instead of updating all the parameters of big models,
recent studies of delta tuning [30, 49, 50, 75] find that only
a tiny portion of parameters could yield comparable or even
better performance of full-parameter fine-tuning. These
trainable parameters can be represented as different
structures or in different positions in big models. But a
consistent empirical characteristic is that the larger the
model, the better the performance of this paradigm. Delta
tuning reifies conceptual capabilities to solve particular
tasks in a concrete and lightweight manner. The resulting
lightweight delta objects are easy to store and share across
tasks and users, imposing considerable maneuverability on
big models and unleashing the imagination of the
industrialized use of these behemoths. Despite the
efficiency, there are dark clouds still hanging over this
topic. For example, it is difficult to assess the optimal
amount of tunable parameters for different tasks, and the
convergence of delta tuning is relatively slower than full-
parameter fine-tuning. In addition, the theoretical
principles behind the success of delta tuning can also help
the community further understand big models. The
revolution in terms of model adaptations does not only
occur at the parameter optimization level but also at the
level of data and tasks. Next, we take prompt learning as a
landing point to discuss the task-wise effective adaptation
of big models.



Task-Wise Effective Adaptation  Taking BERT [29] as
an example, PTMs in the early stage first produce
representations for current inputs and adopt extra
classifiers to carry out adaptations to downstream tasks.
This seemingly established approach may actually be
counter-intuitive since there is a considerable chasm
between pre-training and adaptations. Empirical evidence
shows that inserting additional contexts, i.e., prompts, and
transferring downstream tasks to pre-training tasks could
substantially shrink the gap and yield promising
performance, especially in the low-data regimes. Prompts
could be generated and constructed by different means and
forms, but fundamentally, this technique implies a trend of
unification of NLP tasks, which includes the unification of
pre-training tasks and downstream tasks, as well as the
unification between different downstream tasks. Prompt
learning has shown intriguing attributes such as zero- and
few-shot learning, task generalization, and structural
unification of datasets. Besides, the flexibility of prompts
makes it possible to smooth the logic chain of big models
and stimulate complex reasoning capabilities.

Advanced Adaptation with Complex Reasoning  The
reasoning capability of big models has been a long-standing
debate that no one can perfectly arbitrate, where the
existence, representation, and stimulation methods have
been suspending research questions for years. Intuitively
for human beings, solving more complex questions is
almost equivalent to more comprehensive reasoning ability.
When it comes to big models or, more generally, neural
networks, continuous studies about shortcuts and record-
breaking performance of complex tasks create a
confrontational situation. With no intention of
philosophizing the argument, we look at this only from the
perspective of performing complex tasks, where big models
could produce striking logical processes in numerical and



commonsense reasoning tasks [130]. Consistent with the
aforementioned two points of computationally practical and
task-wise effective adaptations, such reasoning capabilities
emerge at a certain point of model scaling, which implies
that models should have sufficient capacity and be trained
on sufficient data in pre-training to elicit complex
reasoning. However, such reasoning abilities to perform
complex tasks are not stable in practice, where they show
different variances for different data and are extremely
demanding in terms of stimulation manners. This puts
researchers in the awkward position that we are all vaguely
aware of the enormous potential of big models, but have
few clues about how to hit that upper limit.

In summary, research considerations of big model
adaptations could be encapsulated in three points
according to the above statements: First, big models should
be computationally practical so that they can fully replace
previous approaches when their training and storage are
no longer an unattainable goal for the community. Delta
tuning is a highly prospective attempt at the algorithmic
level, and perhaps the community also needs to make
efforts on computational systems and hardware. Second,
the predictive power of big models could be realized by
new types of data and task organization, and prompt
learning is the product brought by the development of big
models, which also pushes us to adopt a more unified
perspective when looking at the tasks. Finally, to further
tap the potential of big models, complex reasoning must be
explored, and this is a key step for artificial intelligence to
enter the cognitive level instead of making simple
predictions.

14.2.5 P5: Controllable Generation with Pre-

trained Models



Generating data distribution is a long-standing challenge
for the machine learning community due to its inherent
high dimensionality and intractability. Fortunately, the
unprecedented capabilities accompanied by PTMs have
brought this goal within reach and thus sparked a new
surge of research. In empirical inspections of large-scale
PTMs, researchers have discovered their impressive ability
to generate high-quality text [13], images [94], videos
[108], or programming codes [19]. However, PTMs are
black boxes, which make us passively accept the generated
results rather than actively controlling the model to
produce contents that match a specific requirement. How
to precisely introduce conditional constraints to control the
generated results poses a major challenge for PTMs.
Specifically, the challenge of controllable generation comes
from three facets: a unified framework for diverse controls,
the compositionality of controls, as well as a well-
recognized evaluation benchmark.

A Unified Framework for Diverse Controls  The
primary objective of controlled generation is to meet the
diverse practical desires of users concerning content,
features, and styles. Diverse controls result in dispersed
research efforts. For example, depending on the category
of the input, separate models are trained for generation
from paragraphs [36], dialogues [145], tables [109], etc.
Regarding the properties of the generated text,
requirements for sentiment orientation [51] or keyword
satisfaction [147] are accomplished by distributional
change or insertion-based methods, respectively. In spite of
the proliferation of works on diverse controls, we would
prefer to use a unified framework to accomplish all these
controls rather than designing specific methods to meet
each requirement. A unified framework can not only
encourage research to be iterated rapidly and convergently
but also enable the investigation of the relatedness and



combinatoriality of diverse controls. Recently, there have
been several research works in this direction: (1) Prompt-

based methods. Either by injecting a control code [58] or
continuous parameters [75], we can leverage the same
PTM with diverse controls. The major drawback is that
prompt-based methods usually have coarser control
granularity or smaller control power, thus incapable of
handling hard constraint tasks like copying a span of text.
(2) Distribution modification methods. By incorporating
different constraints in the decoding stage of the language
model [78], the generated text from the same PTM can be
steered from different directions. Its limitation is that
distribution modification methods may hinder the fluency of
generation [59]. Hence, how to combine the two
approaches or develop novel approaches for unification are
still open questions.

Compositionality of Controls  In addition to the
diversity, controllable generation is also expected to be
multidimensional and multi-grained to allow more intricate
combinations of controls. As discussed in Chap. 3,
compositionality, which studies how to use low-level
linguistic units to form high-level semantics, is a topic of
considerable interest in text representations [86] and
natural language understanding. It is less explored in the
context of controllable generation due to the dispersal of
control approaches. To this end, the advocates of a unified
framework for generation can contribute to
compositionality. To steer the generation toward multiple
control requirements simultaneously, combining prompts
with individual functionalities can be explored to form more
comprehensive capabilities [92]. Nonetheless, the
exploration is still primitive, with the simple concatenation
of prompts as the composition method. As yet, we do not
have an understanding of the internal mechanism of



controllable generation for PTMs, making it difficult to
develop advanced compositional control methods. Of
course, we also look forward to other novel approaches that
can achieve compositionality of controls.

Well-Recognized Evaluation Benchmark  As ImageNet
[28] in computer vision and GLUE Benchmark [120] in
natural language understanding have demonstrated, a
recognized benchmark can foster benign competition
among researchers and identify promising approaches.
However, such a benchmark is absent for generation tasks,
especially controllable generation. The problem is further
compounded by the fact that researchers may use different
assessment methods and different data when focusing on
the same aspects of controllability [64, 78]. We highlight
three aspects of the difficulty of establishing a benchmark
for controlled generation and the potential improvements.
(1) Firstly, human language is rich in expressions, and the
same meaning can take on many nuances. So any golden
answer is not sufficient. A possible solution is to create
semantic matches between utterances. This requires a
powerful semantic understanding model that can provide
reliable matching scores from diverse angles. The previous
works, e.g., BERT-Score [146], are still insufficient in this
regard. Whether the large PTMs like GPT-3 could be used
to provide powerful semantic matching is still an open
problem. (2) Secondly, control requirements are intractable
and diverse. For example, topic satisfaction or emotional
tendencies are difficult to measure quantitatively.
Considering the diversity issue, how to integrate the
criteria into a unified implementation that can be used
across the community is a complicated but urgent task. (3)
Thirdly, evaluation should take into account potential
degraded factors such as quality and efficiency. Some
works [78] point out that there is an inevitable trade-off
between the control’s satisfaction rate and text quality.



Additionally, either increasing the length of input via
prompts or applying complex decoding strategies will
sacrifice generation efficiency, which should also be taken
into consideration for a well-rounded evaluation. Due to the
aforementioned challenges, few attempts have been made
to unify the evaluation, and a universally recognized
benchmark is still urgently needed.

Controllable generation is important in all areas of AI.
The approaches to controllable generation are not unified
across tasks, and this in turn leads to difficulties in
compositionality of various control approaches. Further,
the challenge of controllable generation is exacerbated by
the lack of a well-recognized evaluation benchmark.
Advances in the above three directions will greatly
contribute to the controllability of generation and thus
make generation techniques better serve practical needs.

14.2.6 P6: Safe and Ethical Big Models

With the exciting progress made in recent years, big
models are deemed as cornerstones of modern NLP as well
as AI. However, responsible AI research calls for clear
recognition of both benefits and risks. While the benefits of
big models are under extensive exploration, we should also
be concerned about the underlying negative impacts and
harms to individuals and society before deploying big
models in the real world. In Chap. 8, we have discussed the
robustness requirements for NLP models, and most topics
are related to model safety or ethics. Although considerable
efforts have been devoted, there still remain major
challenges to solve and possible future directions to
explore. In this section, we discuss open problems toward
safe and ethical big models from the perspective of
evaluation, governance, and construction.

Evaluating Safety and Ethical Levels  The very first
challenge in building safe and ethical big models is how to



conduct rigorous and comprehensive evaluations. For
model safety, we have introduced several essential threats
against NLP models in Chap. 8, including backdoor attacks,
adversarial attacks, and distribution shifts. However, a
golden standard of model safety has not been reached,
which means we still have no comprehensive safety
evaluations. As the deployed models are continually
exposed to complex external environments, there are
emerging risks, and we wonder if the models are robust to
such risks. Tramer et al. [117] figure out that the majority
of adversarial defense methods fail to work when attackers
adapt their attack strategies accordingly. This suggests
that safety over known threats is not enough, and the
underlying unknown threats should also be taken into
consideration.

Measuring the ethical level of models is even more
complicated. It is observed that big models could generate
stereotypical or hateful comments about certain groups of
people [131], disseminate false or misleading information
[144], and leak private information from training data [14].
Obviously, these behaviors violate human values and thus
are undesirable. However, it is easy to find individual
cases, but rather difficult to conduct rigorous
measurements since the human values are hard to specify.
Given the social and regional diversity, there does not exist
a static and universal rule to assess ethical levels. Worse
still, values about politics, religions, and ethnicity are
always conflicted across groups, making it even harder to
evaluate. Under such conditions, datasets and benchmarks
in this research field need to be carefully checked for valid
measurement. We also suggest researchers cooperate with
sociologists to gain theoretical insights.

Governing Big Models  Given the potential safety and
ethical risks of big models, how to cooperate correctly with
big models is an essential problem for the AI community,



which is referred to as model governance. However, big
model governance is challenging both technically and non-
technically. On the technical side, big models are capable
of completing various downstream tasks via simple
adaptation, which also include harmful ones such as
generating offensive speech or fake news. Due to the black-
box architecture of big models, finding and disabling these
harmful functionalities can be difficult. Although
practitioners adopt some effective approaches like keyword
filters, they cannot guarantee the models are fully
governed [119], leaving this problem open for future
research. On the non-technical side, model governance is
not only about the research community but also about
achieving principles and laws across model providers and
users, which requires multi-party cooperation. We are glad
to see that some responsible organizations are contributing
in this area [24] and appeal to more researchers to help
advance this important direction.

Building Inherently Safe Models  Another fundamental
question about model safety is how can we learn inherently

safe models? In Chap. 8, we introduce approaches to solve
robustness issues, but most methods we mentioned are
targeted at specific problems except pre-training. However,
while it has been widely acknowledged that bigger models
may make fewer mistakes, we still argue that scaling
models and data sizes is not the elixir to eliminate safety
problems because an inherently safe model does not equal
a model making no mistakes. Instead, to achieve human-
level robustness, the models should (1) know what they
know and do not know (i.e., calibrated) and (2) learn from
mistakes and correct themselves [69, 83]. In this regard,
current big models are still far from inherently safe, and we
hope to see more efforts devoted to this fundamental
problem. Toward inherently safe models, we figure out two
possible directions. (1) Incorporating knowledge. In Chap.



9, we see the remarkable success made by injecting
knowledge into PTMs. On model safety, incorporating
knowledge can help as well. For example, models won’t be
fooled by “U r stupid!” if they possess phonetic knowledge.
Hence, we recognize building knowledgeable big models as
a reliable approach for model safety. (2) Cognitive learning.
Nowadays learning paradigm for big models is still data-
driven, which cannot fully reflect the underlying risks in
the real world. Different from models, we human beings
can actively interact with the world and consistently gain
knowledge. Moreover, we also largely benefit from the
“trial and error” process and learn how to avoid mistakes.
Therefore, we address the importance of learning from
cognition and interaction for building safe models [65], and
we further elaborate on this topic in Sect. 14.2.8.

Safety and ethics are two long-standing topics in AI,
which are even extensively discussed in literature and
artworks (e.g., Isaac Asimov’s “Three Laws of Robotics”
[5]). In the worry of runaway powerful machines, we
present several key challenges and future directions for
this open problem. We stress that, in the context of
nowadays AI hype, we researchers especially need careful
consideration before we take every single step and take
responsibility for the healthy development of big models.

14.2.7 P7: Cross-Modal Computation

Building intelligent agents that can think and behave like
humans is a long-standing goal of AI. An important and
appealing characteristic of human intelligence is the
impressive capability of perceiving and handling
information from different modalities. Recently PTMs have
greatly pushed forward the development of intelligent
agents in single modalities (such as text [29], image [44],
and audio [31]) and also led to breakthroughs in cross-
modal computation. By exploiting self-supervised signals in



large-scale cross-modal data, generic representations
connecting different modalities can be effectively pre-
trained and transferred to facilitate various downstream
tasks. Cross-modal PTMs based on the pre-training-fine-

tuning paradigm seem to constitute a promising foundation
to realize such cross-modal intelligence. To this end, we
discuss several promising directions for advancing cross-
modal PTMs in this subsection, including big cross-modal
models with efficient pre-training and adaptation, more
unified representation with more modalities, and embodied
cross-modal reasoning and cognition.

Big Cross-Modal Models with Efficient Pre-training

and Adaptation  Existing works show that impressive
capabilities can emerge in pre-trained language models
when the model capacity (e.g., number of parameters)
substantially scales up. For example, the 175B GPT-3 is
able to perform in-context few-shot learning and chain-of-
thought prompting for complex tasks. However, although
cross-modal pre-training on deep Transformers has pushed
forward the state of the art of various tasks, compared with
language models, cross-modal models are typically limited
in parameter sizes. This hinders the exploration of cross-
modal PTMs to more advanced capabilities and tasks. An
important reason is that compared with big language
models, it can be even more expensive to pre-train and
adapt big models that deal with multiple modalities. Some
works have explored more efficient pre-training by reusing
unimodal models that have been well pre-trained and
focusing on connecting PTMs from different modalities [3].
Some works have investigated the efficient adaptation of
vision-language models in terms of both data [3, 126, 139]
and parameters [150]. In the future, more efforts can be
devoted to efficient pre-training and adaptation of big
cross-modal representation learning models.



More Unified Representation with More Modalities

Traditional cross-modal works typically design highly
specialized model architectures to maximally exploit the
inductive bias of modalities and tasks. For example, RNNs
are designed to model the sequential dependency of text,
and CNNs are developed to model the shift and scale
invariance of images. The learning signals usually come
from the human annotation of specific tasks. However,
designing specific model architectures and learning signals
for different modalities and tasks requires extensive expert
knowledge, and it can be problematic to maintain a model
for each of the large number of tasks. With the
development of deep cross-modal pre-training, cross-modal
representation learning models are becoming more unified
in terms of model architectures and learning mechanisms
[74, 138]. Most recently, some works have shown
promising results in using unified model architectures,
parameters, and learning mechanisms for unimodal, cross-
modal, and embodied tasks [97, 123, 124]. Some works
have explored pre-training with more modalities, including
text, image, and audio [79]. In the future, building a unified
representation learning model that can simultaneously deal
with various modalities and tasks will be a promising
foundation and path to realizing general intelligent
systems.

Embodied Cross-Modal Reasoning and Cognition

Semantic recognition capability has been extensively
investigated in different modalities, e.g., named entity
detection from text and object detection from images. For
more complex reasoning and cognition capabilities,
obstacles have been encountered in different ways: (1) For
modalities with low information density, such as images
and audios, semantic recognition can already be a
challenging task [98], let alone more complex reasoning
[143]. (2) For text which has high information density, it



can be more natural to perform complex reasoning based
on the abstract symbolic tokens, and recently big language
models have shown promising results in commonsense and
mathematical reasoning [130]. However, many AI
researchers believe that true recognition capability cannot
arise from learning only from text [8]. Research in
cognitive science also shows that the human mind is highly
shaped by embodied learning [133]. Therefore, a more
promising direction will be an embodied cross-modal
reasoning model. The concrete signals from other
modalities can be effectively aggregated into a text-based
central unit for high-level semantic reasoning. Some
attempts have been made [10], and we believe that the
direction is worth more exploration.

In summary, as an important interdisciplinary area that
connects information in different modalities, cross-modal
computation is essential and beneficial to various real-
world AI applications and is also one of the key problems to
more general intelligent systems. With their recent rapid
development, cross-modal PTMs have become a new
foundation in advancing toward this goal. We believe that
developing an efficient big cross-modal PTM that can deal
with various complex embodied reasoning tasks in a unified
fashion will be a promising direction.

14.2.8 P8: Cognitive Learning

An essential measurement of general AI is whether neural
models can correctly perceive, understand, and interact
with the world, i.e., the cognitive ability. A prototype of
general intelligence can be viewed as the capability of
manipulating existing tools (e.g., search engines,
databases, web-side mail systems, etc.), conducting
cognitive planning with complex reasoning, and interacting
with the real world to acquire and organize
information/knowledge.



Serving as the foundation for AI, PTMs have pushed
state-of-the-art performance in a variety of downstream
tasks. The rich language knowledge, world knowledge, and
commonsense knowledge stored in PTMs determine their
unique advantages in cognitive modeling. Efficiently
utilizing such knowledge conduces to stimulating the
cognitive ability of PTMs, based on which PTMs could
effectively interact with the real world in complex scenes.
Despite the great success, current PTMs still cannot handle
advanced cognitive tasks. To bring PTMs human-level
cognitive intelligence, we identify three core challenges for
achieving general cognitive intelligence:

Understanding Human Instructions and Interacting

with Tools  How could PTMs better understand the user’s
instructions and interact with existing tools to complete a
specific task? Fulfilling this goal requires precisely (1)
mapping the natural language instructions in the semantic
space to the cognitive space of the model and (2) mapping
the cognitive ability of the model to the action space of the
tool, so as to correctly perform the operation and use the
tool. The realization of this goal has profound practical
significance:1 (1) for one thing, an ideal next generation of
human-computer interaction (HCI) will be based on natural
language rather than a graphical user interface (GUI). The
user only needs to inform the model of the goals that need
to be achieved, and the model can perform a series of
operations in response; (2) for another, the bar of utilizing
complex tools will be greatly lowered. In this sense, any
beginner can quickly get started with a new software or
tool with the help of the model, making it more convenient
to fulfill an intended complex task. However, PTMs trained
on general domains are not designed for instruction
understanding or tool manipulation by nature. To this end,
a potential solution is continual pre-training, which adapts
the PTM from the original pre-training domain to the



human instruction domain, so as to better grasp the
semantics of human instruction. In addition, it is also
promising to design knowledge-enhanced tuning methods
to improve the PTMs’ semantic understanding of specific
domains under the guidance of structured human
knowledge.

Cognitive Planning and Reasoning for Complex

Tasks  Based on the proper understanding of human
instructions, PTMs could form implicit solution chains, i.e.,
thoughts for complex tasks. This process requires the
ability of reasoning and planning for complex tasks. Such
an ability has a variety of applications, including theorem
proving [68], tool manipulation [137], etc. The recent
emergence of chain-of-thought (COT) prompting techniques
[130] can be leveraged to further enhance PTMs’ reasoning
ability. Through a sequence of intermediate natural
language reasoning steps, COT prompting helps PTMs
decompose a complex task into relatively simple atomic
tasks and solve them one by one. Ultimately, the correct
decision-making path can be found to achieve the goal of
the user. Another potential solution for complex reasoning
is to “learn from experiences.” That is, generalizing the
reasoning process of a specific task to form its “thoughts”
of planning for other tasks. To achieve this goal, we need to
train models to understand how different tasks are
intrinsically related, so as to break the barriers between
different tasks. In this way, models can learn various tools
by analogy. Such a capability is related to the concept in
cognitive psychology, that is, human beings generalize a
property from one stimulus to another stimulus if both of
them are similar in an appropriate psychological space
[103].

Integrating Information from the Real World  By
interacting with the real world, we may finally gather a



series of fragmented information separately. It is of great
importance for PTMs to integrate information returned by
existing tools into a self-contained and well-organized one.
Rendering such organized information to humans
completes a closed loop for a cognitive task. Integrating
information for PTMs is challenging because newly
retrieved information may inherently contradict the original
knowledge/belief of PTMs themselves, and it is under-
explored how to combine the implicit knowledge of PTMs
and the retrieved knowledge from the real world. In fact,
recent efforts have been paid to address this challenge. For
instance, in open-domain QA, WebGPT [89] and GopherCite
[85] are proposed to leverage externally retrieved
knowledge to increase the reliability, faithfulness,
factuality, and interpretability of the outputs produced by
PTMs. Specifically, researchers teach PTMs to learn to
interact with reliable IR systems like Microsoft Bing and
Google Search, so that the system can retrieve more
faithful and relevant documents. After that, PTMs are
trained to organize supporting facts into a coherent and
self-contained answer. Although many efforts have been
spent on integrating textual information from the real
world, less is studied about the exploration of other types
of information (e.g., graphical information, tabular
information, etc.).

To sum up, the ultimate goal of cognitive learning is to
move toward the next generation of machine intelligence.
Cognitive intelligence will enable PTMs to play a more
involved role in all walks of life and interact with the real
world on behalf of humans, posing a huge impact on both
academia and industry.

14.2.9 P9: Innovative Applications of Big

Models



AI is a discipline that emphasizes practical applications and
is widely expected to play a role in a broad range of
downstream fields and task scenarios. Among these
applications, many of them express both immense value
and challenges, such as autonomous driving [110], medical
assistance [35], etc. Traditional solutions for AI
applications can be divided into two main ideas. The first
one is to implement symbolic systems driven by human
knowledge (like expert systems in the 1980s), while it is
difficult to cover all the scenarios encountered in practical
applications based on manual rules. The other idea is to
conduct data-driven deep learning systems, which still face
obstacles due to high labeling costs in various fields that
lack sufficient high-quality training data.

The emergence of big models has brought new
possibilities for achieving innovative applications. Big
models are equipped with a substantial amount of human
knowledge, which is scattered in the large-scale unlabelled
corpus and can be gained in an unsupervised manner to
avoid the high annotation cost. Representative instances
for big model applications can be classified into two types:
new breakthroughs and new scenarios.

New Breakthroughs  This type refers to the big model
systems that achieve surprisingly good performances in
already existed application problems. For example, the
Critical Assessment of protein Structure Prediction (CASP)
challenge has been held for over 20 years, and machine
learning systems made just slow progress on this task until
the appearance of AlphaFold [57], as we have introduced in
Chap. 12). Image generation is also a classical task, while
DALLE-2 [94] historically achieves a high-resolution
generation that can precisely express the meanings of the
given text, providing realistic results that humans can
hardly tell whether they are real. Further, DALLE-2 can
even imitate paintings of a particular style or even create



something that is never seen in the real world.2 This
greatly inspires and expands the boundaries of artistic
creation and has gained a new wave of AI-generated
contents (AIGC).

New Scenarios  This refers to the problems that are
newly proposed or solved firstly by AI methods. For
instance, the characteristic of COVID-19 is a new and
significant research topic in recent years. Big models are
applied in precision diagnostics, drug repurposing, spread
forecasting for Epidemiology, and other problems [105].
Ancient writing research, on the contrary, is an old topic,
while AI never played a central role until DeepMind
proposes Ithaca [6], which is designed for ancient Greek
inscriptions. In this case, the big model can achieve textual
restoration, geographical attribution, and chronological
attribution. And it helps historians improve their accuracy
from 25 to 72% and provide evidence for history and
civilization research.

In the above examples, the improvement of parameter
scales allows greater knowledge capability and
generalization toward various domains, which brings a leap
in performance. By observing these success cases, we
propose the following two prerequisites that an application
scenario can turn to big model systems for help: plenty of
domain data and documented domain knowledge.

Plenty of Domain Data  Big models need more data for
training (e.g., 650M training images for DALLE-2). Luckily,
the requirement for the data form has been quite lower,
and the unlabeled/heterogeneous data can be well utilized
by big models. Most of the models follow the basic
paradigm of pre-training-fine-tuning and can use large-
scale unlabeled data to learn the general comprehension
ability of basic elements (e.g., words for a language, pixels
for an image) by themselves. From there, it is relatively



easy to transfer to any specific downstream domain and
solve the tasks with as little supervision as possible. For
instance, recent works have explored the necessity and
advantage of adopting models pre-trained on natural
images for medical image processing, especially when the
scale of the downstream dataset is small [111]. Besides,
researchers also explore large-scale PTMs for domains with
versatile formats of data materials, such as the
collaborative processing of chemical and natural language
as we have introduced in Chap. 12. Nevertheless, after
creating a new scenario, there still must be corresponding
domain data to unleash the potential of big models.

Documented Domain Knowledge  For fields that
humans already have a basic understanding of, the
architecture and training strategy of big models can be
sophisticatedly designed based on corresponding prior
knowledge, and documented knowledge also provides the
basic conditions for big models to access and utilize
knowledge. In the previous chapters (e.g., Chaps. 9 and
11), we have explained how to conduct knowledge-guided
representation learning, such as architecture reformulation
and input augmentation methods. In addition, big models
have been shown to have behavioral imitation capabilities
to access knowledge as human beings. A typical example is
WebGPT [89] which can automatically search
commonsense and facts to generate more reasonable
answers, as we have introduced in cognitive learning. From
these examples, we can see that there are more sufficient
conditions to realize innovative applications in scenarios
with existing domain knowledge bases or ontologies.

Spread the wings of imagination, and we can realize that
there are so many fields that big models can dabble in,
from sophisticated scientific predictions (such as weather
data) to smart home services in our daily life. More
innovative applications are waiting for us to explore.



14.2.10 P10: Big Model Systems Accessible to

Users

Due to the generalizability of pre-trained models in terms
of architecture and capability, big models are expected to
become a foundational infrastructure for many information
services supported by NLP and AI [9], e.g., search engines,
personalized recommendation, and virtual assistants, and
domain-specific information organization, e.g., financial,
medical, legal, and academic domains.

In particular, recent findings on parameter-efficient
delta tuning [30] show that, by keeping a central big model
fixed, we can simply design task-specific delta objects to
adapt the central model to handle multiple downstream
tasks. These breakthroughs indicate a new technique
paradigm in NLP, from training a task-specific model for
each task separately to stimulating task-specific knowledge
scattered in a unified and versatile big model for
downstream tasks. Intuitively, with pre-trained big models,
our focus is no longer limited to how to learn model
parameters for specific tasks but how to stimulate the
knowledge of big models to handle specific tasks.

Although the development trend of building unified big
models for multiple tasks is clear, it is still not easy for
most institutions and individuals to enjoy the power of big
models due to the computation and expertise barriers as
when have discussed in Chap. 13. We argue that, like the
historical successful cases that database management
systems (DBMS) are proposed to manage massive data and
big data analytics systems (BDS) are proposed to big data
mining, it is time for us to build unified management
systems of big models, i.e., big model systems (BMS).
Similar to DBMS and BDS that store and analyze data in a
unified view, we should also design BMS to build and
organize big models in a unified view. BMS is expected to
provide easy and standardized interfaces for the



deployment and application of big models. We should
consider the following principles to design BMS accessible
to general institutions and individuals.

Data Form and Operation Abstraction of Big Models

Both data form abstraction and operation abstraction
enable DBMS and BDS to serve as a standard
infrastructure in most companies and organizations.
Examples of the data form abstraction are tables in
relational DBMS (RDBMS) supported by the relational
model of data [23] and resilient distributed datasets (RDD)
in the Spark BDS [141]. Examples of the operation
abstraction are structured query language (SQL) in
RDBMS and the map and reduce functions in the
MapReduce BDS [27]. Intuitively, these abstract methods
can isolate users and developers of DBMS and BDS. Take
DBMS for example: users only consider how to use DBMS
to manage data through a series of unified interfaces,
without learning how the underlying modules of DBMS that
perform data management; developers, by ensuring that
the interfaces provided to users remain unchanged, can
have more freedom to develop and optimize the underlying
modules of DBMS.

We believe big models will also serve as an
infrastructure beyond DBMS and BDS for information
services. The general-purpose BMS is expected to enable
more persons with basic programming skills to use big
models. Hence, we should have data form abstraction and
operation abstraction specifically designed for big models.
BMS relies on data form abstraction to support learning big
models from various types of data and provide a unified
operation scheme for model manipulation. With the help of
prompt learning as a natural language interface between
humans and big models [55, 99], we can design high-level
and unified programming languages for BMS to manipulate
big models and protect big model users from directly



interacting with big models by sophisticated deep learning
programming.

Efficient Computation and Management of Big

Models  BMS should support comprehensive
management of big models based on many techniques in
above-mentioned topics, such as high-performance
computing mentioned in P3, parameter-efficient delta
tuning mentioned in P4, and safety mentioned in P6. Since
the techniques of big models are still developing rapidly,
BMS will actively evolve internally in physical
implementation by taking advantage of these advances
while keeping user interface stable.

We further argue that, with the novel adaptation
technique of delta tuning, BMS should manage and
schedule central big models as well as massive task-specific
delta objects to support the high concurrency of user
requests. Hence, we need to design efficient model
scheduling manager (MSM) responsible for storing or
distributing big models and delta objects in computing
devices. There are many real-world scenarios that should
be addressed by MSM, such as continual learning and
adaptation of big models, efficient scheduling of multiple
big models of various sizes and purposes, fault tolerance
that can recover from hardware or network failures, and
supporting heterogeneous device architectures such as
cloud-edge-terminal cooperation.

In summary, we have shown the broad prospects of big
models in the above-mentioned nine key problems, and we
need big model systems to turn these prospects into reality
accessible to general institutions and individuals. The
OpenBMB introduced in Chap. 13 can be regarded as our
preliminary attempt at building big model systems. As
discussed in this key problem, BMS actually brings many
open problems with the deployment of big models in the
real world, which requires the collaboration of researchers



and practitioners from deep learning and AI, high
performance computing, software engineering, networking,
and edge/cloud computing. We believe an efficient and
effective big model system will play an essential role in
making the growing capabilities of AI accessible to
everyone.

14.3 Summary

In this chapter, we outlook the future of representation
learning standing on the new giants of big models in 2023,
as the final chapter of the book. We list ten key problems of
big models, including theoretical foundation, next-
generation architecture, high-performance computing,
parameter-efficient delta tuning, controllable generation,
safety and ethics, cross-modality, cognitive learning,
innovative applications, and big model systems.

Although the summarized problems may be biased by
our research experiences, we still hope they can help
readers of the book find your interests. Any suggestions
and comments are welcome from our community. Let’s
work together on these exciting topics to contribute novel
techniques and applications of AI in the future.
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