

Contents
Section 1: Introduction
Chapter 1: Welcome To The Course
Chapter 2: Getting Setup
Section 2: Project 1 - Form Validator | Intro Project
Chapter 3: Project Intro
Chapter 4: Project HTML
Chapter 5: Project CSS
Chapter 6: Adding Simple Validation
Chapter 7: Check Required & Refactor
Chapter 8: Check Length, Email & Password Match
Section 3: Project 2 - Movie Seat Booking | DOM &
Local Storage
Chapter 9: Project Intro
Chapter 10: Project HTML
Chapter 11: Project CSS
Chapter 12: Selecting Movie & Seats From UI
Chapter 13: Save Data To Local Storage
Chapter 14: Populate UI With Saved Data
Section 4: Project 3 - Custom Video Player | HTML5
Video API
Chapter 15: Project Intro
Chapter 16: Project HTML
Chapter 17: Project CSS
Chapter 18: Play, Pause & Stop
Chapter 19: Video Progress Bar & Timestamp

Section 5: Project 4 - Exchange Rate Calculator |
Fetch & JSON Intro
Chapter 20: Project Intro
Chapter 21: Project HTML
Chapter 22: Project CSS
Chapter 23: A Look at JSON & Fetch
Chapter 24: Fetch Rates & Update DOM
Section 6: Project 5 - DOM Array Methods | forEach,
map, filter, sort, reduce
Chapter 25: Project Intro
Chapter 26: Project UI
Chapter 27: Generate Random Users - Fetch w/
Async/Await
Chapter 28: Output Users - forEach() & DOM Methods
Chapter 29: Double Money - map()
Chapter 30: Sort By Richest - sort()
Chapter 31: Show Millionaires - filter()
Chapter 32: Calculate Wealth - reduce()
Section 7: Project 6 - Menu Slider & Modal | DOM &
CSS
Chapter 33: Project Intro
Chapter 34: Project HTML
Chapter 35: Navbar Styling
Chapter 36: Header & Modal Styling
Chapter 37: Menu & Modal Toggle
Section 8: Project 7 - Hangman Game | DOM, SVG,
Events
Chapter 38: Project Intro
Chapter 39: Draw Hangman With SVG
Chapter 40: Main Styling

Chapter 41: Popup & Notification Styling
Chapter 42: Display Words Function
Chapter 43: Letter Press Event Handler
Chapter 44: Wrong Letters & Play Again
Section 9: Project 8 - Meal Finder | Fetch & MealDB
API
Chapter 45: Project Intro
Chapter 46: Project HTML & Base CSS
Chapter 47: Search & Display Meals From API
Chapter 48: Show Single Meal Page
Chapter 49: Display Random Meal & Single Meal CSS
Section 10: Project 9 - Expense Tracker | Array
Methods & Local Storage
Chapter 50: Project Intro
Chapter 51: Project HTML
Chapter 52: Project CSS
Chapter 53: Show Transaction Items
Chapter 54: Display Balance, Income & Expense
Chapter 55: Add & Delete Transactions
Chapter 56: Persist To Local Storage
Section 11: Project 10 - Infinite Scroll Posts | Fetch,
Async/Await, CSS Loader
Chapter 57: Project Intro
Chapter 58: Project HTML
Chapter 59: Project CSS & Loader Animation
Chapter 60: Get Initial Posts From API
Chapter 61: Add Infinite Scrolling
Chapter 62: Filter Fetched Posts

Section 12: Project 11 - Speech Text Reader | Speech
Synthesis
Chapter 63: Project Intro
Chapter 64: HTML & Output Speech Boxes
Chapter 65: Project CSS
Chapter 66: Get Speech Voices
Chapter 67: Speech Buttons
Chapter 68: Change Voice & Custom Text Box
Section 13: Project 12 - Relaxer App | CSS
Animations, setTimeout
Chapter 69: Project Intro
Chapter 70: Creating The Large Circle
Chapter 71: Creating & Animating The Pointer
Chapter 72: Breath Animation With JS Trigger
Section 14: Project 13 - New Year Countdown | DOM,
Date & Time
Chapter 73: Project Intro
Chapter 74: Landing Page HTML & Styling
Chapter 75: Create The Countdown
Chapter 76: Dynamic Year & Spinner
Section 15: Project 14 - Sortable List | Drag & Drop
API
Chapter 77: Project Intro
Chapter 78: Insert List Items Into DOM
Chapter 79: Scramble List Items
Chapter 80: Core CSS
Chapter 81: Drag & Drop Functionality
Chapter 82: Check Order
Section 16: Project 15 - Breakout Game | HTML5
Canvas API

Chapter 83: Project Intro
Chapter 84: Creating & Styling The Page
Chapter 85: Canvas Plan Outline
Chapter 86: Draw Ball, Paddle & Score
Chapter 87: Creating The Bricks
Chapter 88: Move Paddle
Chapter 89: Move Ball & Break Bricks
Chapter 90: Lose & Reset Game
~ Conclusion

Section 1:

Introduction

Welcome To The Course
First and foremost, let me express my sincere gratitude
for picking up “15 Web Projects With Vanilla JavaScript.”
This coursebook is your gateway to stepping into the
world of web development, where you’ll be sculpting
projects using the fundamental tools of the web: HTML5,
CSS, and JavaScript. As you turn the pages of this
coursebook, you will embark on an immersive journey,
one that promises not only to equip you with the
necessary skills but also to offer an engaging hands-on
experience.

What Awaits You?
Over the next several sections, we will delve deep into a
series of projects, each curated to provide a balanced
mixture of theory and practice. From creating form
validators and custom video players to concocting

games like Hangman and Breakout, every project is
designed with two primary objectives:
1. Skill Acquisition: Ensuring you gain a concrete
understanding of core web development concepts.
2. Skill Application: Enabling you to apply the acquired
knowledge in real-world scenarios.

Why “Vanilla” JavaScript?
In the vast ocean of web development, numerous
frameworks and libraries promise faster development
and nifty features. While these are excellent tools for
seasoned developers, it’s crucial for beginners to grasp
the fundamental, raw power of plain JavaScript. By
focusing on “vanilla” JavaScript, we ensure that you
understand the core of web scripting, making it easier for
you to adapt to any library or framework in the future.

Who Is This Coursebook For?
This coursebook caters to a wide audience:
- Beginners who have dabbled a bit in HTML, CSS, and
JS and are eager to build projects.
- Intermediate developers looking to solidify their
understanding and gain more hands-on experience.
- Educators and Instructors seeking a structured
curriculum for teaching web development.

How To Get The Most Out Of This Coursebook
1. Follow Along Actively: As this is a project-based
coursebook, always have your development environment
ready. Type out the code snippets, experiment with
them, break them, and fix them.
2. Practice Makes Perfect: At the end of some chapters,
I’ve included optional exercises. Engage with them to
cement your understanding.

3. Stay Curious: Whenever a new concept is introduced,
take a moment to explore it further. The more you
challenge yourself, the better you’ll grasp the nuances of
web development.

Prerequisites
While this coursebook is designed to be comprehensive,
having a foundational understanding of HTML, CSS, and
JS will be beneficial. If you’re an absolute beginner, I’d
recommend starting with my “Modern HTML/CSS From
The Beginning” and “Modern JS From The Beginning”
courses on Udemy. This will give you a solid footing to
tackle the projects in this coursebook.

Wrapping Up
Remember, every coder, no matter how skilled, started
from scratch. With patience, persistence, and the right
resources, you too can carve out your niche in the world
of web development.
So, as we stand at the threshold of this exciting journey,
take a deep breath, roll up your sleeves, and let’s dive
into the world of web projects with vanilla JavaScript!

Ge�ng Setup
Welcome to the first step of our exciting journey through
the world of web development! Before diving into the
various projects we’ll tackle, it’s essential to ensure our
development environment is correctly set up. This
chapter will guide you through the installation and
configuration of all the tools and software required to
follow along with the projects in this book.

2.1. System Requirements
Before we start, ensure you have a computer with:

- An operating system like Windows, macOS, or Linux.
- A minimum of 4GB RAM (8GB recommended for
smoother performance).
- A stable internet connection.

2.2. Text Editor
Every developer needs a reliable text editor. Here are
some popular choices:
- Visual Studio Code (VS Code): This free, open-source
editor from Microsoft is widely adopted because of its
ease of use, extensive feature set, and vast library of
extensions. [Download here.]
(https://code.visualstudio.com/)
- Sublime Text: Another favorite among developers,
Sublime Text offers a clean interface and robust
performance. [Download here.]
(https://www.sublimetext.com/)
- Atom: Developed by GitHub, Atom is a free, open-
source editor that’s customizable and beginner-friendly.
[Download here.](https://atom.io/)
Recommended Extensions for VS Code: If you choose
VS Code, consider installing extensions like `Live
Server`, `Prettier`, and `ESLint` for an enhanced
development experience.

2.3. Web Browsers
To view and test our projects, you’ll need a modern web
browser. While most browsers will work, the following are
recommended due to their extensive developer tools:
- Google Chrome [Download here.]
(https://www.google.com/chrome/)
- Mozilla Firefox [Download here.]
(https://www.mozilla.org/en-US/firefox/new/)

- Microsoft Edge (Chromium version) [Download here.]
(https://www.microsoft.com/edge)

2.4. Browser Developer Tools
Modern browsers come equipped with developer tools,
allowing you to inspect, debug, and profile your web
projects. Familiarize yourself with the developer tools of
your chosen browser. They’re essential for diagnosing
issues and understanding how your code operates within
the browser.

2.5. Node.js and npm
Some projects in this book will require the use of Node.js
and npm (node package manager). Node.js allows you
to run JavaScript outside the browser, while npm is the
world’s largest software registry.
1. Installing Node.js: Visit the [official Node.js website]
(https://nodejs.org/) and download the LTS (Long Term
Support) version. The installation process is
straightforward.
2. Verifying Installation: Once installed, open your
terminal or command prompt and run the following
commands to ensure both Node.js and npm are
installed:
“`bash
node -v
npm -v
“`

2.6. Version Control with Git
Git is a distributed version control system that helps
track changes in your code. It’s highly recommended for
every developer.

1. Installing Git: Download and install Git from the
[official website](https://git-scm.com/).
2. Verifying Installation: In your terminal or command
prompt, type:
“`bash
git —version
“`

2.7. Directory Structure
Maintain a clean directory structure for your projects.
Here’s a suggested structure:
“`
/web-projects

/project-1-form-validator
/css
/js
index.html

/project-2-movie-seat-booking
/css
/js
index.html

… and so on
“`
By keeping your files organized, you ensure that as your
projects grow, you won’t get lost in a maze of files and
folders.

2.8. Wrapping Up
Congratulations! You’ve set up your development
environment. As you proceed through the book, you’ll
gain hands-on experience and deepen your

understanding of the tools we’ve discussed in this
chapter. Remember, web development is a journey, and
every project will enhance your skills and knowledge.
Now that we’re all set, let’s dive into our first project in
the next chapter!

Section 2: Project 1 - Form
Validator | Intro Project

Project Intro
Welcome to our very first project of this exciting journey:
The Form Validator! Forms are an integral part of the
web, and no matter how the landscape of web
development changes, form validations will always be a
necessary skill for web developers. Whether you’re
building a sign-up page, a login form, or any other input
system, ensuring the accuracy and correctness of data is
vital. This introductory project is designed to provide a
strong foundation for those validations.

Why Form Validation?
In the vast world of web development, why did we
choose to start with form validation? Here are a few
reasons:
1. Universality: Nearly every website you visit has some
form - be it a search bar, a login page, or a feedback
form.
2. User Experience: A good form validation system
provides immediate feedback to users, ensuring they
provide the right information.
3. Security: Ensuring data is validated on the front-end
can also be a first line of defense against malicious
inputs.

What We’ll Build
We’re going to design a simple form that asks users for a
username, email, and password. This form will have the
following features:
- Fields will be checked to ensure they aren’t left empty.
- Email addresses will be validated to ensure they’re in a
proper format.
- Passwords will be validated for length and to ensure a
confirm password matches.

Technologies & Techniques
Although the main focus here is on JavaScript, HTML
and CSS will play crucial roles. Here’s a glimpse of what
we’ll use:
1. HTML: Structure our form and inputs.
2. CSS: Stylish visual cues to indicate errors or
successful inputs.
3. JavaScript: The heart of our validation logic. We’ll be
using vanilla JavaScript, without any libraries or
frameworks.

Prerequisites
You should have a basic understanding of HTML, CSS,
and JavaScript. If you’re completely new or need a
refresher, it’s advisable to first check out the “Modern
HTML/CSS From The Beginning” and “Modern JS From
The Beginning” courses on Udemy.

What You’ll Gain
By the end of this project, you’ll:
1. Understand how to intercept form submissions using
JavaScript.

2. Learn how to traverse and manipulate the DOM to
highlight errors.
3. Be familiar with basic string methods and regular
expressions for validation.
4. Have a foundational project in your portfolio to
showcase basic front-end validation skills.
Let’s Get Started!
Excited? You should be! This foundational project will set
the pace for the other, more complex projects we’ll tackle
in this course. So, buckle up, and let’s dive into the world
of form validation!

In the next chapter, we’ll begin with the structure of our
form by creating its HTML layout. Let’s begin this
amazing journey together!

Project HTML
Welcome to Chapter 4, where we’re going to dive into
the heart of our first project: the Form Validator. Before
we begin styling and adding dynamic functionality, we
need a solid foundation. That foundation is our HTML
structure.

Understanding the Project:
Before diving into the code, let’s grasp the core concept
of our project. A Form Validator ensures that the data
entered by users meets specific criteria. This is important
not only for user experience but also for security
reasons.

Our form will require:
- A username
- An email address

- A password
- A password confirmation
Each of these fields will have its own validation criteria,
which we’ll implement in the subsequent chapters.

Setting Up the Base HTML:
Begin with the foundational structure of an HTML
document:
“`html
<!DOCTYPE html>
<html lang=“en”>
<head>

<meta charset=“UTF-8”>
<meta name=“viewport” content=“width=device-width,

initial-scale=1.0”>
<title>Form Validator</title>
<!— Your styles will be linked here later —>

</head>
<body>
</body>
</html>
“`

Building the Form:
Inside the `<body>`, we’ll structure our form:
“`html
<div class=“container”>

<form id=“form” class=“form”>
<h2>Register With Us</h2>

<!— Username Field —>
<div class=“form-control”>
<label for=“username”>Username</label>
<input type=“text” id=“username”

placeholder=“Enter username”>
<!— Error message will be displayed here —>
<small>Error message</small>
</div>
<!— Email Field —>
<div class=“form-control”>
<label for=“email”>Email</label>
<input type=“email” id=“email” placeholder=“Enter

email”>
<small>Error message</small>
</div>
<!— Password Field —>
<div class=“form-control”>
<label for=“password”>Password</label>
<input type=“password” id=“password”

placeholder=“Enter password”>
<small>Error message</small>
</div>
<!— Password Check Field —>
<div class=“form-control”>
<label for=“password2”>Confirm

Password</label>
<input type=“password” id=“password2”

placeholder=“Enter password again”>
<small>Error message</small>
</div>

<!— Submit Button —>
<button type=“submit”>Submit</button>

</form>
</div>
“`
Here’s what we’ve done:
1. Container: All our form elements are wrapped within a
`<div>` container to help with styling and centering the
form on the page.
2. Form Controls: Each input field and its label are
enclosed within a `form-control` div. This setup will help
us in styling and showing error messages related to each
field.
3. Error Messages: A `<small>` tag is used to display
error messages. Initially, it contains a generic error
message, but this will change dynamically as we validate
the form.
4. Submit Button: This button will be used to trigger our
validation. When the user presses it, the form will either
submit (if everything is valid) or show relevant error
messages.

Conclusion:
The HTML structure for our Form Validator is set up. As
simple as it might look now, this structure is the
backbone of our dynamic functionality.
Always remember, the key to creating effective web
projects is to maintain a clean and understandable
structure in the HTML, which makes styling and scripting
a lot smoother. Onward to the next chapter!

Project CSS

Welcome to the styling portion of our first project: the
Form Validator. As you may recall, the aim of this project
is to introduce you to the basics of web development,
and one of the essential aspects of building a visually
appealing web application is styling. CSS (Cascading
Style Sheets) allows us to apply styles to our HTML
documents, making them more aesthetically pleasing
and user-friendly.
For our form validator, we’re going to focus on creating a
neat, simple, and intuitive design that guides users
through the process of inputting their details. The goal
here is not just to make things look nice but also to use
styles as a tool for better usability.

1. Base Styles:
Let’s begin by adding some general styles to our form:
“`css
body {

font-family: Arial, sans-serif;
line-height: 1.6;
background-color: f4f4f4;
display: flex;
justify-content: center;
align-items: center;
height: 100vh;

}
.container {

background-color: fff;
padding: 20px;
border-radius: 5px;
box-shadow: 0 0 10px rgba(0, 0, 0, 0.3);
width: 400px;

}
“`
These base styles will provide a pleasant gray
background, center our form on the page, and give the
form container a nice shadow and rounded corners.

2. Form Styles:
Now, let’s style the form elements.
“`css
form {

width: 100%;
}
form label {

display: block;
margin-bottom: 5px;
font-weight: bold;

}
form input[type=“text”],
form input[type=“password”],
form input[type=“email”] {

width: 100%;
padding: 10px;
margin-bottom: 10px;
border: 1px solid ccc;
border-radius: 4px;

}
form button {

display: block;
width: 100%;

padding: 10px;
border: none;
border-radius: 4px;
background-color: 333;
color: fff;
cursor: pointer;

}
“`
These styles make our form inputs stretch to take up the
full width of the container, making it easier for users to
click into them. They also apply some padding for better
visual spacing and a neat appearance.

3. Validation Feedback Styles:
To provide immediate feedback to users, let’s add some
styles to highlight invalid and valid fields:
“`css
.invalid {

border-color: red;
background-color: ffe6e6;

}
.valid {

border-color: green;
background-color: e6ffe6;

}
.error-message {

color: red;
font-weight: bold;
font-size: 0.8rem;

margin-top: -10px;
margin-bottom: 10px;

}
“`
The `.invalid` and `.valid` classes provide a visual cue
about the input field status by changing border colors.
The `.error-message` class will be used for displaying
specific error messages next to our input fields.

4. Responsive Design:
Considering the growing number of mobile users, our
form should be responsive:
“`css
@media screen and (max-width: 420px) {

.container {
width: 90%;

}
}
“`
This media query ensures that on smaller screens, our
form takes up most of the viewport width, leaving a small
margin on the sides.

Conclusion:
CSS is a powerful tool that goes beyond just making
things look good. With the styles we’ve added, our form
is now not only visually appealing but also user-friendly.
The visual cues from our validation feedback styles will
guide users through the form, making the entire process
intuitive and efficient.

Adding Simple Valida�on

In the world of web development, one thing you’ll come
across often is the need to validate forms. Whether it’s a
sign-up form, a login page, or a settings update page, it’s
essential to ensure that the data users provide is correct
and secure. In this chapter, we will delve deep into
creating simple form validation for our introductory
project using vanilla JavaScript.

Why is validation important?
Before diving into the code, let’s understand why
validation is crucial:
1. User Experience (UX): Proper validation ensures
users fill out forms correctly, reducing errors and
misunderstandings.
2. Security: Validating inputs helps prevent malicious
users from sending harmful data to your server.
3. Data Integrity: By validating forms, you ensure that the
data sent to the server adheres to the expected format.

Getting Started with Simple Validation
For our intro project, we have a basic form that we want
users to fill out. Let’s assume it contains fields like
`username`, `email`, and `password`. Our task is to
validate these fields using simple checks.

HTML Structure:
“`html
<form id=“userForm”>

<input type=“text” id=“username”
placeholder=“Username”>

<input type=“email” id=“email” placeholder=“Email”>
<input type=“password” id=“password”

placeholder=“Password”>
<button type=“submit”>Submit</button>

<p id=“error-message”></p>
</form>
“`
The `error-message` paragraph is where we will display
any validation errors to the user.

JavaScript Validation:
Begin by selecting our form and adding an event listener
for the `submit` event.
“`javascript
const form = document.getElementById(‘userForm’);
form.addEventListener(‘submit’, function(e) {

e.preventDefault(); // Prevents the form from
submitting

validateForm();
});
“`

Next, we’ll define our `validateForm` function:
“`javascript
function validateForm() {

const username =
document.getElementById(‘username’).value;

const email =
document.getElementById(‘email’).value;

const password =
document.getElementById(‘password’).value;

const errorMessage =
document.getElementById(‘error-message’);

// Resetting the error message
errorMessage.textContent = ”;

// Validate Username
if(username === ” || username.length < 3) {

errorMessage.textContent += ‘Username must be
at least 3 characters long.\n’;

return;
}
// Validate Email
const emailPattern = /^[a-zA-Z0-9._-]+@[a-zA-Z0-

9.-]+.[a-zA-Z]{2,6}$/;
if(!emailPattern.test(email)) {

errorMessage.textContent += ‘Please enter a valid
email address.\n’;

return;
}
// Validate Password
if(password === ” || password.length < 8) {

errorMessage.textContent += ‘Password must be
at least 8 characters long.\n’;

return;
}

}
“`

Here’s a brief overview of our validation checks:
- Username: It shouldn’t be empty, and its length should
be at least 3 characters.
- Email: We use a regular expression (regex) to ensure
the email is in the correct format.
- Password: It shouldn’t be empty, and its length should
be at least 8 characters.

Conclusion
Form validation is essential for ensuring user data is
accurate, safe, and user-friendly. With just vanilla
JavaScript, you can put simple validations in place to
enhance the user experience and protect your
application. As you delve deeper into more complex
projects, you’ll encounter scenarios that require more
intricate validation rules. Still, the foundation remains the
same: ensuring users provide data that aligns with your
application’s expectations.
In the next chapter, we’ll enhance our validation process
by refactoring our code and introducing more validation
checks. Stay tuned!

Check Required & Refactor
In this chapter, we’ll delve into the core of form
validation: checking for required fields. It’s essential that
users provide the necessary information when filling out
forms, so ensuring that they’ve filled out all required
fields is a fundamental step. But simply checking isn’t
enough; our code should be clean and maintainable. So,
we’ll also spend some time refactoring our code to make
it efficient and easily readable.

Understanding Required Fields
A required field is any input within your form that must
contain a value before the form can be successfully
submitted. For example, in a registration form, fields like
“Username,” “Password,” and “Email” are typically
marked as required.

Steps for Checking Required Fields:
1. Selection: Select all the input fields that you want to
validate.

2. Checking: For each input field, check if its value is
empty.
3. Feedback: If the value is empty, provide feedback to
the user indicating that the field is required.

Coding the Required Fields Check:
First, let’s select all the input fields:
“`javascript
const form = document.getElementById(‘register-form’);
const username =
document.getElementById(‘username’);
const email = document.getElementById(‘email’);
const password =
document.getElementById(‘password’);
const password2 =
document.getElementById(‘password2’);
“`

Now, let’s create a function to check required fields:
“`javascript
function checkRequired(inputArr) {

inputArr.forEach(function(input) {
if (input.value.trim() === ”) {
showError(input, `${getFieldName(input)} is

required`);
} else {
showSuccess(input);
}

});
}

function getFieldName(input) {
return input.id.charAt(0).toUpperCase() +

input.id.slice(1);
}
“`
In the `checkRequired` function, we’re looping through
each input field to check if its value is empty. If it is, we
display an error; otherwise, we indicate success.
The `getFieldName` function is a utility function to get a
more readable name for our input field. This function
capitalizes the first letter of the input’s ID for use in our
error message.

Now, let’s invoke our `checkRequired` function:
“`javascript
form.addEventListener(‘submit’, function(e) {

e.preventDefault();
checkRequired([username, email, password,

password2]);
});
“`

Refactoring the Code
Refactoring involves restructuring existing code without
changing its functionality. It’s all about making the code
more efficient, readable, and maintainable.
Considering our form validator, here are some steps to
refactor our code:
1. Avoid Repetition: We already began this by creating
the `checkRequired` function. By packaging the repeated
logic inside this function, we can simply call it when
needed rather than writing the same logic over and over.

2. Utility Functions: Breaking down complex tasks into
smaller utility functions, like our `getFieldName`, can
make the code much more readable. Each utility function
should perform a specific task.
3. Comments: While our code should be self-
explanatory, adding a few comments explaining complex
or crucial parts can be very helpful for others (or even for
ourselves in the future).
4. Consistent Naming: Ensuring that we have a
consistent naming convention can make the code much
more readable.

Conclusion
Checking required fields is a fundamental step in form
validation. With our `checkRequired` function, we can
now easily ensure that users have filled out all essential
fields. Moreover, by refactoring our code, we’ve made it
more efficient and maintainable. As we progress with our
form validator project, remember the importance of clean
code. It’s not just about getting it to work; it’s about
building something that’s robust and easy to understand.
In the next chapter, we will further enhance our validator
by adding checks for input length, email format, and
password match. Stay tuned!

Check Length, Email &
Password Match
Welcome to the next chapter of our Form Validator Intro
Project! In the previous chapter, we went over how to
add simple validation checks. Now, we’ll dive deeper into
the specifics by implementing checks for length
constraints, email format, and matching passwords. Let’s
jump in!

Understanding the Importance of Validations
Before delving into the code, it’s important to recognize
why these checks are crucial. By ensuring the length of
inputs like username and password, we add a layer of
security and consistency to our forms. Validating email
formats ensures users provide a legitimate email, and
checking for matching passwords confirms user intent.

Check Input Length
To ensure that our users have a username and
password of a certain length, we’ll set minimum and
maximum limits.
JavaScript:
“`javascript
function checkLength(input, min, max) {

if (input.value.length < min || input.value.length >
max) {

showError(input, `${getFieldName(input)} must be
between ${min} and ${max} characters`);

} else {
showSuccess(input);

}
}
“`
Here, the `checkLength` function accepts an input
element and checks its value’s length against the given
minimum and maximum lengths. If it doesn’t meet these
criteria, it displays an error message.

Validate Email Format
To ensure our users provide a valid email address, we’ll
use a regular expression to validate the format.

JavaScript:
“`javascript
function isValidEmail(input) {

const re = /^[a-zA-Z0-9._-]+@[a-zA-Z0-9.-]+.[a-zA-Z]
{2,6}$/;

if (re.test(input.value.trim())) {
showSuccess(input);

} else {
showError(input, ‘Email is not valid’);

}
}
“`
Regular expressions can be tricky, but the above pattern
checks for common characteristics of valid email
addresses.

Check Password Match
Matching passwords ensures that users have entered
their intended password correctly in both fields.
JavaScript:
“`javascript
function checkPasswordsMatch(input1, input2) {

if (input1.value !== input2.value) {
showError(input2, ‘Passwords do not match’);

}
}
“`
This function compares the values of two input fields. If
they don’t match, an error is displayed.

Bringing It All Together
Now, let’s implement these validation checks in our
form’s submit event:
“`javascript
form.addEventListener(‘submit’, function(e) {

e.preventDefault();
checkLength(username, 3, 15);
checkLength(password, 6, 25);
isValidEmail(email);
checkPasswordsMatch(password, password2);

});
“`
When our form is submitted, these validation checks will
be executed, ensuring our form data is both secure and
consistent.

Conclusion
By the end of this chapter, you’ve learned to implement
specific validation checks that are common in many web
applications. Ensuring the proper length, format, and
consistency of user input is essential for both usability
and security. As we progress through the course, you’ll
discover more advanced techniques to enhance your
form validation processes further.

Section 3: Project 2 - Movie
Seat Booking | DOM & Local
Storage

Project Intro

Welcome to Project 2, where we’ll dive deep into the
powerful capabilities of the Document Object Model
(DOM) and the wonders of the Local Storage API. By the
end of this project, you’ll have built a fully functional
movie seat booking application, an asset to add to your
growing web development portfolio.

Overview
Imagine a world where every time you wanted to watch a
movie, you’d simply load up your own app, select the
movie, choose your preferred seats, and voila! The app
would remember your choice, even if you accidentally
closed it. Sounds great, right? That’s precisely what
we’re building in this project.

Key Features
1. Dynamic Movie Selection: Display a list of movies with
their prices and allow users to choose one.
2. Interactive Seat Map: A graphical representation of
the movie theater, where users can click on individual
seats to select or deselect them.
3. Seat Booking: Allow users to book their desired seats
by clicking on them. Booked seats will have a different
color or style to distinguish them from available seats.
4. Price Calculation: Display the total price based on the
number of seats selected and the price of the chosen
movie.
5. Local Storage Capabilities: Save the user’s movie and
seat selection even if they close the browser. When they
revisit, their choices should still be there.

What You Will Learn
- DOM Manipulation: Learn how to interact with and
modify web page elements in real-time, making your web
applications interactive and dynamic.

- Event Handling: Detect and respond to user actions,
such as clicking on a seat or selecting a movie.
- Using Local Storage: Store user data, such as their
seat selection, on their own computer, ensuring that their
preferences remain saved even after closing the
browser.
- Data Retrieval & Display: Retrieve data from Local
Storage and display it appropriately when the user
revisits the page.

Real-World Applications
Beyond just being a fun project, understanding these
concepts is crucial for building interactive web
applications.
- E-commerce sites use similar techniques for shopping
carts, ensuring that your selected items remain in the
cart even after navigating away.
- Forms on many websites remember your input if you
navigate away and come back, enhancing user
experience.
By mastering these concepts here, you’ll be well-
equipped to tackle real-world challenges in web
development.

Prerequisites
Before diving into this project, it would be beneficial to
have:
1. A basic understanding of HTML, CSS, and JavaScript.
If you’re new to these, refer back to our foundational
chapters or courses.
2. Familiarity with the basics of the DOM, particularly
how to select and modify elements.

Conclusion

This project is an exciting blend of front-end design with
backend-like functionalities using pure front-end
technologies. Not only will it boost your confidence in
building real-world projects, but it will also be an
excellent addition to your portfolio, showcasing your
prowess in DOM manipulation and Local Storage.

Project HTML
Welcome to the heart of our second project: the Movie
Seat Booking application. This project will give you
practical experience working with the Document Object
Model (DOM) and the Local Storage of a browser. But
before we delve into the interactive JavaScript and CSS
styling, we need to lay the groundwork with our HTML.
This is where it all starts.

1. Setting Up Our HTML Document
To begin, let’s set up our basic HTML structure:
“`html
<!DOCTYPE html>
<html lang=“en”>
<head>

<meta charset=“UTF-8”>
<meta name=“viewport” content=“width=device-width,

initial-scale=1.0”>
<title>Movie Seat Booking</title>
<link rel=“stylesheet” href=“styles.css”>
<script src=“script.js” defer></script>

</head>
<body>
</body>

</html>
“`
This structure references an external stylesheet
(`styles.css`) and an external JavaScript file (`script.js`).
The `defer` attribute ensures our JavaScript won’t run
until the HTML document is fully loaded.

2. The Main Container
Inside the body, our main content will reside within a
centered container:
“`html
<div class=“container”>

<!— Content goes here —>
</div>
“`

3. Adding a Title and Movie Selection
First, let’s provide a title for our movie theater, followed
by a dropdown menu for movie selection:
“`html
<h2>Select a Movie:</h2>
<select id=“movie”>

<option value=“10”>Avengers: Endgame ($10)
</option>

<option value=“8”>Joker ($8)</option>
<option value=“12”>Frozen II ($12)</option>
<option value=“9”>Toy Story 4 ($9)</option>

</select>
“`
The `value` attribute for each movie represents its ticket
price.

4. Theater Layout
For our theater layout, we’ll represent seats using div
elements. Unoccupied seats will be clickable, allowing
users to choose them. Once selected, the seat’s status
will be updated to show that it’s occupied.
“`html
<div class=“cinema”>

<!— We’ll use repeated divs to denote individual
seats —>

<div class=“row”>
<div class=“seat”></div>
<div class=“seat”></div>
<!— Add more seats as required —>

</div>
<!— Repeat rows as required —>

</div>
“`

5. Information Display
Beneath the cinema layout, we’ll provide an area to
display information to the user:
“`html
<div class=“info”>

<p>Total Tickets: 0
</p>

<p>Total Price: $0</p>
</div>
“`
The information display shows the number of tickets and
the total price.

6. Conclusion
This sets the foundation for our movie seat booking app.
With the HTML in place, we’ll be diving into the CSS to
make our app visually appealing in the next chapter,
followed by the JavaScript to give it dynamic
functionality.
Remember, a well-structured HTML will simplify the
process when it comes to styling and adding interactivity.
Think of this as building the skeleton of our application,
upon which we’ll layer on the muscles (CSS) and the
brain (JavaScript).
In the next chapter, we’ll delve into the styling of this
project. Make sure your HTML structure aligns with what
we’ve covered here, as it will be crucial for our CSS and
JavaScript to function correctly.

Project CSS
In this chapter, we’ll be diving deep into styling our Movie
Seat Booking App using pure CSS. Our goal is to create
an intuitive, engaging, and aesthetically pleasing user
interface that aligns well with the functionality we will
develop in the subsequent chapters.

CSS Structure:
We will break down our styles into three main parts:
1. Base Styles: This is where we set up our foundational
styles such as the app’s font, colors, and general layout.
2. Component Styles: These will include styles for
specific components like buttons, seat selections, and
movie dropdown.
3. Utility Styles: General utility styles that might be
reused.

1. Base Styles
HTML Body and Container:
“`css
body {

font-family: ‘Arial’, sans-serif;
background-color: f4f4f4;
margin: 0;
padding: 0;
display: flex;
justify-content: center;
align-items: center;
height: 100vh;

}
.container {

background-color: fff;
padding: 20px;
border-radius: 5px;
box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);
width: 80%;
max-width: 800px;

}
“`
Default Text Styles:
“`css
h1, h2, h3 {

margin-top: 0;
}
p {

margin-bottom: 20px;
}
“`

2. Component Styles
Movie Dropdown:
“`css
.movie-select {

display: flex;
justify-content: space-between;
margin: 20px 0;

}
.movie-select select {

padding: 10px 15px;
border-radius: 5px;
border: 1px solid e0e0e0;

}
“`
Seats in Cinema:
To visualize the cinema, we will use a flexbox to position
the seats and the screen.
“`css
.cinema {

perspective: 1000px;
}
.screen {

background-color: d3d3d3;
height: 70px;
width: 100%;

margin: 20px 0;
text-align: center;
line-height: 70px;
font-size: 1.5em;
letter-spacing: 3px;

}
.seats {

display: flex;
flex-direction: row;
flex-wrap: wrap;
position: relative;

}
.seat {

background-color: BDC3C7;
width: 20px;
height: 20px;
margin: 5px;
border-top-left-radius: 10px;
border-top-right-radius: 10px;
cursor: pointer;

}
.seat.occupied {

background-color: E74C3C;
cursor: not-allowed;

}
.seat.selected {

background-color: 2ECC71;
}

“`
Summary and Button Styles:
“`css
.summary {

margin-top: 20px;
display: flex;
justify-content: space-between;

}
button {

padding: 10px 20px;
border: none;
border-radius: 5px;
background-color: 2ECC71;
color: ffffff;
cursor: pointer;
transition: background-color 0.3s;

}
button:hover {

background-color: 27AE60;
}
“`

3. Utility Styles
“`css
.clearfix::after {

content: ””;
clear: both;
display: table;

}
“`

Conclusion
Styling is an integral part of any web application, and as
we’ve seen in this chapter, it plays a pivotal role in the
user experience. With our CSS now set up, our Movie
Seat Booking application is not only functional but also
visually engaging.

Selec�ng Movie & Seats
From UI
In this chapter, we will walk through the process of
creating the core functionality of our movie seat booking
application. Our main focus will be to understand and
implement the logic that allows users to select a movie
and its corresponding seats from the UI.

1. Creating the HTML Layout:
Before diving into the JavaScript, ensure that your HTML
is properly set up. For this section, we’ll have a
dropdown list of movies with their respective prices and
a layout representing the theater’s seats.
“`html
<div class=“movie-container”>

<label>Choose a movie:</label>
<select id=“movie”>

<option value=“10”>Avengers: Endgame ($10)
</option>

<option value=“12”>Joker ($12)</option>
<option value=“8”>Frozen II ($8)</option>

<option value=“9”>Ford v Ferrari ($9)</option>
</select>

</div>
<ul class=“seating-chart”>

<!— Each list item represents a seat —>
<!— Using data attributes to indicate seat status:

available, occupied —>
<li class=“seat” data-status=“available”>
<!— … repeat for all seats in the theater —>

“`

2. JavaScript: DOM Selection:
Start by selecting the elements from the DOM:
“`javascript
const movieSelect = document.getElementById(‘movie’);
const seats = document.querySelectorAll(‘.seating-chart
.seat[data-status=“available”]’);
“`

3. Listening for Events:
Now, we want to detect when a user selects a movie or
clicks on a seat:
“`javascript
movieSelect.addEventListener(‘change’,
updateSelectedMovie);
seats.forEach(seat => seat.addEventListener(‘click’,
toggleSeatSelection));
“`

4. Toggling Seat Selection:
We want users to be able to select and deselect seats.
When a seat is selected, we’ll change its data attribute:
“`javascript
function toggleSeatSelection(e) {

const seat = e.target;
// Toggle the data-status attribute
if (seat.dataset.status === ‘available’) {

seat.dataset.status = ‘selected’;
} else {

seat.dataset.status = ‘available’;
}
// Update a visual representation (maybe change seat

color)
seat.classList.toggle(‘selected-seat’);
// You can now also call another function to calculate

and display total cost
updateTotalCost();

}
“`

5. Updating the Selected Movie:
When the user selects a different movie, we’ll store the
movie’s value (price) for further calculations:
“`javascript
let ticketPrice = +movieSelect.value;
function updateSelectedMovie(e) {

ticketPrice = +e.target.value;
// Resetting previously selected seats when switching

movies might be a good idea

resetSelectedSeats();
updateTotalCost();

}
“`

6. Calculating Total Cost:
After selecting the seats and the movie, we’ll provide a
live update of the total cost:
“`javascript
function updateTotalCost() {

const selectedSeats =
document.querySelectorAll(‘.seating-chart .seat[data-
status=“selected”]’);

const numberOfSeats = selectedSeats.length;
const totalCost = numberOfSeats * ticketPrice;
// Display this to the user using DOM manipulation
document.getElementById(‘total-cost’).textContent =

`$${totalCost}`;
}
“`
Remember, this chapter focuses on the front-end aspect.
In real-world applications, you’d want to synchronize with
a backend to ensure seat availability, especially in
scenarios where multiple users might be trying to book
the same seats simultaneously.

Conclusion:
By now, you should have a functional UI that allows
users to select a movie, choose their preferred seats,
and view the total cost of their selection. In the next
chapter, we’ll look into saving these details into local

storage and populating the UI with saved data to
enhance the user experience.

Save Data To Local Storage
Local storage is an essential part of modern web
development, especially when we want to provide a
seamless user experience. In the context of our Movie
Seat Booking project, it makes sense to utilize local
storage to save the user’s seat selection and movie
choice. This way, even if they leave the page and come
back, their choices remain intact.

Understanding Local Storage
Local storage is a way to store data on the user’s
browser. It’s like a mini database in the browser that
developers can use to store key-value pairs.
Advantages:
- Data is saved across browser sessions.
- No expiration time; the data remains until it’s explicitly
deleted or the user clears their browser data.
- Unlike cookies, local storage is not sent to the server
with every HTTP request, making your application faster
and more efficient.
Limitations:
- Typically, browsers give you up to 5-10MB of storage.
- It’s synchronous, meaning it might block the main
thread if you’re trying to store a large amount of data.

Implementing Local Storage in our Movie Seat Booking
Application
For our project, we’ll save the selected movie and its
price, as well as the indices of selected seats. This way,

when the user revisits the page, we can repopulate the
UI with their selections.
Step 1: Saving the Selected Movie
Whenever a user selects a movie from the dropdown, we
should save that selection to local storage.
“`javascript
const movieSelect = document.getElementById(‘movie’);
movieSelect.addEventListener(‘change’, (e) => {

const selectedMovieIndex = e.target.selectedIndex;
const selectedMoviePrice = e.target.value;
localStorage.setItem(‘selectedMovieIndex’,

selectedMovieIndex);
localStorage.setItem(‘selectedMoviePrice’,

selectedMoviePrice);
});
“`
Step 2: Saving Selected Seats
To store seat selections, we’ll keep track of the indices of
the selected seats. These indices will represent the
seats in our UI.
“`javascript
const seats = document.querySelectorAll(‘.row
.seat:not(.occupied)’);
seats.forEach((seat, index) => {

seat.addEventListener(‘click’, () => {
// Toggle the selected class on click
seat.classList.toggle(‘selected’);
// Save the updated seat selection
saveSelectedSeats();

});

});
function saveSelectedSeats() {

const selectedSeats = document.querySelectorAll(‘.row
.seat.selected’);

const seatsIndex = […selectedSeats].map(seat => […
seats].indexOf(seat));

localStorage.setItem(‘selectedSeats’,
JSON.stringify(seatsIndex));
}
“`
Note: We’re using JSON.stringify() because local
storage can only store strings. By converting our array of
seat indices to a string, we can save and retrieve it with
ease.

Populating the UI with Saved Data
When the user revisits our booking page, we should
check local storage for any saved data and update our
UI accordingly.
Step 1: Setting the Selected Movie
“`javascript
const selectedMovieIndex =
localStorage.getItem(‘selectedMovieIndex’);
if (selectedMovieIndex !== null) {

movieSelect.selectedIndex = selectedMovieIndex;
}
“`
Step 2: Displaying the Selected Seats
“`javascript
const selectedSeats =
JSON.parse(localStorage.getItem(‘selectedSeats’));

if (selectedSeats !== null && selectedSeats.length > 0) {
seats.forEach((seat, index) => {

if (selectedSeats.indexOf(index) > -1) {
seat.classList.add(‘selected’);

}
});

}
“`

Conclusion
Utilizing local storage in our Movie Seat Booking project
ensures a user-friendly experience. This feature is
especially crucial for scenarios where a user might
accidentally refresh or navigate away from the page.
With local storage, their seat and movie selections
remain, saving them from the hassle of reselecting.
In the next chapter, we will explore how to populate the
UI with the saved data from local storage, ensuring a
seamless experience for returning users.

Populate UI With Saved
Data
Welcome back! In the previous chapter, we discussed
how to save the selected movie and seat data to the
local storage. Now, when a user visits the movie seat
booking page, they should be able to see their previously
selected seats. This is essential for a user-friendly
experience. In this chapter, we’ll populate the user
interface (UI) with the saved data from local storage.

1. Understand the Purpose

Populating the UI with saved data helps in providing a
seamless user experience. When a user returns to our
movie booking site, they don’t have to select their seats
and movie choice again; it will automatically show their
previous selections.

2. Retrieve Data From Local Storage
Before we populate our UI, we must first retrieve the
saved data.
“`javascript
const selectedSeats =
JSON.parse(localStorage.getItem(‘selectedSeats’));
const selectedMovieIndex =
localStorage.getItem(‘selectedMovieIndex’);
“`
In the code above:
- We retrieve the `selectedSeats` from local storage and
parse them from string format to an array using
`JSON.parse()`.
- The `selectedMovieIndex` is retrieved as is because it’s
stored as a string.

3. Populate Movie Selection
To populate the movie dropdown with the saved movie
choice, we use the retrieved `selectedMovieIndex`.
“`javascript
const movieSelect = document.getElementById(‘movie’);
if (selectedMovieIndex !== null) {

movieSelect.selectedIndex = selectedMovieIndex;
}
“`

Here, we simply set the `selectedIndex` property of our
`movieSelect` dropdown to the retrieved index, making
sure it’s not null.

4. Populate Seats
Now, let’s populate the seats based on the saved
selections:
“`javascript
const seats =
document.querySelectorAll(‘.seat:not(.occupied)’);
if (selectedSeats !== null && selectedSeats.length > 0) {

seats.forEach((seat, index) => {
if (selectedSeats.indexOf(index) > -1) {
seat.classList.add(‘selected’);
}

});
}
“`
In this code:
- We first select all the seats that are not occupied.
- We then check if `selectedSeats` contains data and
loop through each seat.
- If the seat’s index is found in the `selectedSeats` array,
we add the `selected` class to that seat, visually marking
it as selected.

5. Update Count and Total Price
Remember, our UI should also reflect the correct count
of selected seats and the total price. Let’s make sure we
handle that too.
“`javascript

function updateSelectedCountAndTotal() {
const selectedSeats =

document.querySelectorAll(‘.row .seat.selected’);
const count = selectedSeats.length;
const total = count * +movieSelect.value;
document.getElementById(‘count’).innerText = count;
document.getElementById(‘total’).innerText = total;

}
// Call this function after populating the seats
updateSelectedCountAndTotal();
“`

6. Final Thoughts
It’s essential always to consider the user’s experience
when developing applications. By populating the UI with
saved data, we save the user time and provide a sense
of continuity, especially if they had to navigate away from
the page and then come back.
In the next section, we’ll dive into the custom video
player and how to harness the power of the HTML5
Video API. Stay tuned!

Section 4: Project 3 - Custom
Video Player | HTML5 Video
API

Project Intro
In today’s internet-driven world, video content is one of
the most powerful and persuasive mediums to convey

information. Sites like YouTube, Vimeo, and other media
hosting platforms thrive because of our innate love for
visual storytelling. But, as a web developer, have you
ever thought about the magic that goes behind that play
button, the volume slider, or the fullscreen toggle?
Custom video players are at the heart of this magic.
Welcome to Project 3: the Custom Video Player! This
project is more than just embedding a video onto a web
page. By the end of this module, you will create a video
player tailored to your design, enriched with features, all
using the powerful HTML5 Video API.

Why a Custom Video Player?
1. Control Over Design: You’re not restricted to the
standard video controls. Want a vintage volume knob
instead of a slider? Go for it!
2. Enhanced Features: Add features like speed control,
custom captions, or even a video bookmarking system.
3. Integration: Seamlessly integrate the player with other
systems, like analytics to track user engagement.

What Will You Learn?
- HTML5 Video Element: Dive deep into the `<video>`
element, its attributes, and understand its capabilities.
- Custom Controls: Replace the browser’s default
controls with your own play, pause, volume, and
fullscreen buttons.
- Video API: Harness the power of the HTML5 Video API
to manipulate video playback programmatically.
- Styling the Player: Use CSS to style your video player,
making it responsive and visually appealing.
- Events and Interactivity: Understand the different
events triggered during video playback and use them to
create interactive features.

Project Overview
In this project, you will build a custom video player with
the following features:
1. Basic Controls: Play, pause, stop, and a volume slider.
2. Playback Progress: A slider that shows video
playback progress and allows users to skip to different
parts.
3. Timestamp: Display the current time and total video
duration.
4. Fullscreen Toggle: Allow users to switch to fullscreen
mode.
5. Responsive Design: Ensure that the player looks great
on all devices.
By tackling this project, you’re diving into a real-world
task that developers encounter when building media-rich
web applications. Whether it’s for a personalized
portfolio, a bespoke enterprise application, or a media
startup idea, mastering the custom video player is a skill
that will set you apart.

In the subsequent chapters, we will break down the
creation process into digestible sections, covering the
design, functionality, and best practices. By the end,
you’ll have a fully functioning video player that you can
be proud of, with the skills and knowledge to customize it
further as you see fit. Let’s dive in!

Project HTML
Welcome to the next exciting phase of our project series!
In this chapter, we’ll be laying the foundation for our
Custom Video Player project by setting up the HTML
structure. This player will leverage the HTML5 Video
API, giving us capabilities to play, pause, skip, and more.

But before any of that, we need to build our HTML
scaffold!

HTML5 Video Element:
HTML5 introduced the `<video>` element which allows
us to embed video files that can be played directly in the
browser without the need for external plugins. Alongside
the video element, there are multiple attributes and child
elements we can use to enhance the user experience,
such as adding controls, setting a poster image, or even
providing multiple sources for different video formats.

Setting Up the Basic Structure:
Let’s dive in and create our HTML structure for the video
player.
“`html
<!DOCTYPE html>
<html lang=“en”>
<head>

<meta charset=“UTF-8”>
<meta name=“viewport” content=“width=device-width,

initial-scale=1.0”>
<title>Custom Video Player</title>
<!— You’ll link your CSS here —>
<link rel=“stylesheet” href=“styles.css”>

</head>
<body>

<div class=“video-container”>
<video id=“video” width=“750” height=“500”

controls>
<!— Insert your video source(s) here —>

<source src=“path-to-your-video.mp4”
type=“video/mp4”>

<!— You can provide multiple sources for different
video formats —>

<source src=“path-to-your-video.webm”
type=“video/webm”>

<!— Display text for browsers that don’t support
the video tag —>

Your browser does not support the video tag.
</video>
<div class=“controls”>
<button id=“play-pause”>Play</button>
<input type=“range” id=“volume” min=“0” max=“1”

step=“0.1”>
<button id=“full-screen”>Full-Screen</button>
00:00 / 00:00
</div>

</div>
<!— You’ll link your JavaScript here —>
<script src=“script.js”></script>

</body>
</html>
“`
Explaining the Code:
- Video Container: This is a wrapping `div` that contains
the video and its custom controls. It will help in styling
and positioning.
- Video Element: We’ve provided two `<source>`
elements within the `<video>` tag. This is to ensure
maximum compatibility across browsers. Different
browsers might support different video formats, so by

providing multiple formats, we ensure that most users
can view the video.

The `controls` attribute, when present, displays the
default browser controls for the video player. While we’ll
be building our own custom controls, this is useful during
the setup phase to ensure our video is loading correctly.
- Custom Controls: Underneath the video, we have a
`div` with a class of `controls`. This will contain our
custom controls for the video player, including:

- Play/Pause Button: A toggle button to play or pause
the video.

- Volume Control: An input range to adjust the video’s
volume.

- Full-Screen Button: A button to toggle full-screen
mode.

- Time Display: A span to display the current time of the
video and its total duration.

Conclusion:
Setting up the HTML is the first step in creating our
Custom Video Player. This structure provides a
foundation upon which we’ll build our styles and
functionalities. In the upcoming chapters, we will focus
on styling this structure with CSS and then implementing
the video controls with JavaScript. The goal is to create
a player that is both functional and aesthetically
pleasing, offering users an enhanced video playback
experience.

Project CSS
Welcome back! Now that we’ve set up the HTML
structure for our custom video player in the previous
chapter, it’s time to style it and give it an appealing look.
CSS is the backbone of web aesthetics. In this chapter,

we’ll focus on making our video player not just functional,
but also user-friendly and visually appealing.

1. Basic Reset:
To begin with, let’s reset some default styles. This will
help us maintain consistency across browsers.
“`css
* {

margin: 0;
padding: 0;
box-sizing: border-box;

}
“`

2. Setting Up the Container:
Our video player will sit inside a container. This container
will hold the video and the control bar.
“`css
.video-container {

width: 80%;
max-width: 800px;
margin: 40px auto;
position: relative;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);

}
“`

3. Styling the Video Element:
The `<video>` element will take up the entire width of its
container. We’ll also give it a fixed height.

“`css
video {

width: 100%;
height: 450px;
display: block;

}
“`

4. Video Controls:
Below the video, we’ll have our custom controls which
will include play/pause buttons, a progress bar, volume
control, and full-screen toggling.
“`css
.video-controls {

display: flex;
align-items: center;
justify-content: space-between;
background-color: 333;
color: fff;
padding: 10px 15px;

}
“`
4.1 Buttons:
All buttons will have a consistent style.
“`css
.video-controls button {

background: none;
border: none;
color: fff;

font-size: 16px;
margin-right: 15px;
cursor: pointer;

}
“`
For any active or hover state:
“`css
.video-controls button.active,
.video-controls button:hover {

color: ff6347;
}
“`
4.2 Progress Bar:
The progress bar will show how much of the video has
been played.
“`css
.progress-bar {

flex: 1;
height: 5px;
background-color: 555;
margin: 0 10px;
position: relative;

}
“`
For the played section:
“`css
.progress-bar span {

display: block;

height: 100%;
background-color: ff6347;
position: absolute;
left: 0;
top: 0;
width: 0%; /* This will be updated dynamically using

JavaScript */
}
“`
4.3 Volume Control:
“`css
.volume {

display: flex;
align-items: center;

}
.volume-slider {

width: 100px;
margin-left: 10px;

}
“`

5. Full Screen Styling:
When in full screen mode, we want our video to occupy
the entire viewport.
“`css
video:-webkit-full-screen {

width: 100vw;
height: 100vh;

}

video:fullscreen {
width: 100vw;
height: 100vh;

}
“`
That wraps up our styling for the custom video player. As
you can see, with just a bit of CSS, we’ve transformed
our raw HTML structure into a visually appealing and
user-friendly video player. In the next chapter, we’ll dive
into making this player functional by using the HTML5
Video API and JavaScript.
Note: Always remember to test your styles across
different browsers to ensure compatibility and consistent
appearance. Adjustments might be necessary based on
browser-specific quirks.

Play, Pause & Stop
Welcome back, dear readers! In this chapter, we are
going to dive deep into the core functionalities of our
Custom Video Player: play, pause, and stop. These are
basic yet crucial controls for any media player, and with
the help of the HTML5 Video API, implementing them is
quite straightforward.

Introduction to HTML5 Video API:
Before diving into the coding section, it’s essential to
understand the power of the HTML5 Video API. This API
provides a way to programmatically access and
manipulate video content played back through the
`<video>` element in web pages. It exposes methods
and properties that allow developers to play, pause,
adjust volume, and even check if a video has ended.
For our custom video player, the primary methods we’ll
focus on are:

1. `play()`: Initiates playback of the video.
2. `pause()`: Pauses the currently playing video.
3. `currentTime`: Represents the current playback time in
seconds. It’s both a getter and setter, meaning you can
set this to a specific value to seek to that time in the
video.

Setting up the HTML:
Let’s assume you have the following HTML structure for
your video player:
“`html
<div class=“video-container”>

<video id=“videoPlayer” width=“640” height=“360”
controls>

<source src=“path_to_your_video.mp4”
type=“video/mp4”>

Your browser does not support the video tag.
</video>
<div class=“controls”>

<button id=“playBtn”>Play</button>
<button id=“pauseBtn”>Pause</button>
<button id=“stopBtn”>Stop</button>

</div>
</div>
“`

Implementing Play, Pause & Stop functionalities:
1. Play Video:
To play the video, we need to target our video element
and call the `play()` method.
“`javascript

const video = document.getElementById(‘videoPlayer’);
document.getElementById(‘playBtn’).addEventListener(‘
click’, function() {

video.play();
});
“`
2. Pause Video:
Pausing the video is just as simple. Target the video
element and call the `pause()` method.
“`javascript
document.getElementById(‘pauseBtn’).addEventListener
(‘click’, function() {

video.pause();
});
“`
3. Stop Video:
Stopping the video involves two steps:
1. Pause the video.
2. Reset the video’s current time to 0 (i.e., the
beginning).
“`javascript
document.getElementById(‘stopBtn’).addEventListener(‘
click’, function() {

video.pause();
video.currentTime = 0;

});
“`

Enhancing UX with Play/Pause Toggle:

Often, video players combine the play and pause
functionality into one button. Let’s create a toggle
function for this:
1. Modify the HTML:
“`html
<button id=“togglePlayPauseBtn”>Play</button>
“`
2. JavaScript:
“`javascript
const togglePlayPauseBtn =
document.getElementById(‘togglePlayPauseBtn’);
togglePlayPauseBtn.addEventListener(‘click’, function() {

if (video.paused) {
video.play();
togglePlayPauseBtn.innerText = “Pause”;

} else {
video.pause();
togglePlayPauseBtn.innerText = “Play”;

}
});
“`

Wrapping Up:
With the HTML5 Video API, implementing play, pause,
and stop functionality becomes a walk in the park. The
API offers a wide range of methods and properties that
can help developers create robust and feature-rich video
players.
In the next chapter, we’ll dive into enhancing our video
player’s user experience by adding a progress bar and a

timestamp, allowing users to visually see the playback
status and duration of the video.
Remember, practice makes perfect! Don’t hesitate to
play around with the code, try different functionalities,
and make this video player truly your own. Happy
coding!

Video Progress Bar &
Timestamp
Welcome to Chapter 19! In this chapter, we’ll explore two
critical elements of a custom video player – the progress
bar and timestamp. Both of these enhance the user
experience, allowing viewers to know the video’s
progress and control playback.

1. Understanding the Video API
Before diving into the coding part, it’s essential to
understand the HTML5 Video API a bit. The Video API
offers properties like `currentTime` (current playback
position, in seconds) and `duration` (total video duration,
in seconds). These properties will be crucial for our
progress bar and timestamp functionality.

2. HTML Structure
For our custom video player, let’s consider you already
have the following basic HTML structure from the
previous chapters:
“`html
<video id=“video” width=“750” controls>

<source src=“path_to_video.mp4” type=“video/mp4”>
</video>
<div id=“video-controls”>

<div id=“progress-bar”>
<div id=“progress”></div>

</div>
00:00 / 00:00

</div>
“`
Here, `progress-bar` is the container, and `progress` is
the fill that’ll show video playback progress. The
`timestamp` will display the current time and total video
duration.

3. CSS for Progress Bar
Before adding functionality, ensure the progress bar
looks right:
“`css
progress-bar {

width: 90%;
height: 5px;
background: e0e0e0;
margin: 10px auto;
position: relative;

}
progress {

height: 5px;
background: 007BFF;
width: 0;

}
“`

4. JavaScript Functionality

Now, let’s dive into the fun part – the JavaScript!
a. Progress Bar
We want the progress bar to fill up as the video plays:
“`javascript
const video = document.getElementById(‘video’);
const progressBar =
document.getElementById(‘progress-bar’);
const progress = document.getElementById(‘progress’);
video.addEventListener(‘timeupdate’,
updateProgressBar);
function updateProgressBar() {

const percentage = (video.currentTime /
video.duration) * 100;

progress.style.width = `${percentage}%`;
}
“`
b. Timestamp
To update the timestamp:
“`javascript
const timestamp =
document.getElementById(‘timestamp’);
video.addEventListener(‘timeupdate’,
updateTimestamp);
function updateTimestamp() {

const minutesCurrent = Math.floor(video.currentTime
/ 60);

let secondsCurrent = Math.floor(video.currentTime %
60);

if (secondsCurrent < 10) {
secondsCurrent = ‘0’ + secondsCurrent;

}
const minutesDuration = Math.floor(video.duration /

60);
let secondsDuration = Math.floor(video.duration %

60);
if (secondsDuration < 10) {

secondsDuration = ‘0’ + secondsDuration;
}
timestamp.textContent =

`${minutesCurrent}:${secondsCurrent} /
${minutesDuration}:${secondsDuration}`;
}
“`

5. Seeking Functionality
Let’s add the ability for users to click on the progress bar
to seek to different parts of the video:
“`javascript
progressBar.addEventListener(‘click’, setVideoProgress);
function setVideoProgress(e) {

const clickPosition = e.offsetX;
const width = progressBar.offsetWidth;
const clickPercentage = (clickPosition / width);
video.currentTime = clickPercentage * video.duration;

}
“`

6. Recap
By now, you have a functional progress bar that fills up
as the video plays and a timestamp that updates in real-

time. The user can also click on the progress bar to seek
the video, enhancing user control and experience.

Section 5: Project 4 -
Exchange Rate Calculator |
Fetch & JSON Intro

Project Intro
Welcome to Project 4, the Exchange Rate Calculator! In
this project, we will embark on a journey to create a
utility tool that can be widely used in daily life. Whether
you’re traveling, investing, or just curious about the world
economy, an exchange rate calculator provides essential
information about currency values in different countries.

Objective:
By the end of this project, you will have built an
interactive web application that retrieves real-time
exchange rates for various currencies and performs
calculations to convert amounts between these
currencies. This will be done using pure vanilla
JavaScript, giving you a hands-on experience with the
Fetch API and JSON data manipulation.

Project Overview:
Here’s a sneak peek into what we will be developing:
1. User Interface: A sleek and intuitive design with
dropdowns for selecting currencies and an input for the
amount to convert.
2. Real-time Data: We’ll fetch real-time exchange rates
from a free API.

3. Conversion Logic: Convert input currency to the
desired output currency and display the result.
4. Error Handling: Implement proper error checking and
handling to ensure a seamless user experience.

Skills & Techniques to be Acquired:
- Fetch API: Understand how to make asynchronous
requests to retrieve real-time data.
- JSON Data Handling: Work with JSON responses to
extract, manipulate, and use data in our application.
- Dynamic DOM Manipulation: Populate dropdowns with
available currencies, display real-time conversion rates,
and more.
- Error Handling: Create user-friendly error messages for
issues like network errors or invalid data.

Why This Project?
The Exchange Rate Calculator will not just be another
project in your portfolio; it showcases your ability to build
practical real-world applications. It emphasizes:
1. Utility: Creating something that people can use in their
daily lives.
2. Data Manipulation: Working with live data feeds and
displaying them dynamically.
3. Asynchronous Programming: Mastering Fetch API
and asynchronous JS will open doors to many other
projects in the future.

Pre-requisites:
Before diving into the coding part, make sure you have a
basic understanding of:
- HTML: For creating the basic structure of our
application.

- CSS: To style our application and make it visually
appealing.
- JavaScript: Basics of variables, functions, and events.
If you’re a beginner or want a refresher, I’d recommend
revisiting the chapters on HTML, CSS, and introductory
JavaScript from this book or checking out my other
courses on Udemy.

Conclusion:
With a clear goal in mind and excitement in our hearts,
let’s get started on building this project! The subsequent
chapters will guide you step by step, from laying out the
HTML structure, styling it with CSS, to bringing it to life
with JavaScript. By the end, you’ll have a fully functional
Exchange Rate Calculator and a deeper understanding
of web development techniques.
Are you ready to dive deep into the world of Fetch and
JSON? Let’s begin!

Project HTML
In this chapter, we’re going to lay the foundation for our
Exchange Rate Calculator project. The HTML structure
will form the skeleton upon which we will later add styling
(CSS) and dynamic functionality (JavaScript). By the end
of this chapter, you will have a clear understanding of the
layout and elements that comprise our exchange rate
calculator.

Structure Overview
Our Exchange Rate Calculator will consist of:
- A title
- Two dropdown lists for selecting source and target
currencies

- Two input fields for entering and displaying the
conversion result
- A button to perform the conversion
- A section to display the current exchange rate between
the selected currencies

The HTML Structure
“`html
<!DOCTYPE html>
<html lang=“en”>
<head>

<meta charset=“UTF-8”>
<meta name=“viewport” content=“width=device-width,

initial-scale=1.0”>
<title>Exchange Rate Calculator</title>
<!— Link to the CSS file will be added later —>

</head>
<body>

<div class=“calculator-container”>
<h1>Exchange Rate Calculator</h1>
<div class=“input-group”>
<label for=“from-currency”>From:</label>
<select id=“from-currency”>

<!— Options will be populated using JavaScript
—>

</select>
<input type=“number” id=“from-amount”

placeholder=“Enter amount”>
</div>
<div class=“input-group”>

<label for=“to-currency”>To:</label>
<select id=“to-currency”>

<!— Options will be populated using JavaScript
—>

</select>
<input type=“number” id=“to-amount”

placeholder=“Converted amount” readonly>
</div>
<button id=“convert-btn”>Convert</button>
<div class=“rate-display”>
<p>Exchange rate from <span id=“display-from-

currency”> to
 is: </p>

</div>
</div>
<!— Link to the JavaScript file will be added later —>

</body>
</html>
“`

Breaking Down the Structure
1. HTML Boilerplate:
The beginning of our document sets up the standard
structure, including the doctype declaration, `<head>`
section, and `<body>` tag. We’ve also specified a
`viewport` meta tag to ensure our calculator is mobile
responsive.
2. Calculator Container:
We’ve wrapped our entire calculator in a `div` with the
class `calculator-container`. This will help us style the
calculator as a cohesive unit later on.

3. Title:
A simple heading (`<h1>`) announces the purpose of our
application: “Exchange Rate Calculator”.
4. Input Groups:
We have two `div` elements with the class `input-group`
for our source and target currencies. Inside each `div`,
we have:

- A label
- A dropdown list (`<select>`) to choose a currency
- An input field (`<input>`) for amounts

The source currency input allows user entry, while the
target currency input is read-only since it will display the
calculated result.
5. Convert Button:
The “Convert” button (`<button>`) will trigger the
currency conversion when clicked.
6. Rate Display:
Finally, we have a `div` with the class `rate-display` that
will show the current exchange rate between the two
selected currencies. We’ve used placeholder ``
elements to make it easier to insert dynamic data with
JavaScript later on.

Conclusion
By the end of this chapter, we’ve set up the essential
structure for our Exchange Rate Calculator using pure
HTML. We’ve ensured that our structure is clear and
semantic, making it accessible and easy to style and
script in the upcoming chapters. In the next chapters,
we’ll look into styling this structure with CSS and then
adding the dynamic functionalities with JavaScript.

Project CSS

Welcome to Chapter 22, where we’re going to focus on
styling our Exchange Rate Calculator project. The design
will be clean, modern, and intuitive. Given the
importance of user experience in web applications, our
goal is to create a user-friendly interface that’s easy to
navigate.

1. Setting Up the Basic Structure:
Before diving into the specifics, it’s crucial to ensure you
have your base CSS reset. This avoids any unwanted
default styles applied by browsers.
“`css
* {

margin: 0;
padding: 0;
box-sizing: border-box;
font-family: ‘Arial’, sans-serif;

}
“`

2. The Main Container:
Our exchange rate calculator will be centered on the
page. This main container will house all our components.
“`css
.container {

width: 90%;
max-width: 600px;
margin: 50px auto;
background-color: f4f4f4;
padding: 20px;
border-radius: 5px;

box-shadow: 0 3px 10px rgba(0, 0, 0, 0.2);
}
“`

3. Styling the Heading:
Let’s ensure our project heading stands out and provides
a clear purpose to our users.
“`css
.container h1 {

text-align: center;
margin-bottom: 20px;
color: 333;

}
“`

4. The Exchange Rate Input Fields:
The exchange rate calculator will primarily consist of two
input fields – one for the source currency and one for the
target currency.
“`css
.input-group {

display: flex;
justify-content: space-between;
margin-bottom: 15px;

}
.input-group label {

flex: 1;
padding: 10px;
background: ddd;

border: 1px solid bbb;
border-right: none;
border-radius: 5px 0 0 5px;

}
.input-group input {

flex: 2;
padding: 10px;
border: 1px solid bbb;
border-radius: 0 5px 5px 0;

}
“`

5. Currency Dropdowns:
We’ll have two dropdowns for users to select currencies
they want to exchange between.
“`css
.select-group {

margin-bottom: 20px;
}
.select-group select {

width: 48%;
padding: 10px;
border: 1px solid bbb;
border-radius: 5px;

}
“`

6. The Result Display:

Once the user inputs an amount and selects the relevant
currencies, the converted value will be displayed below.
“`css
.result-display {

background-color: e6e6e6;
padding: 10px;
border-radius: 5px;
text-align: center;
margin-top: 20px;

}
.result-display p {

font-size: 1.5em;
color: 333;

}
“`

7. Button Styling:
Our calculate button will trigger the exchange rate
calculation.
“`css
.calculate-btn {

width: 100%;
padding: 10px;
background-color: 0099cc;
border: none;
border-radius: 5px;
color: fff;
font-size: 1.2em;
cursor: pointer;

transition: background-color 0.3s ease;
}
.calculate-btn:hover {

background-color: 0077aa;
}
“`

8. Responsive Design:
We want our calculator to look good on both desktops
and mobile devices.
“`css
@media (max-width: 600px) {

.input-group, .select-group {
flex-direction: column;

}
.input-group label, .input-group input, .select-group

select {
width: 100%;
margin-bottom: 10px;

}
}
“`

Conclusion:
With this CSS setup, our Exchange Rate Calculator
should now have a sleek, modern look. This ensures that
not only does our application work efficiently, but it also
provides a pleasant user experience. Remember, CSS is
all about experimentation and creativity, so don’t hesitate
to adjust the styles to suit your personal design
preferences.

In the next chapter, we’ll dive into understanding JSON
and how to use the Fetch API to retrieve current
exchange rates. Stay tuned!

A Look at JSON & Fetch
In this chapter, we’ll dive deep into two crucial concepts
in modern web development: JSON and the Fetch API.
As we proceed with our Exchange Rate Calculator, we
will rely on these tools to fetch and handle data from
external sources. By understanding their foundations,
you’ll be better equipped to create dynamic, data-driven
web applications.

What is JSON?
JSON stands for JavaScript Object Notation. It’s a
lightweight data interchange format that is easy for
humans to read and write, and easy for machines to
parse and generate. JSON is a text format, independent
of any language, which makes it an ideal data format for
data exchange between a client and server, or between
different parts of an application.
A JSON object looks like this:
“`json
{

“name”: “John”,
“age”: 30,
“city”: “New York”

}
“`
Key Features of JSON:
1. Readability: JSON structures are straightforward,
making it easy for humans to read and write.

2. Universality: Most programming languages, including
JavaScript, have built-in support for JSON.
3. Flexibility: JSON can represent a wide variety of data
structures, including objects, arrays, and primitive data
types.

Introduction to Fetch API
The Fetch API provides an interface for fetching
resources, including across the network. It gives a more
modern way to make web requests compared to the
older `XMLHttpRequest`. With `fetch()`, we can make
requests and handle responses more flexibly and with
less boilerplate code.
Basic Syntax of Fetch:
“`javascript
fetch(url)
.then(response => response.json())
.then(data => console.log(data))
.catch(error => console.error(‘Error:’, error));
“`

Combining JSON & Fetch
When we use the Fetch API to retrieve data from a
server, the response is often in JSON format. Here’s a
step-by-step breakdown of how to use them together:
1. Request Data: Use the `fetch()` function to make a
request to an API or server.
2. Handle Response: Once the request is made, the
server will send back a response. This response is not
directly in JSON format, but a `Response` object which
contains the data in a method like `json()`.
3. Parse JSON: Using the `json()` method, we can
extract the JSON data from the `Response` object.

Example:
“`javascript
fetch(‘https://api.example.com/data’)
.then(response => response.json())
.then(data => {

// Handle the JSON data here
console.log(data);

})
.catch(error => {

console.error(‘Error fetching data:’, error);
});
“`

Practical Application: Fetching Exchange Rates
For our Exchange Rate Calculator project, we’ll be using
an API that provides currency exchange rates in JSON
format. Using the Fetch API, we can retrieve this data,
parse the JSON, and then manipulate it within our
application to provide users with real-time currency
conversions.
Here’s a hypothetical example:
“`javascript
fetch(‘https://api.currencyexchange.com/rates’)
.then(response => {

if (!response.ok) {
throw new Error(‘Network response was not ok’);

}
return response.json();

})
.then(data => {

// Use the data (exchange rates) to update our
application’s UI

updateExchangeRates(data);
})
.catch(error => {

console.error(‘There was a problem with the fetch
operation:’, error.message);
});
“`
In the above example, after fetching the data, we check
if the response was successful using the `response.ok`
property. If there’s an issue (e.g., the server returns a
404 or 500 status), we handle it appropriately.

Conclusion
Understanding JSON and the Fetch API is essential for
modern web development. These tools allow us to
interact with servers, APIs, and other external data
sources seamlessly. As we build our Exchange Rate
Calculator, we’ll see these concepts in action, retrieving
real-world data and presenting it to our users. In the next
chapters, we’ll integrate this knowledge into our project,
setting the foundation for dynamic, data-driven web
applications.

Further Reading & Resources:
- MDN Web Docs: [Using Fetch]
(https://developer.mozilla.org/en-
US/docs/Web/API/Fetch_API/Using_Fetch)
- MDN Web Docs: [JSON]
(https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/JS
ON)

Exercise:
1. Visit an online JSON editor, such as
jsoneditoronline.org.
Create a sample JSON structure and practice modifying
it.
2. Experiment with the Fetch API. Try fetching data from
a public API like [jsonplaceholder.typicode.com]
(https://jsonplaceholder.typicode.com/). Analyze the
JSON response you get.

With this understanding of JSON and Fetch, you’re now
ready to dive deeper into the Exchange Rate Calculator
project and apply what you’ve learned to build a
functional, interactive application.

Fetch Rates & Update DOM
In the preceding chapters, we laid the groundwork for
our Exchange Rate Calculator project, structuring our
HTML and beautifying it with CSS. Now, we’ll dive into
the heart of our application: fetching real-time exchange
rates and dynamically updating our webpage (or the
Document Object Model, abbreviated as DOM).

1. Introduction to Fetching Data
Fetching data from external sources is a common
requirement in modern web applications. JavaScript
provides a built-in method called `fetch()` to make HTTP
requests, which simplifies the process of retrieving and
sending data to an external source.

2. Fetch API
The Fetch API provides a simple interface for making
network requests and handling responses. The primary
method for this is `fetch()`.

Basic Syntax:
“`javascript
fetch(url)

.then(response => response.json())

.then(data => console.log(data))

.catch(error => console.error(“There was an error!”,
error));
“`
- `url`: The URL you want to fetch.
- The `fetch()` method returns a promise that resolves
into the Response object representing the response to
the request.
- The `response.json()` method reads the response body
and returns it as a JSON object.

3. Setting Up the Exchange Rate API
For this project, we’ll use the `exchangerate-api` (or any
similar service). It’s a free service that provides currency
conversion rates.
Firstly, sign up and get your API key.
4. Making Our Fetch Request
With our API key at the ready, let’s fetch the rates:
“`javascript
const currencyOne =
document.getElementById(‘currency-one’);
const currencyTwo =
document.getElementById(‘currency-two’);
const rateElement = document.getElementById(‘rate’);
let apiURL = `https://api.exchangerate-
api.com/v4/latest/${currencyOne.value}`;
fetch(apiURL)

.then(response => response.json())

.then(data => {
const rate = data.rates[currencyTwo.value];
rateElement.innerText = `1 ${currencyOne.value} =

${rate} ${currencyTwo.value}`;
})
.catch(error => console.error(“Error fetching data:”,

error));
“`
Here, we’re fetching the latest exchange rate for the
currency selected in `currencyOne` and updating the
DOM with the rate for `currencyTwo`.

5. Updating the DOM
After fetching the data, our main task is to dynamically
update our webpage. We’ve already displayed the rate in
the above code. But to make our application interactive,
let’s also convert the entered amount:
“`javascript
const amountOne = document.getElementById(‘amount-
one’);
const amountTwo = document.getElementById(‘amount-
two’);
fetch(apiURL)

.then(response => response.json())

.then(data => {
const rate = data.rates[currencyTwo.value];
rateElement.innerText = `1 ${currencyOne.value} =

${rate} ${currencyTwo.value}`;
// Convert the amount
const amount = amountOne.value * rate;

amountTwo.value = amount.toFixed(2);
});

“`
We’ve added code to convert `amountOne` using the
fetched rate and update `amountTwo` accordingly.

6. Event Listeners
To make our application responsive to user actions, let’s
add event listeners:
“`javascript
currencyOne.addEventListener(‘change’, calculate);
currencyTwo.addEventListener(‘change’, calculate);
amountOne.addEventListener(‘input’, calculate);
amountTwo.addEventListener(‘input’, calculate);
“`
The `calculate` function will call our fetching logic and
update the DOM. Now, every time a user changes the
currency type or adjusts the amount, our application will
dynamically fetch the new rate and update the DOM.

7. Error Handling
The world of APIs isn’t always perfect. There can be
downtimes, or we might exceed our API request limits.
Let’s add some basic error handling:
“`javascript
fetch(apiURL)

.then(response => {
if(!response.ok) {

throw new Error(“Network response was not ok”);
}
return response.json();

})
.then(data => {

//… rest of the logic
})
.catch(error => {

console.error(“There was a problem with the fetch
operation:”, error.message);

});
“`

8. Conclusion
With this, our Exchange Rate Calculator’s core
functionality is complete! You’ve successfully
incorporated an external API into your project and made
your application dynamic and interactive.
In subsequent projects, you’ll explore more about
asynchronous JavaScript and how to further interact with
APIs and the DOM. Remember, practice is key. The
more projects you build, the more proficient you’ll
become.

Note: Always ensure you handle data from external
sources with care. Ensure that the data you fetch is from
a trusted source, and always validate and sanitize your
data before using it.

Section 6:

Project 5 - DOM Array
Methods | forEach, map, filter,
sort, reduce

Project Intro
Welcome to Project 5: DOM Array Methods Exploration!
If you’ve ever been intrigued by the powerful capabilities
JavaScript offers when working with arrays, you’re in the
right place. This project will provide an insightful journey
into some of the most widely-used and fundamental
array methods in JavaScript.

Why DOM Array Methods?
Arrays are among the most basic yet crucial data
structures in JavaScript. Whether you’re creating a
simple list of items, handling data from an API, or
building more complex applications, you’ll find yourself
working with arrays. JavaScript offers a rich collection of
built-in methods to help you manage and manipulate
these arrays efficiently.
But why combine DOM with array methods? The
Document Object Model (DOM) represents the structure
of your web pages. By combining our knowledge of the
DOM with array methods, we can create dynamic and
interactive web applications. This project will
demonstrate the sheer power of this combination.

What Will We Build?
We will develop an application that fetches random user
data from an API, presents it on a webpage, and allows
users to interact with the data using various
functionalities. Here’s a brief overview:
- Generate Random Users: We’ll fetch user data and
showcase it on our website.
- Double Money: With the click of a button, we’ll
demonstrate how to manipulate numerical data in our
array, doubling the money of our users.

- Sort by Richest: Another interactive feature to sort our
users based on their wealth.
- Show Millionaires: A filter functionality to display only
those users who have a wealth exceeding a million.
- Calculate Total Wealth: We’ll sum up the wealth of all
our users and present it in a neat format.

Learning Outcomes
By the end of this project, you will:
1. Deepen Your Understanding of Array Methods: We’ll
delve deep into methods like `forEach`, `map`, `filter`,
`sort`, and `reduce`. You’ll understand not just how, but
also why and when to use them.
2. Enhance DOM Manipulation Skills: You’ll get a lot of
practice dynamically adding, removing, and altering
elements on a webpage.
3. Strengthen Async Operations: We’ll be fetching data
from an API, giving you a practical scenario to
understand asynchronous operations in JavaScript.
4. Boost Problem-Solving Abilities: Through hands-on
tasks, you’ll improve your logical thinking and problem-
solving skills.

Prerequisites
To make the most of this project:
- A basic understanding of HTML, CSS, and JavaScript
is required. If you’re a beginner, I’d recommend revisiting
the earlier chapters on these topics.
- An understanding of how to fetch data from APIs will be
beneficial. If you’re unfamiliar, don’t worry! We’ll cover
the basics in this project.
- Patience and a willingness to experiment. Sometimes,
the best way to understand a concept is to play around
with it, make mistakes, and learn from them.

A Word Before We Begin
Every developer, novice or expert, goes through a
journey of discovery and learning. This project is
designed as a stepping stone in your path to mastering
web development. While the focus is on array methods
and DOM manipulation, remember that the broader goal
is to nurture a mindset of exploration and continuous
learning.
Dive in with enthusiasm, keep an open mind, and most
importantly, enjoy the process! Let’s embark on this
exciting journey together.

Project UI
In the world of web development, the user interface (UI)
is the space where interactions between humans and
machines occur. The goal of this interaction is to allow
effective operation and control of the machine from the
human end, while the machine simultaneously provides
feedback that aids the operators’ decision-making
process. In “Project 5: DOM Array Methods”, our main
objective is to showcase an array of different JavaScript
methods, and to effectively do so, we need a fitting UI.
The purpose of this project is to build a dynamic user
dashboard that will list out random users, their wealth,
and provide us with various functionalities to manipulate
this data. The user will be able to double the money for
users, sort by the richest, filter to show only millionaires,
and calculate total wealth. Let’s get started with crafting
this UI!

Setting up the Structure:
HTML Structure:
1. Main Container - This container will encapsulate all
the UI elements related to our project.

2. Header - A simple header to display the name of our
application/project.
3. Users List - A structured list where we’ll display each
user and their wealth.
4. Action Buttons - This is a set of buttons that will
enable the different functionalities we want to showcase.
“`html
<div class=“main-container”>

<header>
<h1>DOM Array Methods Dashboard</h1>

</header>
<ul class=“users-list”>
<div class=“actions”>

<button id=“double”>Double Money</button>
<button id=“show-millionaires”>Show

Millionaires</button>
<button id=“sort”>Sort By Richest</button>
<button id=“calculate-wealth”>Calculate Total

Wealth</button>
</div>

</div>
“`

Styling the UI:
CSS Structure:
1. Main Container - This will be centered in the middle of
the screen with some padding for aesthetics.
2. Header - We’ll give it a font-size enhancement, center-
align the text, and add some margins for spacing.
3. Users List - Here, we will style it so each user and
their wealth are displayed in neat rows with alternate

light and dark backgrounds for better clarity.
4. Action Buttons - These will be styled to be easily
recognizable, with hover effects to show interactivity.
“`css
.main-container {

width: 80%;
margin: auto;
padding: 2rem;
border-radius: 10px;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);

}
header {

text-align: center;
margin-bottom: 2rem;

}
.users-list {

list-style-type: none;
padding: 0;

}
.users-list li:nth-child(odd) {

background-color: f4f4f4;
}
.users-list li {

padding: 1rem;
display: flex;
justify-content: space-between;
align-items: center;

}

.actions button {
padding: 0.5rem 1rem;
margin: 0.5rem;
border: none;
border-radius: 5px;
cursor: pointer;
transition: background-color 0.3s ease;

}
.actions button:hover {

background-color: e0e0e0;
}
“`

Conclusion:
The UI plays a crucial role in ensuring our project’s array
methods are both understood and appreciated by the
end-user. By setting up a simple yet effective interface,
we pave the way for the logical JavaScript functions that
will populate and manipulate the data on this interface.
In the upcoming chapters, we’ll delve deeper into
fetching random user data, and employing the array
methods to provide the functionalities we’ve hinted at
with our action buttons. Stay tuned and keep coding!

Generate Random Users -
Fetch w/ Async/Await
Generating random users for a project can be essential,
especially when building applications that require user
data but you don’t want to use actual personal data. In
this chapter, we will be fetching random user data using
the Random User Generator API. The Fetch API

combined with Async/Await makes the process of
obtaining this data smooth and efficient.

Setting Up The API
Before we dive into the code, you need to be familiar
with the API we will be using. The Random User
Generator is a free, open-source API that provides
random user data in JSON format. The data can include
things like name, picture, location, email, and more.
API Endpoint: `https://randomuser.me/api/`

Getting Started with Fetch and Async/Await
Before we work with Async/Await, let’s understand the
basics of the Fetch API.
The Fetch API provides an interface for fetching
resources. In simpler words, it lets you communicate
with other websites and servers, which is essential when
we want to retrieve or send data.
A basic fetch request looks like this:
“`javascript
fetch(‘https://randomuser.me/api/’)

.then(response => response.json())

.then(data => console.log(data));
“`
However, we’ll be utilizing `async/await` to make our
code cleaner and easier to understand. With
`async/await`, our code becomes:
“`javascript
async function fetchUsers() {

let response = await
fetch(‘https://randomuser.me/api/’);

let data = await response.json();

console.log(data);
}
fetchUsers();
“`

Generating Random Users
To fetch multiple users, we need to specify the number of
users we want by adding a parameter to the API
endpoint.
For instance, to fetch 5 users:
`https://randomuser.me/api/?results=5`
Let’s integrate this into our function:
“`javascript
async function fetchMultipleUsers(num) {

let response = await
fetch(`https://randomuser.me/api/?results=${num}`);

let data = await response.json();
displayUsers(data.results); // We will create this

function next
}
fetchMultipleUsers(5);
“`

Displaying the Users
Now that we’ve fetched the users, we want to display
them in our HTML. For this example, we’ll create a
simple list of names.
“`javascript
function displayUsers(users) {

const usersContainer =
document.getElementById(‘usersContainer’);

users.forEach(user => {
const userElement =

document.createElement(‘div’);
userElement.innerHTML = `
<h2>${user.name.title} ${user.name.first}

${user.name.last}</h2>
<img src=”${user.picture.medium}”

alt=”${user.name.first}”>
<p>Email: ${user.email}</p>
<p>Location: ${user.location.city},

${user.location.state}</p>
`;
usersContainer.appendChild(userElement);

});
}
“`
Ensure you have an element in your HTML with the id
`usersContainer`:
“`html
<div id=“usersContainer”></div>
“`

Handling Errors
When working with APIs, it’s crucial to handle errors
gracefully. Network problems, API downtimes, or request
limits can cause issues. With `async/await`, we can use
simple try/catch blocks:
“`javascript
async function fetchMultipleUsers(num) {

try {

let response = await
fetch(`https://randomuser.me/api/?results=${num}`);

if (!response.ok) {
throw new Error(`HTTP error! Status:

${response.status}`);
}
let data = await response.json();
displayUsers(data.results);

} catch (error) {
console.error(‘Fetch error: ‘ + error.message);

}
}
“`

Conclusion
In this chapter, we learned how to generate random user
data using the Random User Generator API, integrated
with the Fetch API and Async/Await. This technique can
be instrumental when you want to create mock data for
your applications, especially during the development
phase.
Remember, always refer to the API’s documentation if
you wish to explore more features or if you run into any
issues. APIs are powerful tools, and mastering them can
elevate your projects significantly.

Output Users - forEach() &
DOM Methods
Welcome to Chapter 28! In this chapter, we will take a
deep dive into how we can output a list of users to our
web page using the `forEach()` method and DOM

manipulation techniques. We will be working on the
DOM Array Methods project, and our goal is to fetch a
list of random users and display them in a user-friendly
format.

Prerequisites:
Before jumping into this chapter, make sure you have:
1. Basic understanding of JavaScript and its ES6 syntax.
2. Familiarity with the Document Object Model (DOM).
3. Completed Chapter 27 where we generated a list of
random users using Fetch with Async/Await.

Step 1: Setting Up Our HTML Structure
We need a section in our HTML where we will output our
users. Let’s create a simple `div` to hold our users:
“`html
<div id=“users-output”></div>
“`

Step 2: Fetching Users
Assuming you’ve fetched the users in the previous
chapter, you should have an array of user objects. For
simplicity’s sake, let’s say our array looks something like
this:
“`javascript
const users = [

{id: 1, name: ‘John Doe’, age: 32},
{id: 2, name: ‘Jane Smith’, age: 28},
// … more users

];
“`

Step 3: Outputting Users with `forEach()` & DOM
Methods
Now, let’s use the `forEach()` method to loop through
each user and display them:
“`javascript
const outputDiv = document.getElementById(‘users-
output’);
users.forEach(user => {

// Create a new div for each user
const userDiv = document.createElement(‘div’);
userDiv.className = ‘user’;
// Create an innerHTML template for the user
userDiv.innerHTML = `

<h3>${user.name}</h3>
<p>Age: ${user.age}</p>

`;
// Append the user div to the main output div
outputDiv.appendChild(userDiv);

});
“`
In the code above:
1. We first get a reference to our main output div.
2. Using `forEach()`, we loop through each user.
3. For each user, we create a new `div`.
4. We then set the `innerHTML` of that div to a template
which displays the user’s name and age.
5. Finally, we append this user div to the main output div.

Step 4: Styling Our Users

While this is mainly a JavaScript-focused chapter, adding
a bit of CSS can help in presenting our users more
attractively:
“`css
.user {

border: 1px solid ccc;
padding: 10px;
margin: 10px 0;
border-radius: 5px;

}
“`
This will give each user a nice box with some spacing
between each one.

Summary:
In this chapter, we learned how to use the `forEach()`
method in conjunction with DOM methods to output
users to our web page. This is a fundamental pattern in
web development – fetching data and then displaying it
to the user.
In the next chapter, we will enhance our project by
adding functionalities that allow users to double their
money using the `map()` method. Stay tuned!

Note: Remember that in a real-world scenario, the user
data would be fetched from an API or a database. The
hard-coded `users` array is just for illustration purposes
in this example. Also, always ensure you handle any
errors that might occur during the fetch operation or any
other potential issues to enhance the user experience.

Double Money - map()

In this chapter, we will explore one of the highly useful
array methods in JavaScript - the `map()` function. It’s a
part of the DOM array methods we’re delving into in this
project. As the chapter title suggests, we’ll be applying
`map()` to double the money values in our list. This
practical exercise will give you a hands-on experience of
how the `map()` function operates and how you can
leverage it in various web projects.

What is map()?
The `map()` method is a higher-order function that
creates a new array populated with the results of calling
a provided function on every element in the calling array.
Unlike `forEach()`, which doesn’t return anything, `map()`
returns a new array without mutating the original array.
Basic Syntax:
“`javascript
const newArray = array.map(function(currentValue,
index, arr), thisValue);
“`
- `currentValue`: The current element being processed in
the array.
- `index` (optional): The index of the current element
being processed.
- `arr` (optional): The array on which map was called.
- `thisValue` (optional): Object to use as `this` when
executing the function.

Practical Application: Doubling Money
Imagine you have a list of users, each with an account
balance. Perhaps you’re running a special promotion
where you’re offering to double the balance of every
user. Let’s see how you can use the `map()` function to
achieve this.

Step 1: Creating our Original Array
First, let’s create our initial array of users with their
current balances:
“`javascript
const users = [

{ name: ‘Alice’, balance: 100 },
{ name: ‘Bob’, balance: 200 },
{ name: ‘Charlie’, balance: 150 },
{ name: ‘David’, balance: 80 }

];
“`
Step 2: Using map() to Double the Money
To double the money for each user, we’ll utilize the
`map()` function. We’ll target the `balance` property and
multiply it by 2:
“`javascript
const doubledBalances = users.map(user => {

return {
…user,
balance: user.balance * 2

};
});
“`
In the code snippet above, we’re returning a new object
for each user. We spread out the original user properties
using the spread operator (`…user`) and then overwrite
the balance property by multiplying its current value by 2.
Step 3: Display the Results
Now, let’s display our results to see the original balances
and the doubled balances:

“`javascript
console.log(“Original Balances:”, users);
console.log(“Doubled Balances:”, doubledBalances);
“`

Why use map()?
1. Immutability: One of the biggest advantages of
`map()` is that it doesn’t mutate the original array. This is
in line with functional programming principles, ensuring
data remains unchanged, which can help prevent
unintended side-effects in your code.
2. Chainability: Since `map()` returns a new array, you
can chain other array methods like `sort()`, `filter()`, etc.,
making your code more concise and readable.
3. Flexibility: The provided function can be as simple or
complex as needed, allowing for a wide range of
transformations on array elements.

Conclusion
The `map()` function is a powerful tool in your JavaScript
toolkit. It provides an easy, efficient, and functional way
to transform data in arrays. In this chapter, we leveraged
`map()` to double the money for each user in our array.
However, its applications are diverse, and as you
progress through different web projects, you’ll find
countless scenarios where `map()` will come in handy.

Sort By Richest - sort()
In our journey through the realm of web development,
we’ve tackled various DOM Array methods, each with its
unique powers. In this chapter, we’ll delve into the
`sort()` method. It might seem like a simple tool to
arrange items, but with JavaScript, it becomes a
versatile utility that can be tailored for a wide range of

use-cases. Our mission? To sort a list of users by their
wealth, showcasing those who have the most at the top.

Understanding the `sort()` Method
At its core, the `sort()` method is used to arrange the
elements of an array based on some comparison criteria.
By default, it sorts elements as strings. So, `[10, 2,
22].sort()` would return `[10, 2, 22]`. This might not be
what you’d expect, but it’s how JavaScript works by
default.
But fear not, for the `sort()` method allows us to define
our own comparison function, granting us the power to
customize how we want our elements to be sorted.

Syntax of `sort()`
“`javascript
array.sort([compareFunction])
“`
The `compareFunction` is optional, but crucial for our
task. This function should return:
- A negative value if `a` should be sorted before `b`
- A positive value if `a` should be sorted after `b`
- Zero if `a` and `b` are equal

Sorting Users by Wealth
Let’s imagine we have an array of user objects, each
with a `name` and a `wealth` property:
“`javascript
const users = [

{ name: ‘John’, wealth: 2300 },
{ name: ‘Sarah’, wealth: 5800 },
{ name: ‘Mike’, wealth: 4500 },

];
“`
To sort these users by their wealth in descending order
(richest first), we’d utilize the `sort()` method as follows:
“`javascript
users.sort((a, b) => b.wealth - a.wealth);
“`
Here, `(a, b)` are two consecutive elements in the
`users` array. The subtraction results in a positive or
negative value, helping `sort()` decide the order.

Visualizing the Sorting Mechanism
Consider two users:
- User A with a wealth of 5000
- User B with a wealth of 3000
When sorting in descending order: `b.wealth - a.wealth`:
- For A and B: 3000 - 5000 = -2000 (a negative value, so
A comes before B)
Now you can see how the users get sorted with the
richest at the top!

Displaying Sorted Users on the DOM
Once sorted, you might want to display the users in the
DOM. Using the techniques we learned from earlier
chapters, you can create and append elements to the
DOM.
“`javascript
const userList = document.querySelector(‘.users-list’);
users.forEach(user => {

const userElement = document.createElement(‘div’);
userElement.className = ‘user’;

userElement.innerHTML = `
<h3>${user.name}</h3>
<p>$${user.wealth.toLocaleString()}</p>

`;
userList.appendChild(userElement);

});
“`
In the code above, we’re iterating through each user,
creating a new DOM element for them, and appending it
to a `.users-list` container. The `toLocaleString()` method
is a neat trick to format numbers with commas (or
appropriate locale symbols).

Conclusion
The `sort()` method, though appearing simple, is an
essential tool in your JavaScript toolbox. With it, you’ve
successfully sorted users by their wealth, enriching the
functionality of your web application. This method’s true
strength lies in its flexibility—by defining our own
comparison functions, we can sort arrays in numerous,
customized ways.
Remember, web development isn’t just about knowing
the tools; it’s about understanding them and innovating
with how you use them. As you move forward, think
about other exciting ways you can utilize `sort()` in your
projects!

Practice Exercise
Try sorting the users in ascending order of their wealth.
How would you modify the compare function to achieve
this?

In the next chapter, we’ll dive into the `filter()` method, a
powerful tool to refine our lists based on specific criteria.

Stay tuned!

Show Millionaires - filter()
Welcome to Chapter 31, where we dive deep into one of
the most commonly used array methods in JavaScript:
the `filter()` method. Given our project’s theme on DOM
Array Methods, this chapter will specifically focus on
using `filter()` to display only the millionaires from a list of
users. We’ll learn how to harness the power of `filter()` to
create a subset of our original data array and display it
dynamically on our webpage.

What is the filter() method?
The `filter()` method creates a new array with all the
elements that pass the test implemented by the provided
function. In simpler terms, it filters out elements based
on a condition you set.

Syntax:
“`javascript
let newArray = arr.filter(callback(element[, index[, array]])
[, thisArg])
“`
Where:
- `callback`: Function is a predicate, which returns a
Boolean value. It tests each element and returns `true` to
keep the element, `false` otherwise.
- `element`: Current element being processed in the
array.
- `index` (optional): Index of the current element in the
array.
- `array` (optional): The array `filter()` was called upon.

- `thisArg` (optional): Object to use as `this` when
executing the callback.

Implementing the filter() method to show millionaires
Let’s take a scenario where we have an array of user
objects, each having properties like `name`, `age`, and
`wealth`. Our objective is to filter out and display only
those users who have wealth above 1 million.
Step 1: Sample Data Array
For the sake of this example, consider the following
sample user data:
“`javascript
const users = [

{ name: ‘John Doe’, age: 32, wealth: 500000 },
{ name: ‘Jane Smith’, age: 29, wealth: 1500000 },
{ name: ‘Chris Johnson’, age: 45, wealth: 2200000 },
{ name: ‘Anna Brown’, age: 28, wealth: 750000 },
{ name: ‘Tom Davis’, age: 34, wealth: 9800000 }

];
“`
Step 2: Using filter() to get millionaires
The logic is simple: We need to test if the `wealth`
property of each user is greater than 1 million.
“`javascript
const millionaires = users.filter(user => user.wealth >
1000000);
console.log(millionaires);
“`
The above code will give us an array of users who have
wealth greater than 1 million.
Step 3: Displaying Millionaires on the DOM

We will create a function to dynamically display the list of
millionaires on our webpage:
“`javascript
function displayMillionaires(millionaires) {

const millionaireContainer =
document.getElementById(‘millionaire-list’);

// Clear out the previous list
millionaireContainer.innerHTML = ”;
// Loop through each millionaire and add to the DOM
millionaires.forEach(millionaire => {

const millionaireElement =
document.createElement(‘div’);

millionaireElement.className = ‘millionaire’;
millionaireElement.innerHTML = `
${millionaire.name} - Wealth:

$${millionaire.wealth.toLocaleString()}
`;
millionaireContainer.appendChild(millionaireEleme

nt);
});

}
// Call the display function
displayMillionaires(millionaires);
“`
Remember to have an element with the id `millionaire-
list` in your HTML for this to work.

Conclusion
The `filter()` method is powerful, allowing us to extract
subsets of data from our main dataset based on specific
criteria. In this chapter, we successfully isolated and

displayed our millionaire users. As you progress through
your JavaScript journey, you’ll find countless scenarios
where `filter()` becomes indispensable.

Calculate Wealth - reduce()
Welcome to another exciting chapter in our DOM Array
Methods project. By now, we’ve covered a variety of
array methods like `forEach()`, `map()`, `filter()`, and
`sort()`. In this chapter, we’ll focus on another powerful
array method: `reduce()`. Our aim? To calculate the total
wealth of a list of users.

Introduction to `reduce()`
The `reduce()` method applies a function to an
accumulator and each element in an array (from left to
right) to reduce it to a single value. The accumulator
accumulates the callback’s return values. If no
initialValue is provided, the first element in the array will
be used as the accumulator, and the callback will start
from the second element.

Syntax:
“`javascript
array.reduce(callback(accumulator, currentValue[, index[,
array]])[, initialValue])
“`
Key Points:
- accumulator: This accumulates the callback’s return
values.
- currentValue: The current element being processed in
the array.
- index (optional): The index of the `currentValue`.
- array (optional): The array `reduce()` was called upon.

- initialValue (optional): Value to use as the first
argument to the first call of the callback.

Scenario: Calculating Total Wealth
Imagine you have a list of users, each with an `id`,
`name`, and `wealth`:
“`javascript
const users = [

{ id: 1, name: “John”, wealth: 50000 },
{ id: 2, name: “Jane”, wealth: 150000 },
{ id: 3, name: “Doe”, wealth: 30000 },
{ id: 4, name: “Smith”, wealth: 120000 }

];
“`
We want to calculate the total wealth of all users.

Implementing with `reduce()`
Let’s see how we can achieve this using the `reduce()`
method:
“`javascript
const totalWealth = users.reduce((acc, user) => acc +
user.wealth, 0);
console.log(totalWealth); // Outputs: 350000
“`
In the above example:
1. We provide an initial value of 0 for the accumulator
`acc`.
2. For each `user` in the `users` array, we add the user’s
`wealth` to the accumulator.
3. The final value of `acc` (i.e., 350000 in this case)
represents the total wealth.

Breaking it Down
- The `reduce()` function starts with the accumulator
(`acc`) value of 0 (our initial value).
- For the first user (John), `acc` is 0 and `user.wealth` is
50000. So, `acc` becomes 50000.
- For the next user (Jane), `acc` is 50000 and
`user.wealth` is 150000. So, `acc` becomes 200000.
- This process continues for all users.
- At the end of the iteration, `acc` holds the total wealth
of all users.

Wrapping Up
The `reduce()` method offers a concise way to calculate
aggregate values from arrays. In this chapter, we used it
to calculate the total wealth from an array of users. But
the `reduce()` function’s applications don’t end here. You
can use it in numerous scenarios, like finding the
maximum value in an array, counting occurrences of
items, and more.

Section 7: Project 6 - Menu
Slider & Modal | DOM & CSS

Project Intro
Welcome to the sixth project in our series, where we will
be delving into the creation of a Menu Slider & Modal
using pure HTML, CSS, and JavaScript. No frameworks,
no libraries, just vanilla web technologies. As always,
we’re here to guide you every step of the way, ensuring
you understand both the “how” and the “why” behind
each part of the code.

1. Project Overview
In this project, we’ll create an interactive navigation
menu that slides in from the side (often referred to as a
“hamburger menu”). This is a popular feature on many
modern websites, providing a clean user interface,
especially for mobile users.
But that’s not all! To complement our menu slider, we’ll
also create a modal. A modal is a dialog box or pop-up
window that is displayed on top of the current page,
often used for notifications, gathering user input, or
displaying additional information without leaving the
page.

2. Core Concepts Covered
* DOM Manipulation: This project will allow us to practice
our skills in manipulating the Document Object Model
(DOM), giving us the ability to interact with and modify
web page elements dynamically.
* CSS Transitions and Animations: We’ll delve deeper
into the world of CSS to make our menu slide effect and
modal appearance smooth and aesthetically pleasing.
* Event Listeners: These are crucial when creating
interactivity. We’ll use event listeners to detect when the
menu button is clicked, when modal triggers are
engaged, and when the user wants to close the modal.

3. What You Will Achieve
By the end of this project, you will have:
* A slide-in menu that activates on a button click,
providing a smooth transition effect.
* A modal that can be triggered to open and will have a
close button to hide it.
* A better understanding of the DOM, and how to interact
with it using vanilla JavaScript.

* Enhanced your CSS skills, particularly in creating
animations and transitions.
* More confidence in building interactive web
components from scratch!

4. Pre-requisites
While this project is designed to be accessible for those
with a basic understanding of HTML, CSS, and
JavaScript, it will be beneficial if you’ve gone through the
prior projects in this course. We’ll be building upon
foundational concepts introduced in earlier chapters.

5. A Peek at the End Goal
Imagine a sleek webpage. On the top left corner, there’s
a hamburger icon (three stacked lines). When clicked, a
menu slides in from the left, revealing links to different
sections of the website. This sliding effect is smooth,
making the user experience feel polished and
professional.
Now, within our main content, there’s a button labeled
“Learn More.” Upon clicking it, the background dims, and
a centered modal window appears, containing more
details or perhaps a sign-up form. Clicking a close icon
or anywhere outside the modal will hide it again,
returning the user to the main content.
Sounds exciting, right? Well, that’s what we are about to
build! So, buckle up, and let’s get started on this fantastic
journey to add more interactive elements to your web
development toolkit. On to the next chapter where we
begin with our project’s HTML structure!

Project HTML
Welcome to the HTML section of our sixth project: the
Menu Slider & Modal! This is where we lay down the
foundation of our project. Remember, a good structure in

your HTML is crucial to making your CSS and JavaScript
integration easier and more efficient.

Introduction
HTML (HyperText Markup Language) is the backbone of
any web page. It provides the structure, while CSS styles
it and JavaScript brings it to life. In this chapter, we’ll
focus on creating a semantic and accessible structure for
our Menu Slider and Modal.

Setting up the Basic HTML Structure
To begin with, we will set up a basic HTML5 template.
“`html
<!DOCTYPE html>
<html lang=“en”>
<head>

<meta charset=“UTF-8”>
<meta name=“viewport” content=“width=device-width,

initial-scale=1.0”>
<title>Menu Slider & Modal</title>
<link rel=“stylesheet” href=“styles.css”>

</head>
<body>
</body>
<script src=“script.js”></script>
</html>
“`

Creating the Header Section
Our header will contain a navigation bar and a menu
icon which will trigger the sliding menu.

“`html
<header>

<div class=“container”>
<h1>Menu Slider & Modal</h1>
<button id=“menu-btn”>☰</button>

</div>
</header>
“`
Here:
- `container` will act as a wrapper to center our content.
- The `h1` provides a title.
- The `menu-btn` button will be used to trigger the sliding
menu.

Crafting the Sliding Menu
The sliding menu will be a sidebar that slides in and out
from the left. We’ll start with the basic structure, and the
sliding functionality will be added with JavaScript later
on.
“`html
<aside id=“menu-slider”>

Home
Services
About
Contact

</aside>
“`

Building the Modal Section
Our modal will be a simple pop-up that can be triggered
via a button click. For the sake of this example, we’ll use
it to display a subscription form.
“`html
<div id=“modal”>

<div class=“modal-content”>
×
<h2>Subscribe to Our Newsletter</h2>
<form action=””>
<input type=“email” placeholder=“Enter your

email”>
<button type=“submit”>Subscribe</button>
</form>

</div>
</div>
“`
In this structure:
- The outer `div` with id `modal` will act as a backdrop,
dimming the rest of the page when the modal is visible.
- `modal-content` contains the actual contents of the
modal.
- `close-btn` will be used to close the modal.
- The form within the modal prompts the user to
subscribe to a newsletter.

Wrapping Up
With the HTML structure set for the Menu Slider & Modal
project, you’re ready to move on to styling with CSS and
adding functionality with JavaScript. Always ensure your
HTML is clear and semantic, as this not only makes your

website more accessible but also eases the process of
styling and scripting.
In the next chapter, we will dive into styling our Navbar
and setting up the overall look of our project with CSS.

Navbar Styling
Welcome to Chapter 35, where we’ll be focusing on one
of the most fundamental components of a web
application’s UI: the Navbar. The navigation bar, or
navbar for short, typically contains links that help users
navigate through different sections or pages of a
website. Given its importance, styling the navbar is
crucial for both aesthetics and usability. Let’s dive into
how we can style our navbar for the “Menu Slider &
Modal” project.

1. The Basic Structure of a Navbar
Before we style, let’s remind ourselves of the HTML
structure we’re working with. A typical navbar might look
something like this:
“`html
<nav class=“navbar”>

<div class=“logo”>
<h1>MyWebsite</h1>

</div>
<ul class=“nav-menu”>

Home
About
Services
Contact

<div class=“menu-toggle”><i class=“fas fa-bars”></i>
</div>
</nav>
“`

2. Styling the Navbar Container
To start, let’s give our navbar a distinct look that
separates it from the rest of the page.
“`css
.navbar {

display: flex;
justify-content: space-between;
align-items: center;
background-color: 333;
padding: 10px 50px;
box-shadow: 0px 3px 10px rgba(0, 0, 0, 0.2);

}
“`
- `display: flex;` ensures that the navbar’s child elements
are aligned in a row.
- `justify-content: space-between;` evenly distributes the
child elements across the navbar.
- `box-shadow:` adds a subtle shadow, making the
navbar appear slightly elevated from the page.

3. Styling the Logo
Our logo is the brand’s representation; it should stand
out but not overpower other elements.
“`css
.navbar .logo h1 {

color: fff;
margin: 0;
font-size: 1.5rem;
text-transform: uppercase;
letter-spacing: 2px;

}
“`

4. Styling the Menu
Next, let’s style the menu links. A modern practice is to
use a horizontal list with spacing between items.
“`css
.nav-menu {

list-style-type: none;
padding: 0;
display: flex;
gap: 20px;

}
.nav-menu li a {

color: fff;
text-decoration: none;
transition: color 0.3s ease;

}
.nav-menu li a:hover {

color: 007BFF; /* A shade of blue for hover effect */
}
“`

5. Styling the Menu Toggle

This is the button users will click to see the menu on
smaller screens:
“`css
.menu-toggle {

display: none; /* Initially hidden on desktop */
font-size: 1.5rem;
color: fff;
cursor: pointer;

}
/* Media query to show the menu toggle on smaller
screens */
@media (max-width: 768px) {

.menu-toggle {
display: block;

}
.nav-menu {

display: none; /* Hide menu on mobile by default */
flex-direction: column;
gap: 10px;
position: absolute;
top: 60px; /* height of the navbar */
left: 0;
background-color: 333;
width: 100%;

}
.nav-menu.active { /* This class will be added via JS

to show the menu */
display: flex;

}

}
“`

6. Additional Touches
To further refine our navbar, consider adding transitions
or animations for a smoother user experience. For
instance:
“`css
.nav-menu li a {

transition: all 0.3s ease;
}
“`
This will ensure that changes to properties like color,
when hovering over the menu items, are gradual and
smooth.

Conclusion
With these styles, our navbar is not only functional but
also visually appealing. A well-styled navbar enhances
user experience and guides them seamlessly through
your application. As always, feel free to adjust colors,
sizes, and other properties to better fit the overall design
and theme of your website.
In the next chapter, we’ll explore styling the header and
modal components, diving deeper into the world of CSS
and improving our project’s look and feel. Stay tuned!

Header & Modal Styling
Welcome back! Having set up the basic structure for our
Menu Slider & Modal project, it’s time to give our header
and modal some appealing visuals. Styling is a crucial
part of any web project. It enhances the user experience
and ensures your application is pleasant to the eyes. In

this chapter, we’ll focus on styling the header and the
modal using pure CSS.

1. Styling the Header
Our header typically contains the website’s title and
perhaps a navigation menu button. Let’s make it stand
out but still maintain a level of simplicity.
HTML Structure Reminder:
“`html
<header>

<h1>Our Website</h1>
<button id=“menu-btn”>Menu</button>

</header>
“`
CSS:
“`css
/* Base Styling for the Header */
header {

display: flex;
justify-content: space-between;
align-items: center;
padding: 1rem 2rem;
background-color: 333;
color: white;
box-shadow: 0px 3px 10px rgba(0, 0, 0, 0.2);

}
header h1 {

font-size: 2rem;
}

menu-btn {
background-color: 555;
border: none;
color: white;
padding: 0.5rem 1rem;
cursor: pointer;
border-radius: 5px;
transition: background-color 0.3s;

}
menu-btn:hover {

background-color: 777;
}
“`
Here, we’ve used a flexbox layout for the header to
space out the title and the button. The `box-shadow`
gives a subtle elevation effect to the header.

2. Styling the Modal
The modal is a crucial part of this project. It should grab
the user’s attention, yet not be too distracting.
HTML Structure Reminder:
“`html
<div id=“modal”>

<div class=“modal-content”>
×
<h2>Modal Title</h2>
<p>Some content here…</p>

</div>
</div>

“`
CSS:
“`css
/* Base Styling for the Modal */
modal {

display: none;
position: fixed;
top: 0;
left: 0;
width: 100vw;
height: 100vh;
background-color: rgba(0, 0, 0, 0.7);
z-index: 1000;
align-items: center;
justify-content: center;

}
.modal-content {

background-color: fff;
padding: 2rem;
width: 70%;
max-width: 500px;
border-radius: 10px;
box-shadow: 0px 5px 20px rgba(0, 0, 0, 0.3);

}
.close-btn {

position: absolute;
top: 10px;
right: 15px;

font-size: 1.5rem;
cursor: pointer;
transition: color 0.3s;

}
.close-btn:hover {

color: red;
}
“`
The outer `modal` div stretches across the whole
viewport and has a semi-transparent background to give
focus to the modal content. The `.modal-content` div
holds our actual modal content and stands out against
the dark background, thanks to its white color.
The `close-btn` is positioned in the top-right corner of the
modal. We’ve also added a hover effect to provide
feedback to the user.

Conclusion
With the header and modal now styled, our project is
starting to take shape. Styling plays a vital role in
dictating the feel and atmosphere of an application, and
by now, you should have a better understanding of how
to achieve this using pure CSS.
In the next chapter, we’ll delve into the JavaScript behind
the Menu and Modal Toggle functionalities, bringing our
project to life!

Menu & Modal Toggle
In this chapter, we’ll learn how to implement a toggle
mechanism for our menu and modal using the Document
Object Model (DOM) and Cascading Style Sheets
(CSS). Toggles are frequently used in web design to
show or hide content upon user interaction. They

enhance user experience by providing a dynamic
interface.

1. The HTML Structure:
Before diving into the JavaScript and CSS for our toggle,
let’s set up the basic HTML structure:
“`html
<div id=“menu-container”>

<button id=“menu-button”>Menu</button>
<div id=“menu-content” class=“hidden”>

Home
About
Services

</div>
</div>
<button id=“open-modal-btn”>Open Modal</button>
<div id=“myModal” class=“modal hidden”>

<div class=“modal-content”>
×

<p>Welcome to our website!</p>

</div>
</div>
“`
Note: We’ve added the class `hidden` to both the `menu-
content` and `myModal` to hide them initially.

2. Styling the Toggle:

The `hidden` class is crucial as it will help in toggling the
display of our menu and modal:
“`css
.hidden {

display: none;
}
.menu {

/* Add general styling for the menu here */
}
.modal {

position: fixed;
z-index: 1;
left: 0;
top: 0;
width: 100%;
height: 100%;
background-color: rgba(0,0,0,0.4);

}
.modal-content {

background-color: fefefe;
margin: 15% auto;
padding: 20px;
border: 1px solid 888;
width: 80%;

}
“`

3. The JavaScript Toggle Mechanism:

Using JavaScript, we can easily toggle the visibility of
our menu and modal:
“`javascript
document.addEventListener(‘DOMContentLoaded’,
function() {

const menuBtn = document.getElementById(“menu-
button”);

const modalBtn = document.getElementById(“open-
modal-btn”);

const closeModalBtn =
document.getElementById(“close-modal-btn”);

const menuContent =
document.getElementById(“menu-content”);

const myModal =
document.getElementById(“myModal”);

menuBtn.addEventListener(“click”, function() {
toggleVisibility(menuContent);

});
modalBtn.addEventListener(“click”, function() {

toggleVisibility(myModal);
});
closeModalBtn.addEventListener(“click”, function() {

toggleVisibility(myModal);
});
function toggleVisibility(element) {

if (element.classList.contains(‘hidden’)) {
element.classList.remove(‘hidden’);
} else {
element.classList.add(‘hidden’);
}

}
});
“`
The above script listens for the `DOMContentLoaded`
event, ensuring our JavaScript runs only after the entire
HTML document has been completely loaded. We’ve
defined a `toggleVisibility` function that toggles the
visibility of an element by adding or removing the
`hidden` class.

Conclusion:
By the end of this chapter, you’ve learned how to use
JavaScript and CSS in tandem to create a toggle
mechanism for a menu and a modal. By integrating this
knowledge into your web projects, you can create a
more interactive and dynamic user interface.

Section 8: Project 7 -
Hangman Game | DOM, SVG,
Events

Project Intro
Welcome to our seventh project - The Hangman Game!
This classic word game not only tests your vocabulary
but also provides a delightful user experience with the
help of SVG for graphics, DOM for dynamic content
manipulation, and JavaScript events to capture user
inputs. By the end of this project, you’ll have a fully
functional Hangman game that you can show off to your
friends or even include in your web portfolio.

Objective of the Game:

The aim of the Hangman game is straightforward. A
word or phrase is chosen at random, and the player
must guess the word letter by letter. For every wrong
guess, a part of a “hangman” figure is drawn. The game
ends when the figure is complete (indicating all guesses
were wrong) or the word/phrase is entirely guessed
correctly.

What You’ll Learn:
- SVG (Scalable Vector Graphics): You’ll understand how
to use SVG to draw and animate the hangman figure.
SVGs are a powerful way to add vector-based graphics
to your webpage, and they can be manipulated using
CSS and JavaScript.
- DOM Manipulation: As with our previous projects, the
DOM plays a crucial role. You’ll be updating the display
based on user guesses, revealing letters, showing
notifications, and more.
- JavaScript Events: User input is vital in the Hangman
game. You’ll be harnessing keyboard events to capture
user guesses, button click events for game controls, and
more.
- Game Logic: Behind every game lies a set of rules and
logic. You’ll be setting up conditions to check player
guesses, determine when the game is won or lost, and
more.

Why The Hangman Game?
Games have always been a fantastic way to learn
coding. They introduce challenges that are slightly
different from standard web development tasks and
encourage thinking from both a developer and a player’s
perspective. Plus, games are engaging! They provide
immediate feedback, making the coding and testing
process fun.

Project Structure:
- We’ll start by designing the game visually, setting up
our main layout, and drawing our hangman using SVG.
- The primary styling will be set up, ensuring a
responsive and engaging design.
- We’ll introduce game mechanics, setting up the array of
words/phrases and the functionality to select one at
random.
- User inputs will be captured using JavaScript events.
- Based on user inputs, we’ll provide feedback by
revealing correct letters or drawing parts of the hangman
for incorrect guesses.
- Additional features, such as popups and notifications,
will further enhance our game, providing the player with
instructions, feedback, or options to play again.

Prerequisites:
While this is a standalone project, it’s beneficial if you
have a basic understanding of HTML, CSS, and
JavaScript, as we’ll dive deep into some advanced
topics. If you’re entirely new, I recommend going through
the previous sections of this book to build a solid
foundation.

In conclusion, the Hangman game is an exciting project
that blends fun with learning. As we progress through
this section, remember to test your game frequently and
enjoy the process. By the end of it, not only will you have
a deeper understanding of web development techniques,
but you’ll also have a game to play and share. Let’s get
started!

Draw Hangman With SVG

SVG, or Scalable Vector Graphics, is an XML-based
format for two-dimensional graphics. The beauty of SVG
is that it can scale indefinitely without losing any quality,
making it a popular choice for web graphics. In this
chapter, we’ll utilize SVG to draw the iconic hangman
figure step by step.

Getting Started with SVG
SVG graphics are defined in XML, which means every
element and attribute in the SVG is accessible via your
JavaScript, allowing for dynamic creation and
manipulation.
Here’s a basic structure of an SVG:
“`xml
<svg width=“300” height=“300”
xmlns=“http://www.w3.org/2000/svg”>

<!— SVG content goes here —>
</svg>
“`
This defines an SVG canvas of 300x300 units. Anything
drawn outside of this area will be clipped out.

Setting Up the Hangman Stand
Before drawing the hangman figure itself, let’s set up the
hangman stand.
“`xml
<svg width=“200” height=“250”
xmlns=“http://www.w3.org/2000/svg”>

<!— Vertical line —>
<line x1=“60” y1=“20” x2=“60” y2=“200”

style=“stroke:black;stroke-width:5”/>
<!— Horizontal line —>

<line x1=“10” y1=“20” x2=“150” y2=“20”
style=“stroke:black;stroke-width:5”/>

<!— Small vertical line —>
<line x1=“140” y1=“20” x2=“140” y2=“40”

style=“stroke:black;stroke-width:5”/>
</svg>
“`

Drawing the Hangman with SVG
To break the drawing process into manageable steps,
we’ll draw the hangman piece by piece. For each
incorrect guess, a new part of the hangman will appear.
1. Head
Using the `<circle>` SVG element:
“`xml
<circle cx=“140” cy=“60” r=“20” stroke=“black” stroke-
width=“3” fill=“white” />
“`
Here, `cx` and `cy` determine the circle’s center, while `r`
defines the radius.
2. Body
Using the `<line>` SVG element:
“`xml
<line x1=“140” y1=“80” x2=“140” y2=“120”
style=“stroke:black;stroke-width:3”/>
“`
3. Left Arm
“`xml
<line x1=“140” y1=“90” x2=“120” y2=“110”
style=“stroke:black;stroke-width:3”/>
“`

4. Right Arm
“`xml
<line x1=“140” y1=“90” x2=“160” y2=“110”
style=“stroke:black;stroke-width:3”/>
“`
5. Left Leg
“`xml
<line x1=“140” y1=“120” x2=“120” y2=“150”
style=“stroke:black;stroke-width:3”/>
“`
6. Right Leg
“`xml
<line x1=“140” y1=“120” x2=“160” y2=“150”
style=“stroke:black;stroke-width:3”/>
“`

Dynamic Drawing with JavaScript
Instead of showing the entire figure right away, we want
to draw each part in response to incorrect guesses. This
means dynamically adding SVG elements using
JavaScript.
Here’s a sample code snippet to show the head after
one incorrect guess:
“`javascript
const svgNamespace = “http://www.w3.org/2000/svg”;
function drawHead() {

let circle =
document.createElementNS(svgNamespace, “circle”);

circle.setAttribute(“cx”, “140”);
circle.setAttribute(“cy”, “60”);
circle.setAttribute(“r”, “20”);

circle.setAttribute(“stroke”, “black”);
circle.setAttribute(“stroke-width”, “3”);
circle.setAttribute(“fill”, “white”);
document.querySelector(“svg”).appendChild(circle);

}
“`
Repeat similar functions for the body, arms, and legs.
Trigger the drawing functions based on the game’s state
and the number of incorrect guesses.

Conclusion
Drawing with SVG provides immense flexibility when
creating graphics for web applications. In this chapter,
we explored how to use SVG to dynamically draw the
hangman figure for our game. By integrating SVG with
JavaScript, we can make our game more interactive and
responsive to player actions. As you progress with the
Hangman game project, you’ll appreciate the power and
flexibility SVG brings to web development.

Main Styling
Welcome to Chapter 40 of our journey through creating a
Hangman game. Now that we have a sketch of our
hangman using SVG, it’s time to give our game a visual
appeal that is inviting and intuitive. We’ll cover the main
styling for our Hangman game, focusing on creating an
engaging user experience.

1. Setting up the Basic Layout
Before diving into the specific elements, let’s define
some base styles to create a consistent look.
“`css
* {

margin: 0;
padding: 0;
box-sizing: border-box;
font-family: ‘Arial’, sans-serif;

}
body {

background-color: f4f4f4;
color: 333;
font-size: 16px;
line-height: 1.5;

}
.container {

max-width: 800px;
margin: 2em auto;
background-color: fff;
padding: 20px;
box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);

}
“`
This sets a neutral background color, a default font, and
a centered container for our game.

2. Hangman Board Styling
Our hangman board will be the main attraction, so let’s
ensure it looks appealing.
“`css
.hangman-board {

display: flex;
justify-content: space-between;

margin-bottom: 20px;
}
.hangman-figure {

flex: 1;
display: inline-block;
position: relative;
width: 250px;
height: 250px;

}
“`

3. Word Placeholder
The word that players are guessing will be displayed with
underscores for each unguessed letter. We’ll style these
so they’re easy to read and spaced nicely.
“`css
.word {

display: flex;
justify-content: center;
align-items: center;
height: 50px;
margin-bottom: 20px;

}
.letter, .placeholder {

margin: 0 5px;
font-size: 2em;
font-weight: bold;
display: inline-block;
width: 30px;

border-bottom: 2px solid 333;
text-align: center;

}
“`

4. Keyboard
For our game, players will select letters from an on-
screen keyboard. Let’s style these buttons:
“`css
.keyboard {

display: flex;
flex-wrap: wrap;
justify-content: center;

}
.key {

margin: 5px;
padding: 10px 15px;
border: none;
background-color: f4f4f4;
cursor: pointer;
border-radius: 4px;
transition: background-color 0.2s ease;

}
.key:hover {

background-color: ddd;
}
“`

5. Notification Pop-up

We’ll use a pop-up to notify players when they select a
repeated letter.
“`css
.notification {

position: absolute;
top: 10px;
right: 10px;
background-color: e74c3c;
color: fff;
padding: 10px 20px;
border-radius: 4px;
visibility: hidden;
opacity: 0;
transition: opacity 0.3s ease, visibility 0.3s ease;

}
.show-notification {

visibility: visible;
opacity: 1;

}
“`

6. Responsiveness
Finally, let’s ensure our game looks good on smaller
screens.
“`css
@media screen and (max-width: 768px) {

.hangman-board {
flex-direction: column;

}

.hangman-figure, .word, .keyboard {
width: 100%;
text-align: center;

}
}
“`
With these styles in place, our Hangman game should
now have a polished and user-friendly interface. In the
next chapter, we will dive into creating pop-ups and
notifications to guide our player through the game. Stay
tuned!

Popup & No�fica�on
Styling
Welcome back to our exciting journey through the
Hangman Game project! In this chapter, we’re going to
focus on the design and styling aspects of popups and
notifications within our game. These elements are
essential in creating an interactive user experience,
guiding the player through their gameplay journey, and
ensuring that they are informed about their progress or
mistakes.

What We’ll Cover
1. Understanding the importance of popups and
notifications in a game.
2. Structuring the HTML for our popups and notifications.
3. Styling these elements using CSS for a smooth and
interactive design.

1. Understanding the Importance

In any game, feedback is crucial. It allows players to
understand what’s going on, whether they’re
progressing, failing, or achieving something significant.
Popups and notifications are classic ways of providing
this feedback.
For our Hangman Game:
- Popups might be used to indicate game over scenarios,
such as when the player wins or loses.
- Notifications will be handy for letting the player know if
they’ve chosen a letter that’s already been selected or if
their selected letter isn’t in the word.

2. HTML Structure
Before styling, we need a proper HTML structure in
place. For simplicity, we’ll create a basic modal for both
our popup and notification.
“`html
<!— Popup Modal —>
<div class=“popup-modal”>

<div class=“popup-content”>
×
<h2>Game Over!</h2>
<p>You guessed the word correctly!

Congratulations!</p>
</div>

</div>
<!— Notification Modal —>
<div class=“notification-modal”>

<p>You’ve already chosen this letter. Try another
one!</p>
</div>
“`

3. Styling with CSS
Now, let’s make these popups and notifications visually
appealing and in line with the theme of our game.
Popup Modal Styling:
“`css
.popup-modal {

display: none; /* Hidden by default */
position: fixed;
top: 0;
left: 0;
width: 100%;
height: 100%;
background-color: rgba(0, 0, 0, 0.7); /* Semi-black

background */
z-index: 1; /* Ensure it appears on top */

}
.popup-content {

background-color: fefefe;
margin: 15% auto; /* Centered vertically */
padding: 20px;
border-radius: 10px;
width: 70%;
box-shadow: 0 5px 15px rgba(0, 0, 0, 0.3);

}
.close-btn {

color: aaa;
float: right;
font-size: 28px;

font-weight: bold;
}
.close-btn:hover,
.close-btn:focus {

color: 000;
text-decoration: none;
cursor: pointer;

}
“`

Notification Modal Styling:
“`css
.notification-modal {

background-color: ff6666; /* A reddish color indicating
an error */

color: fff;
position: fixed;
bottom: 20px;
left: 50%;
transform: translateX(-50%); /* Centering horizontally

*/
padding: 10px 20px;
border-radius: 5px;
box-shadow: 0 2px 10px rgba(0, 0, 0, 0.2);
display: none; /* Hidden by default */

}
“`

Bringing Them to Life with JavaScript:

To display the popups and notifications, we’ll need to
make use of the DOM.
For example, if a player chooses a repeated letter:
“`javascript
const notificationModal =
document.querySelector(‘.notification-modal’);
// Somewhere in your letter-checking logic
if (letterIsRepeated) {

notificationModal.style.display = ‘block’;
setTimeout(() => {

notificationModal.style.display = ‘none’; // Hide
after 2 seconds

}, 2000);
}
“`
Similarly, for the popup modal, you’ll toggle its visibility
based on game events, such as game over scenarios.

Conclusion
And that wraps up our chapter on styling popups and
notifications! With these elements in place, our Hangman
Game will now be able to provide timely and visually
appealing feedback to the player. Remember, the user
experience is just as important as the core game logic. In
our next chapter, we’ll delve deeper into the game
mechanics with “Display Words Function”. Stay tuned!

Display Words Func�on
In the Hangman game, the core is to guess a word. The
word can be random or selected from a list of predefined
words. To make our game engaging, we will maintain a
list of words and select a random word for the player to

guess. The `Display Words Function` will be responsible
for presenting this word on the screen, masking the
letters, and revealing them as the player makes correct
guesses.

1. Setting up the Word Array
Before diving into the function, let’s first create an array
of possible words for our game:
“`javascript
const words = [“javascript”, “python”, “typescript”, “ruby”,
“java”];
“`
We’ve chosen a few programming languages for our
Hangman game. Feel free to add as many words as you
like.

2. Selecting a Random Word
We need to pick a random word from our `words` array.
Let’s create a function to achieve this:
“`javascript
function getRandomWord() {

return words[Math.floor(Math.random() *
words.length)];
}
“`
Here, `Math.random()` gives a random number between
0 and 1, and multiplying it with the length of the `words`
array will give a number between 0 and the array length.
`Math.floor()` ensures we get an integer value which is
used as an index to fetch a word.

3. Display Words Function

The primary goal of this function is to display the word on
the game board with the letters masked (typically using
underscores “_”).
Let’s define our function:
“`javascript
let selectedWord = getRandomWord();
let displayWord = [];
function displayWordsFunction() {

displayWord = selectedWord.split(”).map(letter =>
‘_’);

updateDisplay();
}
“`
Here, we’re breaking the `selectedWord` into individual
letters using the `split()` method and then using the
`map()` function to replace each letter with an
underscore.

4. Update Display Function
This function will be responsible for updating the word
display on our HTML:
“`javascript
function updateDisplay() {

const displayElement =
document.getElementById(‘wordDisplay’);

displayElement.innerHTML = displayWord.join(‘ ‘);
}
“`
Make sure you have an element with the id
`wordDisplay` in your HTML to display the word.

5. Revealing the Guessed Letters
As the player makes correct guesses, we need to reveal
the corresponding letters in the word. Let’s add this
functionality:
“`javascript
function revealLetter(letter) {

selectedWord.split(”).forEach((char, index) => {
if (char === letter) {
displayWord[index] = char;
}

});
updateDisplay();

}
“`
The `revealLetter` function checks each character in the
`selectedWord`. If it matches the guessed letter, it
updates the `displayWord` array at the respective index.

6. Final Touches
To initialize our game, let’s call the
`displayWordsFunction()` when the game starts or
resets:
“`javascript
function startGame() {

selectedWord = getRandomWord();
displayWordsFunction();
// any other game initialization code…

}
“`

Conclusion
Our `Display Words Function` is the cornerstone of our
Hangman game. It selects a random word, masks it for
the player, and reveals the letters as they are guessed
correctly. Coupled with the game’s logic and user
interface, it forms an engaging experience for players. In
the subsequent chapters, we will delve into handling
user input and adding more features to our game.

Le�er Press Event Handler
Handling events is a fundamental aspect of interactive
web applications. In our Hangman game, detecting a
user’s letter input is pivotal to the game’s functionality.
This chapter focuses on the Letter Press Event Handler
that facilitates this interaction. Let’s dive into how to set it
up and use it effectively within our game.

Event Handlers in JavaScript
Before delving into the specifics of the Letter Press
Event Handler, it’s important to understand event
handlers in JavaScript. An event handler is a function
that runs when a specific event occurs. For instance,
when a button is clicked, a certain function can be set to
run. The process of setting a function to run in response
to an event is called *binding* an event to an element.

Setting Up the Letter Press Event Handler
1. HTML Structure: Ensure that your Hangman game
has an interactive section, likely an input box or a series
of buttons, where players can enter or select letters.
“`html
<div id=“letter-box”>

<button class=“letter”>A</button>
<button class=“letter”>B</button>

<!—… repeat for all letters —>
</div>
“`
2. JavaScript Event Binding: To bind the press event to
each letter, we’ll utilize the `addEventListener` method.
“`javascript
document.querySelectorAll(‘.letter’).forEach(letterButton
=> {

letterButton.addEventListener(‘click’,
handleLetterPress);
});
“`

Implementing the `handleLetterPress` Function
Here’s where the magic happens. When a letter is
clicked, the `handleLetterPress` function is triggered.
“`javascript
function handleLetterPress(event) {

// Extract the letter from the clicked button
const chosenLetter = event.target.innerText;
// Check if the chosen letter exists in the word to be

guessed
if (wordToGuess.includes(chosenLetter)) {

// … reveal the letter in the display
} else {

// … update wrong guesses and potentially draw a
part of the hangman

}
// Disable the button to prevent repeated guesses
event.target.disabled = true;

}
“`

Understanding Event Object
In the above code, we used the `event` parameter. This
parameter gives us access to the event object, which
contains details about the event, such as which element
triggered it, the type of event, and more.
- `event.target`: Refers to the element that triggered the
event. In our case, it’s the button representing a letter.

Enhancing the Experience
- Key Presses: Instead of clicking on buttons, you can
also let users type in their guesses. Use the `keydown`
event for this:
“`javascript
document.addEventListener(‘keydown’, function(event) {

// Ensure the key pressed is a valid letter and hasn’t
been guessed already

if (isLetter(event.key) && !isGuessed(event.key)) {
handleLetterPress(event.key.toUpperCase());

}
});
“`
- Feedback: Provide immediate feedback to the user.
Maybe the background of the letter button changes color
based on whether the guess was correct or incorrect.

Conclusion
The Letter Press Event Handler is crucial in allowing
interaction in our Hangman game. It helps capture user
input and makes the game responsive and dynamic. By

understanding how event handlers work in JavaScript
and how to effectively bind and handle them, you’ve
taken a significant step in enhancing user interactivity in
web applications.
Remember, while our focus was on the Hangman game,
the principles of event handling are universally
applicable in JavaScript and are key to creating
interactive web applications.
In the next chapter, we’ll explore how to handle wrong
guesses, update the display to draw parts of the
hangman, and offer players a chance to play again once
the game concludes. Stay tuned!

Wrong Le�ers & Play Again
Welcome back to our Hangman Game project! In this
chapter, we’ll focus on two crucial parts of the game’s
functionality: handling wrong letters and providing a way
for players to play again once the game concludes.

1. Setting the Foundation
Before diving into the code, let’s understand the two
functionalities:
- Wrong Letters: When a user selects a letter that isn’t in
the word, we need a way to indicate this to the user. This
often comes in the form of updating the hangman
drawing and notifying the user of their incorrect choice.
- Play Again: After the user either wins or loses the
game, we should provide an option to play again without
having to refresh the page.

2. Handling Wrong Letters
2.1 Updating the Hangman Drawing
For this project, we’re using SVG to draw the hangman.
Every incorrect guess will result in an additional part of

the hangman being drawn.
Let’s set this up in our JavaScript:
“`javascript
const figureParts = document.querySelectorAll(‘.figure-
part’);
let wrongLetters = [];
function updateHangmanDrawing() {

figureParts.forEach((part, index) => {
const errors = wrongLetters.length;
if (index < errors) {
part.style.display = ‘block’;
} else {
part.style.display = ‘none’;
}

});
}
“`
This function will show parts of the hangman based on
the number of wrong letters.
2.2 Displaying Wrong Letter Choices
We should also notify the user of the letters they’ve
chosen that are incorrect. This provides feedback and
avoids repetition of the same incorrect letter.
“`javascript
const wrongLetterEl =
document.getElementById(‘wrong-letters’);
function updateWrongLettersEl() {

wrongLetterEl.innerHTML = `
${wrongLetters.length > 0 ? ‘<p>Wrong</p>’ : ”}

${wrongLetters.map(letter => `${letter}
`).join(‘, ‘)}

`;
updateHangmanDrawing();

}
“`
Every time a player inputs a wrong letter, this function
will update a dedicated element on the page to show
those letters.

3. Play Again Functionality
3.1 Play Again Button
First, let’s add a simple button that will appear when the
game concludes.
“`html
<div id=“play-again-btn” class=“popup” style=“display:
none;”>

<h2>Play Again?</h2>
<button id=“play-button”>Start Over</button>

</div>
“`
3.2 Implementing the Play Again Logic
Now, in our JavaScript, let’s reset the game when this
button is clicked:
“`javascript
const playAgainBtn = document.getElementById(‘play-
button’);
playAgainBtn.addEventListener(‘click’, () => {

// Empty the wrongLetters array
wrongLetters.splice(0);

// Reset game status
finalMessage.innerText = ”;
popup.style.display = ‘none’;
// Reset UI elements - wrong letters, hangman

drawing
updateWrongLettersEl();
// … any other game reset functionality you have
// Start a new game instance
initGame();

});
“`
Remember to also create and define the `initGame`
function, which will be responsible for starting a fresh
game instance.

4. Wrapping Up
With these functionalities in place, the Hangman game
becomes interactive and user-friendly. Handling wrong
letter choices appropriately and providing feedback
improves the user experience, while the Play Again
option keeps players engaged.

Section 9: Project 8 - Meal
Finder | Fetch & MealDB API

Project Intro
Welcome to Project 8, the Meal Finder application! This
particular project is an exciting journey into the world of
API interaction and displaying dynamic content on the
web. As the name suggests, our goal here is to build a
web-based application that helps users find meals based

on a specific query and explore detailed information
about them. Here’s what you can expect from this
project:

Overview
In this project, we’ll be developing a Meal Finder
application, where users can search for meals, get a list
of matching results, view a single meal’s details, and
even receive a random meal suggestion. All of this will
be powered by the MealDB API, a free-to-use database
containing meal recipes and details.

Why This Project?
1. Understanding APIs: APIs (Application Programming
Interfaces) allow different software to communicate and
share data. In the world of web development, knowing
how to work with APIs is a crucial skill, and this project
offers a practical application of it.
2. Deep Dive into Fetch: The Fetch API provides a
JavaScript interface for accessing and manipulating
parts of the HTTP pipeline, such as requests and
responses. We will be using the Fetch API extensively to
retrieve data from the MealDB.
3. Dynamic UI Updates: This project will give you hands-
on experience in updating the User Interface dynamically
based on the data fetched from an external source.

What Will We Build?
1. Search Functionality: Users can input meal names or
ingredients to search for matching meals.
2. Display Meals: We’ll showcase the meals in a grid
format, providing a visual treat for the user.
3. Detailed View: When a user clicks on a meal, they can
view detailed information about it, including ingredients,
preparation steps, and even a video tutorial.

4. Random Meal Suggestion: Add a fun feature where
users can get a random meal suggestion, helping them
discover new recipes.

Technologies & Techniques
- HTML & CSS: Our trusted companions. We’ll use them
for creating and styling our web page.
- JavaScript: This will be the backbone of our project.
We’ll use it for fetching data, manipulating the DOM, and
adding interactivity.
- Fetch API: For making requests to the MealDB API and
fetching data.
- Async/Await: A modern way to handle asynchronous
operations in JavaScript. We’ll utilize this for a more
readable and clean code structure when working with the
Fetch API.
- JSON: Data fetched from the API will be in JSON
format. We’ll parse this data and utilize it to update our
webpage dynamically.

Challenges Ahead
1. Handling API Responses: Not every search query will
return results. Learning how to handle such scenarios
gracefully enhances the user experience.
2. Dynamic DOM Manipulation: Based on the data
fetched, our application’s appearance will change
dynamically.
3. Error Handling: APIs can sometimes fail, or there
might be issues with connectivity. Proper error handling
ensures that our application is robust and user-friendly.
In the following chapters, we’ll delve into the nitty-gritty
details of building the Meal Finder application. From
setting up the basic structure in HTML to styling our
components with CSS and finally bringing everything to

life with JavaScript. So, roll up your sleeves and let’s get
cooking!
Note: Always refer to the MealDB API documentation
while working on this project. It provides valuable
insights into request endpoints, response formats, and
more. Always respect the API usage guidelines and
terms of service.

Project HTML & Base CSS
In this chapter, we’ll lay the foundation for our ‘Meal
Finder’ project. By the end, you’ll have a visually
appealing HTML structure complemented by base CSS
styling. This will serve as the foundation upon which we
will interact with the MealDB API in the subsequent
chapters.

Step 1: Setting up the HTML structure
For our Meal Finder app, we’ll need an input field for
searching, a button to trigger the search, a container to
display our results, and an area to show detailed
information about a selected meal.
“`html
<!DOCTYPE html>
<html lang=“en”>
<head>

<meta charset=“UTF-8”>
<meta name=“viewport” content=“width=device-width,

initial-scale=1.0”>
<title>Meal Finder</title>
<link rel=“stylesheet” href=“styles.css”>

</head>
<body>

<div class=“container”>
<h1>Meal Finder</h1>
<div class=“search-box”>

<input type=“text” id=“search-input”
placeholder=“Search for a meal…”>

<button id=“search-btn”>Search</button>
</div>
<div class=“meal-list”></div>
<div class=“meal-details”></div>

</div>
</body>
</html>
“`

Step 2: Adding the Base CSS
For our base styling, we’ll make use of modern CSS
techniques, ensuring our app looks sleek and is also
responsive.
styles.css:
“`css
body {

font-family: ‘Arial’, sans-serif;
background-color: f4f4f4;
margin: 0;
padding: 0;

}
.container {

width: 80%;
margin: 2rem auto;

background-color: fff;
padding: 1rem;
box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);

}
h1 {

text-align: center;
color: 333;
margin-bottom: 1rem;

}
.search-box {

display: flex;
justify-content: center;
gap: 1rem;

}
search-input {

padding: 0.5rem 1rem;
font-size: 1rem;
border: 1px solid ccc;
border-radius: 5px;
flex: 2;

}
search-btn {

padding: 0.5rem 1rem;
background-color: 007BFF;
color: fff;
border: none;
border-radius: 5px;
cursor: pointer;

transition: background-color 0.3s;
}
search-btn:hover {

background-color: 0056b3;
}
.meal-list, .meal-details {

margin-top: 2rem;
}
“`

Summary
At this stage, our ‘Meal Finder’ project now has a basic
layout. With our structured HTML and base CSS styling,
we have a clean and intuitive interface ready. In the next
chapters, we will integrate the functionality to search for
meals using the MealDB API, display the results in our
app, and allow users to view detailed information about
each meal.

Search & Display Meals
From API
In this chapter, we will delve deep into the world of APIs,
specifically focusing on the MealDB API. We’ll take a
look at how to integrate it into our Meal Finder project,
allowing users to search for meals and view the details.
By the end of this chapter, you’ll have hands-on
experience with fetching data from an API and rendering
it dynamically to the DOM using vanilla JavaScript.

Understanding the MealDB API
Before diving into the code, let’s familiarize ourselves
with the MealDB API. This API provides recipe meal

information and is free to use. You can search for meals,
look up specific meals by their ID, and even fetch
random meal suggestions.
Endpoint for searching meals by name:
“`
https://www.themealdb.com/api/json/v1/1/search.php?s=
{meal-name}
“`
Replace `{meal-name}` with the meal you want to search
for. The returned JSON will contain an array of meals
that match the search.

Setting up the Search Functionality
1. HTML Structure
We’ll need an input field for the user to type in their meal
name and a button to trigger the search.
“`html
<input type=“text” id=“meal-search” placeholder=“Search
for meals…”>
<button id=“search-btn”>Search</button>
<div id=“meal-results”></div>
“`
2. JavaScript - Fetching the Data
To get the data from the API, we’ll use the Fetch API in
JavaScript. We’ll attach an event listener to our search
button to trigger the function.
“`javascript
const searchBtn = document.getElementById(‘search-
btn’);
const mealSearch = document.getElementById(‘meal-
search’);

const mealResults = document.getElementById(‘meal-
results’);
searchBtn.addEventListener(‘click’, fetchMeals);
function fetchMeals() {

const searchTerm = mealSearch.value.trim();
fetch(`https://www.themealdb.com/api/json/v1/1/searc

h.php?s=${searchTerm}`)
.then(response => response.json())
.then(data => displayMeals(data.meals));

}
“`

Displaying the Results
Once we get the meal data, we need to display it. We’ll
do this by iterating over the array of meals and creating a
card for each one.
“`javascript
function displayMeals(meals) {

if(!meals) {
mealResults.innerHTML = ‘<p>No meals found.

Try a different search!</p>’;
return;

}
const mealsHTML = meals.map(meal => `

<div class=“meal-card”>
<img src=”${meal.strMealThumb}”

alt=”${meal.strMeal}”>
<h3>${meal.strMeal}</h3>
<button

onclick=“fetchMealDetails(${meal.idMeal})”>View
Recipe</button>

</div>
`).join(”);
mealResults.innerHTML = mealsHTML;

}
“`
This function checks if there are any meals in the
returned array. If not, it shows a “No meals found”
message. Otherwise, it maps over the meals array,
generating HTML for each meal, and inserts it into the
DOM.

Fetching Detailed Meal Information
Our cards have a “View Recipe” button. When clicked,
we want to fetch more detailed information about the
meal. This requires another endpoint from the MealDB
API, which retrieves details based on meal ID.
Endpoint for meal details by ID:
“`
https://www.themealdb.com/api/json/v1/1/lookup.php?i=
{meal-id}
“`
The function to fetch and display the details could look
like:
“`javascript
function fetchMealDetails(id) {

fetch(`https://www.themealdb.com/api/json/v1/1/looku
p.php?i=${id}`)

.then(response => response.json())

.then(data => {
const meal = data.meals[0];
const detailsHTML = `

<h2>${meal.strMeal}</h2>
<img src=”${meal.strMealThumb}”

alt=”${meal.strMeal}”>
<p>${meal.strInstructions}</p>

`;
mealResults.innerHTML = detailsHTML;
});

}
“`
This function fetches the detailed meal data using the
provided ID, and then renders it to the DOM.

Conclusion
By now, you should have a functional Meal Finder that
allows users to search for meals using the MealDB API.
The results are displayed dynamically, and users can
view detailed recipes with just a click. Remember, APIs
offer a plethora of data that can be used to enhance your
web applications. The key lies in understanding the API
documentation, structuring your fetch requests
appropriately, and presenting the data to users in a user-
friendly manner.

Show Single Meal Page
Welcome back! In the last chapter, we saw how to fetch
meals and display them based on user queries. Now, we
are going to focus on how to show the details of a
selected meal on a dedicated page. By the end of this
chapter, you will have an interactive page where users
can click on a meal and view its details including
ingredients and preparation steps.

Objective:

- Fetch detailed data for a single meal using the MealDB
API.
- Display the meal details including image, name,
category, origin, ingredients, and preparation steps.

Getting Started:
To show the single meal page, we will be utilizing the
`idMeal` property which is unique to each meal and can
be used to fetch the detailed information of that meal
from the MealDB API.

1. HTML Structure:
Let’s first design the layout for our single meal page.
“`html
<div class=“single-meal”>

<div class=“single-meal-header”>

<h2 id=“meal-name”></h2>

</div>
<div class=“single-meal-info”>

<p>Category: <span id=“meal-
category”></p>

<p>Origin: <span id=“meal-
origin”></p>

</div>
<div class=“single-meal-ingredients”>

<h3>Ingredients:</h3>
<ul id=“ingredients-list”>

</div>
<div class=“single-meal-instructions”>

<h3>Instructions:</h3>

<p id=“meal-instructions”></p>
</div>

</div>
“`

2. CSS Styling:
For a better presentation, add some CSS for the single
meal display.
“`css
.single-meal-header {

display: flex;
align-items: center;

}
meal-img {

width: 150px;
height: 150px;
margin-right: 20px;
object-fit: cover;
border-radius: 50%;

}
.single-meal-info {

margin-top: 20px;
}
.single-meal-ingredients, .single-meal-instructions {

margin-top: 30px;
}
“`

3. JavaScript Functionality:

We will fetch and display the single meal’s details using
JavaScript.
“`javascript
function getSingleMealDetails(mealID) {

fetch(`https://www.themealdb.com/api/json/v1/1/looku
p.php?i=${mealID}`)

.then(response => response.json())

.then(data => {
const meal = data.meals[0];
displayMealDetails(meal);

})
.catch(error => console.error(‘Error fetching single

meal:’, error));
}
function displayMealDetails(meal) {

// Clear previous data
document.getElementById(‘meal-img’).src =

meal.strMealThumb;
document.getElementById(‘meal-name’).textContent

= meal.strMeal;
document.getElementById(‘meal-

category’).textContent = meal.strCategory;
document.getElementById(‘meal-origin’).textContent

= meal.strArea;
// List ingredients
const ingredientsList =

document.getElementById(‘ingredients-list’);
ingredientsList.innerHTML = ”;
for(let i = 1; i <= 20; i++) {

if(meal[`strIngredient${i}`]) {

const li = document.createElement(‘li’);
li.textContent = `${meal[`strIngredient${i}`]} -

${meal[`strMeasure${i}`]}`;
ingredientsList.appendChild(li);
}

}
// Display instructions
document.getElementById(‘meal-

instructions’).textContent = meal.strInstructions;
}
“`

4. Event Handling:
When a user clicks on a meal from the list, fetch its
details:
“`javascript
document.body.addEventListener(‘click’, (e) => {

if (e.target.classList.contains(‘meal-item’)) {
const mealID = e.target.getAttribute(‘data-mealid’);
getSingleMealDetails(mealID);

}
});
“`
Make sure that each meal displayed in the list has the
class `meal-item` and a `data-mealid` attribute with the
meal’s unique ID.

Wrapping Up:
You’ve successfully created a single meal page that
fetches detailed information about a meal and displays it
in a user-friendly format. Now, when users are intrigued

by a meal’s name or picture, they can dive deeper into
its ingredients and instructions.
In the next chapter, we will delve into how to display
random meals and style their presentation. Stay tuned!

Display Random Meal &
Single Meal CSS
Welcome back to Project 8: Meal Finder. In our previous
chapters, we’ve covered fetching meals from the
MealDB API and presenting them in a list format. Now,
we’re going to dive deeper into our project by styling our
Single Meal display and creating an attractive view for
randomly presented meals.

Why Focus on Styling?
The UI (User Interface) is one of the most crucial parts of
any web application. It determines how users interact
with the application and influences their overall
experience. A good UI should be intuitive and visually
appealing. By providing a captivating design for our
meals, we’re aiming to create a memorable experience
for our users, which will hopefully encourage them to use
our application more frequently.

Display Random Meal CSS
When we display a random meal, our aim is to make it
the centerpiece of the screen, giving it the emphasis it
deserves.
HTML Structure:
“`html
<div class=“random-meal”>

<img src=“meal-image.jpg” alt=“meal-name”
class=“random-meal-image”>

<div class=“random-meal-details”>
<h2 class=“random-meal-title”>Meal Name</h2>
<p class=“random-meal-description”>Short

description…</p>
</div>

</div>
“`
CSS Styling:
“`css
.random-meal {

display: flex;
align-items: center;
margin: 20px 0;
border-radius: 8px;
overflow: hidden;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);

}
.random-meal-image {

width: 150px;
height: 150px;
object-fit: cover;

}
.random-meal-details {

flex: 1;
padding: 10px;

}
.random-meal-title {

font-size: 24px;

font-weight: bold;
margin-bottom: 10px;

}
.random-meal-description {

font-size: 16px;
color: 555;

}
“`

Single Meal CSS
The single meal display will provide more details about a
particular meal, from its ingredients to its preparation
steps.
HTML Structure:
“`html
<div class=“single-meal”>

<img src=“meal-image.jpg” alt=“meal-name”
class=“single-meal-image”>

<div class=“single-meal-details”>
<h2 class=“single-meal-title”>Meal Name</h2>
<ul class=“ingredients-list”>
Ingredient 1
<!— … —>

<p class=“single-meal-instructions”>Cooking

instructions…</p>
</div>

</div>
“`

CSS Styling:
“`css
.single-meal {

display: flex;
margin: 30px 0;
border-radius: 8px;
overflow: hidden;
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.15);

}
.single-meal-image {

width: 300px;
height: 300px;
object-fit: cover;

}
.single-meal-details {

flex: 1;
padding: 20px;
display: flex;
flex-direction: column;
gap: 20px;

}
.single-meal-title {

font-size: 32px;
font-weight: bold;
margin-bottom: 15px;

}
.ingredients-list {

list-style-type: none;

padding: 0;
}
.ingredients-list li {

font-size: 18px;
color: 333;
margin: 5px 0;

}
.single-meal-instructions {

font-size: 18px;
color: 666;

}
“`

Conclusion
With the above CSS, we’ve successfully enhanced the
visual representation of our random and single meal
displays. A well-structured and visually appealing design
will not only make our application look professional but
also provide a pleasant experience for our users.

Section 10:

Project 9 - Expense Tracker |
Array Methods & Local
Storage

Project Intro

As we journey through the vast world of web
development, we’ve seen how the amalgamation of
HTML, CSS, and JavaScript can give life to a variety of
dynamic applications. From form validation to creating
interactive movie seat bookings, every project has added
a new feather to your web development cap. In this
project, we’ll delve into an essential tool that many
individuals use daily - an Expense Tracker. By the end of
this project, you’ll have built a dynamic application that
not only tracks expenses and income but also persists
data using local storage.

Project Overview
In today’s digital age, where the proliferation of mobile
applications has taken center stage, expense tracking
applications have seen a massive rise in popularity. They
help users monitor their spending habits, keep track of
savings, and provide insights into their financial health.
With the Expense Tracker project, we aim to equip you
with the skills to build your own version of this handy
tool.
The primary objective of our Expense Tracker is:
- To record and display transactions (both expenses and
income).
- To display the current balance, total income, and total
expenditure.
- To provide functionalities to add and delete
transactions.
- To store transaction data in the local storage, ensuring
data persistence even after refreshing the page.

Why This Project?
You might be wondering, why an Expense Tracker?
1. Practical Utility: The Expense Tracker is a practical
tool that many users would find beneficial in their daily

lives. Building applications that have real-world utility can
be rewarding and motivating.
2. Complexity: This project strikes a balance between
simplicity and complexity. It’s comprehensive enough to
challenge you but not overwhelmingly intricate that it
becomes a hurdle.
3. Diverse Skills Application: This project provides an
excellent platform to apply various skills like
manipulating the DOM, using high order array methods
like `forEach`, `map`, `filter`, and `reduce`, and
leveraging the local storage.

Technologies & Concepts Used
- HTML & CSS: Foundation of our Expense Tracker’s
frontend. You’ll be creating structured HTML templates
and styling them to make the application visually
appealing.
- JavaScript: The brain behind the operation. JS will give
life to the application, allowing users to interact with the
Expense Tracker.
- DOM Manipulation: You’ll extensively manipulate the
DOM to display transactions, update balance, income,
and expenses.
- Array Methods: This project will make use of high order
array methods, which are fundamental when working
with lists of data in JS. Expect to use methods like `map`
for processing and `filter` for displaying specific
transactions.
- Local Storage: One of the most exciting aspects of this
project. You’ll ensure that data entered by the user
persists even after the browser session ends.

Conclusion
Brace yourself for an exhilarating journey as we navigate
through the intricacies of building an Expense Tracker.

By the end of this project, you’ll have a functional tool at
your disposal and a bolstered understanding of how to
build practical applications from scratch.
Now, let’s dive into the HTML structure in the next
chapter, setting the foundation for our Expense Tracker!

Project HTML
Welcome to the first technical step in building our
Expense Tracker! HTML is the backbone of any web
application. This chapter will help you structure the
Expense Tracker, ensuring that all the following steps in
CSS and JavaScript can be implemented seamlessly.

1. Introduction
In this chapter, we’ll lay out the basic HTML structure for
our Expense Tracker application. This will include areas
to display the balance, income, expenses, a list of
transactions, and a form to add new transactions. The
goal is to ensure the markup is semantic, accessible,
and easy to style.

2. Setting up the Document
Start with the basic HTML boilerplate.
“`html
<!DOCTYPE html>
<html lang=“en”>
<head>

<meta charset=“UTF-8”>
<meta name=“viewport” content=“width=device-width,

initial-scale=1.0”>
<title>Expense Tracker</title>

<!— Link to your CSS file (you’ll create this in the
next chapter) —>

<link rel=“stylesheet” href=“styles.css”>
</head>
<body>
<!— Your content will go here —>
</body>
</html>
“`

3. Main Container
Let’s start by creating the main container for our
application.
“`html
<div class=“container”>

<!— All other components will go here —>
</div>
“`

4. Header and Balance
We’ll display the name of the application and the user’s
balance at the top.
“`html
<h2>Expense Tracker</h2>
<div class=“balance”>

<h3>Your Balance</h3>
<h4 id=“balance-amount”>$0.00</h4>

</div>
“`

5. Income and Expense Summary
Below the balance, we’ll have two containers displaying
the total income and total expenses.
“`html
<div class=“inc-exp-container”>

<div>
<h4>Income</h4>
<p id=“money-plus” class=“money

plus”>+$0.00</p>
</div>
<div>

<h4>Expense</h4>
<p id=“money-minus” class=“money

minus”>-$0.00</p>
</div>

</div>
“`

6. Transaction History
This section will display the list of transactions added by
the user.
“`html
<h3>History</h3>
<ul id=“transactions-list” class=“transactions”>

<!— Individual transactions will be added here
dynamically —>

“`

7. Add New Transaction

Finally, we need a form for users to input new
transactions.
“`html
<h3>Add new transaction</h3>
<form id=“form”>

<div class=“form-control”>
<label for=“text”>Text</label>
<input type=“text” id=“text” placeholder=“Enter

text…”>
</div>
<div class=“form-control”>

<label for=“amount”>Amount</label>
<input type=“number” id=“amount”

placeholder=“Enter amount…”>
<small>(negative - expense, positive - income)

</small>
</div>
<button class=“btn”>Add transaction</button>

</form>
“`

8. Conclusion
With this structure in place, we’ve laid the groundwork
for our Expense Tracker. The next steps will involve
styling with CSS to make it visually appealing and then
adding interactivity with JavaScript. Remember, a strong
foundation with HTML is crucial, as it ensures our
application is both functional and accessible.

Project CSS

In this chapter, we’ll be diving deep into the styling of our
“Expense Tracker” project. CSS, short for Cascading
Style Sheets, is the language we use to design our web
applications. It controls everything from the layout to the
fonts, colors, and animations, creating a compelling user
interface that’s both functional and aesthetically
pleasing.

1. Why CSS is Important
Before we begin coding, it’s crucial to understand the
significance of CSS. For our Expense Tracker, a clean
and organized UI ensures users can easily add and
monitor their expenses without any distractions. Styling
also helps to reinforce functionality – by making
important buttons or warnings prominent, we guide the
user’s experience in a positive direction.

2. Setting Up the Base Style
For consistency across browsers, we’ll start by resetting
some of the default browser styles:
“`css
* {

margin: 0;
padding: 0;
box-sizing: border-box;
font-family: ‘Arial’, sans-serif;

}
“`

3. Styling the Main Container
Our Expense Tracker app will be contained within a main
div. We want this container to be centered and have
some space around it for a pleasant look:

“`css
.container {

width: 80%;
max-width: 600px;
margin: 40px auto;
padding: 20px;
background-color: f4f4f4;
border-radius: 5px;
box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);

}
“`

4. Header Styles
A bold header will help users quickly identify the app:
“`css
header {

text-align: center;
margin-bottom: 20px;

}
header h2 {

font-size: 2rem;
color: 333;

}
“`

5. Input Fields and Buttons
Our app will have input fields for users to add expenses
and buttons to submit them. These elements should be
easy to spot and use:

“`css
input, button {

width: 100%;
padding: 10px;
margin-bottom: 10px;
border: 1px solid ccc;
border-radius: 4px;
font-size: 1rem;

}
button {

background-color: 007BFF;
color: fff;
cursor: pointer;

}
button:hover {

background-color: 0056b3;
}
“`

6. Displaying Transactions
Expenses will be listed in rows. Positive values (income)
will be displayed in green, while negative values
(expenses) will be in red for easy differentiation:
“`css
.transaction {

display: flex;
justify-content: space-between;
padding: 10px;
border-bottom: 1px solid ddd;

}
.transaction.income {

color: green;
}
.transaction.expense {

color: red;
}
“`

7. Totals, Income, and Expense Display
It’s vital for users to get a quick overview of their financial
status:
“`css
.overview {

display: flex;
justify-content: space-between;
margin-top: 20px;

}
.total, .income, .expense {

width: 30%;
padding: 10px;
border: 1px solid ddd;
border-radius: 4px;
text-align: center;

}
.total {

color: 333;
}
.income {

color: green;
}
.expense {

color: red;
}
“`

8. Responsive Design
Given the increasing number of users accessing apps
from mobile devices, we must ensure our design looks
great on smaller screens:
“`css
@media (max-width: 480px) {

.container {
width: 95%;

}
.overview {

flex-direction: column;
}
.total, .income, .expense {

width: 100%;
margin-bottom: 10px;

}
}
“`

Summary
The styling of our “Expense Tracker” app emphasizes
clarity and user-friendliness. We’ve used a combination
of layouts, color schemes, and responsive design to

ensure our application looks and functions well across
various devices. In the next chapters, we’ll dive into the
functionality of our app, where we’ll employ JavaScript to
bring our Expense Tracker to life.

Show Transac�on Items
In this chapter, we’ll be focusing on displaying the
transaction items in our Expense Tracker project. These
transaction items represent individual financial activities,
either income or expenditure, that the user has recorded
in the app. We’ll utilize a combination of HTML, CSS,
and JavaScript to achieve this. Let’s dive in!

1. The HTML Structure
To display transaction items, we need a container in our
HTML where each transaction can be listed. The
following markup will serve our purpose:
“`html
<section class=“transactions”>

<h2>Transaction History</h2>
<ul id=“transaction-list”>

<!— Transaction items will be added here using
JavaScript —>

</section>
“`
Here, the `transaction-list` will be dynamically populated
with the transaction items using JavaScript.

2. CSS Styling
To make our transaction list visually appealing, let’s style
it:

“`css
.transactions {

margin: 20px 0;
border: 1px solid e0e0e0;
padding: 10px;

}
.transactions h2 {

text-align: center;
margin-bottom: 15px;

}
transaction-list {

list-style-type: none;
padding: 0;

}
transaction-list li {

display: flex;
justify-content: space-between;
padding: 8px 0;
border-bottom: 1px solid e0e0e0;

}
“`

3. JavaScript Implementation
First, select the transaction list in your JavaScript:
“`javascript
const transactionList =
document.getElementById(‘transaction-list’);
“`

Assuming you have an array of transaction objects
named `transactions` (which will be filled with user input
or data from local storage), we will use the following
function to display them:
“`javascript
function displayTransactions() {

// Clear out any current transaction items in the list
transactionList.innerHTML = ”;
// Loop through the transactions array and display

each one
transactions.forEach(transaction => {

const item = document.createElement(‘li’);
item.innerHTML = `
${transaction.description}
${transaction.amount > 0 ? ‘+’ :

‘-‘}$${Math.abs(transaction.amount)}
`;
item.classList.add(transaction.amount > 0 ?

‘income’ : ‘expense’);
transactionList.appendChild(item);

});
}
“`
This function first clears any current transactions in the
list. Then, for each transaction in our `transactions`
array, it creates a new list item (`li`) element, sets its
inner HTML to display the transaction’s description and
amount, adds a class based on whether the transaction
is an income or an expense, and then appends the item
to our `transaction-list`.

4. Additional CSS for Income and Expense

Differentiate income and expense visually using colors:
“`css
transaction-list .income {

color: green;
}
transaction-list .expense {

color: red;
}
“`

5. Calling the `displayTransactions` Function
Whenever a new transaction is added or an existing one
is modified, ensure you call the `displayTransactions()`
function. This will ensure that the list is always updated
with the latest data:
“`javascript
// Sample code when adding a new transaction
function addTransaction(transaction) {

transactions.push(transaction);
displayTransactions();

}
“`

Conclusion
With the above steps, we’ve successfully implemented
the functionality to display transaction items in our
Expense Tracker project. As users add or remove
transactions, the list will update dynamically, providing a
clear and concise view of their financial activities. In
subsequent chapters, we will build upon this foundation
by adding more features, such as calculating and

displaying balances, incomes, and expenses. Stay
tuned!

Display Balance, Income &
Expense
In the heart of our Expense Tracker, one of the most
crucial functionalities is the ability to correctly display the
user’s balance, income, and expenses. This gives the
user a clear overview of their financial status at a glance.
In this chapter, we’ll dive deep into the JavaScript logic
and DOM manipulation techniques required to achieve
this.

1. Setting the Stage
Before we write any code, it’s essential to have the
necessary HTML structure in place to hold our balance,
income, and expense.
HTML Structure:
“`html
<div class=“balance”>

<h3>Your Balance</h3>
<h2 id=“balance-amount”>$0.00</h2>
<div class=“income-expense”>

<div class=“plus”>
<h3>Income</h3>
<p id=“income-amount”>$0.00</p>
</div>
<div class=“minus”>
<h3>Expense</h3>
<p id=“expense-amount”>$0.00</p>

</div>
</div>

</div>
“`

2. Initializing Our Variables
Within our script, let’s initiate the required variables:
“`javascript
let balance = 0;
let income = 0;
let expense = 0;
const balanceAmount =
document.getElementById(‘balance-amount’);
const incomeAmount =
document.getElementById(‘income-amount’);
const expenseAmount =
document.getElementById(‘expense-amount’);
“`

3. Calculation Function
Now, let’s create a function that calculates the balance,
income, and expense based on the transaction data.
“`javascript
function calculateTotals(transactions) {

income = transactions
.filter(transaction => transaction.amount > 0)
.reduce((acc, transaction) => acc +

transaction.amount, 0);
expense = transactions

.filter(transaction => transaction.amount < 0)

.reduce((acc, transaction) => acc +
transaction.amount, 0) * -1; // We multiply by -1 to get a
positive number

balance = income - expense;
}
“`
Note: In the function above, we’re using array methods
`filter()` and `reduce()` to calculate our income, expense,
and balance.

4. Displaying the Values
With our calculations done, it’s time to display these
values in our DOM.
“`javascript
function updateUI() {

balanceAmount.textContent =
`$${balance.toFixed(2)}`;

incomeAmount.textContent =
`$${income.toFixed(2)}`;

expenseAmount.textContent =
`$${expense.toFixed(2)}`;
}
“`

5. Integrating with Local Storage
Since our project involves local storage, we want to
make sure that whenever a new transaction is added or
removed, we recalculate our values and update the UI.
“`javascript
function updateLocalStorage() {

localStorage.setItem(‘transactions’,
JSON.stringify(transactions));

calculateTotals(transactions);
updateUI();

}
“`

6. Integrating with the Existing Transaction System
Assuming we have a mechanism to add or remove
transactions, we should call the `updateLocalStorage`
function right after a transaction is added or removed.
“`javascript
function addTransaction(transaction) {

transactions.push(transaction);
updateLocalStorage();

}
function removeTransaction(id) {

transactions = transactions.filter(transaction =>
transaction.id !== id);

updateLocalStorage();
}
“`

Conclusion
Our Expense Tracker now not only adds or removes
transactions but also provides a clear overview of a
user’s financial status by displaying the balance, income,
and expense in real-time. By integrating with local
storage, we ensure that our data remains persistent
across sessions. This project demonstrates the power of
Vanilla JavaScript in building dynamic applications
without relying on any libraries or frameworks. As we
progress, we will continue adding more functionalities to

this project, making it a comprehensive tool for anyone
wishing to track their expenses.

Exercise:
1. Add functionality to handle different currencies.
2. Enhance the UI to differentiate between positive and
negative balances visually.
3. Extend the tracker to categorize expenses and
represent them in a pie chart.

Add & Delete Transac�ons
In this chapter, we’ll learn how to add and delete
transactions within our Expense Tracker. We’ll be
interacting with the DOM to capture user input, and we’ll
utilize local storage to persist our transactions. Let’s dive
in.

1. The HTML Structure
Before adding or deleting transactions, we need a simple
HTML structure to capture user input. For the sake of
brevity, let’s assume the following structure is in place:
“`html
<div id=“transaction-form”>

<input type=“text” id=“transaction-name”
placeholder=“Enter transaction name…”>

<input type=“number” id=“transaction-amount”
placeholder=“Enter amount…”>

<button id=“add-transaction”>Add
Transaction</button>
</div>
<ul id=“transaction-list”>

<!— Transactions will be dynamically added here —>

“`

2. Capturing User Input
Firstly, we need to capture what the user enters. This
can be achieved using the DOM.
“`javascript
const transactionNameEl =
document.getElementById(‘transaction-name’);
const transactionAmountEl =
document.getElementById(‘transaction-amount’);
“`

3. Storing Transactions
We will store our transactions in an array and later save
them to local storage.
“`javascript
let transactions = [];
function addTransaction(e) {

e.preventDefault();
if (transactionNameEl.value.trim() === ” ||

transactionAmountEl.value.trim() === ”) {
alert(‘Please enter a valid name and amount for the

transaction.’);
return;

}
const newTransaction = {

id: generateID(),
name: transactionNameEl.value,
amount: parseFloat(transactionAmountEl.value)

};
transactions.push(newTransaction);
updateLocalStorage();
updateUI();
transactionNameEl.value = ”;
transactionAmountEl.value = ”;

}
function generateID() {

return Math.floor(Math.random() * 100000000);
}
“`

4. Displaying Transactions
Once a transaction is added, we need to display it to the
user.
“`javascript
function updateUI() {

const transactionListEl =
document.getElementById(‘transaction-list’);

transactionListEl.innerHTML = ”;
transactions.forEach(transaction => {

const sign = transaction.amount < 0 ? ‘-‘ : ‘+’;
const item = document.createElement(‘li’);
item.className = transaction.amount < 0 ? ‘minus’ :

‘plus’;
item.innerHTML = `

${transaction.name}
${sign}${Math.abs(transaction.amount)}

<button class=“delete-btn”
onclick=“deleteTransaction(${transaction.id})”>x</button

>
`;
transactionListEl.appendChild(item);

});
}
“`

5. Deleting Transactions
For deletion, we can utilize the unique ID we’ve given to
each transaction.
“`javascript
function deleteTransaction(id) {

transactions = transactions.filter(transaction =>
transaction.id !== id);

updateLocalStorage();
updateUI();

}
“`

6. Persisting to Local Storage
We want our transactions to remain available even after
a page reload. For that, we’ll utilize local storage.
“`javascript
function updateLocalStorage() {

localStorage.setItem(‘transactions’,
JSON.stringify(transactions));
}
// Initially load transactions from local storage (if
available)
function initializeTransactions() {

const storedTransactions =
localStorage.getItem(‘transactions’);

transactions = storedTransactions ?
JSON.parse(storedTransactions) : [];

updateUI();
}
initializeTransactions();
“`

7. Event Listeners
Finally, we attach an event listener to our add button:
“`javascript
document.getElementById(‘add-
transaction’).addEventListener(‘click’, addTransaction);
“`
And voilà! With these functionalities in place, users can
seamlessly add and delete transactions. The
transactions are not only reflected in the UI but are also
stored in the browser’s local storage, ensuring no data is
lost even if the user refreshes the page.
Remember, while the above code snippets provide a
solid foundation for an expense tracker, there are various
enhancements and additional features you can
incorporate. As always, testing each functionality
thoroughly ensures a smooth user experience.

Persist To Local Storage
One of the most common requirements for modern web
applications is the ability to persist data across sessions,
without necessarily sending data back to a server. This
can provide users with a seamless experience, as data
like settings, user preferences, or even user-generated
content can be saved and then loaded on subsequent

visits. In our Expense Tracker project, we’ll leverage the
power of the Web Storage API, specifically the Local
Storage, to achieve this.

What is Local Storage?
Local Storage is a web-based storage solution that
allows websites to store key-value pairs in a web
browser with no expiration time. It’s perfect for saving
user-specific data, and it’s much larger in terms of
storage capacity than cookies.
Benefits:
- Persistence: Unlike session storage, data stored in
local storage does not expire with the session. This
means even if you close the browser or tab, the data will
still be there when you come back.
- Capacity: You can store up to 5-10 MB of data
depending on the browser. Far more than what cookies
can hold.
- Simplicity: The API is straightforward, with simple set,
get, and remove methods.

Implementing Local Storage in the Expense Tracker
Storing Transactions:
To persist our expense transactions, we’ll need to save
them to local storage whenever a new transaction is
added or an existing one is deleted.
“`javascript
// Initial transactions array
let transactions = [];
function updateLocalStorage() {

localStorage.setItem(‘transactions’,
JSON.stringify(transactions));
}

“`
Adding a Transaction:
When you add a new transaction to your list:
“`javascript
function addTransaction(transaction) {

transactions.push(transaction);
updateLocalStorage();

}
“`
This will add the transaction to the `transactions` array
and then update local storage with the new array.
Deleting a Transaction:
Similarly, when deleting:
“`javascript
function deleteTransaction(id) {

transactions = transactions.filter(transaction =>
transaction.id !== id);

updateLocalStorage();
}
“`
Here, we’re filtering out the transaction with a specific ID
and then updating our local storage.
Loading Transactions from Local Storage:
When the user visits the expense tracker, it’s essential to
check local storage and populate any saved
transactions.
“`javascript
function init() {

// Check for saved transactions in Local Storage

const savedTransactions =
JSON.parse(localStorage.getItem(‘transactions’));

if (savedTransactions) {
transactions = savedTransactions;
// Then, render these transactions to the DOM as

needed
}

}
init();
“`

Important Considerations:
- JSON Parsing and Stringifying: Local Storage only
stores strings. So, when saving arrays or objects, you’ll
need to stringify them first using `JSON.stringify()`.
When retrieving them, parse them back into a usable
format with `JSON.parse()`.
- Limitations: While the 5-10 MB limit is generous for
many applications, be aware of it. If there’s a potential
for your application to store a large amount of data, you
may want to consider other options or strategies like
IndexedDB or even server-side storage.
- Security: Local Storage is not designed for sensitive
data. Since it’s accessible via JavaScript, it’s open to
potential XSS attacks. Always ensure you validate and
sanitize your data.

Conclusion:
Local Storage is a powerful tool in a web developer’s
arsenal, offering a simple and efficient way to enhance
user experience through data persistence. In our
Expense Tracker application, it provides an essential
bridge between sessions, ensuring that our users never

lose track of their transactions. As with all tools, it’s
crucial to be aware of its limitations and use it judiciously.

Section 11:

Project 10 - Infinite Scroll
Posts | Fetch, Async/Await,
CSS Loader

Project Intro
Welcome to the tenth project of our journey, “Infinite
Scroll Posts”. This project promises to be an engaging
endeavor into the world of fetching data from APIs,
utilizing asynchronous JavaScript operations, and
enhancing the user experience with visually pleasing
CSS loader animations. So, without further ado, let’s
dive into what this project entails.

1. Overview
In the modern era of the web, user experience stands
paramount. An aspect of this user experience is the
ability to fetch and display content without any noticeable
interruptions. Gone are the days when users were
accustomed to clicking ‘Next’ on pagination. Now, they
expect content to automatically load as they scroll,
popularly known as infinite scrolling. This feature can be
seen on numerous modern websites, from social media
platforms like Twitter and Facebook to news websites.

2. Objectives
By the end of this project, you will:

- Understand the basics and the mechanics behind the
infinite scroll feature.
- Fetch data from a public API using Fetch and
Async/Await.
- Display this fetched data seamlessly as the user scrolls
down the page.
- Enhance the user experience by adding a CSS loader
animation to indicate data fetching.

3. Technologies & Concepts
- Fetch API: We’ll be using the Fetch API to request and
receive data. This powerful web API makes it easy to
fetch resources across the network.
- Async/Await: To handle asynchronous operations
effectively, we’ll leverage the power of Async/Await in
JavaScript. This will ensure that our data fetching is
smooth and we’re not running into any unforeseen race
conditions.
- CSS Loader: A user must always be informed about
the operations happening in the background. A CSS
loader serves this purpose by providing a visual cue,
indicating data is being fetched.
- Infinite Scroll Mechanism: We will dive deep into the
logic behind auto-loading content. By checking the
user’s scroll position and the height of the content, we
can determine when to fetch more data.

4. What to Expect?
Here’s a snapshot of what the final product will look like:
1. Initial Load: When the user first visits the site, a
predefined number of posts will be displayed on the
screen.
2. Scrolling: As the user scrolls down, just before
reaching the bottom, new posts will automatically start
loading, enhancing the UX.

3. Loader Animation: While new posts are fetched, a
loader will be displayed at the bottom, indicating to the
user that content is being loaded.
4. Error Handling: In cases where the data cannot be
fetched, perhaps due to network issues or API limits, the
user will be notified appropriately.

5. Pre-requisites
Before diving into this project, it’s beneficial if you’re
familiar with:
- Basic HTML/CSS for structure and styling.
- Fundamentals of JavaScript, especially promises.
- Basic understanding of how APIs work.

6. A Word Before We Begin
The “Infinite Scroll Posts” project will test your skills and
provide real-world experience in creating a feature that’s
widely used in today’s web applications. As we progress,
remember that every challenge is a stepping stone to
mastery. Stay curious, and keep coding!
In the upcoming chapters, we will start with the HTML
structure, style our project using CSS, and then dive
deep into the JavaScript logic that powers our infinite
scrolling mechanism. Buckle up, and let’s get started!

Project HTML
Welcome to Chapter 51, where we’ll be delving into the
HTML structure for our Infinite Scroll Posts project. This
project is particularly exciting as it brings together the
power of Fetch API, asynchronous functions, and some
smooth CSS animations. The HTML structure forms the
foundation on which our CSS and JavaScript will
operate, so let’s make sure we lay a strong foundation!

1. Project Overview
In the Infinite Scroll Posts project, we aim to create a
web application where users can infinitely scroll through
a series of posts, just like how it works on many social
media platforms. As users scroll to the end of the page,
new posts are fetched from an API and displayed
seamlessly. In addition, a CSS loader will signal to the
user that more content is being loaded.

2. Setting up the Document
Every HTML document starts with a basic structure.
Let’s begin with that:
“`html
<!DOCTYPE html>
<html lang=“en”>
<head>

<meta charset=“UTF-8”>
<meta name=“viewport” content=“width=device-width,

initial-scale=1.0”>
<title>Infinite Scroll Posts</title>
<link rel=“stylesheet” href=“styles.css”>

</head>
<body>

<!— Content goes here —>
<script src=“script.js”></script>

</body>
</html>
“`

3. Main Content Area

The core content of our project is the posts that we’ll
fetch and display. Let’s create a container for these
posts:
“`html
<div class=“posts-container”>

<!— Individual posts will be appended here —>
</div>
“`

4. Loader
As we’re implementing infinite scrolling, we need a
loader to inform users when new posts are being
fetched:
“`html
<div class=“loader”>

Loading…
</div>
“`
(Note: The actual visual representation of the loader will
be controlled using CSS. In our JavaScript, we will
programmatically show or hide this loader based on
whether we’re fetching data.)

5. Error Message
In case there’s an issue fetching posts, it’s good UX to
have a designated area to display an error message:
“`html
<div class=“error-message”>

<!— Error messages will be inserted here —>
</div>
“`

6. Adding Metadata
It’s good practice to include meta tags to improve SEO
(Search Engine Optimization) and ensure a good display
when shared on platforms like Facebook or Twitter:
“`html
<meta name=“description” content=“Infinite Scroll Posts:
Dive into endless content from our API.”>
<meta property=“og:title” content=“Infinite Scroll Posts”>
<meta property=“og:description” content=“Experience
the magic of infinite scrolling with posts fetched in real-
time from our API.”>
<meta property=“og:image”
content=“path_to_thumbnail_image.jpg”>
“`
Replace `path_to_thumbnail_image.jpg` with the path to
your chosen thumbnail image for sharing on social
platforms.

7. Closing Thoughts
The HTML structure we’ve laid out here forms the base
of our Infinite Scroll Posts project. While it might look
simple, remember that the magic happens when our
CSS and JavaScript come into play, making this
structure come to life.
In the following chapters, we’ll be styling this structure
using CSS and then adding the functionality with
JavaScript. Stick around to see how our simple HTML
transforms into a dynamic infinite scrolling experience!

Project CSS & Loader
Anima�on

Welcome to Chapter 59! Here, we’ll be discussing the
CSS design and the creation of a loader animation for
our Infinite Scroll Posts project. By the end of this
chapter, you should have a visually appealing layout and
a smooth loading animation that will enhance the user
experience, especially when fetching new posts.

Section 1: Basic CSS Setup
Before diving into the specifics of our loader animation,
let’s ensure that we set up our basic CSS foundation.
“`css
body {

font-family: ‘Arial’, sans-serif;
background-color: f9f9f9;
color: 333;
line-height: 1.6;

}
.container {

width: 80%;
margin: auto;
overflow: hidden;

}
.post {

border: 1px solid ccc;
padding: 20px;
margin: 20px 0;
border-radius: 5px;
background-color: fff;
box-shadow: 2px 2px 12px rgba(0,0,0,0.1);

}

“`
In this initial setup:
- We’re setting a general font, background color, text
color, and line-height for the entire body.
- The `.container` class centers our content and keeps
everything tidy.
- Individual `.post` sections are clearly defined with
subtle borders, padding, shadows, and rounded edges
for a modern appearance.

Section 2: Designing the Loader Animation
For our infinite scroll, it’s important to provide user
feedback. The loader animation is a visual indicator that
posts are currently being fetched.
Step 1: Basic Loader Structure
Our loader will be a simple spinning circle. Begin by
adding this HTML structure wherever you intend to place
your loader:
“`html
<div class=“loader”></div>
“`
Step 2: Styling the Loader
Now, apply the following CSS to design our loader:
“`css
.loader {

border: 16px solid f3f3f3; /* Light grey */
border-top: 16px solid 3498db; /* Blue */
border-radius: 50%; /* To make it a circle */
width: 120px;
height: 120px;
animation: spin 1s linear infinite;

}
“`
Step 3: Creating the Spin Animation
Now, the magical part. Let’s create the `spin` animation:
“`css
@keyframes spin {

0% { transform: rotate(0deg); }
100% { transform: rotate(360deg); }

}
“`
With this keyframes animation, our loader will
continuously spin, providing a visual cue to users that
content is loading.

Section 3: Positioning the Loader
Our loader should be centrally placed on the page,
especially when posts are being fetched. Apply the
following styles to ensure its position remains consistent:
“`css
.loader {

position: fixed;
left: 50%;
top: 50%;
transform: translate(-50%, -50%);
z-index: 1000;

}
“`

Section 4: Showing and Hiding the Loader

With JavaScript, you can easily control the visibility of
the loader. While fetching posts, set its style to `display:
block`, and once done, set it to `display: none`.
“`javascript
// Assuming you’ve selected your loader with a query
const loader = document.querySelector(‘.loader’);
// To show the loader
loader.style.display = ‘block’;
// To hide the loader
loader.style.display = ‘none’;
“`
This way, our loader will only be visible during the
fetching process, ensuring users aren’t unnecessarily
distracted.

Conclusion
CSS plays a vital role in enhancing user experience,
especially for web applications like our Infinite Scroll
Posts project. With a visually appealing design and a
smooth loader animation, we’re making the user
experience delightful and intuitive.
In the next chapter, we will focus on fetching the initial
posts and populating our page with content. This will be
where the real magic happens, as we combine our CSS
designs with dynamic JavaScript functionalities. Stay
tuned!

Get Ini�al Posts From API
In our “Infinite Scroll Posts” project, the first step before
implementing the infinite scroll feature is to fetch initial
posts from an API. In this chapter, we will delve deep
into how to get posts from an external API using the
`Fetch` API and `Async/Await`. Before starting, make

sure you have set up your project structure correctly as
described in the previous chapters.

Why Fetch API with Async/Await?
JavaScript’s Fetch API provides a simpler way of making
network requests to the server. When combined with
Async/Await, Fetch becomes even more powerful,
allowing us to write asynchronous code that looks and
behaves like synchronous code, making it easier to read
and maintain.

Setting Up The API Endpoint
For this tutorial, let’s use the `jsonplaceholder` free fake
online REST API, which provides a set of posts that we
can retrieve:
API Endpoint:
`https://jsonplaceholder.typicode.com/posts`

Writing the Fetch Function with Async/Await
“`javascript
async function getInitialPosts() {

try {
const response = await

fetch(‘https://jsonplaceholder.typicode.com/posts?
_limit=5’);

const data = await response.json();
return data;

} catch (error) {
console.error(“There was an error fetching the

posts”, error);
}

}

“`

Understanding the Function
- We declare the function `getInitialPosts` as `async`.
This ensures that the function returns a promise.
- Inside the function, we use a `try…catch` block to
handle any potential errors.
- We call the `fetch` function with the API endpoint. To
ensure that we don’t get too many posts initially, we use
a query parameter `_limit=5` to limit the number of posts
to 5.
- The `await` keyword is used to pause the execution of
the function until the promise settles and returns its
result. This makes our asynchronous code appear
synchronous.
- Once the data is fetched, we convert it to JSON using
the `response.json()` method.
- If everything goes smoothly, the function will return the
fetched posts as a JSON array.

Displaying the Posts
Once we’ve fetched the posts, we need to display them
on our page. Let’s add another function to handle this.
“`javascript
function displayPosts(posts) {

const postContainer =
document.getElementById(‘posts’);

posts.forEach(post => {
const postElement =

document.createElement(‘div’);
postElement.classList.add(‘post’);
postElement.innerHTML = `

<h2 class=“post-title”>${post.title}</h2>
<p class=“post-body”>${post.body}</p>
`;
postContainer.appendChild(postElement);

});
}
“`
To use this function:
“`javascript
getInitialPosts().then(posts => {

displayPosts(posts);
});
“`

Conclusion
In this chapter, we covered how to use the Fetch API
combined with Async/Await to retrieve initial posts from
an API endpoint. We also looked at how to display these
posts on our webpage. In the next chapter, we will add
the infinite scrolling feature, which will load more posts
as the user scrolls down the page.
Remember, while `jsonplaceholder` is great for learning
and testing, in a real-world application, you’d be working
with your own backend or a third-party service that
provides the content you need. Always ensure you
handle errors gracefully to enhance the user experience.

Add Infinite Scrolling
Welcome to Chapter 61! Here, we’ll be implementing
one of the most sought-after features on modern
websites: Infinite Scrolling. This technique enhances

user experience by continuously loading content as
users scroll, removing the need for pagination buttons.
To achieve this, we’ll harness the power of Fetch and
Async/Await in conjunction with some CSS magic. Let’s
dive in!

1. Understanding Infinite Scrolling
Infinite scrolling is a web design technique that loads
content continuously as the user scrolls down the page,
eliminating the need for pagination. It’s widely used in
social media platforms, blogs, and news websites to
improve user engagement. The principle is simple: as
the user approaches the bottom of the content, more
content is fetched and appended.

2. Setting up the Environment
Before implementing infinite scrolling, ensure you have:
- An API or data source from which you can fetch posts
or data.
- A container in your HTML to display the fetched data.
- Basic styling for the loader animation (Refer to Chapter
59 for the CSS & Loader Animation).

3. Listening for Scroll Events
To detect when the user is near the bottom of the page,
we’ll use the `scroll` event.
“`javascript
window.addEventListener(‘scroll’, () => {

if (window.innerHeight + window.scrollY >=
document.documentElement.scrollHeight - 10) {

loadMorePosts();
}

});

“`
The condition inside the event checks if the combined
height of the viewport and the scroll offset is greater than
or equal to the height of the entire document minus a
small threshold (10 pixels in this case).

4. Fetching More Posts
The `loadMorePosts` function will handle the fetching of
more posts.
“`javascript
async function loadMorePosts() {

// Display the loader animation
showLoader();
// Delay to simulate fetching data
await setTimeout(() => {}, 1000);
// Fetch the next set of posts
const response = await

fetch(‘YOUR_API_ENDPOINT_HERE’);
const data = await response.json();
// Render the fetched posts
displayPosts(data);
// Hide the loader animation
hideLoader();

}
“`
Here, `showLoader()` and `hideLoader()` are functions to
handle displaying and hiding the loader animation,
respectively. Ensure to replace
`‘YOUR_API_ENDPOINT_HERE’` with your actual API
endpoint.

5. Appending the Posts
Within the `displayPosts` function, iterate over the
fetched data and append each post to your container.
“`javascript
function displayPosts(posts) {

posts.forEach(post => {
const postElement =

document.createElement(‘div’);
postElement.classList.add(‘post’);
postElement.innerHTML = `
<h2>${post.title}</h2>
<p>${post.body}</p>
`;
document.querySelector(‘.posts-

container’).appendChild(postElement);
});

}
“`
Ensure you have a `.posts-container` or similar in your
HTML to append these posts to.

6. Handling Edge Cases
For a seamless user experience:
- Handle cases where there’s no more content to fetch.
Inform the user accordingly.
- Ensure the loader doesn’t get stuck if there’s an error
during fetching.
- Adjust the threshold (10 pixels in our case) depending
on your content’s structure and the desired user
experience.

Conclusion
Infinite scrolling is a powerful technique for improving
user engagement on content-rich websites. By utilizing
modern JavaScript features like Fetch and Async/Await,
we can easily implement this functionality in our web
projects. Always remember to handle edge cases and
provide feedback to users for a seamless browsing
experience.
Note: This chapter assumes you have a basic
understanding of Fetch API, Async/Await, and CSS
animations. If not, kindly revisit the previous chapters for
a thorough understanding. The code provided is a basic
implementation and might require adjustments based on
the specifics of your project and API.

Filter Fetched Posts
Welcome back to the “Infinite Scroll Posts” project.
Having already fetched posts and implemented infinite
scrolling, our next goal is to introduce a functionality that
allows users to filter through the fetched posts. This will
enhance user experience by enabling them to find
specific posts quickly.
Objective: Implement a filtering functionality that allows
users to search through the fetched posts based on titles
and content.

Prerequisites:
1. A working knowledge of JavaScript, particularly ES6+
features such as Async/Await.
2. Familiarity with the DOM (Document Object Model)
and manipulating it with JavaScript.
3. Previous chapters in this project where we set up
fetching posts and infinite scrolling.

Step 1: Setting up the Filter Input Field
We need an input field where users can type search
queries:
“`html
<input type=“text” id=“filter” placeholder=“Filter posts…”>
“`

Step 2: JavaScript Implementation
a. Accessing the Input Element:
Access the input element using the DOM:
“`javascript
const filterInput = document.getElementById(‘filter’);
“`
b. Event Listener:
We’ll attach an event listener to the input element to
detect when the user types:
“`javascript
filterInput.addEventListener(‘input’, filterPosts);
“`
c. Filtering Function:
This function is the core of our filtering feature:
“`javascript
function filterPosts(e) {

const searchTerm = e.target.value.toUpperCase(); //
Convert input to uppercase for non-case sensitive
search

const posts = document.querySelectorAll(‘.post’); //
Assume each post has a class of ‘post’

posts.forEach(post => {

const postTitle = post.querySelector(‘.post-
title’).innerText.toUpperCase();

const postContent = post.querySelector(‘.post-
content’).innerText.toUpperCase();

// Check if search term exists in post title or
content

if (postTitle.indexOf(searchTerm) > -1 ||
postContent.indexOf(searchTerm) > -1) {

post.style.display = ‘block’;
} else {
post.style.display = ‘none’;
}

});
}
“`
Explanation:
- We’re using the `input` event, which fires every time the
`value` of the input field changes.
- Within the `filterPosts` function:

- Convert the search term to uppercase to ensure our
search is not case-sensitive.

- We select all posts. For this example, I’ve assumed
each post has a class of ‘post’.

- For each post, we check if the search term exists in
its title or content. If it does, we display the post;
otherwise, we hide it.

Step 3: Enhancements
a. Adding a Delay: Instant filtering can be jarring,
especially with larger datasets. Consider adding a delay
using `setTimeout`.

b. Spinner or Loader: If filtering takes time, showing a
spinner can enhance user experience. You can reuse
the CSS loader implemented in previous chapters.
c. Highlighting Matched Text: Enhance user experience
by highlighting the matched text within the post. This can
be achieved using Regex and manipulating the
innerHTML property of post elements.

Conclusion:
Filtering is a powerful feature that greatly enhances user
experience, allowing users to quickly and efficiently find
the information they’re looking for. With the
implementation above, users of your infinite scroll post
project can now search through posts with ease.

Section 12: Project 11 -
Speech Text Reader | Speech
Synthesis
Project Intro
As the digital landscape evolves, the ways in which we
interact with our devices are also rapidly changing. While
touch and type are the primary modes of interaction,
voice recognition and synthesis are quickly making their
mark in the world of technology. The ability of machines
to understand and respond to our voice not only offers
convenience but also bridges the gap for users with
disabilities.
In this project, we will embark on a journey to develop a
“Speech Text Reader” application. Leveraging the Web
Speech API, particularly the Speech Synthesis interface,
our application will be capable of converting text input
into audible speech. Whether you’re thinking about a tool

that aids visually impaired users, or simply an application
that can read out loud a bedtime story, the possibilities
are endless.

Objectives
By the end of this project, you will be able to:
1. Understand the fundamentals of the Web Speech API
and its role in modern web applications.
2. Implement the Speech Synthesis interface to convert
textual data into speech.
3. Customize voice selections, pitch, and rate of speech.
4. Design a user-friendly interface that facilitates easy
text input and speech output.

Why Speech Synthesis?
Speech synthesis, commonly known as text-to-speech
(TTS), has numerous applications:
- Accessibility: It aids users with visual impairments,
dyslexia, or other conditions that make reading on
screen challenging.
- Multitasking: Users can listen to content while engaging
in other activities, such as driving or cooking.
- Language Learning: It provides pronunciation guidance
for people learning new languages.
- Entertainment: For applications like reading stories or
converting written content into podcasts.

How Does it Work?
The Web Speech API provides a bridge to the text-to-
speech engines, allowing developers to control voice
output from their web apps. With the Speech Synthesis
interface, we’ll have a range of options to adjust the
voice (male, female, etc.), the pitch, rate, and even
select different languages.

Scope of the Project
Our Speech Text Reader will consist of:
- A simple and clean User Interface (UI) for text input.
- Options to select different voices.
- Sliders/controls to adjust pitch and rate.
- A play button to initiate the speech synthesis.
- Visual feedback indicating when the text is being read
out.

What to Expect in the Following Chapters
As we progress through the chapters, we will:
1. Set up the HTML framework for our application,
focusing on the user interface.
2. Dive deep into the CSS, ensuring our application is
not just functional but also aesthetically pleasing.
3. Implement the JavaScript, where the magic happens,
integrating the Web Speech API, capturing user inputs,
and converting them into voice.

Pre-requisites
While this project is tailored for learners who have some
experience with HTML, CSS, and JS, it’s designed to be
approachable for beginners as well. If you’re completely
new to these technologies, it might be beneficial to revisit
the introductory chapters or courses as mentioned in the
book description.

Let’s Get Started!
Excited? We are too! The ability to convert text into
speech is a remarkable one, and by the end of this
project, you’ll have a fully functional Speech Text
Reader. So, without further ado, let’s dive right in!

HTML & Output Speech
Boxes
In Project 11, we are venturing into the realm of web
speech synthesis, giving our web applications the ability
to “speak” to our users. The Speech Synthesis API
provides a bridge between web applications and system-
level speech synthesis software. This chapter will walk
you through creating the HTML structure for our Speech
Text Reader, focusing on outputting speech boxes that
will be the foundation for our reader.

1. The Structure of Our Speech Reader
For our Speech Text Reader, we’ll have a collection of
preset phrases or sentences that users can click on to
hear them spoken aloud. Each phrase will be contained
within its own box, which we’ll refer to as a “speech box”.

2. Setting Up the Base HTML Structure
Let’s start by setting up the foundational HTML structure.
“`html
<!DOCTYPE html>
<html lang=“en”>
<head>

<meta charset=“UTF-8”>
<meta name=“viewport” content=“width=device-width,

initial-scale=1.0”>
<title>Speech Text Reader</title>
<link rel=“stylesheet” href=“path_to_your_css”>

</head>
<body>

<main id=“main”>
<h1>Speech Text Reader</h1>
<div class=“speech-boxes”>
<!— Speech boxes will be added here —>
</div>

</main>
<script src=“path_to_your_js”></script>

</body>
</html>
“`

3. Creating a Speech Box
Each speech box will contain a phrase or sentence that
can be clicked to be read aloud. Here’s what the HTML
structure of a single speech box might look like:
“`html
<div class=“speech-box” data-text=“Hello, world!”>

<p>Hello, world!</p>
</div>
“`
The `data-text` attribute holds the text that will be read
aloud. We’ll use JavaScript to access this attribute and
then speak the text using the Speech Synthesis API.

4. Adding More Speech Boxes
For our example, let’s add a few more boxes with
different phrases:
“`html
<div class=“speech-boxes”>

<div class=“speech-box” data-text=“Hello, world!”>

<p>Hello, world!</p>
</div>
<div class=“speech-box” data-text=“How are you

today?”>
<p>How are you today?</p>

</div>
<div class=“speech-box” data-text=“It’s a sunny day

outside.”>
<p>It’s a sunny day outside.</p>

</div>
</div>
“`
Each speech box contains a unique phrase. By clicking
on any of these boxes, the user will be able to hear the
corresponding text.

5. Enhancing User Experience
To enhance the user experience, consider adding some
visuals or icons that give a hint to the user that these
boxes are clickable and will produce audio output. For
instance, you could add a small speaker or audio icon
inside each box.

Summary
This chapter introduced the basic HTML structure
required for our Speech Text Reader application. We
designed speech boxes to house preset phrases that
users can click on to hear them spoken aloud. In the
following chapters, we will delve into the Speech
Synthesis API and the corresponding JavaScript to bring
our speech boxes to life.
The visual appearance of our speech boxes and the
overall layout can be improved and made interactive with

CSS, which we will cover in the next chapter.

Project CSS
Welcome to the CSS styling part of our Speech Text
Reader project! Having completed the HTML structure,
we now need to enhance its look and feel to make it both
user-friendly and attractive. In this chapter, we’ll walk
through every CSS property and style we’ll apply to our
Speech Text Reader to make it come to life.

1. Setting Up the Base Styles
First, let’s reset some default browser styles and
establish a base for our project.
“`css
* {

margin: 0;
padding: 0;
box-sizing: border-box;
font-family: ‘Arial’, sans-serif;

}
body {

background-color: f4f4f4;
color: 333;
font-size: 16px;
line-height: 1.5;

}
“`

2. Main Container

Our main container will center everything on the screen
and give a gentle shadow for depth.
“`css
.container {

max-width: 800px;
margin: 50px auto;
padding: 20px;
background: fff;
box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);

}
“`

3. Heading
The heading style will be bold, centered, and have a bit
more space on the bottom margin to separate it from the
content below.
“`css
h1 {

text-align: center;
font-size: 2em;
margin-bottom: 20px;

}
“`

4. Speech Box Styling
These boxes will contain predefined text that can be
read out loud by our application.
“`css
.speech-box {

display: flex;

align-items: center;
justify-content: space-between;
padding: 15px;
border: 1px solid ccc;
margin-bottom: 10px;
cursor: pointer;
transition: background 0.3s ease;

}
.speech-box:hover {

background: f9f9f9;
}
“`

5. Custom Text Box
This is where the user can input custom text for the
application to read.
“`css
.custom-text {

margin-top: 20px;
}
.custom-text textarea {

width: 100%;
padding: 10px;
border: 1px solid ccc;
height: 100px;
resize: none;

}
“`

6. Buttons
Our buttons will initiate the speech function. We want
them to be easily identifiable and clickable.
“`css
.btn {

display: inline-block;
background: 007BFF;
color: fff;
padding: 10px 20px;
margin-top: 20px;
border: none;
cursor: pointer;
transition: background 0.3s ease;

}
.btn:hover {

background: 0056b3;
}
.btn:disabled {

background: ccc;
cursor: not-allowed;

}
“`

7. Voice Selection Dropdown
This dropdown will allow the user to select different voice
options.
“`css
.voice-selection {

margin-top: 20px;

}
.voice-selection select {

width: 100%;
padding: 10px;
border: 1px solid ccc;

}
“`

Conclusion
With the styles set up, our Speech Text Reader should
look polished and be user-friendly. These styles enhance
the usability of the application and create a pleasant
experience for the user. In the next chapter, we’ll dive
into JavaScript to integrate the Web Speech API,
allowing the user to transform text into spoken words.

Get Speech Voices
In the world of web development, providing a holistic
user experience involves not only what the user sees but
also what they hear. The Web Speech API’s
SpeechSynthesis interface offers the capability to
vocalize text content. One of the key elements of this
interface is the ability to select different voice options to
suit the content’s needs. In this chapter, we’ll explore
how to fetch and use the available voice options to
enrich the Speech Text Reader project.

Understanding SpeechSynthesis
Before diving into retrieving available voices, it’s
essential to grasp the basics of `SpeechSynthesis`. It’s
the primary interface for controlling text-to-speech on a
web page. This interface possesses a method called
`getVoices()`, which returns an array of

`SpeechSynthesisVoice` objects representing all the
voices available.

Fetching Available Voices
1. Initialize the Process: Before retrieving voices, we’ll
need a reference to the SpeechSynthesis interface:
“`javascript
const synth = window.speechSynthesis;
“`
2. Get and List Voices: With the initialized `synth` object,
use the `getVoices()` method:
“`javascript
let voices = [];
function populateVoiceList() {

voices = synth.getVoices();
// Code to display these voices will go here

}
“`
Remember that the list of available voices might not be
immediately available when the page loads. To handle
this, we should listen to the `voiceschanged` event:
“`javascript
synth.onvoiceschanged = populateVoiceList;
“`

Displaying the Voices in a Dropdown
To let users choose a voice, it’s common practice to
display them in a dropdown list:
1. HTML Structure:
“`html

<select id=“voiceSelect”></select>
“`
2. Populate the Dropdown:
Back in the `populateVoiceList` function, you can now
loop through the `voices` array and create an option for
each voice:
“`javascript
const voiceSelect =
document.getElementById(‘voiceSelect’);
voices.forEach(voice => {

const option = document.createElement(‘option’);
option.textContent = `${voice.name} (${voice.lang})`;
// Set necessary attributes
option.setAttribute(‘data-lang’, voice.lang);
option.setAttribute(‘data-name’, voice.name);
voiceSelect.appendChild(option);

});
“`

Using a Selected Voice
To actually use one of the voices, you’ll need to set it
when you’re synthesizing speech:
1. Synthesize Speech:
Let’s say you want to speak the following message:
“`javascript
const utterThis = new SpeechSynthesisUtterance(‘Hello,
how are you?’);
“`
2. Set the Voice:

Before you instruct `synth` to speak the message, set
the selected voice:
“`javascript
const selectedVoiceName =
voiceSelect.selectedOptions[0].getAttribute(‘data-name’);
utterThis.voice = voices.find(voice => voice.name ===
selectedVoiceName);
“`
3. Speak!:
Finally, use the `speak` method:
“`javascript
synth.speak(utterThis);
“`

Conclusion
Integrating dynamic voice selection into your Speech
Text Reader enhances customization, catering to a
global audience with varying linguistic preferences. With
just a few lines of code, the Web Speech API’s
SpeechSynthesis interface grants your web applications
a powerful tool, breathing life into static text. As you
progress, consider exploring other features like adjusting
pitch, rate, and volume to further tailor the user’s
auditory experience.

Speech Bu�ons
In this chapter, we’ll explore one of the core components
of our Speech Text Reader project: the Speech Buttons.
These buttons will serve as the trigger for our application
to start converting the selected or entered text into
audible speech. Harnessing the power of the Web
Speech API, particularly the Speech Synthesis interface,
we will give our application a voice.

Prerequisites
Before diving into this chapter, ensure you’ve
successfully set up the basic structure of the project as
covered in the previous chapters.

Creating the Speech Buttons
1. HTML Structure:
First, let’s lay out the basic structure for our buttons in
our HTML:
“`html
<div id=“buttons”>

<button id=“start”>Start Speaking</button>
<button id=“stop”>Stop Speaking</button>

</div>
“`
Here, we have two buttons:
- `Start Speaking`: To initiate the speech.
- `Stop Speaking`: To halt any ongoing speech.
2. Basic Styling:
For our buttons to be visually appealing and user-
friendly, let’s apply some CSS:
“`css
buttons {

display: flex;
justify-content: space-around;
margin-top: 20px;

}
button {

padding: 10px 20px;

font-size: 16px;
cursor: pointer;
border: none;
background-color: 3498db;
color: fff;
border-radius: 5px;

}
button:hover {

background-color: 2980b9;
}
“`

JavaScript Implementation
Now, let’s harness the power of the Web Speech API:
1. Selecting our Elements:
Using JavaScript, we first need to select our button
elements:
“`javascript
const startBtn = document.getElementById(‘start’);
const stopBtn = document.getElementById(‘stop’);
“`
2. Initializing Speech Synthesis:
Next, we initialize our SpeechSynthesis object:
“`javascript
const synth = window.speechSynthesis;
“`
3. Start Speaking Button:
The Start Speaking button will take the provided text and
convert it into speech. Let’s see how this is done:

“`javascript
startBtn.addEventListener(‘click’, () => {

if (synth.speaking) {
console.error(‘Speech synthesis is already

speaking.’);
return;

}
let textInput = document.getElementById(‘text-

input’).value; // Assuming ‘text-input’ is the ID of the
textarea or input where users type/paste their text

if (textInput !== ”) {
let utterance = new

SpeechSynthesisUtterance(textInput);
// Optional: Set voice, pitch, and rate here
// utterance.voice = synth.getVoices()[0];
// utterance.pitch = 1;
// utterance.rate = 1;
synth.speak(utterance);

}
});
“`
4. Stop Speaking Button:
The Stop Speaking button will halt any ongoing speech
synthesis:
“`javascript
stopBtn.addEventListener(‘click’, () => {

if (synth.speaking) {
synth.cancel();

}
});

“`

Testing the Functionality
Once you’ve added the above code snippets, you should
test the application in a browser that supports the Web
Speech API. Type or paste some text into your
designated input area and click the “Start Speaking”
button. You should hear the text being read aloud.
Clicking the “Stop Speaking” button should immediately
halt the speech.

Conclusion
The Speech Buttons play a pivotal role in our Speech
Text Reader application, allowing users to control when
text-to-speech conversion begins and ends. Leveraging
the capabilities of the Web Speech API, we’ve managed
to introduce a powerful feature with just a few lines of
code. In the upcoming chapters, we’ll explore more
features and functionalities to make our application more
robust and user-friendly.

Change Voice & Custom
Text Box
In this chapter, we will extend the functionalities of our
Speech Text Reader by implementing two key features:
1. Changing the voice for our text-to-speech reader.
2. Allowing users to input custom text to be read out
loud.
These features will make our application versatile, giving
users more control over the voice output and the content
being read.

Step 1: Setting Up the HTML for Voice Selection and
Custom Text
Before we dive into the JavaScript functionalities, let’s
set up our HTML to include a dropdown list for voice
selection and a text area for custom text input.
index.html
“`html
<div class=“voice-selection”>

<label for=“voiceList”>Choose Voice:</label>
<select id=“voiceList”></select>

</div>
<div class=“custom-text”>

<label for=“customText”>Enter Custom Text:</label>
<textarea id=“customText” rows=“5”

placeholder=“Type your custom text here…”></textarea>
<button id=“readCustomText”>Read Custom

Text</button>
</div>
“`

Step 2: Fetching Available Voices
Let’s fetch the available voices from the
SpeechSynthesis API and populate our dropdown list.
app.js
“`javascript
const voiceList = document.getElementById(‘voiceList’);
let voices = [];
function populateVoiceList() {

voices = speechSynthesis.getVoices();
voices.forEach(voice => {

const option = document.createElement(‘option’);
option.textContent = voice.name;
option.setAttribute(‘data-lang’, voice.lang);
option.setAttribute(‘data-name’, voice.name);
voiceList.appendChild(option);

});
}
// This event is triggered when voice list changes
speechSynthesis.onvoiceschanged = populateVoiceList;
“`

Step 3: Changing the Voice
Once the voices are loaded into our dropdown, we want
the ability to change the voice based on the user’s
selection.
app.js (Continuation)
“`javascript
let selectedVoice;
voiceList.addEventListener(‘change’, (e) => {

selectedVoice = voices.find(voice => voice.name ===
e.target.value);
});
“`

Step 4: Implementing the Custom Text Box
For our custom text feature, we need to allow users to
type in a text area, and then read the content out loud
using the selected voice.
app.js (Continuation)
“`javascript

const customText =
document.getElementById(‘customText’);
const readCustomTextButton =
document.getElementById(‘readCustomText’);
readCustomTextButton.addEventListener(‘click’, () => {

let utterThis = new
SpeechSynthesisUtterance(customText.value);

if (selectedVoice) {
utterThis.voice = selectedVoice;

}
speechSynthesis.speak(utterThis);
customText.value = ”; // Clear the text area after

reading
});
“`

Step 5: Styling the Interface
To keep our user interface intuitive and neat, let’s add
some styling.
styles.css
“`css
.voice-selection, .custom-text {

margin: 20px 0;
}
label {

display: block;
margin-bottom: 10px;
font-weight: bold;

}
select, textarea {

width: 100%;
padding: 10px;
border: 1px solid ccc;
border-radius: 4px;

}
button {

display: block;
margin-top: 10px;
padding: 10px 20px;
background-color: 333;
color: fff;
border: none;
border-radius: 4px;
cursor: pointer;

}
button:hover {

background-color: 555;
}
“`

Conclusion
With the steps outlined above, we’ve successfully added
functionalities to change the voice of our Speech Text
Reader and allow users to input custom text for the
application to read out loud. This not only makes our
application more versatile but also enhances the user
experience by providing more control over the content
and its presentation.
Remember, accessibility tools like these can make a
difference in how users interact with web applications.

Always ensure that you test these tools with a variety of
users to guarantee that they cater to different needs.

Section 13: Project 12 -
Relaxer App | CSS
Animations, setTimeout

Project Intro
Welcome to Project 12, the Relaxer App. In our fast-
paced world, taking a few moments to relax and breathe
is not just essential for mental health, but also for
boosting productivity. With this in mind, the Relaxer App
serves as a digital companion that encourages its users
to pause, breathe, and reconnect with the present
moment.

Objective of the Relaxer App:
The primary purpose of the Relaxer App is to guide the
user through a series of breathing exercises, helping
them achieve a state of calm and focus. As developers,
it provides us an opportunity to delve into an interesting
blend of CSS animations and JavaScript functions,
especially the setTimeout method.

What Will We Build?
1. Visual Breathing Guide: A user-friendly UI that will
visually show the user when to breathe in, hold their
breath, and breathe out.
2. Animation: Using CSS, we’ll create a smooth and
calming animation that coincides with the breathing
instructions, allowing the user to follow along visually.

3. JavaScript Integration: Our JS code will not only
control the animation triggers but also guide the user on
how long they should be performing each part of the
breathing exercise.

Features of the Relaxer App:
1. Guided Breathing Instructions: Clear on-screen
prompts that tell the user exactly when to breathe in,
hold, and breathe out.
2. Adaptive Cycle: The app will continually run the
breathing cycle, allowing users to use it for as long as
they need.
3. Responsive Design: Our app will be adaptable to
different devices ensuring everyone can access and
benefit from it.
4. Customizable Settings: While this is a basic version,
developers can later add features where users can set
their breathing intervals or choose different relaxation
modes.

Why the Relaxer App?
- Holistic Learning: This project offers a well-rounded
learning experience, from creating visually appealing
designs to understanding and implementing JavaScript’s
asynchronous functions.
- Real-world Application: Meditation and relaxation apps
are increasingly popular. This project can serve as a
foundation for those looking to delve deeper into this
genre of apps.
- Challenging Yet Achievable: For those who’ve
journeyed with us through the previous 11 projects, the
Relaxer App provides just the right amount of challenge
while ensuring that it remains achievable and enjoyable.
In conclusion, by the end of this project, you will not only
have a functional Relaxer App but also a deeper

understanding of how CSS animations can be effectively
combined with JavaScript methods to create a
synchronous user experience. So, let’s dive in and start
building our path to relaxation and coding mastery!

Crea�ng The Large Circle
In the Relaxer App, the main visual component is a large
circle which will represent our breathing visual guide.
This circle will expand and contract, simulating the
breathing process. Before animating it, we first need to
create it. In this chapter, we’ll walk you through the
process of creating this essential component using
HTML and CSS.

Step 1: Setting up the HTML Structure
Let’s start by creating the basic structure for our circle in
the HTML.
“`html
<!DOCTYPE html>
<html lang=“en”>
<head>

<meta charset=“UTF-8”>
<meta name=“viewport” content=“width=device-width,

initial-scale=1.0”>
<title>Relaxer App</title>
<link rel=“stylesheet” href=“styles.css”>

</head>
<body>

<div class=“container”>
<div class=“circle”></div>

</div>

</body>
</html>
“`
Here, we’ve wrapped the circle inside a container. This
will help in positioning and animating it later on.

Step 2: Styling the Circle using CSS
For our circle to look visually appealing and give the user
a sense of relaxation, we’ll opt for a calm, pastel color.
The size of the circle should be significant enough to be
the primary focus, but not overwhelming.
In your `styles.css`:
“`css
body, html {

height: 100%;
margin: 0;
display: flex;
justify-content: center;
align-items: center;
background-color: 282c34; /* A dark background for

contrast */
}
.container {

position: relative;
width: 300px;
height: 300px;

}
.circle {

position: absolute;
top: 50%;

left: 50%;
transform: translate(-50%, -50%);
width: 100%;
height: 100%;
border-radius: 50%; /* Makes it a perfect circle */
background-color: 89CFF0; /* A soothing blue color */
box-shadow: 0px 0px 15px rgba(0,0,0,0.2); /* A subtle

shadow for depth */
}
“`
In the above CSS, we’ve:
- Centered the `.container` using flex properties on the
`body`.
- Used the `position: absolute` and `transform` properties
for the `.circle` to ensure it’s perfectly centered within the
`.container`.
- Used the `border-radius` property to turn our square div
into a circle.
- Chose a relaxing blue shade for the background.

Step 3: Add a Textual Indicator
Though our main focus is the circle, having a textual
indicator can provide additional context. Let’s add a
simple “Breathe In” and “Breathe Out” text that will later
be toggled through JavaScript as the circle expands and
contracts.
Modify the HTML:
“`html
<div class=“container”>

<div class=“circle”>
<p class=“text”>Breathe In</p>

</div>
</div>
“`
Now, add some styling for the text:
“`css
.text {

position: absolute;
top: 50%;
left: 50%;
transform: translate(-50%, -50%);
font-family: ‘Arial’, sans-serif;
color: fff;
font-size: 1.5rem;
text-align: center;
opacity: 0.8;

}
“`

Conclusion
We have now successfully created a large circle which
will serve as the core visual element for our Relaxer App.
This circle will soon be animated to assist users in a
relaxing breathing exercise. In the next chapters, we will
dive deeper into adding animations and enhancing the
interactivity of this circle.
Remember, the effectiveness of this app isn’t just about
the animations or the code, but also about the visual
cues that can help users find relaxation and calmness.
Our choice of colors, positioning, and the smoothness of
animations will play a crucial role in the app’s overall
impact.

Crea�ng & Anima�ng The
Pointer
In this chapter, we will be focusing on an integral part of
the Relaxer App: the pointer. The pointer serves as a
visual cue to guide the user through their breathing
exercises. It will rotate around the circumference of a
circle, with its motion corresponding to the breathing
instructions.

Prerequisites
Before we begin, ensure you have the following set up:
- Basic HTML structure for the Relaxer App
- A large circle in the center of the page (from Chapter
70)

1. Creating the Pointer with HTML & CSS
HTML:
Add a div for the pointer within the circle element:
“`html
<div class=“circle”>

<div class=“pointer”></div>
</div>
“`
CSS:
Style the pointer to appear as a small, prominent triangle
that stands out against the circle:
“`css
.pointer {

width: 0;

height: 0;
border-left: 10px solid transparent;
border-right: 10px solid transparent;
border-bottom: 20px solid 333;
position: absolute;
top: -10px;
left: 50%;
transform: translateX(-50%);

}
“`

2. Basic Animation Setup
To animate the pointer, we will be using CSS keyframes
and the `transform` property. For simplicity, let’s set up
an animation that rotates the pointer 360 degrees over a
duration of 8 seconds (to mimic a full breath cycle).
CSS:
“`css
@keyframes rotatePointer {

0% {
transform: rotate(0deg);

}
100% {

transform: rotate(360deg);
}

}
“`
Apply the animation to the pointer:
“`css

.pointer {
/* …previous styles… */
animation: rotatePointer 8s linear infinite;

}
“`

3. Timing with `setTimeout`
While the CSS animation gives us a continuous motion,
we want the pointer to pause during specific moments to
simulate the ‘inhale’ and ‘exhale’ periods. For this, we’ll
employ JavaScript’s `setTimeout` method.
JavaScript:
First, grab the pointer element:
“`javascript
const pointer = document.querySelector(‘.pointer’);
“`
Next, create a function to control the pointer’s animation:
“`javascript
function controlPointerAnimation() {

// Pause the animation
pointer.style.animationPlayState = ‘paused’;
// ‘Inhale’ for 4 seconds
setTimeout(() => {

pointer.style.animationPlayState = ‘running’;
}, 4000);
// ‘Exhale’ for 4 seconds and then pause again
setTimeout(() => {

pointer.style.animationPlayState = ‘paused’;
}, 8000);

}
“`
Invoke the function when the page loads:
“`javascript
controlPointerAnimation();
“`
For continuous cycles, you can use `setInterval` to run
the `controlPointerAnimation` function every 8 seconds.
“`javascript
setInterval(controlPointerAnimation, 8000);
“`

Conclusion
The animated pointer now provides a clear visual cue for
users, guiding them through the breathing exercise. By
combining CSS animations with timed JavaScript
functions, we’ve created a seamless user experience
that’s both interactive and beneficial for relaxation.
In the next chapter, we’ll delve into triggering the
breathing animation with JavaScript, enhancing the
relaxation experience further. Stay tuned!

Breath Anima�on With JS
Trigger
Objective: In this chapter, we’ll walk through how to
create a breathing relaxation app. The app will
encourage users to follow a rhythmic breathing pattern,
using a visual guide that expands and contracts. The
animation will be achieved using CSS animations and
triggered via JavaScript.

1. Introduction
Breathing exercises are often used to induce relaxation
and reduce stress. Our goal is to create an animation
that mimics the inhalation and exhalation process,
guiding users to sync their breath with it.

2. Setting Up the HTML Structure
Let’s start by creating a basic structure for our animation:
“`html
<div class=“app”>

<div class=“circle”>
<div class=“inner-circle”></div>

</div>
<p id=“instruction”>Breathe In</p>

</div>
“`
Here, `.circle` represents the breath visual while `.inner-
circle` mimics the lungs expanding and contracting.

3. Styling Our Animation
Next, let’s style our circles:
“`css
.app {

display: flex;
justify-content: center;
align-items: center;
height: 100vh;
background-color: e0f7fa;

}
.circle {

width: 100px;
height: 100px;
border-radius: 50%;
background-color: 81d4fa;
display: flex;
justify-content: center;
align-items: center;
overflow: hidden;

}
.inner-circle {

width: 50px;
height: 50px;
border-radius: 50%;
background-color: 29b6f6;
opacity: 0.7;

}
“`

4. Creating the CSS Animation
Let’s create two animations: one for breathing in, where
the circle expands, and one for breathing out, where it
contracts.
“`css
@keyframes breatheIn {

0%, 100% {
width: 50px;
height: 50px;

}
50% {

width: 100px;
height: 100px;

}
}
@keyframes breatheOut {

0%, 100% {
width: 100px;
height: 100px;

}
50% {

width: 50px;
height: 50px;

}
}
“`

5. Adding JavaScript Trigger
Now, let’s use JavaScript to trigger these animations:
“`javascript
const instruction =
document.getElementById(‘instruction’);
const innerCircle = document.querySelector(‘.inner-
circle’);
let isBreathingIn = true;
const breatheFunction = () => {

if (isBreathingIn) {
instruction.innerText = ‘Breathe Out’;
innerCircle.style.animation = ‘breatheIn 2s

alternate 2’;

} else {
instruction.innerText = ‘Breathe In’;
innerCircle.style.animation = ‘breatheOut 2s

alternate 2’;
}
isBreathingIn = !isBreathingIn;

};
// Initial call
breatheFunction();
// Use setInterval to keep repeating
setInterval(breatheFunction, 4000);
“`
Here, we’re toggling between the `breatheIn` and
`breatheOut` animations every 4 seconds, giving each
animation 2 seconds to complete with a 2-second pause
(achieved by using the `alternate` count).

6. Conclusion
With this, our breath animation is complete. The `Relaxer
App` now provides a visual aid for users to synchronize
their breathing. CSS animations combined with
JavaScript triggers offer a dynamic way to provide
engaging content for users.
By following this model, you can expand upon this
concept to include sound, adjust timings, or even include
varying breathing patterns for different relaxation
techniques.

Note: Always ensure your applications, especially those
with health implications, have appropriate disclaimers.
This app is a basic model and should be used for
illustrative purposes. It’s always best to consult with

professionals when dealing with health and well-being
related content

Section 14: Project 13 - New
Year Countdown | DOM, Date
& Time
Project Intro
Welcome to the thirteenth project of this book! We have
come a long way, from form validators to custom video
players, and now we’re diving into a delightful New Year
Countdown application. As we bid goodbye to the
current year and eagerly await the next, having a visual
countdown can heighten the excitement and thrill.
Whether you want to deploy this on your website,
integrate it into an event page, or simply enjoy the
programming journey, this project promises to offer both
challenges and fulfillment.

Objective of the Project
The primary objective of this project is to create a web-
based New Year countdown timer. As seconds tick away
and the new year approaches, our application will
provide real-time updates, showing the days, hours,
minutes, and seconds remaining.

Key Features
1. Dynamic Date & Time Integration: Using the
JavaScript Date object, the application will continually
fetch the current date and time, calculate the difference
from the New Year, and display the countdown.

2. Landing Page: A beautifully designed landing page
that captivates users with animations, relevant images,
and, of course, the countdown itself.
3. Responsive Design: We want everyone, regardless of
their device, to enjoy the countdown. Hence, we’ll make
sure our design is responsive, looking great on both
mobiles and desktops.
4. Spinner Effect: Just before the countdown hits the
New Year, we’ll have a spinner effect to add to the
anticipation.
5. Dynamic Year Update: No need to manually update
the target year. Our app will automatically set the
countdown for the next New Year.

Technologies & Methods to be Used
* HTML: For structuring the landing page and countdown
elements.
* CSS: To style, beautify, and ensure responsiveness of
our application. We will also use CSS for creating
animations.
* JavaScript: This is where the magic happens. We’ll use
JS to:

- Fetch the current date and time.
- Calculate the difference between the current date and

the New Year.
- Update the DOM elements in real-time.
- Implement the spinner effect and dynamic year

updates.

What You Will Learn
By the end of this project:
- You’ll gain a deeper understanding of the JavaScript
Date object and its methods.

- You’ll learn to manipulate the DOM in real-time, making
your applications more dynamic and interactive.
- The importance of responsiveness in design will be
clearer, and you’ll have practical knowledge of
implementing it.
- You’ll experience the thrill of building an application
that’s time-sensitive.
Prerequisites
Before diving into this project, ensure you have a basic
understanding of HTML, CSS, and JavaScript. Previous
projects in this book have covered DOM manipulation,
CSS styling, and JavaScript fundamentals, which will be
critical to succeeding in this project.

In the next chapter, we’ll begin our journey by setting up
our landing page. This will be the foundation upon which
we’ll build our dynamic countdown. So, make sure you
have your code editor ready, your favorite browser open,
and let’s welcome the New Year with some code!

Landing Page HTML &
Styling
In this chapter, we’ll focus on creating the landing page
for our New Year Countdown project. The goal is to
design a visually appealing webpage that also provides
the functional backdrop for our countdown timer. We’ll be
using HTML for the structure and CSS for styling.

1. Setting up the HTML Structure
For the landing page, we want a simple yet vibrant
design that builds anticipation for the New Year
countdown.
Let’s begin with the basic HTML structure:

“`html
<!DOCTYPE html>
<html lang=“en”>
<head>

<meta charset=“UTF-8”>
<meta name=“viewport” content=“width=device-width,

initial-scale=1.0”>
<title>New Year Countdown</title>
<link rel=“stylesheet” href=“styles.css”>

</head>
<body>

<div class=“container”>
<header>
<h1>New Year Countdown</h1>
<p>Welcome the new year with excitement!</p>
</header>
<div class=“countdown-wrapper”>
<!— Countdown Timer will be placed here in the

next chapter —>
</div>

</div>
</body>
</html>
“`
Here, we’ve set up a `container` div to hold the entire
content. Inside this, the `header` consists of a heading
and a subheading. The `countdown-wrapper` is a
placeholder for where we’ll be adding our countdown
timer in the next chapter.

2. Styling the Landing Page
Let’s now move on to styling. For this project, let’s
consider a dark theme with gold accents to give it a
festive feel.
styles.css
“`css
body {

font-family: ‘Arial’, sans-serif;
background-color: 222;
color: fff;
text-align: center;
margin: 0;
padding: 0;
height: 100vh;
display: flex;
justify-content: center;
align-items: center;

}
.container {

width: 80%;
max-width: 800px;

}
header {

margin-bottom: 20px;
}
header h1 {

font-size: 2.5rem;
color: gold;
margin: 0;

}
header p {

color: ddd;
font-style: italic;

}
.countdown-wrapper {

border: 2px solid gold;
padding: 20px;
border-radius: 10px;
box-shadow: 0px 0px 15px rgba(255, 215, 0, 0.6);

}
“`
Here’s a breakdown of what we did with our CSS:
- For the body, we used a dark color (`222`) and set the
text color to white. We also centered our `container`
using flexbox properties.
- The container width is set to 80% of the viewport with a
max-width of 800px to ensure our design is responsive.
- The header has a bottom margin to give space
between it and the countdown timer. The h1 tag (title) is
colored gold to stand out.
- We’ve styled the `countdown-wrapper` with a golden
border and added a subtle box shadow to give it some
depth.

3. Conclusion
With our landing page’s HTML and styling complete, we
now have a base from which we can implement our
countdown timer in the upcoming chapters. The dark
theme accented with gold adds a touch of festivity and
anticipation for the New Year’s countdown.

In the next chapter, we’ll focus on creating the actual
countdown, adding days, hours, minutes, and seconds
dynamically, and using JavaScript to make it all function
in real-time.

Create The Countdown
Chapter 75: Create The Countdown
Welcome to Chapter 75 of our project journey! In this
chapter, we’re diving into the heart of our New Year
Countdown project: creating the countdown itself. We
will fetch the current date, determine the New Year’s
date, and calculate the difference between the two. The
result will then be displayed dynamically on our landing
page.

1. Understanding the Objective
Our goal is to display a countdown that decrements
every second and shows the number of days, hours,
minutes, and seconds left until the New Year. This
dynamic visual engages users and builds anticipation for
the upcoming year.

2. Setting up the HTML Structure
Before diving into the JavaScript, let’s create a
placeholder in our HTML where our countdown will be
displayed:
“`html
<div class=“countdown”>

<div class=“time”>
365 days

</div>
<div class=“time”>

00 hours

</div>
<div class=“time”>

00 minutes
</div>
<div class=“time”>

00 seconds
</div>

</div>
“`

3. Getting Current Date & New Year Date
In JavaScript, we need to get the current date and the
date of the next New Year:
“`javascript
const currentDate = new Date();
const nextNewYearDate = new
Date(currentDate.getFullYear() + 1, 0, 1);
“`

4. Calculate the Difference
We need to calculate the difference in milliseconds
between the current date and the New Year’s date:
“`javascript
const difference = nextNewYearDate - currentDate;
“`
From this difference, we can derive the days, hours,
minutes, and seconds.

5. Deriving Time Units
Here’s a breakdown of how to derive each time unit:

“`javascript
const seconds = Math.floor(difference / 1000);
const minutes = Math.floor(seconds / 60);
const hours = Math.floor(minutes / 60);
const days = Math.floor(hours / 24);
const secondsLeft = seconds % 60;
const minutesLeft = minutes % 60;
const hoursLeft = hours % 24;
“`

6. Displaying the Countdown
Now, we will update our HTML structure with the
calculated values:
“`javascript
document.querySelector(‘.days’).textContent = days;
document.querySelector(‘.hours’).textContent =
hoursLeft;
document.querySelector(‘.minutes’).textContent =
minutesLeft;
document.querySelector(‘.seconds’).textContent =
secondsLeft;
“`

7. Updating the Countdown Every Second
To make our countdown dynamic, we need to update it
every second:
“`javascript
setInterval(() => {

// Recalculate the difference
const currentDate = new Date();

const difference = nextNewYearDate - currentDate;
// Convert the difference to days, hours, minutes, and

seconds
// …
// Update the HTML
// …

}, 1000);
“`
And that’s it! You’ve successfully created a dynamic New
Year countdown using DOM manipulation and the Date
object in JavaScript.

Closing Thoughts
Countdowns can be a thrilling addition to many websites,
especially those anticipating an event. By mastering the
Date object and understanding the mathematics behind
time calculations, you can create a plethora of time-
based functionalities for the web. As always, practice
makes perfect. Try creating countdowns for other events
or adding features like custom user inputs for
personalized countdowns. The sky’s the limit!

Dynamic Year & Spinner
Welcome back to Project 13, the New Year Countdown!
In our previous chapter, we laid the groundwork by
setting up our landing page. This time, we’ll delve deeper
into the JavaScript world and implement the dynamic
year display and a spinner animation, showcasing the
countdown to the New Year.

Setting Up the Dynamic Year
One of the most essential features in a New Year
Countdown is ensuring that it remains relevant year after

year. Instead of hardcoding the year, we can utilize
JavaScript’s `Date` object to make sure our countdown
is always counting down to the upcoming New Year.
Step 1: Access the DOM Elements
Before we start, we need references to the elements
where we want to display the year.
“`javascript
const yearEl = document.getElementById(‘year’);
“`
Step 2: Get the Current Year
Using the `Date` object, we can fetch the current year:
“`javascript
const currentYear = new Date().getFullYear();
“`
Step 3: Display the Next Year
“`javascript
yearEl.textContent = currentYear + 1;
“`
This will ensure that the displayed year is always the
next one, keeping our countdown relevant.

Implementing the Spinner Animation
As users visit our page, it’s a pleasant experience to
provide them with a visual cue indicating that the
countdown is being set up. This is where our spinner
comes into play. It will display for a short time before
revealing the countdown.
Step 1: HTML Setup
Within your main HTML, incorporate the spinner div:
“`html
<div class=“spinner” id=“spinner”></div>

“`
Step 2: CSS Styling
For the spinner, you’ll want a simple rotating animation:
“`css
.spinner {

width: 50px;
height: 50px;
border: 5px solid rgba(255, 255, 255, 0.1);
border-top: 5px solid fff;
border-radius: 50%;
position: absolute;
top: 50%;
left: 50%;
transform: translate(-50%, -50%);
animation: spin 1s linear infinite;

}
@keyframes spin {

0% {
transform: translate(-50%, -50%) rotate(0deg);

}
100% {

transform: translate(-50%, -50%) rotate(360deg);
}

}
“`
Step 3: JavaScript Logic
Finally, to ensure that the spinner only shows for a brief
time before the countdown is displayed:

“`javascript
const spinnerEl = document.getElementById(‘spinner’);
const countdownEl =
document.getElementById(‘countdown’); // Assuming
this is the id of your countdown container
setTimeout(() => {

spinnerEl.style.display = ‘none’;
countdownEl.style.display = ‘block’;

}, 1000);
“`
This will hide the spinner and display the countdown
after a second.

Wrapping Up
With our dynamic year in place and a pleasant loading
spinner to greet our users, our New Year Countdown is
taking shape!
Remember, the power of web development is not just in
creating beautiful visuals but in enhancing user
experience with these small dynamic functionalities. The
countdown becomes more robust and user-friendly,
ensuring our users return year after year.

Section 15: Project 14 -
Sortable List | Drag & Drop
API

Project Intro
Welcome to Project 14! In this module, we are going to
explore one of the cool features of modern web

development — the Drag & Drop API. As web
developers, we’re always on the lookout for ways to
enhance user experience and make web interactions
feel natural and intuitive. The Drag & Drop feature is a
versatile tool that, when implemented well, can
significantly elevate the functionality and usability of a
website or application.

Objective of the Project
Our primary goal in this project is to develop a sortable
list. Think of a scenario where you have a list of tasks,
priorities, or perhaps even a playlist of songs, and you
want to rearrange them based on their importance,
urgency, or preference. Wouldn’t it be amazing if you
could simply drag an item and place it wherever you
wanted within the list? That’s exactly what we’re going to
build in this project.

Why a Sortable List?
The ability to manipulate the order of items in a list
through dragging and dropping is not just visually
satisfying for the user, but it’s also extremely functional.
Here’s why:
1. Flexibility: Users are not always sure of the order of
items when they initially create a list. Having the ability to
reorder items provides the flexibility to adapt the list over
time.
2. Intuitiveness: Dragging and dropping feels natural. It
mimics the action of physically moving objects around,
making the interaction feel real and immersive.
3. Enhanced User Experience: No need to manually
delete and re-add items to change their order. A sortable
list provides a seamless way to organize items.

Technical Overview

In this project, we’ll harness the capabilities of the
HTML5 Drag & Drop API. Here are the primary
components we will be focusing on:
1. Draggable Elements: These are the items in our list
that we want to make movable.
2. Drop Zones: These are the areas where we can place
our draggable elements.
3. Drag & Drop Events: These are a set of events that
the browser triggers as elements are dragged and
dropped. We’ll be leveraging events like `dragstart`,
`dragover`, `dragleave`, and `drop`.

Expected Outcomes
By the end of this project:
- You’ll have a functional sortable list that allows items to
be rearranged using drag and drop.
- You’ll gain a deep understanding of the Drag & Drop
API, its events, and methods.
- You’ll be able to implement drag & drop functionality in
different scenarios, not just for sorting lists.

Prerequisites
While we will be explaining each step in detail, it’s
essential to have a basic understanding of:
- HTML: To structure our list.
- CSS: For styling our list and creating visual cues during
the drag & drop process.
- JavaScript: To handle drag & drop events and
manipulate the DOM.

In Conclusion
The Drag & Drop API opens up a world of interactive
possibilities on the web. Whether it’s building a game, a

planner, or a visual organizer, understanding how to
harness its power can set your projects apart.
Are you excited? Let’s dive right into building our
sortable list!

Insert List Items Into DOM
In this chapter, we will explore one of the foundational
tasks in web development – inserting list items into the
Document Object Model (DOM). The ability to
dynamically insert elements into the DOM is vital for
creating dynamic web applications. In the context of our
sortable list project, we will be creating a list that the user
can interact with by dragging and dropping list items. But
before we can do that, we need to get our list items into
the DOM. Let’s get started!

Understanding the DOM
Before diving into the insertion process, it’s essential to
understand what the DOM is. The DOM represents the
structure of your web document, and every element,
attribute, and piece of text becomes a node within this
structure. When we talk about inserting list items into the
DOM, we are essentially adding nodes to this structure.

Basic List Structure
In HTML, a basic list structure using unordered lists
looks like this:
“`html

Item 1
Item 2
Item 3

“`
In our sortable list project, we want to dynamically insert
these list items.

Inserting List Items Using JavaScript
Here is a step-by-step guide to inserting list items into
the DOM using JavaScript:
1. Select the Parent Element

Before we can insert a list item, we need to select the
parent element. In our case, it’s the `` element.

“`javascript
const list = document.querySelector(‘ul’);
“`

2. Create the List Item Element
We can create a new element using the

`document.createElement()` method.
“`javascript
const listItem = document.createElement(‘li’);
“`

3. Set the Content for the List Item
You can set the text content for this newly created list

item using the `textContent` property.
“`javascript
listItem.textContent = ‘Item 4’;
“`

4. Append the List Item to the Parent Element
To insert the new list item into the DOM, you use the

`appendChild()` method.
“`javascript
list.appendChild(listItem);

“`
If you followed the above steps, your list will now look
like this:
“`html

Item 1
Item 2
Item 3
Item 4

“`

Dynamically Inserting Multiple List Items
To make our project interactive, we might want to insert
multiple list items at once. For example, if we have an
array of items, we can iterate over this array and insert
each item into the DOM:
“`javascript
const items = [‘Item 5’, ‘Item 6’, ‘Item 7’];
items.forEach(item => {

const listItem = document.createElement(‘li’);
listItem.textContent = item;
list.appendChild(listItem);

});
“`
This will extend our list to:
“`html

Item 1

Item 2
Item 3
Item 4
Item 5
Item 6
Item 7

“`

Conclusion
Being able to manipulate the DOM is a fundamental skill
for a web developer. By now, you should have a good
understanding of how to insert list items into the DOM
dynamically using JavaScript. In the next chapter, we’ll
learn how to scramble these list items and set the stage
for our drag-and-drop functionality. Stay tuned!

Scramble List Items
In this chapter, we’ll introduce the concept of scrambling
the items in our sortable list. The aim is to challenge the
user to rearrange the list into its original order. By doing
this, we’ll provide a real-world application of the Drag &
Drop API, as it demonstrates a practical use-case.

Understanding the Need for Scrambling
Before we dive into the technicalities, let’s understand
the need for scrambling. When we provide a list to users
in a sorted order, and then task them with rearranging it
after it’s been scrambled, we’re giving them a simple, yet
effective exercise in sorting. This could be applied in
real-world scenarios like sorting tasks, rearranging
products in a list, or any other kind of ordering
requirement.

Getting Started
First, we’ll assume that we have a list of items,
structured in an HTML format as follows:
“`html
<ul id=“sortable-list”>

<li draggable=“true”>Item 1
<li draggable=“true”>Item 2
<li draggable=“true”>Item 3
<!—… and so on —>

“`

JavaScript: Scrambling the List
We’ll use a modern version of the Fisher-Yates (also
known as the Knuth) shuffle algorithm. This algorithm
ensures each permutation of the list is equally likely.
“`javascript
function scrambleList() {

const ul = document.querySelector(‘sortable-list’);
const items = ul.getElementsByTagName(‘li’);
let itemsArr = Array.prototype.slice.call(items);
itemsArr.sort(() => 0.5 - Math.random());
itemsArr.forEach(item => {

ul.appendChild(item);
});

}
“`
In this function:
- We first select our unordered list by its ID.

- We get all the list items from the unordered list.
- We convert the HTML collection to an array, so we can
use array methods on it.
- We then use the `sort()` method to shuffle the list. The
logic `0.5 - Math.random()` is a commonly used trick to
randomize the sort.
- Finally, we append each shuffled item back to the list.

Executing the Scramble
Now, you’ll probably want to trigger the scramble at a
specific point in your application. For demonstration
purposes, we’ll just add a button which, when clicked,
will scramble our list.
“`html
<button onclick=“scrambleList()”>Scramble
Items</button>
“`

Conclusion
By introducing a scrambling feature, you’ve added an
interactive layer to your sortable list application. This
challenges the users, but also gives them a tangible
goal: to restore order. In the next chapter, we’ll delve into
the core styling of our application and set the visual
stage for our drag and drop functionality. Remember,
user experience is paramount, and the visual feedback
we provide is crucial in guiding users through the sorting
process.

Core CSS
CSS, or Cascading Style Sheets, is an essential tool for
controlling the look and feel of your web applications. In
this chapter, we’ll be diving into the core CSS that will
give our Sortable List project a clean, professional

appearance. Remember, good CSS not only makes your
application visually appealing, but it can also enhance
user experience.

1. Resetting Default Styles:
Before diving into the project-specific styles, it’s essential
to ensure that we reset browser-default styles. This will
give us a consistent baseline across different browsers.
“`css
* {

margin: 0;
padding: 0;
box-sizing: border-box;

}
“`

2. Setting up the Body & Main Wrapper:
The `body` and main wrapper elements dictate the basic
styling and positioning of our entire app.
“`css
body {

font-family: ‘Arial’, sans-serif;
background-color: f4f4f4;
color: 333;
font-size: 16px;
line-height: 1.6;

}
.wrapper {

width: 80%;
max-width: 1200px;

margin: 40px auto;
padding: 20px;
background-color: fff;
box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);

}
“`

3. Styling the Sortable List:
For our sortable list, we’ll aim for a design that
differentiates each list item while making it clear that they
can be dragged and dropped.
“`css
.sortable-list {

list-style-type: none;
}
.sortable-list li {

padding: 15px;
border: 1px solid ddd;
cursor: move; /* Indicates draggability */
margin-bottom: 10px;
background-color: f9f9f9;
transition: background-color 0.2s;

}
.sortable-list li:hover {

background-color: f4f4f4;
}
“`

4. Drag & Drop Indication:

When a user drags a list item, we’ll want to give a visual
indication. A simple way is to change the background
color.
“`css
.sortable-list li.dragging {

background-color: ddd;
border: 1px solid transparent;

}
“`

5. Feedback and Notifications:
If you’ve integrated any feedback mechanism like an
alert to indicate the correct order, we’ll want to style it
accordingly.
“`css
.alert {

padding: 10px;
margin: 10px 0;
border: 1px solid transparent;
border-radius: 5px;

}
.alert.success {

color: 006400;
background-color: e6ffe6;
border-color: 006400;

}
.alert.error {

color: a80000;
background-color: ffe6e6;

border-color: a80000;
}
“`

6. Additional Touches:
Finally, you can add some additional touches to improve
the aesthetics and user experience. Consider adding
`hover` effects, transitions, and possibly some
responsive media queries to ensure your sortable list
looks good on all devices.

Conclusion:
CSS is a powerful tool that enables web developers to
create visually appealing and intuitive user interfaces. By
using thoughtful and purposeful styles, you can
significantly improve user experience. In the next
chapters, we’ll integrate the drag and drop API
functionality into our styled sortable list, adding
functionality to our visually appealing design.
Remember, always test your designs on various devices
and browsers to ensure consistency and optimal user
experience.

Drag & Drop Func�onality
Drag and Drop (DnD) functionality is a user interface
pattern that allows users to directly manipulate elements
on the screen, offering an intuitive way to rearrange
elements, move data between containers, or even create
elements by dragging a new object into a designated
space. In the context of our Sortable List project, we’ll
use this feature to rearrange list items by dragging them
to their desired locations.

Basics of the HTML Drag and Drop API

Before diving into the code, it’s crucial to understand the
foundational concepts of the Drag and Drop API:
- draggable attribute: This attribute is set on the element
you wish to drag. Most HTML elements are not
draggable by default, so you need to set
`draggable=“true”` on them.

“`html
<div draggable=“true”>This is a draggable element.

</div>
“`

- Drag & Drop Events: These are the primary events that
the DnD API provides, which give us control over the
drag and drop lifecycle.

- dragstart: Triggered when the user starts dragging an
element.

- drag: Triggered as the element is being dragged.
- dragend: Triggered when the user releases the

element.
- dragenter: Triggered when a dragged element enters

a drop target.
- dragover: Triggered as the dragged element is over a

drop target (many times).
- dragleave: Triggered when a dragged element leaves

a drop target.
- drop: Triggered when the dragged element is dropped

on a drop target.

Implementing Drag & Drop for our Sortable List
1. Setting Items as Draggable

Every list item that you want to be draggable should
have the `draggable` attribute set to `true`. Assuming
you have a list like this:

“`html

<ul id=“sortable-list”>
<li draggable=“true”>Item 1
<li draggable=“true”>Item 2
<!— … —>

“`

2. Add Event Listeners
Now, we’ll attach event listeners to handle the drag

and drop operations.
“`javascript
const listItems = document.querySelectorAll(‘sortable-

list li’);
listItems.forEach(item => {

item.addEventListener(‘dragstart’, handleDragStart);
item.addEventListener(‘dragover’,

handleDragOver);
item.addEventListener(‘drop’, handleDrop);
item.addEventListener(‘dragleave’,

handleDragLeave);
});
“`

3. Handling Drag Start
When dragging starts, we’ll set some data on the

event to recognize what’s being dragged.
“`javascript
function handleDragStart(e) {

e.dataTransfer.setData(‘text/plain’, e.target.id);
setTimeout(() => {

e.target.classList.add(‘hidden’);
}, 0);

}
“`
The `hidden` class can be something simple that

visually hides the item, like:
“`css
.hidden {

display: none;
}
“`

4. Handling Drag Over
By default, dropping is disabled on most elements. To

allow a drop, we need to prevent the default handling of
the event.

“`javascript
function handleDragOver(e) {

e.preventDefault();
e.target.classList.add(‘over’);

}
“`
The `over` class can be a styling indication for the

placeholder where the element will be dropped.
5. Handling Drop

This is where the magic happens! Here, we’ll
rearrange our list based on where the item was dropped.

“`javascript
function handleDrop(e) {

e.preventDefault();
const draggedId =

e.dataTransfer.getData(‘text/plain’);

const draggedItem =
document.getElementById(draggedId);

const dropTarget = e.target;
// Insert the dragged item before the drop target
dropTarget.parentNode.insertBefore(draggedItem,

dropTarget);
draggedItem.classList.remove(‘hidden’);

}
“`

6. Handling Drag Leave
When the draggable item leaves a potential drop

target, we want to remove any indication that the drop
target is active.

“`javascript
function handleDragLeave(e) {

e.target.classList.remove(‘over’);
}
“`

Conclusion
The Drag and Drop API provides a powerful way to
implement intuitive interactions in your web projects.
With this API, we can create visually appealing
interfaces where users can directly manipulate on-
screen elements, making for a more dynamic and
engaging user experience.

Check Order
After mastering the art of dragging and dropping items
on our sortable list, the next vital step is to check the
order of the items. This ensures that users receive

feedback on their effort, thereby making the sortable list
interactive and intuitive.
In this chapter, we’ll focus on determining the correct
order of the items after they’ve been sorted. We’ll walk
through creating a function to validate the order, and
then provide feedback to the user based on their sorting
performance.

Prerequisites
Before delving into the code, ensure that:
- You have a working drag and drop functionality from
the previous chapters.
- You have a predetermined correct order for the list
items to compare against.

Setting Up the Correct Order
For the sake of our tutorial, let’s imagine our list
represents the order of planets from the sun:
“`javascript
const correctOrder = [‘Mercury’, ‘Venus’, ‘Earth’, ‘Mars’,
‘Jupiter’, ‘Saturn’, ‘Uranus’, ‘Neptune’];
“`

Checking the Order
Once a user finishes sorting the list, we need to check
the order against our `correctOrder` array.
“`javascript
function checkOrder() {

const listItems = document.querySelectorAll(‘li’);
let isCorrect = true;
listItems.forEach((item, index) => {

if (item.textContent !== correctOrder[index]) {

isCorrect = false;
}

});
return isCorrect;

}
“`
In this function:
- We first select all the `li` elements.
- We initialize a variable `isCorrect` to `true`.
- We then loop through each list item and compare its
text content with the correct order. If any do not match,
we set `isCorrect` to `false`.

Providing Feedback
Once we’ve determined whether the order is correct or
not, it’s essential to provide feedback to the user.
“`javascript
function provideFeedback() {

const isOrderCorrect = checkOrder();
if (isOrderCorrect) {

alert(“Congratulations! You’ve sorted the list
correctly.”);

} else {
alert(“Oops! That doesn’t seem right. Try again.”);

}
}
“`
Now, we’ll call `provideFeedback` every time a list item is
dropped.

Hooking Up the Feedback Function to Drag & Drop
Update your `drop` event listener:
“`javascript
listItem.addEventListener(‘drop’, function(e) {

// … existing drag & drop logic …
provideFeedback();

});
“`
Now, every time an item is dropped, the order is
checked, and feedback is provided.

Enhancements
1. Highlight Incorrect Items: Instead of a simple alert, you
can add a red border or change the background color of
incorrect items to visually guide users.
2. Add a “Check Order” Button: Instead of checking
immediately upon every drop, you could add a button
that allows users to check their order when they feel
they’ve sorted it correctly.

Conclusion
Incorporating feedback mechanisms, such as checking
the order in our sortable list, greatly enhances the user
experience. It transforms the list from a simple sorting
activity into a more interactive and engaging puzzle.
Always remember, providing real-time feedback is crucial
in any interactive web application, ensuring users remain
engaged and informed about their actions.
As you progress with web development, consider diving
deeper into the Drag & Drop API to explore other
possibilities, like multi-list dragging, clone dragging, and
more!

Section 16: Project 15 -
Breakout Game | HTML5
Canvas API

Project Intro
Welcome to Project 15, the “Breakout Game” using the
HTML5 Canvas API! If you’ve ever had a taste of classic
arcade games, you’re in for a delightful trip down
memory lane. If not, prepare to experience one of the
gems of yesteryears that laid the foundation for many
modern games.

The Breakout Game
The Breakout Game, often simply termed “Breakout”,
has a simple premise. You control a paddle, moving it
left or right, with the aim to bounce a ball that ricochets
off walls and breaks a collection of bricks placed
overhead. As you break the bricks, they disappear, and
the objective is to clear all the bricks without letting the
ball fall past your paddle. Sounds simple, right? Well,
with each level, the game can introduce faster ball
speeds, different brick layouts, and other challenges to
keep you on your toes!

Why This Project?
This game offers the perfect platform to dive deep into
the HTML5 Canvas API. Through this project, you’ll
understand:
- How to draw and animate shapes on the canvas.
- Implementing logic to detect collisions between the ball
and the bricks or paddle.

- Capturing user inputs to move the paddle.
- Manipulating the canvas in real-time to reflect game
states like scores, ball resets, or game over scenarios.

What Will You Learn?
By the end of this project, you’ll be familiar with:
1. HTML5 Canvas Basics: Setting up a canvas,
understanding its coordinate system, and drawing basic
shapes.
2. Animation: Using `requestAnimationFrame` to create
smooth animations.
3. Collision Detection: Understanding how to detect
when the ball hits the paddle, the walls, or the bricks.
4. User Input Handling: Capturing and processing
keyboard inputs to move the paddle.
5. Game Logic: Implementing the game’s core
mechanics, like ball movement, score tracking, and level
progression.

Prerequisites
Before we start, make sure you’re familiar with basic
JavaScript concepts, as we’ll be writing game logic in JS.
Knowledge of arrays, loops, and conditional statements
will be beneficial. Don’t worry if you’re new to the Canvas
API; we’ll cover everything step-by-step.

Tools & Technologies
- HTML: To set up our game’s structure and canvas.
- CSS: A bit of styling to make our game look appealing.
- JavaScript: The core of our game logic. We’ll be using
vanilla JS, so no external libraries are required.
- HTML5 Canvas API: To draw and animate our game
elements.

Wrapping Up
This project promises to be both fun and educational. By
its end, not only will you have a functional game that you
can show off to friends and family, but you’ll also have
acquired a deeper understanding of game development
principles, the Canvas API, and JavaScript. So, roll up
your sleeves, and let’s dive into the world of game
development with our Breakout game!
In the next chapter, we’ll start by setting up our game’s
page and styling. Get ready, and let’s break some bricks!

Crea�ng & Styling The Page
In this chapter, we will embark on the initial step of our
Breakout Game project. Before diving into the HTML5
Canvas API and creating the actual game mechanics,
we first need to lay the groundwork. A well-structured
and styled webpage will be the foundation for our game.
Let’s get started!

1. Setting Up the HTML Structure:
To begin with, our HTML structure will be simple. We
need a title for our game, a canvas element where the
game will be rendered, and possibly a footer or section
for game instructions or credits.
“`html
<!DOCTYPE html>
<html lang=“en”>
<head>

<meta charset=“UTF-8”>
<meta name=“viewport” content=“width=device-width,

initial-scale=1.0”>
<title>Breakout Game</title>

<link rel=“stylesheet” href=“styles.css”>
</head>
<body>

<header>
<h1>Breakout Game</h1>

</header>
<section id=“game-area”>

<canvas id=“breakoutCanvas” width=“800”
height=“600”></canvas>

</section>
<footer>

<p>Instructions: Use your arrow keys or touch
controls to move the paddle. Break all bricks to win!</p>

</footer>
</body>
</html>
“`
Note:
- The `canvas` element has been given a fixed width and
height. These dimensions can be adjusted based on
your design preferences.
- We’ve linked an external CSS file named `styles.css` to
style our game page.

2. Styling the Page:
For our game’s visual appeal, we’ll opt for a clean,
centered layout with a subdued background so that the
game area remains the primary focus.
styles.css:
“`css

body {
font-family: ‘Arial’, sans-serif;
background-color: 282c34;
color: ffffff;
text-align: center;
display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
height: 100vh;
margin: 0;

}
header {

margin-bottom: 20px;
}
h1 {

font-size: 2.5em;
margin: 0;

}
game-area {

position: relative;
}
canvasbreakoutCanvas {

border: 2px solid ffffff;
background-color: 1a1d23;

}
footer {

margin-top: 20px;

}
footer p {

font-size: 0.9em;
}
“`
Highlights:
- We’ve given our page a dark background (`282c34`) to
help the colorful game elements pop.
- The game’s canvas has a slightly different shade of
dark (`1a1d23`) and is bordered for distinction.
- Our entire layout is centered both horizontally and
vertically using Flexbox, providing a modern and sleek
appearance.

3. Improvements & Enhancements:
While our base structure and style are set up, always
consider ways you can enhance the user experience:
- You might want to add a button to start the game or a
scoreboard to track the player’s progress.
- Responsive designs can ensure the game looks great
on all devices. Use media queries to adjust styling for
smaller screens.
- Consider adding game sounds or background music for
a more immersive experience.

Summary:
With our page structure in place and styles applied,
we’ve created a solid foundation for our Breakout game.
This ensures our game mechanics, which we’ll dive into
in the next chapters, will be showcased on a polished
and professional-looking stage.
Remember, the design is a critical part of game
development. It’s not just about how it looks but also how

it feels. So, always take the time to refine and perfect the
environment in which your game operates. In the
following chapters, we’ll bring our Breakout game to life
using the HTML5 Canvas API. Stay tuned!

Canvas Plan Outline
Welcome to Chapter 85, where we’ll be diving deep into
the planning phase of our Breakout Game project. The
canvas is a pivotal part of our game, and understanding
its structure and functionalities is crucial for the game’s
development.

1. Introduction to Canvas
Before we jump into the specifics of our Breakout game,
let’s briefly recap what the Canvas is. The HTML5
`<canvas>` element is used to draw graphics, on the fly,
via scripting (usually JavaScript). It allows for dynamic,
scriptable rendering of 2D shapes and bitmap images.

2. Setting Up Our Canvas
To initiate our canvas, we’ll be defining it within our
HTML:
“`html
<canvas id=“breakoutCanvas” width=“800”
height=“600”></canvas>
“`
This will create a drawing surface 800 pixels wide and
600 pixels tall. But to bring life to this canvas, we must
use JavaScript.
In your JavaScript, target the canvas element:
“`javascript
const canvas =
document.getElementById(‘breakoutCanvas’);

const ctx = canvas.getContext(‘2d’);
“`
`getContext(‘2d’)` gives us a drawing context on the
canvas, which we’ll use for the Breakout game’s visual
elements.

3. Elements of Our Breakout Game
Our Breakout game comprises the following elements:
- Ball
- Paddle
- Bricks
- Score Display
- Life Display
Each element will be drawn and manipulated using the
canvas API.

4. Coordinate System
The canvas has a built-in coordinate system. The top-left
corner of the canvas is defined as point (0,0). All
elements are placed relative to this point. As we go
downwards, the y-coordinate increases; as we go to the
right, the x-coordinate increases.

5. Ball Dynamics
- Initial Position: Center of the canvas.
- Movement: The ball will move both in the x and y
directions.
- Collision: We will need to detect collisions with the
paddle, the bricks, and the canvas edges.

6. Paddle Dynamics

- Initial Position: Centered horizontally at the bottom of
the canvas.
- Movement: The paddle will only move horizontally,
controlled by the user.
- Width and Height: These dimensions will be constants
that we can tweak as per our game’s requirement.

7. Brick Configuration
- Rows and Columns: We’ll design a pattern of bricks
using multiple rows and columns.
- Brick Size: Each brick will have a uniform size, but we
can adjust this to fit our design.
- Gaps: There will be small gaps between bricks to
distinguish them clearly.

8. Score & Life Display
- Position: Top-left corner of the canvas.
- Dynamics: The score will increment when the ball hits a
brick, and the life count will decrement when the ball
misses the paddle.

9. Color Scheme
A consistent and visually pleasing color scheme is
essential. For our game, we’ll be choosing:
- Ball: Red
- Paddle: Black
- Bricks: A gradient of blues (this will add a dynamic feel)
- Background: Light grey
- Score & Life Display: Dark grey with white text

10. Future Enhancements (Optional)
Planning ahead, we can think of additional features:

- Multiple levels with increasing difficulty
- Power-ups that appear randomly
- Different brick types, some harder to break

Conclusion
The canvas offers a plethora of opportunities for web-
based game development. By understanding its
capabilities and planning our game’s structure, we set
the stage for smooth development in subsequent
chapters. In the upcoming chapters, we’ll delve into the
specifics of each game element, starting with drawing
the ball and paddle on our canvas. Stay tuned!

Remember, planning is a crucial phase in any
development process. A well-thought-out plan can help
streamline the coding phase and reduce potential errors.
Always consider spending ample time in this phase
before jumping into coding.

Draw Ball, Paddle & Score
In this chapter, we will start to see our Breakout game
take shape. We’ll be diving deep into the HTML5 Canvas
API, understanding how to draw and animate a ball,
paddle, and keep score. Let’s get started!

1. Setting Up the Canvas Context
Before we start drawing, let’s set up our canvas context.
We’ve already created our canvas element in our HTML,
so we’ll grab that and set its 2D rendering context:
“`javascript
const canvas =
document.getElementById(‘breakoutCanvas’);
const ctx = canvas.getContext(‘2d’);

“`

2. Defining the Ball Properties
We’ll start by defining properties for our ball:
“`javascript
const ball = {

x: canvas.width / 2,
y: canvas.height - 30,
radius: 10,
speed: 2,
dx: 2,
dy: -2,
color: ‘blue’

};
“`
Here, `dx` and `dy` represent the ball’s movement along
the x and y axis.

3. Drawing the Ball
Now, let’s create a function to draw our ball:
“`javascript
function drawBall() {

ctx.beginPath();
ctx.arc(ball.x, ball.y, ball.radius, 0, Math.PI * 2);
ctx.fillStyle = ball.color;
ctx.fill();
ctx.closePath();

}
“`

This function uses the `arc()` method which draws a
circle using the properties we set for our ball.

4. Defining the Paddle Properties
Let’s define our paddle:
“`javascript
const paddle = {

height: 10,
width: 75,
x: (canvas.width - 75) / 2,
color: ‘green’

};
“`
We’ve set the initial position of the paddle to be centered
at the bottom of the canvas.

5. Drawing the Paddle
Here’s our function to draw the paddle:
“`javascript
function drawPaddle() {

ctx.beginPath();
ctx.rect(paddle.x, canvas.height - paddle.height,

paddle.width, paddle.height);
ctx.fillStyle = paddle.color;
ctx.fill();
ctx.closePath();

}
“`
We used the `rect()` method to draw our paddle as a
rectangle.

6. Keeping Score
We’ll need a variable to keep track of the score:
“`javascript
let score = 0;
“`
To display it, we’ll create a function:
“`javascript
function drawScore() {

ctx.font = ‘16px Arial’;
ctx.fillStyle = ‘black’;
ctx.fillText(‘Score: ‘ + score, 8, 20);

}
“`
The `fillText()` method is used to render the score on the
canvas.

7. Bringing It All Together
Now, let’s create a function to draw everything:
“`javascript
function draw() {

ctx.clearRect(0, 0, canvas.width, canvas.height);
drawBall();
drawPaddle();
drawScore();
requestAnimationFrame(draw);

}
“`

We start by clearing the canvas to ensure no trails are
left by the ball. Then we draw our elements. Finally, the
`requestAnimationFrame()` recursively calls our `draw()`
function, creating an animation loop.

8. Let’s Play!
To kick things off, simply call the `draw()` function:
“`javascript
draw();
“`
This will initiate our game loop and you’ll see the ball,
paddle, and score on the canvas.

Summary
In this chapter, we’ve successfully drawn our ball and
paddle using the HTML5 Canvas API and started
keeping score. As we progress further, we’ll add the
ability to move the paddle, bounce the ball, and break
the bricks. This is just the beginning of our Breakout
game journey!

Crea�ng The Bricks
In this chapter, we’ll be focusing on one of the core
components of our Breakout game: the bricks. Every
game has its obstacles, and in Breakout, the bricks
serve that purpose. By using the HTML5 Canvas API,
we’ll create, style, and position our bricks.

Brick Configuration
Before diving into the code, let’s outline the properties
our bricks will have:
- Width & Height: The dimensions of each brick.
- Padding: Space between each brick.

- Offset: Initial top and left space to start drawing the
bricks.
- Color: The color of the bricks.
- Row & Column: Number of rows and columns for our
bricks.

Setting Up Our Bricks
1. Brick Variables

Before drawing, we need to set our variables:
“`javascript
const brickWidth = 70;
const brickHeight = 20;
const brickPadding = 10;
const brickOffsetTop = 30;
const brickOffsetLeft = 30;
const brickRowCount = 5;
const brickColumnCount = 3;
“`

2. Brick Array
We’ll represent our bricks as an array of objects:
“`javascript
let bricks = [];
for(let c=0; c<brickColumnCount; c++) {

bricks[c] = [];
for(let r=0; r<brickRowCount; r++) {

bricks[c][r] = { x: 0, y: 0, status: 1 };
}

}
“`

Each brick object has `x` and `y` properties for
positioning and a `status` property. When `status` is `1`,
the brick is visible; when it’s `0`, the brick is “broken” or
invisible.

Drawing the Bricks
Let’s create a function to draw our bricks:
“`javascript
function drawBricks() {

for(let c=0; c<brickColumnCount; c++) {
for(let r=0; r<brickRowCount; r++) {
if(bricks[c][r].status == 1) {

let brickX = (c*
(brickWidth+brickPadding))+brickOffsetLeft;

let brickY = (r*
(brickHeight+brickPadding))+brickOffsetTop;

bricks[c][r].x = brickX;
bricks[c][r].y = brickY;
ctx.beginPath();
ctx.rect(brickX, brickY, brickWidth, brickHeight);
ctx.fillStyle = “0095DD”;
ctx.fill();
ctx.closePath();

}
}

}
}
“`
- First, we loop through our brick columns and rows.
- We only draw bricks with a status of `1`.

- For each brick, we calculate its X and Y position.
- Using the `ctx` (our canvas context), we draw the brick
as a rectangle and fill it with color.

Updating Our Game Loop
Now that we have a function to draw bricks, we need to
include it in our main game loop so the bricks appear on
the screen:
“`javascript
function draw() {

// … other game drawing logic …
drawBricks();
// … more game drawing logic …

}
“`

Conclusion
Our Breakout game now has bricks that serve as
obstacles for the player. In the following chapters, we’ll
look into how our ball will interact with these bricks,
removing them when hit, and how to increase the
game’s difficulty as the player progresses.
Remember, the beauty of game development lies in
creativity. You can adjust the properties, colors, and
behaviors of bricks to create unique challenges and
designs. Happy coding!

Move Paddle
Welcome to Chapter 88, where we will delve into the
mechanics of moving the paddle in our Breakout Game.
The paddle movement is essential for gameplay,
allowing players to deflect the ball and target bricks.

1. Introduction
In the world of gaming, the paddle is the player’s only
defense against the bouncing ball, preventing it from
falling off the screen and enabling the player to aim
where they want the ball to go. Using the HTML5
Canvas API, we will be creating this paddle and enabling
its movement.

2. Setting Up the Paddle
2.1. Paddle Attributes
First, let’s define the paddle’s properties. Place these at
the top of your script, where you’ve set up the other
game variables:
“`javascript
let paddleHeight = 10;
let paddleWidth = 75;
let paddleX = (canvas.width - paddleWidth) / 2;
“`
- `paddleHeight`: The thickness of the paddle.
- `paddleWidth`: The length of the paddle.
- `paddleX`: The starting x-coordinate of the paddle. This
will place it centered at the bottom of the canvas.

3. Drawing the Paddle
Using the canvas context, we can draw the paddle:
“`javascript
function drawPaddle() {

ctx.beginPath();
ctx.rect(paddleX, canvas.height - paddleHeight,

paddleWidth, paddleHeight);
ctx.fillStyle = “0095DD”;

ctx.fill();
ctx.closePath();

}
“`
Every time we call `drawPaddle()`, it will render the
paddle at its current `paddleX` position.

4. Moving the Paddle
We will allow the player to move the paddle using the left
and right arrow keys.
4.1. Event Listeners
Add event listeners to detect key presses:
“`javascript
document.addEventListener(“keydown”,
keyDownHandler, false);
document.addEventListener(“keyup”, keyUpHandler,
false);
“`
4.2. Handling Key Presses
Now, we’ll create our handler functions. When the player
presses a key down, `keyDownHandler` will fire. When
they release it, `keyUpHandler` will execute:
“`javascript
let rightPressed = false;
let leftPressed = false;
function keyDownHandler(e) {

if(e.key == “Right” || e.key == “ArrowRight”) {
rightPressed = true;

}
else if(e.key == “Left” || e.key == “ArrowLeft”) {

leftPressed = true;
}

}
function keyUpHandler(e) {

if(e.key == “Right” || e.key == “ArrowRight”) {
rightPressed = false;

}
else if(e.key == “Left” || e.key == “ArrowLeft”) {

leftPressed = false;
}

}
“`

5. Implementing Paddle Movement
Within your game’s `draw` or main loop function,
implement the paddle’s movement:
“`javascript
let paddleDX = 7; // Paddle’s movement speed
if(rightPressed) {

paddleX += paddleDX;
if (paddleX + paddleWidth > canvas.width){

paddleX = canvas.width - paddleWidth;
}

}
if(leftPressed) {

paddleX -= paddleDX;
if (paddleX < 0){

paddleX = 0;
}

}
“`
Here’s a breakdown:
- `paddleDX`: The speed of paddle movement. Adjust to
make the paddle move faster or slower.
- The first `if` block checks if the right arrow is pressed
and moves the paddle to the right by adding `paddleDX`
to its x-coordinate.
- The second `if` block does the same but for the left
arrow, subtracting `paddleDX` from the paddle’s x-
coordinate.
- The inner `if` conditions ensure the paddle doesn’t go
outside the canvas boundaries.

6. Conclusion
With these steps, the paddle should move smoothly
across the canvas, providing the player with a tool to
bounce the ball and break the bricks. Remember,
adjusting `paddleDX` can change the difficulty level of
your game, making it easier or harder for the player.
In the next chapter, we’ll dive into moving the ball, which,
combined with this paddle movement, will form the core
gameplay of our Breakout Game.

Move Ball & Break Bricks
In this chapter, we will dive deep into the Breakout game
mechanics by making our ball move and allowing it to
break bricks upon collision. We’ll use the HTML5 Canvas
API to bring our game to life.

Ball Movement
The first thing we need to achieve is to get our ball
moving. For this, we’ll update the ball’s `x` and `y`

position on every frame.
“`javascript
let ball = {

x: canvas.width / 2,
y: canvas.height - 30,
dx: 2,
dy: -2,
radius: 10

};
“`
In the code above, `dx` and `dy` represent the change in
`x` and `y` position respectively. If `dx` is positive, the
ball moves to the right. If `dy` is negative, the ball moves
upwards.

Updating the Ball’s Position
To move the ball, we need to update its position on every
frame:
“`javascript
function moveBall() {

ball.x += ball.dx;
ball.y += ball.dy;

}
“`

Ball-Brick Collision Detection
To make our game interactive, we’ll now make the ball
break bricks when they collide.
1. Define the Bricks

First, let’s define our bricks:

“`javascript
const brickRowCount = 5;
const brickColumnCount = 3;
const brickWidth = 75;
const brickHeight = 20;
const brickPadding = 10;
const brickOffsetTop = 30;
const brickOffsetLeft = 30;
const bricks = [];
for(let c=0; c<brickColumnCount; c++) {

bricks[c] = [];
for(let r=0; r<brickRowCount; r++) {

bricks[c][r] = { x: 0, y: 0, status: 1 };
}

}
“`
Here, `status: 1` indicates the brick is unbroken. Once
broken by the ball, we’ll change it to `status: 0`.
2. Collision Detection

For every frame, we need to check if the ball collides
with any of the bricks:
“`javascript
function collisionDetection() {

for(let c=0; c<brickColumnCount; c++) {
for(let r=0; r<brickRowCount; r++) {
let brick = bricks[c][r];
if(brick.status == 1) {

if(ball.x > brick.x && ball.x < brick.x +
brickWidth && ball.y > brick.y && ball.y < brick.y +

brickHeight) {
ball.dy = -ball.dy;
brick.status = 0;

}
}
}

}
}
“`
When a collision is detected, we reverse the `dy`
direction of the ball and set the `status` of the brick to
`0`, indicating it’s been broken.
3. Draw Bricks on Canvas

After defining the bricks and detecting collisions, we
need to draw the bricks onto the canvas:
“`javascript
function drawBricks() {

for(let c=0; c<brickColumnCount; c++) {
for(let r=0; r<brickRowCount; r++) {
if(bricks[c][r].status == 1) {

let brickX = (c*(brickWidth + brickPadding)) +
brickOffsetLeft;

let brickY = (r*(brickHeight + brickPadding)) +
brickOffsetTop;

bricks[c][r].x = brickX;
bricks[c][r].y = brickY;
ctx.beginPath();
ctx.rect(brickX, brickY, brickWidth, brickHeight);
ctx.fillStyle = “0095DD”;
ctx.fill();

ctx.closePath();
}
}

}
}
“`

Conclusion
By now, you should have a moving ball that can break
bricks upon collision. By combining ball movement with
brick collision, our Breakout game begins to take shape.
In the next chapter, we will focus on handling when the
ball hits the game boundaries, the paddle, and resetting
the game when the player loses.

Lose & Reset Game
In this chapter, we’ll explore one of the crucial aspects of
our Breakout Game: handling the game-over situation
and allowing the player to reset the game. Just as in any
game, defining and appropriately managing the game’s
end condition is crucial for an enjoyable player
experience.

1. Understanding the Lose Condition
Before we delve into the code, it’s important to
understand when our player loses in the Breakout
Game. The loss condition is typically when the ball
passes the paddle without the paddle hitting it and
touches the bottom edge of the canvas.

2. Setting Up the Lose Condition
First, we need to check in every frame (each time the
game updates) if the ball has hit the bottom. Here’s how

we can set that up:
“`javascript
if(ball.y + ball.radius > canvas.height) {

// Player loses
}
“`

3. Resetting the Game State
When the player loses, we should reset the game’s state
so they can start again if they wish. This involves:
- Resetting the ball’s position to the center of the screen.
- Resetting the ball’s movement vector (i.e., the direction
and speed it’s moving).
- Optionally, resetting the score, depending on how you
want your game mechanics to work.
Here’s a simple function to reset the game state:
“`javascript
function resetGame() {

ball.x = canvas.width / 2;
ball.y = canvas.height - 30;
ball.dx = 2 * (Math.random() * 2 - 1); // Random

direction either left or right
ball.dy = -2;
score = 0;

}
“`

4. Handling Game Over
Now, when the player loses, we’ll show a game over
message and offer the chance to restart the game:

“`javascript
if(ball.y + ball.radius > canvas.height) {

alert(‘GAME OVER!’);
resetGame();

}
“`
Note: Using `alert` is a simple way to pause the game
and notify the player, but for a polished game, you’d
likely want a more integrated game-over screen drawn
directly onto the canvas.

5. Enhancements
There are several enhancements you can add to make
the game-over experience more polished:
- Fade Effects: Use global alpha and gradually decrease
it to create a fade-out effect when the game is over.
- Custom Messages: Display custom messages for
different score ranges, encouraging the player to try
again or congratulating them on a high score.
- Persistent High Scores: Using the `localStorage` API,
you can store the player’s high score on their browser,
so they can see their best scores across sessions.

6. Conclusion
Handling the game over condition and providing a
smooth reset experience is crucial for player retention
and satisfaction. By clearly defining the end condition,
giving immediate feedback, and making it easy to dive
back in and play again, you ensure that players remain
engaged and motivated to improve.
In the next chapter, we’ll explore further enhancements
and features that can elevate the gameplay experience.
Remember, while the technical execution is essential, it’s

the small details in game development that often make
the most significant difference in the player’s experience.

That’s a basic overview of how to handle the game over
and reset conditions in a Breakout-style game. You can
expand upon this with more advanced game mechanics,
visuals, and sounds to create a richer gaming
experience.

Conclusion
Congratulations on reaching the end of “15 Web Projects
With Vanilla JavaScript.” You’ve just walked through a
series of fascinating, hands-on projects that pushed your
understanding of web development using pure HTML5,
CSS, and JavaScript. No frameworks, no libraries—just
the raw power of core web technologies.
Reflecting on our journey, we started with the basics,
learning the foundations of web development, and then
dove deep into understanding how JavaScript interacts
with the browser to create dynamic, interactive
experiences. From simple form validation, managing
local storage, exploring asynchronous programming,
manipulating the DOM, to understanding the intricacies
of various APIs—every project was an opportunity to
harness new skills.

Recap of Key Takeaways:
1. Vanilla JavaScript is Powerful: You don’t always need
a framework or library to build impressive projects.
Understanding the basics well can empower you to
create almost anything on the web.
2. HTML5 & CSS are the Backbone: No matter how
advanced our JS functionalities were, it all came down to
a structured HTML document and styled with CSS.
They’re the unsung heroes of web development.

3. Hands-on Learning is Effective: Each project was a
testament to the power of learning by doing. Theoretical
knowledge is essential, but practical application ensures
it’s cemented in your memory.
4. Debugging is Part of the Process: If you encountered
challenges and had to troubleshoot errors—great! That’s
a crucial part of the developer journey, and each mistake
only made you better.

Continuing Your Web Development Journey:
The projects in this book were designed to be both fun
and educational, but they also laid the groundwork for
more extensive projects. With the tools and knowledge
you have now:
- Dive Deeper: Explore other APIs, experiment with more
advanced CSS animations, or deepen your JavaScript
understanding. The web is vast, and there’s always more
to learn.
- Incorporate Frameworks: Now that you understand the
fundamentals, consider exploring popular frameworks
like React, Angular, or Vue. They can help streamline
some of the processes you learned here.
- Build Full-stack: Consider expanding your horizons to
back-end development. Pairing your front-end skills with
server-side programming can allow you to create
complete web applications.
Lastly, remember that the tech industry is continuously
evolving. To stay relevant, always be curious and keep
learning. Engage in communities, contribute to open-
source projects, and never shy away from challenges.
Once again, congratulations! Whether this book was a
refresher, a new learning experience, or even just a fun
exploration of what web development can offer, I hope it
served your needs.
Remember, every website, every web application, and
every piece of interactive content you’ve ever enjoyed

online started with someone typing out lines of code.
You’re now a part of that legacy. Embrace it, keep
building, and always keep pushing the boundaries of
what you know.

	(WD) 15 Web Projects With Vanilla JavaScript
	Contents
	Section 1:
	Introduction
	Welcome To The Course
	Getting Setup
	Section 2: Project 1 - Form Validator | Intro Project
	Project Intro
	Project HTML
	Project CSS
	Adding Simple Validation
	Check Required & Refactor
	Check Length, Email & Password Match
	Section 3: Project 2 - Movie Seat Booking | DOM & Local Storage
	Project Intro
	Project HTML
	Project CSS
	Selecting Movie & Seats From UI
	Save Data To Local Storage
	Populate UI With Saved Data
	Section 4: Project 3 - Custom Video Player | HTML5 Video API
	Project Intro
	Project HTML
	Project CSS
	Play, Pause & Stop
	Video Progress Bar & Timestamp
	Section 5: Project 4 - Exchange Rate Calculator | Fetch & JSON Intro
	Project Intro
	Project HTML
	Project CSS
	A Look at JSON & Fetch
	Fetch Rates & Update DOM
	Section 6:
	Project 5 - DOM Array Methods | forEach, map, filter, sort, reduce
	Project Intro
	Project UI
	Generate Random Users - Fetch w/ Async/Await
	Output Users - forEach() & DOM Methods
	Double Money - map()
	Sort By Richest - sort()
	Show Millionaires - filter()
	Calculate Wealth - reduce()
	Section 7: Project 6 - Menu Slider & Modal | DOM & CSS
	Project Intro
	Project HTML
	Navbar Styling
	Header & Modal Styling
	Menu & Modal Toggle
	Section 8: Project 7 - Hangman Game | DOM, SVG, Events
	Project Intro
	Draw Hangman With SVG
	Main Styling
	Popup & Notification Styling
	Display Words Function
	Letter Press Event Handler
	Wrong Letters & Play Again
	Section 9: Project 8 - Meal Finder | Fetch & MealDB API
	Project Intro
	Project HTML & Base CSS
	Search & Display Meals From API
	Show Single Meal Page
	Display Random Meal & Single Meal CSS
	Section 10:
	Project 9 - Expense Tracker | Array Methods & Local Storage
	Project Intro
	Project HTML
	Project CSS
	Show Transaction Items
	Display Balance, Income & Expense
	Add & Delete Transactions
	Persist To Local Storage
	Section 11:
	Project 10 - Infinite Scroll Posts | Fetch, Async/Await, CSS Loader
	Project Intro
	Project HTML
	Project CSS & Loader Animation
	Get Initial Posts From API
	Add Infinite Scrolling
	Filter Fetched Posts
	Section 12: Project 11 - Speech Text Reader | Speech Synthesis
	Project Intro
	HTML & Output Speech Boxes
	Project CSS
	Get Speech Voices
	Speech Buttons
	Change Voice & Custom Text Box
	Section 13: Project 12 - Relaxer App | CSS Animations, setTimeout
	Project Intro
	Creating The Large Circle
	Creating & Animating The Pointer
	Breath Animation With JS Trigger
	Section 14: Project 13 - New Year Countdown | DOM, Date & Time
	Project Intro
	Landing Page HTML & Styling
	Create The Countdown
	Dynamic Year & Spinner
	Section 15: Project 14 - Sortable List | Drag & Drop API
	Project Intro
	Insert List Items Into DOM
	Scramble List Items
	Core CSS
	Drag & Drop Functionality
	Check Order
	Section 16: Project 15 - Breakout Game | HTML5 Canvas API
	Project Intro
	Creating & Styling The Page
	Canvas Plan Outline
	Draw Ball, Paddle & Score
	Creating The Bricks
	Move Paddle
	Move Ball & Break Bricks
	Lose & Reset Game
	Conclusion

